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The Splash 2 program is significant for two reasons. First, it is part of a
complete computer system that achieves supercomputer like perfor-
mance on a number of different applications. The second significant
aspect is that this large system is capable of performing real computa-
tions on real problems. In order to understand what happens when the
application programmer designs the processor architecture of the
machine that executes his programs, it is necessary to see the system as
a whole. This book looks in-depth at one of the handful of data points
in the design space of this new kind of machine.
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Pipelined H-Trees for High-Speed Clocking of
Large Integrated Systems in Presence of

Process Variations T T

Mohamed Nekili, Guy Bois, and Yvon Savaria, Member, IEEE " {

Abstract—This paper addresses the problem of clocking large
high-speed digital systems, as well as deterministic skew mod-
eling, a related problem. A conventional method for clocking a
large digital system is to use a set of metallic lines organized
as a tree. This method is limited by the bandwidth of the
clock network, Another limitation of existing solutions is that
available skew models do not directly take into account process
variations. In order to provide a reliable skew model, and to
avoid the frequency limitation, we propose a novel approach
that distributes the clock with an H-tree, whose branches are
composed of minimum-sized inverters rather than metal. With
such a structure, we obtain the highest clocking rate achievable
with a given technology. Indeed, clock rates around 1 GHz
are possible with a 1.2 ym CMOS technology. From the skew
modeling standpoint, we derive an analytic expression of the
skew between two leaves of the H-tree, which we consider to
be the difference in root-to-leaf delay pairs. The skew upper
bound obtained has an order of complexity which, with respect
to the H-tree size D, is the same as the one that may be
derived from the Fisher and Kung model for both side-to-
side and neighbor-to-neighbor communications, ie, a Q(DY),
whereas, the Steiglitz and Kugelmass probabilistic model predicts
O(D x /LogTl). In an H-tree implemented with metallic lines,
the leaf-to-leaf skew is obviously bounded by the delay between
the root and the leaves. However, with the logic based H-iree
proposed in this paper, we arrive at a nonobvious result, which
states that the leaf-to-leaf skew grows faster than the root-to-
leaf delay in presence of a uniform transistor time constant
gradient. This paper also proposes generalizations of the skew
medel to 1) the case of chips in a wafer subject to a smooth,
but nonuniform gradient and 2) the case of H-tree configurations
mixing logic and interconnections; in this respect, this paper
covers the H-tree configurations based on the combination of
logic and interconnections.

Index Terms—H-tree, high-speed clocking, pipelining, process
variations, skew,

I. INTRODUCTION

HE evolution of VLSI chips toward larger die sizes and
Tfaster clock speeds makes clock design an increasingly
important issue. A striking example of what can be accom-
plished with aggressive clock design is the DEC alpha chip [1],

Manuscript received March 24, 1994; revised September 22, 1995, This
work was supported by the INI (Institut National de formation en Informa-
tique) in Algiers, CIDA (Canadian International Development Agency), and
strategic grant and operaling grants from the Natural Sciences and Engineering
Research Council of Canada.

The authors are with the Department of Electrical Engineering, Ecole
Polytechnique of Montréal, Station “Centre-Ville,” Monltréal, P.Q. H3C 3A7,
Canada.

Publisher Item Identifier § 1063-8210(97)01949-5.

designed to operate at more than 200 MFz Al such speeds,
clock skew becomes a very significant problem. Available
literature dealing with skew [2]-[8], [10], [11] approaches the
problem both from deterministic and probabilistic standpoints.

[n the deterministic approaches, Friedmann and Powell [6]
emphasize the use of a hierarchical clock distribution, while
others (2], [3], [8], [11] suggest the length equalization of the
different paths followed by the clock throughout the circuit.
Shoji [5] suggests an approach that guarantees a symmetry
between paths that contribute to propagate “0” and “1.” This
Symmetry ensures proper operation despite some types of
process variations [5]. Except for the work of Fisher and Kung
[4], which provides bounds on skew, the other authors do not
deal with the analytic modeling of system skew,

In the probabilistic approaches, Kugelmass and Steiglitz (7]
consider the delay of a clock signal along a given path as a
sum of delays along path segments, each of these segments
behaving according to a probabilistic law. Then, by assuming
independence between these delays, the total delay, as well as
the skew, can then be described by a normal law. By assuming
independence and the linearity of delay with line length, their
approach becomes an oversimplification of the reality. Other
authors [10] consider the skew as a dispersion in the physical
parameters of a circuit (e.g., geometrical dimensions) and in
the process (e.g., sensitivity to temperature),

The work that is most directly related to that presented in
this paper is the work of Fisher and Kung [4]. These authors
have developed two deterministic skew models (the difference
model and the summation model), from which they determined
bounds on skew. However, these models do not directly refer
to a process variation model. The difference model, tends to
be unrealistically optimistic, whereas, under the summation
model, Fisher and Kung reached a pessimistic result which
states that, from a skew standpoint, synchronous systems are
not feasible with large two-dimensional arrays.

In order to avoid the frequency limitation when using
metallic lines, we propose a logic-based H-tree structure
that provides the highest clocking rate achievable with a
given technology in Section 1I, To provide a reliable skew
model, Section III suggests a model based on delay differences
combined with a model of electrical variations in the process
parameters. Under this model, we derive an anal ytic expression
of the skew between any leaf pair, which we consider to
be the difference in root-to-leaf delay pairs. Even though the
model of electrical variations described in this paper assumes

1063-8210/97$10.00 @ 1997 IEEE
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VLSI Array Algorithms and Architectures
for RSA Modular Multiplication

Yong-Jin Jeong, Member, IEEE, and Wayne P. Burleson, Member, IEEE

Abstract—We present two novel iterative algorithms and their
array structures for integer modular multiplication. The algo-
rithms are designed for Rivest-Shamir-Adelman (RSA) cryp-
tography and are based on the familiar iterative Horner’s rule,
but use precalculated complements of the modulus, The prob-
lem of deciding which multiples of the modulus to subtract in
intermediate iteration stages has been simplified using simple
look-up of precalculated complement numbers, thus allowing a
finer-grain pipeline. Both algorithms nse a carry save adder
scheme with modulo reduction performed on each intermediate
partial product which results in an output in carry-save format.
Regularity and local connections make both algorithms suitable
for high-performance array implementation in FPGA’s or deep
submicron VLSI. The processing nodes consist of just one or two
full adders and a simple multiplexor. The stored complement
numbers need to be precalculated only when the modulus is
changed, thus not affecting the performance of the main computa-
tion. In both cases, there exists a bit-level systolic schedule, which
means the array can be fully pipelined for high performance and
can also easily be mapped to linear arrays for various Space/time
tradeoffs.

Index Terms— Cryptography, modular multiplication, RSA,
systolic arrays, VLSI,

I. INTRODUCTION

RYPTOGRAPHY systems have been growing in impor-
Clnncc recently as a method for improving data security.
Public key cryptography (PKC) systems are generally pre-
ferred to traditional secret key cryptography systems like the
data encryption standard due to the safety of key distribution
[3]. The Rivest-Shamir—Adelman (RSA) [10] system is one
of the most widely used public key cryptography systems, and
its core arithmetic is modular multiplication over a positive
integer. Modular multiplication is also a major computation of
residue number systems [13] as well as other cryptography
systems (e.g., international data encryption algorithm (8],
[16], Diffie-Hellman key exchange [3]). In this paper, we
develop an array modular multiplier with applications to, but
not restricted to, RSA systems.

In RSA, the modulus is a product of two large prime
numbers, usually more than 500 bits, and should be changeable
for security reasons. But, since the modulus (or key) is not
changed very often, we can use precomputation and look-up
in our array modular multipliers. We are not aware of anyone

Manuseript received November 21, 1994: revised January 26, 1996. This
work was supported in part by NSF Grant MIP-9108086.

Y, Jeong is with Samsung Electronics, Co., Seoul, Korea.

W. Burleson is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Ambherst, MA 01003 USA.

Publisher Item Identifier 8 1063-8210(97)01953-7.

who has utilized this special property of multirate input data in
the RSA algorithm, that is, the input message changes rapidly
while the key remains unchanged for a long period. In practice,
the key is updated infrequently, for example, a few months,
weeks, or days, depending on the security requirements. In
order to satisfy the ever growing security requirements of
high-speed communications, such as personal communication
services and wireless local area networks, a dedicated VLSI
hardware solution is needed because of L) high throughput
requirements, 2) low-power requirements, 3) a high-volume
market, 4) the computation is poorly suited to microprocessors
or DSP’s, and 5) the problem size is expected to continue to
grow rather than saturate.

Modular multiplication is generally considered a compli-
cated arithmetic operation because of the inherent multiplica-
tion and division operations. There are two main approaches
to computing modular multiplication: 1) perform the modulo
operation affer multiplication or 2) during multiplication. The
modulo operation is accomplished by integer division in which
only the remainder is needed for further computation. The first
approach requires a n X n bit multiplier with a 2n-bit register
followed by a 2n x n bit divider, In the second approach,
the modulo operation occurs in each iteration step of integer
multiplication. Therefore the first approach requires more
hardware while the second requires more addition/subtraction
computations due to O(n) modulo reduction steps. In both
cases, most previous research has focused on the fast cal-
culation of a long carry chain. Redundant number systems
and a higher radix carry-save form are some of the different
number representations that have been used for this purpose
[12], [14]. A carry prediction technique has also been used for
fast calculation of modular multiplication [1].

Since PKC was introduced, many algorithms and hardware
structures have been proposed for modular multiplication,
and [4] contains a good review on this topic. Several array
structures suvited for VLSI implementation have been discussed
in [4], [5], [14], and |15]. In [14], Vandemeulebroccke et al.,
use a modulo after multiplication approach using a signed
digit number representation. It consists of two arrays: one
for multiplication and the other for integer division. In [5],
Koc and Hung apply Blakley’s algorithm [2] and use a sign-
estimation method by looking at the five most significant bits
in each iteration stage. Although they derive a bit-level systolic
array structure, the latency and clock cycle are relatively
long due to the control node which estimates the sign of the
intermediate result in each stage. In [4] and [15], Eldridge and
Walter use Montgomery’s algorithm [9] which only works if

1063-8210/97$10.00 © 1997 JEEE
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the modulus is relatively prime to the radix, although this is
always the case in RSA.

In this paper, we develop two new VLSI array archi-
tectures for modular multiplication. The idea is similar to
Montgomery’s algorithm in which he ries to make each partial
product a multiple of the radix to simplify the multiplication
by the radix (just by shifting) by only looking at the least
significant bits (LSB), thus requiring a post-processing step to
gel the final answer, In our algorithms, we look at the most
significant bits (MSB) to remove higher bit positions while
keeping the correct answer in each partial product, keeping it
within a certain range. Due to the simple translation of a mod-
ulo operation into an addition of a precalculated complement
of the modulus. the modulo during multiplication approach is
used with a carry-save adder structure. Instead we pay for
multiplexors to choose the precalculated integer depending
on the control which is generated in the leftmost node in
each stage. Compared to previous works, we can obtain a
higher clock frequency mainly due to the simplified modulo
reduction operation. In Section II, we will explain our basic
concept for the modulo reduction operation and then describe
the two iterative algorithms. Array structures corresponding
to these algorithms, analysis, and some modifications are also
discussed in this section. Conclusions and discussion are in
Section IIL.

II. MODULAR MULTIPLICATION ALGORITHM

[n a modular multiplication, the n-bit madulus C is repre-
sented by a binary number system as C' = 7' ¢;2¢ where
i € GF(2). Obviously C is less than 2. We introduce K,
which is called the complement of the modulus (7, such that

K =2" mod C. (1)

In other words, any carry of weight 2" can be replaced by an
addition of K, which means that the end-around carry implies
an extra addition. If K does not change frequently, we can
precalculate multiples of K and store them in registers for use
in the modulo reduction operation. Note that if the MSB of
C'is 1, K is equivalent to —C in a 2's complement number
system.

Now we describe the general modular multiplication algo-
rithm using the modulo during multiplication approach. Given
any two n-bit integers, A and B, and the n-bit modulus
C. where (C > A, B), the modular multiplication can be
described by an iterative procedure using Horner’s rule

n—1
ABmodC =A-Y " b;2'mod C
i=0
=((-+* (bp-14)2+ bp_24)2
+ o+ b1A4)2 4 bgA)mod C. (2)
We can describe (2) in a recursive form as follows:
Py =0
P; =2P;_y + b,_1AmodC 3)

and P, is the final result. Using (1) and (3), we will derive
two different bit-level array structures.

A. Using the CSA Scheme

The carry save addition (CSA) scheme is the most com-
monly used technique in integer multiplication to reduce the
carry propagation penalty [6]. In the CSA scheme, a partial
sum and a carry sequence are generated in the intermediate
stages and the carry propagation occurs only at the last stage.
The basic element of the CSA scheme is a full adder (FA)
which is often called a (3, 2) counter, It accepts three inputs,
referred to here as s;, ¢;, =; with (associated weight 2'), and
produces two outputs, carry ¢, (with weight 2°t1) and sum s,
(with weight 2'). The arithmetic operation of the (3, 2) counter
can thus be described by the familiar expression:

200 + 80 = 8i + 5 + 25 (4

where “+” means an algebraic (not Boolean) addition.

Using the CSA scheme, we have a carry of weight 2" in
the leftmost node in each stage. As shown in (1), this carry
can be replaced by the addition of the integer K for a modulo
operation. The basic idea in our approach is that we handle
the carries of weight 2" and higher by using K wherever they
appear, unless the basic CSA structure is broken. From (3),
let us denote a partial product P; as

Pi=2C;+8; (0<i<n) (5)
then, the valid range of P; is
0<F<3.2"-3 (6)

This means we allow P; to be greater than modulus C at
intermediate stages.

Before we begin the derivation of a recursive equation for
modulo multiplication, we define a new variable K}, 1o handle
multiple end-around carrys

K, Kmod ¢ Q)

where h is a positive integer (1, 2, --+) and K is defined in
(1). Then

2" modC =27 . K mod C.

Carrys can also appear in a combined mode. As an example,
suppose we have two carrys of weight 2"+ and one carry of
weight 2%, then (27+! + 2"+ 4 9%) mod €' = 5. 9™ mod
C=5 K mod C = Ks.

Equation (3) contains two modulo reduction steps and can
be written by introducing a new partial product term T;, as

I) ’I.‘l? 321);‘._.11110(10'

i) Pi=(I;+ bp_1A)mod C. (8)
But step ii) cannot be implemented by the CSA scheme
because it has four operands to be added. (Note that the modulo
operation implies at least one extra addition of K.) This can
be solved by dividing step ii) into two steps as

i) T: = 2.{)3'_1 mod C
ii-a) TT=Ti+b, 1 A 9
ii-b) Fi= T modC.
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In step i), 2P;_; implies one 2" term (c*7!) and two 2»
terms (s?_‘f and c?’_*lz), which can generate a maximum of
4-2™1 In step ii-a), we do not perform the modulo operation
because there are already three operands: two from T: in carry
save form, and one for A depending on b,._;. Instead we want
to pass through the MSB carry of 7} to step ii-b). So, in step
ii-b), we will have at most 2 . 2 (one passed from T: and
another newly generated in 77) as end-around carrys. In both
the steps i) and ii-b), only one additional operand is allowed.
That is why we precalculate the K),’s instead of adding K
multiple times.

To explain the algorithm more formally, we define o(F;)
as follows;

a(BYE P — b 24 K,
where

h= f(z1, z2, 23, -+, z) (10)

and the function f(-) calculates the total magnitude of end-
around carrys, and %y, 23, -+, &, are bit variables (always
carrys and sums of the MSB position) which contribute to the
translation of (1). Thus

f(mlv Iy, "'am‘r):z QRTp (11)

k=1

where @ = 1 if @) has weight 2*, ap = 2 if the weight is
2" ay = 4 if the weight is 272, and so on. In other words,

o(F;) replaces h - 2" with K, which is precalculated.
Using (10), we can rewrite algorithm (9) as follows:
i) T; = o(2F;_4)
ii-a) T'=Ti+b, 1A
ii-h) B = o(T¥).

(12)

As we can see in Fig. 1, the function f(-) of the above
algorithm is
forstepi) f()= 2‘3?__11 + ""::1:11 + "-':?:12
for step ii-b) f(-) =47~ 442"t
where 471, 47"~ are the MSB carrys of 7 and T, respec-
tively (both have the weight 27).

Now we will informally verify that the algorithm (12)
satisfies the valid range of (6) for all P;'s G=0,1,- .-, 7).
Obviously 0 < Py < 3.2"—3. Suppose 0 < P;_; < 3.2"—3,
then

0<2P;_,
<6-2"—6
0<0(2F;_1)
<6-2"—-6-—-4.2"4 2"

=3:-2" -6
0<T?
<4-2" -6
I'Subscript is for an iteration stage and superscript is for denoling bit
positions, that s, S; = YU 5] - 2. Also note that lower case lettors

are used for bit-level variables while upper ease is for word-level variables.
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Fig. I. An iteration stage of modular multiplication using the CSA scheme.

0 <o(T})
<4.2"—-6-2.2" 49"
<3:2" -3

which assures 0 < P; < 3-2" — 3. Therefore the algorithm
(12) produces a final output P, which is less than 3 - 27 — 3.
It can be directly fed into the next multiplication stage for
further iteration if necessary (e.g., exponentiation).

Fig. 2(a) shows a single stage of the dependence graph
(DG) which can be directly implemented as a parallel array
multiplier. Fig. 2(b) describes the node functions. The nodes
X1, X3 are control nodes which calculate the control value /
of (10), and hence need simple encoders. The node Xy isjusta
wire. Node type A is a FA with a 4-1 multiplexor and an AND
gate. Node type B is just a FA with an AND gate and node
type C is a FA with a 2-1 multiplexor and an AND gate. Note
that node type B does not need a multiplexor and type C needs
only K and K’ because the max value of  is two in node X3.
An AND gate is needed in type A and C to accept Ky =0
when the control value h is zero. There exists a systolic
schedule which is not linear due to its skewed connection
between the stages. Table I shows an example for our new
bit-level modular multiplication algorithm using n = 12,
with A = 010001000100(= 1092), B = 010011001101(=
1229), and C = 100000101001 (= 2089). The K’s are
precalculated as K; = K = 011111010111(= 2007),
Ky = 011110000101(= 1925), K; = 011100110011(=
1843), K4 = 011011100001(= 1761). The final output is

Fn =2(001100010101) + (110111001010)
=1001111110100
(=5108)

which equals 930 after modulo reduction to 2089.

By merging two nodes into one in each row as has been done
in [5], one can modify the DG in Fig. 2 to derive a simpler
DG. This is shown in Fig. 3. Node types AA, BB, CC are
newly merged nodes which have two A, B, C type nodes,
respectively. It now allows a linear systolic schedule and
shows a better overview of the hardware array implementation.
If the wordlength n is an even number, then all nodes except
the control nodes will be merged nodes. Here we have the
original nodes A, B, C in the LSB place because 7 is odd. From
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L

cl 5

& ¢

(J%u bq{’?{"bu
bo=b

to=2%1+5+c2 ) I

FOTTOTTTO

(*) * is an algebraic MULT and + is an algebraic ADD,

ki[1:4

bi o
co
ko[1:4] ao ko[L:4] ap
50 50
to = ti bo = bi to=ti
20 = ai a0 = ai a0 = ai

ko[1:4] = ki[1:4]
(co,50) = FA(si, ci, kifti])

(*) ki{0]=0 and & is boolean AND, >

ko[1:4] = ki[1:4]
(co,s0) = FA(si, ci, ai&bi)

ko[ 1:4] = ki[1:4]
(c0,50) = FA(si, ci, ki[ti])

(b)

Fig. 2. Array structure for modular multiplication using CSA scheme (n
PE node descriplion.

Figs. 2 or 3, we can obtain many different one-dimensional
arrays (e.g., bit-serial modulo multiplier) depending on the
mapping functions [7].

In our array, the control is generated in a single left-most
node which has just four gates (two XOR, one AND, one
NOR gate) or two gates (one XOR and one NOR gate). The
simplicity of the control nodes gives a much faster clock cycle
for the entire array. Thus, it is not the control node but the
processing node which determines the clock cycle. Note that
all signals in Fig. 2 except the carry (c,) and sum (s,) are
transmittent signals, which means they are not modified while
passing through the array, thus allowing for broadcasting.

Compared to [S], the dependency structure looks the same
except for the control nodes due to the basic CSA scheme.
However, the main difference is in the function of the control
nodes. In [5], the control node (denoted as X°, LUS, LYY)
is made by merging five or six identical processing nodes
and each one (X, L, ¥, U) is fairly complex (roughly three

= T): (a) ith stage of DG for modular multiplication (n = 7) and (b)

XOR’s and more than five AND or OR gates). Therefore,
the resulting control nodes become five or six times larger,
and this is the critical reason for the slow clock cycle time.
It is also worthwhile to compare with 4] which claims to
be the fastest structure. Our array gives a faster clock cycle
(two XOR with one MUX versus five XOR) although it has
a longer latency. There is also no restriction on choosing the
modulus, thus allowing more general application. Furthermore,
we do not need a post processing step because we keep the
correct value in all iteration stages. Both methods require a
precalculation.

B. Using a Modified CSA Scheme

Now we derive a far simpler array structure from the
algorithm (3) by slightly modifying the basic element of the
CSA scheme. To directly apply the CSA structure to the
modular multiplication algorithm, we have to modify the basic
element so that it can accept an additional operand which
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TABLE 1
EXAMPLE SHOWING CoMPLETE FUNCTION OF Fie. 2 (VM =12)
stage (carry,sum) i(.) [ bu—

0 Py | 00 00 00 00 00 00 00 00 00 00 00 00 - -

I T, | 00 00 00 00 00 00 060 00 00 00 00 00 | f(.)=0
I3 | 00 00 00 00 00 00 00 00 00 00 00 0O ]
P; | 00 00 00 00 DO 00 00 00 00 00 00 00 {{.}:0

2 T | 00 00 00 00 00 00 00 00 00 00 00 00 f(.)=0
7 | 00010000 010100000101 0001 1
P, | 0001 00 00 01 01 00 00 01 01 00 01 | £(.)=0

3 T3 | 0100000101 000001010001 00 f(.)=0
T3 | 01000001 01000001 0100 01 00 0
Ps | 01000001 01 00 00 01 01 00 01 00 | {.)=0

4 T, | 000110 10 01 01 01 10 00 10 01 01 | &.)=1
T; | 0010 01 00 01 01 10 00 01 00 01 01 0
Py | 01 000100011000 0001000101 f(.)=0

5 Ty | 001001 11 010100 10 00 10 10 01 f[.}:l
T; | 010010010101010001010001 1
P; | 01010001 0101010001010001 |{(.)=0

[} Ts | 01011010 10 10 00 10 01 01 10 01 | £(.)=1
Tg [011101011001010010110010 1
Fs | 1001 01 10 00 01 01 01 01 01 01 00 f(.)=0

T T7 | 011101011001 010101100001 | f{.)=2
Ty | 1001 01 10 00 01 01 01 10 00 00 01 0
Py | 0010 11 01 01 10 01 11 00 01 01 10 | f{.)=1

B Ts | 01101011 0111010101110101 f(.)=1
Ty | 1001 01 01 10 01 01 01 10 01 01 01 0
Py | 001010 11 01 1001 11 00 10 10 10 f[.}:l

9 [ Tp | 01101011011101 1001100101 | 4(.)=1
Ty | 10010101 100110 00 1000 01 01 1
Py | 001010 11 01 11 00 10 00 01 10 10 | £{.)=1

10 Tio | 011010 11 10 10 00 01 10 10 01 01 i(.)=1
Tyo | 10 10 01 10 10 01 00 10 10 01 01 10 1
Pyg | 0101 1110 01 10 01 10 00 10 11 01 | £(.)=1

11 Tyy | 10 11 01 11 01 11 00 10 01 10 10 01 f(.)=1
Tty | 010110 01 10 01 01 00 10 01 00 01 0
Py | 011101110130011000100110 | £(.)=1

12 | Ty, [ 011110 1101 10 00 01 00 11 00 01 | f(.)=2
Ty, | 10 10 01 01 10 00 00 01 01 01 00 01 1
Pz | 01011011 01 01 00 10 01 10 01 10 | f{.)=1

scheduling hyperplane

Fig. 3. Regularized DG of Fig. 2 by node merging.

arises from end-around carry terms in the MSB nodes. Now
we extend the (3,2) counter to generate a more general adder,
which we call a partially generalized counter (PGC), as shown

215
ki ab si cilei2
si o G gl
(3,2) counter
ki xi [
p
(3,2) counter
co
50 peer =) LR 1§
2{{-‘ T SO B
p*ki + m*ci + si + xi = Zm¥co + 50 col co2 so
(a) B ()]

Fig. 4. A partially generalized counter (PGC) and a new adder logic: (a) a
PGC element and (b) an adder derived from (a) with m — 2, p=1.

in Fig. 4. In Fig. 4(a), s;, c; are a partial sum and a carry of
the previous stage. Note that the carry signal is not a single
bit, but m-bits. The variable z; is a regular operand which
appears in a typical array integer multiplication as a;&bi(&
is logical AND). An extra operand k; is introduced with a
p-bit signal for handling the end-around carry terms. So, the
arithmetic operation of PGC can be described by

2m'Cu+So=S£+m'Ci+Ei+p'ki (13)

where *“”" and “+* are algebraic multiplication and addition.
If m = 1, the only possible value of p is zero, which makes it
a typical FA. Therefore, we see that the m should be at least
two to accept an additional operand resulting from end-around
carrys. Furthermore, if m = 2 the only possible valye of p is
one, which results in five inputs and three outputs. This can
be easily implemented using two FA’s as shown in Fig. 4(b).
We can also derive different adders by choosing different P
and m. However, we want to minimize the number of signal
lines to reduce the complexity of the node function.

To apply the newly derived adder in the CSA structure, we
need a different CSA form (two carry terms) to express F;.
Lef us denote

F; = 2(Cih + Ci2) + Si, (14)

then, the valid range of P;is 0 < P; < 5.92™ 5. Following
the same procedure as the CSA scheme, let us say, C;; =
—ir— | ¥ . =1 F ' 1= | P

2jen th2 Ci = iy ey, 8 = T2} 5127, Then,
the contral generating function f(-) is

(0<i<n)

F0) = 20ef T+ i) (I CRE +e7 2 ,). (15)

Note that we need seven complement integers,
Ky, Ky, ---, K7. Fig. 5 shows an array structure for
the modified CSA scheme with node functions. The node
type D is a serial connection of two full adders with an
8-1 multiplexor. For the example shown in the previous
section, additional A's should be precalculated as K5 =
011011100001(= 1679), Kg = 011011100001 (= 1597),
K7 = 011011100001(= 1515).

The range of the final output P, can be further reduced
using two more basic CSA stages as shown in Fig. 6. The
first extra CSA stage adds up to sequences of carrys and a
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ki[L:7), 8 s cil

S <z
= % ti — 2 to
bi bo bi bo

col /
coZ

bo = bi

to=1i

6o = gi

ko[1:7] = ki[1:T]

(col,c02,50) = Adder(eil,ci2,sial&bi kilti])

(b)

Fig. 5. Armay structure for modular multiplication using modified CSA
scheme: (a) DG for modular multiplication using CSA scheme (7 — 4) and
(b) PE descriptions.

50 ko[1;7), ao
bo=bi
t0=2%1+ 2%2 + 5§ + ¢il + ci2

P, [0,5%2%n - 5)

Fig. 6. Exira stages to reduce the range from 5-2" — 5,327 — 3.

sum of P,except for the MSB carrys. The MSB carrys of
Py, are compensated for in the second extra CSA stage. The
range 5 - 2" — 5 of P, is reduced to 3- 2" — 3 by replacing
maximum 3 - 2" with K,(K, < 2"). At the second CSA
stage of Fig. 6, a 4-1 multiplexor is needed instead of an 8-1
multiplexor.

By running SIS [11], a multilevel logic minimization tool,
with arbitrary encoding, the control note ¥; had eight OR gates
(including one, three-input OR), nine AND gates (including
two, three-input AND), and three inverters, and the combi-
national logic depth was 12. This is reasonably close to the
fanction of node D (2-bit FA with a multiplexor)? in both area
and speed. Here again note that all signals are transmittent
except carrys and a sum.

1II. CONCLUSION AND DISCUSSION

We have shown two new array structures for modular
multiplication. Both use the basic CSA structure with some

2We used the common mapping to two-input OR gales to measure the logic
depth, hence the 2-bit FA has logic depth 9.

TABLE 1l
SUMMARY For Logic oF PE NoDES I TWo ARRAY STRUCTURES
arrey ! (Fig.2)
X1 X3 A B [ 0
(5,3)encoder | (3,2)encoder | (4:1) mux FA | (2:1) mux
FA AND gate FA
AND gate AND gate
array 2 (Fig.5 and Fig.6)
Y1 Y2 D E B
(8,3) encoder | (4,2) encoder | (8:1) mux FA (4:1) mux
2 FAs Fa
AND gate

modification and do not need any number translation. The
complement and its multiples need be updated only when
the modulus changes. In RSA applications, the key does
not change very often therefore this preprocessing step is
acceptable, The details of each processing node in the two
array structures are summarized in Table II. The first array
needs processing nodes of n(X;+ Xz) 4n%A + B + ),
and the second needs (n — 1)Y1+ Yz +n®D + n(E + F). In
each iteration stage, the second array has a smaller number of
FA’s but the first one has simpler encoders and a multiplexor
which lead to a faster clock cycle. Both have a systolic
schedule which means they can be fully bit-wise systolized
for maximum throughput.

Our approach has advantages over other previous array
structures, First, it is more general and has no restrictions in
choosing the modulus, hence can be used in any application
in which a larger number of computations are required for a
relatively long-lasting modulus (RSA, key-exchange, special
purpose DSP chip). Second, the algorithm and architecture
is simple to understand and verify, hence is easy to modify
for a hardware implementation, and does not use any special
technique like sign estimation which may imply a significant
degree of hardware and verification complexity. We could
obtain a faster clock cycle by reducing the complexity of the
control nodes in both area and speed. From an algorithmic
point of view, the concerns put forward in most previous
papers on deciding multiples of the modulus have been elim-
inated by multiplexing precalculated complement numbers.
We have verified our array structures first by C programming
and then by implementing two prototype VLSI designs which
were verified for function and timing using logic and circuit
simulation.

Finally, the RSA algorithm requires more than 500 bits
for security reasons, which may make the array multiplier
too large (~15 million gates including pipeline stages). To
maintain high performance for larger bit-lengths, we need to
map the original array onto smaller processor arrays in order
to build large “virtual” modular multipliers on fixed sized
arrays, called partitioning |7]. The regularity of our algorithm
makes it easy to find an appropriate partitioning strategy.
Because the control nodes which generate the multiplexor
control signals are located in the MSB in each iteration,
the LPGS (locally parallel, globally sequential [7]) scheme
is an appropriate choice, needing some extra buffers outside
the processor array (o contain intermediate data for each
block.
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VLSI Array Algorithms and Architectures
for RSA Modular Multiplication

Yong-Jin Jeong, Member, IEEE, and Wayne P. Burleson, Member, IEEE

Abstract—We present two novel iterative algorithms and their
array structures for integer modular multiplication. The algo-
rithms are designed for Rivest-Shamir—Adelman (RSA) cryp-
tography and are based on the familiar iterative Horner’s rule,
but use precalculated complements of the modulus. The prob-
lem of deciding which multiples of the modulus to subtract in
intermediate iteration stages has been simplified using simple
look-up of precalculated complement numbers, thus allowing a
finer-grain pipeline. Both algorithms use a carry save adder
scheme with modulo reduction performed on each intermediate
partial product which results in an output in carry-save format.
Regularity and local connections make both algorithms suitable
for high-performance array implementation in FPGA’s or deep
submicron VLSI. The processing nodes consist of just one or two
full adders and a simple multiplexor. The stored complement
numbers need to be precalculated only when the modulus is
changed, thus not affecting the performance of the main computa-
tion. In both cases, there exists a bit-level systolic schedule, which
means the array can be fully pipelined for high performance and
can also easily be mapped to linear arrays for various space/time
tradeoffs.

Index Terms— Cryptography, modular multiplication, RSA,
systolic arrays, VLSIL.

1. INTRODUCTION

RYPTOGRAPHY systems have been growing in impor-

tance recently as a method for improving data security.
Public key cryptography (PKC) systems are generally pre-
ferred to traditional secret key cryptography systems like the
data encryption standard due to the safety of key distribution
[3]. The Rivest—-Shamir—Adelman (RSA) [10] system is one
of the most widely used public key cryptography systems, and
its core arithmetic is modular multiplication over a positive
integer. Modular multiplication is also a major computation of
residue number systems [13] as well as other cryptography
systems (e.g., international data encryption algorithm [8],
[16], Diffie-Hellman key exchange [3]). In this paper, we
develop an array modular multiplier with applications to, but
not restricted to, RSA systems.

In RSA, the modulus is a product of two large prime
numbers, usually more than 500 bits, and should be changeable
for security reasons. But, since the modulus (or key) is not
changed very often, we can use precomputation and look-up
in our array modular multipliers. We are not aware of anyone
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W. Burleson is with the Department of Electrical and Computer Engineer-
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who has utilized this special property of multirate input data in
the RSA algorithm, that is, the input message changes rapidly
while the key remains unchanged for a long period. In practice,
the key is updated infrequently, for example, a few months,
weeks, or days, depending on the security requirements. In
order to satisfy the ever growing security requirements of
high-speed communications, such as personal communication
services and wireless local area networks, a dedicated VLSI
hardware solution is needed because of 1) high throughput
requirements, 2) low-power requirements, 3) a high-volume
market, 4) the computation is poorly suited to microprocessors
or DSP’s, and 5) the problem size is expected to continue to
grow rather than saturate.

Modular multiplication is generally considered a compli-
cated arithmetic operation because of the inherent multiplica-
tion and division operations. There are two main approaches
to computing modular multiplication: 1) perform the modulo
operation after multiplication or 2) during multiplication. The
modulo operation is accomplished by integer division in which
only the remainder is needed for further computation. The first
approach requires a n X n bit multiplier with a 2n-bit register
followed by a 2n x n bit divider. In the second approach,
the modulo operation occurs in each iteration step of integer
multiplication. Therefore the first approach requires more
hardware while the second requires more addition/subtraction
computations due to O(n) modulo reduction steps. In both
cases, most previous research has focused on the fast cal-
culation of a long carry chain. Redundant number systems
and a higher radix carry-save form are some of the different
number representations that have been used for this purpose
[12], [14]. A carry prediction technique has also been used for
fast calculation of modular multiplication [1].

Since PKC was introduced, many algorithms and hardware
structures have been proposed for modular multiplication,
and [4] contains a good review on this topic. Several array
structures suited for VLSI implementation have been discussed
in [4], [5], [14], and [15]. In [14], Vandemeulebroccke et al.,
use a modulo after multiplication approach using a signed
digit number representation. It consists of two arrays: one
for multiplication and the other for integer division. In [5],
Koc and Hung apply Blakley’s algorithm [2] and use a sign-
estimation method by looking at the five most significant bits
in each iteration stage. Although they derive a bit-level systolic
array structure, the latency and clock cycle are relatively
long due to the control node which estimates the sign of the
intermediate result in each stage. In [4] and [15], Eldridge and
Walter use Montgomery’s algorithm [9] which only works if

1063-8210/97$10.00 © 1997 IEEE
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the modulus is relatively prime to the radix, although this is
always the case in RSA.

In this paper, we develop two new VLSI array archi-
tectures for modular multiplication. The idea is similar to
Montgomery’s algorithm in which he tries to make each partial
product a multiple of the radix to simplify the multiplication
by the radix (just by shifting) by only looking at the least
significant bits (LSB), thus requiring a post-processing step to
get the final answer. In our algorithms, we look at the most
significant bits (MSB) to remove higher bit positions while
keeping the correct answer in each partial product, keeping it
within a certain range. Due to the simple translation of a mod-
ulo operation into an addition of a precalculated complement
of the modulus, the modulo during multiplication approach is
used with a carry-save adder structure. Instead we pay for
multiplexors to choose the precalculated integer depending
on the control which is generated in the leftmost node in
each stage. Compared to previous works, we can obtain a
higher clock frequency mainly due to the simplified modulo
reduction operation. In Section II, we will explain our basic
concept for the modulo reduction operation and then describe
the two iterative algorithms. Array structures corresponding
to these algorithms, analysis, and some modifications are also
discussed in this section. Conclusions and discussion are in
Section III.

II. MODULAR MULTIPLICATION ALGORITHM

In a modular multiplication, the n-bit modulus C is repre-
sented by a binary number system as C' = Z;:Ol ;2" where
¢; € GF(2). Obviously C is less than 2. We introduce K,

which is called the complement of the modulus C, such that
K =2" mod C. €))

In other words, any carry of weight 2" can be replaced by an
addition of K, which means that the end-around carry implies
an extra addition. If K does not change frequently, we can
precalculate multiples of K and store them in registers for use
in the modulo reduction operation. Note that if the MSB of
Cis 1, K is equivalent to —C' in a 2’s complement number
system.

Now we describe the general modular multiplication algo-
rithm using the modulo during multiplication approach. Given
any two n-bit integers, A and B, and the n-bit modulus
C, where (C > A, B), the modular multiplication can be
described by an iterative procedure using Horner’s rule

n—1
ABmodC =A-) b2 modC
=0
= (( .- (bn_lA)Q + bn_QA)2

+-- -+ 0 A)2+ bpA)mod C. )
We can describe (2) in a recursive form as follows:
Fy=0
P, =2P,_1+b,_1AmodC 3)

and P, is the final result. Using (1) and (3), we will derive
two different bit-level array structures.

A. Using the CSA Scheme

The carry save addition (CSA) scheme is the most com-
monly used technique in integer multiplication to reduce the
carry propagation penalty [6]. In the CSA scheme, a partial
sum and a carry sequence are generated in the intermediate
stages and the carry propagation occurs only at the last stage.
The basic element of the CSA scheme is a full adder (FA)
which is often called a (3, 2) counter. It accepts three inputs,
referred to here as s;, ¢;, #; with (associated weight 2%), and
produces two outputs, carry c, (with weight 2¢*1) and sum s,
(with weight 2¢). The arithmetic operation of the (3, 2) counter
can thus be described by the familiar expression:

2¢, + 5, =8, +c; +x; 4)

where “+” means an algebraic (not Boolean) addition.

Using the CSA scheme, we have a carry of weight 2" in
the leftmost node in each stage. As shown in (1), this carry
can be replaced by the addition of the integer K for a modulo
operation. The basic idea in our approach is that we handle
the carries of weight 2™ and higher by using K wherever they
appear, unless the basic CSA structure is broken. From (3),
let us denote a partial product P; as

P=2C+S (0<i<n) ©)
then, the valid range of P; is
0< P <3.2" -3, (6)

This means we allow F; to be greater than modulus C at
intermediate stages.

Before we begin the derivation of a recursive equation for
modulo multiplication, we define a new variable £, to handle
multiple end-around carrys

def

K,=h -KmodC (7N

where h is a positive integer (1, 2, ---) and K is defined in
(1). Then

2"t modC =2/ - KmodC.

Carrys can also appear in a combined mode. As an example,
suppose we have two carrys of weight 2"+1 and one carry of
weight 27, then (2% + 27*! 4 2") mod C' = 5 - 2" mod
C=5-KmodC = Kj;.

Equation (3) contains two modulo reduction steps and can
be written by introducing a new partial product term 77, as

i) T, =2F_imodC

iy P =(T, +by_1A)mod C. (8)

But step ii) cannot be implemented by the CSA scheme
because it has four operands to be added. (Note that the modulo
operation implies at least one extra addition of K.) This can
be solved by dividing step ii) into two steps as

i) T, = 2P,_; modC
CTZ‘* = E + bn—l A
P, =T modC.

ii-a)
ii-b)

)
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In step i), 2P;_; implies one 2"*! term (c?__ll) and two 2"
terms (s7 and ¢} %), which can generate a maximum of
4.2" 1 In step ii-a), we do not perform the modulo operation
because there are already three operands: two from 7 in carry
save form, and one for A depending on b,,_;. Instead we want
to pass through the MSB carry of 7; to step ii-b). So, in step
ii-b), we will have at most 2 - 2" (one passed from 7; and
another newly generated in 77*) as end-around carrys. In both
the steps 1) and ii-b), only one additional operand is allowed.
That is why we precalculate the K}’s instead of adding K
multiple times.

To explain the algorithm more formally, we define o(F;)
as follows:

o(PYE P, —h 2"+ K),

where

(10)

and the function f(-) calculates the total magnitude of end-
around carrys, and z1, x2, ---, z, are bit variables (always
carrys and sums of the MSB position) which contribute to the
translation of (1). Thus

h = f(xlv T2, T3, "+, xT)

f(z1, 22, ---,xr)zz aRT (11)
k=1

where o, = 1 if x;, has weight 27, o, = 2 if the weight is
27+l = 4 if the weight is 2”2, and so on. In other words,
o(P;) replaces h - 2™ with K}, which is precalculated.
Using (10), we can rewrite algorithm (9) as follows:
1) ,Tz = 0'(2Pi_1)
ii-a) =T +b,—1 A
ii-b) P, = o(T7).

(12)

As we can see in Fig. 1, the function f(-) of the above
algorithm is

for step i) f() = 26?__11 + 3?__11 + C?—_12

FOy=a ™ 4

where fy;”—l,fy;f "~L are the MSB carrys of 7; and 17, respec-
tively (both have the weight 2™).

Now we will informally verify that the algorithm (12)
satisfies the valid range of (6) for all P;’s (1 =0, 1, ---, n).
Obviously 0 < Py < 3-2" —3. Suppose 0 < P;_1 < 3-2" =3,
then

for step ii-b)

0<2P 4
<6-2" -6
0<a(2F_1)
<6-2"—-6—-4.2" 27
—3.9" _6
0<1;
<4.2" -6

I'Subscript is for an iteration stage and superscript is for denoting bit
positions, that is, S; = ET-‘;OI sf - 27, Also note that lower case letters
are used for bit-level variables while upper case is for word-level variables.
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e

|—> FA
I

—

Fig. 1. An iteration stage of modular multiplication using the CSA scheme.
0 <o(T})
<4-2"—6-2-2" 42"
<3-2" =3

which assures 0 < P; < 3 2™ — 3. Therefore the algorithm
(12) produces a final output P, which is less than 3 - 2™ — 3.
It can be directly fed into the next multiplication stage for
further iteration if necessary (e.g., exponentiation).

Fig. 2(a) shows a single stage of the dependence graph
(DG) which can be directly implemented as a parallel array
multiplier. Fig. 2(b) describes the node functions. The nodes
X1, X3 are control nodes which calculate the control value h
of (10), and hence need simple encoders. The node X5 is just a
wire. Node type A is a FA with a 4-1 multiplexor and an AND
gate. Node type B is just a FA with an AND gate and node
type C is a FA with a 2-1 multiplexor and an AND gate. Note
that node type B does not need a multiplexor and type C needs
only K7 and K because the max value of / is two in node Xs.
An AND gate is needed in type A and C to accept Kg = 0
when the control value h is zero. There exists a systolic
schedule which is not linear due to its skewed connection
between the stages. Table I shows an example for our new
bit-level modular multiplication algorithm using n = 12,
with A = 010001000100(= 1092), B = 010011001101(=
1229), and C = 100000101001(= 2089). The K}’s are
precalculated as K7 = K = 011111010111(= 2007),
K, = 011110000101(= 1925), K53 = 011100110011(=
1843), K4 = 011011100001(= 1761). The final output is

P, =2(001100010101) + (110111001010)
=1001111110100
(=5108)

which equals 930 after modulo reduction to 2089.

By merging two nodes into one in each row as has been done
in [5], one can modify the DG in Fig. 2 to derive a simpler
DG. This is shown in Fig. 3. Node types AA, BB, CC are
newly merged nodes which have two A, B, C type nodes,
respectively. It now allows a linear systolic schedule and
shows a better overview of the hardware array implementation.
If the wordlength n is an even number, then all nodes except
the control nodes will be merged nodes. Here we have the
original nodes A, B, C in the LSB place because n is odd. From
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2

{No¥oSoSeNeYoYeYol

QHQn;Qé?lélol

O (JHAJ
cl S @ ¢
6%0 to
3 2
to=2%l+s+c2 :’g cb to=s+c
(*) * is an algebraic MULT and + is an algebraic ADD.
ko{1:4] ao ko[1:4] ao
S0 S0
to=ti bo = bi to =ti
ao =ai a0 =al . ao = ai
ko[1:4] = ki[1:4] ko[1:4] =ki[l:4] ko[1:4] = ki[1:4]
(co,s0) = FA(si, ci, ki[ti]) (co,50) = FA(si, ci, ai&bi) (c0,50) = FA(si, ci, ki[ti])
(*) ki{0]=0 and & is boolean AND. 2
Fig. 2. Array structure for modular multiplication using CSA scheme (n = 7): (a) ith stage of DG for modular multiplication (» = T7) and (b)

PE node description.

Figs. 2 or 3, we can obtain many different one-dimensional
arrays (e.g., bit-serial modulo multiplier) depending on the
mapping functions [7].

In our array, the control is generated in a single left-most
node which has just four gates (two XOR, one AND, one
NOR gate) or two gates (one XOR and one NOR gate). The
simplicity of the control nodes gives a much faster clock cycle
for the entire array. Thus, it is not the control node but the
processing node which determines the clock cycle. Note that
all signals in Fig. 2 except the carry (¢,) and sum (s,) are
transmittent signals, which means they are not modified while
passing through the array, thus allowing for broadcasting.

Compared to [5], the dependency structure looks the same
except for the control nodes due to the basic CSA scheme.
However, the main difference is in the function of the control
nodes. In [5], the control node (denoted as X°, LU®, LY?)
is made by merging five or six identical processing nodes
and each one (X, L, Y, U) is fairly complex (roughly three

XOR’s and more than five AND or OR gates). Therefore,
the resulting control nodes become five or six times larger,
and this is the critical reason for the slow clock cycle time.
It is also worthwhile to compare with [4] which claims to
be the fastest structure. Our array gives a faster clock cycle
(two XOR with one MUX versus five XOR) although it has
a longer latency. There is also no restriction on choosing the
modulus, thus allowing more general application. Furthermore,
we do not need a post processing step because we keep the
correct value in all iteration stages. Both methods require a
precalculation.

B. Using a Modified CSA Scheme

Now we derive a far simpler array structure from the
algorithm (3) by slightly modifying the basic element of the
CSA scheme. To directly apply the CSA structure to the
modular multiplication algorithm, we have to modify the basic
element so that it can accept an additional operand which
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TABLE I
EXAMPLE SHOWING COMPLETE FUNCTION OF FIG. 2 (N = 12)
stage (carry,sum) () | buoi

0 Py | 00 00 00 00 00 00 00 00 00 00 00 00 - -

1 7y | 00 00 00 00 00 00 00 00 00 00 00 00 | f(.)=0
T7 | 00 00 00 00 00 00 00 00 00 00 00 00 0
P; | 00 00 00 00 00 00 00 00 GO 00 00 00 | f{.)=0

2 T, | 00 00 00 00 00 0C 00 00 00 00 00 00 | f(.)=0
T; | 00 010000010100 0001010001 1
P, | 0001 00000101000001010001 |f(.}=0

3 Ts; | 01 0000010100 000101000100 | f(.)=0
77 | 01000001 61 00 00 01 01 00 01 00 0
P; | 01000001 0100000101000100 | f(.)=0

4 T, | 00011010 010101 1000100101 | f(.)=1
T; | 001001000101100001000101 0
Py | 010001000110 000001000101 |f(.)=0

5 Ts | 00 10 01 11 01 01 00 10 00 10 10 01 | f(.)=1
Tr 1 010010010101010001010001 1
P; | 01010001 0101010001010001 | f(.)=0

6 Te | 010110101010 00 10 01 01 1001 ; f(.)=1
Tg 1011101011001010010110010 1
Ps | 10 0101 10 0001 010101010100 | £(.)=0

7 Tr ; 011101011001 010101100001 f(.)=2
T7 | 1001 0110000101 0110000001 0
P; | 00101101 011001110001 0110 | f(.)=1

8 Ts | 011010 110111010101110101 ] f(.)=1
Tg | 10010101 1001010110010101 0
Ps | 0010 10 11 01 10 01 11 00 10 10 10 | f{(.)=1

9 To | 011010110111011001100101 | 1f(.)=1
T3 1100101011001 100010000101 ’ 1
Py | 00 10 10 11 01 11 00 10 00 01 10 10 | f(.)=1

10 | Ty | 011010 11 10 10 00 01 10 10 01 01 | f{.)=1
Tio | 10 10 01 10 10 01 00 10 10 01 01 10 1
P { 0101111001 1001 1000101101 | £(.)=1

11 | Th; | 10110111 011100 10 01 10 1001 | f(.)=1
77, | 01011001 100101001001 0001 0
P;; | 011101110110011000100110 | £(.)=1

12 Typ | 0111101101 10 00 01 00 11 00 01 | £(.)=2
Ty, | 10 10 01 01 10 00 00 01 01 01 00 01 1
P | 010110110101001001100110 | f(.)=1

B 1

Fig. 3. Regularized DG of Fig. 2 by node merging.

arises from end-around carry terms in the MSB nodes. Now
we extend the (3,2) counter to generate a more general adder,
which we call a partially generalized counter (PGC), as shown
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ki ab si

cilci2

si . O

ki Adder xi
p

co

(3,2) counter

(3,2) counter

so

col ¢co2 so

(a) (b)

Fig. 4. A partially generalized counter (PGC) and a new adder logic: (a) a
PGC element and (b) an adder derived from (a) with m = 2, p = 1.

p*ki + m*ci + si + xi = 2m*co + so

in Fig. 4. In Fig. 4(a), s;, ¢; are a partial sum and a carry of
the previous stage. Note that the carry signal is not a single
bit, but m-bits. The variable x; is a regular operand which
appears in a typical array integer multiplication as a;&b;(&
is logical AND). An extra operand k; is introduced with a
p-bit signal for handling the end-around carry terms. So, the
arithmetic operation of PGC can be described by

2m-co+so=si+m-ci+xi+p-ki (13)

where “-” and “+” are algebraic multiplication and addition.
If m = 1, the only possible value of p is zero, which makes it
a typical FA. Therefore, we see that the m should be at least
two to accept an additional operand resulting from end-around
carrys. Furthermore, if m = 2 the only possible value of p is
one, which results in five inputs and three outputs. This can
be easily implemented using two FA’s as shown in Fig. 4(b).
We can also derive different adders by choosing different p
and m. However, we want to minimize the number of signal
lines to reduce the complexity of the node function.

To apply the newly derived adder in the CSA structure, we
need a different CSA form (two carry terms) to express F;.
Let us denote

[T3R L

P, =2(Cii +Cin)+ Si, (0<i<n) (14)

then, the valid range of F; is 0 < P, < 5- 2™ — 5. Following
the same procedure as the CSA scheme, let us say, C;; =
Sile ch2l, Cip = X0y b, 8 = Y5 5727, Then,
the control generating function f(-) is

§—

FO) = 2Ty + ) H ORI T (19)

Note that we need seven complement integers,
Ky, Ky, ---, K7. Fig.5 shows an array structure for
the modified CSA scheme with node functions. The node
type D is a serial connection of two full adders with an
8-1 multiplexor. For the example shown in the previous
section, additional K7}’s should be precalculated as K; =
011011100001(= 1679), K¢ = 011011100001(= 1597),
K7 = 011011100001(= 1515).

The range of the final output P, can be further reduced
using two more basic CSA stages as shown in Fig. 6. The
first extra CSA stage adds up to sequences of carrys and a
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ci2
1
2 3o to
bi bo

bo = bi
to = 2%t1 + 2*t2 + si + cil + ci2

co2 so ko[1:7], ao

bo = bi
to=ti

ao =ai
ko[1:7] = ki[1:7]
(col,c02,s0) = Adder(cil,ci2,si,ai&bi,ki[ti])

(®)

Fig. 5. Array structure for modular multiplication using modified CSA
scheme: (a) DG for modular multiplication using CSA scheme (n = 4) and
(b) PE descriptions.

[0,5%2%n - 5)

[0,3*2”n - 3)

Fig. 6. Extra stages to reduce the range from 5 - 2" — 513 -2" — 3.

sum of P,except for the MSB carrys. The MSB carrys of
P, are compensated for in the second extra CSA stage. The
range 5 - 2" — 5 of P, is reduced to 3 - 2™ — 3 by replacing
maximum 3 - 2" with Kj(K; < 2"). At the second CSA
stage of Fig. 6, a 4-1 multiplexor is needed instead of an 8-1
multiplexor.

By running SIS [11], a multilevel logic minimization tool,
with arbitrary encoding, the control note Y; had eight OR gates
(including one, three-input OR), nine AND gates (including
two, three-input AND), and three inverters, and the combi-
national logic depth was 12. This is reasonably close to the
function of node D (2-bit FA with a multiplexor)? in both area
and speed. Here again note that all signals are transmittent
except carrys and a sum.

III. CONCLUSION AND DISCUSSION

We have shown two new array structures for modular
multiplication. Both use the basic CSA structure with some

2We used the common mapping to two-input OR gates to measure the logic
depth, hence the 2-bit FA has logic depth 9.

TABLE 1I
SUMMARY FOR LOGIC OF PE NODES IN TWO ARRAY STRUCTURES

array 1 (Fig.2)

X1 X3 A B C
(5,3)encoder | (3,2)encoder | (4:1) mux FA (2:1) mux

FA AND gate FA
AND gate AND gate

array 2 (Fig.5 and Fig.6)

Y1 Y2 D ] E [ F
(8,3) encoder | (4,2) encoder | (8:1) mux | FA (4:1) mux

2 FAs FA

AND gate

modification and do not need any number translation. The
complement and its multiples need be updated only when
the modulus changes. In RSA applications, the key does
not change very often therefore this preprocessing step is
acceptable. The details of each processing node in the two
array structures are summarized in Table II. The first array
needs processing nodes of n(X;+ Xi) +n%(A + B + C),
and the second needs (n — 1)Y;+ Y2 +n?D + n(E + F). In
each iteration stage, the second array has a smaller number of
FA’s but the first one has simpler encoders and a multiplexor
which lead to a faster clock cycle. Both have a systolic
schedule which means they can be fully bit-wise systolized
for maximum throughput.

Our approach has advantages over other previous array
structures. First, it is more general and has no restrictions in
choosing the modulus, hence can be used in any application
in which a larger number of computations are required for a
relatively long-lasting modulus (RSA, key-exchange, special
purpose DSP chip). Second, the algorithm and architecture
is simple to understand and verify, hence is easy to modify
for a hardware implementation, and does not use any special
technique like sign estimation which may imply a significant
degree of hardware and verification complexity. We could
obtain a faster clock cycle by reducing the complexity of the
control nodes in both area and speed. From an algorithmic
point of view, the concerns put forward in most previous
papers on deciding multiples of the modulus have been elim-
inated by multiplexing precalculated complement numbers.
We have verified our array structures first by C programming
and then by implementing two prototype VLSI designs which
were verified for function and timing using logic and circuit
simulation.

Finally, the RSA algorithm requires more than 500 bits
for security reasons, which may make the array multiplier
too large (~15 million gates including pipeline stages). To
maintain high performance for larger bit-lengths, we need to
map the original array onto smaller processor arrays in order
to build large “virtual” modular multipliers on fixed sized
arrays, called partitioning [7]. The regularity of our algorithm
makes it easy to find an appropriate partitioning strategy.
Because the control nodes which generate the multiplexor
control signals are located in the MSB in each iteration,
the LPGS (locally parallel, globally sequential [7]) scheme
is an appropriate choice, needing some extra buffers outside
the processor array to contain intermediate data for each
block.
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Abstract

Cylindrical arrays have been shown useful for VLSI implementation of a
variety of problems including matrix-matrix multiplication and algebraic path
determination. However, spiral feedback paths limit their scalability due to per-
formance degradation in interconnect-delay dominant environments. A recently
proposed feedback-pipelining technique can efficiently address this problem
when signal paths are non-diametric in the projection direction. However, this
method may incur excessive penalties when the latter condition does not hold.
In this paper, a new class of cylindrical array is proposed, the ring-planarized
cylindrical array, which overcomes the barrier to efficient, fully-pipelined ar-
rays projected in directions having diametric signal paths. In contrast to stan-
dard cylindrical arrays, processors from each cylinder row are distributed along
planar ring structures rather than lines. This construction inherently constrains
maximum signal path length to a constant, permitting efficient scalability. Ap-
plication to the cryptographically relevant modular multiplication problem is
demonstrated.

1 INTRODUCTION

Systolic arrays remain an essential architectural methodology due to inherent
properties of modularity, regularity, local interconnection, and high degree of pipelin-
ing [1]. Moreover, as interconnect delay grows increasingly dominant as deep-
submicron technology progresses to smaller dimensions, systolic techniques become
even more relevant in the quest to attain the highest levels of performance.

Cylindrical arrays belong to the subset of array architectures which exhibit spiral
interconnections, and have been utilized in problems such as matrix-matrix multi-
plication [2] and the algebraic path problem [3]. Although these arrays exhibit some
interesting properties, they have been underutilized, due to the fact that the spiral
feedback paths are not strictly local. Therefore, the interconnect delay of such paths
can become a dominating factor as the array size increases.

* This research was supported by DARPA under grant number DA/DABT63-96-C-0050.
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In [4], a folded array methodology and two alternatives were presented to address
performance scalability in the modular multiplication problem. The rudimentary
embodiment of the former technique can be effectively described in terms of map-
ping to a standard cylindrical array. However, it was further demonstrated that by
applying proper temporal transformations to the array (in the form of rescheduling
or cutset pipelining/retiming), the spiral-feedback problem may be addressed archi-
tecturally by rendering such signal paths as transmittent, nearest-neighbor intercon-
nections. Although this method permits architectural scaling without interconnect-
related clock-rate penalty, it will be demonstrated in this paper that excessive delay
counts may be incurred when diametric signal paths exist in the projection direction.

To address this problem, this paper introduces a new cylindrical array paradigm,
the ring-planarized cylindrical array (RPCA). In contrast to the planarization which
yields standard 2-D cylindrical arrays, the new method distributes processors from
each cylinder row along planar ring structures rather than lines. RPCA structure
inherently limits maximum path length to a constant, eliminating array-size depen-
dence. Modular multiplication for cryptographic applications serves as the context
in which the RPCA methodology is applied in this paper. Paper organization is
as follows. Section 2 provides background on the modular multiplication problem.
Properties of standard cylindrical arrays are discussed in section 3, followed by the
introduction of the RPCA technique. A comparison of relevant quantities is provided
in section 4, followed by conclusions in section 5.

2 BACKGROUND: MODULAR MULTIPLICATION

A fundamental constituent of modern cryptography is the public-key class of
cryptosystems, which enable secure transmission of information over public chan-
nels without requiring exchange of secret parameters between communicating par-
ties. Modular exponentiation is the basis of many such methods including the pop-
ular RSA technique [5], and the modular multiplication operation is elemental to
modular exponentiation algorithms. Efficient hardware implementations of modular
multiplication are therefore essential to many modern cryptography applications.

Given positive integers A, B, and N, we define the modular multiplication com-
putationas ABmod N = AB — L%J N, i.e., determine the remainder of the prod-
uct of A and B with respect to the modulus N. Large problem sizes in cryptographic
applications (e.g. typical word lengths of 1024 bits or greater for RSA) necessitate
efficient iterative modular multiplication algorithms, and many are available [6] [7].

Although the architectural techniques to follow in the next section may be ap-
plied generally to many of the available modular multiplication algorithms, we will
focus attention on an example which may be deemed as typical in many respects.
We choose a useful binary LSD-first algorithm first derived in [8] by algebraic ma-
nipulation of the Montgomery method [6], wherein the quotient evaluation step is
rendered trivial. This algorithm also corresponds to a binary LSD-first form of the
general-radix IRA algorithms described in [7]. The algorithm may be specified as:
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Algorithm 1 Binary IRA Modular Multiplication Algorithm
Xy

Inputs: N,0 < A = Zﬂ:a,%" < 2N (where n = [log, N1),J0 < B < 2N,
i=0

N = 1N = 27| (N odd)
Output: 0 < Sp+1 < 2N
S_1 =0, ant1 = 0, and let mn; denote |S;_1],
fori=0ton+1 A
5= &d_éﬂz+853+mi'f\r
where 13:1y denotes zmod y, Snt+1 = fAB Q=2 [N +eNande € {0,1}. Note
that the least significant bit of the partial result of the previous iteration, S;_;, di-

rectly selects the modular correction value, which is amember of {0, N } Moreover

the first term on the right-hand-side of the expression for S; consists of S;_; trun-
cated by one bit. Finally, note the presence of a weighting factor in the final result
related to the total number of iterations executed. This property is common to any
LSD-first modular multiplication algorithm, and is addressed by operand prescaling
in the manner prescribed by Montgomery [6].

We now rewrite the core of algorithm 1 in terms of bit-wise computations in algo-
rithm 2 below, having the goal of deriving bit-level systolic modular multiplication
arrays [9] [10] [11]. Note that within algorithm 2, assuming a single carry would
be invalid (i.e., a 4-operand addition cannot be represented by single sum and carry
signals). However, assuming two carries of equal weight reveals no contradiction.
Furthermore, the computation is cast to reflect carry-ripple rather than carry-save
dependencies to avoid redundant representation of the final result, S, 1. However,
to account for a consequential single possible carry at most significant bit positions,
an additional j-loop iteration is added so that the S; 41 output may pass this output
to iteration ¢ + 1.

Algorithm 2 Bit-wise Modular Multiplication

S_1,; =0forall j, S; ny2 = 0foralli,and @nt1,bps1, Noy Npyy =0
fori =0ton+1
forj=0ton+1
letm; = S;_10
S,'_j -+ 265‘1:-) + 2053) = Sg_1_j+1 + a;b; + m,‘ﬁj + CE};_‘] + ng-)_l
Figure 1(a) depicts a dependence graph (DG) based on the above bit-wise al-
gorithm for a very small problem size (i.e., n = 5). Also shown is the cell /O
description and a valid linear schedule corresponding to s T = [1 2] (using a [j 1)
convention). Mapping via a [0 1] projection results in the linear array in figure 1(b).
Such an array achieves 100% utilization when two independent data streams are in-
terleaved. These data sets are distinguished in the figure by bracketed superscripts.
A new pair of data sets may be introduced roughly every 2n clock cycles, resulting
in throughput proportional to ;% = 1,
An efficient array is also obtained by projecting in the [1 0] direction, as shown

in figure 1(c). One advantage of this projection is single-ported output, i.e., the
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output is available serially at the bottom-most cell position. Another advantage
was demonstrated in [12], where favorable word-length scalability properties were
demonstrated with a shorter length, Montgomery carry-save array. Finally, it can be
observed that a [1 0] projected array can accept a single new data set every n + 2
clock cycles, and dependent computations must be separated by at least 2 (n + 2)
clock cycles. Neglecting initial latency, such an array outputs one result roughly

every n clock cycles, resulting in throughput proportional to L.

3 CYLINDRICAL MODULAR MULTIPLICATION ARRAYS
3.1 Standard Cylindrical Arrays and Feedback Pipelining

Having examined two linear systolic arrays for modular multiplication, we now
consider the question of how to achieve structures which enable a performance/area
trade-off for array sizes in excess of a linear array but smaller than a full 2-D ar-
ray. Three such approaches were introduced in [4]. The method of present interest
involved applying the folding transformation [13] to a full 2-D array in the [0 1]
projection direction. Figure 2 depicts a portion of a full 2-D array having delay as-
signments consistent with the scheduling shown in figure 1(a). In order to obtain an
architecture having k rows (where 1"3"—' > k > 1), we fold a possibly extended 2-D
array by a factor of ["k—"'—'] as displayed in figure 3(a) for k = 3.

Close examination reveals that such folded arrays are cylindrical in structure,
and are homologous to cylindrical arrays proposed for problems such as matrix-
matrix multiplication [2] and the algebraic path problem [3]. In the case currently
under consideration, such arrays are advantageous in that they can simultaneously
interleave 2k independent data streams, with new sets of inputs or outputs arriving
roughly every 2 (n + 1) + 1 clock cycles. Throughput is therefore roughly propor-
tional to % if a fixed clock rate is assumed, a fact which demonstrates the perfor-
mance scalability available through this design approach. However, the fixed clock
rate assumption may not remain valid as k is increased in interconnect delay domi-
nant environments due to unmitigated feedback paths. This is evident in the small &
factor example of figure 3(a), where two inter-cell traversals are required (from row
31to 2, and 2 to 1) as opposed to the limit of one such traversal for an array having
strictly nearest neighbor communications.

To remedy this problem, an efficient feedback pipelining method [4] may be
employed. Applying cutset pipelining in the original 2-D array along horizontal,
periodic feed-forward cutsets having period k, the corresponding folded array will
exhibit pipelined feedback paths having an identical pipelining factor. For example,
pipelining by one level along the cutsets indicated in figure 2 followed by folding
such that k = 3 yields the array in figure 3(b). It is clear that each feedback path
now contains at least two delay elements, which corresponds directly to the number
of inter-cell traversals. This fact allows the construction of an architecture having
strictly nearest neighbor communications as shown in figure 4, where the feedback
paths are rendered as pass-through signals in the second cell row. Extension of the
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feedback pipelining procedure for larger £ is straightforward and is displayed in the
array of figure 3(c). Note that feedback pipelining effectively increases the interleave
factor from 2k to 3k — 2 in order to obtain full hardware utilization and throughput
proportional to % Pipelining overhead incurred solely from feedback pipelining
amounts to roughly 3kn.

Having demonstrated the method for the [0 1] projection direction, we now pursue
application of the methodology for the [1 0] projection. Folding of an unmodified
full 2-D array in the [1 0] direction with k = 3 results in the array shown in figure
5(a). Attempting to achieve feedback pipelining by the previous temporal transfor-
mation strategy proves fruitless, since vertical cutsets within the modular multipli-
cation array are not feed-forward. Instead, all delays within the folded array must
be scaled by a factor of two, resulting in the array of figure 5(b). For general k, all
delay elements in the architecture are scaled by a factor (kK — 1) D in order to fully
pipeline the feedback paths, as shown in figure 5(c). Observe that this solution is not
nearly as efficient as the [0 1] projection case, due to diametric signal paths along
the projection direction. Pipelining overhead is substantially greater, amounting to
9k?n, and displays a quadratic rather than linear dependence on k. Similarly, the
required interleave factor for full hardware utilization and throughput is elevated to
k(k-1).

4 Ring-Planarized Cylindrical Arrays

Since significant penalties are associated with feedback pipelining of folded ar-
rays projected in directions having diametric feedback, the solution may be consid-
ered untenable — especially for all but the smallest k values. However, rather than
abandoning such projections in this problem and others wherein the above tech-
niques apply, an alternative solution is now derived based on the cylindrical nature
of such arrays.

Although a cylindrical array exhibits strictly nearest neighbor communications
in its three-dimensional embodiment as depicted conceptually in figure 6(a), non-
ideal, spiral feedback paths are introduced when the array is planarized in standard
fashion into a practical two-dimensional structure as in figure 6(b). Procedurally, this
planarization may be envisioned as unrolling the cylinder structure into the plane,
such that processors on each cylinder row are mapped onto a corresponding line.

As seen in the previous subsection, attempts to lessen the impact of feedback
path interconnect delay in such architectures through feedback pipelining is inef-
ficient when diameiric signal paths exist along the projection direction. However,
as it will now be shown, an alternative solution exists which avoids the significant
penalties involved with the standard cylindrical array manifestation. The new ap-
proach consists of planarizing the three-dimensional cylindrical array in a manner
such that processors from each cylinder row are distributed along planar ring struc-
tures rather than on lines as in the standard procedure. Figure 6(c) illustrates the
resultant two-dimensional structure, which we denote the ring-planarized cylindri-
cal array (RPCA). Notice that although more signal paths exceed nearest-neighbor
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length in this rudimentary form of the RPCA, all lengths are bounded according to
constants rather than exhibiting any dependence on the circumference of the cylin-
der (i.e., k in the previous development). This fact indicates that the new structure
may be scaled without encountering additional overhead due to increasing signal
path lengths, as will be demonstrated further below.

Utilizing the RPCA paradigm, we now derive modular multiplication arrays for
the [1 0] projection direction. Noting that the maximum signal path length amounts
to three inter-cell traversals, we pipeline the pre-folded, full 2-D array along hori-
zontal cutsets by two levels, resulting in the RPCA of figure 7(a).

Although this solution is straightforwardly derived from the RPCA definition, it
is not optimal for the particular problem under consideration. An alternative which
yields less overall pipelining overhead may be derived by observing that the num-
ber of delays associated with each vertical dependency (corresponding to {b, N}
variable sets) must be identical to the sum of the delays encountered on each asso-
ciated horizontal and diagonal member (corresponding to {a, m} variable sets and
S variables, respectively). Therefore, vertical paths always contain more delays
than diagonals. Exploitation of this property is achieved through counter-clockwise
circular shifting by one position of each successive ring as displayed in the modified
RPCA of figure 7(b). Although the longest path still occurs on diagonal dependen-
cies, signal assignment has necessarily been altered, i.e., diagonal and vertical paths
now represent {b, N'} variable sets and S variables, respectively. Thus, vertical paths
may contain fewer delays than diagonals, permitting a solution with less overhead.
Namely, imposition of only one level of pipelining (as opposed to two) at horizontal
cutsets in the pre-folded 2-D array achieves full pipelining on the longest path.

Figure 8 renders the modified RPCA in a strictly nearest-neighbor communica-
tion architectural form. Diagrams of signal propagation for upper and lower cells
within the ring structures are displayed, with gray accents indicating pass-through
signals. Note an interleave factor of k achieves full throughput, and new data sets
are introduced every n + k + 2 time steps. In the latter figure, k additional time
steps are present so that all a variables may be fed from the right hand side of the
array structure, rather than requiring internal porting. Dependent computations must
be separated by 3 (n + k + 2) time steps. Finally, note again that such an array
may be easily scaled to other k values (preferably even) without incurring additional
overhead.

5 COMPARISON

A brief comparison of some distinguishing features of the various array struc-
tures is performed in this section. For each architecture, Table 1 displays the total
number of required delay elements, the wire density of internal cells stated in terms
of inputs, and the number of inter-cell traversals exhibited by the longest signal
path in the architecture. As concluded earlier, it is obvious that the [1 0] projected
feedback-pipelined standard cylindrical array exhibits a burdensome, quadratically
increasing delay count with respect to k. However, the [0 1] projected counterpart
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Array Type # Delays Input Wires/Cell (int.) | Longest Path
Std. Cyl. [01 9k (n + 2) 10 k-1
Std. Cyl. [1 0] 9%k (n + 2) 12 k-1

Std. FP.Cyl. [0 1 (12k — 6) (n + 2) 10 1
Std. FP.Cyl. [10] [ 9k (k= 1) (n + 2) 12 1
mod. RPCA [1 0] 12k (n + 2) 10 1

Table 1: Comparison of properties of standard cylindrical arrays with and without
feedback pipelining and the modified RPCA architecture

and the modified RPCA in the [1 0] direction both exhibit a relatively minor over-
head of approximately 33% over the non-pipelined feedback arrays. Furthermore,
we note that the modified RPCA [1 (] achieves the same wire density of 10 input
wires per internal cell as the [0 1] projected cylindrical arrays, as compared to 12
for the [1 0] projected counterparts. Wire density is improved in the modified RPCA
over the latter arrays since the former avoids feedback of the multiplicity of horizon-
tal dependencies encountered in the modular multiplication problem.

The above comparison demonstrates that the modified RPCA [1 0] architecture is
competitive with the standard feedback pipelined [0 1] cylindrical array. This is sig-
nificant since the design difficulties arising from diametric signals in the projection
direction have been overcome, allowing potential advantages of arrays projected in
such a manner to be realized. For the modular multiplication problem, such unique
advantages include single ported output, simple word length scaling, and easy par-
titioning (along horizontal, feed-forward cutsets) for flexible multi-chip or block
layout implementation.

6 CONCLUSIONS

In this paper, a new architectural paradigm has been introduced, the ring-planarized
cylindrical array. In contrast to standard cylindrical arrays, RPCAs eliminate spi-
ral feedback paths which can prove problematic in interconnect delay dominant
environments. Furthermore, the RPCA technique is clearly superior to feedback-
pipelined standard cylindrical arrays when diametric signal dependencies exist in
the projection direction. Within the context of modular multiplication, the new tech-
nique is significant since it permits architectural scalability beyond linear arrays for
the horizontal projection. Such arrays have unique advantages of single-ported out-
put, word-length scalability, and simple partitioning.
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Figure 1: Diagrams illustrating (a) the modular multiplication dependence =
graph and cell descriptions, (b) the [0 1] projected linear array, and (c) the AR
(1.0] projected linear array PR |
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Figure 6: Diagrams depicting (a) three-dimensional cylindrical array, (b)

standard planarization, and (c) ring-planarized cylindrical array
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Figure 7: Diagrams of (a)
straightforward application of
RPCA technique to modular
multiplication and (b)
successively circularly-shifted
RPCA
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