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Abstract

This paper describes an implementation of a novel sys-

tolic array for sequence alignment on the SPLASH re-

configurable logic array. The systolic array operates in

two phases. In the first phase, a sequence comparison

array due to Lopresti [2] is used to compute a matrix

of distances which is stored in local RAM. In the sec-

ond phase, the stored distances are used by the alignment

array to produce a binary encoding of the sequence align-

ment. Preliminary benchmarks show that the SPLASH

implementation performs several orders of magnitude

faster than implementation on supercomputers.

1 Introduction

The work presented in this paper was begun during

one co-author’s summer internship at the National Can-

cer Institute’s Laboratory of Mathematical Biology in

Fredrick, Maryland. The goal was to develop genetic

sequence analysis algorithms for the SPLASH reconfig-

urable logic array [3]. A systolic sequence compari-

son algorithm that computes the edit distance between

a pair of sequences had already been implemented on

SPLASH [4]. Certain applications of interest to biol-

ogists at the laboratory, such as multiple alignment of

genetic (DNA and RNA) sequences, however, require

more than just the edit distance: a more informative

analysis of the similarity, or homology, of the sequences

in the form of an alignment is required. In this paper,

we describe an implementation of a systolic algorithm

✄
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for computing sequence alignments on SPLASH. Prior

to our work, we know of no systolic array for computing

sequence alignments.

1.1 Sequence Comparison and Alignment

Given a source sequence ✝✟✞✡✠ 1 ✠ 2 ☛☞☛☞☛ ✠✍✌ and a target

sequence ✎✡✞✑✏ 1 ✏ 2 ☛☞☛✒☛ ✏✔✓ , the edit distance between ✝
and ✎ is defined to be theminimum cost of transforming✝ to ✎ through a series of the following edit operations:

deleting a character, inserting a character, and substitut-

ing one character for another1.

In some applications, such as approximate multiple

sequence comparison [5] and protein folding [6], in ad-

dition to the edit distance, we need to know the series

of edit operations that leads to a minimum cost transfor-

mation. A standard way to represent the transformation

is with an alignment. In an alignment, the characters

of the source and target sequences are arranged in a

matrix with two rows. The source sequence, possibly

with embedded null characters, ‘ ✕ ’, is placed in the first
row. Similarly, the characters of the target sequence

are placed in the second row. The matrix is analyzed

column-wise. A column containing ✖✒✗✘✚✙ indicates dele-
tion of the character ✛ ; a column containing ✖ ✘ ✜ ✙ in-
dicates insertion of the character ✢ ; and a column ✖✣✗ ✜ ✙
indicates substitution of ✢ for ✛ . A column consisting of

two nulls is not allowed. Here is an example of an align-

ment: ✖✥✤ ✦ ✤ ✧ ★ ✤ ✘ ✦ ✦★ ✦ ✘ ✧ ★ ✤ ✤ ✦ ✧ ✙ . For a given
cost function, there may be more than one minimum-

cost alignment. The alignment algorithm presented here

1Adifferent set of edit operationsmay be defined to suit a particular

application. For example, in text processing, a swap of two adjacent

characters may be considered an edit operation. However, a different

algorithm than presented here may be required to accomodate these

additional edit operations.
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✄ ✄ ✂ ✄☎☎ ✆ ☎☎ ✆ ✂ ✄✄ ☎☎ ✆ ✂ ✄ ✂ ✄☎☎ ✆ ✄ ✄   ✁✄✄

✄✄
✄✄
✄✄

✂✂✂✂✂✂✂✂

☎☎ ✆ ✄☎☎ ✆ ✄✂☎☎ ✆ ✄✂☎☎ ✆ ✄✂☎☎ ✆ ✄✂  ✁

✄✂☎☎ ✆ ✂ ✄✄
✄  ✁ ✄✂☎☎ ✆ ✄✂☎☎ ✆ ✄✂☎☎ ✆ ☎☎ ✆ ✂ ✂ ✂✂☎☎ ✆ ✄✂☎☎ ✆ ✂✂✄✂☎☎ ✆✝☎☎ ✆✄✂ ✄☎☎ ✆☎☎ ✆ ✄☎☎ ✆ ✂ ✄ ✄   ✁ ✂✂ ✄☎☎ ✆ ✄   ✁ ✂ ✂
✞ ✂ ✂ ✄ ✂ ✄☎☎ ✆ ☎☎ ✆✂ ✄☎☎ ✆   ✁ ✂ ✂ ✂ ✄

Figure 1: Dynamic programming table with minimiza-

tion pointers

computes one such alignment.

1.2 Dynamic Programming

The edit distance can be computed sequentially with a

well-known dynamic programming algorithm [7,8] in✟✡✠☞☛✍✌✏✎
time. Let ✝ ✞ ✠ 1 ✠ 2 ✠ 3 ☛☞☛✒☛ ✠✍✌ be the source se-

quence, ✎ ✞ ✏ 1 ✏ 2 ✏ 3 ☛☞☛✒☛ ✏✔✓ be the target sequence, and ✑✓✒✕✔ ✖
be the edit distance between the subsequences ✠ 1 ✠ 2 ☛☞☛☞☛ ✠ ✒
and ✏ 1 ✏ 2 ☛☞☛✒☛ ✏ ✖ . Then

✑ 0 ✔ 0 ✞ 0 ✗✑✘✒✕✔ 0 ✞ ✑✘✒✕✙ 1 ✔ 0 ✚✜✛✣✢✥✤✧✦✩★✫✪✭✬✯✮ ✗ 1 ✰✲✱✳✰ ☛ ✗✑ 0 ✔ ✖ ✞ ✑ 0 ✔ ✖✴✙ 1 ✚✵✛ ✒ ✓ ✪✶★✸✷✫✹✺✮ ✗ 1 ✰✼✻✡✰ ✌ ✗
and

✑✘✒✽✔ ✖ ✞ min
1 ✾ ✬ ✾❀✿✏❁
1 ✾ ✹ ✾❀❂

❃❄ ❅ ✑❆✒✕✙ 1 ✔ ✖ ✚✼✛ ✢✭✤✶✦✩★❇✪ ✬ ✮ ✗✑ ✒✕✔ ✖❈✙ 1 ✚✼✛ ✒ ✓ ✪✧★✯✷ ✹ ✮ ✗✑❆✒✕✙ 1 ✔ ✖✴✙ 1 ✚✜✛ ✪☞❉❆❊☞★✫✪ ✬ ✔ ✷ ✹ ✮✣❋
Here ✛●✢✭✤✶✦✩★❇✪✭✬❍✮ is the cost of deleting ✠✣✒ , ✛ ✒ ✓ ✪✧★✯✷✫✹☞✮ is the cost
of inserting ✏ ✖ , and ✛●✪■❉❆❊☞★✫✪ ✬ ✔ ✷ ✹ ✮ is the cost of substituting✏ ✖ for ✠ ✒ .
An alignment can be constructed by creating pointers

to indicate the minimization choices when evaluating

the dynamic programming recurrence. An example dy-

namic programming table augmented with pointers is

shown in Figure 1. By tracing a path from the lower-

right corner to the upper-left corner, we can construct

an alignment in reverse. The bold pointers in Figure 1

show the path that corresponds to the alignment given in

a previous example.

2 SPLASH Reconfigurable Logic

Array

SPLASH is a reconfigurable logic array developed at the

Supercomputer Research Center (SRC) as a coprocessor

card for the Sun VME bus. The SPLASH board con-

tains 32 XilinxXC3090 field-programmable gate arrays

(FPGA) [9] with local connections to 32 1M-bit (128K

by 8) static RAM chips. The FPGA’s are connected lin-

early in a ring with input coming from a 32-bit FIFO

queue connected to chip 0 and output going to a 32-bit

FIFO queue connected to chip 31. A RAM chip is con-

nected between each pair of adjacent FPGA chips and

can be accessed by either FPGA. The data path connect-

ing the FIFO’s to the array consists of 36 unidirectional

lines, 32 for data and 4 for control signals. Adjacent

FPGA’s, except for chips 0 and 31, are joined by a 68-bit

programmable bidirectional bus, which shares connec-

tions to the local RAM. Chips 0 and 31 are connected

with a 35-bit data path. This “wrap-around” connection

allows data flow through the array in either direction.

At the heart of the SPLASH board are the Xilinx

XC3090 FPGA’s. Each FPGA contains 320 configurable

logic blocks (CLB’s) arranged in a 20 ❏ 16 grid and sur-
rounded by 144 input/output blocks (IOB’s). The 144

IOB’s surrounding each XC3090 FPGA provides con-

nections to the control bus and programmable intercon-

nections between adjacent chips and local RAM. Each

IOB can be configured as either an input port, an output

port, or a bidirectional input/output port, with optional

latch or flip-flop operation. The programmability of the

IOB’s allows for flexibility in the interchip connections.

For example, when the local RAM is not needed, it

can be disabled and the IOB’s connected to the RAM’s

address and data lines can be used for communication

between adjacent FPGA’s.

The reader is referred to [3] for a more complete de-

scription of SPLASH.

Using the FPGA technology in SPLASH, we were

able to rapidly prototype the systolic array without hav-

ing to construct any additional hardware. This approach

also has advantages over software-only simulations in

that it allowed us to detect and correct race conditions

present in early prototypes.

3 Systolic Array for Sequence

Alignment

Our systolic array for sequence alignment operates in

two phases. In the first phase, the systolic array oper-

ates in sequence comparison mode to compute entries in

the dynamic programming table and store them in local

RAM. In the second phase, the stored table is used to

construct an alignment with a marker passing systolic
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Figure 2: Systolic array for sequence comparison

Character
Comparator

Finite State
Machine

Match

SrcNull TgtNull✄✄
✄ ✄

✄
✄

✁✂ ✁✂

✁✂✁✂SrcDstIn

TgtDstOut

SrcChrIn

TgtChrOut TgtChrIn

SrcChrOut

TgtDstIn

SrcDstOut

✄MemDstOut

✄To RAM

Figure 3: Block diagram of the sequence comparison PE

array.

Since the data path to local RAM is 8-bits wide,

for convenience, eight processing elements (PE’s) were

placed on each FPGA chip, except for X0 and X31,

where only four PE’s were placed to leave room for

I/O logic. This puts a total of 248 PE’s on SPLASH,

allowing for alignment of sequences up to 123 in length.

3.1 Phase One: Dynamic Programming

The dynamic programming recurrence can be mapped

onto a linear systolic array that computes a single antidi-

agonal of the dynamic programming table at each step,

with each PE in the array computing the distances along

one diagonal. The resulting systolic array (Figure 2)

and its implementation on SPLASH is described in [4].

The array is modified to save the dynamic programming

table in local RAM. The first phase ends just after the

edit distance, ✑ ✌ ✔ ✓ , has been computed.
Figure 3 shows a block diagram of a sequence com-

parison PE. Each PE is implemented in 13 CLB’s, eight

for the character comparator and five for the finite state

machine.

✁
✂

✂✑✂✒✂✂✑✂✒✂✁ ✁ ✁
✂✂✂✂ ✓✔

✁ ✓✓✂✕✂✕✂✂✕✂✕✂

✖

✂
✁

✁ ✁✂✕✂✕✂ ✖ ✁ ✖ ✁ ✖ ✁ ✖ ✁ ✂✑✂✒✂

✑ ✓ ✙ 1 ✔ ✓ ✙ 1✑ ✓ ✔ ✓ ✙ 2 ✑ ✓ ✙ 2 ✔ ✓✑ ✓ ✔ ✓ ✙ 1 ✑ ✓ ✙ 1 ✔ ✓✑ ✓ ✔ ✓

0 0 1 0 0

✗✘ ✘ ✘ ✘✘ ✘ ✘✘ ✘
✗✗✗✗

✗ ✗ ✗✗ ✗✗
✗ ✗✗✗✙ ✙ ✙✛✚ ✜✜✜ ✢

Reversed
Source

Reversed
Target

Marker
Stream

0 0 1 0 0

Marker Flag ✁

Figure 4: Systolic array for generating alignment

3.2 Phase Two: Marker Passing

The pointer traceback procedure for constructing an

alignment, as described earlier, is performed systoli-

cally in the second phase. We can think of the trace-

back as a marker passing process in which the marker

hops alongs a path created by the minimization pointers.

Using the same antidiagonal mapping of the dynamic

programming table to PE’s as in phase one, we seek

to move the marker from the lower-right corner of the

table to the upper-left. Following a horizontal pointer

would correspond to moving the marker left one PE.

Similarly, following a vertical pointer corresponds to

moving themarker right one PE. Finally, following a di-

agonal pointer corresponds to keeping the marker in the

same PE. Where there are multiple pointers, one is arbi-

trarily chosen. In phase one, the minimization pointers

were never actually computed. However, we can de-

duce the pointers originating from position
✠ ✱✶✗■✻ ✎ given✑✘✒✕✔ ✖ , ✑❆✒✕✙ 1 ✔ ✖ , ✑✘✒✕✙ 1 ✔ ✖❈✙ 1, ✠●✒ , and ✏✕✖ . Therefore, by reading

back the distances saved in local RAM and streaming

the source and target sequences backwards through the

array, the minimization pointers, and thus themovement

of the marker, can be computed. The algorithm out-

lined above is realized by the systolic alignment array

diagrammed in Figure 4.

The sequence alignment PE is diagrammed in Fig-

ure 5. The sequence alignment array uses the same

character comparator in the sequence comparison array.

The additional finite state machine is implemented in

eight CLB’s, bringing the total number of CLB’s per PE

for both phases to 21.

Since at any step, the marker can move at most one

PE from its current position, the marker can be regis-

tered on a systolic stream that moves across two PE’s

at each step. The output of the marker stream encodes

the movement of the marker. Two consecutive 1’s in-

dicate that the marker moved right. Two 0’s between

successive 1’s indicate that the marker moved left. A

pattern of 10101 indicates that the marker did not move.

The binary pattern exiting the marker stream can be de-

coded into a series of edit operations by a simple finite

3 Petitioner Microsoft Corporation - Ex. 1039, p. 3
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Figure 5: Block diagram of alignment PE

state automaton that counts the number of 0’s between

successive 1’s.

4 Benchmarks

For timing, we performed 10,000 alignments of 100-

long sequences on SPLASH. It took 0.50 seconds to

initialize the SPLASH array and 3.2 seconds to run the

alignments. Normalizing for 100 alignments gives 0.032

seconds. For comparison, the benchmarks for 100 com-

parisons of 100-long sequences found in [4] are summa-

rized in Figure 6. We have not completed benchmarking

sequence alignment on conventional computers and use

these results for preliminary comparison. Computing

an alignment would require additional processing and

therefore take additional time in most implementations.

Even including initialization time, the SPLASH imple-

mentation performs at least an order of magnitude better

than implementations on commercial supercomputers,

which, as tested, compute only the edit distance.

5 Conclusion

A systolic array for sequence alignment is presented and

its implementation on SPLASH is described. Prelimi-

nary benchmarks show that the SPLASH implementa-

tion is several orders ofmagnitude faster than implemen-

tations on supercomputers costing many times more.

System Time Speed-Up

SPLASH 0.020 s 2,700

P-NAC 0.91 s 60

Multiflow Trace 3.7 s 14

Sun SPARCstation 1 5.8 s 9.3

Cray 2 6.5 s 8.3

Convex C1 8.9 s 6.0

DEC VAX 8600 31 s 1.7

Sun 3/140 48 s 1.1

DEC VAX 11/785 54 s 1.0

Figure 6: Benchmarks of 100 comparisons of 100-long

sequences [4]
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