
Petitioner Microsoft Corporation - Ex. 1063, p. 376

376

Systolic Modular Multiplication

Colin D. Walter

Abstract—A systolic array [of modular multiplication is presented using
the ideally suited algorithm of P. 1.. Montgomery. Throughput is one
modular multiplication every clock cycle, with a latency of 211 + 2 cycles
for multiplicands having n digits. Its main use would be where many
consecutive multiplications are done, as in RSA crypbmiysiiems.

Index Terms—Cryptography. digital arithmetic methods, last computer
arithmetic. modular multiplication, BSA algorithm. systolic array.

i. ItuTttooucrIoN

Among other reasons, security for an ever—increasing number of
electronic banking transactions has fuelled research into crypto-
graphic algorithms and eflicient implementations of them. Some of
the main systems for encryption or key transfer, such as RSA [1'].
require fast modular multiplication of numbers containing 500 or
more bits. Here we describe a systolic array for performing this. It
provides another alternative for the rapid encryption of built data.

Two pieces of- related work have appeared during revision of this
paper. One. by K0; and Hung [4]. is the only attempt so far at a
systolic algorithm for modular multiplication. The other. by Shand,
Bertin. and Vuillemin [8]. describes a pipeline similar to one row
of the array presented here which the authors have programmed
into their hardware array. The first of these suffers from excessive
latency and a slow clock, the result of the unsuitability of the
natural algorithm [1] which is based on Homer's nested multipli-
cation method. It involves repeated additions of the multiplicand and
repeated subtractions of the modulus. These are interleaved to keep
register size down. For speed, just a few of the most significant digits
of the partial product are used to decide the multiple required in the
next modular subtraction. In a digit-level systolic array, this multiple
must be pumped down the cells performing the subtraction from the
cell for the most significant digit to that of the least. But. because
carry propagation is in the opposite direction, a redundant number
system has to be used to limit the influence of carries. However. a
delay is still caused while the limited carries are accumulated at each
cell. 80. overall. the first digit of the output in [4] appears after about
131a I 2 clock cycles. where n is the maximum number of digits in any
input. Moreover, the clock cycle needs to be slow enough to allow
for calculating the multiple of the modulus.

The clash in direction between the movement of the carries and

that of the multiple of the modulus is resolved by using P. L.
Montgomery’s algorithm [6] which restructures the operation so that
the modular adjustment depends instead on the least significant digits.
Like Shand er al. [8]. we make use of this and, like them. we can
expect similarly impressive computation speeds. The result of this
choice is a truly systolic algorithm with much reduced latency and a
faster clock. Indeed the most complex cell is the most common one,
which performs two digit multiplications and three digit additions,
and the delay til] the first output digit appears is just 2:: + 2
clock cycles. There is. unfortunately, a price to pay for the greater

Manuscript received May l'i', 1991: revised October 25. [99! and March
1, 1992.

The author is with the Computation Department. U.M.I.S.T.. Manchester
M60 10!). U.K.

IEEE Log Number 9202845.

IEEE TRANSACTIONS ON COMPUTERS. VOL. 42. NO. 3. MARCH 1993

efficiency. Some post-processing of the output is required, but the
cost of this is relatively slight if a number of modular multiplications
with a common modulus are performed sequentially. as in the RSA
cryptosystem.

ll. THE BASIC Amsrmst

The ideas which are combined here are those of Montgomery
[6] on modular arithmetic, and of McCanny and McWhitter IS] on
systolic multiplication. Montgomery shows how to perform modular
multiplication by a method which includes reversing the order of
treating the digits of the multiplicand, shifting down instead of up.
and adding rather than subtracting multiples of the modulus. A Pascal-
like description of his algorithm for (Ax B} mod M is given below.
and is followed by a short justification of how it works. Further detail
is found also in [2]. First, however. we review the notation that is
used.

Numbers A are written with base 1' and digits .4[i], so that

A = 23;; A[i]r‘ where it is the number of digits in A. The choice
of digit range is unimportant, but we interpret modr as yielding a
digit value. Let m and ll- be the number of digits in the inputs M and
A, respectively. Normally, B has at most the same number of digits
as M or, at worst, satisfies B < 2M. We assume the latter. so that B
has at most m+1 digits. The radix r is chosen before implementation
so that the operations div 1' and modr are trivial. In particular, here
they are done by shifting or inspecting the lowest digit, respectively.
The choice for r will probably be a small, fixed power of 2 to make
translation to and from binary easy.

A precondition for the algorithm to work is that there is no
common factor between r and M. in the definition of Q[i] below.
the multiplicative inverse (r — M[[l]l_1 mod r is required. This is
the digit which, when multiplied by r — M[0]. gives a product with
remainder 1 on division by r. The co-primeness of M and r ensures
that such a number exists. inspection of the assignment to P shows
that there is a multiple of r to be divided by 1". Hence no information
is lost in the division, which is therefore exact.
P := 0:
Fori := Oton — 1 do

Begin

QM :: ((P[t‘l]+A[i]xB[0]) x {r—rl'flOll—l) mod r:
P := (P + AMXB + omxm div 7‘

End

To see what this code does. let P. be the value of the partial

product P at the start of the loop for which i is the value of the control
variable. So Pa = D. Let A. = 22;; AMrJ and Q. = 2;; QUIr’
be the lower parts of A and Q. So :19 = Q0 = 0. Then, by induction,
r’P. = A.><B + thM'. Thus the final value Pu of P satisfies
r"P = AXB+Q><M, so that P E {r""ABl mod .M. The systolic
array described here produces output P with this extra power of r.
but it may also be used to remove that factor. This is done by an
extra application of the operation with inputs P and 1-2" mod M,
the latter being precomputed once for all and stored with M. Further
detail in the context of the RSA algorithm is provided in Section IV.

Suppose the standard set of digits {0. l. - - - . r — 1} is used for
A and Q. Then the maximum value 8 of P satisfies tr = (h‘ +
[r —1}B + [r — UM) div 1-. and so a: : M + B. Once the

digits of A run out, subsequent values of P decrease, being bounded
above by it. (i = 0, 1. ---] which satisfy so = s = M + B and
s.+l = {s.+(r—1)M) div r. i.e.. n.- = Ill—HE div 1"}. These yield
bounds on the number of digits needed to represent the intermediate

0013~9340193$0100 © 1993 IEEE

Petitioner Microsoft Corporation - EX. 1063, p. 376

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1063, p. 377

[SEE TRANSACTIONS ON COMPUTERS. VOL. 42. NO. 3. MARCH 1993

and final values of P. If initially B «C 2M then P of. 3M always.
so that P requires up to two bits more than M. Furthermore, in the
next iteration beyond the one using the last, most significant digit of
A, the output satisfies P < M + (2M div 1'} 5 2M. This would be
suitable for reuse as the B input of a further modular multiplication.

Ill. The Svsrotlc ARRAY

A key property of Montgomery’s algorithm is that the choice of
modulus multiple is based on the lowest digit P[0] of the partial
product. With this multiple Q[i] determined, the digits of the i + lst
partial product P.+i can be computed in order staning with the
lowest. Also, with Q[i] known, digits output from one addition cycle
enable the corresponding digits for the next cycle to be found. This
is done by the array illustrated in Fig. 1 where each row performs
an iteration of the loop and columns compute successive values
for a single digit position. The typical oell performs a single digit
calculation of the assignment P := {P+A[-i] >< B+Q[i] x M) div r,
and generates a carry in the normal way. So it is specified by

R-i—lU ~1]+ er'nrryo... =

Pelt] + A[i]xB[j] + Q[t']xMIj] + Curt-m".

The i + 15: row down computes Qli] and PHI, whilst the j + Ist
column from the right finds the digit with index j for each Pi. The
input digits of M, A and B, and also those of Q, are just pumped
through cells without change until a different modular multiplication
is commenced. In the cases of .M and B the digits need delaying by
an additional clock cycle (i.e., the operation time of a cell). so that
they arrive when needed. This is achieved by the latches indicated
between the cells.

The cells also forward up the rows the carries from the additions.
[f the digits of each number lie in the usual range {0,1.---, r—l}
then the above definition of the cell shows that carries are bounded

by 2ir—ll. Thus the carry needs one more bit than a digit for its
representation.

Suppose the setup described at the end of the previous section
is used so that B initially satisfies B < 2111. Then we wish to
perform n + 1 addition cycles to obtain output satisfying P 4. 2M.
For this there must be it + 1 rows in the array and A must be
padded at the top end with an extra zero digit, i.e., A[tt] = 0. The
output we desire is P“. from the row with input A[n.]. It will equal
{a-"“1 AB} mod M, or be M more than this because it is bounded
by 2M. So, a further row might usefully be added to subtract the
possible extra M. with the decision about whether to take PM“ or
P...“ - it! being made when the sign of the latter is established.
This is further discussed below.

Intermediate values of P are bounded by 3M. This entails that
there is no carry from the column in which each P,[m + 1] is
computed. So the array needs no column to the right of this and,
since R-I-m + 2] = 0 always, this value can be input at the left side
of the array. Along the top edge the inputs Pofj] are all {I because
the initial value of P is 0. Also on this edge. the digits of M [J] and
BU] are input 3' clock cycles after M10] and B [[1] so that they match
the progress of the carries.

The cells are all identical with the exception of the rightmost
column. illustrated in Fig. 2. which has the burden of computing the
digits of Q. Carries entering the array from the right are, of course,
zero. Also, the digit A[i] is input 2i clock cycles after A10} since
the shift down puts the calculation of each P. two cycles behind its
predecessor. The digits of Q are defined as in the Pascal code by

op] = (tmot + .~t[i]xB[tJ]) x {r — molt”) mod 1'.

3??

Fig. 2. The rightmost cells.

Although the rightmost cells do not generate output digits 3+11— 1]
because they are deleted by the div :- operation. nevertheless a carry
may be generated when evaluating the 0th digit before the shift down:

r x Carryout = Hi9] + Aiilelm + Qii]xi\f![fl].

in [3] Eldridge and Walter describe how to simplify the calculation
of in] by shifting B up to make Blfil = (I. This is possible
here too, but at the cost of an extra row and an extra column to
obtain an output less than 2M. The advantage is that it reduces the
complexity of the rightmost cells. and hence their operation time, to
at most that of the standard cells. Such a simplification maximizes
the possible clock speed at very little cost. For this it is assumed that

(t- — MM)" mod :- is pteoomputed once (a table look-up} and fed
in like Mm]. There may also be a slight advantage in scaling M to
31' = ((r — MIOIFl mod rlxM since then M'[0] E —1(modr)
leads to the simple definition Q[i} = R-[U]. Computing would then
be done modulo M" giving a result bounded by 2M' rather than 2M.
So the penalty for that would be extra cleaning up afterwards.

The first output digit of a modular multiplication appears after
2n + 2 clock cycles, and successive digits over the next to clock
cycles. Indeed, the output PU] appears 2n + 2 cycles after B [J] is
input and 2n. + 2 + 35 cycles tailor the very first input, namely B[01.
The latency is thus 2n+2. However. since to +1 digits are output on
each cycle. the throughput is equivalent to 1 modular multiplication
per cycle.

Comparison with the array of Ken; and Hung [4] is worthwhile. The
logic of cells is simpler here because there is no need for a redundant
number representation. Also the clock cycle time is shorter. In [4]. this
is bounded below by the time to compute the equivalents of the digits

Petitioner Microsoft Corporation - EX. 1063, p. 377

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1063, p. 378

318

Fig. 3. The typical cell for radix r = ‘2.

Q[i] in their super cells Li's and LUS. For radix 2 and a technology
using only 2-input gates and no buffering to enable outputs to drive
more than one load, this requires a circuit similar to that given in
[3] Fig. 2, with its critical path length of 13 XOR gates. Here a
depth of 5 gates sud-ices for the general cell (see Fig. 3), and less
for the rightmost cells, when the suggested simplifications are made.
Allowing for register setup and hold times, the clock here should be
about [13+3}f(5+3) :: 2 times faster. with the same speedup factor
for the throughput. Since there are 2n -i- 2 clock cycles per operation
instead of about l3nf2, the latency is reduced roughly sevenfold.
Different technologies allow tradeoffs here between power, area, and
speed.

IV. RSA Cavmomnv

In practice the systolic array is likely to he of most use for
RSA cryptography where modular exponentlatioo is needed. This
is normally performed by repeated modular multiplication. It has
already been observed that the array calculates (ABr"‘"} mod M
rather than AB mod M, and an extra :1! may be present. The extra
M makes no difl'erence to subsequent modular arithmetic, and so can
be ignored until the final result of decryption is obtained. The extra
factor of 1I-'"-I can be removed after each multiplication by using
the array again to multiply (rifle—““11 mod M and 1'2"“ mod M.
However. in exponentiation this also can be left till the end of the
calculation. '

Encryption and decryption is done using two keys, .5 and D,
respectively, with the property ADE E A mod M. Suppose the en—
cryption of A is done using the systolic array to successively square .4
modulo M and to multiply these 2-powers as necessary into a running
total, retaining the unwanted powers of t. Then (.fili'fl“1)5 mod M
is produced rather than A5 mod M. Hence, using the array for an
extra modular multiplication by rl"+lll5+” mod ill will provide
A5 mod M. The cost of this extra multiplication is minor compared
to the typical number of modular multiplications in the encryption
process. Naturally, the owner of the key E only needs to compute
”Milli-+1] modM once and store it for use until the key is
changed. Decryption is similar. In fact, only the decrypter needs
to adjust for the power of r, and the property of DE ensures that
the scaling factor still depends only on his key. Another alternative
strategy is described in [3].

The main overhead might be in the over-large residue. Although
this problem is shared by all fast implementations of modular
multiplication (see [3]), it seems worse here because the top output
digits are generated last of all. Apparently, they need to be known
in order to decide whether a final subtraction of M is necessary or
not. This is true in general but false under appropriate conditions!

IEEE TRANSACTIONS ON COMPUTERS. VOL 42, NO. 3. MARCH 1993

An easy solution is always to make the message for encryption into
a multiple of 1-, thus ensuring that the lowest digit is 0. Then, at
decryption. the output will have lowest digit M [0] if, and only if, the
extra multiple of M is present. A bottom row of special cells can be
added to the systolic array to remove ((P[{]] x M[0]_') mod r) ml!
and produce the required answer. (The same formula works if up to
(r — 1}!” needs subtracting, and there is an obvious generalization
for higher multiples.)

For RSA applications, typical inputs have about 103,! 2 bits. This
means about 106,121 bit-processing cells, or about 4 x it]6 gates. As this
may be beyond available technology for a single chip, suppose that as
many rows as possible are put onto the chip. Theoretically, a number
of chips could be used sequentially to construct the whole array,
but in practice it would be impossible to transfer the required 103}?
bits per cycle between the chips. Alternatively, it is clearly better to
reroute the output back to the input within a single chip, repeatedly
feeding it back in at the top digit by digit as it is calculated, until the
required n + 1 partial products have been computed. If just 11' rows
of cells are built, then at full capacity the array is simultaneously
processing 2n’ diflerent modular multiplications.

it takes 2:; + 2 clock cycles from the input of one digit to the
output of the corresponding digit after the modular multiplication. it
is only after such a delay that further progress on an exponentlation
can take place. (Strictly speaking, for a nonzero exponent bit, there
is a modular multiplication into a running total and a modular
squaring which can be done simultaneously.) Hence the modular
multiplications which the array is performing simultaneously must
come from different exponentiations. This indicates that for use in
RSA the messages for encrypting or decrypting should generally be
numerous. Of course, one interesting choice is to reduce the array to
a pipeline by just implementing 1 row. This would give a very cheap,
simple modular multiplying chip for performing single encryptions.

V. CONCLUSION

A systolic array for modular multiplication has been presented.
Although there is an extra unwanted factor present because of the
choice of algorithm. this can be dealt with at virtually no cost when
the algorithm is used in RSA cryptography. Since in the simplest
case a single digit is used to determine the multiple of the modulus
to add during iterations of the algorithm, the clock can be made
very fast. Neat solutions have been included to avoid finishing with
output containing an extra unwanted multiple of the modulus, and to
achieve the best possible clock speeds.

REFERENCES

[1] E. F. Brickell. "A fast modular multiplication algorithm with application
to two-key cryptography." infld‘mncer in Cryptology-Prom afcnmc
82. Chaurn et at. Eda. New York: Plenum, 1933, pp. 51—60.

[2] S. E. Eldridge. “A faster modular multiplication algorithm," imam. J.
Contact. Mark, vol, 40, pp. 63—68, 1991.

[3} 5. E. Eldridge and C. D. Walter, "Hardware implementation of Mont‘
gomery’s modular multiplication algorithm," IEEE Trans. Compare, to
be published. '

[4] C. K. Koo and C. Y. Hung, “Bit-level systolic arrays for modular
multiplication," J. W5! Signal Processing, vol. 3, pp. 215-223. 1991.

[S] I. V. McCanny and J. G. McWhirter, “Implementation of signal pro-
cessing functions using 1-bit systolic arrays," Etecirm. Lett, vol. 18.
pp. 241-243, 1982.

[6] P. L. Montgomery, "Modular multiplication without trial division,"
Momma biomass, vol. 44. pp. 519-521. 1935.

[1'] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining
digital signatures and public-trey cryptosystems," Commun. ACM, vol.
21, pp. 120—126, 1978.

[8] M. Strand. P. Berlin, and .l. Vuiilemin, “Hardware speedups in long
integer multiplication.” ACM Sigerch, vol. 19, pp. 106413. 1991.

Petitioner Microsoft Corporation - EX. 1063, p. 378

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

