
Programmability with increasedperformance? New strategies to
attain this goal include two approaches to dataflow architecture:

dataflow multiprocessors and the cell block architecture.

Data Flow Supercomputers

Jack B. Dennis
MIT Laboratory for Computer Science

The architects of supercomputers must meet three
challenges if the next generation of machines is to find
productive large-scale application to the important prob-
lems of computational physics. First, they must achieve
high performance at acceptable cost. Instruction execu-
tion rates of a billion floating-point operations each sec-
ond are in demand, whereas current architectures require
intricate programming to attain a fraction of their poten-
tial, at best around one tenth of the goal. Brute force ap-
proaches to increase the speed of conventional architec-
tures have reached their limit and fail to take advantage of
the major recent advances in semiconductor device tech-
nology. Second, they must exploit the potential of LSI
technology. Novel architectures are needed which use
large numbers but only a few different types of parts, each
with a high logic-to-pin ratio. In a supercomputer, most
of these parts must be productive most of the time; hence
the need to exploit concurrency of computation on a mas-
sive scale. Third, it must be possible to program super-
computers to exploit their performance potential. This
has proven to be an enormous problem, even in the case of
computations for which reasonably straightforward For-
tran programs exist. Thus present supercomputer archi-
tectures have exacerbated rather than resolved the soft-
ware crisis.

It appears that the objectives of improving program-
mability and increasing performance are in conflict, and
new approaches are necessary. However, any major de-
parture from conventional architectures based on sequen-
tial program execution requires that the whole process of
program design, structure, and compilation be redone
along new lines. One architecture under consideration is a
multiprocessor machine made of hundreds of intercom-
municating microcomputer processing elements. This
architecture has attracted wide interest, but has many
drawbacks; even if the processing elements had full float-

ing-point capability and ran at a million instructions per
second, at least one thousand would be required to attain
a billion instructions per second performance. For such a
number of processing elements there is no known way of
permitting access to a shared memory without severe
performance degradation. Similarly, no known way of
arranging conventional microprocessors for synchroniza-
tion or message passing allows efficient operation while
exploiting fine grain parallelism in an application. And
finally, there is no programming language or methodo-
logy that supports mapping application codes onto such a
multiprocessor in a way that achieves high performance.

Language-based computer design can ensure the pro-
grammability of a radical architecture. In a language-
based design the computer is a hardware interpreter for a
specific base language, and programs to be run on the sys-
tem must be expressed in this language. I Because future
supercomputers must support massive concurrency to
achieve a significant increase in performance, a base lan-
guage for supercomputers must allow expression of con-
currency of program execution on a large scale. Since con-
ventional languages such as Fortran are based on a global
state model of computer operation, these languages are
unsuitable for the next generation of supercomputers and
will eventually be abandoned for large-scale scientific
computation. At present, functional or applicative pro-
gramming languages and data flow models of computa-
tion are the only known foundation appropriate for a su-
percomputer base language. Two programming lan-
guages have been designed recently in response to the
need for an applicative programming language suitable
for scientific numerical computation: ID, developed at Ir-
vine,2 and Val, designed at MIT.3'4
Data flow architectures offer a possible solution to the

problem of efficiently exploiting concurrency of compu-
tation on a large scale, and they are compatible with

0018-9162/80/1100-0048$00.75 g 1980 IEEE48 COMPUTER

SRC00034161

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 1

modern concepts of program structure. Therefore, they
should not suffer so much from the difficulties of pro-
gramming that *have hampered other approaches to
highly parallel computation.
The data flow concept is a fundamentally different way

of looking at instruction execution in machine-level pro-
grams-an alternative to sequential instruction execu-
tion. In a data flow computer, an instruction is ready for
execution when its operands have arrived. There is no
concept of control flow, and data flow computers do not
have program location counters. A consequence of data-
activated instruction execution is that many instructions
of a data flow program may be available for execution at
once. Thus, highly concurrent computation is a natural
consequence of the data flow concept.
The idea of data-driven computation is old,5'6 but only

in recent years have architectural schemes with attractive
anticipated performance and the capability of supporting
a general level of user language been developed. Work on
data-driven concepts of program structure and on the
design of practical data-driven computers is now in prog-
ress in at least a dozen laboratories in the US and Europe.
Several processors with data-driven instruction execution
have been built, and more hardware projects are being
planned. Most of this work on architectural concepts for
data flow computation is based on a program representa-
tion known as data flow program graphs7 which evolved
from work of Rodriguez,8 Adams,9 and Karp and
Miller.10 In fact, data flow computers are a form of
language-based architecture in which program graphs are
the base language. As shown in Figure 1, data flow pro-
gram graphs serve as a formally specified interface be-
tween system architecture on one hand and user program-
ming language on the other. The architect's task is to
define and realize a computer system that faithfully im-
plements the formal behavior of program graphs; the
language implementer's task is to translate source
language programs into their equivalent as program
graphs.

The techniques used to translate source language pro-
grams into data flow graphs I I are similar to the methods
used in conventional optimizing compilers to analyze the
paths of data dependency in source programs. High-level
programming languages for data flow computation should
be designed so it is easy for the translator to identify data
dependence and generate program graphs that expose
parallelism. The primary sources of difficulty are un-
restricted transfer of control and the "side effects"
resulting from assignment to a global variable or input ar-
guments of a procedure. Removal of these sources of dif-
ficulty not only makes concurrency easy to identify, it
also improves program structure. Programs are more
modular, and are easier to understand and verify. The im-
plications of data flow for language designers are dis-
cussed by Ackerman. 12

This article presents two architectures from the variety
of schemes devised to support computations expressed as
data flow graphs. First we explain data flow graphs by ex-
amples, and show how they are represented as collections
of activity templates. Next we describe the basic instruc-
tion-handling mechanism used in most current projects to

build prototype data flow systems. Then we develop the
two contrasting architectures and discuss the reasons for
their differences-in particular the different approaches
to communicating information between parts of a data
flow machine.

Data flow programs

A data flow program graph is made up of actors con-
nected by arcs. One kind of actor is the operator shown in
Figure 2, drawn as a circle with a function symbol written
inside-in this case +, indicating addition. An operator
also has input arcs and output arcs which carry tokens
bearing values. The arcs define paths over which values
from one actor are conveyed by tokens to other actors.
Tokens are placed on and removed from the arcs of a pro-
gram graph according to firing rules, which are illustrated
for an operator in Figure 3. To be enabled, tokens must be
present on each input arc, and there must be no token on
any output arc of the actor. Any enabled actor may be
fired. In the case of an operator, this means removing one
token from each input arc, applying the specified func-
tion to the values carried by those tokens, and placing
tokens labeled with the result value on the output arcs.

Figure 1. Program graphs as a base language.

Figure 2. Data flow actor.

Figure 3. Firing rule: (a) before; (b) after.

November 1980 49

SRC00034162

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 2

cevans
Highlight

Figure 4. Interconnection of operators.

Figure 6. Configuration of activity templates for the pro-
gram graph of Figure 4.

Figure 5. An activity template.

Operators may be connected as shown in Figure 4 to
form program graphs. Here, presenting tokens bearing
values for x and y at the two inputs will enable computa-
tion of the value

z = (x+y) * (x-y)

by the program graph, placing a token carrying the result
value on output arc z.
Another representation for data flow programs-one

much closer to the machine language used in prototype
data flow computers-is useful in understanding the
working of these machines. In this scheme, a data flow
program is a collection of activity templates, each cor-
responding to one or more actors of a data flow program
graph. An activity template corresponding to the plus
operator (Figure 2) is shown in Figure 5. There are four
fields: an operation code specifying the operation to be
performed; two receivers, which are places waiting to be
filled in with operand values; and destination fields (in
this case one), which specify what is to be done with the
result of the operation on the operands.
An instruction of a data flow program is the fixed por-

tion of an activity template. It consists of the operation
code and the destinations; that is,

instruction:

< opcode, destinations>

Figure 6 shows how activity templates are joined to repre-
sent a program graph, specifically the composition of op-
erators in Figure 4. Each destination field specifies a tar-
get receiver by giving the address of some activity tem-
plate and an input integer specifying which receiver ofthe
template is the target; that is,

destination:

<address, input>

Program structures for conditionals and iteration are
illustrated in Figures 7 and 8. These use two new data flow
actors, switch and merge, which control the routing ofda-
ta values. The switch actor sends a data input to its T or F
output to match a true or false boolean control input. The
merge actor forwards a data value from its T or F input ac-
cording to its boolean input value. The conditional pro-
gram graph and implementation in Figure 7 represent
computation of

y: =(IFx>3 THENx+2 ELSEx-I)*4

and the program graph and implementation in Figure 8
represent the iterative computation

WHILE x>O DO = x-3

Execution of a machine program consisting of activity
templates is viewed as follows. The contents of a template
activated by the presence of an operand value in each re-
ceiver take the form

operation packet:

<opcode, operands, destinations>

Such a packet specifies one result packet of the form

result packet:

<value, destination>

for each destination field of the template. Generation of a
result packet, in turn, causes the value to be placed in the
receiver designated by its destination field.
Note that this view of data flow computation does not

explicitly honor the rule of program graphs that tokens
must be absent from the output arcs of an actor for it to
fire. Yet there are situations where it is attractive to use a
program graph in pipelined fashion, as illustrated in Fig-
ure 9a. Here, one computation by the graph has produced
the value 6 on arc z while a new computation represented

COMPUTER50

SRC00034163

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 3

Figure 7. A conditional schema (a) and its implementation (b).

Figure 8. An iterative schema (a) and its implementation (b).

Figure 9. Pipelining in a data flow program (a) and its implementation (b).

November 1980 51

re
lee 3]

SRC00034164

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 4

by input values 5 and 3 on arcsxandy is ready to begin. To
faithfully implement this computation, the add instruc-
tion must not be reactivated until its previous result has
been used by the multiply instruction. This constraint is
enforced through use of acknowledge signals generated
by specially marked designations (*) in an activity tem-
plate. Acknowledge signals, in general, are sent to the
templates that supply operand values to the activity tem-
plate in question (Figure 9b). The enabling rule now re-
quires that all receivers contain values, and the required
number of acknowledge signals have been received. This
number (if nonzero) is written adjacent to the opcode of
an activity template.

The basic mechanism

The basic instruction execution mechanism used in sev-
eral current data flow projects is illustrated in Figure 10.
The data flow program describing the computation to be
performed is held as a collection of activity templates in
the activity store. Each activity template has a unique ad-
dress which is entered in the instruction queue unit (a
FIFO buffer store) when the instruction is ready for exe-
cution. The fetch unit takes an instruction address from
the instruction queue and reads the activity template from
the activity store, forms it into an operation packet, and
passes it on to the operation unit. The operation unit per-
forms the operation specified by the operation code on
the operand values, generating one result packet for each
destinatiorn field of the operation packet. The update unit
receives result packets and enters the values they carry in-
to operand fields of activity templates as specified by their
destination fields. The update unit also tests whether all
operand and acknowledge packets required to activate

Figure 10. Basic instruction execution mechanism.

52

the destination instruction have been received and, if so,
enters the instruction address in the instruction queue.
During program execution, the number of entries in the
instruction queue measures the degree of concurrency
present in the program. The basic mechanism of Figure 10
can exploit this potential to a limited but significant de-
gree: once the fetch unit has sent an operation packet off
to the operation unit, it may immediately read another en-
try from the instruction queue without waiting for the in-
struction previously fetched to be completely processed.
Thus a continuous stream of operation packets may flow
from the fetch unit to the operation unit so long as the in-
struction queue is not empty.

This mechanism is aptly called a circular pipeline-ac-
tivity controlled by the flow of information packets tra-
verses the ring of units leftwise. A number of packets may
be flowing simultaneously in different parts of the ring on
behalf of different instructions in concurrent execution.
Thus the ring operates as a pipeline system with all of its
units actively processing packets at once. The degree of
concurrency possible is limited by the number of units on
the ring and the degree of pipelining within each unit. Ad-
ditional concurrency may be exploited by splitting any
unit in the ring into several units which can be allocated to
concurrent activities. Ultimately, the level of concurrency
is limited by the capacity of the data paths connecting the
units of the ring. This basic mechanism is essentially that
implemented in a prototype data flow processing element
built by a group at the Texas Instruments Company.13
The same mechanism, elaborated to handle data flow
procedures, was described earlier by Rumbaugh, 14 and a
new project at Manchester University uses another varia-
tion of the same scheme.'5

The data flow multiprocessor

The level of concurrency exploited may be increased
enormously by connecting many processing elements of
the form we have described to form a data flow multipro-
cessor system. Figure 1 la shows many processing ele-
ments connected through a communication system, and
Figure 1 lb shows how each processing element relates to
the communication system. The data flow program is di-
vided into parts which are distributed over the processing
elements. The activity stores of the processing elements
collectively realize a single large address space, so the ad.
dress field of a destination may select uniquely any activi-
ty template in the system. Each processing element sends a
result packet through the communication network if its
destination address specifies a nonlocal activity template,
and to its own update unit otherwise.
The communication network is responsible for deliver-

ing each result packet received to the processing element
that holds the target activity template. This network,
called a routing network, transmits each packet arriving
at an input port to the output specified by information
contained in the packet. The requirements of a routing
network for a data flow multiprocessor differ in two im-
portant ways from those of a processor/memory switch
for a conventional multiprocessor system. First, informa-
tion flow in a routing network is in one direction-an im-

COMPUTER

OPERATION
UNIT(S)

INSTRUCTION
QUEUE

UPDATE

ACTIVITY
STORE

SRC00034165

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 5

mediate reply from the target unit to the originating unit is
not required. Second, since each processing element holds
many enabled instructions ready for processing, some
delay can be tolerated in transmission of result packets
without slowing down the overall rate of computation.
The crossbar switch in conventional multiprocessor

systems meets requirements for immediate response and
small delay by providing for signal paths from any input
to any output. These paths are established on request and
maintained until a reply completes a processor/memory
transaction. This arrangement is needlessly expensive for
a data flow multiprocessor, and a number of alternative
network structures have been proposed. The ring form of
communication network is used in many computer net-
works, and has been used by Texas Instruments to couple
four processing elements in their prototype data flow
computer. The drawback of the ring is that delay grows
linearly with size, and there is a fixed bound on capacity.

Several groups have proposed tree-structured networks
for communicating among processing elements.16"17"18
Here, the drawback is that traffic density at the root node
may be unacceptably high. Advantages ofthe tree are that
the worst case distance between leaves grows only as log2 N
(for a binary tree), and many pairs of nodes are connected
by short paths.
The packet routing network shown in Figure 12 is a

structure currently attracting much attention. A routing
network with N input and N output ports may be as-
sembled from (N/2) log2(N) units, each of which is a 2 x 2
router. A 2 x 2 router receives packets at two input ports
and transmits each received packet at one of its output
ports according to an address bit contained in the packet.
Packets are handled first come, first served, and both out-
put ports may be active concurrently. Delay through an
NxN network increases as 1og2 N, and capacity rises
nearly linearly with N. This form of routing network is de-
scribed in Leung'9 and Tripathi and Lipovski.20 Several
related structures have been analyzed for capacity and de-
lay.21

The cell block architecture

In a data flow multiprocessor (Figure 11), we noted the
problem of partitioning the instructions of a program
among the processing elements to concentrate communi-
cation among instructions held in the same processing ele-
ment. This is advantageous because the time to transport
a result packet to a nonlocal processor through the rout-
ing network will be longer (perhaps much longer) than the
time to forward a result locally.

At MIT, an architecture has been proposed in response
to an opposing view: each instruction is equally accessible
to result packets generated by any other instruction,
regardless of where they reside in the machine.22'23 The
structure of this machine is shown in Figure 13. The heart
of this architecture is a large set of instruction cells, each
of which holds one activity template of a data flow pro-
gram. Result packets arrive at instruction cells from the
distribution network. Each instruction cell sends an op-
eration packet to the arbitration network when all oper-
ands and signals have been received. The function of the

Figure 11. Data flow multiprocessor: (a) connection of many process-
ing elements through a communication system; (b) relationship of
each PE to the communication system.

Figure 12. Routing network structure.

November 1980 53

COMMUNI-
CATION

NETWORK
SYSTEM:

CATION
SYSTEM

ACTIVITY
STORE

SRC00034166

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 6

Figure 13. Genesis of the cell block architecture.

Figure 14. Practical form of the cell block architecture.

Figure 15. Cell block implementation.

operation section is to execute instructions and to for-
ward result packets to target instructions by way of the
distribution network.

The design in Figure 13 is impractical if the instruction
cells are fabricated as individual physical units, since the
number of devices and interconnections would be enor-
mous. A more attractive structure is obtained if the in-
struction cells are grouped into blocks and each block re-
alized as a single device. Such an instruction cell block has
a single input port for result packets and a single output
port for operation packets. Thus one cell block unit re-
places many instruction cells and the associated portion
of the distribution network. Moreover, a byte-serial for-
mat for result and operation packets further reduces the
number of interconnections between cell blocks and other
units.

COMPUTER

DISTRI-
BUTION INSTRUCTION OPERATION

NETWORK f ies SECTION

ARBI-
TRATION

NETWORK

DISTRI-
BUTION CELL BLOCKS

NETWORK

ARBI-
TRATION
NETWORK

UPDATE

ACTIVITY
STORE

SRC00034167

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 7

The resulting structure is shown in Figure 14. Here, sev-

eral cell blocks are served by a shared group of functional
units Pi, . . . , Pk. The arbitration network in each section
of the machine passes each operation packet to the appro-
priate functional unit according to its opcode. The num-
ber of functional unit types in such a machine is likely to
be small (four, for example), or just one universal func-
tional unit type might be provided, in which case the arbi-
tration network becomes trivial.
The relationship between the cell block architecture

and the basic mechanism described earlier becomes clear
when one considers how a cell block unit would be con-

structed. As shown in Figure 15, a cell block would in-
clude storage for activity templates, a buffer store for ad-
dresses of enabled instructions, and control units to re-

ceive result packets and transmit operation packets.
These control units are functionally equivalent to the
fetch and update units of the basic mechanism. The cell
block differs from the basic data flow processing element
in that the cell block contains no functional units, and
there is no shortcut for result packets destined for succes-

sor instructions held in the same cell block.

Discussion and conclusions

In the cell block architecture, communication of a re-

sult packet from one instruction to its successor is equally
easy (or equally difficult, depending on your point of
view) regardless of how the two instructions are placed
within the entire activity store of the machine. Thus the
programmer need not be concerned that his program

might run slowly due to an unfortunate distribution of in-
structions in the activity store address space. In fact, a

random allocation of instructions may prove to be ade-
quate.

In the data flow multiprocessor, communication be-
tween two instructions is much quicker if these instruc-
tions are allocated to the same processing element. Thus a

program may run much faster if its instructions are clus-
tered to minimize communication traffic between clusters
and each cluster is allocated to one processing element.
Since it will be handling significantly less packet traffic,
the communication network of the data flow multipro-
cessor will be simpler and less expensive than the distribu-
tion network in the cell block architecture. Whether the
cost reduction justifies the additional programming ef-
fort is a matter of debate, contingent on the area of appli-
cation, the technology of fabrication, and the time frame
under consideration.
Although the routing networks in the two forms of data

flow processor have a much more favorable growth of
logic complexity (N log N) with increasing size than the
switching networks of conventional multiprocessor sys-

tems, their growth is still more than linear. Moreover, in

all suggested physical structures for NxN routing net-
works, the complexity as measured- by total wire length
grows as O(N2). This fact shows that interconnection
complexity still places limits on the size of practical multi-
unit systems which support universal intercommunica-
tion. Ifwe need still larger systems, it appears we must set-

munication with immediate neighbors.
The advant-age data flow architectures have over other

approaches to high-performance computation is that the
scheduling and synchronization of concurrent activities
are built in at the hardware level, enabling each instruc-
tion execution to be treated as an independent concurrent
action. This allows efficient fine grain parallelism, which
is precluded when the synchronization and scheduling
functions are realized in software or microcode. Further-
more, there are well-defined rules for translating high-
level programs into data flow machine code.
What are the prospects for data flow supercomputers?

Machines based on either of the two architectures pre-

sented in this paper could be built today. A machine hav-
ing up to 512 processing elements or cell blocks seems fea-
sible. For example, a 4 x 4 router for packets, each sent as

a series of 8-bit bytes, could be fabricated as a 100-pin LSI
device, and fewer than one thousand of these devices
could interconnect 512 processing elements or cell blocks.
If each processing unit could operate at two million in-
structions per second, the goal of a billion instructions per
second would be achieved.

Yet there are problems to be solved and issues to be ad-
dressed. It is difficult to see how data flow computers
could support programs written in Fortran without re-

strictions on and careful tailoring of the code. Study is
just beginning on applicative languages like Val and
ID.24,25 These promise solutions to the problems of map-

PURCHASE 12-24 MONTH FULL1 36 MONTH
PLAN OWNERSHIP PLAN I LEASE PLAN

PURCHASE PER MONTH
DESCRIPTION PRICE 12 MOS. 24 MOS. 36 MOS.

LA36 DECwriter $1,695 $162 $ 90 $ 61

LA34 DECwriter IV: .1,095 105 59 40

LA34 DECwriter IV Forms CtrI. 1,295 124 69 47
LA120 DECwriter IlIl KSR ... 2,495 239 140 90
LA180 DECprinterI. 2,095 200 117 75

VT100 CRT DECscope 1,895 182 101 68

VT132 CRT DECscope 2,295 220 122 83

DT80/1 DATAMEDIA CRT
1

995 191 106 72

T1745 Portable Terminal 1,595 153 85 57

T1765 Bubble Memory Terminal 2,595 249 146 94
T1810 RO Printer .1,895 182 101 68

T1820 KSR Printer.2,195 210 117 79

T1825 KSR Printer 1,595 153 85 57

ADM3A CRT Terminal 875 84 47 32

ADM31 CRT Terminal. 1,450 139 78 53

ADM42 CRT Terminal . . ! 2,195 210 117 79
QUME Letter Quality KSR 3,295 316 176 119

QUME Letter Quality RO 2,895 278 155 105

HAZELTINE 1420 CRT 945 91 51 34

HAZELTINE 1500 CRT 1,195 115 64 43

HAZELTINE 1552 CRT 1,295 124 69 47

Hewlett-Packard 2621A CRT 1,495 144 80 54
Hewlett-Packard 2621P CRT 2,650 254 142 96

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
10% PURCHASE OPTION AFTER 36 MONTHS

ACCESSORIES AND PERIPHERAL EQUIPMENT
ACOUSTIC COUPLERS * MODEMS * THERMAL PAPER

RIBBONS * INTERFACE MODULES * FLOPPY DISK UNITS
PROMPT DELIVERY * EFFICIENT SERVICE

tle for arrangements of units that only support com-

November 1980 Reader Service Number 9

1
IIW IRlbX1tl ly;U-1%

.

.

.

.

.

. . .

. . . .

TRANSNET corporation

1,895
2,195

PCE ta r y 201-688-7800
UNION, N.J. 07083 T WX 7 1 0 - 985 - 5 485

SRC00034168

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 8

ping high-level programs into machine-level programs
that effectively utilize machine resources, but much re-
mains to be done. Creative research is needed to handle
data structures in a manner consistent with principles of
data flow computation. These are among the problems
under study in our data flow project at MIT. E

Acknowledgment

This paper is based on research supported by the
Lawrence Livermore National Laboratory of the Univer-
sity of California under contract 8545403.

References

I . J.B. Dennis, "On the Design and Specification of a Com-
mon Base Language," Proc. Symp. Computers and Auto-
mata, Polytechnic Press, Polytechnic Institute of Brook-
lyn, Apr. 1971, pp. 47-74.

2. Arvind, K.P. Gostelow, and W. Plouffe, An Asynchro-
nous Programming Language and Computing Machine,
Dept. of Information and Computer Science, University of
California, Irvine, Technical Report 114a, Dec. 1978, 97
PP.

3. W.B. Ackerman and J.B. Dennis, VAL:A Value Oriented
Algorithmic Language, Preliminary Reference Manual,
Laboratory for Computer Science, MIT, Technical Report
TR-218, June 1979, 80 pp.

4. J.R. McGraw, Data Flow Computing: The VAL Lan-
guage, submitted for publication.

5. R.R. Seeber and A.B. Lindquist, "Associative Logic for
Highly Parallel Systems," AFIPS Conf. Proc, 1963, pp.
489-493.

6. R.M. Shapiro, H. Saint, and D.L. Presberg, Representa-
tion of Algorithms as Cyclic Partial Orderings, Applied
Data Research, Wakefield, Mass., Report CA-7112-2711,
Dec. 1971.

7. J.B. Dennis, "First Version of a Data Flow Procedure
Language," Lecture Notes in Computer Sci., Vol. 19,
Springer-Verlag, 1974, pp. 362-376.

8. J.E. Rodriguez, A Graph Model for Parallel Computa-
tion, Laboratory for Computer Science, MIT, Technical
Report TR-64, Sept. 1969, 120 pp.

9. D.A. Adams, A Computation Model With Data Flow Se-
quencing, Cbmputer Science Dept., School of Humanities
and Sciences, Stanford University, Technical Report CS
117, Dec. 1968, 130 pp.

10. R.M. Karp and R.E. Miller, "Properties of a Model for
Parallel Computations: Determinacy, Termination,
Queueing," SIAM J. Applied Math., Vol. 14, Nov. 1966,
pp. 1390-1411.

11. J.D. Brock and L.B. Montz, "Translation and Optimiza-
tion of Data Flow Programs," Proc. 1979 Int'l Conf. on
Parallel Processing, Bellaire, Mich., Aug. 1979, pp. 46-54.

12. W.B. Ackerman, "Data Flow Languages," AFIPS Conf.
Proc., Vol. 48, 1979 NCC, New York, June 1979, pp.
1087-1095.

13. M. Cornish, private communication, Texas Instruments
Corp., Austin, Tex.

14. J.E. Rumbaugh, "A Data Flow Multiprocessor," IEEE
Trans. Computers, Vol. C-26, No. 2, Feb. 1977, pp.
138-146.

15. I. Watson and J. Gurd, "A Prototype Data Flow Com-
puter With Token Labelling," AFIPS Conf. Proc., 1979
NCC, New York, June 1979, pp. 623-628.

16. A. Davis, "A Data Flow Evaluation System Based on the
Concept of Recursive Locality," AFIPS Conf. Proc., Vol.
48, 1979 NCC, New York, June 1979, pp. 1079-1086.

17. A. Despain and D. Patterson, "X-Tree: A Tree Structured
Multi-Processor Computer Architecture, " Proc. Fifth An-
nual Symp. Computer Architecture, Apr. 1978, pp.
144-150.

18. R.M. Keller, G. Lindstrom, and S.S. Patil, "A Loosely-
Coupled Applicative Multi-processing System," AFIPS
Conf. Proc., 1979 NCC, New York, June 1979, pp.
613-622.

19. C. Leung, On a Design Methodology for Packet Com-
munication Architectures Based on a Hardware Design
Language, submitted for publication.

20. A.R. Tripathi and G.J. Lopovski, "Packet Switching in
Banyan Networks," Proc. Sixth AnnualSymp. Computer
Architecture, Apr. 1979, pp. 160-167.

21. G.A. Boughton, Routing Networks in Packet Com-
munication Architectures, MS Thesis, Dept. of Electrical
Engineering and Computer Science, MIT, June 1978, 93
PP.

22. J.B. Dennis and D.P. Misunas, "A Preliminary Architec-
ture for a Basic Data-Flow Processor," Proc. Second An-
nual Symp. Computer Architecture, Houston, Tex., Jan.
1975, pp. 126-132.

23. J.B. Dennis, C.K.C. Leung, and D.P. Misunas, A Highly
Parallel Processor Using a Data Flow Machine Language,
Laboratory for Computer Science, MIT, CSG Memo
134-1, June 1979, 33 pp.

24. Arvind and R.E. Bryant, "Design Considerations for a
Partial Differential Equation Machine," Proc. Computer
Information Exchange Meeting, Livermore, Calif., Sept.
1979, pp. 94-102.

25. L. Montz, Safety and Optimization Transformation for
Data Flow Programs, MS Thesis, MIT, Dept. of Electrical
Engineering and Computer Science, Feb. 1980, 77 pp.

Jack B. Dennis, professor of electrical
engineering and computer science at MIT,
leads the Computation Structures Group of
MIT's Laboratory for Computer Science,
which is developing language-based com-
puter system architectures that exploit high
levels of concurrency through use of data
flow principles. Associated with the
laboratory since its inception in 1963 as
Project MAC, Dennis assisted in the

specification of advanced computer hardware for timesharing
and was responsible for the development of one of the earliest
timeshared computer installations.

Dennis received his DSc degree in electrical engineering from
MIT in 1958. He is a member ofEta Kappa Nu, Tau Beta Pi, and
Sigma Xi, and is a fellow of the IEEE.

COMPUTER56

SRC00034169

Patent Owner Saint Regis Mohawk Tribe
Ex. 2048, p. 9

