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The Density
Advantage of
Configurable
Computing

A
large and growing community of re-
searchers has successfully used field-
programmable gate arrays (FPGAs) to
accelerate computing applications. The
absolute performance achieved by these

configurable machines has been impressive—often
one to two orders of magnitude greater than proces-
sor-based alternatives. Configurable computers have
proved themselves the fastest or most economical way
to solve problems such as the following:

• RSA (Rivest-Shamir-Adelman) decryption. The
programmable-active-memory (PAM) machine
built at INRIA (Informatics and Automation
Research Institute, Paris) and Digital Equipment
Corporation’s Paris Research Lab achieved the
fastest RSA decryption rate of any machine (600
Kbps with 512-bit keys, and 185 Kbps with 970-
bit keys).

• DNA sequence matching. The Supercomputer
Research Center’s Splash and Splash-2 config-
urable accelerators ran DNA-sequence-matching
routines more than two orders of magnitude
faster than contemporary MPPs (massively par-
allel processors) and supercomputers (CM-2,
Cray-2) and three orders of magnitude faster than
the attached workstation (Sparcstation I).

• Signal processing. Filters implemented on Xilinx
and Altera components outperform digital signal
processors (DSPs) and other processors by an
order of magnitude.1

• Emulation. Chip designers use FPGA-based emu-
lation systems to simulate modern microproces-
sors.2

• Cryptographic attacks. Collections of FPGAs offer
the highest-performance, most cost-effective pro-
grammable approach to breaking difficult encryp-
tion algorithms. For example, Berkeley students
showed that an Altera FPGA can search 800,000
keys per second, whereas a contemporary Pentium
searches only 41,000 keys per second.3

From an operational standpoint, what we see in these
examples is a reconfigurable device (typically an FPGA)
completing, in one cycle, computations that take
processors tens to hundreds of cycles. Although these
achievements are impressive, by themselves they do not
tell us why FPGAs were so much more successful than
their microprocessor and DSP counterparts. Do FPGA
architectures have inherent advantages? Or are these
examples just flukes of technology and market pricing?
Can we expect the advantages to increase, decrease, or
remain the same as technology advances? Can we gen-
eralize the factors that account for the advantages in
these cases?

To attack these questions, we must quantify the den-
sity advantage of configurable architectures over tem-
poral architectures—both empirically and with a
simple area model. We must also understand the trade-
offs that configurable architectures make to achieve
this density advantage. Once we understand the trade-
offs involved in using general-purpose computing

An examination of processors and FPGAs to characterize and compare
their computational capacities reveals how FPGA-based machines 
achieve greater performance per unit of silicon area. If we can exploit 
this advantage across applications, configurable architectures can become
an important part of general-purpose computer design.
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blocks, we can expand the comparison to include cus-
tom hardware and functional units. Taking these
effects together, we can see how configurable com-
puting fits into the arsenal of structures we use to build
general, programmable computing platforms.

CONFIGURABLE COMPUTING
Computing with FPGAs is called configurable com-

puting because the computation is defined by config-
uration bits in the device that tell each gate and
interconnect how to behave. Like processors, FPGAs
are programmed after fabrication to solve virtually
any computational task—that is, any task that fits in
the device’s finite state and operational resources. This
impermanent, postfabrication customizability distin-

guishes processors and FPGAs from custom functional
blocks, which are operationally set during fabrication
and can implement only one function or a very small
range of functions. (See the “Field-Programmable
Gate Arrays” sidebar.)

Unlike processors, the primitive computing and
interconnect elements in an FPGA hold only a single
device-wide instruction. (Here, the term instruction
broadly refers to the set of bits that control one cycle
of operation of the postfabrication programmable
device.) Without undergoing a lengthy reconfigura-
tion, FPGA resources can be reused only to perform
the same operation from cycle to cycle. In these con-
figurable devices, we implement tasks by spatially
composing primitive operators—that is, by linking

Field-Programmable Gate Arrays
An FPGA is an array of bit-processing units whose

function and interconnection can be programmed
after fabrication. Most traditional FPGAs use small
lookup tables to serve as programmable computa-
tional elements. The lookup tables are wired together
with a programmable interconnect, which accounts
for most of the area in each FPGA cell (Figure A).
Many commercial devices use four-input lookup
tables (4-LUTs) for the programmable processing ele-
ments because they are area efficient.1 As their name
implies, FPGAs were originally designed as user-pro-
grammable alternatives to mask-configured gate
arrays—the bit-processing elements implementing
the logic gates, and the programmable interconnect
replacing selective gate wiring.2 Increasingly, FPGAs
have served as spatial computing devices.

Most of the examples mentioned in the introduc-
tion of this article use Xilinx XC4000 or Altera
A8000 components as their main computational
workhorses. These commercial architectures have
several special-purpose features beyond the general
model—for example, carry-chains for adders, mem-
ory modes, shared bus lines—but they are basically
4-LUT devices.
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Figure A. A three-input lookup table (3-LUT) FPGA. A programmable interconnect wires the lookup tables together to
serve as programmable computational elements.
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them together with wires. In contrast, in traditional
processors, we temporally compose operations by
sequencing them in time, using registers or memory
to store intermediate results (see Figure 1). The 
single-instruction-per-active-computing-unit limita-
tion in FPGAs provides an area advantage, at the cost
of restricting the size of the computation described on
the die at any point in time.

EMPIRICAL COMPUTATIONAL DENSITY
As noted earlier, a single reconfigurable device often

can compute, in a single cycle, a computation that
takes a processor or DSP hundreds of cycles. We can
place a simple filter, for example, spatially on a single
FPGA, as in Figure 1a, so that it takes in a new sam-
ple and computes a new result in a single cycle. In con-
trast, a processor or DSP takes a few cycles to evaluate
even one filter tap, easily running tens of cycles for even
the simplest filter structures. The FPGA might require
tens of cycles of latency to compute a result, but
because it performs the computation as a spatial
pipeline composed of many active computing elements,
rather than sequentially reusing a small number of
computing elements, it achieves higher throughput.

FPGAs can complete more work per unit of time
for two key reasons, both enabled by the computa-
tion’s spatial organization:

• With less instruction overhead, the FPGA packs
more active computations onto the same silicon
die area as the processor; thus, the FPGA has the
opportunity to exploit more parallelism per cycle.

• FPGAs can control operations at the bit level, but
processors can control their operators only at the
word level. As a result, processors often waste a
portion of their computational capacity when
operating on narrow-width data.

As examples, consider the Alpha 21164 processor4

and the Xilinx XC4085XL-09 FPGA. Both devices were
built in 0.35-micron CMOS processes. The 21164 con-
tains two 64-bit ALUs and runs at 433 MHz. As a result,
it performs, at most, 2 × 64 single-bit ALU operations
every 2.3 nanoseconds. This gives us a maximum theo-
retical computational throughput of 128 bit operations

per 2.3 ns, which equals 55.7 bit operations per ns.
In contrast, the XC4085XL-09 consists of 3,136 con-

figurable logic blocks and runs at a peak clock rate of 4.6
ns per cycle. For a rough comparison, we can equate
one CLB to one ALU bit operation. (One CLB consists
of two 4-input lookup tables. In many cases, we can put
more than one ALU bit operation in a CLB, but the con-
servative estimate suffices for illustration.) The FPGA
achieves a computational density of 3,136 bit opera-
tions per 4.6 ns, or 682 bit operations per ns, easily an
order of magnitude greater than the computational den-
sity of the processor in the same process technology.

This crude comparison does not tell the whole story
of the useful computation these devices can perform
or the factors that prevent them from achieving their
maximum theoretical peak performance. Nonetheless,
it does illustrate how it is possible for an FPGA to
extract more computational capacity from a silicon
die than a RISC processor can.

There are challenges to making the FPGA run con-
sistently at its peak rate, just as there are challenges to
making the processor issue productive cycles at its
peak rate. A big problem with the FPGA is the diffi-
culty of adequately pipelining the design to consis-
tently achieve such a high clock rate. Conventional
FPGA architectures and tool methodologies make it
difficult to contain interconnect delays and reliably
target clock rates near the device’s peak capacity. Yet,
as a recent reconfigurable design developed at UC
Berkeley demonstrates, engineering FPGA designs and
spatial computing arrays that reliably achieve high-
clock-rate execution is possible.5

Figure 2 compares the computational densities of a
wide range of processor and FPGA implementations.
It shows that the anecdotal density observation just
discussed holds broadly across device implementa-
tions. That is, FPGAs have an order of magnitude
more raw computational power per unit of area than
conventional processors. This trend has remained true
for many process generations if we consider total
device area. As the amount of silicon on the process-
ing die has increased, both FPGAs and processors have
turned the larger dies into commensurately greater
raw computational power, but the gap between den-
sities has remained.
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Figure 1. (a) Spatial
and (b) temporal com-
putations for the
expression y[i] = w1 •
x[i] + w2 • x[i − 1] +
w3 • x[i − 2] + w4 • x[i
− 3]. These are imple-
mentations of a 4-tap
FIR filter.
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These peak densities only tell us what the architecture
can provide when task requirements match architec-
tural assumptions. If the task requires manipulation of
small data words, but we are using a large-word CPU,
our yield will be only a fraction of the CPU’s peak
capacity. For example, a 64-bit architecture processing
8-bit data items would realize only an eighth of its peak

processing power. Since FPGAs are controlled at the bit
level, they do not suffer this problem. Consequently,
when operating on narrow data items, FPGAs have the
potential for a second order-of-magnitude advantage
in computational density over processors.

The peak densities also only tell us how much
throughput these devices can achieve. They do not tell
us how much latency a single data set incurs when tra-
versing a complete computational sequence in any of
these devices. In most cases, given comparable imple-
mentation technologies, hardwired structures in the
ALU enable processors to complete a single add oper-
ation in much less time than a contemporary FPGA
requires for an equally wide add.

For example, if the add itself is not internally
pipelined on the aforementioned XC4085XL-09, a
single 64-bit add would take a little over 17 ns.
Because we can get a maximum of 56 of these adders
on the FPGA (using 60 percent of its raw resources),
this gives a maximum throughput of 56/18 ns, or 3.1
64-bit adds/ns, compared to the processor’s 2/2.3 ns,
or 0.9 64-bit adds/ns. To illustrate the combination of
these effects, Figure 3 shows the maximum theoreti-
cal bit-level adder throughput available on the Alpha
and the XC4085 when a single add latency sets the
pipeline operating frequency.

SIMPLE MODEL
The preceding section suggested that FPGAs achieve

their density advantage and fine-grained controllabil-
ity by forgoing the deep instruction memories found
in processors and DSPs. Simple area accounting is con-
sistent with this view.

Each FPGA bit operator, complete with lookup
table, configuration bits, state, and programmable
interconnect, requires an area of 500,000 to 1 million
λ2 (see my thesis6). A RISC processor instruction is 32
bits long and is usually stored on the processor die in
static RAM cells whose bulk area is about 1,200 λ2

per bit. Thus, one RISC instruction occupies roughly
40,000 λ2. Assuming for the moment that the instruc-
tion memory is all that takes up space on the proces-
sor die, we can put 25 RISC instructions in the space
of a single 1-million-λ2 FPGA bit operator. The RISC
instruction typically controls a 32-bit, single-instruc-
tion, multiple-data (SIMD) data path, so we can place
32 × 25 = 800 RISC instructions in the space of 32
FPGA bit-processing units.

The processor also needs data memory to hold 32-
bit intermediate results. Each intermediate result will
occupy at least 40,000 λ2 in SRAM area. Assuming
we keep one word of state for each instruction, the
area per active computation bit reaches parity when
the RISC processor holds instructions and state for
400 operations. So, if we design the RISC processor to
support 4,000 instruction words and 4,000 words of
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Figure 2. Comparison of processor and FPGA computational densities. These data are
based on published clock rates, device organization, and published and measured die
sizes.6 ALU bit operations/λ2s  (bit operations per λ2 second) is the density of
operations per unit of area-time (area × time). Area is normalized by the technology
feature size (λ is half the minimum feature size). Time is given in seconds, an unnor-
malized unit, since several small feature effects prevent delay scaling from being a
simple function of feature size.
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Figure 3. Maximum adder throughput as a function of unpipelined adder word width.
Here, we assume the FPGA must complete an entire add of the specified width within a
cycle. The FPGA throughput varies because of combinational add latency, granularity
issues associated with packing adds into a row, and overhead costs for starting and com-
pleting each add. For the processor’s single add, we assume only one add of the specified
width is performed in the ALU. For the segmented adds, we assume that a single guard
bit is left between words, and that data are otherwise perfectly aligned for the operation.
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state data to keep the 32-bit ALU busy, we require as
much area as 320 FPGA bit-processing units. These
FPGA processing units, if heavily pipelined, can pro-
vide 10 times the per-cycle active computational
capacity of the 32-bit RISC data path.

Modern processor designs do allocate space for thou-
sands of instructions and on-chip state data memory
per active data path, making the last comparison most
relevant. In practice, the RISC processor would require
area for its actual data path, its high-speed intercon-
nect paths, and its control. But this makes the FPGA
look even better by lowering the actual parity point
below 400 operations. This simple accounting clearly
demonstrates the trade-off that differentiates proces-
sors and FPGAs: Processor architectures make a large
sacrifice in actual computational density to tightly pack
the description of a larger computation onto the die.

The last comparison also underscores the trade-off
FPGAs make to achieve their high computational den-
sity. By packing a single instruction and state element
with each active bit operator, the FPGA stores the state
and description of a computation much less densely
than a processor. That is, an FPGA bit operator’s 
1 million λ2 of area is less dense than a RISC instruc-
tion’s 40,000 λ2 by a factor of 25. Consequently, when
performance or throughput is not important, the
processor often can implement a large computation
in less area than an FPGA.

The comparison couples the two main organiza-
tional differences between the processor and the
FPGA—deep instruction memory and wide, SIMD-
controlled data paths. To better understand their con-
tributions, it is worthwhile to separate these factors.
Let’s look at two intermediate designs: a 1-bit proces-
sor data path and a multibit FPGA.

If the RISC instruction controls only a single-bit ALU
(and we retain our earlier assumption that instruction
and data memory are the only things consuming space
in the processor), we see that 25 instructions take the
same space as one FPGA cell. Both devices offer one
active computational bit operator per cycle in this
space. Now, when we have only 250 instructions, the
FPGA has more than 10 times the processor’s compu-
tational density. This example underscores the fact that
the processor is using its SIMD control to help mitigate
the expense of deep instruction memory.

Commercial FPGAs use approximately 200 bits to
specify function, interconnect, and state storage for
each 4-input lookup table (4-LUT). In practice, these
configuration bits are highly decoded, so their infor-
mation content is much smaller, perhaps closer to 64
bits,6 but we can use the larger number here for illus-
tration. Assuming the same 1,200 λ2 per SRAM bit as
in the earlier example, we could save at most 240,000
λ2 by sharing instructions in SIMD fashion among
FPGA bit operators. This is an upper bound since shar-
ing implies additional wiring between cells, and the
bound very generously assumes that interconnect is
completely identical between cells. A 32-bit SIMD
FPGA data path would occupy 31 × 760,000 λ2 +
1,000,000 λ2, which approximately equals 25 million
λ2, or about the area of 25 bit-controlled FPGAs. Thus,
in contrast with the processor, the FPGA, with its shal-
low instruction memory, does not pay a large density
penalty for its bit-level control.

SPECIALIZED FUNCTIONAL UNITS
Previous sections focused on the use of generic pro-

cessing elements such as ALUs and lookup tables. In
practice, modern microprocessors regularly include
specialized, hardwired functional units such as mul-
tipliers, floating-point units, and graphic coproces-
sors. These units provide a greater effective compu-
tational density when called upon to perform their
respective tasks but provide little or no computational
density when different operations are needed. The
area per bit operation in these specialized units is often
100 times smaller than the amortized area of a bit
operation in a generic data path. Therefore, includ-
ing such functions is worthwhile if they will be used
often enough.

Example: hardware multiplier
A hardwired multiplier is often one of the first spe-

cialized units added to a processor architecture and is
a primary architectural feature of a DSP. Given their
regularity and importance, multipliers are among the
most heavily optimized computational building blocks.
Therefore, they serve as an extreme example of how a
hardwired unit’s computational density compares with
its configurable and programmable counterparts.

Table 1 compares several 16-bit × 16-bit multiplier
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Table 1. Comparison of 16 × 16 multipliers.

Device style Design Feature size 2λ (μm) Area (λ2) Time (ns) Area-time (λ2s) Ratio

Custom *Fadavi-Ardekani7 0.63 2.6M 40 0.104 1
FPGA Isshiki and Dai8

(88 CLBs × 1.25 Mλ2/CLB,
7.5 ns/cycle × 16 cycles) 0.60 110M 120 13.2 130

DSP Kaneko et al.9 0.65 350M 50 17.5 170
Processor Yetter et al.10

Magenheimer et al.11

(66 ns/cycle × 44 cycles) 0.75 125M 2,904 363 3,500

*From a survey of a large number of multiplier implementations,6 this example is the densest 16 × 16 multiplier and is implemented in a feature size 
most comparable to the other devices listed.
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