Complexity-Effective Super scalar Processors

Subbarao Palacharla

Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706, USA
subbarao@cs.wisc.edu

Abstract

The performance tradeoff between hardware complexity and
clock speed is studied. First, a generic superscaar pipeline is de-
fined. Then the specific areas of register renaming, instruction win-
dow wakeup and selection logic, and operand bypassing are ana-
lyzed. Each is modeled and Spice simulated for feature sizes of
0.8um, 0.35um, and 0.18um. Performance results and trends are
expressed in terms of issue width and window size. Our analysisin-
dicates that window wakeup and selection logic as well as operand
bypass logic are likely to be the most critical in the future.

A microarchitecture that simplifies wakeup and selection logic
is proposed and discussed. Thisimplementation puts chains of de-
pendent instructions into queues, and issues instructions from mul-
tiple queues in paralel. Simulation shows little slowdown as com-
pared with acompl etely flexibleissue window when performanceis
measured in clock cycles. Furthermore, because only instructions at
queue heads need to be awakened and selected, issuelogicissimpli-
fied and the clock cycleisfaster —consequently overall performance
isimproved. By grouping dependent instructions together, the pro-
posed microarchitecture will help minimize performance degrada-
tion due to low bypasses in future wide-issue machines.

1 Introduction

For many years, amajor point of contention among microproces-
sor designers hasrevolved around compl ex implementations that at-
tempt to maximize the number of instructionsissued per clock cycle,
and much simpler implementations that have a very fast clock cy-
cle. Thesetwo campsareoften referred to as“ brainiacs’ and “ speed
demons’ —taken from an editorial in Microprocessor Report [7]. Of
course the tradeoff is not a simple one, and through innovation and
good engineering, it may be possible to achieve mogt, if not al, of
the benefits of complex issue schemes, while till allowing a very
fast clock in the implementation; that is, to develop microarchitec-
tures we refer to as complexity-effective. One of two primary ob-
jectives of this paper is to propose such a complexity-effective mi-
croarchitecture. The proposed microarchitecture achieves high per-
formance, asmeasured by instructions per cycle (IPC), yet it permits
adesign with avery high clock frequency.

Supporting the claim of high IPC with a fast clock leads to the
second primary objective of this paper. It is commonplace to mea-

DOCKET

_ ARM

Norman P. Jouppi

Western Research Laboratory
Digital Equipment Corporation
Palo Alto, CA 94301, USA
jouppi @pa.dec.com

J. E. Smith

Dept. of Electrical and Computer Engg.
University of Wisconsin-Madison
Madison, W1 53706, USA
jes@ece.wisc.edu

sure the effectiveness (i.e. 1PC) of a new microarchitecture, typ-
icaly by using trace driven simulation. Such simulations count
clock cycles and can provide IPC in a fairly straightforward man-
ner. However, the complexity (or simplicity) of amicroarchitecture
is much more difficult to determine —to be very accurate, it requires
afull implementation in a specific technology. What is very much
needed are fairly straightforward measures of complexity that can
be used by microarchitects at afairly early stage of the design pro-
cess. Such methods would allow the determination of complexity-
effectiveness. It is the second objective of this paper to take a step
inthedirection of characterizing complexity and complexity trends.

Before proceeding, it must be emphasized that while complexity
can be variously quantified in terms such as number of transistors,
diearea, and power dissipated, inthis paper complexity is measured
as the delay of the critica path through a piece of logic, and the
longest critical path through any of the pipeline stages determines
the clock cycle.

The two primary objectives given above are covered in reverse
order — first sources of pipeline complexity are analyzed, then a
new complexity-effective microarchitecture is proposed and eval-
uated. In the next section we describe those portions of a microar-
chitecture that tend to have complexity that grows with increasing
instruction-level parallelism. Of these, we focus on instruction dis-
patch and issue logic, and data bypass logic. We analyze potential
critical pathsin these structures and develop models for quantifying
their delays. We study the variation of these delays with microarchi-
tectural parameters of window size (the number of waiting instruc-
tionsfromwhich ready instructions are sel ected for issue) and theis-
sue width (the number of instructions that can be issued in acycle).
We aso study the impact of the technology trend towards smaller
feature sizes. The complexity analysis shows that logic associated
with the issue window and data bypasses are likely to be key lim-
iters of clock speed since smaller feature sizes cause wire delaysto
dominate overall delay [20, 3].

Taking sources of complexity into account, we propose and eval-
uate a new microarchitecture. This microarchitecture is called
dependence-based because it focuses on grouping dependent in-
structionsrather than independent ones, asis often the casein super-
scalar implementations. The dependence-based microarchitecture
simplifiesissue window logic while exploiting similar levels of par-
alelism to that achieved by current superscalar microarchitectures
using more complex logic.

Therest of the paper is organized asfollows. Section 2 describes
the sources of complexity in a baseline microarchitecture. Section
3 describes the methodology we use to study the critical pipeline

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

structuresidentified in Section 2. Section 4 presents adetailed anal-
ysis of each of the structures and shows how their delays vary with
microarchitectural parameters and technology parameters. Section
5 presents the proposed dependence-based microarchitecture and
some preliminary performance results. Finally, we draw conclu-
sionsin Section 6.

2 Sources of Complexity

Inthissection, specific sources of pipeline complexity are consid-
ered. Weredlizethat itisimpossibleto capture al possible microar-
chitectures in a single model, however, and any results have some
obvious limitations. We can only hope to provide afairly straight-
forward model that istypical of most current superscalar processors,
and suggest that analyses similar to those used here can be extended
to other, more advanced techniques as they are devel oped.

g || =3 7 &
§ir 22Ny
ks 5 [B2 =S g
- o x| =5 @ <
=] a

FETCH | DECODE | RENAME| ‘W01 REG READ YA | Acetes | commne

Figure 1. Baseline superscalar model.

Figure 1 shows the baseline model and the associated pipéline.
The fetch unit reads multiple instructions every cycle from the in-
struction cache, and branches encountered by the fetch unit are pre-
dicted. Next, instructions are decoded and their register operands
arerenamed. Renamed instructions are dispatched to theinstruction
window, where they wait for their source operands and the appro-
priate functional unit to become available. As soon as these condi-
tions are satisfied, instructions are issued and executed in the func-
tional units. The operand values of an instruction are either fetched
from theregister file or are bypassed from earlier instructionsin the
pipeline. The data cache provides low latency access to memory
operands.

2.1 Basc Structures

As mentioned earlier, probably the best way to identify the pri-
mary sources of complexity in amicroarchitectureisto actually im-
plement the microarchitecture in a specific technology. However,
thisis extremely time consuming and costly. Instead, our approach
is to select certain key structures for study, and develop relatively
simple delay models that can be applied in a straightforward man-
ner without relying on detailed design.

Structures to be studied were selected using the following crite-
ria. First, we consider structures whose delay is a function of issue
window size and/or issue width; these structures are likely to be-
come cycle-time limiters in future wide-issue superscalar designs.
Second, we are interested in dispatch and issue-related structures
because these structures form the core of a microarchitecture and
largely determine the amount of parallelism that can be exploited.
Third, some structures tend to rely on broadcast operations over
long wires and hence their delays might not scale as well as logic-
intensive structuresin future technol ogieswith smaller feature sizes.

The structures we consider are:

o Register rename logic. This logic trandates logica register
designators into physical register designators.

DOCKET

_ ARM

e \Wakeup logic. Thislogic is part of the issue window and is
responsible for waking up instructions waiting for their source
operands to become available.

e Sdectionlogic. Thislogic isanother part of theissue window
and isresponsible for selecting instructionsfor execution from
the pool of ready instructions.

e Bypasslogic. Thislogic isresponsible for bypassing operand
values from instructions that have completed execution, but
have not yet written their results to the register file, to subse-
guent instructions.

There are other important pieces of pipeline logic that are not con-
sidered in this paper, even though their delay is a function of dis-
patch/issue width. In most cases, their delay has been considered
elsewhere. Theseincluderegister filesand caches. Farkaset. a. [6]
study how the access time of the register file varies with the number
of registers and the number of ports. The accesstime of acacheisa
function of the size of the cache and the associativity of the cache.
Wada et. a. [18] and Wilton and Jouppi [21] have developed de-
tailed models that estimate the access time of acache givenitssize
and associativity.

2.2 Current Implementations

The structures identified above were presented in the context
of the baseline superscalar model shown in Figure 1. The MIPS
R10000 [22] and the DEC 21264 [10] arereal implementations that
directly fit thismodel. Hence, the structures identified above apply
to these two processors.

On the other hand, the Intel Pentium Pro [9], the HP PA-8000
[12], the PowerPC 604 [16], and the HAL SPARC64 [8] do not
completely fit the baseline model. These processors are based on
amicroarchitecture where the reorder buffer holds non-committed,
renamed register values. In contrast, the baseline microarchitec-
ture uses the physica register file for both committed and non-
committed values. Nevertheless, the point to be noted isthat the ba-
sic structuresidentified earlier are present in both types of microar-
chitectures. The only notable difference is the size of the physical
register file.

Finally, while the discussion about potential sources of complex-
ity isin the context of an out-of-order baseline superscalar model,
it must be pointed out that some of the critical structures identified
apply to in-order processors, too. For example, part of the register
rename logic (to be discussed | ater) and the bypass logic are present
inin-order superscalar processors.

3 Methodology

The key pipeline structures were studied in two phases. In the
first phase, we selected arepresentative CMOS circuit for the struc-
ture. Thiswas done by studying designs published in the literature
(e.g. 1SSCC ! proceedings) and by collaborating with engineers at
Digital Equipment Corporation. In caseswherethere was morethan
one possible design, we did a preliminary study of the designs to
decide in favor of one that was most promising. By basing our cir-
cuits on designs published by microprocessor vendors, we believe
the studied circuits are similar to circuits used in microprocessor de-
signs. Inpractice, many circuit tricks could be employed to optimize
critical paths. However, we believe that the rel ative delays between
different structures should be more accurate than the absolute de-

lays.

LInternational Solid-State and Circuits Conference.

Find authenticated court documents without watermarks at docketalarm.com.

cevans
Highlight

https://www.docketalarm.com/

Inthe second phase weimplemented thecircuit and optimized the
circuit for speed. We used the Hspice circuit simulator [14] from
Meta-Software to simulate the circuits. Primarily, static logic was
used. However, in situations where dynamic logic helped in boost-
ing the performance significantly, we used dynamic logic. For ex-
ample, in the wakeup logic, a dynamic 7-input NOR gate is used
for comparisons instead of astatic gate. A number of optimizations
were applied to improve the speed of the circuits. First, al the tran-
sistors in the circuit were manually sized so that overall delay im-
proved. Second, logic optimizations like two-level decomposition
were applied to reduce fan-in requirements. We avoided using static
gates with a fan-in greater than four. Third, in some cases transis-
tor ordering was modified to shorten the critical path. Wire para-
sitics were added at appropriate nodes in the Hspice model of the
circuit. These parasitics were computed by calculating the length
of the wires based on the layout of the circuit and using the values
of Rpmetar @Nd Crretar, the resistance and parasitic capacitance of
metal wires per unit length.

To study the effect of reducing the feature size on the delays
of the structures, we simulated the circuits for three different fea-
turesizes: 0.8um, 0.35um, and 0.18um respectively. Layouts for
the 0.35um and 0.18ym process were obtained by appropriately
shrinking the layouts for the 0.8 um process. The Hspice models
used for the three technologies are tabulated in [15].

4 Pipeine Complexity

In this section, we analyze the critical pipeline structures. The
presentation for each structure begins with a description of the log-
ical function being implemented. Then, possible implementation
schemes are discussed, and one is chosen. Next, we summarize our
analysis of the overall delay in terms of the microarchitectural pa-
rameters of issue width and issue window size; a much more de-
tailed version of the analysis appearsin [15]. Finally, Hspicecircuit
simulation results are presented and trends are identified and com-
pared with the earlier analysis.

4.1 Register RenameLogic

Register rename logic translates logical register designators into
physical register designators by accessing a map table with the log-
ical register designator as the index. The map table holds the cur-
rent logical to physical mappings and is multi-ported because mul-
tiple instructions, each with multiple register operands, need to be
renamed every cycle. The high level block diagram of the rename
logicisshown in Figure 2. In addition to the map table, dependence
check logic isrequired to detect cases where thelogical register be-
ing renamed iswritten by an earlier instruction in the current group
of instructions being renamed. The dependence check logic detects
such dependences and sets up the output MUXes so that the appro-
priate physical register designators are selected. At the end of every
rename operation, the map tableis updated to reflect the new logical
to physica mappings created for the result registers written by the
current rename group.

411 Structure

The mapping and checkpointing functions of the rename logic
can beimplementedin at |east two ways. Thesetwo schemes, called
the RAM scheme and the CAM scheme, are described next.

o RAM scheme
In the RAM scheme, implemented in the MIPS R10000 [22],
themap tableisaregister filewhere thelogical register desig-
nator directly accesses an entry that contains the physical reg-

DOCKET

_ ARM

— PHY SICAL
A = DEST
PHYSICAL PHYSICAL

LOG:?C»TEL . MAP SOURCE REGS MUX REG MAPPED
SOURCI . TABLE REGS TO LOGICAL

REGS REGR

DEPENDENCE

LOGICAL - CHECK

DEST . LOGIC

REGS . (SLICE)
LOGICAL

SOURCE REGR
Figure 2: Register rename logic.

ister to which it is mapped. The number of entriesin the map
tableisequal to the number of logical registers.

¢ CAM scheme

An alternate scheme for register renaming uses a CAM
(content-addressable memory) [19] to store the current map-
pings. Such aschemeisimplemented in the HAL SPARC [2]
and the DEC 21264 [10]. The number of entriesinthe CAM is
equal to the number of physical registers. Each entry contains
two fields: thelogical register designator that is mapped to the
physical register represented by the entry and avalid bit that is
set if the current mapping isvalid. Renaming is accomplished
by matching on the logical register designator field.

In general, the CAM scheme is less scalable than the RAM scheme
because the number of CAM entries, which is equa to the number
of physical registers, tends to increase with issue width. Also, for
the design space we are interested in, the performance was found to
be comparable. Conseguently, wefocus onthe RAM method bel ow.
A more detailed discussion of the trade-offs involved can be found
in[15].

The dependence check logic proceedsin parallel withthe map ta-
ble access. Every logical register designator being renamed is com-
pared against the logical destination register designators of earlier
instructions in the current rename group. If there is a match, then
the physical register assigned to theresult of theearlier instructionis
used instead of the one read from the map table. In the case of mul-
tiple matches, the register corresponding to the latest (in dynamic
order) match is used. Dependence check logic for issue widths of
2, 4, and 8 was implemented. We found that for these issue widths,
the delay of the dependence check logic islessthan the delay of the
map table, and hence the check can be hidden behind the map table
access.

4.1.2 Deay Analysis

Asthe name suggests, the RAM scheme operates like a standard
RAM. Address decoders drive word lines; an access stack at the ad-
dressed cell pulls abitline low. The bitline changes are sensed by a
sense amplifier whichin turn produces the output. Symbolically the
rename delay can be written as,

Trename = Tdecode + Twordiine + Thittine + Tsenseamp

The anaysis presented here and in following subsections focuses
on those parts of the delay that are a function of the issue width and
window size. All sources of delay are considered in detail in [15].
In the rename logic, the window size is not a factor, and the issue
width affects delay through its impact on wire lengths. Increasing

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the issue width increases the number of bitlines and wordlines in
each cell thus making each cell bigger. Thisin turn increases the
length of the predecode, wordline, and bitline wires and the associ-
atedwiredelays. Thenet effect isthefollowing relationshipsfor the
delay components:

2
Taecodes Twordiine s Thitiine = co +c1 X IW 4+ ca2 X IW

where IW istheissuewidth and ¢y, ¢1, and ¢» areconstantsthat are
fixed for agiven technology and instruction set architecture; deriva
tion of the constants for each component is given in [15]. In each
case, the quadratic component, resulting from the intrinsic RC de-
lay of wires, is relatively small for the design space and technolo-
gies we explored. Hence, the decode, wordline, and bitline delays
are effectively linear functions of the issue width.

For the sense amplifier, we found that even though its structural
constitution isindependent of the issue width, itsdelay isafunction
of the slope of the input — the bitline delay — and therefore varies
linearly with issue width.

4.1.3 Spice Results

For our Hspice simulations, Figure 3 shows how the delay of the
rename logic varies with the issue width i.e. the number of instruc-
tions being renamed every cycle for the three technologies. The
graph includes the breakdown of delay into components discussed
in the previous section.

A number of observations can be made from the graph. The to-
tal delay increases linearly with issue width for all the technologies.
Thisisin conformance with our analysis, summarized in the previ-
ous section. Furthermore, each of the components shows a linear
increase with issue width. Theincrease inthe bitline delay islarger
than the increase in the wordline delay as issue width is increased
because the bitlines are longer than the wordlinesin our design. The
bitlinelengthisproportional to the number of logical registers(32in
most cases) whereasthe wordline length is proportional to thewidth
of the physical register designator (less than 8 for the design space
we explored).

Another important observation that can be made fromthegraphis
that the relative increase in wordline delay, bitline delay, and hence,
total delay asafunction of issue width worsens asthe feature sizeis
reduced. For example, as the issue width isincreased from 2 to 8,
the percentage increase in bitline delay shoots up from 37% to 53%
asthefeature sizeisreduced from 0.8um t00.18um. Logic delays
in the various components are reduced in proportion to the feature
size, while the presence of wire delays in the wordline and bitline
components cause the wordline and bitline components to fall at a
dower rate. In other words, wire delays in the wordline and bitline
structureswill becomeincreasingly important asfeature sizesarere-
duced.

4.2 Wakeup Logic

Wakeup logic isresponsible for updating source dependences for
instructionsin theissue window waiting for their source operandsto
become available.

421 Structure

Wakeup logicisillustratedin Figure4. Every timearesultispro-
duced, atag associated with the result is broadcast to all the instruc-
tions in the issue window. Each instruction then compares the tag
with the tags of its source operands. If thereisamatch, the operand
ismarked as available by setting therdyL or rdyR flag. Once al the
operands of an instruction become available (both rdyL and rdyR
are set), the instruction isready to execute, and the ready flag is set

DOCKET

_ ARM

1600-

B Sense Amp delay
1200 B Bitlinedelay
g Wordline delay
& Decoder delay
3 800
:
8 N R N =
©
400 H
0 H H
2 4 8 2 4 8 2 4 8
0.8 0.35 0.18

Figure 3: Rename delay versus issue width.

to indicate this. The issue window isa CAM array holding one in-
struction per entry. Buffers, shown at the top of the figure, are used
todrivetheresult tagstagl totagI W ,where |W istheissuewidth.
Each entry of the CAM has 2 x IW comparators to compare each
of the resultstags against the two operand tags of the entry. The OR
logic ORs the comparator outputs and sets the rdyL/rdyR flags.

taglW tagl

o6

‘rdyL‘ ‘opdtagL‘ ‘opdtagR‘ ‘rdyR‘ inst0

‘rdyL‘ ‘opdtagL‘ ‘opdtagR‘ ‘rdyR‘ instN-1

Figure 4: Wakeup logic.

4.2.2 Deay Analysis

The delay consists of three components. the time taken by the
buffers to drive the tag bits, the time taken by the comparatorsin a
pull-down stack corresponding to amismatching bit position to pull
the matchline low 2, and the time taken to OR the individual match
signals (matchlines). Symbolically,

Delay = Tiagdrive + Ttagmateh + TmatchoRr

The time taken to drive the tags depends on the length of the tag
lines and the number of comparators on thetag lines. Increasing the
window size increases both these terms. For a given window size,

2\We assume that only one pull-down stack is turned on since we are in-
terested in the worst-case delay.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

increasing issue width also increases both the terms in the follow-
ing way. Increasing issue width increases the number of matchlines
in each cell and hence increases the height of each cell. Also, in-
creasing issue width increases the number of comparators in each
cell. Note that we assume the maximum number of tags produced
per cycleis equal to the maximum issue width.

Insimplified form (see[15] for amore detailed analysis), thetime
taken to drive the tagsis:

Tta.gdri'ue = c¢o+ (CI +c2 X IW) x WINSIZE =+
(c3 +ca x IW 4 ¢5 x IW?) x WINSIZE®

The above equation showsthat thetag drivetimeisaquadratic func-
tion of the window size. The weighting factor of the quadratic term
isafunction of the issue width. The weighting factor becomes sig-
nificant for issue widths beyond 2. For agiven window size, thetag
drive timeis also a quadratic function of the issue width. For cur-
rent technologies (0.35um and longer) the quadratic component is
relatively small and the tag drive timeislargely alinear function of
issue width. However, asthe feature sizeis reduced to 0.18 um, the
quadratic component aso increases in significance. The quadratic
component results from the intrinsic RC delay of the tag lines.

In reality, both issue width and window size will be smulta-
neously increased because a larger window is required for find-
ing more independent instructions to take advantage of wider issue.
Hence, the tag drive time will become significant in future designs
with wider issue widths, bigger windows, and smaller feature sizes.

The tag match time is primarily a function of the length of the
matchline, which varies linearly with the issue width. The match
OR timeisthe time taken to OR the match lines, and the number of
matchlines is alinear function of issue width. Both of these (refer
to [15]) have adelay:

Tta.gma.tch, TmatchOR = Co +c1 X Iw “+c2 X IW2
However, in both cases the quadratic term is very small for the de-

sign space we consider, so these delays are linear functions of issue
width.

350 f
300 | |
B 250 ¢ |
g e T
[| o |
Zo200f
: e @ ISR
T I |
(0]
X
(o]
g ol 8'Way]
4-way -+
50 | ke
0 ‘ ‘ | | | |

8 16 24 32 40 48 56 64
Window Size

Figure 5: Wakeup logic delay versus window size.

4.2.3 Spice Results
The graph in Figure 5 shows how the delay of the wakeup logic
varieswithwindow sizeandissuewidthfor 0.18m technology. As

DOCKET

_ ARM

expected, the delay increases aswindow sizeand issuewidth arein-
creased. The quadratic dependence of thetotal delay on the window
sizeresultsfrom the quadraticincreasein tag drive time as discussed
in the previous section. Thiseffect isclearly visible for issue width
of 8 and is less significant for issue width of 4. We found similar
curves for 0.8um and 0.35um technologies. The quadratic depen-
dence of delay on window sizewas more prominent inthecurvesfor
0.18sm technology than in the case of the other two technologies.

Also, issue width has a greater impact on the delay than window
size because increasing issue width increases all three components
of thedelay. Onthe other hand, increasing window size only length-
ensthetag drivetimeand toasmall extent thetag match time. Over-
all, the results show that the delay increases by almost 34% going
from 2-way to 4-way and by 46% going from 4-way to 8-way for
awindow size of 64 instructions. In redlity, the increase in delay
is going to be even worse because in order to sustain awider issue
width, alarger window isrequired to find independent instructions.

Figure 6 shows the effect of reducing feature sizes on the vari-
ous components of the wakeup delay for an 8-way, 64-entry win-
dow processor. The tag drive and tag match delays do not scale as
well asthematch OR delay. Thisisexpected sincetag drive and tag
match delays include wire delays whereas the match OR delay only
consists of logic delays. Quantitatively, the fraction of the total de-
lay contributed by tag drive and tag match delay increases from 52%
to 65% as the feature size is reduced from 0.84m t0 0.18um. This
shows that the performance of the broadcast operation will become
more crucia in future technologies.

1500
,@1200_ I Match OR delay
% Tag match delay
< 9004)
g Tag drive delay
= 6001
8
= 300 M

0]
0.8 0.35 0.18

Featuresize

Figure 6: Wakeup delay versus feature size.

4.3 Selection Logic

Selectionlogicisresponsible for choosing instructionsfor execu-
tion from the pool of ready instructions in the issue window. Some
form of selection logic isrequired because the number and types of
ready instructions may exceed the number and types of functional
units available to execute them.

Inputs to the selection logic are request (REQ) signals, one per
instruction in the issue window. Therequest signal of an instruction
israised when the wakeup logic determines that all its operands are
available. Theoutputs of the selectionlogic aregrant (GRANT) sig-
nals, one per request signal. On receipt of the GRANT signal, the
associated instruction is issued to the functional unit.

A selection policy is used to decide which of the requesting in-
structions is granted. An example selection policy is oldest first -
theready instruction that occurs earliest in program order is granted

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

