
Petitioner Microsoft Corporation - Ex. 1051, p. 70

Configurable Computing Solutions for Automatic Target Recognition

John Villasenor, Brian Schoncr, Kang-Ngee Chia, Charles Zapata,

Hea Joung Kim, Chris Jones, Shane Lansing. and Bill Mangione-Smith

Electrical Engineering Department '

University of California, Los Angeles

Los Angeles, CA 90095-1594

FPGAs can be used to build systems for automatic target

recognition (ATR) that achieve an order of magnitude

increase in performance over systems built using general
purpose processors. This improvement is possible because

the bit~ievei operations that comprise much of the ATR

computational burden map extremely efiicientiy into

FPGAs, and because the specificity of ATR target tern»

plates can be leveraged via fast reconfiguration. We

describe here algorithms, design tools, and implementa-

tion strategies that are being used in a configurable com-

puting systemfor ATR.

1. Introduction

The ability to rapidly modify the gate level logic of

an FPGA during execution opens a number of new com-

puting possibilities that have only recently begun to be

explored. Configurable computing machines that exploit
this ability will involve architectures that differ in impor~

taut ways from those used in current machines, and will

support a wide range of new and powerful capabilities. At

the simplest level. a single FPGA can implement an arbi-

trary number of designs in rapid succession, and can there-

fore deliver the functionality of a device many times its
size. More sophisticated implementations in which the

configuration control receives input from the results of

previous computations or frOm the external operating envi-

ronment can also be envisioned. Finally, rapid reconfigura-

tion makes feasible the implementation of dedicated logic

circuits to support large numbers of highly specific compu-

tational tasks that are wholly unsuited to ASIC implemen-
tation.

Configurable computing requires 1) commercially

available FPGAs with Sufficiently fast configuration times,

2) design tools that understand and take advantage of hard
ware dynamisms, and 3) boards and other higher level

interface and support hardware that will make fast-recon—

figurable FPC‘rAs viable in real systems. Although there is

0-8186-7548-986 $05.00 © 1996 IEEE
'70

not yet a base of commercial FPGAs with submillisecond

reconfiguration times to satisfy the first of these require-

ments. there has been prototype development in both

industry and academia to explore the hardware issues of
fast reconfiguration. It is our belief that this is an area

which the FPGA vendors are well prepared to address. and

that fast reconfiguration will receive increased commercial

attention as the payoffs on the application side become

clear. By contrast, design tools and systems to support use

of dynamic computing devices have been in a state of rela-

tive immaturity. We describe here results from an ongoing

project to build a configurable computing system for auto-

matic target recognition (ATR). Focusing on this applica-

tion has furnished quantitative results on design time and

challenges, configuration overhead, and computational

efficiency of configurable computing systems. More gener-

ally, it has led to an understanding of the requirements and

hurdles involved in extending configurable computing to

more general applications.

The rest of this paper is organized as follows: The

remainder of the introductiou includes a description of
related work in configurable computing, and an overview

of the automatic target recognition (ATR) problem that

serves as the application focus for the new results pre~
sented here. Section 2 introduces the basic mapping of

ATR target templates into FPGA adder trees that forms the

core of the processing, and discusses some of the trade-offs

in using rapid reconfiguration to support ATR. Section 3

discusses design and partitioning issues to support rapid

implementation of a large set of target templates. Section 4
presents a more detailed analysis of design trade-offs and

considers some the issues of U0 and board design for a

FPGA—based ATR system. Conclusions and a brief
description of ongoing and future work are contained in
Section 5.

1.1 Overview of related work

Configurable computing has been explored in both

Petitioner Microsoft Corporation - EX. 1051, p. 70
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1051, p. 71

academia and industry for several years. On the hardware

side, several fast-reconfiguring FPGAs have been devel-

oped. One of these is the Configurable Logic Array

(CLAy) from National Semiconductor, which is a fine-

grained device consisting of an array of 56 by 56 cells,

each of which is roughly equivalent to a half adder and D-

flip flop. Configuration bitstreams can be loaded into the

CLAy using 8 pins, allowing a complete reconfiguration

of the device in approximately 750 microseconds. The

CLAy also supports partial reconfiguration, which reduces

the reconfiguration time linearly in accordance with the

fraction of the gate array concerned.

An alternative to external loading of bitstrearns used

in the CLAy and in most other FPGAs is the context-

switched approach advocated by a group at MIT [1,2]. In

this device, referred to as a Dynamically Programmable

Gate Array (DPGA), multiple configurations reside simul-

taneously on chip. One of these configurations occupies

the active layer, and is the one which is actually executing.

Any of the others can be switched to the active layer in

one clock cycle. The increase in chip area to support three

extra contexts is approximately 20%.

Utilization of FPGAs as dynamic computing devices

has been explored by several groups including a team led

by Hutchings at Brigham Young University. Hutchings

has performed a series of thorough studies in which the

benefits of partial reconfiguration was explored using the

application example of neural nets [3]. The Brigham

Young group has also investigated the use of partial recon-

figuration as a means to construct a computer with a

dynamic instruction set [4]. This idea, which has also been

discussed by Athanas and Silverman in [5], achieves

Input SAR image
several K

‘—.-

Tom - late 1

increased efliciency by using FPGA resources to hold the

instructions that are needed on an application-specific

basis. These experiences have led to the formulation of

design methodologies for partially reconfiguring systems

[6], and to important quantitative results on the benefits of

partial reconfiguration. For example, for the neural net

application partial reconfiguration enabled a 25% reduc—

tion in configuration time and a 50% increase in functional

density compared with a system based on complete recon-

figuration.

In a previous publication [7] we described the imple

mentation of a video communications system imple-

mented using configurable computing techniques. This

system delivers real time video at a rate of 8 frameslsec—

end, and includes the steps of image transformation, quan-

tization and run-length coding. and BPSK modulation!

demodulation. These functions are implemented using a

single 5000 gate CLAy, with rapid swapping of designs

used to time share the gate array hardware. The rapid

swapping of designs used in the video system has some

commonalities, as well as some significant differences

with the approach for ATR that we describe in the present
paper.

1.2 Application Description :: ATR

Automatic target recognition is among the most

demanding real time computational problems in existence.

The challenge addressed by an ATR system is conceptu-

ally simple -- to analyze a digitally represented input

image or video sequence in order to automatically locate

and identify all objects within the scene of interest to the

observer. Since there are many types of imaging devices

and many algorithmic choices available to a designer,

Bright templatecorrelation result

a-
Peak Detect

—b
Surround temp atecorrelation result

HComputation
1301119an

Figure 1 High level block diagram for ATR processing. The focus of attention algorithm identifies regions of interest,

referred to as “chips”, in SAR images. Chips are correlated against a series of binary target template pairs, with each
pair containing a bright template (identifying pixels of strong expected radar return) and a sun'ound template (strong

radar absorption). Templates with highest correlation are selected in the peak detection step.

Petitioner Microsoft Corporation - EX. 1051, p. 71

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1051, p. 72

there are clearly a large number of possible ways to imple-

ment an ATR system. In this paper we focus on a particular

approach which is currently being applied in the US.

Department of Defense Joint STARS airborne radar imag-

ing platform, and which therefore has high current rele-
vance and interest.

The processing used in ATR is illustrated in simpli-

fied format in Figure 1. Synthetic aperture radar (SAR)

images consisting of 8-bit pixels and measuring several

thousand pixels on a side and are generated in real time by
the radar imager. Images are input to a focus—of—attention

processor which identifies a set of regions of interest, each

of which contains a potential target. These regions of inter-

est, known by the potentially confusing term “chip“, must

then be correlated with a very large number of target tern-

plates. Target templates are binary; e.g. each pixel is repre-

sented using one bit. The correlation results are output to a

peak detector which identifies the template and relative

offset at which the peak correlation value occurs. The cor-

relation of chips with templates is the computational bot-
tleneck in the system, involving data rates and

computational requirements that exceed by several orders

of magnitude the processing load in any other steps in the

algorithm. While the precise system parameters vary with

implementation, in the work described here we use chip

sizes of 128 by 128 and template sizes of 16 by 16. A cor-

relation of a single chip with a single template in this case

involves consideration of approximately 1282 relative off-

sets, corresponding to 105 bits of output data if the correla-

BitSlice
Chlp (128 x128 x 8 bits)

Size 16x16
540% populated

= threshold (fixed
for all templates

= 1 bit correlate:

tion outputs are represented using 6 bits. If there are 103
templates to be evaluated per chip, the magnitude of the

processing task becomes readily apparent when one con-

siders that the imaging system produces many frames per

second, each of which contains many chips.

Figure 2 illustrates the correlation operation targeted
for FPGA implementation in more detail. Target templates

occur in pairs, one member of which is called the bright

template and contains pixels from which a strong radar

return is expected, and the other member of which is the

surround template and identifies pixels where strong radar

absorption is expected. In both cases the template is of size

16 by 16, with pixels represented using only one bit. The

templates tend to be sparsely populated, with only a rela—

tively small percentage of the pixels set to 1. As will be

discussed later, this preperty is important in obtaining high

performance in F'PGA implementations. The first step of

the correlation is known as a shapesum calculation, in

which the 8—bit SAR chip is correlated with the bright tem»

plate, providing for every pixel in the chip a number which
is used for local gain control. The second step is the actual

correlation, which is performed in parallel on eight differ-

ent binary images. each of which is created by applying a

different threshold to the chip. The binary images are cor-

related with both the bright template and the surround tem-

plate. producing eight pairs of correlation outputs. The

shapesum value is used to select which output pair will be

processed in the peak detection step.

Shapesum

Size 1 6x16
10-50% populated

Threshold
. select

Figure 2 Correlation operations showing shapesum calculation (top) and parallel correlations (bottom)

72

Petitioner Microsoft Corporation - EX. 1051, p. 72

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1051, p. 73

2. Mapping and dynamic reconfiguration of

target templates

FPGAs offer an extremely attractive solution to the

correlation problem. First of all, the operations being per-

formed occur directly at the bit level and are dominated by
shifts and adds, making them easy to map into the hard-

ware provided by the FPGA. This contrasts. for example,

with multiply-intensive algorithms which would make rel-

atively poor utilization of FPGA resources. More impor-
tantly, the sparse nature of the templates can be utilized to

achieve a far more efficient implementation in the FPGA

than could be realized in a general purpose correlator. This

can be illustrated using the example of the simple template
shown in Figure 3.

Template 1

Figure 3 Example binary template with five “on"

pixels (top) and corresponding adder tree (bottom).

In this example template, only 5 of the 24 pixels are

“on". At any given relative offset between the template

and chip, the correlation output is the sum of the five

binary pixels in the chip that lie immediately above the

“on" pixels in the template. The template can therefore be

implemented in the FPGA as a simple adder tree as shown

in Figure 3. The chip pixel values can be stored in flip-

flops. and are shifted to the right by one flip flop with each

clock cycle. Though correlation of a large image with a

small mask is often understood conceptually in terms of

the mask being scanned across the image, in this case the

opposite is occurring - the template is hard-wired into the

'73

FPGA while the image pixels are clocked past it.

Another important opportunity for increased effi—

ciency lies in the potential to combine multiple templates

on a single FPGA. The simplest way to do this is to spa-
tially partition the FPGA into several smaller blocks. each

of which handles the logic for a single template. Alterna-

tively. one can seek to identify templates having some

topological commonality, and which can therefore share

parts of adder trees. This is illustrated in Figure 4, which

Template 1 Template 2

Output 1 Output 2

Figure 4 Template commonalities are exploited to

reduce hardware requirements for computing mul-
tiple correlations.

shows two templates which share several pixels in com-

mon. and which can be mapped using a set of adder trees

which leverage this overlap.

The advantage of using FPGAs over ASICs is that

FPGAS can be dynamically optimized at the gate level to

exploit template characteristics. An ASIC would have to

provide large general purpose adder trees to handle the

worst case condition of summing all possible template

bits. The FPGA, however, exploits the sparse nature of

the templates, and only constructs the small adder trees

required. We have also shown that FPGAs can exploit

other factors such as collapsing adder trees with conunon

elements, and packing unused data points into space-sav-

ing RAM—based shift registers. The end result is that a sin-

gle FPGA can efficiently compute several templates in
parallel more efficiently than several general purpose cor-

relating ASICs.

Petitioner Microsoft Corporation - EX. 1051, p. 73

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1051, p. 74

There are many factors that determine the perfor-

mance gain that results from using an FPGA. One of the

most important is FPGA reconfiguration time. Assuming

that performing the correlation of a single chip requires

approximately 1282 = 16K clock cycles, the reconfigura-

tion must be performed in ~IO3 or fewer clock cycles to

avoid prohibitive overhead. In this respect a context-

switched FPGA with two contexts would be extremely
useful. If the idle context could be loaded while the active

context was processing, then reconfiguration overhead

would vanish. The achievable parallelism is also a critical

parameter. Based on the work to date, we estimate that we

can map an average of 20 bright templates or 5 surround

templates on a single 13000-gate FPGA.

2.1 Experimental results for FPGA resource utilization

The approach of using a template-specific adder tree

achieves significant reduction in routing complexity over a

general correlator which must include logic to support

arbitrary templates. To a first approximation, the extent of

this reduction is inversely propertional to the fraction of

“on” pixels in the template. While this complexity reduc-

tion is important, it alone is not sufficient to lead to effi-

cient implementations on FPGAs. This is due primarily to

the limited number of flip flops available on commercial

FPGAs (for example, the Xilinx XC4010 and ATT ORCA

2C10 contain 800 and 1024 flip flops respectively). This

would not generally be sufficient to support buffering the

112 pixels per chip row that are not actually under the tem-

plate, but need to be wrapped around to the next row of the

template. The total number of l-bit storage elements

needed to hold buffered pixel values for all 16 rows is 16 *

112 = 1792. Implementing these on the FPGA using the

usual flip-flops based shift registers is inefficient. and for

many FPGAs impossible.

This problem can be resolved by collapsing the long

Strings of image pixels that are not being actively corre-

lated against a template into shift registers, which can be

implemented very efficiently on some look-up—table based

FPGAs. For example, RAMs in the Xilinx XC4000 library

can be used as shift registers which delay data by some
predetermined number of clock cycles. Each 16x1 bit

RAM primitive uses up a function generator on the FPGA,

and can implement an element which is effectively a lt'r

bit shift register in which the internal bits cannot be

accessed. A flip-flop is also needed at the output of each

RAM to act as a buffer and synchronizer. A single control

circuit is used to control the stepping of the address lines

and the timely assertion of the write—enable and output-

enable signals for all the RAM-based shift register ele-

ments. This is a small over head price to pay for the saw

ings in CLB usage relative to a brute force implementation

using flip flops.

74

Figure 5 Four templates that were mapped onto the

Xilinx 4010 to explore resource utilization. These

examples were generated by 4 rotations of a syn-

thetic template. The number of “on" pixels is 91,

which is higher than what would be expected for

most templates.

By contrast. the 256 image pixels that lie within the

16 by 16 template boundary at any given time can be
stored easily using flip-flop based registers, since there are

sufficient flip-flops available to do this. and the adder tree

structures do not consume flip-flops. Also, using standard

flip-flop based shift registers for image pixels within the

template simplifies the mapping process by allowing

access to every pixel in the template. New templates can

be implemented by simply connecting the template pixels

of concern to the inputs of the adder tree structures. This

leads to significant simplification of automated template

mapping tools.

To gain a fuller understanding of the FPGA resource

trade-offs involved in template mapping, we implemented

in parallel the four templates shown in Figure 5 onto the

Xilinx 4010 using the techniques described above. Each

template had 91 “on” pixels, few of which are shared with

other templates. Since parallelism was low, this exercise

gaves a worst—case estimate for the capacity of the 4010.
The resulting FPGA resource utilization. as summarized in

Table 1, shows that 313 flip—flops and 756 function genera-

tors were used. The resources used by the two components

of target correlation, namely storage of active pixels on the

FPGA (lst row of table) and implementation of the adder

tree corresponding to the templates (2nd row) are indepen-

dent of each other. The resources used by the pixel storage

are determined by the template Size, and are independent

of the number of templates being implemented. Adding

templates involves adding new adder tree structures, and
will hence increase the number of function generators

being used. The total number of templates implementable

Petitioner Microsoft Corporation - EX. 1051, p. 74
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

