Bibliography 197

J.T. McHenry, “Dictionary Search Application on Splash,” tech. report, SRC, Bowie, Md.,
1991.

J.T. McHenry and A. Kopser, “Keyword Searching on Splash,” tech. report, SRC, Bowie,
Md., 1991.

Mead Data Central, LEXIS Quick Reference, Mead Data Central, New York, 1976.

R. Meier, “Rapid Prototyping of a RISC Architecture for Implementation in FPGAs,” Proc.
IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp- 190-196.

P.J. Menchini, “An Introduction to VHDL,” in J.P. Mermet, ed., Fundamentals and Stan-
dards in Hardware Description Languages, Kluwer Academic Publishers, Boston, 1993,
pp. 359-384.

B. Miller, “Vital Signs of Identity,” IEEE Spectrum, Vol. 31, No. 2, Feb. 1994, pp. 22-30.

G. Milne et al., “Realizing Massively Concurrent Systems on the SPACE Machine,” Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 26-33.

L. Moll, J. Vuillemin, and P. Boucard, “High-Energy Physics on DEC PeRLe-1 Programmable
Active Memory,” Proc. FPGA95, ACM, ACM Press, New York, 1995, pp. 47-52.

S. Monaghan and C.P. Cowen, “Reconfigurable Multi-Bit Processor for DSP Applications
in Statistical Physics,” Proc. IEEE Workshop FPGAs for Custom Computing Machines,
CS Press, Los Alamitos, Calif., 1993, pp. 103-111.

W. Moore and W. Luk, eds., FPGAs, Abingdon EE & CS Books, Abingdon, England, UK,
1992, (Proc., Oxford 1991 Int’l Workshop on Field Programmable Logic and Applications.)

W. Moore and W. Luk, eds., J. of VLSI Signal Processing, 1993, (Special Issue on Field-
Programmable Gate Arrays.)

W. Moore and W. Luk, eds., More FPGAs, Abingdon EE & CS Books, Abingdon, Eng-
land, UK, 1994. (Proc., Oxford 1993 Int’l Workshop on Field Programmable Logic and
Applications.)

Q. Motiwala, “Optimizations for Acyclic Dataflow Graphs for Hardware-Software Codesign,”
master’s thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994.

Nat'] Library of Medicine, MEDLARS, The Computerized Literature Retrieval Services of the
Nat’l Library of Medicine, Publication NIH 79-1286, U.S. Dept. of Health, Education and
Welfare, Washington, D.C., 1979.

M. Newman, W. Luk, and I. Page, “Constraint-Based Hierarchical Hardware Compilation of
Parallel Programs,” in R.W. Hartenstein and M.Z. Servit, eds., F ield-Programmable Logic:
Architectures, Synthesis, and Applications. Springer-Verlag, Berlin, 1994, pp. 220-229.

R.J. Offen, VLSI Image Processing, McGraw-Hill, New York, 1985.
J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, Mass., 1994.

I. Page and W. Luk, “Compiling Occam in FPGAs,” in W. Moore and W. Luk, eds., FPGAs,
Abingdon EE & CS Books, Abingdon, England, UK, 1991, pp. 271-283.

D.L. Perry, VHDL, McGraw-Hill, New York, 1991.
D.L. Perry, VHDL, McGraw-Hill, New York, 2nd ed., 1994.
W.K. Pratt, Digital Image Processing, Wiley, New York, 1978.

D.V. Pryor, M.R. Thistle, and N. Shirazi, “Text Searching on Splash 2,”” Proc. IEEE Worlkshop
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, 172-178.

G. Purcell and D. Mar, “SCOUT: Information Retrieval from Full-Text Medical Literature,”
Knowledge Systems Lab. Report KSL-92-35, Stanford Univ., Palo Alto, Calif., 1992.

Petitioner Microsoft Corporation - Ex. 1066, p. 523

198 Bibliography

G.M. Quénot et al., “A Reconfigurable Compute Engine for Real-Time Vision Automata
Prototyping,” Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif., 1994, pp. 91-101.

R. Rachakonda, “Region Detection and Labeling in Real-time Using a Custom Computing
Platform,” master’s thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994,

F. Raimbault et al., “Fine Grain Parallelism on a MIMD Machine Using EPGAs,” Proc. IEEE
Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993,
pp. 2-9.

N.K. Ratha, A.K. Jain, and D.T. Rover, “Fingerprint Matching on Splash 2,” tech. report,
Dept. of Computer Science, Michigan State Univ., East Lansing, Mich., Mar. 1994,

N.K. Ratha, A.K. Jain, and D.T. Rover, “Convolution on Splash 2,” Proc. IEEE Symp. FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 204-213.

A. Rosenfeld and A. Kak, Digital Picture Processing, 2nd ed., Academic Press, New York,
1982.

G. Salton, Automatic Text Processing, Addison-Wesley, Reading, Mass., 1989.

G. Salton and M.J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New
York, 1983.

D. Sankoff and J. Kruskal, eds., Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, Reading, Mass., 1983.

J. Schlesinger and M. Gokhale, dBC Reference Manual. Tech. Report SRC-TR-92-068,
Revision 2, SRC, Bowie, Md., 1993,

H. Schmit et al., “Behavioral Synthesis for FPGA-Based Computing,” Proc. IEEE Work-
shop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif,, 1994,
pp. 125-133.

H. Schmit and D. Thomas, “Implementing Hidden Markov Modelling and Fuzzy Controllers
in FPGAs,” Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 214-221.

J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

M. Shand, “Flexible Image Acquisition Using Reconfigurable Hardware,” Proc. IEEE
Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp. 125-134.

M. Shand, P. Bertin, and J. Vuillemin, “Hardware Spe2dups for Long Integer Multiplication,”
ACM Symp. Parallel Algorithms and Architectures, ACM, ACM Press, New York, 1990,
pp. 138-145.

N. Shirazi, “Implementation of a 2-D Fast Fourier Transform on an FPGA-based Computing !
Platform,” master’s thesis, Virginia Polytechnic Inst., 1995.

N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis of Floating-Point Arithmetic on
FPGA-based Custom Computing Machines,” Proc. IEEE Symp. FPGAs for Custom Com-
puting, CS Press, Los Alamitos, Calif., Apr. 1995, pp. 155-162.

S. Singh, “Architectural Description for FPGA Circuits,” Proc. IEEE Symp. FPGAs for Custom
Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 145-154.

S. Singh and P. Bellec, “Virtual Hardware for Graphics Applications Using FPGAs,” Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1994, pp. 49-59.

N. Sitkoff et al., “Implementing a Genetic Algorithm on a Parallel Custom Computing
Machine,” Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 180-187. :

Petitioner Microsoft Corporatioa&. Ex. 1066, p. 524

Bibliography 199

C. Stanfill and B. Kahle, “Parallel Free-Text Search on the Connection Machine System,”
Comm. of the ACM, Vol. 29, No. 12, 1986, pp. 1229-1239.

J. Stigliani, Writing SBus Device Drivers, Sun Microsystems, Inc., Mountain View, Calif.,
1990.

Synopsys, Inc., Design Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif.,
1991.

Synopsys, Inc., VHDL Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif.;
1991.

Synopsys, Inc., FPGA Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif,,
1994,

A. Tarmaster, “Median and Morphological Filtering of Images in Real Time Using an FPGA-
based Custom Computing Platform,” master’s thesis, Virginia Polytechnic Inst., Blacksburg,
Va., 1994,

Texas Instruments Inc., The SN74ACT8800 Family Data Manual (SCSS006A), Texas Instru-
ments Inc., Dallas, 1988.

Thinking Machines, Inc., C* Programming Guide, Thinking Machines, Inc., Cambridge,
Mass., 1993.

D.E. Thomas and P.R. Moorby, The Verilog Hardware Description Language, Kluwer Aca-
demic Publishers, Boston, 1991.

S.M. Trimberger, ed., Field Programmable Gate Array Technology, Kluwer Academic Pub-
lishers, Boston, 1994.

Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A-1983, U.S.
Department of Defense, Washington, D.C., Feb. 1983.

L. Uhr, ed., Parallel Computer Vision, Academic Press, New York, 1987.

M. van Daalen, P. Jeavons, and J. Shawe-Taylor, “A Stochastic Neural Architecture That
Exploits Dynamically Reconfigurable FPGAs,” Proc. IEEE Workshop FPGAs for Custom
Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 202-212.

D.E. Van den Bout, “The Anyboard: Programming and Enhancements,” Proc. IEEE Workshop
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 68-78.

G. VanDerWal and P. Burt, “A VLSI Pyramid Chip for Multiresolution Image Analysis,”
Int’l J. of Computer Vision, Vol. 8, No. 3, 1992, pp. 177-189.

R. Vogt, Automatic Generation of Morphological Set Recognition Algorithms, Springer-Verlag,
New York, 1989.

J. Vuillemin et al., “Programmable Active Memories: Reconfigurable Systems Come of A ge,”
IEEE Trans. VLSI Systems, to be published in Mar. 1996.

M. Wazlowski et al., “PRISM II: Compiler and Architecture,” Proc. IEEE Workshop FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 9-17.

J.H. Wegstein, An Automated Fingerprint Identification System, Special Publication 500-89,
Nat’l Bureau of Standards, Washington, D.C., 1982.

R. Wieler, Z. Zhang, and R. McLeod, “Emulating Static Faults Using a Xilinx Based Emula-
tor,” Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
California, 1995, pp. 110-115.

M. Wirthlin and B. Hutchings, “A Dynamic Instruction Set Computer,” Proc. IEEE Symp.
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 99-107.

M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson, “The Nano Processor: A Low Resource
Reconfigurable Processor,” Proc. IEEE Workshop FPGAs for Custom Computing Machines,
CS Press, Los Alamitos, Calif., 1994, pp. 23-31.

Petitioner Microsoft Corporation - Ex. 1066, p. 525

200

Bibliography

D. Wo and K. Forward, “Compiling to the Gate Level for a Reconfigurable Co-Processor,”
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 147-155.

L.F. Wood, “High Performance Analysis and Control of Complex Systems Using Dynami-
cally Reconfigurable Silicon and Optical Fiber Memory,” Proc. IEEE Workshop FPGAs for
Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 132-142.

Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif., 1993.

Xilinx, Inc., The XC4000 Data Book, Xilinx, Inc., San Jose, Calif. 1994,

C.-C. Yeh, C.-H. Wu, and J.-Y. Juang, “Design and Implementation of a Multicomputer
Interconnection Using FPGAs,” Proc. IEEE Symp. FPGAs for Custom Computing Machines,
CS Press, Los Alamitos, Calif., 1995, pp. 56-60.

Petitioner Microsoft Corporati02 E Ex. 1066, p. 526

Index

Ada, 36, 50
AFIS, see Automatic Fingerprint
Identification System
Algotronix, Ltd., 4, 7, 95
Analytic Instruments Inc., 24
Aptix, 181
arch, fingerprint, 123
Array Board, 12, 13, 19
architecture, 16-17
implementation, 25-30
programming, 29
Atmel Corp., 4
attached processors, 6, 169, 171
Automatic Fingerprint Identification
System, 119

band-pass pyramids, 145
Bank Register, 21
Batley’s formula, 119
broadcast, 17
Brown University, 3, 95, 183
Burroughs Corp.

B1700, 2, 174
bypass mode, 25

C*, 80

Center for Computing Sciences, see
Supercomputing Research Center

CERN, 177

CHAMP, 6, 174

CLB, see Configurable Logic Block

Petitioner Microsoft Corporation - Ex. 1066, p. 527

clock, 18
free-running, 57
hardware, 24
implementation, 24
regulation of system, 18
setting frequency, 58
SIMD, 57
single-step, 18
software, 24, 57
variable frequency, 24
comp.arch. fpga newsgroup, 3
compression, 177
Concurrent Logic, Inc., 4
CLi6005 FPGA, 37
Configurable Logic Block, 4
flip-flops, 169
configuration register, 30
Control Element, 20
entity declaration, 62
implementation, 28
programming view, 56-57
control/status register, see CSR
convolutional filtering, 177
coprocessors, 5-6, 169, 173-174
core point, fingerprint, 123
corner turning, 24
Cray Research
YMP processor, 2
cross-correlation example, 81
crossbar, 16-17, 181
configuration of, 30, 68-69

201

202

crossbar continued
dataflow modes, 170
implementation, 28-29
programming view, 56
CSR, 25

data-driven model, 175
Datacube MaxVideo 200, 162
dbC, 49, 77-95, 174, 176
De La Rue Printrak, 119
DEC, see Digital Equipment Corp.
Department of Defense, 180
Development Board, 19, 57
implementation, 21
device driver, 74-75
diagnostic software, 75-76
Digital Equipment Corp., see Paris
research lab, DEC’s
digital signal processor, 172
dilation, 146
direct memory access, see DMA
discrete Fourier transform, 147
DMA, 12, 19
DMA Channel
daughterboard, 20
implementation, 23
DNA sequence, see sequence comparison
DeD, see Department of Defense
double loop, fingerprint, 123
DSP, see digital signal processor

edge detection, 16

edif2xnft, 53, 56, 70

edit distance, 98
dynamic programming algorithm, 98
modular encoding, 105

erosion, 146

FBI, see Federal Bureau of Investigation
Federal Bureau of Investigation,
118, 183
Field Programmable Gate Array, 2, 4-5,
11, 20, 37
architecture, 172
fingerprint
matching algorithm, 125-128
performance, 137-139
registration, 126
FIR filter, 186189
FPGA, see Field Programmable Gate
Array
Futurebus+, 12, 19, 181

Index

Ganglion, 5
Gaussian pyramid, 145, 154
generic SIMD instructions, 82, 84
genetic database search, see sequence
comparison
global OR signal, 18, 43
global tri-state signal, 28, 54
Gordon Bell prize
1989, 34
GTS signal, see global tri-state signal

handshake register, 30, 58
hard macros, 12, 52, 61
Henry formula, 117
high-pass filters, 145
host computer

programming view, 57-58
Hough transform, 2, 147
Human Genome Initiative, 97

IDA, see Institute for Defense Analyses
Identification register, 25
IEEE, 3, 50
image expansion, 158
image processing, 141-163, 177
fingerprint, 119
performance, 159-162
image pyramid, 153
image pyramid generation, 153
image subtraction, 158
Input Output Block, 4
exploiting flip-flops, 56, 187
Institute for Defense Analyses, 183
instruction set synthesis, 84
Intel Corp.
8086 processor, 173
Interface Board, 12, 19
architecture, 17-18
implementation, 21-25
memory, 24
programming view, 57
interrupt register, 30
interrupts, 24
10B, see Input Output Block

Laplacian pyramid, 146, 157

LDG, 32, 46, 78, 179

LED register, 26

LEXIS, 110

libsplash.a, see runtime library
Light-Emitting Diodes, see LED register

" linear data path, 13-14, 20

Petitioner Microsoft Corporation - Ex. 1066, p. 528

J—

Index

Lockheed Sanders, 174

Logic Description Generator, see LDG
logic synthesis, 6, 48

Logica, 119

loop, fingerprint, 123

low-pass filter, 144

low-pass pyramids, 145

macro instructions, 92-94
mask register, 30
mathematical morphology, 146
median filtering, 146, 150-153
MEDLARS, 110
memory
architecture of, 44, 167-168
host access to, 21, 28
initialization, 69
mapped into address space, 58
Michigan State University, 183
minutia, 118, 123
matching, 126
Model Technologies, Inc., 182
MPL, 80

National Cancer Institute
Dept. of Mathematical Biology, 180

National Center for Biotechnology
Information, 183

National Semiconductor Corp., 4

NCI, see National Cancer Institute

nearest-neighbor communication, 88

NEC Information Systems, 119

North American Morpho, 119

opPar, see generic SIMD
instructions
Oxford University, 95

P-NAC, 31, 97
PAM, see Paris research lab, DEC’s
Paris research lab, DEC’s, 166, 174
PeRlLe, 2
PeRLe-1, 6, 171, 177
Paris research lab, DEC’s
PeRLe-0, 6
pattern recoginition systems, 121
PeRLe, see Paris research lab, DEC’s
physical mapping, 48
placement and routing, 6
poly data type, 81
Princeton Nucleic Acid Comparator, see
P-NAC

Petitioner Microsoft Corporation - Ex. 1066, p. 529

203

Princeton University, 31
PRISM, 3, 5, 183
Processing Element, 20
entity declaration, 61
implementation, 26-28
programming, 24-25
programming view, 56-57
Processor-in-Memory (PIM), 79
protein sequence, see sequence
comparison
PRS, see pattern recoginition systems
pyramid, 145, see Gaussian pyramid,
Laplacian pyramid

Quick and Dirty Board, see Development
Board
Quickturn Design Systems, Inc., 178

rapid prototyping, 177
RBus, 14, 20

data register, 58
readback, 24-25, 29

role in symbolic debugging, 58, 169
real-time control, 177
reduction operation, 80, 89-91
reset, 25, 29
ridge, fingerprint, 123
robocop, 76
RSA decryption, 2, 166
RSA encryption, 166
runtime library, 54, 73

SBus, 12, 19
Adapter Board, 19
address space, 18, 21
choice of, 38
DMA performance, 75
slave accesses, 22
sequence comparison, 15, 100-104, 111,
182
bidirectional algorithm, 100, 103
dbC example, 94-95
performance, 107
SIMD Bus, 13, 20
data register, 58
SIMD model, 11, 13, 17
single-instruction multiple-data, see
SIMD model
size estimation, see utilization
Sobel operators, 145
SPARCstation 2, 12, 19, 38
special-purpose devices, 5

204

Splash 1, 6, 179
architecture, 31-32
Splash 2, 179
Splash 2 Library, 51, 61
Splash 2 simulator, 51, 66-70
configuring, 67-68
SRC, see Supercomputing Research
Center
Sun Microsystems, Inc., 12, 19, 38
Supercomputing Research Center, 4
Synopsys, Inc., 182
Design Compiler, 53, 70
FPGA Compiler, 53, 71, 168, 182
systolic, 13

T2 debugger, 55, 72-73
tags, 14
valid data, 57
Tcl language, 55
TERASYS, 79, 181, 184
Texas Instruments
crossbar chip, 28, 41, 181
text searching
16-bit approach, 115
8-bit implementation, 113-114
algorithm, 111-112
general approach, 111
performance, 114, 116
Thinking Machines Corp.
CM-2, 2, 81, 183
CM-2X, 5
timing analysis, 49
tolerance box, 128
trigger debugger, 32
tsdb debugger, 55, 76

utilization, 56

valley, fingerprint, 123
Verilog, 51

VHDL, 36-37, 49-51, 182
choice of, 36, 45
history of, 50
pipelining in, 189
synchronous processes in, 187
VHSIC initiative, 47, 50
Viewlogic, 32
Virginia Polytechnic Institute
and State University, 183
virtual computer, 3
VMEbus, 34, 39
VTSplash, 142

whirl, fingerprint, 123

X0, 13, 17
purpose, 43
use in dbC, 86, 89
use in fingerprint matching,
132-133
XACT editor, 32
XBLOX, 168
Xilinx, 2, 4, 7, 11
apr tool, 33
choice of, 38
Netlist Format (XNF), 53
XC3090 FPGA, 32, 182
XC4010 FPGA, 4, 11-12,
182
XL, 15
entity declaration, 63
implementation, 23-24
purpose, 43
use in dbC, 86
use in text search, 111
xnfer, 54, 56, 71
XR, 15
implementation, 23-24
purpose, 43
use in text search, 112

Petitioner Microsoft Corporatioi - Ex. 1066, p. 530

Index

Contributors

A. Lynn Abbott, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. 703-231-4472

Jeffrey M. Arnold, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7479 _

Peter Athanas, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. 703-231-7010

Duncan A. Buell, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7372

Maya Gokhale, David Sarnoff Research Center, CN 5300, Princeton, New Jersey
08543. 609-734-3119

Dzung T. Hoang, Department of Computer Science, Duke University, Durham, North
Carolina 27706. 919-660-6598

Anil Jain, Department of Computer Science, Michigan State University, East Lan-
sing, Michigan 48824. 517-353-5150

Walter J. Kleinfelder, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7355

Daniel V. Pryor, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7407

Nalini Ratha, Department of Computer Science, Michigan State University, East
Lansing, Michigan 48824. c/o A. Jain 517-353-5150

Diane Rover, Department of Electrical Engineering, Michigan State University, East
Lansing, Michigan 48824. 517-353-7735

Nabeel Shirazi, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. c/o P. Athanas 703-231-
7010+

Mark R. Thistle, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7413

205

Petitioner Microsoft Corporation - Ex. 1066, p. 531

IEEE Computer Society Press Editorial Board

Advances in Computer Science and Engineering
Editor-in-Chief
Jon Butler, Naval Postgraduate School

Associate Editor-in-Chief/Acquisitions
Pradip K. Srimani, Colorado State University

The IEEE Computer Society Press Advances Board seeks manuscripts that describe new and sig-
nificant advances in computer science and engineering. Although immediate application is not neces-
sary, ultimate application to advanced computing systems is an important quality. Publications represent
technically substantive and clear expositions of innovative ideas.

Editorial Board

Dharma P. Agrawal, North Carolina State University
Ruud Bolle, IBM T.J. Watson Research Center
Vijay K. Jain, University of South Florida
Yutaka Kanayama, Naval Postgraduate School
Gerald M. Masson, The Johns Hopkins University
Sudha Ram, University of Arizona
David C. Rine, George Mason University
A.R.K. Sastry, Rockwell International Science Center
Abhijit Sengupta, University of South Carolina
Mukesh Singhal, Ohio State University
Scott M. Stevens, Carnegie Mellon University
Michael Roy Williams, The University of Calgary
Ronald D. Williams, University of Virginia
Lotfi Zadeh, University of California, Berkeley

Additional Advances Board Titles

A Probabilistic Analysis of Test-Response Compaction
Slawomir Pilarski and Tiko Kameda

The Cache Coherence Problem in Shared-Memory Multiprocessors: Software Solutions
Igor Tartalja and Veljko Milutinovi¢

The Cache Coherence Problem in Shared-Memory Multiprocessors: Hardware Solutions
Igor Tartalja and Veljko Milutinovi¢

Advanced Multimicroprocessor Bus Architectures
Janusz Zalewski

Petitioner Microsoft Corporation - Ex. 1066, p. 532

@ COMPUTER SOCIETY

5() YEARS OF SERVICE *+1946-1996
http://www.computer.org

Press Activities Board

Vice President: Editor-in-Chief

Joseph Boykin Advances in Computer Science and Engineering Board
CLARIiON Advanced Storage Solutions Jon T. Butler

Coslin Drive Naval Postgraduate School

Southborough, MA 01772 Dept. of Electrical and Computer Engineering

(508) 480-7286 833 Dyer Road #437, Code EC/BU

FAX (508) 480-7908 Monterey, CA 93943-5121

j.boykin @computer.org Phone: 408-656-3299 FAX: 408-656-2760

butler@cs.nps.navy.mil
Jon T. Butler, Naval Postgraduate School

James J. Farrell lil, Motorola Corp. Editor-in-Chief

Mohammed E. Fayad, University of Nevada Practices for Computer Science and Engineering Board
1. Mark Haas, Tandem Computers, Inc. Mohamed E. Fayad

Ronald G. Hoelzeman, University of Pittsburgh Computer Science, MS/171

Gene F. Hoffnagle, IBM Corporation Bldg. LME, Room 308

John R. Nicol, GTE Laboratories University of Nevada

Yale N. Patt, University of Michigan Reno, NV 89557

Benjamin W. Wah, University of lllinois Phone: 702-784-4356 FAX: 702-784-1833

Ronald D. Williams, University of Virginia fayad@cs.unr.edu

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director
H. True Seaborn, Publisher
Matthew S. Loeb, Assistant Publisher

IEEE Computer Society Press Publications

The world-renowned Computer Society Press publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available in two formats:
100 percent original material by authors preeminent in their field who focus on relevant topics and
cutting-edge research, and reprint collections consisting of carefully selected groups of previously
published papers with accompanying original introductory and explanatory text.

Submission of proposals: For guidelines and information on CS Press books, send e-mail to
csbooks@computer.org or write to the Acquisitions Editor, IEEE Computer Society Press, P.O. Box
3014, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380. FAX +1
714-761-1784.

IEEE Computer Society Press Proceedings

The Computer Society Press also produces and actively promotes the proceedings of more than 130
acclaimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on CS Press proceedings, send e-mail to csbooks@computer.org or write to Proceed-

ings, IEEE Computer Society Press, P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1314. Telephone +1 714-821-8380. FAX +1 714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings,
CD-ROMs, videos, and books can also be accessed from our web site at
www.computer.org.

321196

Petitioner Microsoft CorporatioiEx. 1066, p. 533

B comarpeove ML

edited by Duncan A. Buell, Jeffrey M. Arnold, and Walte 0 003 497 088 9_ ¢

Details the complete Splash 2 project—the hardware and software sys-
tems, their architecture and implementation, and the design process by
which the architecture evolved from an earlier version machine. In addi-
tion to the description of the machine, this book explains why Splash 2
was engineered. It illustrates several applications in detail, allowing you
to gain an understanding of the capabilities and the limitations of this
kind of computing device.

The Splash 2 program is significant for two reasons. First, it is part of a
complete computer system that achieves supercomputer like perfor-
mance on a number of different applications. The second significant
aspect is that this large system is capable of performing real computa-
tions on real problems. In order to understand what happens when the
application programmer designs the processor architecture of the
machine that executes his programs, it is necessary to see the system as
a whole. This book looks in-depth at one of the handful of data points
in the design space of this new kind of machine.

Contents:

¢ Custom Computing Machines: An Introduction
® The Architecture of Splash 2

¢ Hardware Implementation

e Splash 2: The Evolution of a New Architecture
e Software Architecture

¢ Software Implementation

® A Data Parallel Programming Model

* Searching Genetic Databases on Splash 2

e Text Searching on Splash 2

e Fingerprint Matching on Splash 2

* High-Speed Image Processing with Splash 2

¢ The Promise and the Problems

¢ An Example Application

Published by the IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O. Box 3014)

Los Alamitos, CA 90720-1314 SBN 0-818b-7413-X
90000>

IEEE Computer Society Press Order Number BP07413 u[’ Ilm

Library of Congress Number 95-47397

ISBN 0-8186-7413-X 977808187674136

Petitioner Microsoft Corporation - Ex. 1066, p. 534

Attachment 5C

Petitioner Microsoft Corporation - Ex. 1066, p. 535

Splash 2 : FPGAs in a custom computing machine (Book, 1996) [Wor...

) * WorldCat’

Search WorldCat

Search]

Advanced Search Find a Library

= o
5

<< Retum to Search Results

Add to list Add tags Write a review Rate this item:

Splash 2 : FPGAs in a custom computing

machine
Author:
Publisher:
Edition/Format:

Rating:

= Find a copy in the library

Enter your location: |mit
Submit a complete postal address for best results.

Cambridge, MA 02139, USA)
<« First < Prev

Library

MIT Libraries

Massachusetts Institute of Technology
Libraries

Cambridge, MA 02139 United States

i

Boston University Libraries
Mugar Memorial Library
Boston, MA 02215 United States

Harvard University
Cambridge, MA 02138 United States

Worcester Polytechnic Institute
WPI; George C. Gordon Library
Worcester, MA 01609 United States

Trinity College Library
Hartford, CT 06106 United States

University of Vermont
Bailey/Howe Library
Burlington, VT 05405 United States

« First < Prev

= Details

(not yet rated)

https://www.worldcat.org/title/splash-2-fpgas-in-a-custom-computing..

Cite/Export Print E-mail Share Permalink
T ZE 3 4. 5
Get a Copy

Find a copy in the library

Duncan A Buell; Jeffrey M Arnold; Walter J Kleinfelder
Brussels : IEEE Computer Society Press, 1996.

0 with reviews - Be the first.

Find Iibraries|

Displaying libraries 1-8 out of 83 for all 10 editions (77 Massachusetts Ave,

Show libraries holding just this edition

12 3 Next> Last »

Held formats Distance
y Library info
< 1 mile .I L
L Book el Ask a librarian
Add to favorites
. Library info
Book 2&'?’? Ask a librarian
Add to favorites
E Book 2 miles Library info
MAP T Add to favorites
< Library inf:
~ 37 miles = .m c.
L Bock B Ask a librarian
Add to favorites
" Library info
92 miles SRS
L_I. Book B Search at this library
Add to favorites
. Library info
B Book Wy mies Ask a librarian
MAP T P R
Add to favorites
123 Next» Last»

Petitioner Microsoft Corporation - Ex. 1066, p. 536

Splash 2 : FPGAs in a custom computing machine (Book, 1996) [Wor... https://www.worldcat.org/title/splash-2-fpgas-in-a-custom-computing..

Document Type: Book

All Authors / Duncan A Buell; Jeffrey M Amold; Walter J Kleinfelder

Contributors:

Find more information about: | Duncan A Buell @]

OCLC Number: 989612266

Description: X1V, 205 pages

Responsibility: ed. by Duncan A. Buell, Jeffrey M. Amold and Walter J. Kleinfelder.
- Reviews

Add a review and share your thoughts with other readers. Be the first.

= Tags

Add tags for "Splash 2 : FPGAs in a custom computing machine”. ge the first.

+ Linked Data

Petitioner Microsoft Corporation - Ex. 1066, p. 537

Attachment 5D

Petitioner Microsoft Corporation - Ex. 1066, p. 538

MIT Libraries' catalog - Barton - Full Catalog - Full Record http:/library.mit.edu/F/Q3FRMHMA4163K92TY VHRY93FJ28 AVTI7..

Barton wmiT Ubraries' Catalog MIT Libraries
» Basic = Conferences e Journals * Reserves e Your Account ¢ Your Bookshelf
+ Advanced « E-resources MIT Theses +« more... o Help with Your Account e Previous Searches

Auk Ust | Other Catalogs Help

Full Record
nalink for this record: http://library. mit.edu/item/000791622
Results List | Add to Bookshelf | Save/Email

Choose format:Standard | Citation | MARC tags

Record 1 out of
1

Title Splash 2 : FPGAs in a custom computing machine / Duncan A. Buell, Jeffrey M. Arnold, Walter). Kleinfelder,
editors.

Shelf Access Find it in the library/Request item
Shelf Location Barker Library - Stacks | QA76.8.565.B84 1996

Published | os Alamitos, Calif. : IEEE Computer Society Press, c1996.
Description xiv, 205 p. : ill. ; 26 cm.
Format Book
Bibliography |ncludes bibliographical references (p. 190-200) and index.
Subject Splash 2 (Computer)

Other Author Buell, Duncan A.

Arnold, Jeffrey M.

Kleinfelder, Walter J.
Other Title Splash two.

ISBN 081867413X (paper)
Local System Number (000791622

Basic Search of "ull Catalog
Search type: _ Search for:

Keyword Search
Title begins with...

Title Keyword

Author (last name first)

Author Keyword

Call Number begins with...

----- Scroll down for more choices -----

—

| — Barton Questions: Ask Us! | Contact Us -- Quick Links --

HITL'bI'éIi Massachusetts Institute of Technology
IDIANES 77 Massachusetts Avenue, Cambridge, MA 02139-4307 USA

Petitioner Microsoft Corporation - Ex. 1066, p. 539

Attachment 5E

Petitioner Microsoft Corporation - Ex. 1066, p. 540

MIT Libraries' catalog - Barton - Full Catalog - Full Record http:/library.mit.edu/F/Q3FRMHM4163K92TYVHRY93FJ28 AVTI7..

Barton MIT Libraries' 0c MIT Libraries
Sea 1 ill Catalng .3 nly for:
= Basic « Conferences = Journals s Reserves e Your Account s Your Bookshelf
= Advanced * E-resources « MIT Theses « more... « Help with Your Account e Previous Searches
IRIRINE Other Catalogs Help

Full Record

Sermalink for this record: http://library. mit.edu/item/000791622
Results List | Add to Bookshelf | Save/Email

Choose format: Standard | Citation | MARC tags

Record 1 out of

1

FMT BK

LDR 01000cam 2200301 a 45¢q0
003 MCM

005 20010609000235.0

008 96100351996 caua b 001 0eng

010 |a 95047397

020 |a 081867413X (paper)

035 |a MITb10791622

035 |a (DCoLC)33439519

040 |a DLC |c DLC |d C#P |d MYG

05000 |a QA76.8.565 |b B84 1996

08200 |a 004.2/2 |2 20

24500 |a Splash 2 : |b FPGAs in a custom computing machine / |c Duncan A. Buell, Jeffrey M. Arnold, Walter 1. Kleinfelder, editors.
2463 |a Splash two

260 |a Los Alamitos, Calif. : |b IEEE Computer Society Press, |c c1996.
300 |axiv, 205p. : [bill. ; |c 26 cm.

504 |a Includes bibliographical references (p. 190-200) and index.
650 0 |a Splash 2 (Computer)

650 0 |a Electronic digital computers |x Design and construction.
7001 |a Buell, Duncan A.

7001 |a Arnold, Jeffrey M.

7001 |a Kleinfelder, Walter 1.

CAT |a CONV |b 00 |c 20010620 || MITO1 [h 1544

CAT |alti0904 |b 00 |c 20090523 |l MITO1 |h 2240

049 |a MYGG

910 |atn961003

949 |ae |p 39080013873036

|0 230 |1 000791622000010 |b ENG |c STACK |o BOOK |d 01 |y 00000 |[f N |r MIT60-000797503 |n 0 |h QA76.8.565.B84 1996 |a
MCM |3 Book |4 Barker Library |5 Stacks |6 60 Day Loan |p Avail

LDR nx 22 zn 4500

008 0106230u 0 4 uu 1

004 000791622

8520 |a MCM |b ENG |c STACK |h QA76.8.565.884 1996 |z

001 000791622

SFXO01 |s 0-0-0-7-9-1-6-2-2 || MITO1 |9 000 |z m~vmvmmrerorvns |p Avail |f 000
SYS 000791622

PSTO

Petitioner Microsoft Corporation - Ex. 1066, p. 541

MIT Libraries' catalog - Barton - Full Catalog - Full Record http:/library.mit.edu/F/Q3FRMHM4163K92TYVHRY93FI28AVTI7..

Basic Search of 7l Catalog

Search type: Search for:
Keyword Search
|Title begins with...
Title Keyword
| Author (last name first)
| Author Keyword
|Call Number begins with...
----- Scroll down for more choices --—-
’.-"___'"“-———..._‘ Barton Questions: Ask Us! | Contact Us -- Quick Links --
) rﬂjbmﬁes Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA 02139-4307 USA

® 2003 Massachusetts Institute of Technology

Petitioner Microsoft Corporation - Ex. 1066, p. 542

Attachment 6A

Petitioner Microsoft Corporation - Ex. 1066, p. 543

{VERY LARGE SCALE
JINTEGRATION (VLSI) SYSTEMS

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

The Circuils and Systems Society is an association of [EEE members with professional interest in the field of circuits and systems theory. All members of the
IEEE are cligible for membership in the Society upon payment of the annual Saciety membership fee of $7.00. The Computer Society is an association of
people with professional inlerest in the field of computers. All members of the IEEE are eligible for membership in the Computer Society upon payment of the
annual Society membership fee of $29,00. For information on juining, write to the IEEE Computer Society, 1730 Massachusetts Avenue, NW, Washington,
DC 20036-1903. The annual subscription fee for members of either society is $18.00. For information on joining, write to the IEEE at the address below.
Member copies of Transactions/Tournals are for personal use anly,

Editor-in-Chief
' . _ BING SHEU
University of Southern California
Department of Electrical Engincering
' Powell Hall, Room 604
Los Angeles, CA 90089-0271
phone: 213-740-4711
- fax: 213-740-8677
- Ny = e-mail: sheu@pacific.usc.edu

1997 Editorial Board

FrANCKY CATTHOOR NIRAI JHA KEsHAB PARHI
IMEC, Belgium Elec. Eng. Dept. Elec. Eng. Dept,

Princeton Univ., NJ Univ. of Minnesota, Minneapolis
SuniL R, Das PiNaKI MAZUMDER PeTER Pirsch
Elec. Eng. Dept. EE and CS Dept. Univ. of Hannover, Germany
Univ. of Ottawa, Canada Univ. of Michigan, Ann Arbor
Wal-Cur Fang Lisa Dron McILRATH VIKTOR PRASANNA
NASA/Jet Prop. Lab. Elec. & Comput. Eng. Dept, Elec. Eng. Dept.
California Inst. of Technol. Northeastern Univ.,, MA Univ. of Southemn California
Eric R. Fossum FARID NAIM SArma B. K. VRUDHULA
(Tormerly with JPL) Elec. & Comput. Eng, Dept. Elec. & Comput. Eng, Dept.
Photobit, LLC, CA Univ. of Illinois, Urbana Univ. of Arizona, Tucson
GRAHAM HELLESTRAND NaoHISA OHTA
Univ. of New South Wales, Australia NTT. Japan

THE INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS, INC.

Officers
CHARLES K. ALEXANDER, President DanEr R, Beniant, Vice President, Professional Activities
JosePH BoRDOGNA, President-Flect FRIEDOLF M. SMus, Viee President, Publication Activities
PauL Y. S. CHEUNG, Secrerary Ravmonp D. FINDLAY, Vice President, Regional Activities
HowarD L. WOLFMAN, Treasturer DonaLp C. LouGHRY, Vice President, Standards Activities
JERRY R. YEARGAN, Vice President, Educational Activities Lroyp A. MorLEY, Vice President, Technical Activities

MicHAEL 8. ApLER, Director, Division I—Cirenits and Devices

Executive Staff
DawieL I, SENESE, Executive Director

DonaLp Curtis, Human Resources
ANTHONY J. FERRARO, Publications
CECELIA JANKOWSKI, Regional Activities
PETER A Lewis, Educational Activities

ANDREW G. SALEM, Standards Activities
RickArD D. ScHwarTz, Business Administration
W. THOMAS SUTTLE, Professional Activities
Torm WtskeN, Information Technology

IEEE Periodicals
Transactions/Journals Department

Staff Director; FRAN ZAPPULLA
Transactions Manager: GAaIL S. FERENC
Editarial Manager: VALERIE CAMMARATA
Electronic Production Manager: TOM BONTRAGER
Managing Editor: GERALOINE E, KROLIN
Senior Editor; BILL COLACCHIO
[EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLST) SysTems (ISSN 1063-8210) is published quarterly by The Institute of Electrical and Electronics
Engineers, Inc. Responsibility for the contents rests upon the authors and not upon the IEEE, (he Society/Council, or its members. IEEE Corpornte Office:
345 Easl 47 Street, New York, NY 10017-2394, IEEE Operations Center: 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. NJ Telephone:
908-981-0060. Price/Publication Information: Individual copies: IEEE Members $10.00 (first copy only), nonmembers §20.00 per copy. (Note: Add $4.00
postuge and handling charge to any order from $1.00 to $50.00, including prepaid orders.) Member and nonmember subscription prices available upon request.
Available in microfiche and microfilm. Copyright and Reprint Permissions: Abstracting is permilied with credit to the source. Libranes are permnitted
to photocopy for private use of patrons, provided the per-copy fee indicaled in the code al the bottom of the first page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, For all other copying, reprint, or republication permission, wrile to Copyrights and Permissions
Department, IEEE Publications Administration, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. Copyright @ 1997 by The Institute of Electrical
and Electronics Engineers, Inc. All rights reserved. Periodicals Postage Paid at New York, NY and at additional mailing offices. Postmaster: Send address
changes o JEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) Systems, IEEE, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331,
GST Registration No. 125634188, Printed in U.S.A.

Petitioner Microsoft Corporation - Ex. 1066, p. 546

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5. NO 2, JUNE 1997 161

Pipelined H-Trees for High-Speed Clocking of
Large Integrated Systems in Presence of

Process Variations T T

Mohamed Nekili, Guy Bois, and Yvon Savaria, Member, IEEE " {

Abstract—This paper addresses the problem of clocking large
high-speed digital systems, as well as deterministic skew mod-
eling, a related problem. A conventional method for clocking a
large digital system is to use a set of metallic lines organized
as a tree. This method is limited by the bandwidth of the
clock network, Another limitation of existing solutions is that
available skew models do not directly take into account process
variations. In order to provide a reliable skew model, and to
avoid the frequency limitation, we propose a novel approach
that distributes the clock with an H-tree, whose branches are
composed of minimum-sized inverters rather than metal. With
such a structure, we obtain the highest clocking rate achievable
with a given technology. Indeed, clock rates around 1 GHz
are possible with a 1.2 ym CMOS technology. From the skew
modeling standpoint, we derive an analytic expression of the
skew between two leaves of the H-tree, which we consider to
be the difference in root-to-leaf delay pairs. The skew upper
bound obtained has an order of complexity which, with respect
to the H-tree size D, is the same as the one that may be
derived from the Fisher and Kung model for both side-to-
side and neighbor-to-neighbor communications, ie, a Q(DY),
whereas, the Steiglitz and Kugelmass probabilistic model predicts
O(D x /LogTl). In an H-tree implemented with metallic lines,
the leaf-to-leaf skew is obviously bounded by the delay between
the root and the leaves. However, with the logic based H-iree
proposed in this paper, we arrive at a nonobvious result, which
states that the leaf-to-leaf skew grows faster than the root-to-
leaf delay in presence of a uniform transistor time constant
gradient. This paper also proposes generalizations of the skew
medel to 1) the case of chips in a wafer subject to a smooth,
but nonuniform gradient and 2) the case of H-tree configurations
mixing logic and interconnections; in this respect, this paper
covers the H-tree configurations based on the combination of
logic and interconnections.

Index Terms—H-tree, high-speed clocking, pipelining, process
variations, skew,

I. INTRODUCTION

HE evolution of VLSI chips toward larger die sizes and
Tfaster clock speeds makes clock design an increasingly
important issue. A striking example of what can be accom-
plished with aggressive clock design is the DEC alpha chip [1],

Manuscript received March 24, 1994; revised September 22, 1995, This
work was supported by the INI (Institut National de formation en Informa-
tique) in Algiers, CIDA (Canadian International Development Agency), and
strategic grant and operaling grants from the Natural Sciences and Engineering
Research Council of Canada.

The authors are with the Department of Electrical Engineering, Ecole
Polytechnique of Montréal, Station “Centre-Ville,” Monltréal, P.Q. H3C 3A7,
Canada.

Publisher Item Identifier § 1063-8210(97)01949-5.

designed to operate at more than 200 MFz Al such speeds,
clock skew becomes a very significant problem. Available
literature dealing with skew [2]-[8], [10], [11] approaches the
problem both from deterministic and probabilistic standpoints.

[n the deterministic approaches, Friedmann and Powell [6]
emphasize the use of a hierarchical clock distribution, while
others (2], [3], [8], [11] suggest the length equalization of the
different paths followed by the clock throughout the circuit.
Shoji [5] suggests an approach that guarantees a symmetry
between paths that contribute to propagate “0” and “1.” This
Symmetry ensures proper operation despite some types of
process variations [5]. Except for the work of Fisher and Kung
[4], which provides bounds on skew, the other authors do not
deal with the analytic modeling of system skew,

In the probabilistic approaches, Kugelmass and Steiglitz (7]
consider the delay of a clock signal along a given path as a
sum of delays along path segments, each of these segments
behaving according to a probabilistic law. Then, by assuming
independence between these delays, the total delay, as well as
the skew, can then be described by a normal law. By assuming
independence and the linearity of delay with line length, their
approach becomes an oversimplification of the reality. Other
authors [10] consider the skew as a dispersion in the physical
parameters of a circuit (e.g., geometrical dimensions) and in
the process (e.g., sensitivity to temperature),

The work that is most directly related to that presented in
this paper is the work of Fisher and Kung [4]. These authors
have developed two deterministic skew models (the difference
model and the summation model), from which they determined
bounds on skew. However, these models do not directly refer
to a process variation model. The difference model, tends to
be unrealistically optimistic, whereas, under the summation
model, Fisher and Kung reached a pessimistic result which
states that, from a skew standpoint, synchronous systems are
not feasible with large two-dimensional arrays.

In order to avoid the frequency limitation when using
metallic lines, we propose a logic-based H-tree structure
that provides the highest clocking rate achievable with a
given technology in Section 1I, To provide a reliable skew
model, Section III suggests a model based on delay differences
combined with a model of electrical variations in the process
parameters. Under this model, we derive an anal ytic expression
of the skew between any leaf pair, which we consider to
be the difference in root-to-leaf delay pairs. Even though the
model of electrical variations described in this paper assumes

1063-8210/97$10.00 @ 1997 IEEE

Petitioner Microsoft Corporation - Ex. 1066, p. 547

This material may be protected by Copyright law (Title 17 LS. Code)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. Z, JUNE 1597 21

VLSI Array Algorithms and Architectures
for RSA Modular Multiplication

Yong-Jin Jeong, Member, IEEE, and Wayne P. Burleson, Member, IEEE

Abstract—We present two novel iterative algorithms and their
array structures for integer modular multiplication. The algo-
rithms are designed for Rivest-Shamir-Adelman (RSA) cryp-
tography and are based on the familiar iterative Horner’s rule,
but use precalculated complements of the modulus, The prob-
lem of deciding which multiples of the modulus to subtract in
intermediate iteration stages has been simplified using simple
look-up of precalculated complement numbers, thus allowing a
finer-grain pipeline. Both algorithms nse a carry save adder
scheme with modulo reduction performed on each intermediate
partial product which results in an output in carry-save format.
Regularity and local connections make both algorithms suitable
for high-performance array implementation in FPGA’s or deep
submicron VLSI. The processing nodes consist of just one or two
full adders and a simple multiplexor. The stored complement
numbers need to be precalculated only when the modulus is
changed, thus not affecting the performance of the main computa-
tion. In both cases, there exists a bit-level systolic schedule, which
means the array can be fully pipelined for high performance and
can also easily be mapped to linear arrays for various Space/time
tradeoffs.

Index Terms— Cryptography, modular multiplication, RSA,
systolic arrays, VLSI,

I. INTRODUCTION

RYPTOGRAPHY systems have been growing in impor-
Clnncc recently as a method for improving data security.
Public key cryptography (PKC) systems are generally pre-
ferred to traditional secret key cryptography systems like the
data encryption standard due to the safety of key distribution
[3]. The Rivest-Shamir—Adelman (RSA) [10] system is one
of the most widely used public key cryptography systems, and
its core arithmetic is modular multiplication over a positive
integer. Modular multiplication is also a major computation of
residue number systems [13] as well as other cryptography
systems (e.g., international data encryption algorithm (8],
[16], Diffie-Hellman key exchange [3]). In this paper, we
develop an array modular multiplier with applications to, but
not restricted to, RSA systems.

In RSA, the modulus is a product of two large prime
numbers, usually more than 500 bits, and should be changeable
for security reasons. But, since the modulus (or key) is not
changed very often, we can use precomputation and look-up
in our array modular multipliers. We are not aware of anyone

Manuseript received November 21, 1994: revised January 26, 1996. This
work was supported in part by NSF Grant MIP-9108086.

Y, Jeong is with Samsung Electronics, Co., Seoul, Korea.

W. Burleson is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Ambherst, MA 01003 USA.

Publisher Item Identifier 8 1063-8210(97)01953-7.

who has utilized this special property of multirate input data in
the RSA algorithm, that is, the input message changes rapidly
while the key remains unchanged for a long period. In practice,
the key is updated infrequently, for example, a few months,
weeks, or days, depending on the security requirements. In
order to satisfy the ever growing security requirements of
high-speed communications, such as personal communication
services and wireless local area networks, a dedicated VLSI
hardware solution is needed because of L) high throughput
requirements, 2) low-power requirements, 3) a high-volume
market, 4) the computation is poorly suited to microprocessors
or DSP’s, and 5) the problem size is expected to continue to
grow rather than saturate.

Modular multiplication is generally considered a compli-
cated arithmetic operation because of the inherent multiplica-
tion and division operations. There are two main approaches
to computing modular multiplication: 1) perform the modulo
operation affer multiplication or 2) during multiplication. The
modulo operation is accomplished by integer division in which
only the remainder is needed for further computation. The first
approach requires a n X n bit multiplier with a 2n-bit register
followed by a 2n x n bit divider, In the second approach,
the modulo operation occurs in each iteration step of integer
multiplication. Therefore the first approach requires more
hardware while the second requires more addition/subtraction
computations due to O(n) modulo reduction steps. In both
cases, most previous research has focused on the fast cal-
culation of a long carry chain. Redundant number systems
and a higher radix carry-save form are some of the different
number representations that have been used for this purpose
[12], [14]. A carry prediction technique has also been used for
fast calculation of modular multiplication [1].

Since PKC was introduced, many algorithms and hardware
structures have been proposed for modular multiplication,
and [4] contains a good review on this topic. Several array
structures suvited for VLSI implementation have been discussed
in [4], [5], [14], and |15]. In [14], Vandemeulebroccke et al.,
use a modulo after multiplication approach using a signed
digit number representation. It consists of two arrays: one
for multiplication and the other for integer division. In [5],
Koc and Hung apply Blakley’s algorithm [2] and use a sign-
estimation method by looking at the five most significant bits
in each iteration stage. Although they derive a bit-level systolic
array structure, the latency and clock cycle are relatively
long due to the control node which estimates the sign of the
intermediate result in each stage. In [4] and [15], Eldridge and
Walter use Montgomery’s algorithm [9] which only works if

1063-8210/97$10.00 © 1997 JEEE

Petitioner Microsoft Corporation - Ex. 1066, p. 548

212 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997

the modulus is relatively prime to the radix, although this is
always the case in RSA.

In this paper, we develop two new VLSI array archi-
tectures for modular multiplication. The idea is similar to
Montgomery’s algorithm in which he ries to make each partial
product a multiple of the radix to simplify the multiplication
by the radix (just by shifting) by only looking at the least
significant bits (LSB), thus requiring a post-processing step to
gel the final answer, In our algorithms, we look at the most
significant bits (MSB) to remove higher bit positions while
keeping the correct answer in each partial product, keeping it
within a certain range. Due to the simple translation of a mod-
ulo operation into an addition of a precalculated complement
of the modulus. the modulo during multiplication approach is
used with a carry-save adder structure. Instead we pay for
multiplexors to choose the precalculated integer depending
on the control which is generated in the leftmost node in
each stage. Compared to previous works, we can obtain a
higher clock frequency mainly due to the simplified modulo
reduction operation. In Section II, we will explain our basic
concept for the modulo reduction operation and then describe
the two iterative algorithms. Array structures corresponding
to these algorithms, analysis, and some modifications are also
discussed in this section. Conclusions and discussion are in
Section IIL.

II. MODULAR MULTIPLICATION ALGORITHM

[n a modular multiplication, the n-bit madulus C is repre-
sented by a binary number system as C' = 7' ¢;2¢ where
i € GF(2). Obviously C is less than 2. We introduce K,
which is called the complement of the modulus (7, such that

K =2" mod C. (1)

In other words, any carry of weight 2" can be replaced by an
addition of K, which means that the end-around carry implies
an extra addition. If K does not change frequently, we can
precalculate multiples of K and store them in registers for use
in the modulo reduction operation. Note that if the MSB of
C'is 1, K is equivalent to —C in a 2's complement number
system.

Now we describe the general modular multiplication algo-
rithm using the modulo during multiplication approach. Given
any two n-bit integers, A and B, and the n-bit modulus
C. where (C > A, B), the modular multiplication can be
described by an iterative procedure using Horner’s rule

n—1
ABmodC =A-Y " b;2'mod C
i=0
=((-+* (bp-14)2+ bp_24)2
+ o+ b1A4)2 4 bgA)mod C. (2)
We can describe (2) in a recursive form as follows:
Py =0
P; =2P;_y + b,_1AmodC 3)

and P, is the final result. Using (1) and (3), we will derive
two different bit-level array structures.

A. Using the CSA Scheme

The carry save addition (CSA) scheme is the most com-
monly used technique in integer multiplication to reduce the
carry propagation penalty [6]. In the CSA scheme, a partial
sum and a carry sequence are generated in the intermediate
stages and the carry propagation occurs only at the last stage.
The basic element of the CSA scheme is a full adder (FA)
which is often called a (3, 2) counter, It accepts three inputs,
referred to here as s;, ¢;, =; with (associated weight 2'), and
produces two outputs, carry ¢, (with weight 2°t1) and sum s,
(with weight 2'). The arithmetic operation of the (3, 2) counter
can thus be described by the familiar expression:

200 + 80 = 8i + 5 + 25 (4

where “+” means an algebraic (not Boolean) addition.

Using the CSA scheme, we have a carry of weight 2" in
the leftmost node in each stage. As shown in (1), this carry
can be replaced by the addition of the integer K for a modulo
operation. The basic idea in our approach is that we handle
the carries of weight 2" and higher by using K wherever they
appear, unless the basic CSA structure is broken. From (3),
let us denote a partial product P; as

Pi=2C;+8; (0<i<n) (5)
then, the valid range of P; is
0<F<3.2"-3 (6)

This means we allow P; to be greater than modulus C at
intermediate stages.

Before we begin the derivation of a recursive equation for
modulo multiplication, we define a new variable K}, 1o handle
multiple end-around carrys

K, Kmod ¢ Q)

where h is a positive integer (1, 2, --+) and K is defined in
(1). Then

2" modC =27 . K mod C.

Carrys can also appear in a combined mode. As an example,
suppose we have two carrys of weight 2"+ and one carry of
weight 2%, then (27+! + 2"+ 4 9%) mod €' = 5. 9™ mod
C=5 K mod C = Ks.

Equation (3) contains two modulo reduction steps and can
be written by introducing a new partial product term T;, as

I) ’I.‘l? 321);‘._.11110(10'

i) Pi=(I;+ bp_1A)mod C. (8)
But step ii) cannot be implemented by the CSA scheme
because it has four operands to be added. (Note that the modulo
operation implies at least one extra addition of K.) This can
be solved by dividing step ii) into two steps as

i) T: = 2.{)3'_1 mod C
ii-a) TT=Ti+b, 1 A 9
ii-b) Fi= T modC.

Petitioner Microsoft Corporation - Ex. 1066, p. 549

JEONG AND BURLESON: VLSl ARRAY ALGORITHMS AND ARCHITECTURE

In step i), 2P;_; implies one 2" term (c*7!) and two 2»
terms (s?_‘f and c?’_*lz), which can generate a maximum of
4-2™1 In step ii-a), we do not perform the modulo operation
because there are already three operands: two from T: in carry
save form, and one for A depending on b,._;. Instead we want
to pass through the MSB carry of 7} to step ii-b). So, in step
ii-b), we will have at most 2 . 2 (one passed from T: and
another newly generated in 77) as end-around carrys. In both
the steps i) and ii-b), only one additional operand is allowed.
That is why we precalculate the K),’s instead of adding K
multiple times.

To explain the algorithm more formally, we define o(F;)
as follows;

a(BYE P — b 24 K,
where

h= f(z1, z2, 23, -+, z) (10)

and the function f(-) calculates the total magnitude of end-
around carrys, and %y, 23, -+, &, are bit variables (always
carrys and sums of the MSB position) which contribute to the
translation of (1). Thus

f(mlv Iy, "'am‘r):z QRTp (11)

k=1

where @ = 1 if @) has weight 2*, ap = 2 if the weight is
2" ay = 4 if the weight is 272, and so on. In other words,

o(F;) replaces h - 2" with K, which is precalculated.
Using (10), we can rewrite algorithm (9) as follows:
i) T; = o(2F;_4)
ii-a) T'=Ti+b, 1A
ii-h) B = o(T¥).

(12)

As we can see in Fig. 1, the function f(-) of the above
algorithm is
forstepi) f()= 2‘3?__11 + ""::1:11 + "-':?:12
for step ii-b) f(-) =47~ 442"t
where 471, 47"~ are the MSB carrys of 7 and T, respec-
tively (both have the weight 27).

Now we will informally verify that the algorithm (12)
satisfies the valid range of (6) for all P;'s G=0,1,- .-, 7).
Obviously 0 < Py < 3.2"—3. Suppose 0 < P;_; < 3.2"—3,
then

0<2P;_,
<6-2"—6
0<0(2F;_1)
<6-2"—-6-—-4.2"4 2"

=3:-2" -6
0<T?
<4-2" -6
I'Subscript is for an iteration stage and superscript is for denoling bit
positions, that s, S; = YU 5] - 2. Also note that lower case lettors

are used for bit-level variables while upper ease is for word-level variables.

213

Fig. I. An iteration stage of modular multiplication using the CSA scheme.

0 <o(T})
<4.2"—-6-2.2" 49"
<3:2" -3

which assures 0 < P; < 3-2" — 3. Therefore the algorithm
(12) produces a final output P, which is less than 3 - 27 — 3.
It can be directly fed into the next multiplication stage for
further iteration if necessary (e.g., exponentiation).

Fig. 2(a) shows a single stage of the dependence graph
(DG) which can be directly implemented as a parallel array
multiplier. Fig. 2(b) describes the node functions. The nodes
X1, X3 are control nodes which calculate the control value /
of (10), and hence need simple encoders. The node Xy isjusta
wire. Node type A is a FA with a 4-1 multiplexor and an AND
gate. Node type B is just a FA with an AND gate and node
type C is a FA with a 2-1 multiplexor and an AND gate. Note
that node type B does not need a multiplexor and type C needs
only K and K’ because the max value of is two in node X3.
An AND gate is needed in type A and C to accept Ky =0
when the control value h is zero. There exists a systolic
schedule which is not linear due to its skewed connection
between the stages. Table I shows an example for our new
bit-level modular multiplication algorithm using n = 12,
with A = 010001000100(= 1092), B = 010011001101(=
1229), and C = 100000101001 (= 2089). The K’s are
precalculated as K; = K = 011111010111(= 2007),
Ky = 011110000101(= 1925), K; = 011100110011(=
1843), K4 = 011011100001(= 1761). The final output is

Fn =2(001100010101) + (110111001010)
=1001111110100
(=5108)

which equals 930 after modulo reduction to 2089.

By merging two nodes into one in each row as has been done
in [5], one can modify the DG in Fig. 2 to derive a simpler
DG. This is shown in Fig. 3. Node types AA, BB, CC are
newly merged nodes which have two A, B, C type nodes,
respectively. It now allows a linear systolic schedule and
shows a better overview of the hardware array implementation.
If the wordlength n is an even number, then all nodes except
the control nodes will be merged nodes. Here we have the
original nodes A, B, C in the LSB place because 7 is odd. From

Petitioner Microsoft Corporation - Ex. 1066, p. 550

214

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997

L

cl 5

& ¢

(J%u bq{’?{"bu
bo=b

to=2%1+5+c2) I

FOTTOTTTO

(*) * is an algebraic MULT and + is an algebraic ADD,

ki[1:4

bi o
co
ko[1:4] ao ko[L:4] ap
50 50
to = ti bo = bi to=ti
20 = ai a0 = ai a0 = ai

ko[1:4] = ki[1:4]
(co,50) = FA(si, ci, kifti])

(*) ki{0]=0 and & is boolean AND, >

ko[1:4] = ki[1:4]
(co,s0) = FA(si, ci, ai&bi)

ko[1:4] = ki[1:4]
(c0,50) = FA(si, ci, ki[ti])

(b)

Fig. 2. Array structure for modular multiplication using CSA scheme (n
PE node descriplion.

Figs. 2 or 3, we can obtain many different one-dimensional
arrays (e.g., bit-serial modulo multiplier) depending on the
mapping functions [7].

In our array, the control is generated in a single left-most
node which has just four gates (two XOR, one AND, one
NOR gate) or two gates (one XOR and one NOR gate). The
simplicity of the control nodes gives a much faster clock cycle
for the entire array. Thus, it is not the control node but the
processing node which determines the clock cycle. Note that
all signals in Fig. 2 except the carry (c,) and sum (s,) are
transmittent signals, which means they are not modified while
passing through the array, thus allowing for broadcasting.

Compared to [S], the dependency structure looks the same
except for the control nodes due to the basic CSA scheme.
However, the main difference is in the function of the control
nodes. In [5], the control node (denoted as X°, LUS, LYY)
is made by merging five or six identical processing nodes
and each one (X, L, ¥, U) is fairly complex (roughly three

= T): (a) ith stage of DG for modular multiplication (n = 7) and (b)

XOR’s and more than five AND or OR gates). Therefore,
the resulting control nodes become five or six times larger,
and this is the critical reason for the slow clock cycle time.
It is also worthwhile to compare with 4] which claims to
be the fastest structure. Our array gives a faster clock cycle
(two XOR with one MUX versus five XOR) although it has
a longer latency. There is also no restriction on choosing the
modulus, thus allowing more general application. Furthermore,
we do not need a post processing step because we keep the
correct value in all iteration stages. Both methods require a
precalculation.

B. Using a Modified CSA Scheme

Now we derive a far simpler array structure from the
algorithm (3) by slightly modifying the basic element of the
CSA scheme. To directly apply the CSA structure to the
modular multiplication algorithm, we have to modify the basic
element so that it can accept an additional operand which

Petitioner Microsoft Corporation - Ex. 1066, p. 551

JEONG AND BURLESON: VLSI ARRAY ALGORITHMS AND ARCHITECTURE

TABLE 1
EXAMPLE SHOWING CoMPLETE FUNCTION OF Fie. 2 (VM =12)
stage (carry,sum) i(.) [bu—

0 Py | 00 00 00 00 00 00 00 00 00 00 00 00 - -

I T, | 00 00 00 00 00 00 060 00 00 00 00 00 | f(.)=0
I3 | 00 00 00 00 00 00 00 00 00 00 00 0O]
P; | 00 00 00 00 DO 00 00 00 00 00 00 00 {{.}:0

2 T | 00 00 00 00 00 00 00 00 00 00 00 00 f(.)=0
7 | 00010000 010100000101 0001 1
P, | 0001 00 00 01 01 00 00 01 01 00 01 | £(.)=0

3 T3 | 0100000101 000001010001 00 f(.)=0
T3 | 01000001 01000001 0100 01 00 0
Ps | 01000001 01 00 00 01 01 00 01 00 | {.)=0

4 T, | 000110 10 01 01 01 10 00 10 01 01 | &.)=1
T; | 0010 01 00 01 01 10 00 01 00 01 01 0
Py | 01 000100011000 0001000101 f(.)=0

5 Ty | 001001 11 010100 10 00 10 10 01 f[.}:l
T; | 010010010101010001010001 1
P; | 01010001 0101010001010001 |{(.)=0

[} Ts | 01011010 10 10 00 10 01 01 10 01 | £(.)=1
Tg [011101011001010010110010 1
Fs | 1001 01 10 00 01 01 01 01 01 01 00 f(.)=0

T T7 | 011101011001 010101100001 | f{.)=2
Ty | 1001 01 10 00 01 01 01 10 00 00 01 0
Py | 0010 11 01 01 10 01 11 00 01 01 10 | f{.)=1

B Ts | 01101011 0111010101110101 f(.)=1
Ty | 1001 01 01 10 01 01 01 10 01 01 01 0
Py | 001010 11 01 1001 11 00 10 10 10 f[.}:l

9 [Tp | 01101011011101 1001100101 | 4(.)=1
Ty | 10010101 100110 00 1000 01 01 1
Py | 001010 11 01 11 00 10 00 01 10 10 | £{.)=1

10 Tio | 011010 11 10 10 00 01 10 10 01 01 i(.)=1
Tyo | 10 10 01 10 10 01 00 10 10 01 01 10 1
Pyg | 0101 1110 01 10 01 10 00 10 11 01 | £(.)=1

11 Tyy | 10 11 01 11 01 11 00 10 01 10 10 01 f(.)=1
Tty | 010110 01 10 01 01 00 10 01 00 01 0
Py | 011101110130011000100110 | £(.)=1

12 | Ty, [011110 1101 10 00 01 00 11 00 01 | f(.)=2
Ty, | 10 10 01 01 10 00 00 01 01 01 00 01 1
Pz | 01011011 01 01 00 10 01 10 01 10 | f{.)=1

scheduling hyperplane

Fig. 3. Regularized DG of Fig. 2 by node merging.

arises from end-around carry terms in the MSB nodes. Now
we extend the (3,2) counter to generate a more general adder,
which we call a partially generalized counter (PGC), as shown

215
ki ab si cilei2
si o G gl
(3,2) counter
ki xi [
p
(3,2) counter
co
50 peer =) LR 1§
2{{-‘ T SO B
p*ki + m*ci + si + xi = Zm¥co + 50 col co2 so
(a) B ()]

Fig. 4. A partially generalized counter (PGC) and a new adder logic: (a) a
PGC element and (b) an adder derived from (a) with m — 2, p=1.

in Fig. 4. In Fig. 4(a), s;, c; are a partial sum and a carry of
the previous stage. Note that the carry signal is not a single
bit, but m-bits. The variable z; is a regular operand which
appears in a typical array integer multiplication as a;&bi(&
is logical AND). An extra operand k; is introduced with a
p-bit signal for handling the end-around carry terms. So, the
arithmetic operation of PGC can be described by

2m'Cu+So=S£+m'Ci+Ei+p'ki (13)

where *“”" and “+* are algebraic multiplication and addition.
If m = 1, the only possible value of p is zero, which makes it
a typical FA. Therefore, we see that the m should be at least
two to accept an additional operand resulting from end-around
carrys. Furthermore, if m = 2 the only possible valye of p is
one, which results in five inputs and three outputs. This can
be easily implemented using two FA’s as shown in Fig. 4(b).
We can also derive different adders by choosing different P
and m. However, we want to minimize the number of signal
lines to reduce the complexity of the node function.

To apply the newly derived adder in the CSA structure, we
need a different CSA form (two carry terms) to express F;.
Lef us denote

F; = 2(Cih + Ci2) + Si, (14)

then, the valid range of P;is 0 < P; < 5.92™ 5. Following
the same procedure as the CSA scheme, let us say, C;; =
—ir— | ¥ . =1 F ' 1= | P

2jen th2 Ci = iy ey, 8 = T2} 5127, Then,
the contral generating function f(-) is

(0<i<n)

F0) = 20ef T+ i) (I CRE +e7 2 ,). (15)

Note that we need seven complement integers,
Ky, Ky, ---, K7. Fig. 5 shows an array structure for
the modified CSA scheme with node functions. The node
type D is a serial connection of two full adders with an
8-1 multiplexor. For the example shown in the previous
section, additional A's should be precalculated as K5 =
011011100001(= 1679), Kg = 011011100001 (= 1597),
K7 = 011011100001(= 1515).

The range of the final output P, can be further reduced
using two more basic CSA stages as shown in Fig. 6. The
first extra CSA stage adds up to sequences of carrys and a

Petitioner Microsoft Corporation - Ex. 1066, p. 552

216 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NQ, 2, JUNE 947

ki[L:7), 8 s cil

S <z
= % ti — 2 to
bi bo bi bo

col /
coZ

bo = bi

to=1i

6o = gi

ko[1:7] = ki[1:T]

(col,c02,50) = Adder(eil,ci2,sial&bi kilti])

(b)

Fig. 5. Armay structure for modular multiplication using modified CSA
scheme: (a) DG for modular multiplication using CSA scheme (7 — 4) and
(b) PE descriptions.

50 ko[1;7), ao
bo=bi
t0=2%1+ 2%2 + 5§ + ¢il + ci2

P, [0,5%2%n - 5)

Fig. 6. Exira stages to reduce the range from 5-2" — 5,327 — 3.

sum of P,except for the MSB carrys. The MSB carrys of
Py, are compensated for in the second extra CSA stage. The
range 5 - 2" — 5 of P, is reduced to 3- 2" — 3 by replacing
maximum 3 - 2" with K,(K, < 2"). At the second CSA
stage of Fig. 6, a 4-1 multiplexor is needed instead of an 8-1
multiplexor.

By running SIS [11], a multilevel logic minimization tool,
with arbitrary encoding, the control note ¥; had eight OR gates
(including one, three-input OR), nine AND gates (including
two, three-input AND), and three inverters, and the combi-
national logic depth was 12. This is reasonably close to the
fanction of node D (2-bit FA with a multiplexor)? in both area
and speed. Here again note that all signals are transmittent
except carrys and a sum.

1II. CONCLUSION AND DISCUSSION

We have shown two new array structures for modular
multiplication. Both use the basic CSA structure with some

2We used the common mapping to two-input OR gales to measure the logic
depth, hence the 2-bit FA has logic depth 9.

TABLE 1l
SUMMARY For Logic oF PE NoDES I TWo ARRAY STRUCTURES
arrey ! (Fig.2)
X1 X3 A B [0
(5,3)encoder | (3,2)encoder | (4:1) mux FA | (2:1) mux
FA AND gate FA
AND gate AND gate
array 2 (Fig.5 and Fig.6)
Y1 Y2 D E B
(8,3) encoder | (4,2) encoder | (8:1) mux FA (4:1) mux
2 FAs Fa
AND gate

modification and do not need any number translation. The
complement and its multiples need be updated only when
the modulus changes. In RSA applications, the key does
not change very often therefore this preprocessing step is
acceptable, The details of each processing node in the two
array structures are summarized in Table II. The first array
needs processing nodes of n(X;+ Xz) 4n%A + B +),
and the second needs (n — 1)Y1+ Yz +n®D + n(E + F). In
each iteration stage, the second array has a smaller number of
FA’s but the first one has simpler encoders and a multiplexor
which lead to a faster clock cycle. Both have a systolic
schedule which means they can be fully bit-wise systolized
for maximum throughput.

Our approach has advantages over other previous array
structures, First, it is more general and has no restrictions in
choosing the modulus, hence can be used in any application
in which a larger number of computations are required for a
relatively long-lasting modulus (RSA, key-exchange, special
purpose DSP chip). Second, the algorithm and architecture
is simple to understand and verify, hence is easy to modify
for a hardware implementation, and does not use any special
technique like sign estimation which may imply a significant
degree of hardware and verification complexity. We could
obtain a faster clock cycle by reducing the complexity of the
control nodes in both area and speed. From an algorithmic
point of view, the concerns put forward in most previous
papers on deciding multiples of the modulus have been elim-
inated by multiplexing precalculated complement numbers.
We have verified our array structures first by C programming
and then by implementing two prototype VLSI designs which
were verified for function and timing using logic and circuit
simulation.

Finally, the RSA algorithm requires more than 500 bits
for security reasons, which may make the array multiplier
too large (~15 million gates including pipeline stages). To
maintain high performance for larger bit-lengths, we need to
map the original array onto smaller processor arrays in order
to build large “virtual” modular multipliers on fixed sized
arrays, called partitioning |7]. The regularity of our algorithm
makes it easy to find an appropriate partitioning strategy.
Because the control nodes which generate the multiplexor
control signals are located in the MSB in each iteration,
the LPGS (locally parallel, globally sequential [7]) scheme
is an appropriate choice, needing some extra buffers outside
the processor array (o contain intermediate data for each
block.

Petitioner Microsoft Corporation - Ex. 1066, p. 553

JEONG AND BURLESON: VLSI ARRAY ALGORITHMS AND ARCHITECTURE

ACKNOWLEDGMENT

The authors would like to acknowledge the work of the
referees whose reviews and comments were very meticulous
and insightful,

REFERENCES

{11 E.B. Brickell, "A fast modular multiplication algorithm with application
to two key cryptography,” in Advances in Crypiology, Proceedings of
Crypio 82. New York: Plenum, 1982, pp. 51-60.

[2] G.R. Blakley, “A compuler alrogithm for the product AB modulo M,”
IEEE Trans. Comput.,vol. 32, pp. 497-500, 1983.

[3] W. Diffie and M, E. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, val, 1T-22, pp. 644654, Nov. 1976,

[4] S. E. Eldridge and D. Walter, “Hardware implementation of Mont-
gomery’s modular multiplication algorithm,” IEEE Trans. Comput., vol,
42, pp. 693-699, June 1993.

[5] C. K. Koc and C. Y. Hung, “Bi-level systolic arrays for modular
multiplication,” J. VLSI Sig. Proc., vol. 3, pp. 215-223, 1991,

(6] L. Koren, Computer Arithmetic Algorithms, Englewood Cliffs, NJ:
Prentice-Hall, 1993,

[71 8. Y. Kung, VLSI Array Pracessors,
Hall, 1988,

[8] X, Lai and J. L. Massey, “A proposal for a new block encryplion
standard,” in EUROCRYPT '90,Aarhus, Denmark, May 1990.

[91 P. L. Montgomery, “Modular multiplication without trial division,”

Math. Comp., vol. 44, pp. 519-521, 1985.

R. L. Rivest, A. Shamir, and L. Adelman, “A method for obtaining

digital signatures and public-key cryptosystems,” Commun. ACM, vol.

21, pp. 120-126, Feb. 1978.

E. M. Sentovich, K. I, Singh, C. Moon, H. Savoy, and R. K. Brayton,

“Sequential circuit design using synthesis and optimization,” in Proc.

ICCD, 1992,

[12] N. Takagi, “A radix-4 modular mulliplication hardware algorithm for
modular exponentiation,” IEEE Trans. Comput., vol. 41, pp. 949-956,
Aug. 1992,

[13] F. J. Taylor, “Residuc arithmetic: A tutorial with examples,” JEEE

Comput. Mag., vol. 17, pp. 50-62, May 1984,

A, Vandemeulebroecke ef al., “A new carry-free division algorithm

and its application to a single chip 1024-b RSA processor,” [EEE I,

Solid-State Circuits, vol. 25, pp. 748-755, June 1990.

C. D. Walter, “Systolic modular multiplication,” JEEE Trans. Comput.,

vol. 42, npp. 376-378, Mar. 1993,

(16] R. Zimmermann et al., “A 177 Mb/s VLSI implementation of Interna-
tional data encryption algorithm,” [EEE J. Solid-State Circuits, vol. 29,
pp. 303-307, Mar. 1994,

Englewood Cliffs, NJ: Prentice-

[10]

(1]

[14]

1151

217

Yong-Jin Jeong (M’96) received the B.S. degree
in control and instrumentation engineering from
the Seoul Mational University, Sepul, Korea, in
1983, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Massachuselts, Amherst, MA, in 1995.

He is now working for Samsung Electronic Co.,
Seoul, Korea, in the area of communication chipset
design. From 1983 to 1989, he was a Member of
the Research Staff at the Electronics and Telecom-
munications Research Institute (ETRI) in Daejun,
Korea. He has also worked for the Swedish telecommunication company,
LM Ericsson, Stockholm, Sweden, as a Training and Design Engineer. His
research interests include compuler arithmetic, parallel algorithm, and array
synthesis, VLSI testing, logic synthesis, and wireless communication systems.

Wayne P. Burleson (M'89) received the B.S.EE.
and M.S.E.E. degrees from the Massachusetts In-
stitute of Technology (M.LT.), Cambridge, in 1983
and the Ph.D. degree in VLSI signal processing from
the University of Colorado, Baulder, in 1989,

He has been exploring the area of VLSI signal
processing for 13 years. His work has included re-
search, development, teaching, and industrial work
at a variety of levels, including development of al-
gorithms, archilectures, circuits, and computer-aided
design (CAD) tools. He is currently an Assistant
Professor of Electrical and Computer Engineering at the University of
Massachusetts, Amherst. For four years, he worked as a custom DSP chip
designer for VLSI Technology Inc., and Fairchild Semiconductor. He is
currently being funded by the NSF, exploring advanced timing schemes
for CMOS systems including circuit and system design, clocking methods,
and verification techniques which are all being developed to meet the
needs of modemn highly pipelined architectures with tight latency require-
ments, He is also currently developing a CAD system for VLSI arrays with
applications in digital signal processing (DSP) and communications. The
ARRay ESTimator (ARREST) system allows a broad range of algorithm and
architecture exploration, interface with simulation and estimation lools, and
finally output to VERILOG for backend synthesis. In & more applied area, he
is currently collaborating with the University of Massachusetts’ researchers
in real-time systems, compuler vision and robotics, and the development and
implementation of special-purpose coprocessors in advanced technologies.

Dr. Burleson is a member of the ACM and Sigma Xi.

Petitioner Microsoft Corporation - Ex. 1066, p. 554

Attachment 6B

Petitioner Microsoft Corporation - Ex. 1066, p. 555

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997 211

VLSI Array Algorithms and Architectures
for RSA Modular Multiplication

Yong-Jin Jeong, Member, IEEE, and Wayne P. Burleson, Member, IEEE

Abstract—We present two novel iterative algorithms and their
array structures for integer modular multiplication. The algo-
rithms are designed for Rivest-Shamir—Adelman (RSA) cryp-
tography and are based on the familiar iterative Horner’s rule,
but use precalculated complements of the modulus. The prob-
lem of deciding which multiples of the modulus to subtract in
intermediate iteration stages has been simplified using simple
look-up of precalculated complement numbers, thus allowing a
finer-grain pipeline. Both algorithms use a carry save adder
scheme with modulo reduction performed on each intermediate
partial product which results in an output in carry-save format.
Regularity and local connections make both algorithms suitable
for high-performance array implementation in FPGA’s or deep
submicron VLSI. The processing nodes consist of just one or two
full adders and a simple multiplexor. The stored complement
numbers need to be precalculated only when the modulus is
changed, thus not affecting the performance of the main computa-
tion. In both cases, there exists a bit-level systolic schedule, which
means the array can be fully pipelined for high performance and
can also easily be mapped to linear arrays for various space/time
tradeoffs.

Index Terms— Cryptography, modular multiplication, RSA,
systolic arrays, VLSIL.

1. INTRODUCTION

RYPTOGRAPHY systems have been growing in impor-

tance recently as a method for improving data security.
Public key cryptography (PKC) systems are generally pre-
ferred to traditional secret key cryptography systems like the
data encryption standard due to the safety of key distribution
[3]. The Rivest—-Shamir—Adelman (RSA) [10] system is one
of the most widely used public key cryptography systems, and
its core arithmetic is modular multiplication over a positive
integer. Modular multiplication is also a major computation of
residue number systems [13] as well as other cryptography
systems (e.g., international data encryption algorithm [8],
[16], Diffie-Hellman key exchange [3]). In this paper, we
develop an array modular multiplier with applications to, but
not restricted to, RSA systems.

In RSA, the modulus is a product of two large prime
numbers, usually more than 500 bits, and should be changeable
for security reasons. But, since the modulus (or key) is not
changed very often, we can use precomputation and look-up
in our array modular multipliers. We are not aware of anyone

Manuscript received November 21, 1994; revised January 26, 1996. This
work was supported in part by NSF Grant MIP-9108086.

Y. Jeong is with Samsung Electronics, Co., Seoul, Korea.

W. Burleson is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Amherst, MA 01003 USA.

Publisher Item Identifier S 1063-8210(97)01953-7.

who has utilized this special property of multirate input data in
the RSA algorithm, that is, the input message changes rapidly
while the key remains unchanged for a long period. In practice,
the key is updated infrequently, for example, a few months,
weeks, or days, depending on the security requirements. In
order to satisfy the ever growing security requirements of
high-speed communications, such as personal communication
services and wireless local area networks, a dedicated VLSI
hardware solution is needed because of 1) high throughput
requirements, 2) low-power requirements, 3) a high-volume
market, 4) the computation is poorly suited to microprocessors
or DSP’s, and 5) the problem size is expected to continue to
grow rather than saturate.

Modular multiplication is generally considered a compli-
cated arithmetic operation because of the inherent multiplica-
tion and division operations. There are two main approaches
to computing modular multiplication: 1) perform the modulo
operation after multiplication or 2) during multiplication. The
modulo operation is accomplished by integer division in which
only the remainder is needed for further computation. The first
approach requires a n X n bit multiplier with a 2n-bit register
followed by a 2n x n bit divider. In the second approach,
the modulo operation occurs in each iteration step of integer
multiplication. Therefore the first approach requires more
hardware while the second requires more addition/subtraction
computations due to O(n) modulo reduction steps. In both
cases, most previous research has focused on the fast cal-
culation of a long carry chain. Redundant number systems
and a higher radix carry-save form are some of the different
number representations that have been used for this purpose
[12], [14]. A carry prediction technique has also been used for
fast calculation of modular multiplication [1].

Since PKC was introduced, many algorithms and hardware
structures have been proposed for modular multiplication,
and [4] contains a good review on this topic. Several array
structures suited for VLSI implementation have been discussed
in [4], [5], [14], and [15]. In [14], Vandemeulebroccke et al.,
use a modulo after multiplication approach using a signed
digit number representation. It consists of two arrays: one
for multiplication and the other for integer division. In [5],
Koc and Hung apply Blakley’s algorithm [2] and use a sign-
estimation method by looking at the five most significant bits
in each iteration stage. Although they derive a bit-level systolic
array structure, the latency and clock cycle are relatively
long due to the control node which estimates the sign of the
intermediate result in each stage. In [4] and [15], Eldridge and
Walter use Montgomery’s algorithm [9] which only works if

1063-8210/97$10.00 © 1997 IEEE

Petitioner Microsoft Corporation - Ex. 1066, p. 556

212 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997

the modulus is relatively prime to the radix, although this is
always the case in RSA.

In this paper, we develop two new VLSI array archi-
tectures for modular multiplication. The idea is similar to
Montgomery’s algorithm in which he tries to make each partial
product a multiple of the radix to simplify the multiplication
by the radix (just by shifting) by only looking at the least
significant bits (LSB), thus requiring a post-processing step to
get the final answer. In our algorithms, we look at the most
significant bits (MSB) to remove higher bit positions while
keeping the correct answer in each partial product, keeping it
within a certain range. Due to the simple translation of a mod-
ulo operation into an addition of a precalculated complement
of the modulus, the modulo during multiplication approach is
used with a carry-save adder structure. Instead we pay for
multiplexors to choose the precalculated integer depending
on the control which is generated in the leftmost node in
each stage. Compared to previous works, we can obtain a
higher clock frequency mainly due to the simplified modulo
reduction operation. In Section II, we will explain our basic
concept for the modulo reduction operation and then describe
the two iterative algorithms. Array structures corresponding
to these algorithms, analysis, and some modifications are also
discussed in this section. Conclusions and discussion are in
Section III.

II. MODULAR MULTIPLICATION ALGORITHM

In a modular multiplication, the n-bit modulus C is repre-
sented by a binary number system as C' = Z;:Ol ;2" where
¢; € GF(2). Obviously C is less than 2. We introduce K,

which is called the complement of the modulus C, such that
K =2" mod C. €))

In other words, any carry of weight 2" can be replaced by an
addition of K, which means that the end-around carry implies
an extra addition. If K does not change frequently, we can
precalculate multiples of K and store them in registers for use
in the modulo reduction operation. Note that if the MSB of
Cis 1, K is equivalent to —C' in a 2’s complement number
system.

Now we describe the general modular multiplication algo-
rithm using the modulo during multiplication approach. Given
any two n-bit integers, A and B, and the n-bit modulus
C, where (C > A, B), the modular multiplication can be
described by an iterative procedure using Horner’s rule

n—1
ABmodC =A-) b2 modC
=0
= ((.- (bn_lA)Q + bn_QA)2

+-- -+ 0 A)2+ bpA)mod C.)
We can describe (2) in a recursive form as follows:
Fy=0
P, =2P,_1+b,_1AmodC 3)

and P, is the final result. Using (1) and (3), we will derive
two different bit-level array structures.

A. Using the CSA Scheme

The carry save addition (CSA) scheme is the most com-
monly used technique in integer multiplication to reduce the
carry propagation penalty [6]. In the CSA scheme, a partial
sum and a carry sequence are generated in the intermediate
stages and the carry propagation occurs only at the last stage.
The basic element of the CSA scheme is a full adder (FA)
which is often called a (3, 2) counter. It accepts three inputs,
referred to here as s;, ¢;, #; with (associated weight 2%), and
produces two outputs, carry c, (with weight 2¢*1) and sum s,
(with weight 2¢). The arithmetic operation of the (3, 2) counter
can thus be described by the familiar expression:

2¢, + 5, =8, +c; +x; 4)

where “+” means an algebraic (not Boolean) addition.

Using the CSA scheme, we have a carry of weight 2" in
the leftmost node in each stage. As shown in (1), this carry
can be replaced by the addition of the integer K for a modulo
operation. The basic idea in our approach is that we handle
the carries of weight 2™ and higher by using K wherever they
appear, unless the basic CSA structure is broken. From (3),
let us denote a partial product P; as

P=2C+S (0<i<n) ©)
then, the valid range of P; is
0< P <3.2" -3, (6)

This means we allow F; to be greater than modulus C at
intermediate stages.

Before we begin the derivation of a recursive equation for
modulo multiplication, we define a new variable £, to handle
multiple end-around carrys

def

K,=h -KmodC (7N

where h is a positive integer (1, 2, ---) and K is defined in
(1). Then

2"t modC =2/ - KmodC.

Carrys can also appear in a combined mode. As an example,
suppose we have two carrys of weight 2"+1 and one carry of
weight 27, then (2% + 27*! 4 2") mod C' = 5 - 2" mod
C=5-KmodC = Kj;.

Equation (3) contains two modulo reduction steps and can
be written by introducing a new partial product term 77, as

i) T, =2F_imodC

iy P =(T, +by_1A)mod C. (8)

But step ii) cannot be implemented by the CSA scheme
because it has four operands to be added. (Note that the modulo
operation implies at least one extra addition of K.) This can
be solved by dividing step ii) into two steps as

i) T, = 2P,_; modC
CTZ‘* = E + bn—l A
P, =T modC.

ii-a)
ii-b)

)

Petitioner Microsoft Corporation - Ex. 1066, p. 557

JEONG AND BURLESON: VLSI ARRAY ALGORITHMS AND ARCHITECTURE

In step i), 2P;_; implies one 2"*! term (c?__ll) and two 2"
terms (s7 and ¢} %), which can generate a maximum of
4.2" 1 In step ii-a), we do not perform the modulo operation
because there are already three operands: two from 7 in carry
save form, and one for A depending on b,,_;. Instead we want
to pass through the MSB carry of 7; to step ii-b). So, in step
ii-b), we will have at most 2 - 2" (one passed from 7; and
another newly generated in 77*) as end-around carrys. In both
the steps 1) and ii-b), only one additional operand is allowed.
That is why we precalculate the K}’s instead of adding K
multiple times.

To explain the algorithm more formally, we define o(F;)
as follows:

o(PYE P, —h 2"+ K),

where

(10)

and the function f(-) calculates the total magnitude of end-
around carrys, and z1, x2, ---, z, are bit variables (always
carrys and sums of the MSB position) which contribute to the
translation of (1). Thus

h = f(xlv T2, T3, "+, xT)

f(z1, 22, ---,xr)zz aRT (11)
k=1

where o, = 1 if x;, has weight 27, o, = 2 if the weight is
27+l = 4 if the weight is 2”2, and so on. In other words,
o(P;) replaces h - 2™ with K}, which is precalculated.
Using (10), we can rewrite algorithm (9) as follows:
1) ,Tz = 0'(2Pi_1)
ii-a) =T +b,—1 A
ii-b) P, = o(T7).

(12)

As we can see in Fig. 1, the function f(-) of the above
algorithm is

for step i) f() = 26?__11 + 3?__11 + C?—_12

FOy=a ™ 4

where fy;”—l,fy;f "~L are the MSB carrys of 7; and 17, respec-
tively (both have the weight 2™).

Now we will informally verify that the algorithm (12)
satisfies the valid range of (6) for all P;’s (1 =0, 1, ---, n).
Obviously 0 < Py < 3-2" —3. Suppose 0 < P;_1 < 3-2" =3,
then

for step ii-b)

0<2P 4
<6-2" -6
0<a(2F_1)
<6-2"—-6—-4.2" 27
—3.9" _6
0<1;
<4.2" -6

I'Subscript is for an iteration stage and superscript is for denoting bit
positions, that is, S; = ET-‘;OI sf - 27, Also note that lower case letters
are used for bit-level variables while upper case is for word-level variables.

213

e

|—> FA
I

—

Fig. 1. An iteration stage of modular multiplication using the CSA scheme.
0 <o(T})
<4-2"—6-2-2" 42"
<3-2" =3

which assures 0 < P; < 3 2™ — 3. Therefore the algorithm
(12) produces a final output P, which is less than 3 - 2™ — 3.
It can be directly fed into the next multiplication stage for
further iteration if necessary (e.g., exponentiation).

Fig. 2(a) shows a single stage of the dependence graph
(DG) which can be directly implemented as a parallel array
multiplier. Fig. 2(b) describes the node functions. The nodes
X1, X3 are control nodes which calculate the control value h
of (10), and hence need simple encoders. The node X5 is just a
wire. Node type A is a FA with a 4-1 multiplexor and an AND
gate. Node type B is just a FA with an AND gate and node
type C is a FA with a 2-1 multiplexor and an AND gate. Note
that node type B does not need a multiplexor and type C needs
only K7 and K because the max value of / is two in node Xs.
An AND gate is needed in type A and C to accept Kg = 0
when the control value h is zero. There exists a systolic
schedule which is not linear due to its skewed connection
between the stages. Table I shows an example for our new
bit-level modular multiplication algorithm using n = 12,
with A = 010001000100(= 1092), B = 010011001101(=
1229), and C = 100000101001(= 2089). The K}’s are
precalculated as K7 = K = 011111010111(= 2007),
K, = 011110000101(= 1925), K53 = 011100110011(=
1843), K4 = 011011100001(= 1761). The final output is

P, =2(001100010101) + (110111001010)
=1001111110100
(=5108)

which equals 930 after modulo reduction to 2089.

By merging two nodes into one in each row as has been done
in [5], one can modify the DG in Fig. 2 to derive a simpler
DG. This is shown in Fig. 3. Node types AA, BB, CC are
newly merged nodes which have two A, B, C type nodes,
respectively. It now allows a linear systolic schedule and
shows a better overview of the hardware array implementation.
If the wordlength n is an even number, then all nodes except
the control nodes will be merged nodes. Here we have the
original nodes A, B, C in the LSB place because n is odd. From

Petitioner Microsoft Corporation - Ex. 1066, p. 558

214 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997

2

{No¥oSoSeNeYoYeYol

QHQn;Qé?lélol

O (JHAJ
cl S @ ¢
6%0 to
3 2
to=2%l+s+c2 :’g cb to=s+c
(*) * is an algebraic MULT and + is an algebraic ADD.
ko{1:4] ao ko[1:4] ao
S0 S0
to=ti bo = bi to =ti
ao =ai a0 =al . ao = ai
ko[1:4] = ki[1:4] ko[1:4] =ki[l:4] ko[1:4] = ki[1:4]
(co,s0) = FA(si, ci, ki[ti]) (co,50) = FA(si, ci, ai&bi) (c0,50) = FA(si, ci, ki[ti])
(*) ki{0]=0 and & is boolean AND. 2
Fig. 2. Array structure for modular multiplication using CSA scheme (n = 7): (a) ith stage of DG for modular multiplication (» = T7) and (b)

PE node description.

Figs. 2 or 3, we can obtain many different one-dimensional
arrays (e.g., bit-serial modulo multiplier) depending on the
mapping functions [7].

In our array, the control is generated in a single left-most
node which has just four gates (two XOR, one AND, one
NOR gate) or two gates (one XOR and one NOR gate). The
simplicity of the control nodes gives a much faster clock cycle
for the entire array. Thus, it is not the control node but the
processing node which determines the clock cycle. Note that
all signals in Fig. 2 except the carry (¢,) and sum (s,) are
transmittent signals, which means they are not modified while
passing through the array, thus allowing for broadcasting.

Compared to [5], the dependency structure looks the same
except for the control nodes due to the basic CSA scheme.
However, the main difference is in the function of the control
nodes. In [5], the control node (denoted as X°, LU®, LY?)
is made by merging five or six identical processing nodes
and each one (X, L, Y, U) is fairly complex (roughly three

XOR’s and more than five AND or OR gates). Therefore,
the resulting control nodes become five or six times larger,
and this is the critical reason for the slow clock cycle time.
It is also worthwhile to compare with [4] which claims to
be the fastest structure. Our array gives a faster clock cycle
(two XOR with one MUX versus five XOR) although it has
a longer latency. There is also no restriction on choosing the
modulus, thus allowing more general application. Furthermore,
we do not need a post processing step because we keep the
correct value in all iteration stages. Both methods require a
precalculation.

B. Using a Modified CSA Scheme

Now we derive a far simpler array structure from the
algorithm (3) by slightly modifying the basic element of the
CSA scheme. To directly apply the CSA structure to the
modular multiplication algorithm, we have to modify the basic
element so that it can accept an additional operand which

Petitioner Microsoft Corporation - Ex. 1066, p. 559

JEONG AND BURLESON: VLSI ARRAY ALGORITHMS AND ARCHITECTURE

TABLE I
EXAMPLE SHOWING COMPLETE FUNCTION OF FIG. 2 (N = 12)
stage (carry,sum) () | buoi

0 Py | 00 00 00 00 00 00 00 00 00 00 00 00 - -

1 7y | 00 00 00 00 00 00 00 00 00 00 00 00 | f(.)=0
T7 | 00 00 00 00 00 00 00 00 00 00 00 00 0
P; | 00 00 00 00 00 00 00 00 GO 00 00 00 | f{.)=0

2 T, | 00 00 00 00 00 0C 00 00 00 00 00 00 | f(.)=0
T; | 00 010000010100 0001010001 1
P, | 0001 00000101000001010001 |f(.}=0

3 Ts; | 01 0000010100 000101000100 | f(.)=0
77 | 01000001 61 00 00 01 01 00 01 00 0
P; | 01000001 0100000101000100 | f(.)=0

4 T, | 00011010 010101 1000100101 | f(.)=1
T; | 001001000101100001000101 0
Py | 010001000110 000001000101 |f(.)=0

5 Ts | 00 10 01 11 01 01 00 10 00 10 10 01 | f(.)=1
Tr 1 010010010101010001010001 1
P; | 01010001 0101010001010001 | f(.)=0

6 Te | 010110101010 00 10 01 01 1001 ; f(.)=1
Tg 1011101011001010010110010 1
Ps | 10 0101 10 0001 010101010100 | £(.)=0

7 Tr ; 011101011001 010101100001 f(.)=2
T7 | 1001 0110000101 0110000001 0
P; | 00101101 011001110001 0110 | f(.)=1

8 Ts | 011010 110111010101110101] f(.)=1
Tg | 10010101 1001010110010101 0
Ps | 0010 10 11 01 10 01 11 00 10 10 10 | f{(.)=1

9 To | 011010110111011001100101 | 1f(.)=1
T3 1100101011001 100010000101 ’ 1
Py | 00 10 10 11 01 11 00 10 00 01 10 10 | f(.)=1

10 | Ty | 011010 11 10 10 00 01 10 10 01 01 | f{.)=1
Tio | 10 10 01 10 10 01 00 10 10 01 01 10 1
P { 0101111001 1001 1000101101 | £(.)=1

11 | Th; | 10110111 011100 10 01 10 1001 | f(.)=1
77, | 01011001 100101001001 0001 0
P;; | 011101110110011000100110 | £(.)=1

12 Typ | 0111101101 10 00 01 00 11 00 01 | £(.)=2
Ty, | 10 10 01 01 10 00 00 01 01 01 00 01 1
P | 010110110101001001100110 | f(.)=1

B 1

Fig. 3. Regularized DG of Fig. 2 by node merging.

arises from end-around carry terms in the MSB nodes. Now
we extend the (3,2) counter to generate a more general adder,
which we call a partially generalized counter (PGC), as shown

215

ki ab si

cilci2

si . O

ki Adder xi
p

co

(3,2) counter

(3,2) counter

so

col ¢co2 so

(a) (b)

Fig. 4. A partially generalized counter (PGC) and a new adder logic: (a) a
PGC element and (b) an adder derived from (a) with m = 2, p = 1.

p*ki + m*ci + si + xi = 2m*co + so

in Fig. 4. In Fig. 4(a), s;, ¢; are a partial sum and a carry of
the previous stage. Note that the carry signal is not a single
bit, but m-bits. The variable x; is a regular operand which
appears in a typical array integer multiplication as a;&b;(&
is logical AND). An extra operand k; is introduced with a
p-bit signal for handling the end-around carry terms. So, the
arithmetic operation of PGC can be described by

2m-co+so=si+m-ci+xi+p-ki (13)

where “-” and “+” are algebraic multiplication and addition.
If m = 1, the only possible value of p is zero, which makes it
a typical FA. Therefore, we see that the m should be at least
two to accept an additional operand resulting from end-around
carrys. Furthermore, if m = 2 the only possible value of p is
one, which results in five inputs and three outputs. This can
be easily implemented using two FA’s as shown in Fig. 4(b).
We can also derive different adders by choosing different p
and m. However, we want to minimize the number of signal
lines to reduce the complexity of the node function.

To apply the newly derived adder in the CSA structure, we
need a different CSA form (two carry terms) to express F;.
Let us denote

[T3R L

P, =2(Cii +Cin)+ Si, (0<i<n) (14)

then, the valid range of F; is 0 < P, < 5- 2™ — 5. Following
the same procedure as the CSA scheme, let us say, C;; =
Sile ch2l, Cip = X0y b, 8 = Y5 5727, Then,
the control generating function f(-) is

§—

FO) = 2Ty +) H ORI T (19)

Note that we need seven complement integers,
Ky, Ky, ---, K7. Fig.5 shows an array structure for
the modified CSA scheme with node functions. The node
type D is a serial connection of two full adders with an
8-1 multiplexor. For the example shown in the previous
section, additional K7}’s should be precalculated as K; =
011011100001(= 1679), K¢ = 011011100001(= 1597),
K7 = 011011100001(= 1515).

The range of the final output P, can be further reduced
using two more basic CSA stages as shown in Fig. 6. The
first extra CSA stage adds up to sequences of carrys and a

Petitioner Microsoft Corporation - Ex. 1066, p. 560

216 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 2, JUNE 1997

ci2
1
2 3o to
bi bo

bo = bi
to = 2%t1 + 2*t2 + si + cil + ci2

co2 so ko[1:7], ao

bo = bi
to=ti

ao =ai
ko[1:7] = ki[1:7]
(col,c02,s0) = Adder(cil,ci2,si,ai&bi,ki[ti])

(®)

Fig. 5. Array structure for modular multiplication using modified CSA
scheme: (a) DG for modular multiplication using CSA scheme (n = 4) and
(b) PE descriptions.

[0,5%2%n - 5)

[0,3*2”n - 3)

Fig. 6. Extra stages to reduce the range from 5 - 2" — 513 -2" — 3.

sum of P,except for the MSB carrys. The MSB carrys of
P, are compensated for in the second extra CSA stage. The
range 5 - 2" — 5 of P, is reduced to 3 - 2™ — 3 by replacing
maximum 3 - 2" with Kj(K; < 2"). At the second CSA
stage of Fig. 6, a 4-1 multiplexor is needed instead of an 8-1
multiplexor.

By running SIS [11], a multilevel logic minimization tool,
with arbitrary encoding, the control note Y; had eight OR gates
(including one, three-input OR), nine AND gates (including
two, three-input AND), and three inverters, and the combi-
national logic depth was 12. This is reasonably close to the
function of node D (2-bit FA with a multiplexor)? in both area
and speed. Here again note that all signals are transmittent
except carrys and a sum.

III. CONCLUSION AND DISCUSSION

We have shown two new array structures for modular
multiplication. Both use the basic CSA structure with some

2We used the common mapping to two-input OR gates to measure the logic
depth, hence the 2-bit FA has logic depth 9.

TABLE 1I
SUMMARY FOR LOGIC OF PE NODES IN TWO ARRAY STRUCTURES

array 1 (Fig.2)

X1 X3 A B C
(5,3)encoder | (3,2)encoder | (4:1) mux FA (2:1) mux

FA AND gate FA
AND gate AND gate

array 2 (Fig.5 and Fig.6)

Y1 Y2 D] E [F
(8,3) encoder | (4,2) encoder | (8:1) mux | FA (4:1) mux

2 FAs FA

AND gate

modification and do not need any number translation. The
complement and its multiples need be updated only when
the modulus changes. In RSA applications, the key does
not change very often therefore this preprocessing step is
acceptable. The details of each processing node in the two
array structures are summarized in Table II. The first array
needs processing nodes of n(X;+ Xi) +n%(A + B + C),
and the second needs (n — 1)Y;+ Y2 +n?D + n(E + F). In
each iteration stage, the second array has a smaller number of
FA’s but the first one has simpler encoders and a multiplexor
which lead to a faster clock cycle. Both have a systolic
schedule which means they can be fully bit-wise systolized
for maximum throughput.

Our approach has advantages over other previous array
structures. First, it is more general and has no restrictions in
choosing the modulus, hence can be used in any application
in which a larger number of computations are required for a
relatively long-lasting modulus (RSA, key-exchange, special
purpose DSP chip). Second, the algorithm and architecture
is simple to understand and verify, hence is easy to modify
for a hardware implementation, and does not use any special
technique like sign estimation which may imply a significant
degree of hardware and verification complexity. We could
obtain a faster clock cycle by reducing the complexity of the
control nodes in both area and speed. From an algorithmic
point of view, the concerns put forward in most previous
papers on deciding multiples of the modulus have been elim-
inated by multiplexing precalculated complement numbers.
We have verified our array structures first by C programming
and then by implementing two prototype VLSI designs which
were verified for function and timing using logic and circuit
simulation.

Finally, the RSA algorithm requires more than 500 bits
for security reasons, which may make the array multiplier
too large (~15 million gates including pipeline stages). To
maintain high performance for larger bit-lengths, we need to
map the original array onto smaller processor arrays in order
to build large “virtual” modular multipliers on fixed sized
arrays, called partitioning [7]. The regularity of our algorithm
makes it easy to find an appropriate partitioning strategy.
Because the control nodes which generate the multiplexor
control signals are located in the MSB in each iteration,
the LPGS (locally parallel, globally sequential [7]) scheme
is an appropriate choice, needing some extra buffers outside
the processor array to contain intermediate data for each
block.

Petitioner Microsoft Corporation - Ex. 1066, p. 561

JEONG AND BURLESON: VLSI ARRAY ALGORITHMS AND ARCHITECTURE

ACKNOWLEDGMENT

The authors would like to acknowledge the work of the
referees whose reviews and comments were very meticulous
and insightful.

REFERENCES

[1] E.B. Brickell, “A fast modular multiplication algorithm with application
to two key cryptography,” in Advances in Cryptology, Proceedings of
Crypto 82. New York: Plenum, 1982, pp. 51-60.

[2] G. R. Blakley, “A computer alrogithm for the product AB modulo M,”
IEEE Trans. Comput.,vol. 32, pp. 497-500, 1983.

[3] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. IT-22, pp. 644-654, Nov. 1976.

[4] S. E. Eldridge and D. Walter, “Hardware implementation of Mont-
gomery’s modular multiplication algorithm,” IEEE Trans. Comput., vol.
42, pp. 693-699, June 1993.

[5] C. K. Koc and C. Y. Hung, “Bi-level systolic arrays for modular
multiplication,” J. VLSI Sig. Proc., vol. 3, pp. 215-223, 1991.

[6] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[71 S.Y. Kung, VLSI Array Processors.
Hall, 1988.

[8] X. Lai and J. L. Massey, “A proposal for a new block encryption
standard,” in EUROCRYPT ’90,Aarhus, Denmark, May 1990.

[9]1 P. L. Montgomery, “Modular multiplication without trial division,”
Math. Comp., vol. 44, pp. 519-521, 1985.

[10] R. L. Rivest, A. Shamir, and L. Adelman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, vol.
21, pp. 120-126, Feb. 1978.

[11] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoy, and R. K. Brayton,
“Sequential circuit design using synthesis and optimization,” in Proc.
ICCD, 1992.

[12] N. Takagi, “A radix-4 modular multiplication hardware algorithm for
modular exponentiation,” IEEE Trans. Comput., vol. 41, pp. 949-956,
Aug. 1992.

[13] F. J. Taylor, “Residue arithmetic: A tutorial with examples,” IEEE
Comput. Mag., vol. 17, pp. 50-62, May 1984.

[14] A. Vandemeulebroecke et al., “A new carry-free division algorithm
and its application to a single chip 1024-b RSA processor,” IEEE J.
Solid-State Circuits, vol. 25, pp. 748-755, June 1990.

[15] C. D. Walter, “Systolic modular multiplication,” IEEE Trans. Comput.,
vol. 42, npp. 376378, Mar. 1993.

[16] R. Zimmermann et al., “A 177 Mb/s VLSI implementation of Interna-
tional data encryption algorithm,” IEEE J. Solid-State Circuits, vol. 29,
pp. 303-307, Mar. 1994.

Englewood Cliffs, NJ: Prentice-

217

Yong-Jin Jeong (M’96) received the B.S. degree
in control and instrumentation engineering from
the Seoul National University, Seoul, Korea, in
1983, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Massachusetts, Amherst, MA, in 1995.

He is now working for Samsung Electronic Co.,
Seoul, Korea, in the area of communication chipset
design. From 1983 to 1989, he was a Member of
the Research Staff at the Electronics and Telecom-
munications Research Institute (ETRI) in Daejun,
Korea. He has also worked for the Swedish telecommunication company,
LM Ericsson, Stockholm, Sweden, as a Training and Design Engineer. His
research interests include computer arithmetic, parallel algorithm, and array
synthesis, VLSI testing, logic synthesis, and wireless communication systems.

Wayne P. Burleson (M’89) received the B.S.E.E.
and M.S.E.E. degrees from the Massachusetts In-
stitute of Technology (M.L.T.), Cambridge, in 1983
and the Ph.D. degree in VLSI signal processing from
the University of Colorado, Boulder, in 1989.

He has been exploring the area of VLSI signal
processing for 13 years. His work has included re-
search, development, teaching, and industrial work
at a variety of levels, including development of al-
gorithms, architectures, circuits, and computer-aided
design (CAD) tools. He is currently an Assistant
Professor of Electrical and Computer Engineering at the University of
Massachusetts, Amherst. For four years, he worked as a custom DSP chip
designer for VLSI Technology Inc., and Fairchild Semiconductor. He is
currently being funded by the NSF, exploring advanced timing schemes
for CMOS systems including circuit and system design, clocking methods,
and verification techniques which are all being developed to meet the
needs of modern highly pipelined architectures with tight latency require-
ments. He is also currently developing a CAD system for VLSI arrays with
applications in digital signal processing (DSP) and communications. The
ARRay ESTimator (ARREST) system allows a broad range of algorithm and
architecture exploration, interface with simulation and estimation tools, and
finally output to VERILOG for backend synthesis. In a more applied area, he
is currently collaborating with the University of Massachusetts’ researchers
in real-time systems, computer vision and robotics, and the development and
implementation of special-purpose coprocessors in advanced technologies.

Dr. Burleson is a member of the ACM and Sigma Xi.

Petitioner Microsoft Corporation - Ex. 1066, p. 562

Attachment 6C

Petitioner Microsoft Corporation - Ex. 1066, p. 563

8/29/2018 IEEE Transactions on Very Large Scale Integration (VLSI) Systems : a joint publication of the IEEE Circuits and Systems Society, the IEE...

O Worldcat

Search WorldCat

Search|
Advanced Search Find a Library

<< Return to Search Results Cite/Export Print E-mail Share Parmalink

Add io list Add tags Write a review Rate this item: 1 2 3 4 5

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems : a joint -
publication of the IEEE Circuits and Systems Findacopyinthe library
Society, the IEEE Computer Society, the

IEEE Solid-State Circuits Councill.

Author: Institute of Electrical and Electronics Engineers.; |EEE

Circuits and Systems Society.; Institute of Electrical and
Electronics Engineers. Computer Society.; Institute of
Electrical and Electronics Engineers. Solid-State Circuits

Council.
Publisher: New York, N.Y. : IEEE, 1993-.

Edition/Format: Journal, magazine :
English View all editions and formats

Rating: (not yet rated) 0 with reviews - Be the first.

Search this publication for other articles with the fellowing words:

Search |
e
Links to this item
ieeexplore.ieee.org
=
Enter your location: library of congress Find libraries |

Submit a complete postal address for best results.

Displaying libraries 1-6 out of 530 for all 23 editions (101 Independence

Ave SE, Washington, DC 20540, USA) Show libraries holding just this edition or narrow results by format

% First <Prev 1 2 3 Next 5 Last »

Library Held formats Distance
1. Library of Congress & <1 rile Lf_b‘:ﬂ;nlmf_o
; 4 ; Ask a librarian
Washington, DC 20540 United States dournal / Magazine) Newspaper ~ MAPIT P
2, Federal Communications Commission [Journal / Magazine / 1 mile Library info
Washington, DC 20554 United States Newspaper MAP IT Add to favorites
3. NATIONAL TRANS LIBRARY] 1 mile Library.info

Journal / Magazine / Newspaper MAPIT Add to favorites

Washington, DC 20590 United States

https://www.worldcat.org/title/ieee-transactions-o n-very-large-scale-integ ration-vlsi-systems-%ﬁ%wﬁl@%e%@gdﬁ@ﬁ%@mﬁ@yptenﬁg(s.ol; 606, p? 1564

8/29/2018 IEEE Transactions on Very Large Scale Integration (VLSI) Systems : a joint publication of the IEEE Circuits and Systems Society, the IEE...
4, George Washington University & 2 miles ;‘—b’:i‘”{t'ji“
S a lbranan
i i i MAP IT e =
Washington, DC 20052 United States Journal / Magazine / Newspaper fdd o faveritss
5, Howard University = 2 miles Ll
; ; ; Ask a librarian
Washington, DC 20059 United States dounal / Magazine / Newspaper ~ MAP IT Add o favorites
6. Research Center, National Academies of)
Sciences, Engineering, and Medicin) < mlee R
__‘_“’___g__'g’_%’i Journal / Magazine / Newspaper MAP IT Add lo favorites
Washington, DC 20001 United States
4« First ¢Prev 1 2 3 Next » Last %
= Details

Material Type:

Document Type:

Internet resource

Journal / Magazine / Newspaper, Internet Resource

Institute of Electrical and Electronics Engineers.: IEEE Circuits and Systems Society.;

and Electronics Engineers. Computer Society.;

Institute of Electrical
Institute of Electrical and Electronics Engineers. Solid-State

s on very large scale integration (VLSI) systems

Very Large Scale Integration (VLSI) Systems

All Authors /
Contributors:

Circuits Council.
ISSN: 1063-8210
OCLC Number: 750041125
Notes: Tyt. okt
Description: 28 cm.
Other Titles: IEEE transaction

= Reviews

User-contributed reviews

Add a review and share your thoughts

Tags

Ad
Systems Society, the IEEE Computer Soci

|+

! Linked Data

https:ﬂwww.worrdcat.org)‘titlelfee&transactlons-onwery—

d tags for "|EEE Transactions on Very Large Scale Inte

with other readers.

gration (VLSI) Systems : a joint publication of the IEEE Circuits and

ety, the |IEEE Solid-State Circuits Council.".

Iarg&scaIe‘integration-vlsi—systems—aajeﬁtti)aH@Mi%g(me@mj@mﬁ@mter]fs(soﬂ:i%ﬁ, p565

Attachment 6D

Petitioner Microsoft Corporation - Ex. 1066, p. 566

8/29/2018 LC Catalog - Item Information (Full Record)

CATAL OG

= 1 0f 1

PERIODICAL OR NEWSPAPER

IEEE transactions on very large scale integration (VLSI)
systems

Full Record MARC Tags

Main title

IEEE transactions on very large scale integration (VLSI) systems.

FPublished/Created

New York, NY : Institute of Electrical and Electronics Engineers, c1993-

Request this Item #4 LC Find It
More Information >
LCCN Permalink https://iccn.loc.gov/93641510
Publication history Vol. 1, no. 1 (Mar. 1993)-
Description v. ill. ; 28 em.
Current frequency Bimonthly, <June 2002->
Former frequency Quarterly, 1993-
ISSN 1063-8210
Linking ISSN 1063-8210
Request this Item #4 LC Find It

https:f’!catalog,roc.govaabwsearch‘?searchCode=STNO&searchType=1&recCount=25&5e%%ﬂﬂ§3ﬂil@rosoft Corporation - Ex. 1066, p1467

—

8/29/2018

LC Catalog - ltem Information (Full Record)

Institute of Electrical and Electronics Engineers transactions on very large scale
integration (VLSI) systems

Paortion of title

Serial key title

Abbreviated title

Related names

LC Subjects

Other Subjects

Form/Genre

Erowse by shelf order

Notes

Reproduction no./Source

Additional formals

LCCN

Invalid LCCN

CODEN

Dewey class no.

National bib agency no.

Othar svstem no

Request this Item

L #LC Find I '

=

Very large scale integration (VLSI) systems
IEEE transactions on very large scale integration (VLSI) systems (Print)
IEEE trans. very large scale integr. (VLSI) syst. (Print)

Institute of Electrical and Electronics Engineers.
|EEE Circuits and Systems Society.

IEEE Computer Society.

IEEE Solid-State Circuits Council.

Integrated circuits—-Very large scale integration--Design and construction--
Periodicals.

Integrated circuits—-Very large scale integration--Design and construction.
VLSI

Zeitschrift

Online-Ressource

Periodicals.

TK7874

Title from cover.

A joint publication of: IEEE Circuits and Systems Society, IEEE Computer

Society, and IEEE Solid-State Circuits Council.

IEEE Service Center, 445 Hoes La., POB 1331, Piscataway, NJ 08855-1331

Also issued online,
IEEE transactions on very large scale integration (VLSI) systems (Online) 1557-
9999 (DLC) 2005215205 (OCoLC)44617287

93641510

sn 92000187
IEVSES
621.39/5
009845046

MOCal Cl\nerm2/142309

hitps://catalog.loc.govivwebv/search?searchCode=STNO&search Type=1 &recCount=25&sepehifiGiaeRBiGrosoft Corporation - Ex. 1066, p2568

8/29/2018 LC Catalog - Item Information (Full Record)

Type of material Periodical or Newspaper
ltem Availability >
CALL NUMBER TK7874 13273
Set 1
Request In Jefferson or Adams Building Reading Rooms
Status c.1v. 23, no. 1-6 2015 Jan-June In Process 05-09-2016
Older receipts v.1-v.14:n0.5 (1 993-2006:May), v.14:n0.7-v.16:n0.4 (2006:July-2008:Apr.),

v.16:n0.6-v.24:n0.12 (2008:June-2016:Dec.)

CALL NUMBER TK7874 13273
Copy 1
Unbound issues

Request in Newspaper & Current Periodical Reading Room (Madison LM133)

Latest receipts v. 26, no. 8 (2018 Aug.)
V. 26, no. 7 (2018 July)
V. 26, no. 6 (2018 June)
V. 26, no. 5 (2018 May)
V. 26, no. 4 (2018 Apr.)
V. 26, no. 3 (2018 Mar.)
v. 26, no. 2 (2018 Feb.)
v. 26, no. 1 (2018 Jan.)
v. 25, no. 12 (2017 Dec.)
V. 25, no. 11 (2017 Nov.)
V. 25, no. 10 (2017 Oct.)
v. 25, no. 9 (2017 Sept.)
v. 25, no. 8 (2017 Aug.)
V. 25, no. 7 (2017 July)
v. 25, no. 6 (2017 June)
V. 25, no. 5 (2017 May)
V. 25, no. 4 (2017 Apr.)
V. 25, no. 3 (2017 Mar.)
V. 25, no. 2 (2017 Feb.)
v. 25, no. 1 (2017 Jan.)

Request this Item #A LC Find It

https:ﬂcatalog.Iac.gowvwebv.-‘search?searchCode=STNO&searchType=1 &recCounFZS&seqx@ﬁiqaﬂ)éia-Migrosoft Corporation - Ex. 1066, pz/569

Attachment 6E

Petitioner Microsoft Corporation - Ex. 1066, p. 570

8/29/2018 LC Catalog - Item Information (Full Record)

CATAL OG

= 1 0f 1

PERIODICAL OR NEWSPAPER

IEEE transactions on very large scale integration (VLSI)
systems

Full Record MARC Tags

Main title

IEEE transactions on very large scale integration (VLSI) systems.

FPublished/Created

New York, NY : Institute of Electrical and Electronics Engineers, c1993-

Request this Item #4 LC Find It
More Information >
LCCN Permalink https://iccn.loc.gov/93641510
Publication history Vol. 1, no. 1 (Mar. 1993)-
Description v. ill. ; 28 em.
Current frequency Bimonthly, <June 2002->
Former frequency Quarterly, 1993-
ISSN 1063-8210
Linking ISSN 1063-8210
Request this Item #4 LC Find It

https://catalog.loc.gov/ivwebv/search?searchCode=STNO&searchType=1 &recCount=25&sepehirisiRE3®¥E16roso ft Corporation - Ex. 1066, p1471

—

8/29/2018

LC Catalog - ltem Information (Full Record)

Institute of Electrical and Electronics Engineers transactions on very large scale
integration (VLSI) systems

Paortion of title

Serial key title

Abbreviated title

Related names

LC Subjects

Other Subjects

Form/Genre

Erowse by shelf order

Notes

Reproduction no./Source

Additional formals

LCCN

Invalid LCCN

CODEN

Dewey class no.

National bib agency no.

Othar svstem no

Request this Item

L #LC Find I '

=

Very large scale integration (VLSI) systems
IEEE transactions on very large scale integration (VLSI) systems (Print)
IEEE trans. very large scale integr. (VLSI) syst. (Print)

Institute of Electrical and Electronics Engineers.
|EEE Circuits and Systems Society.

IEEE Computer Society.

IEEE Solid-State Circuits Council.

Integrated circuits—-Very large scale integration--Design and construction--
Periodicals.

Integrated circuits—-Very large scale integration--Design and construction.
VLSI

Zeitschrift

Online-Ressource

Periodicals.

TK7874

Title from cover.

A joint publication of: IEEE Circuits and Systems Society, IEEE Computer

Society, and IEEE Solid-State Circuits Council.

IEEE Service Center, 445 Hoes La., POB 1331, Piscataway, NJ 08855-1331

Also issued online,
IEEE transactions on very large scale integration (VLSI) systems (Online) 1557-
9999 (DLC) 2005215205 (OCoLC)44617287

93641510

sn 92000187
IEVSES
621.39/5
009845046

MOCal Cl\nerm2/142309

hitps://catalog.loc.govivwebv/search?searchCode=STNO&search Type=1 &recCount=25&seqpehirpG a3 IErosoft Corporation - Ex. 1066, p2472

8/29/2018 LC Catalog - Item Information (Full Record)

Type of material Periodical or Newspaper
ltem Availability >
CALL NUMBER TK7874 13273
Set 1
Request In Jefferson or Adams Building Reading Rooms
Status c.1v. 23, no. 1-6 2015 Jan-June In Process 05-09-2016
Older receipts v.1-v.14:n0.5 (1 993-2006:May), v.14:n0.7-v.16:n0.4 (2006:July-2008:Apr.),

v.16:n0.6-v.24:n0.12 (2008:June-2016:Dec.)

CALL NUMBER TK7874 13273
Copy 1
Unbound issues

Request in Newspaper & Current Periodical Reading Room (Madison LM133)

Latest receipts v. 26, no. 8 (2018 Aug.)
V. 26, no. 7 (2018 July)
V. 26, no. 6 (2018 June)
V. 26, no. 5 (2018 May)
V. 26, no. 4 (2018 Apr.)
V. 26, no. 3 (2018 Mar.)
v. 26, no. 2 (2018 Feb.)
v. 26, no. 1 (2018 Jan.)
v. 25, no. 12 (2017 Dec.)
V. 25, no. 11 (2017 Nov.)
V. 25, no. 10 (2017 Oct.)
v. 25, no. 9 (2017 Sept.)
v. 25, no. 8 (2017 Aug.)
V. 25, no. 7 (2017 July)
v. 25, no. 6 (2017 June)
V. 25, no. 5 (2017 May)
V. 25, no. 4 (2017 Apr.)
V. 25, no. 3 (2017 Mar.)
V. 25, no. 2 (2017 Feb.)
v. 25, no. 1 (2017 Jan.)

Request this Item #A LC Find It

hitps://catalog.loc.govivwebv/search?searchCode=STNO&search Type=1 &recCounFZS&seqx@ﬁiqaﬂ)éia-Migrosoft Corporation - Ex. 1066, pz/573

Attachment 6F

Petitioner Microsoft Corporation - Ex. 1066, p. 574

RING-PLANARIZED CYLINDRICAL ARRAYS WITH
APPLICATION TO MODULAR MULTIPLICATION*

William L. Freking and Keshab K. Parhi
Dept. of ECE, University of Minnesota,
200 Union St. SE, Minneapolis, MN 55455
{freking, parhi} @ece.umn.cdu

Abstract

Cylindrical arrays have been shown useful for VLSI implementation of a
variety of problems including matrix-matrix multiplication and algebraic path
determination. However, spiral feedback paths limit their scalability due to per-
formance degradation in interconnect-delay dominant environments. A recently
proposed feedback-pipelining technique can efficiently address this problem
when signal paths are non-diametric in the projection direction. However, this
method may incur excessive penalties when the latter condition does not hold.
In this paper, a new class of cylindrical array is proposed, the ring-planarized
cylindrical array, which overcomes the barrier to efficient, fully-pipelined ar-
rays projected in directions having diametric signal paths. In contrast to stan-
dard cylindrical arrays, processors from each cylinder row are distributed along
planar ring structures rather than lines. This construction inherently constrains
maximum signal path length to a constant, permitting efficient scalability. Ap-
plication to the cryptographically relevant modular multiplication problem is
demonstrated.

1 INTRODUCTION

Systolic arrays remain an essential architectural methodology due to inherent
properties of modularity, regularity, local interconnection, and high degree of pipelin-
ing [1]. Moreover, as interconnect delay grows increasingly dominant as deep-
submicron technology progresses to smaller dimensions, systolic techniques become
even more relevant in the quest to attain the highest levels of performance.

Cylindrical arrays belong to the subset of array architectures which exhibit spiral
interconnections, and have been utilized in problems such as matrix-matrix multi-
plication [2] and the algebraic path problem [3]. Although these arrays exhibit some
interesting properties, they have been underutilized, due to the fact that the spiral
feedback paths are not strictly local. Therefore, the interconnect delay of such paths
can become a dominating factor as the array size increases.

* This research was supported by DARPA under grant number DA/DABT63-96-C-0050.

0-7803-6488-0/00/$10.00 © 2000 IEEE 497

Petitioner Microsoft Corporation - Ex. 1066, p. 575

In [4], a folded array methodology and two alternatives were presented to address
performance scalability in the modular multiplication problem. The rudimentary
embodiment of the former technique can be effectively described in terms of map-
ping to a standard cylindrical array. However, it was further demonstrated that by
applying proper temporal transformations to the array (in the form of rescheduling
or cutset pipelining/retiming), the spiral-feedback problem may be addressed archi-
tecturally by rendering such signal paths as transmittent, nearest-neighbor intercon-
nections. Although this method permits architectural scaling without interconnect-
related clock-rate penalty, it will be demonstrated in this paper that excessive delay
counts may be incurred when diametric signal paths exist in the projection direction.

To address this problem, this paper introduces a new cylindrical array paradigm,
the ring-planarized cylindrical array (RPCA). In contrast to the planarization which
yields standard 2-D cylindrical arrays, the new method distributes processors from
each cylinder row along planar ring structures rather than lines. RPCA structure
inherently limits maximum path length to a constant, eliminating array-size depen-
dence. Modular multiplication for cryptographic applications serves as the context
in which the RPCA methodology is applied in this paper. Paper organization is
as follows. Section 2 provides background on the modular multiplication problem.
Properties of standard cylindrical arrays are discussed in section 3, followed by the
introduction of the RPCA technique. A comparison of relevant quantities is provided
in section 4, followed by conclusions in section 5.

2 BACKGROUND: MODULAR MULTIPLICATION

A fundamental constituent of modern cryptography is the public-key class of
cryptosystems, which enable secure transmission of information over public chan-
nels without requiring exchange of secret parameters between communicating par-
ties. Modular exponentiation is the basis of many such methods including the pop-
ular RSA technique [5], and the modular multiplication operation is elemental to
modular exponentiation algorithms. Efficient hardware implementations of modular
multiplication are therefore essential to many modern cryptography applications.

Given positive integers A, B, and N, we define the modular multiplication com-
putationas ABmod N = AB — L%J N, i.e., determine the remainder of the prod-
uct of A and B with respect to the modulus N. Large problem sizes in cryptographic
applications (e.g. typical word lengths of 1024 bits or greater for RSA) necessitate
efficient iterative modular multiplication algorithms, and many are available [6] [7].

Although the architectural techniques to follow in the next section may be ap-
plied generally to many of the available modular multiplication algorithms, we will
focus attention on an example which may be deemed as typical in many respects.
We choose a useful binary LSD-first algorithm first derived in [8] by algebraic ma-
nipulation of the Montgomery method [6], wherein the quotient evaluation step is
rendered trivial. This algorithm also corresponds to a binary LSD-first form of the
general-radix IRA algorithms described in [7]. The algorithm may be specified as:

0-7803-6488-0/00/$10.00 © 2000 IEEE 498

Petitioner Microsoft Corporation - Ex. 1066, p. 576

Algorithm 1 Binary IRA Modular Multiplication Algorithm
Xy

Inputs: N,0 < A = Zﬂ:a,%" < 2N (where n = [log, N1),J0 < B < 2N,
i=0

N = 1N = 27| (N odd)
Output: 0 < Sp+1 < 2N
S_1 =0, ant1 = 0, and let mn; denote |S;_1],
fori=0ton+1 A
5= &d_éﬂz+853+mi'f\r
where 13:1y denotes zmod y, Snt+1 = fAB Q=2 [N +eNande € {0,1}. Note
that the least significant bit of the partial result of the previous iteration, S;_;, di-

rectly selects the modular correction value, which is amember of {0, N } Moreover

the first term on the right-hand-side of the expression for S; consists of S;_; trun-
cated by one bit. Finally, note the presence of a weighting factor in the final result
related to the total number of iterations executed. This property is common to any
LSD-first modular multiplication algorithm, and is addressed by operand prescaling
in the manner prescribed by Montgomery [6].

We now rewrite the core of algorithm 1 in terms of bit-wise computations in algo-
rithm 2 below, having the goal of deriving bit-level systolic modular multiplication
arrays [9] [10] [11]. Note that within algorithm 2, assuming a single carry would
be invalid (i.e., a 4-operand addition cannot be represented by single sum and carry
signals). However, assuming two carries of equal weight reveals no contradiction.
Furthermore, the computation is cast to reflect carry-ripple rather than carry-save
dependencies to avoid redundant representation of the final result, S, 1. However,
to account for a consequential single possible carry at most significant bit positions,
an additional j-loop iteration is added so that the S; 41 output may pass this output
to iteration ¢ + 1.

Algorithm 2 Bit-wise Modular Multiplication

S_1,; =0forall j, S; ny2 = 0foralli,and @nt1,bps1, Noy Npyy =0
fori =0ton+1
forj=0ton+1
letm; = S;_10
S,'_j -+ 265‘1:-) + 2053) = Sg_1_j+1 + a;b; + m,‘ﬁj + CE};_‘] + ng-)_l
Figure 1(a) depicts a dependence graph (DG) based on the above bit-wise al-
gorithm for a very small problem size (i.e., n = 5). Also shown is the cell /O
description and a valid linear schedule corresponding to s T = [1 2] (using a [j 1)
convention). Mapping via a [0 1] projection results in the linear array in figure 1(b).
Such an array achieves 100% utilization when two independent data streams are in-
terleaved. These data sets are distinguished in the figure by bracketed superscripts.
A new pair of data sets may be introduced roughly every 2n clock cycles, resulting
in throughput proportional to ;% = 1,
An efficient array is also obtained by projecting in the [1 0] direction, as shown

in figure 1(c). One advantage of this projection is single-ported output, i.e., the

0-7803-6488-0/00/$10.00 © 2000 IEEE 499

Petitioner Microsoft Corporation - Ex. 1066, p. 577

output is available serially at the bottom-most cell position. Another advantage
was demonstrated in [12], where favorable word-length scalability properties were
demonstrated with a shorter length, Montgomery carry-save array. Finally, it can be
observed that a [1 0] projected array can accept a single new data set every n + 2
clock cycles, and dependent computations must be separated by at least 2 (n + 2)
clock cycles. Neglecting initial latency, such an array outputs one result roughly

every n clock cycles, resulting in throughput proportional to L.

3 CYLINDRICAL MODULAR MULTIPLICATION ARRAYS
3.1 Standard Cylindrical Arrays and Feedback Pipelining

Having examined two linear systolic arrays for modular multiplication, we now
consider the question of how to achieve structures which enable a performance/area
trade-off for array sizes in excess of a linear array but smaller than a full 2-D ar-
ray. Three such approaches were introduced in [4]. The method of present interest
involved applying the folding transformation [13] to a full 2-D array in the [0 1]
projection direction. Figure 2 depicts a portion of a full 2-D array having delay as-
signments consistent with the scheduling shown in figure 1(a). In order to obtain an
architecture having k rows (where 1"3"—' > k > 1), we fold a possibly extended 2-D
array by a factor of ["k—"'—'] as displayed in figure 3(a) for k = 3.

Close examination reveals that such folded arrays are cylindrical in structure,
and are homologous to cylindrical arrays proposed for problems such as matrix-
matrix multiplication [2] and the algebraic path problem [3]. In the case currently
under consideration, such arrays are advantageous in that they can simultaneously
interleave 2k independent data streams, with new sets of inputs or outputs arriving
roughly every 2 (n + 1) + 1 clock cycles. Throughput is therefore roughly propor-
tional to % if a fixed clock rate is assumed, a fact which demonstrates the perfor-
mance scalability available through this design approach. However, the fixed clock
rate assumption may not remain valid as k is increased in interconnect delay domi-
nant environments due to unmitigated feedback paths. This is evident in the small &
factor example of figure 3(a), where two inter-cell traversals are required (from row
31to 2, and 2 to 1) as opposed to the limit of one such traversal for an array having
strictly nearest neighbor communications.

To remedy this problem, an efficient feedback pipelining method [4] may be
employed. Applying cutset pipelining in the original 2-D array along horizontal,
periodic feed-forward cutsets having period k, the corresponding folded array will
exhibit pipelined feedback paths having an identical pipelining factor. For example,
pipelining by one level along the cutsets indicated in figure 2 followed by folding
such that k = 3 yields the array in figure 3(b). It is clear that each feedback path
now contains at least two delay elements, which corresponds directly to the number
of inter-cell traversals. This fact allows the construction of an architecture having
strictly nearest neighbor communications as shown in figure 4, where the feedback
paths are rendered as pass-through signals in the second cell row. Extension of the

0-7803-6488-0/00/$10.00 © 2000 IEEE 500

Petitioner Microsoft Corporation - Ex. 1066, p. 578

feedback pipelining procedure for larger £ is straightforward and is displayed in the
array of figure 3(c). Note that feedback pipelining effectively increases the interleave
factor from 2k to 3k — 2 in order to obtain full hardware utilization and throughput
proportional to % Pipelining overhead incurred solely from feedback pipelining
amounts to roughly 3kn.

Having demonstrated the method for the [0 1] projection direction, we now pursue
application of the methodology for the [1 0] projection. Folding of an unmodified
full 2-D array in the [1 0] direction with k = 3 results in the array shown in figure
5(a). Attempting to achieve feedback pipelining by the previous temporal transfor-
mation strategy proves fruitless, since vertical cutsets within the modular multipli-
cation array are not feed-forward. Instead, all delays within the folded array must
be scaled by a factor of two, resulting in the array of figure 5(b). For general k, all
delay elements in the architecture are scaled by a factor (kK — 1) D in order to fully
pipeline the feedback paths, as shown in figure 5(c). Observe that this solution is not
nearly as efficient as the [0 1] projection case, due to diametric signal paths along
the projection direction. Pipelining overhead is substantially greater, amounting to
9k?n, and displays a quadratic rather than linear dependence on k. Similarly, the
required interleave factor for full hardware utilization and throughput is elevated to
k(k-1).

4 Ring-Planarized Cylindrical Arrays

Since significant penalties are associated with feedback pipelining of folded ar-
rays projected in directions having diametric feedback, the solution may be consid-
ered untenable — especially for all but the smallest k values. However, rather than
abandoning such projections in this problem and others wherein the above tech-
niques apply, an alternative solution is now derived based on the cylindrical nature
of such arrays.

Although a cylindrical array exhibits strictly nearest neighbor communications
in its three-dimensional embodiment as depicted conceptually in figure 6(a), non-
ideal, spiral feedback paths are introduced when the array is planarized in standard
fashion into a practical two-dimensional structure as in figure 6(b). Procedurally, this
planarization may be envisioned as unrolling the cylinder structure into the plane,
such that processors on each cylinder row are mapped onto a corresponding line.

As seen in the previous subsection, attempts to lessen the impact of feedback
path interconnect delay in such architectures through feedback pipelining is inef-
ficient when diameiric signal paths exist along the projection direction. However,
as it will now be shown, an alternative solution exists which avoids the significant
penalties involved with the standard cylindrical array manifestation. The new ap-
proach consists of planarizing the three-dimensional cylindrical array in a manner
such that processors from each cylinder row are distributed along planar ring struc-
tures rather than on lines as in the standard procedure. Figure 6(c) illustrates the
resultant two-dimensional structure, which we denote the ring-planarized cylindri-
cal array (RPCA). Notice that although more signal paths exceed nearest-neighbor

0-7803-6488-0/00/$10.00 © 2000 IEEE 501

Petitioner Microsoft Corporation - Ex. 1066, p. 579

length in this rudimentary form of the RPCA, all lengths are bounded according to
constants rather than exhibiting any dependence on the circumference of the cylin-
der (i.e., k in the previous development). This fact indicates that the new structure
may be scaled without encountering additional overhead due to increasing signal
path lengths, as will be demonstrated further below.

Utilizing the RPCA paradigm, we now derive modular multiplication arrays for
the [1 0] projection direction. Noting that the maximum signal path length amounts
to three inter-cell traversals, we pipeline the pre-folded, full 2-D array along hori-
zontal cutsets by two levels, resulting in the RPCA of figure 7(a).

Although this solution is straightforwardly derived from the RPCA definition, it
is not optimal for the particular problem under consideration. An alternative which
yields less overall pipelining overhead may be derived by observing that the num-
ber of delays associated with each vertical dependency (corresponding to {b, N}
variable sets) must be identical to the sum of the delays encountered on each asso-
ciated horizontal and diagonal member (corresponding to {a, m} variable sets and
S variables, respectively). Therefore, vertical paths always contain more delays
than diagonals. Exploitation of this property is achieved through counter-clockwise
circular shifting by one position of each successive ring as displayed in the modified
RPCA of figure 7(b). Although the longest path still occurs on diagonal dependen-
cies, signal assignment has necessarily been altered, i.e., diagonal and vertical paths
now represent {b, N'} variable sets and S variables, respectively. Thus, vertical paths
may contain fewer delays than diagonals, permitting a solution with less overhead.
Namely, imposition of only one level of pipelining (as opposed to two) at horizontal
cutsets in the pre-folded 2-D array achieves full pipelining on the longest path.

Figure 8 renders the modified RPCA in a strictly nearest-neighbor communica-
tion architectural form. Diagrams of signal propagation for upper and lower cells
within the ring structures are displayed, with gray accents indicating pass-through
signals. Note an interleave factor of k achieves full throughput, and new data sets
are introduced every n + k + 2 time steps. In the latter figure, k additional time
steps are present so that all a variables may be fed from the right hand side of the
array structure, rather than requiring internal porting. Dependent computations must
be separated by 3 (n + k + 2) time steps. Finally, note again that such an array
may be easily scaled to other k values (preferably even) without incurring additional
overhead.

5 COMPARISON

A brief comparison of some distinguishing features of the various array struc-
tures is performed in this section. For each architecture, Table 1 displays the total
number of required delay elements, the wire density of internal cells stated in terms
of inputs, and the number of inter-cell traversals exhibited by the longest signal
path in the architecture. As concluded earlier, it is obvious that the [1 0] projected
feedback-pipelined standard cylindrical array exhibits a burdensome, quadratically
increasing delay count with respect to k. However, the [0 1] projected counterpart

0-7803-6488-0/00/$10.00 © 2000 IEEE 502

Petitioner Microsoft Corporation - Ex. 1066, p. 580

Array Type # Delays Input Wires/Cell (int.) | Longest Path
Std. Cyl. [01 9k (n + 2) 10 k-1
Std. Cyl. [1 0] 9%k (n + 2) 12 k-1

Std. FP.Cyl. [0 1 (12k — 6) (n + 2) 10 1
Std. FP.Cyl. [10] [9k (k= 1) (n + 2) 12 1
mod. RPCA [1 0] 12k (n + 2) 10 1

Table 1: Comparison of properties of standard cylindrical arrays with and without
feedback pipelining and the modified RPCA architecture

and the modified RPCA in the [1 0] direction both exhibit a relatively minor over-
head of approximately 33% over the non-pipelined feedback arrays. Furthermore,
we note that the modified RPCA [1 (] achieves the same wire density of 10 input
wires per internal cell as the [0 1] projected cylindrical arrays, as compared to 12
for the [1 0] projected counterparts. Wire density is improved in the modified RPCA
over the latter arrays since the former avoids feedback of the multiplicity of horizon-
tal dependencies encountered in the modular multiplication problem.

The above comparison demonstrates that the modified RPCA [1 0] architecture is
competitive with the standard feedback pipelined [0 1] cylindrical array. This is sig-
nificant since the design difficulties arising from diametric signals in the projection
direction have been overcome, allowing potential advantages of arrays projected in
such a manner to be realized. For the modular multiplication problem, such unique
advantages include single ported output, simple word length scaling, and easy par-
titioning (along horizontal, feed-forward cutsets) for flexible multi-chip or block
layout implementation.

6 CONCLUSIONS

In this paper, a new architectural paradigm has been introduced, the ring-planarized
cylindrical array. In contrast to standard cylindrical arrays, RPCAs eliminate spi-
ral feedback paths which can prove problematic in interconnect delay dominant
environments. Furthermore, the RPCA technique is clearly superior to feedback-
pipelined standard cylindrical arrays when diametric signal dependencies exist in
the projection direction. Within the context of modular multiplication, the new tech-
nique is significant since it permits architectural scalability beyond linear arrays for
the horizontal projection. Such arrays have unique advantages of single-ported out-
put, word-length scalability, and simple partitioning.

References

[1] S. Y. Kung, VLSI array processors, Prentice-Hall, 1988.

0-7°"2-6488-0/00/$10.00 © 2000 IEEE 503

Petitioner Microsoft Corporation - Ex. 1066, p. 581

[2] W. A. Porter, J. L. Aravena, “Cylindrical arrays for matrix multiplication,” in
Proc. of the Twenty-Fourth Annual Allerton Conference on Communication,
Control, and Computing, pp.595-602, 1986.

[3] P. Y. Chang and J. C. Tsay, “A family of efficient regular arrays for algebraic
path problem,” IEEE Trans. Comput., vol. 43, no. 7, pp. 769-77, 1994.

[4] W. L. Freking and K. K. Parhi, “Performance-scalable array architectures for
modular multiplication,” in Proc. IEEE Int. Conf. on Application-Specific Sys-
tems, Architectures and Processors, pp. 149-160, 2000.

[5] R. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120-126, 1978.

[6] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comp., vol. 44, no. 170, pp. 519-521, 1985.

[71 W. L. Freking and K. K. Parhi, “A unified method for iterative computation of
modular multiplication and reduction operations,” in Proc. IEEE Int. Conf. on
Computer Design, pp.80-7, 1999,

[8] P. Kornerup, “A systolic, linear-array multiplier for a class of right-shift algo-
rithms,” IEEE Trans. Comput., vol. 43, no. 8, pp. 892-898, 1994.

[9] C. D. Walter, “Systolic modular multiplication,” IEEE Trans. Comput., vol.42,
no.3, pp.376-8, 1993,

[10] Y. J. Jeong and W. P. Burleson, “VLSI array algorithms and architectures for
RSA modular multiplication,” IEEE Trans. VLSI Syst., vol. 5, no. 2, pp. 211-
217, 1997,

[11] W. C. Tsai, C. B. Shung, S. J. Wang, “Two systolic architectures for modular
multiplication,” IEEE Trans. on VLSI Syst., vol. 8, no. 1, pp. 103-7, 2000.

[12] A. F Tenca and C. K. Koc, “A scalable architecture for Montgomery multi-
plication,” Cryptographic Hardware and Embedded Systems, LNCS No. 1717,
pp. 94-108, 1999.

[13] K. K. Parhi, “High-level algorithm and architecture transformations for DSP
synthesis,” Journal of VLSI Signal Processing, v. 9, no. 1-2, pp.121-43, 1995.

0-7803-6488-0/00/$10.00 © 2000 IEEE 504

Petitioner Microsoft Corporation - Ex. 1066, p. 582

Figure 1: Diagrams illustrating (a) the modular multiplication dependence =
graph and cell descriptions, (b) the [0 1] projected linear array, and (c) the AR
(1.0] projected linear array PR |

()
5

Q BoQ Eo b D b':?‘#
Ry Lo
30 Bo? Ba? bo ' N W
amEy B
S T S e S
SR e
3¢ bor s] i

3

aa e o aT el e

Slrt]
o
'S

LR AR A A AR

ly : DA
| Figure 2: A full 2-D array

. having delay assignment in

| | accordance with the scheduling
| of figure 1. Horizontal cutsets

' for a feedback pipelined 4=3

0-7803-6488-0/00/$10.00 © 2000 IEEE 505

Petitioner Microsoft Corporation - Ex. 1066, p. 583

Figure 6: Diagrams depicting (a) three-dimensional cylindrical array, (b)

standard planarization, and (c) ring-planarized cylindrical array

(a)

T
(el oo

al f 20} ' ! ’ 2
‘h??"&«:? (NB

q)
{) e
1 ke |
AN 2 2T

2 Y
%

Figure 7: Diagrams of (a)
straightforward application of
RPCA technique to modular
multiplication and (b)
successively circularly-shifted
RPCA

(A A A A A - d— L
SRR R R RR
l.". "."‘."‘."" ‘.‘.“.“.‘
e e
XXX
[k, A SE R R R R R
tatelantatatata’

(b) (c)

I Flgure 5: 6iagxarhs fon.'"'t"old.eamahnys in the {1 0] pr.ojoctiun".fur @)

k=3, (b) k=3 with feedback pipelining, and (c) feedback pip
| general k
8
H N
i Semen. ypper cell
GwB R -
it fidin gie | i :
SN ey pEsin
b Diodic LIk S
NI SRR RN SR
NNSEE
SREEEONEE B B ghs"
Sl N
:g, e Bnear Mega o
] n
)
. n lower call Suwarin .
R AN R A EXTR V|
lvelim.a, ALiim.a,
LR
 Simen
bﬁ-pmrﬁf‘-'nua

0-7803-6488-0/00/$10.00 © 2000 IEEE 506

Petitioner Microsoft Corporation - Ex. 1066, p. 584

