
Petitioner Microsoft Corporation - Ex. 1007, Cover 1

QA 76
.8 -

.368 S68

1996 splaSh z
EFEM Ira % WWW Emmottlaw Momma

LAN DOVER

GenCoH

 
 Emma A r.

iflmmy M. magi

mm? EL fittofimfigétfiw

I E EE

@W QgréeiasirgéarefihégagficaANDSQYEARS OFSERVICE-~1946- 1996

Petitioner Microsoft Corporation - EX. 1007, Cover 1 



Petitioner Microsoft Corporation - Ex. 1007, Cover 2

 

Petitioner Microsoft Corporation - EX. 1007, Cover 2 

 



Petitioner Microsoft Corporation - Ex. 1007, Cover 3

Splash 2
FPGAs in a Custom

Computing Machine

Petitioner Microsoft Corporation - EX. 1007, Cover 3 

 



Petitioner Microsoft Corporation - Ex. 1007, Cover 4

Xilinx, the Xilinx logo, XC3090, XC4010, XBLOX, XACT, LCA,
and Configurable Logic Cell are trademarks of Xilinx, Inc.

CM-2 and Paris are trademarks of Thinking Machines Corporation.

VMEbus is a trademark of Motorola Corporation.
SPARC and SPARCstation are trademarks of SPARC International,
Inc. Products bearing a SPARC trademark are based on an architec-
ture developed by Sun Microsystems, Inc. SPARCstation is licensed
exclusively to Sun Microsystems, Inc.

UNIX is a trademark of UNIX System Laboratories.
Sun, Sun Workstation, SunOS, and SBus are trademarks of Sun Mi-
crosystems, Inc.

Design Compiler and FPGA Compiler are trademarks of Synopsys,
Inc.

DEC is a trademark of Digital Equipment Corporation.

Verilog is a trademark of Cadence Design Systems, Inc.

Petitioner Microsoft Corporation - EX. 1007, Cover 4 

 



Petitioner Microsoft Corporation - Ex. 1007, Cover 5

§plash 2
FPGAs in a Custom

Computing Machine

Duncan A. Buell

Jeffrey M. Arnold

Walter J. Kleinfelder
Editors

Center for Computing Sciences

Bowie, Maryland

IEEE Computer Society Press

Los Alamitos, California

Washington 0 Brussels 0 Tokyo

Petitioner Microsoft Corporation - EX. 1007, Cover 5 

 



Petitioner Microsoft Corporation - Ex. 1007, Cover 6

 

' Library of Congress CataIoging-in-Publication Data

Buell, Duncan A.

Splash 2: FPGAs in a custom computing machine / Duncan A. Buell,
Jeffrey M. Arnold, Walter J. Kleinfelder.

p. cm.

includes bibliographical references and index.
ISBN 0-8186-7413-X

1. Spash 2 (Computer) 2. Electronic digital computers—Design
and construction. I. Arnold, Jeffrey M. II. Kleinfelder. Walter J.
lII. Title.
QA76.8.865B84 1996
004.2 ' 2-—-d020

95-47397
CIP

 
P.O. Box 3014

Los Alamitos, CA 90720-1264

IEEE Computer Society Press

@ 10662 Los Vaqueros Circle

Copyright © 1996 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted
to photocopy isolated pages beyond the limits of US copyright law, for private use of their patrons. Other
copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, PO. Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number BP07413

Library of Congress Number 95-47397
ISBN 0-8186-7413-X

 
.,.W”“

I“? “or: , , . .
. *v-‘xfl‘ ' Additional copies may be orderedfmm:(' ~'-.} u

1‘ #1:“ L "’ IEEE gbfiiputer So iety Press IEEE Service Center IEEE Computer Society IEEE Computer Society
.. ‘1 Customer Service enter 445 Hoes Lane 13, Avenue de l’AquiIon Ooshima Building
i 1,0962 Los Vaqu ros Circle PO. Box 1331 B—1200 Brussels 2-19-1 Minami-Aoyama

. (PO. Box 3914 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
\‘2\\”;Los Alalpi , CA 90720—1264 Tel: +1-908-981—1393 Tel: +32-2-770-2198 JAPAN

{’5’ Tel: +137I 4-821—8380 Fax: +1~908-981-9667 Fax: +32-2-770—8505 TeI: +81—3—3408-31 18

Fax: yf-7l4‘821—4641 mis.custserv@computer.org euro.ofc@computer.org Fax: +81»3—3408-3553
fimfiil: cs.books@computer.org toky0.ofc@computer.org

 ,m

Assistant Publisher: Matt Loeb

Technical Editor: Dharma P. Agrawal

Acquisitions Assistant: Cheryl Smith
Advertising/Promotions: Tom Fink
Production Editor: Lisa O’Conner

Cover Image: Dan Kopetzky, Center for Computing Sciences

Printed in the United States of America

<9 The Institute of Electrical and Electronics Engineers, Inc

Petitioner Microsoft Corporation - EX. 1007, Cover 6



Petitioner Microsoft Corporation - Ex. 1007, p. TOC v

($2474,
.34.? S5 5’

 

m ea

Contents

PREFACE xi

1 CUSTOM COMPUTING MACHINES: AN INTRODUCTION 1

1.1 Introduction 1

1.2 The Context for Splash 2 4

1.2.1 FPGAs, 4

1.2.2 Architecture, 5

1.2.3 Programming, 6

2 THE ARCHITECTURE OF SPLASH 2 10

2.1 Introduction 10

2.2 The Building Blocks 11

2.3 The System Architecture 12

2.4 Data Paths 13

2.5 The Splash 2 Array Board 16

2.5.1 The Linear Array, 16

2.5.2 The Splash 2 Crossbar, 16
2.5.3 Xilinx Chip X0 and Broadcast Mode, 17

2.6 The Interface Board and Control Features 17

Petitioner Microsoft Corporation - EX. 1007, p. TOC V 

 



Petitioner Microsoft Corporation - Ex. 1007, TOC vi

 

vi Contents

3 HARDWARE IMPLEMENTATION 19

3.1 Introduction 19

3.2 Development Board Design 21

3.3 Interface Board Design 21

3.3.1 DMA Channel, 23
3.3.2 XL and XR, 23

3.3.3 Interrupts, 24
3.3.4 Clock, 24

3.3.5 Programming and Readback, 24
3.3.6 Miscellaneous Registers, 25

3.4 Array Board Design 25

3.4.1 Processing Element, 26
3.4.2 Control Element, 28

3.4.3 External Memory Access, 28
3.4.4 Crossbar, 28

3.4.5 Programming and Readback, 29
3.4.6 Miscellaneous Registers, 29

4 SPLASH 2: THE EVOLUTION OF A NEW ARCHITECTURE 31

4.1 Splash 1 31

4.2 Splash 2: Thoughts on a Redesign 34

4.3 Programming Language 36

4.4 Choice of FPGAs 37

4.5 Choice of Host and Bus 38

4.6 Chip—to—Chip Interconnections 39

4.7 Multitasking 42

4.8 Chip X0 and Broadcast 43

4.9 Other Design Decisions 43

465 SOFTWARE ARCHITECTURE

5.1

5.2

5.3

5.4

Introduction 46

Background 47

VHDL as a Programming Language 49

5.3.1 History and Purpose of VHDL, 50
5.3.2 VHDL Language Features, 50
5.3.3 Problems with VHDL, 51

Software Environment 51

Petitioner Microsoft Corporation - EX. 1007, TOC Vi



Petitioner Microsoft Corporation - Ex. 1007, TOC vii

Contents 7 vii

5.5 Programmer’s View of Splash 2 55

5.5.1 Programming Process, 55
5.5.2 Processing Element View, 56
5.5.3 Interface Board View, 57

5.5.4 Host View, 57 A

6 SOFTWARE IMPLEMENTATION 60

6.1 Introduction 60

6.2 VHDL Environment 60

6.2.1 Splash 2 VHDL Library, 61
6.22 Standard Entity Declarations, 61
6.2.3 Programming Style, 64

6.3 Splash 2 Simulator 66

6.3.1 Structure, 66

6.3.2 Configuring the Simulator, 67
6.3.3 Input and Output, 68
6.3.4 Crossbar and Memory Models, 68
6.3.5 Hardware Constraints, 70

6.4 Compilation 70

6.4.1 Logic Synthesis, 70
6.4.2 Physical Mapping, 71
6.4.3 Debugging Support, 71

6.5 Runtime System 72

6.5.1 T2: A Symbolic Debugger, 72
6.5.2 Runtime Library, 73
6.5.3 Device Driver, 74

6.6 Diagnostics 75

7 A DATA PARALLEL PROGRAMMING MODEL 77

7.1 Introduction 78

7.2 Data-parallel Bit C 80

7.2.1 dbC Overview, 80

7.2.2 dbC Example, 81

7.3 Compiling from dbC to Splash 2 82

7.3.1 Creating a Specialized SIMD Engine, 83
7.3.2 Generic SIMD Code, 84

7.3.3 Generating VHDL, 84

7.4 Global Operations 88

7.4.1 Nearest-Neighbor Communication, 88

Petitioner Microsoft Corporation - EX. 1007, TOC vii 

 



Petitioner Microsoft Corporation - Ex. 1007, TOC viii

 

viii

7.5

7.6

7.7

8.1

8.2

8.3

8.4

8.5

8.6

9.1

9.2

9.3

9.4

9.5

9.6

7.4.2 Reduction Operations, 89
7.4.3 Host/Processor Communication, 91

Optimization: Macro Instructions 92

7.5.1 Creating a Macro Instruction, 93
7.5.2 Discussion, 94

Evaluation: Genetic Database Search 94

Conclusions and Future Work 95

SEARCHING GENETIC DATABASES 0N SPLASH 2

Introduction 97

8.1.1 Edit Distance, 98

8.1.2 Dynamic Programming Algorithm, 98

Systolic Sequence Comparison 100

8.2.1 Bidirectional Array, 100

8.2.2 Unidirectional Array, 103

Implementation 104

8.3.1 Modular Encoding, 105
8.3.2 Configurable Parameters, 106

8.3.3 Bidirectional Array, 107
8.3.4 Unidirectional Array, 107

Benchmarks 107

Discussion 108

Conclusions 108

TEXT SEARCHING ON SPLASH 2

Introduction 110

The Text Searching Algorithm 111

Description of the Single—Byte Splash Program

Timings, Discussion 114

Outline of the 16-bit Approach 115

Conclusions 1 16

10 FINGERPRINT MATCHING ON SPLASH 2

10.1

10.2

Introduction 1 17

Background 120

Petitioner Microsoft Corporation - EX. 1007, TOC viii

113

Contents

97

110

117



Petitioner Microsoft Corporation - Ex. 1007, TOC iv

Contents ix

10.2.1 Pattern Recognition Systems, 121
10.2.2 Terminology, 122

10.2.3 Stages in AFIS, 123

10.3 Splash 2 Architecture and Programming Models 125

10.4 Fingerprint Matching Algorithm 125

10.4.1 Minutia Matching, 126
10.4.2 Matching Algorithm, 127

10.5 Parallel Matching Algorithm 128

10.5.1 Preprocessing on the Host, 131
10.5.2 ' Computations on Splash, 132
10.5.3 VHDL Specification for X0, 133

10.6 Simulation and Synthesis Results 134

10.7 Execution on Splash 2 137

10.7.1 User Interface, 137

10.7.2 Performance Analysis, 137

10.8 Conclusions 139

11 HIGH-SPEED IMAGE PROCESSING WITH SPLASH 2 141

11.1 Introduction 141

11.2 The VTSplash System 142

11.3 Image Processing Terminology and Architectural Issues 143

11.4 Case Study: Median Filtering 150

11.5 Case Study: Image Pyramid Generation 153

11.5.1 Gaussian Pyramid, 154

11.5.2 Two Implementations for Gaussian Pyramid on Splash 2, 155
11.5.3 The Hybrid Pipeline Gaussian Pyramid Structure, 157
11.5.4 The Laplacian Pyramid, 157

11.5.5 Implementation of the Laplacian Pyramid on Splash 2, 159

11.6 Performance 159

11.7 Summary 163

12 THE PROMISE AND THE PROBLEMS 166

12.1 Some Bottom-Line Conclusions 166

12.1.1 High Bandwidth I/O Is a Must, 166
12.1.2 Memory Is a Must, 167

12.1.3 Programming Is Possible, and Becoming More So, 168
12.1.4 The Programming Environment Is Crucial, 168

12.2 To Where from Here? 169

Petitioner Microsoft Corporation - EX. 1007, TOC iv 

 



Petitioner Microsoft Corporation - Ex. 1007, TOC x

 

Contents

12.3 If Not Splash 3, Then What? 171

12.3.1 Architectures, 172

12.3.2 Custom Processors, 173

12.3.3 Languages, 174

12.4 The “Killer” Applications 177

12.5 Final Words 178

A SPLASH 2 DEVELOPMENT—THE PROIECT MANAGER’S

SUMMARY 179

B AN EXAMPLE APPLICATION 186

REFERENCES 190

Petitioner Microsoft Corporation - EX. 1007, TOC X 



Petitioner Microsoft Corporation - Ex. 1007, Preface xi

Preface
 

The Splash 2 project began at the Supercomputing Research Center1 in September of
1991 and ended, with success, in the spring of 1994. Splash 2 is an attached processor

system using Xilinx XC4010 FPGAs as its processing elements. As such, it is a
custom computing machine. That is to say that much of what would be the instruction

set architecture of the processing elements is not specified except in the details of the

program developed by the application programmer. Although a higher-level block
diagram of processing elements, memories, interconnect, and dataflow exists in the
hardware structure of Splash 2, the details of the instruction set architecture level of

the machine will vary from one application to the next.

The Splash 2 project is significant for two reasons. First, Splash 2 is part of a

complete computer system that has achieved supercomputer—like performance on a
number of different applications. By “complete computer system” we mean that SRC
created or caused to be created an extant hardware system (replicated a dozen times),

a complete programming and runtime environment, and a collection of application

programs that exercised the unique hardware.

The second significant aspect of Splash 2 is that we were fortunate enough to

be able to build a large system, capable of performing real computations on real

problems. One common complaint about performance results on novel computing
machines or environments is that results on small problems cannot be accurately

extrapolated to large problems. The Splash 2 system that was designed and built is
a full—sized machine and does not suffer from this defect.

To get to the point: why a book?

1Renamed the Center for Computing Sciences in May 1995, but referred to throughout this book
as SRC.

xi
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Xii Preface

This is a novel computing machine. In order to understand what happens when
the application programmer is permitted, indeed required, to design the processor
architecture of the machine that will execute his program, it is necessary to see the
system as a whole. Programmability and problems to be run on this machine both

had major influences on its architecture, just as its architecture and its unique nature
influence the kinds of problems one would expect to program for this machine and

the nature of that programming. And standing between the user and the machine,

as the old joke goes, is a new kind of programming environment and an evolving
understanding of how this environment must allow the use of the hardware, without

forcing every programmer to be a hardware-design engineer.

At the first IEEE Workshop on FPGAS for Custom Computing Machines, one

of the industrial attendees remarked that, although nearly everyone would agree, as
part of a coffee-room discussion or the like, that it would be interesting to think about

building a “computer” using FPGAs, no one in management (except perhaps at SRC
and DEC PRL) had put up the commitment necessary in time and money to do a
real test of the idea. It was then remarked that, given the nature of the marketplace
and of engineering management, these first attempts had to be successful in order to
open the door for future work. We feel we have been successful, and we offer in

this book an in-depth look at one of the handful of data points in the design space
of this new kind of machine.

We would hope that this book has a broad appeal and is readable with under—

standing by nearly all computer scientists and computer engineers. To the hardware

designer, perhaps we can offer a new look at programming applications on a mod-

erately general FPGA-based computing machine instead of designing circuits for a
specific board incorporating FPGAS. The engineering world has viewed FPGAs, to a

great extent, as the next logical step in a continuum of electronic devices; we offer,

we feel, the option of viewing them much more broadly than that. To the computer
architect we offer a variant hardware platform and-an indication of how that general
platform can be used. Much of computer architecture is a compromise between the

functionality desired and the limits of what can be built given existing technology; we
offer the use of a new technology that can offer, to a limited extent now, and could

offer much more generally later, greatly increased functionality. For some of those
who have hard problems in computation, we offer much of the power of special-
purpose hardware without the inflexibility and uncertain delivery times of hardware.
The long-term task is not to map a high—level language to a particular architecture
or range of architectures, but in some sense to create for each application program
a suitable architecture to which the high-level language will be mapped. And to the

language designers and compiler writers we offer a world to conquer. We have pre—
sented one imperfect but usable approach to programming such a computing machine,
and we trust that others interested in the critical problem of making these machines

programmable can learn both from what we did right and what we did wrong.
Chapter 1 discusses the general concept of Custom Computing Machines, of

which Splash 2 is one example. Chapters 2 and 3 describe at a high level and
then in some detail the hardware architecture of Splash 2. Chapter 4 covers the
design considerations and decisions in arriving at the second-generation Splash 2
architecture. We present this chapter at the end of the section on hardware, on the

basis that it is easier to understand variations in a design when those variations are
compared against something concrete.
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Preface xiii

Chapters 5 and 6 describe, also first at a higher and then at a lower level, the

software architecture of Splash 2. All the application programs in the latter chapters

were done using VHDL as an applications programming language and these tools

in support. The main goal of the Splash 2 project was to show that software, as

described in Chapters 5 and 6, could make a computer using FPGAs as its processing
elements into something that reasonable people would call “programmable,” and, in

that sense, the heart of the Splash 2 project is in Chapters 5 and 6. Throughout

the life of Splash 2, however, there has been an alternative view of programming.

This view is reflected in Chapter 7 on the Splash 2 version of the programming

language dbC. The approach taken in dbC is to permit the programmer to use a

version of C as the programming language. It is the compiler which then becomes

responsible for, in essence, recognizing the instruction set architecture necessary to

execute the program and then creating in the FPGA the requisite registers, logic units,
and control.

Chapters 8 through 11 then describe four different applications programmed

to conclusion on Splash 2. The first of these—the sequence comparison problem—

was the driving application, in the sense that funding for Splash 2 was based on its

perceived ability to perform this computation. This and the text processing application
were done at SRC.

The Splash 2 project team was fortunate in that SRC’s parent company, the

Institute for Defense Analyses, issued two contracts, to Virginia Polytechnic Institute

and to Michigan State University, for applications work on Splash 2 in image pro-

cessing and fingerprint identification. Both applications seemed good matches with

the Splash 2 architecture but lay outside the normal realm of SRC’s research program.

The faculty members involved have each prepared a chapter on these applications.

We close in Chapter 12 with some opinions and speculations about the future.

In an appendix, the project manager presents a chronology of the entire Splash 2

project.

It is incumbent on us, and a genuine pleasure, to thank the Center for Com-

puting Sciences of the Institute for Defense Analyses and the CCS Director, Francis

Sullivan, for supporting us in our writing and editing of this book. All royalties

will be donated to the Center for Excellence in Education, formerly known as the

Rickover Foundation, in McLean, Virginia. The Center for Excellence in Education

supports science and engineering education through its sponsorship of the Research

Science Institute each summer for high school seniors, its Role Models and Lead-

ers Project in Washington, DC, Los Angeles, and Chicago for promising women

and minority high school students intending to study science and engineering, and

its support and preparation of the United States Informatics Olympiad team each
year.

The Splash 2 project was a success in large part due to the ability of those who

were involved nearly full-time, but it might not have taken the course it did had the

hard-core Splash 2 players not had the chance to get advice and occasional help from

a much larger group of experts both at SRC and elsewhere.

We acknowledge, therefore, the help and advice of Nate Bronson, Dan Burns,

Bill Carlson, Neil Coletti, Maripat Corr, Steve Cuccaro, Hillory Dean, Chuck Fiduc—

cia, Brad Fross, Charles Goedeke, Maya Gokhale, Frank Hady, Dzung Hoang, Bill ,

Holmes, Amy Johnston, Elaine (Davis) Keith, Dan Kopetzky, Andy Kopser, Steve

Kratzer, Jim Kuehn, Sara Lucas, Michael Mascagni, Marge McGarry, John McHenry,
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CHAPTER 1
 

Custom Computing
Machines: An Introduction

Duncan A. Buell1

1.1 INTRODUCTION

It is a basic observation about computing that generality and efficiency are in some

sense inversely related to one another; the more general-purpose an object is and
thus the greater the number of tasks it can perform, the less efficient it will be in
performing any of those specific tasks. Design decisions are therefore almost always
compromises; designers identify key features or applications for which competitive
efficiency is a must and then expand the range as far as is practicable without unduly
damaging performance on the main targets.

This thesis has certainly been true in processor architecture of computers aimed

at computationally intense problems. Vector processors and vector supercomputers
have targeted computationally intense, array-oriented floating point problems, usually
in the hard sciences and engineering, but have not sacrificed the necessary speed on

their core applications in order to be all things to all people. Thus, on computationally

intense problems that do not fit well on traditional supercomputers, perhaps due to
such things as integer arithmetic or scalar code, fast workstations can often outperform
supercomputers.

To counter the problem of computationally intense problems for which general-
purpose machines cannot achieve the necessary performance, special-purpose proces-
sors, attached processors, and coprocessors have been built for many years, especially '

1A version of this chapter appeared as Buell and Pocek [11] and is used with permission.
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Custom Computing Machines: An Introduction Chapter 1

in such areas as image or signal processing (for which many of the computational
tasks can be very well defined). The problem with such machines is that they are
special-purpose; as problems change or new ideas and techniques develop, their lack
of flexibility makes them problematic as long—term solutions.

Enter the FPGA. Field Programmable Gate Arrays, first introduced in 1986

by Xilinx [34], were seen rather immediately by a few people to offer a totally
new avenue to explore in the world of processor engineering. The great strength
of the computer as a tool is in its ability to be adapted, via programming, to a
multitude of computational tasks. The possibility now existed for an FPGA-based
computing device not only to be configured to act like special-purpose hardware
for a particular problem, but to be reconfigured for different problems and for this
reconfiguration to be a programming process. By being more than single-purpose,
such a machine would have the advantage of being flexible with at least a limited

range of different applications. By being programmable, such a machine would open
up “design of high-performance hardware” to individuals who can “design hard-
ware” in an abstract sense but not a concrete sense. Finally, by being designed to

operate as if they were hardware, the applications for these machines can achieve
the hardware—like performance one gets from having explicitly parallel computa—
tions, from not having instructions and data fetched and decoded, and from hav—
ing the ability to design processing units that reflect precisely the processing being
done.

It is no exaggeration to say that machines using FPGAs as their processing
elements have demonstrated that very high performance on an absolute scale, and

extraordinary performance when measured against price, is possible with this tech-
nology. The PeRLe machines built at DEC’s Paris Research Laboratory have been
programmed on a number of applications with impressive results [7, 8, 9, 31]: An
implemented multiplier can compute a 50-coefficient, 16-bit polynomial convolution
FIR filter at 16 times audio real time. An implementation of RSA decryption executes

at 10 times the bit rate of an AT&T ASIC. A Hough Transform implementation for

an application in high—energy physics achieves a compute rate that a standard 64-bit
computer could not equal without a 1.2 GHz clock rate.

As can be seen from the later chapters of this book, some of the applications

programmed on Splash 2 have achieved similarly promising results. It was a general
observation made by those involved in the Splash 2 project that, on applications that
fit the machine, one Splash 2 Array Board could deliver approximately the compute
power of one Cray YMP processor. One of the commercial licensees of the Splash 2
technology sells its system for about $40,000. Of course, not all applications fit well,
and most that do not fit well actually fit very badly indeed, but this is nonetheless a

performance-to-price ratio substantial enough to warrant continued investigation and
experimentation.

The idea of reconfiguring a computer is certainly not new. The Burroughs
B1700 had multiple instruction sets with different targets (Fortran, COBOL, and
such) implemented with different microcode. In another way, the Paris functions of
the Thinking Machines Corp. CM-2 differed from one version to the next. In the
former case, standard views of hardware instructions were implemented. In the latter

case, with a novel machine and a new architecture, we presume that an effort was

made to implement function calls that users were seen to need and to delete unneeded
functions when the instruction store ran out.
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Section 1.1 Introduction 3

A certain amount of disagreement exists over what label to give to these

machines and how to refer to them. The group at DEC’s Paris research lab refers

to their machine as a Programmable Active Memory (PAM) [7, 9, 29, 31]. Another

commercial entity uses the term “virtual computer” [12]. From Brown University

we have Processor Reconfiguration through Instruction Set Metamorphosis (PRISM)

[4, 5, 6, 32]. We have already used the term “FPGA-based computing device” here.

That none of these are truly satisfactory was evidenced in the spring of 1994 when the

comp.arch. fpga newsgroup was discussed and established; the most contentious

point was over the name. Both the new newsgroup and the IEEE workshops we have

organized use the term FPGA, thus being in some sense bound in terminology to a

particular technology (unless, of course, one can convince the developers of the next

technology that its name should allow FPGA as its acronym). We have chosen to

use the term Custom Computing Machine (CCM). None of these terms is perfect,

but we believe that this one is no worse than any of the others.

The work on CCMs also differs from what is considered reconfigurable com-

puter architecture, in that the term “reconfigurable” usually refers to a much higher

level of the system. In the case of CCMs, that which is reconfigurable and significant

by virtue of its reconfigurability is the “processor architecture” itself. A reconfig-

urable computer, by contrast, is likely to be either a multiprocessor in which the

interconnections among the processors can change, or a heterogeneous machine with

processors of different kinds that a user can choose to include or exclude in the View

he/she has of “the computer.”

It is to be emphasized that this is not a mature computing technology and that

CCMs are not a panacea for all problems in high-performance computing. Among

the many issues and problems are the following:

1. Are FPGAs large enough, or will they become large enough, so that a significant

unit of computation can be put on a single chip so as to avoid both the loss

of efficiency in going off—chip and the problems in partitioning a computation

across multiple chips?

2. With current technology, even in the best of circumstances, the user must be

exposed to the hardware itself. What is the level of understanding about chip

architecture, signal routing delays, and so forth, that a “programmer” must know
in order to use a CCM? How much more must be known in order to obtain

the performance that would warrant using a CCM instead of a general-purpose

computer? .

3. If these machines are to be viewed as “computers,” then they must be capable of

being programmed. How will this be done? What sort of programming language

is appropriate? How do we “compile” when we have eliminated the underlying
machine model?

4. Granting the point that these are limited—purpose, but not special-purpose,

machines, what is the range of architectures needed to cover the spectrum

of applications for which these machines make sense?

5. What are the cost/performance figures necessary to make this a viable approach

for getting a computing task done? General-purpose machines are cheaper and 7

easier to use but can be slow. ASICs and special-purpose devices are faster

but more expensive in small quantities, take longer to develop, and are hard to

modify. Where might CCMs fit between these two?
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4 Custom Computing Machines: An Introduction Chapter 1

One problem faced by those involved in Splash 1 and Splash 2 at the Super-
computing Research Center2 has been a stubborn refusal from some quarters to
believe that achieving high performance on a CCM is possible without a design

or programming agony so great as to be offputting to all but the most dedicated
of “application designers/programmers.” Even in the face of our evidence to the
contrary, the case has been difficult to make to some critics.

The case is especially hard because what is needed is to build a complete

hardware system, to create or cause to be created a programming environment worthy
of being called a programming environment, and then to develop a variety of different
applications so that the proof of concept is complete. Further, since the goal is
to demonstrate a competitive performance with more expensive and sophisticated
machines, the CCM must be big enough to do real work and to be part of complete

computational processing environments; it cannot be just a toy machine suitable
only for doing kernels of problems. To our knowledge, only two such machines
have been built that meet these criteria—Splash 2 and the larger of the DEC PAM

systems.

The goal in this book is to present the Splash 2 experience as a whole. Splash 2
was designed and developed in an iterative process from top to bottom to top and
back again.

1.2 THE CONTEXT FOR SPLASH 2

1.2.1 FPGAs

FPGAS in general have a wide spectrum of characteristics, but the FPGAs used for
CCMs have been of two distinct types. The Xilinx XC4010, a typical example of

one type, is a chip containing a 20 x 20 square array of Configurable Logic Blocks
(CLBs) [34]. Each CLB can serve one of three functions, either as two flipflops, or

as Boolean functions of nine inputs, or as 32 bits of RAM. The function use has

two 4—input functions, each producing an output; these two bits combine with a ninth
input in a 3-input Boolean function. The RAM usage simply takes advantage of the
fact that the 4—input functions are done with lookup tables to allow the input bits to
be viewed as addresses. ,

Connecting the CLBs to one another and to special Input Output Blocks (IOBs)
on the periphery of the chip are routing resources running from CLB to CLB, skipping
one CLB, or running the full length of the chip. Configuration of the FPGA is done

by loading a bit file onto on-chip RAM.
In contrast to the relatively coarse granularity of the Xilinx chips, the second

type of FPGA, by Algotronix, Ltd., and by Concurrent Logic, Inc. [1, 13], is fine-
grained. The Algotronix chip is a 32 X 32 array of 2—input, l—output Boolean function
logic cells, with the signal lines running only point to point from one cell to its
neighbors in each rectangular direction.3

2The Supercomputing Research Center was renamed the Center for Computing Sciences in May
1995, but will be referred to throughout this book as SRC.

3Algotronix is now a part of Xilinx.
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To a first-order approximation, the chips first marketed by Concurrent Logic and
now by Atmel4 resemble the Algotronix chip. Interestingly enough, the unscientific
best-guess estimates at the SRC in the fall of 1991, when Splash 2 was being designed,
suggested that the then—high—end XC4010 and Concurrent Logic CLi6000 chips had
roughly the same “compute power” in spite of the radically different architectures.

1.2.2 Architecture

There have been several architectures proposed and built for CCMs. Although any

taxonomy runs the risk of pigeonholing some particular machine into a category
distasteful to its designer, the following is a reasonable categorization.

Special-Purpose Devices. The first and most obvious use of FPGAs for
CCMs is in Special-purpose machines built to perform a particular computation or
kind of computation and not intended to be very flexible, except perhaps from one
instance of the problem to the next. There have been several machines built for neural
network computations (Ganglion, for example [15]). Here, the computation is clearly
parallel, the individual compute nodes are neither standard nor very large, and one
feature of neural nets is that a moderately high degree of connectivity is desired

among the compute nodes; but the precise connectivity and multiplier constants at
each compute node vary from application to application. Other applications for which
special—purpose devices have been built include statistical physics, embedded control,
and network control [14, 19, 25, 33].

Somewhat more general than a special-purpose device, but still very much in
a narrow band of applications, is the use of an FPGA-based computer for rapid
prototyping, not just of ASICs or of single circuit boards, but of an entire system. A
CCM can be a complete system—processors, memory, data path, and so on—at the
block diagram level, and the characteristics and details needed can be programmed
into functioning hardware. Similarly, in an appropriate niche market, a CCM could be
used in low-volume applications, cheaper in development cost than special-purpose
hardware but faster than what one could obtain from a programmed microprocessor.

Coprocessors. One of the most tantalizing possible uses for FPGAs as com-
pute resources is as coprocessors tightly coupled to the main processor of a computer.
The development of RISC processors has meant that some instructions that used to
be part of a processor’s repertoire are no longer present; these functiOns must now
be performed in software routines that are inherently slower. Some computations
have natural kernels that have never been part of the instruction set architecture of

any processor. Much of the PRISM [4, 5, 6, 32] work has focused on two points:
1) the language, compiler, and system issues involved in determining that a par-
ticular core computation occurs frequently enough that it warrants being put onto
the coprocessor, and 2) arranging the computation so that “hardware” exists in the
FPGA coprocessor when it is needed and that data can be transferred to and from
the coprocessor at speeds great enough to make use of the coprocessor worthwhile.
Several such machines are described in [17, 18, 21, 22, 23, 24, 30]. In a similar vein,_
the SRC worked with Thinking Machines Corp. on the production of the “CM-2X,”

4National Semiconductor also had rights to and sold a version of this chip.

Petitioner Microsoft Corporation - Ex. 1007, p. 5

 



Petitioner Microsoft Corporation - Ex. 1007, p. 6

 

Custom Computing Machines: An Introduction Chapter 1

described by Cuccaro and Reese [16], a 512—node CM—2 in which Xilinx XC3090

chips replaced the floating-point chips as coprocessors.

Attached Processors. As we have said, there have been two notable exam—

ples of FPGA—based attached processors—the PeRLe-O and PeRLe—l machines built

by DEC’s Paris research lab [8, 9, 29, 31], and the Splash 1 and Splash 2 machines

built at SRC [2, 3, 20, 26]. The PeRLe—l board featured 23 Xilinx XC3090 chips,

with the core computational unit being a 4 x 4 grid, connected by a TURBOchannel

to a DEC workstation. Splash 2, in contrast, is used primarily either as a linear array

of 16 XC4010 chips per board or with data being broadcast to the 16 chips simulta—

neously. Both have achieved supercomputer performance on a range of applications

including image processing, computational science benchmarks, data compression

and encryption benchmarks, and molecular biology.

Some machines, which have for one reason or another been built with a partic-

ular purpose in mind, are general enough that they would find wider application. The

CHAMP machine, described by Box [10], designed for image processing, is certainly

among these. Other examples are described in Quenot et a1. [27] and Raimbault et

al. [28].

1.2.3 Programming

Notwithstanding the tremendous effort necessary to engineer the hardware of a CCM,
the fundamental test of these machines is, and no doubt will continue to be, a soft-

ware problem. Regardless of the architecture or the potential peak performance of

the machine, if the effort to achieve that peak requires either an extraordinarily im—

portant problem or a fanatically dedicated user, the machine cannot be termed truly
successful.

By this criterion we believe that CCMs have not yet silenced all their critics,

but that we have turned important corners and have achieved a genuine understanding

of the needed directions for research and development.

One problem in developing software for a CCM is that the programming process

is far more vertically complex than for a standard computer. At the highest level are all

the usual problems encountered when looking for performance from a computer—the

user must be generally aware of the architecture of the CCM and program accordingly.

But even from this top level working down, issues from deep within the FPGA must

be dealt with. Must one partition the computation onto distinct chips in advance, or

will an automatic partitioner be able to obtain sufficient utilization and speed? Even

after partitioning, will a given chip be so densely packed with logic that routing

delays will reduce the speed below a minimally acceptable level?

Apart from issues such as these, there are other factors to be considered. Logic

synthesis and placement and routing on Xilinx chips presently takes several minutes to

an hour for a chip with any substantial fraction of the logic used in a given application.

How long will users be willing to wait, in’this era of interactive computing, between

iterations of this process? To what extent will they be willing to program in a language

that is not Fortran or C? At what level can they or should they get involved in the

performance-improving details of logic synthesis and/or placement and routing in

order to gain the necessary speed improvements of a given application?
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These problems actually differ from one kind of CCM to another. In an attached

processor, the entire computation (or a definable portion of it) is taking place on the

CCM. In a coprocessor system, the CCM‘portion must be extracted from the existing

code (possibly with the help of compiler directives or annotations). The CCM code

is similarly different from one sort of machine to another. On a coprocessor, one

can assume that some effort might be expended by a user to optimize a particu—

lar “instruction,” and the key issues would lie in recognizing its applicability and

arranging for data to be delivered to and retrieved from the coprocessor. In an

attached processor system, the CCM code could normally be much larger, allowing

for more optimization (and thus more of the structure of the source to be obscured).

A final issue in programming is worthy of mention. The Algotronix chips have a

feature that the Xilinx chips do not; part of the logic of the chip could be reconfigured

without having the rest of the chip affected by the change. The reason for this lies

in the different routing resources. On the Xilinx chip, no block of the chip can be

assumed to be free of signals routed to or from some other block of the chip. On the

Algotronix chip, however, the possibility of swapping hardware designs in and out

like programs in and out of virtual memory was incorporated in the design from the

beginning. The potential of such a feature for a CCM coprocessor is obvious.
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CHAPTER 2
M

The Architecture of Splash 2

Duncan A. Buell and Jeffrey M. Arnold1

2.1 INTRODUCTION

In this chapter we present the higher—level architecture of the Splash 2 system. This
architecture is what an application programmer would normally be expected to see.
Although the current admirable trend in general-purpose computing is to allow the
programmer to perform computations without being required to understand or even
be aware of hardware structures, it has always been the case in high—performance
computing that knowledge of architectural features is necessary. Programmers on
vector machines learn how to vectorize their algorithms and how to write code from

which compilers can extract vector computations. Programmers on massively parallel
machines must study I/O and data layout patterns. Similarly, programmers of Splash 2
must understand the architecture of the machine in order to make effective use of it.
More correctly, they must understand the architecture in order to make any use of it.
Unlike more common machines with a longer history, we have not yet reached the
point at which custom computing machines can be used without paying reasonably
close attention to the hardware.

Splash 2, as can be seen in the following discussion, has a substantial generality
in its structure. Although generality in an architecture can be a very desirable feature,
such generality can be anathema to effective use of the machine if all possible
details must be considered for routine use. Consequently, every effort was made

1A version of this chapter appeared as Amold et a1. [1] and is used with permission.
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to provide standard avenues for a programmer to use features of the architecture in

standard ways. The system was designed with the strong intent that most applications

would have data streaming linearly past the FPGA processing elements or have data

broadcast to them in SIMD fashion. These capabilities were thus supported both in

hardware and software and in example computations and programs, and a reading

of the architectural description should be done with a focus on how the architecture

supports these two models of computation.

2.2 THE BUILDING BLOCKS

The basic building block from which Splash 2 is made is the Xilinx XC4010 FPGA [3,

4]. As mentioned in Chapter 1, the XC4010 contains a 20 x 20 array of Configurable

Logic Blocks (CLBs). The XC4010 CLB (shown in Figure 2.1) contains three lookup

tables and tWo flip-flops. Two tables, labelled F and G, can each implement any

Boolean function of up to four inputs. The outputs of the F and G functions can also

be combined with a ninth input, H1, to form a single Boolean function of nine inputs.

The YF output of the CLB can be taken from the output of either the F table or the

H table. Similarly, the YG output can come from either the G or the H table. The

F and G tables can also be configured to appear as individual 16 x 1-bit RAMs or

a single 32 X 1 RAM. Not shown in Figure 2.1 is additional fast carry logic, which

allows a single CLB to implement a two—bit full adder. An additional wire allows the

carry—out of one CLB to be connected directly to the carry-in of an adjacent CLB.

Figure 2.2 illustrates the routing structure of the XC4000 series FPGA. Connect-

ing the CLBs are three types of signal routing resources including a single-length

interconnect between adjacent switch boxes (“8” in Figure 2.2), a double—length

interconnect between alternate switch boxes, and a set of long lines that span the

width and height of the chip. The switch boxes contain programmable switches that

allow each segment to connect to three others. Configuration of the FPGA is done by

loading a bit file into on—chip RAM; the hardware to do this in Splash 2 is implicit in

our description in this chapter of the general architecture and is discussed in greater

length in Chapter 6.

FIGURE 2.1 Xilinx XC4000 CLB
Architecture
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The 400 CLBs can be viewed as 800 flip-flops, which can in turn be thought

of as a maximum of twenty-five 32-bit “registers,” where by “register” we mean to

include registers, adders, comparators, multiplexers, and similar basic structures. For

example, a 16—bit object requires eight CLBs. Adders, subtracters, and comparators

are implemented by “rippling” the fast carry output from one CLB to the next. In

order to reduce the signal propagation time for the carries, one would normally want

to have the CLBs physically adjacent to one another in the final design. The Xilinx-

supplied tools attempt to do this, and the “Hard Macros” supplied by Xilinx can be

% used to guarantee that a logic object is placed into contiguous CLBs.
g In addition to their use as registers, the Boolean function use of the CLBs is
i necessary to implement the rather more random control logic that will exist in any
. program, so the available number of “registers” is certainly always less than the

i maximum.l

FIGURE 2.2 Xilinx XC4000 Routing
Structure

2.3 THE SYSTEM ARCHITECTURE

Splash 2 is an attached processor system. Although it was not designed for the purpose

of being an attachment specifically for Sun workstations, the system as designed uses

; a SPARCstation 2 as a host and attaches to the host through the SBus.

l The overall system architecture is pictured in Figure 2.3. An SBus adapter card
is placed in the host and connects via a cable to the Interface Board of Splash 2.

The Interface Board and the Splash 2 Array Boards reside in a separate cabinet on a

Futurebus+ backplane.

Splash 2 is designed to execute either synchronously with the host or asyn-

chronously as an attached processor. Programs for Splash 2 are loaded on the system

by the host through the SBus connection. In some applications, the processing on

i Splash 2 is then driven by a clock on the Interface Board, and data is delivered to and

; taken from Splash 2 by DMA channels on the Interface Board. The Interface Board 
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FIGURE 2.3 Splash 2 System Architecture

can also be configured to accept clock and data from an external source; in these

applications, the role of the host is only to load programs and provide high-level

control. Also supported are synchronous execution of Splash 2 via software clocking
and slave data transfers.

The system architecture is designed to accommodate up to 16 Array Boards. A

system containing eight Array Boards was built and functioned correctly, but most

systems were built with two or four Array Boards in a 5-slot chassis that is 15”

wide, 28” deep, and 24” high. The largest possible system was never built because it

would have required an expensive special version of the cabinet. There seemed to be

no reason based on the eight-board system’s operating characteristics to expect any

problems with the larger system, and assembling a larger number of smaller systems

from the same number of Array Boards allowed a greater breadth of applications to
be tested.

2.4 DATA PATHS

Each Splash 2 Array Board contains 17 Xilinx XC4010 FPGA chips [4] as its pro-

cessing elements (see Figure 2.4). Sixteen of these are connected in a linear array

to create a linear data path and the seventeenth provides a broadcast capability to

the other 16 chips. To each of these 17 chips is attached 512 Kbytes of memory.

Reflecting this basic design, there are three different paths by which data can be

delivered to or taken from the Array Boards.

The primary models of computation that were intended to be supported by the

Splash 2 architecture were a SIMD or broadcast-of-data model and a linear (but

not restricted to “systolic”) model. The programmer viewing Splash 2 as a SIMD

machine sees, among other things, a 36—bit-wide data path from the Interface Board ‘

down the SIMD Bus to each Array Board simultaneously. Xilinx chip X0 on each

Array Board can then broadcast the SIMD Bus data to the other FPGAs on its Array
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Board. This mode of transferring data to the Splash 2 system was used, for example,
in the text matching computation described later in this book.

Viewed as a machine with a linear data path, the SIMD Bus can be used to

transmit data from the Interface Board to the first FPGA on the first Array Board.
The data can then be moved through the linear data path on that board, then to the
first FPGA on the second Array Board, and so on. Data from the last FPGA on the

last Array Board returns to the Interface Board via the RBus. The linear path is also
36 bits wide, and is bidirectional (except for the initial segment along the SIMD
Bus), so that data can be streamed in both directions for correlation computations;
this was done for some versions of the DNA sequence comparison program detailed
in Chapter 8. The definition of “last Array Board” is based upon the contents of
a register on the Interface Board. This register can be changed during a program’s
execution, so the length of the processor array can be changed dynamically.

Data coming from the SPARCstation 2 host is 32 bits wide. The 36-bit-wide

data path in Splash 2 arises naturally from this and from the need and desire to have

tag bits on the data. Although data coming from an external signal could genuinely
be 36 bits wide, in most applications the tag bits are set and read by Xilinx FPGAs
on the Interface Board. Since the Splash 2 system executes asynchronously with the
host, it is routine for Splash 2 to be able to begin executing before data can be
delivered from the host. One use for the tag bits, therefore, is to serve as a “valid

data” signal. In linear mode, the Xilinx chips on the Array Boards would pass “data”
down the linear data path immediately upon startup, but would not actually begin
processing that data until a valid data tag appeared. Similarly, the Xilinx FPGA on
the Interface Board that was handling output would discard any “result” it received
until a valid data tag appeared on the output path.

Another use for the tag bits arises when the machine is used as if it were a

SIMD machine. It is possible to broadcast a 32—bit word to the broadcasting X0 chip
as well as a 4-bit instruction opcode. (Actually, of course, there is no structure to the
36 bits being broadcast, so any bits not needed for data could be used for an opcode.)
This opcode could be used by X0 to process the data or control the broadcast just as
with any other hierarchical SIMD machine.
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These paths are not necessarily mutually exclusive, and these configurations

are not hardware-controlled by something like a mode bit. For example, it is possible

to use the SIMD Bus for broadcast of data to all FPGAs simultaneously, but then

to use the linear data path as a sort of “back door” for the return of results or for

necessary neighbor—to-neighbor communications. The only restriction on these data

paths is that the SIMD Bus can be used only for delivering data and not for returning
results to the Interface Board.

In either of the above modes, data from the Interface Board can come either

from the host or from an external signal (see Figure 2.5). Each Xilinx XC4010

FPGA on the Interface Board is programmable by the user (some standard programs

for common applications also exist). Xilinx chip XL (for “Xilinx Left”) handles

incoming data for delivery to the SIMD Bus; in addition to setting the tag bits,

if necessary, it handles the DMA transfers from the host, possible serial—to—parallel

or parallel-to-serial data conversions, or similar massaging of the input data stream.

Xilinx chip XR similarly handles data on the RBus, which would normally be the out-
put path from the Splash 2 system. In some applications, especially in circumstances

when postprocessing of the results was necessary, XR actually performed that part

of the computation. This was true, for example, in the DNA sequence comparison

computation.

The third means by which data can be provided to or retrieved from Splash 2

is directly through the 8.5 Mbytes of memory on each Array Board. This memory

can be read by or written from the host as part of its normal address space via an
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16 The Architecture of Splash 2 Chapter 2

SBus extension independent of the FPGAs and their linear data path. The memory,

however, is not dual-ported; during such memory read/write operations, the FPGAs

are prevented from executing (and thus possibly accessing memory themselves).

Thus, this mode of data transfer is not intended to be suitable for highly interleaved

accesses of memory by Splash 2 and its host, but rather for bulk transfers before or

after large phases of a given computation.

2.5 THE SPLASH 2 ARRAY BOARD

2.5.1 The Linear Array

The Splash 2 Array Board is detailed in Figure 2.4. Each Array Board contains 17

Xilinx XC4010 FPGA chips as processing elements. Sixteen of these, X1 through

X16, form the processing array and are connected with a 36-bit-wide data path

linearly and via a crossbar. To each FPGA is connected 512 Kbytes of memory.

Throughout the Splash 2 system, the normal data object has been assumed to be

32 bits, augmented where possible and sensible with four tag bits. Here, in the

connection from FPGA to memory, we find the one instance in which this design

has been compromised. Three 36-bit-wide data paths, 18 bits for a memory address,

and 32 bits for memory data would have left far too few of the 160 total pins for

controlling each FPGA. The compromise was to reduce the memory data width to
16 bits.

2.5.2 The Splash 2 Crossbar

The crossbar for Splash 2 is a truly unique feature. The 36-bit-wide path is made

by aggregating nine 4-bit Texas Instruments SN74ACT8841 crossbar chips [2]. Each

such chip can be loaded at startup with as many as eight different configurations,

with the particular configuration in effect being chosen under program control during

execution of a computation. Furthermore, this choice can be made almost on a tick-

by-tick basis.2 The potential thus existed at the beginning of the design of this
machine for each of the nine nibbles to have up to eight sources and destinations

independent of the other nibbles and varying among the eight possibilities during the

computation. This rather formidable choice of possibilities was only slightly reduced

when pin constraints on the FPGAs X1 through X16 forced the low-eight nibbles to

be paired so that only five independent sources and destinations actually exist on the

machine as built. The crossbar, however, permits most “reasonable” configurations

to be realized relatively simply.

For example, in an edge-detection program written essentially just for practice

by Jeff Arnold, the first three chips on an Array Board are used to circularly buffer

incoming lines of pixels so that the image can be streamed continuously into the

board; the crossbar changes configuration at the end of every line of pixels to produce

the effect of a circular buffer of three input lines on which a 3 x 3 filter can be applied.

2This is “almost” tick-by-tick only because one cannot reverse source and destination in one clock
period.
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In other applications, the presence of the crossbar permitted the programmer to

get beyond the rigid structure of a linear data path by “jumping ahead” in time/space

in order to maintain a tightly pipelined, systolic-like computation. Although the spe-
cific chips chosen for the crossbar were the source of a later problem (more is said
about this in Appendix A), we have been unable to find other examples of machines
in which processor-to-processor communication can be changed as rapidly or with
as much variety as in Splash 2.

2.5.3 Xilinx Chip X0 and Broadcast Mode

The seventeenth Xilinx chip, labelled X0, performs several functions that provide

much of the flexibility of the Splash 2 architecture. Three bits from X0, controlled

by a program that must be loaded into X0, select which of the eight configurations of
the crossbar are in effect at any given point in time. For static configurations lasting

throughout a given phase of a computation, this “program” controlling the crossbar
is invisible to the programmer; if a varying crossbar is desired, however, the program
to control the crossbar must be written by the programmer as part of the complete

application.

The other major function of X0 is to broadcast data received on the SIMD Bus
to the other 16 Xilinx FPGAs. This is possible because X0 and X16 share wires into

the crossbar. Clearly, of course, both FPGAs must not be permitted to drive signals

simultaneously on these wires, but this does not normally limit the range of usage;
in situations in which X0 needs to serve as a broadcast chip, X16 normally does not

need access into the crossbar. When X0 is broadcasting, X16 is receiving just like

any other of the FPGAs. Since the crossbar is bidirectional, X0 can in fact receive
data from the crossbar as well, adding to its ability to control execution on its Array
Board.

Chip X0, like the other FPGAS, has a 256K X 16-bit memory attached to it
with a 16-bit data path. In most instances where custom computing machines such

as Splash 2 have been built, the use of memory for lookup tables has been important
in achieving high performance. The rather limited compute resources on an FPGA
requires the use of such memory to reduce the need for processing logic. This is
especially true of chip X0.

Most massively parallel SIMD machines have had a front-end processor; chip
X0 can, to the limit of its own capability, serve that function in Splash 2. As is

described in Chapter 9 on the text processing application, X0 can perform some

general computations and data preparation. It is also possible to use the four tag
bits (or, for that matter, any other of the 36 bits of the data path) as instruction

opcodes to chip X0. In such a situation, the memory would be used to store a
“microcode subroutine,” which would be executed by a small finite-state or other

machine implemented on X0.

2.6 THE INTERFACE BOARD AND CONTROL FEATURES

A detailed description of the Interface Board is presented in Chapter 3 on hardware ,

and implementation details, but now we discuss several aspects of the Interface Board
that have to be considered as part of the higher-level architecture of the Splash 2
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18 The Architecture of Splash 2 Chapter 2

system. To permit control of parallel programs running searches until some particular
event occurs, global or and global valid bits run to FPGA X0 from each of the
16 FPGAs X1 through X16 on an Array Board. Global or and global valid bits
from X0 of each Array Board are then wire-ORed on the backplane to a register
on the Interface Board and appear as inputs to FPGAs XL and XR on the Interface
Board. On each Array Board, the or and valid bits are bidirectional, allowing
further control by X0 of computations on the Array Board.

The clock that drives Splash 2 as an asynchronous attached processor resides
on the Interface Board. Because various programs could be expected to run (and in

fact do run) at widely differing speeds, a clock module was chosen whose frequency
could be tuned to the speed at which the synthesized Xilinx chip program could run.
Chip XL has control of the clock-regulated computation on the Array Boards; the

. Array Boards can be single—stepped, n-stepped, or allowed to run freely. To reduce
the programming overhead for routine computations, several default programs for XL
were written at an early stage in the development of the system and can be selected
by a programmer from the library. This is also true of programs for the FPGAs on
the Array Boards.

The alert reader will already have noted that the address bits available from the
host on the SBus are insufficient to address all the memory potentially available on a

full-sized Splash 2 system. The address extension is done on the Interface Board; the
particulars of this process appear in Chapter 3 on hardware implementation details.

A final feature of the Splash 2 system is the ability to load or store a configu-
ration state into the Xilinx chips. Readout of the state is invaluable for debugging,

program optimization, and monitoring program behavior.
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CHAPTER 3
 

Hardware Implementation

Walter J. Kleinfelder and Jefirey M. Arnold

3.1 INTRODUCTION

Figure 3.1 illustrates the system architecture of Splash 2. The system consists of
a Futurebus+ backplane enclosure containing one Interface Board and up to 13
Splash 2 Array Boards,1 and a SPARCstation 2 host computer with Adapter Board.
The Adapter Board plugs into the host computer’s internal SBus and extends the
address and data bus to permit host—resident programs to directly address the memory

and control registers in the Splash 2 system. The Adapter Board also provides the
interface logic required to permit Splash 2 to perform direct memory access (DMA)

transfers to and from the host memory and to generate SBus interrupts/The Splash
2 enclosure is connected to the host system via a cable between the Adapter Board

and the Interface Board. To complete the linear data path, each Array Board is also

connected to its two neighboring boards through a separate custom backplane in
addition to the Futurebus+ backplane.

During the course of the Splash 2 project, two different interface boards were
developed to provide the connection between the host computer and the Splash 2
Array Boards. The Development Board was designed with minimal functionality but
with an extensible wire-wrap core to allow prototyping of various features. The final

Interface Board was built in printed circuit technology and incorporates a number of

higher—level functions. Both interfaces extend the host address and data buses to the

1This is the largest enclosure fabricated for the Splash 2 system. The architecture supports up to
16 Array Boards.

19
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FIGURE 3.1 Splash 2 System Architecture

backplane memory bus, permitting the host to read and write memory and memory-
mapped control registers on the Array Boards. All data transfers between the host
and the interface are 32 bits wide, the word size of the SBus. Because the 25 bits

of physical address space for a single SBus slot is insufficient to address the entire
Splash 2 memory space, the address is extended to 32 bits by a 7—bit bank register
on the Interface Board.

The Splash 2 system may transfer data to and from the host system memory
via DMA. The Interface Board contains up to three independent DMA channels

implemented as optional daughter boards that may be plugged onto the Interface
Board. In addition to supporting DMA, this daughter board arrangement allows

high-speed external input and output devices to be connected directly to Splash 2,
bypassing the host SBus. For example, an external video input may be brought
directly into Splash 2 by replacing one DMA channel with a specially designed
daughter board.

The linear data path extends from the Interface Board along the SIMD Bus,
through the set of Array Boards in daisy-chain fashion, and back to the Interface
Board along the RBus. The SIMD Bus is a 36-bit unidirectional bus driven by the
Interface Board and connected to each Array Board in the system. The Array Board

daisy chain and the RBus are 36—bit-wide bidirectional data paths. The linear data
path can therefore be used to pass data in either the “left—to-right” direction or the
“right-to—left” direction. Left—to-right is defined to be from the SIMD Bus through the
Array Boards and back on the RBus. Right-to-left is defined to be from the Interface
Board down the RBus to the last, or rightmost, Array Board through the daisy chain

and terminating at the first, or leftmost, Array Board. Two data streams can pass
simultaneously through the array in opposite directions, with one stream following
the left-to—right direction on a subset of the bits of the linear data path and the second
stream moving right—to-left on the remaining bits.

Each Splash 2 Array Board contains 16 Processing Elements, X1—X16, with
direct 36—bit connections between adjacent elements. Each element can also commu-
nicate with all other elements on the same board through a programmable crossbar.

A seventeenth Control Element, X0, controls the crossbar and provides support logic.

The sixteen Processing Elements and the Control Element each consist of a Xilinx ‘
XC4010 FPGA and a 256K X 16 static RAM.
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3.2 DEVELOPMENT BOARD DESIGN

The Development Board was designed to serve a variety of purposes during the

early development of Splash 2. The original goal of the Development Board was

to support the initial debuggingof the Array Board design and the system software

while the design of the Interface Board proceeded in parallel. The flexibility of the

Development Board also made it a convenient vehicle on which to prototype various

components of the final Interface Board design. The Development Board eventually

became a critical tool for the instrumentation and debugging of the DMA transfer

protocol. A modified version of the Development Board was also used as a test fixture

for the DMA and Clock daughter boards.

The design philosophy behind the Development Board was to keep the hard-

ware simple by moving as much control as possible to the host software. This was

accomplished by placing virtually every signal on the backplane under the direct

control of the host computer. Readable and writable registers are connected to the

SIMD Bus and RBus data (32 bits each) and tags (4 bits each), and the RBus size

and direction controls. Read-only registers provide access to the interrupt request and

global OR signals. The system clock mechanism is a register that, when written by

the host, generates a single pulse of 100 nsec duration. To generate successive clock

pulses the host must write repeatedly to the clock register. Using this mechanism the

SPARCstation host is able to achieve a maximum clock rate of 4 MHz. To improve

the performance of stream—based applications an additional address is decoded that,

when written, loads the SBus data into the SIMD register and then generates a single

clock pulse.

The physical design of the Development Board consists of three main compo-

nents: the SBus interface, the backplane interface, and the wire-wrap core. The data

path portion of both the SBus and the backplane interfaces are implemented with

surface—mount printed circuit technology along two edges of the board. The center of

the board contains a large grid of holes for wire-wrap socket pins. This prototyping

area is used to implement the control state machines and to experiment with the
DMA and Clock circuits.

3.3 INTERFACE BOARD DESIGN

The Splash 2 system buses are implemented on the P8962 Futurebus+ profile A

backplane with a 128-bit extension. The Splash 2 Interface Board plugs into Slot 1

of the Futurebus+ backplane and accepts the cable from the SBus Adapter Board

in the host computer. The Interface Board is responsible for generating all signals

required in the backplane and is structured to drive up to 16 Splash 2 Array Boards.

The principal functions of the Interface Board include SBus control and data transfer,

system clock generation, and pre- and postprocessing of data to and from the Array
Boards.

Figure 3.2 illustrates the Splash 2 Interface Board architecture. The host data

bus (SD[0:31]) is gated and buffered to drive the backplane memory data bus for

memory—mapped reads and writes. The host address bus (SA[2:24]) is buffered and '

decoded locally for accesses to the Interface Board. The Bank Register is loaded by

the host with a 7—bit value. The SBus address and the Bank Register together form
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FIGURE 3.2 Interface Board Architecture

the Array Board memory address, A[2:3l]. Since only 32-bit accesses are supported,
the two least significant bits of the address (A[0:1]) are always zero.

The slave control state machine receives the decoded address and generates

internal read and write timing signals in response to SBus slave cycles. The slave
machine also controls the timing of the SBus acknowledge signal, ensuring sufficient
access time for the various registers and memories. SBus read operations to the
Array Board are acknowledged in 9 SBus clock cycles, while write operations are
acknowledged in 8 cycles. In accesses to the facilities on the Interface Board, writes
are acknowledged in 3 cycles and reads in 4 cycles.

The clock circuit generates the system clock signal for the Splash 2 Array
Boards and can be programmed by the host to various frequencies. During execution
of Splash 2 programs this signal clocks the user—defined circuitry. To aid debugging
of applications, the clock generator can be programmed to stop, single-step, or step
a fixed number of times. To prevent DMA data overruns or underruns the clock
generator can also be stopped and restarted by user—defined logic in XL or XR. To
minimize the clock skew across the system, separate clock signals (SPLCLK) are
driven to each Array Board.

XL and XR are user-programmable XC4010 FPGAS that provide the interface
between the DMA channels and the’backplane bus. XL controls Channels B and
C and drives the 36-bit SIMD bus. XR controls Channel A and can receive data
from or drive data to the 36-bit RBus. The direction of the RBus is determined by

the RDIR output of XR. Data may also be passed between XL and XR through a
separate 36-bit bidirectional path. ‘
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3.3.1 DMA Channel

The DMA channels perform SBus-compatible burst transfers between the host mem—

ory and a 256-word FIFO. Each DMA channel contains an address register, a transfer

count register, and a control register. The address register contains the address of the

host memory buffer. The transfer count register contains the number of burst transfers

to perform. The control register contains an enable bit and a direction bit. All DMA

transfers are performed in 16-word bursts, the largest supported by the SBus. The

FIFOs contain programmable high- and low-watermark registers, which permit the

DMA channel to determine when to request a transfer. When the channel is enabled

and the direction bit is set to read from the host memory, if the FIFO has space for

at least 16 words, then an SBus READ operation is requested. Similarly, when the

direction bit is set to write to the host, memory, and if at least 16 words of data are

available in the FIFO, then an SBus WRITE operation is requested.

After each burst transfer completes the address and transfer count registers are

updated. The address register is incremented by 64 to point to the next block of

16 words (64 bytes), while the transfer count is decremented by 1. When the transfer

count reaches zero an SBus interrupt is requested.
The SBus side of the DMA channel is 32 bits wide, but the FIFO and the

Splash 2 data paths are 36 bits wide. When transferring data from the host, the word

is extended to 36 bits by concatenating the contents of a 4—bit tag register to the data.

When transferring data to the host, the 4 tag bits are saved in a register.

The DMA channel allows direct loading and unloading of the FIFO data from

the host by mapping the input and output data registers of the FIFO into the host’s

address space. This feature allows the host operating system software to handle the

boundary conditions of transfers that are not aligned on 64—byte boundaries. See

Chapter 6 for more details on DMA data alignment.

3.3.2 XI. and XR

The primary function of the two user-programmable FPGAs, XL and XR, is to per-

form pre- and postprocessing on the input and output data streams. DMA Channel A

is controlled by XR, while Channels B and C are controlled by XL. Both XL and

XR receive the Splash 2 system clock and a free—running clock that is synchronous

with the system clock. Either XL or XR may stop and restart the system clock when

the FIFOs, in their respective DMA channels, are empty or full. When XL or XR

are used to stop the system clock the free—running clock may be used to drive the

controlling state machine, allowing it to restart the system clock when the condition
has cleared.

DMA Channels B and C share a common 36—bit—wide data bus with XL, which

may select the channel from which to receive data. XL is 'also responsible for driving

the SIMD bus, typically with the input data from one or both of Channels B and C. XR

sits between DMA Channel A and the RBus and is typically used to postprocess result

data from the RBus before sending it back to the host through Channel A. A separate

36-bit bidirectional bus connects XL and XR. This bus may be used to coordinate

clock control, to close the loop through the linear array by passing data from the V
RBus back to XL and the SIMD bus, or to pass input data from XL through XR t0 the

linear data path in the tight-to—left direction. For example, an application can receive
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input data from both Channels B and C simultaneously, sending the Channel B data
along the left-to-right direction and the Channel C data moving from right to left.

3.3.3 Interrupts

The Interface Board receives upto 16 individual interrupt requests, one from each

Splash 2 Array Board. Interrupt requests can also be generated by XL, XR, the
DMA channels, and the clock. The interrupt circuit logically ANDs each request

with a corresponding bit in a mask register and then ORs these results together to
form a single SBus interrupt request which, when enabled by a bit in the control
register, is passed to the SBus. When handling an interrupt, the host can read the
contents of the interrupt register to determine which of the possible sources made
the request. If the request came from one of the Array Boards, the host can then
interrogate a similar register on the requesting Array Board to determine which PE
initiated the request. ‘

3.3.4 Clock

The system clock can be selected from two possible sources: the programmable
clock generator or a software-generated clock pulse. The clock generator, or “hard-
ware clock,” is a daughter card that plugs onto the Interface Board. The heart of the
hardware clock is an Analytic Instruments FS-30 programmable frequency synthe-
sizer, which has a frequency range of less than 1 Hz to 30 MHZ. The frequency of the
system clock is set by the host and is asynchronous with respect to the SBus clock.
Both XL and XR have the ability to immediately stop the system clock, typically in
response to a DMA channel nearing the full or empty mark. The host computer also
has the ability to start and stop the clock generator, and may program the generation
of a specific number of clock cycles. Special synchronization circuitry ensures that
the first and last clock pulses are not truncated. The output signal has a nominal duty
cycle of 50% plus or minus 5 nsec.

The “software clock” is a register very similar to the clock register on the Devel—

opment Board. In the interest of performance, a bit in the control register determines
whether writes to the software clock generate one or two pulses of 100 nsec each.

Another bit in the control register selects either the hardware clock or the software
clock to drive the system clock.

3.3.5 Programming and Readback

The configuration and state readback mechanisms for all of the user-programmable
FPGAs are implemented on the Interface Board using a single 256K x 32 memory
to store the bitstreams. All of the FPGAs on a single Array Board are programmed

simultaneously using the serial configuration mode of the XC4010. Prior to program—
ming, the host merges the 17 individual bitstreams (one each for X0 through X16)
into a single 17-bit—wide stream. This operation is known as “corner turning.” The
corner—tumed configuration stream is then loaded into the Interface Board memory,
and the programming sequence is begun by an on-board state machine. This state
machine reads sequential locations from the memory and performs write operations
over the SBus extension to a special'address on the selected Array Board. A base
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address register contains the location of the first word in the bitstream and configu-

ration stops when the address counter reaches the top of the memory. Seventeen of

the 32 bits are used to store the data for the 17 user-programmable FPGAs on the

Array Board. Two additional bits may optionally contain the configuration streams

for XL and XR. The remaining bits of the Interface Board memory are not used.

The same basic mechanism is used to perform state readback. Another state
machine on the Interface Board reads the internal state information from all

17 FPGAs on a given Array Board and stores the data into successive locations in

the Interface Board memory. Readback terminates when the address counter reaches

the top of memory. Once the FPGA state information is stored in the Interface Board

memory the SPARCstation host can retrieve the specific state bits of interest to the
programmer.

Since the configuration and readback operations employ the SBus extension

between the Interface Board and the Array Boards, during both configuration and

readback the Splash 2 system will not respond to the SBus; any host attempt to access

the Splash 2 system during one of these operations will result in a bus time-out.

3.3.6 Miscellaneous Registers

There are several control and status registers on the Interface Board that are ac-

cessible to the host. The configuration and readback mechanism contains an 18-bit

base address register and a control register with a direction bit (programming versus
readback) and a start bit.

The main control and status register (CSR) contains the “bypass” mode bit

which, when set, disables XL and XR and enables the bypass registers. These regis-

ters allow the Interface Board to mimic the behavior of the Development Board. A

separate bypass register contains the RBus size and direction bits and the broadcast

bit for use in bypass mode.

The CSR also provides access to the signals that control the programming and

readback of XL and XR, including the PROGRAM, INIT, and DONE pins of the Xilinx

chips. Another signal, RBTRIG, is used to initiate the readback operation in XL and

XR. The clock source select and the interrupt enable bits are also in the CSR.

There are three levels of reset available on the Interface Board. At the lowest

level is the system reset signal, which is connected to the host computer’s power-

on reset. At the second level is the “panic” bit in the CSR. This signal is used to

reset various control state machines on the Array Boards. At the highest level is

the “program reset” bit in the CSR, which is connected to the individual Processing

Elements’ global set/reset (GSR) signal. .

The Interface Board also contains a 32-bit read—only identification (ID) register

implemented using DIP switches. The ID switches are set to contain board version

information and a unique serial number.

3.4 ARRAY BOARD DESIGN

Figure 3.3 shows a block diagram of the Array Board architecture. The Array Board '

contains 16 Processing Elements (PEs) arranged in a linear array. A seventeenth

FPGA—memory pair, referred to both as the Control Element or as the seventeenth
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FIGURE 3.3 Array Board Architecture

Processing Element PEO in some applications, manages the crossbar and can send
data to or receive data from the crossbar. The 36-bit linear data path enters the array

from the previous board, continues through adjacent PBS, and exits the array to the
next board. The first, or leftmost, board in the system detects that it is in slot 2 and

receives its input data from the SIMD bus instead of the previous board connection.

The last, or rightmost, board is determined by comparing the slot number of each
board to the RBus Size value on the backplane. The selected board then either sends

data to the RBus or receives data from the RBus, as determined by the state of

the RDIR backplane signal. Array Boards that are not at either end of the array

simply communicate with adjacent boards via unbussed pins in a custom backplane
extension.

Along the front edge of the Array Board are 18 light—emitting diodes (LEDs).

One LED (green) is connected directly to power and indicates whether the board is

receiving power. A second LED (red) is connected to an output pin of the Control
Element (X0). The remaining 16 LEDs (amber) are each connected to an output pin

of each PE. These LEDs are available for use by application programs and are used

extensively by the diagnostic software.2

3.4.1 Processing Element

The organization of the Splash 2 Processing Element is shown in Figure 3.4. The
PE consists of a Xilinx XC4010 FPGA and 256K x 16 RAM. The RAM is imple—

mented with four 256K X 4 static RAM chips with 20 nsec access time mounted

on a ZIP package. The memory control state machine is implemented in a 22V10

programmable logic device (PLD).

The Processing Element FPGA has four principal data paths, corresponding

approximately to the four sides of the chip. There is a 36—bit-wide bidirectional data
path to each of the two neighboring PBS (to the left and right), a 41-bit interface to
the central crossbar, and a 36-bit interface to the local RAM. The crossbar interface

consists of a 36—bit—wide bidirectional data path and five output enable control signals.

2One programmer wrote a program that scrolled a banner of text across the boards.
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FIGURE 3.4 Splash 2 Processing Element

The 36 bits of data are arranged in four groups of 8 bits and one group of 4 bits,

with each group controlled by a separate output enable. The RAM interface consists

of a 16-bit data path, an 18-bit address, and separate read and write control signals.

The memory control device is used to present a purely synchronous interface

to the programmer. To initiate a memory read operation the FPGA asserts the read

control signal and the address at the rising edge of the system clock. Data from

the memory is available on the next rising edge of the clock. To initiate a write

operation the FPGA asserts the write control signal, the address, and the data on

the rising edge. The write enable pulse is generated by the memory control PLD

from a delayed version of the system clock. The interface circuitry and the RAM

timing guarantee that a write pulse is not applied to the RAM until the address

and data have met the setup requirements. The write pulse is released in time to

meet the required hold time. To guarantee that these constraints are satisfied, it

is necessary to register the memory interface signals in the IOB flip-flops of the
FPGA.

There are several other signals available to the Processing Element, including:

0 system clock

0 broadcast bit from the control element

a program reset signal from the Interface Board

0 two handshake register bits
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0 global OR result and valid bits connected to the control element
0 Xilinx Disable bit

0 LED control signal

3.4.2 Control Element

The organization of the Control Element (X0) is very similar to that of the Processing
Element, consisting of a Xilinx XC4010 and a 256KX 16 RAM. The memory interface
of the Control Element is identical to that of the Processing Element. The 36-bit

SIMD bus is connected directly to X0. X0 is responsible for selecting the crossbar

configuration in use at any given time through a 3—bit “crossbar select” port. X0 may
also read or write the 36-bit crossbar through the port it shares with PE X16. An

output port allows X0 to override Xl6’s crossbar output enables, effectively taking
control of the 36-bit data path.

The bidirectional global OR and Valid bits from each of the 16 PEs are con-
nected to X0. X0 in turn may also drive the open collector systemwide global OR and
Valid signals on the backplane. These signals are intended to be used to permit X0
to perform Array Board-level synchronization, and then to participate as the board’s
representative in systemwide synchronization.

The single—bit broadcast signal from the backplane is an input to X0, which
may then drive the board-level broadcast signal to the 16 PEs.

3.4.3 External Memory Access

The SBus extension bus permits the host to directly read and write the PE memories.
Since the PE memory is not dual—ported, the address and data bus of each memory
is shared between the FPGA and the SBus extension. Therefore it is necessary to

ensure that the FPGA does not interfere with SBus accesses to the memory, and

vice versa. The host accomplishes this by stopping the system clock and asserting
the “Xilinx Disable” signal in the Array Board control register prior to any memory
access. The system software must guarantee that the Xilinx Disable pin of each PE
is wired to the internal Global Tri—State (GTS) signal within the FPGA. Once the

memory access is complete, the host must clear the Xilinx Disable bit and restart the
clock.

References from the host to the PE memories are multiplexed such that each

32-bit host access is converted to two 16-bit accesses to sequential memory locations.

The RAM multiplexor is clocked with the SBus clock, not the programmable system
clock, so the memory can be accessed by the host while the system clock is stopped.

3.4.4 Crossbar

The crossbar network permits the communication between processing elements via a
selection of preprogrammed configurations. The Texas Instruments SN74ACT8841
chip, shown in Figure 3.5, is used for this application. The 8841 chip has sixteen
4—bit bidirectional ports, which may be connected in any desired pattern. Each port’s I
output may be selected from any of the other ports. The output port selection is
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Select

 
Port 1 Port 2 Port 16

FIGURE 3.5 Architecture of the TI 8841 Crossbar Chip

controlled by an 8 X 4 register file. The register file entry in use during a given
clock cycle is chosen by the external 3—bit Select signal. The output of each port is
independently controlled by a separate output enable pin.

On the Splash 2 Array Board, nine 8841 chips are coupled to form the central
crossbar. The output enable pins are grouped together in pairs to form five controls
for each Processing Element. Each FPGA therefore supplies five signals to control its
corresponding crossbar connection, arranged as four 8—bit paths and one 4-bit path.

The crossbar array is preloaded by the host with up to eight connection config-

urations. During execution, three bits from the Control Element X0 select the desired
preloaded configuration, which X0 can change from clock cycle to clock cycle. The
crossbar chips are individually loaded, since their configurations will not necessarily
be identical.

3.4.5 Programming and Readback

Configuration and readback of the Array Board FPGAs is accomplished by perform—
ing write and read operations over the extended SBus. The PROGRAM bit in the Array
Board control register causes all 17 FPGAs (X0—X16) to enter program mode. Sub-
sequent writes to the “configuration” register cause each FPGA to extract one bit
from the data word and load it into its internal configuration. The INIT and DONE

status signals are available as separate registers to be read by the host.
State readback is performed in a similar manner. When written, the RBTRIG

bit in the control register puts all 17 FPGAs in readback mode. Subsequent reads
from the configuration register return the internal state information to the SBus. An
on—board state machine generates the configuration clock (CCLK) timing for both

configuration and readback.

3.4.6 Miscellaneous Registers

Most of the registers on the Array Board and the SBus address decoding are actually '
implemented in an eighteenth Xilinx FPGA. This FPGA is not user—programmable,
however, but is configured at power-on from a set of on-board PROMs. The “panic”
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signal from the Interface Board will also force a reload of the controller’s configu—
ration.

All of the programmable features and mode controls are accessible to the

host through the SBus address space. All registers are aligned on 32-bit boundaries.

The registers are organized into two separate pages of the address space, one to be
available in user mode and the other accessible only in supervisor mode. The user

mode registers include the control register, the handshake register, the configura-

tion registers, the version and serial number register, and the crossbar configuration

registers. The supervisor mode space contains the interrupt status and mask registers.

The control register contains a number of signals effecting the operation of

the Array Board, including the PROGRAM and RBTRIG for loading and unloading the

FPGAs. The control register also contains the Xilinx Disable signal used to force the

FPGA pins to their high impedance state and the Handshake Direction signal used
to set the direction of the handshake register. The configuration registers include

addresses from which the host may read the INIT and DONE status signals from

each FPGA and the location to which the configuration bitstream is written or the
readback stream is read.

The handshake register is an asynchronous communication channel between

the host and the Processing Elements. One bit of the handshake register is connected
to each of the 17 FPGAs. The bits themselves are bidirectional, but the direction

of all 17 bits is determined by the Handshake Direction bit of the control register.

The version and serial number register contents are hard-coded in the controller’s

configuration PROM. The version number changes with each revision of the controller

PROM program, and the serial number is unique to each Array Board.

The crossbar configuration information is loaded into a set of 4-bit registers

within each of the nine TI 8841 crossbar chips. These registers are mapped into the

SBus address space of the Array Board, allowing the host to write directly to the TI

chips.

The interrupt status register latches the state of the interrupt bits from each of
the 17 FPGAs. The controller combines the latched status with the mask information

to form the board-level interrupt signal. The interrupt status register is cleared when

read by the host.
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CHAPTER 4
 

Splash 2: The Evolution
of a New Architecture

Duncan A. Buell

The preceding two chapters have described the hardware designed and built as

Splash 2. It is important, however, to trace the design process that led us to the

artifact we have today, otherwise there is the danger of seeing only the extant ma—

chine and not the potential variations. In this chapter we examine the decisions that
led to the final architecture.

4.1 SPLASH 1

The germ of the idea for Splash 1 [2] apparently came from Dick Kunze and Paul

Schneck at SRC in late 1986. Discussion took place among Kunze, Schneck, and

Dick Lipton from Princeton, in part due to a realization that a Splash-like processor

would be a generalization of the special-purpose P—NAC (Princeton Nucleic Acid

Comparator) that Lipton was having built. P-NAC was designed to execute the edit-

distance (approximate string matching) algorithm used in comparing DNA sequences

against each other.

By the spring of 1987, the essential Splash 1 architecture had been laid out;

at a meeting among the SRC and Princeton principals held at SRC on February 27,

1987, the linear array of Xilinx chips and memories had already taken shape. As with

any such new system, there were several variants that were considered from time to

time but never adopted. One early thought was that a 128—board system could be

built. This never got beyond the concept stage. Another idea that surfaced again and

again and resurfaced briefly in the later design of Splash 2 was the possibility of

31
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including floating~point chips in the array path. This idea was studied for Splash

l but never adopted, the stumbling block being in part that the floating-point chips

operated at a fixed speed whereas Splash 1 designs ran at speeds that were dependent

on the programming. This implied that the floating point chips could not be substi-

tuted one for one with Xilinx chips, leading to rather complicated control paths.

Further, while applications that made use of the Xilinx capability—reconfigurable

processor architecture—and applications that made use of the floating—point power

could be envisioned, there seemed only a limited benefit from mixing the two. Given

that numerous floating-point accelerators exist and that the real point of the exper-

iment was to demonstrate the power of FPGAs for computing, there seemed to be

no overwhelming reason to add the floating-point capability to Splash 1. In the later

design of Splash 2 the subject came up once again. By then the consensus was

that Splash 1 was and Splash 2 would be processors with a niche that lies out-

side the world of floating—point computation. Given more serious consideration for

Splash 2, however, was the idea of including a fast microprocessor on each Array

Board to provide more general compute capability close to the Xilinx chips them-
selves.

The final Splash 1 processor was a single multiwire board that plugs into the

VMEbus of a Sun workstation (see Figure 4.1).

Each board contained 32 Xilinx XC3090 FPGA chips X0 through X31 as

PEs connected in a linear array by a 32-bit-wide path. Chips X0 and X31 could

be similarly connected to form a ring, were it necessary to route data around the

ring more than once or to send data in both directions through the FPGAs. Data

synchronization on and off the board was handled by a pair of FIFOs controlled by

X0 and X31, respectively. Between each pair of interior Xilinx chips was a 128K x 8

RAM with an 8—bit-wide path to the FPGAs.

The Xilinx XC3090 chips in Splash 1 had a maximum clock rate of 32 MHz.

To accommodate Splash 1 designs that could not be run at maximum speed, usually

due to placement and routing problems or to the inability of the VMEbus to deliver

data at a sufficiently high rate, the clock rate could be set in factors of two from
1 MHz to 32 MHZ.

A three-Xilinx-chip (one for input from the host, one for output to the host, and

one in the middle) Splash 1 board, nicknamed PUDDLE, was wire—wrapped by hand

in order to gain an understanding of the hardware and expose unforeseen problems.

This board became operational in March of 1988. When it had been thoroughly

debugged, a full 32-chip board was wire—wrapped and become operational at the end

of 1988. Finally, schematics for the multiwire “production” version were finished in

mid-February of 1989, and the final boards were fully tested just in time for SRC’s

1989 summer workshop on Splash 1 applications.

Programming of Splash 1 was originally done with the Xilinx—supplied XACT

editor; later tools included the Viewlogic schematic capture package. From the outset,

however, there were difficulties in developing application codes; especially for indi—

viduals unused to hardware design, programming with XACT was not easy. To make

the machine more accessible, the Logic Description Generator (LDG), a higher—level

language whose output could be mapped to the Xilinx chips, was designed and imple—

mented at SRC through the fall of 1988 and the winter of 1988—89 by Maya Gokhale

[3]. In addition to the software for direct execution, a debugger called Trigger was

used extensively.
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FIGURE 4.1 Splash 1 Architecture

These new tools permitted some escape from the low-level details of hardware

design, but programming the Xilinx chips was still a nontrivial task. Problems existed

at several levels. Splash 1 programming was still hardware design. Counters and

sequencers had to be explicitly constructed and connected to the logical units that

they controlled. Timing information about a design was difficult to obtain, and the

inability to perform complete state readback and restore hindered the debugging

process. One of the hardest problems centered on the apr (Automatic Place and

Route) software from Xilinx. This program ran slowly and often failed to completely

route a chip’s design. It was often, if not usually, necessary to provide apr with

hand—placed designs in order to get fully routed designs with acceptable execution

speeds as a result of apr’s work. One major focus—which has been successful—in

moving from Splash 1 to Splash 2 has been to eliminate the need for such low-level '

effort in order to get a working design. Programmers have for years been accustomed

to the fact that, if speed is the object, the working program (usually in a high—level

Petitioner Microsoft Corporation - Ex. 1007, p. 33 



Petitioner Microsoft Corporation - Ex. 1007, p. 34

 

34 Splash 2: The Evolution of a New Architecture Chapter 4

language) is only a first step; detailed study of execution characteristics and possibly

rewriting kernels in assembly language may be necessary. The problem with this

“make it right before you make it better” approach for Splash 1 was the level of

effort and detailed knowledge necessary to make it right in the first place.

In spite of difficulties, work continued on Splash 1. Several boards were finished

and LDG was made robust by the summer of 1989, when Splash 1 applications

were the focus of an SRC summer workshop. It was during this workshop and

immediately afterward that the DNA sequence comparison program was written and

optimized. This became, by the fall of 1989, a submission to the 1989 Gordon Bell

prize competition, in which the SRC program received an honorable mention.

It is appropriate in this history to mention one path that was explored for

Splash 1 and then abandoned. It was realized early on that getting data to Splash 1

could be a problem. An apparent solution was to install a VSB bus memory board,

available commercially from Motorola. It was thought that loading this board with

data from the host would allow Splash 1 to access large data streams multiple times

without involving the host. Hardware for this was added, but experiments showed that

with most applications there was no appreciable improvement in performance, and

occasionally some performance degradation occurred. Although some applications

did use this “cached” data, most simply accepted a stream for one-time processing

from the host, making the VSB board unnecessary.

4.2 SPLASH 2: THOUGHTS ON A REDESIGN

Splash 1 proved to be very successful, as shown in Gokhale et al. [2], although it was

not without its limitations. When the design of a follow-on system was contemplated,
the first item of business was to address those limitations.

1. Programmability: Splash 1 was programmed for the most part in Gokhale’s

LDG [3]. Although LDG had the obvious advantage of having been done

expressly for programming Splash 1, it had the disadvantages associated with

' being an internally developed system. In addition, the Xilinx tools were unequal

to the task of supporting code development for Splash 1. Users often had to

perform placement themselves in order for the apr tool to succeed in routing

a design. Further, many of the problems in debugging a design required more

detailed knowledge of the Xilinx design than could be obtained from the tools.

These problems combined made Splash l difficult to program by individuals

unused to hardware design. One of the key issues in planning Splash 2, then,

was to make it programmable, to make it a processing system that would be

usable, without (undue) agony, by a wide range of programmers.

2. I/O Speed: Many of the original applications for Splash l were strongly I/O-
bound. The VMEbus can deliver about 4 Mbytes/sec (in slave mode; VME

using DMA would be significantly better) from the host to a Splash 1 board,
but an application running at 16 MHz needs a bandwidth of 32 Mbytes/sec

in order to consume and produce one character per clock tick. Any follow-on

system would have to overcome the I/O bottleneck of Splash l in order to be
truly successful. '
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3. Memory: The primary uses of the memory chips in Splash l were for lookup

tables and for storing microprograms to be executed by state machines imple-

mented in the Xilinx chips. In some instances the lookup tables were small,

but in some applications, such as integer multiplication, a single reference to

memory would replace complicated and slow logic and the speedup from using

lookup tables would be limited only by the memory size. The memory use was

encumbered, however, by problems in sustaining peak rates, by the fact that

memory loads had to be done down the linear data path of the Splash board,

and by the fact that the memories were connected to two Xilinx chips on the

linear data path. This last problem required that programmers exercise great

care to separate in time the access to memory and the transmission of data

from Xilinx to Xilinx. On the other hand, the ability of one Xilinx chip to store

data into a memory that the next Xilinx chip would read provided on Splash l
a communication capability that was useful but which was not retained in the

Splash 2 design.

The Splash l memories were also not as large as desirable for many

applications, and the requirement that memory reads and writes take place by

passing data through the FPGAs caused unnecessary complications, requiring

that a special Xilinx program for memory read/write be written and used.

4. Multiboard Scalability: Some Splash 1 applications quite naturally used (or

would have used) more than one Splash 1 board either for larger, more complex

computations or for multiphase computations. In order to use a multiboard

system, it was necessary to bring the data back to the Sun host from a Splash

1 board and then to send it from the host to the next Splash 1 board. This

aggravated the I/O bottleneck problem.

5. Data Path: Splash 1 had only a single data path—a linear route through the 32

Xilinx chips. While the linear (which is sometimes systolic) paradigm is very

powerful and its application to Splash has been very successful, there were

many applications that either could not be done or whose efficiency suffered

because the linear path was the only data path. Given that high performance

seemed to require careful control of the data pipeline past the somewhat limited

processing resources, the cost of transmitting data to the appropriate processing
element needed to be diminished.

In Splash 1, the data from the host passed directly into the Splash board,

so that handling of the FIFOs and any preconditioning of the data (merging

of two input streams, for example) had to be done by the Xilinx chips on the

Splash board. This often complicated the programming. Strong suggestions had

surfaced early that performance might be substantially improved if the data

preconditioning were moved out of the general processing array.

Finally, on Splash 1 it was often observed that 32—bit data widths were

sufficient for the data but that extra tag bits sent along with the data would

have been very useful. Not having the extra bits either complicated the design of

programs or required extra clocks (a major negative factor in a highly pipelined ,

program) in order to transmit the necessary control information from FPGA to

FPGA. An extension of the input/output data path width from 32 to 36 bits

would probably remedy this shortcoming.
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6. Clock: The Splash 1 clock had only power-of—two speeds. Designs that came

close to running at 32 MHz could only be run at 16 MHz, for example.

The above list addressed the known and specific limitations of the Splash 1

boards as built. Once a redesign of a Splash-like system was contemplated, however,

all the earlier design decisions were reviewed. The original design of Splash 2 by

Andy Kopser was given in [4] in a preliminary architecture description. On Septem—

ber 12, 1991, however, all these decisions came up for review at the first of a series

of architectural design meetings. These meetings were intended to start from first

principles to design a Splash-like FPGA-based processor; although Kopser’s earlier

thoughts were taken into account, none of his conclusions was accepted as given—all

were subject to further scrutiny. Among these were the following:

1. Choice of FPGA chips

2. Choice of host and connecting bus

3. The linear array and any other interconnection of the FPGAs

4. Multiprogramming of multiple Array Boards

4.3 PROGRAMMING LANGUAGE

The decision to use VHDL [5] as the language in which to program applications

for Splash 2 was actually made quite early. The use of VHDL would clearly be

a compromise. In its favor were the facts that it is a defined standard, that it is a

programming language (at least in simulation mode), and that it is supported by com-

mercial tools for both simulation and synthesis. The commercial tools also provide a

programmer with most of the bells and whistles of a debugging environment that are

now expected by users. Finally, the goal of Splash 2 was to demonstrate the ability

to program logic into an FPGA-based machine; although a high-quality translation

of a high-level language to Xilinx bitfiles would be necessary for performance, we

did not feel that we wanted to make it a significant part of the Splash 2 project
itself.

Working with an off-the-shelf VHDL system would not, however, address all

the issues involved in programming Splash 2. Quite apart from the “religious” issue

that VHDL is an Ada derivative while most modern programmers are using C, there

would be known problems both “above” and “below” the VHDL level. At the time

Splash 2 was begun, it was not clear that it would be possible to drive a VHDL

simulation from a general C-language interactive front end. The user’s View of the

programming environment might necessarily be that of the VHDL vendors’ tools—

which were designed for use by engineers doing circuit or VLSI design and might

seem unduly foreign or even hostile to application programmers. More important, due

to the need to have some example applications achieve high performance, it was not

clear that the output of the logic synthesis would produce a Xilinx bitfile that would

use crucial performance features of the FPGAs. Much of the success of Splash 1 had

come when the programmers had specifically controlled from LDG the resources on

the XC3090 FPGAs. A serious question was whether an outside vendor whose tools

were aimed at a very different target consumer would provide the resource utilization
that we would need. '
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It has thus always been assumed that VHDL is not perfect and that some lan-

guage more like C should be developed. We realized, however, that we didn’t know

enough a priori about programming Splash 2 to permit development of “the right

language.” VHDL was therefore Viewed as an acceptable middle ground, with the

hope that in the process. of programming Splash 2 in VHDL for a varied list of
initial applications, enough would be learned about the programming model appro-

priate for Splash 2 to permit language development after the fact. Meanwhile, useful

work would be accomplished by those brave pioneers who had coded the original

applications in VHDL.

4.4 CHOICE OF FPGAS

SRC had gained extensive experience with and understanding of the Xilinx XC3090

chips, much of which would translate to the new XC4000 series chips, but the

question was opened as to whether a different vendor’s chip might be more desirable.

Prominent among the options was the Concurrent Logic, Inc. FPGA. The two chips

appear remarkably alike to a “computer designer,” despite the extremes of granularity

between the two products. The Xilinx XC4010 has 400 Configurable Logic Blocks

(CLBs) in a square array. Each CLB takes two sets of four inputs and produces any

Boolean function of each set, then any Boolean function of the two bits of result

together with a ninth input signal. With this coarse structure, Xilinx advertises the

XC4010 as roughly equivalent to a gate array of 10,000 gates [6].

The Concurrent Logic chip, by contrast, is very fine-grain. The high-end chip

at the time was the CLi6005, a 56 x 56 array of cells that in most modes serves to

produce one output from three inputs. Concurrent Logic advertised its CLi6005 chip

as being roughly equivalent to a gate array of 5,000 gates, the similarity between

the Xilinx and the Concurrent Logic figures perhaps saying more about the basic

complexity of 1992 silicon technology than about the clear superiority of one vendor
over another.

In the final analysis, three factors were decisive:

1. The fact that the Xilinx chips were a known quantity made it necessary to have

a very good reason to change.

2. The delivery schedule for the Concurrent Logic chips was some months behind

that for the Xilinx chips.

3. Most important, as a technical matter, the Concurrent Logic chips had 108 I/O

pins compared to the Xilinx’s 160. As it was envisioned at the time the decision

was made, even the Xilinx’s 160 HO pins seemed insufficient. This was borne

out by later experience.

In the process of deciding on a chip, it was necessary to compare not just the

chips but to take into account their features and the processing power per Array Board

that could be accommodated. A feature new to the XC4010 chip was a fast carry

internal to the CLBs, which makes arithmetic computations faster and requires less '

programming and fewer CLBs. Further, the number and quality of the interconnection

lines had increased, which would help more applications run at higher speeds. Finally,
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the new chips allow for the use of CLBs as a 32-bit RAM, configured either as 32 x 1
bit or as 16 X 2 bits.

The major difference between the XC3090 and the XC4010 chips, however, was

in the basic size and structure—the XC4010s have 400 Configurable Logic Blocks

(CLBs) instead of the previous 320, each CLB has nine input lines instead of five,

and the maximum speed is 40 MHz instead of 32 MHZ. The improvements in the

FPGAs to be used would permit Splash 2 to have 17 Xilinx chips on an Array Board

instead of the previous 32. This was both a conscious decision and a necessity. The

newer chips were, in the packaging available at the time, physically somewhat larger,

and it was not possible to put 32 of them on a single Array Board along with the

memories and the crossbar (to be described in Section 6). The hope was that because

the newer chips were each more powerful than the old chips, and because it had been

more often the case with previous applications that they were I/O-limited rather than

processor-limited, the plan to use half as many chips per Array Board, each perhaps

somewhat less than twice as powerful, would provide a reasonable processor-to-I/O
balance.

As it has come to pass, the decision to use the Xilinx chips has not been without

its problems. The VHDL tools used in programming Splash 2 reduced the VHDL

program to the gate level in the synthesis step rather than constructing efficient

CLB designs, so a natural inefficiency exists in the use of the VHDL language for

the Xilinx FPGAs. (To a great extent these issues were addressed in working with

Synopsys on their FPGA Design Compiler.)

4.5 CHOICE OF HOST AND BUS

In the design of Splash 2, there were no tacit assumptions, and even the choice of host

and bus were open for discussion. The options were narrowed considerably, however,

by various practical considerations. Sun workstations continued to be the norm at

SRC, and that, coupled with Sun’s dominant position in the overall workstation

market, made it hard to really consider abandoning Sun as a host. The constant

realization existed, however, that the object of study was “the Splash 2 attached

processor” and not “attached processors for Sun workstations.” By constantly keeping

in mind the fact that the choice of hosts contained a nontrivial degree of arbitrariness,

we were able to avoid embedding the machine so deeply in the Sun milieu that it

could not be re-engineered at modest cost for a different host.

The choice of the particular host was not so arbitrary. The realistic options were

the SPARC 1+ and the SPARCstation 2, using the SBus with either. Experiments on

SPARC 1+ workstations at SRC showed, however, that the SBus as implemented did

not match the SBus as documented by Sun. Since the SBus was the logical choice (for
reasons described below), this forced the decision in favor of the SPARCstation 2.

These decisions, together with the decisions on the Futurebus+ backplane, were

not made in a vacuum. Another hardware-build was under way at SRC at the same

time, also a workstation enhancement a few months ahead of Splash 2 in development,

and the decision was made that Splash 2 would use the same bus, backplane, and

so on. The real goal of Splash 2 was to demonstrate the capability of FPGA—based

computing, and the use of hardware in common with the other project would permit

more effort to be directed to the specifics of meeting that goal.
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Having decided to use the SPARCstation 2, the decision to use the SBus

was rather easy. By far the most limiting hardware feature of Splash l was the
4 Mbytes/sec peak data rate of the VMEbus on the Sun host. While the VME-

bus protocol is rated as high as 16 Mbytes/sec peak transfer rate, existing imple—
mentations of VME buses do not reach that rate. Above all else, we did not want

Splash 2 to be, as was Splash 1, I/O bound, and the SBus appeared to provide at
least an order of magnitude higher data rate than the Sun VMEbus. Early estimates
were 38 Mbytes/sec; tests now show that a CPU-loaded SPARC 2 can sustain about

40 Mbytes/sec through the SBus via DMA and that an unloaded machine can deliver

as much as 54 Mbytes/sec. Unfortunately, these are peak transfer rates from the same

l6-word DMA buffer of the host. Without further work on the drivers on the host,

perhaps to include double—buffering, the data transfer via DMA takes place during
only about 40 percent of the time, so transfer rates actually are limited to 20 to
25 Mbytes per second.

Along with the decisions on host and bus, driven by the need to provide Splash
2 with data, the plan for data connections that did not go through the host was an
early feature of the design. As is remarked upon by nearly every experimenter with
workstation attachments (including Bertin et a1. [1]), workstation discs are too slow

to produce volumes of data at high speed, memories are too small, and the Ethernet

connections simply cannot sustain the load. The external connection could be to a

traditional supercomputer functioning as an I/O device (which a supercomputer does
quite admirably) or to an array of discs (as one might find in a text search or database
search application).

Several different external data connections seemed desirable and potentially
usable. An early plan to include several such connections on the Interface Board

was dropped in favor of Wally Kleinfelder’s idea to put such connections onto a

daughterboard. This would allow the DMA to be built and tested on an early—version
Interface Board while the final Interface Board was being designed and would also
allow future daughterboard designs such as HiPPI.

Finally, another early decision was that the Sun and Splash 2 would use different

clocks. It was a simple matter, then, to leave open the option of having the external
data also carry the clock to be used by Splash 2.

4.6 CHIP-TO-CHIP INTERCONNECTIONS

One of the major decisions in designing Splash 2 was the choice of chip-to-chip
data paths. In this, the 160 1/0 pins on the XC4010 chip turned out to be one of the
forcing factors.

With 160 HO pins, one can implement four 36-bit data paths but have only
16 pins left over for control. Even by dropping the tag bits (bits 35—32 of the data

path) one cannot get five 32—bit ports (this is exactly 160, leaving nothing for control).
We are, therefore, necessarily designing for a four-port array.

The obvious extension from a one-dimensional array would be a two—dimension—

al array of Xilinx chips. This consumes four ports, so memory connections would ,

have to be shared with the chip-to-chip connectors, as on Splash 1. Two such arrays
are given in Figures 4.2 and 4.3.
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FIGURE 4.2 Two-dimensional Toroidal Mesh

In Figure 4.2 we easily obtain a 2-D mesh, but we cannot easily string the chips

together into a 1-D array if the memories are also being used. That problem is fixed

in the design of Figure 4.3—at the expense, of course, of the 2-D mesh itself.

The basic problem is simple: If the memories are connected to two processor

chips by the same lines that are used for processor-to—processor connection, then a

linear array of processors with memories in between uses up two of the four ports

per chip. If the memories are active, then with only two ports per processor we can

achieve only a linear array.

Similar objections ruled out the use of busses, and a major step was taken in the

decision to connect each processor to its own local memory. Some capability was lost

with this decision. There were a few Splash 1 programs whose efficiency was due

to the ability of the FPGAs to transfer data through the memories; the stored output

of one FPGA’s work could be accessed in an arbitrary order by the next FPGA.

But this would have required a wider data path to accommodate two ports, or the

time-multiplexing of access to memory by the FPGAs, and the advantages seemed

not worth the hardware investment or the‘increased complexity of programming the
memory use.

With one of the four ports per chip used for memory, three ports become avail—

able for chip—to—chip communication. Various three—port configurations were consid—

ered, including the chordal ring. A chordal'ring (a ring with regularly or irregularly
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FIGURE 4.3 Two—dimensional Toroidal Mesh with Shift on Wraparound Connections

spaced “chords” as additional connections) can be used as a linear array, or a linear
array with shortcuts, and had the advantage of not being tied to “nice” numbers (like
16) of processor chips. A possible drawback, though, is that “normal” programming
patterns do not (yet?) include the chordal ring as routine.

For these and similar reasons, the eventual choice was a linear array with two

ports per chip and a crossbar connecting the chips with the other port. This choice
was made easier when made in conjunction with a choice of the TI reconfigurable

crossbar chips (TI SN74ACT8841 were used). Each such chip is a 16—port, 4-bit—
wide crossbar and can be programmed with eight different configurations. In this

way, data paths in nibble sizes could be programmed (although pin limitations later
limited this to byte sizes), and a wide variety of communication patterns could be
accommodated.

Although it turned out later to lead to serious problems, the choice of the TI
chip seemed an excellent one at the time. In the manner in which we would use the
chip, the latency across it was one tick, so the crossbar communications would not
differ from communications down the linear array. This would simplify the program—

ming task—slower chips would require the programmer to insert pipeline stages in a 7
program and then to synchronize them carefully. The multiple configurations permit—
ted by the TI chip seemed to provide the logical connectivity needed, and the ability
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to switch configurations with at most a one—tick delay was a very attractive option.
None of the more sophisticated switch chips available at the time, nor the use of

FPGAs to implement the switch, offered these features.

4.7 MULTITASKING

Up to now, we have been discussing the architecture of the Splash 2 Array Board or

the data paths in and out. The decisions on these were originally made in Kopser’s

Splash 2 design and then reaffirmed by the architectural committee. One of the design
decisions that was changed radically was an original thought that each Splash 2 Array
Board would have its own input and output FIFOs and that each Array Board could
run a separate Splash 2 process multiprogrammed from the host. This would have

required extensive control hardware on the Interface Board as well as complete

software protocols for the Sun host’s control and context switching of processes
running independently and asynchronously on the Splash 2 attached processor.

The possibility of allowing Splash 2 Array Boards to work on separate tasks

was hotly discussed for several sessions at the weekly architecture meetings. The

goal—which, in the final analysis, seemed impossible to achieve—was that arbitrary

subsets of Splash 2 Array Boards could be chained together, each running distinct
processes, possibly communicating with each other directly, possibly communicating
through the host, and possibly not communicating with each other at all.

It was even envisioned at this time that different users might run different

programs on Splash 2 concurrently, in addition to the situation in which a single user
might have multiple independent Splash 2 processes.

In the end, all such plans were discarded. The final Splash 2 system is an
attached processor in which all the Array Boards in a given system form a linear

chain; the only variations in configuration are that broadcast to all Array Boards
simultaneously is possible and that the physical chain of Array Boards can be logically
shortened. Although use of the entire system can be time—shared, no partitioning of

the system for concurrent execution of independent processes in different partitions
can occur.

The major factors in this decision were: that the algorithmic complexity of

controlling the independent processes would require too much hardware support if
it were designed to run at the necessary speeds; that the complexity of the “back-

end” network controlling the subsets of Splash 2 Array Boards into chains would

be too great; and that insufficient real estate existed even on the large Array Boards
planned for Splash 2 to allow for the Xilinx chips, memories, and crossbar, as well

as FIFOs, DMA controllers, bus arbitration with the Interface Board, and network

communication with the other Splash 2 Array Boards in a chain. A final concern

was that each subsystem would have to be able to run at a different clock rate so

that maximum efficiency of the Splash 2 processes could be obtained. This would

clearly have necessitated complex mechanisms to arbitrate bus and DMA access for
data movement on and off Splash 2.

Somewhat reluctantly, then, Splash 2 became a system all of which, at any
point in time, would be assigned to a single process. The Array Boards were to
form a linear array (although broadcast was still possible). The FIFOs and DMA

control for each Array Board were consolidated into one pair of input and one pair
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of output FIFOs using DMA channels and moved onto the Interface Board. Interrupts

and global AND/OR were similarly cascaded from each Xilinx chip to a board-level

register and from board level to a system-level register on the Interface Board. The

inclusion of Xilinx chips XL and XR on the Interface Board would provide for

control of data transfer, clock (even a clock supplied by the external input), and tag

bits independent of the Splash 2 Array Boards. In Splash 1, such control had usually

been done in the first array chip, leading to asymmetry and crowded designs. With

proper programming of XL and XR, the asynchronies of DMA transfer and external

input and clock should not be seen by the Splash 2 Array Boards themselves, and

the XL and XR programs should function much like a system I/O library.

With the adoption of this more conservative plan, some applications were given

up, but the general opinion was summed up by Ron Minnich: “Now, at last, I think

we have a real chance that this thing can be built.”

4.8 CHIP X0 AND BROADCAST

One of the casualties in moving the 1/0 off the individual Array Boards onto the

Interface Board was that it was no longer as simple to envision broadcast of data from

the host or from an external interface to all the processor FPGAs simultaneously; yet

this programming model was seen to be equally as important to support as the simpler

model in which long streams of data would pass down the linear array. Unfortunately,

the basic power-of—two dilemma existed. Earlier Splash 1 programs had occasionally

been complicated or suffered decreased efficiency because FPGAs X0 and X31 had

handled I/O; this took away somewhat from the power-of—two advantage of the 32—

long linear array. When the I/O handling was moved from the beginning and end of

the linear array on each Array Board to FPGAs XL and XR on the Interface Board, the

power-of—two structure returned to the processing array when viewed as a linear array.

Now, however, something needed to be done for broadcasting data. With some

reluctance, FPGA X0 was added to each Array Board. The reluctance came primarily

from the realization that 17 is not a very elegant number. Reading and writing the

memory on each Array Board would become more complicated (having made a

decision to include another FPGA on the Array Board, there was little dispute over

making it look as much like the other FPGAs as possible, so it was given the same

memory as the other FPGAs), reading and writing the configuration and state of the

FPGAs would also be more complicated, and most inelegant of all, X0 would have
to share lines into the crossbar with some other FPGA.

Despite the inelegance, the Array Board architecture with the 17 FPGAs has

proved to be successful. The complications from not having power-of—two structures

have been more than compensated for by the greatly increased ability to move data

into the Array Boards and to the PEs.

4.9 OTHER DESIGN DECISIONS

In addition to these “coarse” decisions on the architecture, a number of other changes 7

were made to the Splash 1 design. Data paths were fixed at 36 bits in width. This

would accommodate 32-bit words and 4-bit tags carried along with them. An earlier

Petitioner Microsoft Corporation - Ex. 1007, p. 43 

 



Petitioner Microsoft Corporation - Ex. 1007, p. 44

 

44 Splash 2: The Evolution of a New Architecture Chapter 4

plan for a 40-bit crossbar was scaled back to 36 bits. No good use could be imme-

diately envisioned for the extra four bits, and the I/O pins were needed elsewhere.

The only place in which Splash 2 is not a 36-bit machine is in the Xilinx-to-memory

path. This path is 16 bits wide, largely because the l60-pin Xilinx XC4010 chip

cannot support three 36-bit data paths (two ports for the linear array and one into the

crossbar) and a path to memory at least 32 data bits wide (3 . 36 + 32 = 140, leaving
only 20 pins for Xilinx control and memory address). It was thought to be absolutely

necessary that memory be accessible in every clock period, making multiplexing of
data and address infeasible. '

One change from Splash l to Splash 2 was to add a separate memory read/write

path that did not require going through the Xilinx chips. The memories could now be

directly read/written from the Sun host over the SBus. They are not, however, dual-

ported; the FPGAs must be inactive during the read/write operations. This change
allows tables to be loaded in bulk and results to be read from the memories without

requiring the circuitous path through the Xilinx chips. However, since the memories

were 16 bits wide and the “natural” word size of both Splash 2 and its Sun host is

32 bits, an obvious question arose as to where the conversion from 32 to 16 bits

would take place. In this case, no answer is perfect. Placing halfword data on word

boundaries in the host is easy for the programmer but wasteful of memory space

on the host and of I/O bandwidth to Splash 2. Packing halfwords two to one into

Sun words is a slight annoyance for the programmer but wastes neither bandwidth

nor memory. This latter choice prevailed after it was determined that, in fact, the

memories could be double-cycled on the Splash 2 Array Boards fast enough to keep

up with accesses from the host; the host would never know that the Splash 2 memories
were 16 and not 32 bits wide.

One of the suggestions made and discussed was whether to include on each

Splash 2 Array Board a microprocessor to perform tasks not easily or efficiently done

by the Xilinx chips. Although this was a suggestion made at a time when independent

execution of Splash 2 Array Boards in a multiprogrammed environment was being

considered, it was an idea that had a wider context. Many of the uses to which FPGAs

for computing have been put have been to augment, the instruction set of a micro-

processor; one could easily imagine a Splash 2 Array Board being viewed in this

way by a user focusing attention on an on-board microprocessor. In the end this idea

was not pursued, largely because the control of the Array Boards and programming

would be overly complex. The intent, as discussed in the next paragraphs, was to be

able to program the machine in a high-level language. It appeared, however, that in

order to make effective use of the microprocessor, it would be necessary to control

and synchronize processing and data movement on the Array Boards at a very low

level. Splash 1 applications had been, and Splash 2 applications were expected to be,

highly pipelined, but in order to do this on a Splash 2 Array Board, the output of the

microprocessor’s compiler would have to mesh closely with the “program” for

the Xilinx FPGAS. The software effort for the Xilinx part of the Array Board

seemed difficult enough without the complications that the on-board microprocessor
would add. ‘

Throughout the design and architecture refinement, the emphasis was on pro-

ducing a machine that could be programmed at a moderately high level. This fun—

damental assumption about what it would take to produce a successful computing

engine had an effect, as mentioned, on many of the design decisions, especially
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the decisions involving'the degree of independence of one board from another and
the control of board-level entities. For example, the inclusion of a microprocessor

on each Splash 2 Array Board would have required programmers to code not only
asynchronous Sun/Splash 2 execution but also to coordinate the interaction of the
on-board microprocessor and the» Xilinx chips. It did not seem clear that this could be

done in a high—level language in a way that would be tolerated by programmers, and
similarly, it did not seem clear that a compiler could readily be written that would

deliver the performance that users could have a right to expect.

The discussion about programming continues to this day. VHDL is, on the one

hand, sufficiently high—level and sufficiently modem to be recognized and accepted
as a “programming language.” On the other hand, it does retain many of the quirks

of hardware description, and mastering the methods for getting around these quirks
does not render much less arcane the art of VHDL. It is not “C-like” and cannot by
itself be made to be “C—like.”

At the heart of many of the issues surrounding the programming of Splash 2 is

the fact that the architecture at present is completely exposed to the user, who sees,

in essence, the memory address and data registers, the specific data paths, and so
forth.
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CHAPTER 5 

Software Architecture

Jefi‘rey M. Arnold

5.1 INTRODUCTION

As we saw in Chapter 4, the Splash 1 system was programmed at the logic gate level

with the macro language LDG [4]. This meant that the process of developing appli-

cations for Splash 1 was very labor-intensive, requiring a detailed understanding of

the internal structure of the Xilinx devices. For this reason, applications programmers

with little or no hardware experience found Splash 1 extremely difficult to program.

The result was that there were never more than half a dozen proficient Splash l

“programmers,” and these were people with extensive hardware design backgrounds.

When we set out to design a software environment for Splash 2, our main

objective was to improve the ease of programmability of the system, opening it up

to a much larger audience of applications developers. The specific design goals of

the Splash 2 software environment were to:

0 select or develop a procedural language for writing applications

0 provide a rich debugging environment that did not require a detailed under-

standing of the hardware

a provide a smooth and efficient interface between the host computer and Splash 2

0 develop a comprehensive set of diagnostic tools for hardware development and
maintenance

0 leverage commercial off—the—shelf technology wherever possible

46
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With these goals in mind we chose to base the Splash 2 programming environ—

ment on the VHSIC1 Hardware Description Language (VHDL) [6, 10] and modern
Computer Aided Design (CAD) tools such as simulation and logic synthesis. Appli—

cations for Splash 2 are developed by writing behavioral descriptions of algorithms

in VHDL, which are then iteratively refined and debugged within the Splash 2 sim—

ulator. During the course of this iteration, the VHDL implementation is manually

partitioned by the programmer into a set of individual FPGA programs. Once the

partitioned implementation is determined to be functionally correct in simulation, it

is compiled and optimized to produce a network of logic gates. This gate list is then

mapped onto the FPGA architecture by automatic placement and routing tools to

form a loadable FPGA object module. Static timing analysis tools are applied to the

object module to determine the maximum operating frequency and the set of critical

paths. This information is fed back to the user, who may choose to manually optimize

the design. The runtime system provides the interface between the host computer and

the Splash 2 system and consists of a C language library and an interactive symbolic

debugger.

This chapter presents the architecture of the Splash 2 software system. We

begin with a background discussion of the underlying CAD technologies that make

custom computing possible. We then proceed to justify our choice of VHDL as the

programming language of Splash 2. Next is a discussion of the architecture of the

programming environment and the system software. Finally, we present the models

of the system the programmer sees at each of several levels of abstraction.

5.2 BACKGROUND

The success of Splash 2, and of custom computing in general, has been made possible

by the confluence of two important technologies: infinitely reprogrammable logic

arrays (static RAM-based FPGAs) and high-level CAD software. Over the past few

years the CAD industry has made significant advances in automatic generation of

hardware design from high level specification. This process may be divided into

two steps: logic synthesis and physical mapping. Logic synthesis is the process by

which procedural descriptions of algorithms are mapped into Boolean logic gates,

bypassing traditional structural techniques such as schematic capture. The physical

mapping process converts the resulting gate list into a specific hardware technology,

such as the static RAM— (SRAM-) based FPGAs used in Splash 2. Together, these

technologies move the task of application development for custom computing from

the realm of hardware design into the realm of software programming.

Figure 5.1 illustrates the flow through the Splash 2 program development pro-

cess from design entry through hardware configuration. There are two feedback loops

in this flow. The inner loop is used to establish the functional correctness of a pro-

gram by simulating the design and observing the response to a set of test vectors. The

outer loop constructs the physical implementation by synthesizing and optimizing the

logic and then mapping the result into the FPGA technology. A static timing analyzer

1The Very High Speed Integrated Circuits (VHSIC) program was an initiative funded by the US.
Department of Defense in the late 1970s and early 1980s.

Petitioner Microsoft Corporation - EX. 1007, p. 47 

 



Petitioner Microsoft Corporation - Ex. 1007, p. 48

 

48

 
 

Software Architecture Chapter 5

 

 
 

Logic
Synthesis

Physical
Mapping 

Simulation

 
 

 

  Timing
Analysis
 

 

FIGURE 5.1 Splash 2 Program Development Process

is used to predict performance and identify potential bottlenecks. The programmer

may use this information to determine overall system performance and possibly guide
further optimization.

Logic synthesis [2, 3, 13] is the process of converting a high-level description

of an architecture into an optimized logic implementation. The input to the synthesis

process is typically in the form of a procedural or mixed procedural and structural

description of the intended architecture. The logic synthesis tools extract control and

data flow information from this description and produce a set of Boolean equations

and module instances that perform the desired function. This internal representation

is then optimized to meet user specifications of area and delay. Since the design

has not been mapped into the logic blocks of the FPGA technology at this stage in

the synthesis process, the optimization must be based upon estimates of logic block
packing, logic propagation delays and a fan-out—dependent statistical model of the

routing network. Many of the parameters that control the optimization may be set by

the user, allowing trade—offs to be made between minimizing area and maximizing

performance. The output of the synthesis process is a list of technology-independent
logic gates. ,

The physical mapping [3, l6] process converts the generic gate list produced by

logic synthesis into a configuration bitstream for the particular FPGA by partitioning

the gates into logic blocks, placing the logic blocks into the FPGA, and routing

the signal nets between the blocks. The partitioning phase groups the combinational

logic gates into Boolean functions that will fit in the lookup tables of the logic blocks

(3 and 4 inputs for the XC4010) and assigns registers to the flip-flops of the logic

and I/O blocks. During the partitioning phase it is often possible to trade chip area

(gates) for speed by replicating functions that have a high fan-out. Unfortunately,

this trade-off requires a close coupling between the synthesis and mapping processes
that is not present in today’s tools.

The placement step accepts the partitioned design and determines a good place—

ment for the logic blocks in the FPGA array [16]. Most FPGA placement algorithms

use a stochastic optimization algorithm such as simulated annealing to minimize a

cost function such as total net length. Traditional integrated circuit routing tech—

niques are based on decomposing the area available for wiring into rectangular

“channels” that can be routed independently. Unfortunately, this approach does not

work well for FPGAs, because the interconnect resources are fixed in place. There-

fore, most FPGA routers use a form of maze router that does not decompose the
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problem into independent routing channels. User-specified timing requirements can
be used to guide the router by building a detailed delay model from the physi—
cal interconnect parameters of the FPGA. Finally, the router must handle additional
constraints imposed by the FPGA such as special clock networks and carry—chain
routing.

Once the detailed routing is complete, the static timing analyzer is able to
make an accurate prediction of the maximum operating frequency and determine the
critical paths of the design based upon the known logic block and routing resource
delays. The programmer may use the critical path information to manually optimize
the design or restructure the program for resynthesis. The delay information extracted
from the design by the static timing analyzer may also be used to construct a structural
simulation model of the design, which in turn can be used to perform detailed timing
simulation.

A great deal of research and development in the area of FPGA design tools
is taking place in academia and industry, with the result that the quality of the
available tools is rapidly improving. We therefore felt it was efficacious to leverage
“commercial off—the-shelf” technology for Splash 2 as much as possible, allowing
ourselves to concentrate on the system integration issues.

5.3 VHDL AS A PROGRAMMING LANGUAGE

One of the most important objectives of the Splash 2 software effort was to move the
task of application development from the realm of hardware engineering to the realm
of software programming. This desire led to several selection criteria for a “produc—
tion” programming language for Splash 2. Among these criteria were support for the
use of procedural as well as structural specification, and the ability to build higher
levels of abstraction through encapsulation of function. To support high—performance

applications, we felt that the language should include an escape mechanism to
allow the programmer to explicitly specify hardware details. Finally, the language had
to be directly executable to allow interactive source—level debugging of application
programs.

In the early stages of the Splash 2 effort we explored the option of develop-
ing our own language based upon a subset of C. Such a language would have the
advantage of familiarity to most users, be directly executable on a wide variety of
platforms, and come complete with a rich development environment. However, we
felt that the task of compiling a subset of C into hardware would quickly become a
major research project in its own right, detracting from the Splash 2 system develop-
ment effort. Therefore we chose to focus our efforts on system integration, leveraging

commercial logic synthesis tools by basing the Splash 2 programming environment
on VHDL.

Ultimately, we believe the best programming model for custom computing
machines is to develop higher-level programming languages that can be compiled
into a form suitable for input to commercial CAD tools. Such a language would
synthesize an application-specific architecture, perhaps use VHDL as an intermediate .
language, and use commercial logic synthesis in the “assembly” process. One such
effort, based upon the dbC language [5], is described in Chapter 7.
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5.3.1 History and Purpose of VHDL

VHDL evolved from an effort to develop a design specification and interchange
language common to all of the participants of the VHSIC program [8]. The language
traces its roots back to a planning session in 1981, although the initial development
effort was not begun until 1983. The importance of this work became clear to the

broader engineering community with the first release of the language and simulator
in 1985. A standards committee of the IEEE was established to further refine the

language, which was released in 1987 as IEEE STD-1076 [6]. IEEE standards are

reviewed and renewed every five years, and as part of the 1992 renewal of VHDL

the language was extended to include a number of new features, such as a foreign—
language interface, impure functions, and shared variables [7].

5.3.2 VHDL Language Features

Rather than develop an entirely new language, the designers of VHDL chose to base

the syntax and semantics of their language upon an existing well-defined standard,

Ada [11]. Many of the high-level programming features of Ada are therefore found

in VHDL. Like Ada, VHDL is a strongly typed language with user-definable and

-extensible data types. Structured objects such as vectors, arrays, and records are

fully supported. Operators, functions and procedures may be overloaded on the data

types of arguments and return results. VHDL supports data abstraction through the
use of packages, which present a clean interface to objects and operations on objects
while insulating the programmer from the details of the object implementation. VHDL
explicitly represents concurrency and synchronization through the Process and Wait

constructs and supports the automatic inference of registers and latches through sig-
nal assignment within sequential processes. VHDL also supports a wide range of
abstraction levels by allowing the mixture of behavioral and structural representa-
tions, with Generate constructs and Generic parameters to control the instantiation
of structural components.

VHDL also includes a number of features specifically designed to support sim-
ulation. File input and output are supported directly by the language, and the TEXTIO

package is provided to support formatted ASCII I/O. Dynamic storage allocation is
supported through the use of access types (that is, pointers), the object allocator new,

and the implicit Deal locate procedure. The assert statement may be used to
check that a specified condition is true. If the condition is not true, an error at one

of several different severity levels may be reported. Although these language fea-
tures have no direct analog in physical hardware (that is, they are not synthesizable),

together they greatly facilitate the implementation of a system simulator, as is shown
in Chapter 6.

The compilation process for VHDL is separated into an analysis phase and
an elaboration phase, which are roughly analogous to compilation and object mod-

ule loading in a conventional programming language compiler. VHDL provides the

programmer with a great deal of control over the compilation process by deferring
the binding of generic parameters and architecture instances until elaboration time.

The elaboration time binding is controlled by the Configuration statement, which

allows the user to specify the architecture to use for each component instance in the
design and to override any generic parameter values passed to the architecture. This

Petitioner Microsoft Corporation - Ex. 1007, p. 50



Petitioner Microsoft Corporation - Ex. 1007, p. 51

Section 5 .4 Software Environment 51

in turn allows the user to select component architectures from a library and to control

the instantiation of those components without requiring a detailed understanding of
the library implementation.

5.3.3 Problems with VHDL

VHDL is not a panacea. VHDL is a large language with many features, which often

takes a long time to learn. The syntax, although very similar to Ada, is unfamiliar to

many programmers, who may find it verbose and cumbersome. The stateless nature

of VHDL functions and procedures forces the use of structural representations for

complex state machines. Finally, although VHDL has explicit constructs for concur-

rency and synchronization, many programmers find that coordinating many parallel

fine-grain tasks can be difficult and time-consuming.

When we began development of Splash 2 in 1991, some features of the VHDL

language were not supported by commercial synthesis tools; in particular, the use

of Generic parameters, multidimensional arrays, and constant folding for multiply

and divide operations were unsupported. The level of compliance of the tools has

improved significantly over the last several years, and today there are very few VHDL
constructs that synthesis tools cannot handle.

The other leading candidate for the role of Splash 2 programming language was

the Verilog [15] hardware description language. Like VHDL, Verilog supports both

simulation and synthesis from the same source code, so there was no fundamental

impediment to using Verilog for Splash 2. The syntax of Verilog is closer to the C

language and thus would be more familiar to many programmers. We felt, however,

that Verilog would not be as rich a programming language as VHDL, because it

did not have many of the language features we were looking for. The built—in data

types of Verilog are very closely tied to hardware constructs such as wire-AND logic

and high impedance (tristate) drivers, and there is no support for building abstract

data types above these. Verilog also does not support the overloading of operators

or procedures based upon data type. For these reasons we felt that we would not be

able to provide the same level of abstraction with Verilog that we could with VHDL.

5.4 SOFTWARE ENVIRONMENT

The VHDL programming environment for Splash 2 consists of a system simulator,

a logic synthesis package, a VHDL library that is common to both tools, and a

SunOS-based runtime system. The Splash 2 simulator is a hierarchical model of the

Splash 2 system comprising a set of VHDL models for each of the components of

the system. The simulator provides a framework for the development and debug-

ging of applications. Within the simulator, an application program is able to interact

with the system exactly as it would with the physical hardware. The system models

also verify that the application program meets various hardware constraints, such as

memory sequencing and setup and hold times. The user may also specify crossbar

configurations and initial memory contents with separate ASCII files, which are read

by both the simulator and the runtime system.
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FIGURE 5.2 The Splash 2 Simulation Environment

The components of the simulation environment are shown in Figure 5.2. The

ovals represent the two components of the user’s application code: the VHDL pro-
gram(s) for the computing elements and the C control program, which will run on the

host computer. The C Language Interface is an optional piece of the environ-
ment that allows the simulation to be controlled by the same program that will run

on the host. The VHDL Models block is the set of simulation models for the system,
including the central crossbar, the external memories, and the Interface Board. The

Splash 2 VHDL Library contains a set of data types, constants, procedures, and

components designed to facilitate the interface between the application VHDL code

and the rest of the system and to provide access to the Xilinx hard macros. Hard

macros are predefined components, such as adders and counters, which provide guar-
anteed performance. Hard macros also provide the only access to special hardware

features such as the fast-carry logic. Finally, the Commercial VHDL Simulator

provides the simulation engine and the graphical user interface.

The VHDL simulation environment allows Splash 2 applications to be devel-

oped in either a top-down or bottom—up fashion. Top-down design is supported by
beginning with a single high-level VHDL model for the entire Splash 2 system and
iteratively descending through levels of hierarchy corresponding to the structure of

the simulator down to the computing element, adding detail at each level. Bottom—up
design is supported through the use of a library of default components for all of the

pieces of the system except for the element being developed. As each element is

completed, the corresponding library component is replaced with the actual design.
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A mix of logic synthesis and standard compilation techniques are used to com—

pile the VHDL programs into FPGA configurations, as shown in Figure 5.3. The
VHDL Code that was developed in the simulation environment (Figure 5.2) is com-

piled with the same VHDL Library used to produce the Splash 2 object module. The

logic synthesis tools from Synopsys Inc.[13, l4] map the VHDL code into a gate

list. During the course of the Splash 2 project we used two different generations of

Synopsys logic synthesis tools: the version 2.2 Design Compiler [12] and the version

3.0 FPGA Compiler [14].

At the beginning of the project we chose what was then the state-of—the—art

Synopsys Design Compiler as the basis of our compiler. This tool was not tailored

specifically to the FPGA technology and therefore required some customization to

suit our needs. We developed a technology library that allowed the Design Compiler

to produce a generic gate list from a reasonable subset of VHDL, and a net list con—

version program called edif2xnf. 3dif2xnf parsed the hierarchical EDIF net list,
flattened the structure, and produced another file in Xilinx Net list Format (XNF)

that was suitable for mapping onto the physical hardware by the Xilinx-provided 7

bitstream generation tools [17]. Along the way it also performed some minor opti-

mizations specific to both Splash 2 and the FPGA architecture.
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Our experiences with the Synopsys Design Compiler and with our own

edif2xnf program were fed back to Synopsys to help direct the development

of their FPGA Compiler product. By the middle of 1993 Synopsys released their

version 3.0 FPGA Compiler [14], which was able to compile logic directly into

Xilinx RAM—based lookup tables and produce XNF net lists. The FPGA Compiler

removed the need for our custom technology library and edif2xnf, but we found

that some minor modification of the net list was still necessary. The program xnfer

was written to fix XNF net list errors and to automatically insert logic common to

all Splash 2 designs, such as the control for the internal Global Tri State (GTS)

signal.

The major components of the runtime environment are shown in Figure 5.4.

There are two host software interfaces to the Splash 2 system, a C library, which

can be linked into an application-specific control program, and an interactive sym-

bolic debugger called T2. Both interfaces are built upon the same underlying runtime

system, libsplash . a, and provide the same functionality. The runtime system im-

plemented by libsplash. a allows the user to open the device, map the Splash 2

memory into the host address space, establish input and output data streams, and

control the system clock. The clock may be singly stepped, multiply stepped, or

allowed to run free. The user can establish software handlers for interrupts generated

by individual Processing Elements. The runtime library and the hardware diagnostic

suite rely on the services provided by the Unix device driver, including memory
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management and several system ,calls (see Chapter 6). At the lowest level is a hard—

ware debugger called “tsdb” (for Trivial SBus Debugger) that allows the designer to
examine and set locations in the hardware based upon the physical address space of
a single SBus slot.

The user interface of T2 is built upon the tool command language Tel [9]. T01

is an interpreted language with a C—like syntax which may be embedded into appli-
cations to provide an extensible user interface. The Tcl interface to T2 allows users

to write simple programs to aid with debugging and experimentation on Splash 2. T2
also supports symbolic debugging by reading back the internal state of all FPGAs

at the end of every clock cycle and associating the state of each flip-flop with the

corresponding VHDL signal name. From T2 the user can step through the execution

of the program, continuously displaying the contents of some or all of the registers
in the design.

5.5 PROGRAMMER'S VIEW OF SPLASH 2

Every Splash 2 application may be divided into three main components: the portions
that run on the Array Boards, the Interface Board, and the host computer. At the
Splash 2 Array Board level, the programmable components consist of the Process-
ing Elements, Xl through X16, the Control Element, X0, and the crossbar. At the

Interface Board level, the Control Elements XL and XR are user-programmable, as

are many of the control registers. The host interface must provide the input data

streams, handle the output data streams, and control the operation of the Splash 2
system. In this section we discuss the process by which applications programs are
developed, and then look at the programming model presented at each of the three

levels. More details of the implementation may be found in Chapter 6 and in the
Splash 2 Programmer’s Manual [1].

5.5.1 Programming Process

Developing an application for Splash 2 is not unlike designing a program for a mas-

sively parallel computer. The programmer must choose an overall control paradigm,
typically either data parallel (SIMD) or pipelined, and then plan the data flow among
the Processing Elements, including the use of the crossbar and memories. On mas-

sively parallel computers the data layout among the processors is often critical to

performance. In pipelined Splash 2 applications, it is the control layout that is crit-

ical. An algorithm must be partitioned carefully among the Processing Elements to
maximize the efficiency of the inter—PE communication. Unfortunately, we know of

no good automated tools that will find and exploit the structure of the design, so this
partitioning must be performed manually by the programmer.

Once the basic control paradigm is chosen and the algorithm is partitioned,

the communication and control protocols among the Processing Elements may be
designed. Since Splash 2 is a globally synchronous system, these protocols are im-

plemented as a set of finite state machines (VHDL processes) communicating
through a set of signals. Input data from the Interface Board may be tagged as
valid, or the clock may be controlled such that all input data seen by the Array
Boards are valid.
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A principal design goal in most applications is to maximize the utilization of
one or more of the resources of Splash 2. For example, to maximize the memory

bandwidth, many applications pipeline the accesses such that a new memory read
or write operation occurs in every clock cycle. This is accomplished by registering
the address and data within the IOBs of the Processing Elements, as is discussed in

Chapter 6. '

One major shortcoming of the programming methodology for FPGAs is the

inability to determine the “size” (percent utilization) of a design without running
through the entire compilation procedure. Splash 2 programmers have developed a
crude “rule of thumb” to estimate the size of a design. The number of bits of register

storage (including state machines) is summed, and if the number is within about
25 percent of the total number of flip—flops in the XC4010 (800 CLB flip—flops plus
input and output flip-flops on the principal data ports), the design may be too large
to fit. The 25 percent margin allows for inefficiencies in the placement and routing
tools and the crude estimation heuristic. Many Splash 2 applications were in fact able

to achieve or exceed a 98 percent CLB utilization rate.

5.5.2 Processing Element View

Programs for the individual Processing Elements of the Splash 2 Array Board are
written in VHDL and must conform to the predefined Processing Element Entity

declaration. The Processing Element Entity is essentially “boilerplate” code, com-

mon to all Splash 2 applications, and specifies the names and data types of the

interface ports. The body of a PE program is a VHDL Architecture correspond—
ing to the standard Entity. The interface ports include the data paths to the left-
and right—hand neighbor PBS, the data path and control signals to the crossbar, the
address and data path to the external memory, and a variety of control signals such

as the global OR signals, the broadcast, interrupt, and handshake signals.
It is often important for timing considerations and CLB utilization to exploit the

flip-flops in the input/output cells (IOBs) of the Processing Elements. To avoid long
propagation delays between the logic core of one Processing Element to another, it
is standard practice (although not required) to register data both entering and leaving
the PE. Since the propagation delay on the major buses is significant, it is strongly
recommended that input data from the SIMD Bus and output data to the RBus
be registered. The timing of the external memory control requires that the address
and control signals be registered in the Processing Element. This final constraint is
enforced by the gate list postprocessor, edi f2xnf or xnfer.

The set of configurations for the central crossbar is specified by an ASCII file

that is interpreted by both the simulator and the runtime system. The configuration
in use at any given time is selected by the Control Element (X0), but the output
enable signals of the crossbar must still be set correctly by the individual Processing
Elements. Another user-provided ASCII file may be used to specify initial contents

of any of the external memories.

The Control Element (X0) is typically used to implement Array Board-level
controller functions, such as SIMD instruction decode, and to store and broadcast
common data tables. The Control Element has a different I/O interface than the Pro—

cessing Element, and hence a unique Entity declaration. X0 has an input data port
from the SIMD Bus and a bidirectional data port to the crossbar that is shared with
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X16. Another three-bit output port is used to select the current crossbar configuration.

The two global OR signals from each of the Processing Elements may be used to
perform reduction and synchronization operations among all 16 PBS and the results
combined with other Array Boards in the system Via the systemwide global OR sig-

nals. Since the internal global OR signals are bidirectional, they may also be used to

signal sequencing information from X0 to the individual PEs.

5.5.3 Interface Board View

The Development (or “Quick and Dirty”) Board was built to assist in the debugging of
the Splash 2 Array Boards while the final Interface Board was still being designed,
and to provide an early application development environment. The Development
Board maps every signal from the backplane side of the Interface Board to a host-
accessible register, allowing the host to emulate in software the behavior of the Final
Interface Board. The system clock is generated by host accesses to one of two special

registers: the “Software Clock” register, which produces a fixed-width clock pulse,
and the “SIMD Clock” register, which places the write data in the SIMD register

and then generates a clock pulse. The functionality of the Development Board was
retained in the Final Interface Board by incorporating a “bypass” mode that allowed

applications and diagnostics written for the Development Board to run on the Final
Interface Board by simply recompiling the code.

The Final Interface Board (IB) is responsible for controlling the data streams

to and from Splash 2, the system clock, the RBus master and direction, and the
FPGA configuration and state readback. The two FPGAs on the IB, XL and XR,

are user—programmable, but the Splash 2 VHDL Library includes several standard
designs that perform the most common control operations such as tagging input data
with a “valid” indicator and only writing output data so tagged. More complicated

designs can be implemented by modifying one of these programs. The input data
source to the SIMD bus is selected from Channel B or C by XL, which may also

perform preprocessing on the data, such as parallel—to-serial conversion. The output
data is typically received by XR from the RBus and sent back to the host on Channel
A, although XR may also send or receive data from XL. Both XR and XL have
the ability to stop and restart the system clock, depending upon the state of the data
channels. For example, if an input DMA channel is empty or an output channel is

full, the clock may be stopped until the condition is cleared by the host (for instance,

when another DMA operation occurs). The state machines in XL and XR that control

the system clock may be clocked by a separate free—running clock signal. XR also
controls the ownership of the RBus by setting the linear array size (RSize) and the
direction (RDir) backplane signals.

5.5.4 Host View

A complete Splash 2 application includes a C program running on the host, which
plays a pivotal role in the initialization and control of the hardware. This role includes
downloading the configuration data to the FPGAs, establishing the input and output
data streams, and controlling the system clock. The host program can also interact '

with the FPGA programs through a variety of both synchronous and asynchronous
means.

Petitioner Microsoft Corporation - EX. 1007, p. 57 

 



Petitioner Microsoft Corporation - Ex. 1007, p. 58

 

58 Software Architecture Chapter 5

The output of the compilation process is a set of configuration bitstream files,

typically one for each FPGA. The host is responsible for merging the set of bitstream

files for each Array Board into a single configuration stream called a “raw” file, which

can then be downloaded directly to the Array Board. The host must also initialize

the crossbar by reading and downloading the crossbar configuration file.

Symbolic debugging of running programs is supported by the state readback

mechanism. To examine the internal state of a program, the host may stop the system

clock and initiate a readback operation, which dumps the internal state of all of the

FPGAs into a special buffer. The debugger may then extract the state of individual

registers from the buffer, and associate the value with the VHDL symbol name.

The memory associated with the Processing Elements is mapped into the

address space of the host program such that each PE memory appears as an array of

integers. This allows the host program to read and write the memory using standard

C data structures and pointer references. The kernel device driver is responsible for

coordinating memory accesses with the FPGAs.

On systems with the Development Board, the SIMD and RBus data registers are

mapped directly into the address space of the host program. To create an input stream

to Splash 2 the host program simply writes data to the SIMD register. Likewise, an

output stream is handled by reading from the RBus register. A set of library routines

are available to facilitate these operations. The various asynchronous communications

mechanisms such as the handshake registers may be accessed through C macros.

The Final Interface Board supports the use of standard Unix read and write

system calls. An input data stream is created by writing the contents of an internal

buffer or file to the device, while an output stream may be read from the device into

a buffer or file. Higher—level library routines allow the concurrent handling of input

and output streams. Another set of library routines permit the host to set the clock

frequency, and start and stop the system clock.
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CHAPTER 6
 

Software. Implementation

Jeflrey M. Arnold

6.1 INTRODUCTION

An important goal of the Splash 2 software effort was to provide a working pro—

gramming environment as quickly as possible without sacrificing the ability to grow

and evolve as the project progressed. We therefore chose to base the implementation

on software standards and readily available tools as much as possible, allowing us

to concentrate on the system integration and the development of applications. The

standards we chose included the VHDL and C programming languages and the Unix

operating system. This chapter shows how these standards and the tools that support

them were assembled to produce a complete programming environment.

6.2 VHDL ENVIRONMENT

The Splash 2 VHDL programming environment consists of a library of useful VHDL

constructs and a set of standard entity declarations for the various levels of the

Splash 2 hierarchy. This section presents some details of that environment, and then

discusses aspects of the VHDL programming style that was evolved by the Splash 2
programmers.

60
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6.2.1 Splash 2 VHDL Library:

The SplashZ Library contains a set of Packages that are used for the develop-

ment of VHDL application code for Splash 2. The TY PBS package contains definitions

of the data types used for interchip communication and is essentially a superset of

the IEEE 1164 Standard Logic data type package. All bidirectional interface ports are

built upon a four—state subtype (’X’, '0', '1', and 'Z') of the Standard_Logic

type, called RBit3.1 Assignment of a value of ’Z’ to a signal implies the synthesis
of a tri-state driver. The ’X’ state is used only in simulation, primarily to identify

tri-state bus conflicts. All of the standard logical operators as well as signed and

unsigned arithmetic operators are supported over vectors of RBit3.

The SPLASHZ package contains a variety of constants, data types, and functions

that are specific to either the Splash 2 architecture or the Splash 2 simulator. For

example, constants are defined that specify the width and depth of the memories and

the width of the linear data path. Subtypes are also defined to specify the Processing

Element data ports.

The COMPONENTS package contains a set of components and procedures useful

in writing applications. These include the “Pad” procedures, which can be used to

interface between the tri—state (RBit3 type) signals external to the Xilinx chips and

the standard logic levels (Bit type) internal signals. There are four pad procedures,

each overloaded to accept scalar and vector arguments of Bit and RBit3 types.

Padlnput is used to receive inputs from off—chip; Pad_Output is used to drive

off-chip; Pad_InOut is used to conditionally receive and drive off—chip signals; and

PacLXBar is used to receive and drive the crossbar data path, conditioned by the

crossbar output enable signals.

The HMACROS package contains component declarations and simulation models

for the set of hard macros [4] provided by Xilinx. Hard macros are logic modules that

have been hand-optimized with fixed relative placement and routing for maximum

efficiency. Until the release of the Xilinx XACT 5.0 tools in 1994, hard macros were

the only mechanism for accessing special-purpose hardware such as the fast-carry-

chain logic. The HMACROS package provides the means to structurally instantiate hard

macros within an application.

 

6.2.2 Standard Entity Declarations

All Splash 2 applications programs must conform to the input and output behavior

defined by the standard ENTITY declarations. There are four unique FPGA entities

visible to the programmer: the Processing Element (X1 through X16) and the Control

Element (X0) on the Array Board, and XL and XR on the Interface Board. The

entity declaration for the Processing Element is shown in Figure 6.1. The generic

parameters BD_ID and PE_ID are constant values, unique to each PE, provided by

the software environment; they permit the application to customize each PE program

to its physical position in the system. The port declarations represent the connections

of the PE to its neighbors and the rest of the system. The ports of type DataPath

represent the data paths to the left and right neighbors and the crossbar. For example,

 

1The original RBit3 data type was a resolved three-state (0, 1, Z) logic developed before the
release of IEEE 1164.
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ENTITY Processing_Element IS

 

GENERIC (BD__ID : Integer;
PE_ID : Integer);

PORT(XP_Left : inout DataPath;

XP_Right : inout DataPath;
XP_X3ar : inout DataPath;

XP_XBar_EN_L : out Bit_Vector(4 downto O);
XP_Mem_A : inout MemAddr;
XP_Mem_D : inout MemData;

XP_Mem_RD_L : inout Bit ;
XP_Mem_WR_L : inout Bit;
XP_Int : out Bit;

XP_Broadcast : in Bit;
XP_Reset : in Bit;
XP_HSO , XP__HSl : inout RBit3;

XP_GOR_Resu1t : inout RBit3 ;

XP_GOR_Va1id : inout RBit3;
XP_LED : Out Bit;

XP_Clk : in Bit);
 END Processing_31ement;

FIGURE 6.1 Standard Processing Element Entity Declaration

XP_Right of one PE is connected to XP_Le ft of the next PE. The interface to the

PE memory consists of an address bus (XP_Mem_A), a data bus (XP_Mem_D), and

separate read and write control signals (XP_Mem_RD_L and XP_Mem_WR_L). The “-L”

appended to the name indicates the signal is active low. The user must set these

signals to a ' 1' when the memory is not in‘ use. XP_Int is the interrupt output
signal. The interrupt signals from each of the FPGAs X0 through X16 are logically
ANDed with the contents of the Array Board mask register, and then ORed to form

the board-level interrupt. XP_Broadcast is an input signal driven by X0 and is
common to all 16 PEs. XP_Reset is the systemwide reset signal, which may be
set by the host. By default, XP_Reset is automatically connected to the Global

Set/Reset (GSR) signal of the Xilinx XC4010, but it is also available as a user input.
The Array Board handshake registers appear to the PE as XP_HSO and XP_HSl.

Each PE is connected to a unique bit of the HSO register, while HSl is common to
all PEs on the Array Board. XP_GOR_Result and XP_GOR_Valid are bidirectional

signals between the Control Element (X0) and each of the Processing Elements. The
signal names reflect their intended purposes (global AND/OR reduction and barrier

synchronization), but the bidirectionality makes these ports useful for signaling state
changes from X0 to individual PBS. The port XP_LED is connected directly to a light-
emitting diode (LED) on the front edge of the Array Board and is typically used for
diagnostics. Finally, XP_Clk is the global synchronous clock shared by every PE in
the system. ‘

The entity corresponding to the Control Element (X0) is similar to the Pro—

cessing Element entity, although the port names are prefixed by X0- rather than XP-
(see Figure 6.2). In place of the XP_Lef t and XP_Right data buses, the Control Ele—

ment has 36-bit ports to the SIMD bus (X0_SIMD) and to the crossbar (XO_XB_Data).
X0_GOR_Result_In and XO_GOR_Valid_Ir1 are each 16-bit vectors of bidirectional
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ENTITY Control_Element IS

 
GENERIC(BD_ID : Integer;

PE_ID : Integer);

PORT (X0_SIMD : ihout DataPath;
XO_XB_Data : inout DataPath;
X0_Mem_A \ : inout MemAddr;
XO_Mem_D : inout MemData;
XO_Mem_RD_L : inout Bit;
XO_Mem_WR_L : inout Bit;

X0_GOR_Resu1t_Inz inout RBit3_Vector(l to 16);
XO_GOR_Valid_In : inout RBit3_Vector(l to 16);
XOWGOR_Result : out Bit;
XO_GOR_Val id : out Bit;
XO_Clk : in Bit;

XO_XBar_Set : out Bit_Vector(2 downto O);
XO_Xl6_Disable : out Bit;
XO_XBar_Send : out Bit;

X0_Broadcast_In : in Bit;
XO_Broadcast_Out: out Bit;

XO_LED : out Bit) ;
END Control_Element;

FIGURE 6.2 Standard Control Element Entity Declaration

signals to each of the Processing Elements. XO_GOR_Result and X0_GOR_Valid are

outputs connected to the wire-OR backplane signals. Access to the crossbar data is

achieved by asserting XO_X16_Disable, which effectively isolates X16 from con-
trolling the crossbar output enables, and then setting XO_XBar_s end high to transmit
into the crossbar or low to receive.

The entity for the Interface Board part XL is shown in Figure 6.3. The principal
data ports correspond to the data path shared by DMA channels B and C, the SIMD
bus, and the data path to XR. There are separate input ports for the system clock and
the free-running clock. A clock-enable output port is used to start and stop the system
clock. Two separate channel control ports of 14 bits each convey the control and status

 

  
ENTITY X4 IS

PORT(XB_FIFO : inout DataPath;
XB_SIMD : inOut DataPath;
XL_XR : inout DataPath;
XB_Free_Clk : in Bit;

XB_Splash_CLK : in Bit;
XL*Enable_Clk : out Bit;

XB_Chan_B : inout ChanCtrl;
XL_Chan_C : inout ChanCtrl;

XL_Ctr1 : inout Bit_Vector(4 downto O);
XB_GOR_Result : in Bit;

XL_GOR_Valid : in Bit;
XB_BCast : inout Bit);

END XL; 

FIGURE 6.3 Standard XL Entity Declaration
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signals to and from the DMA channels. The global OR result and valid signals from

the backplane are inputs to XL, as is a separate 5—bit handshake register, XL_CTRL.

The XR entity is very similar to XL. Its principal data ports correspond to data

paths to DMA channel A, the RBus, and the XL—XR bus. It too has two clock inputs,

a clock—enable output, and shares the same 5-bit handshake register. The RBus size

and direction signals originate from ports on XR.

6.2.3 Programming Style

Over the course of the Splash 2 project a number of idiomatic VHDL constructs have

evolved. Some of these constructs arose from requirements of the synthesis tools;
others became a matter of programming style. In this section we examine a few of
these idioms.

Signed and unsigned arithmetic is supported for Integer-derived types and for

vectors of Bit and RBit3 types. The default word size for both signed and unsigned

Integers is 32 bits, which can lead to a tremendous waste of logic and routing
resources when the data range is known to be small. Therefore, range constraints on

integers are used to assist the synthesis tools in optimizing the width of operator logic.

For example, the code in Figure 6.4 will synthesize to a 10-bit unsigned incrementer.

Likewise, vector lengths may be used to control operator widths for arithmetic over
bit vectors. Since the arithmetic operators are overloaded to work with either, the

choice of whether to represent a value as an Integer or a Bit_Vector is one of

programming style. It is often more convenient to specify ranges than vector lengths,
but vectors allow easier expression of shifts, concatenation, and bitfield extraction.

SIGNAL i: Integer range (0 to 1023);
i <: i + 1;

FIGURE 6.4 Range Constrained Integer Assignment

All of the Processing Elements in Splash 2 receive a global synchronous clock,

XP_Clk. Therefore, all Processing_31ement architectures have one or more pro-

cesses synchronized to this signal. As shown in Figure 6.5, a synchronous process

has no sensitivity list to limit its execution, but rather contains a single WAIT state—

ment conditioned to trigger execution of the process on the rising edge of the clock.

Assignments to SIGNAL objects within the body of the synchronous process are used

to imply registers, since assignment occurs only following the execution of the pro-

cess body, effectively registering the result on the clock edge. Unregistered temporary

values may be named within a process by assigning to VARIABLE objects.
The “Pad” procedures (Pad_Input, Pad_Output, Pad_InOut, and Pad_XBar)

declared in the COMPONENTS package are typically used to connect logic within the

 

PROCESS BEGIN

WAIT UNTIL XP_Clk’EVENT and XP_Clk = ’1’;

—— Body of synchronous process
END PROCESS;

FIGURE 6.5 Synchronous Process

Petitioner Microsoft Corporation - Ex. 1007, p. 64



Petitioner Microsoft Corporation - Ex. 1007, p. 65

Section 6.2 VHDL Environment 65

ARCHITECTURE Test OF Processing_Element IS

SIGNAL Left : Bit_VeCtor(DATAPATH_WIDTH-l downto 0);
SIGNAL XBar_in : Bit_VeCtor(DATAPATH_WIDTH-l downto O);
SIGNAL XBar_out : Bit_VeCtOr(DATAPATH_WIDTH—l downto 0);
SIGNAL XBar_dir : Bit_Vector(4 downto 0);

BEGIN .

Pad_Input(XP_Left, Left);
PROCESS BEGIN

WAIT UNTIL XP_Clk’EVENT and XP_Clk : ’l’;

Pad_XBar(XP_XBar, XBar_in, XBar_out, XBar_dir);

Pad_Output(XP_XBar_EN_L, XBar_dir);
END PROCESS;

END Test;

 

FIGURE 6.6 Example of Off-Chip Communication

Processing Element to the external Array Board environment. Figure 6.6 shows an ex-

ample of the use of two of these procedures. The Pad_Input procedure

receives data from the left-hand neighbor PE and makes it available on the internal

Bit_Vector signal Left. Since this is a concurrent statement, there is no implicit

registering of the data. In contrast, the call to PacLXBar is a sequential statement

within a synchronous process. Therefore, both the input to the PE (XBar_in) and the

output to the crossbar (XBar_out) are registered. The 5-bit vector XBar_dir is used

to control the direction of the five “bytes” of the crossbar and is also driven out to

the crossbar to control the corresponding output enable pins.

Finite-state machines are implemented by embedding flow control constructs

such as IF and CASE statements within synchronous processes. An enumerated type

may be used to define the set of valid states and a SIGNAL object of this type declared

to hold the current state. A CASE statement within a synchronous process is used to

dispatch on the state variable. Within each WHEN clause, input conditions are tested,

output signals are assigned, and the next state transition is computed.

Occasionally it is necessary to instantiate one or more components within a

Splash 2 application program to create replicated structures or to gain access to spe—

cific FPGA features. VHDL provides several structural constructs, including compo-

nent instantiation and conditional and iterative Generate statements. For example,

access to the CLB RAM within the Xilinx PE may be accomplished by instantiating

a special memory component. Generic parameters to this component are used to con-

figure the width and depth of the memory as well as to specify any initial contents

(such as for ROMS). When evaluated by the Splash 2 simulator, the model for this

component uses these parameters to create an output file that can be read by the

Xilinx-provided MEMGEN program. 'MEMGEN in turn creates a macro for the memory,

which is incorporated into the FPGA load module by the place—and—route tools.

There are two standard modes of synchronizing the input data with the Splash 2

system. In the first mode, the XL chip on the Interface Board controls the system

clock such that the Array Boards see a system clock pulse only when there is valid

data on the SIMD bus. In the second mode, the system clock is allowed to run

continuously while the presence of valid data is indicated by setting to l the most 7

significant bit (bit 35) of the SIMD bus. More complex behavior can be achieved by

modifying the XL program.
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Access to the external memory is synchronous with the global clock. Mem-
ory read operations are performed by placing the address on the XP_Mem_A port in
one clock cycle and reading the data from XP_Mem_D in the next cycle. The port
XP_Mem_Rd is asserted with the address to indicate a read operation. The address
may be changed every cycle to perform back-to-back reads. A write operation is
performed by placing both the address and the data on the memory ports and simul-
taneously asserting XP_Mem_WR. The address and data may be changed every cycle
to perform back-to—back writes.

6.3 SPLASH 2 SIMULATOR

The Splash 2 simulator itself is written in VHDL and consists of a hierarchical set

of models of the various components of the system. An application program uses the
Configuration statement to specify which architectures (models) to use at each of

the levels of the hierarchy. The architectures specified at the leaves of the hierarchy
may be any mix of user-provided VHDL code and predefined default models. The
configuration statement also allows the user to customize individual models by setting
the values of generic parameters. Among the parameters specified are the names of
any files of test data. The configuration statement therefore specifies the construction
of a complete model of the system. This model in turn is interpreted by a simulation
engine, effectively executing the user’s application.

This section begins by describing the structure of the simulator hierarchy. We
then present the use of the configuration statement through a series of examples.
Finally, we discuss some details of the system models.

6.3.1 Structure

Figure 6.7 illustrates the structure of the Splash 2 simulator. The root of the hier-
archy is the System model, which instantiates the Interface and the S2Boards
models.

System

r—*_ifil
Interface SZBoards

|——|———l—l—I r—l“l
ChanA ChanB ChanC XL XR Boardl ° ' ' Boardn

r—lfi
XBar CE PEs

r—'—| r—Jfi
‘ XC Mem PEI ' ' ‘ PE16

|'_l_| I—'—i
XP Mem XP Mem

FIGURE 6.7 Structure of the Splash 2 Simulator
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The Interface model is responsible for instantiating the DMA channels, XL

and XR. Instances of the DMA channels are created only if there are values passed in

the configuration statement for the corresponding input and/or output filenames. The
Interface model is also responsible for generating the system clock, at a frequency

determined by another generic parameter.

The number of Array Boards generated is controlled by the generic parameter

Number_0f_Boards. The SZBoards model also passes the slot ID number to each

Array Board component generated. The Array Board model in turn instantiates the
crossbar (XBar) and the Control Element (CE) and contains a Generate statement

that instantiates the Processing Elements (PEs). Each PE consists of a reference to

the Processing Element component (XP) and the Memory component (Mem). The

Processing Element reference passes the slot number and the PE number to the user’s

code through the generic parameters BD_ID and PELID, respectively.

6.3.2 Configuring the Simulator

The Splash 2 simulator assembles an application program according to the directions

presented in the VHDL Configuration statement. This statement, typically stored
in a file called config.vhd, identifies the architecture to use for each entity in

the design and allows the user to specify values of generic parameters. Figure 6.8

shows the top, or outermost, level of a typical config.vhd file. Most of the file

is common to all applications and may be copied from the Splash 2 library. In this

example, Top is just a label to identify the configuration of the Splash_System

entity. Within the Structure architecture there are two component instantiations:
one for the Interface_:30ard entity and one for the SplashZ _Boards entity. Any

configuration information needed for the components would normally appear within
the for clauses.

Figure 6.9 shows an example configuration for the Int er face_Board compo—

nent. The Generic Map construct is used to pass generic parameter values to the

simulator. In this example, input for the application is taken from the file test . dat

and output is written to the file output . dat in hexadecimal format. The clock model

runs at a simulated frequency of 20 MHz. The user—programmable FPGAs XL and
KR are both loaded with their Valid architectures from the interface library.

The rest of the Splash 2 simulator is configured in a similar manner. The com-

plete config .vhd file contains places for specifying the number of Array Boards,

 

configuration TOP of Splash_System is
for Structure

for IFACE: Interface_Board

—- Interface board configuration
end for; —— IFACE: Interface_30ard

for Splash: Splash2_30ards
—— Configuration of array boards

 
 

end for; —— Splash: Splash2_Boards

end for; —— Structure (of Splash_System).
end TOP; —— Configuration TOP

FIGURE 6.8 Top Level of Simulator Configuration File
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for IFACE: Interface_Board

use entity interface.Interface_Board(Structure)
Generic Map (input_filel :> “test.dat",

output_filel :> "output.dat“,
File_Type => Hex,
Clock_Freq => 20);

for Structure V
for all: XL

use entity interface.XL(Valid);
end for; —— all: XL
for all: XR

use entity interface.XR(Valid);
end for; —— all: XR

end for; —— Structure of IFACE

end for; —— IFACE: Interface_Board

FIGURE 6.9 Interface Board Model Configuration

the crossbar configuration file, the Control Element and Processing Element archi-

tectures, and any initial memory tables.

6.3.3 Input and Output

Input to and output from the Splash 2 system are handled by the Interface Board

model, which contains generic filename parameters for each of the three I/O channels.

If the config .vhd file specifies a filename for a channel, the corresponding model

opens the file for reading or writing. Input files are assumed to be ASCII containing

one hexadecimal string per line, each line representing a new data value to be read

from the channel. Output files are written in the same format, one value per line of

the output file.

6.3.4 Crossbar and Memory Models

The crossbar model in the simulator is passed a generic parameter that contains the

name of a file that contains up to eight settings. The first line of each setting consists

of the keyword configuration followed by an integer from 0 to 7 (inclusive). The

following lines of the setting are of the form:

output—port—number input—port—specifier

where “output—port—number” ranges from 1 to 16 and corresponds to the Processing

Element number. The “input—port—specifier” is either a single integer (O to 16) or

five integers (0 to 16). If the input—port—specifier is a single integer in the range

(1 to 16), it specifies a single source port for all 36 bits of the output. A value

of 0 is used to indicate that port “output—port—number” is used as an input to the

crossbar. If “input—port—specifier” consists of five integers, each integer specifies the

source for one byte of the output, from most to least significant. If an output port

number is missing from the configuration, it is assumed to be set to 0 (input to

the crossbar). Note that simply setting “input—port—specifier” to 0 is not sufficient

to disable the crossbar port; the corresponding XP_XBar_EN_L signals must be set
to 1. '

 

Petitioner Microsoft Corporation - EX. 1007, p. 68



Petitioner Microsoft Corporation - Ex. 1007, p. 69

Section 6.3 Splash 2 Simulator 69

 
—— Odd PEs drive, even PES receive
configuration 0
1 O

\lO‘tU‘lhBWN QOU'IOL’JOH
8

10 9
12 ll
l4 l3
16 15

configuration 1
1 0 FIGURE 6.10 Sample Crossbar
2 9 7 5 3 1 Configuration File

Figure 6.10 shows an example crossbar configuration file with two settings
defined. In the first setting, the odd-numbered PEs are driving into the crossbar while
the even—numbered PEs are receiving. The crossbar ports corresponding to PBS X9,
X11, X13, and X15 are implicitly set to 0 (disabled). In the second setting, PE X2
is receiving one byte each from X9, X7, X5, X3, and X1. Crossbar ports for X3
through X16 are implicitly disabled.

Users may choose from several predefined memory models available in the
Splash 2 simulator, or they may add their own. The predefined memory architectures
include the following:

0 None: No memory is modeled. Access to the memory generates an error.

0 Zero: Read-accesses from any location return a constant zero. Write-accesses

are ignored.

0 Static: Memory is modeled as a statically allocated, fixed-size array. The size
of the array is determined by a generic parameter passed by the configuration
file. This model is useful for lookup tables and sequentially accessed data.

0 Dynamic: Storage for the memory model is allocated dynamically as needed.
The first write to an address allocates a new storage cell, which subsequent reads
will fetch. A read from an unwritten address generates an error. This model is

useful for programs in which the access pattern is data-dependent (random).

The memory initialization, or “load,” file is an optional ASCII file that may
be used to specify initial contents of the PE memories. The format of this file is
simple. For each set of contiguous blocks of data, the base address of the block is
given, followed by one or more data values. The base address is specified by the
keyword address followed by an unsigned decimal integer. Subsequent (decimal)
integers are interpreted as the 16-bit values to load into consecutive locations. A .
single load file may contain any number of blocks. Alternatively, the entire memory
can be initialized to zero by including the keyword clear in the load file.
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6.3.5 Hardware Constraints

One important role of the simulator is to verify that application programs satisfy
certain hardware constraints that are difficult or impossible to verify through static
analysis. The hardware constraints that can be checked in simulation include memory
sequencing, reading uninitialized memory locations, and tri-state bus conflicts.

Since the data bus to the memory is bidirectional, the PE must ensure that it

does not begin a write operation before the completion of a read. This constraint is
verified within the simulator by checking that the memory read signal is deasserted
at least one cycle before the memory write signal is asserted.

The major data buses on the Array Board are bidirectional, relying on the use
of tri—state I/O drivers of the FPGAs to prevent conflict. The simulator models these

tri—state pins with a four-state logic. The resolution function for the four-state logic
detects any attempt to drive a signal to two different logic values simultaneously.
When a conflict is found, a warning message is printed and the signal is set to the
'X’, or unknown, state.

6.4 COMPILATION

A mix of logic synthesis and standard compilation techniques are used to compile
VHDL programs into FPGA configurations. The logic synthesis tools from Synopsys
Inc. [3] are used to map the VHDL code into a gate list. A custom peephole optimizer
is then applied to the gate list to perform a variety of Xilinx—specific and Splash 2—
specific optimizations. The resulting gate list is then mapped into the CLB structures
and placed and routed using the Xilinx [4] tool package. The Xilinx tools are also
used to extract the detailed timing information from the placed and routed design.
This information may be used directly to manually optimize the design, or it may
be used to construct a new structural VHDL model for each chip, which may be
resimulated by the Splash 2 simulator to provide detailed timing analysis.

6.4.1 Logic Synthesis

In 1991, FPGA technology was still quite new and confined mainly to board-level
“glue logic” applications. Consequently, very few commercial CAD tool vendors
were targeting FPGAS for logic synthesis. After evaluating the few tools on the
market, we chose to base our compiler on the Synopsys Design Compiler. This choice
required the development of a custom technology library that allowed the Design
Compiler to produce a technology-independent gate list. It was also necessary to
write a net list conversion program to translate that generic gate list into a technology-
dependent form suitable for the physical mapping tools.

The net list translator, called edi fanf, parsed and flattened the hierarchical
EDIF net list produced by the Design Compiler, creating another file in Xilinx Netlist
Format (XNF). During the translation 21 number of Xilinx- and Splash 2-specific
optimizations were also performed on the design, including:

 

o Flip-flops on the periphery of the logic were migrated to the I/O frame (IOBs)
of the chip wherever possible. '

Petitioner Microsoft Corporation - EX. 1007, p. 70



Petitioner Microsoft Corporation - Ex. 1007, p. 71

Section 6.4 Compilation 71

o The board-level program ‘reset and Xilinx Inhibit signals were connected to the

internal GSR and GTS signals.
Hard macro references were identified and marked as such.

Port names were given specific pin assignments and pad slew-rate options.

The clock signal was identified and a global buffer inserted in the clock net.

A pattern-matching algorithm was also used to find opportunities to simplify

the logic by exploiting the clock-enable feature of the Configurable Logic Block

(CLB) flip-flops.

The output of the optimizer, in Xilinx Netlist Format (XNF), was fed into the Xilinx—

provided placement and routing tools and static timing analyzer.

In late 1993 Synopsys released their “FPGA Compiler” product that incorpo—

rated much of the functionality of edi f2xnf directly into the synthesizer. There were

some minor problems, however, in the early releases of the FPGA Compiler, which

necessitated our writing another program, xnfer, which was able to manipulate the

XNF file. aner inserts the “drop in” logic that connects the internal GSR and GTS

signals and moves peripheral flip-flops to the IDES.

A Unix shell script (vhd12xnf) presents the user with a simplified interface

to the numerous controls of the FPGA Compiler and xnfer. Vhdlenf processes a

number of command line options and constructs an execution script for the FPGA

Compiler. This script, in turn, specifies any elaboration parameters (including the

BD_ID and PE_ID), includes port mapping tables, and handles error conditions. The

output of vhdlenf is an XNF file ready for physical mapping.

6.4.2 Physical Mapping

The physical mapping of the design from XNF to a loadable bitstream is handled by

the Xilinx-provided tools. The placement and routing tool, PPR, reads the XNF net

list and produces an “LCA” file, which contains all of the configuration information

in an ASCII format. The program makebits converts the LCA file into a bitstream

format, called a “BIT” file. Makebits also produces an “LL” file that contains a

table-mapping CLB and ICE flip-flops to positions in the readback bitstream. Another

Unix shell script (xnf2bi t) provides a convenient interface to the physical mapping

tools and the symbol table creation.

6.4.3 Debugging Support

To support the symbolic capabilities of the runtime debugger, a table is created

associating the names of symbols with the location of the corresponding register bit
in the readback stream. The information needed to build this table is extracted from

the compiled design in two steps. First, the Xilinx tool 1ca2xnf is used to create

an XNF file annotated with the location of each CLB flip-flop and its associated

signal name.2 The location information is then looked up in the LL file produced
by makebits to produce an offset into the readback bitstream. A table of symbol

names and offsets is then built for use by the debugger.

2This step is necessary to resolve ambiguities created by PPR through the use of feed—through
CLBs.
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6.5 RUNTIME SYSTEM

There are two host software interfaces to the Splash 2 system: a C language library
that can be linked into an application—specific driving program, and an interactive

symbolic debugger. Both interfaces are built upon the same underlying runtime sys-
tem, and both provide the same basic functionality. The runtime system allows the
user to open the Unix device, to map the Splash 2 memory into the host address
space, to configure the FPGA devices and crossbar, to establish DMA data streams,

and to control the system clock. The clock may be single—stepped, multiply-stepped,
or allowed to run free. The user may also read and write various control registers,
including the “handshake” registers.

6.5.1 T2: A Symbolic Debugger

To assist in the development of applications on the hardware, an interactive symbolic
debugger, T2, was developed. The user interface to T2 is an interpreter executing
the TC] command language [1]. Tcl is a C-like language that provides a variety of
control-flow mechanisms and allows the user to extend the command set by writing
custom procedures. A set of built—in procedures provides access to the Splash 2
hardware resources and runtime software.

The built-in commands of T2 may be divided into three categories: hardware
setup; program execution; and analysis. The setup commands include routines for

hardware and software initialization, and configuration of the FPGAs and crossbar. To

configure the system, the user specifies a map, which associates Processing Elements
(individually or in groups) with bitstream files. The bitstream files for all of the PEs

on an Array Board are then merged into a single image called a “raw” file. A given
raw file may then be loaded to one or more Array Boards via the ConfigArray

command. A raw file may be saved and reloaded on subsequent runs, obviating the
need to associate and merge the bitstreams again. The crossbar is initialized from a
crossbar configuration file by the ConfigXBar command.

Execution of an application program is controlled by the Step family of com-
mands. There are a variety of these commands that allow the user to specify input
and/or output files, file formats, and the interpretation of the “tag”: the most signifi-
cant four bits of the 36-bit data word. For input files the tag may be set to a constant
value or it may be taken from the input file. On output the tag is typically used to
indicate valid data, so a mask may be provided to control which data are to be written

to the output file. All of the Step commands allow the user to specify the number
of clock cycles to execute.

The heart of the symbolic debugger is the Xilinx FPGA state readback

mechanism. To trace a set of program variables, or symbols, the user issues the
AddReadBack command after each Step command. AddReadBaCk adds the current

state information to an internal history buffer. Another set of commands allows the

user to inquire about the state of a particular symbol at a particular time. Symbols
may be looked up individually, or an alias may be defined to aggregate multiple
symbols.

The wave program allows users to View graphically the time—varying behavior
of program symbols. The T2 command Trace adds a symbol (or alias) to a trace

list. At the end of each clock cycle a readback is performed and the value of every

Petitioner Microsoft Corporation - Ex. 1007, p. 72



Petitioner Microsoft Corporation - Ex. 1007, p. 73

Section 6.5 Runtime System 73

traced signal is written to a file..The wave program reads the trace file and paints a

waveform display similar to a logic simulator or a hardware logic analyzer.

Finally, T2 provides a set of lower—level routines for reading and writing indi-

vidual hardware registers. These routines are available for applications that require a
level of control not provided by the higher-level interface.

6.5.2 Runtime Library

The Splash 2 runtime library, libsplash, which forms the foundation of T2, is

also available to be linked into a user-written C program. For every built—in T2

command there is a corresponding entry point into 1 ibsplash that provides the same

functionality. The routine OpenAndInit performs the basic hardware and software

initialization, including opening the device, allocating and initializing the Splash

device structure, and mapping the various pages of the physical address space into the

user’s address space. The Splash structure is also initialized with an array of pointers

to each of the PE memories in the system. Separate minor devices corresponding to

the DMA channels are also opened. The hardware initialization includes loading a

passive, or idle, program into all of the FPGAs, setting the clock frequency, and

resetting and disabling the DMA channels.

Application programs may be loaded and executed through libsplash in the

same manner as from T2. Library routines exist to manipulate bitstream files and

to create, save, and load raw files. The entire family of Step commands is also

available as library routines.

In addition to the T2 commands, however, libsplash also provides a set of

input and output routines based upon the standard Unix system calls write and

read. The Write routine is a user-level interface to the write system call, which

uses the DMA facility to transfer data from the user’s address space to the Splash 2

Interface Board and XL. The Read routine similarly sets up a DMA transfer from

the Interface Board to a buffer in the host memory.

Both Write and Read are blocking operations. That is, once called, these

routines do not return control to the user program until the requested operation is

completed. To implement two concurrent data streams, one input to Splash 2 and

one output from Splash 2, the WriteRead routine is provided. WriteRead uses

the first DMA controller to transfer data from one memory buffer to the Interface

Board while simultaneously using the second DMA controller to move data from

the Interface Board back to a different host memory buffer. This concurrency is

accomplished by spawning a separate Unix process to perform the Read while the

parent process proceeds with the Write operation. Once the Write has completed,

the parent waits for the Read process to complete before returning control to the user
program.

Both the output and input memory buffers used by the WriteRead routine are

in the address space of the user program, but the data received from Splash 2 is in

the address space of the Read process. Since Unix does not support shared memory

very well, it is necessary to copy the received data from the Read process back to

the address space of the parent process. This copying is accomplished by passing
the data from the child back to the parent in a memory-mapped temporary file. The

parent process opens a temporary file prior to spawning the child process. The child

then maps the file into its address space using the map system call, and passes it as
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the target buffer for the Read operation. Upon completion, the parent also memory-
maps the temporary file and copies the data to the user’s buffer. The temporary file
is truncated to zero length prior to closing, to avoid any writes to the disk.

The buffer copying performed by the WriteRead routine can be avoided by
forcing the user to manage the memory-mapped temporary files. The WriteReadFD

routine allows the user to pass the file descriptors of memory—mapped files in place
of the memory buffers. The output data is taken directly from the “write” temporary
file, while the input data is written directly to the “read” temporary file.

The user program also has direct access to the various device registers in the

Splash 2 system. The register—access commands of T2 are available to the C pro-
grammer, but for efficiency reasons a separate set of C macros is also provided.

These macros typically accept a symbolic register identifier and a value and perform
any necessary data alignment prior to reading or writing a register.

6.5.3 Device Driver

The interface between libsplash and the Splash 2 hardware is handled by the
device driver [2]. A device driver is a body of code written for a particular physical
device which executes within the protected domain of the operating system itself.
The Splash 2 driver provides entry points for the various operating system calls
such as open, close, mmap, read, and write. The open call reserves a device for

use by the user process and typically performs a variety of hardware and software

initializations, while close frees the device for use by other processes. The map
system call is the mechanism by which the operating system makes available to the

user some portion of the physical address space of the device. Input to and output
from a device are done with the read and write calls. The driver is also responsible
for handling system interrupts caused by the device.

The physical address space of the Splash 2 device is composed of several
distinct segments corresponding to the registers and memory on the Interface and

Array Boards. The register space of each board is further divided into two pieces:
user mode space and kernel mode space. User mode space contains those regis~
ters which may be mapped directly into the address space of the user program,
while kernel mode space contains registers reserved for use strictly within the

device driver. As a rule of thumb, access to registers that may adversely affect
the operation of the system, such as DMA and interrupt registers, is limited to the

“trusted” device driver. The remaining registers and memories may be mapped into
user space.

Since the Development Board does not support DMA—controlled input and out-
put or interrupts, the device driver for systems with the Development Board relies

entirely upon the map call. All the registers on the Development Board are mapped
into the user’s address space, and a set of user—level library routines is provided to
support input and output. The read and write system calls are not supported.

The bank register is managed by the device driver and is transparent to the user

program. Whenever a user reference croSses a 24—bit segment boundary, a memory
fault is incurred that transfers control to the Splash 2 driver. The driver then unloads

the mapping for the previous segment of memory, maps in the new segment, and
updates the bank register. No further intervention by the driver is required until the
next time a reference falls outside of the current segment.
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Since the Processing Element memory is not truly dual-ported, special care must
be taken to avoid simultaneous access from the host and from the FPGA. The device

driver coordinates access to the memories through the operating system’s page fault

mechanism. Whenever the Splash 2 system clock is enabled, all of the Processing

Element memories are unmapped from the user’s address space. Therefore, any access

to a PE memory from the host causes a fault, transferring control back to the driver.

The driver then stops the system clock and unloads the mapping for the clock registers
to prevent the user from inadvertently restarting the clock. After the clock has been

stopped, the “Xilinx Disable” signal is asserted to passivate the FPGAs, a software

timeout interrupt is scheduled for about 10 msec in the future, and the referenced

memory segment is mapped in before control is returned to the user program. When

either the timeout interrupt or a subsequent user reference to the clock registers

occurs, the procedure is reversed by unloading the memory segment, deasserting the

Xilinx Disable signal, and restarting the clock.

The device driver for systems containing the Interface Board supports DMA

transfers through the read and write system calls. When a user-level input or

output request is made, the driver must perform a variety of software bookkeeping
operations before and after the actual data transfer. First, the user’s data buffer is

mapped into the kernel address space. Next, each page of the buffer is locked into

physical memory to prevent the operating system from paging it to disk during the

transfer. Then, if the buffer does not begin on a 16-word boundary, the transfer is

aligned by manually copying data to or from the DMA channel. Once the buffer has

been mapped, locked, and aligned, the DMA transfer is begun. When the transfer is

complete, the Interface Board signals the driver by generating a hardware interrupt.

The interrupt handler returns control to the driver, which reverses the process, copying

any data remaining after the last 16-word block and then unlocking and unmapping
the buffer.

The SBus hardware has a peak data bandwidth of nearly 60 MB/sec. Unfortu-

nately, due to the software overhead associated with the DMA transfer, principally

mapping the buffer into the kernel space and locking the pages in memory, the best

transfer rate a user—level program can expect to achieve is about 23 MB/sec, or about

40 percent of the peak.3 For small transfers, the software overhead of DMA can

completely dominate the time to completion. Therefore, for requests of less than

1024 bytes, the Read and Write library routines handle the transfer entirely in user
mode using slave read and write accesses to the FIFOS.

6.6 DIAGNOSTICS

The suite of diagnostic software for Splash 2 evolved from the need to test and

debug the hardware. The diagnostics were originally written to support low-level

hardware debugging and system software design, but as the project progressed they

took on new roles in the postmanufacture testing of new boards and the routine health

3These values were empirically determined in our laboratory. A hardware logic analyzer was
connected to the LED register and to the SBus grant signal on the Interface Board. A version of the
device driver was written that marked events by writing to specific bits of the LED register. The logic
analyzer then recorded the time spent in the various phases of the I/O transfer.

Petitioner Microsoft Corporation - EX. 1007, p. 75



Petitioner Microsoft Corporation - Ex. 1007, p. 76

 

76 Software Implementation Chapter 6

checkups of running systems. The principal components of the test suite are the tsdb

debugger and the robocop diagnostic.

Support for the lowest level of hardware debugging is provided by the “trivial

SBus debugger,” or tsdb. This tool is not specific to Splash 2, but rather operates

on the physical address space of a given SBus slot. A simple command interpreter
allows the user to examine and set locations by specifying an offset within the SBus

slot space. Other commands include read and write loops to allow triggering of test

equipment. The user can define a set of symbolic names to use in place of numeric

values. These symbols can then be used in any command that expects a numeric

value such as a physical address.

The main diagnostic program is called robocop. Robocop consists of a set of

VHDL Processing Element programs and C host routines. The design philosophy of

robocop is to test the functionality of the system in ever-increasing distance from

the host, starting with the SBus interface and proceeding through the Interface Board

eventually to the Array Boards. On the Interface Board, robocop begins by testing

the various status and control registers, then the program and readback memory, the

programmable clock, XL and XR, and finally each of the DMA controllers. Once the

Interface Board passes all of the tests, robocop proceeds to test the Array Boards,

starting with the PE memories, the FPGAs, and the Crossbar and data paths. Finally

the data path between Array Boards is tested.

A simple menu-driven interface allows users to select tests to perform on

individual components or run on the entire system at one of several levels of detail.

Any errors discovered are logged on the host by both system name and by individual
board serial number.

Robocop may also be configured to run in the background, automatically start-

ing up whenever the Splash 2 system is not in use. This background mode is com-

pletely transparent to the user. If the diagnostics are running when a user attempts to

start an application, the OpenAndInit routine in libsplash will send a signal to

the robocop process causing it to gracefully shut down. Once robocop has exited,

the OpenAndInit call returns control to the application in the normal manner. In

addition to the normal error logging, when running in background mode, errors are

also reported by sending electronic mail to a list of system maintainers.
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CHAPTER 7
 

A Data Parallel

Programming Model

Maya Gokhale1

EDITORS’ INTRODUCTION

The following chapter describes an alternative, data parallel, programming model

suitable for some of the applications for Splash 2 or for CCMs in general. In the

“standard” approach adopted for Splash 2, programmers must design the processor

architecture, at least in concept, at the level of a block diagram of comparator boxes,

adders, and such, for processing the data, and to a lesser extent for sequencing and

control. Given the linear flow of data in many applications, many of the algorithms

are most easily viewed as a series of processing boxes connected by lines represent-

ing the flow of data (see, for example, Figure 11.12 in Chapter 11). Although the

programming of such an algorithm in VHDL in the Splash 2 programming environ-

ment is a relatively straightforward programming process, the fact remains that the

hard work of determining the data processing steps needed, laying those steps out

with the data flow, and partitioning the entire computation into chip—sized pieces has

already been done before any programming ever takes place.

It is this process, the design of a processor architecture suitable for a given

application, that the dbC approach suggests could be done automatically by the com—

piler. The underlying idea, at least part of which is certainly not new, is that the

programmer is able to write code in a variant of C that supports both bit-oriented
data types and massive parallelism of SIMD computation. The compiler then trans-
lates the dbC code into assembly language—level instructions and produces as output *

1A version of this appeared as Gokhale and Schott [6] and is used with permission.
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the VHDL code necessary to create an instance of a processor architecture capa-
ble of executing the specific assembly-level instructions needed for the particular
computation at hand. It is in this last step that the Splash 2 dbC work differs from

more ordinary SIMD machine computations. In the CM-2, for example, a specific
target micro—architecture existed in hardware, and the Paris assembly—level instruc-
tions used that micro-architecture. Unlike some other approaches to computing on
FPGAs, in which a specific micro-architecture is synthesized and instructions for that

micro—architecture are used, with dbC in Splash 2 the architecture is defined by the
instructions to be executed, and only as much architecture as is needed is eventually
synthesized.

The key issue in the use of CCMs has always been the ability to produce work-
ing programs by programmers (rather than hardware engineers) with an expenditure
of effort and time consistent with other programming tasks. A dbC approach, if it
were to be successful, would go a long way toward resolving that key issue. There
were three reasons, however, that precluded the consideration of dbC as the standard

method by which Splash 2 was to be programmed.

o In its present form, dbC is suitable only for SIMD applications. Many of the
Splash 2 applications simply are not suitable for a SIMD implementation (at
least not a SIMD implementation on Splash 2), and it was necessary to have a
programming environment that would accommodate those applications.

0 The performance of dbC programs on Splash 2 and their use of the still rel—

atively precious FPGA resources is not yet good enough that one could have
demonstrated “success” on some important applications.

0 Most important, and not unrelated to the previous point, dbC is a research
project in its own right and, even now, has not come to closure. What was

necessary for the Splash 2 demonstration project was a programming environ-
ment in which applications could be develOped in a time frame consonant with

the rest of the project. Although dbC had existed for other (standard) machines
prior to the start of the Splash 2 project, dbC for Splash 2 did not exist and
could not be predicted to exist in time for applications development. Further,
the degree of risk concomitant with any real research project made the adoption
of dbC as “the” programming mode for Splash 2 impractical.

In short, then, we offer this chapter as a suggestion of what the (near) future
may hold for the programming of CCMs. Applications have been programmed using
dbC, the research continues, and we would expect that future CCMs might rely on
dbC or a similar language in a manner from which we were prevented by the sequence
of events.

7.1 INTRODUCTION

The standard methodology for programming Splash 1 and Splash 2 was through hard-
ware description languages. Splash l was programmed using the Logic Description
Generator (LDG) described in Gokhale et a1. [5], a textual HDL that facilitated the

description of systolic, hierarchical designs. LDG was developed in-house to meet
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the need for a low-level tool that nonetheless permitted the user to concisely describe

a large amount of logic. On Splash 2, we were able to design at a much higher level.

Behavioral VHDL approaches the expressive power of a parallel programming lan—

guage. However, orchestrating a large number of concurrent event—driven loops is

complicated, time-consuming, anderror—prone. Splash 2 is a complex collection of

devices. Although the simulator went a long way in helping to verify the correct—

ness of a Splash 2 design, the programmer had full responsibility for creating the

design in the first place, which required working out the timing of a multiplicity of

interlocking events across the 17 FPGA chips, memories, FIFOs, crossbar, and host.

VHDL programs were required for each distinct FPGA chip design. The crossbar

program was in a separate ASCII file. A control program on the host was required

to send data and control signals to the array and to read back results.

We knew that raising the conceptual level from hardware design to parallel

programming would make Splash 2 (and custom computers in general) accessible

to a much wider range of programmers. It would be ideal to write a single parallel

program, with some portions executed on the Splash 2 Array Board and others on
the host, with communication and coordination between the two (as well as among

FPGA computing elements) managed automatically.

It was at this point that a related SRC project was synergistic to the problem of

programming Splash 2. Another group at SRC had designed and built the TERASYS

SIMD array, composed of custom Processor-in-Memory chips [3]. A new language,

data-parallel bit C (dbC), was developed to program TERASYS [12]. Two features

of the language and its implementation made it especially appealing for Splash 2.

First, in dbC, bits are first-class parallel objects. Variables of arbitrary bit length

can be created, and operations over arbitrary bit length data objects are supported.

On Splash 2, this allows us to create and operate with small (1-, 2—, and 4-bit)

objects, saving valuable resource on the FPGA. For example, the genetic sequence

comparison application uses 4—bit counters to record edit distances. It would not be

possible to describe this structure accurately in conventional C, since bitfields are

promoted to “int” for computation. In dbC, not only is the storage minimized, but

the computation is over the actual bit length rather than a standard container size
such as 32 bits.

The second enabling aspect of dbC was in its implementation: the dbC “com-

piler” is actually a translator from the parallel ANSI C superset to ANSI C. The

parallel constructs are invoked as function (or macro) calls. For TERASYS, the par—

allel operations are implemented by a microcode library. For Splash 2, we synthesize

logic on a program—by-program basis to support exactly those parallel operations that

are required for a given program. The parallel operations are executed on the Array

Board, with serial data manipulated on the host. Clock events, FIFOs, the crossbar,

and FPGAs disappear from the programming model. A single dbC program controls

both Splash 2 and the host. As an added advantage, a dbC simulator had been written

for the TERASYS project and could be used by Splash programmers to debug their

data parallel programs on a workstation prior to synthesis.

Thus, concurrent with application development in VHDL, we embarked on a

research project to build a dbC-to-Splash 2 compiler. We realized at the outset that

dbC, which follows the SIMD programming model, would not be suitable for all

Splash 2 applications. Many applications are inherently MIMD: different processors

perform different tasks. Some applications have real—time constraints, which might
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not be met through high-level synthesis. Nevertheless, the key issue in the use of

CCMs has always been the ability to produce working programs by programmers

rather than by hardware designers, with an expenditure of effort and time consistent

with other programming tasks. A dbC approach, even with the restricted application

domain, would go a long way toward resolving that key issue.

In this chapter, we describe the dbC language and compiler, which translates

programs written in a data parallel superset of ANSI C into high-level VHDL for

the Splash 2 array of FPGA chips. The next section contains a brief introduction

to dbC. Next, we describe the dbC/Splash 2 compiler and illustrate the compilation

process with a simple example. Section 4 details how data parallel communication and

global reduction operators are mapped onto Splash 2. Optimizations are described

in Section 5. We evaluate our system in Section 6 by showing performance on a

genetic database search problem coded in dbC. Finally, we summarize and sketch
future directions.

7.2 DATA-PARALLEL BIT C

dbC is an ANSI C superset similar to MPL [10] and C* [13]. The programming

model is that of a SIMD processor array in which a host processor controls instruction

sequencing of many Processing Elements (PEs) (see Figure 7.1). The PEs receive
instructions from the host. A PE can be active, in which case it executes the current

instruction, or inactive, in which case it ignores the instruction. The active state is

controlled by a mask, the context bit. Each PE can communicate with its nearest-

neighbor in the user-defined virtual topology (a linear topology is illustrated). PEs

can also communicate in arbitrary any-to-any patterns through an interconnection

network. Global combining operations (also called reduction operations) such as

global OR, SUM, MAX can be performed over the entire PE array, with the result

of the operation being returned to the host.

7.2.1 dbC Overview

The dbC programmer specifies the number of PBS by initializing two predefined
variables, D:3C.net and DBC_net_shape. DBC_r1et must be initialized to the number

of dimensions in the PE array, and DBC_net_shape is a vector of rank DBC_net,

each element of which gives the size of the corresponding PE dimension.

In dbC the programmer designates data which is to reside on the processor

array with the attribute poly. Figure 7.1 shows a one—dimensional 12—processor array
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with a poly int (P) variable. All of the normal C operators can be used on poly
data. In addition, special built—in operators that perform global combining operations
are also defined. Processor activity is controlled by parallel control constructs such
as “if,” “where,” or “while.” Interprocessor communication is initiated by the pro—
grammer with calls to intrinsic functions such as DBC_net_send for nearest—neighbor
communication, DBC_send for arbitrary communication, and DBC_read_from_proc

(DBC_writelto_proc) for PE-host (host—PE) communication.
As noted above, dbC was originally designed for the TERASYS SIMD array.

It also runs on the Connection Machine—2. Both of these SIMD arrays have one-bit

processors that perform arithmetic bit serially.

7.2.2 dbC Example

We show in Figure 7.2 a dbC program to compute the cross-correlation of two
bitstreams. The program compares two bitstreams and accumulates a count of the
number of times an individual bit in the bitstreams had the same value. The bitstreams

are compared with a delay of zero bits, then with successively larger delays, usually
one bit longer for each delay. For each of the delays a counter records the number
of matches (see Figure 7.3). The delay is sometimes called a “lag.”

In a typical implementation, there are individual cells that perform the correla-
tion between two streams of data for one value of the delay, that is, there is a cell

for delay 0, delay 1, and so on. Each cell includes a comparator and a counter. The
comparator compares the data in the bitstreams; if they are the same, the counter

#include <interproc.hd>

typedef poly unsigned Boolean:l;
Boolean a;

#define N 128

#define NPROC 64

unsigned DBC_net = l;

poly unsigned int Rzl6 : O;
unsigned DBC_net_shape [l] : {NPROC};
int right[l] = {1};
void main()

{
all {

int b;
a = 0;

for (b=O; b < N; b++) {

DBC_write_to_proc(&a, l, 0);
R += (a A (Boolean) b);

DBC_net_send(&a, a, right);

printf("%d \n", DBC_read_from_proc(R, ( %NPROC)));
}

FIGURE 7.2 dbC Cross-Correlation Program
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FIGURE 7.3 Bitstream
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is incremented. Comparison of the two bits can be performed with exclusive—or or
exclusive—nor. At least one of the bitstream data streams moves from cell to cell, but
the counter data is stationary, as shown in Figure 7.3.

In this example, stream a is shifted systolically through the array, while stream b
is broadcast to each PE. The counter R accumulates the result of the correlation.

The user specifies the size and shape of the processor array by initializing the
predefined variables DBCmet, which gives the number of dimensions, and DBC_net_

shape, which gives the rank of each dimension. The dbC/Splash 2 compiler currently
supports only linear arrays.

The keyword poly indicates the declaration of parallel variables or data types.
Integers and logicals in the parallel domain may have arbitrary user-defined bit length.
In the example program, the variable a is a one—bit parallel variable, and the counter R,

which holds the result, is a 16-bit unsigned parallel integer. The variable b is a normal
C variable that is stored on the host. .

The all keyword indicates that all processors are to participate in the body of
the compound statement. The body of the all contains an initialization of the parallel
variable a and a sequential for statement. Within the for loop, there are three
statements. The first statement initiates host-to—processor communication: the host

writes a l to processor 0’s a. The second updates the counter R. On each processor,
the result of a XORed with the least—order bit of b is added into R. Finally, each
processor in the linear array shifts its value of a to the right. The final statement of

the loop simply reads and prints the value of the counter R from a specific processor
(b mod 64). This type of register examination has traditionally been very difficult
for programmers to design into Splash 2 programs.

7.3 COMPILING FROM dbC TO SPLASH 2

Compiling dbC programs for the Splash 2 system occurs in two phases. First, the
dbC translator emits sequential C code with embedded parallel instructions. These
parallel instructions are three—address memory—to-memory instructions (“Generic
SIMD”). .

When a dbC program is compiled for a traditional SIMD machine (CM-2 or
TERASYS), the generic SIMD instructions are interpreted by microcode libraries
(such as the Paris microcode library for the CM—2). These runtime libraries also

support intrinsic functions such as DBC_read_from_proc and DBC_net_send.
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To compile for Splash 2, an additional compilation phase is invoked. A Splash 2

specific phase focuses on the parallel instructions that were created by the previous

phase, and assembles from those parallel instructions a specialized SIMD engine in
structural and behavioral VHDL.

The virtual PEs making up this SIMD engine have an instruction set containing

all of the generic SIMD instructions appearing in the generated C code. Thus the
compiler synthesizes a different instruction set for each different program.

In addition to constructing a custom SIMD engine for the application on

Splash 2, the dbC compiler also generates the host program. This program executes

the sequential operations of the dbC program on the host and sends parallel instruc-

tions to the Splash 2 Array Board in the sequence specified by the dbC program. The

compilation steps are enumerated below.

7.3.1 Creating a Specialized SIMD Engine

We demonstrate the steps required to configure Splash 2 as a SIMD machine with

the small example of Section 7.2.2.
Phase 1 of the dbC translator does item 1 below. All subsequent steps are

performed by the Splash 2 specific phase 2. Starting from the dbC program, the
steps are:

1. Generation of the Generic SIMD code.

2. Determination of registers and data movement between registers. The data path,

rather than being the generalized data path found in general—purpose computers,

is customized on a per-program basis.

3. Determination of the control structure, that is, what decoders for instructions are
needed and what those decoders must control. The decoders are also customized

for the program.

4. Establishment of inter-PE (and inter—chip) data paths and state machines for

nearest-neighbor communication.

5. Establishment of inter-PE (and inter—chip) data paths and state machines for

global combining operations. The Xi’s, X0, and host must synchronize during

a global reduce.

6. Generation of:

a) VHDL types for the data types;

b) VHDL SIGNALS for the variables;

c) VHDL control statements for the instruction decode;

(1) Appropriate VHDL assignment statements for each of the operators;

9.) Port declarations and interconnection to support nearest—neighbor commu-

nication and global reduction;

f) Generation of state machines to sequence the multi—tick operations.

7. Generation of the host program to perform sequential operations and send par—

allel instructions to the Splash 2 Array Board.

8. Synthesis of VHDL to Xilinx-specific configuration bitstreams, which are down-

loaded to the chips. This process uses commercial CAD tools.
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opParMoveZero_1L_a(a.address, 1);
for (b = O; b < 128; b ++ ) {

DBC_write_to_proc(a.address, 1, 0, l);

opPar3x0r3c_1L_a(opParAddOffset(_DBC_poly_frame_t_main, 2)
/* t3:1:2 */, a.address, b, 1);

opParAdd2_2L_a(R.address,
opParAddOffset(_DBC_poly_frame*t_main, 2)

/* t3:1:2 */, 16, 1);

DBC_net_send(a.address, a, right, 1);
printf("%d \n", DBC_read_from_proc(R, b%64));

} /* end for */

 

FIGURE 7.4 C + Generic SIMD Code for Correlation

7.3.2 Generic SIMD Code

To begin the process of compiling the correlation program for Splash 2, we trans-

late the dbC to sequential C plus calls to Generic SIMD operators. A fragment of

the Generic SIMD code for our correlation program is shown in Figure 7.4. Each

“function” call prefaced by opPar is a Generic SIMD instruction.

The instruction name describes both function and parameters. The opPar prefix

is followed by the operation, for example, MoveZero in the first instruction. Next,

many instructions have a number signifying the number of operands, for example

the “3” in the opPaeror3c_lL instruction. If one of the operands is a constant, as
in the XOR instruction, a c follows. Next, after the underscore, the number of bit

lengths that will follow is specified as a number followed by L. A final suffix _a

indicates that the operation is to be performed unconditionally on each PE (even if
the context bit is reset).

In our example, the MoveZero instruction clears the single-bit parallel vari-

able a. The intrinsic DBC_write_to_proc writes a 1 into processor 0’s a. The

onr3c instruction performs a Boolean XOR of a and the least-order bit of 12
into a compiler-generated temporary. Next that temp is added into R in the Add2

instruction. The DBC_net_send shifts a from each PE to its right neighbor. Finally,

the DBC_read_from_proc reads R from processor i.

7.3.3 Generating VHDL

In the second phase of compilation to Splash 2, the Generic SIMD code is processed

by a specialized backend. The Splash 2 specific Phase 2 generates two chip descrip-

tions, which are VHDL programs for computational chips X1—X16 and the control

chip X0, respectively. The computational chips hold the SIMD Processing Elements,

while the X0 control chip is used for host—PE communications, global combining,
and instruction broadcast.

In Phase 2, we create an instruction set derived from the opPar commands

and intrinsic calls generated by Phase 1. The instruction set for this SIMD engine

2The latter is a variable on the host, and therefore a constant from the point of view of the SIMD
mmy. '
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Instruction
33 32 24 ’ 8 0

start multi-tick operation
stop multi-tick operation FIGURE 7.5 SIMD Instruction Format

   

is customized to the specific instruction instance. For example, the Boolean XOR

instruction we synthesize expects the operands to be the variable a and the least-order

bit of b and the result to go into t3. Thus there is no need for runtime computation

of source and destination, a data path to compute and gain access to arbitrary source

and destination, or much of the other complexity that comes with a general-purpose
instruction set. '

The instructions are in a fixed format, shown in Figure 7.5. The least-order

eight bits contain the opcode. The next 16 bits, labeled “Operand” in the figure,

contain an immediate value, if required by the instruction. For example, our XOR

instruction, the opPaeror3c_1L_a, requires a constant to be passed as one of the

operands to the operation. In the example (see Figure 7.4), the current value of b

is the second operand of the XOR, and thus gets passed to each PE through the

Operand field.

The third field of the instruction, PE#, is an optional processor number used

for those instructions that are to be executed only by specific single processors. In

our cross-correlation program, for example, the DBC_read_from_proc instruction

reads the result from a different processor on each iteration of the loop, Processor b.

The generated instruction therefore writes the current value of b mod 64 in the PE#

field. The final high-order bits are used to synchronize between X0 and the host in

multi-tick operations.

Figure 7.6 outlines the interaction between the host and the generated SIMD

engine. The controlling program on the host executes a sequence of instructions, some

of which are executed locally on the host and some of which are sent as commands

to the SIMD engine. In our example, the loop control of the for-loop is done on the

Chile ChipXZ 1' ChipX16
PE PE PE PE PE PE PE PE PE PE PE PE
0123 4567 60616263

 

 
 

  
  

 
  

Chip x0

control logic
Instruction
and Data

SPARC HOST FIGURE 7.6 The Generated SIMD

Engine for Cross-Correlation
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XP_XBAR

Multi-Tick PE Operand Instruction
Decoder Select Pipeline Decoder

(ibus.tick) (ibusiproc) (ibusoperand) (ibusrinstruction) 

XP_LEFT . XP_RIGHT  
Reduce
Control
 

 
 

XP_GOR XP_GOR_VALID

FIGURE 7.7 A Single Computational Chip

host. In the body of the loop, the parallel instructions are broadcast to the SIMD

engine, with each PE (0-63) operating independently on its data.

Figure 7.7 shows the layout of each computational chip. Multiple PEs are

instantiated on each chip, with the number of PBS per chip being determined by

the user—specified size of the processor array. In this example, there are a total of

64 PEs, so four are placed on each of the 16 chips. Instructions are sent through the

XL FIFO to X0, which broadcasts them over the crossbar to each chip. At the chip,

the instruction is decoded and sent to all the SIMD PEs on the chip, along with the
Operand and PE#.

This program contains a call to the intrinsic DBC_read_from,proc, which

returns to the host the value of R on a specific PE. We use a special form of the

“reduce logic” (see Section 7.4 on Global Operations) to implement this instruction.

The figure shows that the SIMD instruction (“ibus”) comes into the chip on the

XPXBAR port. There the opcode is decoded, and the decoded opcode, along with

the other fields, is passed to each SIMD PB. The SIMD processors contain logic to

execute the instructions. In addition, for this correlation program, they are connected
to each other linearly through the “communicate bus” over which the value of a is

shifted right. The “reduce data” shown flowing out of each SIMD PE is the value of
R, which is read from successive PBS and sent to the host. The serializers and reduce

logic are explained in Section 7.4. The value of R from the selected PE is sent two
bits at a time out the XP_GOR and XP_GO'R_VALID lines to X0.
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XO_SIMD
(from SPARC host) 

Instruction Multi-Tick
Decoder Decoder

(ibus.instruction) (ibus tick)

XO_XB_DATA
(to XP chips)

XO_GOR_RESULT IN
XO_GOR_VALID_IN
(from XP chips)

 
 

  
 

XP,GOR_VALID XP,GOR_RESULT

FIGURE 7.8 The Control Chip

Figure 7.8 shows the layout of the control chip X0. The 36-bit instruction
word comes in on XO_SIMD from the SPARC host. XO’s instruction decoder and

multi-tick decoder are identical to those of the computational chips. The reduce logic
is similar to that of the computational chips, with the major difference being that
the data enters bit-serially on the X0_GOR_RESULT_IN and X0_GOR_VALID_IN

lines and goes to the host bit serially on X0_GOR_RESULT and X0_GOR_
VALID.

The final step is to generate the host program. Each opPar instruction is

replaced with a Splash 2 specific instruction, as shown in Figure 7.9. A SPLASH-
INSTRUCTION simply writes the parameter to the operand field of the SIMD Bus and
then steps the clock, which issues the instruction to X0. The SPLASHJ/LINSTRUCTION

writes an 8 t0 the opcode field, a l to operand, and a O to the PE# field. The

SPLASH_RP_INSTRUCTION writes a 3 to opcode, a 16 to operand (the bit length,
which is required to control the reduce logic), and the current value of i modulo 64

to the PE#. Note that the modular reduction is performed on the host, and the result
of the mod is sent to the processor array. The DBC-net_send instruction is broken

into two parts: the first copies a to the communicate output port, and the second
copies the communicate input port into a. The nearest—neighbor communication is
explained further in the next section.
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SPLASH_INSTRUCTION(9); /* OPPARMOVEC_1L */
for (i:0;i<l28;i++){

SPLASH_W_INSTRUCTION(8 /* OPPARWRITETOPROC */, l, O);
SPLASH_INSTRUCTION(7); /* OPPARBXOR3C_1L */
SPLASH_INSTRUCTION(6); /* OPPARADD2_2L */
SPLASH_INSTRUCTION(5)'

(5)
(5)

I
SPLASH_INSTRUCTION

SPLASH_INS”RUCTION ; /* OPPARNETSENDl * /
SPLASH_INS"‘RUCTION (4) ; / * OPPARNETSENDZ */ }

printf ( "%d \n" , SPLASH_RP_INSTRUCTION(3 , l6
/* OPPARREADFROMPROC */, (i%64) ) );

 

FIGURE 7.9 Final C Program for Correlation

7.4 GLOBAL OPERATIONS

The data parallel model encompasses a number of global operations in which all

(active) Processing Elements participate. On Splash 2, we have implemented two

classes of data parallel operations,

0 DBC_net_s end, a nearest-neighbor linear communication pattern in which each

PE sends a value to its right neighbor. PE 0 receives its value from the host

through the Operand field of the instruction.

0 Reduce operators MAX, MIN, AND, OR, and XOR, which perform the indi—

cated operation across the entire virtual PE array and send the result back to
the host.

7.4.1 Nearest-Neighbor Communication

Left-to—right communication is accomplished with structural connections between

virtual processors. Each PE has a left and right port. The width of the communication

ports are defined at compile time. These ports are hard-wired together so that the

right port of processor i and the left port of processor i + 1 share a register. An

exception to this is on the Xilinx chip boundaries. The Splash 2 linear interconnect

is used for chip-to-chip communication. On each chip, the left port of the first virtual

processor on the chip and the right port of the last virtual processor on the chip are

connected to XP_LEFT and XP_RIGHT, respectively.

Communication of a value from a PE to its neighbor on the same chip requires

one cycle. However, the need for inter-chip communication introduces delay. Since

we latch data on chip boundaries, the inter-chip communication from the last PE on

chip k to the first PE on chip k + 1 requires three cycles.3
To accommodate these differences, we separate the net send instruction into two

parts, a write and a read. As shown in Figure 7.9, the NETSENDl, which writes the

value to the communicate output port, is dispatched three times. Then the NETSENDZ

is sent. This instruction latches the input communicate port into the receiving register.

3A possible alternative, to synchronize the data with a three—cycle pipeline on the internal con-
nections, is too costly in logic. '
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7.4.2 Reduction Operations .

The notion of global combining, having all the PEs work together to produce a single

result, is a key component of the SIMD processing model as defined by Hillis [7].
dbC has six primitive global reduction operators: MAX, MIN, SUM, AND, OR, and

XOR. There is infix notation for each of these operators. For example, in

poly int a,
int: b;

b = >?= a;

the operator >? = signifies max reduce.

The programmer can invoke a reduce directly by using the special operators.

Combining operators are also generated by the compiler when parallel control con-

structs such as parallel-if or parallel-while are used [12]. In addition, combining logic

is generated for the DBC_read_from_proc intrinsic.

Global combining operations on traditional SIMD machines require a large

amount of communication between the processors. This requirement is especially

difficult for the Splash 2 implementation in that the crossbar, which could be used

for inter-chip communication, is engaged in broadcasting instructions. Any other use

of the crossbar interferes with the instruction pipeline. For this reason, we use the

GLOBAL_OR lines from each computational chip to X0 and from X0 to the host to

compute a “reduce” result bit-serially and send it to the host.

Conceptually, global reduce operations on Splash 2 are performed in two stages.

In the first stage, an intermediate result is computed for all of the PEs on a compu-

tational chip. These local results are transmitted to the control chip, and the second

stage computes the global result, which is transmitted to the host. However, this

two-stage computation occurs bit—serially and the stages are heavily pipelined.

When a PE receives a global reduce instruction, the PE sends its register data

to a serializer component and its context to a reduce_context signal (refer to

Figure 7.7). On the next cycle, the serializer shifts the data to the reduce components

at a rate of two bits per cycle. The serial data is masked with the reduce_cont ext

signal. Each of the reduce components collects the data from the serializers and per-

forms the appropriate reduction on the bits. The internals of the AND, OR, and XOR

are trivial. MIN and MAX are discussed in the next section. The control logic for the

reduce components (Reduce Control) selects the 2-bit result from the correct reduce

component and sends it to the X0 chip via XP_GOR and XP_GOR_VALID connections.

On the control chip, X0, the 2-bit results from each of the 16 computational

chips are collected on X0_GOR_RESULT_IN and X0_GOR_VALID_IN (refer to Fig-

ure 7.8). Each of the reduce components collects the data and again performs the

appropriate reduction on the bits. The control logic selects the 2-bit result from

the correct reduce component and sends it to the host via the XO_GOR_VALID and
X0_GOR_RESULT connections.

There are many advantages to performing global combining operations bit-

serially on Splash 2. One advantage is that the approach is easy to understand and

implement. An obvious bit-serial path is available (and otherwise unused) in the

form of the GLOBAL_OR lines. The instruction pipeline is not disturbed in order to ‘

perform a global reduction. Another advantage is that the control logic required to
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drive the reduce is very fast and quite small. Since the same reduce logic is reused

every cycle, the speed and size of the logic is largely independent of the size of the

registers to be reduced. The size of the logic is a function of the number of PBS

per chip and the kinds of reduces to be performed. An unexpected advantage to the

bit-serial approach to global combining operations is that the reduce operation takes

relatively few cycles to complete. A bit—serial global reduction requires (w/2) +

13 cycles,4 where w is the width of the destination register in bits. Thus, an 8-bit
reduce of 64 processors requires 17 cycles. A 16-bit reduce takes 21 cycles.

The MIN and MAX Global Combining Operations. A bit-serial approach
to MIN and MAX global combining operations requires more thought than the AND,

OR, and XOR operations. Nevertheless, the solution becomes evident if the data are

processed most-significant—bit (msb) first. All that is required is one bit of state per

processor to keep track of which processors are still participating in the computation.

Let us first consider the generic problem of finding the maximum value in an array
bit—serially.

Bit-serial MAX. Our method of performing MAX reduce uses an algorithm

that computes one binary digit of output per cycle, starting with the most significant

bit (msb). The number of cycles is determined by the width of the variable to be

reduced. The input at cycle i consists of the ith msb of the register from each of the

processors. A mask register (one bit per processor) is maintained to determine which

processors should be ignored in subsequent cycles. The algorithm has a few simple
steps:

1. The processor mask register is initialized to all Is.

2. For each bit of the register:

a) The processor window register contains the ith most significant bit from

each processor.

b) The window and mask registers are ANDed together.

c) If the result is nonzero, the mask is set to the result and a l is output.

(1) Otherwise, the mask is left unchanged and a 0 is output.

Example

The following example traces a four—processor system with 6-bit registers. The proces-
sors’ registers contain the following values:

 

Processor Decimal Binary representation

p0 6 O 0 0 l 1 0
pl 9 0 0 l 0 0 1
p2 10 O 0 l O l 0

p3 ll ‘ 0 O l 0 1 1

4This includes a four-cycle instruction pipeline.
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The mask is initialized to all ls for the first iteration. On subsequent cycles, the Window

and Mask registers change as follows:

Cycle Bit Window Mask Window AND Mask Output
p0 p1 p2 p3

1 5 0 0 0 0 1111 0000 0
2 4 O 0 0 0 1111 0000 0
3 3 0 1 1 1 1111 0111 1
4 2 1 0 0 0 0111 0000 0
S 1 1 0 1 1 0111 0011 1
6 0 0 1 0 1 0011 0001 1

The output bit-serially generated is 001011 (decimal = 11).

Bit-serial MIN. The algorithm for finding the minimum value bit-serially is

virtually identical to finding the maximum value. In essence, we find the maximum

value of the one’s—complement of the poly register and the one’s-complement of the

result is the answer. The bit-serial reduce MAX is modified in two simple ways to

get reduce MIN: the serial input (window) and the serial output are inverted.

The following example, as in the MAX example, uses the four processor system

with 6—bit registers. The processors’ registers contain the values 6, 9, 10, and 11.

The mask is initialized to all Is for the first iteration. On subsequent cycles,

the Window and Mask registers change as follows:

Cycle Bit Window* Mask Window AND Mask Output*
p0 p1 p2 p3

1 5 1111 1111 1111 0
2 4 1111 1111 1111 0
3 3 1000 1000 1000 0
4 2 0111 1000 0000 1
5 1 0100 1000 0000 1
6 0 1010 1000 1000 0

*Note that the bits are simply inverted from the reduce MAX example.

The output bit-serially generated is 000110 (decimal = 6), which is indeed the mini-
mum value.

7.4.3 Host/Processor Communication

Four dbC intrinsics are available for communication between the host and the proces-

sor array. DBC_read_from_proc reads a parallel variable from a specific processor.

DBC_read_from_all reads a parallel value from each processor into an array in

the host. DBC_write_to_proc writes a value from the host to a specific processor:

Finally, DBC_write_to_all spreads a host array onto the virtual processor array,

one element per processor.
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The DBC_read_from_proc Operation. The DBC_read_from_proc intrin-
sic is implemented on Splash 2 as a modified reduce OR. The host specifies the PE to
be read via the PE# field of the SIMD instruction. The PE Select component compares
the PE# field to the processor ID (iproc) of each PE (see Figure 7.7). If the iproc
and PE# are equal, the pe_selected signal is set to a l. The DBC_read_from_proc

call causes the register to be passed to the serializer, as with any global reduce oper-
ation. However, the reduce_context signal is set to pe_se1ected in place of the
PEs context bit. This effectively masks out all PEs except for the PE selected by
the host.

This approach to DBC_read_from_proc has the advantage that the logic
required for the operation is negligible. If a' global combining operation such as
or-reduce is used by the design, that logic is recycled by DBC_read_from_proc.

The DBC_read_from_all Operation. The DBC_read_from_all intrinsic
copies all of the values of a poly register held by PBS to an array on the host. This
function could be implemented as 11 iterations of DBC_read_from_proc (where n

is the number of PBS). However, we chose a more efficient method. The Splash 2
implementation uses 11 iterations of left-to-right communicate to get the poly registers
to the host. The last PE’s right port is connected XP_RIGHT on the computational
chip (refer to Figure 7.7). The XP_RIGHT port of the last computational chip in the
Splash 2 linear path is connected to the host via the RBUS (see Figure 2.1). As the
host issues n iterations of left-to-right net send calls, it reads data from the RBUS. The

data appear on the RBUS in reverse order (n, n — l, n ~2, . . .). Consequently, the host
fills the destination array backwards. As described in Section 7.4.1, a DBC_r1et_send

instruction requires four cycles. Utilizing the net send, the DBC_read_from_all
intrinsic requires 4n cycles to complete. This is much more efficient than 11 iterations
of a 13+ cycle DBC_read_from_proc.

Writing to the Processor Array. The DBC_write_to_proc implementation
on Splash 2 is quite simple due to the fact that both the instruction and the data

flow in the same direction, from host to PE array. As described in Section 7.3.3, the

SIMD instruction generated by the host has three fields: opcode, operand, and PE#.
The operand field contains the data to be written, and the PE# field contains the ID

of the destination PE. If the PE# field of the SIMD instruction matches the iproc

of the processor, the register is assigned the value of the operand field. Otherwise,
the instruction is ignored. A DBC_write_to_proc call takes only one cycle.

The DBC_write_to_all is implemented as a series of n DBC_write_to_proc

calls, where n is the number of PBS. This operation requires n cycles.

7.5 OPTIMIZATION: MACRO INSTRUCTIONS

Our simple cross-correlation program has approximately 10 instructions. A more
realistic application would result in many tens more. It is advantageous to reduce the
number of parallel instructions for a variety of reasons. Fewer instructions require
a smaller decoder, a savings in logic. By scheduling independent SIMD operations
at the same clock, we introduce new instruction—level parallelism within a SIMD
PE. Even more compelling, a single powerful multi—tick instruction can be clocked
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independently at the processor array, allowing the Splash 2 system to run at a faster
rate than the host SPARCstation can drive it. Our compiler, therefore, identifies

opportunities for multi—tick operations and synthesizes multi-tick instructions, which
are activated by a single opcode.

One such category of multi-tick operations is the reduce family of instructions

discussed in the previotrs section. Another category, which we describe here, is

parallel basic blocks, from which the compiler creates “macro instructions.” A single
macro instruction dispatched from the host initiates a multi-tick instruction in which

one or more generic SIMD operations occur concurrently on each PE.

7.5.1 Creating a Macro Instruction

A basic block consists of a sequence of computation with a single entry point at the

top of the block, a single exit at the bottom, and no branching into or out of the block
except through the single entry and exit. Figure 7.10 shows a basic block written in
dbC and the corresponding generic SIMD code.

The macro instruction scheduler attempts to schedule all the operations in

the block to occur in a single clock tick. This is possible only if there are no

interoperation dependencies. For example, instructions (1) and (2) in Figure 7.10
are independent and can safely occur in a single clock tick, but instruc—
tion (4) depends on the completion of instruction (3). Only after t3 is registered
can the add occur.

#define N 16

poly unsigned uzN, v:N, sz, k:N;

u = DBC_iproc[0 +: N];

V = (poly unsignedzN) (DBC_nproc +1) — DBC_iproc[0 +: N];
kzv—l;
w = u l V I k;

(1) opParMove_1L_a(u.address, opParAddOffset(DBC_iproc.address,
(0)), l6);

(2) opParMovec_1L_a(opParAddOffset(_DBC_poly_frame_t_main, 1)
/* t3:16:1 */, (DBC_nproc + 1), 16);

(3) opParSub3_1L_a(v.address,
opParAddOffset(_DBC_poly_frame_t_main, 1)
/*t3:l6:1 */,

opParAddOffset(DBC_iproc.address,
(0)),16);

(4) opParSub3c_lL_a(k.address, V.address, l, 16);
(5) opParBor3_lL_a(opParAddOffset(_DBC_poly_frame_t_main, 1)

/* t5:16:1*/, u.address, V.address, 16);

(6) opParBor3_1L_a(w.address, opParAddOffset
(_DBC_poly_frame_t_main, 1)
/*t5:16:1 */, k.address, 16);

FIGURE 7.10 A Basic Block and Its Translation to Generic SIMD
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0 FIGURE 7.11 Dependency Graph

For each basic block, the scheduler constructs a dependency matrix M to

reflect the dependencies among parallel instructions. M[i , j] = 1 implies that instruc-

tion (j) depends on instruction (i). Then, an As Soon As Possible (ASAP) scheduling

algorithm is used to sequence the parallel instructions. All instructions j such that

M[*, j] = 0 can be scheduled in the current tick. Once an instruction j has been

scheduled, M [j , *] is set to 0, allowing the instructions that depend on j to be sched-

uled in the next iteration of the algorithm. Figure 7.11 shows the dependency graph
for this example.

The compiler generates a single opcode for the macro instruction. When that

opcode is issued, a subinstruction shift register is used to sequence through the

subinstructions. For this example, a 4—tick instruction is issued. The sequencing of
ticks is controlled by a 4-bit shift register.

7.5.2 Discussion

Our approach differs from more general high-level synthesis systems in two respects.

First, since we focus on the SIMD model, control flow is managed by the host. We
are concerned only with basic blocks of parallel instructions and need not build and

schedule a general control—flow graph as is done by the IBM [2] and similar systems.

Second, in contrast to most high-level synthesis systems that synthesize logic for

a single chip, we focus on synthesis of the entire FPGA-based parallel computing

system. Our efforts are directed toward synthesis for the Splash logic array, of which

generating logic for individual chips is one (important) part. We use a commercial

FPGA compiler to further optimize the VHDL generated by our system.

7.6 EVALUATION: GENETIC DATABASE SEARCH

Applications involving search for similarity in genome strings have been mapped
successfully to Splash 1 [4] and Splash 2 [8]. We have compiled a dbC version of

this application for Splash 2. A source stream is stored across the processor array,

one 4-bit character per virtual processor. The target stream, of indefinite length,

is shifted systolically through the virtual processor array. A dynamic programming
algorithm ([9]) is used to correlate similarity of source to target streams. The dbC
version runs at 22 million Cell Updates Per Second with one Splash 2 Array Board.
By comparison, a SPARC 10/30GX can do 1.2 million CUPS, and an 8K MP-l can

do 32 million. A custom hardware implementation of this algorithm on one Splash 2
Array Board is estimated to achieve 2626 million CUPS [8].
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In terms of programming effort, the custom hardware implementation was

developed over a period of months. The dbC program was written and debugged

in a day.

In comparison to other systems that do high-level synthesis for FPGAs, the

Brown University Xilinx FPGA coprocessor achieves a speedup of two to four over

the host workstation [1]. The Oxford University Algotronix FPGA array, consisting

of eight chips and attached SRAM, performs at twice the speed of the host work-
station [11].

7.7 CONCLUSIONS AND FUTURE WORK

dbC was an experiment that is still in progress. We were able to demonstrate with

the dbC-to-Splash 2 compiler that for one class of applications, SIMD/systolic, we

were able to support a high level of abstraction. The dbC compilation system can

map data parallel programs to the Splash 2 reconfigurable logic array. dbC is not

a hardware description language with C syntax. It is a true procedural data parallel

language. Our dbC compiler for Splash 2 can translate programs that

0 contain basic arithmetic and logical operations on integers

0 use linear nearest-neighbor communication

0 do global accumulation operations such as max, min, and Boolean operations

0 read and write data from/to individual virtual processors

0 read and write data from/to the entire processor array

Application domains that meet these constraints include independent compu-

tationally intensive problems, which occasionally compute global state and systolic

algorithms such as the genetic database search. On the genome problem, our auto-

matically synthesized SIMD engine runs at 18 times that of a SPARC 10 workstation

and about two—thirds the speed of an 8K Maspar MP-l.

Many Splash 2 applications use the off-chip memory. Those applications were

not supported by dbC. Our future efforts with the dbC/Splash 2 compiler include

adding support for the off-chip memory, which are often used as lookup tables or

as storage for results to the host. In addition, we would like to make the technology

we have developed of practical use in production applications by supporting a robust

interface between the generated SIMD machine and hand—coded custom logic. This

would allow, for example, pre- and postprocessing to occur on some of the chips,

with the SIMD array on the rest. The preprocessed data could feed the SIMD por—

tion and then be sent from the last virtual processor to a postprocessing chip. As

another example, we would like to integrate custom-designed kernels, which require

extremely high performance, to appear to the dbC program as a single instruction.

The compiler could generate an instruction set that includes this “special” instruction. '

These tactics can dramatically boost the performance of an application, while still

removing most of the programming burden.
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CHAPTER 8
 

Searching Genetic
Databases on Splash 2

Dzung T. Hoang1

8.1 INTRODUCTION

With the onset of the Human Genome Initiative [3] and constant advances in

genetic sequencing technology, genetic sequence data are being generated at an ever—
increasing rate.2 As a result, biologists are faced with an influx of new sequences that
they would like to classify and study by comparing them to existing databases. The
analysis of a newly generated sequence typically involves searching the databases for
similar sequences. With the enormous size of the databases, fast methods are needed
for comparing sequences [11].

In this chapter, we describe two systolic array architectures for sequence com—

parison and their implementations on the Splash 2 programmable logic array. One
of the systolic arrays was previously implemented on the Princeton Nucleic Acid
Comparator P—NAC of Lipton and Lopresti [12], a special-purpose VLSI chip, and
later ported to the Splash 1 hardware by Gokhale et al. [4] and by Lopresti [14].
The second systolic array is a new development, improving on the first for database

search applications.

1A version of this chapter appeared as Hoang [6] and is used with permission.

2Release 74.0 of GenBank, a database of DNA sequences, contains 97,084 entries with a total of‘
120,242,234 bases as of December 1992. It is estimated by Lander et al. [10] that by 1999, 1.6 billion
base pairs will be sequenced each year.
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8.1.1 Edit Distance

In comparing two sequences, it is useful to quantify their similarity in terms of a

distance measure. In general, the correspondence between individual elements (char—

acters) of the sequences to be compared is not known in advance. Therefore common

distance measures such as Euclidean distance and Hamming distance, in which ele-

ments correspond in position and only corresponding elements are compared, may not

be appropriate. Biologists have developed several means to characterize the similarity

between genetic sequences. One intuitively appealing measure is edit distanée. The

edit distance between two sequences is defined as the minimum cost of transforming

one sequence to the other with a sequence of the following operations: deletion of a
character, insertion of a character, and substitution of one character for another. No

character may take part in more than one operation. Each operation has an associated

cost, which is a function of the characters involved in the operation. The cost of a

transformation is the sum of the costs of the individual operations.

As an example, Figure 8.1 shows a series of transformations to obtain

GCATAAGC from TCTAGACC. If we assign a cost of 2 for a substitution,

1 for deletion, and 1 for insertion, the transformation would have a cost of 6. In fact,

there are no transformations with lower cost, and therefore the edit distance between
TCTAGACC and GCATAAGC is 6.

8.1.2 Dynamic Programming Algorithm

The edit distance can be computed with a well-known dynamic programming

algorithm, which has an interesting history of independent discovery as detailed

by Sankoff and Kruskal [17]. We use the following formulation.

Let S = [slsz - ~ - sm] be the source sequence, T = [tltz - - - tn] the target

sequence, and did. the distance between the subsequences [S1S2 - - -s,~] and [an - - 'tj].
Then for 1 5 i 5 m, l 5 j 5 n, if 1/;(si, (3) is the cost of deleting si, 1M2), tj) is the
cost of inserting tj, and i/J(s,-, tj) is the cost of substituting tj for si,

610,0 = 0,

61130 = di—1,0 + 1/4513“), (81)

d0,j = d0,j—1 + 1M9}, tj),

and

di—l,j + $09130)

di,j = min di,j—1 + 11/05» tj) (8.2)

di—l,j—l + 1P(Si,tj)-

The edit distance between S and T is simply dm,n-

A cost function often used in the literature assigns a cost of 1 to insertions and

deletions, 2 to substitutions, and O to matches. We refer to this as the simple cost
function.

As an example, Figure 8.2 shows the dynamic programming table generated

when comparing the sequences TC TAGACC and GCATAAGC with the simple
cost function. ‘

A straightforward sequential implementation of the dynamic programming

algorithm requires 0 (mn) time and 0(min(m, n)) space to compute the edit distance.
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TCTAGACC -

I
Substitute G for T at position 1

GCTAGACCI
Insert A at position 3

GCATAGACCI
Delete G at position 6

AACCI
FIGURE 8.1 Listing of Operations
to Transform TCTAGACC into
GCATAAGC. Character matches are
assumed to have a cost of 0 and are

not shown. Assigning a cost of 2 for a
substitution, 1 for deletion, and 1 for

GCATAAGC insertion, the cost of the transformation
is 6.

Substitute G for C at position 7

I

FIGURE 8.2 Dynamic Programming
Table Generated in Computing the Edit
Distance between TCTAGACC and

GCATAAGC. The lower right-hand
entry gives the edit distance, 6 in this
example.

«mmbwhwhm11> oxU-AUIJAUonh/Io> QOM‘KMGNO‘NC) amamoxxioxxloo0   OO>O>HO~3 \IOUIJkLh-bwlx)
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421,121 di—1,j

FIGURE 8.3 Locality of Computation.
Each entry in the dynamic programming
table only depends directly on three

di.J‘—1 dilj adjacent entries.

Masek and Patterson [16] give an algorithm with time performance of 0(n2/ log n)
for sequences of length n, provided that the sequence alphabet is finite and all

costs are integers. However, for a particular implementation, they observe that their

algorithm performs faster than the basic dynamic programming algorithm only for
sequences of length 262,419 or longer.

Better time performance can be achieved by exploiting the inherent parallelism

in Equation (8.2). One notable property of the dynamic programming recurrence is

that each entry in the distance matrix depends on adjacent entries, as diagrammed

in Figure 8.3. This property has been the basis for many parallel algorithms for

computing the edit distance.

8.2 SYSTOLIC SEQUENCE COMPARISON

The locality of reference shown in Figure 8.3 can be exploited to produce systolic

algorithms in which communication is limited to adjacent processors.

There are several ways to map the edit distance computation onto a linear

systolic array. We describe two such mappings. Both exploit the locality of reference

by computing the entries along each antidiagonal in parallel, as shown in Figure 8.4.

The two mappings differ primarily in the data movement.

8.2.1 Bidirectional Array

The systolic architecture and data flow shown in Figure 8.5 were used in the

design of P-NAC of Lipton and Lopresti [12], a custom VLSI chip for DNA

sequence comparison. Each processing element (PE) computes the distances along

a particular diagonal of the distance matrix. A block diagram of the PE and a list—

ing of the algorithm it executes are shown in Figures 8.6 and 8.7, respectively.

'7
FIGURE 8.4 Parallel Computation of
DP Distance Matrix. Entries lying on
the same antidiagonal can be computed
in parallel. The computation proceeds
from the upper-left entry toward the
lower-right.
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Character

Initial Distance

/- Stored Distance

   
FIGURE 8.5 Data Flow through the Bidirectional Systolic Array. The source and
target sequences are streamed through the array in opposite directions. A comparison
is performed when a source character and a target character meet in a PE.

 
SCin SCout

SDin -> SDout
Bidirectional

PE

TCout TCin

TDOUt TDin FIGURE 8.6 Processing Element for
Bidirectional Array

loop

if (SCin 75 (5) and (TCin 75 Q) then

PEDist+1fl(SCin,TCin),

PEDiSt (—- min TDin+1//(SCin,(b),

SDin+t//((Z},TCin)

else-if (SCin 5A (2)) then
PEDist <— SDin

else-if (TCin 76 (5) then
PEDist <— TDin

endif

SCout <— SCin

TCout <— TCin

SDout <— PEDist

TDOUt *— PEDiSt FIGURE 8.7 Code Executed by Each

endloop PE in the Bidirectional Array
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SCin ‘ - - ' SCout

PEDist - - o - PEDist

TCOUt o o o o TCin

SCin ' ° ' ' SCout

PEDiSt - 0 0 - PEDist

TCOUE - I I 0 TCin

SCin ° ° ' ‘ SCout

PEDiSt - I - - PEDiSt

TCOut o b o o TCin

SCin ' - ° ° SCout

PEDiSt ' 0 0 ' PEDiSt

TCOut - o I . TCin

 
FIGURE 8.8 Trace of Bidirectional Array When Comparing the Sequences
TCTAGACC and GCATAAGC

The source and target sequences enter the array on opposite ends and flow in

opposing directions at the same speed. Successive characters in the source and tar-

get sequences are separated by a null character for proper timing. In addition, there

is one distance stream associated with each character stream.3 At each step, the
contents of the streams represent the characters to be compared and the distances

along one of the antidiagonals of the distance matrix. At the end of the compu-

tation, the resulting edit distance is transported out of the array on the distance
streams.

A partial trace of the bidirectional array when comparing the sequences

TCTAGACC and GCATAAGC is shoWn in Figure 8.8.

3In an actual implementation, these two unidirectional distance streams can be combined into one
bidirectional stream, using one storage register instead of two. Here we keep the distance streams distinct
for clarity. '
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SR SR -TG TG TG TG TG TG

G C A G A C T A

7 8 l 2 3 4 5 6

 

 
<— Tag

<— Tgt. Char.
4—— Initial Dist. 

Src. Char.

Src. Dist.

FIGURE 8.9 Data Flow through the Unidirectional Systolic Array. The source
sequence is first loaded into the array. The target sequences are then streamed
through the array. The tag acts as a simple instruction telling each PE how to
process the incoming data. The SR tag instructs an empty PE to load the source
character and distance from the input stream. The PR tag marks the end of the source
stream. The TC tag signals a target character. Multiple source and target sequences
can be carried on the input stream for uninterrupted pipelined processing.

In addition to the original P—NAC implementation, the bidirectional systolic

array has been ported to the Splash l programmable logic array by Gokhale et al. [4]

and Lopresti [l4] and now to the Splash 2 programmable logic array. An extension

of the bidirectional array to compute an alignment of two sequences in addition to

the edit distance is described in Hoang [5] and Hoang and Lopresti [7].

Comparing sequences of lengths m and n requires at least 2max(m + l,

n + 1) processors.4 The number of steps required to compute the edit distance and

to transport it out of the array is proportional to the length of the array.

In a typical database search, the same source sequence is compared against all

target sequences in the database. With the bidirectional array, the source sequence

must be recycled through the array for each target sequence in the database. At

each computational step, at most half of the PEs are active. Also, the source and

target sequences are both limited in length to half of the array’s length (for one—pass

operation). These properties of the bidirectional array lead to inefficiency for database

search operations.

8.2.2 Unidirectional Array

We now describe a unidirectional systolic array that remedies the shortcomings of

the bidirectional array. The architecture and data flow of the unidirectional array are

shown in Figure 8.9. As the name suggests, data flows through the unidirectional array

in one direction. The source sequence is loaded once and stored in the array starting

from the leftmost PE. The target sequences are streamed through the array one at

a time, separated by control characters. The tag stream identifies the sequences and

4With a fixed number of PBS, long sequences can be compared by using multiple passes, each pass
computing a submatrix of the dynamic programming distance matrix, as done by Lopresti and Lipton
[15].
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TAGin TAGout

CHRin CHRout
Unidirectional

PE
DSTin DSTout

PDSTin PDSTOUt FIGURE 8.10 Processing Element for

 
Unidirectional Array

PEi_1 PDST’ DST’

PE; o—-——-> FIGURE 8.11 Computation Graph for
DST, DST the Unidirectional Array

sends control information to the PEs. With the source sequence loaded and the target
sequences streaming through, the array can achieve near 100 percent PE utilization.

The length of the array determines the maximum length of the source sequence.5
The target sequences, however, can be of any length. Together, these properties

make the unidirectional array more suitable and efficient than the bidirectional array
for database searches.

The unidirectional PE is diagrammed in Figure 8.10. In this configuration, each

PE computes the distances in one row of the distance matrix. At each time step,
the PEs compute the distances along a single antidiagonal in the distance matrix,

as depicted in Figure 8.4. Each PE stores two distances, DST and PDST. Denoting

the previously computed value of DST and PDST as DST’ and PDSTC respectively,
the computation graph for the ith PE is shown in Figure 8.11. Compare this to
Figure 8.3.

The algorithm executed by each PE in the unidirectional array is listed in

Figure 8.12. As shown, the algorithm compares one source sequence to a sin-

gle target sequence. With some additional code, comparisons can be performed

on multiple source and target sequences. A partial trace of the unidirectional

array when comparing the sequences TCTAGACC and GCATAAGC is shown

in Figure 8.13.

A unidirectional array of length n can compare a source sequence of length at

most n to a target sequence of length m in 0(n + m) steps.

8.3 IMPLEMENTATION

Both the bidirectional and unidirectional systolic arrays have been implemented on
the Splash 2 programmable logic array, with versions for DNA and protein sequences.

5As with the bidirectional array, a source sequence longer than the array can be compared using
multiple passes.
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loop .

if (TAGin = SR) then

if (SRCch = (5) then
SRCch <— CHRin

CHRout ,<— @

DSTout <— PDSTin

else

CHRout +- CHRin

endif

PDSTout <— PDSTin

else-if (TAGin = PR) then

if (SRCch = Q) then
DSTout «- PDSTin

endif

PDSTout <— DSTin

CHRout <— CHRin

else-if (TAGin 2 TG) then

if (SRCch 7!: (b) and (CHRin 75 (2)) then

PDSTout+1p(SRCch,CHRin),

DSTout <— min DSTin+tfl(SRCch,®),

DSTout+w(Q,CHRin)

else-if (SRCch = (3) then
DSTout <— DSTin

endif

PDSTout <— DSTin

CHRout <— CHRin

endif

TAGout (~— TAGin

endloop

FIGURE 8.12 Code executed by each PE in the unidirectional array

8.3.1 Modular Encoding

An important optimization used in the implementation of both systolic arrays
involves a modular encoding of the distances. With a fixed-length unsigned-integer
data structure for the distances, there is a possibility for overflow when comparing

long sequences. Lipton and Lopresti [12, 13] use a modular encoding scheme for
the distances. In this scheme, only a few of the least significant bits of the distances

need be computed. This technique works because the difference between adjacent
entries in the dynamic programming matrix is bounded. For DNA sequences, using

the simple cost function, only two bits are required for the encoding. For protein
sequences, using a more complex cost function, only four bits are needed. The mod—
ular scheme reduces the design size, circumvents the overflow problem, and allows‘

for easy scaling of the systolic array. To recover the integer distances, an accumula—
tor, controlled by a simple state machine, is used at the output of the distance stream.
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TAGout

CHRout

DSTout

PDSTout

TAGout

CHRout

DSTout

PDSTout

TAGout 

CHROut

DSTout

PDSTout

 
FIGURE 8.13 Trace of Unidirectional Array When Comparing the Sequences
TCTAGACC and GCATAAGC

The accumulator is the only component that may be dependent on the length of the
array.

8.3.2 Configurable Parameters

The designs of both systolic arrays are not specific to a particular alphabet or cost
function. The sequence alphabet and cost function are defined in an VHDL con-

figuration file and can be customized for a particular sequence comparison appli-

cation. A change in the parameters, however, would require a recompilation of

the VHDL code. Versions for comparing DNA and protein sequences have been
implemented. '
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8.3.3 Bidirectional Array

For the DNA version of the bidirectional array, each of the 16 array FPGAs (X1 to

X16) contains 24 PEs, making a total of 384 PBS in a one—board Splash 2 system.

The protein version packs 64 PEs into a one-board Splash 2 system. Timing results

from XDELAY give a theoretical maximum throughput of 5.5 million characters per

second for the DNA version and 3.5 million characters per second for the protein
vers1on.

 

8.3.4 Unidirectional Array

In the DNA version of the unidirectional array, each of the 16 array FPGAs (X1

to X16) holds 14 PEs. In addition, the two interface FPGAs contain 12 PEs each,

making a total of 248 PBS in a one-Array-Board Splash 2 system. Timing results from

XDELAY give a theoretical maximum throughput of 12 million characters per second

for the DNA version and 8 million characters per second for the protein version.

8.4 BENCHMARKS

In order to make a uniform comparison between Splash 2 and implementations of the

dynamic programming algorithm on other architectures, we measure the performance

of a solution in terms of the number of cells (entries in the DP distance table) updated

per second (CUPS). When comparing two sequences of lengths n and m, a total of
nm cells needs to be calculated.

The benchmark results for DNA sequence comparison are listed in Table 8.1.

The values given for Splash 1 and Splash 2 are peak values, assuming that the length

TABLE 8.1 Benchmark of DNA Sequence
Comparison (values are rounded to two decimal
 places)

Hardware Specifics CUPS

Splash 2 unidir; 16 boards 43,000M
Splash 2 bidir; 16 boards 34,000M
Splash 2 unidir; 1 board 3,000M
Splash 2 bidir; 1 board 2,100M
Splash l bidir; 746 PEs 370M
CM-2 [9] 64K nodes 150M
CM-S [9] 32 nodes 33M
MP-1* 8K PEs 32M

Intel iPSC/860 [2] 32 nodes 12M
BSYS [8] 100 PEs 2.9M
SPARC 10/30GX gcc -O2 1.2M
P-NAC [12] 1.1M
VAX 6620 VMS; CC 1.0M

SPARC 1 gcc —02 0.87M
486DX—50 PC DOS; gcc -O2 0.67M 

*From personal communication with RF. Hughey
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of the sequences are the maximum for the given configuration and that pipeline

delays are ignored. On uniprocessor machines, a straightforward implementation of

the dynamic programming algorithm in the C language is used in the benchmark.

On multiprocessor machines, a parallel implementation of the dynamic programming

algorithm is used. Typically, a run consisting of 1,000 repetitions of a 1,000 x 1,000

comparison is used to calculate the CUPS.

8.5 DISCUSSION

From our experience, most of the development time was spent learning about the

Splash 2 architecture, learning to program in ‘VHDL, and discovering and taming the

idiosyncrasies of the software development system. Overall, the results of the project

were well worth the effort. Furthermore, the programmability and reprogrammability

of Splash 2 allowed for experimentation and incremental refinements that could not

have been afforded on a less flexible system. For example, several variations of the

unidirectional PE were implemented, each in a matter of days.6 In one variation of
the unidirectional PE, the cost function is implemented as a lookup table, using the

FPGA cells as RAM. The cost function is specified as part of the input stream. In

another variation, the edit distance with a linear gap cost function is computed using

the coupled recurrences given in Core et a1. [1].

8.6 CONCLUSIONS

Two systolic arrays for computing the edit distance between two genetic sequences

have been presented and their implementations on Splash 2 described. The bidirec-

tional and unidirectional arrays have maximum throughputs of 5.5 and 12 million

characters per second, respectively, for DNA database search. Compared to imple-

mentations of the dynamic programming algorithm on several contemporary work—

stations and minicomputers, the Splash 2 implementations promise to deliver several

orders of magnitude better performance.
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CHAPTER 9
 

Text Searching on Splash 2

Dan Pryor, Mark Thistle, Nabeel Shirazi1

9.1 INTRODUCTION

Very early in the process of designing and building Splash 2, a decision was made to

concentrate on applications that emphasized computations or bit manipulations that

were not entirely compatible with the processor architecture of traditional computers.
The sequence comparison problem of the previous chapter is such a computation.
Another, described in this chapter, is a hash-function—based pattern matching.

As the volume of information in the world continues to expand, text searching
has become an important and necessary activity, and a fundamental part of text or
bibliographic retrieval computations is the ability to recognize that a given keyword
or set of keywords appears in a particular body of text. As mentioned by Salton
[6], there are a number of commercial services that serve the needs of legal (LEXIS
[1]), medical (MEDLARS [3]), and other communities of interest. These commercial

services rely on inverted file methods of searching documents and abstracts. For text

that is reasonably static or keyword groups that are reasonably static (terms used, for

example, by a professional society to describe the subfields within its discipline), the
best way to match words against text is indeed to have the text indexed, and this is

feasible. For other text search applications, news story data, for example, an index
does not exist and a full text search must sometimes be done as shown by Purcell
and Mar [5] and Stanfill and Kahle [7].

1A version of this chapter appeared as Pryor et a1. [4] and is used with permission.
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As with the DNA sequence comparison problem, several versions of special—

purpose hardware, including ASICs, have been manufactured. Inevitably, these pro-
vide a higher processing performance than an FPGA-based system as described here.
However, as with any special-purpose machine, flexibility or adaptability of the hard-
ware can be a serious issue. Our computation is hash-based, and the success is prob-

abilistic depending both on the hash functions and on the text data. Thus, one could
expect to want to vary the hash function depending on the data to be searched. With
the Splash 2 implementation described here, this is relatively easy; with an ASIC,
this could be much harder. Further, the cost of developing an ASIC may not be

justifiable if the number of planned units is relatively small.
Our text searching application tests a stream of words for inclusion and/or

exclusion in a dictionary, a predetermined list of keywords. In the Splash 2

implementation, words are streamed through a series of FPGAs, each configured
to implement a different hash function. These hash functions are set up to use a
single bit on each attached memory module to represent the inclusion of a word in
the search list. The 222 bits of memory attached to each FPGA are quite sufficient for

many uses. The English language, for example, has about 218 words, which would
allow a sparse scattering of words throughout the memory address space. The sparser
the representation of the keyword list in the memory, the lower the probability of a
false hit. Cascading the independent hash functions multiplies these low probabili-
ties, resulting in an extremely low probability that a word not in the keyword list is
reported as a match.

Two approaches are studied, one that sends a single byte of text through the
system on each clock tick and one that sends two bytes per tick. In both of these
algorithms, the Splash 2 system is used as a linear array (no use is made of the
crossbar) in which the data is pipelined from the Interface Board through each chip
in the Splash board and back to the Interface Board. The results of the hash function
evaluations are successively AND-ed into an indicator bit as the data travels through

the array. The indicator bit at the end of the array denotes success (a hit) or failure
of the search for the corresponding word. The locations of the hits in the data stream

are recorded by the final FPGA on the Interface Board.

9.2 THE TEXT SEARCHING ALGORITHM

The original motivation behind implementing a dictionary search algorithm on
Splash 1 was that the predicted performance on a Splash—based system matched
requirements of real-world problems and exceeded general-purpose solutions. The
Splash 1 implementation was 1/0 bound and ran at 4 megacharacters/second. Due to
the improved I/O performance on Splash 2, a Splash 2 8-bit implementation has been
created and demonstrated. This section describes the algorithm used and the first of

two approaches implemented.
The text processing in the Splash 2 system can be thought of as a pipelined

operation on a stream of characters (bytes). There are three major stages to the
pipeline, with the middle stage divided into a series of nearly identical substages. -
The first stage of the algorithm takes place in FPGA XL on the Interface Board. (See
Figures 2.3, 2.4, and 2.5.) In this FPGA, the data is read in, one 32-bit word per
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clock tick, and sent out over the SIMD Bus at the rate of one 8-bit byte per tick.

The job of XL is to coordinate the splitting of the data words into characters that

are fed through the Array Board one at a time, as well as to set tag bits to perform

whatever bookkeeping is required with respect to end—of—data conditions, and such.

Each data byte is assumed to be part of a valid dictionary word, and XL sets a tag

bit to indicate this assumption. As the byte progresses through the Array Board, this
condition may be modified by successive hash function evaluations.

The second stage of the algorithm takes place on the Array Board, where the

bulk of the work is done. This stage is made up of a series of nearly identical stages,

each occupying a separate FPGA, with the communication between them being in

pipeline fashion. Upon receiving a data character from its leftward neighbor, the j th

FPGA Xj first detects an end~of—word condition by deciding whether the character is

alphabetic or nonalphabetic. If the received character is alphabetic, the hash function

is updated using this character. If the character is nonalphabetic, and if the previous

character was alphabetic, an end—of—word condition has occurred and a zero in the

memory bit pointed to by the hash register indicates the word is not in the dictionary.

When the memory is read, the hash register is reset to all zeros to get ready for the

next word, which begins when the next alphabetic character is received. When the

memory is read, the bit indicating a hit or miss is AND-ed to the corresponding bit

passed from X(j — l) and passed on to X(j + l) as one of the tag bits. In this way,

the tag bit indicates whether all hash functions produced a hit, or whether at least

one of them resulted in a miss. A word is declared to be in the dictionary only if all
hash function evaluations result in hits.

The final stage of the algorithm takes place in the FPGA labeled XR on
the Interface Board. This FPGA contains a 32-bit counter that counts the num-

ber of characters processed and decoder logic that determines when to write out

the value of the counter. A block diagram of this implementation is shown in
Figure 9.1.

 
XL Chip 1 Chip 5 XR

FIGURE 9.1 Text Matching Implementation
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9.3 DESCRIPTION OF THE SINGLE-BYTE SPLASH PROGRAM

The design reads 8—bit ASCII characters from an input file until the end of the file.
The word boundaries are then found by detecting the nonalphabetic characters within

the input stream. Each word is compared to a user dictionary and is marked as a hit,
meaning the word is present in the dictionary, or a miss, meaning the word is not
in the dictionary. The word’s location is then recorded along with the corresponding
hit/miss flag to an output file. Instead of doing a direct comparison of the input word
to the user dictionary, a series of hashing functions is used to do the comparison.

The hashing function maps each word to a pseudo-random value that is then used
to reference a lookup table, indicating if a given word is in the user dictionary.

The lookup tables are generated by passing the user dictionary through the same
hashing functions that are used at runtime. This is a one—time operation and does not

necessarily have to be performed on the Array Board. ’

The algorithm used is similar to the Splash 1 version implemented by McHenry
[2]. First, a hash table is produced for each function and then loaded into the Array
Board’s memories. The memories are 256K x 16 bits, and each of the four megabits

is used to indicate a hit or a miss. A 22-bit hashing function value, which is generated

in an FPGA, is used to address the four megabits of the FPGA’s memory. During
runtime a hash function value is determined for each word of the input stream. For

example, in Figure 9.2 the word “the” is passed through the hash function, and the
resulting hash value is shown.

Shift Amount: 7 bits
Hash Function: 1100 1000 where l=XOR; 0 = XNOR

00 0000 0000 0000 0000 0000 Clear Hash Register
01 1101 00 Input the letter ‘t’
 

E 01 0000 1100 0000 0000 0000 3 Temporary result7 bit circular shift

01 0000 0010 0001 1000 0000 Result for string “t”
01 1010 00 Input the letter ‘h’

E 01 0111 1110 0001 1000 0000 :| Temporary result7 bit circular shift

 

00 0000 0010 1111 1100 0011 Result for string “t ”
01 1001 01 Input the letter ‘e’

l: 01 0100 1010 1111 1100 0011 :I Temporaryresult7 bit circular shift

 

10 0001 1010 1001 0101 1111 Result for String “the”

FIGURE 9.2 22-Bit Hashing Example
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TABLE 9.1 Hashing Functions Used

Function

Number Shift Mask Splash 1 % Splash 2 %

1 7 C8 1138 4.5 1127 4.5
2 5 A5 771 3.1 422 1.7
3 3 SC 1636 6.5 1461 5.8
4 4 AE 1035 4.1 654 2.6
5 5 C8 924 3.7 507 2.0 

The five hashing functions used are listed in Table 9.1. The shift and mask

values of these hash functions were chosen by picking a shift value that is relatively

prime to 22 and a mask value that has approximately the same number of ones as

zeros. These functions were then checked for randomness by hashing a 25,261-word

dictionary and recording the number of duplicate hits. A comparison of duplicate hits

produced by a 20-bit hash function (used in the Splash 1 version) versus a 22-bit hash

function (used in the Splash 2 version) was performed, and the results are shown in
Table 9.1.

This algorithm was implemented and tested on Splash 2. The XL chip of the

Interface Board is designed to read in a 32—bit word on every fourth clock cycle. The

32-bit word is then divided into four 8-bit values and passed onto the first FPGA

of the Array Board. FPGAs X1 through X5 on the Array Board compute the hash

functions and access their memory to check if the word is in its lookup table. FPGAs

X6 through X16 of the array are essentially unused, passing data from the left side

of the FPGA to the right side. From FPGA X16 of the array, the data are passed into
FPGA XR of the Interface Board. This FPGA contains a 32—bit counter that counts

the number of characters processed and decoder logic that determines when to write
out the value of the counter. '

9.4 TIMINGS, DISCUSSION

The text search program was functionally debugged using the Splash system simu-

lator. The functionally correct design was then synthesized to determine the timing

information for each chip. Due to the simplicity of the XL chip design, when this

chip was synthesized, the maximum clock rate was found to be 25 MHz. The XR

chip design includes a 32-bit counter, and this was the primary reason why the chip

could run at only 14 MHz after synthesizing the first time. This problem was fixed

by using two 16—bit Hard Macro Counters provided by Xilinx, and the new version

of the design now has a maximum clock speed of 17 MHz. The chips that per—

form the hashing function are the slowest, and thus dictate the clock speed of the

entire application. The maximum clock rate for FPGAs X1 through X5 was 16 MHz.

Since the I/O speed into the Splash 2 system is faster than 4 megawords/second, this

application can process data at 16 megacharacters/second.
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9.5 OUTLINE OF THE 16-BIT APPROACH

Since the Splash 2 system is capable of receiving more than a single byte of data

per clock tick, we decided to investigate the possibility of extending the algorithm
discussed above to one that processed 16 bits per tick. In order to use the hash

functions in the Array Board in a way similar to the method of the single-byte

algorithm, we need to have some concept of a nonalphabetic 16-bit “superbyte”

that signals the time to do the memory access and reset the hash function. But

in general, nonalphabetic characters do not come two at a time and on two-byte

boundaries. Viewing 16 bits at a time, or two consecutive characters from the text
stream, therefore involves considering a number of cases that are not seen in the

single-byte algorithm. And in order that the pipeline nature of the algorithm for
the FPGAs on the Array Board be preserved, we condition the data stream on the

Interface Board using the XL chip. In some cases, a 16—bit zero must be inserted

into the outgoing stream in order to play the role played by the single nonalphabetic

character in the 8-bit algorithm. That is, the FPGAs on the Array Board must receive

a 16-bit superbyte that is easily tested for, contains no important data, and signals
the end of the accumulated word of text. The distinct cases that must be considered

by XL for each new byte pair received are:

1. The new pair consists of two alphabetic characters, and the preceding character

was alphabetic. In this case, the data stream is in the middle of a word, so this

byte pair is passed on to the Array Board without special action. This is the
case that is most similar to the 8-bit case described in Section 4.

2. The new pair consists of a nonalphabetic character followed by an alphabetic

character. This case splits into two subcases: the preceding superbyte sent was

zero, and the preceding superbyte was nonzero. If zero, then the end of the pre-

vious text word has already been signaled by the sending of the zero superbyte.

Therefore the nonalphabetic character is changed to an 8-bit zero and sent to

the Array Board. If the last superbyte sent to the Array Board was nonzero, then

XL must insert a zero superbyte into the Array Board data stream to indicate

the end of a text word before sending the new byte pair.

3. The new pair consists of an alphabetic character followed by a nonalphabetic
character. In this case, we have an end—of-word condition and must send out

first the new pair and then a 16-bit zero to signal the end-of—word.

4. The new pair consists of two nonalphabetic characters. Both bytes are replaced

by zero bytes and sent to the Array Board, since the Array Board must receive

something on each clock tick, even if it contains no useful data.

Because a text word can begin at either an odd or an even position in the

data stream, and the hash functions can only be evaluated 16 bits at a time, there

must be two versions of each dictionary word represented in the hash table. For
text words with an odd number of characters, we have chosen to represent the two

versions by appending either a leading blank character or a trailing blank character
to the word. Dictionary words having an even number of characters are represented

first by including only the characters in the word and second by attaching both a .
leading blank and a trailing blank. Thus, a further task that must be performed is the

substitution of nonalphabetic characters with blank characters.
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This effective doubling of the dictionary size also means that either our prob-

ability of a false hit will increase or that we will have to use more FPGAs in the

design. For normal English text, this is not a serious problem, as we have, say,

218 dictionary words (making % 219 Is in each hash table). Hence the probability of
a false hit in any one hash table will be about 219/222 = 2—3. With 16 FPGAs, this
yields a false hit probability of about 2—48, or about lO‘lS—not as low as that of the
single—byte method, but certainly acceptable for many situations.

Since the bulk of the workload was shifted from the Array Board to the Inter—

face Board, in particular to the XL chip, it is no surprise to see that the timing of this

application is now limited by the timing of XL. Our XL design has been analyzed

and processed by the placement and routing programs to determine a clock speed of

13.6 MHz. This is almost as fast as the single-byte method, but would not produce a

near doubling of throughput, since we must adjust our timing estimates to account for

the insertion of zero superbytes into the text stream. For example, ordinary English

text averages about 4.7 characters per word [6]. So, with this figure as a guideline, it

is safe to expect that this design could process around 20 million characters of text

data per second.

9.6 CONCLUSIONS

We have presented two versions of a dictionary search application on the Splash 2

system. These results are encouraging in that they show the Splash 2 design to be

quite fast as well as relatively easy to program. We believe that there are many

other applications where Splash or a system similar to Splash can be exploited for its

cost/performance benefits over large general-purpose machines and for its flexibility

advantages over conventional special-purpose (ASIC-based) devices. We believe that,

while Splash-like architectures will certainly never replace general—purpose or special-

purpose machines, they do provide effective solutions in selected application areas.
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CHAPTER 1 O
 

Fingerprint Matching
on Splash 2

Nalini K. Ratha, Anil K. Jain, & Diane T. Rover

10.1 INTRODUCTION

Fingerprint—based identification is the most popular biometric technique used in
automatic personal identification [7]. Law enforcement agencies use it routinely for
criminal identification. Now, it is also being used in several other applications such

as access control for high-security installations, credit card usage verification, and
employee identification [7]. The main reason for the popularity of fingerprints as
a form of identification is that the fingerprint of a person is unique and remains

invariant through age. The law enforcement agencies have developed a standardized
method for manually matching rolled fingerprints and latent or partial fingerprints
(lifted from the scene of a crime). However, the manual matching of fingerprints
is a highly tedious task for the following reasons. As the features used for match-
ing are rather small compared to the image size, a human expert often has to use
a magnifying glass to get a better View of the fingerprint impression. The match-
ing complexity is a function of the size of the fingerprint database, and a typical
database contains a very large number (the order of millions) of fingerprint records.
Even though the standard Henry formula [6] for fingerprint recognition can be used
to reduce the search, manual matching can take several days in some cases. These

problems can be easily overcome by automating the fingerprint-based identification
process.

A fingerprint is characterized by ridges and valleys. The ridges and valleys
alternate, flowing locally in a constant direction (see Figure 10.1). A closer analysis-
of the fingerprint reveals that the ridges (or the valleys) exhibit anomalies of various
kinds, such as ridge bifurcations, ridge endings, short ridges, and ridge crossovers.

117
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(b)  

(C) (d)

FIGURE 10.1 Gray—level Fingerprint Images of Different Types of Patterns:
(a) Arch; (b) Left loop; (0) Right loop; ((1) Whorl

Eighteen different types of fingerprint features have been enumerated in the booklet

prepared by the Federal Bureau of Investigation [2]. Collectively, these features are

called minutiae. For automatic feature extraction and matching, the set of fingerprint

features is restricted to two types of minutiae: ridge endings and ridge bifurcations.

Ridge endings and bifurcations are shown in Figure 10.2. We do not make any

distinction between these two feature types because data acquisition conditions such

as inking, finger pressure, and lighting can easily change one type of feature into

another. More complex fingerprint features can be expressed as a combination of

these two basic features. For example, an enclosure can be considered as a collection

of two bifurcations, and a short ridge can be considered as a collection of a pair of

ridge endings. These features are shown in Figure 10.3.

% / FIGURE 10.2 Two Commonly
(a)

Used Fingerprint Features: (a) Ridge
(b) bifurcation; (b) Ridge ending
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‘ An enclosure

A short ridge

Myendings /\I
(a) (b)

Bifurcations

FIGURE 10.3 Complex Fingerprint Features as a Combination of Simple Features:
(a) Short ridge; (b) Enclosure

In the area of criminal identification, there are two types of fingerprint matching

requirements: rolled fingerprint matching and latent fingerprint matching. These are

characterized by the information available for matching. In the case of rolled finger-

print matching, the suspect is cooperative and all of the suspect’s fingerprints (called

rolled fingerprints) are used for identification. The objective is to verify the suspect’s

identity. In the second case, latent fingerprints, lifted from the scene of a crime, are

characterized by smudgy, unclear, and partial impressions. Obviously, matching of

latent fingerprints is more difficult. For rolled fingerprints, the Henry classification

scheme is used, whereas for latent fingerprints, Batley’s formula [4] is used. In both

cases, a (human) fingerprint expert performs the detailed matching.
In the last three decades, substantial efforts have been made to automate fin-

gerprint identification. These efforts can be grouped into the following two cate-
gones.

o Semi-automatic

The computer is used to match the Henry formula of the fingerprints containing

minor variations in ridge counts. A list of records that have similar Henry

formula is obtained. However, due to the limitations of the Henry formula in

disambiguating a large collection of records, this system is not very popular.
0 Automatic

An image processing system is used to automatically extract features from a

digital image of the fingerprint. A query fingerprint is matched to a stored

database of fingerprints based on the extracted features.

A survey of commercially available automatic fingerprint identification systems

(AFIS) is available in the book edited by Lee and Gaensslen [6]. Well-known man—

ufacturers of automatic fingerprint identification systems include NEC Information

Systems, De La Rue Printrak, North American Morpho, and Logica.

The high computational requirement of matching is primarily due to the follow-

ing three factors: (i) a query fingerprint is usually of poor quality; (ii) the fingerprint

database is very large; and (iii) structural distortion of the fingerprint images requires

complex matching algorithms.

We consider the task of matching rolled fingerprints against a database of rolled

fingerprints. Typically, the number of records with which a query fingerprint image

needs to be matched is very large (R 106). The matching process is repeated over
the records in the database. It is also not uncommon to have hundreds of match

queries per day, which need to be answered within a short (say, a few hours) time

period. This imposes a heavy computational load on the matching system. Even if a
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