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During the past year, computational methods have been
developed that use the rapidly accumulating genomic data to
discover protein function. The methods rely on properties shared
by functionally related proteins other than sequence or structural
similarity. Instead, these ‘nonhomology’ methods analyze
patterns such as domain fusion, conserved gene position and
gene co-inheritance and coexpression to identify protein—protein
relationships. The methods can identify functions for proteins
that are without characterized homologs and have been applied
to genome-wide predictions of protein function.
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Introduction
Biologists are in a delightful quandary. Thousands of
potential genes are being discovered in the various
genome sequencing projects, including those encoding
many new families of proteins. Often, these proteins are
evolutionarily conserved, but are of unknown function.
This poses a fundamental problem to biologists: how can
we discover the functions of these thousands of unknown
proteins quickly and efficiently? Even more ambitious
than knowing their specific biochemical functions, can we
discover their broader functions — the cellular context,
such as pathways and complexes, in which they operate?

As difficult as this goal is, significant progress has been
made in the past year both experimentally, by conducting
genome-wide experiments measuring, for example,
mRNA expression [1] or biochemical activity [2•], and
computationally, by developing new analyses that work on
fundamentally different principles from homology- or
structure-based methods.

This in silico progress stemmed from the realization that
genomes contain considerable information about the func-
tions of and relationships between genes and proteins.
This functional information is encoded in forms such as
patterns of gene fusion, conservation of gene position, pat-
terns of gene co-inheritance and other sorts of
evolutionary information. Such patterns are revealed by
comparisons of multiple genomes, making these analyses

only recently tractable. Also, additional data, such as gene
coexpression measurements, provide analogous informa-
tion within single organisms.

The power of these new methods is that they produce net-
works of functionally related proteins, even when the
proteins have never been characterized. Protein function is
defined by these methods in terms of context, that is,
which cellular pathways or complexes the protein partici-
pates in, rather than by suggesting a specific biochemical
activity. However, in cases in which some of the proteins
have a known function, their function can be extended to
the most intimately linked uncharacterized proteins.
Thus, the methods can be used both to find functional
relationships and to assign general protein function.

This results in an approach to finding protein function that
is strikingly different from directly comparing amino acid
sequences, although sequence comparisons are the basic
tool used in many of the methods. The functional informa-
tion discovered also differs from what might be learned
either from direct sequence comparisons or from structural
analyses, giving three relatively independent and comple-
mentary routes to protein function, as shown in Figure 1.
This review will discuss the main ideas behind nonhomol-
ogy methods, the newest route to protein function.

Evolution (some homology required)
Several nonhomology methods take advantage of genetic
variations among organisms to find protein function. The
domain fusion method [3•] finds functionally related proteins
by analyzing patterns of domain fusion. As illustrated in
Figure 2, proteins found separately in one organism can
often be found fused into a single polypeptide chain in
another organism. That the separated proteins have a func-
tional relationship can be inferred from knowledge of the
fused protein, named the Rosetta stone protein for its abil-
ity to reveal the relationship among its component parts. 

In many cases, the proteins linked by such a domain fusion
event may even physically interact, especially in the case
of protein pairs that have been filtered for false-positive-
producing ‘promiscuous domains’ [3•] and in cases of
high-scoring sequence matches to the Rosetta stone pro-
tein [4•]. An example of this is the two Escherichia coli
gyrase subunits GyrA and GyrB, which are found as fused
homologs in yeast topoisomerase II [3•]. Such relationships
are also common among separated eukaryotic proteins
found fused in a prokaryotic Rosetta stone protein
(EM Marcotte, unpublished data). 

In its simplest form, this analysis can be implemented
[3•] by searching a large sequence database for homologs
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of a query protein AA. Hits in this search will include
direct homologs of the query protein (A′) and potential
Rosetta stone fusion proteins (A–B). Each hit is then
used as a query to search the genome of A and function-
ally related B proteins will be found in this second
search. Along with B proteins, hits in this search will
include A, homologs of A (A′) and very distant homologs
of A (A′′) [5], but the B proteins can be identified by
their lack of homology to A or by their homology to dif-
ferent regions of A–B than those homologous to A. Such
an analysis recently proved useful in identifying a func-
tional relationship between CHORD-containing
proteins and Sgt1, proteins important for plant disease
signaling and nematode development [6].

In a related fashion, two proteins can be inferred to be
functionally related if their genes are repeatedly found as
neighbors on the chromosomes of different organ-
isms [7•,8,9•], as shown in Figure 2. This conservation of
relative gene position presumably derives from the organiza-
tion of prokaryotic genes into operons in which each
protein encoded by the operon performs a closely related
task, such as the proteins of the lactose system [10] or pro-
teins involved in iron uptake [11]. To find operons
directly would require the identification of promoters and

regulatory elements; however, for operons containing evo-
lutionarily conserved genes, large portions of the operons
can often be reconstructed automatically simply by iden-
tifying pairs of conserved gene neighbors [9•]. 

As with domain fusion analysis, this approach can often
identify interacting proteins [7•]. How well the approach
will extend to eukaryotic genes remains to be seen, as
eukaryotes generally lack operons. Examples of function-
ally related eukaryotic gene neighbors do exist, however,
such as in the TCL1 locus [12] or the cadherin pro-
teins [13], so the technique may be useful. The quality of
the functional relationships identified by this method is
exceptional, but the coverage is unfortunately low because
of the dual requirement of identifying orthologs in anoth-
er genome and then finding those orthologs that are
adjacent on the chromosome.
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Figure 1

One can take several computational routes to discovering the function
of a protein. On the left-hand route, the protein sequence is compared
directly with other protein sequences [44,45]. Characterized sequence
homologs or phylogenetic analyses (as in [17–19]) may suggest
functional information. On the right-hand route, the protein sequence
may be tested for compatibility with known three-dimensional protein
structures [46]. Knowledge of the structure may then suggest
functional information (e.g. as in [47,48]). Along the middle route are
nonhomology methods. Sequence and structural homology reveal
proteins of identical or equivalent function, whereas nonhomology
methods identify interacting proteins, proteins with related functions or
proteins operating in the same cellular context. Nonhomology methods
return a network of relationships among proteins functionally linked to
the query protein and function is both defined and inferred by this
network of related proteins.

Homology Structure

Protein sequence

Nonhomology

FUNCTION

Current Opinion in Structural Biology

Structural motifs and
evolutionary tracing

Threading and
fold recognition

Blast and
Smith–Waterman

Trees and clustering

Domain fusions
Phylogenetic profiles
Correlated expression

Conserved gene position 

Figure 2

An example of deriving protein–protein relationships by nonhomology
methods. Genes (labeled white boxes) are shown on the
chromosomes (thick horizontal lines) of three different organisms. (a) It
can be inferred that the proteins encoded by genes A–D are
functionally related through patterns such as the conserved gene
positions of B and C in organisms 1 and 3, the fusion of A and B into
A–B in organism 2 and the coexpression of the mRNAs of C and D in
organism 1. These results can be represented as a network of
functional relationships, as shown in (b). If, for example, the function of
B was unknown, it might be inferred from the functions of proteins A
and C. The computational linkages may be supplemented by any
experimentally observed interactions or known protein–protein
relationships, such as those described in [35,38–40].
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A third nonhomology method works on the premise that
proteins that operate together in the cell are often inherit-
ed in a correlated fashion [14•]. That this is a reasonable
assumption follows from the fact that proteins rarely work
alone and many pathways or complexes are crippled by the
loss of individual components. Thus, any organism that
requires the complex or pathway carries the genes for most
or all of its components; any organism lacking the complex
or pathway often lacks all of the component genes. The co-
inherited proteins can be identified in an automated
fashion by comparing their phylogenetic profiles, strings that
encode the presence or absence of sequence homologs in
known genomes, as shown for a few proteins in Figure 3. 

Each phylogenetic profile is analogous to an abstract rep-
resentation of an evolutionary tree; matching phylogenetic
profiles therefore identifies proteins with similar patterns
of inheritance. Note that no homology is required among
the proteins with similar phylogenetic profiles; the pro-
teins are co-inherited and, when many genomes (n > 10)
are analyzed, usually functionally related, as in the exam-
ples shown in Figure 3. The involvement of the
uncharacterized SmpB protein family in protein synthesis,

predicted by phylogenetic profiles [14•], was recently con-
firmed by Karzai et al. [15].

The differential genome analysis method of Huynen
et al. [16] also takes advantage of gene presence and
absence to associate phenotypes with genes: a list is pre-
pared of genes shared among organisms that also share a
given phenotype. This list of genes is filtered by removing
the genes that occur in organisms lacking the phenotype.
The remaining genes are correspondingly enriched for
those that confer the phenotype.

Homology (and evolution)
The distinction between homology and nonhomology
methods can be blurred, as even direct sequence compar-
isons are enhanced by taking advantage of evolutionary
variations. For example, Lichtarg et al. [17] showed that
functional sites on proteins could be identified by analyz-
ing amino acids conserved at different branching depths in
phylogenetic trees of protein homologs. Likewise, varia-
tions among protein homologs found by clustering the
proteins in phylogenetic trees often reveal subtle special-
ization in protein function. Recent examples of this
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Figure 3

Phylogenetic profiles [14•] for three groups
of yeast proteins (ribosomal proteins and
proteins involved in DNA repair and purine
metabolism) sharing similar co-inheritance
patterns. Each row is a graphical
representation of a protein phylogenetic
profile, with elements colored according to
whether a homolog is absent (white box) or
present (colored box) in each of
24 genomes (columns). When homology is
present, the elements are shaded on a
gradient from light gray (low homology) to
black (strong homology). In this case,
homologs are considered absent when no
BLAST hits [44] are found with expectation
(E) values < 1 × 10–5. When homologs are
present, the profile receives a score
(–1/log E) that describes the degree of
sequence similarity with the best match in
that genome. Note that an uncharacterized
protein (YPL207W) clusters with the
ribosomal proteins and can now be
assigned a function in protein synthesis.
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analysis include the MutS protein family [18] and proteins
conserved between worm and yeast [19].

A different aspect of evolutionary information is used in
the calculation of COGS (clusters of orthologs) [20], in
which proteins from different organisms are grouped
together in such a way as to maximize their functional
equivalence. COGS are generated by identifying
orthologs or equivalent proteins among different organ-
isms. Orthologs can be defined operationally as the
symmetric top-scoring protein sequences in a sequence
homology search. That is, a query sequence from
genome 1 has an ortholog in genome 2 if searching the
query versus genome 2 turns up the ortholog as the best
match and searching the ortholog versus genome 1 turns
up the query protein as the best match. 

COGS effectively cluster functionally equivalent pro-
teins because of the power of orthology, which dictates
that not only are sequences homologous, but also that
they are the best homologs regardless of search direction.
This symmetric homology detection relies on the
absence of better homologs from each genome and,
therefore, incorporates both evolutionary information and
sequence matching. Phylogenetic profiles can be con-
structed from orthologs, rather than from best homologs,
and searched for exact matches at the COGS web site
(http://www.ncbi.nlm.nih.gov/COG/) [20].

No homology required (made up for with extra
data)
Each of the methods discussed above requires that a query
protein have some sequence homologs in the database,
even though direct sequence homology with these pro-
teins may not be the basis for the analysis. This
requirement is lifted for analyses of other genomic data,
however, such as analysis of correlated mRNA expression lev-
els, reviewed in [21,22]. Therefore, these techniques can
find relationships among proteins that are absolutely
unique. The premise of all expression clustering methods
is, as in phylogenetic profiles, that proteins rarely work
alone, but are often expressed at the same time or place as
functionally related proteins. By varying the conditions
that cells are grown in or by choosing different cell types or
cells from different tissues, enough variation in gene
expression can be observed to identify coexpressing genes.

Such clustering requires additional data beyond genome
sequences, to date relying on measurements of cellular
mRNA levels by DNA microarrays, as in [23], serial analy-
sis of gene expression (SAGE) libraries [24] or expressed
sequence tag (EST) libraries [25]. Underlying the cluster-
ing of genes by their mRNA coexpression levels is the
assumption that coexpressed genes will generally be func-
tionally related if enough different conditions have been
tested. Such clustering performs well for strongly coex-
pressed genes, such as ribosomal subunits, and poorly for
other gene groups. It requires fairly large sets of data, such

as more than 70 DNA chip measurements of yeast mRNA
levels [26••,27••] or hundreds of human EST libraries from
different tissues and cells [28•].

In a manner analogous to analyzing gene co-inheritance
or mRNA expression patterns, an organism’s proteins can
probably be clustered effectively by their own protein
coexpression patterns under varying growth conditions.
For protein coexpression analysis, one directly measures
the functional species (proteins) and it is likely that the
clusters calculated on this basis will be more powerful for
protein function assignment than mRNA expression
clustering, especially given that protein and mRNA lev-
els are often surprisingly uncorrelated [29•]. Protein
expression patterns have been measured directly by
mass spectrometry of protein mixtures [30] and by vari-
ous two-dimensional gel electrophoresis techniques,
with the proteins on the gel identified by amino acid
content [31] or mass spectrometry [32•,33•]. The tech-
niques are labor intensive and have not, just yet,
produced a sufficient dataset for coexpression analyses.
This is likely to change in the very near future, given the
current emphasis on genome-wide and proteome-wide
analyses. Protein expression patterns have also been
measured, not as a function of growth conditions, but
spatially, as β-galactosidase fusions in Xenopus
embryos [34•], allowing functionally related proteins to
be grouped by their spatial coexpression patterns.

Building a genome-wide network of proteins
The methods described above are easily applied on a
genome-wide scale, combining results from each method to
build a network of the functional relationships among an
organism’s proteins. Such a network was calculated recently
for yeast proteins [27••], identifying 93,750 functional links
among 4701 of the 6217 proteins in yeast. A subset of this
network is drawn in Figure 4, showing the amazing com-
plexity of the connections generated by these methods.
Perhaps even more surprising is the high degree of connec-
tivity among the proteins, attributable in part to homology
and false-positive predictions, but still observable even in
entirely experimentally derived networks, such as the con-
nected set of 542 proteins linked according to 727
experimentally observed protein–protein interactions from
the Database of Interacting Proteins (inset, Figure 4) [3•,35].
These studies reinforce the idea that proteins rarely work in
isolation, but are instead linked into an interconnected net-
work of physical interactions and functional relationships.

Why is this computational genetics?
Unlike sequence homology and inferences from protein
structure, nonhomology methods reveal protein function in
the same manner that experimental geneticists do: by defin-
ing the context that the protein operates in. Function is then
determined from the pathway neighbors of a protein. For
this reason, we might consider nonhomology methods to be
computational genetics, a bioinformatics analysis that proceeds
in a fashion analogous to experimental genetics.
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In fact, the method of phylogenetic profiles [14•] is an
exact computational equivalent of the experimental
genetics approach of mapping a mutant gene’s phenotype
to the gene. When we compare one organism with anoth-
er, we can generalize each organism as having a collection
of mutations, gene knockouts and extra genes relative to
the other organisms. By grouping genes with similar phy-
logenetic profiles, we are mapping genes that produce
shared phenotypes (the genes are expressed or absent in
the same sets of organisms) and are essentially perform-
ing a standard genetic mapping. Of course, the
experiment is performed computationally and in a mas-
sively parallel form, but it is essentially the same analysis
as in experimental genetics. 

Conclusions
This past year has seen an explosion of new experimental
and computational tools to identify protein function,
including the development of ‘nonhomology’ computa-
tional methods. These methods take advantage of the
many properties shared among functionally related pro-
teins, such as patterns of domain fusion, evolutionary
co-inheritance, conservation of relative gene position and

correlated expression patterns. Such analyses, building on
existing genomic sequence and expression data, allow the
assignment of preliminary protein function on a genome-
wide scale. Even more exciting is the potential for
increasing the power of the methods as more genome
sequences and expression libraries accumulate; for exam-
ple, the number of possible phylogenetic profile vectors
and, therefore, the potential to separate unrelated proteins
grows on the order of 2n for n genomes. An important goal
will be working out proper statistical evaluations of results
from each of the methods.

In the next year, we can expect these techniques to be
integrated, for each genome, with homology- and struc-
ture-derived protein functions, as well as with known
experimental data, as researchers are beginning to extract
experiments from the scientific literature into computer-
analyzable databases, such as for protein–protein
interactions [35,36], functional relationships derived from
the co-occurrence of gene names in articles [37], metabol-
ic pathways [38,39] and general gene function [40–42].
Beyond even these, we can expect many new types of
data, such as the recent genome-wide gene disruption phe-
notypic studies of yeast [43••] and protein expression
datasets, that should really open up the power of these
methods and allow researchers to finely map many of the
functions and relationships among the genes so tantaliz-
ingly revealed in each newly sequenced genome.
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Figure 4

The network of 12,012 functional relationships among 2240 proteins
from yeast generated from protein phylogenetic profiles, showing links
that occur with an expectation (E) value < 1 × 10–3. Each vertex
represents a protein and each line represents a functional link,
modeled as springs to position functionally related proteins close
together in space [27••]. In this case, the phylogenetic profiles are
calculated for n = 24 genomes and the E value of a link from protein A
to protein B is calculated as p(A)•V(n,dAB)•N•C, where p(A) is the
probability of observing the profile of protein A, V(n,dAB) is the volume
of an n-dimensional hypersphere centered on A of radius dAB, N is the
number of proteins with informative vectors and C is a scale factor. For
comparison, the inset shows an experimentally derived network of
protein–protein interactions from the Database of Interacting
Proteins [35], courtesy of I Xenarios.
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