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software controlled paging rather than dynamic caches
[37. 38).

2.4, Sratically Ordered Data Structure Access

The lack of side effects in dataflow actors makes it partic-
ularly difficult to support large, shared data structures [20].
Arvind et al. have therefore extended the dataflow model by
introducing I-siructures, a controlled form of global data
structures [ 2]. I-structures are write-once data structures with
nonstrict semantics, which in practice means that reads may
be issued before data are available in the data structure. Sup-
port for I-structures requires an ability to queue read requests
until they can be satishied. This mechanism is the mosi
promising available, but it does not come cheaply. One extra
memaory location is required for each read instruction thar
can be simultaneously pending. In addition. the I-structure
memory needs a processor of a sort 1o tend to pending reads
when a write finally occurs, A much simpler mechanism
may be used when scheduling is static.

Consider for example an actor that emits an array. This
array might be carried by a single token. Suppose that there
are Wo actors that take this array as an argument. A pure
dataflow model requires that the array be copied, or at least
than an implementation behave as if the array had been
copied. Using an I-structure avoids this copying. However,
with ordered-memory accesses, the copying is not necessary,
and neither is the I-structure memory. Since the scheduler
is aware of all precedences, it will avoid scheduling reads
before the data become available. If this cannot be avoided
(@2 processor has nothing to do until the data become avail-
able), then the read is attempted before the bus is granted
to the processor, so the processor halts, The bus will not be
granted to the processor until the data are ready. There is
no need 10 queue accesses.

When data passes through the shared memory from one
aclor to another actor, the scheduler can reclaim the token
storage afler scheduling the read by the destination. Write-
once shared-data structures are only slightly more compli-
cated, because there may be more than one destination actor.
The scheduler can simply use reference counts (RCs) [26.

16] to determine when the memory can be reclaimed. For
the above example, the RC associated with the array storage
would be initialized 10 2. the number of destinations, when
the array is scheduled to be written, Each time a read is
scheduled, the RC is decremented. When it reaches 0 the
memory can be reclaimed. This works without any run-time
overhead because the order of these transactions will be ern-
forced at run time.

Many variations of this idea im mediately come to mind;
lor example. reference counts could be used for each element
of the array. instead of the whole array, therehy obtaining
some of the advantages of the nonstrictness of I-structures.
Specifically, the array does not have to be completely filled
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before some of its elements can be read. Also. if the RC of
a data structure is identically one, then an actor using it may
modify it, instead of simply reading it, something not per-
mitted in the write-once I-structures. An intelligent code
generator can get considerable mileage out of this,

The reference count technique has been criticized for a
number of reasons [ 2]. most of which break down when the
scheduling is static. Primarily, for ordered-memory archi-
tectures, the overhead of managing RCs is incurred onfv ut
scheduling fime, not at run time,

3. STATICALLY SCHEDULED CONTROL

The ordered-memory architecture and the static shared
data structures seem 10 provide a very clean solution to some
vexing problems. However, they are only apphcable when
fully static or self-timed scheduling is possible. Although this
imposes some serious constraints, the constraints are less
serious than they may appear at first.

The programming environment called Gabriel [39]. de-
signed for signal processing applications, is based on graphical
dataflow representations of algorithms, Although specialized
to signal processing, this environment has permitted exten-
sive experimentation with scheduling algorithms and target
architectures and with a style of programming that matches
the need for static scheduling. As mentioned before, we have
implemented a software simulation of a four-processor or-
dered-memory architecture [5] using the Frigg hardware
simulation environment [4] and have retargeted Gabriel 1o
this architecture. Hence, we have been able to gain some
experience compiling and running real programs on this ar-
chitecture.

The granularity of the actors in Gabriel is arbitrary. varying
from simple arithmetic operators up to high-level signal pro-
cessing functions such as FFTs. Gabriel translates dataflow
graphs into sequential assembly code for programmable
DSPs, performing the scheduling statically for multiple pro-
cessors. A typical signal processing application contains a1
most 100s of actors, so we can experiment with rather com-
plex scheduling algorithms without getting bogged down,

To be able to schedule computations statically, Gabriel
restricts the dataflow model (o a subclass called synchranous
dataflow (SDF) [35]. We begin this section with & review
of the properties of this subclass and then continue by show-
ing that it is not as limited as it might at first appear. In
particular. we show that it supponis recurrences, manifest
iteration, and conditional assignment, but does not support
true recursion, data-dependendent iteration. or conditional
evaluation.

3.1. Synchronous Dataflow

A subtlass of dataflow graphs lacking data dependency is
well suited to static scheduling. Precisely. the term “syn-
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chronous dataflow™ has been coined to describe graphs that
have the following property [35]:

SDF Praperty. A synchronous aclor produces and con-
sumes a fixed number of tokens on each of a fixed number
ol input and output paths. An SDF graph consists only of
synchronous actors,

The basic constraint is that the number of tokens produced
or consumed cannot depend on the data. An immediate
consequence is that SDF graphs cannot have data-dependent
firing of actors, as one might find. for example, in an if-then-
clse construct. In exchange for this limitation, we gain some
powerful analytical and practical properties [33. 36]:

(1) For SDF graphs, the number of firings of each actor
can be easily determined at compile time. If the program is
nonterminating, as , for example, in real-time DSP, then a
periodic schedule is always possible, and the number of firings
of actors within each cycle can be determined at compile
time. In either case, knowing these numbers makes it possible
to construct a deterministic acyelic precedence graph. If the
execution time of each actor is deterministic and known,
then the acyclic precedence graph can be used to construct
optimal or near-optimal schedules.

(2) For nonterminating programs. it is important to verify
that memory requirements are bounded. This can be done
at compile time for SDF graphs.

(3) Swrvation conditions, in which a program halts due
to deadlock, may not be intentional, For any SDF graph, it
cun be analytically determined whether deadlock conditions
exist,

(4) 1fthe execution time of each actor is known, then the
maximum execution speed of an SDF graph can be deter-
mined at compile time, For terminating programs. this
means finding the minimum makespan of a schedule. For
nonterminating programs, this means finding the minimum
period of a periodic schedule.

(5) For any nonterminating SDF graph executing ac-
cording to 2 periodic schedule, it is possible to buffer data
between actors statically, Static buffering means loosely that
neither FIFO queues nor dynamically allocated memory are
required. More specifically. it means that the compiler can
statically associate memory locations with actor firings. These
memory locations contain the input data and provide a re-
pository for the output data.

These properties are extremely useful for constructing
parallelizing compilers. but they apply only 10 SDF graphs,
and optimal schedules can be construcied only when the
execution times of the actors are known. We have been de-
veloping techniques that weaken the SDF constraint, thus
supporting more general dataflow graphs without resorting
to fully dynamic control [23). However, these techniques
require modification of the MOMA controller of the ordered-
memory architecture. There is still much work to be done
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to find the best design parameters. so in this paper we retain
the SDF constraint,

Optimal compile-time scheduling of precedence graphs
derived from SDF graphs is one of the classic NP-complete
scheduling problems. Many simple heuristics have been de-
veloped over time, with some very effective ones having
complexity n*, where n is the number of actors (see for ex-
ample [25]). However, even n” complexity can bog down
a compiler. Fortunately, the granularity of dataflow actors
in Gabricl and the small size of many signal processing ap-
plications mean that we can ignore this problem for now.
To generalize these methods beyond signal processing ap-
plications. strategies will probably be needed to cluster sets
of actors into macro actors, thus reducing the number of
actors 1o be considered in constructing a schedule. For ex-
ample, the clustering method proposed in [31] seems suit-
able.

Static scheduling promises low-cost architectures, ar the
expense of compile-time complexity. For many applications,
this is a very attractive tradeoff. However, only some appli-
cations can be statically scheduled, The SDF model, which
can be statically scheduled, may appear to lack control con-
structs because it does not permit data-dependent firing of
actors. However, this is not entirely true. Some control
structures are possible within SDF, notably recurrences,
manifest iteration, and conditional assignment.

3.2. Recurrences

The dataflow community has recognized the importance
of supporting recursion, or self-referential function ealls. To
some extent, this ability has become a litmus test for the
utility of a dataflow model. The most common implemen-
tation, however, dynamically creates and destroys instances
of actors. This is clearly goi ng to be problematic for a static
scheduler.

In imperative languages, recursion is used 1o implement
recurrences and iteration, usually in combination. If we avoid
the notion of *function calls.” at least SOME recurrences can
be simply represented as feedback paths in a dataflaw pro-
gram graph. This section studies the representation of re-
currences using feedback. This representation poses no dif-
ficulty for static scheduling, although 10 some it lacks the
clegance of recursion.

Recurrences depend on the notion of “delays.” Once un-
derstood, this notion can be used to explain fundamental
limits on the concurrency in SDF graphs. It can also be used
to relate SDF to static dataflow [14]. This is done below.

3.2.1. Delays

A dataflow graph with recurrence is represented sche-
matically in Fig, 5. This graph is assumed 1o fire repeatedly.
In terminology borrowed from the signal processing com-
munity, the feedback path has a delay, indicated with a dia-
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FIG.5. A daaflow 2raph with a recurrence. Recurrences are expressed
using direct loops and delavs.

mond. which can be implemented simply as an initial 1oken
on the arc. A set of delavs in a dataflow graph corresponds
to a marking in Petri nets [45] or 1o the “D" tag manipulation
operator in the U-interpreter [1]. In fact. the symbol D was
selected 1o suggest delay [3], A necessary ( but not sufficient )
condition for avoiding deadlock in an SDF graph is that any
direcied loop in the graph must have at least one delay.

A delay docs not correspond to unit time delay. but rather
lo a single token offset, Such delays are sometimes called
logical delays or separators to distinguish them from time
delays [29]. For SDF graphs. a logical delay need not be a
run-time operation. Consider for example the feedback arc
in Fig. 5, which has a unit delay. The numbers adjacent to
the arcs indicate the number of tokens produced or con-
sumed when the corresponding actor fires. The initial token
on the arc means that the corresponding inpul of actor A
has sufficient data. so when a token arrives on its other input,
itcan fire, The second time it fires. it will consume data from
the feedback arc that is produced by the first firing of actor
B. In steady state. the #th firing of actor B will produce a
token that will be consumed by actor A on its (n+1)th
firing; hence the arc has unit token offset. The value of the
initial tken can be set by the programmer. so a delay can
be used to initialize a recurrence. When the initial value is
other than zero, we indicate it using the notion D { value).
Since delays are simply initial conditions on the buffers. they
require no run-time overhead. In Gabriel, a delav is a prop-
erty of an arc in the dataflow graph, rather than an aclor.
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Bounds on Perforimance

Consider nonterminating algorithms. or algorithms that
operate on a large data set. For these, directed loops are the
only fundamental limitation on the parallelizability of the
algorithm. This is intuitive because any algorithm withoul
recurrences can be pipelined. A special case of SDF, called
homogeneous SDF, is where every actor produces and con-
sumes a single token on each input and output. For he-
mogeneous SDF graphs, it is easy to compute the minimum
periad at which an actor can be fired. This is called the it-
eration perind bound and is the reciprocal of the maximum
compution rate. The iteration period bound may be much
smaller than the ime required to compute one pass through
the dataflow graph, It is a limit on the yme per pass if an
infinite number of passes are compuied,
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Let R(L) be the sum of the execution times of the actors
in a directed loop L. The iteration period bound is the max-
imum over all direcled loops 7. of R(L)/D(L). where D(L)
is the number of delays in L. [47. 10]. The directed loop .
that yields this maximum is called the crirical loop. General
SDF graphs can be systematically converted 1o homogeneous
SDF graphs for the purpose of computing the iteration period
bound [34]. If there are no directed loops in the graph. then
we define the iteration period hound to be zero. since in
principle all firings of each node could occur simultaneously,
itis important to realize that there is nothing fundamental
in the following discussion that prevents this. Implementa-
lion considerations may make it impractical, however.,

Another limitation on concurrency is the notion of state,
Particularly in large- or medium-grain dataflow graphs, it is
tonvenient to permit an actor (0 remember data from one
invocation 1o the next. This is simply modeled as a self-loop
with a unit delay. Such a self-loop precludes multiple si-
multaneous invocations of the actor, hence this self-loop may
become the critical loop.

Once the iteration period bound is known. we can derive
a bound on the performance of an ordered-memory archi-
tecture, on the basis of a set of ( admittedly ) unrealistic as-
sumptions. First, assume that we have a completely deter-
ministic dataflow graph. and assume that there are enough
processors that a hypothetically optimal scheduler can meet
the iteration period bound. The iteration period bound does
not reflect bandwidth or latency limitations on interprocessor
communication, however, For the ordered-memorv archi-
tecture of Fig. 3, a memory transaction can occur in one
cyele of the shared memory. If we assume that the shared-
memory cycle time is the same as local-memory cycle time, !
then latency adds nothing to the iteration period. Bandwidth
limitations. however, may add to the interation period. Euach
time the ideal scheduler schedules two simultancous memory
transactions. one of them must be delayed. If one of them
is not in the critical path, then that one should be delayed.
and there may again be no effect on the iteration penod. If
both are in the critical path. then the iteration period will
be extended by onc cyele. If three transactions are scheduled
simultaneously, then one of the transactions bas to be delaved
two cycles, increasing the interation period by at most two
cyeles, If M simultaneous transactions are scheduled. then
the interation period increases by at most 4 — | cyveles, IF
the total number of transactions is T, then the VETY WOrs!
situation“increases the iteration bound by at most T -- |
cycles.

Suppose now that 10 processars are each running a pro-
gram that accesses shared memory 10% of the time, Then

! This is actually pot a bad assumption for the architecture in Fig 3. if
the number of processors is modest. The main limitation on shared-memorny
cyele time is likely to be capacitive loading on the shared bus, and the price
of the memory. of course.
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this bound tells us that the ordered shared memory archi-
tecture can run this program in at most twice the time of
the theoretical minimum. However, this result should not
be taken very seriously because the performance will depend
much more heavily on the scheduling heuristics used. The
performance can be better (since simultaneous transactions
can be studiously avoided [48]) but can also be worse (if,
as is likely, a suboptimal scheduling algorithm is used ). Fur-
thermore, the use of gateways compleicly undermines this
analysis. Thus, this is not a very vseful bound.

3.2.3. Bounded Buffer Sizes

Although SDF actors cannot be created at run time, SDF
15 not the same as static dataflow [14]. For instance, in SDF,
there is no impediment 10 having multiple instances of an
actor fire simultaneously, as long as the actor does not have
state. A particular implementation, however, may impose
such a constraint. Consider for example an implementation
that permits no more than one memory location to be as-
sociated with each arc. This is the key limitation in static
dataflow [14]. It can be modeled with the recurrence in Fig.
3. The feedback arc begins with an initial token, This token
represents a “space” on the output buffer of actor A. Afier
A fires and consumes that token. it cannot fire again until
after B has fired, Any memory limitation on any arc in an
SDF graph can be modeled as a feedback path with a fixed
number of delays. To avoid unnecessarily sacrificing con-
currency. enough memory should be allocated 1o cach are
that the corresponding (eedback path does not become the
critical loop.

Suppose that, in Fig. 5, actors A and B are scheduled onto
different processors. In a conventional shared-memory ar-
chitecture, any buffer size limitation implies handshaking at
run time. In effect. the feedback path in Fig. 5 has to be
implemented at run time, just (o carry semaphores that in-
dicate when it is safe to write to the feedforward buffer, For
the ordered-memory architecture, however. buffer size [im-
itations can be statically modeled by the scheduler. They
imply no additional run-time overhead, In Fig. 5. the sched-
uler knows that the wnte from A and the read 10 B must
alternate. Since the order of the transactions is cn forced at
run time without semaphores, no additional overhead is in-
curred.

3.3. Manifest Iteration

In manifest teration. the number of repetitions of a com-
putation is known at compile time and hence is independent

{gi—&! HH
0 1 2 10 11 101 1ll

FIG. 6. An SDF graph that contains nesied iteration.
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FIG.7. A modificaton of Fig & to model the effect of a buffer of length
10 between actors B and C.

of the data, It can be statically scheduled, Furthermore, i
can be expressed in dataflow graphs by specifying the number
of tokens produced and consumed each time an actor fires.
For example, actor A in Fig. 6 produces 10 tokens each time
it fires, as indicated by the 10" adjacent to its output. Actor
B consumes 1 token each time it fires, $o i1 will fire 10 limes
for every firing of actor A. In conventional programming
languages, this would be expressed with a_for loop, Nested
Jor loops are easily conceived as shown in Fig. 6. If actors A
and E fire once each. then B and D will fire 10 times, and
C will fire 100 times. Techniques for aulomatically con-
structing static parallel schedules for such graphs are given
in[35] and [48].

There is no fundamental limitation on the parallelism in
Fig. 6 (there are no directed loops) . Hence, this scheme solves
the first open problem listed by Dennis in [13]. providing
the semantics of a “parallel-for” in dataflow.

3.3.1. Bounded Buffers

Although there is no fundamental fimitation on the par-
allelism in Fig. 6 (there are no directed loops), there may
be practical limitations. In Fig. 7. we mode] a buffer ol length
10 between actors B and C. Again, the tokens on the feedback
puth represent empty locations in the buffer. Actor B must
have 10 tokens on the feedback path (ie.. 10 emply locations
in the buffer) before it fires. Whenever actor C fires, it con-
sumes | token from the forward path, freeing a buffer lo-
cation, and indicating the free buffer location by putting a
token on the freedback path. The minimum buffer size that
avoids deadlock is 10.

This nonhomogeneous SDF graph could be converted to
4 homogeneous SDF graph and the iteration period bound
computed. but in this simple example the iteration period
bound is easily seen by inspection. H is clear that after cach
firing of B. C must fire 10 times before B can fire again. The
10 firings can oceur 1n parallel, so the minimum period of
a periodic schedule is Ry + Re. where Ry is the run time of
actor X In other words, successive firings of B cannot ocecur
in parallel because of the buffer space limitations. By contrast
if the buffer had length 100, then 10 invocations of B could
fire simultaneously, assumi ng there are no other practical
difficulties. Just as with unit length buffers, no additional
synchronization overhead is required in the ordered-memory
architecture to support these bounded buffers,
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3.3.2. Static Buffers

A second limitation on the parallelism can arise from the
addressing mechanism of the buffers. Each buffer can be
implemented as a FIFQ queue, as was done in Davis' DDM
(12]. Delays are correctly handled. but then access 1o the
buffer becomes a critical section of the parallel code, FIFQ
Queues are economically implemented as circular buffers with
pointers to the read and write locations. However. parallel
aceess 1o the pointers becomes a problem, If successive in-
vocations of an actor are to fire simultaneously on several
processors, then great care must be taken to ensure the in-
tegrity of the pointers. A typical approach would be to lock
the pointers while one processor has control of the FIFO
queue, but this partially serializes the implementation, Fur-
thermore, this requires that the hardware support an indi-
visible test-and-set operation,

In the ordered-memory architecture, the FIFQ imple-
mentation can be made simpler than in a general shared-
memory architecture. but a less expensive alternative 15 static
buffering [36]. Static buffering is based on the observation
that there is a periodicity in the buffer access that a compiler
can exploit. It preserves the behavior of FIFO queues
(namely, it correctly handles delays and ordering of tokens ),
but avoids read and write pointers. Specifically, suppose that
all buffers are implemented with fixed-length circular buffers,
implementing FIFO queues, where each length has been
predetermined to be long enough 10 sustain the run without
causing a deadiock. Then consider an input of any actor in
an SDF graph. Every N firings. where Vis 1o be determined,
the actor will get its input token(s) from the same memory
locations. The compiler can hard-code these memory loca-
tions into the implementation, bypassing the need for point-
ers 1o the buffer. Systematic methods for doing this, devel-
oped in [36]. can be illustrated by example. Consider the
graph in Fig. 7. which is a representation of Fig, 6 with the
buffer between B and assigned the length 10, A parallel
implementation of this can be represented as follows:

FIRE A
DO ten times |

FIRE B

DO m parallel ten times |

FIRE C

)

i
~ FIRED
i
FIRE E
For each paraliel firing of C, the compiler supplies a specific
memory location for it to get its input tokens. Note that this
would not be possible if the FIFO buffer had length 11, for
example, becausc the second time the inner DO loop is ex-
ecuted the memory locations accessed by C would not be
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the same as the first time. But with a FIFO buffer of length
10. invocations of C need not aceess the buffer through
pointers, so there is no contention for access 1o the poinlers.
The buffer data can be supplied to all 10 firings in parallel,
assuming the hardware has a mechanism for doing this. In
the ordered-memory architecture, the 10 firings cannot be
initiated simultaneously, because of bus bandwidth limita-
tions. However, they can be initiated at intervals of one
shared-bus cycle, If this cycle time is small compared to the
execution time of the actors, then the concurrency in the
parallel-for is adequately exploited.

An alternative to static buffering that also permits parallel
firings of successive instances of the same actor 1s token
matching [1]. However, even the relatively low cost of sorne
implementations of token maiching [44] would be hard 10
justify for SDF graphs. where static buffering can be used.

In Fig. 6 we use actors that produce more tokens than
they consume, or consume more tokens than they produce,
Proper design of these actors can lead to iteration constructs
semantically similar to those encountered in conventional
programming languages. In Fig. 8 we show three such actors
that have proved useful in DSP applications. The first, Fig.
8a. simply emits the last of N tokens. where N is 4 parameter
of the actor, The second. Fig. 8b. takes one input token and
repeats it on the output. The third. Fig. fc. takes one input
token each time it fires and emits the last A tokens that
arrived. It has a self-loop used to remember the past lokens
(and initialize them ). This can be viewed as the state of the
actor; it effectively prevents multiple simultaneous invoca-
tions of the actor.

A complete iteration model must include the ability to
nest recurrences within the iteration and to initialize the re-
currences when the interation begins. The SDF model can
handle this. We illustrate this with a finite impulse response
(FIR) digital filter because it is a simple example. An FIR
filter computes the inner product of a vector of coefficients
and a vector with the last N input tokens, where W is the
order of the filter, It is usually assumed to repeat forever,
firing each time a new input token arrives, Consider the pos-
sible implementations using a dataflow graph. A large-grain
approach is to define an actor with the implementation de-
tails hidden inside. This is the preferred approach in Gabriel.
An allernative is a fine-grain implementation with multiple
adders and multipliers and a delay line. A third possibility
is to use iteration and a single adder and multiplier. The first

N
N L 1 N L
LAST LAST
i ‘___!‘ H

(a) () (c)
FIG. 8. Three SDF actors useful for iteration.
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and last possibilities have the advantage that the complexity
of the dataflow graph is independent of the order of the filter.
A goad compiler should be able to do as well with any of
the three structures. One implementation of the last possi-
bility is shown in Fig. 9. The iteration actors are drawn from
Fig. 8, The coefficients actor simply ontputs a stream of N
coefficients: it produces one coefficient each time it fires and
reverts to the beginning of the coefficient list after reaching
the end. It could be implemented with a directed loop with
N delays, or a number of other ways. The product of the
input data and the coefficients is accumulated by the adder
with a feedback loop. The output of the filter is selected by
the “last of N*" actor.

The FIR filter in Fig. 9 has the advantage of exploitable
concurrency combined with a graph complexity that is in-
dependent of the order of the filter. Note, however, that there
is a difficully with the feedback loop at the adder. Recall
from the above that a delay is simply an initial token on the
arc. If this initial token has value zero, then the ficst output
of the FIR filter will be correct. However, after every N firings
of the adder, we wish to reset the token on that are to zero.
This could be done with some extra actors. but a fundamental
difficulty would remain. The presence of that feedback loop
implies a limitation on the parallelism of the FIR filter, and
that limitation would be an artifact of our implementation.
Our solution is to introduce the notion of a resetiing deluy,
indicated with a diamond conaini ng an R.

13.3. Resetring Delavy

A resetting delay is associated with a subgraph, which in
Fig. 9 is surrounded by a dashed line. For each invocation
of the subgraph, the delay token is reinitialized 1o zero. Fur-
thermore, the scheduler knows that the precedence is broken
when this occurs, and consequently it can schedule successive
FIR output computations simultaneously on separate pro-
CEssorSs,

The resetting delay can be used in any SDF graph where
we have nested iterations where the inner iterations involve
recurrences that must be initialized. In other words, anything
of the form

DO some number of times |
Initialize X

FIG. 9. An FIR filter implemented using a single multiplier and adder.

DO some number of times |
new X = f{X)

The implementation of a resetting delay is simple and
general. For the purposes of implementation, the scheduler
first treats the delay as if it were an actor that consumes one
token and produces one 1oken each time it fires. Recall that
in practice no run-time operation is required to implement
a delay, so there actually is no such actor. However, by in-
serting this mythical actor, the scheduler can determine how
many times it would fire (if it did exist) for each firing of
the associated subgraph, The method for doing this is given
in [35] and consists of solving a simple system of equations.
For each resetting delay, the scheduler obtains a number N
of invocations between resets: this number is used 10 break
the precedence of the arc for every Nth token and 1o insert
an object code that reinitializes the delay value. The method
works even if the subgraph is not invoked as a unit and even
if' it is scattered among the available processors. It is partic-
ularly simple when inline code is generated. However, when
the iteration is implemented by the compiler using loops,
then a small amount of run-time overhead may have to be
associated with some delays in order to count invocations.

So far we have shown that neither manifest iteration nor
recurrences present a fundamental problem for the SDF
model. Resetting delays can be used 10 initialize recurrences
within nested iterations. Hence corresponding programming
constructs can be efficiently and automatically implemented
on an ordered-memory architecture. Conditionals are a bit
more problematic.

3.4. Conditional Assignment

Conditionals in dataflow eraphs are harder to describe and
schedule statically. One attractive solution is a mixed-mode
programming environment, where the Programmer can use
dataflow at the highest level and conventional languages such
as C at a lower level. Gabriel is precisely such an environ-
ment. Conditionals would be expressed in the conventional
language, This is only a partial solution, however, because
conditionals would be restricted to lie entirely within one
large-grain actor, and concurrency within such actors is dif-
ficult to exploit. If the complexity of the operations that are
performed conditionally is high. then this approach is not
adequate. Furthermore, conditionals within an actor usually
imply a nondeterministic execution time of the actor. If the
variability of the possible execution times is high, the per-
formance of the ordered-memory architecture will suffer.

A simple alternative that is sometimes suitable to replace
conditional evaluation with conditional assignment. The
functional expression
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»=il(c) then f{ x) else g{x)

can be implemented as shown in Fig. 10. The MUX actor
consumes a token on each of the T, F, and control inputs
and copies either the T or the F token to the output. Hence,
both f{.x) and g(x) will be computed and only one of the
results will be used. When these funclions are simiple, this
approach is efficient; indeed it is commonly used in deeply
pipelined processors 1o avoid conditional branches. For hard
real-time applications, it is also efficient when one af the two
subgraphs is simple. Otherwise, however, the cost of evalu-
aung both subgraphs may be excessive, so alternative tech-
niques are required.

4. A NOTE ON QUASI-STATIC SCHEDULING

The domain of applications of the ordered-memory ar-
chitecture is constrained by the need to statically order
shared-memory accesses. An automatic parallelizing com-
piler has been writien to work with SDF graphs where the
actor execution times are reasonably predictable. Since the
SDF model supports recurrences, manifest ileration, and
conditional assignment, it is not as limited as it might at first
appear. Nonetheless, it is worth attempting 10 weaken the
constraints of the SDF model in order 1o ENCOMPpass more
applications. At Berkeley we have heen developing quasi-
static scheduling strategies that may solve some of these
problems [23]. The basic principle is that dynami¢ control
is used only where absolutely necessary. For instance, with
an if-then-else, control is dynamically transferred to one of
two statically scheduled subgraphs. Similarly, for a data-de-
pendent iteration (such as a do-while). a static schedule for
each cycle of the iteration is dynamically repeated. The chal-
lenge, of course, is to develop strategies for constructi ng the
static schedules for the subgraphs. F: urthermore, these tech-
niques imply changes to the ordered-memory architecture.
The MOMA controller can no longer simply passively siep
through a static list of processors to which it must grant the
bus. Instead, it has to follow the control path of the distributed
executing program. The challenge is to accomplish this with-
out increasing the complexity of the controller so much that
the advantages of ordered-memory accesses evaporate, This
is an active and promising line of inquiry.

FIG. 10. A dataflow graph with conditional assignment. Bolh /1 - ) and
k() are evaluated, and only one of the two vutpuls is selected.

LEE AND BIER

5. CONCLUSIONS

It is well known that data-independent dataflow graphs
can be scheduled statically, obviating the need for additional
run-time hardware to control the execution, We have illus-
trated low-cost parallel architectures that take advantage ol
this and have shown that shared data structures can also be
supported efficiently. A sofiware simulation of an ordered-
memory architecture has been built along with a compiler
that fully automates the mapping. The compiler begins with
a large-grain dataflow graph that conforms with the syn-
chronous dataflow model of computation. This SDF model,
although limited. can support recurrences. manifest iteration.
and conditional assignment. The execution times of actors
can vary slightly without seriously affecting the implemen-
tation, but wide variations can have considerable adverse
impact on execution speed. For applications with little de-
cision making, such as signal processing and some scientific
computing, this upproach appears attractive. To broaden the
application base, quasi-static scheduling may provide a so-
lution by introducing dynamic control only where absolutely
necessary [23].
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ABSTRACT: In recent vears several implementations of molecular df*qu}jc;aj
(MD) codes have been reported on multiple instruction multiple data (M )G X
machines. However, very few implementations of MD codes on single instruction: e
multiple data (SIMD) machines have been reported. The difficulty in using pair
lists of nonbonded interactions is the major problem with MD codes for SIMD
machines, such that, generally, the full connectivity comptttation has been used.
We present an algorithm, the global cut-off algorithm (GCA), which permits the
use of pair lists on SIMD machines. GCA is based on a probabilistic approach
and requires the cut-off condition to be simultaneously verified on all nodes of
the machine. The MD code used was taken from the GROMOS package: only

the routines involved in the pair lists and in the computation of nonbonded
interactions were rewritten for a parallel architecture, The remaining calculations
were performed on the host computer. The algorithm has been tested on
Quadrics computers for configurations of 32, 128, and 512 processors and for
systems of 4000, 8000, 15,000, and 30,000 particles. Quadrics was developed by
Istituto Nazionale di Fisica Nucleare (INFN) and marketed by Alenia Spazio.
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ROCCATANO ET AL,

Introduction

C lassical molecular dynamics (MD) is used to
study the properties of liquids, solids, and
molecules."* The Newton equation of motion for
each particle of the system is solved by numerical
integration and its trajectory is obtained. From this
microscopic point of view, many microscopic and
macroscopic properties can be obtained. The need
for numerical integration limits the time step to
the femtosecond scale and makes MD simulation a
very time consuming task. Therefore, considerable
efforts have been concentrated on optimizing MD
codes on parallel computers of different architec-
tures.

Parallel computers are frequently described as
belonging to one of two types: single instruction
stream multiple data stream (SIMD), or multiple
nstruction stream multiple data stream (MIMD).
In general, SIMD machines have a simpler archi-
tecture, but they have hardware limitations be-
cause the same instruction is executed in parallel
on every SIMD processor and, furthermore, some
SIMD machines do not have loeal addressing; that
15, the processors are not able to access their own
memory using different local addresses. In recent
years, several MD codes have been implemented
on MIMD architectures with a few dozen of
prucessm‘s:‘"s and, more recently, also on 100- to
1000-processor MIMD machines.”™ Parallel imple-
mentations of biological MD programs such as
CHARMM" and GROMOS" on MIMD machines
have been discussed in the literature.” '3

Less work has been done using SIMD
systems.'" "' In general, they make use of the full
connectivity computation; that is, all atom pair
interactions are calculated, and are useful for
long-range force systems. This is due to the diffi-
culty of using pair lists of nonbonded atoms on
SIMD machines with no local addressing,

In the present study we propose an algorithm
that permits the use of pair lists in a MD code for a
SIMD machine with no local addressing. The algo-
rithm requires simultaneous use of multiple time
step'® and geometric decomposition” methods. In
addition, the systolic loop“‘ method is used to
further reduce computation time.

The method was tested on Quadrics com-
puters,” ! a class of SIMD machines developed
by INFN and Alenia Spazio, for configurations of
32, 128, and 512 processors. Quadrics is the only

massive parallel compuler deseloped with fully
European technology, As the Europori2/PACC
project'' has shown, the scalability for a MD
code on MIMD architecture, for complex systems
such as a protein in solution, is generally satisfac-
tory only up to 12-16 nodes.

Moreover, there are interesting projects being
undertaken on mixed architecture MIMD /SIMD
machines that could supply the computational
power of a SIMD machine, together with the flexi-
bility of a MIMD. It is therefore worthwhile to
determine whether these machines are able to per-
form such calculations.

The following molecular systems have been
used as tests:

= Systent 1: Box of 1536 water molecules (4608
atoms).

= Systent 2: Box with a BPTI (bovine pancreatic
trypsin inhibitor) molecule and 2712 water
molecules (8704 atoms).

«  System 3 Box with a SOD (superoxide dis-
mutase) dimer and 4226 water molecules
(15,360 atoms).

= Systent 4: Box with a SOD (superoxide dis-
mutase) dimer and 9346 water molecules
(30,720 atoms).

It should be noted that system 4 is nearly the same
as test case 13, used as the industrial benchmark in
the framework of the Eurosport2/PACC project’
(system 4 has 9346 water molecules whereas test
case I3 has 9436 water molecules). The results
show that the speed-up of the algorithm is compa-
rable to those obtained with MIMD machines.

Hardware

We tested the method on a Quadrics machine,
Alenia Spazio’s supercomputer derived from the
APE100 (Array Processor Elaborator) project, de-
veloped by INFN."*' These computers are a fam-
ily of massively parallel] SIMD machines with im-
plementations from 8 to 2048 processors. The
biggest implementation allows a peak computing
power of 100 GFlops in single precision (32-bit
processors).

The processors are arranged in a three-dimen-
sional (3D) cubic mesh and can exchange data
with the six neighboring nodes, with periodic
boundaries. Each processor board contains eight
processors (floating point units) with their own
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memory (4 megabytes). Up to 16 boards can be put
into a crate. Configurations with more than 128
processors are made up connecting crates of 8 <
4 >4 (128) nodes.

The Quadprics controller board contains one inte-
ger CPU (Z-CPU), which controls the flux of the
program and the integer arithmetic. The language
used is called Tao, a Fortran-like high-level paral-
lel language, which can be modified and extended
through a dynamic ZZ parser. The Quadrics ma-
chine is connected to a host computer (a Sun
Sparc-10 or -20). A host interface based on a HIPPI
standard, which allows an 1/0 speed between the
host and Quadrics of 20 MB/s, has recently been
developed. The tests on the sequential machine
have been run on a DEC-alpha 3000 /500 machine.
Barone et al.* compared the accuracy of Quadrics
in the field of molecular dynamics with that of a
conventional computer to assess the limits of the
single precision.

Molecular Dynamics

In-a molecular dynamics simulation, the classi-
cal equations of motion for the system of interest
are integrated numerically by solving Newton's
equations of motion:

d? I

dt?

i, = =WV s i iar il

"

The solution gives the atomic positions and veloci-
ties as a function of time. The knowledge of the
trajectory of each atom permits study of the dy-
namic or slatistical properties of the system. The
form of the interaction potential is complex and it
includes energy terms that represent bonded and
nonbonded (van der Waals and Coulombic) inter-
actions:
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The first four terms represent the honded puten-
tial. b, by, and K; are the actual bond lengthy, its
reference value, and the hond stretching force con-
stant, respectively. ¢, #,, and K, are the actual
bond angle, its reference value, and the angle
bending force constant, respectively, £, £, and K,
are the actual improper dihedral angle, its refer-
ence value, and the improper dihedral angle bend-
ing force constant, respectively. ¢, K_, n, and &
are the actual dihedral angle, its force constant, the
multiplicity, and the phase, respectively. The last
term in the equation includes the nonbonded, van
der Waals, and Coulombic terms. g, and o, are
the dispersion well depth and the Lennard-Jones
distance, g; and ¢, are the electrostatic atomic
charges, r;, is the distance between them, and & is
the dielectric constant.

The time step used for the numerical integration
is in the femtosecond scale. The highest frequency
of bond vibrations would require a time step < (0.5
fs; however, if the simulation is performed with
constant bond lengths, the time step can be < 2 fs,
For this reason, many MD codes perform simula-
tions with constant bond lengths.

The most frequently used algorithm to perform
MD simulation at constant bond lengths is the
SHAKE algorithm based on an iterative
procedure.™

Computational Algorithm for
Nonbonded Inleractions

In a MD program, the calculation of the non-
bonded forces is the most time-consuming task—in
fact, it takes about 90% of the computational time,
depending on the protocol used.

One of the most frequently used techniques to
reduce the number of nonbonded forces is the
cut-off criterion. With this method the interactions
between atoms bevond a cut-off distance are ne-
glected. If the cut-off radius is appropriate the lost
energy contribution to the global potential is small.
During a small number of steps the pairs of inter-
acting atoms are considered to remain the same so
that it is possible to create a list of these interac-
tions, the nonbonded pair list, which will be up-
dated every i steps (n is generally equal to 10),
The number of nonbonded interactions is N(N —
1)/2 (N is the number of atoms), so that it is
proportional to N2 The use of the cut-off criterion
reduces this number to kN (k is a constant).
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Unfortunately, the cut-off criterion is not di-
vectly applicable to SIMD architectu re, as the same
instruction is execuled at each time on each pro-
cessor and, consequently, it is not possible to have
a local branch (the cut-off condition) in the pro-
gram flow. Moreover, on Quadorics it is not possi-
ble to have a local pair list on each node because
local addressing of arrays is not possible, This
explains the lower level of efficiency of a MD code
on a SIMD machine with respect to a MIMD one.
We have recently developed an algorithm, the
global cut-off algorithm (CGA), based on a proba-
bilistic approach, which allows the use of the cut-
off condition on a SIMD machine with no local
addressing.

Because the calculation of bonded interactions
and the integration of the trajectory take a small
amount of the total calculation time, in the present
version we have chosen to carry them out on the
front-end computer and to perform only the calcu-
lations of the pair list and of the nonbonded forces
using the SIMD machine. It is, of course, possible
to perform all force calculations and integration in
the parallel machine using, for instance, the repli-
cated data method.”

GEOMETRIC DECOMPOSITION

The assignment of the atoms to the nodes is
obtained by a dynamically geometric decomposi-
tion" in such a way that the same number of
atoms is assigned to each node. In what follows,
we discuss a decomposition for a bidimensional
case; the extension to a third dimension is straight-
forward: given the bidimensional box of Figure 1a
and a 2D parallel topology of 1 =1, % i1, proces-
sors, with n, =, =2, the box is first divided
into iz, boxes along the x-axis, as shown in Figure
Ib, each containing the same number of atoms.
Each box is successively divided into 1n, boxes
along the y-axis in such a way that each one of the
i, X i1, boxes contains the same number of atoms
(Fig. 1c). When, as in a real case, a third dimension
exists, a successive division along the z-axis has to
be performed.

[t is obvious that, before performing any divi-
sion along a given axis, it is necessary to sort the
atoms of each box along that axis.

The density of a molecular system, such as a
protein, is not uniform; thus, the boxes do not
have the same axis lengths. However, these differ-
ences do not significantly reduce the efficiency of
the GCA described in what follows,

o
T

FIGURE 1. Domain decomposition of the molecular
system in boxes with the same number of atoms, for a
hidimensional case.

SYSTOLIC LOOP METIHOD

Quadrics topology makes it possible to use
a systolic loop to calculate the nonbonded inter-
actions between the atoms assigned to the dif-
ferent nodes. The systolic loop method is one of
the most efficient algorithms for calculation of
two-body interactions on MIMD and SIMD
machines. " **3 The systolic loop algorithm
passes the coordinates of all atoms around a ring
of P processors in P/2 steps, such that half of the
coordinates passes every processor exactly once
(transient atoms), Each node also stores the coordi-
nates of a group of atoms of the overall system
(resident atoms). During the systolic cycle each
processor evaluates and accumulates the interac-
tions of the resident atoms with the transient ones.
Only half of the atoms have to pass in each com-
putational node as a consequence of the reciprocity
of the interactions.

The systolic loop path for a 32-node Quadrics
machine is shown in Figure 2. This machine has
two nodes along the y and = directions and eight
along the x direction,

The geometric decomposition of the system per-
mits limitation of the search for nonbonded inter-
actions only to the neighboring processors nearer
than the cut-off radius, so that, depending on the
number of nodes and on the system size, it is
generally not necessary to perform the complete
systolic loop. The computed forces are passed bacle
to the owning processor to accumulate the full
force.

GLOBAL CUT-OFI" ALGORITIM

On a SIMD machine, all nodes simultaneously
evaluate an interaction, but the atom pairs in each
nocle are different. Figure 3 shows, as an example,
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FIGURE 2. Systolic loop path for node (0, 0,0) of a
32-node Quadrics machine. The transient groups of
atoms visit only four neighboring y -z planes, based on
Newton's third law,

the case with four nodes: suppose that each node
is evaluating the interaction a,; in this case, all »,
interactions fall within the cut-off radius. When
the interactions are of the b, type all the distances
fall outside the cut-off radius and the interactions
b, are skipped. In the case of interactions of type ¢
the interaction is outside the cut-off radius in nodes
1, 2, and 3, but it is inside the cut-off radius in

Rk} P2

S ST g S Ra "
% -~ -
2% ‘1/“1 ' Loy e
W 2 5 o8

“T A 1Cq
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FIGURE 3. Different types of interactions in a case of
four nodes, a;, all the interactions fall within the cut-off
distance; b;, all the interactions fall outside the cut-off
distance; ¢;, one interaction falls within the cut-off,
whereas three fall outside the cut-off. P.U.= processor
unit.

node 4, so that all nodes have to calculate this
interaction and only will be saved in the forces
calculation, If the atoms in each node are ordered
randomly, the interactions of type ¢, result in
being the most frequent.

The basis idea of the global cut-off algorithm
(GCA) is to maximize the occurrence of interac-
tions of type a, and b, and, conversely, reduce the
occurrence of interactions of type c,. To this end, it
is necessary that the atoms in all nodes are sorted
with the same criterion. Different types of sorting
give comparable results. We have chosen the one
shown in Figure 4. After this sorting procedure, a
list of the interactions of type s, and ¢, is created
in the integer CPU (Z-CPU) of the SIMD machine.
This list is equivalent, but not identical, to the
nonbonded pair list used in most MD programs
and will be referred as the nonbonded pair list.

The ordering procedures for the domain decom-
position and the sorting procedure previously de-
scribed are time consuming and have to be per-
formed on the host serial machine: however, as
will be shown, they have to be performed every
100 to 200 steps so that they do not significantly
affect the global computation time,

The global cut-off condition is based on a proba-
bilistic approach, so that the number of pair inter-
actions to be calculated is larger than the actual
number of pairs included within the I, distance.
Depending on the molecular system and on the
number of nodes, the ratio between the number of
the calculated interactions and the number of in-
teractions actually included within the cut-off dis-
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FIGURE 4., Sorting of atoms in each node for a
bidimensional case. The atoms are represented as full
circles.
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tance varies from the three to five. In this sense,
the GCA is nat very efficient. However, it must be
noted that almost all pair interactions within a
distance 1., <7< r,, + Ar, with Ar =02 nim,
are calculated. As an example, given Towe = 0.6 D,
94% of the interactions in the range 0.6 < r < 0.8
nm are calculated and only 6% of pairs in this
range arve lost. This suggests adoption of a cul-
off value of r..,, to be used in the glabal cut-off
condition, somewhat shorter than the actual cut-off,
Yo desired for the simulation. In the previous
example, with ro-, = 0.6 and Feyr = 0.8 nm, the
number of pairs to be calculated is roughly two-
to-threefold larger than the actual number of pairs
within the r,, distance. The remaining 6% of
interactions in the range 0.6 < r < 0.8 nm have to
be calculated separately.

[t is well known that nonbonded forces vary
more slowly than the bonded ones. Moreover, non-
bonded forces at large distances vary slower than
nonbonded forces at short distances, This suggests
updating of the forces at different steps, according
to their nature (bonded and nonbonded) and to the
distance of the interaction. The short-range interac-
tions can be evaluated every step, and long-range
interactions every i steps. Accordingly, the few
interactions in the range 0.6 < r < 0.8 nm that
were lost using 75, = 0.6 nm can be updated
every i steps. As these interactions are calculated
while evaluating the nonbonded pair list (i.e., up-
dated every 1 steps), we have chosen i = 5 = 10.

It must be noted that there are now two shells:
an inner shell (r < 0.6 nm) and an outer shell
(0.6 < r < 0.8 nm). All interactions are evaluated
every ni steps, whereas only those interactions
corresponding to the inner shell are evaluated ev-
ery step. It is therefore not necessary to have a skin
distance and to store a list of atom pairs outside
the outer shell.

TABLE I

In the present study it is scen that most interc
lions in the range 0.6 1o (L8 nm are evaluated overy
step and only a few of them are evaluated every i
steps. According to all of the MTS algorithms, this
choice does not affect the numerical accuracy; in
fact, the same accuracy is obtained when an inter-
action, within the outer shell, is evaluated every
short time step or every long time step. However,
as every long time step all interactions within the
outer shell are evaluated, it is possible to perform
the MTS according to the classical procedure; that
is, by collection all the interactions within the
outer shell at every long time step and collecting
only the interactions within the inner shell at every
short time step. Among several algorithms pro-
posed for the multiple time step (MTS)! ™2 e
have chosen the one developed by Scully and
Hermans, "

[t must be noted that all nonbonded interactions
(van der Waals and Coulombic) between bonded
and nonbonded atoms are calculated in this step,
but the interactions between bonded atoms are not
saved. This is obtained by attaching to each atom a
list of the atoms bonded to itself. This procedure is
certainly not efficient, but the time required to
perform it is negligible. In the following tests, the
values of icc, and r, are fixed at 0.6 and 0.8 ni,
respectively.

Resulls

Table I shows the number of interactions within
the cut-off radius r,,, compared with the number
of interactions to be evaluated with the GCA. It
can be noted that the number of interactions for
calculation is two to three times the actual number
of interactions within the cut-off radius. T he time

Number of Actual Interactions, N, within a Cut-Off Radius (o) = 0.8 nm Compared with the Number of
Interactions Calculated Using GCA on 32+, 128- and 512-Node Quadrics Machines.

N 32 nodes 128 nodes 512 nodes
Systemn 1
(4608 atoms) 488,847 706,944 840,320 873,984
System 2
(8704 atoms) 891,252 1,612,864 1,810,944 2,070,016
Systemn 3
(15,360 atoms) 1,487,054 3,153,344 3,768,576 4,452 864
System 4
(30,720 atoms) 3,129,972 6,754,240 8,249,216 9,938,944
690 VOL. 19, NO. 7
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required for performing the MD simulation with
the present code is the sum of the fnllmving steps:
1. Ordering procedure (performed every k
steps by the host computer),
Caleulation of the nonbonded pair list (per-
formed every n.steps by Quadrics),
. Calculation of the nonbonded forces (per-
formed every step by Quadrics).
3a. Calculation of the bonded forces by the host
computer while performing step 3,
4. 1/0 host = Quadbrics,
3. SHAKE and integration (performed by the
host).

b

o3

The ordering procedure is a time-consuming
task and, due to the diffusion of the system, it has
to be periodically repeated every k steps. If no
reordering is performed the nonboided pair list will
include an increasing number of interactions, thus
ncreasing the computational time. Figure 5 shows

=4
=

=) =

~ =

e ey,
W kW@

\

e g (5]
Number of interactions x 10
G~ =~
i} - M
\\

oo
~ oo
s

20 40 G0 B0 100 120 140 180
number of steps

o o

FIGURE 5. Number of interactions o be calculated
versus the number of steps for system 4 on a 32-node
machine. The atoms are not reordered during the
simulation.

the number of interactions to be evaluated Versus
the number of steps when the ordering procedure
is performed at the beginning and nol updated, for
svstem < on a 32-node machine,

The loss of performance is nearly linear, being
~ U08% per step. The optimum k value depencds
on the time required for the ordering procedure
and on the time required for items 2 and 3. It
shows that, for all the systems and all the different
numbers of nodes, the optimum k value is in the
range of 100 to 200 steps. The ordering procedure
for system 4 on a Sun Sparc-20 (the host computer)
required 20 seconds, so that its cpu time per step is
in the range of 100 to 200 ms.

The nonbonded pair list is evaluated every J
steps (11 =10 in the present case) and the non-
bonded interactions are evaluated every step. The
average cpu time required for these tasks is re-
ported in Table II for different systems and differ-
ent numbers of nodes. [t should be emphasized
that the parallel machines perform the calculation
on a number of pairs two to three times larger
than the serial one. The almost linear scalability of
these task is also worthy of note.

The data transferred from the host to the
Quadrics and vice versa after each reardering step
(e, every k ~ 100 steps) are reported in Table II1
(upper panel); that is, 23 words per atom.

The data to be transferred every step are re-
ported in Table Il (lower panel)—9 words per
atom. The average time spent in transmission de-
pends on the speed of information transfer. Taking
into account the speed of the HIPPI interface (20
MB/s) the average I /0 times per step required for
systems 1 to 4 ave 9, 16, 28, and 35 ms/step,
respectively,

The sums of times for items 1 to 4 with different
numbers of nodes are reported in Table IV. Figure
6 shows the number of steps per second versus the

TABLE 1.
cpu Times for Nenbonded Interactions (Expressed in Milliseconds per Step).

DEC-alpha

3000 '500 32 nodes 128 nodes 512 nodes
System 1
(4608 atoms) 2943 632 174 68
System 2
(8704 atoms) 6097 1650 386 107
System 3
(15,360 atoms) 10,928 3274 894 214
System 4
(30,720 atoms) 27,610 6208 1624 466
JOURNAL OF COMPUTATIIONAL CHEMISTRY 691
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TABLE 1.
Data Transfer Resulis.

Quantity transferred
(words per atom)

Data transferred every k steps
From host to Quadrics
Coordinates of the atom 3
Coordinates of the geometric

center of the charge group 3
Electric Charge 1
Sequential atomic number 1
van der Waals parameters 2
Exclusions 1-3 6
Exclusions 1-4 4

From Quadrics to host
Forces 3
Total 23
Data transferred every step
From host to Quadrics
Coordinates of the atom 3
Coordinates of the geometric
cenier of the charge group 3
From Quadrics to host
Forces 3
Tolal 9

number of nodes for Quadrics (Fig. 6a) and for an
IBM-5P2 MIMD machine (Fig. 6b) for the same
system (system 4). For clarity, the CPU times re-
quired for SHAKE and integration are not in-
cluded. The code used for the MIMD machine was
developed within the Europort2 /PACC project.™
Figure 6 also shows that no significant advan-
tage is obtained with the MIMD machine when the
number of nodes is > 12, whereas, a good scala-

TABLE V.
Total cpu Times Including Nonbonded Interactions,
Ordering Procedure, and | / O Host Quadrics
(Milliseconds per Step).

' 3 T . i
Z g, ideal scalability
w
g% 2
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FIGURE 6. Number of steps per second versus the
number of nodes for system 4. (a) Quadrics: (b) IBM
SP2. The ideal scalability is expressed as a dashed line.
Single processor DEC-alpha 3000 / 500 timing is shown
for comparison.

bility, up to 512 nodes, is obtained with the SIMD
machine.

To complete the evaluation of the total
time/steps of the present MD code, the times
required on the host for the bonded interactions,
SHAKE, and integration have to be calculated. The
times required for these tasks, with the present
MD code, are reported in Table V. It should be
noted that the calculation of bonded interactions is
performed by the host, whereas Quadrics com-
putes the nonbonded interactions. As the former’s
calculation time is less than the latter, this task
does not require any extra cpu time.

The integration task requires less cpu time than
the nonbonded interaction calculation time (see
Table 1V) on a 32- or 128-node machine, and a
comparable amount of time on a 512-node ma-
chine. Therefore, this task must be parallelized for
machines with hundreds or thousands of proces-
sors. The integration can be implemented easily on
a SIMD machine by, for example, the replicated
data procedure,

The cpu time required to perform the SHAKE
algorithm on the host is the actual bottleneck. It is

32 nodes 128 nodes 512 nodes

System 1

(4608 atoms) 680 205 90
Systern 2

(8704 atoms) 1790 470 175
System 3

(15,360 atoms) 3540 1050 335
System 4

(30,720 atoms) 6660 1910 685
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TABLE V.,
cpu time on the Host (Sun Sparc-20) for Calculation

of Bonded Interactions, SHAKE, and Integration
(expressed in Milliseconds per Step).

Bonded
Interactions SHAKE  Integration
System 1
(4608 atoms) 41 236 57
System 2
(8704 aloms) 96 488 17
System 3
(15,360 atoms) 73 1102 161
System 4
(30,720 atoms) 194 3013 437

very difficult to implement the SHAKE algorithm
on a SIMD machine; therefore, an alternative pro-
cedure must be chosen. The MTS procedure can be
used to evaluate the bond vibrations without re-
cucing the time steps required for the nonbonded
interactions.

Conclusions

The results reported in the present work show
that the GCA permits use of pair lists even on a
SIMD machine with no local addressing, thus
overcoming one of the most severe disadvantages
of SIMD vs. MIMD machines. The penalty to be
paid is the number of interactions per step to be
calculated; that is, two to three times the actual
number of interactions,

The tests performed on Quadrics computers for
configurations of 32, 128, and 512 nodes, for sys-
tems of different sizes, up to 30,000 particles, show
that the scalabilities and performances are satisfac-
tory and comparable to those obtained with MIMD
machines. At the present time, the onlv routines
for the calculation of the pair lists and nonbonded
mteractions have been parallelized. We have
shown that the bonded forces can be calculated by
the host while the parallel machine calculates the
nonbonded ones. Also, the integration task can be
calculated by the host if the parallel machine has
Uup to tens of processors. With hundreds or thou-
sands of processors this task must also be paral-
lelized.

PARALLEL MOLECULAR DYNAMICS CODE

The SHAKE algorithm, which allows one fo
perform MD calculations at constant bond lengths,
is the actual bottleneck of the calculation and its
implementation is difficult with the parallel ma-
chine. We suggest the use of the MTS to evaluate
the bond vibration contributions.
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Introduction

C lassical molecular dynamics (MD) is used to
study the properties of liquids, solids, and
molecules."* The Newton equation of motion for
each particle of the system is solved by numerical
integration and its trajectory is obtained. From this
microscopic point of view, many microscopic and
macroscopic properties can be obtained. The need
for numerical integration limits the time step to
the femtosecond scale and makes MD simulation a
very time consuming task. Therefore, considerable
efforts have been concentrated on optimizing MD
codes on parallel computers of different architec-
tures,

Parallel computers are frequently described as
belonging to one of two types: single instruction
stream multiple data stream (SIMD), or multiple
instruction stream multiple data stream (MIMD),
In general, SIMD machines have a simpler archi-
tecture, but they have hardware limitations be-
cause the same instruction is executed in parallel
on every SIMD processor and, furthermore, some
SIMD machines do not have local addressing; that
is, the processors are not able to access their own
memory using different local addresses, In recent
years, several MD codes have been implemented
on MIMD architectures with a few dozen of
processors’ and, more recently, also on 100- to
1000-processor MIMD machines.** Parallel imple-
mentations of biological MD programs such as
CHARMM’ and GROMOS" on MIMD machines
have been discussed in the literature,® -1

Less work has been done using SIMD
systems," 17 In general, they make use of the full
connectivity computation; that is, all atom pair
interactions are calculated, and are useful for
long-range force systems. This is due to the diffi-
culty of using pair lists of nonbonded atoms on
SIMD machines with no local addressing.

In the present study we propose an algorithm
that permits the use of pair lists in a MD code for a
SIMD machine with no local addressing. The algo-
rithm requires simultaneous use of multiple time
step’ and geometric decomposition®® methods, In
addition, the systolic loop™ method is used to
further reduce computation time.

The method was tested on Quadrics com-
puters," ' a class of SIMD machines developed
by INFN and Alenia Spazio, for configurations of
32, 128, and 512 processors, Quadrics is the only

massive parallel computer developed with fully
European technology. As the Europort2 PACC
project’” has shown, the scalability for a MD
code on MIMD architecture, for complex systems
such as a protein in solution, is generally satisfac-
tory only up to 12-16 nodes.

Moreover, there are interesting projects being
undertaken on mixed architecture MIMD SIMD
machines that could supply the computational
power of a SIMD machine, together with the flexi-
bility of a MIMD, It is therefore worthwhile to
determine whether these machines are able to per-
form such calculations,

The following molecular systems have been
used as tests:

System 1: Box of 1536 water molecules (4608
atoms).

System 2: Box with a BPTI (bovine pancreatic
trypsin inhibitor) molecule and 2712 water
molecules (8704 atoms).

System 3: Box with a SOD (superoxide dis-
mutase) dimer and 4226 water molecules
(15,360 atoms),

System 4: Box with a SOD (superoxide dis-
mutase) dimer and 9346 water molecules
(30,720 atoms).

It should be noted that system 4 is nearly the same
as test case I3, used as the indtstrial benchmark in
the framework of the Eurosport2 PACC project'!
(system 4 has 9346 water molecules whereas fest
case I3 has 9436 water molecules). The results
show that the speed-up of the algorithm is compa-
rable to those obtained with MIMD machines.

Hardware

We tested the method on a Quadrics machine,
Alenia Spazio's supercomputer derived from the
APE100 (Array Processor Elaborator) project, de-
veloped by INFN.""*' These computers are a fam-
ily of massively parallel SIMD machines with im-
plementations from 8 to 2048 processors, The
biggest implementation allows a peak computing
power of 100 GFlops in single precision (32-bit
processors).

The processors are arranged in a three-dimen-
sional (3D) cubic mesh and can exchange data
with the six neighboring nodes, with periodic
boundaries. Each processor board contains eight
processors (floating point units) with their own
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memory (4 megabytes), Up to 16 boards can be put
into a crate. Configurations with more than 128
processors are made up connecting crates of 8 X
4 % 4 (128) nodes.

The Quadrics controller board contains one inte-
ger CPU (Z-CPU), which controls the flux of the
program and the integer arithmetic, The language
used is called Tao, a Fortran-like high-level paral-
lel language, which can be modified and extended
through a dynamic ZZ parser. The Quadrics ma-
chine is connected to a host computer (a Sun
Sparc-10 or -20). A host interface based on a HIPPI
standard, which allows an1 O speed between the
host and Quadrics of 20 MB s, has recently been
developed. The tests on the sequential machine
have been run on a DEC-alpha 3000 500 machine.
Barone et al.” compared the accuracy of Quadrics
in the field of molecular dynamics with that of a
conventional computer to assess the limits of the
single precision.

Molecular Dynamics

In a molecular dynamics simulation, the classi-
cal equations of motion for the system of interest
are integrated numerically by solving Newton’s
equations of motion:

2

i
M ViVir,ry,e, )

The solution gives the atomic positions and veloci-
ties as a function of time. The knowledge of the
trajectory of each atom permits study of the dy-
namic or statistical properties of the system, The
form of the interaction potential is complex and it
includes energy terms that represent bonded and
nonbonded (van der Waals and Coulombic) inter-
actions:
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The first four terms represent the bonded poten-
tial. b, b,, and K, are the actual bond length, its
reference value, and the bond stretching force con-
stant, respectively. #, #,, and K, are the actual
bond angle, its reference value, and the angle
bending force constant, respectively, £, £), and K,
are the actual improper dihedral angle, its refer-
ence value, and the improper dihedral angle bend-
ing force constant, respectively. ¢, K, #, and §
are the actual dihedral angle, its force constant, the
multiplicity, and the phase, respectively. The last
term in the equation includes the nonbonded, van
der Waals, and Coulombic terms. &; and o;; are
the dispersion well depth and the Lennard—Jones
distance, g; and q; are the electrostatic atomic
charges, r;; is the distance between them, and & is
the dielectric constant.

The time step used for the numerical integration
is in the femtosecond scale. The highest frequency
of bond vibrations would require a time step 05
fs; however, if the simulation is performed with
constant bond lengths, the time step canbe 2 fs.
For this reason, many MD codes perform simula-
tions with constant bond lengths.

The most frequently used algorithm to perform
MD simulation at constant bond lengths is the
SHAKE algorithm based on an iterative
procedure.®

Computational Algorithm for
Nonbonded Interactions

In a MD program, the calculation of the non-
bonded forces is the most time-consuming task—in
fact, it takes about 90% of the computational time,
depending on the protocol used.

One of the most frequently used techniques to
reduce the number of nonbonded forces is the
cut-off criterion. With this method the interactions
between atoms beyond a cut-off distance are ne-
glected. If the cut-off radius is appropriate the lost
energy contribution to the global potential is small.
During a small number of steps the pairs of inter-
acting atoms are considered to remain the same so
that it is possible to create a list of these interac-
tions, the nonbonded pair list, which will be up-
dated every n steps (n is generally equal to 10).
The number of nonbonded interactions is N(N
1) 2 (N is the number of atoms), so that it is
proportional to N, The use of the cut-off criterion
reduces this number ta kN (k is a constant).
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Unfortunately, the cut-off criterion is not di-
rectly applicable to SIMD architecture, as the same
instruction is executed at each time on each pro-
cessor and, consequently, it is not possible to have
a local branch (the cut-off condition) in the pro-
gram flow, Moreover, on Quadrics it is not possi-
ble to have a local pair list on each node because
local addressing of arrays is not possible. This
explains the lower level of efficiency of a MD code
on a SIMD machine with respect to a MIMD one.
We have recently developed an algorithm, the
global cut-off algorithm (CGA), based on a proba-
bilistic approach, which allows the use of the cut-
off condition on a SIMD machine with no local
addressing.

Because the calculation of bonded interactions
and the integration of the trajectory take a small
amount of the total calculation Hme, in the present
version we have chosen to carry them out on the
front-end computer and to perform only the calcu-
lations of the pair list and of the nonbonded forces
using the SIMD machine. It is, of course, possible
to perform all force calculations and integration in
the parallel machine using, for instance, the repli-
cated data method.?

GEOMETRIC DECOMPOSITION

The assignment of the atoms to the nodes is
obtained by a dynamically geometric decomposi-
tion” in such a way that the same number of
atoms is assigned to each node, In what follows,
we discuss a decomposition for a bidimensional
case; the extension to a third dimension is straight-
forward: given the bidimensional box of Figure 1a
and a 2D parallel topology of 1 1, % 4 Proces-
sors, with n, n, 2, the box is first divided
into 7, boxes along the x-axis, as shown in Figure
1b, each containing the same number of atoms,
Each box is successively divided into #, boxes
along the y-axis in such a way that each one of the
1, X n, boxes contains the same number of atoms
(Fig. 1c). When, as in a real case, a third dimension
exists, a successive division along the z-axis has to
be performed.

It is obvious that, before performing any divi-
sion along a given axis, it is necessary to sort the
atoms of each box along that axis.

The density of a molecular system, such as a
protein, is not uniform; thus, the boxes do not
have the same axis lengths. However, these differ-
ences do not significantly reduce the efficiency of
the GCA described in what follows.
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FIGURE 1. Domain decomposition of the molecular
system in boxes with the same number of atoms, for a
bidimensional case.

SYSTOLIC LOOP METHOD

Quadrics topology makes it possible to use
a systolic loop to calculate the nonbonded inter-
actions between the atoms assigned to the dif-
ferent nodes. The systolic loop method is one of
the most efficient algorithms for calculation of
two-body interactions on MIMD and SIMD
machines, %2> The systolic loop algorithm
passes the coordinates of all atoms around a ring
of P processors in P 2 steps, such that half of the
coordinates passes every processor exactly once
(transient atoms). Fach node also stores the coordi-
nates of a group of atoms of the overall system
(resident atoms). During the systolic cycle each
processor evaluates and accumulates the interac-
Hons of the resident atoms with the transient ones.
Only half of the atoms have to pass in each com-
putational node as a consequence of the reciprocity
of the interactions,

The systolic loop path for a 32-node Quadrics
machine is shown in Figure 2. This machine has
two nodes along the y and z directions and eight
along the x direction.

The geometric decomposition of the system per-
mits limitation of the search for nonbonded inter-
actions only to the neighboring processors nearer
than the cut-off radius, so that, depending on the
number of nodes and on the system size, it is
generally not necessary to perform the complete
systolic loop. The computed forces are passed back
to the owning processor to accumulate the full
force,

GLOEBAL CUT-OFF ALGORITHM

On a SIMD machine, all nodes simultaneously
evaluate an interaction, but the atom pairs in each
node are different. Figure 3 shows, as an example,
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FROMT (y)

FIGURE 2. systalic loop path for node {0,0,0) of a
32-node Quadrics machine, The transient groups of
atoms visit only four neighboring y~z planes, based on
Newton's third law.

the case with four nodes: suppose that each node
is evaluating the interaction 7;; in this case, all a;
interactions fall within the cut-off radius. When
the interactions are of the b; type all the distances
fall outside the cut-off radius and the interactions
b; are skipped. In the case of interactions of type ¢;
the interaction is outside the cut-off radius in nodes
1, 2, and 3, but it is inside the cut-off radius in
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FIGURE 3. Different types of interactions in a case of
four nodes. a,, all the interactions fall within the cut-off
distance; by, all the interactions fall outside the cut-off
distance; ¢,, one interaction falls within the cut-off,
whereas three fall outside the cut-off, P.U.= processor
unit,
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nede 4, so that all nodes have to calculate this
interaction and only will be saved in the forces
calculation. If the atoms in each node are ordered
randomly, the interactions of type ¢, result in
being the most frequent.

The basis idea of the global cut-off algorithm
(GCA) is to maximize the occurrence of interac-
tions of type a; and b; and, conversely, reduce the
occurrence of interactions of type c;. To this end, it
is necessary that the atoms in all nodes are sorted
with the same criterion. Different types of sorting
give comparable results. We have chosen the one
shown in Figure 4. After this sorting procedure, a
list of the interactions of type a, and ¢; is created
in the integer CPU (Z-CPU) of the SIMD machine.
This list is equivalent, but not identical, to the
nonbonded pair list used in most MD programs
and will be referred as the nonbonded pair list.

The ordering procedures for the domain decom-
position and the sorting procedure previously de-
scribed are time consuming and have to be per-
formed on the host serial machine; however, as
will be shown, they have to be performed every
100 to 200 steps so that they do not significantly
affect the global computation time.

The global cut-off condition is based on a proba-
bilistic approach, so that the number of pair inter-
actions to be calculated is larger than the actual
number of pairs included within the oy distance.
Depending on the molecular system and on the
number of nodes, the ratio between the number of
the calculated interactions and the number of in-
teractions actually included within the cut-off dis-
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FIGURE 4. Sorting of atoms in each node for a
bidimensional case, The atoms are represented as full
circles,
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tance varies from the three to five. In this sense,
the GCA is not very efficient. However, it must be
noted that almost all pair interactions within a
distance r.,, 7 71, Ar, with Ar 02 nm,
are calculated. As an example, given Tyt 0.6 nm,
94% of the interactions in the range 0.6 r 08
nm are calculated and only 6% of pairs in this
range are lost. This suggests adoption of a cut-
off value of r..,, to be used in the global cut-off
condition, somewhat shorter than the actual cut-off,
Teur, desired for the simulation. In the previous
example, with 7o, 0.6 and for 0.8 nm, the
number of pairs to be calculated is roughly two-
to-threefold larger than the actual number of pairs
within the r_, distance. The remaining 6% of
interactions in the range 0.6 r 0,8 nm have to
be calculated separately.

It is well known that nonbonded forces vary
more slowly than the bonded ones. Moreover, non-
bonded forces at large distances vary slower than
nonbonded forces at short distances. This suggests
updating of the forces at different steps, according
to their nature (bonded and nonbonded) and to the
distance of the interaction. The short-range interac-
tions can be evaluated every step, and long-range
interactions every m steps. Accordingly, the few
interactions in the range 0.6 r 0.8 nm that
were lost using roey, 0.6 nm can be updated
every m steps. As these interactions are calculated
while evaluating the nonbonded pair list (ie., up-
dated every n steps), we have chosen m  # 10,

It must be noted that there are now two shells:
an inner shell (+ 0.6 nm) and an outer shell
(0.6 7 0.8 nm). All interactions are evaluated
every m steps, whereas only those interactions
corresponding to the inner shell are evaluated ev-
ety step. It is therefore not necessary to have a skin
distance and to store a list of atom pairs outside
the outer shell.

TABLE 1.

In the present study it is seen that most interac-
tions in the range 0.6 to 0.8 nm are evaluated every
step and only a few of them are evaluated every m
steps. According to all of the MTS algorithms, this
choice does not affect the numerical accuracy; in
fact, the same accuracy is obtained when an inter-
action, within the outer shell, is evaluated every
short time step or every long time step. However,
as every long time step all interactions within the
outer shell are evaluated, it is possible to perform
the MTS according to the classical procedure; that
is, by collection all the interactions within the
outer shell at every long time step and collecting
only the interactions within the inner shell at every
short time step. Among several algorithms pro-
posed for the multiple time step (MTS)"1%2 e
have chosen the one developed by Scully and
Hermans.™

It must be noted that all nonbonded interactions
(van der Waals and Coulombic) between bonded
and nonbonded atoms are calculated in this step,
but the interactions between bonded atoms are not
saved. This is obtained by attaching to each atom a
list of the atoms bonded to itself. This procedure is
certainly not efficient, but the time required to
perform it is negligible. In the following tests, the
values of reey and r, are fixed at 0.6 and 0.8 nm,
respectively.

Results

Table I shows the number of interactons within
the cut-off radius r_,, compared with the number
of interactions to be evaluated with the GCA. It
can be noted that the number of interactions for
calculation is two to three times the actual number
of interactions within the cut-off radius. The time

Number of Actual interactions, N, within a Cut-Off Radius (r,,,) = 0.8 nm Compared with the Number of
Interactions Calculated Using GCA on 32-, 128- and 512-Mode Quadrics Machines.

N 32 nodes 128 nodes 512 nodes
System 1
(4608 atomns) 488,847 706,944 840,320 873,984
System 2
(8704 atoms) 891,252 1,612,864 1,810,944 2,070,016
System 3
(15,360 atoms) 1,487,054 3,153,344 3,768,576 4,452 864
Systemn 4
(30,720 atoms) 3,128,972 6,754,240 8,249,216 9,938,044
690 VOL. 19, NO. 7
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required for performing the MD simulation with
the present code is the sum of the following steps:

1. Ordering procedure (performed every k
steps by the host computer),

2. Calculation of the nonbonded pair list (per-
formed every n steps by Quadrics).

3. Calculation of the nonbonded forces (per-
formed every step by Quadrics).

3a. Calculation of the bonded forces by the host

computer while performing step 3.

4. 1 O host & Quadrics.

5. SHAKE and integration (performed by the
host).

The otdering procedure is a time-consuming
task and, due to the diffusion of the system, it has
to be periodically repeated every k steps. If no
reordering is performed the nonbonded pair list will
include an increasing number of interactions, thus
increasing the computational time. Figure 5 shows
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FIGURE 5. Number of interactions to be calculated
versus the number of steps for system 4 on a 32-node
machine. The atoms are not reordered during the
simulation.

PARALLEL MOLECULAR DYNAMICS CODE

the number of interactions to be evaluated versus
the number of steps when the ordering procedure
is performed at the beginning and not updated, for
system 4 on a 32-node machine.

The loss of performance is nearly linear, being
~ 0.08% per step. The optimum k value depends
on the time required for the ordering procedure
and on the time required for items 2 and 3. It
shows that, for all the systems and all the different
numbers of nodes, the optimum k value is in the
range of 100 to 200 steps. The ordering procedure
for system 4 on a Sun Sparc-20 (the host computer)
required 20 seconds, so that its cpu time per step is
in the range of 100 to 200 ms.

The nonbonded pair list is evaluated every n
steps (n 10 in the present case) and the non-
bonded interactions are evaluated every step. The
average cpu time required for these tasks is re-
ported in Table II for different systems and differ-
ent numbers of nodes. It should be emphasized
that the parallel machines perform the calculation
on a number of pairs two to three times larger
than the serial one. The almost linear scalability of
these task is also worthy of note.

The data transferred from the host to the
Quadrics and vice versa after each reordering step
(ie., every k ~ 100 steps) are reported in Table III
(upper panel); that is, 23 words per atom.

The data to be transferred every step are re-
ported in Table UI (lower panel)—9 words per
atom. The average time spent in transmission de-
pends on the speed of information transfer. Taking
into account the speed of the HIPPI interface (20
ME s) the average I O times per step required for
systems 1 to 4 are 9, 16, 28, and 55 ms step,
respectively.

The sums of times for items 1 to 4 with different
numbers of nodes are reported in Table IV, Figure
6 shows the number of steps per second versus the

TABLE 11,
cpu Times for Nonbonded interactions (Expressed in Milliseconds per Step).

DEC-alpha

3000 /500 32 nodes 128 nodes 512 nodes
System 1
(4608 atoms) 2943 632 174 68
System 2
(8704 atoms) 6097 1650 386 107
Systemn 3
(15,380 atoms) 10,928 3274 894 214
Systemn 4
(30,720 atoms) 27,610 6208 1624 466
JOURNAL OF COMPUTATIONAL CHEMISTRY 691
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TABLE Il
Data Transfer Results.

Quantity transferred
(words per atom)

Data transferred every k steps
From host to Quadrics
Coordinates of the atom 3
Coordinates of the geometric
center of the charge group
Electric Charge
Sequential atomic number
van der Waals parameters
Exclusions 1-3
Exclusions 1-4

O = aw

From Quadrics to host

Forces 3
Total 23
Data transferred every step

From host to Quadrics
Coordinates of the atom 3
Coordinates of the geometric
center of the charge group 3
From Quadrics to host

Forces

Total 9

number of nodes for Quadrics (Fig. 6a) and for an
IBM-SP2 MIMD machine (Fig. 6b) for the same
system (system 4). For clarity, the CPU times re-
quired for SHAKE and integration are not in-
cluded. The code used for the MIMD machine was
developed within the Europort2 PACC project.'
Figure 6 also shows that na significant advan-
tage is obtained with the MIMD machine when the
number of nodes is 12, whereas, a good scala-

TABLE V.

Total cpu Times Including Nenbonded Interactions,
Ordering Procedure, and | / O Host Quadrics
(Milliseconds per Step).

Quadrics
number of steps/s
[4¥]

e ————
a=0.037 132 128 512
number of nodes

o A7 =
".:}; 2’5_5 ideal scalability =
5 i ¥
T 2 ’ et
25 15
.n§ ; ] o
=2 -a”
"-:'- 0.5; =a=i-
= 0 . —_—
124 8 12 18 28

number of nodes

FIGURE 6. Number of steps per second versus the
number of nades for system 4. (a) Quadrics; (b) IBM
SP2. The ideal scalability is expressed as a dashed line.
Single processor DEC-alpha 3000 /500 timing is shown
for comparisen.

bility, up to 512 nodes, is obtained with the SIMD
machine,

To complete the evaluation of the total
time steps of the present MD code, the Hmes
tequired on the host for the bonded interactions,
SHAKE, and integration have to be calculated. The
times required for these tasks, with the present
MD code, are reported in Table V. It should be
noted that the calculation of bonded interactions is
performed by the host, whereas Quadrics com-
putes the nonbonded interactions, As the former's
calculation time is less than the latter, this task
does not require any extra cpu time.

The integration task requires less cpu time than
the nonbonded interaction calculation time (see
Table IV) on a 32- or 128-node machine, and a
comparable amount of tme on a 512-node ma-
chine. Therefore, this task must be parallelized for
machines with hundreds or thousands of proces-
sors. The integration can be implemented easily on
a SIMD machine by, for example, the replicated
data procedure.

The cpu time required to perform the SHAKE
algorithm on the host is the actual bottleneck, It is

32nodes 128 nodes 512 nodes

System 1

(4608 atoms) 680 205 90
System 2

(8704 atoms) 1790 470 175
System 3

(15,380 atoms) 3540 1050 335
System 4

(30,720 atoms) 6660 1910 685
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TABLE V.
cpu time on the Host (Sun Sparc-20) for Calculation
of Bonded Interactions, SHAKE, and Integration
(expressed In Milliseconds per Step).

Bonded
Interactions ~ SHAKE  Integration
System 1
(4608 atoms) 41 236 57
System 2
(8704 atoms) 96 488 117
System 3
(15,360 atoms) 73 1102 161
System 4
(30,720 atoms) 184 3013 437

very difficult to implement the SHAKE algorithm
on a SIMD machine; therefore, an alternative pro-
cedure must be chosen. The MTS procedure can be
used to evaluate the bond vibrations without re-
ducing the time steps required for the nonbonded
interactions.

Conclusions

The results reported in the present work show
that the GCA permits use of pair lists even on a
SIMD machine with no local addressing, thus
overcoming one of the most severe disadvantages
of SIMD vs. MIMD machines, The penalty to be
paid is the number of interactions per step to be
calculated; that is, two to three times the actual
number of interactions.

The tests performed on Quadrics computers for
configurations of 32, 128, and 512 nodes, for sys-
tems of different sizes, up to 30,000 particles, show
that the scalabilities and performances are satisfac-
tory and comparable to those obtained with MIMD
machines. At the present time, the only routines
for the calculation of the pair lists and nonbonded
interactions have been parallelized. We have
shown that the bonded forces can be calculated by
the host while the parallel machine calculates the
nonbonded ones. Also, the integration task can be
calculated by the host if the parallel machine has
up to tens of processors. With hundreds or thou-
sands of processors this task must also be paral-
lelized.

PARALLEL MOLECULAR DYNAMICS CODE

The SHAKE algorithm, which allows one to
perform MD calculations at constant bond lengths,
is the actual botileneck of the calculation and its
implementation is difficult with the parallel ma-
chine. We suggest the use of the MTS to evaluate
the bond vibration contributions.
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Abstract
In this paper we would discuss the increasing role played by the past and I g silican technology in solving real
putational applications’ cases in lated scientific fields ranging from q hemistry, materials science, aromic and
molecular physics and bio-chemistey. Although the wide range of comp ional lications af technalogy 1n this

areas does not permit 1o have a full rationale of its present and future role, some basic features appear to be so clearly defined
that un attempt to find common numerical behaviours become now feasible to be exploited,

Several theoretical approaches have been developed in order to study the state of bound and unbound interactions among
physteal particles with the scope of having a feasible numerical path to the solution of the equations proposed. Apart from the
evident scientific diversities among the cited computational fields, it s now becoming clear how they share common numerical
devices, in terms of computer architectures, algonithms and low-level functions. This last fact, when coupled with the role of
the lintensive technology provider who is itted to offer a computational solution to the needs of the scientific
users on d common general-purpose computing platform, offers a unique way of analysis of the basic numeric requirements in
this ares

Some specific computational ples in classical and g hanies of specific biochemistry and physics applications,
will be reported in this paper and by the ex position of the basic el of the theories involved, a discussion on the alternative
to— and optimization of — the use of current parallel technologies will be opened. Whenever possible, a comparison between
some numerical results obtained on general purpose mid-range parallel machines and forceasts from on silicon routines will be
carmied out 10 order to understand the viability of this solution 10 the (bio)chemical-physics computational commumity, ® 2001
Elsevier Science BV, All rights reserved

1. Introduction

In the last two-three decades or so, a huge scientific production of numerical results have been carried out in the
fields of applied thepretical chemical-physics. an area which embrace many different computational fields which
include quantum chemistry, atomic and molecnl physics, classical (and ab-initio) molecular dynamics, just to
cite a few.

A Corresponding author.
Eexmail atidress: n.sannala caspurit (N, Sanna).

HO10-465311/5 — st front marter @ 2001 Elsevier Science BV, All nights reserved,
PU: SO0 10-4655(01)00223-5
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Many attempts have been made to summarize the theories and methods involved in those scientific fields [
while some numerical specific codes play now a leading role in this arena [2-5]. Thanks fo this lhuge seientific
work it is now customary fo adopt the computational tool as a basic investigation device in almost any ared of the
experimental (bio)chemical-physies.

The area of Quantum Chemistry is traditionally a field which requires huge computing resources in order to
solve quantum Hamiltonians describing static praperties of nuclear and electionic particles by means of variational
energy-based methods. With the last decade of increasing computational applications of the Density Functional
Theory (DFT) method o the solution of physical problems, an open debate is on going on the use of this, Against the
traditional wavefunction quantum methods. Both methods remain extremely costly in terms of computing resources
and several studies are on going in order to setup computational techniques able to scale with the increasing
complexity of the atomic and molecular systems studied nowadays which are still domain of the classical particles
simulation,

In the last years the remarkable growth of the computer power has made the application of refined and ex pensive
muodels possible to materials science. The well-known Car-Parinello Molecular Dynamics (CPMD) method (5] is
4 parameter-free simulation scheme in principle superior than any MD simulation based on empirical interatomic
patential. Unfortunately, its computational cost is so heavy than only short simulations (~10 ps) and systems
with limited number of atoms (~100), are actually feasible, Quite a number of physical systems (like amorphous
matenals, extended defects nano-crystalline materials) and phenomena (like defect migration, microstructural
evolution under irradiation, crack propagation) relevant to materials science, are oul of reach of CPMD. On
the other hand, the classical potentials in many cases da not present a pood transferability to different physical
conditions. Recently it has been proposed the Tight-Binding Molecular Dynamics [6] simulation scheme that has
the accuracy needed to deseribe complex systems and a reduced computational workload with respect to CPMD.

Biomolecules are one of the most complex subjects of study as they involve many thousands degrees of freedom
for a given molecule and, at the same time, their biological mechanisms span many different timescales From
nanoseconds to milliseconds and beyond. It is not surprising, then. if computer simulations of biclogical systems
has quickly taken advantage of parallel computer archilectures. In recent years many efforts have been made
i order to realize efficient implementations of parallel MD codes specifically designed to simulate biological
systems [7-9].

Leading calculations using those methods require a huge computing power eitlier in term of CPU and/or 1/0
resources and top level computer architectures are often used. Those computing machines are built on top of
commodity components and this trend seems that will be consolidated even in the upcaming future parallel
architectures. From the application side. it is now becoming evident from the analysis of the computational
production in those fields, that those areas share some common unique features: (i) they require sophisticated
numerical algorithms; (i) they make use of the most numerical intensive hardware and software devices; (i) they
iteratively use basic — low level — routines to reach the numerical solution.

Among oflers, the last point open a way to understand the role that can be played by on silicon, specific-purpose
deviee, which can represent a viable, valid alternative to (he use of mid-range to massively parallel machines.

2. The numerical application requirements

Itidependently of the theories and methods (classical or quanium) involved, we would try fo summarize some
key factors which affect the performances of the codes in which those theories are implemented on, We would
approach this by the point of view of the technalogy provider — often a computer center, like CASPUR [10] —
where many of those codes run on the same general purpose parallel machines. Even if this approach cannol be
thought 10 be exhaustive, perhaps it can help to understand some common requirements from the point of view of
an external observer with respeot of the scientific areas those theories were generated from,
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During the Jast ten years or so, we at CASPUR have identified some key algorithms and low-level functions
that have had the broader usage among the numerical codes which implement the most representative theories and
methods in (bio)chemical-physics. By selecting the proper input data for those codes, we were able to use them as
a reliable benchmarks/test-beds of our machines before to open them to the whole community of users.

Let us now summarize below some key factors present in the theories and methods deseribed so far, from
which we have identified leading sections of codes representing some of the most time consuming applications at
CASPUR:

® Many methods use basis functions (orbitals) to project quantum operators over them [2,5.11]. Cartesian or
spherical Gaussian Type Orbital (GTO) are often used and manipulated,

Several methods make use of pure/mixed numerical basis sets which are composed by an analytic (typically
the angular) part and a pure numeric part [1 11,

Among the operations between hasis sets clements, their numerical integration over a given range of
the independent variables is often performed [2,5,11]. This, can be accomplished ejther analytically ar
mumerically, in dependence of the fact that the integrand function is known or not.

First and second (and less often, higher) derivatives of basis sets elements, their combined products and
integrals, are often performed at different level in all of the referenced codes. This can be carried ont as above.
either analytically or numeri cally,

Some basic library or intrinsic functions are mtensively used in many ways in all of the referenced codes, to
perform higher level numerical operation, These inelude linear algebra subprograms, Fast Fourier Transforms
and Splines fitting, just to cite a few.

The actual implementation of the algorithms for the manipulation of the above cited theory key-factors, make
intensive use of external library functions, ofien adapted by the hardware vendor to perform at the best on aspecific
processor and/or computer architecture [12,13], Moreover, some infrinsic functions and low-level routines, like
transcendental and exponent/power functions or simple vector/matrix operation routines, are now implemented in
assembly language codes external with respeot to the implieit on chip functions [14],

3. Application specific computational kernels

In this section we would sketch the basic elements of the theories which give rise to the most intensive
computalional kemels in the area of ( bio)chemical-physics as we have experienced at CASPUR. OF course, we
understand that a broad coverage of this topics is out of reach for anyhody involved in this area, but we would in
any case try to follow a connection approach ameng related scientific disciplines, a method that we found extreinel y
useful in order to understand the computational needs of our users in this scientific areas.

By connection approach we mean a path of deseribin g the core elements of the various computational procedures
used, by trying to connect them with some elements of similarity which are uniquely defined,

In this context, let us begin our discussion with wavefunction based Quantum Chemistry codes, and connect
them with the basic linear algebra (BLAS) subsections they mtensively use, to the BLAS-dependent Tight-Binding
codes [6]. From here, by expanding the needs of a more effective potential form for many particles systems, we
will discuss some computational el ts of classical Molecular Dynamics which can be carrelated with the area
of electron/positron scaftering by atoms and molecules from bound slale potentials,

We should note however, that the conclusions derived here are not specific of the codes analyzed below and thay
can easily be applied to closely related computational areas (i.e. Ab-Initio CareParinella molecnlar dynamics [5]
and Density Functional Theory methods [15]) which we do not discuss here for the sake of readability, but that we
think will surely play an important role in the next future as key computational applications in chemical-physics.

A last note before to eoing into the details, is about the parallel architectures used for the codes under test.
In order to maintain a broad architectural similarity, we decided to use Symmerric Multi-Processing machines
(SMPs) belonging to the class of the mid-range general-purpose computing servers, Among those available on the
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market we chose only those currently available at CASPUR that were integraled in our compuling environment
at production level. Although this can be seen as a reductive choice to apply, it seemed to us that apart from
the similarity-in the architecture, one key point was to test the hardware and software for numerical production
within the same computing environment (Operating and Queuing system, hardware/software configuration), a fact
which is ofien oversighted when benclmarks results are published from machine vendors. We would Just recall
here that we used Compaq (ES40, 4x ev6(@500 MHz), IBM (SP3, 8x PWITI@222 MHz) and SUN (ES4500, 14x
Sparcll@336 MHz) SMP machines with similar hardware configuration, while we leave the interested reader 1o
recent papers [11,16,17] for any additional details on the computing environmment used for the tests subject of
discussion in this paper,

3.1 Ouartum chemistry: the Hartree-Fock method

Let us begin our discussion by reporting some specific results of one of the most used package at CASPUR:
the Gaussian98 [2], We show in Table 1 the parallel timings and speedups resulting from the runs of this code
over the three SMP architectures we had given 1o our users. In order to better show the parallel efficiencies among
the tested SMP architectures, we also compare in Fig. 1 the resulting collective speedups. The results refer to
frequency calculations of the FluoroBenzene molecule at the Hartree-Fock SCF level (HF/6-31 THG(3dFpd)),
a computational test we have had running for several years at CASPUR over different serial and parallel
machines [17].

Although the relative performances among the architeclures we tested are very different [17], at a first sight
the results obtained behave very similar and a common trend in parallel efficiencies can be easily derived. In
fact, the speedups closely follow the Amdhal law [18] expected for this type of cade up to 14 SMP processors
and this behaviour does not seems to depend on the the parallel SMP machines under test, a fact that confirms
the similarities in their architectural design. Furthermore, this common trend in the parallel efficiency, shows that

Tahle 1
Hartree-Fock SCF — HF/63114++G(3df,pd) — FluoroBenzene Gaussian9$ parallel runs on Compag, IBM and SUN SMP architectures.
Elapsed times (E.T.) in s¢conds and speedup vs. the number of nodes

Compag 4x ES40 IBM Bx SP3 SUN 14x ES4500
Nodes ET (s) Speedup ET (s Specdop ET.{s) Spetdup
i 34534 1.0 4720/ 1.0 157670 1.0
2 19407 L8 230676 20 79 %48 20
3 13043 28 1691] 28 54393 29
4 1003 34 13108 36 42628 37
5 WA NiA 10522 43A 35053 435
G NIA NiA K769 S 30335 32
7 MiA NiA Tr92 o 26290 0.0
L] NIA MNIA T5l6 63 33625 6T
v N/A N/A Nia N/A 21032 135
1t MiA N/A NiA NiA 19201 2
L NiA NIA NA N/A 174925 AR
12 NIA WA NiA NiA 16 638 93
13 NiA NiA N/A NIA 13465 10.2
14 N/A NiA NIA NIA 14340 o
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similar low-level algorithms and programming models were used
that the parallel implementation (via Inter Process C i
exccutables used over the parallel machines under test.

In order to understand this behaviour, let us show some key elements of the theory behind those results, with the
aim to focuse the attention over its most time-consuming computational parts.

The basic algorithmic elements of any wavefunction based Quantum-Chemistry code, refers to the Hartree—Foclk
— HF — (Roothaan-Hall) [19] eigenvalue matrix eguation

FC = 8Ce,

(i.e. the same section of code was execnted) and
ion — 1PC) remains the same across the binary

(1

where the unknowns are the € eigenvectars with the € eigenvalues, provided you got the overlap matrix § and the
Fock matrix F. The computational process it is tteratively solved within the Self-Consistent Field (SCF) approach
with the caleulation of the Fock matrix lerms

Fuw = B+ 3 Pao [(evlot) = 4 (ujo)] .
A

@)

and then by the * diagonalization,
Greek letters ihe single elements of
So, the entire computing flow dej
(ii) the F diagonalization,
The F caleulation depends on the so called rwa-elect
Carlesian Gaussian basis functions (the basis set) on to

to obtain the C eigenvectors and the & eigenvalues (in Eq, (2) we labeled with
the basis set used to build the Molecular Orbitals — MOs).
pends on two steps, regarding the Fock ( F) matrix: (1) the ¥ caleulation and,

ron integrals evaluation, being these some abjects built over
p of primitive Gaussians

g(0, F) = Ny glg=or® (3)
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this computational siep can be though to be roughly dominated by the exp function evaluation. But, by f g
our attention on the hidden details, we see that the caleulation of these integrals (often referred (o as Sfouir centres
ihtegrals) depends on the evaluation of two parts, here shown as the product of two functions and called fand F,
respechively

Ikl = F(Iy = Fler) (4)

which have the appealing feature to be recursive Sunctions of the m constant [20] and of the exp function,

The second time-consuming step of the HF-SCF procedure, the F diagonalization, is a typical linear algebra
problem which is mediated by the use of the molecular symmetry eventually present in the chemical system under
study. In fact, the diagonalization of the whale Fock matrix # occurs very seldom, while typically this step is
carried out on sub-matrices belonging to specific Irreducible Representations (IRs) of the molecular symmetry the
chemical system under study belongs to.

We should note however, that the HF-SCE procedure can be carried out in two (among others) distinet methods;
(i) the Conventional SCF and (if) the Direct SCF. The former procedure refers to the traditional method of onee
caleulate-and-store on disk the two-electron integrals at the beginning of the iterative procedure [21], while the
latter carries out an integral evaluation at each step of the SCF procedure with some thresholds to be applied on the
exponents of the Gaussian integrand functions [22].

By taking info account this, the F caleulation/diagonalization timing needs of a SCF procedure, can be expressed
as a function of the basis set expansion V. We should note however, that N represent the actual basis set number,
often referred to as confracted basis where several linear combination of primitive Gaussians are present. We report
in Table 2 the expected computational performance of the SCF Conventional and Divect procedures with respect o
the actual ber (V) of contracted basis set functions used [23].

It remains now to identify the relative weights of the F caleulation and diagonalization phases in order to
completely evaluate the performance of 2 generic HF-SCF based code. In Table 3 we report the percentage of the
mean CPU time spent in the computatian/diagonalization phases of the Fock F matrix. We should note that, the
resulling percentages are derived from a mean evaluation of the CPU time spent of serial runs over several tests we
collected at CASPUR during the last ten years or so,

It becomes clear at this stage that the computational performance of a generic SCE-HF code depends on the
balance of two well identified phases (the F calealation and then its diagonalization) which are dependent on two

Table 2
The scaling of the F evaluation i the HF-SCF procedure as function o of
the number of contrcted basts sets functions (M)

Calculation stage HEF methed Sealing factor
# enleulation Couventional =N
F culeulation Direct = N2T
# diagonalization Both =N
Tble 3
Percenizge of the CPU time spent wsing the conventional/dircet HF-SCF
method
SCF direct SCF conventional
Calculation stage CPU time CPU vime
_F caleulation 80959 3-50%
F dizgonalization 20 30-T0%0
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low-level computing cores: (i) simple and recursive functions evaluation and (if) iterative use of basic linear al gebra
sub-programs. The relative importance of these two computational elements cannot be easily evaluated {as will be
later pointed out in Section 4) but, they are uniquely identified as the campuitational kernels of those kind of codes,

Now, by assuming the case of a specific SCF-HF run bounded to the latter computing core (it is not so rare
that the diagonalization phase domi a HF-SCF calculation), let s di the computational behaviour of
a scientific area, the Tight-Binding Molecular Dynamics (TBMD), which make an extensive use of linear algebra
sub-programs and in particular of diagonalization routines. This can offer a unique way 1o exploit the specific
features on the application of these compuling cores but keeping in mind their relations with closer scientific areas,

3.2. Materials science: the Tight-Binding Moleeular Dynamies

In a Molecular Dynamics (MD) run we
numerically integrate the Newton's equation
force Fy is given by:

aH
iRy
where H is the Hamiltonian of the

In the Tight-Binding Molecular

{ocaup)

H:Z E €n+ Urep.

where the superseript (oceup) indicates that we us
of the TH matrix i [25]. Besides eigenvalues e,
interatomie forces F,:

inust compute the interatomic forces F, (o= 1,2...., Ng)! to
of motion and to generate trajectories in the phase space [24]. The

Fu

(3)

system under study and Ry is the position veetor of the wth particle.
Dynamics (TBMD) the Hamiltonian is described by the equation;

2
Piy
2 [§
o + (6)
¢ just electron energies ¢, belonging to the lower half spectrum

« we need the eigenvectors b* of the & matrix to compute the

i H A
_‘-ﬁu'a—a'ﬁ;-z ; EN‘EEU@ (?)
and
4 {aecup) loceup)
T2 Z & = -2E Z.: [CATITS,
4 {oeeup)
el 22 by gty ity
Ry < v g
a ey noph
=2 3 b B (Ryp). (%)

Ra Iy 0§

where b}'}, is the component of the cigenvector b” related to the fth orbital of the yth atom and Myt iRyg) 15 the
hopping integral (element of the TB matrix) of the ! and /’ orbitals of the vth and Bth atom, respectively, when the
h matrix is expressed using a basis sel of orthogonal one electron states (Lawdin orbitals).

Therefore, at each time-step of TBMD, we need the first half set of eigenvalues and eigenvectors of a real and
symunetric mairix of order N = ¥~ n%% where #Z™ is the number of active orbitals of the «th atom. In & (ypical
TBMD simulation more than 95% of CPU time is spent in diagonalization of the TB matrix:

hb" =, b, (9)

! Wa it the numiber of aioms of the system under study.
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Table 4

CI'U time per TBMD time-step (i secands) on a Compag evé platform
45 function of the mumber Ny of atoms of the system under study for
thiree: different eigensolvers of LAPACK version 3

Nui OSYEV DSYEVE DSYEVD
B4 032 0.25 025
144 303 174 7
26 1022 523 7.05
28K 33.60 1263 16,23
34 K843 31.63 3811
A48 14382 49.56 38,30
312 20067 T 1 11244
376 299.97 10608 12281
G40 41498 146 80 169 47

Furthermore, this operation impose the overall workload scaling law with respect to the number of atoms in the
system under study: it will result of O(N?) type.

In order to optimize the numerical throughput of TBMD simulations we have tested various cigensolvers of
real and symmetric large matrices: we report in Table 4 a comparison of the CPU time needed for a time slep of
TBMD? per varions system sizes using three different routines of the last version of LAPACK [27]:

DEYEV: first of all this routine reduees the matrix to symmetric tridiagonal form by an orthogonal similarity

transformation, then it computes all eigenvalues and relatively eigenvectors using an implicit OR method [28].

DEYEVX: this routine compute a user defined subset of eigenvalues spectrum and related ei genvectors: we have

used them to defermine the part of spectrum corresponding to the the first half of the occupied states.

DSYRVD: this routine reduces the matrix to symmetric tridiagonal form using the same algorithm of DSYEY,

then all eigenvalues and eigenvectors are evaluated by Cuppen’s divide and conguer scheme, which presents
a workload scaling with respect to the size of the matrix betier than QR procedure [28]; moreover divide and
conquer algorithms are naturally suitable for parallel computing [29],

The first set of benchmark reported in Table 4 sketches an interesting scenario: the routine based on divide and
conguer scheme is much more performing then its competitors: it is 2-3 time faster than the corresponding full
cigensolver DSYEV for any system size. Moreover DEYEVD is only 13-15% slower with respect to DEYEVK for
bigger systems within of reach of single processor high-end workstations, This is a very promising resull at least
for two reasons;

(1) the much higher amount of physical information provided by DSYEVD than by DS YEVY:

(2) on the contrary of DSYEVY, the divide and conquer routine DSYEVD presents an high rate of intrinsic

parallelism [29],

Therefore we are confident than the next generation of paralle] TBMD code at CASPUR (THPack), based on
divide and conguer eigensolver provided by the new version of NAG SMP Fortran Library [30]. will be run on
our SMP architectures with speedup as fast as those of the actual version [16] and with an algorithmic efliciency
in diagonalization task 2 -3 times better than the present TBPack version, which is based on a parallel DSYEV like
routing provided by NAG SMP Fortran Library 1.0.

The correct selection of an eigensolver is only the first step 1o increase the computational throughput of a TBMD
run: the real key issue to obtain best performance is in the choice of the BLAS (Basic Linear Algegra Su bprograms)

* Al TBMD simulations bave been carried out on a crysuiline silicon supercell at 600 K, using the TB representation by Kwon et al. [26],
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Table 3

CPU me (in seconds) needed by a divide and conguer eigensolver as
funetion of the order of the mairix, using BLAS library cither vendor
provided or generated by source code FortranT7 [freelv available. Results
has been produced using a Compag Alpha evB7@66T MHz and an IBM
Power3@ 345 MHz both with 4 MB of L2 Cache memory

Compay cve 76667 MHz 1BM Power3@i345s MHz

Size F77 BLAS CXML F77 BLAS ESSL
156 028 04 026 0.4
384 ((F:1 .40 076 140
376 276 L7 244 LR
Ll 1031 381 854 360

1152 26.85 04 a2 847
1336 68335 248 3737 2098
1792 12023 3351 93,09 EL

2048 191.44 66 10 140.56 4833

2304 NiA NiA 198.41 6.9%
25640 NiA NIA 277.00 8313 -

library [31], whose Level 3 routines are the basic building blocks of the divide and conguer eigensolvers by
LAPACK. To estimate the effects of the BLAS performance on the DSYEVD routine. first of all we have generated
real TB matrices of order ranging N = 256 to N = 2560, Then, we have used the DEYEVD routine linked 1o
a BLAS library especially tuned by the machine vendor on its CPU architecture and memory hierarchy * and the
equivalent Fortran77 BLAS routine available in NETLIB [31], compiled with the typical options* used in our
computing environment. This test has been carried out on Compaq and IBM high-end serial workstations, based
on a Alpha ev67@667 MHz and a Power3 @345 MHz processors, respectively,

Results reported in Table 5 show that, if the size of the matrix is greater then 600, the DEVEVD routine based on
the CXML/ESSL BLAS library is 3-4 times faster than the same routime linked with the Fortran77 coded BLAS.
Therefore a TBMD simulation build up on top of a divide and conguer eigensolver and a BLAS library especially
tuned on the hardware available, could be even an order of magnitude faster than the same simulation based on
a standard QR algorithm and the NETLIB BLAS library.

In addition to the full diagonalization of the TB matrix, a time step of TBMD requires the evaluation of the
repulsive part of the potential energy Uy, This contribution is expressed in term of a many-body analytical
function, whose evaluation requires less than 1% of the total CPU time so, unlike the Classical Molecular
Dynamies, an optimization of (his stage is unnecessary in TBMD codes,

1.3, Classical Molecular Dynamics: Simulation of a bialogical sysiem

The basic elements of a Classical Molecular Dy ics (MD) simulation are the sume of the Tight-Binding
TBMD ones; what makes the difference between the two methods is the form of the inter-particle interaction
potential and the relative computational weight of its components.

* CXML library for Compaq Alpha architecnns and ESSL for IBM RS6000 architecture,

pl
! Compaq Alpha: ~05 ~fpe1 ~ture host aud BM RSE0M: ~03 —garch=auts —ghunesautc -gma 1
*"The size of the TR matrix is surely in this range, in a typical lange scale TBMD simulation.
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