
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998 97

Hyper-Systolic Parallel Computing
Thomas Lippert, Armin Seyfried, Achim Bode, and Klaus Schilling

Abstract—We introduce a new class of parallel algorithms for the exact computation of systems with pairwise mutual interactions of

n elements, so called n
2
-problems. Hitherto, practical conventional parallelization strategies could achieve a complexity of O(np)

with respect to the inter-processor communication, p being the number of processors. Our new approach can reduce the inter-

processor communication complexity to a number O np()
1

2 . In the framework of Additive Number Theory, the determination of the
optimal communication pattern can be formulated as h-range minimization problem that can be solved numerically. Based on a
complexity model, the scaling behavior of the new algorithm is numerically tested on the connection machine CM5. As a real life

example, we have implemented a fast code for globular cluster n-body simulations, a generic n
2
-problem, on the CRAY T3D, with

striking success. Our parallel method promises to be useful in various scientific and engineering fields like polymer chain
computations, protein folding, signal processing, and, in particular, for parallel level-3 BLAS.

Index Terms—Systolic algorithm, hyper-systolic algorithm, n-body computation, n2
-loop computation, parallel computer, connection

machine CM5 and Cray T3D, novel complexity class.

—————————— ✦ ——————————

1 INTRODUCTION
ITHIN many scientific and engineering applications,
one is faced with the intermediate computation of

bilocal objects or functions, f(xi, xj), on a given set of num-
bers xi, i = 1, …, n. Think, for example, of the exact treat-
ment of two-body forces in n-body molecular dynamics [1]
as employed in astrophysics or thermodynamics of instable
systems, convolutions in signal processing [2], autocorrela-
tions in time series [3], n-point polymer chains with long-
range interactions, protein-folding [4], or genome analysis.

In general, computation of all f(xi, xj) bilocals requires n2

compute steps. With f(xi, xj) being symmetric in i and j, the

calculation needs n(n - 1)/2 different pairings. Thus, the
computational cost increases quadratically with the number
of particles and, therefore, n2-calculations are classified as
computationally hard problems [5].

As one would wish to increase the computational speed,
massively parallel computers become very attractive, as long
as an appropriate speedup can be attained according to the
number of processors, p. On parallel machines, the O(n2)

complexity, in principle, can be segmented to O n
p()
2

 com-

putations of f(xi, xj) per processor. This would suggest
aiming for the low granularity limit, g n

p= small.

Computations of n2-problems are not only extremely de-
manding on memory-to-register (and cache) data movement,

moreover, on massively parallel computers with distributed
memory, they imply a substantial amount of interprocessor
communication as the elements xi of the array x are spread
out over many processing elements, i.e., local memories.

An example taken from astrophysics will illustrate the
computational and communicational efforts required. In
globular cluster simulations, molecular dynamics techniques
with gravitational forces are applied to track the time evolu-
tion of the cluster. A wide range of cluster sizes must be
treated in order to extrapolate to large n. At the upper edge,
exact state-of-the-art calculations are, at present, restricted to
ensemble sizes n < O(50,000). The reason is that exact com-
putations are needed, rather than hierarchical approxima-
tions that would fail in modeling the relevant physics. In
such applications, computations of all elements f(xi, xj) have
to be performed at each time step, with the number of time
steps along the system trajectory in the range of 103 to 105 [6],

[7]. Thus, each integration step amounts to up to O(1010)

floating point operations and O(105 p) elements to be com-
municated between the processors of the parallel machine.1

Various methods have been devised in the past to ex-
actly solve the n-body problem. We mention two generic
parallel approaches:

1) The replicated data method [1] deals with p identical
copies of the entire array x that contains n particles.
These copies are to be placed within each processor.
On these data, the computation is performed such
that each processor k calculates the elements f(xi, xj)
for j = 1, …, n and i k kn

p
n
p= - +() , ,1 1 � , i.e., each

1. We have to emphasize that this situation must be distinguished from
simulations with short-range forces (where multi-million-particle simula-
tions are today’s standard). In that case, parallel “linked-cells” algorithms
are the method of choice [8].

1045-9219/98/$10.00 © 1998 IEEE

����������������

• T. Lippert and K. Schilling are with HLRZ, c/o FZ-Jülich, D-52425 Jülich,
Germany. E-mail: lippert@theorie.physik.uni-wuppertal.de.

• A. Seyfried is with the Department of Physics, University of Wuppertal,
D-42097 Wuppertal, Germany.

• A. Bode is with the Department of Physics, Humboldt University, D-10115
Berlin, Germany.

Manuscript received 28 July 1995; revised 22 Mar. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 104615.

W

Petitioner Microsoft Corporation - Ex. 1056, p. 97
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

98 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

processor performs O n
p()
2

 compute operations, the
total amount of communicated data is np elements.

2) The parallel organization of the evaluation in form of a
systolic array computation [1], [11], [12], [13], on ma-
chines that allow for a one-dimensional ring connectiv-
ity, proceeds with one moving and one fixed array. The
n elements are distributed across the processing nodes,
i.e., n

p elements are assigned to a given processor. In
each systolic step, the moving array is shifted by one
position along the processing elements and subse-
quently, the computations are performed. After p - 1
“pulse” and “move” operations, all pairs f(xi, xj) have
been generated. Again, the total amount of communi-
cated data is np elements.

In astrophysics, such systolic array computations are
known as Orrery-algorithms [14], [15], [16]. Various pro-
cedures which combine features of both methods are
known in the literature. Common to such approaches is
that the complexity of the interprocessor communication
is O(np).

In this work, we introduce a parallel computing concept
that, to a certain extent, can be regarded as a generalization of
systolic array computations with “pulse” and “circular
movement.” We will point out that a formulation of the
computational problem in the context of Additive Number
Theory—leading to an h-range optimization problem [17]—
defines a new class of algorithms. With the base of the h-
range problem suitably chosen, one can recover the systolic
realization of the computational problem. In addition, vari-
ous other bases can be contrived that allow the complexity of
the interprocessor communication to diminish. We will pres-
ent a selection of shortest bases and a “regular” base that
both reduce the complexity of the interprocessor communi-
cation to O np()

1
2 . The new method, in the following denoted

as “hyper-systolic,” has in common with the standard-
systolic array computation that, during each step, only one
array is moving in a regular communication pattern. There-
fore, it applies equally to both SIMD and MIMD machines,
just as standard-systolic computation. The distinctive feature
as compared to the standard-systolic concept, however, lies
in the fact that storing of shifted arrays is required, similar to
the replicated data method. But, in contrast to the latter,
where the storage increases like n ¥ p, a significant reduction
in interprocessor communication is achieved with only a
moderate amount of additional storage. To reach the optimal
hyper-systolic speedup, one needs storage space of size
O np()

1
2 . We will demonstrate that, in view of the state-of-the-

art problem sizes mentioned above, this is not an obstacle for
today’s parallel supercomputers.

In Section 2, we present the generic form of the com-
putational problem to be solved. In Section 3, we review
the standard-systolic concept and introduce a complexity
model to set the stage for further comparisons. In order to
provide a graphical illustration, we will phrase the issue
in systolic automata models [12], [18]. A suitable generali-
zation of the latter, which gives us the means to graphi-
cally represent the hyper-systolic parallel computing

structure, is worked out in Section 4. In Section 5, the
communication of the hyper-systolic algorithm is bench-
marked in comparison with standard-systolic computa-
tions on the Connection Machine CM5. In the last section,
we consider a real life example as taken from astrophys-
ics, namely, an n-body simulation code as implemented
on the Cray T3D.

2 THE COMPUTATIONAL PROBLEM
Our task is to compute the n2-problem

y f x x h n k hh h k
k

n
: , , , , , , , ,= = π

=
Â � � 1 2 3

1
� (1)

with f(xh, xk) being any long-range pair-interaction, e.g.,
gravitational or Coulomb forces, as well as more general
types of interactions as occur in neural nets or protein
folding. We further suppose that the forces are symmetric
in h and k (up to a minus sign). The number of combina-
tions {xh, xk} required for the computation of all f(xh, xk) is

n n n
2

1
2

�
�
�
� =

-� 	
, (2)

i.e., the computational complexity inherent in (1) is a number
O(n2).

On a parallel computer equipped with p compute nodes,
this problem can be split into n

p subtasks represented by
the generic problem,

y f x x i p i ji i j
j

p

: , , , , , , , ,= = π
=
Â
 � 1 2 3

1
� (3)

with the input data

x = (x1, x2, x3, …, xp) and y = (y1, y2, y3, …, yp), (4)
as the resulting set written as one-dimensional arrays. In
molecular dynamics terms, the sequence x can, e.g., be
thought of as the coordinates of a number of n particles,
whereas the sequence y describes the potential (or equiva-
lently a component of the force) by which particle # i is
influenced in the presence of all the other particles. In
the following, we will concentrate on the generic prob-
lem (3).

The number of processors p of a given parallel machine and
the number of elements n will differ in practical applications.
Here, we will partition the array of n elements into n

p subar-
rays, such that each processor deals with n

p data elements.
Each subarray of p elements is distributed across the p proc-
essors as in the generic case. The implementation of (1) with
n > p, i.e., granularity g n

p= > 1, is a straightforward generali-
zation of the generic case, because (1) can be rewritten as:

y f x x

l
n
p i p

l p i m p j

l p i l p i m p j
j

p

m

n
p

() () (), ,

, , , , , , , , , ,

() . ()

- + - + - +
==

=

= =

- + π - +

ÂÂ1 1 1
11

1 2 3 1 2 3

1 1 5

 �

�

� �

with

Petitioner Microsoft Corporation - Ex. 1056, p. 98
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

LIPPERT ET AL.: HYPER-SYSTOLIC PARALLEL COMPUTING 99

3 SYSTOLIC ALGORITHM
First, we describe the one-dimensional systolic implemen-
tation of (3), with n = p, to set the stage for our further con-
siderations. We use the concept of systolic automaton mod-
els to illustrate parallel computing structures [12], [18].

A systolic automaton consists of cells with data transfer
and processing units. The cells are coupled to each other in
a uniform next-neighbor wiring pattern, as depicted in Fig. 1.
The processing elements (PE) are drawn as open triangles.
They realize functions of equal load between consecutive
communication events. The data transfer elements are
drawn as black squares. They are delay elements (DE) that
represent abstractions for memory locations in which data
is shifted in and out in regular clock steps, which means the
clock step of the abstract automaton, rather than a physical
computer clock step. Data processing and transfer are com-
pletely pipelined. More precise definitions of systolic arrays
and algorithms along with many examples and applications
can be found in two monographs by Petkov [12], [18].

The graphical structural counterpart of (3) is given in
Fig. 1. The cells are consecutively arranged in a linear order.
Each cell is connected with its left and right next neighbors.
Note that the systolic computation of (3) requires a toroidal
topology of the linear array i.e., a ring connectivity. At clock
step 0, a sequence x of p data elements is distributed over p
PEs. This sequence will stay fixed in the following process.
Initially, a copy �x of the array x is made. The array �x is
shifted and the processing on all cells is performed subse-
quently, clock step by clock step. Fig. 1 illustrates the state
of the systolic computation after three clock steps.

The small black boxes stand for the DEs, the function of
which is to shift the data element �xi in one clock step from
cell # i to cell # (i + 1). Subsequently, the PEs perform the
numerical computation of the function f, i.e., they combine
the elements of the fixed array x with the elements of the
shifted array �x . The result in the ith cell is added to the
resulting data element yi of the array y such that, after p - 1
steps, the resulting data elements are completely computed
and are distributed over all processing elements. In terms of
the molecular dynamics example, each particle coordinate
is located together with its respective force value in the
same processing element.

The mapping of the abstract automaton model onto a
real parallel computer appears straightforward: The PEs are
identified with the processors of the parallel machine, the
DEs symbolize registers or memory locations exchanging
data via the interprocessor communication network. A
connectivity of the parallel system is required that allows
the embedding of a logical ring to realize the communica-
tion pattern of the systolic automaton.

The explicit systolic realization of (3) is given in Algo-
rithm 1 for the generic case n = p.
Algorithm 1. Conventional systolic algorithm.
 foreach processor i = 1 : p Œ systolic ring

�x xi i
0 =

 for j = 1 : p - 1
� � modx xi

j
i p
j= +
-

1
1

� � (� , �)y y f x xi i i i
j= + 0

 end for
end foreach

3.1 Communication Model
For further evaluation and comparison of complexities be-
tween systolic and various hyper-systolic methods, we intro-
duce a communication complexity model.

The time required for a processor to communicate a
message of m words to a neighbor processor node is mod-
eled as tl + mtt, where tl is the start-up time that is assumed
to be independent of the message length and tt is the data
transmission time per word.

For the systolic computation of (3), p - 1 systolic steps are
performed, where, in the generic case, each processor sends
exactly one word to its neighbor. Thus, the total number of
words to send is a number order p2, one word per processor
in one systolic step, and a total communication time of

T = (p - 1)(tl + tt) (6)
is found.2

2. One can improve on the scaling of the systolic realization by taking into
account the symmetries. The computations then can be reduced to p(p - 1)/2
processing operations, but p(p + 1) communication events have to be per-
formed, since a moving result array has to be shifted p/2 + 1 times. This
method goes under the name “Half-Orrery” algorithm [15] and originally
was introduced by Seitz [16].

Fig. 1. A systolic automaton cell (large dotted square) is an arrangement of a processing element (open triangle) and a delay element (black

square). The data element xi resides stationary in the processing element i. In each clock step, the delay element delivers another data element

�x j of the moving array. The function f(xi, xj) is computed and successively added to yi that is resident in the processing element as well. The plot

shows the data location on the systolic array after the third clock step.

Petitioner Microsoft Corporation - Ex. 1056, p. 99
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

For the case n > p, the array will be partitioned into n
p parts.

One can organize the computation such that, successively, all
required computations between all n data elements can be
constructed, according to (5). Each inner loop for each array
is carried out as described for the generic case n = p; addi-
tionally, combinations between rows must be computed. In
each systolic step, a given processor has to send n

p words to
its neighbor. As communication is pipelined, the total
communication time thus turns out to be

T p t
n
p tl t= - +

�
��

�
��

() .1 (7)

4 HYPER-SYSTOLIC ALGORITHM
The main focus of this work is on the reduction of the total
time expense for the interprocessor communication in the
parallel computation of (3). We will show for the generic
case, (3), that for the communicational part a complexity of
O p()

3
2 can be achieved by reorganization of the data-

movement. Going to the case n > p, the conventional com-
plexity can be reduced from O(np) to O np()

1
2 for the hyper-

systolic algorithm. The amount of processing operations is
not altered compared to conventional methods.

4.1 Motivation
Consider the matrix �, called systolic matrix, which explic-
itly shows the data elements of the shift-array �xt , (4), for the
clock steps t = 0, 1, 2, …, p - 1, as delivered successively in
the systolic implementation, Section 3:

� = ◊ ◊
◊ ◊
◊ ◊

- -

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

=
=
=
=

= -

1 2 3
2 3 4 1
3 4 5 1 2

1 2 2 1

0
1
2
3

1

�

�

�

�

p
p

p p p

t
t
t
t

t p .

 (8)

We observe in (8) that all combinations of two different
elements within the columns of � actually occur p times, if
each shifted array �xt is stored for t = 0, 1, 2, …, p - 1 and
combinations between all the rows are allowed. Note that
storing the shifted arrays is not required in the systolic con-
cept with only two arrays, one fixed and one moving array.
Here, as time proceeds, an increasing number of “resident”
arrays is stored, with only one array in movement.

The matrix � shows that a p-fold redundancy of pairings
is encountered if all shifted arrays are stored. It appears
natural to reduce this redundancy of pairings and, thus, to
save on interprocessor communication by storing some of
the arrays �xt only, for a suitably selected subset of time steps t.

To illustrate the idea, let us consider a simple example
for p = 16; from matrix � in (8) we extract only five rows:

� =

�

�

�
�
�

�

�

�
�
�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3
6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5

10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 .

 (9)

We call this reduced matrix “hyper-systolic” matrix �. From
this matrix, it is easy to see that, indeed, all required pairs
come together within the processors: Let us, e.g., consider
combinations with element # 1: In the first column, the
combinations {1, 2}, {1, 4}, {1, 6}, and {1, 10}, in the 16th col-
umn, {1, 3}, {1, 5}, {1, 9}, and {1, 16}, in the 14th column, we
have {1, 15}, {1, 14}, and {1, 7}, in the 12th column, {1, 12} and
{1, 13}, and, in the eighth column, the combinations {1, 11}
and {1, 8} can be found. As the system is toroidally closed, it
is evident that all pairing are present. As a result, we need
only four shifts and five arrays to be stored, to get all pairs
done. In the following, it will be important that the structure
presented implies a homogeneous load of all processors in
each step of the hyper-systolic computation, as was the case
in the systolic computation.

We note, further, that in order to realize (3), we cannot
just add the outcome of the computations to one resulting
array: For every row �xt to be stored, a separate, intermedi-
ate array �yt is required. In a process that involves the in-
verse sequence of shifts, a moving “collector” array is
shifted back, while step by step, the results in the arrays �yt
are accumulated. Finally, y contains the desired results.

Therefore, for this small example, in total, eight shift-
operations are required. In the standard systolic process, 15
shifts of the moving array must be carried out, while, for
Half-Orrery, 17 shifts are to be performed [15].

4.2 Hyper-Systolic Breviary
Next, we give a general prescription to implement (3) accord-
ing to the ideas exposed in the last section. The new algorithm
is called hyper-systolic, the name referring to the particular
features of the underlying communicational structure.

1) For a given array x of length p, k replicas are gener-
ated by shifting the array x k times by a stride at and
storing the resulting arrays as �xt , 1 £ t £ k. The vari-
able strides at of the shifts are chosen such that
a) all pairs of data elements (taken within columns

of �) occur at least once and the number of equal
pairings is minimized,

b) the number of shifts k is minimized, under the con-
straint that the strides at can be realized efficiently
by the given parallel computer’s connectivity.

2) The p(p - 1)/2 results yi, according to (3), are succes-
sively computed and are added to k arrays �yt .

3) Finally, applying the inverse shift sequence, a collec-
tor array y is shifted back by the inverse sequence of
shifts, while the intermediate results in the array �yt is
added to y in step k - t.

4.3 Graphical Representation
The concept of traditional systolic automata models can be
extended to the hyper-systolic parallel computing structure.
For the graphical representation of the latter, we use the
objects introduced in Section 3. Fig. 2 shows the ith hyper-
systolic cell unit. The DEs again represent input and output.
Additionally, we have drawn open rectangles to symbolize
the memory locations for the stored data elements �xt and

Petitioner Microsoft Corporation - Ex. 1056, p. 100
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

LIPPERT ET AL.: HYPER-SYSTOLIC PARALLEL COMPUTING 101

�yt , with 1 £ t £ k. The DEs now have one input and r output
connectors, one separate connector for each required shift
width at.

Again, the cells are arranged as a uniform grid; in addi-
tion to the next-neighbor connectivity, the r new nonlocal
regular connections between the processors are indicated in
Fig. 3. They correspond to the shifts of data elements by
strides at. According to the number r of different strides at, r
direct connections would be optimal. From the point of
view of the original one-dimensional systolic array struc-
ture—due to these additional communication connec-
tions—the (one-dimensional) space of processing elements
has acquired topologically nontrivial interconnections. Fast
regular interprocessor data transfer to distant cells can be
achieved in one clock step via these interconnections that
are used as shortcuts. Thus, the characterization of our new
algorithm as hyper-systolic. We emphasize that hyper-
systolic data movement and storing extends the standard-

systolic concept. From the uniform structure of the hyper-
systolic automaton model and the regularity of the inter-
processor communication, it is evident that the PEs can per-
form functions of equal load in each hyper-systolic step.
The amount of processing operations that is equal for each
processor increases with an increasing number t of stored
arrays � ,y ¢ £ ¢ £t t t1 .

Fig. 3 represents the graphical structural counterpart of
(3) for the hyper-systolic algorithm. At clock step t = 0, a
sequence x of p data elements is distributed over p proc-
essing elements. In every clock step t = 0, 1, 2, …, k, a copy
�xt of the array �xt-1 is generated, and, in the next clock step,
the array is shifted by a stride at. Subsequently, the new
array �xt is stored in the SEs. Then, the processing can be
done by the PEs involving ever more of the stored arrays
for increasing t. Fig. 3 shows the situation after two clock
steps. Note, however, that only one array is moving just as
in standard-systolic computation.

Fig. 2. Processing element (PE) (open triangle), delay element (DE) (black square), and store elements (SE) (open squares), arranged in a hyper-
systolic automaton cell (large dotted square). The element �xi resides stationary. In each clock step t, the DE delivers a new data element from loca-

tion [(i + at - 1),modp + 1] to be stored in the local SE and transmitted further to the next DE. Subsequently, the computation is performed on elements
stored in the SE. The results are added to memory locations [](1)mod 1

�y i at p+ - + . Note that each DE is equipped with r connectors to account for r different

strides at. Second, the results �y i at p[1mod 1]+ - + are step by step added to the array y that is shifted by the inverse sequence of strides.

Fig. 3. Three abstract automaton cells as part of a hyper-systolic array with r = 2 The data location on a part of the hyper-systolic array is shown
after the second systolic cycle.

Petitioner Microsoft Corporation - Ex. 1056, p. 101
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

