
Petitioner Microsoft Corporation - Ex. 1043, p. 268

 

Formal Development of a Reconfigurable Tool for Parallel DNA

Matching

A. E. Abdallah

Centre for Applied Formal Methods

Sc heel of Computing

South Bank Universit y

103 Borough Road
London SE2 0AA

Email: A.Abdallah@sbu.ac.uk

G. Simiakakis

Harocopio University
70 Eleftheriou Venizelou St

17671 Athens, Greece

Email: gsimiak©huagr

'1‘. Theoharis

Department of Informatics

The Universit yoi‘ Athens

P anepistimioupolis 15784, .fithens, Greece

Emaii: theothco©di.noa.gr

Abstract

DNA matching is a computationally demanding
task. The Human Genome Project is producing huge
quantities of data, which have to be analyzed. A formal
description of the task of searching a DNA sequence is
given and an eflicient parallel algorithm is derive das-
ing' formal methods. The algorithm is implemented on
an FPGA using Handel— C. a language that enables the
compilation of high-level algorithms directly into gate

level synchronous liar (liner [9], thus reducing the de—
velopment time. The designed algorithm makes no as-
sumptions about DNA transformations, and is there—

fore a new powerful tool. It can lie use d in onjiinction
with an {aspect system to automatically date ct patterns
of inter est in the DNA.

Keywords: FPGAS, Reconfigurable computing, for-
mal methods, DNA, string matching, CSP, Handel-C,
pipeline.

1 Introduction

There is an increasing electronic availabilit y of DNA
sequences from human and other species. The ambi-
tious Human Genome Project has recently decoded the

DNA sequence of chromosomes 21 and 22 and it is ex—
pected that the whole human genome will he completed
within the next three years in an admirable world—wide

0-7803-6542-9/00/510.00 ® 2000 IEEE

268

collaboration. The amount of data produceilh uge;
chromosome 22 {the smallest one} consists of approxi-
mately 32Mbytes of base data.

Scientists who wish to use these data to test their hy—

potheses electronically are faced with an overwhelming
amount of processing effort. Often this effort involv es
searc hing DNA data for traces of viruses or other or-
ganisms that have been incorporated in the genome
ever the long track of evolution. Also, DNA sequences
of different Species may be compared in order to verify
common ancestry or detect protein homology. Detec-
tion of sequences of interest is a v ery complex task and

several soft w are solutions exist. [410, 17 , 14.
DNA sequences are availableas text documents.

In computing terms the Operations that w eneed to
perform on DNA sequences are similar to well known

string problems, specifically the edit-distance [18] and
the longest common subsequence problem. The first
measures the distance betw eentw ostrings as a func-
tion of the number of insertions, deletions and substi—

tutions necessary in order to go from one string to the
other. The second, as the name implies, determines
the longest common substring oi' tw o gien strings.

The strings involved are how ev erenormous (mil-
lions of places in length). Efficient string processing
is therefore a requirement. Both the above problems
have been well studied in computer science and effi-
cient implementations on systolic architectures have

been proposed [13 , 15]. Sue llSpECial purpose are hi~

Petitioner Microsoft Corporation - Ex. 1043, p. 268

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Petitioner Microsoft Corporation - Ex. 1043, p. 269

 

Lectures. although very efficient, can be hard and ex—
pensive to build. A recent innovation is reconfigurable
computing, or computing systems whose hardware can
be modified by soft w are to math a. certain application

[16]. The main cemponent of such systems is the Field
Pr ogremmeble Gate Amy fFPGA).

The FPGA [8] is a silicon chip that can rapidly im—
plement a significant amount of digital hardware under
software control. F orexample, Xilinx and Alters are
w ellknown FPGA manufacturers. Dramatic perfor—
mance gains, in c0mparison to a microprocessor, can

be acliiev edby implementing a certain algorithm di-
rectly onto hardware and exploiting natural hardware

parallelism while at the same time reducing overheads
such as instruction fetdies. Furthermore one can wary
the function of an FPGA as the problem at hand varies.

Until recen tly,the main problem with using hard—
w arehas been the long time required and the large
expense involv edin producing it. Even FPGA's re
quired training in extremely specialized tools. Then
hardware compilation came along which allows ordi—

nary computer programs to be turned automatically
into hardware designs (FPGA‘s), thus promoting the
programmer to a hardware designer. A well known and

successful such tool is Handel—C available from ESL [9}.
Apart from development efficiency, hardware com-

pilation offers another important Opportunity, namely
the potential to produce provably correct liarduare at
the same cost as the production of provably correct
soflw a1'e(assuming of course the correctness of the

hardware compiler). In this paper we make a step in
this direction by beginning with a functional specifica—
tion of the problem and deriving an efficient pipelined
implementation which can readily be programmed in
Handel-C and thus compiled onto an FPGA. We can-
sider a variation of the longest common subsequence
problem which is useful for DNA operations and use

w ellkno wnmathematical transformations 'r', 1, 2, 3]
in the-derivation that follows. The algorithm has been
implemented in Handel-C and performance figures are
giv en.

2 F unctionalNotation

We give a brief summary of the functional notation

used in this paper. The reader should refer to [5, G]
for a fuller account of this notation. Lists are finite

sequences of values of the same type. The list concate-
nation operator is denoted by —H— and the list construc-
tion operator is denoted by :. The elements of a list

are displayed betw een square brackets and separated
by commas. Function composition is denoted by a .
Functions are usually defined using higher order func-

269

tions or by sets of recursive equations. The operator i-
(pron0unced “map") takes a function on the left, a list
on the right, and applies the function to each element
of the list. Informally, we have:

[flai )i feel. - - - ‘ Haul]f*[ai,a2,---,aul

The operator { (pronounced “reduce”) takes an as-
sociative binary operator on the left, a list of values on
the right and returns the “summation" of all the ele-
ments of the list. This can be informally described as
folIOWs

(@lllahazrwaul alone-neat

In order to formulate the pattern matching prob—
lem, we will make use of the following list manipulation
functions. The function inits+ returns the list of non-

empty initial segments (prefixes) of a list in increasing
order of length.

tntts+ [a] , (12, ' ‘ ' 3551:]
= l [ails[Ghee]:"'slflia"‘aan-llulal ---[t1nl l

Similarly, the function fins... returns the list of non—

empty final segments (post-fixes) of a list in increasing
order of length. Thus, informally, w e hare

fins+ [a1,e2,- - - ,on]

= [ larilylan—lraflls' ' ‘ )[5‘21 ' Mann}: [alvu ’ ianl]

Finally, the function 8693+ which returns all the pos—
sible Combination of consecutive elements of a list is

defined as a composition of three functions.

3695+ = (4—H) irttts+ * fins+

3 Starting Specification

DNA matching can be translated to string matching
in computing terms, where each string element is one
of the 4 characters {.4,C, G,T} which represent the 4
DNA bases. F or example, the DNA sequence of hlman
chromosome 22 is downloaded into a huge text file of
the form:

TTTGGCTAAAACCGAAATCAATTATGMlGC MuGG AAG‘G . . . .

This sequence represents one of the two strands of

the chromosome; the other is complementary. Comple—
mentary base pairs are A -— T and C — G. This huge
sequence must then be searched to detect, for example,

a (smaller) DNA string belonging to a virus or to reveal

Petitioner Microsoft Corporation - Ex. 1043, p. 269

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Petitioner Microsoft Corporation - Ex. 1043, p. 270

 

similarities with a chromosome of a particular African
monkey.

A mathematical specification of the problem will be
giv on using list notation. Lists are finite sequences of
a certain base type which in this case is the set:

)3: {moor}

Let Q and Q he lists of type [2] representing the
query DNA sequence (for example virus) and the bank

DNA sequence [for example chromosome 22) respec-
tively.

First, we define a function iicp which tak es tie lists
and returns the length of the longest common prefix of

both lists. For example, the length of the longest com-
mon prefix of ATCCTG and ATCTTG is 3 being the length
of ATC. A formal definition of Hep is given recursively
as follo ws:

Hop 3 [l = D
Hep [] t = 0
llcp ((1:3) (tut) = 1+Hcpst, if ozl)

: 0, otherwise

A t first, it mar be suggested that it is all about sim—
ple string matching, the type that a word processor
uses when trying to find a certain word in a document.
While this is often true, DNA operations usually have
certain peculiarities. First, mutations tak e place which
change some bases of the subject string (eg. 0 —> T),
th us rendering impossible its exact detection. Second,
deletions can occur, which rein0ve a significant. part of
the subject string altogether. And third, insertions in-
troduce a new piece of DNA within the subject DNA
(eg. the DNA of a virus particle), see Figure 1. Com-
binations of these Operations are possible.

CCGAAATC

l : l l : I l l Hutation(:)
CTGACATC

CCGAFLATC

Ill. . l ll Deletion(.)
CCG ATC

CCG ATC

lll. . I ll Insertion(.)
CCGCTATC

Figure 1. Mutation, deletion and insertion {|
denotes a perfect match).

It. is possible to introduce a similarity measure func-

tion between tw ostrings that incorporates the above

270

concepts of deletion, insertion and mutation and han—

dles them all simultaneously, but this will be at a sig-
nificant cost of increasing the complexity of the specifi-
cation and making it less general. instead we consider
a simpler approach which is based on the observation
that all the above cases (plus seine more} can be han-
dled by detecting the longest common substm'ngs in B
and Q of at least a minimum length. Thus for exam-
ple, if w ecletect tw oconimon substriags length 40
and 50 separated by a single element which is different
in B and Q, then this points to a mutation. Similarly,

tw 0 common substriugs thai are separated inB (rest).
Q) by another string, point to an insertion (resp. dele-
tion).

In addition many other useful DNA transformatimis
can be detected in this manner, such as the transposi-
tion of parts of the DNA sequence. Of course, at the

end of the day it will be the biologist who will decide
what is of significance as well as its categorization. All
that is therefore required is a tool which will compare
Lw o stringsB and Q and detect equality of substrings
within them, regardless of where they occur, in B and
Q.

A string c is said to be a maximal common segment
of tw o stringss and t if and only if s can he expressed

in the form 31 ++c ++.52, t can also be expressed in
the form t; ++c ++t2 and c cannot be extended to the

right (that is, when .32 and t; are non—empty lists, their
first elements must be different. i.e. hd s2 gfi lid t2]

We need to identify the maximal common segments

of s and t. The main insight for achieving this is the
observation that a maximal segment c of tw olists s
and t is the longest common prefix of a final segment

of s (i.e. c ++s_:) and a final segment of t (i.e. :2 ++
t2). Therefore, a. suitable solution to this problem is
reduced to computing the longest common prefixes of

each final segment of s with eac 11 final segment of t.
Hence, the lengths of maximal common segments, lines
can be determined by computing the following table:

from s t = [ Hop n b l o (— fins+ s;b (— ft'nsi. t 1

Given that the size of s is n and thesize of t is m

{where m E ii) there are oxm entries in the table; each
(311 try requires Ohm.) calculation but by using a simple
dynamic programming technique this can be reduced
to 0(1).

The lengths of maximal common segments for
the strings ATCCATGTCATC (horizontal query) and
CTATCTCATCG (vertical data bank] are giv on b y the
following table. Note that both strings are displayed
in reverse order.

The entry at position (Li) of the abo veta—
ble computes the length of the longest prefix,

Petitioner Microsoft Corporation - Ex. 1043, p. 270

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Petitioner Microsoft Corporation - Ex. 1043, p. 271

 

CTRCTGTRCCTA

G 000001000000
C 100100001100
T 020020100020

ll 003000020003
C 100400003100
T 020150100020
C 100100001100
T 020020100020
A 001000020003
T 010010100010
C 100100001100

Figure 2. Table oi maximal segments for two
strings.

Hep {drop t 5) (drop j t), where (drop 1‘ 3) denotes
the postfix of 5 obtained by removing the first 2‘
elements of s. It may be w orth whileto note that

list indexing starts from 0. The first column of the
table in Figure 2 displays Hep for the string C with
each final segment of the bank sequence; Le. G. CG,
TCG, ATCG, CATCG, TCATCG, CTCATCG, CTCATCG,
TCTCATCG, ATCTCATCG. ATTCTCATCG, CTATCTCATCG.

Similarly, the last column of the table displays llcp

for the whole query with each final segment of the
bank sequence. The length of the longest common
segment is 5, the appropriate segment can be retrieved

as TCATC by simply following the diagonal in the table
starting at 5.

4 Derivation of a Pipelined Algorithm
for FPGA’s

4.1 Transformation to CSP

We have that lines is expressed as a pipe pattern;

using transformational techniques from [3, 2, l], we can
formally synthesize a pipeline network of communicat-

ing sequential processes expressed in Hoare’s CSP [12]
for solving this problem as follows:

LMCS(3, r) = more >> ((3),: (STAGE t 3))

INITHJ) = leot —> SKIP
INIT(n.:s) = l(a,0) —>INIT(S)

STAGE(C) z ?(.t,n) —>l{:r:,n.) —> F(c, [3: EB: 11])
ch, 1' 1 rs) ?“eot” —>!eot —> PRDdownU' : rs)

l
?(a:,n) ->!(:c,r) —+ F‘(c,(;r; 613.: n) :r : rs)

271

mecnzifm=cthenn+1else0

Note that >> denotes the piping CSPoperator. The
synthesis of theabo ve processes from their functional
description is a straigh tforiard task using the refine-
ments rules in [1, 2, 3]. The abo veparallel version
requires 0(m + n.) time steps to terminate and uses
0(m) parallel processes in the pipeline.

4.2 Pseudo Handel-C description

The algorithm is implemented as a bidirectional
pipeline, depicted in Figure 3, of length m + I where
m is the length of string 3. The current lengths of
matching strings flow to the righ twhile final results
lengths (couhnns) flow downwards.

Each stage in the pipeline holds one element e of
the query sequence Q and compares it at each clock
cycle with the incoming element a: of the bank sequence
B and the value v of longest prefix in the proceeding
segment. If these t w o elemets match, the length of the
longest common prefix r starting with x is incremented
otherwise, it is reseset to 0. In both cases this value

is stored in a local array which will even tuallymake

a column in the global table. After the first cycle the
most recent value of 1' is passed to an external channel

down, coupler] with the incoming element. of the data.
bank and passed to the right. For space rename the
Handel—C version is onnnitted.

5 Conclusion and F urtherWor-k

A fast FPGA implementation of DNA matching has
been obtained based on a formal description of the

problem which revealed a generally useful algorithm.
Speed is extremely important in this application do-
main because DNA databases, which are no w widely
availabie, are 11 uge. The presented algorithm makes
little to no assumptiOns on the transformations that
may have tak en place on the DNA, and is therefore
able to detect all cases of interest.

It is important to observe that hardware perfor-

mance thus becomes available out of a general pur—
pose FPGA card. What is striking is the short devel—
opment time that a hardware compiler like Handel-C
allows. Although current FPGA chips allow for large
lengths for string Q, in the present algorithm the max—
imum length for string Q is always limited by the size
of the FPGA. Larger strhtgiid btbrok en up into
segments and processed sequentially or by multiple FP-

GAs. Resulting matches that span over miltiple seg-
ments could then be combined.

Petitioner Microsoft Corporation - Ex. 1043, p. 271

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Petitioner Microsoft Corporation - Ex. 1043, p. 272

 

 

“’1"le ST 4013 STAGE STAGE
WT (Gm—ll (9.) ]

column 1 column 2 column m

Figure 3. The matching pipeline process LMCS.

Acknowledgements

The authors would like to thank The British Coun—

cil in Greece and the University of Athens for funding
their join tresearc h. We w ouldlike also to thank Dr.

Nikos Yannakouris and Dr. George Dedoussis for their
helpful comments on genetics.

References

[1] AB. Abdallah, Derivation of P arallel Algorithms
from Functional Specifications to CS? Processes,
in: Bernhard Miiller, ed., Mathematics of Program

Construction, LNCS 94?, (Springer V erlag,1995)
67—96

[2] A. E. Abdullah, Synthesis of Massively Pipelined
Algorithms for List Manipulation, in L. Rouge and
P. Fraigniaud and A, Mignotte and Y. Robert (eds),
Proceedings of the European Conference on Paral-
lel Processing, EuroPar’Qo', LNCS 1124, (Springer

V erlag, 1996), pp 911-920.

[3] A. E. Abdalluh, Functional Process Modelling.
In K Hammond and G. Michealson (eds), R c—
seorch Dir cctionsiu For allch unctional Pr ogum-
ming, (Springer Verlag. October 1999). [313339-360

[4] Altshol, S.F. et 3.1., Basic Local Alignement search
tool, Journal of Molecular Biology, pp.403-410,
1990.

[5] R. S. Bird, An Introduction to The Theory of Lists,
in: M. Broy, ed., L ogic of Pogromming and Calculr‘:
of Discreet Design (Springer, Berlin, 1987) 3-42.

[6] R. B. Bird, Introduction to Functional Pr ogum—
ming, (Prentice—Hall, 1998).

[7] R. S. Bird, J. Gibbons and G. Jones, Formal
Derivation of a P attern Matting Algorithm, Sci-
ence of Computer Programmingm (2) (Elsevicr,

1989), pages 93-104.

[8] Chan, RH. and S. Mourad, Digital System Design
Using Ffield Pr gmmmable Gale A Trays Prentice
Hall, 1994.

272

[9] Handel-C L anguageR efcrcnc Manual, Embedded
Solutions Limited, 7/8 Milton Park, Abingdon, Ox~
fordshire, 0X14 411T, United Kingdom, 2000.

[10] Gaasterland, T. and C.W. Sensen, MAGPIE:
Automated genome interpretation, TrendsGenet.,
V oi. I2, pp.7(i-78, 1996.

[11] Guerdoux-Jamet P.,Lavenier D., Wagner C. and
Quinton P., Design and Implementation of a P ar-

allel Architecture for Biological Sequence Compari—
son, in L. Rouge and P. Fraigniaurl and A. Mignotte

and Y. Robert (eds), Proceedings of the European
Conference on For allcl Pr ocessing, EuroPar’Qo',

LNCS 1123, (Springer Verlag, 1996), pp 11—24.

[12] C. A. R. Hoare, Communicating Se quentéalPr o-
ccsses. (Prentice-Hall, 1985).

[13] Hoang D.T. and DP. Lopresti, FPGA Implemen—
tation oBystolz'c Se queucc Alignment, LNCS 705,
1993. pp. 183-191.

{14] Reese, MG. et at, Genome Annotation Assess—
ment in Drosophila. melanogastor, Genome R e-
scarch, Vol. 10, No. 4, pp.483~501, 2000.

[15] Sastry R. and N. Ranganathan, A Systolic Ar-
ray for Apprcuximate String Matching, IEEE 1n-

tcmott‘onol Conference on Computer Design, Cam-
bridge, Massachusetts, 1993, pp. 402-405.

[16] Schewel, J. et al (Eds), Reconfigurable Technol-
ogy: FPGAs for Computing and Applications, Pr o~

coatings of Spie, 20—21 September 1999, Boston,
Massachusetts.

[17] Stormo, G.D., Gene-Finding Approaches for Eu-
kary otes,Gcnomc Research, Vol. 10, No. 4, [313.394-
39?, 2000.

[18] Wagner RA. and M.J. Fisher, The String—to-
String Correction Problem, J. ACM, 21(1), 1974,
pp. 168-173.

[19] Waterman M. 5., Mathematical Methods for DNA
Sequences. (CRC Press, 1989).

Petitioner Microsoft Corporation - EX. 1043, p. 272

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

