
Complexity-Effective Superscalar Processors

Subbarao Palacharla Norman P. Jouppi J. E. Smith

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706, USA
subbarao@cs.wisc.edu

Western Research Laboratory
Digital Equipment Corporation

Palo Alto, CA 94301, USA
jouppi@pa.dec.com

Dept. of Electrical and Computer Engg.
University of Wisconsin-Madison

Madison, WI 53706, USA
jes@ece.wisc.edu

Abstract
The performance tradeoff between hardware complexity and

clock speed is studied. First, a generic superscalar pipeline is de-
fined. Then the specific areas of register renaming, instruction win-
dow wakeup and selection logic, and operand bypassing are ana-
lyzed. Each is modeled and Spice simulated for feature sizes of��� �����

,
��� �
	����

, and
����
������

. Performance results and trends are
expressed in terms of issue width and window size. Our analysis in-
dicates that window wakeup and selection logic as well as operand
bypass logic are likely to be the most critical in the future.

A microarchitecture that simplifies wakeup and selection logic
is proposed and discussed. This implementation puts chains of de-
pendent instructions into queues, and issues instructions from mul-
tiple queues in parallel. Simulation shows little slowdown as com-
pared with a completely flexible issue window when performance is
measured in clock cycles. Furthermore, because only instructions at
queue heads need to be awakened and selected, issue logic is simpli-
fied and the clock cycle is faster – consequently overall performance
is improved. By grouping dependent instructions together, the pro-
posed microarchitecture will help minimize performance degrada-
tion due to slow bypasses in future wide-issue machines.

1 Introduction
For many years, a major point of contention among microproces-

sor designers has revolved around complex implementations that at-
tempt to maximize the number of instructions issued per clock cycle,
and much simpler implementations that have a very fast clock cy-
cle. These two camps are often referred to as “brainiacs” and “speed
demons” – taken from an editorial in Microprocessor Report [7]. Of
course the tradeoff is not a simple one, and through innovation and
good engineering, it may be possible to achieve most, if not all, of
the benefits of complex issue schemes, while still allowing a very
fast clock in the implementation; that is, to develop microarchitec-
tures we refer to as complexity-effective. One of two primary ob-
jectives of this paper is to propose such a complexity-effective mi-
croarchitecture. The proposed microarchitecture achieves high per-
formance, as measured by instructions per cycle (IPC), yet it permits
a design with a very high clock frequency.

Supporting the claim of high IPC with a fast clock leads to the
second primary objective of this paper. It is commonplace to mea-

sure the effectiveness (i.e. IPC) of a new microarchitecture, typ-
ically by using trace driven simulation. Such simulations count
clock cycles and can provide IPC in a fairly straightforward man-
ner. However, the complexity (or simplicity) of a microarchitecture
is much more difficult to determine – to be very accurate, it requires
a full implementation in a specific technology. What is very much
needed are fairly straightforward measures of complexity that can
be used by microarchitects at a fairly early stage of the design pro-
cess. Such methods would allow the determination of complexity-
effectiveness. It is the second objective of this paper to take a step
in the direction of characterizing complexity and complexity trends.

Before proceeding, it must be emphasized that while complexity
can be variously quantified in terms such as number of transistors,
die area, and power dissipated, in this paper complexity is measured
as the delay of the critical path through a piece of logic, and the
longest critical path through any of the pipeline stages determines
the clock cycle.

The two primary objectives given above are covered in reverse
order – first sources of pipeline complexity are analyzed, then a
new complexity-effective microarchitecture is proposed and eval-
uated. In the next section we describe those portions of a microar-
chitecture that tend to have complexity that grows with increasing
instruction-level parallelism. Of these, we focus on instruction dis-
patch and issue logic, and data bypass logic. We analyze potential
critical paths in these structures and develop models for quantifying
their delays. We study the variation of these delays with microarchi-
tectural parameters of window size (the number of waiting instruc-
tions from which ready instructions are selected for issue) and the is-
sue width (the number of instructions that can be issued in a cycle).
We also study the impact of the technology trend towards smaller
feature sizes. The complexity analysis shows that logic associated
with the issue window and data bypasses are likely to be key lim-
iters of clock speed since smaller feature sizes cause wire delays to
dominate overall delay [20, 3].

Taking sources of complexity into account, we propose and eval-
uate a new microarchitecture. This microarchitecture is called
dependence-based because it focuses on grouping dependent in-
structions rather than independent ones, as is often the case in super-
scalar implementations. The dependence-based microarchitecture
simplifies issue window logic while exploiting similar levels of par-
allelism to that achieved by current superscalar microarchitectures
using more complex logic.

The rest of the paper is organized as follows. Section 2 describes
the sources of complexity in a baseline microarchitecture. Section
3 describes the methodology we use to study the critical pipeline

1
Patent Owner Saint Regis Mohawk Tribe

Ex. 2044, p. 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

structures identified in Section 2. Section 4 presents a detailed anal-
ysis of each of the structures and shows how their delays vary with
microarchitectural parameters and technology parameters. Section
5 presents the proposed dependence-based microarchitecture and
some preliminary performance results. Finally, we draw conclu-
sions in Section 6.

2 Sources of Complexity
In this section, specific sources of pipeline complexity are consid-

ered. We realize that it is impossible to capture all possible microar-
chitectures in a single model, however, and any results have some
obvious limitations. We can only hope to provide a fairly straight-
forward model that is typical of most current superscalar processors,
and suggest that analyses similar to those used here can be extended
to other, more advanced techniques as they are developed.

Fe
tc

h

D
ec

od
e

R
en

am
e

B
yp

as
s

R
eg

is
te

r
fi

le

W
ak

eu
p

w
in

do
w

Is
su

e

FETCH DECODE RENAME WAKEUP
SELECT

EXECUTE
BYPASS

DCACHE
ACCESS

REG WRITE
COMMIT

REG READ

Se
le

ct

D
at

a-
ca

ch
e

Figure 1: Baseline superscalar model.

Figure 1 shows the baseline model and the associated pipeline.
The fetch unit reads multiple instructions every cycle from the in-
struction cache, and branches encountered by the fetch unit are pre-
dicted. Next, instructions are decoded and their register operands
are renamed. Renamed instructions are dispatched to the instruction
window, where they wait for their source operands and the appro-
priate functional unit to become available. As soon as these condi-
tions are satisfied, instructions are issued and executed in the func-
tional units. The operand values of an instruction are either fetched
from the register file or are bypassed from earlier instructions in the
pipeline. The data cache provides low latency access to memory
operands.

2.1 Basic Structures
As mentioned earlier, probably the best way to identify the pri-

mary sources of complexity in a microarchitecture is to actually im-
plement the microarchitecture in a specific technology. However,
this is extremely time consuming and costly. Instead, our approach
is to select certain key structures for study, and develop relatively
simple delay models that can be applied in a straightforward man-
ner without relying on detailed design.

Structures to be studied were selected using the following crite-
ria. First, we consider structures whose delay is a function of issue
window size and/or issue width; these structures are likely to be-
come cycle-time limiters in future wide-issue superscalar designs.
Second, we are interested in dispatch and issue-related structures
because these structures form the core of a microarchitecture and
largely determine the amount of parallelism that can be exploited.
Third, some structures tend to rely on broadcast operations over
long wires and hence their delays might not scale as well as logic-
intensive structures in future technologies with smaller feature sizes.

The structures we consider are:

� Register rename logic. This logic translates logical register
designators into physical register designators.

� Wakeup logic. This logic is part of the issue window and is
responsible for waking up instructions waiting for their source
operands to become available.

� Selection logic. This logic is another part of the issue window
and is responsible for selecting instructions for execution from
the pool of ready instructions.

� Bypass logic. This logic is responsible for bypassing operand
values from instructions that have completed execution, but
have not yet written their results to the register file, to subse-
quent instructions.

There are other important pieces of pipeline logic that are not con-
sidered in this paper, even though their delay is a function of dis-
patch/issue width. In most cases, their delay has been considered
elsewhere. These include register files and caches. Farkas et. al. [6]
study how the access time of the register file varies with the number
of registers and the number of ports. The access time of a cache is a
function of the size of the cache and the associativity of the cache.
Wada et. al. [18] and Wilton and Jouppi [21] have developed de-
tailed models that estimate the access time of a cache given its size
and associativity.

2.2 Current Implementations
The structures identified above were presented in the context

of the baseline superscalar model shown in Figure 1. The MIPS
R10000 [22] and the DEC 21264 [10] are real implementations that
directly fit this model. Hence, the structures identified above apply
to these two processors.

On the other hand, the Intel Pentium Pro [9], the HP PA-8000
[12], the PowerPC 604 [16], and the HAL SPARC64 [8] do not
completely fit the baseline model. These processors are based on
a microarchitecture where the reorder buffer holds non-committed,
renamed register values. In contrast, the baseline microarchitec-
ture uses the physical register file for both committed and non-
committed values. Nevertheless, the point to be noted is that the ba-
sic structures identified earlier are present in both types of microar-
chitectures. The only notable difference is the size of the physical
register file.

Finally, while the discussion about potential sources of complex-
ity is in the context of an out-of-order baseline superscalar model,
it must be pointed out that some of the critical structures identified
apply to in-order processors, too. For example, part of the register
rename logic (to be discussed later) and the bypass logic are present
in in-order superscalar processors.

3 Methodology
The key pipeline structures were studied in two phases. In the

first phase, we selected a representative CMOS circuit for the struc-
ture. This was done by studying designs published in the literature
(e.g. ISSCC

�

proceedings) and by collaborating with engineers at
Digital Equipment Corporation. In cases where there was more than
one possible design, we did a preliminary study of the designs to
decide in favor of one that was most promising. By basing our cir-
cuits on designs published by microprocessor vendors, we believe
the studied circuits are similar to circuits used in microprocessor de-
signs. In practice, many circuit tricks could be employed to optimize
critical paths. However, we believe that the relative delays between
different structures should be more accurate than the absolute de-
lays.

�

International Solid-State and Circuits Conference.

2
Patent Owner Saint Regis Mohawk Tribe

Ex. 2044, p. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

cevans
Highlight

https://www.docketalarm.com/

In the second phase we implemented the circuit and optimized the
circuit for speed. We used the Hspice circuit simulator [14] from
Meta-Software to simulate the circuits. Primarily, static logic was
used. However, in situations where dynamic logic helped in boost-
ing the performance significantly, we used dynamic logic. For ex-
ample, in the wakeup logic, a dynamic 7-input NOR gate is used
for comparisons instead of a static gate. A number of optimizations
were applied to improve the speed of the circuits. First, all the tran-
sistors in the circuit were manually sized so that overall delay im-
proved. Second, logic optimizations like two-level decomposition
were applied to reduce fan-in requirements. We avoided using static
gates with a fan-in greater than four. Third, in some cases transis-
tor ordering was modified to shorten the critical path. Wire para-
sitics were added at appropriate nodes in the Hspice model of the
circuit. These parasitics were computed by calculating the length
of the wires based on the layout of the circuit and using the values
of

���������
	
and � ���
���
	

, the resistance and parasitic capacitance of
metal wires per unit length.

To study the effect of reducing the feature size on the delays
of the structures, we simulated the circuits for three different fea-
ture sizes:

� � � ���
,
��� �
	����

, and
� �
 � ���

respectively. Layouts for
the

��� � 	����
and

� �
 � ���
process were obtained by appropriately

shrinking the layouts for the
��� � ���

process. The Hspice models
used for the three technologies are tabulated in [15].

4 Pipeline Complexity
In this section, we analyze the critical pipeline structures. The

presentation for each structure begins with a description of the log-
ical function being implemented. Then, possible implementation
schemes are discussed, and one is chosen. Next, we summarize our
analysis of the overall delay in terms of the microarchitectural pa-
rameters of issue width and issue window size; a much more de-
tailed version of the analysis appears in [15]. Finally, Hspice circuit
simulation results are presented and trends are identified and com-
pared with the earlier analysis.

4.1 Register Rename Logic
Register rename logic translates logical register designators into

physical register designators by accessing a map table with the log-
ical register designator as the index. The map table holds the cur-
rent logical to physical mappings and is multi-ported because mul-
tiple instructions, each with multiple register operands, need to be
renamed every cycle. The high level block diagram of the rename
logic is shown in Figure 2. In addition to the map table, dependence
check logic is required to detect cases where the logical register be-
ing renamed is written by an earlier instruction in the current group
of instructions being renamed. The dependence check logic detects
such dependences and sets up the output MUXes so that the appro-
priate physical register designators are selected. At the end of every
rename operation, the map table is updated to reflect the new logical
to physical mappings created for the result registers written by the
current rename group.

4.1.1 Structure
The mapping and checkpointing functions of the rename logic

can be implemented in at least two ways. These two schemes, called
the RAM scheme and the CAM scheme, are described next.

� RAM scheme
In the RAM scheme, implemented in the MIPS R10000 [22],
the map table is a register file where the logical register desig-
nator directly accesses an entry that contains the physical reg-

.

.

.

.

.

.

.

.

.

(SLICE)
LOGIC
CHECK

MUX
REGS

SOURCE
LOGICAL

REGS
DEST

LOGICAL

DEST
REGS

PHYSICAL

REG MAPPED

LOGICAL

PHYSICAL

TO LOGICAL
REG R

PHYSICAL

SOURCE REG R

SOURCE
REGS

DEPENDENCE

TABLE
MAP

Figure 2: Register rename logic.

ister to which it is mapped. The number of entries in the map
table is equal to the number of logical registers.

� CAM scheme
An alternate scheme for register renaming uses a CAM
(content-addressable memory) [19] to store the current map-
pings. Such a scheme is implemented in the HAL SPARC [2]
and the DEC 21264 [10]. The number of entries in the CAM is
equal to the number of physical registers. Each entry contains
two fields: the logical register designator that is mapped to the
physical register represented by the entry and a valid bit that is
set if the current mapping is valid. Renaming is accomplished
by matching on the logical register designator field.

In general, the CAM scheme is less scalable than the RAM scheme
because the number of CAM entries, which is equal to the number
of physical registers, tends to increase with issue width. Also, for
the design space we are interested in, the performance was found to
be comparable. Consequently, we focus on the RAM method below.
A more detailed discussion of the trade-offs involved can be found
in [15].

The dependence check logic proceeds in parallel with the map ta-
ble access. Every logical register designator being renamed is com-
pared against the logical destination register designators of earlier
instructions in the current rename group. If there is a match, then
the physical register assigned to the result of the earlier instruction is
used instead of the one read from the map table. In the case of mul-
tiple matches, the register corresponding to the latest (in dynamic
order) match is used. Dependence check logic for issue widths of
2, 4, and 8 was implemented. We found that for these issue widths,
the delay of the dependence check logic is less than the delay of the
map table, and hence the check can be hidden behind the map table
access.

4.1.2 Delay Analysis
As the name suggests, the RAM scheme operates like a standard

RAM. Address decoders drive word lines; an access stack at the ad-
dressed cell pulls a bitline low. The bitline changes are sensed by a
sense amplifier which in turn produces the output. Symbolically the
rename delay can be written as,

��� �
���
����� ��������������������� � � 	"!#�$�%�&��'(!#�)	"!#�$�%�*��+ �
� + ���
�%,

The analysis presented here and in following subsections focuses
on those parts of the delay that are a function of the issue width and
window size. All sources of delay are considered in detail in [15].
In the rename logic, the window size is not a factor, and the issue
width affects delay through its impact on wire lengths. Increasing

3
Patent Owner Saint Regis Mohawk Tribe

Ex. 2044, p. 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the issue width increases the number of bitlines and wordlines in
each cell thus making each cell bigger. This in turn increases the
length of the predecode, wordline, and bitline wires and the associ-
ated wire delays. The net effect is the following relationships for the
delay components:

��� �(����� � � ����� � � 	"!#�$� � ��'(!#�)	"!#�$� ����� � �
�����
	 � ��� �
�
	

�

where �
	 is the issue width and
� �

,
�

� , and
� �

are constants that are
fixed for a given technology and instruction set architecture; deriva-
tion of the constants for each component is given in [15]. In each
case, the quadratic component, resulting from the intrinsic RC de-
lay of wires, is relatively small for the design space and technolo-
gies we explored. Hence, the decode, wordline, and bitline delays
are effectively linear functions of the issue width.

For the sense amplifier, we found that even though its structural
constitution is independent of the issue width, its delay is a function
of the slope of the input – the bitline delay – and therefore varies
linearly with issue width.

4.1.3 Spice Results
For our Hspice simulations, Figure 3 shows how the delay of the

rename logic varies with the issue width i.e. the number of instruc-
tions being renamed every cycle for the three technologies. The
graph includes the breakdown of delay into components discussed
in the previous section.

A number of observations can be made from the graph. The to-
tal delay increases linearly with issue width for all the technologies.
This is in conformance with our analysis, summarized in the previ-
ous section. Furthermore, each of the components shows a linear
increase with issue width. The increase in the bitline delay is larger
than the increase in the wordline delay as issue width is increased
because the bitlines are longer than the wordlines in our design. The
bitline length is proportional to the number of logical registers (32 in
most cases) whereas the wordline length is proportional to the width
of the physical register designator (less than 8 for the design space
we explored).

Another important observation that can be made from the graph is
that the relative increase in wordline delay, bitline delay, and hence,
total delay as a function of issue width worsens as the feature size is
reduced. For example, as the issue width is increased from 2 to 8,
the percentage increase in bitline delay shoots up from 37% to 53%
as the feature size is reduced from

� � � ���
to

����
������
. Logic delays

in the various components are reduced in proportion to the feature
size, while the presence of wire delays in the wordline and bitline
components cause the wordline and bitline components to fall at a
slower rate. In other words, wire delays in the wordline and bitline
structures will become increasingly important as feature sizes are re-
duced.

4.2 Wakeup Logic
Wakeup logic is responsible for updating source dependences for

instructions in the issue window waiting for their source operands to
become available.

4.2.1 Structure
Wakeup logic is illustrated in Figure 4. Every time a result is pro-

duced, a tag associated with the result is broadcast to all the instruc-
tions in the issue window. Each instruction then compares the tag
with the tags of its source operands. If there is a match, the operand
is marked as available by setting the rdyL or rdyR flag. Once all the
operands of an instruction become available (both rdyL and rdyR
are set), the instruction is ready to execute, and the ready flag is set

0

400

800

1200

1600

2 4
	

0.8

8 	 2 4
	

0.35

8 	 2 4
	

0.18

8

R
en

am
e

de
la

y
(p

s)

Sense Amp delay

Bitline delay

Wordline delay

Decoder delay

Figure 3: Rename delay versus issue width.

to indicate this. The issue window is a CAM array holding one in-
struction per entry. Buffers, shown at the top of the figure, are used
to drive the result tags �����
 to ����� �
	 , where I 	 is the issue width.
Each entry of the CAM has � ���
	 comparators to compare each
of the results tags against the two operand tags of the entry. The OR
logic ORs the comparator outputs and sets the rdyL/rdyR flags.

.

..
.
..

=
=

OR=
=

inst0

OR

tag1

opd tagR rdyRrdyL opd tagL

tagIW

instN-1opd tagR rdyRrdyL opd tagL

. . .

Figure 4: Wakeup logic.

4.2.2 Delay Analysis
The delay consists of three components: the time taken by the

buffers to drive the tag bits, the time taken by the comparators in a
pull-down stack corresponding to a mismatching bit position to pull
the matchline low

�
, and the time taken to OR the individual match

signals (matchlines). Symbolically,

����� �
� � ������� � � !�� � �&�����������
� �! ������ �
���! #"%$

The time taken to drive the tags depends on the length of the tag
lines and the number of comparators on the tag lines. Increasing the
window size increases both these terms. For a given window size,�

We assume that only one pull-down stack is turned on since we are in-
terested in the worst-case delay.

4
Patent Owner Saint Regis Mohawk Tribe

Ex. 2044, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

increasing issue width also increases both the terms in the follow-
ing way. Increasing issue width increases the number of matchlines
in each cell and hence increases the height of each cell. Also, in-
creasing issue width increases the number of comparators in each
cell. Note that we assume the maximum number of tags produced
per cycle is equal to the maximum issue width.

In simplified form (see [15] for a more detailed analysis), the time
taken to drive the tags is:

������� � � !�� � � � � � � �
�
� � � ���
	�� ��	 �����%���
	 �

� ��� � ��
 � �
	 � ��� �
�
	
�
� �
	 ����� ����	

�

The above equation shows that the tag drive time is a quadratic func-
tion of the window size. The weighting factor of the quadratic term
is a function of the issue width. The weighting factor becomes sig-
nificant for issue widths beyond 2. For a given window size, the tag
drive time is also a quadratic function of the issue width. For cur-
rent technologies (

��� � 	����
and longer) the quadratic component is

relatively small and the tag drive time is largely a linear function of
issue width. However, as the feature size is reduced to

����
 � ���
, the

quadratic component also increases in significance. The quadratic
component results from the intrinsic RC delay of the tag lines.

In reality, both issue width and window size will be simulta-
neously increased because a larger window is required for find-
ing more independent instructions to take advantage of wider issue.
Hence, the tag drive time will become significant in future designs
with wider issue widths, bigger windows, and smaller feature sizes.

The tag match time is primarily a function of the length of the
matchline, which varies linearly with the issue width. The match
OR time is the time taken to OR the match lines, and the number of
matchlines is a linear function of issue width. Both of these (refer
to [15]) have a delay:

�����������
���� � �����
� �! #"%$ ����� � �
��� �
	 � ��� �
�
	

�

However, in both cases the quadratic term is very small for the de-
sign space we consider, so these delays are linear functions of issue
width.

0

50

100

150

200

250

300

350

8 16 24 32 40 48 56 64

W
ak

eu
p

D
el

ay
 (

ps
)

Window Size

8-way
4-way
2-way

Figure 5: Wakeup logic delay versus window size.

4.2.3 Spice Results
The graph in Figure 5 shows how the delay of the wakeup logic

varies with window size and issue width for
����
������

technology. As

expected, the delay increases as window size and issue width are in-
creased. The quadratic dependence of the total delay on the window
size results from the quadratic increase in tag drive time as discussed
in the previous section. This effect is clearly visible for issue width
of 8 and is less significant for issue width of 4. We found similar
curves for

��� � ���
and

� � �
	����
technologies. The quadratic depen-

dence of delay on window size was more prominent in the curves for� �
 � ���
technology than in the case of the other two technologies.

Also, issue width has a greater impact on the delay than window
size because increasing issue width increases all three components
of the delay. On the other hand, increasing window size only length-
ens the tag drive time and to a small extent the tag match time. Over-
all, the results show that the delay increases by almost 34% going
from 2-way to 4-way and by 46% going from 4-way to 8-way for
a window size of 64 instructions. In reality, the increase in delay
is going to be even worse because in order to sustain a wider issue
width, a larger window is required to find independent instructions.

Figure 6 shows the effect of reducing feature sizes on the vari-
ous components of the wakeup delay for an 8-way, 64-entry win-
dow processor. The tag drive and tag match delays do not scale as
well as the match OR delay. This is expected since tag drive and tag
match delays include wire delays whereas the match OR delay only
consists of logic delays. Quantitatively, the fraction of the total de-
lay contributed by tag drive and tag match delay increases from 52%
to 65% as the feature size is reduced from

��� � ���
to

����
������
. This

shows that the performance of the broadcast operation will become
more crucial in future technologies.

0

300

600

900

1200

1500

	 	 0.8 	 	 0.35 	 	 0.18 	
Feature size

W
ak

eu
p

de
la

y
(p

s) Match OR delay

Tag match delay

Tag drive delay

Figure 6: Wakeup delay versus feature size.

4.3 Selection Logic
Selection logic is responsible for choosing instructions for execu-

tion from the pool of ready instructions in the issue window. Some
form of selection logic is required because the number and types of
ready instructions may exceed the number and types of functional
units available to execute them.

Inputs to the selection logic are request (REQ) signals, one per
instruction in the issue window. The request signal of an instruction
is raised when the wakeup logic determines that all its operands are
available. The outputs of the selection logic are grant (GRANT) sig-
nals, one per request signal. On receipt of the GRANT signal, the
associated instruction is issued to the functional unit.

A selection policy is used to decide which of the requesting in-
structions is granted. An example selection policy is oldest first -
the ready instruction that occurs earliest in program order is granted

5
Patent Owner Saint Regis Mohawk Tribe

Ex. 2044, p. 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

