CABIOS INVITED REVIEW

Vol. 13 no. 4 1997
Pages 333-344

Linguistic approaches to biological

sequences

David B.Searls

Abstract

Biologists have long made use of linguistic metaphors in
describing and naming cellular processes involving nucleic
acid and protein sequences. Indeed, it is very natural to view
the genetic ‘text’ and its sequential transliterations in these
terms. However, a metaphor is not a tool, and it is necessary
to ask whether the techniques used in analyzing other kinds of
languages, such as human and computer languages, can in
fact be of any use in tackling problems in molecular biology.
This paper reviews the work of the author and others in
applying the methods of computational linguistics to bio-
logical sequences.

Introduction

Only in recent years has the long-standing metaphor of DNA
as language been rigorously examined, from both theoretical
and practical perspectives. This metaphor arose early in
molecular biology, when nucleic acids were recognized as
strings of nucleotide bases comprising the famous four-letter
alphabet. The complementarity of this alphabet—with the
letter G always pairing with C across the double helix, and T
with A—was seen to permit the faithful replication of DNA
molecules. The metaphor was strengthened when the
relationship of nucleic acids to proteins was elucidated; the
so-called central dogma recognized the fundamental two-step
process that first transcribes a subsequence of DNA into
RNA, and then translates successive triplets of RNA bases to
amino acids according to the mapping called the genetic code.
Later, it was discovered that the RNAs that are translated,
called messenger or mRNAs, are further processed in higher
organisms so as to splice out intervening untranslated regions,
called introns, leaving only the exons of the ultimate tran-
script. These biological transformations can be seen as ana-
logous at a number of levels to mechanisms of processing
other kinds of languages, such as natural languages and
computer languages, particularly in the approaches pioneered
by Noam Chomsky in his revolutionary work in the field of
linguistics (Chomsky, 1957).

Bioinformatics Group, SmithKline Beecham Pharmaceuticals, 709 Swede-
land Road, PO Box 1539, King of Prussia, PA 19406, USA

DOCKET

_ ARM

A comprehensive review of this branch of linguistics is
well beyond the scope of this review, but a few examples may
serve to highlight some of the relevant issues. Consider the
following sentence;

The biologist that the linguist noticed ’evenu\Jally waved.

-~

The lines above the sentence serve to connect each noun
with its corresponding verb, i.e. it was the linguist who
noticed and the biologist who waved; note that the relative
clause thus separates remote features of the sentence that are
meaningfully related to each other. This sort of ‘action at a
distance’ is very characteristic of natural language and
provides much of the motivation for attempts to account for
such structure using rule-based systems called grammars. It
will be seen that grammars are capable of neatly generating
just such hierarchical descriptions of the components of
sentences. They also capture another important feature of
natural languages, syntactic ambiguity, by which alternative
structural interpretations or parses are possible. In this
example, the dashed lines below the sentence highlight an
ambiguity surrounding the referent of the adverb ‘even-
tually’: was the biologist slow to wave to the linguist, or was
the linguist slow to notice the biologist?

The dependencies between nouns and verbs in the sentence
above are nested, insofar as any number of relative clauses
could theoretically be inserted within each other to create
tiers of such dependencies. Somewhat less common in
English are crossing dependencies; an artifical example

would be the following:
The biologist and linguist noticed and waved, respectively.

As will be seen in the next section, whether a language
entails strictly nested or crossing dependencies has significant
consequences for the types of grammars required, with
greater complexity attaching to crossing dependencies.

It is noteworthy that very subtle lexical changes (i.e. at the
level of the words of a sentence) can have drastic effects on
the parse. In the following pair of sentences, changing the
preposition ‘by’ to the conjunction ‘as’ completely rearranges
the dependencies in the underlying parses:

The biologist noticed by the linguist waved.

/'\ /\
The biologist noticed as the linguist waved.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D.B.Searls

To appreciate the relevance of these linguistic issues to
biological sequences, consider the various kinds of structure
found in the latter. By analogy with sentences, it might be
claimed that genes have a hierarchical syntactic structure, and
indeed it is natural to draw tree-structured descriptions of
gene structure (Searls, 1993). Just as sentences exhibit distant
dependencies, e.g. between related nouns and verbs, so do
genes exhibit such dependencies, e.g. between splice donors
and acceptors. In this case, syntactic ambiguity would be a
reflection of the phenomenon of alternative splicing; it is well
known that subtle changes in ‘lexical’ signals in mRNA can
result in patterns remarkably like the example sentences
immediately above. Similar ambiguities can be found in the
apparatus regulating gene expression.

Another analogy to linguistics arises from the fact that
biological strings fold up in three-dimensional space, in such
a way that distant parts of those strings interact with and thus
create dependencies with each other. In RNA, the most
obvious manifestiation of such dependencies is base-pairing
interaction. As will be seen in the next section, such depen-
dencies are very naturally expressed via grammars. Again,
the notion of syntactic ambiguity has a biological manifesta-
tion, in this case the phenomenon of alternative secondary
structure (Searls, 1993). Both nested and crossing dependen-
cies are observed, for example in antiparallel and parallel
strands in proteins (Mamitsuka and Abe, 1994).

The author has discussed a number of other correspon-
dences between linguistic notions and biological phenomena
(Searls, 1992, 1993), and has also built tools for pattern-
matching search based on linguistic parsers (Searls and
Noordewier, 1991, Searls and Dong, 1993). The latter have
extended to the problem of detection of genes in genomic
DNA sequences (Dong and Searls, 1994). These three topics
will be discussed in the following sections of this review.
Readers with interest and background in the field of formal
language theory, the bare rudiments of which are introduced
in the next section, may wish to refer to developments in that
arena that have been inspired by the biological domain
(Searls, 1989, 1995a,b, 1996); this work is also summarized
in a recent review (Searls, 1997).

Formal language theory and biological sequences

The processes of transcription and translation from strings of
one kind to strings of a different kind by processive cellular
machinery suggested to some the behavior of certain kinds
of finite state automata (FSAs). FSAs are simple models of
computation, in fact lying at the foundation of computer
science, that comprise directed graphs with labeled transi-
tions among states. By traversing such a graph from state to
state and emitting the lexical/alphabetic labels upon each
transition, a variety of strings can be generated constituting a

DOCKET

_ ARM

language. Brendel and co-workers exhibited FSAs that, on
paper, modeled the processive processes implied by the
central dogma (Brendel and Busse, 1984), and in fact such
automata are implicit in numerous software packages that
perform sequence analysis. For that matter, such packages
often provide capabilities for pattern-matching search for
short substrings of interest, through the use of regular expres-
sions (such as the UNIX grep utility); in formal language
theory, the most basic form of regular expressions corre-
sponds to FSAs in terms of expressive power. Note that FSAs
have a dual nature: they can be seen either as generators of
languages, or as recognizers. A variation on this architecture,
called a finite state transducer, can accomplish both at the
same time; by labeling each transition with both an input and
an output, a true transformation of one string to another can
be accomplished, even more effectively modeling the process
of gene expression.

Given the felicity of this correspondence between FSAs
and biology, the question thus naturally arose as to exactly
where DNA resides on the Chomsky hierarchy of formal
languages. This hierarchy classifies the linguistic complexity
of languages (viewed purely as sets of strings) and relates
them to species of automata required to recognize or generate
them. Similarly, each level of the hierarchy corresponds to a
particular type of grammar, or rule-based system for formally
specifying languages. It happens that regular languages, those
that can be specified by FSAs and/or by regular expressions (a
kind of grammar), occupy the lowest level of the Chomsky
hierarchy. However, there are certain languages, such as the
set of palindromes (strings that read the same forward and
backward), that cannot be expressed by any FSA or pure
regular expression. Fundamentally, this is because FSAs and
regular expressions have no notion of memory that would
permit them to describe arbitrary numbers of dependencies,
other than strictly local ones.

Languages such as palindromes fall on the next level of the
Chomsky hierarchy, that of context-free languages, which
require a pushdown (stack) automaton and a more powerful
form of grammar consisting of rewrite rules. In this system,
the alphabet is augmented with a set of temporary, place-
holding symbols or non-terminals, and a string is derived by
starting from some such symbol and applying the rewrite
rules to non-terminals in the developing string until they are
all eventually replaced by a terminal string of alphabetic
elements only. Thus, for example, the grammar consisting of
the rules

S—gSc S—cSg S—aSt S—tSa S—e

specifies a set of DNA molecules. The § is a non-terminal,
while the lower-case letters are terminal bases; the € stands
for the empty string, and effectively serves to erase an S. This
grammar specifies an infinite number of strings via deriva-
tions like the following, in which the S is repeatedly rewritten

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Biosequence linguistics

using the above rules:
S = gSc = gcSge = geaStge = geatSatge = geatatge

The reader may confirm, by drawing lines connecting those
nucleotides that were derived by the same rule invocation,
that this grammar creates strictly nested dependencies, and in
fact nested dependencies are the only sort possible from a
context-free grammar. As noted, the resulting language lies
outside the regular languages, though any regular language
can be expressed by a grammar like the one above. Never-
theless, there are yet other languages that eilude even the
context-free formalism, in essence because they entail arbi-
trarily many crossing dependencies. Many of these can be
captured with a context-sensitive grammar: one that can have
more than one symbol on the left-hand side of a rule, as long
as the number of symbols does not exceed that on the right-
hand side. Relax this latter restriction, and the resulting
unrestricted grammars are able to specify any language that
can be recognized by a Turing machine—the automaton
corresponding to this class of languages. Thus, ascending the
Chomsky hierarchy appears to require more and more com-
putational power to accomplish general-purpose recognition
or parsing of strings, i.e. to determine their membership in a
language specified by some grammar.

Much of the author’s work has been concerned with the
formal characterization of the language of nucleic acids, in
terms of its position in the Chomsky hierarchy and related
mathematical questions. For example, the grammar given
above specifies, in an idealized way, an important class of
biological sequences, those exhibiting dyad symmetry. The
strings of this language constitute, in fact, a variety of bio-
logical palindrome in which a string reads the same on one
strand of DNA as it does on the opposite strand reading
backward (the so-called reverse complement). The resulting
inverted repeats may also allow a single strand to fold up and
base pair with itself instead of with its opposite strand, in a
structure called a hairpin or, when there are a number of
unpaired bases at the turn, a stem-and-loop. Such secondary
structure is crucially important in, for example, the function
of structural RNAs in the cell. To the extent that the capacity
for secondary structure may be said to be a necessary feature
of the language of nucleic acids, we may infer that they lie
above the regular languages on the Chomsky hierarchy, since
at least a context-free grammar is required to specify such
structure in the general case. In fact, the most general
grammar of orthodox secondary structure can be shown to
consist of the grammar above, augmented with one additional
rule: § — SS. This rule, which simply doubles the start
symbol, is sufficient to permit arbitrarily branching secondary
structures (Searls, 1989, 1993). It also has the effect of
introducing the potential for ambiguity, in that there are
sequences that can be parsed by more than one path [the
reader may wish to verify this by trying parses with this

DOCKET

_ ARM

grammar on sequences that are double inverted repeats, such
as gatcgatc; these can theoretically form hairpins, dumbbells,
or even cruciform structures, each corresponding to a dif-
ferent parse (Searls, 1992)]; happily, these correspond to
alternative secondary structures, providing another useful
analogy between linguistic theory and biological reality
(Searls, 1992, 1993). Stochastic forms of such grammars, i.e.
where probabilities are attached to each rule, have proven
very successful in machine-learning approaches to character-
izing recurring secondary structures, as in the work of
Haussler’s group (Grate et al., 1994; Sakakibara et al., 1994).

Still other biological phenomena indicate that the language
of nucleic acids may be beyond context free as well. Pseudo-
knots (see below) are forms of secondary structure that
require context-sensitive expression in the general case, as do
repeated sequences that are common in DNA and are argu-
ably necessary features of the language. Closure properties
and decidability results suggest that evolution may be a
powerful force toward increasing linguistic complexity, and
that DNA may be inherently ambiguous, non-linear and non-
deterministic (all formally defined properties from language
theory). These results are described in Searls (1992), and
presented in greater mathematical detail in Searls (1993,
1997); in the remainder of this review, we will address the
more pragmatic problem of recognition or parsing of such
linguistic features in DNA.

In speaking of higher-order pattern recognition in bio-
logical sequences, this linguistic point of view offers one way
to categorize the problem space and suggests established
tools for exploring it. For example, the existence of features
in the domain that are at least context free implies that simple
regular expression search will not suffice. Even in advance of
any formal linguistic analysis, however, this problem was
recognized, and a number of software packages have offered
enhanced regular expressions with ‘escapes’ to specify, for
example, inverted and direct repeats (Staden, 1990). Some
early programs for recognizing patterns of motifs in proteins
were based on extended regular expressions (Lathrop er al.,
1987). Whether or not these offer sufficient expressive power
for a greater range of biological phenomena, the use of more
sophisticated grammars and parsers can be seen to have other
advantages. Perhaps most notable among these is the ability
to create modular, hierarchical rule sets, with detail always
presented at the appropriate level (and, of course, a well-
studied formal foundation). Parsers also typically return tree-
structured descriptions of the history of a derivation, called
parse trees, which are not only clear depictions of the pre-
sumed structure under study, but are also appropriate data
structures for further computational analysis. [One worker, in
fact, has studied genetic structures from the point of view of
transformational grammar, which entails operations on a
presumed canonical parse tree in order to create variations in
surface structure typical of natural language (Collado-Vides,

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D.B.Searls

1989, 1992, 1993; Rosenblueth et al., 1996); this work, and
that of others (Bentolila, 1996), has primarily dealt with
regulatory regions.| The author has shown that the parse trees
for grammars depicting secondary structure in fact physically
resemble that structure—a trait considered desirable in
grammars purporting to model the (less literal) structures of
natural language (Searls, 1992).

The linguistic metaphor has suggested other approaches to
this domain besides one based in generative grammars and
the tradition of Chomsky (e.g. Pesole et al., 1996). A number
of workers, notably Trifonov and his colleagues (Trifonov,
1988, 1989, 1993), have borrowed in part from speech
processing and even cryptanalytic methodologies in their
analyses of biological sequences, in order, for example, to
identify and characterize ‘words’ or short recurring substrings
of DNA that are likely to have a functional significance. In
fact, such significant words, often recognition and/or binding
sites for other molecules which act upon the DNA, are an
important concern in systems attempting to recognize the
higher-order structures that contain them. The difficulty arises
when such words are imperfectly specified, i.e. when an exact
instance of a word is not necessary, but rather a whole array of
‘synonyms’ will serve, more or less, the same purpose.

Although it may be possible to describe a canonical con-
sensus sequence for such a feature, for purposes of recog-
nition it is necessary to allow for imperfect matching, and in
general for some notion of assessing the ‘cost’ of a match.
The most obvious approach is simply to allow for, and count,
mismatches at the level of individual bases (so that the cost is,
in effect, the Hamming distance). Biologically, this would
correspond to a base substitution. However, mutations involv-
ing insertions and deletions are also common; the so-called
edit distance between words (or, more often, entire strings)
accounts for the total number of such operations needed to
transform one string into another. Algorithms for efficiently
finding such a minimum edit distance alignment between two
strings (allowing gaps) have historically played an important
role in computational biology (Waterman, 1988). Again at the
level of words, a more sophisticated variation on counting
mismatches has been to compile frequency tables for the
number of times each base occurs at each position in a
number of exemplars; this frequency table is converted by a
variety of techniques to a weight matrix which is used to
assess the cost of a match over the whole word (Staden,
1984). Yet more sophisticated methods have been applied
involving hidden Markov models, connectionist techniques,
and the like, demonstrating that ‘higher-order’ structural analy-
sis is important even at the level of word recognition in
biology (reviewed by Gelfand, 1995).

Thus, what we have termed the linguistic view of bio-
logical sequences involves challenges for both word recog-
nition and syntactic analysis. We will describe practical
approaches to both these problems in succeeding sections.

DOCKET

_ ARM

A pattern-matching parser

Logic grammars are a well-studied set of grammar formal-
isms that are closely related to the logic programming
language Prolog. Most Prolog language implementations, in
fact, offer the capability to compile definite clause grammars
(DCGs) directly into executable code that constitutes a
recursive-descent parser for that grammar (Pereira and Warren,
1980). The built-in theorem prover of Prolog in effect becomes
the parser, and significant advantage can be taken of the list-
manipulation and unification features that are a great strength
of logic programming.

In a DCG, a rule such as S— gSc would be written
s—I[gl,s, [c]. Non-terminals are represented as Prolog
atoms and terminals are given inside square-bracketed lists.
This would be compiled to the Prolog rule:

s(S0,8):-S0=[g|S1],s(S1,82),82=[c|S].

Notice that a pair of variable parameters have been added
to the non-terminals; these difference lists represent the input
string and the remainder of the input string, respectively, after
that non-terminal is successfully parsed—in effect, the span
of the non-terminal on the input. In other words, the dif-
ference lists manage the input string, passing it from element
to element, and hiding this ‘implementation detail’ from the
user at the level of the DCG itself. Terminal lists in the DCG
actually consume elements from the input list, in this case by
unifying it (using the = operator) with a list having the
terminal(s) as its head and the remainder list as its tail. It can
be seen that the difference lists are arranged so that the span
of the left-hand side non-terminal is that of the entire right-
hand side of the rule. Thus, the rule S— ¢, written in DCG
form as s — [], could be translated as simply s (S, S). For
the overall grammar, actual top-level calls to s would suc-
ceed in forms suchas s ([g,g,g,c,c,c, 1, [1), signify-
ing that the non-terminal s indeed can span the entire input
list.

DCGs also allow the embedding of arbitrary Prolog code in
rules, set off by curly braces, and the attachment of additional
parameters to non-terminals. These features raise the formal
power of DCGs well beyond context free, in fact to the top of
the Chomsky hierarchy. Moreover, with the recursive-descent
parser inherent in Prolog, it is the responsibility of the
programmer to write efficient, terminating rule sets. This is
offset by the advantages Prolog offers in rapid prototyping
and the ability easily to define new syntaxes and metalan-
guages especially tailored to a particular domain. The author’s
syntactic pattern-recognition system for biological sequence
data, called GenLang, is a case in point (Searls and Dong,
1993).

GenLang was designed to process efficiently the huge input
strings of DNA sequence data currently available and being
produced at an exponentially increasing rate. Instead of

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Biosequence linguistics

Prolog’s linked lists, the input is represented in a ‘C’ array for
efficiency which, however, entails extra bookkeeping behind
the scenes in the parser; in fact, up to a dozen ‘hidden’
parameters are attached to non-terminals in order to manage
information about the input string, the parse tree and the cost
of imperfect matching.

Queries take the form <pattern>:<parse variable>=
<input>, where the pattern generally contains the top-level
non-terminal in the grammar, the parse variable is a logic
variable to which a parse tree will be bound, and the input is a
DNA string (or file containing such a string). One other novel
infix operator is the gap, denoted by an ellipsis, which simply
consumes some length of input that may be either unbounded
(...) or bounded by a minimum and maximum extent (e.g.
3...75). Otherwise, GenLang grammars appear very much
like ordinary DCGs, except that most objects, such as terminals,
non-terminals, and gaps, may have attached to them lists of
attributes, of the form:

<object>:[<attribute >, . . ., <attribute ,>]

where the attributes are generally operations on keywords,
and are of four types: (i) control operators, which modify the
course of the parse and the position on the input string
(departing from ‘pure’ logic programming, usually for the
sake of efficiency); (ii) constraint attributes, which impose
limits on quantities denoted by keywords, such as the cost
(normally, the number of mismatches) of a subtree; (iii)
specification attributes, which redefine the values of keyword
quantities with arbitrary expressions; and (iv) assignment
attributes, which bind the values of keyword quantities to
logic variables that may be carried through the parse and used
to report information at the top level. Besides the control
attributes which can modify the backtracking search, another
set of features, using the prefix operator @, can control the
position of the parse on the input string, allowing for arbitrary
translocations and additional kinds of constraints. This syntax
is demonstrated in the following (relatively complicated)
GenLang rule:

orf: [once,cost=C-S/10,
parse=|[span,cost]]—

‘atg’ :[step=3,S5=(size>30)],

@End, stop: [C=cost],6 @End.

Here, the essential framework of the rule states that the
feature or £ consists of the terminal string ‘atg’, followed by
a gap, followed by the feature stop. The control attribute
step=3 specifies that the gap is to increase in increments of
three, and the constraint attribute size>30 indicates that the
range 30 or less can be ignored. The latter is combined with
an assignment that binds the value of size to the logic
variable S, just as the C=cost assigns to C the cost of the

DOCKET

_ ARM

stop. The cost of the rule, by default, is the sum of the costs of
its components: the number of mismatches in the terminal
strings plus (recursively) the costs of any non-terminals.
Here, however, the specification attribute cost=C-S/10
redefines the cost of this rule to be an algebraic function of the
size of the gap and the cost of the stop feature. Another
specification attribute controls what information will appear
in the parse tree; in this case, just the numerical span of the orf
and its computed cost, without the detailed subtree that would
ordinarily be displayed.

The control attribute keyword once indicates that this rule
can only succeed once in any starting position, and in this
case prevents backtracking into the interior gap. (The effect
of this keyword is similar to that of the Prolog ‘cut’, but it is
just one of a family of such controls on the expansion of the
parse.) This insures that orfs always end at a stop codon, and
never include one in frame. The @Ends in the rule body refer
to position in the input string; the first one binds the position
just before the stop to the variable End, and the second,
since the variable is now bound, resets the input to that
position. Thus, the span reported for the orf would extend up
to, but not include, the stop codon. Again, there are a large
number of variations on the @ control syntax that allow for
arbitrary movement on the input.

Not only are gaps first-class objects in GenLang, but they
are in some ways the most important objects in terms of the
implementation. This is because gaps, which ‘skip over’
input, are the search engines for individual features of interest
that they precede. Since gaps produce the majority of the non-
determinism, or backtracking behavior, in a grammar, they
not only must be made very efficient, but they are treated
specially by the grammar compiler. Gaps are typically not
executed immediately in the course of a parse, but rather are
‘packaged’ and passed down the parse tree to succeeding non-
terminals, until they encounter some feature with which they
may combine for more efficient evaluation. For example, the
combination of such a ‘lazy’ gap with a terminal string can be
more efficiently evaluated than by brute force matching a la
ordinary DCGs. GenLang will, at the option of the user,
create a hash table of the position of every substring of a
given length in the input string, so that a gap/string com-
bination can simply be looked up for immediate evaluation,
instead of scanning.

Lazy gaps also permit greater variety in the search strategy,
which in the logic-based parser is ordinarily breadth-first on
the input, i.e. all applicable rules are tried at every position
before moving on to the next position. A lazy gap, however, is
passed to the first applicable rule, which can be tried in every
possible position allowed by the gap, before passing the gap
to the next alternative clause or rule. This describes depth-
first search on the input. The search strategy in GenLang can
be varied locally through the use of the rule attributes deep,
wide, or best.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

