
Chapter 5
Advanced Systolic DesignDominique LavenierPatrice QuintonSanjay RajopadhyeIRISA, Campus de Beaulieu35042 Rennes CedexFranceemail: flavenier,quinton,rajopadhg@irisa.frAbstractSystolic arrays are locally connected parallel architectures, whose structureis well-suited to the implementation of many algorithms, in scienti�c computation,signal and image processing, biological data analysis, etc. The nature of systolicalgorithms makes it possible to synthesize architectures supporting them, usingcorrectness preserving transformations, in a theoretical framework that has a deeprelationship with loop parallelization techniques. This opens the way to new veryhigh-level architecture synthesis techniques, which will be a major step in masteringthe use of IC technologies in the future. This chapter has two parts. First, wepresent the current state of the art in systolic synthesis techniques, and the secondpart surveys various ways of implementing systolic algorithms and architecturesusing programmable architectures, fpgas, or dedicated architectures.5.1 IntroductionThe term systolic arrays was coined by Kung and Leiserson in 1978 to de-scribe application speci�c vlsi architectures that were regular, locally connectedand massively parallel with simple processing elements (PEs). The idea of usingsuch regular circuits was even present in von Neuman's cellular automata in the�fties, Hennie's iterative logic arrays in the sixties, and also in specialized arithmeticcircuits (Lyon's bit-serial multiplier [1] is clearly a linear systolic array). However,the emergence of vlsi technology in the late seventies and early eighties made thetime ripe for introducing such architectures in order to highlight the characteristicsappropriate to the technology.Systolic arrays immediately caught on, since they involved a fascinating in-terplay between algorithm and architecture design. When researchers started in-1

Patent Owner Saint Regis Mohawk Tribe
Ex. 2040, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Chapter 5vestigating automatic synthesis, a third stream joined this conuence, namely theanalysis, manipulation and transformation of programs. Some of the early designsare classics. The Guibas et al. array for optimal string parenthesization [2] is oneof our all time favorites.The early eighties was a period of intense activity in this area. A large numberof \paper designs" were proposed for a wide variety of algorithms from linear alge-bra, graph theory, searching, sorting, etc. There was also much work on automaticsynthesis methods, using dependency analysis, space-time transformations of innerloops, and also other formalisms such as recurrence equations.Then, the technological evolutions in the late eighties seemed to invalidate theassumptions of the systolic model, namely that (i) locality, regularity and simplicitywere primordial for vlsi and (ii) an elementary computation could be performedin the same time that it took to perform an elementary communication. The �rstone meant that with the improved cad tools and increasing levels of integration,circuit designers were not obliged to always follow that dictates of the systolic model(which was itself applicable to only a part | albeit, a computationally signi�cantone | of the complete application). The second one meant that the systolic space-time mapping methods were not directly applicable for general purpose parallelmachines where the communication latency was an order of magnitude higher thancomputation speed.A number of recent developments now lead us to believe that it is time torevive the �eld. First of all, technology has evolved. With the growing levels ofintegration, it is feasible to actually implement a number of the old \paper de-signs", particularly if the elementary operations are not oating point, but comefrom a simpler algebraic structure (such as semi-rings with additions and compar-isons, etc.) Second, the circuits of today are much more complex, and we need toagain question the arguments against the regularity, locality and simplicity of sys-tolic arrays. Can an irregular circuits achieve better performance? Will they do soreliably? What will be the design time? A third and very important reason is theemergence of fpgas, programmable logic and recon�gurable computing. The basictechnology underlying fpgas is regularity, locality and simplicity. It is therefore notsurprising that some of the impressive successes in this domain are systolic designs.Fourth, there is the growing understanding that the techniques of systolic synthesishave a close bearing on automatic loop parallelization for general purpose parallelmachines. These techniques can thus be seen as very high level synthesis methods,applicable for software as well as hardware, and thus form a foundation for code-sign, for a certain class of problems. Coupled with the fact that recent advances inintegration permit one or more programmable processor cores to be implemented\on-chip", this makes such techniques well suited for provably correct codesign.Finally, we believe that the increasing complexity of vlsi system design naturallyleads towards formal design methods involving correctness-preserving transforma-tion of high-level speci�cations.This chapter presents two aspects of advanced systolic design, namely ad-vanced methods for systolic array design (Secs 5.2{5.2.5), but also design techniquesand case studies of advanced, state of the art systolic arrays (Sec 5.3).In the �rst part we use a formalism called systems of recurrence equations(sres) to describe both the initial speci�cation as well as the �nal array. The entireprocess of systolic design is viewed as the application of a series of transformations
Patent Owner Saint Regis Mohawk Tribe

Ex. 2040, p. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Emerging Technologies 3to the initial speci�cation, until one obtains a description of the �nal array. Wedesire that all the details, including control, I/O, interface etc. be speci�ed in thesame formalism, and that a simple translation step should yield a description thatis suitable for a conventional cad tool (say vhdl). For each transformation we areconcerned with two aspects: (i) the manipulation of the sre to obtain a provablyequivalent sre (�a la `correctness-preserving' program transformations), and (ii) thechoice of the transformation, usually with a view to optimizing certain cost criteria.In Section 5.2 we present the basic notations of recurrence equations and theirdomains. In Section 5.2.2 we describe the foundations of the �rst aspect, namely theformal manipulation of recurrence equations. In sections 5.2.3 to 5.2.5, we explainhow these various transformations can be used to transform a speci�cation intoan abstract architecture: section 5.2.3 details scheduling techniques, section 5.2.4deals with allocation of computations on processors, and �nally, section 5.2.5 isconcerned with localization and serialization transformations.In the second part, we illustrate four di�erent ways to implement systolicarrays: general-purpose programmable architectures (Section 5.3.1), applicationoriented programmable architectures (Section 5.3.2), recon�gurable architectures(Section 5.3.3), and special-purpose architectures (Section 5.3.4), and we illustrateeach one with one case study. Although some of the designs presented are notnew, a close study of their design is instructive. As the technology of integratedcircuits is still in full motion, we believe that lessons have to be learned from theseexamples, in order to take the best advantage of future architectural opportunities.5.2 Systolic Design by Recurrence TransformationsSystems of Recurrence Equations (sres) play an important part in the designprocess. They are useful as (i) behavioral descriptions of the �nal arrays, and also(ii) high level speci�cations of the initial algorithm. For example, consider thesystem of equations given below.X(t; p) = 8<: fp = 0;�n+ 1 � t < 0g : 0fp = 0; t � 0g : xtf0 < p < n; 2p � tg : X(t� 2; p� 1) (1)W (t; p) = � ft = 0g : wpf0 < tg : W (t� 1; p) (2)Y (t; p) = � p = 0; t � 0 : W (t; p) �X(t; p)n > p > 0; t � p : Y (t� 1; p� 1) +W (t; p) �X(t; p) (3)If we interpret the index t as the time and the index p as the processor,this system can be viewed as a speci�cation of the values that will appear in the`registers' X, W and Y of an linear array with n-processors as shown in Fig. 5.1.From Eqn. (1) we see that (other than in the boundary processor p = 0), thevalue in the X register of processor p at time instant t is the same as that in theX register of processor p � 1 at time t � 2 (this corresponds to an interconnectionbetween adjacent processors with a delay of 2 cycles.) Similarly, the W values stayin the processors after initialization, and the Y values propagate between adjacentprocessors with a 1-cycle delay (after being incremented by the W*X product in eachprocessor). Note that the equations do not clearly specify how the W registers are
Patent Owner Saint Regis Mohawk Tribe

Ex. 2040, p. 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 Chapter 5
+

*

+

*

+

*

+

* Figure 5.1 The systolic array for Eqns. (1{3).`loaded' at t = 0, nor do they describe the initial values in the X registers of theprocessors other than the �rst one. These details and the control signals to ensurecorrect loading and propagation of initial values can be included, but have beenomitted in the interests of simplicity. It is well known that this array computes theconvolution of the x stream with the coe�cients w.The same sre formalism, augmented with reduction operations, can serve as avery high level, mathematical description of the algorithm for which a systolic arrayis to be designed. For example, the n-point convolution of a sequence of samplesx0; x1; : : : with the weights w0 : : : wn�1 produces the sequence y0; y1; : : : given bythe following equation (assuming that xk = 0, for �n < k < 0).yi =Xj wjxi�j (4)5.2.1 Recurrence Equations : De�nitions and NotationWe present the fundamental de�nitions of recurrence equations, and the do-mains over which they are de�ned. In what follows, Z denotes the set of integers,and N the set of natural numbers.De�nition 5.2.1 A Recurrence Equation de�ning a function (variable) X atall points, z, in a domain, D, is an equation of the formX(z) = DX : g(: : : X(f(z)) : : :) (5)wherez is an n-dimensional index variable.X is a data variable, denoting a function of n integer arguments; it is saidto be an n-dimensional variable.f(z) is a dependency function (also called an index or access function),f : Zn ! Zn;the \. . . " indicate that g may have other arguments, each with the samesyntax;g is a strict, single-valued function; it is often written implicitly as an expres-sion involving operands of the form X(f(z)) combined with basic operatorsand parentheses.
Patent Owner Saint Regis Mohawk Tribe

Ex. 2040, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Emerging Technologies 5DX is a set of points in Zn and is called the domain of the equation. Often,the domains are parameterized with one or more (say, l) size parameters.In this case, we represent the parameter as a vector, p 2 Zl, and use p as anadditional superscript on D.A variable may be de�ned by more than one equation. In this case, we usethe syntax shown below:X(z) = 8>><>>: ...Di : gi(: : : X(f(z)) : : :)... (6)Each line is called a case, and the domain of X is the union of the domains ofall the cases, DX = SiDi (actually, the convex hull of the union, for analysispurposes). The Di's must be disjoint. Indeed, the domain appearing in such anequation must be subscripted (annotated) with (i) the name of the variable beingde�ned, (ii) the branch of the case and also (iii) the parameters of the domain.When there is no ambiguity, we may drop one or more of these subscripts.Finally, the expression de�ning g, may contain reduction operators, i.e.,associative and commutative binary operators applied to a collection of values suchas addition (P), multiplication (�), minimum (min), maximum (max), booleanor (W), boolean and (V), etc. These operators are subscripted with one or moreauxiliary index variables, z0, whose scope is local to the reduction. A domain forthe auxiliary indices may also be given.De�nition 5.2.2 A recurrence equation (5) as de�ned above, is called an A�neRecurrence Equation (are) if every dependence function is of the form, f(z) =Az+Bp+a, where A (respectively B) is a constant n�n (respectively, n�l) matrixand a is a constant n-vector. It is said to be a Uniform Recurrence Equation(ure) if it is of the form, f(z) = z+a, where a is a constant n-dimensional vector,called the dependence vector. ures are a proper subset of ares, where A is theidentity matrix and B = 0.De�nition 5.2.3 A system of recurrence equations (sre) is a set of m such equa-tions, de�ning the data variables X1 : : : Xm. Each variable, Xi is of dimension ni,and since the equations may now be mutually recursive, the dependence functions fmust now have the appropriate (not necessarily square) matrices. We are interestedin systems of ares (sares) where all dependence functions are a�ne, and also aproper subset, systems of ures (sures). Note that in a sure, the domains of allvariables must have the same number of dimensions, since A has to be the identitymatrix.DomainsAn important part of the sre formalism is the notion of domain, i.e., the setof indices where a particular computation is de�ned. The domain of the variablesof an sre are usually speci�ed explicitly. The domains that we use are polyhedra
Patent Owner Saint Regis Mohawk Tribe

Ex. 2040, p. 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

