
El-Ghazawi

Reference [1007]

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 1

Petitioner Microsoft Corporation - Ex. 1007, Cover 1

QA 76
.8
.S68 S68
1996

LANDOVER

GenColl

Splash 2
f PGAs in a Custom Computing Machine

Duncan A. Buell
Jeffrey M. Arnold

Walter J. Kleinfelder

~ COMPUTER SOCIETY
~ 5QYEARS OF SERVICE• 1946 - 19 96

♦ THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 2

Petitioner Microsoft Corporation - Ex. 1007, Cover 2l

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 3

Petitioner Microsoft Corporation - Ex. 1007, Cover 2

PATENT OWNER DIRECTSTREAM, LLC

EX. 2170, p. 3

Petitioner Microsoft Corporation - Ex. 1007, Cover 3

Splash 2
FPGAs in a Custom
Computing Machine

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 4

Petitioner Microsoft Corporation - Ex. 1007, Cover 4

Xilinx, the Xilinx logo, XC3090, XC4010, XBLOX, XACT, LCA,
and Configurable Logic Cell are trademarks of Xilinx, Inc.
CM-2 and Paris are trademarks of Thinking Machines Corporation.
VMEbus is a trademark of Motorola Corporation.
SPARC and SPARCstation are trademarks of SPARC International,
Inc. Products bearing a SPARC trademark are based on an architec­
ture developed by Sun Microsystems, Inc. SPARCstation is licensed
exclusively to Sun Microsystems, Inc.
UNIX is a trademark of UNIX System Laboratories.
Sun, Sun Workstation, SunOS, and SBus are trademarks of Sun Mi­
crosystems, Inc.

Design Compiler and FPGA Compiler are trademarks of Synopsys,
Inc.
DEC is a trademark of Digital Equipment Corporation.
Verilog is a trademark of Cadence Design Systems, Inc.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 5

Petitioner Microsoft Corporation - Ex. 1007, Cover 5

Splash 2
••
FPGAs in a Custom
Computing Machine

Duncan A. Buell
Jeffrey M. Arnold
Walter J. Kleinfelder
Editors
Center for Computing Sciences
Bowie, Maryland

IEEE Computer Society Press
Los Alamitos, California

Washington • Brussels • Tokyo

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 6

Petitioner Microsoft Corporation - Ex. 1007, Cover 6

Library of Congress Cataloging-in-Publication Data

Buell, Duncan A.
Splash 2: FPGAs in a custom computing machine / Duncan A. Buell,

Jeffrey M. Arnold, Walter J. Kleinfelder.
p. cm.

Includes bibliographical references and index.
ISBN 0-8186-7413-X
1. Spash 2 (Computer) 2. Electronic digital computers-Design

and construction. I. Arnold, Jeffrey M. II. Kleinfelder, Walter J.
Ill. Title.
QA76.8.S65B84 1996
004.2 ' 2-dc20

IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O. Box 3014
Los Alamitos, CA 90720-1264

95-47397
GIP

Copyriiht © 1996 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted

to photocopy isolated pages beyond the limits of US copyright law, for private use of their patrons. Other

copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service

Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number BP07413
Library of Congress Number 95-47397

,,.,.---· .,,,,,. -"
..-: 9__v,':):,

~);;; '
,{ !~1-:; ..

;;

(:_:, .J IEEE S,~puter So iety Press
•- Cuiro'RJer Service enter

'-t:· • W~'?2 Los Yaqu ros Circle
Cf1.\J. Box 3Q.l4

~~.L-;;s Alatf/ ' , CA 90720-1 264
'')'' Tel · +I-i 11-821-8180 . -

Fax:)'f714-821-4641
_ .,.J1l't.i'\I: cs.books@computer.org

ISBN 0-8186-7413-X

Additional copies may be ordered.from:

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
Tel: +1-908-981-1393
Fax: + 1-908-981-9667
mis.custserv@computer.org

IEEE Computer Society
13, Avenue de I' Aquilon
B-1200 Brussels
BELGIUM
Tel: +32-2-770-2198
Fax: +32-2-770-8505
euro.ofc@computer.org

Assistant Publisher: Matt Loeb
Technical Editor: Dharma P. Agrawal
Acquisitions Assistant: Cheryl Smith
Advertising/Promotions: Tom Fink
Production Editor: Lisa O'Conner

IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN
Tel: +81-3-3408-3118
Fax: +81 -3-3408-3553
tokyo.ofc@computer.org

Cover Image: Dan Kopetzky, Center for Computing Sciences

Printed in the United States of America

♦ The Institute of Electrical and Electronics Engineers, Inc

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 7

Petitioner Microsoft Corporation - Ex. 1007, p. TOC v

QA1,
, i

.S(p1tS6i
/q(j (p

Contents

PREFACE

1 CUSTOM COMPUTING MACHINES: AN INTRODUCTION

1.1 Introduction 1

1.2 The Context for Splash 2 4

1.2.1 FPGAs, 4
1.2.2 Architecture, 5
1.2.3 Programming, 6

2 THE ARCHITECTURE OF SPLASH 2

2.1 Introduction 10

2.2 The Building Blocks 11

2.3 The System Architecture 12

2.4 Data Paths 13

2.5 The Splash 2 Array Board 16

2.5.1 The Linear Array, 16
2.5.2 The Splash 2 Crossbar, 16
2.5.3 Xilinx Chip XO and Broadcast Mode, 17

2.6 The Interface Board and Control Features 17

xi

1

10

V

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 8

Petitioner Microsoft Corporation - Ex. 1007, TOC vi

vi

3 HARDWARE IMPLEMENTATION

3.1 Introduction 19

3.2 Development Board Design 21

3.3 Interface Board Design 21

3.3.1 DMA Channel, 23
3.3.2 XL and XR, 23
3.3.3 Interrupts, 24
3.3.4 Clock, 24
3.3.5 Programming and Readback, 24
3.3.6 Miscellaneous Registers, 25

3.4 Array Board Design 25

3.4.1 Processing Element, 26
3.4.2 Control Element, 28
3.4.3 External Memory Access, 28
3.4.4 Crossbar, 28
3.4.5 Programming and Readback, 29
3.4.6 Miscellaneous Registers, 29

4 SPLASH 2: THE EVOLUTION OF A NEW ARCHITECTURE

4.1 Splash 1 31

4.2 Splash 2: Thoughts on a Redesign 34

4.3 Programming Language 36

4.4 Choice of FPGAs 37

4.5 Choice of Host and Bus 38

4.6 Chip-to-Chip Interconnections 39

4.7 Multitasking 42

4.8 Chip XO and Broadcast 43

4.9 Other Design Decisions 43

5 SOFTWARE ARCHITECTURE

5.1 Introduction 46

5.2 Background 47

5.3 VHDL as a Programming Language 49

5.3.1 History and Purpose of VHDL, 50
5.3.2 VHDL Language Features, 50
5.3.3 Problems with VHDL, 51

5.4 Software Environment 51

Contents

19

31

46

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 9

Petitioner Microsoft Corporation - Ex. 1007, TOC vii

Contents

5.5 Programmer's View of Splash 2 55

5.5.1 Programming Process, 55
5.5.2 Processing Element View, 56
5.5.3 Interface Board View, 57
5.5.4 Host View, 57 '

6 SOFTWARE IMPLEMENTATION

6.1 Introduction 60

6.2 VHDL Environment 60

6.2.1 Splash 2 VHDL Library, 61
6.2.2 Standard Entity Declarations, 61
6.2.3 Programming Style, 64

6.3 Splash 2 Simulator 66

6.3.1 Structure, 66
6.3.2 Configuring the Simulator, 67
6.3.3 Input and Output, 68
6.3.4 Crossbar and Memory Models, 68
6.3.5 Hardware Constraints, 70

6.4 Compilation 70

6.4.1 Logic Synthesis, 70
6.4.2 Physical Mapping, 71
6.4.3 Debugging Support, 71

6.5 Runtime System 72

6.5.1 T2: A Symbolic Debugger, 72
6.5.2 Runtime Library, 73
6.5.3 Device Driver, 74

6.6 Diagnostics 75

7 A DATA PARALLEL PROGRAMMING MODEL

7.1 Introduction 78

7.2 Data-parallel Bit C 80

7.2.1 dbC Overview, 80
7.2.2 dbC Example, 81

7.3 Compiling from dbC to Splash 2 82

7.3.1 Creating a Specialized SIMD Engine, 83
7.3.2 Generic SIMD Code, 84
7.3.3 Generating VHDL, 84

7.4 Global Operations 88

7.4.1 Nearest-Neighbor Communication, 88

vii

60

77

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 10

Petitioner Microsoft Corporation - Ex. 1007, TOC viii

viii

7.4.2 Reduction Operations, 89
7.4.3 Host/Processor Communication, 91

7 .5 Optimization: Macro Instructions 92

7 .5.1 Creating a Macro Instruction, 93
7.5.2 Discussion, 94

7.6 Evaluation: Genetic Database Search 94

7.7 Conclusions and Future Work 95

8 SEARCHING GENETIC DATABASES ON SPLASH 2

8.1 Introduction 97

8.1.1 Edit Distance, 98
8.1.2 Dynamic Programming Algorithm, 98

8.2 Systolic Sequence Comparison 100

8.2.1 Bidirectional Array, 100
8.2.2 Unidirectional Array, 103

8.3 Implementation 104

8.3.1 Modular Encoding, 105
8.3.2 Configurable Parameters, 106
8.3.3 Bidirectional Array, 107
8.3.4 Unidirectional Array, 107

8.4 Benchmarks 107

8.5 Discussion 108

8.6 Conclusions 108

9 TEXT SEARCHING ON SPLASH 2

9.1 Introduction 110

9.2 The Text Searching Algorithm 111

9.3 Description of the Single-Byte Splash Program 113

9.4 Timings, Discussion 114

9.5 Outline of the 16-bit Approach 115

9.6 Conclusions 116

10 FINGERPRINT MATCHING ON SPLASH 2

10.1 Introduction 117

10.2 Background 120

Contents

97

110

117

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 11

Petitioner Microsoft Corporation - Ex. 1007, TOC iv

Contents

10.2.1 Pattern Recognition Systems, 121
10.2.2 Terminology, 122
10.2.3 Stages in AFIS, 123

10.3 Splash 2 Architecture and Programming Models 125

10.4 Fingerprint Matching Algorithm 125

10.4.1 Minutia Matching, 126
10.4.2 Matching Algorithm, 127

10.5 Parallel Matching Algorithm 128

10.5 .1 Preprocessing on the Host, 131
10.5.2 · Computations on Splash, 132
10.5.3 VHDL Specification for XO, 133

10.6 Simulation and Synthesis Results 134

10.7 Execution on Splash 2 137

10.7.1 User Interface, 137
10.7.2 Performance Analysis, 137

10.8 Conclusions 139

11 HIGH-SPEED IMAGE PROCESSING WITH SPLASH 2

11.1 Introduction 141

11.2 The VTSplash System 142

11.3 Image Processing Terminology and Architectural Issues 143

11.4 Case Study: Median Filtering 150

11.5 Case Study: Image Pyramid Generation 153

11.5 .1 Gaussian Pyramid, 154
11.5.2 Two Implementations for Gaussian Pyramid on Splash 2, 155
11.5.3 The Hybrid Pipeline Gaussian Pyramid Structure, 157
11.5.4 The Laplacian Pyramid, 157
11.5.5 Implementation of the Laplacian Pyramid on Splash 2, 159

11.6 Performance 159

11.7 Summary 163

12 THE PROMISE AND THE PROBLEMS

12.1 Some Bottom-Line Conclusions 166

12.1.1 High Bandwidth UO Is a Must, 166
12.1.2 Memory Is a Must, 167
12.1.3 Programming Is Possible, and Becoming More So, 168
12.1.4 The Programming Environment Is Crucial, 168

12.2 To Where from Here? 169

ix

141

166

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 12

Petitioner Microsoft Corporation - Ex. 1007, TOC x

x Contents

12.3 If Not Splash 3, Then What? 171

12.3.1 Architectures, 172
12.3.2 Custom Processors, 173
12.3.3 Languages, 174

12.4 The "Killer" Applications 177

12.5 Final Words 178

A SPLASH 2 DEVELOPMENT-THE PROJECT MANAGER'S
SUMMARY

B AN EXAMPLE APPL/CATION

REFERENCES

179

186

190

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 13

Petitioner Microsoft Corporation - Ex. 1007, Preface xi

Preface

The Splash 2 project began at the Supercomputing Research Center1 in September of
1991 and ended, with success, in the spring of 1994. Splash 2 is an attached processor
system using Xilinx XC4010 FPGAs as its processing elements. As such, it is a
custom computing machine. That is to say that much of what would be the instruction
set architecture of the processing elements is not specified except in the details of the
program developed by the application programmer. Although a higher-level block
diagram of processing elements, memories, interconnect, and dataflow exists in the
hardware structure of Splash 2, the details of the instruction set architecture level of
the machine will vary from one application to the next.

The Splash 2 project is significant for two reasons. First, Splash 2 is part of a
complete computer system that has achieved supercomputer-like performance on a
number of different applications. By "complete computer system" we mean that SRC
created or caused to be created an extant hardware system (replicated a dozen times),
a complete programming and runtime environment, and a collection of application
programs that exercised the unique hardware.

The second significant aspect of Splash 2 is that we were fortunate enough to
be able to build a large system, capable of performing real computations on real
problems. One common complaint about performance results on novel computing
machines or environments is that results on small problems cannot be accurately
extrapolated to large problems. The Splash 2 system that was designed and built is
a full-sized machine and does not suffer from this defect.

To get to the point: why a book?

1 Renamed the Center for Computing Sciences in May 1995, but referred to throughout this book

as SRC.

xi

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 14

Petitioner Microsoft Corporation - Ex. 1007, Preface xii

xii Preface

This is a novel computing machine. In order to understand what happens when
the application programmer is permitted, indeed required, to design the processor
architecture of the machine that will execute his program, it is necessary to see the
system as a whole. Programmability and problems to be run on this machine both
had major influences on its architecture, just as its architecture and its unique nature
influence the kinds of problems one would expect to program for this machine and
the nature of that programming. And standing between the user and the machine,
as the old joke goes, is a new kind of programming environment and an evolving
understanding of how this environment must allow the use of the hardware, without
forcing every programmer to be a hardware-design engineer.

At the first IEEE Workshop on FPGAs for Custom Computing Machines, one
of the industrial attendees remarked that, although nearly everyone would agree, as
part of a coffee-room discussion or the like, that it would be interesting to think about
building a "computer" using FPGAs, no one in management (except perhaps at SRC
and DEC PRL) had put up the commitment necessary in time and money to do a
real test of the idea. It was then remarked that, given the nature of the marketplace
and of engineering management, these first attempts had to be successful in order to
open the door for future work. We feel we have been successful, and we offer in
this book an in-depth look at one of the handful of data points in the design space
of this new kind of machine.

We would hope that this book has a broad appeal and is readable with under­
standing by nearly all computer scientists and computer engineers. To the hardware
designer, perhaps we can offer a new look at programming applications on a mod­
erately general FPGA-based computing machine instead of designing circuits for a
specific board incorporating FPGAs. The engineering world has viewed FPGAs, to a
great extent, as the next logical step in a continuum of electronic devices; we offer,
we feel, the option of viewing them much more broadly than that. To the computer
architect we offer a variant hardware platform and an indication of how that general
platform can be used. Much of computer architecture is a compromise between the
functionality desired and the limits of what can be built given existing technology; we
offer the use of a new technology that can offer, to a limited extent now, and could
offer much more generally later, greatly increased functionality. For some of those
who have hard problems in computation, we offer much of the power of special­
purpose hardware without the inflexibility and uncertain delivery times of hardware.
The long-term task is not to map a high-level language to a particular architecture
or range of architectures, but in some sense to create for each application program
a suitable architecture to which the high-level language will be mapped. And to the
language designers and compiler writers we offer a world to conquer. We have pre­
sented one imperfect but usable approach to programming such a computing machine,
and we trust that others interested in the critical problem of making these machines
programmable can learn both from what we did right and what we did wrong.

Chapter 1 discusses the general concept of Custom Computing Machines, of
which Splash 2 is one example. Chapters 2 and 3 describe at a high level and
then in some detail the hardware architecture of Splash 2. Chapter 4 covers the
design considerations and decisions in arriving at the second-generation Splash 2
architecture. We present this chapter at the end of the section on hardware, on the
basis that it is easier to understand variations in a design when those variations are
compared against something concrete.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 15

Petitioner Microsoft Corporation - Ex. 1007, Preface xiii

Preface xiii

Chapters 5 and 6 describe, also first at a higher and then at a lower level, the
software architecture of Splash 2. All the application programs in the latter chapters
were done using VHDL as an applications programming language and these tools
in support. The main goal of the Splash 2 project was to show that software, as
described in Chapters 5 and 6, could make a computer using FPGAs as its processing
elements into something that reasonable people would call "programmable," and, in
that sense, the heart of the Splash 2 project is in Chapters 5 and 6. Throughout
the life of Splash 2, however, there has been an alternative view of programming.
This view is reflected in Chapter 7 on the Splash 2 version of the programming
language dbC. The approach taken in dbC is to permit the programmer to use a
version of C as the programming language. It is the compiler which then becomes
responsible for, in essence, recognizing the instruction set architecture necessary to
execute the program and then creating in the FPGA the requisite registers, logic units,
and control.

Chapters 8 through 11 then describe four different applications programmed
to conclusion on Splash 2. The first of these-the sequence comparison problem­
was the driving application, in the sense that funding for Splash 2 was based on its
perceived ability to perform this computation. This and the text processing application
were done at SRC.

The Splash 2 project team was fortunate in that SRC's parent company, the
Institute for Defense Analyses, issued two contracts, to Virginia Polytechnic Institute
and to Michigan State University, for applications work on Splash 2 in image pro­
cessing and fingerprint identification. Both applications seemed good matches with
the Splash 2 architecture but lay outside the normal realm of SRC's research program.
The faculty members involved have each prepared a chapter on these applications.

We close in Chapter 12 with some opinions and speculations about the future.
In an appendix, the project manager presents a chronology of the entire Splash 2
project.

It is incumbent on us, and a genuine pleasure, to thank the Center for Com­
puting Sciences of the Institute for Defense Analyses and the CCS Director, Francis
Sullivan, for supporting us in our writing and editing of this book. All royalties
will be donated to the Center for Excellence in Education, formerly known as the
Rickover Foundation, in McLean, Virginia. The Center for Excellence in Education
supports science and engineering education through its sponsorship of the Research
Science Institute each summer for high school seniors, its Role Models and Lead­
ers Project in Washington, D.C., Los Angeles, and Chicago for promising women
and minority high school students intending to study science and engineering, and
its support and preparation of the United States Informatics Olympiad team each
year.

The Splash 2 project was a success in large part due to the ability of those who
were involved nearly full-time, but it might not have taken the course it did had the
hard-core Splash 2 players not had the chance to get advice and occasional help from
a much larger group of experts both at SRC and elsewhere.

We acknowledge, therefore, the help and advice of Nate Bronson, Dan Bums,
Bill Carlson, Neil Coletti, Maripat Corr, Steve Cuccaro, Hillary Dean, Chuck Fiduc­
cia, Brad Fross, Charles Goedeke, Maya Gokhale, Frank Hady, Dzung Hoang, Bill -
Holmes, Amy Johnston, Elaine (Davis) Keith, Dan Kopetzky, Andy Kopser, Steve
Kratzer, Jim Kuehn, Sara Lucas, Michael Mascagni, Marge McGarry, John McHenry,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 16

Petitioner Microsoft Corporation - Ex. 1007, Preface xiv

xiv Preface

Ron Minnich, Lindy Moran, Fred More, Mark Norder, Lou Podrazik, Dan Pryor,
Craig Reese, Paul Schneck, Brian Schott, Nabeel Shirazi, Doug Sweely, Dennis
Sysko, Mark Thistle, Bob Thompson, Ken Wallgren, Alice Yuen, Neal Ziring, and
Jennifer Zito.

Duncan A. Buell
Jeffrey M. Arnold

Walter J. Kleinfelder
Bowie, Maryland

March 1996

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 17

Petitioner Microsoft Corporation - Ex. 1007, p. 1

CHAPTER 1

1.1 INTRODUCTION

Custom Computing
Machines: An Introduction

Duncan A. Buell1

It is a basic observation about computing that generality and efficiency are in some
sense inversely related to one another; the more general-purpose an object is and

thus the greater the number of tasks it can perform, the less efficient it will be in

performing any of those specific tasks. Design decisions are therefore almost always

compromises; designers identify key features or applications for which competitive
efficiency is a must and then expand the range as far as is practicable without unduly

damaging performance on the main targets.
This thesis has certainly been true in processor architecture of computers aimed

at computationally intense problems. Vector processors and vector supercomputers

have targeted computationally intense, array-oriented floating point problems, usually
in the hard sciences and engineering, but have not sacrificed the necessary speed on

their core applications in order to be all things to all people. Thus, on computationally

intense problems that do not fit well on traditional supercomputers, perhaps due to

such things as integer arithmetic or scalar code, fast workstations can often outperform
supercomputers.

To counter the problem of computationally intense problems for which general­
purpose machines cannot achieve the necessary performance, special-purpose proces­
sors, attached processors, and coprocessors have been built for many years, especially ·

1 A version of this chapter appeared as Buell and Pocek [11) and is used with permission.

1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 18

Petitioner Microsoft Corporation - Ex. 1007, p. 2

2 Custom Computing Machines: An Introduction Chapter 1

in such areas as image or signal processing (for which many of the computational

tasks can be very well defined). The problem with such machines is that they are

special-purpose; as problems change or new ideas and techniques develop, their lack

of flexibility makes them problematic as long-term solutions.
Enter the FPGA. Field Programmable Gate Arrays, first introduced in 1986

by Xilinx [34), were seen rather immediately by a few people to offer a totally

new avenue to explore in the world of processor engineering. The great strength

of the computer as a tool is in its ability to be adapted, via programming, to a

multitude of computational tasks. The possibility now existed for an FPGA-based

computing device not only to be configured to act like special-purpose hardware

for a particular problem, but to be reconfigured for different problems and for this

reconfiguration to be a programming process. By being more than single-purpose,

such a machine would have the advantage of being flexible with at least a limited

range of different applications. By being programmable, such a machine would open

up "design of high-performance hardware" to individuals who can "design hard­

ware" in an abstract sense but not a concrete sense. Finally, by being designed to

operate as if they were hardware, the applications for these machines can achieve

the hardware-like performance one gets from having explicitly parallel computa­

tions, from not having instructions and data fetched and decoded, and from hav­

ing the ability to design processing units that reflect precisely the processing being

done.
It is no exaggeration to say that machines using FPGAs as their processing

elements have demonstrated that very high performance on an absolute scale, and

extraordinary performance when measured against price, is possible with this tech­

nology. The PeRLe machines built at DEC's Paris Research Laboratory have been

programmed on a number of applications with impressive results [7, 8, 9, 31]: An

implemented multiplier can compute a SO-coefficient, 16-bit polynomial convolution

FIR filter at 16 times audio real time. An implementation of RSA decryption executes

at 10 times the bit rate of an AT&T ASIC. A Hough Transform implementation for

an application in high-energy physics achieves a compute rate that a standard 64-bit

computer could not equal without a 1.2 GHz clock rate.
As can be seen from the later chapters of this book, some of the applications

programmed on Splash 2 have achieved similarly promising results. It was a general

observation made by those involved in the Splash 2 project that, on applications that

fit the machine, one Splash 2 Array Board could deliver approximately the compute

power of one Cray YMP processor. One of the commercial licensees of the Splash 2

technology sells its system for about $40,000. Of course, not all applications fit well,

and most that do not fit well actually fit very badly indeed, but this is nonetheless a

performance-to-price ratio substantial enough to warrant continued investigation and

experimentation.
The idea of reconfiguring a computer is certainly not new. The Burroughs

B 1700 had multiple instruction sets with different targets (Fortran, COBOL, and

such) implemented with different microcode. In another way, the Paris functions of

the Thinking Machines Corp. CM-2 differed from one version to the next. In the

former case, standard views of hardware instructions were implemented. In the latter

case, with a novel machine and a new architecture, we presume that an effort was

made to implement function calls that users were seen to need and to delete unneeded

functions when the instruction store ran out.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 19

Petitioner Microsoft Corporation - Ex. 1007, p. 3

Section 1.1 Introduction 3

A certain amount of disagreement exists over what label to give to these
machines and how to refer to them. The group at DEC's Paris research lab refers
to their machine as a Programmable Active Memory (PAM) [7, 9, 29, 31]. Another
commercial entity uses the term "virtual computer" [12]. From Brown University
we have Processor Reconfiguration through Instruction Set Metamorphosis (PRISM)
[4, 5, 6, 32]. We have already used the term "FPGA-based computing device" here.
That none of these are truly satisfactory was evidenced in the spring of 1994 when the
comp. arch. fpga newsgroup was discussed and established; the most contentious
point was over the name. Both the new newsgroup and the IEEE workshops we have
organized use the term FPGA, thus being in some sense bound in terminology to a
particular technology (unless, of course, one can convince the developers of the next
technology that its name should allow FPGA as its acronym). We have chosen to
use the term Custom Computing Machine (CCM). None of these terms is perfect,
but we believe that this one is no worse than any of the others.

The work on CCMs also differs from what is considered reconfigurable com­
puter architecture, in that the term "reconfigurable" usually refers to a much higher
level of the system. In the case of CCMs, that which is reconfigurable and significant
by virtue of its reconfigurability is the "processor architecture" itself. A reconfig­
urable computer, by contrast, is likely to be either a multiprocessor in which the
interconnections among the processors can change, or a heterogeneous machine with
processors of different kinds that a user can choose to include or exclude in the view
he/she has of "the computer."

It is to be emphasized that this is not a mature computing technology and that
CCMs are not a panacea for all problems in high-performance computing. Among
the many issues and problems are the following:

1. Are FPGAs large enough, or will they become large enough, so that a significant
unit of computation can be put on a single chip so as to avoid both the loss
of efficiency in going off-chip and the problems in partitioning a computation
across multiple chips?

2. With current technology, even in the best of circumstances, the user must be
exposed to the hardware itself. What is the level of understanding about chip
architecture, signal routing delays, and so forth, that a "programmer" must know
in order to use a CCM? How much more must be known in order to obtain
the performance that would warrant using a CCM instead of a general-purpose
computer?

3. If these machines are to be viewed as "computers," then they must be capable of
being programmed. How will this be done? What sort of programming language
is appropriate? How do we "compile" when we have eliminated the underlying
machine model?

4. Granting the point that these are limited-purpose, but not special-purpose,
machines, what is the range of architectures needed to cover the spectrum
of applications for which these machines make sense?

5. What are the cost/performance figures necessary to make this a viable approach
for getting a computing task done? General-purpose machines are cheaper and
easier to use but can be slow. ASICs and special-purpose devices are faster
but more expensive in small quantities, take longer to develop, and are hard to
modify. Where might CCMs fit between these two?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 20

Petitioner Microsoft Corporation - Ex. 1007, p. 4

4 Custom Computing Machines: An Introduction Chapter 1

One problem faced by those involved in Splash 1 and Splash 2 at the Super­
computing Research Center2 has been a stubborn refusal from some quarters to
believe that achieving high performance on a CCM is possible without a design
or programming agony so great as to be offputting to all but the most dedicated
of "application designers/programmers." Even in the face of our evidence to the
contrary, the case has been difficult to make to some critics.

The case is especially hard because what is needed is to build a complete
hardware system, to create or cause to be created a programming environment worthy
of being called a programming environment, and then to develop a variety of different
applications so that the proof of concept is complete. Further, since the goal is
to demonstrate a competitive performance with more expensive and sophisticated
machines, the CCM must be big enough to do real work and to be part of complete
computational processing environments; it cannot be just a toy machine suitable
only for doing kernels of problems. To our knowledge, only two such machines
have been built that meet these criteria-Splash 2 and the larger of the DEC PAM
systems.

The goal in this book is to present the Splash 2 experience as a whole. Splash 2
was designed and developed in an iterative process from top to bottom to top and
back again.

1.2 THE CONTEXT FOR SPLASH 2

1.2.1 FPGAs

FPGAs in general have a wide spectrum of characteristics, but the FPGAs used for
CCMs have been of two distinct types. The Xilinx XC4010, a typical example of
one type, is a chip containing a 20 x 20 square array of Configurable Logic Blocks
(CLBs) [34]. Each CLB can serve one of three functions, either as two flipflops, or
as Boolean functions of nine inputs, or as 32 bits of RAM. The function use has
two 4-input functions, each producing an output; these two bits combine with a ninth
input in a 3-input Boolean function. The RAM usage simply takes advantage of the
fact that the 4-input functions are done with lookup tables to allow the input bits to
be viewed as addresses.

Connecting the CLBs to one another and to special Input Output _Blocks (IOBs)
on the periphery of the chip are routing resources running from CLB to CLB, skipping
one CLB, or running the full length of the chip. Configuration of the FPGA is done
by loading a bit file onto on-chip RAM.

In contrast to the relatively coarse granularity of the Xilinx chips, the second
type of FPGA, by Algotronix, Ltd., and by Concurrent Logic, Inc. (1, 13], is fine­
grained. The Algotronix chip is a 32 x 32 array of 2-input, I-output Boolean function
logic cells, with the signal lines running only point to point from one cell to its
neighbors in each rectangular direction. 3

2The Supercomputing Research Center was renamed the Center for Computing Sciences in May
1995, but will be referred to throughout this book as SRC.

3 Algotronix is now a part of Xilinx.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 21

Petitioner Microsoft Corporation - Ex. 1007, p. 5

Section 1.2 The Context for Splash 2 5

To a first-order approximation, the chips first marketed by Concurrent Logic and

now by Atmel4 resemble the Algotronix chip. Interestingly enough, the unscientific

best-guess estimates at the SRC in the fall of 1991, when Splash 2 was being designed,

suggested that the then-high-end XC4010 and Concurrent Logic CLi6000 chips had

roughly the same "compute power" in spite of the radically different architectures.

1.2.2 Architecture

There have been several architectures proposed and built for CCMs. Although any

taxonomy runs the risk of pigeonholing some particular machine into a category

distasteful to its designer, the following is a reasonable categorization.

Special-Purpose Devices. The first and most obvious use of FPGAs for

CCMs is in special-purpose machines built to perform a particular computation or

kind of computation and not intended to be very flexible, except perhaps from one

instance of the problem to the next. There have been several machines built for neural

network computations (Ganglion, for example [15]). Here, the computation is clearly

parallel, the individual compute nodes are neither standard nor very large, and one

feature of neural nets is that a moderately high degree of connectivity is desired

among the compute nodes; but the precise connectivity and multiplier constants at

each compute node vary from application to application. Other applications for which

special-purpose devices have been built include statistical physics, embedded control,

and network control [14, 19, 25, 33].
Somewhat more general than a special-purpose device, but still very much in

a narrow band of applications, is the use of an FPGA-based computer for rapid

prototyping, not just of ASICs or of single circuit boards, but of an entire system. A

CCM can be a complete system-processors, memory, data path, and so on-at the

block diagram level, and the characteristics and details needed can be programmed

into functioning hardware. Similarly, in an appropriate niche market, a CCM could be

used in low-volume applications, cheaper in development cost than special-purpose

hardware but faster than what one could obtain from a programmed microprocessor.

Coprocessors. One of the most tantalizing possible uses for FPGAs as com­

pute resources is as coprocessors tightly coupled to the main processor of a computer.

The development of RISC processors has meant that some instructions that used to

be part of a processor's repertoire are no longer present; these functions must now

be performed in software routines that are inherently slower. Some computations

have natural kernels that have never been part of the instruction set architecture of

any processor. Much of the PRISM [4, 5, 6, 32] work has focused on two points:

1) the language, compiler, and system issues involved in determining that a par­

ticular core computation occurs frequently enough that it warrants being put onto

the coprocessor, and 2) arranging the computation so that "hardware" exists in the

FPGA coprocessor when it is needed and that data can be transferred to and from

the coprocessor at speeds great enough to make use of the coprocessor worthwhile.

Several such machines are described in [17, 18, 21, 22, 23, 24, 30]. In a similar vein,

the SRC worked with Thinking Machines Corp. on the production of the "CM-2X,"

4National Semiconductor also had rights to and sold a version of this chip.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 22

Petitioner Microsoft Corporation - Ex. 1007, p. 6

6 Custom Computing Machines: An Introduction Chapter 1

described by Cuccaro and Reese [16], a 512-node CM-2 in which Xilinx XC3090
chips replaced the floating-point chips as coprocessors.

Attached Processors. As we have said, there have been two notable exam­
ples of FPGA-based attached processors-the PeRLe-0 and PeRLe-1 machines built
by DEC's Paris research lab [8, 9, 29, 31], and the Splash 1 and Splash 2 machines
built at SRC [2, 3, 20, 26]. The PeRLe-1 board featured 23 Xilinx XC3090 chips,
with the core computational unit being a 4 x 4 grid, connected by a TURBOchannel
to a DEC workstation. Splash 2, in contrast, is used primarily either as a linear array
of 16 XC4010 chips per board or with data being broadcast to the 16 chips simulta­
neously. Both have achieved supercomputer performance on a range of applications
including image processing, computational science benchmarks, data compression
and encryption benchmarks, and molecular biology.

Some machines, which have for one reason or another been built with a partic­
ular purpose in mind, are general enough that they would find wider application. The
CHAMP machine, described by Box [10], designed for image processing, is certainly
among these. Other examples are described in Quenot et al. [27] and Raimbault et
al. [28].

1.2.3 Programming

Notwithstanding the tremendous effort necessary to engineer the hardware of a CCM,
the fundamental test of these machines is, and no doubt will continue to be, a soft­
ware problem. Regardless of the architecture or the potential peak performance of
the machine, if the effort to achieve that peak requires either an extraordinarily im­
portant problem or a fanatically dedicated user, the machine cannot be termed truly
successful.

By this criterion we believe that CCMs have not yet silenced all their critics,
but that we have turned important corners and have achieved a genuine understanding
of the needed directions for research and development.

One problem in developing software for a CCM is that the programming process
is far more vertically complex than for a standard computer. At the highest level are all
the usual problems encountered when looking for performance from a computer-the
user must be generally aware of the architecture of the CCM and program accordingly.
But even from this top level working down, issues from deep within the FPGA must
be dealt with. Must one partition the computation onto distinct chips in advance, or
will an automatic partitioner be able to obtain sufficient utilization and speed? Even
after partitioning, will a given chip be so densely packed with logic that routing
delays will reduce the speed below a minimally acceptable level?

Apart from issues such as these, there are other factors to be considered. Logic
synthesis and placement and routing on Xilinx chips presently takes several minutes to
an hour for a chip with any substantial fraction of the logic used in a given application.
How long will users be willing to wait, in, this era of interactive computing, between
iterations of this process? To what extent will they be willing to program in a language
that is not Fortran or C? At what level can they or should they get involved in the
performance-improving details of logic synthesis and/or placement and routing in
order to gain the necessary speed improvements of a given application?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 23

Petitioner Microsoft Corporation - Ex. 1007, p. 7

References 7

These problems actually differ from one kind of CCM to another. In an attached
processor, the entire computation (or a definable portion of it) is taking place on the
CCM. In a coprocessor system, the CCM portion must be extracted from the existing
code (possibly with the help of compiler directives or annotations). The CCM code
is similarly different from one sort of machine to another. On a coprocessor, one
can assume that some effort might be expended by a user to optimize a particu­
lar "instruction," and the key issues would lie in recognizing its applicability and
arranging for data to be delivered to and retrieved from the coprocessor. In an
attached processor system, the CCM code could normally be much larger, allowing
for more optimization (and thus more of the structure of the source to be obscured).

A final issue in programming is worthy of mention. The Algotronix chips have a
feature that the Xilinx chips do not; part of the logic of the chip could be reconfigured
without having the rest of the chip affected by the change. The reason for this lies
in the different routing resources. On the Xilinx chip, no block of the chip can be
assumed to be free of signals routed to or from some other block of the chip. On the
Algotronix chip, however, the possibility of swapping hardware designs in and out
like programs in and out of virtual memory was incorporated in the design from the
beginning. The potential of such a feature for a CCM coprocessor is obvious.

REFERENCES

[1] Algotronix Ltd., The Configurable Logic Data Book, Algotronix Ltd., Edinburgh, Scot­
land, UK, 1990.

[2] J.M. Arnold, D.A. Buell, and E.G. Davis, "Splash 2," ACM Symp. Parallel Algorithms
and Architectures, ACM Press, New York, 1992, pp. 316-322.

[3] J.M. Arnold et al., "The Splash 2 Processor and Applications," Proc. Int'l Conj Com­
puter Design, CS Press, Los Alamitos, Calif., 1993, pp. 482-485.

[4] P.M. Athanas, "Functional Reconfigurable Architecture and Compiler for Adaptive
Computing," Proc. 1993 Int'l Phoenix Cumputer and Comm. Conj, CS Press, Los
Alamitos, Calif., 1993, pp. 49-55.

[5] P.M. Athanas and H.F. Silverman, "An Adaptive Hardware Machine Architecture for
Dynamic Processor Reconfiguration," Proc. Int'l Conj Computer Design, CS Press,
Los Alamitos, Calif., 1991, pp. 397-400.

[6] P.M. Athanas and H.F. Silverman, "Processor Reconfiguration through Instruction Set
Metamorphosis: Architecture and Compiler," Computer, Vol. 26, No. 3, Mar. 1993,
pp. 11-18.

[7] P. Bertin, Memoires Actives Programmables: Conception, Realisation et Programma­
tion, PhD thesis, Universite Paris 7, 1993.

[8] P. Bertin, D. Roncin, and J. Vuillemin, "Programmable Active Memories: A Per­
formance Assessment," in G. Borriello and C. Ebeling, eds., Research on Integrated
Systems, MIT Press, Cambridge, Mass., 1993, pp. 88-102.

[9] P. Bertin and H. Touati, "PAM Programming Environments: Practice and Experience,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alami­
tos, Calif., 1994, pp. 133-139.

[10] B. Box, "Field Programmable Gate Array Based Reconfigurable Preprocessor," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 40-49.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 24

Petitioner Microsoft Corporation - Ex. 1007, p. 8

8

(11]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

(25]

[26]

(27]

Custom Computing Machines: An Introduction Chapter 1

D.A. Buell and K.L. Pocek, "Custom Computing Machines: An Introduction," J. of
Supercomputing, Vol. 9, 1995, pp. 219-230.
S. Casselman, "Virtual Computing and the Virtual Computer," Proc. IEEE Workshop
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp.
43-49.

Concurrent Logic Inc., Cli6000 Series Field-Programmable Gate Arrays, Concurrent
Logic Inc., Sunnyvale, Calif., 1992.
C.P. Cowen and S. Monaghan, "A Reconfigurable Monte-Carlo Clustering Processor
(MCCP)," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif., 1994, pp. 59-66.
C.E. Cox and W. Ekkehard Blanz, "Ganglion-a Fast Hardware Implementation of
a Connectionist Classifier," IBM Research Report RJ8290, Proc. 199/ IEEE Custom
Integrated Circuits Conj, IEEE Press, Piscataway, N.J., 1991, pp. 6.5.1-6.5.4.
S.A. Cuccaro and C.F. Reese, "The CM-2X: A Hybrid CM-2/Xilinx Prototype," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1993, pp. 121-131.

B.U. Heeb, Debora: A System for the Development of Field-Programmable Hardware,
and Its Application to a Reconfigurable Computer, PhD thesis, VDF, Informatik Dis­
sertationen 45, ETH Ztirich, Ztirich, Switzerland, 1993.
B.U. Heeb and C. Pfister, "Chameleon, a Workstation of a Different Color," in H.
Grtinbacher and R.W. Hartenstein, eds., Field Programmable Gate Arrays: Architec­
tures and Tools for Rapid Prototyping, Springer-Verlag, Berlin, 1993, pp. 152-161.
H.-J. Herpel et al., "A Reconfigurable Computer for Embedded Control Applications,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alami­
tos, Calif., 1993, pp. 111-121.
D.T. Hoang, "Searching Genetic Databases on Splash 2," Proc. IEEE Workshop FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 185-192.
C. Iseli and E. Sanchez, "Spyder: A Reconfigurable VLIW Processor Using FPGAs,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alami­
tos, Calif., 1993, pp. 17-25.

C. Iseli and E. Sanchez, "A C++ Compiler for FPGA Custom Execution Units Syn­
thesis," Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 173-179.
C. Iseli and E. Sanchez, "Spyder: A SURE, SUperscalar and REconfigurable, Proces­
sor," J. of Supercomputing, Vol. 9, 1995, pp. 231-252.
P. Marchal and E. Sanchez, "CAFCA (Compact Accelerator for Cellular Automata):
The Metamorphosable Machine," Proc. IEEE Workshop FPGAsfor Custom Computing
Machines, CS Press, Los Alamitos, Calif., 1994, pp. 66-72.
S. Monaghan and C.P. Cowen, "Reconfigurable Multi-Bit Processor for DSP Appli­
cations in Statistical Physics," Proc. IEEE Workshop FPGAs for Custom Computing
Machines, CS Press, Los Alamitos, Calif., 1993, pp. 103-111.
D.V. Pryor, M.R. Thistle, and N. Shirazi, "Text Searching on Splash 2," Proc. IEEE
Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 172-178.

G.M. Quenot et al., "A Reconfigurable Compute Engine for Real-Time Vision Au­
tomata Prototyping," Proc. IEEE Workshop FPGAs for Custom Computing Machines,
CS Press, Los Alamitos, Calif., 1994, pp. 91-101.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 25

Petitioner Microsoft Corporation - Ex. 1007, p. 9

References 9

[28] F. Raimbault et al., "Fine Grain Parallelism on a MIMD Machine Using FPGAs," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1993, pp. 2-9.

[29] M. Shand, P. Bertin, and J. Vuillemin, "Hardware Speedups for Long Integer Multi­
plication," Proc. ACM Symp. Parallel Algorithms and Architectures, ACM Press, New
York, 1990, pp. 138-145. '

[30] S. Singh and P. Bellec, "Virtual Hardware for Graphics Applications Using FPGAs,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alami­
tos, Calif., 1994, pp. 49-59.

[31] J. Vuillemin et al., "Programmable Active Memories: Reconfigurable Systems Come
of Age," IEEE Trans. VLSI Systems, to be published in Mar. 1996.

[32] M. Wazlowski et al., "PRISM II: Compiler and Architecture," Proc. IEEE Workshop
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp.
9-17.

[33] L.F. Wood, "High Performance Analysis and Control of Complex Systems Using
Dynamically Reconfigurable Silicon and Optical Fiber Memory," Proc. IEEE Work­
shop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993,
pp. 132-142.

[34] Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif.,
1993.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 26

Petitioner Microsoft Corporation - Ex. 1007, p. 10
I' - ---

CHAPTER 2

The Architecture of Splash 2

Duncan A. Buell and Jeffrey M. Arnold1

2.1 INTRODUCTION

10

In this chapter we present the higher-level architecture of the Splash 2 system. This
architecture is what an application programmer would normally be expected to see.
Although the current admirable trend in general-purpose computing is to allow the
programmer to perform computations without being required to understand or even
be aware of hardware structures, it has always been the case in high-performance
computing that knowledge of architectural features is necessary. Programmers on
vector machines learn how to vectorize their algorithms and how to write code from
which compilers can extract vector computations. Programmers on massively parallel
machines must study 1/0 and data layout patterns. Similarly, programmers of Splash 2
must understand the architecture of the machine in order to make effective use of it.
More correctly, they must understand the architecture in order to make any use of it.
Unlike more common machines with a longer history, we have not yet reached the
point at which custom computing machines can be used without paying reasonably
close attention to the hardware.

Splash 2, as can be seen in the following discussion, has a substantial generality
in its structure. Although generality in an architecture can be a very desirable feature,
such generality can be anathema to effective use of the machine if all possible
details must be considered for routine use. Consequently, every effort was made

1 A version of this chapter appeared as Arnold et al. [I] and is used with permission.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 27

Petitioner Microsoft Corporation - Ex. 1007, p. 11

Section 2.2 The Building Blocks 11

to provide standard avenues for a programmer to use features of the architecture in
standard ways. The system was designed with the strong intent that most applications
would have data streaming linearly past the FPGA processing elements or have data
broadcast to them in SIMD fashion. These capabilities were thus supported both in
hardware and software and in ex.ample computations and programs, and a reading
of the architectural description should be done with a focus on how the architecture
supports these two models of computation.

2.2 THE BUILDING BLOCKS

GI

G2

G3
G4

Fl

F2

F3

F4

The basic building block from which Splash 2 is made is the Xilinx XC4010 FPGA [3,
4]. As mentioned in Chapter 1, the XC4010 contains a 20 x 20 array of Configurable
Logic Blocks (CLBs). The XC4010 CLB (shown in Figure 2.1) contains three lookup
tables and two flip-flops. Two tables, labelled F and G, can each implement any
Boolean function of up to four inputs. The outputs of the F and G functions can also
be combined with a ninth input, Hl, to form a single Boolean function of nine inputs.
The YF output of the CLB can be taken from the output of either the F table or the
H table. Similarly, the YG output can come from either the G or the H table. The
F and G tables can also be configured to appear as individual 16 x 1-bit RAMs or
a single 32 x 1 RAM. Not shown in Figure 2.1 is additional fast carry logic, which
allows a single CLB to implement a two-bit full adder. An additional wire allows the
carry-out of one CLB to be connected directly to the carry-in of an adjacent CLB.

Figure 2.2 illustrates the routing structure of the XC4000 series FPGA. Connect­
ing the CLBs are three types of signal routing resources including a single-length
interconnect between adjacent switch boxes (''S" in Figure 2.2), a double-length
interconnect between alternate switch boxes, and a set of long lines that span the
width and height of the chip. The switch boxes contain programmable switches that
allow each segment to connect to three others. Configuration of the FPGA is done by
loading a bit file into on-chip RAM; the hardware to do this in Splash 2 is implicit in
our description in this chapter of the general architecture and is discussed in greater
length in Chapter 6.

QG

QF

FIGURE 2.1 Xilinx XC4000 CLB
Architecture

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 28

Petitioner Microsoft Corporation - Ex. 1007, p. 12

12 The Architecture of Splash 2 Chapter 2

FIGURE 2.2 Xilinx XC4000 Routing
Structure

The 400 CLBs can be viewed as 800 flip-flops, which can in tum be thought
of as a maximum of twenty-five 32-bit "registers," where by "register" we mean to
include registers, adders, comparators, multiplexors, and similar basic structures. For
example, a 16-bit object requires eight CLBs. Adders, subtracters, and comparators
are implemented by "rippling" the fast carry output from one CLB to the next. In
order to reduce the signal propagation time for the carries, one would normally want
to have the CLBs physically adjacent to one another in the final design. The Xilinx­
supplied tools attempt to do this, and the "Hard Macros" supplied by Xilinx can be
used to guarantee that a logic object is placed into contiguous CLBs.

In addition to their use as registers, the Boolean function use of the CLBs is
necessary to implement the rather more random control logic that will exist in any
program, so the available number of "registers" is certainly always less than the
maximum.

2.3 THE SYSTEM ARCHITECTURE

Splash 2 is an attached processor system. Although it was not designed for the purpose
of being an attachment specifically for Sun workstations, the system as designed uses
a SPARCstation 2 as a host and attaches to the host through the SBus.

The overall system architecture is pictured in Figure 2.3. An SBus adapter card
is placed in the host and connects via a cable to the Interface Board of Splash 2.
The Interface Board and the Splash 2 Array Boards reside in a separate cabinet on a
Futurebus+ backplane.

Splash 2 is designed to execute either synchronously with the host or asyn­
chronously as an attached processor. Programs for Splash 2 are loaded on the system
by the host through the SBus connection. In some applications, the processing on
Splash 2 is then driven by a clock on the Interface Board, and data is delivered to and
taken from Splash 2 by DMA channels on the Interface Board. The Interface Board

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 29

Petitioner Microsoft Corporation - Ex. 1007, p. 13

Section 2.4 Data Paths

Optional
External

Input

Optional
External ____ _,

Output

FIGURE 2.3 Splash 2 System Architecture

13

can also be configured to accept clock and data from an external source; in these
applications, the role of the host is only to load programs and provide high-level
control. Also supported are synchronous execution of Splash 2 via software clocking
and slave data transfers.

The system architecture is designed to accommodate up to 16 Array Boards. A
system containing eight Array Boards was built and functioned correctly, but most
systems were built with two or four Array Boards in a 5-slot chassis that is 15"
wide, 28" deep, and 24" high. The largest possible system was never built because it
would have required an expensive special version of the cabinet. There seemed to be
no reason based on the eight-board system's operating characteristics to expect any
problems with the larger system, and assembling a larger number of smaller systems
from the same number of Array Boards allowed a greater breadth of applications to
be tested.

2.4 DATA PATHS

Each Splash 2 Array Board contains 17 Xilinx XC4010 FPGA chips [4] as its pro­
cessing elements (see Figure 2.4). Sixteen of these are connected in a linear array
to create a linear data path and the seventeenth provides a broadcast capability to
the other 16 chips. To each of these 17 chips is attached 512 Kbytes of memory.
Reflecting this basic design, there are three different paths by which data can be
delivered to or taken from the Array Boards.

The primary models of computation that were intended to be supported by the
Splash 2 architecture were a SIMD or broadcast-of-data model and a linear (but
not restricted to "systolic") model. The programmer viewing Splash 2 as a SIMD
machine sees, among other things, a 36-bit-wide data path from the Interface Board
down the SIMD Bus to each Array Board simultaneously. Xilinx chip XO on each
Array Board can then broadcast the SIMD Bus data to the other FPGAs on its Array

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 30

Petitioner Microsoft Corporation - Ex. 1007, p. 14

14

IJJ

From Prev
Board

RBus

The Architecture of Splash 2 Chapter 2

FIGURE 2.4 Array Board Architecture

Board. This mode of transferring data to the Splash 2 system was used, for example,
in the text matching computation described later in this book.

Viewed as a machine with a linear data path, the SIMD Bus can be used to
transmit data from the Interface Board to the first FPGA on the first Array Board.
The data can then be moved through the linear data path on that board, then to the
first FPGA on the second Array Board, and so on. Data from the last FPGA on the
last Array Board returns to the Interface Board via the RBus. The linear path is also
36 bits wide, and is bidirectional (except for the initial segment along the SIMD
Bus), so that data can be streamed in both directions for correlation computations;
this was done for some versions of the DNA sequence comparison program detailed
in Chapter 8. The definition of "last Array Board" is based upon the contents of
a register on the Interface Board. This register can be changed during a program's
execution, so the length of the processor array can be changed dynamically.

Data coming from the SPARCstation 2 host is 32 bits wide. The 36-bit-wide
data path in Splash 2 arises naturally from this and from the need and desire to have
tag bits on the data. Although data coming from an external signal could genuinely
be 36 bits wide, in most applications the tag bits are set and read by Xilinx FPGAs
on the Interface Board. Since the Splash 2 system executes asynchronously with the
host, it is routine for Splash 2 to be able to begin executing before data can be
delivered from the host. One use for the tag bits, therefore, is to serve as a "valid
data" signal. In linear mode, the Xilinx chips on the Array Boards would pass "data"
down the linear data path immediately upon startup, but would not actually begin
processing that data until a valid data tag appeared. Similarly, the Xilinx FPGA on
the Interface Board that was handling output would discard any "result" it received
until a valid data tag appeared on the output path.

Another use for the tag bits arises when the machine is used as if it were a
SIMD machine. It is possible to broadcast a 32-bit word to the broadcasting XO chip
as well as a 4-bit instruction opcode. (Actually, of course, there is no structure to the
36 bits being broadcast, so any bits not needed for data could be used for an opcode.)
This opcode could be used by XO to process the data or control the broadcast just as
with any other hierarchical SIMD machine.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 31

Petitioner Microsoft Corporation - Ex. 1007, p. 15

Section 2.4 Data Paths 15

External
Input

SBus
Address

SBus
Data

External
Output

These paths are not necessarily mutually exclusive, and these configurations
are not hardware-controlled by something like a mode bit. For example, it is possible
to use the SIMD Bus for broadcast of data to all FPGAs simultaneously, but then
to use the linear data path as a sort of "back door" for the return of results or for
necessary neighbor-to-neighbor c;ommunications. The only restriction on these data
paths is that the SIMD Bus can be used only for delivering data and not for returning
results to the Interface Board.

In either of the above modes, data from the Interface Board can come either
from the host or from an external signal (see Figure 2.5). Each Xilinx XC4010
FPGA on the Interface Board is programmable by the user (some standard programs
for common applications also exist). Xilinx chip XL (for "Xilinx Left") handles
incoming data for delivery to the SIMD Bus; in addition to setting the tag bits,
if necessary, it handles the DMA transfers from the host, possible serial-to-parallel
or parallel-to-serial data conversions, or similar massaging of the input data stream.
Xilinx chip XR similarly handles data on the RBus, which would normally be the out­
put path from the Splash 2 system. In some applications, especially in circumstances
when postprocessing of the results was necessary, XR actually performed that part
of the computation. This was true, for example, in the DNA sequence comparison
computation.

The third means by which data can be provided to or retrieved from Splash 2
is directly through the 8.5 Mbytes of memory on each Array Board. This memory
can be read by or written from the host as part of its normal address space via an

36

FIGURE 2.5 Interface Board Architecture

SBus
Extension

SIMD
Bus

RBus

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 32

Petitioner Microsoft Corporation - Ex. 1007, p. 16

16 The Architecture of Splash 2 Chapter 2

SBus extension independent of the FPGAs and their linear data path. The memory,
however, is not dual-ported; during such memory read/write operations, the FPGAs
are prevented from executing (and thus possibly accessing memory themselves).
Thus, this mode of data transfer is not intended to be suitable for highly interleaved
accesses of memory by Splash 2 and its host, but rather for bulk transfers before or
after large phases of a given computation.

2.5 THE SPLASH 2 ARRAY BOARD

2.5.1 The Linear Array

The Splash 2 Array Board is detailed in Figure 2.4. Each Array Board contains 17
Xilinx XC4010 FPGA chips as processing elements. Sixteen of these, XI through
X16, form the processing array and are connected with a 36-bit-wide data path
linearly and via a crossbar. To each FPGA is connected 512 Kbytes of memory.
Throughout the Splash 2 system, the normal data object has been assumed to be
32 bits, augmented where possible and sensible with four tag bits. Here, in the
connection from FPGA to memory, we find the one instance in which this design
has been compromised. Three 36-bit-wide data paths, 18 bits for a memory address,
and 32 bits for memory data would have left far too few of the 160 total pins for
controlling each FPGA. The compromise was to reduce the memory data width to
16 bits.

2.5.2 The Splash 2 Crossbar

The crossbar for Splash 2 is a truly unique feature. The 36-bit-wide path is made
by aggregating nine 4-bit Texas Instruments SN74ACT8841 crossbar chips [2]. Each
such chip can be loaded at startup with as many as eight different configurations,
with the particular configuration in effect being chosen under program control during
execution of a computation. Furthermore, this choice can be made almost on a tick­
by-tick basis.2 The potential thus existed at the beginning of the design of this
machine for each of the nine nibbles to have up to eight sources and destinations
independent of the other nibbles and varying among the eight possibilities during the
computation. This rather formidable choice of possibilities was only slightly reduced
when pin constraints on the FPGAs XI through X16 forced the low-eight nibbles to
be paired so that only five independent sources and destinations actually exist on the
machine as built. The crossbar, however, permits most "reasonable" configurations
to be realized relatively simply.

For example, in an edge-detection program written essentially just for practice
by Jeff Arnold, the first three chips on an Array Board are used to circularly buffer
incoming lines of pixels so that the image can be streamed continuously into the
board; the crossbar changes configuration at the end of every line of pixels to produce
the effect of a circular buffer of three input lines on which a 3 x 3 filter can be applied.

2This is "almost" tick-by-tick only because one cannot reverse source and destination in one clock
period.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 33

Petitioner Microsoft Corporation - Ex. 1007, p. 17

Section 2.6 The Interface Board and Control Features 17

In other applications, the presence of the crossbar permitted the programmer to
get beyond the rigid structure of a linear data path by "jumping ahead" in time/space
in order to maintain a tighdy pipelined, systolic-like computation. Although the spe­
cific chips chosen for the crossbar were the source of a later problem (more is said
about this in Appendix A), we haye been unable to find other examples of machines
in which processor-to-processor communication can be changed as rapidly or with
as much variety as in Splash 2.

2.5.3 Xilinx Chip XO and Broadcast Mode

The seventeenth Xilinx chip, labelled XO, performs several functions that provide
much of the flexibility of the Splash 2 architecture. Three bits from XO, controlled
by a program that must be loaded into XO, select which of the eight configurations of
the crossbar are in effect at any given point in time. For static configurations lasting
throughout a given phase of a computation, this "program" controlling the crossbar
is invisible to the programmer; if a varying crossbar is desired, however, the program
to control the crossbar must be written by the programmer as part of the complete
application.

The other major function of XO is to broadcast data received on the SIMD Bus
to the other 16 Xilinx FPGAs. This is possible because XO and X16 share wires into
the crossbar. Clearly, of course, both PPG As must not be permitted to drive signals
simultaneously on these wires, but this does not normally limit the range of usage;
in situations in which XO needs to serve as a broadcast chip, X16 normally does not
need access into the crossbar. When XO is broadcasting, X16 is receiving just like
any other of the FPGAs. Since the crossbar is bidirectional, XO can in fact receive
data from the crossbar as well, adding to its ability to control execution on its Array
Board.

Chip XO, like the other FPGAs, has a 256K x 16-bit memory attached to it
with a 16-bit data path. In most instances where custom computing machines such
as Splash 2 have been built, the use of memory for lookup tables has been important
in achieving high performance. The rather limited compute resources on an FPGA
requires the use of such memory to reduce the need for processing logic. This is
especially true of chip XO.

Most massively parallel SIMD machines have had a front-end processor; chip
XO can, to the limit of its own capability, serve that function in Splash 2. As is
described in Chapter 9 on the text processing application, XO can perform some
general computations and data preparation. It is also possible to use the four tag
bits (or, for that matter, any other of the 36 bits of the data path) as instruction
opcodes to chip XO. In such a situation, the memory would be used to store a
"microcode subroutine," which would be executed by a small finite-state or other
machine implemented on XO.

2.6 THE INTERFACE BOARD AND CONTROL FEATURES

A detailed description of the Interface Board is presented in Chapter 3 on hardware
and implementation details, but now we discuss several aspects of the Interface Board
that have to be considered as part of the higher-level architecture of the Splash 2

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 34

Petitioner Microsoft Corporation - Ex. 1007, p. 18

18

II

The Architecture of Splash 2 Chapter 2

system. To permit control of parallel programs running searches until some particular

event occurs, global or and global valid bits run to FPGA XO from each of the

16 FPGAs Xl through X16 on an Array Board. Global or and global valid bits

from XO of each Array Board are then wire-ORed on the backplane to a register

on the Interface Board and appear as inputs to FPGAs XL and XR on the Interface

Board. On each Array Board, the or and val id bits are bidirectional, allowing

further control by XO of computations on the Array Board.
The clock that drives Splash 2 as an asynchronous attached processor resides

on the Interface Board. Because various programs could be expected to run (and in

fact do run) at widely differing speeds, a clock module was chosen whose frequency

could be tuned to the speed at which the synthesized Xilinx chip program could run.

Chip XL has control of the clock-regulated computation on the Array Boards; the

. Array Boards can be single-stepped, n-stepped, or allowed to run freely. To reduce

the programming overhead for routine computations, several default programs for XL

were written at an early stage in the development of the system and can be selected

by a programmer from the library. This is also true of programs for the FPGAs on

the Array Boards.
The alert reader will already have noted that the address bits available from the

host on the SBus are insufficient to address all the memory potentially available on a

full-sized Splash 2 system. The address extension is done on the Interface Board; the

particulars of this process appear in Chapter 3 on hardware implementation details.

A final feature of the Splash 2 system is the ability to load or store a configu­

ration state into the Xilinx chips. Readout of the state is invaluable for debugging,

program optimization, and monitoring program behavior.

REFERENCES

[l] J.M. Arnold, D.A. Buell, and E.G. Davis, "Splash 2," Proc. ACM Symp. Parallel Algo­

rithms and Architectures, ACM Press, New York, 1992, pp. 316-322.

[2] Texas Instruments Inc., The SN74ACT8800 Family Data Manual (SCSS006A), Texas

Instruments Inc., Dallas, 1988.

[3] S.M. Trimberger, ed., Field Programmable Gate Array Technology, Kluwer Academic

Publishers, Boston, 1994.

[4] Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif.,

1993.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 35

Petitioner Microsoft Corporation - Ex. 1007, p. 19

CHAPTER 3

Hardware Implementation

Walter J. Kleinfelder and Jeffrey M. Arnold

3.1 INTRODUCTION

Figure 3.1 illustrates the system architecture of Splash 2. The system consists of
a Futurebus+ backplane enclosure containing one Interface Board and up to 13
Splash 2 Array Boards, 1 and a SP ARC station 2 host computer with Adapter Board.
The Adapter Board plugs into the host computer's internal SBus and extends the
address and data bus to permit host-resident programs to directly address the memory
and control registers in the Splash 2 system. The Adapter Board also provides the
interface logic required to permit Splash 2 to perform direct memory access (DMA)
transfers to and from the host memory and to generate SBus interrupts. The Splash
2 enclosure is connected to the host system via a cable between the Adapter Board
and the Interface Board. To complete the linear data path, each Array Board is also
connected to its two neighboring boards through a separate custom backplane in
addition to the Futurebus+ backplane.

During the course of the Splash 2 project, two different interface boards were
developed to provide the connection between the host computer and the Splash 2
Array Boards. The Development Board was designed with minimal functionality but
with an extensible wire-wrap core to allow prototyping of various features. The final
Interface Board was built in printed circuit technology and incorporates a number of
higher-level functions. Both interfaces extend the host address and data buses to the

1 This is the largest enclosure fabricated for the Splash 2 system. The architecture supports up to

16 Array Boards.

19

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 36

Petitioner Microsoft Corporation - Ex. 1007, p. 20

20

ll

Hardware Implementation Chapter 3

SBus Adapter

Sparcstation 2

FIGURE 3.1 Splash 2 System Architecture

backplane memory bus, permitting the host to read and write memory and memory­

mapped control registers on the Array Boards. All data transfers between the host

and the interface are 32 bits wide, the word size of the SBus. Because the 25 bits

of physical address space for a single SBus slot is insufficient to address the entire

Splash 2 memory space, the address is extended to 32 bits by a 7-bit bank register

on the Interface Board.
The Splash 2 system may transfer data to and from the host system memory

via OMA. The Interface Board contains up to three independent OMA channels

implemented as optional daughter boards that may be plugged onto the Interface

Board. In addition to supporting OMA, this daughter board arrangement allows

high-speed external input and output devices to be connected directly to Splash 2,

bypassing the host SBus. For example, an external video input may be brought

directly into Splash 2 by replacing one OMA channel with a specially designed

daughter board.
The linear data path extends from the Interface Board along the SIMD Bus,

through the set of Array Boards in daisy-chain fashion, and back to the Interface

Board along the RBus. The SIMD Bus is a 36-bit unidirectional bus driven by the

Interface Board and connected to each Array Board in the system. The Array Board

daisy chain and the RBus are 36-bit-wide bidirectional data paths. The linear data

path can therefore be used to pass data in either the "left-to-right" direction or the

"right-to-left" direction. Left-to-right is defined to be from the SIMD Bus through the

Array Boards and back on the RBus. Right-to-left is defined to be from the Interface

Board down the RBus to the last, or rightmost, Array Board through the daisy chain

and terminating at the first, or leftmost, Array Board. Two data streams can pass

simultaneously through the array in opposite directions, with one stream following

the left-to-right direction on a subset of the bits of the linear data path and the second

stream moving right-to-left on the remaining bits.
Each Splash 2 Array Board contains 16 Processing Elements, Xl-X16, with

direct 36-bit connections between adjacent elements. Each element can also commu­

nicate with all other elements on the same board through a programmable crossbar.

A seventeenth Control Element, XO, controls the crossbar and provides support logic.

The sixteen Processing Elements and the Control Element each consist of a Xilinx

XC4010 FPGA and a 256K x 16 static RAM.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 37

Petitioner Microsoft Corporation - Ex. 1007, p. 21

Section 3.3 Interface Board Design 21

3.2 DEVELOPMENT BOARD DESIGN

The Development Board was designed to serve a variety of purposes during the
early development of Splash 2. The original goal of the Development Board was
to support the initial debugging, of the Array Board design and the system software
while the design of the Interface Board proceeded in parallel. The flexibility of the
Development Board also made it a convenient vehicle on which to prototype various
components of the final Interface Board design. The Development Board eventually
became a critical tool for the instrumentation and debugging of the DMA transfer
protocol. A modified version of the Development Board was also used as a test fixture
for the DMA and Clock daughter boards.

The design philosophy behind the Development Board was to keep the hard­
ware simple by moving as much control as possible to the host software. This was
accomplished by placing virtually every signal on the backplane under the direct
control of the host computer. Readable and writable registers are connected to the
SIMD Bus and RBus data (32 bits each) and tags (4 bits each), and the RBus size
and direction controls. Read-only registers provide access to the interrupt request and
global OR signals. The system clock mechanism is a register that, when written by
the host, generates a single pulse of 100 nsec duration. To generate successive clock
pulses the host must write repeatedly to the clock register. Using this mechanism the
SPARCstation host is able to achieve a maximum clock rate of 4 MHz. To improve
the performance of stream-based applications an additional address is decoded that,
when written, loads the SBus data into the SIMD register and then generates a single
clock pulse.

The physical design of the Development Board consists of three main compo­
nents: the SBus interface, the backplane interface, and the wire-wrap core. The data
path portion of both the SBus and the backplane interfaces are implemented with
surface-mount printed circuit technology along two edges of the board. The center of
the board contains a large grid of holes for wire-wrap socket pins. This prototyping
area is used to implement the control state machines and to experiment with the
DMA and Clock circuits.

3.3 INTERFACE BOARD DESIGN

The Splash 2 system buses are implemented on the P896.2 Futurebus+ profile A
backplane with a 128-bit extension. The Splash 2 Interface Board plugs into Slot 1
of the Futurebus+ backplane and accepts the cable from the SBus Adapter Board
in the host computer. The Interface Board is responsible for generating all signals
required in the backplane and is structured to drive up to 16 Splash 2 Array Boards.
The principal functions of the Interface Board include SBus control and data transfer,
system clock generation, and pre- and postprocessing of data to and from the Array
Boards.

Figure 3.2 illustrates the Splash 2 Interface Board architecture. The host data
bus (SD[0:31]) is gated and buffered to drive the backplane memory data bus for
memory-mapped reads and writes. The host address bus (SA[2:24]) is buffered and·
decoded locally for accesses to the Interface Board. The Bank Register is loaded by
the host with a 7-bit value. The SBus address and the Bank Register together form

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 38

Petitioner Microsoft Corporation - Ex. 1007, p. 22

22

SBus

I IL

Hardware Implementation Chapter 3

Address

}-oA[2:31]

Decode

Slave D[0:31]

Control

ChanC Futurebus+

Readback Backplane

SA[2:24] Memory SIMD[0:35]

ChanB

SD[0:31] Chan A RBus[0:35]

Clock SPLCLK[l-13]

FIGURE 3.2 Interface Board Architecture

the Array Board memory address, A[2:31]. Since only 32-bit accesses are supported,

the two least significant bits of the address (A[0:1]) are always zero.

The slave control state machine receives the decoded address and generates

internal read and write timing signals in response to SBus slave cycles. The slave

machine also controls the timing of the SBus acknowledge signal, ensuring sufficient

access time for the various registers and memories. SBus read operations to the

Array Board are acknowledged in 9 SBus clock cycles, while write operations are

acknowledged in 8 cycles. In accesses to the facilities on the Interface Board, writes

are acknowledged in 3 cycles and reads in 4 cycles.
The clock circuit generates the system clock signal for the Splash 2 Array

Boards and can be programmed by the host to various frequencies. During execution

of Splash 2 programs this signal clocks the user-defined circuitry. To aid debugging

of applications, the clock generator can be programmed to stop, single-step, or step

a fixed number of times. To prevent OMA data overruns or underruns the clock

generator can also be stopped and restarted by user-defined logic in XL or XR. To

minimize the clock skew across the system, separate clock signals (SPLCLK) are

driven to each Array Board.
XL and XR are user-programmable XC4010 FPGAs that provide the interface

between the OMA channels and the · backplane bus. XL controls Channels B and

C and drives the 36-bit SIMD bus. XR controls Channel A and can receive data

from or drive data to the 36-bit RBus. The direction of the RBus is determined by

the RDIR output of XR. Data may also be passed between XL and XR through a

separate 36-bit bidirectional path.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 39

Petitioner Microsoft Corporation - Ex. 1007, p. 23

Section 3.3 Interface Board Design 23

3.3.1 DMA Channel

The DMA channels perform SBus-compatible burst transfers between the host mem­
ory and a 256-word FIFO. Each DMA channel contains an address register, a transfer
count register, and a control register. The address register contains the address of the
host memory buffer. The transfer count register contains the number of burst transfers
to perform. The control register contains an enable bit and a direction bit. All DMA
transfers are performed in 16-word bursts, the largest supported by the SBus. The
FIFOs contain programmable high- and low-watermark registers, which permit the
DMA channel to determine when to request a transfer. When the channel is enabled
and the direction bit is set to read from the host memory, if the FIFO has space for
at least 16 words, then an SBus READ operation is requested. Similarly, when the
direction bit is set to write to the host, memory, and if at least 16 words of data are
available in the FIFO, then an SBus WRITE operation is requested.

After each burst transfer completes the address and transfer count registers are
updated. The address register is incremented by 64 to point to the next block of
16 words (64 bytes), while the transfer count is decremented by 1. When the transfer
count reaches zero an SBus interrupt is requested.

The SBus side of the DMA channel is 32 bits wide, but the FIFO and the
Splash 2 data paths are 36 bits wide. When transferring data from the host, the word
is extended to 36 bits by concatenating the contents of a 4-bit tag register to the data.
When transferring data to the host, the 4 tag bits are saved in a register.

The DMA channel allows direct loading and unloading of the FIFO data from
the host by mapping the input and output data registers of the FIFO into the host's
address space. This feature allows the host operating system software to handle the
boundary conditions of transfers that are not aligned on 64-byte boundaries. See
Chapter 6 for more details on DMA data alignment.

3.3.2 XL and XR

The primary function of the two user-programmable FPGAs, XL and XR, is to per­
form pre- and postprocessing on the input and output data streams. DMA Channel A
is controlled by XR, while Channels B and C are controlled by XL. Both XL and
XR receive the Splash 2 system clock and a free-running clock that is synchronous
with the system clock. Either XL or XR may stop and restart the system clock when
the FIFOs, in their respective DMA channels, are empty or full. When XL or XR
are used to stop the system clock the free-running clock may be used to drive the
controlling state machine, allowing it to restart the system clock when the condition
has cleared.

DMA Channels Band C share a common 36-bit-wide data bus with XL, which
may select the channel from which to receive data. XL is also responsible for driving
the SIMD bus, typically with the input data from one or both of Channels B and C. XR
sits between DMA Channel A and the RBus and is typically used to postprocess result
data from the RBus before sending it back to the host through Channel A. A separate
36-bit bidirectional bus connects XL and XR. This bus may be used to coordinate
clock control, to close the loop through the linear array by passing data from the
RBus back to XL and the SIMD bus, or to pass input data from XL through XR to the
linear data path in the right-to-left direction. For example, an application can receive

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 40

Petitioner Microsoft Corporation - Ex. 1007, p. 24

24 Hardware Implementation Chapter 3

input data from both Channels B and C simultaneously, sending the Channel B data

along the left-to-right direction and the Channel C data moving from right to left.

3.3.3 Interrupts

The Interface Board receives up to 16 individual interrupt requests, one from each

Splash 2 Array Board. Interrupt requests can also be generated by XL, XR, the

DMA channels, and the clock. The interrupt circuit logically ANDs each request

with a corresponding bit in a mask register and then ORs these results together to

form a single SBus interrupt request which, when enabled by a bit in the control

register, is passed to the SBus. When handling an interrupt, the host can read the

contents of the interrupt register to determine which of the possible sources made

the request. If the request came from one of the Array Boards, the host can then

interrogate a similar register on the requesting Array Board to determine which PE

initiated the request.

3.3.4 Clock

The system clock can be selected from two possible sources: the programmable

clock generator or a software-generated clock pulse. The clock generator, or "hard­

ware clock," is a daughter card that plugs onto the Interface Board. The heart of the

hardware clock is an Analytic Instruments FS-30 programmable frequency synthe­

sizer, which has a frequency range of less than 1 Hz to 30 MHz. The frequency of the

system clock is set by the host and is asynchronous with respect to the SBus clock.

Both XL and XR have the ability to immediately stop the system clock, typically in

response to a DMA channel nearing the full or empty mark. The host computer also

has the ability to start and stop the clock generator, and may program the generation

of a specific number of clock cycles. Special synchronization circuitry ensures that

the first and last clock pulses are not truncated. The output signal has a nominal duty

cycle of 50% plus or minus 5 nsec.
The "software clock" is a register very similar to the clock register on the Devel­

opment Board. In the interest of performance, a bit in the control register determines

whether writes to the software clock generate one or two pulses of 100 nsec each.

Another bit in the control register selects either the hardware clock or the software

clock to drive the system clock.

3.3.5 Programming and Readback

The configuration and state readback mechanisms for all of the user-programmable

FPGAs are implemented on the Interface Board using a single 256K x 32 memory

to store the bitstreams. All of the FPGAs on a single Array Board are programmed

simultaneously using the serial configuration mode of the XC4010. Prior to program­

ming, the host merges the 17 individual bitstreams (one each for XO through X16)

into a single 17-bit-wide stream. This operation is known as "comer turning." The

comer-turned configuration stream is then loaded into the Interface Board memory,

and the programming sequence is begun by an on-board state machine. This state

machine reads sequential locations from the memory and performs write operations

over the SBus extension to a special address on the selected Array Board. A base

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 41

Petitioner Microsoft Corporation - Ex. 1007, p. 25

Section 3.4 Array Board Design 25

address register contains the location of the first word in the bitstream and configu­
ration stops when the address counter reaches the top of the memory. Seventeen of
the 32 bits are used to store the data for the 17 user-programmable FPGAs on the
Array Board. Two additional bits may optionally contain the configuration streams
for XL and XR. The remaining pits of the Interface Board memory are not used.

The same basic mechanism is used to perform state readback. Another state
machine on the Interface Board reads the internal state information from all
17 FPGAs on a given Array Board and stores the data into successive locations in
the Interface Board memory. Readback terminates when the address counter reaches
the top of memory. Once the FPGA state information is stored in the Interface Board
memory the SPARCstation host can retrieve the specific state bits of interest to the
programmer.

Since the configuration and readback operations employ the SBus extension
between the Interface Board and the Array Boards, during both configuration and
readback the Splash 2 system will not respond to the SBus; any host attempt to access
the Splash 2 system during one of these operations will result in a bus time-out.

3.3.6 Miscellaneous Registers

There are several control and status registers on the Interface Board that are ac­
cessible to the host. The configuration and readback mechanism contains an 18-bit
base address register and a control register with a direction bit (programming versus
readback) and a start bit.

The main control and status register (CSR) contains the "bypass" mode bit
which, when set, disables XL and XR and enables the bypass registers. These regis­
ters allow the Interface Board to mimic the behavior of the Development Board. A
separate bypass register contains the RBus size and direction bits and the broadcast
bit for use in bypass mode.

The CSR also provides access to the signals that control the programming and
readback of XL and XR, including the PROGRAM, INIT, and DONE pins of the Xilinx
chips. Another signal, RBTRIG, is used to initiate the readback operation in XL and
XR. The clock source select and the interrupt enable bits are also in the CSR.

There are three levels of reset available on the Interface Board. At the lowest
level is the system reset signal, which is connected to the host computer's power­
on reset. At the second level is the "panic" bit in the CSR. This signal is used to
reset various control state machines on the Array Boards. At the highest level is
the "program reset" bit in the CSR, which is connected to the individual Processing
Elements' global set/reset (GSR) signal.

The Interface Board also contains a 32-bit read-only identification (ID) register
implemented using DIP switches. The ID switches are set to contain board version
information and a unique serial number.

3.4 ARRAY BOARD DESIGN

Figure 3.3 shows a block diagram of the Array Board architecture. The Array Board
contains 16 Processing Elements (PEs) arranged in a linear array. A seventeenth
FPGA-memory pair, referred to both as the Control Element or as the seventeenth

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 42

Petitioner Microsoft Corporation - Ex. 1007, p. 26

26

D[0:31)

Prev[0:35]

SIMD[0:35)

RDir

RBus[0:35)

RSize

Next[0:35]

Hardware Implementation Chapter 3

FIGURE 3.3 Array Board Architecture

Processing Element PE0 in some applications, manages the crossbar and can send
data to or receive data from the crossbar. The 36-bit linear data path enters the array
from the previous board, continues through adjacent PEs, and exits the array to the
next board. The first, or leftmost, board in the system detects that it is in slot 2 and
receives its input data from the SIMD bus instead of the previous board connection.
The last, or rightmost, board is determined by comparing the slot number of each
board to the RBus Size value on the backplane. The selected board then either sends
data to the RBus or receives data from the RBus, as determined by the state of
the RDIR backplane signal. Array Boards that are not at either end of the array
simply communicate with adjacent boards via unbussed pins in a custom backplane
extension.

Along the front edge of the Array Board are 18 light-emitting diodes (LEDs).
One LED (green) is connected directly to power and indicates whether the board is
receiving power. A second LED (red) is connected to an output pin of the Control
Element (XO). The remaining 16 LEDs (amber) are each connected to an output pin
of each PE. These LEDs are available for use by application programs and are used
extensively by the diagnostic software.2

3.4.1 Processing Element

The organization of the Splash 2 Processing Element is shown in Figure 3.4. The
PE consists of a Xilinx XC4010 FPGA and 256K x 16 RAM. The RAM is imple­
mented with four 256K x 4 static RAM chips with 20 nsec access time mounted
on a ZIP package. The memory control state machine is implemented in a 22V10
programmable logic device (PLD).

The Processing Element FPGA has four principal data paths, corresponding
approximately to the four sides of the chip. There is a 36-bit-wide bidirectional data
path to each of the two neighboring PEs (to the left and right), a 41-bit interface to
the central crossbar, and a 36-bit interface to the local RAM. The crossbar interface
consists of a 36-bit-wide bidirectional data path and five output enable control signals.

2One programmer wrote a program that scrolled a banner of text across the boards.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 43

Petitioner Microsoft Corporation - Ex. 1007, p. 27

Section 3.4 Array Board Design 27

256K X 16
Delayed Clock Memory

SBus Read
Memory cs
Control WE

SBus Write OE
RD WR

18 16

SBus
Address

Address

SBus
Data

Data

Xilinx
Inhibit

XC4010

To Left To Right
Neighbor Neighbor

36 36

36 s

To Crossbar

FIGURE 3.4 Splash 2 Processing Element

The 36 bits of data are arranged in four groups of 8 bits and one group of 4 bits,
with each group controlled by a separate output enable. The RAM interface consists
of a 16-bit data path, an 18-bit address, and separate read and write control signals.

The memory control device is used to present a purely synchronous interface
to the programmer. To initiate a memory read operation the FPGA asserts the read
control signal and the address at the rising edge of the system clock. Data from
the memory is available on the next rising edge of the clock. To initiate a write
operation the FPGA asserts the write control signal, the address, and the data on
the rising edge. The write enable pulse is generated by the memory control PLD
from a delayed version of the system clock. The interface circuitry and the RAM
timing guarantee that a write pulse is not applied to the RAM until the address
and data have met the setup requirements. The write pulse is released in time to
meet the required hold time. To guarantee that these constraints are satisfied, it
is necessary to register the memory interface signals in the IOB flip-flops of the
FPGA.

There are several other signals available to the Processing Element, including:

• system clock

• broadcast bit from the control element

• program reset signal from the Interface Board

• two handshake register bits

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 44

Petitioner Microsoft Corporation - Ex. 1007, p. 28

28 Hardware Implementation Chapter 3

• global OR result and valid bits connected to the control element

• Xilinx Disable bit

• LED control signal

3.4.2 Control Element

The organization of the Control Element (XO) is very similar to that of the Processing

Element, consisting of a Xilinx XC4010 and a 256K x 16 RAM. The memory interface

of the Control Element is identical to that of the Processing Element. The 36-bit

SIMD bus is connected directly to XO. XO is responsible for selecting the crossbar

configuration in use at any given time through a 3-bit "crossbar select" port. XO may

also read or write the 36-bit crossbar through the port it shares with PE Xl6. An

output port allows XO to override X16's crossbar output enables, effectively taking

control of the 36-bit data path.
The bidirectional global OR and Valid bits from each of the 16 PEs are con­

nected to XO. XO in tum may also drive the open collector systemwide global OR and

Valid signals on the backplane. These signals are intended to be used to permit XO

to perform Array Board-level synchronization, and then to participate as the board's

representative in systemwide synchronization.
The single-bit broadcast signal from the backplane is an input to XO, which

may then drive the board-level broadcast signal to the 16 PEs.

3.4.3 External Memory Access

The SBus extension bus permits the host to directly read and write the PE memories.

Since the PE memory is not dual-ported, the address and data bus of each memory

is shared between the FPGA and the SBus extension. Therefore it is necessary to

ensure that the FPGA does not interfere with SBus accesses to the memory, and

vice versa. The host accomplishes this by stopping the system clock and asserting

the "Xilinx Disable" signal in the Array Board control register prior to any memory

access. The system software must guarantee that the Xilinx Disable pin of each PE

is wired to the internal Global Tri-State (GTS) signal within the FPGA. Once the

memory access is complete, the host must clear the Xilinx Disable bit and restart the

clock.
References from the host to the PE memories are multiplexed such that each

32-bit host access is converted to two 16-bit accesses to sequential memory locations.

The RAM multiplexor is clocked with the SBus clock, not the programmable system

clock, so the memory can be accessed by the host while the system clock is stopped.

3.4.4 Crossbar

The crossbar network permits the communication between processing elements via a

selection of preprogrammed configurations. The Texas Instruments SN74ACT8841

chip, shown in Figure 3.5, is used for this application. The 8841 chip has sixteen

4-bit bidirectional ports, which may be connected in any desired pattern. Each port's

output may be selected from any of the other ports. The output port selection is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 45

Petitioner Microsoft Corporation - Ex. 1007, p. 29

Section 3.4 Array Board Design

Select

~
Port I
~

Port 2

FIGURE 3.5 Architecture of the TI 8841 Crossbar Chip

~
Port 16

29

controlled by an 8 x 4 register file. The register file entry in use during a given
clock cycle is chosen by the external 3-bit Select signal. The output of each port is
independently controlled by a separate output enable pin.

On the Splash 2 Array Board, nine 8841 chips are coupled to form the central
crossbar. The output enable pins are grouped together in pairs to form five controls
for each Processing Element. Each FPGA therefore supplies five signals to control its
corresponding crossbar connection, arranged as four 8-bit paths and one 4-bit path.

The crossbar array is preloaded by the host with up to eight connection config­
urations. During execution, three bits from the Control Element XO select the desired
preloaded configuration, which XO can change from clock cycle to clock cycle. The
crossbar chips are individually loaded, since their configurations will not necessarily
be identical.

3.4.5 Programming and Readback

Configuration and readback of the Array Board FPGAs is accomplished by perform­
ing write and read operations over the extended SBus. The P ROGRAM bit in the Array
Board control register causes all 17 FPGAs (XO-Xl6) to enter program mode. Sub­
sequent writes to the "configuration" register cause each FPGA to extract one bit
from the data word and load it into its internal configuration. The INI T and DONE

status signals are available as separate registers to be read by the host.
State readback is performed in a similar manner. When written, the RBTRIG

bit in the control register puts all 17 FPGAs in readback mode. Subsequent reads
from the configuration register return the internal state information to the SBus. An
on-board state machine generates the configuration clock (CCLK) timing for both
configuration and readback.

3.4.6 Miscellaneous Registers

Most of the registers on the Array Board and the SBus address decoding are actually ·
implemented in an eighteenth Xilinx FPGA. This FPGA is not user-programmable,
however, but is configured at power-on from a set of on-board PROMs. The "panic"

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 46

Petitioner Microsoft Corporation - Ex. 1007, p. 30

30 Hardware Implementation Chapter 3

signal from the Interface Board will also force a reload of the controller's configu­
ration.

All of the programmable features and mode controls are accessible to the
host through the SBus address space. All registers are aligned on 32-bit boundaries.
The registers are organized into two separate pages of the address space, one to be
available in user mode and the other accessible only in supervisor mode. The user
mode registers include the control register, the handshake register, the configura­
tion registers, the version and serial number register, and the crossbar configuration
registers. The supervisor mode space contains the interrupt status and mask registers.

The control register contains a number of signals effecting the operation of
the Array Board, including the PROGRAM and RBTRIG for loading and unloading the
FPGAs. The control register also contains the Xilinx Disable signal used to force the
FPGA pins to their high impedance state and the Handshake Direction signal used
to set the direction of the handshake register. The configuration registers include
addresses from which the host may read the INIT and DONE status signals from
each FPGA and the location to which the configuration bitstream is written or the
readback stream is read.

The handshake register is an asynchronous communication channel between
the host and the Processing Elements. One bit of the handshake register is connected
to each of the 17 FPGAs. The bits themselves are bidirectional, but the direction
of all 17 bits is determined by the Handshake Direction bit of the control register.
The version and serial number register contents are hard-coded in the controller's
configuration PROM. The version number changes with each revision of the controller
PROM program, and the serial number is unique to each Array Board.

The crossbar configuration information is loaded into a set of 4-bit registers
within each of the nine TI 8841 crossbar chips. These registers are mapped into the
SBus address space of the Array Board, allowing the host to write directly to the TI
chips.

The interrupt status register latches the state of the interrupt bits from each of
the 17 FPGAs. The controller combines the latched status with the mask information
to form the board-level interrupt signal. The interrupt status register is cleared when
read by the host.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 47

Petitioner Microsoft Corporation - Ex. 1007, p. 31

CHAPTER 4

Splash 2: The Evolution
of a New Architecture

Duncan A. Buell

The preceding two chapters have described the hardware designed and built as
Splash 2. It is important, however, to trace the design process that led us to the
artifact we have today, otherwise there is the danger of seeing only the extant ma­
chine and not the potential variations. In this chapter we examine the decisions that
led to the final architecture.

4.1 SPLASH 1

The germ of the idea for Splash 1 [2] apparently came from Dick Kunze and Paul
Schneck at SRC in late 1986. Discussion took place among Kunze, Schneck, and
Dick Lipton from Princeton, in part due to a realization that a Splash-like processor
would be a generalization of the special-purpose P-NAC (Princeton Nucleic Acid
Comparator) that Lipton was having built. P-NAC was designed to execute the edit­
distance (approximate string matching) algorithm used in comparing DNA sequences
against each other.

By the spring of 1987, the essential Splash 1 architecture had been laid out;
at a meeting among the SRC and Princeton principals held at SRC on February 27,
1987, the linear array of Xilinx chips and memories had already taken shape. As with
any such new system, there were several variants that were considered from time to
time but never adopted. One early thought was that a 128-board system could be -
built. This never got beyond the concept stage. Another idea that surfaced again and
again and resurfaced briefly in the later design of Splash 2 was the possibility of

31

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 48

Petitioner Microsoft Corporation - Ex. 1007, p. 32

32 Splash 2: The Evolution of a New Architecture Chapter 4

including floating-point chips in the array path. This idea was studied for Splash
1 but never adopted, the stumbling block being in part that the floating-point chips
operated at a fixed speed whereas Splash 1 designs ran at speeds that were dependent
on the programming. This implied that the floating point chips could not be substi­
tuted one for one with Xilinx chips, leading to rather complicated control paths.
Further, while applications that made use of the Xilinx capability-reconfigurable
processor architecture-and applications that made use of the floating-point power
could be envisioned, there seemed only a limited benefit from mixing the two. Given
that numerous floating-point accelerators exist and that the real point of the exper­
iment was to demonstrate the power of FPGAs for computing, there seemed to be
no overwhelming reason to add the floating-point capability to Splash 1. In the later
design of Splash 2 the subject came up once again. By then the consensus was
that Splash 1 was and Splash 2 would be processors with a niche that lies out­
side the world of floating-point computation. Given more serious consideration for
Splash 2, however, was the idea of including a fast microprocessor on each Array
Board to provide more general compute capability close to the Xilinx chips them­
selves.

The final Splash 1 processor was a single multiwire board that plugs into the
VMEbus of a Sun workstation (see Figure 4.1).

Each board contained 32 Xilinx XC3090 FPGA chips XO through X31 as
PEs connected in a linear array by a 32-bit-wide path. Chips XO and X31 could
be similarly connected to form a ring, were it necessary to route data around the
ring more than once or to send data in both directions through the FPGAs. Data
synchronization on and off the board was handled by a pair of FIFOs controlled by
XO and X3 l, respectively. Between each pair of interior Xilinx chips was a 128K x 8
RAM with an 8-bit-wide path to the FPGAs.

The Xilinx XC3090 chips in Splash 1 had a maximum clock rate of 32 MHz.
To accommodate Splash 1 designs that could not be run at maximum speed, usually
due to placement and routing problems or to the inability of the VMEbus to deliver
data at a sufficiently high rate, the clock rate could be set in factors of two from
1 MHz to 32 MHz.

A three-Xilinx-chip (one for input from the host, one for output to the host, and
one in the middle) Splash 1 board, nicknamed PUDDLE, was wire-wrapped by hand
in order to gain an understanding of the hardware and expose unforeseen problems.
This board became operational in March of 1988. When it had been thoroughly
debugged, a full 32-chip board was wire-wrapped and become operational at the end
of 1988. Finally, schematics for the multiwire "production" version were finished in
mid-February of 1989, and the final boards were fully tested just in time for SRC's
1989 summer workshop on Splash 1 applications.

Programming of Splash 1 was originally done with the Xilinx-supplied XACT
editor; later tools included the Viewlogic schematic capture package. From the outset,
however, there were difficulties in developing application codes; especially for indi­
viduals unused to hardware design, programming with XACT was not easy. To make
the machine more accessible, the Logic Description Generator (LDG), a higher-level
language whose output could be mapped to the Xilinx chips, was designed and imple­
mented at SRC through the fall of 1988 and the winter of 1988-89 by Maya Gokhale
[3]. In addition to the software for direct execution, a debugger called Trigger was
used extensively.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 49

Petitioner Microsoft Corporation - Ex. 1007, p. 33

Section 4.1 Splash 1 33

FIGURE 4.1 Splash I Architecture

These new tools permitted some escape from the low-level details of hardware
design, but programming the Xilinx chips was still a nontrivial task. Problems existed
at several levels. Splash 1 programming was still hardware design. Counters and
sequencers had to be explicitly constructed and connected to the logical units that
they controlled. Timing information about a design was difficult to obtain, and the
inability to perform complete state readback and restore hindered the debugging
process. One of the hardest problems centered on the apr (Automatic Place and
Route) software from Xilinx. This program ran slowly and often failed to completely
route a chip's design. It was often, if not usually, necessary to provide apr with
hand-placed designs in order to get fully routed designs with acceptable execution
speeds as a result of apr 's work. One major focus-which has been successful-in
moving from Splash 1 to Splash 2 has been to eliminate the need for such low-level ·
effort in order to get a working design. Programmers have for years been accustomed
to the fact that, if speed is the object, the working program (usually in a high-level

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 50

Petitioner Microsoft Corporation - Ex. 1007, p. 34
I

34 Splash 2: The Evolution of a New Architecture Chapter 4

language) is only a first step; detailed study of execution characteristics and possibly
rewriting kernels in assembly language may be necessary. The problem with this
"make it right before you make it better" approach for Splash 1 was the level of
effort and detailed knowledge necessary to make it right in the first place.

In spite of difficulties, work continued on Splash 1. Several boards were finished
and LOG was made robust by the summer of 1989, when Splash 1 applications
were the focus of an SRC summer workshop. It was during this workshop and
immediately afterward that the DNA sequence comparison program was written and
optimized. This became, by the fall of 1989, a submission to the 1989 Gordon Bell
prize competition, in which the SRC program received an honorable mention.

It is · appropriate in this history to mention one path that was explored for
Splash 1 and then abandoned. It was realized early on that getting data to Splash 1
could be a problem. An apparent solution was to install a VSB bus memory board,
available commercially from Motorola. It was thought that loading this board with
data from the host would allow Splash 1 to access large data streams multiple times
without involving the host. Hardware for this was added, but experiments showed that
with most applications there was no appreciable improvement in performance, and
occasionally some performance degradation occurred. Although some applications
did use this "cached" data, most simply accepted a stream for one-time processing
from the host, making the VSB board unnecessary.

4.2 SPLASH 2: THOUGHTS ON A REDESIGN

Splash 1 proved to be very successful, as shown in Gokhale et al. [2], although it was
not without its limitations. When the design of a follow-on system was contemplated,
the first item of business was to address those limitations.

1. Programmability: Splash 1 was programmed for the most part in Gokhale's
LOG [3]. Although LOG had the obvious advantage of having been done
expressly for programming Splash 1, it had the disadvantages associated with
being an internally developed system. In addition, the Xilinx tools were unequal
to the task of supporting code development for Splash 1. Users often had to
perform placement themselves in order for the apr tool to succeed in routing
a design. Further, many of the problems in debugging a design required more
detailed knowledge of the Xilinx design than could be obtained from the tools.
These problems combined made Splash 1 difficult to program by individuals
unused to hardware design. One of the key issues in planning Splash 2, then,
was to make it programmable, to make it a processing system that would be
usable, without (undue) agony, by a wide range of programmers.

2. 1/0 Speed: Many of the original applications for Splash 1 were strongly 1/0-
bound. The VMEbus can deliver about 4 Mbytes/sec (in slave mode; VME
using OMA would be significantly 'better) from the host to a Splash 1 board,
but an application running at 16 MHz needs a bandwidth of 32 Mbytes/sec
in order to consume and produce one character per clock tick. Any follow-on
system would have to overcome the 1/0 bottleneck of Splash 1 in order to be
truly successful.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 51

Petitioner Microsoft Corporation - Ex. 1007, p. 35

Section 4.2 Splash 2: Thoughts on a Redesign 35

3. Memory: The primary uses of the memory chips in Splash 1 were for lookup
tables and for storing microprograms to be executed by state machines imple­
mented in the Xilinx chips. In some instances the lookup tables were small,
but in some applications, such as integer multiplication, a single reference to
memory would replace complicated and slow logic and the speedup from using
lookup tables would be limited only by the memory size. The memory use was
encumbered, however, by problems in sustaining peak rates, by the fact that
memory loads had to be done down the linear data path of the Splash board,
and by the fact that the memories were connected to two Xilinx chips on the
linear data path. This last problem required that programmers exercise great
care to separate in time the access to memory and the transmission of data
from Xilinx to Xilinx. On the other hand, the ability of one Xilinx chip to store
data into a memory that the next Xilinx chip would read provided on Splash 1
a communication capability that was useful but which was not retained in the
Splash 2 design.

The Splash 1 memories were also not as large as desirable for many
applications, and the requirement that memory reads and writes take place by
passing data through the FPGAs caused unnecessary complications, requiring
that a special Xilinx program for memory read/write be written and used.

4. Multiboard Scalability: Some Splash 1 applications quite naturally used (or
would have used) more than one Splash 1 board either for larger, more complex
computations or for multiphase computations. In order to use a multiboard
system, it was necessary to bring the data back to the Sun host from a Splash
1 board and then to send it from the host to the next Splash 1 board. This
aggravated the 1/0 bottleneck problem.

5. Data Path: Splash 1 had only a single data path-a linear route through the 32
Xilinx chips. While the linear (which is sometimes systolic) paradigm is very
powerful and its application to Splash has been very successful, there were
many applications that either could not be done or whose efficiency suffered
because the linear path was the only data path. Given that high performance
seemed to require careful control of the data pipeline past the somewhat limited
processing resources, the cost of transmitting data to the appropriate processing
element needed to be diminished.

In Splash 1, the data from the host passed directly into the Splash board,
so that handling of the FIFOs and any preconditioning of the data (merging
of two input streams, for example) had to be done by the · Xilinx chips on the
Splash board. This often complicated the programming. Strong suggestions had
surfaced early that performance might be substantially improved if the data
preconditioning were moved out of the general processing array.

Finally, on Splash 1 it was often observed that 32-bit data widths were
sufficient for the data but that extra tag bits sent along with the data would
have been very useful. Not having the extra bits either complicated the design of
programs or required extra clocks (a major negative factor in a highly pipelined
program) in order to transmit the necessary control information from FPGA to
FPGA. An extension of the input/output data path width from 32 to 36 bits
would probably remedy this shortcoming.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 52

Petitioner Microsoft Corporation - Ex. 1007, p. 36

36 Splash 2: The Evolution of a New Architecture Chapter 4

6. Clock: The Splash 1 clock had only power-of-two speeds. Designs that came
close to running at 32 MHz could only be run at 16 MHz, for example.

The above list addressed the known and specific limitations of the Splash 1
boards as built. Once a redesign of a Splash-like system was contemplated, however,
all the earlier design decisions were reviewed. The original design of Splash 2 by
Andy Kopser was given in [4] in a preliminary architecture description. On Septem­
ber 12, 1991, however, all these decisions came up for review at the first of a series
of architectural design meetings. These meetings were intended to start from first
principles to design a Splash-like FPGA-based processor; although Kopser's earlier
thoughts were taken into account, none of his conclusions was accepted as given-all
were subject to further scrutiny. Among these were the following:

1. Choice of FPGA chips
2. Choice of host and connecting bus
3. The linear array and any other interconnection of the FPGAs
4. Multiprogramming of multiple Array Boards

4.3 PROGRAMMING LANGUAGE

The decision to use VHDL [5] as the language in which to program applications
for Splash 2 was actually made quite early. The use of VHDL would clearly be
a compromise. In its favor were the facts that it is a defined standard, that it is a
programming language (at least in simulation mode), and that it is supported by com­
mercial tools for both simulation and synthesis. The commercial tools also provide a
programmer with most of the bells and whistles of a debugging environment that are
now expected by users. Finally, the goal of Splash 2 was to demonstrate the ability
to program logic into an FPGA-based machine; although a high-quality translation
of a high-level language to Xilinx bitfiles would be necessary for performance, we
did not feel that we wanted to make it a significant part of the Splash 2 project
itself.

Working with an off-the-shelf VHDL system would not, however, address all
the issues involved in programming Splash 2. Quite apart from the "religious" issue
that VHDL is an Ada derivative while most modem programmers are using C, there
would be known problems both "above" and "below" the VHDL level. At the time
Splash 2 was begun, it was not clear that it would be possible to drive a VHDL
simulation from a general C-language interactive front end. The user's view of the
programming environment might necessarily be that of the VHDL vendors' tools­
which were designed for use by engineers doing circuit or VLSI design and might
seem unduly foreign or even hostile to application programmers. More important, due
to the need to have some example applications achieve high performance, it was not
clear that the output of the logic synthesis would produce a Xilinx bitfile that would
use crucial performance features of the FPGAs. Much of the success of Splash 1 had
come when the programmers had specifically controlled from LDG the resources on
the XC3090 FPGAs. A serious question was whether an outside vendor whose tools
were aimed at a very different target consumer would provide the resource utilization
that we would need.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 53

Petitioner Microsoft Corporation - Ex. 1007, p. 37

Section 4.4 Choice of FPGAs 37

It has thus always been assumed that VHDL is not perfect and that some lan­
guage more like C should be developed. We realized, however, that we didn't know
enough a priori about programming Splash 2 to permit development of "the right
language." VHDL was therefore viewed as an acceptable middle ground, with the
hope that in the process of programming Splash 2 in VHDL for a varied list of
initial applications, enough would be learned about the programming model appro­
priate for Splash 2 to permit language development after the fact. Meanwhile, useful
work would be accomplished by those brave pioneers who had coded the original
applications in VHDL.

4.4 CHOICE OF FPGAS

SRC had gained extensive experience with and understanding of the Xilinx XC3090
chips, much of which would translate to the new XC4000 series chips, but the
question was opened as to whether a different vendor's chip might be more desirable.
Prominent among the options was the Concurrent Logic, Inc. FPGA. The two chips
appear remarkably alike to a "computer designer," despite the extremes of granularity
between the two products. The Xilinx XC4010 has 400 Configurable Logic Blocks
(CLBs) in a square array. Each CLB takes two sets of four inputs and produces any
Boolean function of each set, then any Boolean function of the two bits of result
together with a ninth input signal. With this coarse structure, Xilinx advertises the
XC4010 as roughly equivalent to a gate array of 10,000 gates [6].

The Concurrent Logic chip, by contrast, is very fine-grain. The high-end chip
at the time was the CLi6005, a 56 x 56 array of cells that in most modes serves to
produce one output from three inputs. Concurrent Logic advertised its CLi6005 chip
as being roughly equivalent to a gate array of 5,000 gates, the similarity between
the Xilinx and the Concurrent Logic figures perhaps saying more about the basic
complexity of 1992 silicon technology than about the clear superiority of one vendor
over another.

In the final analysis, three factors were decisive:

1. The fact that the Xilinx chips were a known quantity made it necessary to have
a very good reason to change.

2. The delivery schedule for the Concurrent Logic chips was some months behind
that for the Xilinx chips.

3. Most important, as a technical matter, the Concurrent Logic chips had 108 1/0
pins compared to the Xilinx's 160. As it was envisioned at the time the decision
was made, even the Xilinx' s 160 1/0 pins seemed insufficient. This was borne
out by later experience.

In the process of deciding on a chip, it was necessary to compare not just the
chips but to take into account their features and the processing power per Array Board
that could be accommodated. A feature new to the XC4010 chip was a fast carry
internal to the CLBs, which makes arithmetic computations faster and requires less
programming and fewer CLBs. Further, the number and quality of the interconnection
lines had increased, which would help more applications run at higher speeds. Finally,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 54

Petitioner Microsoft Corporation - Ex. 1007, p. 38

38 Splash 2: The Evolution of a New Architecture Chapter 4

the new chips allow for the use of CLBs as a 32-bit RAM, configured either as 32 x 1
bit or as 16 x 2 bits.

The major difference between the XC3090 and the XC4010 chips, however, was
in the basic size and structure-the XC4010s have 400 Configurable Logic Blocks
(CLBs) instead of the previous 320, each CLB has nine input lines instead of five,
and the maximum speed is 40 MHz instead of 32 MHz. The improvements in the
FPGAs to be used would permit Splash 2 to have 17 Xilinx chips on an Array Board
instead of the previous 32. This was both a conscious decision and a necessity. The
newer chips were, in the packaging available at the time, physically somewhat larger,
and it was not possible to put 32 of them on a single Array Board along with the
memories and the crossbar (to be described in Section 6). The hope was that because
the newer chips were each more powerful than the old chips, and because it had been
more often the case with previous applications that they were 1/O-limited rather than
processor-limited, the plan to use half as many chips per Array Board, each perhaps
somewhat less than twice as powerful, would provide a reasonable processor-to-1/O
balance.

As it has come to pass, the decision to use the Xilinx chips has not been without
its problems. The VHDL tools used in programming Splash 2 reduced the VHDL
program to the gate level in the synthesis step rather than constructing efficient
CLB designs, so a natural inefficiency exists in the use of the VHDL language for
the Xilinx FPGAs. (To a great extent these issues were addressed in working with
Synopsys on their FPGA Design Compiler.)

4.5 CHOICE OF HOST AND BUS

In the design of Splash 2, there were no tacit assumptions, and even the choice of host
and bus were open for discussion. The options were narrowed considerably, however,
by various practical considerations. Sun workstations continued to be the norm at
SRC, and that, coupled with Sun's dominant position in the overall workstation
market, made it hard to really consider abandoning Sun as a host. The constant
realization existed, however, that the object of study was "the Splash 2 attached
processor" and not "attached processors for Sun workstations." By constantly keeping
in mind the fact that the choice of hosts contained a nontrivial degree of arbitrariness,
we were able to avoid embedding the machine so deeply in the Sun milieu that it
could not be re-engineered at modest cost for a different host.

The choice of the particular host was not so arbitrary. The realistic options were
the SPARC 1+ and the SPARCstation 2, using the SBus with either. Experiments on
SPARC 1 + workstations at SRC showed, however, that the SB us as implemented did
not match the SBus as documented by Sun. Since the SBus was the logical choice (for
reasons described below), this forced the decision in favor of the SPARCstation 2.

These decisions, together with the decisions on the Futurebus+ backplane, were
not made in a vacuum. Another hardware-build was under way at SRC at the same
time, also a workstation enhancement a few months ahead of Splash 2 in development,
and the decision was made that Splash 2 would use the same bus, backplane, and
so on. The real goal of Splash 2 was to demonstrate the capability of FPGA-based
computing, and the use of hardware in common with the other project would permit
more effort to be directed to the specifics of meeting that goal.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 55

Petitioner Microsoft Corporation - Ex. 1007, p. 39

Section 4.6 Chip-to-Chip Interconnections 39

Having decided to use .the SPARCstation 2, the decision to use the SBus
was rather easy. By far the most limiting hardware feature of Splash 1 was the
4 Mbytes/sec peak data rate of the VMEbus on the Sun host. While the VME­
bus protocol is rated as high as 16 Mbytes/sec peak transfer rate, existing imple­
mentations of VME buses do n_ot reach that rate. Above all else, we did not want
Splash 2 to be, as was Splash 1, I/0 bound, and the SBus appeared to provide at
least an order of magnitude higher data rate than the Sun VMEbus. Early estimates
were 38 Mbytes/sec; tests now show that a CPU-loaded SPARC 2 can sustain about
40 Mbytes/sec through the SBus via DMA and that an unloaded machine can deliver
as much as 54 Mbytes/sec. Unfortunately, these are peak transfer rates from the same
16-word DMA buffer of the host. Without further work on the drivers on the host,
perhaps to include double-buffering, the data transfer via DMA takes place during
only about 40 percent of the time, so transfer rates actually are limited to 20 to
25 Mbytes per second.

Along with the decisions on host and bus, driven by the need to provide Splash
2 with data, the plan for data connections that did not go through the host was an
early feature of the design. As is remarked upon by nearly every experimenter with
workstation attachments (including Bertin et al. [1]), workstation discs are too slow
to produce volumes of data at high speed, memories are too small, and the Ethernet
connections simply cannot sustain the load. The external connection could be to a
traditional supercomputer functioning as an I/0 device (which a supercomputer does
quite admirably) or to an array of discs (as one might find in a text search or database
search application).

Several different external data connections seemed desirable and potentially
usable. An early plan to include several such connections on the Interface Board
was dropped in favor of Wally Kleinfelder's idea to put such connections onto a
daughterboard. This would allow the DMA to be built and tested on an early-version
Interface Board while the final Interface Board was being designed and would also
allow future daughterboard designs such as HiPPI.

Finally, another early decision was that the Sun and Splash 2 would use different
clocks. It was a simple matter, then, to leave open the option of having the external
data also carry the clock to be used by Splash 2.

4.6 CHIP-TO-CHIP INTERCONNECTIONS

One of the major decisions in designing Splash 2 was the choice of chip-to-chip
data paths. In this, the 160 1/0 pins on the XC4010 chip turned out to be one of the
forcing factors.

With 160 1/0 pins, one can implement four 36-bit data paths but have only
16 pins left over for control. Even by dropping the tag bits (bits 35-32 of the data
path) one cannot get five 32-bit ports (this is exactly 160, leaving nothing for control).
We are, therefore, necessarily designing for a four-port array.

The obvious extension from a one-dimensional array would be a two-dimension­
al array of Xilinx chips. This consumes four ports, so memory connections would
have to be shared with the chip-to-chip connectors, as on Splash 1. Two such arrays
are given in Figures 4.2 and 4.3.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 56

Petitioner Microsoft Corporation - Ex. 1007, p. 40

40 Splash 2: The Evolution of a New Architecture Chapter 4

~ ~ ~ ~ - X X X X

~ ~ ~ ~ - X X X X

~ ~ ~ ~ - X X X X

~ ~ ~ ~ - X X X X

FIGURE 4.2 Two-dimensional Toroidal Mesh

In Figure 4.2 we easily obtain a 2-D mesh, but we cannot easily string the chips
together into a 1-D array if the memories are also being used. That problem is fixed
in the design of Figure 4.3-at the expense, of course, of the 2-D mesh itself.

The basic problem is simple: If the memories are connected to two processor
chips by the same lines that are used for processor-to-processor connection, then a
linear array of processors with memories in between uses up two of the four ports
per chip. If the memories are active, then with only two ports per processor we can
achieve only a linear array.

Similar objections ruled out the use of busses, and a major step was taken in the
decision to connect each processor to its own local memory. Some capability was lost
with this decision. There were a few Splash 1 programs whose efficiency was due
to the ability of the FPGAs to transfer data through the memories; the stored output
of one FPGA's work could be accessed in an arbitrary order by the next FPGA.
But this would have required a wider data path to accommodate two ports, or the
time-multiplexing of access to memory by the FPGAs, and the advantages seemed
not worth the hardware investment or the 'increased complexity of programming the
memory use.

With one of the four ports per chip used for memory, three ports become avail­
able for chip-to-chip communication. Various three-port configurations were consid­
ered, including the chordal ring. A chordal ring (a ring with regularly or irregularly

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 57

Petitioner Microsoft Corporation - Ex. 1007, p. 41

Section 4.6 Chip-to-Chip Interconnections 41

~ ~ ~ ~
~ X . X X X

- X
~ X

~ X
~

X
~

~ ~ ~ ~ - X X X X

~ ~ ~ ~ - X X X X

FIGURE 4.3 Two-dimensional Toroidal Mesh with Shift on Wraparound Connections

spaced "chords" as additional connections) can be used as a linear array, or a linear

array with shortcuts, and had the advantage of not being tied to "nice" numbers (like

16) of processor chips. A possible drawback, though, is that "normal" programming

patterns do not (yet?) include the chordal ring as routine.
For these and similar reasons, the eventual choice was a linear array with two

ports per chip and a crossbar connecting the chips with the other port. This choice

was made easier when made in conjunction with a choice of the TI reconfigurable

crossbar chips (TI SN74ACT8841 were used). Each such chip is a 16-port, 4-bit­

wide crossbar and can be programmed with eight different configurations. In this

way, data paths in nibble sizes could be programmed (although pin limitations later

limited this to byte sizes), and a wide variety of communication patterns could be

accommodated.
Although it turned out later to lead to serious problems, the choice of the TI

chip seemed an excellent one at the time. In the manner in which we would use the

chip, the latency across it was one tick, so the crossbar communications would not

differ from communications down the linear array. This would simplify the program­

ming task-slower chips would require the programmer to insert pipeline stages in a ·

program and then to synchronize them carefully. The multiple configurations permit­

ted by the TI chip seemed to provide the logical connectivity needed, and the ability

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 58

Petitioner Microsoft Corporation - Ex. 1007, p. 42
I

42 Splash 2: The Evolution of a New Architecture Chapter 4

to switch configurations with at most a one-tick delay was a very attractive option.
None of the more sophisticated switch chips available at the time, nor the use of
FPGAs to implement the switch, offered these features.

4.7 MULTITASKING

Up to now, we have been discussing the architecture of the Splash 2 Array Board or
the data paths in and out. The decisions on these were originally made in Kopser's
Splash 2 design and then reaffirmed by the architectural committee. One of the design
decisions that was changed radically was an original thought that each Splash 2 Array
Board would have its own input and output FIFOs and that each Array Board could
run a separate Splash 2 process multiprogrammed from the host. This would have
required extensive control hardware on the Interface Board as well as complete
software protocols for the Sun host's control and context switching of processes
running independently and asynchronously on the Splash 2 attached processor.

The possibility of allowing Splash 2 Array Boards to work on separate tasks
was hotly discussed for several sessions at the weekly architecture meetings. The
goal-which, in the final analysis, seemed impossible to achieve-was that arbitrary
subsets of Splash 2 Array Boards could be chained together, each running distinct
processes, possibly communicating with each other directly, possibly communicating
through the host, and possibly not communicating with each other at all.

It was even envisioned at this time that different users might run different
programs on Splash 2 concurrently, in addition to the situation in which a single user
might have multiple independent Splash 2 processes.

In the end, all such plans were discarded. The final Splash 2 system is an
attached processor in which all the Array Boards in a given system form a linear
chain; the only variations in configuration are that broadcast to all Array Boards
simultaneously is possible and that the physical chain of Array Boards can be logically
shortened. Although use of the entire system can be time-shared, no partitioning of
the system for concurrent execution of independent processes in different partitions
can occur.

The major factors in this decision were: that the algorithmic complexity of
controlling the independent processes would require too much hardware support if
it were designed to run at the necessary speeds; that the complexity of the "back­
end" network controlling the subsets of Splash 2 Array Boards into chains would
be too great; and that insufficient real estate existed even on the large Array Boards
planned for Splash 2 to allow for the Xilinx chips, memories, and crossbar, as well
as FIFOs, OMA controllers, bus arbitration with the Interface Board, and network
communication with the other Splash 2 Array Boards in a chain. A final concern
was that each subsystem would have to be able to run at a different clock rate so
that maximum efficiency of the Splash 2 processes could be obtained. This would
clearly have necessitated complex mechanisms to arbitrate bus and OMA access for
data movement on and off Splash 2.

Somewhat reluctantly, then, Splash 2 became a system all of which, at any
point in time, would be assigned to a single process. The Array Boards were to
form a linear array (although broadcast was still possible). The FIFOs and OMA
control for each Array Board were consolidated into one pair of input and one pair

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 59

cevans
Highlight

Petitioner Microsoft Corporation - Ex. 1007, p. 43

Section 4.9 Other Design Decisions 43

of output FIFOs using DMA channels and moved onto the Interface Board. Interrupts
and global AND/OR were similarly cascaded from each Xilinx chip to a board-level
register and from board level to a system-level register on the Interface Board. The
inclusion of Xilinx chips XL and XR on the Interface Board would provide for
control of data transfer, clock (even a clock supplied by the external input), and tag
bits independent of the Splash 2 Array Boards. In Splash 1, such control had usually
been done in the first array chip, leading to asymmetry and crowded designs. With
proper programming of XL and XR, the asynchronies of DMA transfer and external
input and clock should not be seen by the Splash 2 Array Boards themselves, and
the XL and XR programs should function much like a system I/O library.

With the adoption of this more conservative plan, some applications were given
up, but the general opinion was summed up by Ron Minnich: "Now, at last, I think
we have a real chance that this thing can be built."

4.8 CHIP XO AND BROADCAST

One of the casualties in moving the I/O off the individual Array Boards onto the
Interface Board was that it was no longer as simple to envision broadcast of data from
the host or from an external interface to all the processor FPGAs simultaneously; yet
this programming model was seen to be equally as important to support as the simpler
model in which long streams of data would pass down the linear array. Unfortunately,
the basic power-of-two dilemma existed. Earlier Splash 1 programs had occasionally
been complicated or suffered decreased efficiency because FPGAs XO and X31 had
handled I/O; this took away somewhat from the power-of-two advantage of the 32-
long linear array. When the I/O handling was moved from the beginning and end of
the linear array on each Array Board to FPGAs XL and XR on the Interface Board, the
power-of-two structure returned to the processing array when viewed as a linear array.

Now, however, something needed to be done for broadcasting data. With some
reluctance, FPGA XO was added to each Array Board. The reluctance came primarily
from the realization that 17 is not a very elegant number. Reading and writing the
memory on each Array Board would become more complicated (having made a
decision to include another FPGA on the Array Board, there was little dispute over
making it look as much like the other FPGAs as possible, so it was given the same
memory as the other FPGAs), reading and writing the configuration and state of the
FPGAs would also be more complicated, and most inelegant of all, XO would have
to share lines into the crossbar with some other FPGA.

Despite the inelegance, the Array Board architecture with the 17 FPGAs has
proved to be successful. The complications from not having power-of-two structures
have been more than compensated for by the greatly increased ability to move data
into the Array Boards and to the PEs.

4.9 OTHER DESIGN DECISIONS

In addition to these "coarse" decisions on the architecture, a number of other changes ·
were made to the Splash 1 design. Data paths were fixed at 36 bits in width. This
would accommodate 32-bit words and 4-bit tags carried along with them. An earlier

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 60

Petitioner Microsoft Corporation - Ex. 1007, p. 44

44

ll

Splash 2: The Evolution of a New Architecture Chapter 4

plan for a 40-bit crossbar was scaled back to 36 bits. No good use could be imme­
diately envisioned for the extra four bits, and the 1/0 pins were needed elsewhere.
The only place in which Splash 2 is not a 36-bit machine is in the Xilinx-to-memory
path. This path is 16 bits wide, largely because the 160-pin Xilinx XC4010 chip
cannot support three 36-bit data paths (two ports for the linear array and one into the
crossbar) and a path to memory at least 32 data bits wide (3 • 36 + 32 = 140, leaving
only 20 pins for Xilinx control and memory address) . It was thought to be absolutely
necessary that memory be accessible in every clock period, making multiplexing of
data and address infeasible. ·

One change from Splash 1 to Splash 2 was to add a separate memory read/write
path that did not require going through the Xilinx chips. The memories could now be
directly read/written from the Sun host over the SBus. They are not, however, dual­
ported; the FPGAs must be inactive during the read/write operations. This change
allows tables to be loaded in bulk and results to be read from the memories without
requiring the circuitous path through the Xilinx chips. However, since the memories
were 16 bits wide and the "natural" word size of both Splash 2 and its Sun host is
32 bits, an obvious question arose as to where the conversion from 32 to 16 bits
would take place. In this case, no answer is perfect. Placing halfword data on word
boundaries in the host is easy for the programmer but wasteful of memory space
on the host and of 1/0 bandwidth to Splash 2. Packing halfwords two to one into
Sun words is a slight annoyance for the programmer but wastes neither bandwidth
nor memory. This latter choice prevailed after it was determined that, in fact, the
memories could be double-cycled on the Splash 2 Array Boards fast enough to keep
up with accesses from the host; the host would never know that the Splash 2 memories
were 16 and not 32 bits wide.

One of the suggestions made and discussed was whether to include on each
Splash 2 Array Board a microprocessor to perform tasks not easily or efficiently done
by the Xilinx chips. Although this was a suggestion made at a time when independent
execution of Splash 2 Array Boards in a multiprogrammed environment was being
considered, it was an idea that had a wider context. Many of the uses to which FPGAs
for computing have been put have been to augment the instruction set of a micro­
processor; one could easily imagine a Splash 2 Array Board being viewed in this
way by a user focusing attention on an on-board microprocessor. In the end this idea
was not pursued, largely because the control of the Array Boards and programming
would be overly complex. The intent, as discussed in the next paragraphs, was to be
able to program the machine in a high-level language. It appeared, however, that in
order to make effective use of the microprocessor, it would be necessary to control
and synchron12e processing and data movement on the Array Boards at a very low
level. Splash 1 applications had been, and Splash 2 applications were expected to be,
highly pipelined, but in order to do this on a Splash 2 Array Board, the output of the
microprocessor's compiler would have to mesh closely with the "program" for
the Xilinx FPGAs. The software effort for the Xilinx part of the Array Board
seemed difficult enough without the complications that the on-board microprocessor
would add. ·

Throughout the design and architecture refinement, the emphasis was on pro­
ducing a machine that could be programmed at a moderately high level. This fun­
damental assumption about what it would take to produce a successful computing
engine had an effect, as mentioned, on many of the design decisions, especially

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 61

Petitioner Microsoft Corporation - Ex. 1007, p. 45

References 45

the decisions involving the degree of independence of one board from another and
the control of board-level entities. For example, the inclusion of a microprocessor
on each Splash 2 Array Board would have required programmers to code not only
asynchronous Sun/Splash 2 execution but also to coordinate the interaction of the
on-board microprocessor and the, Xilinx chips. It did not seem clear that this could be
done in a high-level language in a way that would be tolerated by programmers, and
similarly, it did not seem clear that a compiler could readily be written that would
deliver the performance that users could have a right to expect.

The discussion about programming continues to this day. VHDL is, on the one
hand, sufficiently high-level and sufficiently modern to be recognized and accepted
as a "programming language." On the other hand, it does retain many of the quirks
of hardware description, and mastering the methods for getting around these quirks
does not render much less arcane the art of VHDL. It is not "C-like" and cannot by
itself be made to be "C-like."

At the heart of many of the issues surrounding the programming of Splash 2 is
the fact that the architecture at present is completely exposed to the user, who sees,
in essence, the memory address and data registers, the specific data paths, and so
forth.

REFERENCES

[l] P. Bertin, D. Roncin, and J. Vuillemin, "Programmable Active Memories: A Performance
Assessment, in G. Borriello and C. Ebeling, eds., Research on Integrated Systems, MIT
Press, Cambridge, Mass., 1993, pp. 88-102.

[2] M. Gokhale et al., "Building and Using a Highly Parallel Programmable Logic Array,"
Computer, Vol. 24, No. 1, Jan. 1991, pp. 81-89.

[3] M . Gokhale et al., "The Logic Description Generator," Tech. Report SRC-TR-90-011,
SRC, Bowie, Md., 1990.

[4] A. Kopser, "Splash 2: Architectural Motivation," tech. report, SRC, Bowie, Md., 1991.

[5] D.L. Perry, VHDL, McGraw-Hill, New York, 1991.

[6] Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif.,
1993.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 62

Petitioner Microsoft Corporation - Ex. 1007, p. 46

CHAPTER 5

Software Architecture

Jeffrey M. Arnold

5.1 INTRODUCTION

46

As we saw in Chapter 4, the Splash 1 system was programmed at the logic gate level
with the macro language LDG (4). This meant that the process of developing appli­
cations for Splash 1 was very labor-intensive, requiring a detailed understanding of
the internal structure of the Xilinx devices. For this reason, applications programmers
with little or no hardware experience found Splash 1 extremely difficult to program.
The result was that there were never more than half a dozen proficient Splash 1
"programmers," and these were people with extensive hardware design backgrounds.

When we set out to design a software environment for Splash 2, our main
objective was to improve the ease of programmability of the system, opening it up
to a much larger audience of applications developers. The specific design goals of
the Splash 2 software environment were to:

• select or develop a procedural language for writing applications

• provide a rich debugging environment that did not require a detailed under­
standing of the hardware

• provide a smooth and efficient interface between the host computer and Splash 2

• develop a comprehensive set of diagnostic tools for hardware development and
maintenance

• leverage commercial off-the-shelf technology wherever possible

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 63

Petitioner Microsoft Corporation - Ex. 1007, p. 47

Section 5.2 Background 47

With these goals in mind we chose to base the Splash 2 programming environ­
ment on the VHSIC1 Hardware Description Language (VHDL) [6, 10] and modern
Computer Aided Design (CAD) tools such as simulation and logic synthesis. Appli­
cations for Splash 2 are developed by writing behavioral descriptions of algorithms
in VHDL, which are then iteratively refined and debugged within the Splash 2 sim­
ulator. During the course of this iteration, the VHDL implementation is manually
partitioned by the programmer into a set of individual FPGA programs. Once the
partitioned implementation is determined to be functionally correct in simulation, it
is compiled and optimized to produce a network of logic gates. This gate list is then
mapped onto the FPGA architecture by automatic placement and routing tools to
form a loadable FPGA object module. Static timing analysis tools are applied to the
object module to determine the maximum operating frequency and the set of critical
paths. This information is fed back to the user, who may choose to manually optimize
the design. The runtime system provides the interface between the host computer and
the Splash 2 system and consists of a C language library and an interactive symbolic
debugger.

This chapter presents the architecture of the Splash 2 software system. We
begin with a background discussion of the underlying CAD technologies that make
custom computing possible. We then proceed to justify our choice of VHDL as the
programming language of Splash 2. Next is a discussion of the architecture of the
programming environment and the system software. Finally, we present the models
of the system the programmer sees at each of several levels of abstraction.

5.2 BACKGROUND

The success of Splash 2, and of custom computing in general, has been made possible
by the confluence of two important technologies: infinitely reprogrammable logic
arrays (static RAM-based FPGAs) and high-level CAD software. Over the past few
years the CAD industry has made significant advances in automatic generation of
hardware design from high level specification. This process may be divided into
two steps: logic synthesis and physical mapping. Logic synthesis is the process by
which procedural descriptions of algorithms are mapped into Boolean logic gates,
bypassing traditional structural techniques such as schematic capture. The physical
mapping process converts the resulting gate list into a specific hardware technology,
such as the static RAM- (SRAM-) based FPGAs used in Splash 2. Together, these
technologies move the task of application development for custom computing from
the realm of hardware design into the realm of software programming.

Figure 5.1 illustrates the flow through the Splash 2 program development pro­
cess from design entry through hardware configuration. There are two feedback loops
in this flow. The inner loop is used to establish the functional correctness of a pro­
gram by simulating the design and observing the response to a set of test vectors. The
outer loop constructs the physical implementation by synthesizing and optimizing the
logic and then mapping the result into the FPGA technology. A static timing analyzer

1The Very High Speed Integrated Circuits (VHSIC) program was an initiative funded by the U.S.
Department of Defense in the late 1970s and early l 980s.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 64

Petitioner Microsoft Corporation - Ex. 1007, p. 48

48

u

Software Architecture Chapter 5

Logiq
Synthesis

FIGURE 5.1 Splash 2 Program Development Process

Physical
Mapping

is used to predict performance and identify potential bottlenecks. The programmer
may use this information to determine overall system performance and possibly guide
further optimization.

Logic synthesis [2, 3, 13] is the process of converting a high-level description
of an architecture into an optimized logic implementation. The input to the synthesis
process is typically in the form of a procedural or mixed procedural and structural
description of the intended architecture. The logic synthesis tools extract control and
data flow infonnation from this description and produce a set of Boolean equations
and module instances that perform the desired function. This internal representation
is then optimized to meet user specifications of area and delay. Since the design
has not been mapped into the logic blocks of the FPGA technology at this stage in
the synthesis process, the optimization must be based upon estimates of logic block
packing, logic propagation delays and a fan-out-dependent statistical model of the
routing network. Many of the parameters that control the optimization may be set by
the user, allowing trade-offs to be made between minimizing area and maximizing
perfonnance. The output of the synthesis process is a list of technology-independent
logic gates.

The physical mapping [3, 16] process converts the generic gate list produced by
logic synthesis into a configuration bitstream for the particular FPGA by partitioning
the gates into logic blocks, placing the logic blocks into the FPGA, and routing
the signal nets between the blocks. The partitioning phase groups the combinational
logic gates into Boolean functions that will fit in the lookup tables of the logic blocks
(3 and 4 inputs for the XC4010) and assigns registers to the flip-flops of the logic
and 1/0 blocks. During the partitioning phase it is often possible to trade chip area
(gates) for speed by replicating functions that have a high fan-out. Unfortunately,
this trade-off requires a close coupling between the synthesis and mapping processes
that is not present in today's tools.

The placement step accepts the partitioned design and determines a good place­
ment for the logic blocks in the FPGA array [16]. Most FPGA placement algorithms
use a stochastic optimization algorithm such as simulated annealing to minimize a
cost function such as total net length. Traditional integrated circuit routing tech­
niques are based on decomposing the area available for wiring into rectangular
"channels" that can be routed independently. Unfortunately, this approach does not
work well for FPGAs, because the interconnect resources are fixed in place. There­
fore, most FPGA routers use a form of maze router that does not decompose the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 65

Petitioner Microsoft Corporation - Ex. 1007, p. 49

Section 5.3 VHDL as a Programming Language 49

problem into independent routing channels. User-specified timing requirements can

be used to guide the router by building a detailed delay model from the physi­

cal interconnect parameters of the FPGA. Finally, the router must handle additional

constraints imposed by the FPGA such as special clock networks and carry-chain

routing.
Once the detailed routing is complete, the static timing analyzer is able to

make an accurate prediction of the maximum operating frequency and determine the

critical paths of the design based upon the known logic block and routing resource

delays. The programmer may use the critical path information to manually optimize

the design or restructure the program for resynthesis. The delay information extracted

from the design by the static timing analyzer may also be used to construct a structural

simulation model of the design, which in tum can be used to perform detailed timing

simulation.
A great deal of research and development in the area of FPGA design tools

is taking place in academia and industry, with the result that the quality of the

available tools is rapidly improving. We therefore felt it was efficacious to leverage

"commercial off-the-shelf' technology for Splash 2 as much as possible, allowing

ourselves to concentrate on the system integration issues.

5.3 VHDL AS A PROGRAMMING LANGUAGE

One of the most important objectives of the Splash 2 software effort was to move the

task of application development from the realm of hardware engineering to the realm

of software programming. This desire led to several selection criteria for a "produc­

tion" programming language for Splash 2. Among these criteria were support for the

use of procedural as well as structural specification, and the ability to build higher

levels of abstraction through encapsulation of function. To support high-performance

applications, we felt that the language should include an escape mechanism to

allow the programmer to explicitly specify hardware details. Finally, the language had

to be directly executable to allow interactive source-level debugging of application

programs.
In the early stages of the Splash 2 effort we explored the option of develop­

ing our own language based upon a subset of C. Such a language would have the

advantage of familiarity to most users, be directly executable on a wide variety of

platforms, and come complete with a rich development environment. However, we

felt that the task of compiling a subset of C into hardware would quickly become a

major research project in its own right, detracting from the Splash 2 system develop­

ment effort. Therefore we chose to focus our efforts on system integration, leveraging

commercial logic synthesis tools by basing the Splash 2 programming environment

on VHDL.
Ultimately, we believe the best programming model for custom computing

machines is to develop higher-level programming languages that can be compiled

into a form suitable for input to commercial CAD tools. Such a language would

synthesize an application-specific architecture, perhaps use VHDL as an intermediate

language, and use commercial logic synthesis in the "assembly" process. One such

effort, based upon the dbC language [5], is described in Chapter 7.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 66

Petitioner Microsoft Corporation - Ex. 1007, p. 50

50

L

Software Architecture Chapter 5

5.3.1 History and Purpose of VHDL

VHDL evolved from an effort to develop a design specification and interchange
language common to all of the participants of the VHSIC program [8]. The language
traces its roots back to a planning session in 1981, although the initial development
effort was not begun until 1983. The importance of this work became clear to the
broader engineering community with the first release of the language and simulator
in 1985. A standards committee of the IEEE was established to further refine the
language, which was released in 1987 as IEEE STD-1076 [6]. IEEE standards are
reviewed and renewed every five years, and as part of the 1992 renewal of VHDL
the language was extended to include a number of new features, such as a foreign­
language interface, impure functions, and shared variables [7].

5.3.2 VHDL Language Features

Rather than develop an entirely new language, the designers of VHDL chose to base
the syntax and semantics of their language upon an existing well-defined standard,
Ada [11]. Many of the high-level programming features of Ada are therefore found
in VHDL. Like Ada, VHDL is a strongly typed language with user-definable and
-extensible data types. Structured objects such as vectors, arrays, and records are
fully supported. Operators, functions and procedures may be overloaded on the data
types of arguments and return results. VHDL supports data abstraction through the
use of packages, which present a clean interface to objects and operations on objects
while insulating the programmer from the details of the object implementation. VHDL
explicitly represents concurrency and synchronization through the Process and Wait
constructs and supports the automatic inference of registers and latches through sig­
nal assignment within sequential processes. VHDL also supports a wide range of
abstraction levels by allowing the mixture of behavioral and structural representa­
tions, with Generate constructs and Generic parameters to control the instantiation
of structural components.

VHDL also includes a number of features specifically designed to support sim­
ulation. File input and output are supported directly by the language, and the TEXTIO
package is provided to support formatted ASCII VO. Dynamic storage allocation is
supported through the use of access types (that is, pointers), the object allocator new,
and the implicit Deallocate procedure. The assert statement may be used to
check that a specified condition is true. If the condition is not true, an error at one
of several different severity levels may be reported. Although these language fea­
tures have no direct analog in physical hardware (that is, they are not synthesizable),
together they greatly facilitate the implementation of a system simulator, as is shown
in Chapter 6.

The compilation process for VHDL is separated into an analysis phase and
an elaboration phase, which are roughly analogous to compilation and object mod­
ule loading in a conventional programming language compiler. VHDL provides the
programmer with a great deal of control over the compilation process by deferring
the binding of generic parameters and architecture instances until elaboration time.
The elaboration time binding is controlled by the configuration statement, which
allows the user to specify the architecture to use for each component instance in the
design and to override any generic parameter values passed to the architecture. This

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 67

Petitioner Microsoft Corporation - Ex. 1007, p. 51

Section 5.4 Software Environment 51

in tum allows the user to select component architectures from a library and to control
the instantiation of those components without requiring a detailed understanding of
the library implementation.

5.3.3 Problems with VHDL

VHDL is not a panacea. VHDL is a large language with many features, which often
takes a long time to learn. The syntax, although very similar to Ada, is unfamiliar to
many programmers, who may find it verbose and cumbersome. The stateless nature
of VHDL functions and procedures forces the use of structural representations for
complex state machines. Finally, although VHDL has explicit constructs for concur­
rency and synchronization, many programmers find that coordinating many parallel
fine-grain tasks can be difficult and time-consuming.

When we began development of Splash 2 in 1991, some features of the VHDL
language were not supported by commercial synthesis tools; in particular, the use
of Generic parameters, multidimensional arrays, and constant folding for multiply
and divide operations were unsupported. The level of compliance of the tools has
improved significantly over the last several years, and today there are very few VHDL
constructs that synthesis tools cannot handle.

The other leading candidate for the role of Splash 2 programming language was
the Verilog [15] hardware description language. Like VHDL, Verilog supports both
simulation and synthesis from the same source code, so there was no fundamental
impediment to using Verilog for Splash 2. The syntax of Verilog is closer to the C
language and thus would be more familiar to many programmers. We felt, however,
that Verilog would not be as rich a programming language as VHDL, because it
did not have many of the language features we were looking for. The built-in data
types of Verilog are very closely tied to hardware constructs such as wire-AND logic
and high impedance (tristate) drivers, and there is no support for building abstract
data types above these. Verilog also does not support the overloading of operators
or procedures based upon data type. For these reasons we felt that we would not be
able to provide the same level of abstraction with Verilog that we could with VHDL.

5.4 SOFTWARE ENVIRONMENT

The VHDL programming environment for Splash 2 consists of a system simulator,
a logic synthesis package, a VHDL library that is common to both tools, and a
SunOS-based runtime system. The Splash 2 simulator is a hierarchical model of the

· Splash 2 system comprising a set of VHDL models for each of the components of
the system. The simulator provides a framework for the development and debug­
ging of applications. Within the simulator, an application program is able to interact
with the system exactly as it would with the physical hardware. The system models
also verify that the application program meets various hardware constraints, such as
memory sequencing and setup and hold times. The user may also specify crossbar
configurations and initial memory contents with separate ASCII files, which are read
by both the simulator and the runtime system.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 68

Petitioner Microsoft Corporation - Ex. 1007, p. 52

52

C Control
Program

CLanguage
Interface

VHDL
Models

VHDL
Code

Commercial
VHDL

Simulator

Software Architecture

Splash 2
VHDL
Library

FIGURE 5.2 The Splash 2 Simulation Environment

Chapter 5

The components of the simulation environment are shown in Figure 5.2. The
ovals represent the two components of the user's application code: the VHDL pro­
gram(s) for the computing elements and the C control program, which will run on the
host computer. The c Language Interface is an optional piece of the environ­
ment that allows the simulation to be controlled by the same program that will run
on the host. The VHDL Models block is the set of simulation models for the system,
including the central crossbar, the external memories, and the Interface Board. The
Splash 2 VHDL Library contains a set of data types, constants, procedures, and
components designed to facilitate the interface between the application VHDL code
and the rest of the system and to provide access to the Xilinx hard macros. Hard
macros are predefined components, such as adders and counters, which provide guar­
anteed performance. Hard macros also provide the only access to special hardware
features such as the fast-carry logic. Finally, the Commercial VHDL Simulator
provides the simulation engine and the graphical user interface.

The VHDL simulation environment allows Splash 2 applications to be devel­
oped in either a top-down or bottom-up fashion. Top-down design is supported by
beginning with a single high-level VHDL model for the entire Splash 2 system and
iteratively descending through levels of hierarchy corresponding to the structure of
the simulator down to the computing element, adding detail at each level. Bottom-up
design is supported through the use of a library of default components for all of the
pieces of the system except for the element being developed. As each element is
completed, the corresponding library component is replaced with the actual design.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 69

Petitioner Microsoft Corporation - Ex. 1007, p. 53

Section 5.4 Software Environment

VHDL
Code

Logic
Synthesis

Netlist
Conversion

Bitstream
Generation

Splash 2
VHDL
Library

53

FIGURE 5.3 The Splash 2 Compilation
Environment

A mix of logic synthesis and standard compilation techniques are used to com­
pile the VHDL programs into FPGA configurations, as shown in Figure 5.3. The
VHDL Code that was developed in the simulation environment (Figure 5.2) is com­
piled with the same VHDL Library used to produce the Splash 2 object module. The
logic synthesis tools from Synopsys Inc.[13, 14] map the VHDL code into a gate
list. During the course of the Splash 2 project we used two different generations of
Synopsys logic synthesis tools: the version 2.2 Design Compiler [12] and the version
3.0 FPGA Compiler [14].

At the beginning of the project we chose what was then the state-of-the-art
Synopsys Design Compiler as the basis of our compiler. This tool was not tailored
specifically to the FPGA technology and therefore required some customization to
suit our needs. We developed a technology library that allowed the Design Compiler
to produce a generic gate list from a reasonable subset of VHDL, and a net list con­
version program called ed if2xnf. Edif2xnf parsed the hierarchical EDIF net list,
flattened the structure, and produced another file in Xilinx Net list Format (XNF)
that was suitable for mapping onto the physical hardware by the Xilinx-provided ..
bitstream generation tools [17]. Along the way it also performed some minor opti­
mizations specific to both Splash 2 and the FPGA architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 70

Petitioner Microsoft Corporation - Ex. 1007, p. 54

54

Ill

Software Architecture Chapter 5

Our experiences with the Synopsys Design Compiler and with our own
edif2xnf program were fed back to Synopsys to help direct the development
of their FPGA Compiler product. By the middle of 1993 Synopsys released their
version 3.0 FPGA Compiler [14], which was able to compile logic directly into
Xilinx RAM-based lookup tables and produce XNF net lists. The FPGA Compiler
removed the need for our custom technology library and edif2xnf, but we found
that some minor modification of the net list was still necessary. The program xnfer
was written to fix XNF net list errors and to automatically insert logic common to
all Splash 2 designs, such as the control for the internal Global Tri State (GTS)
signal.

The major components of the runtime environment are shown in Figure 5.4.
There are two host software interfaces to the Splash 2 system, a C library, which
can be linked into an application-specific control program, and an interactive sym­
bolic debugger called T2. Both interfaces are built upon the same underlying runtime
system, libsplash. a, and provide the same functionality. The runtime system im­
plemented by 1 ibsplash. a allows the user to open the device, map the Splash 2
memory into the host address space, establish input and output data streams, and
control the system clock. The clock may be singly stepped, multiply stepped, or
allowed to run free. The user can establish software handlers for interrupts generated
by individual Processing Elements. The runtime library and the hardware diagnostic
suite rely on the services provided by the Unix device driver, including memory

T2
Runtime
Debugger

libsplash.a

Unix
Device
Driver

Splash 2
Hardware

C Control
Program

Diagnostic
Suite

tsdb

FIGURE 5.4 The Splash 2 Runtime
Environment

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 71

Petitioner Microsoft Corporation - Ex. 1007, p. 55

Section 5.5 Programmer's View of Splash 2 55

management and several system calls (see Chapter 6). At the lowest level is a hard­
ware debugger called "tsdb" (for Trivial SBus Debugger) that allows the designer to
examine and set locations in the hardware based upon the physical address space of
a single SBus slot.

The user interface of T2 is built upon the tool command language Tel [9]. Tel
is an interpreted language with a C-like syntax which may be embedded into appli­
cations to provide an extensible user interface. The Tel interface to T2 allows users
to write simple programs to aid with debugging and experimentation on Splash 2. T2
also supports symbolic debugging by reading back the internal state of all FPGAs
at the end of every clock cycle and associating the state of each flip-flop with the
corresponding VHDL signal name. From T2 the user can step through the execution
of the program, continuously displaying the contents of some or all of the registers
in the design.

5.5 PROGRAMMER'S VIEW OF SPLASH 2

Every Splash 2 application may be divided into three main components: the portions
that run on the Array Boards, the Interface Board, and the host computer. At the
Splash 2 Array Board level, the programmable components consist of the Process­
ing Elements, Xl through Xl6, the Control Element, XO, and the crossbar. At the
Interface Board level, the Control Elements XL and XR are user-programmable, as
are many of the control registers. The host interface must provide the input data
streams, handle the output data streams, and control the operation of the Splash 2
system. In this section we discuss the process by which applications programs are
developed, and then look at the programming model presented at each of the three
levels. More details of the implementation may be found in Chapter 6 and in the
Splash 2 Programmer's Manual [l] .

5.5.1 Programming Process

Developing an application for Splash 2 is not unlike designing a program for a mas­
sively parallel computer. The programmer must choose an overall control paradigm,
typically either data parallel (SIMD) or pipelined, and then plan the data flow among
the Processing Elements, including the use of the crossbar and memories. On mas­
sively parallel computers the data layout among the processors is often critical to
performance. In pipelined Splash 2 applications, it is the control layout that is crit­
ical. An algorithm must be partitioned carefully among the Processing Elements to
maximize the efficiency of the inter-PE communication. Unfortunately, we know of
no good automated tools that will find and exploit the structure of the design, so this
partitioning must be performed manually by the programmer.

Once the basic control paradigm is chosen and the algorithm is partitioned,
the communication and control protocols among the Processing Elements may be
designed. Since Splash 2 is a globally synchronous system, these protocols are im­
plemented as a set of finite state machines (VHDL processes) communicating
through a set of signals. Input data from the Interface Board may be tagged as
valid, or the clock may be controlled such that all input data seen by the Array
Boards are valid.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 72

Petitioner Microsoft Corporation - Ex. 1007, p. 56

56 Software Architecture Chapter 5

A principal design goal in most applications is to maximize the utilization of

one or more of the resources of Splash 2. For example, to maximize the memory

bandwidth, many applications pipeline the accesses such that a new memory read
or write operation occurs in every clock cycle. This is accomplished by registering

the address and data within the IOBs of the Processing Elements, as is discussed in

Chapter 6.
One major shortcoming of the programming methodology for FPGAs is the

inability to determine the "size" (percent utilization) of a design without running

through the entire compilation procedure. Splash 2 programmers have developed a
crude "rule of thumb" to estimate the size of a design. The number of bits of register

storage (including state machines) is summed, and if the number is within about

25 percent of the total number of flip-flops in the XC4010 (800 CLB flip-flops plus

input and output flip-flops on the principal data ports), the design may be too large

to fit. The 25 percent margin allows for inefficiencies in the placement and routing

tools and the crude estimation heuristic. Many Splash 2 applications were in fact able

to achieve or exceed a 98 percent CLB utilization rate.

5.5.2 Processing Element View

Programs for the individual Processing Elements of the Splash 2 Array Board are

written in VHDL and must conform to the predefined Processing Element Entity

declaration. The Processing Element Entity is essentially "boilerplate" code, com­
mon to all Splash 2 applications, and specifies the names and data types of the

interface ports. The body of a PE program is a VHDL Architecture correspond­
ing to the standard Entity. The interface ports include the data paths to the left­
and right-hand neighbor PEs, the data path and control signals to the crossbar, the

address and data path to the external memory, and a variety of control signals such

as the global OR signals, the broadcast, interrupt, and handshake signals.
It is often important for timing considerations and CLB utilization to exploit the

flip-flops in the input/output cells (IOBs) of the Processing Elements. To avoid long

propagation delays between the logic core of one Processing Element to another, it

is standard practice (although not required) to register data both entering and leaving

the PE. Since the propagation delay on the major buses is significant, it is strongly

recommended that input data from the SIMD Bus and output data to the RBus

be registered. The timing of the external memory control requires that the address

and control signals be registered in the Processing Element. This final constraint is

enforced by the gate list postprocessor, edif2xnf or xnfer.

The set of configurations for the central crossbar is specified by an ASCII file

that is interpreted by both the simulator and the runtime system. The configuration

in use at any given time is selected by the Control Element (XO), but the output

enable signals of the crossbar must still be set correctly by the individual Processing

Elements. Another user-provided ASCII file may be used to specify initial contents
of any of the external memories.

The Control Element (XO) is typically used to implement Array Board-level
controller functions, such as SIMD instruction decode, and to store and broadcast

common data tables. The Control Element has a different I/0 interface than the Pro­
cessing Element, and hence a unique Entity declaration. XO has an input data port

from the SIMD Bus and a bidirectional data port to the crossbar that is shared with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 73

Petitioner Microsoft Corporation - Ex. 1007, p. 57

Section 5.5 Programmer's View of Splash 2 57

X16. Another three-bit output port is used to select the current crossbar configuration.
The two global OR signals from each of the Processing Elements may be used to
perform reduction and synchronization operations among all 16 PEs and the results
combined with other Array Boards in the system via the systemwide global OR sig­
nals. Since the internal global OR signals are bidirectional, they may also be used to
signal sequencing information from XO to the individual PEs.

5.5.3 Interface Board View

The Development (or "Quick and Dirty") Board was built to assist in the debugging of
the Splash 2 Array Boards while the final Interface Board was still being designed,
and to provide an early application development environment. The Development
Board maps every signal from the backplane side of the Interface Board to a host­
accessible register, allowing the host to emulate in software the behavior of the Final
Interface Board. The system clock is generated by host accesses to one of two special
registers: the "Software Clock" register, which produces a fixed-width clock pulse,
and the "SIMD Clock" register, which places the write data in the SIMD register
and then generates a clock pulse. The functionality of the Development Board was
retained in the Final Interface Board by incorporating a "bypass" mode that allowed
applications and diagnostics written for the Development Board to run on the Final
Interface Board by simply recompiling the code.

The Final Interface Board (IB) is responsible for controlling the data streams
to and from Splash 2, the system clock, the RBus master and direction, and the
FPGA configuration and state readback. The two FPGAs on the IB, XL and XR,
are user-programmable, but the Splash 2 VHDL Library includes several standard
designs that perform the most common control operations such as tagging input data
with a "valid" indicator and only writing output data so tagged. More complicated
designs can be implemented by modifying one of these programs. The input data
source to the SIMD bus is selected from Channel B or C by XL, which may also
perform preprocessing on the data, such as parallel-to-serial conversion. The output
data is typically received by XR from the RBus and sent back to the host on Channel
A, although XR may also send or receive data from XL. Both XR and XL have
the ability to stop and restart the system clock, depending upon the state of the data
channels. For example, if an input OMA channel is empty or an output channel is
full, the clock may be stopped until the condition is cleared by the host (for instance,
when another OMA operation occurs). The state machines in XL and XR that control
the system clock may be clocked by a separate free-running clock signal. XR also
controls the ownership of the RBus by setting the linear array size (RSize) and the
direction (RDir) backplane signals.

5.5.4 Host View

A complete Splash 2 application includes a C program running on the host, which
plays a pivotal role in the initialization and control of the hardware. This role includes
downloading the configuration data to the FPGAs, establishing the input and output
data streams, and controlling the system clock. The host program can also interact -
with the FPGA programs through a variety of both synchronous and asynchronous
means.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 74

Petitioner Microsoft Corporation - Ex. 1007, p. 58

58

II

Software Architecture Chapter 5

The output of the compilation process is a set of configuration bitstream files,
typically one for each FPGA. The host is responsible for merging the set of bitstream
files for each Array Board into a single configuration stream called a "raw" file, which
can then be downloaded directly to the Array Board. The host must also initialize
the crossbar by reading and downloading the crossbar configuration file.

Symbolic debugging of running programs is supported by the state readback
mechanism. To examine the internal state of a program, the host may stop the system
clock and initiate a readback operation, which dumps the internal state of all of the
FPGAs into a special buffer. The debugger may then extract the state of individual
registers from the buffer, and associate the value with the VHDL symbol name.

The memory associated with the Processing Elements is mapped into the
address space of the host program such that each PE memory appears as an array of
integers. This allows the host program to read and write the memory using standard
C data structures and pointer references. The kernel device driver is responsible for
coordinating memory accesses with the FPGAs.

On systems with the Development Board, the SIMD and RBus data registers are
mapped directly into the address space of the host program. To create an input stream
to Splash 2 the host program simply writes data to the SIMD register. Likewise, an
output stream is handled by reading from the RBus register. A set of library routines
are available to facilitate these operations. The various asynchronous communications
mechanisms such as the handshake registers may be accessed through C macros.

The Final Interface Board supports the use of standard Unix read and write
system calls. An input data stream is created by writing the contents of an internal
buffer or file to the device, while an output stream may be read from the device into
a buffer or file. Higher-level library routines allow the concurrent handling of input
and output streams. Another set of library routines permit the host to set the clock
frequency, and start and stop the system clock.

REFERENCES

[1] J.M. Arnold and M.A. McGarry, "Splash 2 Programmer's Manual," Tech. Report SRC­
TR-93-107, SRC, Bowie, Md., 1993.

[2] R.A. Bergamaschi, "High-Level Synthesis in a Production Environment: Methodol­
ogy and Algorithms," in J.P. Mermet, ed., Fundamentals and Standards in Hardware
Description Languages, Kluwer Academic Publishers, Boston, 1993, pp. 195-230.

[3] S.D. Brown et al., Field-Programmable Gate Arrays, Kluwer Academic Publishers,
Boston, 1992.

[4] M. Gokhale et al., "The Logic Description Generator," Tech. Report SRC-TR-90-011,
SRC, Bowie, Md., 1990.

[5] M. Gokhale and R. Minnich, "FPGA Programming in a Data Parallel C," Proc. IEEE
Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 94-102.

[6] IEEE Standard VHDL Language Reference Manual, Std 1076-1987, IEEE Press, New
York, 1988.

[1] IEEE Standard VHDL Language Reference Manual, Std 1076-1992, IEEE Press, New
York, 1992.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 75

Petitioner Microsoft Corporation - Ex. 1007, p. 59

References 59

[8] P.J. Menchini, "An Introduction to VHDL," in J.P. Mermet, ed., Fundamentals and
Standards in Hardware Description Languages, Kluwer Academic Publishers, Boston,
1993, pp. 359-384.

[9] J.K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, Reading, Mass., 1994.

[10) D.L. Perry, VHDL, McGraw-Hill, New York, 2nd ed., 1994.

[11) Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A-1983,
U.S. Department of Defense, Washington, D.C., Feb. 1983.

[12) Synopsys, Inc., Design Compiler Reference Manual, Synopsys, Inc., Mountain View,
Calif., 1991.

[13) Synopsys, Inc., VHDL Compiler Reference Manual, Synopsys, Inc. , Mountain View,
Calif., 1991.

[14] Synopsys, Inc., FPGA Compiler Reference Manual, Synopsys, Inc., Mountain View,
Calif., 1994.

[15) D.E. Thomas and P.R. Moorby, The Verilog Hardware Description Language, Kluwer
Academic Publishers, Boston, 1991.

[16) S.M. Trimberger, ed., Field Programmable Gate Array Technology, Kluwer Academic
Publishers, Boston, 1994.

[17] Xilinx, Inc., The XC4000 Data Book, Xilinx, Inc., San Jose, Calif. 1994.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 76

Petitioner Microsoft Corporation - Ex. 1007, p. 60
Iii

CHAPTER 6

Software Implementation

Jeffrey M. Arnold

6.1 INTRODUCTION

An important goal of the Splash 2 software effort was to provide a working pro­
gramming environment as quickly as possible without sacrificing the ability to grow
and evolve as the project progressed. We therefore chose to base the implementation
on software standards and readily available tools as much as possible, allowing us
to concentrate on the system integration and the development of applications. The
standards we chose included the VHDL and C programming languages and the Unix
operating system. This chapter shows how these standards and the tools that support
them were assembled to produce a complete programming environment.

6.2 VHDL ENVIRONMENT

60

The Splash 2 VHDL programming environment consists of a library of useful VHDL
constructs and a set of standard entity declarations for the various levels of the
Splash 2 hierarchy. This section presents some details of that environment, and then
discusses aspects of the VHDL programming style that was evolved by the Splash 2
programmers.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 77

Petitioner Microsoft Corporation - Ex. 1007, p. 61

Section 6.2 VHDL Environment 61

6.2.1 Splash 2 VHDL Library

The Splash2 Library contains a set of Packages that are used for the develop­
ment of VHDL application code for Splash 2. The TYPES package contains definitions
of the data types used for interchip communication and is essentially a superset of
the IEEE 1164 Standard Logic data type package. All bidirectional interface ports are
built upon a four-state subtype (' x', 'O ', '1', and 'z') of the Standard_Logic

type, called RB it 3. 1 Assignment of a value of ' z ' to a signal implies the synthesis
of a tri-state driver. The 'x' state is used only in simulation, primarily to identify
tri-state bus conflicts. All of the standard logical operators as well as signed and
unsigned arithmetic operators are supported over vectors of RBi t 3.

The SPLASH2 package contains a variety of constants, data types, and functions
that are specific to either the Splash 2 architecture or the Splash 2 simulator. For
example, constants are defined that specify the width and depth of the memories and
the width of the linear data path. Subtypes are also defined to specify the Processing
Element data ports.

The COMPONENTS package contains a set of components and procedures useful
in writing applications. These include the "Pad" procedures, which can be used to
interface between the tri-state (RBi t3 type) signals external to the Xilinx chips and
the standard logic levels (Bit type) internal signals. There are four pad procedures,
each overloaded to accept scalar and vector arguments of Bit and RBi t3 types.
Pad_Input is used to receive inputs from off-chip; Pad_Output is used to drive
off-chip; Pad_InOut is used to conditionally receive and drive off-chip signals; and
Pad_xBar is used to receive and drive the crossbar data path, conditioned by the
crossbar output enable signals.

The HMACROS package contains component declarations and simulation models
for the set of hard macros [4] provided by Xilinx. Hard macros are logic modules that
have been hand-optimized with fixed relative placement and routing for maximum
efficiency. Until the release of the Xilinx XACT 5.0 tools in 1994, hard macros were
the only mechanism for accessing special-purpose hardware such as the fast-carry­
chain logic. The HMACROS package provides the means to structurally instantiate hard
macros within an application.

6.2.2 Standard Entity Declarations

All Splash 2 applications programs must conform to the input and output behavior
defined by the standard ENTITY declarations. There are four unique FPGA entities
visible to the programmer: the Processing Element (Xl through X16) and the Control
Element (XO) on the Array Board, and XL and XR on the Interface Board. The
entity declaration for the Processing Element is shown in Figure 6.1. The generic
parameters BD_ID and PE_ID are constant values, unique to each PE, provided by
the software environment; they permit the application to customize each PE program
to its physical position in the system. The port declarations represent the connections
of the PE to its neighbors and the rest of the system. The ports of type DataPath

represent the data paths to the left and right neighbors and the crossbar. For example,

1The original RBit3 data type was a resolved three-state (0, 1, Z) logic developed before the
release of IEEE 1164.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 78

Petitioner Microsoft Corporation - Ex. 1007, p. 62

62

I\.

Software Implementation Chapter 6

ENTITY Processing_Element IS
GENERIC(BD_ID Integer;

PE_ID Integer);
PORT(XP_Left inout DataPath;

XP_Right inout DataPath;
XP_XBar inout DataPath;
XP_XBar_EN_L out Bit_Vector(4 downto 0);
XP_Mem_A
XP_Mem_D
XP_Mem_RD_L
XP_Mem_WR_L
XP_Int
XP_Broadcast
XP_Reset
XP_HS0, XP_HSl
XP_GOR_Result
XP_GOR_Valid
XP_LED
XP_Clk

END Processing_Element;

inout
inout
inout
inout
out
in
in
inout
inout
inout
out
in

MemAddr;
MemData;
Bit;
Bit;
Bit;
Bit;
Bit;
RBit3;
RBit3;
RBit3;
Bit;
Bit);

FIGURE 6.1 Standard Processing Element Entity Declaration

XP_Right of one PE is connected to XP_Left of the next PE. The interface to the
PE memory consists of an address bus (XP__Mem-A), a data bus (XP__Mem_D), and
separate read and write control signals (XP__Mem_RD_L and XP__Mem_WR_L). The "_L"
appended to the name indicates the signal is active low. The user must set these
signals to a '1' when the memory is not in use. XP_Int is the interrupt output
signal. The interrupt signals from each of the FPGAs XO through X16 are logically
ANDed with the contents of the Array Board mask register, and then ORed to form
the board-level interrupt. XP_Broadcast is an input signal driven by XO and is
common to all 16 PEs. XP _Reset is the systemwide reset signal, which may be
set by the host. By default, XP_Reset is automatically connected to the Global
Set/Reset (GSR) signal of the Xilinx XC4010, but it is also available as a user input.
The Array Board handshake registers appear to the PE as XP_HS0 and XP_Hsl.
Each PE is connected to a unique bit of the HSO register, while HS 1 is common to
all PEs on the Array Board. XP_GOR_Result and XP_GOR_Valid are bidirectional
signals between the Control Element (XO) and each of the Processing Elements. The
signal names reflect their intended purposes (global AND/OR reduction and barrier
synchronization), but the bidirectionality makes these ports useful for signaling state
changes from XO to individual PEs. The port XP_LED is connected directly to a light­
emitting diode (LED) on the front edge of the Array Board and is typically used for
diagnostics. Finally, XP_Clk is the global synchronous clock shared by every PE in
the system.

The entity corresponding to the Control Element (XO) is similar to the Pro­
cessing Element entity, although the port names are prefixed by xo_ rather than XP_
(see Figure 6.2). In place of the XP_Left and XP_Right data buses, the Control Ele­
ment has 36-bit ports to the SIMD bus (x0_SIMD) and to the crossbar (xo__xB_Data).
xo_GOR_ResulLin and xo_GOR_Valid_In are each 16-bit vectors of bidirectional

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 79

Petitioner Microsoft Corporation - Ex. 1007, p. 63

Section 6.2 VHDL Environment

ENTITY Control_Element IS
GENERIC(BD_ID

PE_ID
PORT (XO SIMD

X0_XB_Data
X0_Mem_A
X0_Mem_D
X0_Mem_RD_L
X0_Mem_WR_L
X0_GOR_Result In:
X0_GOR_Valid_In
X0_GOR_Result
X0_GOR_Valid
X0_Clk
X0_XBar_Set
X0_Xl6_Disable
X0_XBar_Send
XO_Broadcast In
X0_Broadcast_Out:
X0_LED

END Control_Element;

Integer;
Integer);
inout DataPath;
inout DataPath;
inout MemAddr;
inout MemData;
inout Bit;
inout Bit;
inout RBit3 _Vector(l
inout RBit3 _Vector(l
out Bit;
out Bit;
in Bit;

to 16);
to 16);

out Bit _Vector(2 downto 0);
out Bit;
out Bit;
in Bit;
out Bit;
out Bit);

FIGURE 6.2 Standard Control Element Entity Declaration

63

signals to each of the Processing Elements. xo_GOR_Result and x0_GoR_Valid are
outputs connected to the wire-OR backplane signals. Access to the crossbar data is
achieved by asserting xo_x16_Disable, which effectively isolates X16 from con­
trolling the crossbar output enables, and then setting xo_xBar _send high to transmit
into the crossbar or low to receive.

The entity for the Interface Board part XL is shown in Figure 6.3. The principal
data ports correspond to the data path shared by DMA channels B and C, the SIMD
bus, and the data path to XR. There are separate input ports for the system clock and
the free-running clock. A clock-enable output port is used to start and stop the system
clock. Two separate channel control ports of 14 bits each convey the control and status

ENTITY XL IS
PORT(XL_FIFO

XL_SIMD
XL_XR

END XL;

XL Free_Clk
XL_Splash_CLK
XL_Enable_Clk
XL_Chan_B
XL_Chan_C
XL_Ctrl
XL_GOR_Result
XL_GOR_Valid
XL_BCast

inout DataPath;
inout DataPath;
inout DataPath;
in Bit;
in Bit;
out Bit;
inout ChanCtrl;
inout ChanCtrl;
inout Bit_Vector(4 downto 0);
in Bit;
in Bit;
inout Bit);

FIGURE 6.3 Standard XL Entity Declaration

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 80

Petitioner Microsoft Corporation - Ex. 1007, p. 64

64

I

Software Implementation Chapter 6

signals to and from the DMA channels. The global OR result and valid signals from
the backplane are inputs to XL, as is a separate 5-bit handshake register, XL_CTRL.

The XR entity is very similar to XL. Its principal data ports correspond to data
paths to DMA channel A, the RBus, and the XL-XR bus. It too has two clock inputs,
a clock-enable output, and shares the same 5-bit handshake register. The RBus size
and direction signals originate from ports on XR.

6.2.3 Programming Style

Over the course of the Splash 2 project a number of idiomatic VHDL constructs have
evolved. Some of these constructs arose from requirements of the synthesis tools;
others became a matter of programming style. In this section we examine a few of
these idioms.

Signed and unsigned arithmetic is supported for Integer-derived types and for
vectors of Bit and RBi t3 types. The default word size for both signed and unsigned
Integers is 32 bits, which can lead to a tremendous waste of logic and routing
resources when the data range is known to be small. Therefore, range constraints on
integers are used to assist the synthesis tools in optimizing the width of operator logic.
For example, the code in Figure 6.4 will synthesize to a 10-bit unsigned incrementer.
Likewise, vector lengths may be used to control operator widths for arithmetic over
bit vectors. Since the arithmetic operators are overloaded to work with either, the
choice of whether to represent a value as an Integer or a Bi LVector is one of
programming style. It is often more convenient to specify ranges than vector lengths,
but vectors allow easier expression of shifts, concatenation, and bitfield extraction.

SIGNAL i: Integer range (0 to 1023);
i <= i + 1;

FIGURE 6.4 Range Constrained Integer Assignment

All of the Processing Elements in Splash 2 receive a global synchronous clock,
XP_Clk. Therefore, all Processing_Element architectures have one or more pro­
cesses synchronized to this signal. As shown in Figure 6.5, a synchronous process
has no sensitivity list to limit its execution, but rather contains a single WAIT state­
ment conditioned to trigger execution of the process on the rising edge of the clock.
Assignments to SI GNAL objects within the body of the synchronous process are used
to imply registers, since assignment occurs only following the execution of the pro­
cess body, effectively registering the result on the clock edge. Unregistered temporary
values may be named within a process by assigning to VARIABLE objects.

The "Pad" procedures (Pad_Input, Pad_Output, Pad_InOut, and Pad_XBar)
declared in the COMPONENTS package are typically used to connect logic within the

PROCESS BEGIN
WAIT UNTIL XP_Clk'EVENT and XP_Clk '1';
-- Body of synchronous process

END PROCESS;

FIGURE 6.5 Synchronous Process

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 81

Petitioner Microsoft Corporation - Ex. 1007, p. 65

Section 6.2 VHDL Environment

ARCHITECTURE Test OF Processing_Element IS
SIGNAL Left : Bit_Vector(DATAPATH_WIDTH-1 downto 0);
SIGNAL XBar_in: Bit_Vector(DATAPATH_WIDTH-1 downto 0);
SIGNAL XBar_out Bit_Vectbr(DATAPATH_WIDTH-1 downto 0);
SIGNAL XBar_dir : Bit_Vector(4 downto 0);

BEGIN
Pad_Input(XP_Left, Left);
PROCESS BEGIN

WAIT UNTIL XP_Clk'EVENT and XP_Clk = 'l';
Pad_XBar(XP_XBar, XBar_in, XBar_out, XBar_dir);
Pad_Output(XP_XBar_EN_L, XBar_dir);

END PROCESS;
END Test;

FIGURE 6.6 Example of Off-Chip Communication

65

Processing Element to the external Array Board environment. Figure 6.6 shows an ex­
ample of the use of two of these procedures. The Pad_Input procedure
receives data from the left-hand neighbor PE and makes it available on the internal
Bi LVector signal Left. Since this is a concurrent statement, there is no implicit
registering of the data. In contrast, the call to Pad_xBar is a sequential statement
within a synchronous process. Therefore, both the input to the PE (XBar _in) and the
output to the crossbar (XBar_out) are registered. The 5-bit vector XBar_dir is used
to control the direction of the five "bytes" of the crossbar and is also driven out to
the crossbar to control the corresponding output enable pins.

Finite-state machines are implemented by embedding flow control constructs
such as IF and CASE statements within synchronous processes. An enumerated type
may be used to define the set of valid states and a SIGNAL object of this type declared
to hold the current state. A CASE statement within a synchronous process is used to
dispatch on the state variable .. Within each WHEN clause, input conditions are tested,
output signals are assigned, and the next state transition is computed.

Occasionally it is necessary to instantiate one or more components within a
Splash 2 application program to create replicated structures or to gain access to spe­
cific FPGA features. VHDL provides several structural constructs, including compo­
nent instantiation and conditional and iterative Generate statements. For example,
access to the CLB RAM within the Xilinx PE may be accomplished by instantiating
a special memory component. Generic parameters to this component are used to con­
figure the width and depth of the memory as well as to specify any initial contents
(such as for ROMs). When evaluated by the Splash 2 simulator, the model for this
component uses these parameters to create an output file that can be read by the
Xilinx-provided MEMGEN program. MEMGEN in turn creates a macro for the memory,
which is incorporated into the FPGA load module by the place-and-route tools.

There are two standard modes of synchronizing the input data with the Splash 2
system. In the first mode, the XL chip on the Interface Board controls the system
clock such that the Array Boards see a system clock pulse only when there is valid
data on the SIMD bus. In the second mode, the system clock is allowed to run
continuously while the presence of valid data is indicated by setting to 1 the most ·
significant bit (bit 35) of the SIMD bus. More complex behavior can be achieved by
modifying the XL program.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 82

Petitioner Microsoft Corporation - Ex. 1007, p. 66

66 Software Implementation Chapter 6

Access to the external memory is synchronous with the global clock. Mem­
ory read operations are performed by placing the address on the XP _Mem_A port in
one clock cycle and reading the data from XP _Mem_D in the next cycle. The port
XP _Mem_Rd is asserted with the address to indicate a read operation. The address
may be changed every cycle to perform back-to-back reads. A write operation is
performed by placing both the address and the data on the memory ports and simul­
taneously asserting XP _Mem_WR. The address and data may be changed every cycle
to perform back-to-back writes.

6.3 SPLASH 2 SIMULATOR

Chan A

The Splash 2 simulator itself is written in VHDL and consists of a hierarchical set
of models of the various components of the system. An application program uses the
Configuration statement to specify which architectures (models) to use at each of
the levels of the hierarchy. The architectures specified at the leaves of the hierarchy
may be any mix of user-provided VHDL code and predefined default models. The
configuration statement also allows the user to customize individual models by setting
the values of generic parameters. Among the parameters specified are the names of
any files of test data. The configuration statement therefore specifies the construction
of a complete model of the system. This model in tum is interpreted by a simulation
engine, effectively executing the user's application.

This section begins by describing the structure of the simulator hierarchy. We
then present the use of the configuration statement through a series of examples.
Finally, we discuss some details of the system models.

6.3.1 Structure

Figure 6.7 illustrates the structure of the Splash 2 simulator. The root of the hier­
archy is the Sy s tem model, which instantiates the Interface and the S2Bo ards
models.

Interface

ChanB Chane

System

XL XR

XBar

Board 1

CE

r1----,
XC Mem

S2Boards

PEI

I

XP

FIGURE 6.7 Structure of the Splash 2 Simulator

Board n

PEs

I

Mem XP

PE16

I

Mem

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 83

Petitioner Microsoft Corporation - Ex. 1007, p. 67

Section 6.3 Splash 2 Simulator 67

The Interface model is responsible for instantiating the DMA channels, XL
and XR. Instances of the DMA channels are created only if there are values passed in
the configuration statement for the corresponding input and/or output filenames. The
Interface model is also responsible for generating the system clock, at a frequency
determined by another generic parameter.

The number of Array Boards generated is controlled by the generic parameter
Number_OLBoards. The S2Boards model also passes the slot ID number to each
Array Board component generated. The Array Board model in tum instantiates the
crossbar (XBar) and the Control Element (CE) and contains a Generate statement
that instantiates the Processing Elements (PEs). Each PE consists of a reference to
the Processing Element component (XP) and the Memory component (Mem). The
Processing Element reference passes the slot number and the PE number to the user's
code through the generic parameters BD_ID and PE_ID, respectively.

6.3.2 Configuring the Simulator

The Splash 2 simulator assembles an application program according to the directions
presented in the VHDL configuration statement. This statement, typically stored
in a file called config. vhd, identifies the architecture to use for each entity in
the design and allows the user to specify values of generic parameters. Figure 6.8
shows the top, or outermost, level of a typical config. vhd file. Most of the file
is common to all applications and may be copied from the Splash 2 library. In this
example, Top is just a label to identify the configuration of the Splash_System

entity. Within the Structure architecture there are two component instantiations:
one for the Interface_Board entity and one for the Splash2_Boards entity. Any
configuration information needed for the components would normally appear within
the for clauses.

Figure 6.9 shows an example configuration for the Interface_Board compo­
nent. The Generic Map construct is used to pass generic parameter values to the
simulator. In this example, input for the application is taken from the file test. dat

and output is written to the file output. dat in hexadecimal format. The clock model
runs at a simulated frequency of 20 MHz. The user-programmable FPGAs XL and
XR are both loaded with their Valid architectures from the interface library.

The rest of the Splash 2 simulator is configured in a similar manner. The com­
plete config. vhd file contains places for specifying the number of Array Boards,

configuration TOP of Splash_System is
for Structure

for IFACE: Interface_Board
-- Interface board configuration

end for; -- IFACE:
for Splash: Splash2_Boards

-- Configuration of array boards

Interface_Board

end for;
end for;

end TOP;

Splash: Splash2_Boards
-- Structure (of Splash_System)
-- Configuration TOP

FIGURE 6.8 Top Level of Simulator Configuration File

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 84

Petitioner Microsoft Corporation - Ex. 1007, p. 68

68 Software Implementation

for IFACE: Interface_Board
use entity interface.Interface_Board(Structure)

Generic Map (input_filel => "test.dat",
output_filel => "output.dat",
File_Type => Hex,
Clock_Freq => 20);

for Structure
for all: XL

use entity interface.XL(Valid);
end for; -- all: XL
for all: XR

use entity interface.XR(Valid);
end for; all: XR

Chapter 6

end for;
end for;

Structure of IFACE
IFACE: Interface_Board

FIGURE 6.9 Interface Board Model Configuration

the crossbar configuration file, the Control Element and Processing Element archi­
tectures, and any initial memory tables.

6.3.3 Input and Output

Input to and output from the Splash 2 system are handled by the Interface Board
model, which contains generic filename parameters for each of the three 1/0 channels.
If the conf ig. vhd file specifies a filename for a channel, the corresponding model
opens the file for reading or writing. Input files are assumed to be ASCII containing
one hexadecimal string per line, each line representing a new data value to be read
from the channel. Output files are written in the same format, one value per line of
the output file.

6.3.4 Crossbar and Memory Models

The crossbar model in the simulator is passed a generic parameter that contains the
name of a file that contains up to eight settings. The first line of each setting consists
of the keyword configuration followed by an integer from Oto 7 (inclusive). The
following lines of the setting are of the form:

output-port-number input-port-specifier

where "output-port-number" ranges from 1 to 16 and corresponds to the Processing
Element number. The "input-port-specifier" is either a single integer (0 to 16) or
five integers (0 to 16). If the input-port-specifier is a single integer in the range
(1 to 16), it specifies a single source port for all 36 bits of the output. A value
of 0 is used to indicate that port "output-port-number" is used as an input to the
crossbar. If "input-port-specifier" consists of five integers, each integer specifies the
source for one byte of the output, from most to least significant. If an output port
number is missing from the configuration, it is assumed to be set to 0 (input to
the crossbar). Note that simply setting "input-port-specifier" to 0 is not sufficient
to disable the crossbar port; the corresponding XP _XBar _EN_L signals must be set
to 1.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 85

Petitioner Microsoft Corporation - Ex. 1007, p. 69

Section 6.3 Splash 2 Simulator

Odd PEs drive,
configuration 0
1 0
2 1
3 0
4 3
5 0
6 5
7 0
8 7
10 9
12 11
14 13
16 15

configuration 1
1 0
297531

even PEs receive

FIGURE 6.10 Sample Crossbar
Configuration File

69

Figure 6.10 shows an example crossbar configuration file with two settings

defined. In the first setting, the odd-numbered PEs are driving into the crossbar while

the even-numbered PEs are receiving. The crossbar ports corresponding to PEs X9,

Xll, X13, and X15 are implicitly set to O (disabled). In the second setting, PE X2

is receiving one byte each from X9, X7, X5, X3, and Xl. Crossbar ports for X3

through X16 are implicitly disabled.
Users may choose from several predefined memory models available in the

Splash 2 simulator, or they may add their own. The predefined memory architectures

include the following:

• None: No memory is modeled. Access to the memory generates an error.

• zero: Read-accesses from any location return a constant zero. Write-accesses

are ignored.

• Static: Memory is modeled as a statically allocated, fixed-size array. The size

of the array is determined by a generic parameter passed by the configuration

file. This model is useful for lookup tables and sequentially accessed data.

• Dynamic: Storage for the memory model is allocated dynamically as needed.

The first write to an address allocates a new storage cell, which subsequent reads

will fetch. A read from an unwritten address generates an error. This model is

useful for programs in which the access pattern is data-dependent (random).

The memory initialization, or "load," file is an optional ASCII file that may

be used to specify initial contents of the PE memories. The format of this file is

simple. For each set of contiguous blocks of data, the base address of the block is

given, followed by one or more data values. The base address is specified by the

keyword address followed by an unsigned decimal integer. Subsequent (decimal)

integers are interpreted as the 16-bit values to load into consecutive locations. A

single load file may contain any number of blocks. Alternatively, the entire memory

can be initialized to zero by including the keyword clear in the load file.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 86

Petitioner Microsoft Corporation - Ex. 1007, p. 70

70 Software Implementation Chapter 6

6.3.5 Hardware Constraints

One important role of the simulator is to verify that application programs satisfy
certain hardware constraints that are difficult or impossible to verify through static
analysis. The hardware constraints that can be checked in simulation include memory
sequencing, reading uninitialized memory locations, and tri-state bus conflicts.

Since the data bus to the memory is bidirectional, the PE must ensure that it
does not begin a write operation before the completion of a read. This constraint is
verified within the simulator by checking that the memory read signal is deasserted
at least one cycle before the memory write signal is asserted.

The major data buses on the Array Board are bidirectional, relying on the use
of tri-state J/0 drivers of the FPGAs to prevent conflict. The simulator models these
tri-state pins with a four-state logic. The resolution function for the four-state logic
detects any attempt to drive a signal to two different logic values simultaneously.
When a conflict is found, a warning message is printed and the signal is set to the
' x ' , or unknown, state.

6.4 COMPILATION

A mix of logic synthesis and standard compilation techniques are used to compile
VHDL programs into FPGA configurations. The logic synthesis tools from Synopsys
Inc. [3] are used to map the VHDL code into a gate list. A custom peephole optimizer
is then applied to the gate list to perform a variety of Xilinx-specific and Splash 2-
specific optimizations. The resulting gate list is then mapped into the CLB structures
and placed and routed using the Xilinx [4] tool package. The Xilinx tools are also
used to extract the detailed timing information from the placed and routed design.
This information may be used directly to manually optimize the design, or it may
be used to construct a new structural VHDL model for each chip, which may be
resimulated by the Splash 2 simulator to provide detailed timing analysis.

6.4.1 Logic Synthesis

In 1991, FPGA technology was still quite new and confined mainly to board-level
"glue logic" applications. Consequently, very few commercial CAD tool vendors
were targeting FPGAs for logic synthesis. After evaluating the few tools on the
market, we chose to base our compiler on the Synopsys Design Compiler. This choice
required the development of a custom technology library that allowed the Design
Compiler to produce a technology-independent gate list. It was also necessary to
write a net list conversion program to translate that generic gate list into a technology­
dependent form suitable for the physical mapping tools.

The net list translator, called edif2xnf, parsed and flattened the hierarchical
EDIF net list produced by the Design Compiler, creating another file in Xilinx Netlist
Format (XNF). During the translation a number of Xilinx- and Splash 2-specific
optimizations were also performed on the design, including:

• Flip-flops on the periphery of the logic were migrated to the 1/0 frame (IOBs)
of the chip wherever possible.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 87

Petitioner Microsoft Corporation - Ex. 1007, p. 71

Section 6.4 Compilation 71

• The board-level program reset and Xilinx Inhibit signals were connected to the
internal GSR and GTS signals.

• Hard macro references were identified and marked as such.
• Port names were given specific pin assignments and pad slew-rate options.
• The clock signal was identified and a global buffer inserted in the clock net.
• A pattern-matching algorithm was also used to find opportunities to simplify

the logic by exploiting the clock-enable feature of the Configurable Logic Block
(CLB) flip-flops.

The output of the optimizer, in Xilinx Netlist Format (XNF), was fed into the Xilinx­
provided placement and routing tools and static timing analyzer.

In late 1993 Synopsys released their "FPGA Compiler" product that incorpo­
rated much of the functionality of edif2xnf directly into the synthesizer. There were
some minor problems, however, in the early releases of the FPGA Compiler, which
necessitated our writing another program, xnfer, which was able to manipulate the
XNF file. Xnfer inserts the "drop in" logic that connects the internal GSR and GTS
signals and moves peripheral flip-flops to the IOBs.

A Unix shell script (vhdl2xnf) presents the user with a simplified interface
to the numerous controls of the FPGA Compiler and xnfer. Vhdl2xnf processes a
number of command line options and constructs an execution script for the FPGA
Compiler. This script, in tum, specifies any elaboration parameters (including the
BD_ID and PE_ID), includes port mapping tables, and handles error conditions. The
output of vhdl2xnf is an XNF file ready for physical mapping.

6.4.2 Physical Mapping

The physical mapping of the design from XNF to a loadable bitstream is handled by
the Xilinx-provided tools. The placement and routing tool, PPR, reads the XNF net
list and produces an "LCA" file, which contains all of the configuration information
in an ASCII format. The program makebi ts converts the LCA file into a bitstream
format, called a "BIT" file. Makebi ts also produces an "LL" file that contains a
table-mapping CLB and IOB flip-flops to positions in the readback bitstream. Another
Unix shell script (xnf2bi t) provides a convenient interface to the physical mapping
tools and the symbol table creation.

6.4.3 Debugging Support

To support the symbolic capabilities of the runtime debugger, a table is created
associating the names of symbols with the location of the corresponding register bit
in the readback stream. The information needed to build this table is extracted from
the compiled design in two steps. First, the Xilinx tool lca2xnf is used to create
an XNF file annotated with the location of each CLB flip-flop and its associated
signal name. 2 The location information is then looked up in the LL file produced
by makebi ts to produce an offset into the readback bitstream. A table of symbol
names and offsets is then built for use by the debugger.

2This step is necessary to resolve ambiguities created by PPR through the use of feed-through
CLBs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 88

Petitioner Microsoft Corporation - Ex. 1007, p. 72

72 Software Implementation Chapter 6

6.5 RUNTIME SYSTEM

There are two host software interfaces to the Splash 2 system: a C language library
that can be linked into an application-specific driving program, and an interactive
symbolic debugger. Both interfaces are built upon the same underlying runtime sys­
tem, and both provide the same basic functionality. The runtime system allows the
user to open the Unix device, to map the Splash 2 memory into the host address
space, to configure the FPGA devices and crossbar, to establish DMA data streams,
and to control the system clock. The clock may be single-stepped, multiply-stepped,
or allowed to run free. The user may also read and write various control registers,
including the "handshake" registers.

6.5.1 T2: A Symbolic Debugger

To assist in the development of applications on the hardware, an interactive symbolic
debugger, T2, was developed. The user interface to T2 is an interpreter executing
the Tel command language (1). Tel is a C-like language that provides a variety of
control-flow mechanisms and allows the user to extend the command set by writing
custom procedures. A set of built-in procedures provides access to the Splash 2
hardware resources and runtime software.

The built-in commands of T2 may be divided into three categories: hardware
setup; program execution; and analysis. The setup commands include routines for
hardware and software initialization, and configuration of the FPGAs and crossbar. To
configure the system, the user specifies a map, which associates Processing Elements
(individually or in groups) with bitstream files. The bitstream files for all of the PEs
on an Array Board are then merged into a single image called a "raw" file. A given
raw file may then be loaded to one or more Array Boards via the ConfigArray
command. A raw file may be saved and reloaded on subsequent runs, obviating the
need to associate and merge the bitstreams again. The crossbar is initialized from a
crossbar configuration file by the Conf igXBar command.

Execution of an application program is controlled by the Step family of com­
mands. There are a variety of these commands that allow the user to specify input
and/or output files, file formats, and the interpretation of the "tag": the most signifi­
cant four bits of the 36-bit data word. For input files the tag may be set to a constant
value or it may be taken from the input file. On output the tag is typically used to
indicate valid data, so a mask may be provided to control which data are to be written
to the output file. All of the st ep commands allow the user to specify the number
of clock cycles to execute.

The heart of the symbolic debugger is the Xilinx FPGA state readback
mechanism. To trace a set of program variables, or symbols, the user issues the
AddReadBack command after each Step command. AddReadBack adds the current
state information to an internal history buffer. Another set of commands allows the
user to inquire about the state of a particular symbol at a particular time. Symbols
may be looked up individually, or an alias may be defined to aggregate multiple
symbols.

The wave program allows users to view graphically the time-varying behavior
of program symbols. The T2 command Trace adds a symbol (or alias) to a trace
list. At the end of each clock cycle a readback is performed and the value of every

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 89

Petitioner Microsoft Corporation - Ex. 1007, p. 73

Section 6.5 Runtime System 73

traced signal is written to a file. The wave program reads the trace file and paints a
waveform display similar to a logic simulator or a hardware logic analyzer.

Finally, T2 provides a set of lower-level routines for reading and writing indi­
vidual hardware registers. These routines are available for applications that require a
level of control not provided by the higher-level interface.

6.5.2 Runtime Library

The Splash 2 runtime library, libsplash, which forms the foundation of T2, is
also available to be linked into a user-written C program. For every built-in T2
command there is a corresponding entry point into libsplash that provides the same
functionality. The routine OpenAndini t performs the basic hardware and software
initialization, including opening the device, allocating and initializing the Splash
device structure, and mapping the various pages of the physical address space into the
user's address space. The Splash structure is also initialized with an array of pointers
to each of the PE memories in the system. Separate minor devices corresponding to
the DMA channels are also opened. The hardware initialization includes loading a
passive, or idle, program into all of the FPGAs, setting the clock frequency, and
resetting and disabling the OMA channels.

Application programs may be loaded and executed through libsplash in the
same manner as from T2. Library routines exist to manipulate bitstream files and
to create, save, and load raw files. The entire family of Step commands is also
available as library routines.

In addition to the T2 commands, however, libsplash also provides a set of
input and output routines based upon the standard Unix system calls write and
read. The Write routine is a user-level interface to the write system call, which
uses the OMA facility to transfer data from the user's address space to the Splash 2
Interface Board and XL. The Read routine similarly sets up a OMA transfer from
the Interface Board to a buffer in the host memory.

Both write and Read are blocking operations. That is, once called, these
routines do not return control to the user program until the requested operation is
completed. To implement two concurrent data streams, one input to Splash 2 and
one output from Splash 2, the Wri teRead routine is provided. Wri teRead uses
the first OMA controller to transfer data from one memory buffer to the Interface
Board while simultaneously using the second OMA controller to move data from
the Interface Board back to a different host memory buffer. This concurrency is
accomplished by spawning a separate Unix process to perform the Read while the
parent process proceeds with the Write operation. Once the Write has completed,
the parent waits for the Read process to complete before returning control to the user

. program.
Both the output and input memory buffers used by the WriteRead routine are

in the address space of the user program, but the data received from Splash 2 is in
the address space of the Read process. Since Unix does not support shared memory
very well, it is necessary to copy the received data from the Read process back to
the address space of the parent process. This copying is accomplished by passing
the data from the child back to the parent in a memory-mapped temporary file. The
parent process opens a temporary file prior to spawning the child process. The child
then maps the file into its address space using the mmap system call, and passes it as

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 90

Petitioner Microsoft Corporation - Ex. 1007, p. 74

74 Software Implementation Chapter 6

the target buffer for the Read operation. Upon completion, the parent also memory­
maps the temporary file and copies the data to the user's buffer. The temporary file
is truncated to zero length prior to closing, to avoid any writes to the disk.

The buffer copying performed by the Writ eRead routine can be avoided by
forcing the user to manage the memory-mapped temporary files. The WriteReadFD
routine allows the user to pass the file descriptors of memory-mapped files in place
of the memory buffers. The output data is taken directly from the "write" temporary
file, while the input data is written directly to the "read" temporary file.

The user program also has direct access to the various device registers in the
Splash 2 system. The register-access commands of T2 are available to the C pro­
grammer, but for efficiency reasons a separate set of C macros is also provided.
These macros typically accept a symbolic register identifier and a value and perform
any necessary data alignment prior to reading or writing a register.

6.5.3 Device Driver

The interface between libsplash and the Splash 2 hardware is handled by the
device driver [2]. A device driver is a body of code written for a particular physical
device which executes within the protected domain of the operating system itself.
The Splash 2 driver provides entry points for the various operating system calls
such as open, close, rnmap, read, and write. The open call reserves a device for
use by the user process and typically performs a variety of hardware and software
initializations, while close frees the device for use by other processes. The rnmap
system call is the mechanism by which the operating system makes available to the
user some portion of the physical address space of the device. Input to and output
from a device are done with the read and write calls. The driver is also responsible
for handling system interrupts caused by the device.

The physical address space of the Splash 2 device is composed of several
distinct segments corresponding to the registers and memory on the Interface and
Array Boards. The register space of each board is further divided into two pieces:
user mode space and kernel mode space. User mode space contains those regis­
ters which may be mapped directly into the address space of the user program,
while kernel mode space contains registers reserved for use strictly within the
device driver. As a rule of thumb, access to registers that may adversely affect
the operation of the system, such as DMA and interrupt registers, is limited to the
"trusted" device driver. The remaining registers and memories may be mapped into
user space.

Since the Development Board does not support OMA-controlled input and out­
put or interrupts, the device driver for systems with the Development Board relies
entirely upon the mmap call. All the registers on the Development Board are mapped
into the user's address space, and a set of user-level library routines is provided to
support input and output. The read and write system calls are not supported.

The bank register is managed by the device driver and is transparent to the user
program. Whenever a user reference crosses a 24-bit segment boundary, a memory
fault is incurred that transfers control to the Splash 2 driver. The driver then unloads
the mapping for the previous segment of memory, maps in the new segment, and
updates the bank register. No further intervention by the driver is required until the
next time a reference falls outside of the current segment.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 91

Petitioner Microsoft Corporation - Ex. 1007, p. 75

Section 6.6 Diagnostics 75

Since the Processing Element memory is not truly dual-ported, special care must
be taken to avoid simultaneous access from the host and from the FPGA. The device
driver coordinates access to the memories through the operating system's page fault
mechanism. Whenever the Splash 2 system clock is enabled, all of the Processing
Element memories are unmapped from the user's address space. Therefore, any access
to a PE memory from the host causes a fault, transferring control back to the driver.
The driver then stops the system clock and unloads the mapping for the clock registers
to prevent the user from inadvertently restarting the clock. After the clock has been
stopped, the "Xilinx Disable" signal is asserted to passivate the FPGAs, a software
timeout interrupt is scheduled for about 10 msec in the future, and the referenced
memory segment is mapped in before control is returned to the user program. When
either the timeout interrupt or a subsequent user reference to the clock registers
occurs, the procedure is reversed by unloading the memory segment, deasserting the
Xilinx Disable signal, and restarting the clock.

The device driver for systems containing the Interface Board supports DMA
transfers through the read and write system calls. When a user-level input or
output request is made, the driver must perform a variety of software bookkeeping
operations before and after the actual data transfer. First, the user's data buffer is
mapped into the kernel address space. Next, each page of the buffer is locked into
physical memory to prevent the operating system from paging it to disk during the
transfer. Then, if the buffer does not begin on a 16-word boundary, the transfer is
aligned by manually copying data to or from the DMA channel. Once the buffer has
been mapped, locked, and aligned, the DMA transfer is begun. When the transfer is
complete, the Interface Board signals the driver by generating a hardware interrupt.
The interrupt handler returns control to the driver, which reverses the process, copying
any data remaining after the last 16-word block and then unlocking and unmapping
the buffer.

The SBus hardware has a peak data bandwidth of nearly 60 MB/sec. Unfortu­
nately, due to the software overhead associated with the DMA transfer, principally
mapping the buffer into the kernel space and locking the pages in memory, the best
transfer rate a user-level program can expect to achieve is about 23 MB/sec, or about
40 percent of the peak.3 For small transfers, the software overhead of DMA can
completely dominate the time to completion. Therefore, for requests of less than
1024 bytes, the Read and Write library routines handle the transfer entirely in user
mode using slave read and write accesses to the FIFOs.

6.6 DIAGNOSTICS

· The suite of diagnostic software for Splash 2 evolved from the need to test and
debug the hardware. The diagnostics were originally written to support low-level
hardware debugging and system software design, but as the project progressed they
took on new roles in the postmanufacture testing of new boards and the routine health

3These values were empirically determined in our laboratory. A hardware logic analyzer was
connected to the LED register and to the SBus grant signal on the Interface Board. A version of the
device driver was written that marked events by writing to specific bits of the LED register. The logic
analyzer then recorded the time spent in the various phases of the I/O transfer.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 92

Petitioner Microsoft Corporation - Ex. 1007, p. 76

76 Software Implementation Chapter 6

checkups of running systems. The principal components of the test suite are the t sdb

debugger and the robocop diagnostic.
Support for the lowest level of hardware debugging is provided by the "trivial

SBus debugger," or tsdb. This tool is not specific to Splash 2, but rather operates
on the physical address sp<:tce of a given SBus slot. A simple command interpreter
allows the user to examine and set locations by specifying an offset within the SBus
slot space. Other commands include read and write loops to allow triggering of test
equipment. The user can define a set of symbolic names to use in place of numeric
values. These symbols can then be used in any command that expects a numeric
value such as a physical address.

The main diagnostic program is called robocop. Robocop consists of a set of
VHDL Processing Element programs and C host routines. The design philosophy of
robocop is to test the functionality of the system in ever-increasing distance from
the host, starting with the SBus interface and proceeding through the Interface Board
eventually to the Array Boards. On the Interface Board, robocop begins by testing
the various status and control registers, then the program and readback memory, the
programmable clock, XL and XR, and finally each of the OMA controllers. Once the
Interface Board passes all of the tests, robocop proceeds to test the Array Boards,
starting with the PE memories, the FPGAs, and the Crossbar and data paths. Finally
the data path between Array Boards is tested.

A simple menu-driven interface allows users to select tests to perform on
individual components or run on the entire system at one of several levels of detail.
Any errors discovered are logged on the host by both system name and by individual
board serial number.

Robocop may also be configured to run in the background, automatically start­
ing up whenever the Splash 2 system is not in use. This background mode is com­
pletely transparent to the user. If the diagnostics are running when a user attempts to
start an application, the OpenAndini t routine in libsplash will send a signal to
the robocop process causing it to gracefully shut down. Once robocop has exited,
the OpenAndini t call returns control to the application in the normal manner. In
addition to the normal error logging, when running in background mode, errors are
also reported by sending electronic mail to a list of system maintainers.

REFERENCES

[l] J.K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, Reading, Mass., 1994.

[2] J. Stigliani, Writing SBus Device Drivers, Sun Microsystems, Inc., Mountain View, Calif.,
1990.

[3] Synopsys, Inc., FPGA Compiler Reference Manual, Synopsys, Inc., Mountain View,
Calif., 1994.

[4] Xilinx, Inc., The XC4000 Data Book, Xilinx, Inc., San Jose, Calif., 1994.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 93

Petitioner Microsoft Corporation - Ex. 1007, p. 77

CHAPTER 7

EDITORS' INTRODUCTION

A Data Parallel
Programming Model

Maya Gokhale1

The following chapter describes an altemati ve, data parallel, programming model
suitable for some of the applications for Splash 2 or for CCMs in general. In the
"standard" approach adopted for Splash 2, programmers must design the processor
architecture, at least in concept, at the level of a block diagram of comparator boxes,
adders, and such, for processing the data, and to a lesser extent for sequencing and
control. Given the linear flow of data in many applications, many of the algorithms
are most easily viewed as a series of processing boxes connected by lines represent­
ing the flow of data (see, for example, Figure 11.12 in Chapter 11). Although the
programming of such an algorithm in VHDL in the Splash 2 programming environ­
ment is a relatively straightforward programming process, the fact remains that the
hard work of determining the data processing steps needed, laying those steps out
with the data flow, and partitioning the entire computation into chip-sized pieces has
already been done before any programming ever takes place.

It is this process, the design of a processor architecture suitable for a given
application, that the dbC approach suggests could be done automatically by the com­
piler. The underlying idea, at least part of which is certainly not new, is that the
programmer is able to write code in a variant of C that supports both bit-oriented
data types and massive parallelism of SIMD computation. The compiler then trans­
lates the dbC code into assembly language-level instructions and produces as output

1 A version of this appeared as Gokhale and Schott [6] and is used with permission.

77

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 94

Petitioner Microsoft Corporation - Ex. 1007, p. 78

78 A Data Parallel Programming Model Chapter 7

the VHDL code necessary to create an instance of a processor architecture capa­
ble of executing the specific assembly-level instructions needed for the particular
computation at hand. It is in this last step that the Splash 2 dbC work differs from
more ordinary SIMD machine computations. In the CM-2, for example, a specific
target micro-architecture existed in hardware, and the Paris assembly-level instruc­
tions used that micro-architecture. Unlike some other approaches to computing on
FPGAs, in which a specific micro-architecture is synthesized and instructions for that
micro-architecture are used, with dbC in Splash 2 the architecture is defined by the
instructions to be executed, and only as much architecture as is needed is eventually
synthesized.

The key issue in the use of CCMs has always been the ability to produce work­
ing programs by programmers (rather than hardware engineers) with an expenditure
of effort and time consistent with other programming tasks. A dbC approach, if it
were to be successful, would go a long way toward resolving that key issue. There
were three reasons, however, that precluded the consideration of dbC as the standard
method by which Splash 2 was to be programmed.

• In its present form, dbC is suitable only for SIMD applications. Many of the
Splash 2 applications simply are not suitable for a SIMD implementation (at
least not a SIMD implementation on Splash 2), and it was necessary to have a
programming environment that would accommodate those applications.

• The performance of dbC programs on Splash 2 and their use of the still rel­
atively precious FPGA resources is not yet good enough that one could have
demonstrated "success" on some important applications.

• Most important, and not unrelated to the previous point, dbC is a research
project in its own right and, even now, has not come to closure. What was
necessary for the Splash 2 demonstration project was a programming environ­
ment in which applications could be developed in a time frame consonant with
the rest of the project. Although dbC had existed for other (standard) machines
prior to the start of the Splash 2 project, dbC for Splash 2 did not exist and
could not be predicted to exist in time for applications development. Further,
the degree of risk concomitant with any real research project made the adoption
of dbC as "the" programming mode for Splash 2 impractical.

In short, then, we offer this chapter as a suggestion of what the (near) future
may hold for the programming of CCMs. Applications have been programmed using
dbC, the research continues, and we would expect that future CCMs might rely on
dbC or a similar language in a manner from which we were prevented by the sequence
of events.

7.1 INTRODUCTION

The standard methodology for programming Splash 1 and Splash 2 was through hard­
ware description languages. Splash 1 was programmed using the Logic Description
Generator (LOG) described in Gokhale et al. [5], a textual HDL that facilitated the
description of systolic, hierarchical designs. LOG was developed in-house to meet

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 95

Petitioner Microsoft Corporation - Ex. 1007, p. 79

Section 7.1 Introduction 79

the need for a low-level tool that nonetheless permitted the user to concisely describe
a large amount of logic. On Splash 2, we were able to design at a much higher level.
Behavioral VHDL approaches the expressive power of a parallel programming lan­
guage. However, orchestrating a large number of concurrent event-driven loops is
complicated, time-consuming, and . error-prone. Splash 2 is a complex collection of
devices. Although the simulator went a long way in helping to verify the correct­
ness of a Splash 2 design, the programmer had full responsibility for creating the
design in the first place, which required working out the timing of a multiplicity of
interlocking events across the 17 FPGA chips, memories, FIFOs, crossbar, and host.
VHDL programs were required for each distinct FPGA chip design. The crossbar
program was in a separate ASCII file. A control program on the host was required
to send data and control signals to the array and to read back results.

We knew that raising the conceptual level from hardware design to parallel
programming would make Splash 2 (and custom computers in general) accessible
to a much wider range of programmers. It would be ideal to write a single parallel
program, with some portions executed on the Splash 2 Array Board and others on
the host, with communication and coordination between the two (as well as among
FPGA computing elements) managed automatically.

It was at this point that a related SRC project was synergistic to the problem of
programming Splash 2. Another group at SRC had designed and built the TERASYS
SIMD array, composed of custom Processor-in-Memory chips [3]. A new language,
data-parallel bit C (dbC), was developed to program TERASYS [12]. Two features
of the language and its implementation made it especially appealing for Splash 2.

First, in dbC, bits are first-class parallel objects. Variables of arbitrary bit length
can be created, and operations over arbitrary bit length data objects are supported.
On Splash 2, this allows us to create and operate with small (1-, 2-, and 4-bit)
objects, saving valuable resource on the FPGA. For example, the genetic sequence
comparison application uses 4-bit counters to record edit distances. It would not be
possible to describe this structure accurately in conventional C, since bitfields are
promoted to "int" for computation. In dbC, not only is the storage minimized, but
the computation is over the actual bit length rather than a standard container size
such as 32 bits.

The second enabling aspect of dbC was in its implementation: the dbC "com­
piler" is actually a translator from the parallel ANSI C superset to ANSI C. The
parallel constructs are invoked as function (or macro) calls. For TERASYS, the par­
allel operations are implemented by a microcode library. For Splash 2, we synthesize
logic on a program-by-program basis to support exactly those parallel operations that
are required for a given program. The parallel operations are executed on the Array
Board, with serial data manipulated on the host. Clock events, FIFOs, the crossbar,
and FPGAs disappear from the programming model. A single dbC program controls
both Splash 2 and the host. As an added advantage, a dbC simulator had been written
for the TERASYS project and could be used by Splash programmers to debug their
data parallel programs on a workstation prior to synthesis.

Thus, concurrent with application development in VHDL, we embarked on a
research project to build a dbC-to-Splash 2 compiler. We realized at the outset that
dbC, which follows the SIMD programming model, would not be suitable for all
Splash 2 applications. Many applications are inherently MIMD: different processors
perform different tasks. Some applications have real-time constraints, which might

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 96

Petitioner Microsoft Corporation - Ex. 1007, p. 80
~I

80 A Data Parallel Programming Model Chapter 7

not be met through high-level synthesis. Nevertheless, the key issue in the use of
CCMs has always been the ability to produce working programs by programmers
rather than by hardware designers, with an expenditure of effort and time consistent
with other programming tasks. A dbC approach, even with the restricted application
domain, would go a long way toward resolving that key issue.

In this chapter, we describe the dbC language and compiler, which translates
programs written in a data parallel superset of ANSI C into high-level VHDL for
the Splash 2 array of FPGA chips. The next section contains a brief introduction
to dbC. Next, we describe the dbC/Splash 2 compiler and illustrate the compilation
process with a simple example. Section 4 details how data parallel communication and
global reduction operators are mapped onto Splash 2. Optimizations are described
in Section 5. We evaluate our system in Section 6 by showing performance on a
genetic database search problem coded in dbC. Finally, we summarize and sketch
future directions.

7.2 DATA-PARALLEL BIT C

dbC is an ANSI C superset similar to MPL [10] and C* [13]. The programming
model is that of a SIMD processor array in which a host processor controls instruction
sequencing of many Processing Elements (PEs) (see Figure 7.1). The PEs receive
instructions from the host. A PE can be active, in which case it executes the current
instruction, or inactive, in which case it ignores the instruction. The active state is
controlled by a mask, the context bit. Each PE can communicate with its nearest­
neighbor in the user-defined virtual topology (a linear topology is illustrated). PEs
can also communicate in arbitrary any-to-any patterns through an interconnection
network. Global combining operations (also called reduction operations) such as
global OR, SUM, MAX can be performed over the entire PE array, with the result
of the operation being returned to the host.

7.2.1 dbC Overview

The dbC programmer specifies the number of PEs by initializing two predefined
variables, DBc_net and DBc_neLshape. DBc_net must be initialized to the number
of dimensions in the PE array, and DBc_neLshape is a vector of rank DBc_net,

each element of which gives the size of the corresponding PE dimension.
In dbC the programmer designates data which is to reside on the processor

array with the attribute poly. Figure 7.1 shows a one-dimensional 12-processor array

PE p(O) p(l) p(2) p(3) p(4) p(6) p(7) p(8) p(9) p(lO) p(l 1)
Array

Instruction Data
and Data

poly int pc Host
Processor

FIGURE 7.1 A SIMD Array

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 97

Petitioner Microsoft Corporation - Ex. 1007, p. 81

Section 7.2 Data-parallel Bit C 81

with a poly int (P) variable. All of the normal C operators can be used on poly

data. In addition, special built-in operators that perform global combining operations

are also defined. Processor activity is controlled by parallel control constructs such

as "if," "where," or "while." Interprocessor communication is initiated by the pro­

grammer with calls to intrinsic funytions such as DBCneLsend for nearest-neighbor

communication, DBC_send for arbitrary communication, and DBC_read_from_proc

(DBCwrite_to_proc) for PE-host (host-PE) communication.

As noted above, dbC was originally designed for the TERASYS SIMD array.

It also runs on the Connection Machine-2. Both of these SIMD arrays have one-bit

processors that perform arithmetic bit serially.

7.2.2 dbC Example

We show in Figure 7.2 a dbC program to compute the cross-correlation of two

bitstreams. The program compares two bitstreams and accumulates a count of the

number of times an individual bit in the bitstreams had the same value. The bitstreams

are compared with a delay of zero bits, then with successively larger delays, usually

one bit longer for each delay. For each of the delays a counter records the number

of matches (see Figure 7.3). The delay is sometimes called a "lag."

In a typical implementation, there are individual cells that perform the correla­

tion between two streams of data for one value of the delay, that is, there is a cell

for delay 0, delay 1, and so on. Each cell includes a comparator and a counter. The

comparator compares the data in the bitstreams; if they are the same, the counter

#include <interproc.hd>
typedef poly unsigned Boolean:1;

Boolean a;
#define N 128
#define NPROC 64
unsigned DBC_net = 1;
poly unsigned int R:16 = 0;
unsigned DBC_net_shape [1] = {NPROC};

int right (1] = {1};
void main()
{

all {
int b;
a= 0;
for (b=0; b < N; b++) {

DBC_write_to_proc(&a, 1, 0);

R += (a A (Boolean) b);
DBC_net_send(&a, a, right);

printf(" %d \ n", DBC_read_from_proc(R, (b%NPROC)));

FIGURE 7.2 dbC Cross-Correlation Program

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 98

Petitioner Microsoft Corporation - Ex. 1007, p. 82
111

82 A Data Parallel Programming Model

FIGURE 7.3 Bitstream
Counter O Counter I, , . . . Counter N Cross-Correlation

Chapter 7

is incremented. Comparison of the two bits can be performed with exclusive-or or
exclusive-nor. At least one of the bitstream data streams moves from cell to cell, but
the counter data is stationary, as shown in Figure 7.3.

In this example, stream a is shifted systolically through the array, while stream b
is broadcast to each PE. The counter R accumulates the result of the correlation.

The user specifies the size and shape of the processor array by initializing the
predefined variables DBc_net, which gives the number of dimensions, and DBc_neL
shape, which gives the rank of each dimension. The dbC/Splash 2 compiler currently
supports only linear arrays.

The keyword poly indicates the declaration of parallel variables or data types.
Integers and logicals in the parallel domain may have arbitrary user-defined bit length.
In the example program, the variable a is a one-bit parallel variable, and the counter R,
which holds the result, is a 16-bit unsigned parallel integer. The variable bis a normal
C variable that is stored on the host.

The all keyword indicates that all processors are to participate in the body of
the compound statement. The body of the a 11 contains an initialization of the parallel
variable a and a sequential for statement. Within the for loop, there are three
statements. The first statement initiates host-to-processor communication: the host
writes a 1 to processor O's a. The second updates the counter R. On each processor,
the result of a XORed with the least-order bit of b is added into R. Finally, each
processor in the linear array shifts its value of a to the right. The final statement of
the loop simply reads and prints the value of the counter R from a specific processor
(b mod 64). This type of register examination has traditionally been very difficult
for programmers to design into Splash 2 programs.

7.3 COMPILING FROM dbC TO SPLASH 2

Compiling dbC programs for the Splash 2 system occurs in two phases. First, the
dbC translator emits sequential C code with embedded parallel instructions. These
parallel instructions are three-address memory-to-memory instructions ("Generic
SIMD").

When a dbC program is compiled for a traditional SIMD machine (CM-2 or
TERASYS), the generic SIMD instructions are interpreted by microcode libraries
(such as the Paris microcode library for the CM-2). These runtime libraries also
support intrinsic functions such as DBC_read_from_proc and DBC_neLsend.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 99

Petitioner Microsoft Corporation - Ex. 1007, p. 83

Section 7.3 Compiling from dbC to Splash 2 83

To compile for Splash 2, an additional compilation phase is invoked. A Splash 2
specific phase focuses on the parallel instructions that were created by the previous
phase, and assembles from those parallel instructions a specialized SIMD engine in
structural and behavioral VHDL.

The virtual PEs making up this SIMD engine have an instruction set containing
all of the generic SIMD instructfons appearing in the generated C code. Thus the
compiler synthesizes a different instruction set for each different program.

In addition to constructing a custom SIMD engine for the application on
Splash 2, the dbC compiler also generates the host program. This program executes
the sequential operations of the dbC program on the host and sends parallel instruc­
tions to the Splash 2 Array Board in the sequence specified by the dbC program. The
compilation steps are enumerated below.

7.3.1 Creating a Specialized SIMD Engine

We demonstrate the steps required to configure Splash 2 as a SIMD machine with
the small example of Section 7 .2.2.

Phase 1 of the dbC translator does item 1 below. All subsequent steps are
performed by the Splash 2 specific phase 2. Starting from the dbC program, the
steps are:

1. Generation of the Generic SIMD code.

2. Determination of registers and data movement between registers. The data path,
rather than being the generalized data path found in general-purpose computers,
is customized on a per-program basis.

3. Determination of the control structure, that is, what decoders for instructions are
needed and what those decoders must control. The decoders are also customized
for the program.

4. Establishment of inter-PE (and inter-chip) data paths and state machines for
nearest-neighbor communication.

S. Establishment of inter-PE (and inter-chip) data paths and state machines for
global combining operations. The Xi's, XO, and host must synchronize during
a global reduce.

6. Generation of:
a) VHDL types for the data types;
b) VHDL SIGNALS for the variables;
c) VHDL control statements for the instruction decode;
d) Appropriate VHDL assignment statements for each of the operators;
e) Port declarations and interconnection to support nearest-neighbor commu­

nication and global reduction;
f) Generation of state machines to sequence the multi-tick operations.

7. Generation of the host program to perform sequential operations and send par­
allel instructions to the Splash 2 Array Board.

8. Synthesis of VHDL to Xilinx-specific configuration bitstreams, which are down­
loaded to the chips. This process uses commercial CAD tools.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 100

Petitioner Microsoft Corporation - Ex. 1007, p. 84

84 A Data Parallel Programming Model Chapter 7

opParMoveZero_lL_a(a.address, 1);
for (b = O; b < 128; b ++) {

DBC_write_to_proc(a.address, 1, O, 1);
opParBxor3c_lL_a(opParAddOffset(_DBC_poly_frame_t_main, 2)

/* t3:l:2 */, a.address, b, 1);
opParAdd2_2L_a(R.address,

opParAddOffset(_DBC_poly_frame_t_main, 2)
/* t3:1:2 */, 16, l);

DBC_net_send(a.aqdress, a, right, 1);
printf("%d \n", DBC_read_from_proc(R, b%64));

} /* end for*/

FIGURE 7.4 C + Generic SIMD Code for Correlation

7 .3.2 Generic SIMD Code

To begin the process of compiling the correlation program for Splash 2, we trans­
late the dbC to sequential C plus calls to Generic SIMD operators. A fragment of
the Generic SIMD code for our correlation program is shown in Figure 7.4. Each
"function" call prefaced by opPar is a Generic SIMD instruction.

The instruction name describes both function and parameters. The opPar prefix
is followed by the operation, for example, Movezero in the first instruction. Next,
many instructions have a number signifying the number of operands, for example
the "3" in the opParBxor3c_lL instruction. If one of the operands is a constant, as
in the XOR instruction, a c follows. Next, after the underscore, the number of bit
lengths that will follow is specified as a number followed by L. A final suffix _a
indicates that the operation is to be performed unconditionally on each PE (even if
the context bit is reset).

In our example, the MoveZero instruction clears the single-bit parallel vari­
able a. The intrinsic DBC_write_to_proc writes a 1 into processor O's a. The
Bxor3c instruction performs a Boolean XOR of a and the least-order bit of i 2

into a compiler-generated temporary. Next that temp is added into R in the Add2
instruction. The DBc_neLsend shifts a from each PE to its right neighbor. Finally,
the DBC_read_from_proc reads R from processor i.

7.3.3 Generating VHDL

In the second phase of compilation to Splash 2, the Generic SIMD code is processed
by a specialized backend. The Splash 2 specific Phase 2 generates two chip descrip­
tions, which are VHDL programs for computational chips Xl-Xl6 and the control
chip XO, respectively. The computational chips hold the SIMD Processing Elements,
while the XO control chip is used for host-PE communications, global combining,
and instruction broadcast.

In Phase 2, we create an instruction set derived from the opPar commands
and intrinsic calls generated by Phase 1. The instruction set for this SIMD engine

2The latter is a variable on the host, and therefore a constant from the point of view of the SIMD
array.

.....

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 101

Petitioner Microsoft Corporation - Ex. 1007, p. 85

Section 7.3 Compiling from dbC to Splash 2

Instruction
24 8 0

PE # . Operand Opcode

start multi-tick operation
stop multi-tick operation

85

FIGURE 7.5 SIMD Instruction Format

is customized to the specific instruction instance. For example, the Boolean XOR
instruction we synthesize expects the operands to be the variable a and the least-order
bit of b and the result to go into t 3. Thus there is no need for runtime computation
of source and destination, a data path to compute and gain access to arbitrary source
and destination, or much of the other complexity that comes with a general-purpose
instruction set.

The instructions are in a fixed format, shown in Figure 7.5. The least-order
eight bits contain the opcode. The next 16 bits, labeled "Operand" in the figure,
contain an immediate value, if required by the instruction. For example, our XOR
instruction, the opParBxor3c_lL_a, requires a constant to be passed as one of the
operands to the operation. In the example (see Figure 7.4), the current value of b

is the second operand of the XOR, and thus gets passed to each PE through the
Operand field.

The third field of the instruction, PE#, is an optional processor number used
for those instructions that are to be executed only by specific single processors. In
our cross-correlation program, for example, the DBc_read_from_proc instruction
reads the result from a different processor on each iteration of the loop, Processor b.

The generated instruction therefore writes the current value of b mod 64 in the PE#
field. The final high-order bits are used to synchronize between XO and the host in
multi-tick operations.

Figure 7.6 outlines the interaction between the host and the generated SIMD
engine. The controlling program on the host executes a sequence of instructions, some
of which are executed locally on the host and some of which are sent as commands
to the SIMD engine. In our example, the loop control of the for-loop is done on the

Chip XI ChipX2 ...

PE PE PE PE PE PE PE PE
0 I 2 3 4 5 6 7

Chip XO --controllogic

Instruction
and Data

SPARC HOST

' ' • • ChipX16

Data

PE PE PE PE
60 61 62 63

FIGURE 7.6 The Generated SIMD
Engine for Cross-Correlation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 102

Petitioner Microsoft Corporation - Ex. 1007, p. 86

86

Iii

A Data Parallel Programming Model Chapter 7

XP_XBAR

XP_LEFf XP_RIGHT

XP_GOR XP _GOR_ V AUD

FIGURE 7.7 A Single Computational Chip

host. In the body of the loop, the parallel instructions are broadcast to the SIMD
engine, with each PE (0-63) operating independently on its data.

Figure 7.7 shows the layout of each computational chip. Multiple PEs are
instantiated on each chip, with the number of PEs per chip being determined by
the user-specified size of the processor array. In this example, there are a total of
64 PEs, so four are placed on each of the 16 chips. Instructions are sent through the
XL FIFO to XO, which broadcasts them over the crossbar to each chip. At the chip,
the instruction is decoded and sent to all the SIMD PEs on the chip, along with the
Operand and PE#.

This program contains a call to the intrinsic DBC-read_from_proc, which
returns to the host the value of R on a specific PE. We use a special form of the
"reduce logic" (see Section 7.4 on Global Operations) to implement this instruction.
The figure shows that the SIMD instruction ("ibus") comes into the chip on the
XP _)(BAR port. There the opcode is decoded, and the decoded opcode, along with
the other fields , is passed to each SIMD PE. The SIMD processors contain logic to
execute the instructions. In addition, for this correlation program, they are connected
to each other linearly through the "communicate bus" over which the value of a is
shifted right. The "reduce data" shown flowing out of each SIMD PE is the value of
R, which is read from successive PEs and sent to the host. The serializers and reduce
logic are explained in Section 7.4. The value of R from the selected PE is sent two
bits at a time out the XP _GOR and XP _GOR_ V AUD lines to XO.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 103

Petitioner Microsoft Corporation - Ex. 1007, p. 87

Section 7 .3 Compiling from dbC to Splash 2

Reduce
Control ------

XO_SIMD
(from SPARC host)

XP _GOR_ V AUD XP_GOR_RESULT

FIGURE 7.8 The Control Chip

XO_XB_DATA
(to XP chips)

XO_GOR_RESULT IN
XO GOR V AUD IN
(from XP chips) -

87

Figure 7.8 shows the layout of the control chip XO. The 36-bit instruction
word comes in on XO_SIMD from the SPARC host. XO' s instruction decoder and
multi-tick decoder are identical to those of the computational chips. The reduce logic
is similar to that of the computational chips, with the major difference being that
the data enters bit-serially on the XO_GOR_RESUL LIN and XO_GOR_ V ALID_IN
lines and goes to the host bit serially on XO_GOR..RESULT and XO_GOR_
VALID.

The final step is to generate the host program. Each opPar instruction is
replaced with a Splash 2 specific instruction, as shown in Figure 7.9. A SPLAS H_
INSTRUCTION simply writes the parameter to the operand field of the SIMD Bus and
then steps the clock, which issues the instruction to XO. The SPLASH_W_INSTRUCT ION
writes an 8 to the opcode field, a l to operand, and a O to the PE# field. The
SPLASH_RP_INSTRUCTI ON writes a 3 to opcode, a 16 to operand (the bit length,
which is required to control the reduce logic), and the current value of i modulo 64
to the PE#. Note that the modular reduction is performed on the host, and the result
of the mod is sent to the processor array. The oBc_neLsend instruction is broken
into two parts: the first copies a to the communicate output port, and the second
copies the communicate input port into a. The nearest-neighbor communication is
explained further in the next section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 104

Petitioner Microsoft Corporation - Ex. 1007, p. 88

88 A Data Parallel Programming Model

SPLASH_INSTRUCTION(9); /* OPPARMOVEC_lL */
for (i = O; i < 128; i ++) {

Chapter 7

SPLASH_W_INSTRUCTION(8 /* OPPARWRITETOPROC */, 1, 0);
SPLASH_INSTRUCTION(7); /* OPPARBXOR3C_1L */
SPLASH_INSTRUCTION(6); /* OPPARADD2_2L */
SPLASH_INSTRUCTION(5);
SPLASH_INSTRUCTION(5);
SPLASH_INSTRUCTION(5); /* OPPARNETSENDl */
SPLASH_INSTRUCTION(4); /* OPPARNETSEND2 */
printf("%d \n", SPLASH_RP_INSTRUCTION(3, 16

/* OPPARREADFROMPROC */, (i%64)));

FIGURE 7.9 Final C Program for Correlation

7.4 GLOBAL OPERATIONS

The data parallel model encompasses a number of global operations in which all
(active) Processing Elements participate. On Splash 2, we have implemented two
classes of data parallel operations,

• DBC_net_send, a nearest-neighbor linear communication pattern in which each
PE sends a value to its right neighbor. PE O receives its value from the host
through the Operand field of the instruction.

• Reduce operators MAX, MIN, AND, OR, and XOR, which perform the indi­
cated operation across the entire virtual PE array and send the result back to
the host.

7 .4.1 Nearest-Neighbor Communication

Left-to-right communication is accomplished with structural connections between
virtual processors. Each PE has a left and right port. The width of the communication
ports are defined at compile time. These ports are hard-wired together so that the
right port of processor i and the left port of processor i + 1 share a register. An
exception to this is on the Xilinx chip boundaries. The Splash 2 linear interconnect
is used for chip-to-chip communication. On each chip, the left port of the first virtual
processor on the chip and the right port of the last virtual processor on the chip are
connected to XP_LEFT and XP_RIGHT, respectively.

Communication of a value from a PE to its neighbor on the same chip requires
one cycle. However, the need for inter-chip communication introduces delay. Since
we latch data on chip boundaries, the inter-chip communication from the last PE on
chip k to the first PE on chip k + 1 requires three cycles. 3

To accommodate these differences, we separate the net send instruction into two
parts, a write and a read. As shown in Figure 7.9, the NETSENDl, which writes the
value to the communicate output port, is dispatched three times. Then the NETSEND2
is sent. This instruction latches the input communicate port into the receiving register.

3 A possible alternative, to synchronize the data with a three-cycle pipeline on the internal con­
nections, is too costly in logic.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 105

cevans
Highlight

cevans
Highlight

cevans
Highlight

Petitioner Microsoft Corporation - Ex. 1007, p. 89

Section 7.4 Global Operations 89

7 .4.2 Reduction Operations .

The notion of global combining, having all the PEs work together to produce a single
result, is a key component of the SIMD processing model as defined by Hillis [7].
dbC has six primitive global reduction operators: MAX, MIN, SUM, AND, OR, and
XOR. There is infix notation for each of these operators. For example, in

poly int a,
int b;

b = >? = a;

the operator >? = signifies max reduce.
The programmer can invoke a reduce directly by using the special operators.

Combining operators are also generated by the compiler when parallel control con­
structs such as parallel-if or parallel-while are used [12]. In addition, combining logic
is generated for the DBc_read_from_proc intrinsic.

Global combining operations on traditional SIMD machines require a large
amount of communication between the processors. This requirement is especially
difficult for the Splash 2 implementation in that the crossbar, which could be used
for inter-chip communication, is engaged in broadcasting instructions. Any other use
of the crossbar interferes with the instruction pipeline. For this reason, we use the
GLOBAL_OR lines from each computational chip to XO and from XO to the host to
compute a "reduce" result bit-serially and send it to the host.

Conceptually, global reduce operations on Splash 2 are performed in two stages.
In the first stage, an intermediate result is computed for all of the PEs on a compu­
tational chip. These local results are transmitted to the control chip, and the second
stage computes the global result, which is transmitted to the host. However, this
two-stage computation occurs bit-serially and the stages are heavily pipelined.

When a PE receives a global reduce instruction, the PE sends its register data
to a serializer component and its context to a reduce_context signal (refer to
Figure 7.7). On the next cycle, the serializer shifts the data to the reduce components
at a rate of two bits per cycle. The serial data is masked with the reduce_context
signal. Each of the reduce components collects the data from the serializers and per­
forms the appropriate reduction on the bits. The internals of the AND, OR, and XOR
are trivial. MIN and MAX are discussed in the next section. The control logic for the
reduce components (Reduce Control) selects the 2-bit result from the correct reduce
component and sends it to the XO chip via XP_GOR and XP_GQR_VALID connections.

On the control chip, XO, the 2-bit results from each of the 16 computational
chips are collected on X0_GOR_RESULT_IN and X0_GQR_VALID_IN (refer to Fig­
ure 7.8). Each of the reduce components collects the data and again performs the
appropriate reduction on the bits. The control logic selects the 2-bit result from
the correct reduce component and sends it to the host via the xo_GOR_VALID and
X0_GOR_RESULT connections.

There are many advantages to performing global combining operations bit­
serially on Splash 2. One advantage is that the approach is easy to understand and
implement. An obvious bit-serial path is available (and otherwise unused) in the
form of the GLOBALOR lines. The instruction pipeline is not disturbed in order to
perform a global reduction. Another advantage is that the control logic required to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 106

Petitioner Microsoft Corporation - Ex. 1007, p. 90

90

II

A Data Parallel Programming Model Chapter 7

drive the reduce is very fast and quite small. Since the same reduce logic is reused
every cycle, the speed and size of the logic is largely independent of the size of the
registers to be reduced. The size of the logic is a function of the number of PEs
per chip and the kinds of reduces to be performed. An unexpected advantage to the
bit-serial approach to global combining operations is that the reduce operation takes
relatively few cycles to complete. A bit-serial global reduction requires (w / 2) +
13 cycles,4 where w is the width of the destination register in bits. Thus, an 8-bit
reduce of 64 processors requires 17 cycles. A 16-bit reduce takes 21 cycles.

The MIN and MAX Global Combining Operations. A bit-serial approach
to MIN and MAX global combining operations requires more thought than the AND,
OR, and XOR operations. Nevertheless, the solution becomes evident if the data are
processed most-significant-bit (msb) first. All that is required is one bit of state per
processor to keep track of which processors are still participating in the computation.
Let us first consider the generic problem of finding the maximum value in an array
bit-serially.

Bit-serial MAX. Our method of performing MAX reduce uses an algorithm
that computes one binary digit of output per cycle, starting with the most significant
bit (msb). The number of cycles is determined by the width of the variable to be
reduced. The input at cycle i consists of the ith msb of the register from each of the
processors. A mask register (one bit per processor) is maintained to determine which
processors should be ignored in subsequent cycles. The algorithm has a few simple
steps:

1. The processor mask register is initialized to all ls.
2. For each bit of the register:

a) The processor window register contains the ith most significant bit from
each processor.

b) The window and mask registers are ANDed together.
c) If the result is nonzero, the mask is set to the result and a 1 is output.
d) Otherwise, the mask is left unchanged and a O is output.

Example

The following example traces a four-processor system with 6-bit registers. The proces­
sors' registers contain the following values:

Processor Decimal Binary representation

p0 6 000110
pl 9 001001
p2 10 001010
p3 11 001011

4This includes a four-cycle instruction pipeline.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 107

Petitioner Microsoft Corporation - Ex. 1007, p. 91

Section 7.4 Global Operations 91

The mask is initialized to all ls for the first iteration. On subsequent cycles, the Window
and Mask registers change as follows:

Cycle Bit Window Mask Window AND Mask Output
p0 pl p2 p3

l 5 0000 1111 0000 0
2 4 0000 1111 0000 0
3 3 0 1 1 1 1111 0111 1
4 2 1 0 0 0 0111 0000 0
5 l l 0 1 l 0111 OOll
6 0 0 l 0 1 0011 0001

The output bit-serially generated is 001011 (decimal = 11).

Bit-serial MIN. The algorithm for finding the minimum value bit-serially is
virtually identical to finding the maximum value. In essence, we find the maximum
value of the one's-complement of the poly register and the one's-complement of the
result is the answer. The bit-serial reduce MAX is modified in two simple ways to
get reduce MIN: the serial input (window) and the serial output are inverted.

The following example, as in the MAX example, uses the four processor system
with 6-bit registers. The processors' registers contain the values 6, 9, 10, and 11.

The mask is initialized to all 1 s for the first iteration. On subsequent cycles,
the Window and Mask registers change as follows:

Cycle Bit Window* Mask Window AND Mask Output*
p0 pl p2 p3

l 5 1 1 1 1 1111 1111 0
2 4 I I 1 l 1111 1111 0
3 3 100 0 1000 1000 0
4 2 0 1 1 1 1000 0000 l
5 1 0100 1000 0000 1
6 0 1 0 1 0 1000 1000 0

*Note that the bits are simply inverted from the reduce MAX example.

The output bit-serially generated is 000110 (decimal = 6), which is indeed the mini­
mum value.

7.4.3 Host/Processor Communication

Four dbC intrinsics are available for communication between the host and the proces­
sor array. DBc_read_from_proc reads a parallel variable from a specific processor.
DBC_read_from_all reads a parallel value from each processor into an array in
the host. DBc_wri te_to_proc writes a value from the host to a specific processor. ·
Finally, DBc_write_to_all spreads a host array onto the virtual processor array,
one element per processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 108

Petitioner Microsoft Corporation - Ex. 1007, p. 92
IL

92 A Data Parallel Programming Model Chapter 7

The DBC_read_from_proc Operation. The DBc_read_from_proc intrin­
sic is implemented on Splash 2 as a modified reduce OR. The host specifies the PE to
be read via the PE# field of the SIMD instruction. The PE Select component compares
the PE# field to the processor ID (iproc) of each PE (see Figure 7.7). If the iproc
and PE# are equal, the pe_selected signal is set to a 1. The DBc_read_from_proc
call causes the register to be passed to the serializer, as with any global reduce oper­
ation. However, the reduce_context signal is set to pe_selected in place of the
PEs context bit. This effectively masks out all PEs except for the PE selected by
the host.

This approach to DBc_read_from_proc has the advantage that the logic
required for the operation is negligible. If a global combining operation such as
or _reduce is used by the design, that logic is recycled by DBC_read_from_proc.

The DBC_read_from_all Operation. The DBC_read_from_all intrinsic
copies all of the values of a poly register held by PEs to an array on the host. This
function could be implemented as n iterations of nBc_read_from_proc (where n
is the number of PEs). However, we chose a more efficient method. The Splash 2
implementation uses n iterations of left-to-right communicate to get the poly registers
to the host. The last PE's right port is connected XP_RIGHT on the computational
chip (refer to Figure 7.7). The XP_RIGHT port of the last computational chip in the
Splash 2 linear path is connected to the host via the RBUS (see Figure 2.1). As the
host issues n iterations of left-to-right net send calls, it reads data from the RBUS. The
data appear on the RBUS in reverse order (n, n -1, n-2, .. .). Consequently, the host
fills the destination array backwards. As described in Section 7.4.1, a nBc_neLsend
instruction requires four cycles. Utilizing the net send, the nBc_read_from_all
intrinsic requires 4n cycles to complete. This is much more efficient than n iterations
of a 13+ cycle DBC_read_from_proc.

Writing to the Processor Array. The nBc_write_to_proc implementation
on Splash 2 is quite simple due to the fact that both the instruction and the data
flow in the same direction, from host to PE array. As described in Section 7.3.3, the
SIMD instruction generated by the host has three fields: opcode, operand, and PE#.
The operand field contains the data to be written, and the PE# field contains the ID
of the destination PE. If the PE# field of the SIMD instruction matches the iproc
of the processor, the register is assigned the value of the operand field. Otherwise,
the instruction is ignored. A DBC_wri te_to_proc call takes only one cycle.

The DBc_write_to_all is implemented as a series of n nBc_write_to_proc
calls, where n is the number of PEs. This operation requires n cycles.

7.5 OPTIMIZATION: MACRO INSTRUCTIONS

Our simple cross-correlation program has approximately 10 instructions. A more
realistic application would result in many tens more. It is advantageous to reduce the
number of parallel instructions for a variety of reasons. Fewer instructions require
a smaller decoder, a savings in logic. By scheduling independent SIMD operations
at the same clock, we introduce new instruction-level parallelism within a SIMD
PE. Even more compelling, a single powerful multi-tick instruction can be clocked

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 109

Petitioner Microsoft Corporation - Ex. 1007, p. 93

Section 7.5 Optimization: Macro Instructions 93

independently at the processor array, allowing the Splash 2 system to run at a faster
rate than the host SPARCstation can drive it. Our compiler, therefore, identifies
opportunities for multi-tick operations and synthesizes multi-tick instructions, which
are activated by a single opcode.

One such category of multi-tick operations is the reduce family of instructions
discussed in the previous section. Another category, which we describe here, is
parallel basic blocks, from which the compiler creates "macro instructions." A single
macro instruction dispatched from the host initiates a multi-tick instruction in which
one or more generic SIMD operations occur concurrently on each PE.

7.5.1 Creating a Macro Instruction

A basic block consists of a sequence of computation with a single entry point at the
top of the block, a single exit at the bottom, and no branching into or out of the block
except through the single entry and exit. Figure 7 .10 shows a basic block written in
dbC and the corresponding generic SIMD code.

The macro instruction scheduler attempts to schedule all the operations in
the block to occur in a single clock tick. This is possible only if there are no
interoperation dependencies. For example, instructions (1) and (2) in Figure 7.10
are independent and can safely occur in a single clock tick, but instruc­
tion (4) depends on the completion of instruction (3). Only after t3 is registered
can the add occur.

#define N 16

poly unsigned u:N, v:N, w:N, k:N;

u DBC_iproc[0 +:NJ;
v (poly unsigned:N) (DBC_nproc +1) - DBC_iproc[0 +: NJ;
k v - 1;
w u I V I k;

(1) opParMove_lL_a(u.address, opParAddOffset(DBC_iproc.address,
(0)), 16);

(2) opParMovec_lL_a(opParAddOffset(_DBC_poly_frame_t_main, 1)
/ * t3:16:l */, (DBC_nproc + 1), 16);

(3) opParSub3_1L_a(v.address,
opParAddOffset(_DBC_poly_frame_t_main, 1)
/*t3:16:1 */,
opParAddOffset(DBC_iproc.address,
(0)), 16);

(4) opParSub3c_lL_a(k.address, v.address, 1, 16);
(5) opParBor3_1L_a(opParAddOffset(_DBC_poly_frame_t_main, 1)

/ * t5:16:1* / , u.address, v.address, 16);
(6) opParBor3_1L_a(w.address, opParAddOffset

(_DBC_poly_frame_t_main, 1)
/*t5:16:1 */, k.address, 16);

FIGURE 7.10 A Basic Block and Its Translation to Generic SIMD

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 110

Petitioner Microsoft Corporation - Ex. 1007, p. 94
■

94 A Data Parallel Programming Model Chapter 7

FIGURE 7.11 Dependency Graph

For each basic block, the scheduler constructs a dependency matrix M to
reflect the dependencies among parallel instructions. M[i, j] = 1 implies that instruc­
tion (j) depends on instruction (i). Then, an As Soon As Possible (ASAP) scheduling
algorithm is used to sequence the parallel instructions. All instructions j such that
M[*, j] = 0 can be scheduled in the current tick. Once an instruction j has been
scheduled, M[j, *] is set to 0, allowing the instructions that depend on j to be sched­
uled in the next iteration of the algorithm. Figure 7 .11 shows the dependency graph
for this example.

The compiler generates a single opcode for the macro instruction. When that
opcode is issued, a subinstruction shift register is used to sequence through the
subinstructions. For this example, a 4-tick instruction is issued. The sequencing of
ticks is controlled by a 4-bit shift register.

7.5.2 Discussion

Our approach differs from more general high-level synthesis systems in two respects.
First, since we focus on the SIMD model, control flow is managed by the host. We
are concerned only with basic blocks of parallel instructions and need not build and
schedule a general control-flow graph as is done by the IBM [2] and similar systems.
Second, in contrast to most high-level synthesis systems that synthesize logic for
a single chip, we focus on synthesis of the entire FPGA-based parallel computing
system. Our efforts are directed toward synthesis for the Splash logic array, of which
generating logic for individual chips is one (important) part. We use a commercial
FPGA compiler to further optimize the VHDL generated by our system.

7.6 EVALUATION: GENETIC DATABASE SEARCH

Applications involving search for similarity in genome strings have been mapped
successfully to Splash 1 [4] and Splash 2 [8]. We have compiled a dbC version of
this application for Splash 2. A source stream is stored across the processor array,
one 4-bit character per virtual processor. The target stream, of indefinite length,
is shifted systolically through the virtual processor array. A dynamic programming
algorithm ([9]) is used to correlate similarity of source to target streams. The dbC
version runs at 22 million Cell Updates Per Second with one Splash 2 Array Board.
By comparison, a SPARC 10/30GX can do 1.2 million CUPS, and an 8K MP-1 can
do 32 million. A custom hardware implementation of this algorithm on one Splash 2
Array Board is estimated to achieve 2626 million CUPS [8].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 111

Petitioner Microsoft Corporation - Ex. 1007, p. 95

Section 7.7 Conclusions and Future Work 95

In terms of programming effort, the custom hardware implementation was
developed over a period of months. The dbC program was written and debugged
in a day.

In comparison to other systems that do high-level synthesis for FPGAs, the
Brown University Xilinx FPGA coprocessor achieves a speedup of two to four over
the host workstation [l]. The Oxford University Algotronix FPGA array, consisting
of eight chips and attached SRAM, performs at twice the speed of the host work­
station [11].

7.7 CONCLUSIONS AND FUTURE WORK

dbC was an experiment that is still in progress. We were able to demonstrate with
the dbC-to-Splash 2 compiler that for one class of applications, SIMD/systolic, we
were able to support a high level of abstraction. The dbC compilation system can
map data parallel programs to the Splash 2 reconfigurable logic array. dbC is not
a hardware description language with C syntax. It is a true procedural data parallel
language. Our dbC compiler for Splash 2 can translate programs that

• contain basic arithmetic and logical operations on integers

• use linear nearest-neighbor communication

• do global accumulation operations such as max, min, and Boolean operations

• read and write data from/to individual virtual processors

• read and write data from/to the entire processor array

Application domains that meet these constraints include independent compu­
tationally intensive problems, which occasionally compute global state and systolic
algorithms such as the genetic database search. On the genome problem, our auto­
matically synthesized SIMD engine runs at 18 times that of a SPARC 10 workstation
and about two-thirds the speed of an 8K Maspar MP-1.

Many Splash 2 applications use the off-chip memory. Those applications were
not supported by dbC. Our future efforts with the dbC/Splash 2 compiler include
adding support for the off-chip memory, which are often used as lookup tables or
as storage for results to the host. In addition, we would like to make the technology
we have developed of practical use in production applications by supporting a robust
interface between the generated SIMD machine and hand-coded custom logic. This
would allow, for example, pre- and postprocessing to occur on some of the chips,
with the SIMD array on the rest. The preprocessed data could feed the SIMD por­
tion and then be sent from the last virtual processor to a postprocessing chip. As
another example, we would like to integrate custom-designed kernels, which require
extremely high performance, to appear to the dbC program as a single instruction.
The compiler could generate an instruction set that includes this "special" instruction. ·
These tactics can dramatically boost the performance of an application, while still
removing most of the programming burden.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 112

Petitioner Microsoft Corporation - Ex. 1007, p. 96

96

■I

A Data Parallel Programming Model Chapter 7

REFERENCES

[1] P.M. Athanas and H.F. Silverman, "Processor Reconfiguration through Instruction Set
Metamorphosis: Architecture and Compiler," Computer, Vol. 26, No. 3, Mar. 1993,
pp. 11-18.

[2] R. Camposano et al., "The IBM High-Level Synthesis System," R. Camposano and
Wayne Wolf, eds., High Level Synthesis, Kluwer Academic Publishers, Boston, 1991,
pp. 79-104.

[3] M. Gokhale, W. Holmes, and K. Iobst, "Processing in Memory: "The Terasys Massively
Parallel Processor Array," Computer, Vol. 28, No. 4, Apr. 1995, pp. 23-31.

[4] M . Gokhale et al., "Building and Using a Highly Parallel Programmable Logic Array,"
Computer, Vol. 24, No. 1, Jan. 1991, pp. 81-89.

[5] M. Gokhale et al., "The Logic Description Generator," Tech. Report SRC-TR-90-011,
SRC, Bowie, Md., 1990.

[6] M. Gokhale and B. Schott, "Data Parallel C on a Reconfigurable Logic Array," J. of
Supercomputing, Vol. 9, 1995, pp. 291-314.

[7] W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1986.
[8] D.T. Hoang, "Searching Genetic Databases on Splash 2," Proc. IEEE Workshop FPGAs

for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 185-192.
[9] D.P. Lopresti, Discounts for Dynamic Programming with Applications in VLSI Proces­

sor Arrays. PhD thesis, Princeton Univ., Princeton, N.J., 1987.
[10] MasPar, Inc., MasPar Application Language Reference Manual, MasPar, Inc., Sunny­

vale, Calif., 1990.
[I I] I. Page and W. Luk, "Compiling Occam in FPGAs," in W. Moore and W. Luk, eds.,

FPGAs, Abingdon EE & CS Books, Abingdon, England, UK, 1991, pp. 271-283.
[12] J. Schlesinger and M. Gokhale, dBC Reference Manual. Tech. Report SRC-TR-92-068,

Revision 2, SRC, Bowie, Md., 1993.
[13] Thinking Machines, Inc., C* Programming Guide, Thinking Machines, Inc., Cam­

bridge, Mass., 1993.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 113

Petitioner Microsoft Corporation - Ex. 1007, p. 97

CHAPTER 8

8.1 INTRODUCTION

Searching Genetic
Databases on Splash 2

Dzung T. Hoang1

With the onset of the Human Genome Initiative [3] and constant advances in
genetic sequencing technology, genetic sequence data are being generated at an ever­
increasing rate.2 As a result, biologists are faced with an influx of new sequences that
they would like to classify and study by comparing them to existing databases. The
analysis of a newly generated sequence typically involves searching the databases for
similar sequences. With the enormous size of the databases, fast methods are needed
for comparing sequences [11].

In this chapter, we describe two systolic array architectures for sequence com­
parison and their implementations on the Splash 2 programmable logic array. One
of the systolic arrays was previously implemented on the Princeton Nucleic Acid
Comparator P-NAC of Lipton and Lopresti [12], a special-purpose VLSI chip, and
later ported to the Splash 1 hardware by Gokhale et al. [4] and by Lopresti [14].
The second systolic array is a new development, improving on the first for database
search applications.

1 A version of this chapter appeared as Hoang [6] and is used with permission.

2Release 74.0 of GenBank, a database of DNA sequences, contains 97,084 entries with a total of

120,242,234 bases as of December 1992. It is estimated by Lander et al. [10] that by 1999, 1.6 billion

base pairs will be sequenced each year.

97

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 114

Petitioner Microsoft Corporation - Ex. 1007, p. 98

98 Searching Genetic Databases on Splash 2 Chapter 8

8.1.1 Edit Distance

In comparing two sequences, it is useful to quantify their similarity in terms of a
distance measure. In general, the correspondence between individual elements (char­
acters) of the sequences to be compared is not known in advance. Therefore common
distance measures such as Euclidean distance and Hamming distance, in which ele­
ments correspond in position and only corresponding elements are compared, may not
be appropriate. Biologists have developed several means to characterize the similarity
between genetic sequences. One intuitively appealing measure is edit distance. The
edit distance between two sequences is defined as the minimum cost of transforming
one sequence to the other with a sequence of the following operations: deletion of a
character, insertion of a character, and substitution of one character for another. No
character may take part in more than one operation. Each operation has an associated
cost, which is a function of the characters involved in the operation. The cost of a
transformation is the sum of the costs of the individual operations.

As an example, Figure 8.1 shows a series of transformations to obtain
GCAT AAGC from TCT AG ACC. If we assign a cost of 2 for a substitution,
1 for deletion, and 1 for insertion, the transformation would have a cost of 6. In fact,
there are no transformations with lower cost, and therefore the edit distance between
TCTAGACC and GCATAAGC is 6.

8.1 .2 Dynamic Programming Algorithm

The edit distance can be computed with a well-known dynamic programming
algorithm, which has an interesting history of independent discovery as detailed
by Sankoff and Kruskal [17]. We use the following formulation.

Let S = [s1s2 · · · sml be the source sequence, T = [t1t2 · · · tnl the target
sequence, and d;,J the distance between the subsequences [s1s2 • • • sd and [t1t2 · · · tJ],
Then for 1 :s i :s m, 1 :s j :s n, if 'ljr(s;, 0) is the cost of deleting s;, 'ljr(0, tJ) is the
cost of inserting tJ, and 'ljr(s;, tJ) is the cost of substituting tJ for s;,

and

do,o = 0,
d;,o = d;-1,0 + 1/r(s;, 0),
do,J = do,J-1 + 1jr(0, tJ),

{

d;-1,J + 1/r(s;, 0)
d;,J = min d;,J-1 + 1jr(0, tJ)

d;-1,J-1 + 1/r(s;, tJ),

The edit distance between Sand T is simply dm,n·

(8.1)

(8.2)

A cost function often used in the literature assigns a cost of 1 to insertions and
deletions, 2 to substitutions, and O to matches. We refer to this as the simple cost
function.

As an example, Figure 8.2 shows the dynamic programming table generated
when comparing the sequences TCT AGACC and GCAT AAGC with the simple
cost function.

A straightforward sequential implementation of the dynamic programming
algorithm requires O(mn) time and O(min(m, n)) space to compute the edit distance.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 115

Petitioner Microsoft Corporation - Ex. 1007, p. 99

Section 8.1 Introduction

T

C

T

A

G

A

C

C

0

I

2

3

4

5

6

7

8

TCTAGACC .

Substitute G for Tat position I

GCTAGACC

Insert A at position 3

GCATAGACC

Delete G at position 6

AACC

Substitute G for Cat position 7

GCATAAGC

G C A T A A G C

I 2 3 4 5 6 7 8

2 3 4 3 4 5 6 7

3 2 3 4 5 6 7 6

4 3 4 3 4 5 6 7

5 4 3 4 3 4 5 6

4 5 4 5 4 5 4 5

5 6 5 6 5 4 5 6

6 5 6 7 6 5 6 5

7 6 7 8 7 6 7 6

99

FIGURE 8.1 Listing of Operations
to Transform TCT AGACC into
GCAT AAGC. Character matches are
assumed to have a cost of O and are
not shown. Assigning a cost of 2 for a
substitution, 1 for deletion, and 1 for
insertion, the cost of the transformation
is 6.

FIGURE 8.2 Dynamic Programming
Table Generated in Computing the Edit
Distance between TCT AGACC and
GCAT AAGC. The lower right-hand
entry gives the edit distance, 6 in this
example.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 116

Petitioner Microsoft Corporation - Ex. 1007, p. 100
IL

100 Searching Genetic Databases on Splash 2 Chapter 8

di,j-1 d,.
l,J

FIGURE 8.3 Locality of Computation.
Each entry in the dynamic programming
table only depends directly on three
adjacent entries.

Masek and Patterson [16] give an algorithm with time performance of O(n2 /logn)
for sequences of length n, provided that the sequence alphabet is finite and all
costs are integers. However, for a particular implementation, they observe that their
algorithm performs faster than the basic dynamic programming algorithm only for
sequences of length 262,419 or longer.

Better time performance can be achieved by exploiting the inherent parallelism
in Equation (8.2). One notable property of the dynamic programming recurrence is
that each entry in the distance matrix depends on adjacent entries, as diagrammed
in Figure 8.3. This property has been the basis for many parallel algorithms for
computing the edit distance.

8.2 SYSTOLIC SEQUENCE COMPARISON

The locality of reference shown in Figure 8.3 can be exploited to produce systolic
algorithms in which communication is limited to adjacent processors.

There are several ways to map the edit distance computation onto a linear
systolic array. We describe two such mappings. Both exploit the locality of reference
by computing the entries along each antidiagonal in parallel, as shown in Figure 8.4.
The two mappings differ primarily in the data movement.

8.2.1 Bidirectional Array

The systolic architecture and data flow shown in Figure 8.5 were used in the
design of P-NAC of Lipton and Lopresti [12], a custom VLSI chip for DNA
sequence comparison. Each processing element (PE) computes the distances along
a particular diagonal of the distance matrix. A block diagram of the PE and a list­
ing of the algorithm it executes are shown in Figures 8.6 and 8.7, respectively.

FIGURE 8.4 Parallel Computation of
DP Distance Matrix. Entries lying on
the same antidiagonal can be computed
in parallel. The computation proceeds
from the upper-left entry toward the
lower-right.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 117

Petitioner Microsoft Corporation - Ex. 1007, p. 101

Section 8.2

SCin

SDin

Systolic Sequence Comparison

C

2

A

3

CJ □
□ □

G

4

Character

Initial Distance

□
□

G

4

T

3

A

2

FIGURE 8.5 Data Flow through the Bidirectional Systolic Array. The source and

target sequences are streamed through the array in opposite directions. A comparison

is performed when a source character and a target character meet in a PE.

Bidirectional
PE

scout

- SDout

101

TCout TCin

TDout TDin FIGURE 8.6 Processing Element for
Bidirectional Array

loop
if (SCin # 0) and (TCin # 0) then

I PEDist+v,(SCin,TCin),
PEDist +- min TDin+v,(SCin,0),

SDin+v,(0,TCin)
else-if (SCin =j:. 0) then

PEDist +- SDin
else-if (TCin =j:. 0) then

PEDist +- TDin
endif
SCout +- SCin
TCout +- TCin
SDout +- PEDist
TDout +- PEDist

endloop
FIGURE 8.7 Code Executed by Each
PE in the Bidirectional Array

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 118

Petitioner Microsoft Corporation - Ex. 1007, p. 102

102

II

SCin

PEDist

TCout

SCin

PEDist

TCout

SCin

PEDist

TCout

SCin

PEDist

TCout

Searching Genetic Databases on Splash 2 Chapter 8

C

2 2

C

2 2

T

3 3

3 3

FIGURE 8.8 Trace of Bidirectional Array When Comparing the Sequences
TCTAGACC and GCATAAGC

scout

PEDist

TCin

scout

PEDist

TCin

scout

PEDist

TCin

scout

PEDist

TCin

The source and target sequences enter the array on opposite ends and flow in
opposing directions at the same speed. Successive characters in the source and tar­
get sequences are separated by a null character for proper timing. In addition, there
is one distance stream associated with each character stream. 3 At each step, the
contents of the streams represent the characters to be compared and the distances
along one of the antidiagonals of the distance matrix. At the end of the compu­
tation, the resulting edit distance is transported out of the array on the distance
streams.

A partial trace of the bidirectional array when comparing the sequences
TCT AGACC and GCAT AAGC is shown in Figure 8.8.

31n an actual implementation, these two unidirectional distance streams can be combined into one
bidirectional stream, using one storage register instead of two. Here we keep the distance streams distinct
for clarity.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 119

Petitioner Microsoft Corporation - Ex. 1007, p. 103

Section 8.2 Systolic Sequence Comparison

Src. Char.

Src. Dist.

SR SR PR TG TG TG TG TG TG ._ Tag

G C A G A C T A ._ Tgt. Char.

7 8 2 3 4 5 6 ._ Initial Dist.

□-
□

FIGURE 8.9 Data Flow through the Unidirectional Systolic Array. The source
sequence is first loaded into the array. The target sequences are then streamed
through the array. The tag acts as a simple instruction telling each PE how to
process the incoming data. The SR tag instructs an empty PE to load the source
character and distance from the input stream. The PR tag marks the end of the source
stream. The TG tag signals a target character. Multiple source and target sequences
can be carried on the input stream for uninterrupted pipelined processing.

103

In addition to the original P-NAC implementation, the bidirectional systolic
array has been ported to the Splash 1 programmable logic array by Gokhale et al. [4]
and Lopresti [14] and now to the Splash 2 programmable logic array. An extension
of the bidirectional array to compute an alignment of two sequences in addition to
the edit distance is described in Hoang [5] and Hoang and Lopresti [7].

Comparing sequences of lengths m and n requires at least 2 max(m + 1,
n + 1) processors.4 The number of steps required to compute the edit distance and
to transport it out of the array is proportional to the length of the array.

In a typical database search, the same source sequence is compared against all
target sequences in the database. With the bidirectional array, the source sequence
must be recycled through the array for each target sequence in the database. At
each computational step, at most half of the PEs are active. Also, the source and
target sequences are both limited in length to half of the array's length (for one-pass
operation). These properties of the bidirectional array lead to inefficiency for database
search operations.

8.2.2 Unidirectional Array

We now describe a unidirectional systolic array that remedies the shortcomings of
the bidirectional array. The architecture and data flow of the unidirectional array are
shown in Figure 8.9. As the name suggests, data flows through the unidirectional array
in one direction. The source sequence is loaded once and stored in the array starting
from the leftmost PE. The target sequences are streamed through the array one at
a time, separated by control characters. The tag stream identifies the sequences and

4With a fixed number of PEs, long sequences can be compared by using multiple passes, each pass
computing a submatrix of the dynamic programming distance matrix, as done by Lopresti and Lipton
[15].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 120

Petitioner Microsoft Corporation - Ex. 1007, p. 104

104

TAGin

CHRin

DSTin

PDSTin

Unidirectional
PE

Searching Genetic Databases on Splash 2 Chapter 8

TAGout

CHRout

DSTout

PDSTout

PDST' DST'

PE; ~
DST' DST

FIGURE 8.10 Processing Element for
Unidirectional Array

FIGURE 8.11 Computation Graph for
the Unidirectional Array

sends control information to the PEs. With the source sequence loaded and the target
sequences streaming through, the array can achieve near l 00 percent PE utilization.
The length of the array determines the maximum length of the source sequence.5

The target sequences, however, can be of any length. Together, these properties
make the unidirectional array more suitable and efficient than the bidirectional array
for database searches.

The unidirectional PE is diagrammed in Figure 8.10. In this configuration, each
PE computes the distances in one row of the distance matrix. At each time step,
the PEs compute the distances along a single antidiagonal in the distance matrix,
as depicted in Figure 8.4. Each PE stores two distances, DST and POST. Denoting
the previously computed value of DST and POST as DST' and POST', respectively,
the computation graph for the ith PE is shown in Figure 8.11. Compare this to
Figure 8.3.

The algorithm executed by each PE in the unidirectional array is listed in
Figure 8.12. As shown, the algorithm compares one source sequence to a sin­
gle target sequence. With some additional code, comparisons can be performed
on multiple source and target sequences. A partial trace of the unidirectional
array when comparing the sequences TCT AGACC and GCAT AAGC is shown
in Figure 8.13.

A unidirectional array of length n can compare a source sequence of length at
most n to a target sequence of length m in O (n + m) steps.

8.3 IMPLEMENTATION

Both the bidirectional and unidirectional systolic arrays have been implemented on
the Splash 2 programmable logic array, with versions for DNA and protein sequences.

5 As with the bidirectional array, a source sequence longer than the array can be compared using
multiple passes. ·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 121

Petitioner Microsoft Corporation - Ex. 1007, p. 105

Section 8.3 Implementation

loop
if (T AGin = SR) then

if (SRCch = 0) then
SRCch +-- CHRin
CHRout +-- 0
DSTout +-- PDSTin

else
CHRout +-- CHRin

endif
PDSTout +-- PDSTin

else-if (TA Gin = PR) then
if (SRCch = 0) then

DSTout +-- PDSTin
endif
PDSTout +-- DSTin
CHRout +-- CHRin

else-if (TA Gin = TG) then
if (SRCch -=/= 0) and (CHRin -=/= 0) then

I PDSTout+i/l(SRCch,CHRin),
DSTout +-- min DSTin+i/l(SRCch,0),

DSTout+i/1(0,CHRin)
else-if (SRCch = 0) then

DSTout +-- DSTin
endif
PDSTout +-- DSTin
CHRout +-- CHRin

endif
TA Gout +-- TA Gin

endloop

FIGURE 8.12 Code executed by each PE in the unidirectional array

8.3.1 Modular Encoding

105

An important optimization used in the implementation of both systolic arrays

involves a modular encoding of the distances. With a fixed-length unsigned-integer

data structure for the distances, there is a possibility for overflow when comparing
long sequences. Lipton and Lopresti [12, I 3] use a modular encoding scheme for

the distances. In this scheme, only a few of the least significant bits of the distances

need be computed. This technique works because the difference between adjacent
entries in the dynamic programming matrix is bounded. For DNA sequences, using

the simple cost function , only two bits are required for the encoding. For protein

sequences, using a more complex cost function, only four bits are needed. The mod­
ular scheme reduces the design size, circumvents the overflow problem, and allows -
for easy scaling of the systolic array. To recover the integer distances, an accumula­
tor, controlled by a simple state machine, is used at the output of the distance stream.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 122

Petitioner Microsoft Corporation - Ex. 1007, p. 106

106

IL

Searching Genetic Databases on Splash 2 Chapter 8

TAGin SR TAGout

CHRin CHRout

DSTin DSTout

PDSTin 4 PDSTout

SRCch

TAGin TAGout

CHRin CHRout

DSTin 5 DSTout

PDSTin 5 PDSTout

SRCch

TAGin TAGout

CHRin CHRout

DSTin DSTout

PDSTin 6 PDSTout

SRCch T A

FIGURE 8.13 Trace of Unidirectional Array When Comparing the Sequences
TCTAGACC and GCATAAGC

The accumulator is the only component that may be dependent on the length of the
array.

8.3.2 Configurable Parameters

The designs of both systolic arrays are not specific to a particular alphabet or cost
function. The sequence alphabet and cost function are defined in an VHDL con­
figuration file and can be customized for a particular sequence comparison appli­
cation. A change in the parameters, however, would require a recompilation of
the VHDL code. Versions for comparing DNA and protein sequences have been
implemented.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 123

Petitioner Microsoft Corporation - Ex. 1007, p. 107

Section 8.4 Benchmarks 107

8.3.3 Bidirectional Array

For the DNA version of the bidirectional array, each of the 16 array FPGAs (Xl to
X16) contains 24 PEs, making a total of 384 PEs in a one-board Splash 2 system.
The protein version packs 64 PEs into a one-board Splash 2 system. Timing results
from XDELAY give a theoretical maximum throughput of 5.5 million characters per
second for the DNA version and 3.5 million characters per second for the protein
version.

8.3.4 Unidirectional Array

In the DNA version of the unidirectional array, each of the 16 array FPGAs (Xl
to Xl6) holds 14 PEs. In addition, the two interface FPGAs contain 12 PEs each,
making a total of 248 PEs in a one-Array-Board Splash 2 system. Timing results from
XDELAY give a theoretical maximum throughput of 12 million characters per second
for the DNA version and 8 million characters per second for the protein version.

8.4 BENCHMARKS

In order to make a uniform comparison between Splash 2 and implementations of the
dynamic programming algorithm on other architectures, we measure the performance
of a solution in terms of the number of cells (entries in the DP distance table) updated
per second (CUPS). When comparing two sequences of lengths n and m, a total of
nm cells needs to be calculated.

The benchmark results for DNA sequence comparison are listed in Table 8.1.
The values given for Splash 1 and Splash 2 are peak values, assuming that the length

TABLE 8.1 Benchmark of DNA Sequence
Comparison (values are rounded to two decimal
places)

Hardware Specifics CUPS

Splash 2 unidir; 16 boards 43,000M
Splash 2 bidir; 16 boards 34,000M
Splash 2 unidir; 1 board 3,000M
Splash 2 bidir; 1 board 2,100M
Splash 1 bidir; 746 PEs 370M
CM-2 [9] 64K nodes 150M
CM-5 [9] 32 nodes 33M
MP-1* 8K PEs 32M
Intel iPSC/860 [2] 32 nodes 12M
BSYS [8] 100 PEs 2.9M
SPARC 10/30GX gee -02 1.2M
P-NAC [12] l.lM
VAX 6620 VMS; CC I.OM
SPARC 1 gee -02 0.87M
486DX-50 PC DOS; gee -02 0.67M

*From personal communication with R.P. Hughey

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 124

Petitioner Microsoft Corporation - Ex. 1007, p. 108

108 Searching Genetic Databases on Splash 2 Chapter 8

of the sequences are the maximum for the given configuration and that pipeline
delays are ignored. On uniprocessor machines, a straightforward implementation of
the dynamic programming algorithm in the C language is used in the benchmark.
On multiprocessor machines, a parallel implementation of the dynamic programming
algorithm is used. Typically, a run consisting of 1,000 repetitions of a 1,000 x 1,000
comparison is used to calculate the CUPS.

8.5 DISCUSSION

From our experience, most of the development time was spent learning about the
Splash 2 architecture, learning to program in VHDL, and discovering and taming the
idiosyncrasies of the software development system. Overall, the results of the project
were well worth the effort. Furthermore, the programmability and reprogrammability
of Splash 2 allowed for experimentation and incremental refinements that could not
have been afforded on a less flexible system. For example, several variations of the
unidirectional PE were implemented, each in a matter of days. 6 In one variation of
the unidirectional PE, the cost function is implemented as a lookup table, using the
FPGA cells as RAM. The cost function is specified as part of the input stream. In
another variation, the edit distance with a linear gap cost function is computed using
the coupled recurrences given in Core et al. [1].

8.6 CONCLUSIONS

Two systolic arrays for computing the edit distance between two genetic sequences
have been presented and their implementations on Splash 2 described. The bidirec­
tional and unidirectional arrays have maximum throughputs of 5.5 and 12 million
characters per second, respectively, for DNA database search. Compared to imple­
mentations of the dynamic programming algorithm on several contemporary work­
stations and minicomputers, the Splash 2 implementations promise to deliver several
orders of magnitude better performance.

REFERENCES

[1] N.G. Core et al., "Supercomputers and Biological Sequence Comparison Algorithms,"
Computers and Biomedical Research, Vol. 22, No. 6, 1989, pp. 497-515.

[2] A.S. Deshpande, D.S. Richards, and W.R. Pearson, "A Platform for Biological
Sequence Comparison on Parallel Computers," CAB/OS, Vol. 7, No. 2, April 1991,
p. 237.

[3] K.A. Frenkel, "The Human Genome Project and Informatics," Comm. of the ACM,
Vol. 34, No. 11, 1991, pp. 41-51.

[4] M. Gokhale et al., "Building and Using a Highly Parallel Programmable Logic Array,"
Computer, Vol. 24, No. 1, Jan. 1991, pp. 81-89.

[5] D.T. Hoang, "A Systolic Array for the Sequence Alignment Problem," Tech. Report
CS-92-22, Brown Univ., Providence, R.I., 1992.

61n comparison, the basic unidirectional PE, as described above, took several weeks to design,
code, and test.

FT

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 125

Petitioner Microsoft Corporation - Ex. 1007, p. 109

References 109

[6] D:T. Hoang, "Searching Genetic Databases on Splash 2," Proc. IEEE Workshop FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 185-192.

[7] D.T. Hoang and D.P. Lopresti, "FPGA Implementation of Systolic Sequence Align­
ment," in H. Grtinbacher and R.W. Hartenstein, eds., Field Programmable Gate Ar­
rays: Architectures and Tools for Rapid Prototyping, Springer-Verlag, Berlin, 1993,
pp. 183-191.

[8] R.P. Hughey, Programmable Systolic Arrays, PhD thesis CS-91-34, Brown Univ., Prov­
idence, R.I., 1991.

[9] R. Jones, "Protein Sequence and Structure Comparison on Massively Parallel Comput­
ers, Int'! J. of Supercomputer Applications, Vol. 6, No. 2, 1992, pp. 138-146.

[10] E.S. Lander, R. Langridge, and D.M. Saccocio, "Computing in Molecular Biology:
Mapping and Interpreting Biological Information," Computer, Vol. 24, No. 11, Nov.
1991, pp. 6-13.

[11] E.S. Lander, R. Langridge, and D.M. Saccocio, "Mapping and Interpreting Biological
Information," Comm. of the ACM, Vol. 34, No. 11, 1991, pp. 32-39.

[12] R.J. Lipton and D.P. Lopresti, "A Systolic Array for Rapid String Comparison,"
Proc. 1985 Chapel Hill Conf VLSI, Computer Science Press, Rockville, Md., 1985,
pp. 363-376.

[13] D.P. Lopresti, Discounts for Dynamic Programming with Applications in VLSI Proces­
sor Arrays, PhD thesis, Princeton Univ., Princeton, N.J., 1987.

[14] D.P. Lopresti, "Rapid Implementation of a Genetic Sequence Comparator Using Field
Programmable Logic Arrays," In C.H. Sequin, ed., Advanced Research in VLSI, MIT
Press, Cambridge, Mass., 1991, pp. 138-152.

[15] D.P. Lopresti and R.J. Lipton, "Comparing Long Strings on a Short Systolic Array,"
Tech. Report CS-TR-026-86, Princeton Univ., Princeton, N.J., 1986.

[16] W.J. Masek and M.S. Paterson, "How to Compute String-Edit Distances Quickly," in
Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, D. Sankoff and J. Kruskal, eds., Addison-Wesley, Reading, Mass., 1983,
pp. 337-350.

[17] D. Sankoff and J. Kruskal, eds., Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, Mass., 1983.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 126

Petitioner Microsoft Corporation - Ex. 1007, p. 110

CHAPTER 9

Text Searching on Splash 2

Dan Pryor, Mark Thistle, Nabeel Shirazi1

9.1 INTRODUCTION

110

Very early in the process of designing and building Splash 2, a decision was made to
concentrate on applications that emphasized computations or bit manipulations that
were not entirely compatible with the processor architecture of traditional computers.
The sequence comparison problem of the previous chapter is such a computation.
Another, described in this chapter, is a hash-function-based pattern matching.

As the volume of information in the world continues to expand, text searching
has become an important and necessary activity, and a fundamental part of text or
bibliographic retrieval computations is the ability to recognize that a given keyword
or set of keywords appears in a particular body of text. As mentioned by Salton
(6), there are a number of commercial services that serve the needs of legal (LEXIS
(1)), medical (MEDLARS (3)), and other communities of interest. These commercial
services rely on inverted file methods of searching documents and abstracts. For text
that is reasonably static or keyword groups that are reasonably static (terms used, for
example, by a professional society to describe the subfields within its discipline), the
best way to match words against text is indeed to have the text indexed, and this is
feasible. For other text search applications, news story data, for example, an index
does not exist and a full text search must sometimes be done as shown by Purcell
and Mar [5] and Stanfill and Kahle [7).

1 A version of this chapter appeared as Pryor et al. [4) and is used with permission.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 127

Petitioner Microsoft Corporation - Ex. 1007, p. 111

Section 9.2 The Text Searching Algorithm 111

As with the DNA sequence comparison problem, several versions of special­

purpose hardware, including ASICs, have been manufactured. Inevitably, these pro­

vide a higher processing performance than an FPGA-based system as described here.

However, as with any special-purpose machine, flexibility or adaptability of the hard­

ware can be a serious issue. Our computation is hash-based, and the success is prob­

abilistic depending both on the hash functions and on the text data. Thus, one could

expect to want to vary the hash function depending on the data to be searched. With

the Splash 2 implementation described here, this is relatively easy; with an ASIC,

this could be much harder. Further, the cost of developing an ASIC may not be

justifiable if the number of planned units is relatively small.
Our text searching application tests a stream of words for inclusion and/or

exclusion in a dictionary, a predetermined list of keywords. In the Splash 2

implementation, words are streamed through a series of FPGAs, each configured

to implement a different hash function. These hash functions are set up to use a

single bit on each attached memory module to represent the inclusion of a word in

the search list. The 222 bits of memory attached to each FPGA are quite sufficient for

many uses. The English language, for example, has about 218 words, which would

allow a sparse scattering of words throughout the memory address space. The sparser

the representation of the keyword list in the memory, the lower the probability of a

false hit. Cascading the independent hash functions multiplies these low probabili­

ties, resulting in an extremely low probability that a word not in the keyword list is

reported as a match.
Two approaches are studied, one that sends a single byte of text through the

system on each clock tick and one that sends two bytes per tick. In both of these

algorithms, the Splash 2 system is used as a linear array (no use is made of the

crossbar) in which the data is pipelined from the Interface Board through each chip

in the Splash board and back to the Interface Board. The results of the hash function

evaluations are successively AND-ed into an indicator bit as the data travels through

the array. The indicator bit at the end of the array denotes success (a hit) or failure

of the search for the corresponding word. The locations of the hits in the data stream

are recorded by the final FPGA on the Interface Board.

9.2 THE TEXT SEARCHING ALGORITHM

The original motivation behind implementing a dictionary search algorithm on

Splash 1 was that the predicted performance on a Splash-based system matched

requirements of real-world problems and exceeded general-purpose solutions. The

Splash 1 implementation was 1/0 bound and ran at 4 megacharacters/second. Due to

the improved 1/0 performance on Splash 2, a Splash 2 8-bit implementation has been

created and demonstrated. This section describes the algorithm used and the first of

two approaches implemented.
The text processing in the Splash 2 system can be thought of as a pipelined

operation on a stream of characters (bytes). There are three major stages to the

pipeline, with the middle stage divided into a series of nearly identical substages.

The first stage of the algorithm takes place in FPGA XL on the Interface Board. (See

Figures 2.3, 2.4, and 2.5.) In this FPGA, the data is read in, one 32-bit word per

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 128

Petitioner Microsoft Corporation - Ex. 1007, p. 112

112 Text Searching on Splash 2 Chapter 9

clock tick, and sent out over the SIMD Bus at the rate of one 8-bit byte per tick.
The job of XL is to coordinate the splitting of the data words into characters that
are fed through the Array Board one at a time, as well as to set tag bits to perform
whatever bookkeeping is required with respect to end-of-data conditions, and such.
Each data byte is assumed to be part of a valid dictionary word, and XL sets a tag
bit to indicate this assumption. As the byte progresses through the Array Board, this
condition may be modified by successive hash function evaluations.

The second stage of the algorithm takes place on the Array Board, where the
bulk of the work is done. This stage is made up of a series of nearly identical stages,
each occupying a separate FPGA, with the communication between them being in
pipeline fashion. Upon receiving a data character from its leftward neighbor, the }th
FPGA Xj first detects an end-of-word condition by deciding whether the character is
alphabetic or nonalphabetic. If the received character is alphabetic, the hash function
is updated using this character. If the character is nonalphabetic, and if the previous
character was alphabetic, an end-of-word condition has occurred and a zero in the
memory bit pointed to by the hash register indicates the word is not in the dictionary.
When the memory is read, the hash register is reset to all zeros to get ready for the
next word, which begins when the next alphabetic character is received. When the
memory is read, the bit indicating a hit or miss is AND-ed to the corresponding bit
passed from X(j - 1) and passed on to X(j + 1) as one of the tag bits. In this way,
the tag bit indicates whether all hash functions produced a hit, or whether at least
one of them resulted in a miss. A word is declared to be in the dictionary only if all
hash function evaluations result in hits.

The final stage of the algorithm takes place in the FPGA labeled XR on
the Interface Board. This FPGA contains a 32-bit counter that counts the num­
ber of characters processed and decoder logic that determines when to write out
the value of the counter. A block diagram of this implementation is shown in
Figure 9.1.

XL

Memory

Hash
Function

End of Word

Chip I

• • • Memory

Hash
Function

End of Word

Chip S

FIGURE 9.1 Text Matching Implementation

36

XR

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 129

Petitioner Microsoft Corporation - Ex. 1007, p. 113

Section 9.3 Description of the Single-Byte Splash Program 113

9.3 DESCRIPTION OF THE SINGLE-BYTE SPLASH PROGRAM

The design reads 8-bit ASCII characters from an input file until the end of the file.
The word boundaries are then found by detecting the nonalphabetic characters within
the input stream. Each word is compared to a user dictionary and is marked as a hit,
meaning the word is present in the dictionary, or a miss, meaning the word is not
in the dictionary. The word's location is then recorded along with the corresponding
hit/miss flag to an output file. Instead of doing a direct comparison of the input word
to the user dictionary, a series of hashing functions is used to do the comparison.
The hashing function maps each word to a pseudo-random value that is then used
to reference a lookup table, indicating if a given word is in the user dictionary.
The lookup tables are generated by passing the user dictionary through the same
hashing functions that are used at runtime. This is a one-time operation and does not
necessarily have to be performed on the Array Board.

The algorithm used is similar to the Splash 1 version implemented by McHenry
[2]. First, a hash table is produced for each function and then loaded into the Array
Board's memories. The memories are 256K x 16 bits, and each of the four megabits
is used to indicate a hit or a miss. A 22-bit hashing function value, which is generated
in an FPGA, is used to address the four megabits of the FPGA's memory. During
runtime a hash function value is determined for each word of the input stream. For
example, in Figure 9 .2 the word "the" is passed through the hash function, and the
resulting hash value is shown.

Shift Amount: 7 bits
Hash Function: 1100 1000 where !=XOR; 0 = XNOR

00 0000 0000 0000 0000 0000 Clear Hash Register

01 1101 00 Input the letter 't'

COi 0000 1100 0000 0000 0000 7 Temporary result

7 bit circular shift

01 0000 0010 0001 1000 0000 Result for string "t"

01 1010 00 Input the letter 'h'

C 01 Olli 1110 0001 1000 0000 7 Temporary result

7 bit circular shift

00 0000 0010 II I I 1100 0011 Result for string "th"
01 1001 01 Input the letter 'e'

C 01 0100 IOIO 1111 1100 0011 7 Temporary result

7 bit circular shift

IO 0001 1010 1001 0101 1111 Result for string "the"

FIGURE 9.2 22-Bit Hashing Example

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 130

Petitioner Microsoft Corporation - Ex. 1007, p. 114

114 Text Searching on Splash 2 Chapter 9

TABLE 9.1 Hashing Functions Used

Function
Number Shift Mask Splash 1 % Splash 2 %

1 7 cs 1138 4.5 1127 4.5
2 5 AS 771 3.1 422 1.7
3 3 SC 1636 6.5 1461 5.8
4 4 AE 1035 4.1 654 2.6
5 5 cs 924 3.7 507 2.0

The five hashing functions used are listed in Table 9.1. The shift and mask
values of these hash functions were chosen by picking a shift value that is relatively
prime to 22 and a mask value that has approximately the same number of ones as
zeros. These functions were then checked for randomness by hashing a 25,261-word
dictionary and recording the number of duplicate hits. A comparison of duplicate hits
produced by a 20-bit hash function (used in the Splash 1 version) versus a 22-bit hash
function (used in the Splash 2 version) was performed, and the results are shown in
Table 9.1.

This algorithm was implemented and tested on Splash 2. The XL chip of the
Interface Board is designed to read in a 32-bit word on every fourth clock cycle. The
32-bit word is then divided into four 8-bit values and passed onto the first FPGA
of the Array Board. FPGAs Xl through XS on the Array Board compute the hash
functions and access their memory to check if the word is in its lookup table. FPGAs
X6 through X16 of the array are essentially unused, passing data from the left side
of the FPGA to the right side. From FPGA X16 of the array, the data are passed into
FPGA XR of the Interface Board. This FPGA contains a 32-bit counter that counts
the number of characters processed and decoder logic that determines when to write
out the value of the counter.

9.4 TIMINGS, DISCUSSION

The text search program was functionally debugged using the Splash system simu­
lator. The functionally correct design was then synthesized to determine the timing
information for each chip. Due to the simplicity of the XL chip design, when this
chip was synthesized, the maximum clock rate was found to be 25 MHz. The XR
chip design includes a 32-bit counter, and this was the primary reason why the chip
could run at only 14 MHz after synthesizing the first time. This problem was fixed
by using two 16-bit Hard Macro Counters provided by Xilinx, and the new version
of the design now has a maximum clock speed of 17 MHz. The chips that per­
form the hashing function are the slowest, and thus dictate the clock speed of the
entire application. The maximum clock rate for FPGAs Xl through XS was 16 MHz.
Since the 1/0 speed into the Splash 2 system is faster than 4 megawords/second, this
application can process data at 16 megacharacters/second.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 131

Petitioner Microsoft Corporation - Ex. 1007, p. 115

Section 9.5 Outline of the 16-bit Approach 115

9.5 OUTLINE OF THE 16-BIT APPROACH

Since the Splash 2 system is capable of receiving more than a single byte of data
per clock tick, we decided to investigate the possibility of extending the algorithm
discussed above to one that processed 16 bits per tick. In order to use the hash
functions in the Array Board in a way similar to the method of the single-byte
algorithm, we need to have some concept of a nonalphabetic 16-bit "superbyte"
that signals the time to do the memory access and reset the hash function. But
in general, nonalphabetic characters do not come two at a time and on two-byte
boundaries. Viewing 16 bits at a time, or two consecutive characters from the text
stream, therefore involves considering a number of cases that are not seen in the
single-byte algorithm. And in order that the pipeline nature of the algorithm for
the FPGAs on the Array Board be preserved, we condition the data stream on the
Interface Board using the XL chip. In some cases, a 16-bit zero must be inserted
into the outgoing stream in order to play the role played by the single nonalphabetic
character in the 8-bit algorithm. That is, the FPGAs on the Array Board must receive
a 16-bit superbyte that is easily tested for, contains no important data, and signals
the end of the accumulated word of text. The distinct cases that must be considered
by XL for each new byte pair received are:

1. The new pair consists of two alphabetic characters, and the preceding character
was alphabetic. In this case, the data stream is in the middle of a word, so this
byte pair is passed on to the Array Board without special action. This is the
case that is most similar to the 8-bit case described in Section 4.

2. The new pair consists of a nonalphabetic character followed by an alphabetic
character. This case splits into two subcases: the preceding superbyte sent was
zero, and the preceding superbyte was nonzero. If zero, then the end of the pre­
vious text word has already been signaled by the sending of the zero superbyte.
Therefore the nonalphabetic character is changed to an 8-bit zero and sent to
the Array Board. If the last superbyte sent to the Array Board was nonzero, then
XL must insert a zero superbyte into the Array Board data stream to indicate
the end of a text word before sending the new byte pair.

3. The new pair consists of an alphabetic character followed by a nonalphabetic
character. In this case, we have an end-of-word condition and must send out
first the new pair and then a 16-bit zero to signal the end-of-word.

4. The new pair consists of two nonalphabetic characters. Both bytes are replaced
by zero bytes and sent to the Array Board, since the Array Board must receive
something on each clock tick, even if it contains no useful data.

Because a text word can begin at either an odd or an even position in the
data stream, and the hash functions can only be evaluated 16 bits at a time, there
must be two versions of each dictionary word represented in the hash table. For
text words with an odd number of characters, we have chosen to represent the two
versions by appending either a leading blank character or a trailing blank character
to the word. Dictionary words having an even number of characters are represented
first by including only the characters in the word and second by attaching both a _
leading blank and a trailing blank. Thus, a further task that must be performed is the
substitution of nonalphabetic characters with blank characters.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 132

Petitioner Microsoft Corporation - Ex. 1007, p. 116

116 Text Searching on Splash 2 Chapter 9

This effective doubling of the dictionary size also means that either our prob­
ability of a false hit will increase or that we will have to use more FPGAs in the
design. For normal English text, this is not a serious problem, as we have, say,
218 dictionary words (making ~ 219 ls in each hash table). Hence the probability of
a false hit in any one hash table will be about 219 /222 = 2-3. With 16 FPGAs, this
yields a false hit probability of about 2-4s, or about 10-15 -not as low as that of the
single-byte method, but certainly acceptable for many situations.

Since the bulk of the workload was shifted from the Array Board to the Inter­
face Board, in particular to the XL chip, it is no surprise to see that the timing of this
application is now limited by the timing of XL. Our XL design has been analyzed
and processed by the placement and routing programs to determine a clock speed of
13.6 MHz. This is almost as fast as the single-byte method, but would not produce a
near doubling of throughput, since we must adjust our timing estimates to account for
the insertion of zero superbytes into the text stream. For example, ordinary English
text averages about 4.7 characters per word [6]. So, with this figure as a guideline, it
is safe to expect that this design could process around 20 million characters of text
data per second.

9.6 CONCLUSIONS

We have presented two versions of a dictionary search application on the Splash 2
system. These results are encouraging in that they show the Splash 2 design to be
quite fast as well as relatively easy to program. We believe that there are many
other applications where Splash or a system similar to Splash can be exploited for its
cost/performance benefits over large general-purpose machines and for its flexibility
advantages over conventional special-purpose (ASIC-based) devices. We believe that,
while Splash-like architectures will certainly never replace general-purpose or special­
purpose machines, they do provide effective solutions in selected application areas.

REFERENCES

[1] Mead Data Central, LEXIS Quick Reference, Mead Data Central, New York, 1976.

[2] J.T. McHenry and A. Kopser, "Keyword Searching on Splash," tech. report, SRC, Bowie,
Md., 1991.

[3] Nat'I Library of Medicine, MEDI.ARS, The Computerized Literature Retrieval Services of
the Nat ' I Library of Medicine, Publication NIH 79-1286, U.S. Dept. of Health, Education,
and Welfare, Washington, D.C., 1979.

[4] D.V. Pryor, M.R. Thistle, and N. Shirazi, "Text Searching on Splash 2," Proc. IEEE
Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 172-178.

[5] G. Purcell and D. Mar, "SCOUT: Information Retrieval from Full-Text Medical Liter­
ature," Knowledge Systems Lab. Report KSL-92-35, Stanford Univ., Palo Alto, Calif.,
1992.

[6] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, Mass. , 1989.

(7) C. Stanfill and B. Kahle, "Parallel Free-Text Search on the Connection Machine System,"
Comm. of the ACM, Vol. 29, No. 12, 1986, pp. 1229-1239.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 133

Petitioner Microsoft Corporation - Ex. 1007, p. 117

CHAPTER 10

10.1 INTRODUCTION

Fingerprint Matching
on Splash 2

Nalini K. Ratha, Anil K. Jain, & Diane T. Rover

Fingerprint-based identification is the most popular biometric technique used in

automatic personal identification [7] . Law enforcement agencies use it routinely for

criminal identification. Now, it is also being used in several other applications such

as access control for high-security installations, credit card usage verification, and

employee identification [7]. The main reason for the popularity of fingerprints as

a form of identification is that the fingerprint of a person is unique and remains

invariant through age. The law enforcement agencies have developed a standardized

method for manually matching rolled fingerprints and latent or partial fingerprints

(lifted from the scene of a crime). However, the manual matching of fingerprints

is a highly tedious task for the following reasons. As the features used for match­

ing are rather small compared to the image size, a human expert often has to use

a magnifying glass to get a better view of the fingerprint impression. The match­

ing complexity is a function of the size of the fingerprint database, and a typical

database contains a very large number (the order of millions) of fingerprint records.

Even though the standard Henry formula [6] for fingerprint recognition can be used

to reduce the search, manual matching can take several days in some cases. These

problems can be easily overcome by automating the fingerprint-based identification

process.
A fingerprint is characterized by ridges and valleys. The ridges and valleys

alternate, flowing locally in a constant direction (see Figure 10.1). A closer analysis ­

of the fingerprint reveals that the ridges (or the valleys) exhibit anomalies of various

kinds, such as ridge bifurcations, ridge endings, short ridges, and ridge crossovers.

117

j

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 134

Petitioner Microsoft Corporation - Ex. 1007, p. 118

118 Fingerprint Matching on Splash 2 Chapter 10

(a) (b)

(c) (d)

FIGURE 10.1 Gray-level Fingerprint Images of Different Types of Patterns:
(a) Arch; (b) Left loop; (c) Right loop; (d) Whorl

Eighteen different types of fingerprint features have been enumerated in the booklet
prepared by the Federal Bureau of Investigation [2]. Collectively, these features are
called minutiae. For automatic feature extraction and matching, the set of fingerprint
features is restricted to two types of minutiae: ridge endings and ridge bifurcations.
Ridge endings and bifurcations are shown in Figure 10.2. We do not make any
distinction between these two feature types because data acquisition conditions such
as inking, finger pressure, and lighting can easily change one type of feature into
another. More complex fingerprint features can be expressed as a combination of
these two basic features. For example, an enclosure can be considered as a collection
of two bifurcations, and a short ridge can be considered as a collection of a pair of
ridge endings. These features are shown in Figure 10.3.

(a) (b)

FIGURE 10.2 Two Commonly
Used Fingerprint Features: (a) Ridge
bifurcation; (b) Ridge ending

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 135

Petitioner Microsoft Corporation - Ex. 1007, p. 119

Section 10.1 Introduction

A short ridge

~geendings

(a)

Arnz;(
~ :::::.J Bifurcations

(b)

FIGURE 10.3 Complex Fingerprint Features as a Combination of Simple Features:
(a) Short ridge; (b) Enclosure

119

In the area of criminal identification, there are two types of fingerprint matching
requirements: rolled fingerprint matching and latent fingerprint matching. These are
characterized by the information available for matching. In the case of rolled finger­
print matching, the suspect is cooperative and all of the suspect's fingerprints (called
rolled fingerprints) are used for identification. The objective is to verify the suspect's
identity. In the second case, latent fingerprints, lifted from the scene of a crime, are
characterized by smudgy, unclear, and partial impressions. Obviously, matching of
latent fingerprints is more difficult. For rolled fingerprints, the Henry classification
scheme is used, whereas for latent fingerprints, Batley's formula [4] is used. In both
cases, a (human) fingerprint expert performs the detailed matching.

In the last three decades, substantial efforts have been made to automate fin­
gerprint identification. These efforts can be grouped into the following two cate­
gories.

• Semi-automatic
The computer is used to match the Henry formula of the fingerprints containing
minor variations in ridge counts. A list of records that have similar Henry
formula is obtained. However, due to the limitations of the Henry formula in
disambiguating a large collection of records, this system is not very popular.

• Automatic
An image processing system is used to automatically extract features from a
digital image of the fingerprint. A query fingerprint is matched to a stored
database of fingerprints based on the extracted features.

A survey of commercially available automatic fingerprint identification systems
(AFIS) is available in the book edited by Lee and Gaensslen [6]. Well-known man­
ufacturers of automatic fingerprint identification systems include NEC Information
Systems, De La Rue Printrak, North American Morpho, and Logica.

The high computational requirement of matching is primarily due to the follow­
ing three factors: (i) a query fingerprint is usually of poor quality; (ii) the fingerprint
database is very large; and (iii) structural distortion of the fingerprint images requires
complex matching algorithms.

We consider the task of matching rolled fingerprints against a database of rolled
fingerprints. Typically, the number of records with which a query fingerprint image
needs to be matched is very large (~ 106). The matching process is repeated over
the records in the database. It is also not uncommon to have hundreds of match
queries per day, which need to be answered within a short (say, a few hours) time
period. This imposes a heavy computational load on the matching system. Even if a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 136

Petitioner Microsoft Corporation - Ex. 1007, p. 120
I

120 Fingerprint Matching on Splash 2 Chapter 10

single match takes, say, one millisecond of CPU time, matching against a database
of one million fingerprints would require a total of 103 seconds of CPU time. If we
have to process 100 queries per day, we would need 105 seconds or 27.78 hours
of CPU time alone, not including the UO time in reading the fingerprints from the
database.

In order to provide a reasonable response time for each query, commercial sys­
tems use dedicated hardware accelerators or application-specific integrated circuits
(ASICs). While application-specific architectures and ASICs have been designed to
meet the computing requirements of complex image processing tasks, such designs
have the following two major limitations: (i) once fabricated, they are difficult to
modify; and (ii) the cost of building special-purpose application accelerators is very
expensive for low-volume applications. Both of these limitations have been the driv­
ing force behind the design of custom computing machines (CCMs) using reconfig­
urable logic arrays known as field-programmable gate arrays (FPGAs). An attached
processor built with FPGAs can overcome the two limitations noted above. High
performance is achieved with FPGAs by exploiting an important principle: most of
the processing time of a compute-intensive job is spent within a small portion of
its execution code [3], and if an architecture can provide efficient execution sup­
port for the frequently executed code, then the overall performance can be improved
substantially. Portions of the matching algorithm have been identified for implemen­
tation on Splash 2, leaving the remainder to be implemented using software on the
host.

The goal of this chapter is threefold. First, it describes a successful application
using Splash 2. Second, we demonstrate that a suitable mapping of an algorithm
to a given architecture results in excellent performance. Third, we illustrate how
FPGAs can facilitate this mapping process without sacrificing speed and flexibility.
In fact, FPGAs offer greater flexibilty since the hardware is customized to meet the
requirements of the algorithm.

This chapter is organized as follows. In Section 2, a brief introduction to pat­
tern recognition systems is given, followed by definition of the terminology used
in fingerprint matching, and introduction of various stages in an AFIS. Section 3
briefly reviews the Splash 2 architecture and its programming paradigm. The finger­
print matching algorithm and its computational requirement are briefly presented in
Section 4. The hardware-software design is presented in Section 5. The hardware
component of the parallel algorithm has been simulated using the Splash simulator.
The results of simulation and synthesis are discussed in Section 6. The synthesized
logic has been executed on a set of actual fingerprints. For measuring execution
speed, a synthetic database of 10,000 fingerprints has been created from 100 real
fingerprints. The execution speed of the matching module is analyzed in Section 7,
followed by conclusions in Section 8.

10.2 BACKGROUND

This section is devoted to an introduction to pattern recogmtion systems, some
basic definitions with respect to fingerprints, and automatic fingerprint identification
systems (AFIS).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 137

Petitioner Microsoft Corporation - Ex. 1007, p. 121

Section 10.2 Background 121

10.2.1 Pattern Recognition Systems

Pattern recognition techniques are used to classify or describe complex patterns or
objects by means of some measured properties or features. A pattern is an entity,
vaguely defined, that could be given a name. A speech waveform, a person's face,
and a piston head are examples of patterns. The goals of pattern recognition are to
(i) assign a pattern to a heretofore unknown class of patterns (clustering) or (ii) iden­
tify a pattern as a member of an already known class (classification). Two examples
of the recognition problem are identifying a suspect in a criminal case based on
fingerprints, and finding defects in a printed circuit board.

A pattern recognition system (PRS) classifies an object into one of several
predefined classes. The input to a PRS is a set of N measurements represented
by an N -dimensional vector called a pattern vector. A PRS can be used to com­
pletely automate the decision-making process without any human intervention. A PRS
requires data acquisition via some sensors, data representation, and data analysis or
classification. The data are usually either in the form of pictures, as in the case of
fingerprint matching, or one-dimensional time signals, as in the case of speech recog­
nition. Although these images or signals can be interpreted, analyzed, or classified
by trained human operators, pattern recognition systems can provide more reliable
and faster analysis, often at a lower cost.

The design of a PRS involves the following three steps:

• Sensing
• Representation
• Decision making

The problem domain influences the choice of sensor, representation, and decision
making model. An ideal representation is characterized by the following desirable
properties; it is

1. Provided with discriminatory information at several levels of resolution (detail)

2. Easily computable
3. Amenable to automated matching algorithms

4. Stable and invariant to noise and distortions

5. Efficient and compact

The compactness property of a representation often constrains its discriminating
power.

The pattern recognition problem is difficult because various sources of noise
distort the patterns, and often there exists a substantial amount of variability among
the patterns belonging to the same category [5]. For example, the character 'A'
written by different people looks different, though we assign the same class label
'A' to all of them. Hence, it is not appropriate to use the raw pattern vector for
classification. Invariant features that characterize a set of patterns are used to represent
a class of patterns. Several issues arise, such as what features should be used and -
how they should be extracted reliably. The features of a pattern are the input to a
classification stage. The challenge in designing a recognition system is in extraction

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 138

Petitioner Microsoft Corporation - Ex. 1007, p. 122

122

II

Fingerprint Matching on Splash 2 Chapter 10

of features that can tolerate the intra-class variations and still possess the inter-class
discriminating power. If the extracted features have sufficient discriminating power,
then the decision making stage is simple. Conversely, a sophisticated decision making
stage can compensate for an unreliable feature extraction stage. In practice, we never
have a noiseless input pattern, an ideal representation, perfect feature extraction, or
robust decision maker. Imperfections in any of these stages may result in classification
error. The goal of a pattern recognition system is to minimize the classification error.
Many successful pattern recognition systems have been built in the area of document
analysis, medical diagnosis, and fingerprint identification. A large number of books
and survey papers have been written on pattern recognition. Readers interested in
more details are referred to [5].

10.2.2 Terminology

The structural features that are commonly extracted from the gray-level input finger­
print image are ridge bifurcations and ridge endings. Each of the features has three
components, namely, the x-coordinate, they-coordinate, and the local ridge direction
at the feature location, as shown in Figure 10.4. Many other features that have been
used for fingerprint matching are derived from this basic three-dimensional feature
vector [1].

Definitions of some relevant fingerprint-related terms are given below. Readers
interested in more details arc referred to [2].

• Fingerprint image: A digitized image of a fingerprint impression usually con­
taining 512 x 512 pixels and 256 gray levels.

• Fingerprint card: A paper card with a provision to record impressions of all
10 fingers of a person, including other textual details (such as name, sex, and
age) useful for identification.

y

y Minutia (x, y)

'----------'--------- X FIGURE 10.4 Components of a
Minutia Feature X -------------------•

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 139

Petitioner Microsoft Corporation - Ex. 1007, p. 123

Section 10.2 Background 123

FIGURE 10.5 A Core Point Marked on
a Gray-level Fingerprint

• Pattern area: The area of the image where the fingerprint pattern is located.

• Ridge: A black line in a fingerprint image. See Figure 10.1.

• Valley: A white line in a fingerprint image. See Figure IO.I.

• Ridge bifurcation point: A point where a ridge branches into two ridges. See
Figure 10.2(a).

• Ridge end point: A point where a ridge stops flowing. See Figure 10.2(b).

• Minutia: A ridge ending or bifurcation point.

• Classification: Based on the ridge flow type, the process of categorizing fin­
gerprints into one of the following five classes: (i) arch, (ii) loop, (iii) whorl,
(iv) double loop, and (v) accidental. The first three fingerprint classes are shown
in Figure 10.1.

• Matching: The process of comparing a pair of fingerprints based on their minu­
tiae feature sets. The AFIS systems usually determine a list of probables (possi­
ble matches) from the database, often sorted on a matching score that indicates
the degree of match.

• Core point: For whorls, loops, and double loops, the core point is defined as
the topmost point on the innermost ridge, assuming the fingerprint is oriented.
See Figure 10.5.

10.2.3 Stages in AFIS

An AFIS is a pattern recognition system for fingerprint matching. A typical AFIS
consists of various processing stages as shown in Figure 10.6. For the purpose of
automation, a suitable representation of fingerprints is essential. Clearly, the raw
digital image (set of pixels) of a fingerprint itself does not meet the requirements
of an ideal representation described earlier. Hence, high-level structural features are
extracted from the fingerprint image for the purpose of representation and matching.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 140

Petitioner Microsoft Corporation - Ex. 1007, p. 124

124 Fingerprint Matching on Splash 2 Chapter 10

Image Acquisition

!
Feature Extraction

Manual Feature Editing
(Optional)

I I
♦

Matching

!
Manual Verification

FIGURE 10.6 Stages in an Automatic Fingerprint Identification System (AFIS)

The commercially available fingerprint systems typically use ridge bifurcations
and ridge endings as features (see Figure 10.2). Because of the large size of the fin­
gerprint database and the noisy fingerprints encountered in practice, it is very difficult
to achieve a reliable one-to-one matching in all test cases. Therefore, the commer­
cial systems provide a ranked list of possible matches (usually the top 10 matches)
that are then verified by a human expert. The matching stage uses the position and
orientation of these features and the total number of such features. As a result, the
accuracy of feature extraction has a strong impact on the overall accuracy of finger­
print matching. Reliable and robust features can simplify the matching algorithm and
obviate the manual verification stage.

One of the main problems in extracting structural features is the presence of
noise in the fingerprint image. Commonly used methods for taking fingerprint impres­
sions involve applying a uniform layer of ink on the finger and rolling the finger on
paper. This leads to the following problems. Smudgy areas in the image are created by
overinked areas of the finger, while breaks in ridges are created by underinked areas.
Additionally, the elastic nature of the skin can change the positional characteristics
of the fingerprint features depending on the pressure applied on the fingers. Though
inkless methods for taking fingerprint impressions are now available, these methods
still suffer from the positional shifting caused by the skin elasticity. The AFIS used
for criminal identification poses yet another problem. A noncooperative attitude of
suspects or criminals in providing the impressions leads to smearing parts of the
fingerprint impression. Thus, noisy features are inevitable in real fingerprint images.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 141

Petitioner Microsoft Corporation - Ex. 1007, p. 125

Section 10.4 Fingerprint Matching Algorithm 125

The matching module must be robust to overcome the noisy features generated by

the feature extraction module.
The functioning of an AFIS can be described starting with the input stage. A

gray-scale fingerprint image is obtained using a scanner or a camera. Recently, inkless

methods have been used for this stage [7]. The input image needs enhancement before

further processing can be done. This stage involves image processing techniques to

minimize noise and enhance image contrast. A feature extraction stage locates the

minutiae points in the enhanced image. Often, it is difficult to extract minutiae reliably

from noisy inputs. In such cases, a human fingerprint expert interactively updates the

location of the minutiae. The set of minutiae forms the input to a matcher. The

matcher reads fingerprint features from the database and matches these with the

query fingerprint feature set. It outputs a list of probables from the database in order

of their degree of match. The system output is verified by the human expert to arrive

at the final decision for each query fingerprint.

10.3 SPLASH 2 ARCHITECTURE AND PROGRAMMING MODELS

We review the major components of the Splash 2 system that are used by our finger­

print matching algorithm. (For details, refer to the chapters on Splash 2 architecture

and programming.)
Each Splash 2 processing board has 16 Xilinx 4010s as Processing Elements

(PEs Xl-Xl6) in addition to a seventeenth Xilinx 4010 (XO) that controls the data

flow into the processor board. Each PE has 512 KB of memory. The Sun SPARC­

station host can read/write this memory. The PEs are connected through a crossbar

that is programmed by XO. There is a 36-bit linear data path (SIMD Bus) running

through all the PEs. The PEs can read data either from their respective memory or

from any other PE. A broadcast path also exists by suitably programming XO.
The Splash 2 system supports several models of computation, including PEs

executing a single instruction on multiple data (SIMD mode) and PEs executing

multiple instructions on multiple data (MIMD mode). It can also execute the same or

different instructions on single data by receiving data through the global broadcast

bus. The most common mode of operation is systolic, in which the SIMD Bus is

used for data transfer. Also, individual memory available with each PE is used to

conveniently store temporary results and tables.
To program Splash 2, we need to program each of the PEs (Xl-Xl6), the

crossbar, and the host interface. The crossbar sets the communication paths for any

arbitrary pattern of communication between PEs. In case the crossbar is used, XO

needs to be programmed. The host interface handles data transfers in and out of the

Splash 2 board.

10.4 FINGERPRINT MATCHING ALGORITHM

The feature extraction process takes the input fingerprint gray-level image and -

extracts the minutiae features described in Section 1, making no efforts to distinguish

between the two categories (ridge endings and ridge bifurcations). Figure 10.7 shows

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 142

cevans
Highlight

cevans
Highlight

cevans
Highlight

cevans
Highlight

Petitioner Microsoft Corporation - Ex. 1007, p. 126

126 Fingerprint Matching on Splash 2 Chapter 10

FIGURE 10.7 Feature Extraction. (a) A gray-scale image of a fingerprint; (b) its skeleton
with features

a gray-scale fingerprint image and its skeleton image where these features are marked.
In this section, an algorithm for matching rolled fingerprints against a database of
rolled fingerprints is presented. A query fingerprint is matched with every fingerprint
in the database, discarding candidates whose matching scores are below a user­
specified threshold. Rolled fingerprints usually contain a large number of minutiae
(between 50 and 100). Since the main focus of this chapter is on parallelizing the
matching algorithm, we assume that the features have been extracted from the fin­
gerprint images and the important information is available. In particular, we assume
that the core point of the fingerprint is known and that the fingerprints are oriented
properly.

10.4.1 Minutia Matching

Matching a query and database fingerprint is equivalent to matching their minutiae
sets. Each query fingerprint minutia is examined to determine whether there is a
corresponding database fingerprint minutia. Two minutiae are said to be paired or
matched if their components (x, y, 0) are equal within some tolerance after regis­
tration, which is the process of aligning the two sets of minutiae along a common
core point (see section 4.2 for precise definitions). Three situations arise as shown in
Figure 10.8.

1. A database fingerprint minutia matches the query fingerprint minutia in all the
components (paired minutiae);

2. A database fingerprint minutia matches the query fingerprint minutia in the x
and y coordinates, but does not match in the direction (minutiae with unmatched
angle);

3. No database fingerprint minutia matches the query fingerprint minutia
(unmatched minutia).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 143

Petitioner Microsoft Corporation - Ex. 1007, p. 127

Section 10.4 Fingerprint Matching Algorithm

1------
1

I °'-._I

: a. I
I - '- I
I I ______ 1

1-----,
I I

: ,,./ :
I I
1_ _____ 1

1------
1 I :
I'--. 0

I '• :
I I
1_ _____ 1

Paired minutiae Paired minutiae Minutiae with
unmatched angle

1------
1 :

: ~ : ~
: I ______ 1

Unmatched minutiae
(Lying outside tolerance box)

~ Tolerance box

1------
1 :
I • I
I I
I I
1_ _____ 1

Unmatched minutiae
(No pairing possible)

• Query fingerprint minutiae
o Database fingerprint minutiae

127

FIGURE 10.8 Different Situations in
Minutia Matching

Of the three cases described above, only in the first case are the minutiae said to be

paired.

10.4.2 Matching Algorithm

The following notation is used in the sequential and parallel algorithms described

below. Let the query fingerprint be represented as an n-dimensional feature vec­

tor fQ = (f1, f~ , ,f~). Note that each of the n elements is a feature vector cor­

responding to one minutia, and the i th feature vector contains three components,

f1 = (f;(x), f;(y), /;(0)).
The components of a feature vector are shown geometrically in Figure 10.4.

The query fingerprint core point is located at (C;, CJ). Similarly, let the rth ref­

erence (database) fingerprint be represented as an mr-dimensional feature vector

rr = (f1, f 2, ,f~,), and the reference fingerprint core point is located at

(c;, c;).
Let (x~, y~) and (x!, Y!) define the bounding box for the query fingerprint,

where x~ is the x-coordinate of the top-left comer of the box and x! is the x­

coordinate of the bottom-right comer of the box. Quantities y~ and Y! are defined

similarly. A bounding box is the smallest rectangle that encloses all the feature points.

Note that the query fingerprint fQ may or may not belong to the fingerprint database

r0 . The fingerprints are assumed to be registered with a known orientation. Hence,

there is no need of normalization for rotation.
The matching algorithm is based on finding the number of paired minutiae

between each database fingerprint and the query fingerprint. It uses the concept of

minutiae matching described in Section 4.1. A tolerance box is shown graphically tn

Figure 10.9. In order to reduce the amount of computation, the matching algorithm

takes into account only those minutiae that fall within a common bounding box.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 144

Petitioner Microsoft Corporation - Ex. 1007, p. 128

128 Fingerprint Matching on Splash 2 Chapter 10

y

Minutia point

Idsin(<I>)

Idcos(<I>)

d

Corepoint-(_~-,~~-------------- X

FIGURE 10.9 Tolerance Box for X- and Y-components of a Minutia Point

The common bounding box is the intersection of the bounding box for query and
reference (database) fingerprints. Once the count of matching minutiae is obtained, a
matching score is computed. The matching score is used for deciding the degree of
match. Finally, a set of top-scoring reference fingerprints is obtained as a result of
matching.

In order to accommodate the shift in the minutia features, a tolerance box is
created around each feature. The size of the box depends on the ridge widths and
distance from the core point in the fingerprint.

The sequential matching algorithm is described in Figure 10.10. In the
sequential algorithm, the tolerance box (shown in Figure 10.9 with respect to a query
fingerprint minutia) is calculated for the reference (database) fingerprint minutia. In
the parallel algorithm described in the next section, it is calculated for the query
fingerprint (as in Figure 10.9). A similar sequential matching algorithm is described
by Wegstein [9]. Depending on the desired accuracy, more than one finger could be
used in matching. In that case, a composite score is computed for each set.

10.5 PARALLEL MATCHING ALGORITHM

We parallelize the matching algorithm so that it utilizes the specific characteristics
of the Splash 2 architecture. While performing this mapping, we need to take into
account the limitations of the available FPGA technology. This is consistent with the
approaches taken in hardware-software codesign. Any preprocessing needed on the
query minutiae set is a one-time operation, whereas reference fingerprint minutiae
matching is a repetitive operation. Computing the matching score involves floating­
point division. The floating-point operations and one-time operations are performed
in software on the host, whereas the repetitive operations are delegated to the FPGA­
based PEs of Splash 2. The parallel version of the algorithm involves operations on

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 145

Petitioner Microsoft Corporation - Ex. 1007, p. 129

Section 10.5 Parallel Matching Algorithm 129

Input: Query fingerprint n-dimensional feature vector fQ and the rolled fingerprint database fD = {fr}:=I ·
The rth database fingerprint is represented as an m,-dimensional featurevector.

Output: A list of top ten records from the database with matching score > T.
Begin

End

For r = l to N do
1. Register the database fingerprint with respect to the core point (CJ, CJ) of the
query fingerprint:

For i = l to m, do
f;'(x) = f;'(x) - C;
J;'(y) = f;'(y) - ci

2. Compute the common bounding box for the query and reference fingerprints:
Let (x~, y~) and (x!, Y!) define the bounding box for the query fingerprint.

Let (x;, y;) and (xf, l) define the bounding box for the rth reference fingerprint.
The intersection of these two boxes is the common bounding box.
Let the query print have M'j and reference print have N; minutiae in this box.

3. Compute the tolerance vector for i th feature vector J;' :
If the distance from the reference core point to the current reference feature is less than K
then

else

t[(x) = ldcos(</)),
t[(y) = ld sin(</)), and
t[(0) = k3,

t[(x) = k1,
t[(y) = k2 , and
t[(0) = k3 ,
where l, k 1, k2 and k3 are prespecified constants determined
empirically based on the average ridge width,
</) is the angle of the line joining the core point and the ith feature with the x-axis,
and d is the distance of the feature from the core point.
Tolerance box is shown geometrically in Figure 10.9.

4. Match minutiae:
Two minutiae ff and fJ are said to match if the following conditions are satisfied:

f/(x) - t[(x) .'.S J;'(x) :'S f/(x) + t[(x),
f/(y) - t[(y) .'.S J;'(y) :'S f/(y) + t[(y), and
ff - r; (0) :-::: J;' (0) :-::: ff (0) + r; (0),
where t[= (t[(x), t[(y), t[(0)) is the tolerance vector.

Set the number of paired features, m~ = O;

For all query features fJ, j = 1,2, .. . M'j, do

If rJ matches with any feature in ff, i = 1,2, .. . , N;, then increment m~ .
Mark the corresponding feature in fr as paired.

5. Compute the matching score (MS (q,r)):
mr*mr

MS(q,r) = <::•:;>.
Sort the database fingerprints and obtain top 10 scoring database fingerprints.

FIGURE 10.10 Sequential Fingerprint Matching Algorithm

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 146

Petitioner Microsoft Corporation - Ex. 1007, p. 130

130

Xl

II

Fingerprint Matching on Splash 2 Chapter 10

Memory Memory

ADDR DATA ADDR DATA

• • • Xl6

Hash Function Hash Function

X y 0 X y 0
GOR

GOR

X y 0

Collect_flag

M
e

From host 00 m
0

D r
y

XO A

FIGURE 10.11 Fingerprint Matching in Splash 2

the host, on XO, and on each PE. The schematic of fingerprint matching algorithm
using Splash 2 is shown in Figure 10.11.

One of the main constructs of the parallel algorithm is a lookup table. The
lookup table consists of all possible points within the tolerance box that a feature
may be mapped to. The Splash 2 data paths for the parallel algorithm are shown in
Figure 10.12.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 147

Petitioner Microsoft Corporation - Ex. 1007, p. 131

Section 10.5 Parallel Matching Algorithm 131

Lookup Lookup Lookup Lookup
Table Table Table Table

i i i i

Xl X2 X3 X16

l l l Broadcast Bus (Using crossbar) l
Global OR Bus

XO

(Paired Minutiae Count) (X, Y, 0) from Database

H~t (Sun SPARC) ~ Fingeq,,int Daraba~

FIGURE 10.12 Data Flow in Parallel Matching Algorithm

10.5.1 Preprocessing on the Host

The host processes the query and database fingerprints as follows. The query finger­
print is read first and the following preprocessing is done:

1. The core point is assumed to be available. For each query feature fJ, j = 1, 2,
... n, generate a tolerance box. Enumerate a total of (tx x ty x t0) grid points
in this box, where fx is the tolerance in x, ty is the tolerance in y and t0 is
tolerance in 0.

2. Allocate each feature to one PE in Splash 2. Repeat this cyclically, that is,
features 1-16 are allocated to PEs Xl to Xl6, features 17-32 are allocated to
PEs Xl to Xl6, and so on.

3. Initialize the lookup tables by loading the grid points within each tolerance box
in step (1) into the memory.

In this algorithm, the tolerance box is computed with respect to the query
fingerprint features. The host then reads the database of fingerprints and sends their
feature vectors for matching to the Splash 2 board.

For each database fingerprint, the host performs the following operations:

1. Read the feature vectors.
2. Register the features as described in step (1) of the sequential algorithm in

Figure 10.10.
3. Send each of the feature vectors over the broadcast bus to all PEs if it is within

the bounding box of the query fingerprint.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 148

Petitioner Microsoft Corporation - Ex. 1007, p. 132

132 Fingerprint Matching on Splash 2 Chapter 10

(2) Broadcast feature vector Broadcast Bus

(3) Check for paired feature Global OR Bus

'O' or '1'

Memory XO

(4) Increment counter if paired
feature; store in memory and
reset after all features
processed.

(X, Y, 0) (1) Feature vector received from host

----0 Fingerprint Database

(5) Host reads count from XO

Host (Sun SP ARC)

FIGURE 10.13 Data Flow in XO

For each database fingerprint, the host then reads the number of paired features m;
that was computed by the Splash 2 system, r = 1, ... N. Finally, the matching score
is computed as in the sequential method.

10.5.2 Computations on Splash

The computations carried out on each PE of Splash 2 are described below. As men­
tioned earlier, XO plays a special role in controlling the crossbar in Splash 2.

1. Operations on XO:
Each database feature vector received from the host is broadcast to all PEs. If
it is matched with a feature in a lookup table, the PE drives the Global OR bus
high. When the OR bus is high, XO increments a counter. The host reads this
counter value (m;) after all the feature vectors for the current database finger­
print have been processed. Operations on XO are highlighted in Figure 10.13.

2. Operations on each PE:
On receiving the broadcasted feature, a PE computes its address in the lookup
table through a hashing function. If the data at the computed address is a '1',
then the feature is paired, and the PE drives the Global OR bus high. Operations
on a PE are highlighted in Figure 10;14.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 149

Petitioner Microsoft Corporation - Ex. 1007, p. 133

Section 10.5 Parallel Matching Algorithm

Lookup Lookup Lookup
Table Table Table

t t t

Xl X2 X3

i i Broadcast Busi

(3) If paired drive OR (X, Y, 0) from Database
Bus to '1'.

(2) Check Lookup Table for '1'
at address of feature vector;
indicates paired.

(1) Receive feature from XO

FIGURE 10.14 Data Flow in a PE

10.5.3 VHDL Specification for XO

133

Lookup
Table

t
X16

l
Global OR Bus

We illustrate how the operations on XO are customized by describing segments of
its VHDL code. The tasks carried out by the other PEs are relatively simpler. The
following functions are carried out by XO:

1. Broadcast feature vector to all PEs
2. Update a counter if at least one of the bits of the Global OR bus is '1 ', and

3. Reset the counter after all the minutiae of a database fingerprint are processed
and the result is updated in XO memory.

Five segments of VHDL code are shown in Figure 10.15 and are briefly
described here. Segment 1 (lines 1.1-1.7) shows the signal declarations. The hard­
ware buses have been directly mapped to bit vectors in VHDL. Some of the program
variables have been tailored for the range needed based on the application require­
ment (such as count, features) . Segment 2 describes the padding instructions. Note
that because of using input-output pads, there is a delay in a signal reaching all the
PEs after it has been seen by XO. The delay is accounted for by using a data pipeline
of suitable length (in our case the pipeline is 6 stages deep). The code in line 1.7
combined with code segment 5 (line 5.1) show the use of the pipeline. XO maintains
this pipeline by writing data into the pipeline and flushing out the last data sets by
writing zeros. The code in XO looks at the end of the pipeline. Thus, the data is seen
by XO code when it would have reached other PEs.

By setting suitable configuration parameters, XO can be set to broadcast the
contents of the SIMD Bus to all PEs. To set this mode, code segment 3 is used.

In code segment 4, the collection of OR flags from all 16 PEs (PE X 1 through
X16) is being checked for any possible match by comparing with a bit vector of all
O's. If any of the bits is a ' 1 ', we increment the counter count.

If the input for a new database record is initiated, indicated by the 33rd bit of
the SIMD bus, then the final paired count and the number of features for the previous
record is stored in memory. The two counters count and features are reset to zero.
These activities are carried out in code segment 5.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 150

Petitioner Microsoft Corporation - Ex. 1007, p. 134

134 Fingerprint Matching on Splash 2

Signal declarations - (Segment 1)

1.1- SIGNAL Data
1.2- SIGNAL Address
1.3- SIGNAL count
I .4- SIGNAL features
1.5- SIGNAL SIMD
1.6- SIGNAL CollecUlag
1.7- SIGNAL feaLpipeline pipeline;

BiLVector(15 downto 0);
BiLVector(l 7 downto 0);
natural range 0 to 255 := 0;
natural range 0 to 255 := 0;
BiLVector(35 downto 0);
BiLVector(l5 downto 0);

Connections to I/0 pads - (Segment 2)

2.1- pad_output (X0_Mem_A, Address);
2.2- pad_output (X0_Mem.l), Data);
2.3- pad_Input (X0_SIMD, SIMD);
2.4- pad_Output (X0_)(B_Data, Xbar_Out);
2.5- pad_lnput (X0_GOR_ResulLin, CollecUlag);

Setting XO to be the crossbar master - (Segment 3)

3.1- xo_xbar_En_L <= '0';
3.2- xo_x16.l)isable <= 'l ';
3.3- xo_xbar_Send <= 'l';

- - (Segment 4)

4.1- IF (CollecLflag I= itobv(0,16)) THEN
4.2- count <=count+ l;
4.3- END IF;

Chapter 10

- New person record, store present counters and then reset - (Segment 5)

5.1- IF (feaLpipeline(0)(32) = 'l') THEN
5.2- Data(7 downto 0) <= itobv(count,8);
5.3- Data(l5 downto 8) <= itobv(features,8);
5.4- count <= 0;
5.5- features <= 0;
5.6- Address <= itobv(bvtoi(Address) + 1,18);
5.7- END IF;

FIGURE 10.15 VHDL Specification Segments for XO

10.6 SIMULATION AND SYNTHESIS RESULTS

The VHDL behavioral modeling code for PEs X0-Xl6 has been tested using the
Splash simulation environment. The simulation environment loads the lookup tables
and crossbar configuration file into the simulator. Note that the Splash simulator runs
independently of the Splash 2 hardware and runs on the host. The input data are read
from a specified file, and the data on each of the signals declared in the VHDL code
can be traced as a function of time. A sample output of simulation using test inputs

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 151

Petitioner Microsoft Corporation - Ex. 1007, p. 135

Section 10.6 Simulation and Synthesis Results 135

8 OARDS (0)/8 D/XO/XO _ CLK

0)/8D/XO/XO_ GOR_RESUL T

(0)/8 D/XO/SI MD (260) (26:0)

)/XO/XBAR _ OUT (260)(26:0)

H _ PIPELINE (0) (260)(26:0) 135287A

1/XO/FEAT _PIPELINE(0)(32)

I/XO/FEAT _PIPELINE(0)(35)

i(O)/BD/XO/ADDRESS(17:0)

\RDS(0)/BD/XO/DATA(l 5:0)

ARDS(O)/BD/XO/FEATURES 4

:BOARDS (0)/BD/XO/CO U NT 3

D/XO/CO LLE CT _FLAG(l 5 :0)

XPARTS(1)/XPART /XP _ CLK

(1)/XPART/ADDRESS(17:0)

)/XPART/XP _ GOR_RESULT

\RTS(1)/XPART/OUT _FLAG

,RTS (1)/XPART /DATA(15:0)

<PART /XBAR _IN (260) (26:0)

XPARTS(2)/XPART/XP _ CLK

(2)/XPART/ADDRESS(17:0)

)/XPART/XP _ GOR_RESUL T

\RTS(2)/XPART /0 UT_ FLAG

HTS (2)/XPART/DATA(l 5:0)

WAR1'1)$J\R__l~(Zli0)~1@• 0000000 1FACB79

FIGURE 10.16 Simulation Waveforms for Test Data

is shown in Figure 10.16. The waveforms show the changes in signals with respect
to the system clock on each of the PEs of Splash 2. For example, on XO, the signals
count and features (11th and 10th lines, respectively) show the number of minutiae
paired and the number of minutiae sent for matching to all the PEs, respectively.

The synthesis process starts by translating the VHDL code to a Xilinx net
list format (XNF). The vendor-specific 'ppr' utility (in our case Xilinx) generates
placement, partitioning, and routing information from the XNF net list. The final
bitstream file is generated using the utility 'xnf2bit'. The 'timing' utility produces a
graphical histogram of the speed at which the logic can be executed. The output of
the 'timing' utility is shown in Figure 10.17. The logic synthesized for XO can run at
a clock rate of 17.1 MHz, and the logic for the PEs XI to X16 can run at 33.8 MHz.
Observe that these clock rates correspond to the longest delay (critical) paths, even
though most of the logic could be driven at higher rates. Increased processing speed
may be possible by optimizing the critical path.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 152

Petitioner Microsoft Corporation - Ex. 1007, p. 136

.....
w
Q'I

(a) (b)

FIGURE 10.17 Timing Results. (a) for PE XO; (b) for PE X;

w
O'

/lisr/pubtic/binAgraph/,1S,/pMblk/blnA9^pl.

C Icmpc 11 H» rdoopy j I Li I' y|pfcoi.tj: la Design Timing AnalysisDesign Timing Analysis
SH«»

"pe_xpxdatJ3e_x0xciat340,QO|----------------- .

220.001-.... - -....-...

300.0oj-~-..........
286.0ci-------
260 0o|.......—

24O,0oU~-.—..
220.0Cr”-------------- -

200.00I...—

180.0c|-.....;■

1 40 0

150.00*—'—

I140.0(1-
13

120.O(i“

110.00-------------- ;

loo.od—--------
i 9C.00j----------

8c.ooh--------

Blip
sc.ooU

JSSSlB
|8|S||

3U.UI

i®|

\

pifcgg
10 O.OOf---...—

aLUu|---- —...—-
6CJ0)—-------

fBopSSSiS
liitel-liliP

T

0.00; 0.00;i
MHz MHz

10.00 30 CO 410030.C0; 0.00 20.00;10.00; 2000 4100;0.00

(b)(a)

FIGURE 10.17 Timing Results, (a) for PE X0; (b) for PE Xf

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 153

Petitioner Microsoft Corporation - Ex. 1007, p. 137

Section 10.7 Execution on Splash 2 137

10.7 EXECUTION ON SPLASH 2

The bitstream files for Splash 2 are generated from the VHDL code. Using the

C interface for Splash 2, a host version of the fingerprint matching application is

generated. The host version reads the fingerprint database from the disk and obtains

the final list of candidates after matching.

10.7.1 User Interface

An interactive user interface to the fingerprint matching application has been

developed using the X Window System. The interface provides pull-down menus

for selecting a query fingerprint for matching and for invoking tasks of feature

extraction, matching, and verification. The graphical user interface is shown in Fig­

ure 10.18. The matching menu can select either the host or Splash 2 to perform the

computations during matching. The speed of matching is computed by obtaining the

elapsed time for the number of fingerprints in the database.

10.7.2 Performance Analysis

The sequential algorithm, described in Section 4.2, executed on a Sun SPARC­

station 10, performs at the rate of 70 matches per second on database and query

fingerprints that have approximately 65 features. A match is the process of determin­

ing the matching score between a query and a reference fingerprint. The Splash 2

implementation should perform matching at the rate of 2.6 x 105 matches per second.

This matching speed is obtained from the 'timing' utility. The host interface part can

run at 17.1 MHz and each PE can run at 33.8 MHz (as shown in Figure 10.17).

Hence, the entire fingerprint matching will run at the slower of the two speeds, that

is, 17.1 MHz. Assuming 65 minutiae, on an average, in a database fingerprint, the

matching speed is estimated at 2.6 x 105 matches per second. We evaluated the

matching speed using a database of 10,000 fingerprints created from 100 real fin­

gerprints by randomly dropping, adding, and perturbing minutiae in a given set of

minutiae. The measured speed on a Splash 2 system running at 1 MHz is of the order

of 6,300 matches per second on this database. The experimental Splash 2 system has

not been run at higher clock rates. Assuming a linear scaling of performance with an

increase in clock rate, we would achieve approximately 110,000 matches per second.

We feel that the disparity in the projected and achieved speeds (2.6 x 105 versus

1.1 x 105) is due to different tasks being timed. The time to load the data buffers

onto Splash 2 has not been taken into account in the projected speed, whereas this

time is included in the time measured by the host in an actual run. We are in the

process of timing only the matching component of the code on the system.

The main advantage of the Splash 2 implementation is the higher performance

compared to the sequential implementation. The Splash 2 implementation is over

1,500 times faster than a sequential implementation on a SPARCstation 10. Another

advantage of the parallel implementation on Splash 2 is that the matching speed

is independent of the number of minutiae in the query fingerp1int. The number of ·

minutiae affects only the lookup table initialization, which is done as preprocessing

by the host, and this time is amortized over a large number of database records.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 154

Petitioner Microsoft Corporation - Ex. 1007, p. 138

....
w
C0

+

+
+

+

+

+

+

+ +
+ +

+
+ + ... +

+

+ +$ + +
++ +

+
+ + + +

+ +

+ ++
+ +

+ + ,~Jo··,"' +

+

+ +
+

+

+

+
+

+
+ +

+
+ + +

+
+ + + + + +

+ + +
+

FIGURE 10.18 GUI Used in Fingerprint Analysis

+

+ +
++ ++ +

+
+ ++++ +

+
+

+
+ + ! + +

++ + +
+

+ + + + + +
+-+ + +

+ + + +

+

+ + + +

+ ++ + + + + + + +
+ + + + + +

+ + + +

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 155

Petitioner Microsoft Corporation - Ex. 1007, p. 139

References 139

The matching algorithm can scale well as the number of Splash 2 boards on the
system is increased. Multiple query fingerprints can be loaded on different Splash 2
boards, each matching against the database records as they are transferred from the
host. This would result in a higher throughput from the system.

The processing speed can be further improved by replacing some of the soft
macros on the host interface part (XO) by hard macros. To sustain the matching rate,
the data throughput should be at a rate of over 250,000 fingerprint records per second
(with an average of 65 minutiae per record). This may be a bottleneck for the 1/0
subsystem.

10.8 CONCLUSIONS

The Splash 2 architecture is highly suitable for rolled fingerprint matching. The paral­
lel algorithm has been designed to match the Splash 2 architecture, thereby resulting
in substantially better performance. The algorithm applies a hardware-software design
approach to maximize the performance of the overall system.

We will be coding our matching algorithm in dbC to evaluate the performance
of such a high-level language to express low-level parallelism. This effort will also
enable us to compare the development time needed to program Splash 2 using VHDL
versus dbC. In the next phase of the project, we plan to implement a minutiae
extraction algorithm and a latent fingerprint matching algorithm on Splash 2. Both of
these algorithms appear promising for achieving performance gains on the Splash 2
architecture. The minutiae extraction process involves two-dimensional convolution,
which has been successfully implemented on Splash 2 [8].

ACKNOWLEDGMENT

We would like to thank Duncan Buell, Jeff Arnold, and Brian Schott of Super­
computing Research Center, Bowie, Maryland, for their help and suggestions. This
research was supported by a research contract from the Institute for Defense Analyses,
Alexandria, Virginia.

REFERENCES

[l] "Application Briefs: Computer Graphics in the Detective Business," IEEE Computer
Graphics and Applications, Apr. 1985, pp. 14-17.

[2] Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses,
U.S. Govt. Printing Office, Washington, D.C., 1984.

[3] J.H. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kauffmann Publishers, San Mateo, Calif., 1990.

[4] Sir W.J. Herschel, The Origin of Fingerprinting, AMS Press, New York, 1974.
[5] AK. Jain, "Advances in Statistical Pattern Recognition," in Pattern Recognition Theory

and Applications, P.A. Devijer and J. Kittler, eds., Springer-Verlag, New York, 1987,
pp. 1-19.

[6] H.C. Lee and R.E. Gaensslen, Advances in Fingerprint Technology, Elsevier, New
York, 1991.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 156

Petitioner Microsoft Corporation - Ex. 1007, p. 140

140 Fingerprint Matching on Splash 2 Chapter 10

[7] B. Miller, "Vital Signs of Identity," IEEE Spectrum, Vol. 31, No. 2, Feb. 1994,
pp. 22-30.

[8] N.K. Ratha, A.K. Jain, and D.T. Rover, "Convolution on Splash 2," Proc. IEEE
Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp. 204-213.

[9] J.H. Wegstein, An Automated Fingerprint Identification System, Special Publication
500-89, Nat'l Bureau of Standards, Washington, D.C., 1982.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 157

Petitioner Microsoft Corporation - Ex. 1007, p. 141

CHAPTER 11

11.1 INTRODUCTION

High-Speed Image
Processing with Splash 2

Peter M. Athanas and A. Lynn Abbott

Image processing is the problem of extracting useful information from an image

or from a sequence of images. Although images can be produced by many differ­

ent sources (including x-ray sensors, tomographic scanners, acoustic imagers, and

computer-graphics programs), the video camera is of particular interest because it

generates images that are easily interpreted by a human observer. Unfortunately, the

amount of data that is present in a single image is very large, and the methods that are

used in biological vision are not well understood. The challenge of image-processing

research is therefore to develop computational approaches-both algorithms and

hardware-that can accept images and produce useful results at high speed.
Conventional von Neumann machines are commonly used for image processing

tasks, but their performance does not begin to approach real-time rates. The usual

alternative is to employ special-purpose architectures that have been designed specif­

ically for image processing. These systems can perform at sufficiently high speeds,

but at the expense of flexibility; they can perform only the tasks that they have been

designed to do. Splash 2 represents a third alternative. Custom computing platforms

such as Splash 2 are sufficiently flexible that new algorithms can be implemented on

existing hardware, and are fast enough that real-time or near-real-time operation is

possible.
This chapter describes a real-time image processing system that is based on

the Splash 2 general-purpose custom computing platform. Even though Splash 2 was_

not designed specifically for image processing, this platform possesses architectural

properties that make it well suited for the computation and data transfer rates that are

141

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 158

Petitioner Microsoft Corporation - Ex. 1007, p. 142

142 High-Speed Image Processing with Splash 2 Chapter 11

characteristic of this class of problems. Furthermore, the price/performance of this
system makes it a competitive alternative to conventional real-time image processing
systems.

Other important factors for using Splash 2 are prototyping and design ver­
ification. The typical hardware design process requires extensive behavioral test­
ing of a new concept before proceeding with a hardware implementation. For any
image processing task of reasonable complexity, simulation of a VHDL model with
a representative data set on a workstation is prohibitive because of the enormous
simulation time required. Days, or even weeks, of processing time are commonly
needed to simulate the processing of a single image. Because of this, the designer
is often forced into a trade-off as to how much testing can be afforded versus an
acceptable risk of allowing an iteration in silicon. The Splash 2 approach permits an
automated (or near-automated) transformation of a structural or behavioral VHDL
representation into a real-time hardware implementation. The Splash 2 platform can
therefore serve not only as a means to evaluate the performance of an experimen­
tal algorithm/architecture, but also as a working component in the development and
testing of a much larger system.

The next section describes VTSPLASH, a laboratory system based on Splash 2
that has been developed at Virginia Tech [4]. Section 11.3 presents an overview of
image-processing fundamentals, and discusses architectural considerations for high­
speed operation. Sections 11.4 and 11.5 present two case studies in the development
of image processing tasks: a median filter, and Laplacian pyramid generation. Sec­
tion 11.6 discusses performance issues. Finally, Section 11.7 summarizes the chapter.

11.2 THE VTSPLASH SYSTEM

The adaptive nature of the Splash 2 architecture makes it well suited for the com­
putational demands of image processing. In addition, Splash 2 features a flexible
interface design that facilitates customized 1/0 for situations that cannot be accom­
modated by the host workstation. A real-time image processing custom computing
system (referred to as VTSPLASH) has been constructed based on Splash 2; this is
depicted in Figure 11.1.

A video camera or a VCR is used to create a standard RS-170 video stream. The
signal produced from the camera is digitized with a custom-built frame grabber card.
This board not only captures images, but also performs any needed sequencing or
simple pixel operations before the data are presented to Splash 2. The frame grabber
card was built with a parallel interface that can be connected directly to the input
data stream of the Splash 2 processor. Two processor Array Boards are used in the
VTSPLASH laboratory system. The output data produced by Splash 2, which may be a
real-time video data stream, image overlay data, or some other form of information,
is first presented to another custom board for converting the data to an appropriate
format (if necessary). Once formatted, the data are then presented to a commercial
image acquisition/display card, which presents the images to a color video monitor. A
Sun SPARCstation serves as the Splash 2 host, and is responsible for configuring the
Splash 2 arrays and sending runtime commands intermixed with the video stream if
needed. The laboratory system can be rapidly reconfigured from one task to another
in just a few seconds.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 159

Petitioner Microsoft Corporation - Ex. 1007, p. 143

Section 11 .3 Image Processing Terminology and Architectural Issues

Splash
HostSPARC2

Workstation

Splash 2

SBus

Output (processed)
Image Display

FIGURE 11.1 Components in the VTSPLASH Laboratory System

143

Although Splash 2 was not specifically designed for image processing, it is a

suitable testbed for implementing a wide range of image processing tasks, including

those requiring temporal processing. A single Splash 2 processor Array Board con­

tains slightly more than 69 megabits I of memory-enough for 32 frames of image

data [27]. Not all of this storage is necessarily available to applications in a conve­

nient form; the actual available storage is dependent upon how individual applications

are constructed.

11.3 IMAGE PROCESSING TERMINOLOGY AND ARCHITECTURAL
ISSUES

A digitized image can be represented as a rectangular array I(r, c), where r and c

refer to the row and column location of a picture element, or pixel, in the image.

For a standard monochrome (black and white) video camera, common image sizes

are 512 x 512 and 480 x 640 pixels (rows x columns), where each pixel is an

8-bit quantity representing the light intensity at one point. Since the standard video

rate is 30 images per second, even simple tasks represent a significant computational

challenge because of the sheer quantity of data: 7 .5 MB/s for images of size 512

x 512. Storage and 1/0 are also especially significant when real-time operation is

required.
The goal of many image processing tasks is to produce an output image lout

that is an enhanced or filtered version of an input image h,. One way to accomplish

this is to apply a linear filter, /011 ,(r, c) = L; LJ I;n(r + i, c + j) · h(i, j), where his

the filter and where the summations are performed over a neighborhood determined

1This number is based upon seventeen 256K (16 static RAM devices plus 12,800 bits of storage

(maximum) in each of the seventeen Xilinx 4010 chips.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 160

Petitioner Microsoft Corporation - Ex. 1007, p. 144

144

Column: 0

RowO

Row I

Row2

Row3

Row4

Column: 0

RowO

Row I

Row2

Row3

Row4

High-Speed Image Processing with Splash 2 Chapter 11

2 3 4

2 3 4

lout

FIGURE 11.2 Example Image Arrays.
Each cell represents one pixel, which is
commonly 8 bits for a monochrome
image. The shaded area at the top
indicates a 3 x 3 neighborhood centered
about pixel (3, 4). The result of the
neighborhood operation is placed in the
shaded location at the bottom.

by the extent of h. For example, a smoothed image lout is produced if we define

h(i, j) = - - . - - . 1
-
9
1 for -1 < i < l and -1 < 1· < l

0 otherwise

This is equivalent to averaging the pixels within a 3 x 3 neighborhood of fin to
produce a single output pixel of lout· This same low-pass filter can be represented as
follows:

1 1 1

h = l/9 x 1 1 1

1 1 1

Conceptually, this template (often called a mask or operator) passes over fin,

producing an output pixel at each discrete step as illustrated in Figure 11.2. For the
linear case, "applying" the template at a given location in fin means to multiply each
template value by the associated underlying pixel value, and then to compute the
sum of the products. This sum is the pixel value for lout, and may no longer be an
8-bit quantity. It is assumed that h = 0 outside the specified grid. Special rules may
be needed for pixels near the image borders.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 161

Petitioner Microsoft Corporation - Ex. 1007, p. 145

Section 11 .3 Image Processing Terminology and Architectural Issues 145

Other linear filters can be implemented by changing the weights in such a tem­
plate. For example, the following high-pass filters are commonly used to enhance
intensity edges, which result from sharp changes in pixel values. Known as Sobel
operators, h 1 and h2 can be used to detect vertical and horizontal intensity gradients,
respectively.

-1 0 1 1 2 1

hi= -2 0 2 0 0 0

-1 0 1 -1 -2 -1

Larger templates are also possible, as illustrated below. Examples of images
produced using these templates are shown in Figure 11.3.

1 1 1 1

I 1 1 1

1 1 1 1

hLP = 1/64 X 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 -1

hxy = 1/4 x 0 0 1 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

I I

1 1

1 1

1 1

1 1

1 1

0 0

0 0

-1 0

-1 0

0 0

0 0

0 0

0 0

1

1

1

l

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

I

1

1

1

0

0

0

0

0

0

0

0

Low-pass filter template
(see Figure 11.3b)

Sobel X-Y filter template
(see Figure 11.3c)

After an image has been appropriately low-pass filtered, the image can be
subsampled without fear of violating the Nyquist criterion. If an image is recursively
filtered and subsampled, the resulting set of images can be considered a single unit
and is called a pyramid. This data structure facilitates image analysis at different
scales. Processing at the lower-resolution portion of the pyramid can be used to guide
processing at higher-resolution levels. For some tasks (such as surveillance and road
following) this approach can greatly reduce the overall amount of processing required.

In addition to low-pass pyramids, it is possible to generate band-pass pyramids,
in which each level of the pyramid contains information from a single frequency
band. A popular technique for generating these pyramids (known as Gaussian and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 162

Petitioner Microsoft Corporation - Ex. 1007, p. 146

t
1,

ii

f

I
it t

I I
~
D
I!
'I:
Iii
~ ,I
ill
jil

I
l

l .

146 High-Speed Image Processing with Splash 2 Chapter 11

(a) (b) (c)

FIGURE 11.3 Example of Filtering Operations. (a) Original image. (b) Smoothed image,

created by applying a low-pass filter to the original image. (c) Edge image, created by applying

a Sobel XY filter. All of these images are 512 x 512 in size. The output images were obtained

using 8 x 8 templates on VTSPLASH.

Laplacian pyramids) is described in [6]. A VTSPLASH implementation of a low-pass

and a band-pass pyramid generator will be presented in a later section.

Neighborhood operations are not necessarily linear. For example, the output

pixel value could be chosen as the median of the neighborhood in the input image.

This nonlinear filtering operation can be expressed as follows:

l(r, c) = median{ l(r - 1, C - 1),
l(r, C - 1),
l(r+l,c-1),

l(r - 1, c),
l(r, c),
l(r + 1, c),

l(r -1, c + 1),
l(r, c + 1),
l(r + 1, c + l)}

One advantage of this operation is reduced blurring, as compared with linear filtering.

The design of a median filtering system using VTSPLASH is also described in detail

in Section 11.4.
The remainder of this section presents a brief description of image processing

operations that have been implemented on VTSPLASH. For example, other nonlin­

ear operations can be implemented using the ideas of mathematical morphology

[20, 2]. This is an algebra that uses multiplication, addition (subtraction), and max­

imum (minimum) operations to produce output pixels. The fundamental operations

are called dilation and erosion, which cause image regions to expand and shrink,

respectively. The gray-scale dilation of an image l;" by the structuring element h is

defined as

l our= (h, EB h)(r, c) = max{/;n(r - i, c - j) + h(i, })},
i , j

and erosion by h is defined as

l out = Ui!/0h)(r, c) = min{/;n(r + i , c + j) - h(i , j)}.
i,j

These operations can be pipelined, and often serve as building blocks for higher-level

processing.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 163

Petitioner Microsoft Corporation - Ex. 1007, p. 147

Section 11 .3 Image Processing Terminology and Architectural Issues 147

Another operation that has been implemented on VTSPLASH is the 2-D discrete
Fourier transform (DPT). For an M x N image, this is defined as

1 M - 1 N - l [(lr le)]
I0u1(r, c) = -- LL Iin(k, l)exp -}2rr - + -

MN k=O 1=0 M N

where lour is composed of real and imaginary components. This can be rewritten as
follows,

1 M - l 11 N-I [(/c)]j [(Zr)] l 0 u1(r, c) = M ~ N ~ Iin(k, l)exp - }2rr N exp - j2rr M ,

which illustrates the fact that the 2-D DPT can be implemented as a sequence of
1-D DPTs. For example, the DPT of a 512 x 512 image can be obtained by first
computing 512 independent 1-D DFTs (one for each row), and then computing 512
1-D DPTs of the resulting columns. This has been implemented on VTSPLASH using
floating-point arithmetic (22].

The Hough transform [10, 13] is a technique that can be used to detect lines
in an image. Assume that intensity edges have been detected, so that the Hough
algorithm processes only foreground (edge) or background values. The procedure
begins by initializing all values in an accumulator array to zero. For each edge point,
a parametric curve is traced through the accumulator array, and each airny element
on the curve is incremented. Effectively, each edge point "votes" for all possible
lines that pass through that point.

Referring to Figure 11.4, assume that a line is parameterized by d = r cos 0 +
c sin 0, where (r, c) represents an image location. The Hough transform is imple­
mented as follows:

Algorithm Hough
Initialize all elements of accumulator array A to 0
for r = 0 to M - 1

end for

for c = 0 to N - 1
if Iin (r, c) is an edge point

end if
end for

for 0 = 0 to 2rr in steps of t,,.0

end for

d:= (round) (rcos0 +csin0)
A[d, 0] := A[d, 0] + 1

end Hough

This produces the accumulator array, and has been implemented on Splash
[11, 1]. The next step is to detect peaks in the array. Each local maximum represents
one line in the image h ,. This procedure can be generalized to detect other parametric
shapes, such as ellipses and polygons.

The image processing operations described above can be broadly classified into
four generic classes (26]. An operation in the combination class takes two images

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 164

Petitioner Microsoft Corporation - Ex. 1007, p. 148

148

8

d

High-Speed Image Processing with Splash 2 Chapter 11

(a)

(b)

Image
Space

Hough
Space

C

8

FIGURE 11.4 The Hough
Transformation to Parameter Space.
Edge points (r;, c;) in the image (a) map
to sinusoids in the d-0 parameter space
(b). In this example, the two sinusoids
intersect at the values d and which
determine the line that passes through
(r1 , c,) and (r2, ci).

and produces a new image of the same type. This is accomplished by combining each
pair of elements from the input images into a new element. The transformation class
accepts an image from a given class, and produces a new image in the same class.
The measurement class reduces an image of a given type into a scalar or vector.
The conversion class refers to those operations that take an image of a given type,
and convert it into a new class.2 Examples from each of these categories have been
modeled and synthesized using the VTSPLASH system, as summarized in Table 11.1.
Further descriptions of these and other image processing tasks are described in [14,
17], and [19].

These image processing tasks represent a considerable computational challenge
if near-real-time operation is needed. Image pixels are typically produced and con­
veyed in raster order-pixels are presented serially, left-to-right for each image row,
beginning with the top row. Consider again the 3 x 3 filtering operations discussed
above. Although the nine neighboring pixels are spatially localized in the actual
image, they are widely separated in the pixel stream from the camera. This is
illustrated in Figure 11.5. For processing purposes, the straightforward approach is
to store the entire input image into local memory, and then access pixels as needed

2 Another class of operations that does not require an input image is the generation class, which
produces a new image from scratch. This class of operations is not considered here.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 165

Petitioner Microsoft Corporation - Ex. 1007, p. 149

Section 11 .3 Image Processing Terminology and Architectural Issues 149

TABLE 11.1 A Representative List.of Image Processing Categories and Example Tasks

Class Example image task

Convolution

Transformation Median filtering

Morphological filtering

Combination Laplacian Pyramid generation

Measurement Histogram generation

Fast Fourier Transform

Conversion Hough Transform

Region detection and labeling

row i-1 row i

time-

Description

Linear filtering operation.

Nonlinear filter which can be used to eliminate
"salt and pepper" noise.

Nonlinear operations that alter region shapes
in an image. Gray-scale erosion and dilation
operations have been implemented.

Produces an image hierarchy of decreasing image
size and spatial resolution. The image for each
pyramid level is formed by taking the difference
of two blurred versions of the original image.

Statistical operation for computing intensity
distribution of pixels in an image.

Converts an image from the spatial domain to the
frequency domain.

A voting scheme that detects the presence of lines
(or parametric curves) from a set of points in an
image.

Finds connected regions in an image, and assigns
a unique label to each.

row i+ I

FIGURE 11.5 Example Image in Raster Order. Pixels are produced serially in row­
major order. The highlighted pixels represent a single 3 x 3 image neighborhood.

to produce the output image. However, this approach introduces a latency of at least
an entire image frame before the processor can begin to generate output pixels. This
latency can be reduced to less than the time of n rows (for an n x n template) if the
architecture is carefully designed to interleave memory reads and writes, effectively
utilizing memory as a delay line. Splash 2 has been used to implement both of these
processing methods. More discussion of image processing architectures can be found
in [9, 16], and [24].

The default image size that is used on VTSPLASH is 512 x 512, with a pixel
clock of 10 MHz. Although the rest of this chapter will discuss images in terms
of monochrome light intensities, the same ideas also apply to other image types.
Examples are range images, for which each pixel represents a distance value; x-ray
images, where each pixel depends on object density; and computed tomography (CT)
images, where each 2-D image represents a reconstructed slice of density information
within a 3-D array of data.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 166

Petitioner Microsoft Corporation - Ex. 1007, p. 150

150 High-Speed Image Processing with Splash 2 Chapter 11

11.4 CASE STUDY: MEDIAN FILTERING

Median filtering is a common approach for reducing noise in images [26]. Median
filtering is a computational operation that replaces each picture element, or pixel, of
an input image with the median value of several neighboring pixels in the image.
The result is an output image that is a smoothed version of the input. Compared with
traditional linear filtering, the median filter is more effective at removing impulsive
noise and at smoothing an image without blurring intensity edges. Unfortunately,
median filtering requires considerably more computations per pixel than linear filter­
ing for a given neighborhood size. This is a significant problem because of the large
number of pixels associated with a single image.

Rank-order filters such as the median filter are widely used for reducing noise
and periodic interference patterns in images, and are useful for cleaning impulsive
noise without blurring sharp edges. Implementing a median filter is computationally
costly on a general-purpose platform because of the need to sort a large number of
sets of pixel values repeatedly.

The median filtering operation may be stated mathematically in the following
manner. Let Jo, f1, ... , fN-1 represent the intensity values for input image I;n within
an N -point neighborhood about the point (r, c) in the image. These values are ordered
so that fK::::: fK+1· The output image /0111 is determined as:

lou1(r, c) = f(N-1)/2

lour(r, c) = ½U(N/2)-1 + f(N/2)]

for odd N

for even N

In most image processing applications, rectangular neighborhoods are assumed. Con­
ceptually, a median-filtered image is created by passing a small template over a source
image. At each location of the template, the median of the image values covered by
the template is selected as the corresponding value for the new image. Median fil­
tering is therefore a neighborhood operation, characterized by repeated comparisons
of neighboring pixel values.

Figure 11.6 illustrates again the concept of a 3 x 3 neighborhood operation.
The shaded 3 x 3 window is assumed to "slide" over 1; 11 producing an output value

Im2 lour2

·,;.(i,) I /i1ifi, f)

Input image: 1;11 Resulting output image: l 0 u,

FIGURE 11.6 Concept of a 3 x 3 Window-Based Operation. For the median filter,
the value of lout (i, j) is the median of the nine pixels of I;n which lie within the
3 x 3 window with center at I;n (r, c).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 167

Petitioner Microsoft Corporation - Ex. 1007, p. 151

Section ·1 1 .4 Case Study: Median Filtering 151

Video In

for lout at each location of the window. For median filtering, the value of the pixel
at any location in lout is the median of the nine values in the 3 x 3 window with
center at that position in l;n. Two window positions are shown in the figure, with
corresponding positions highlighted in lout· For an input image of size 512 x 512,
approximately 262,144 nine-point median values need to be extracted to produce lout •

The median filter does a good job of estimating the true pixel values in situ­
ations where the underlying neighborhood trend is flat or monotonic and the noise
distribution has flat tails. It is effective for removing impulsive noise. However, when
the neighborhood contains fine detail such as thin lines, they are distorted or lost.
Comers can be clipped. It can produce regions of constant or nearly constant values
that are perceived as patches, streaks, or amorphous blotches. Such artifacts may
suggest boundaries that really do not exist. In spite of these problems, median filter­
ing is often an attractive alternative to traditional linear filtering. Unfortunately, the
computational complexity of median filtering is much higher.

The median filter has been implemented on Splash 2 as a single-board design
[23]. The design and data flow within the Splash 2 processor Array Board are shown
in Figure 11.7. The design makes available all the pixels in a 3 x 3 window simulta­
neously so that a combinational sort can be performed on them. The median is then
chosen from the sorted values.

Input image pixels are presented to VTSPLASH in raster order (left to right for
the first image row, then repeating for each subsequent row). Pixels are presented to
the first Splash 2 Processing Element at a rate of 10 MHz. The task of storing the
input image is so divided that six Processing Elements are required for the purpose.
Each receives the input pixel stream at the same time. This requires the input pixels
to be rearranged such that every four consecutive input pixels are packed together to
form a 32-bit data word. This packing of input pixels, and transferring the resulting
data stream to the crossbar, is done by Processing Elements PE-1 and PE-2. The
packed input data is broadcast to PE-3 through PE-8, once every four clock cycles.
The effective input data rate remains unaltered.

Processing Elements PE-3 through PE-8 are responsible for storing and retriev­
ing the image pixels in local memory. This storage is organized such that all the

FIGURE 11.7 Communication Structure and Processing Element Layout for a Single Pro­

cessor Array Board Implementation. Note that solid blocks denote unused PEs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 168

Petitioner Microsoft Corporation - Ex. 1007, p. 152

152 High-Speed Image Processing with Splash 2 Chapter 11

pixels within a 3 x 3 window may be accessed simultaneously. Let / (i, j) represent
the pixel value stored at row i and column j. Pixels are presented left to right for
each row (j = 0 to 511), and top to bottom (i = 0 to 511). The first four pixels,
I (0, 0), I (0, 1), I (0, 2), I (0, 3) are directed by PE-2 simultaneously to PE-3 and PE-
4. I (0, 0) and / (0, 1) are stored in the first location of PE-3's memory while I (0, 2)
and / (0, 3) are stored in the first location of PE-4's memory. Two pixels are packed
into each 16-bit memory location. The next four pixels I (0, 4)-/ (0, 7) are stored in
similar fashion in the second locations of PE-3 and PE-4.

The second row of the image is stored similarly into the local memory of PE-5
and PE-6. The third row is stored in the memory of PE-7 and PE-8. This sequence
repeats, with the fourth row being stored in memories of PE-3 and PE-4, the fifth
in PE-5 and PE-6, the sixth in PE-7 and PE-8, and so on, until the entire image has
been captured.

The retrieval of the stored pixels begins as soon as three rows have been
received. As soon as the first three rows are stored in the memory of PE-3 through
PE-8, all six PEs (PE-3-PE-8) perform a read operation from the first location of
their local memory. With two pixels packed within each memory location, the six
PEs are capable of concurrently accessing a total of 12 pixels. At this point, data
corresponding to a 3 x 4 window is available for processing. The 3 x 4 window
referred to here lies within the range i = 0 to 2 and j = 0 to 3. Two complete 3 x 3
windows lie within this 3 x 4 window and may therefore be processed at once.

The two rightmost columns of data in the window (j = 2 and 3) are stored
in registers internal to the FPGAs. This storage helps create two additional 3 x 3
windows every time a 3 x 4 window is formed.

In the subsequent read cycle, four new pixels for each of the first three rows
(j = 4 to 7) are read from memory. Since two columns have been stored in internal
FPGA registers, the effective window size is 3 x 6 instead of 3 x 4. Four 3 x 3
windows may be formed from this window and thus four median values may be
computed simultaneously.

This process continues with the 3 x 4 window sliding four pixels to the right
in every read operation. Once the window reaches the extreme-right border of the
image (j = 488 to 511), it "wraps" around in a "snake-like" fashion such that it
moves one row to the bottom and starts from the leftmost border. The process of
sliding right is resumed. This procedure continues for the entire frame and the pixels
within each window are delivered to PE-9 through PE-12, which process them to
compute a median value.

The design does not require the entire image to be stored in memory. Only
three rows are sufficient at any point of time. The latency between the input and
output frames is approximately three rows-a latency that is typically achieved by
dedicated image processing hardware. A substantial number of data transfers are
required between the Processing Elements on the Array Board, and this requires
switching the crossbar configuration every clock cycle. This switching is controlled
by the Xilinx element PE-0. PE-0 is programmed such that in every clock cycle, it
switches to one of the three possible crossbar configurations, which are user-specified.

This design has been tested using the image shown in Figure 11.8. Noise was
artificially introduced into the input image, and has been removed in the filtered
image produced by Splash 2. Also, careful observation reveals contours or regions of
small plateaus formed in the resulting image. This is another result that is expected

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 169

Petitioner Microsoft Corporation - Ex. 1007, p. 153

Section 11 .5 Case Study: Image Pyramid Generation

(a) (b)

FIGURE 11.8 (a) Input test image for median filtering. This is a 512 x 512 gray-scale image

that is presented to Splash 2. To demonstrate the noise-cleaning effect of median filtering,

noise is deliberately introduced in the image. This is seen as black and white spots. (b) Median­

filtered image obtained from Splash 2. The noise that was introduced in the original image

has been filtered out. This demonstrates the noise-cleaning property of the median filter.

153

by median filtering. The image obtained by simulation using a C program compares

well with the result image obtained from Splash 2, differing only in the pixel values

at the frame edges. This difference arises because the border effect is ignored in the

Splash 2 design.
With a 10 MHz clock on VTSPLASH (the video pixel rate), the time to process

one frame is 0.027 seconds. The same task, written in C, and compiled with the

appropriate optimizations, requires 8.0 seconds on a SPARCstation-2 and 3.75 sec­
onds on a SPARCstation- IO. The implementation presented here performs a number
of arithmetic and memory operations in parallel. Although this is difficult to quantify,

there are roughly 39 arithmetic/logical operations performed each clock cycle,3 and

effectively three memory operations per clock cycle. Based on these factors alone,

this application effectively perfo1ms 420 million operations per second.

11.5 CASE STUDY: IMAGE PYRAMID GENERATION

Multiresolution and multirate image processing techniques have become increasingly

popular over the past decade because of the advantages of processing image data
at different scales. A basic data structure used in multiresolution and multirate pro­
cessing is the image pyramid, which is a complete image representation at different

3In a hardware implementation, the process of identifying "operations" that correspond to in­

structions found in typical microprocessors is somewhat subjective. In this approximation, only major

"word"-wise operations (such as add or shift) were considered.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 170

Petitioner Microsoft Corporation - Ex. 1007, p. 154

154

0!

High-Speed Image Processing with Splash 2 Chapter 11

levels of resolution. An image pyramid is constructed by recursively applying two
basic operations-filtering and subsampling-to an image, creating a set of images
of decreasing size and spatial resolution. Filtering is performed to convolve the input
image with a family of local, symmetric smoothing functions. Subsampling then pro­
duces samples for the images at the next-higher scale. The two most common image
pyramids are the Gaussian (low-pass) and the Laplacian (band-pass) pyramids [6] .

11.5.1 Gaussian Pyramid

The sequence of images go, g1, ••• , gk- l as shown in Figure 11.9a is called a Gaus­
sian pyramid. A weighting function that resembles the Gaussian probability distribu­
tion is applied to each pixel neighborhood of the original video image go to generate
the lower-resolution image g 1, which is used in turn to generate g2, and so on.
The level-to-level filtering and resampling can be expressed as a function REDUCE as
shown below:

(11.l)

where each pixel value in gk is obtained by a weighted sum of pixels from gk - 1,

computed over a 5 x 5 neighborhood as follows [18]:

2 2

gk(i, J) = L L w(m, n)gk-1 (2i - m, 2} - n) (11.2)
m= - 2n=-2

To simplify the computational requirements, the 5 x 5 weighting function w is
often chosen to be separable into two one-dimensional filters: w(m , n) = wx(m)w(n) .

FIGURE 11.9 Example Data Produced from (a) a Gaussian Pyramid, and (b) a Laplacian
Pyramid (from (27]).

(b)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 171

Petitioner Microsoft Corporation - Ex. 1007, p. 155

Section 11.5 Case Study: Image Pyramid Generation 155

The function REDUCE in Equation (11.2) is then split into two functions, REDUCEX and
REDUCEY:

2

gk,xU,}) = REDUCEX(gk_i) = L Wx(m)gk-1 (2i - m, j)
m=-2

2

gk(i, j) = REDUCEY(gk,x) = L Wx(n)gk ,xU, 2} - n)
m=-2

(11.3)

The 1-D weighting function in the vertical direction, wy, is usually the trans­
pose of the function in the horizontal direction, Wx. The functions Wx and Wy are con-

structed so that it is normalized (L;=_2 w(i) = 1), symmetric (w(i) = w(-i)), and
the equal contribution rule [25] which requires that a+ 2c = 2b, where a = w(O),
b = w(-1) = w(l), and c = w(-2) = w(2). Although other solutions are pos­
sible, these three constraints are satisfied when w(O) = a, w(l) = 1/4, and w(2) =
1/4 - a/2. The equivalent weighting function is particularly Gaussian-like when a is
around 0.4. For implementation in digital logic, it is convenient to choose a = 3 /8,

b = 1/16, and c = 1/4.
Since the denominators of all weighting factors are powers of two, the multi­

plication of image pixels by the weighting factors can be simply implemented using
binary shift operations. For instance, a pixel multiplied by 3/8 is the sum of the value
shifted two places to the right plus the original value, all shifted three places to the
right.

To maintain numerical accuracy, the summation elements have been expanded
to 12 bits each. Four bits with values of O are appended to the right of each image
pixel value before computation. The eight most significant bits of the final result are
maintained.

11.5.2 Two Implementations for Gaussian Pyramid on Splash 2

Figure 11. lOa shows the block diagram of a five-chip pyramid generation architecture
that has been developed for Splash 2 [1, 7]. This implementation is based on the
recirculating pipeline structure, and is designed to produce five levels of pyramids (go

through g5). Although compact, this architecture is capable of converting only every
other image frame into pyramid form (15 frames per second). The Control Element
PE-0 buffers image pixels, and passes the data to Processing Element PE-1 through
the crossbar. The processing steps of this architecture are horizontal convolution by
Wx (Processing Element PE-1), vertical convolution by wy (Processing Elements PE-2
and PE-3), and recirculating and output image production (Processing Element PE-4).

The Control Element PE-0 broadcasts image pixels, representing go, through
the crossbar to Processing Elements PE-1 through PE-3, which compute the first
level of the Gaussian pyramid, g 1• Image data is recirculated through the crossbar
to PE-1, and processed through the same path to form the higher pyramid levels.
Two different crossbar configurations are used to multiplex the original image data
and feedback pyramid data. PE-0 controls the crossbar configuration, which is used
during processing.

Device PE-1 receives image data from either PE-0 or PE-4 through the cross­
bar, computes the convolution by Wx, and passes the result to PE-2. Resampling in

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 172

Petitioner Microsoft Corporation - Ex. 1007, p. 156

11

~
!!:

I
!!,
u
I'

156

Video In

Video Out

Video In

VideoOuJ

Video In

VideoOuJ

Format
Output

Format
Output

High-Speed Image Processing with Splash 2 Chapter 11

(a)

(b)

(c)

FIGURE 11.10 Examples of the Communications Structure and Partitioning of One-Board

Pyramid Applications. a) simple five-level Gaussian Pyramid generator, b) Gaussian Pyramid

generator using the hybrid pipeline architecture, and c) five-level Laplacian Pyramid generator.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 173

Petitioner Microsoft Corporation - Ex. 1007, p. 157

Section 11 .5 Case Study: Image Pyramid Generation 157

the horizontal dimension is performed during the convolution to eliminate half of

the computations. The image data that is passed to PE-2 has half of the pixels per

image row.
The image data is presented into Splash 2 one row at a time in raster order.

The 8-bit image pixels that are presented to PE-1 are grouped so that four pixels

are passed simultaneously on the crossbar. Four control bits on this data path are

appended to indicate data validity and the pyramid level.

PE-2 and PE-3 together implement the convolution by wy, Unlike the convo­

lution in the horizontal direction, the five pixels required by each computation are

not presented in the same image row, but in five consecutive rows. The image data,

therefore, needs to be stored in a delay line, which is implemented using the external

RAMs. One memory write and four memory reads are needed for sequencing the

data for each 5 x 1 convolution. Only one memory write and two memory reads

are allowed in four Splash 2 cycles because of access constraints. PE-2 computes

three of the five partial sums, and passes the 12-bit partial result directly to PE-3.

PE-3 performs the remaining three partial sums, and passes the rounded 8-bit value

to PE-4.
PE-4 resamples the image data in the vertical dimension to reduce the number

of pixels per image-column by half. The data are then recirculated to PE-1 through

the crossbar to form the next level of the pyramid. Each pyramid level is also made

available to the next Processing Element, PE-5, for further analysis.

11.5.3 The Hybrid Pipeline Gaussian Pyramid Structure

The block diagram of a nine-chip hybrid structure of a Gaussian pyramid generator

is shown in Figure 11.1 Ob. The original image pixel (go) are passed to PE- I directly

from the input stream, and are processed through Processing Elements PE-1 through

PE-4 to form the first-level Gaussian pyramid, g 1• Processing Elements PE-5 through

PE-8 generate the remaining four levels of the pyramid. PE-9 takes data from PE-4

and PE-8 to form the resulting pyramids.

The hybrid implementation requires five more PEs than the recalculating

implementation. The two stages comprised of PE-I through PE-4 and PE-5 through

PE-8 are very similar in structure. The key advantage of this algorithm (at the cost

of four additional PEs) is that it is capable of generating Gaussian pyramids in real

time (30 frames per second).

11.5.4 The Laplacian Pyramid

The Laplacian pyramid as illustrated in Figure 11.9b is a sequence of difference

images, in which each image is the difference between two successive Gaussian

levels. Two types of Laplacian pyramids are in common use: the filter-subtract­

decimate (FSD) structure and the reduce-expand (RE) structure [6].

The FSD Laplacian is formed by subtracting a filtered image of the next-higher

Gaussian pyramid level from the same level of the pyramid image. The kth level of

the FSD Laplacian pyramid can be expressed as,

L FSD(· ') (' ') F (' ') k l,j =gk l,J -gk+I l,J (11.4)

where gf+i is the (k + l)th level of the filtered Gaussian image before subsampling.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 174

Petitioner Microsoft Corporation - Ex. 1007, p. 158

158 High-Speed Image Processing with Splash 2 Chapter 11

The RE pyramid generation structure includes two basic operations: image
expansion and image subtraction. The EXPAND operation can be regarded
as the reverse of the REDUCE function in Gaussian pyramid generation. First, the
image size is doubled by inserting a pixel with a gray level of '0' between two suc­
cessive pixels in every row and column. The expanded image is then convolved by
the same Gaussian-like weighting function. As was done for the REDUCE function, the
EXPAND operation is split into two 1-D identical convolutions applied to the image in
both horizontal and vertical direction. The 1-D operation can be expressed as below:

2

i(x) = 2 L w(m)ge(x - m) (11.5)
m=-2

and

if x is even
(11.6)

if x is odd

where g(x) is the Gaussian pyramid image, and gi(x) and ge(x) are the 1-D interpo­
lated and expanded image, respectively. The above equations can also be represented
in a more explicit way:

. {2x[w(-2)xg(~+l)+w(O)xg(~J+w(2)xg(~-1)], ifxiseven
g1(x) =

2 X [w(-1) X g (xf) +w(l) X g e 2
1)], if Xis odd

(11.7)

Replacing the weighting factors (w(-2), ... , w(2)) with their values [rt;, ¼, }, ¼, rt;],
the equation can be simplified as follows:

. {½x[g(~+l)+g(~-l)]+¾xg(~),
g1(x) =

½ X [g(x!1)+ge21)],

if x is even
(11.8)

if x is odd

The odd-numbered pixel of the expanded image is equal to the weighted sum
of two pixels in the Gaussian pyramid, and the even-numbered pixel is the weighted
sum of three pixels, for instance pixels 1 and 4. The 1-D EXPAND operation can
be considered as functions of 2-by-1 convolutions and 3-by-1 convolutions, with
weighting functions of [½, ½] and [½, ¾, ½], respectively. Both weighting functions
are normalized and symmetric as well. The edge pixels 0, 8, and 9 are not defined
in Equation (11.4). In this design, the first and last calculated values, pixels 1 and 7,
are duplicated to form the edge.

Once the pyramid is expanded to have the same size as the next-higher resolu­
tion pyramid, the subtraction operation is applied to obtain one Laplacian pyramid
level. The function is expressed as:

L RE(· ') (' ') int (' ') k l, J = gk l, J - gk+l l, J (11.9)

where gint is the interpolated image constructed from ge.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 175

Petitioner Microsoft Corporation - Ex. 1007, p. 159

Section 11 .6 Performance 159

11.5.5 Implementation of the laplacian Pyramid on Splash 2

The Laplacian pyramid-generation system consists of two major parts: Gaussian pyra­
mid generation, and image subtraction. The system uses the recirculating pipeline
structure, as presented in the previous section, to generate a Gaussian image pyra­
mid. After the Gaussian pyramid is generated from Processing Elements PE-0 through
PE-4, the Laplacian pyramid is computed by Processing Elements PE-5 through
PE-10, as shown in Figure 5.2. The data is passed directly to Processing Ele­
ment PE-5, and to PE-7 and PE-8 through the crossbar. Devices PE-5 and PE-6
implement the EXPAND operation in the horizontal and vertical directions, respec­
tively. The pixel-by-pixel SUBTRACTION operation is then implemented in chips PE-7
and PE-8 to generate a difference image. PE-9 and PE-10 reformat the images for
output.

As described in the previous section, the data output from PE-4 to PE-5 is the
image data directly from the "XP _.Right" port of device PE-3. The 36-bit-wide bus
carries only 20 bits of useful information: two 8-bit image pixels and four control
bits. Since PE-3 does not perform the subsampling function in the vertical direction,
the even-numbered rows of the image data are ignored in future data processing. A
depiction of this implementation is given in Figure 11.lOc.

11.6 PERFORMANCE

This section provides a quantitative summary of the performance of VTSPLASH for the
operations discussed in the previous section. The computational properties, commu­
nications architectures, and required resources vary significantly from one application
to the next. All of these examples operate at the pixel clock rate of 10 MHz with
512 x 512 images. Many of the applications presented here have been implemented
using a pipeline architecture. The pipeline accepts digitized image data in raster
order, often directly from a camera, and, in most cases, produces output data at the
same rate, possibly with some latency. Many of these applications can be chained
together to form higher-level image processing functions.

Simplified block diagrams illustrating the partitioning and communication
architecture for selected tasks are shown in Figure 11. 11. For example, Figure 11.11 a
shows the architecture for a region detection and labeling application [18). This appli­
cation analyzes an image to distinguish foreground objects from background through
thresholding, and then for each foreground image, a unique label is assigned. This
task is a useful front end for applications such as recognition, industrial inspec­
tion, and tracking. After the image is appropriately thresholded, an initial estimate
is made of the disjoint regions in the image by the block labeled Pass 1 Labeling.
It may be subsequently discovered that regions that were initially disjoint are actu­
ally contiguous. Such regions need to be merged and assigned the same label. This
is accomplished in the following two blocks, Pass 2 Merging (EVEN) and Pass 2
Merging (ODD).

Conventional performance-benchmarking techniques are at best awkward
when applied to custom computing machinery. Figure 11.12 illustrates graphically
the computational performance of each of these tasks executing on the VTSPLASH
platform. In the figure, the application name is listed to the left of the graph. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 176

Petitioner Microsoft Corporation - Ex. 1007, p. 160

I

i
ii
I

160

Video In

Video In

Video In

High-Speed Image Processing with Splash 2 Chapter 11

(a)

(b)

(c)

FIGURE 11.11 Examples of the Communications Structure and Partitioning for Examples

that Use Only One Splash 2 Processor Array. a) region detection and labeling, b) FFT (forward

transform), and c) Hough transform. Solid squares at Processing Element sites denote unused

Processing Elements.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 177

Petitioner Microsoft Corporation - Ex. 1007, p. 161

...
"' ...

Histogram

Region Labeling

Median Filter

Hough Transform

Pyramid Generation

Morphological Operations

8 x 8 Convolution

2D-FFT (floating pt)

0

rn:,M t2.:::I emory

■ Arithmetic/Logical

■ Floating Point

JOO 200 300 400 500 600

Millions of Operations Per Second

FIGURE 11.12 Approximate Performance of Image Processing Tasks

700

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 178

Petitioner Microsoft Corporation - Ex. 1007, p. 162

162 High-Speed Image Processing with Splash 2 Chapter 11

performance bar associated with each task consists of two or three components. The

first component (arithmetic/logical) is an appraisal of the number of general-purpose

operations performed, on average, per second. (These are operations that are likely

to be found in the repertory of common RISC processors, such as MULTIPLY, xoR,

or COMPARE.) This number, when divided by the pixel clock frequency of 10 MHz,

gives an indication of the average number of the easily discernible arithmetic and

logic function units (word parallel) that are active in each task. The second com­

ponent of the performance bar provides an estimate of the number of storage ref­

erences (memory accesses) performed by the task per second. The third component

represents the number of floating-point operations. All of the tasks, except for the

2D-FFT application, use fixed-point operators. The pixel calculations for the 2D-FFf

task utilize custom-designed floating-point arithmetic. The combination of these three

components provides a basis for quantifying the computational load of each of the

tasks, and provides a rough estimate of the number of operations performed each

second.
The operating speed for an application is under the control of the designer,

and depends upon critical path delays in the implementation. The Splash 2 processor

features a programmable system clock that can be varied under software control

from zero to 40 MHz. The tasks developed in this project were made to satisfy the

minimum criteria of operating at :he pixel data rate of 10 MHz. Because of limitations

of the image data source, the listed applications were tested only at this rate. It is

feasible that some of these tasks operate well beyond this clock frequency.

In addition to quantifying the number of operations per second, it is useful to

consider how fast computations are performed relative to the input image frame rate

of 30 Hz. Some of the tasks are completed during one frame time (histogramming,

median filtering, Gaussian pyramid generation, and gray-scale morphological opera­

tions). Others require two image frame times (region labeling, 8 x 8 convolution, and

Laplacian pyramid generation). The FFf implementation can completely process two

512 x 512 images per second (or 128 x 128 images at 30 frames per second) [21).

The time to complete the Hough transform is image-dependent; the implementation

shown in Figure 11.1 lc distributes equal portions of an input image to separate PEs

that process in parallel.
Another method of benchmarking the performance is to compare with con­

temporary machines. Comparisons were made with a general-purpose workstation

(a Sun SPARCstation- IO). The VTSPLASH applications run between 10 to 100 times

faster than the same application written in C and executed on the SPARC worksta­

tion. A number of commercial machines exist that have been designed specifically

for image processing. The Datacube MaxVideo 200 [8], for example, consists of

several functional units that have been carefully tuned to perform common image­

processing tasks. In most cases, for the specific tasks that are implemented by the

application-specific hardware, the VTSPLASH system is outperformed. For example,

the MaxVideo 200 can perform 8 x 8 convolution four times faster than the exist­

ing VTSPLASH implementation. The motivation of the custom-computing approach,

therefore, is not to provide the fastest possible performance for a given task. As

illustrated by VTSPLASH, the strength of this approach is the ability of the system

to be reconfigured to provide high performance for a wide range of tasks. The per­

formance of application-specific systems diminishes quickly for tasks that are not

directly supported in hardware.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 179

Petitioner Microsoft Corporation - Ex. 1007, p. 163

Acknowledgments 163

11.7 SUMMARY

Reconfigurable computing platforms, such as Splash 2, can readily adapt to meet the

communication and computational requirements of a wide variety of applications.

With the addition of input/output hardware, we have demonstrated that general­

purpose custom computing machines are well suited for many meaningful image pro­

cessing tasks. Such platforms are excellent testbeds for prototyping high-performance

algorithms. The custom computing platform can be viewed not only as a general­

purpose computing engine, but also as:

• a medium for hardware/software codesign

• a VHDL accelerator

• a testbed for rapid prototyping

Furthermore, the platform is multi-use since it can be reconfigured from one task to

another by downloading a hardware-personalization database.
Applications operational on the VTSPLASH laboratory system include:

• 2-D Fast Fourier Transform (using floating point)

• Expandable 8 x 8 convolver (with on-line filter adjustment)

• Pan and zoom

• Median filtering

• Morphologic operators

• Histogram and graphical display

• Region detection and labeling

Splash is representative of the state of the art in custom computing processors­

both in hardware capabilities and software support-yet it requires a substantial

time investment to develop an application. To make this class of machinery more

widely accepted and cost-effective, methods must be developed to reduce application

development time. There are several promising endeavors that focus on this issue

[3, 5, 12, 15].

ACKNOWLEDGMENTS

This project has been a success only because of the hard work of the entire

VTSPLASH team at Virginia Tech. The team has included several graduate students,

some of whom have graduated and taken leave for broader horizons. The major play­

ers have been Luna Chen, Robert Elliott, Brad Fross, Jeff Nevits, James Peterson,

Ramana Rachakonda, Nabeel Shirazi, Adit Tarmaster, and Al Walters. The authors -

also gratefully acknowledge support and guidance from Jeffrey Arnold and Duncan

Buell from the Supercomputing Research Center, and John McHenry.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 180

Petitioner Microsoft Corporation - Ex. 1007, p. 164

164 High-Speed Image Processing with Splash 2 Chapter 11

REFERENCES

[1] L. Abbott et al., "Finding Lines and Building Pyramids with Splash-2," Proc. IEEE
Workshop FPGAs for Custom Computing, CS Press, Los Alamitos, Calif., 1994,
pp. 155-163.

[2] AL. Abbott, R.M. Haraliok, and X. Zhuang, "Pipeline Architectures for Morphologic
Image Analysis," Machine Vision and Applications, Vol. 1, No. 1, 1988, pp. 23-40.

[3] L. Agarwal, M. Wazlowski, and S. Ghosh, "An Asynchronous Approach to Efficient
Execution of Programs on Adaptive Architectures Utilizing FPGAs," Proc. IEEE Work­
shop FPGAsfor Custom Computing, CS Press, Los Alamitos, Calif., 1994, pp. 111-119.

[4] P.M. Athanas and AL. Abbott, "Processing Images in Real Time on a Custom Comput­
ing Platform," in R.W. Hartenstein and M.Z. Servft, eds., Field-Programmable Logic:
Architectures, Synthesis, and Applications, Springer-Verlag, Berlin, 1994, pp. 156-167.

[5] P. Athanas and H. Silverman, "Processor Reconfiguration through Instruction-Set
Metamorphosis: Architecture and Compiler," Computer, Vol. 26, No. 3, Mar. 1993,
pp. 11-18.

[6] P.J. Burt and E.H. Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE
Trans. Comm., Vol. COM-31, No. 4, Apr. 1983, pp. 532-540.

[7] L. Chen, "Fast Generation of Gaussian and Laplacian Image Pyramids Using an FPGA­
based Custom Computing Platform," master's thesis, Virginia Polytechnic Inst., Blacks­
burg, Va., 1994.

[8] Datacube, Inc., The Max Video 200 Reference Manual, Datacube, Inc., Danvers, Mass.,
1994.

[9] P.M. Dew, R.A. Earnshaw, and T.R. Heywood, eds., Parallel Processing for Computer
Vision and Display, Addison-Wesley, Reading, Mass., 1989.

[10] R.O. Duda and P.E. Hart, "Use of the Hough Transform to Detect Lines and Curves
in Pictures," Comm. of the ACM, Vol. 15, 1972, pp. 11-15.

[11] R. Elliott, "Hardware Implementation of a Straight Line Detector for Image Processing,"
master's thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1993.

[12] M. Gokhale and R. Minnich, "FPGA Computing in a Data Parallel C," Proc. IEEE
Workshop FPGAs for Custom Computing, CS Press, Los Alamitos, Calif., 1993,
pp. 94-101.

[13] P.V.C. Hough, "A Method and Means for Recognizing Complex Patterns," U.S. Patent
No. 3,069,654, 1962.

[14] B. Jahne, Digital Image Processing, Springer-Verlag, New York, 1991.

[15] Q. Motiwala, "Optimizations for Acyclic Dataflow Graphs for Hardware-Software
Codesign," master's thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994.

[16] R.J. Offen, VLSI Image Processing, McGraw-Hill, New York, 1985.

[17] W.K. Pratt, Digital Image Processing, Wiley, New York, 1978.

[18] R. Rachakonda, "Region Detection and Labeling in Real-time Using a Custom Com­
puting Platform," master's thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994.

[19] A Rosenfeld and A. Kak, Digital Picture Processing, 2nd ed., Academic Press, New
York, 1982.

[20] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London,
1982.

[21] N. Shirazi, "Implementation of a 2-D Fast Fourier Transform on an FPGA-based Com­
puting Platform," master's thesis, Virginia Polytechnic Inst., 1995.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 181

Petitioner Microsoft Corporation - Ex. 1007, p. 165

References 165

[22] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating-Point Arith­
metic on FPGA-based Custom Computing Machines," Proc. IEEE Symp. FPGAs for
Custom Computing, CS Press, Los Alamitos, Calif., 1995, pp. 155-162.

[23] A. Tarmaster, "Median and Morphological Filtering of Images in Real Time Using an
FPGA-based Custom Computing Platform," master's thesis, Virginia Polytechnic Inst.,
Blacksburg, Va., 1994.

[24] L. Uhr, ed., Parallel Computer Vision, Academic Press, New York, 1987.

[25) G. VanDerWal and P. Burt, "A VLSI Pyramid Chip for Multiresolution Image Analy­
sis," Int'l J. of Computer Vision, Vol. 8, No. 3, 1992, pp. 177-189.

[26] R. Vogt, Automatic Generation of Morphological Set Recognition Algorithms, Springer­
Verlag, New York, 1989.

[27] Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif.,

1994.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 182

Petitioner Microsoft Corporation - Ex. 1007, p. 166

CHAPTER 12

The Promise and
the Problems

Duncan A. Buell and Jeffrey M. Arnold

The time has come to reflect upon what we have done. The soldering irons have
grown cold on the workbenches, the celebration cake has long been eaten, and even
the T-shirts are fading from too many launderings. What have we learned? Where
did we go right? Where did we go wrong? Have suppositions been confirmed as facts
or debunked as myths? Most important, for it is the whole basis for research, what
from our experience might prove valuable to the next builders of such hardware?

12.1 SOME BOTTOM-LINE CONCLUSIONS

12.1.1 High Bandwidth 1/0 Is a Must

166

This will come as no surprise to anyone in the traditional high-performance computing
business, but in our situation, the rationale is slightly different. We have, in a CCM,
relatively little state that can be retained in the processor portion of the machine. To
achieve high performance, then, one must have an application that requires extensive
computation localized on a very small amount of data or a computation that requires
relatively little state but is "compute-intensive" because it must be done to a relatively
large volume of data. The RSA encryption/decryption algorithm done by Shand et al.
[3] at the DEC Paris lab-modular exponentiation of 512-bit integers with 512-bit
exponents-is an example of the former kind of application but we have found such
applications, in general, to be rare. The latter category of applications, including signal
processing, image processing, data compression, and the like, appear to predominate.
To handle such applications, it must be possible to get data to the CCM at a rate that
permits the FPGAs to demonstrate their computational superiority.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 183

Petitioner Microsoft Corporation - Ex. 1007, p. 167

Section 1 2 .1 Some Bottom-Line Conclusions 167

Another issue that contributes to the desire to operate on large sets or continuous

streams of data is the relatively high cost of loading an application "program" onto the

FPGA. A Xilinx XC4010 takes about 22 msec to configure (180,000 bits at 8 MHz).

With system overhead from a workstation disk, this can approach 100 msec. At a
clock speed of 20 MHz, 100 msec is 2 million cycles lost to reconfiguration. If each

configuration of the FPGA ran for as many as 2 million cycles, the CCM would

be utilized only half the time; to achieve 90 percent utilization, each configuration

would need to execute on the order of 18 million cycles.
A corollary of the conclusion that 1/0 bandwidth is important is that 1/0 from

the CCM to the outside world, and not just to the host computer, is essential. The

4 Mbytes per second or so that can be delivered from a SCSI disk is not enough.

In the world of supercomputers, it is often observed that one of the few attributes

distinguishing a supercomputer from a high-performance workstation is the speed at

which data can be delivered from disk to processor. CCMs are unlikely to be designed

to connect to supercomputers, if only because the small number of supercomputers

makes it difficult for a commercia 1 CCM industry to develop around them. We

believe, therefore, that for CCMs to become commercially successful there must be

a model of data flow and control similar to that of Splash 2: in addition to the usual

programming and control lines to the host (workstation), there must be an ability to

take data from some other source at rates much higher than workstation disks allow.

We remark that our conclusion here seems to be consistent with the thoughts behind

and design of the DEC systems.

12.1.2 Memory Is a Must

We have reasoned that a CCM like Splash 2 needs high 1/0 bandwidth because

the computations must be relatively simple and must require relatively little state.

Therefore, in order to be useful, the CCM must process a large volume of data.

Our conclusion that it is important to have as much memory as possible as close

to the FPGAs as possible stems from a similar line of reasoning. The Processing

Elements one designs into the FPGAs must be relatively simple; the FPGAs are

not yet large enough to accommodate complex objects, and they operate at speeds

that are slow by microprocessor standards, so multiple-tick state machines are not
going to provide a performance advantage unless significant pipelining is possible.

It has been our experience that including memory for lookup tables and similar

augmentations of processor state is absolutely vital to obtaining high performance.

Memory is essential, and the more memory the better, because it permits, among

other things, a fast horizontal encoding that requires little logic to implement, instead

of a vertical encoding that takes either more complex logic or more pipeline steps.
We point out here, as was mentioned once before, that some of the lookup tables

one might want to use would be much larger than could reasonably be implemented

in any system. A lookup table for an 8-bit by 8-bit multiplier requires only ½ Mbyte

of memory, for example, but an only slightly less modest 12-bit by 12-bit multiplier

requires 48 Mbytes. We further mention that the memory structure can also be

important. We were pin-limited in Splash 2 and coupled one memory to one FPGA.

As FPGAs accommodate larger and larger designs on a single chip, the probability
will grow that more than one part of a given chip's design will need to access memory

in the same clock period. The data stream-oriented computations on Splash 2 tended

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 184

Petitioner Microsoft Corporation - Ex. 1007, p. 168

168

I J

The Promise and the Problems Chapter 12

to have many small computational units in a pipeline. It can easily happen that each
of these needs its own lookup table but more than one exists on a single FPGA,
making a single memory port the bottleneck.

To some extent our conclusion here differs from what one might deduce from
the work at DEC, but we remain skeptical of designs in which the FPGAs and
the memories lie in separate clusters. There has been work and there seems to be
continuing interest in single chips or in multi-chip modules that closely couple pro­
grammable logic and memory. Either arrangement would enlarge the processor state
without continuing the current limitations, faced by Splash 2 and all other present
systems, of insufficient pins for the memory bandwidth desired plus the inherent
loss of speed in having to go off-chip for memory references. The disadvantage of
this approach (at least the single-chip approach) is that the amount of memory that
can be integrated with the processor is severely limited. This implies the need for
a hierarchical memory, that is, a larger external backing store in addition to the
on-chip memory, which would now function much as a cache functions in traditional
processor architectures.

12.1.3 Programming Is Possible, and Becoming More So

We began Splash 2 with the firm belief that it would be possible to program Splash 2
from a high-level language, but without any clear notion of exactly how this would
be accomplished. Our belief has not turned out to be a delusion, and the clear ideas of
how to accomplish the desired ends came to us as we progressed in the project. There
were questions about whether an appropriate subset of VHDL could be identified as
the high-level "programming language." There were questions about whether the
VHDL environment provided by vendors would provide the support we needed and,
if not, whether our own augmentations could be made. There were a number of
questions about the ability to sequence the vendors' tools into a compilation process.
In part due to our sponsorship of work on the Synopsys FPGA Compiler and in
part as a consequence of more general interest in CCMs, the path from high-level
VHDL to Xilinx bitstream files is much smoother than it was three years ago. Xilinx,
on the one hand, has raised the level at which their software supports design-the
XBLOX tool allows circuit designers to use much larger building blocks of registers,
sequencers, and the like, instead of constructing them individually from CLBs. From
the top down, Synopsys has made a serious commitment to target the architecture of
FPGAs in the technology-mapping phase of logic synthesis so that the resources of
Xilinx (and other) FPGAs can be used efficiently and achieve performance closer to
that attainable with handcrafted designs. There is now a reasonably smooth process
from VHDL to Xilinx chips that yields acceptably high performance, and the situation
will no doubt continue to improve in the future.

12.1.4 The Programming Environment Is Crucial

We have asserted that programming of CCMs is in fact possible. We now maintain
further that the great effort we expended to create a complete programming environ­
ment has been crucial to users' acceptance of the fact that a CCM is to be viewed
as a "computer." ·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 185

Petitioner Microsoft Corporation - Ex. 1007, p. 169

Section 12 .2 To Where from Here? 169

Users of modem computer systems expect an interactive programming environ­
ment. They expect to be able to compile programs quickly, test them on sample data,
step them through a debugger, and examine the resulting output. With many experi­
mental hardware systems, performing these tasks on the hardware itself can be quite
difficult. Complicating the usual problems of dealing with experimental hardware
(which one might imagine to be of questionable reliability) is the very significant
problem for Splash 2 and for similar CCMs of the time required for logic synthesis
and the placement and routing of the netlist onto the Xilinx chips. In the absence of
the simulation environment that allowed programs to be written and debugged until
they were functionally correct, we doubt that many of our applications would have
been completed. Certainly we feel that none of the "users" (as distinct from the "true
believers") would have been willing to follow through to a completed application
without the full panoply of simulation and development tools available to them.

A further reason to stress this point is that although, on the one hand a solid
programming environment is an obvious desideratum, its achievement requires the
cooperation of vendors. In order for T2 to be successful in a debugging mode, it was
necessary that T2 be able to associate with the objects of the synthesis process the
VHDL objects named within the program; otherwise, it would not be possible for
T2 to examine the state in the FPGAs for debugging purposes. Similarly, although
users need not ordinarily be concerned with information at the bitstream file level,
those who would write system software and programming development tools may
have occasion to need some of this information, at least the placement or mapping
of flip-flops to CLBs and the ability to extract the flip-flop state from the chip in
readback mode for debugging. Certainly, if one is to envision a CCM acting as a
closely connected coprocessor instead of as an attached processor "at cable's length"
like Splash 2, some details are also necessary. One concept being explored is the idea
of swapping parts of a design on an FPGA in and out, in the way that code is swapped
in and out of virtual memory. This will require that the systems software writer have
access to information about the location of the portions of the design to be swapped
out, and the 1/0 paths in and out of those regions of the FPGA. Swapping hardware
also implies the need to constrain the physical mapping phase of compilation to lay
the logic out in particular shapes, or use only particular portions of the chip.

12.2 TO WHERE FROM HERE?

Throughout the Splash 2 project, we were asked the obvious question, "Will there
be a Splash 3?" That question has always been answered in the negative. There
have never been plans to do a th1.rd-version system, largely because Splash 2 is, if
anything, already too complex and contains too many features.

This is not a statement that Splash 2 is flawed in its design, but rather the simple
admission that it would make a poor "product" in its present form, something that
has been recognized by the commercial licensees-none of the commercial versions
contains all the features of the original Splash 2 system. Splash 2 was designed
to be large enough to deliver high performance through parallelism, and yet few
applications really used anything like the full complement of hardware that could -
be assembled. It was designed with a rich interconnect structure, and yet many
applications use only a small part of the interconnect.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 186

Petitioner Microsoft Corporation - Ex. 1007, p. 170

170 The Promise and the Problems Chapter 12

In general, we find that while all the features of the system have been used
at one time or another, any single application uses only a subset of the features.
And, given that we are on the edge of what can reasonably be put on a board or
in a system, the cost of the features is not linear with their number. If we had to
do it all over again, there are certainly some things we would change. With more
pins on a Xilinx chip, we could have a 32-bit data path to memory instead of only
16. With the newer, larger, Xilinx FPGAs, we could get more logic on a chip and
board and achieve higher performance. We have an extra address pin left over, and
we would certainly like to double the memory attached to each FPGA. But these
possibilities, intriguing as they are, represent incremental changes in the hardware
to the inevitable progress of technology. What should concern us more is not the
moving target of state-of-the-art technology but the broader choices of architecture,
programming style, and applications for which a Custom Computing Machine makes
sense.

It is within this broader framework that we realize that no good follow-on to
Splash 2 exists because the major goals of the research effort have been met. Splash 2
was largely a research prototype, although some of the requirements for "real work"
to be done go beyond those normally expected of such a prototype. The major goals
were to build the attached processor, to demonstrate its computational effectiveness,
and to demonstrate that it could be programmed. These have been met, and although
there are many research questions to be addressed, none of these require the building
of a "bigger and better" next version of this machine.

This is not to say that Splash 2 is "the last word" in CCMs. Rather, it is to
say that the benefits to be gained from building a Splash 2-like machine for research
purposes probably do not outweigh the costs. If one had real applications and real
customers for a similar machine, the conclusion on costs and benefits might be
different, but the decision for research purposes seems clear. A bigger machine does
not seem warranted. Splash 2 was extensible in terms of number of Array Boards
beyond what we found we had applications to support, and although one could now
build, with flat-pack FPGAs, a board with more compute power on it, it does not
seem clear that research conclusions could be drawn from the new system that could
not be drawn by extrapolation from Splash 2.

The Array Board architecture similarly seems, if not optimal, at least suf-·
ficiently general yet capable of high performance, such that variations within its
genre are unjustified. The two basic modes of data flow-linear and broadcast­
are well supported and augmented by a crossbar whose full range of capabilities
was never needed. Here, as elsewhere, we believe the research value of this part
of the design space has been adequately explored. We can easily imagine a worth­
while machine produced for a niche market that resembles Splash 2. We can eas­
ily imagine other architectures (a richer hierarchical machine, for example, with
clusters of FPGAs at each level of a tree structure). We can easily imagine that
changes in or improvements to FPGA technology (for example, greater on-board
memory, perhaps content-addressable memory, incorporation of higher-level func­
tions, incorporation of FPGAs onto multi-chip modules) might introduce new rea­
sons to engineer a Splash 2-like machine. But absent these justifications, we do
not feel that research conducted in the building of another Splash 2-like machine
is likely to lead to conclusions that could not readily be predicted from studies on
Splash 2.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 187

Petitioner Microsoft Corporation - Ex. 1007, p. 171

Section 1 2 .3 If Not Splash 3, Then What? 171

It is worth mentioning one major architectural feature that one would want to

change in a next-generation machine. Splash 2 was oriented toward computations in

which the data streamed past processing elements. The 36-bit-wide data path allows

both parallel single-bit streams or wider, word-oriented streams. On a given Array

Board, substantial interconnect allows for adjustments in time of the data stream.

Similarly, when programmed as a SIMD machine, extensive broadcast capability

exists, as well as an efficient back door for removal of a result stream. Looked at

this way, the next architectural step is obvious, and almost impossible. One would

like to provide, at a board-to-board level, the rich interconnect that exists on the

individual boards. This is the problem we dealt with in Chapter 4 in discussing the

evolution of the Splash 2 architecture. Providing the same level of interconnect among

the boards that the FPGAs have on each board is a complicated matter, however,

and one must ask whether the payoff justifies the expense. The answer, in terms of

good applications that were made impossible due only to insufficient board-to-board

communication, is no.
The problem of board-to-board communication is not unique to Splash 2 and its

orientation toward a linear data stream. The DEC PeRLe PAM, with its Xilinx chips

arranged in a two-dimensional grid, suffers from the same problem-at some point,

an application might outgrow a single board and require substantial communication

from one board to another. Fortunately, however, with Splash 2 we seem to win

on both fronts. Not only does it appear that most reasonable computations can be

done with at most a small number of boards requiring little communication among

them (and we are sincere in our belief that we have not begged the question here),

the omnipresent march of technology makes it possible to put more and more onto a

single board, so that the problem should be getting less, rather than more, pronounced

with time.
In retrospect, the most problematic feature of the Splash 2 architecture-the

crossbar1-was perhaps not worth the effort, although there was no way to pre­

dict the events that occurred. The features of the crossbar-multiple configurations,

dynamic choice of configuration, one-tick latency-were all used in one application

or another, but each can be obtained (at some cost) by means of other switch chips

or architectures.

12.3 IF NOT SPLASH 3, THEN WHAT?

Having decided that Splash 3 is not in the offing, it is reasonable to ask what sort

of future research does make sense. We do not feel that the end of the CCM idea

has been reached, and we expect that, in addition to other machines independently

designed, several variations on our general theme (Splash 2a, Splash 2{3, .. . , if you

will) will appear.
What we have claimed in the previous section is that the Splash 2 line of

research machines for demonstration purposes is (at least temporarily) at an end,

with strongly positive conclusions: sufficient compute power exists in an attached

processor to obtain high performance, data can be delivered at a rate high enough to

keep the processor busy and meet real-world constraints, and the machine can in fact -

1 The reader should consult Appendix A for the saga of the crossbar chips.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 188

Petitioner Microsoft Corporation - Ex. 1007, p. 172

172 The Promise and the Problems Chapter 12

be programmed. What we see as future work is an elaboration of the hardware and
software ideas for CCMs, now that we know that such elaboration could be worth­
while: not only must existence precede essence, but in the real world of engineering
design the existence of follow-on machines must be justified by the success of their
predecessors. We present some thoughts, then, on areas ripe for further work.

12.3.1 Architectures

There are strong arguments in favor of a trend toward physically smaller rather
than larger systems. It is difficult to justify the price of very large systems, and such
systems, with the added cabinet, backplane, interfacing, and such, are inherently more
cumbersome to build. Also, as systems get physically larger, it becomes more difficult
to keep propagation delays down. CCMs tend to get much of their performance
advantage from tightly pipelined and carefully, explicitly, synchronized computations;
these become more difficult to achieve in a system in which the propagation delays,
which must be taken into account, have more than one value.

Mitigating the problem of justifying large systems is the fact that as technology
advances, small systems tend more and more to deliver the processing capability
of large systems. A further advantage that comes with making systems smaller and
therefore cheaper is that they can be specialized to a particular collection of appli­
cations. These CCMs are inherently things that need not be single-purpose but are
not likely in the near future to be general-purpose; one clear trend is toward pro­
grammable systems within a particular market. For example, there have been several
designs from commercial vendors that combine DSP chips and FPGAs on a single
board, aimed at signal-processing tasks of various kinds. None of these of which
we are aware are "programmable" yet in the sense that Splash 2 is programmable­
applications are still designed using CAD tools. But with the success of Splash 2
and of the DEC PeRLe systems and the growing awareness of the ability to make
detailed circuit design unnecessary by the use of higher-level tools, we have no doubt
that programming of such systems will come in the near future.

If physically smaller systems seem to be the trend, the following is, we feel,
an argument against logically smaller systems. For the foreseeable future, CCMs
will be one to two generations behind general-purpose machines, since commodity
microprocessors and not FPGAs drive the technology and the market. In terms of
logic performance (that is, clock rate), general-purpose machines start with about an
order of magnitude advantage over CCMs. A CCM must overcome this disadvantage
just to break even. Then, in order to cover the additional costs of hardware and
software, download time, and such, one can argue that the CCM needs another order
of magnitude in performance improvement to be considered a serious competitor.
These performance advantages are presumably to be made up through parallelism in
the application running on the CCM, but how small can one make a CCM and still
obtain at least 100-fold parallelism? For the next several years at least, we would
argue that systems with only a small number of FPGAs simply will not have the
compute power to be competitive.

Although it is not technically our province to comment on the architecture of
FPGAs themselves, at this point we discuss aspects of chip architecture that directly
affect their use in CCMs. In this discussion, although two competing themes emerge,
we do have a preference. At the grossest level and with the greatest of oversimpli-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 189

Petitioner Microsoft Corporation - Ex. 1007, p. 173

Section 12.3 If Not Splash 3, Then What? 173

fications, there are two extant architectures in FPGAs. A coarse-grain architecture

has 2-bit or 4-bit logic blocks and routing resources around the blocks. A fine-grain
architecture, by contrast, has I -bit logic blocks (lookup tables with two or sometimes

three inputs, but only one output and only one stored value) with routing of lines

going through the blocks (and thus making them unavailable for other purposes).
On the one hand, the larger logic block of the coarse-grain architecture is

attractive, and the 4-bit block especially so, for the purpose of doing arithmetic. On

the other hand, the routing of signals in the fine-grain architecture design is "local,"

so that portions of the chip can be identified with portions of the design. If an ultimate
goal is to dynamically change part of the design on a chip, the fine-grain architecture

is preferable. It avoids one of the problems of the Xilinx architecture, which is that

the signals on routing resources adjacent to CLBs can come from distant parts of the
design and be relatively unrelated to the computation being performed in the CLB.

We have already mentioned the issue of including memory (in quantity) with

the routing and logic on an FPGA. This would allow the processor element/memory

pairs of a CCM to be shrunk onto the FPGA itself (or even multiple replicated

processor/memory pairs on a single FPGA).

12.3.2 Custom Processors

We have said nothing for the most part about one of the most enticing uses of FPGAs

for Custom Computing Machines-the idea of a custom coprocessor or customizable
processor. If one traces the development of microprocessor architecture through the

1970s and 1980s, one can find arguments both for and against the inclusion of

coprocessors in modern workstations. Long ago, in the heyday of such chips as

the 8086, math coprocessors also flourished to do the arithmetic functions that just

would not fit on chips of that era. Now we find in most modem high-performance

workstations both floating-point and integer arithmetic in the processor chip, and 64-
bit arithmetic at that. One can legitimately argue that any further "special functions"

that might benefit from an FPGA coprocessor are probably things that could be

included in the next generation's processor as a matter of course.
On the other hand, it is probably true that among all the computations performed

that need high performance, a rather broad range exists of "special functions" that
would be desirable to have as processor instructions and not in software emulations.

Whether any one of them would be deemed significant enough to warrant its inclusion
in silicon is questionable, and the full list of such possible instructions is no doubt

much longer than what would be feasible in the near future. A more interesting­

and feasible-idea is that the FPGA resource could be incorporated directly onto the

processor chip. If the math coprocessor can make the move, why not the customizable

. processor?
A further argument against coprocessors is the extent to which the low-level

hardware and software of the machine must be adapted to permit the coprocessor
to be used. In order for a coprocessor to be of value (implementing an instruction

not found on the processor, for example, just as the 8087 implemented arithmetic

not present on the 8086), the connection between processor and coprocessor must be
very tight. Control of execution of the processor and coprocessor must be maintained

and data passed between the two with the barest minimum of overhead. Exceptional
conditions probably need to be handled in hardware. Most important, it must be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 190

Petitioner Microsoft Corporation - Ex. 1007, p. 174

174 The Promise and the Problems Chapter 12

possible for the compilers and the operating system to recognize when use of the

coprocessor is advantageous, to arrange in advance for the coprocessor' s "program"

to be loaded, and to handle use of the coprocessor so that the only way a user would

detect its presence would be by the decreased execution time.
If the future of coprocessors seems uncertain, the future of genuinely customiz­

able processors seems less so. The dbC approach seems to go the old Burroughs

B 1700 one better than its multiple instruction set architectures. However one designs

an Instruction Set Architecture, the fact will remain that much of the silicon resource

on a chip is not actually in use in any given clock cycle. An advantage of the dbC

approach is that, at least as far as the individual program is concerned, only those

resources that are needed must be included. When the day comes that an FPGA (or

its technological successor) permits dynamic reconfiguration while in execution, one

could envision swapping portions of "processor hardware" in and out as needed. A

more limited silicon resource would provide more capability by being reusable for

multiple purposes.
The key to the above idea must come in the ability of the compiler and operating

system to identify "processing units" and locality thereof, to extract and synthesize

these units, and to manipulate their caching and loading with the same facility that

virtual memory is handled today. And this idea will probably not be relevant to all

forms of computation. There is and will no doubt continue to be a solid market

for machines that do those things we now consider ordinary, and unless there is a

substantial portion of a computation that is simply not done well on a traditional

machine, there will be no incentive to try a reconfigurable processor---<::ustom silicon

will always be faster, and mass-market commodity machines will always be cheaper.

But the quicker time-to-market of programmable hardware is an advantage, and if

a selected set of niche markets were to be determined and were then targeted by

commercial operations capable of carrying out successful business plans, then we feel

that such reconfigurable processor machines, whose underlying processor architecture

was defined only at compile-time or runtime, could become almost commonplace.

12.3.3 Languages

Without doubt, the deepest and most fascinating question regarding the evolution of

CCMs is that of their programming models and languages. This is the thorny issue

that has bedeviled those responsible for language software for parallel computers for

nearly two decades. How much detail of the machine should the programmer see?

What is the penalty in performance for a high-level view? Users of high performance

computer systems have usually been willing to endure in the name of speed some

agony not suffered by those for whom speed is not so vital, but it is also true that there

is a limit to the patience of even these stalwarts. Should the cost of programming

surpass an ill-defined and yet very real threshold, the cost is not merely an incremental

loss in the number of users and applications but a rejection of the entire system.
We can look to several different experiences for insight in this issue. Most

significant is our own experience with VHDL and Splash 2. After that, of course, we

can make comparisons with dbC on Splash 2. Finally, there is the work of others,

such as the C extension done at DEC Paris and the VHDL work done by Box at

Lockheed Sanders for CHAMP [l]. All of these can also be viewed merely as the first

steps taken, in part because one could capitalize on existing knowledge and tools. A

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 191

Petitioner Microsoft Corporation - Ex. 1007, p. 175

Section 12.3 If Not Splash 3, Then What? 175

necessary further step is to contemplate in the abstract what would be most desirable
if one were free of the need to consider present cost, personnel, past history, and
backward compatibility.

A great many of the Splash 2 applications were done not as procedural pro­
grams but as a series of processes pipelined together, through which data flowed
synchronously. These resemble nothing quite so much as programs in discrete event
system simulation, and a language like VHDL seems highly suitable for this kind
of programming. The SIGNAL data type provides for explicitly concurrent events
and allows the programmer to express in a natural way the parallelism inherent in
a computation. The fact that SIGNALS are updated with every clock tick allows the
programmer to specify very precisely what the synchronization of the concurrent
processes is to be. The alternative of the VARIABLE data type, by contrast, is suitable
for procedural segments of code or for code over whose execution the programmer
need not take such care.

The negative side of the program control offered by the explicit parallelism of
SIGNALS in VHDL is that the programmer must in fact synchronize the updates and
that "off by one" errors in choreographing this process can be common. We feel
that this does not argue against VHDL so much as it argues in favor of spreadsheet­
like tools that facilitate such programming. The expressiveness of a genuine parallel
language (which VHDL most certainly is) seems to be necessary to achieve the
needed performance. Rather than abandoning the parallelism because it can make
programming difficult, one must work to compensate for the difficulty, with better
tools.

If many of the Splash 2 applications resemble discrete event system simulation
programs, they are also like systolic programs or data flow programs. They differ from
the former in that the processes can vary widely in type and size and the programs
are not nearly so well-structured as are systolic programs. And they differ from data
flow programs in that they have more structure-the expected performance advantage
comes in part from the tight pipelining and synchronization of the processes, as
mentioned above.

We contemplated at several points in the Splash 2 project an investigation of
one or more of the various languages available for programming in which the control
of execution comes not from an instruction sequencer but from the synchronous flow
of the data. We have no doubt that for many applications this might be a much
more natural model of computation than presently exists. That we have done no such
investigation is due entirely to the fact that we had to stay focused on the main goals
and could not allow ourselves to be too distracted by curiosity from those ends which
had to be accomplished. In the eventual fullness of time, however, we expect that
such a study would be of great value.

One major drawback to the use of a data-driven language and model of com­
putation must be raised. Programming of Splash 2 in VHDL has already proved to
be a bit of a hard sell because VHDL "just isn't C." VHDL is nonetheless a DoD
standard, taught to students across the world, used in industry, and supported by very
sophisticated software tools. With all this in its favor, and working against it only
the religious objections and the concerned hand-wringing of middle managers whose
performance appraisals depend on quantity of present output, how much harder would
it be to gain acceptance of another language, which no doubt would be viewed as
even more exotic?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 192

Petitioner Microsoft Corporation - Ex. 1007, p. 176

176 The Promise and the Problems Chapter 12

It was to a great extent in response to the above concerns that we discussed aug­
menting the standard VHDL framework with features that would make programming
Splash 2 much more C-like (a VHDL++, as it were), or in the other direction remov­
ing from the available VHDL language tools those aspects not needed for Splash 2
programming and potentially confusing or threatening to applications programmers
(to produce VHDL--?). Some of each would seem desirable.

We remark finally that with two different applications the price paid both in
FPGA resources used and in speed of execution was about a factor of three or
less between handcrafted XACT designs and synthesized VHDL code in the normal
Splash 2 programming model. We feel that both are acceptable. The resource estimate
was with an earlier version of the synthesis tools than is presently available, and may
already have improved. The speed differential is not much different from that between
high-level language and assembly code, and thus is not likely to be the deciding factor,
except for those few applications that are even with XACT implementations running
on the margins of acceptable speed.

If the questions surrounding Splash 2 and its normal VHDL programming model
are not of capability but of acceptability, then almost the opposite is true of dbC.
The language here clearly is C, or as close to C as one can expect to get and still be
running on a SIMD machine. There are two basic questions: Can the performance
be great enough to be adequate? Is the range of SIMD applications broad enough to
justify the use of a different language for them?

We have remarked on the factor-of-three performance difference between XACT
and VHDL. It has been further noticed that roughly the same difference exists
between dbC programs and their "directly VHDL" counterparts. This comes to a
factor of nearly an order of magnitude, which is probably not tolerable. (The genome
sequence comparisons mentioned in Chapters 8 and 9, in contrast, show a factor of
150 superiority for the VHDL version.) There will no doubt always be some penalty
for generating the code automatically through dbC; it remains to be seen whether the
minimized value of this penalty is small enough.

We are much more sanguine about the breadth of SIMD applications. There
are several computational problems-including much of image processing, one nat­
ural area for CCMs-that can be done very effectively as SIMD computations. An
additional argument in favor of a programming model like that of dbC is that SIMD
programs have the same sort of carefully sequenced flow of control that the Splash 2
VHDL programs do. Thus, although the applications are limited and there is a danger
that one might need a VHDL-like programming model as well to handle non-SIMD
aspects of even a largely SIMD computation, we expect that continued work on dbC
is reasonable and will find use in real applications.

We comment finally on a matter that is not just a matter of language but of
the entire programming process for CCMs, and that is the question of upward com­
patibility. It has been crucial in many computing environments for established users
to be able to upgrade hardware without substantially changing programs that rep­
resent their investment of time in the process of solving their problems. It seems
unlikely in this early stage of marketing of CCM that users will be able to avoid
some level of discomfort at the changes in the hardware, programming, and logic
synthesis tools underneath their applications. Clearly, then, to be successful, the
benefits in improved performance will need to be able to overcome this draw­
back.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 193

Petitioner Microsoft Corporation - Ex. 1007, p. 177

Section 12.4 The "Killer" Applications 177

12.4 THE "KILLER" APPLICATIONS

It seems a staple of the computing industry's folklore that novel products like CCMs
need to have at least one "killer" application for which the new product is so well
suited that it is clearly the preferred choice. Once the product has gained a foothold in
the commercial marketplace and can be viewed to "exist" in a serious sense, broader
usage is then to be expected. This is part of the very real spinoff and serendipity side
of technology advancement.

What, then, might be those killer applications? Three broad categories seem
clear: a) image processing; b) real-time data handling and control, in which one
finds large volumes of data with computations that are limited in complexity but
relatively unusual if done on standard microprocessors; and c) rapid prototyping and
architecture emulation, in which reconfigurability of a platform is essential to allow
exploration of alternatives, but for which some sort of hardware solution is required
to provide answers in a reasonably timely manner.

The two chapters on video processing and fingerprint matching are illustrative
of the first of these three categories. The number of basic operations to be performed
in unit time is very high. The operations themselves are not "standard," often because
arithmetic using relatively few bits is possible. There is a high degree of parallelism
and/or pipelining in the modest collection of algorithms that need to be implemented.
These argue in favor of a hardware solution. And, arguing against ASIC development,
the computations or data formats are not so totally standard and structured that
today's full-custom hardware can be expected to provide a longer-term solution.
Arguing further in favor of a CCM is that while hardware can be built to handle
data or image compression, convolutional filtering, signal encoding or decoding, and
so forth, with the use of reconfigurable hardware one can use the same hardware, or
at least replicated versions of the same hardware running different programs, rather
than requiring multiple distinct parts. The obvious advantages then apply with respect
to building and maintaining the hardware and the application programmer/designer
being able to implement and maintain programs on the final system.

Perhaps the best present example of real-time data handling or control using a
CCM is the use by Moll et al. [2] of the DEC PeRLe-1 system in handling data from
experiments to be run on the Large Hadron Collider soon to be built at CERN (the
European Organization for Nuclear Research, Geneva, Switzerland). The plan is to
use PeRLe in the second of three levels of data filtering before the data is saved off
for further study. Here, there is a need for a flexible or reconfigurable processor and
for high-performance processing in which substantial parallelism exists, and the data
flow rate is high. A link from the PeRLe host TURBOchannel to HiPPI will provide
the high data rate (a similar HiPPI-to-Splash 2 interface went through early design
at SRC but was never completed for lack of a good target application or system that

· would use it). The flexibility of a CCM is an asset here in part because this is an
experimental framework-unlike the day-to-day handling of large volumes of data
that might take place in a commercial environment, one can expect the requirements
at CERN to change over time with different experiments and different variations of
the same experiment.

Very little has been said in this book about rapid prototyping using a CCM.
This is due to our concentration with Splash 2 not on its use as an engineering tool
but as a machine to be used for computing. But the use of FPGAs for prototyping is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 194

Petitioner Microsoft Corporation - Ex. 1007, p. 178

178 The Promise and the Problems Chapter 12

already well developed, as is evidenced by the health of companies such as Quicktum.
The Quickturn hardware is geared, however, toward circuit design rather than system
design. Emerging from several ongoing university projects, however, is the ability to
test component-level issues rather than chip-level issues-processor interactions with
memory, various memory and caching schemes, bus strategies, and such. Splash 2, for
example, is presently being used to study a proposed parallel computer architecture.
We suspect that, as good as hardware such as that from Quicktum is for many of
the design uses to which it is put, it may not work well on higher-level architectural
emulation, and that what will be needed is a system of the nature of Splash 2 with
its built-in data path, explicit connections to memory, and so forth. The basic boxes
of a computer architecture's block diagram are already present in Splash 2; they're
just somewhat more amorphous than in a "real" computer.

Although the emulation on Splash 2 of a proposed architecture would be slower
that the hardware itself, the parallelism of the machine can make it much faster
than software simulation. Importantly, although one could not expect a proposed
architecture to map directly to Splash 2, the partial structure of Splash 2's data and
memory paths and its processor interconnections would allow many architectural
features that did not fit directly to be time-multiplexed in a measurable way that
would permit accurate extrapolations.

12.5 FINAL WORDS

We close this book with the not-very-bold statement that we doubt that these will be
the last words spoken about Custom Computing Machines. We hope that what we
have produced is more than just a project report and that a study of our system, taken
as a whole, can provide insight to others planning related work. We believe we have
influenced the course of research in CCMs by what we have already done, and we
hope that somewhere in these pages will have been found a satisfactory explanation
of the paths we took and the choices we made.

REFERENCES

[l] B. Box, "Field Programmable Gate Array Based Reconfigurable Preprocessor," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1994, pp. 40-49.

[2] L. Moll, J. Vuillemin, and P. Boucard, "High-Energy Physics on DEC PeRLe-1 Pro­
grammable Active Memory," Proc. FPGA95, ACM, ACM Press, New York, 1995,
pp. 47-52.

[3] M. Shand, P. Bertin, and J. Vuillemin, "Hardware Speedups for Long Integer Multipli­
cation," Proc. ACM Symp. Parallel Algorithms and Architectures, ACM, ACM Press,
New York, 1990, pp. 138-145.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 195

Petitioner Microsoft Corporation - Ex. 1007, p. 179

APPENDIX A

Splash 2 Development-The
Project Manager's Summary

Duncan A. Buell

I fully admit now that when Fred More first approached me in the summer of 1991

with the idea of my supervising the general development of a second version of the

Splash processor, I had no idea what I was getting into. I certainly didn't expect this

to tum into a virtually full-time job for two and a half years, or else I might well

have said no to the idea. In hindsight, it is clear that my ignorance was a good thing,

for I think that Splash 2 was a solid success as well as the most exciting piece of

work in which I've had the chance to be involved.
After some serious thinking about the issues, I told Fred I'd do it. I had been

very interested in the first Splash machine, but had been unable, due to other pressures,

to do direct work on it. My line management position had left me with very little

time to work directly on research projects, and in every instance in which I had found

time, I hadn't found enough time. I had wanted in one instance to write a program

that was essentially a double loop with a table lookup in the body of the inner loop.

After an entire afternoon spent trying-and failing-to construct the counter for the

outer loop, I gave up. Although there were a number of people who had programmed

Splash with great success, I was unlikely to become one among them.
The task that Fred More originally offered me was to rectify the problem that

led to my frustrating admission of failure. The hardware of Splash was a solid suc­

cess; it ran as expected and had few, if any, failures . Similarly, the software was as

good as one could hope for, given the time and context. Maya Gokhale's LOG had

been a tremendous advance for the intended purposes over the still-developing Xil­
inx tools. But the problem remained that it was an FPGA-based machine on which

179

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 196

Petitioner Microsoft Corporation - Ex. 1007, p. 180

180 Splash 2 Development-The Project Manager's Summary Appendix A

one could design circuitry to perform applications, but not a machine on which

one could program applications. Fred's charge to me was to drive the development

from the applications perspective and from the point of view of an applications pro­

grammer. The goal was to be able to say that programmers without a background

in hardware design could write applications and achieve moderately high perfor­

mance.
In accepting Fred's offer, I had one condition-I was perfectly happy to mount

a search for applications that could perform well on this machine and to deal with

the problem of getting the sense of "programming" into Splash 2, but I insisted that I

have someone working with me who would feel responsible for the actual hardware

development and someone else who would do the same for the systems software.

The hardware person was to have been Andy Kopser, until he announced in late

summer that he would be leaving SRC in mid-September. Elaine Davis took over

the hardware, to be succeeded by Wally Kleinfelder when Elaine left for a new job

the following February. The software position remained unfilled until late October,

when Jeff Arnold agreed to take on the job.
From the very beginning, it was assumed that building a small system and

programming kernels as benchmarks would be insufficient justification for claims

of success. It would be necessary to have a system large enough to do, if not real

problems, at least problems of a size comparable to real ones.

In terms of the scope and nature of the applications programming process, my

agreement with SRC management was the following: We would make an honest

attempt at perhaps a dozen problems. Three to six of these would be genuinely

unsuccessful, either because the problems would fairly quickly be found to have a

show-stopping component for Splash 2 or because the projected payoff would appear

too low to warrant a complete experiment. Of the six remaining, half would prove to

be successful "experiments" with nonpositive results. That is, the experiments would

be complete enough that hard performance numbers could be obtained and an objec­

tive analysis of results made, but the results themselves would not show that Splash 2

was a big win or a win big enough to warrant for "production computation" the use

of unusual extra hardware and the attendant problems of programming, interfacing,

and maintenance. Finally, it was assumed that perhaps three of the original dozen

applications would prove to be major successes, and that this would be sufficient to

declare victory for Splash 2.
In order to obtain the dozen attempts at Splash 2 applications, I asked for and

received from management at SRC "12 applications" worth of people, figuring the

unsuccessful six applications at one to three months' effort and the successful six

at three to six months' effort. Looking back, I believe that little or no revision is

necessary to assert that this was, in fact, the way things went.

Funding for Splash 2 came from a special DoD "dual-use" appropriation. On

October 16, 1991, an SRC presentation was one of about 35 made to various civilian

government agency representatives. The requirement to obtain funding was not only

that the project be technically worthy of funding; it was also necessary that some

civilian agency sign on to be a recipient of the technology transfer. In our case, the

recipient was the Department of Mathematical Biology of the National Cancer Insti­

tute (NCI). From the very beginning, we had contracted for delivery of a Splash 2

system and working code for the sequence comparison problem as part of a Memo­

randum of Understanding with NCI. Although final funding approval did not come

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 197

Petitioner Microsoft Corporation - Ex. 1007, p. 181

Appendix A Splash 2 Development-The Project Manager's Summary 181

until the spring, we had the go-ahead, rather shortly after the October 16 presentation,
to continue with Splash 2.

Architectural design proceeded through the fall of 1991. The actual engineering
and construction of Splash 2 were to have been done under a contract with a private
company that was handling both Splash 2 and another novel machine-TERASYS­
being built by SRC. TERASYS had started about four months earlier than Splash 2,
and the first change in the general project plan came in February of 1992. Due to
cost overruns, it was clear that TERASYS and Splash 2 could not both be completed
under the outside contract. Since TERASYS was nearer completion, a decision was
made to pull back into SRC the design and construction of Splash 2.

This was to be the first of several headaches. An ongoing problem was that of
obtaining cabinets in which to house the Splash 2 system. The early choice of the
Futurebus+ backplane by the contractor proved to be ill-advised. We went through
no fewer than three complete bid procedures to obtain cabinets and backplanes­
vendor A supplied one model A cabinet, then got out of the Futurebus+ business;
vendor B then did the same thing, by the end of which time vendor A was back in
the Futurebus+ business and supplied still a third version. Fortunately, all models
actually did work, but the lack of uniformity and the effort spent in procurement was
a great annoyance.

A more critical problem was the discovery, in the spring of 1992, that the TI
switch chips planned for use in the crossbar were no longer in production. By this
time, we had committed to a planned 10 Splash 2 systems, some 40 array boards,
needing a total of 360 switch chips (plus spares). We quickly cornered the market
on the switch chips known to exist, although we were naturally forced to pay a
premium price for them. From then on, the number of available switch chips was the
limiting factor in the number of Splash 2 systems that could be built. Later, when
technology transfer was being discussed with commercial enterprises, this was the
single greatest sticking point, which more than once almost brought things grinding
to a halt.

Had we been able to change switch chips, even at that relatively late date, we
might well have done so, but there was not then and there still does not exist a
genuine substitute for the TI chips we had chosen. We felt we needed on the array
card the ability to get across the crossbar in one tick and the ability to change, on
a tick-by-tick basis, the configuration of the crossbar. The former capability allows
a programmer to treat crossbar or linear FPGA-to-FPGA data transfers as identical,
so that algorithms and programming do not require explicit pipelines or hierarchy.
The latter allows flexibility in an algorithm and reduces the impact of a scarcity of
resources.

Later revisionist thoughts on how the crossbar should or could have been done
included using FPGAs or multiple Aptix chips. The TI chips permitted as many as
eight configurations, but no applications that were implemented actually used more
than four. The longer time for reconfiguration required by either alternative could
have been taken care of by having as many as four devices on a board and the choice
of configuration made with a multiplexor selection of one of the four "static" options.

Although progress on the Splash 2 hardware seemed at times to go in fits and
starts, progress on the software was rapid through 1992. By the end of February,
a working version of a simulator for the Splash 2 hardware existed, and a brief
workshop was held at the end of the month to train the first guinea-pig group of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 198

Petitioner Microsoft Corporation - Ex. 1007, p. 182

182 Splash 2 Development-The Project Manager's Summary Appendix A

programmers. Although one of the initial group was so disillusioned as to vow never
to get near Splash 2 again, the general response was guardedly positive. We were
indeed in uncharted waters, using for programming a language (VHDL) not intended
for programming, and using VHDL tools from Synopsys and Model Technologies
for purposes other than those for which they had been intended, by users much more
naive (with regard to circuit design) than was ever the plan of these vendors. Also,
the simulator was imperfect and incomplete at first.

All in all, programming the Splash 2 simulator in the spring and early summer
of 1992 was not an entirely pleasant task. But we had begun the project with only
a hazy understanding of what we needed and wanted, and it was crucial to the
development of the software environment that genuine efforts be made to use the
tools. We could not have laid out the specifications a priori; what evolved was a
compromise between what was needed by the programmers and what was possible
given the tools.

The patience and cooperation of the "programmers" in this period was matched
only by the skill of those who were continually rewriting and upgrading the simulator
and tools, notably Jeff Arnold. In a world of modem windows-based software tools,
we were necessarily conducting a human-factors experiment on our own people on the
level of frustration acceptable to goal-oriented application programmers working with
changing tools. Remarkably, with the one exception, all the commitments were carried
through to completion, and the systems software personnel for their part survived the
onslaught of users clamoring for bug fixes and the instant implementation of the
planned features currently holding up their progress.

Beginning with discussions with Synopsys management in June of 1992, we
attempted to influence the development of VHDL simulation and synthesis tools
aimed at "programming" applications on (to begin with, Xilinx) FPGAs. This led to
a contract with Synopsys for a product later to become their FPGA Compiler. For
several months Jeff Arnold went back and forth with Synopsys on a list of needs
and wants that would make their tool look to a programmer more like a "regular
compiler" for a language like C or Fortran.

Crucial to eventual success was the discovery during this period that the
underlying Xilinx hardware and software was a significant improvement over what
had gone before. Two problems with the XC3090 chips and their attendant apr

software for placement and routing were that the chips themselves were a little too
small to accommodate a natural "unit of computation" for many applications and that
apr, as it existed in about 1990, had major drawbacks. It often either took too long
to run or failed to route an entire design, especially if left to work "automatically,"
that is, without human intervention to guide the placement and routing. We intended
to use the XC4010 ppr software as "automatic" software without any help from a
user assumed to be uninterested or unable to help the design process. It was a great
relief, then, to find that it was possible to write VHDL code for realistic applications
that used a significant fraction (75 percent or more) of the XC4010 chips and to
have the Synopsys and Xilinx tools synthesize, place, and route the program/design
into a Xilinx bitfile that would allegedly execute at 10-25 MHz. One reason for this
improved performance of the placement and routing software clearly seemed to be
that the XC4000 series chips have a much better balance between logic resources
and routing resources. In one very special instance of the DNA sequence comparison
program, which has an extremely regular structure, it was possible to utilize all of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 199

Petitioner Microsoft Corporation - Ex. 1007, p. 183

Appendix A Splash 2 Development-The Project Manager's Summary 183

the CLBs on a chip and still have the VHDL-to-bitfile translation take place without
human intervention.

The summer of 1992 was a vigorous and rowdy period in the life of the Splash 2
project, in part due to the presence of five summer students working on various
aspects of hardware, software, and applications programs. It was in this period that
the explosive growth toward a usable programming environment took place-a large
number of both small and large applications were tried, fixes or work-arounds for
problems or bugs were found and shared, and tools to assist program development
were written. (As always, the work of programming benefits from the deep and
abiding sloth of students who insist on writing tools because they are too lazy to do
things "the hard way.")

From the beginning of the project, and continuing through until about March
of 1993, we had been conducting a vigorous search for good test applications. Over
the course of the project we spoke at more than 20 universities, 15 companies,
10 government agencies, and 9 conferences. From the very beginning, of course,
we had the sequence comparison problem from NCI as a "must do" application, and
work began early in 1992 on a solution to this problem, leading to the paper presented
as a later chapter of this book. But this by itself would clearly not be enough.

A potential problem from the National Center for Biotechnology Information
involving clustering of bibliographic records was a moderately good match for
Splash 2, but a single complete run would take two years (compared with 10 months
on a Thinking Machines CM-2 supercomputer); this was dropped. Discussions with
a NASA contractor on the use of Splash 2 as a platform on which to do rapid proto­
typing were positive. An engineer from the company spent several weeks at SRC and
came away with very positive thoughts, but the lack of extant hardware to borrow
or buy was probably the show stopper in that deadline-driven world of government
contracting-we were a little too far ahead of the curve for them to use Splash 2 to
advantage.

I had visited VPI, however, on an early speaking trip through North Carolina and
Virginia in September of 1991, and our discussions with members of the Electrical
Engineering Department had continued. Peter Athanas had recently finished his Ph.D.
at Brown University working on the PRISM FPGA project, and had then joined the
faculty at VPI. Lynn Abbott had interesting problems in image processing and a desire
to explore the use of FPGAs in hardware to accelerate the computations. The presence
of Jim Armstrong suggested strong support for and solid expertise in VHDL among
the students. All this was helped by the fact that John McHenry, who had spent two
summers at SRC working first on Splash I and then on Splash 2, was finishing his
Ph.D. in the department and knew the program well. When IDA Headquarters made
money available for a university contract for Splash 2 applications and research, VPI
was a natural choice. The ongoing relationship has been close and profitable, and a
summary of their work on Splash 2 appears earlier in this book.

The variation of image processing necessary to do fingerprint matching had been
discussed as a possible Splash 2 application at the October 16, 1991, presentation
to government agencies. We had, at times, talked with the FBI and with potential
government contractors about machines to match fingerprints, but had failed to land
upon a definable experiment that could be performed. The second IDA contract thus
went to Anil Jain and Diane Rover at Michigan State University after a trip I made
there in January of I 993, and their work is also reported here.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 200

Petitioner Microsoft Corporation - Ex. 1007, p. 184

184 Splash 2 Development-The Project Manager's Summary Appendix A

Not everything was proceeding smoothly, however. What with having to pull
the design back from the contractor and the switch chip and cabinet/backplane delays,
a planned "hardware working" date for fall of 1992 slipped, then slipped again, then
slipped still further as some of the Splash 2 engineers were time-sliced with the
ongoing TERASYS project. Such delays might have killed Splash 2 in an organization
that required a marketable product or needed to keep tighter control on employee time
invested. At SRC, however, although we were always subject to the possibility that
key players would feel compelled to drop everything to take advantage of a window
of opportunity elsewhere, we were allowed to make our steady but sometimes slow
progress. One could even argue (if one had to) that the hardware delays worked to
the benefit of the system results by allowing more time to be spent on debugging
and streamlining the process of developing applications code.

Finally, on Thursday afternoon, February 18, 1993, the first Splash 2 hardware
system worked. Jeff Arnold downloaded an edge-detection program to an array board,
streamed the pixels of a digitized image through the board, and received as output
the edges of the image.

From then on, replication of the hardware components was rapid. Although we
had stretched our resources to the limit in committing to build 10 Splash 2 systems,
demand soon exceeded the supply. In addition to the systems committed to VPI,
MSU, NCI, and to SRC for its own purposes, university researchers and outside
companies were beginning to call to ask how copies of Splash 2 could be bought or
borrowed. Even without the obvious problem presented by the switch chip, SRC was
faced with a very difficult dilemma. Further Splash 2 clones were impossible without
either redesigning the array board (and modifying the systems software accordingly)
or designing a new, functionally equivalent and pin-compatible chip to fit into the
existing board design. Neither option seemed attractive. Further, it was clear that SRC
could not afford the real dollar and personnel cost of becoming the manufacturing
and maintenance organization for Splash 2. Success, in this case, could come with a
heavy price tag.

After some months of deliberation and at least one false start, SRC's gov­
ernment sponsors undertook in the first part of 1994 the technology transfer and
commercialization of Splash 2. Outside private companies were to be granted, for
$100, a complete data dump of schematics, diagnostics, manuals, and code, together
with some guidance from SRC about things done right, things done wrong, and
things that should simply be done in a different way. An initial group of potential
licensees was brought to SRC for a presentation in March of 1994. The first license
was issued soon after that; within six months 10 companies had obtained licenses,
and by the end of calendar year 1994 the first commercial Splash 2 derivatives had
become available.

Not all of the many licensees have the intention of producing anything like
a commercial version of Splash 2. There are several other processors, board, and
systems available or nearly available from other companies; some of the licensees
have more of an interest in the software we developed for programming an FPGA­
based machine or the general systems approach we took than in the specific details of
Splash 2. A small consortium of licensees has formed to target an image processing
market; the companies involved have divided the hardware, software, and applications
into areas where each can contribute from its strength and benefit from cooperation
with the others. ·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 201

Petitioner Microsoft Corporation - Ex. 1007, p. 185

Appendix A Splash 2 Development-The Project Manager's Summary 185

From the earliest days of .the Splash 2 project, I had insisted that we could
declare victory if any one of these criteria were met:

1. Splash 2 would be used to get real work done and not just provide demonstra­
tions of capability.

2. Someone who did not get an SRC paycheck would use Splash 2 in his/her work
and not walk away vowing "Never again!"

3. Some commercial machine would appear and have a clear and traceable ancestry
to Splash 2.

It is perhaps too soon, and we are perhaps too close to the matter, to judge exactly
why we succeeded; I leave such analysis to others. Having a brilliant and dedicated
technical team was a major factor. Not having a particular target application helped­
we were free to search for reasonable applications that would be successes. Not having
marketability and "productizing" constraints helped. Not having a deadline that forced
us to abandon "the right thing to do" in order to meet the deadline helped. But as it
has turned out, not just one but all three of my criteria have been met. Further, we
have effected something often talked about but seemingly rarely ever done-we have
been able to convert proof-of-concept technology, developed at government expense
as an engineering research project, into products available for sale from private-sector
companies whose personnel rosters do not intersect the list of principals from the
research project.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 202

Petitioner Microsoft Corporation - Ex. 1007, p. 186

APPENDIX B

186

An Example Application

Jeffrey M. Arnold1

In this appendix we illustrate the Splash 2 programming style through an example
application written in VHDL. This example, a simpli;; digital filter, is much smaller
than most Splash 2 applications, but does touch many of the issues facing the pro­
grammer. Equation 1 shows the general form of a finite impulse response (FIR) filter:

Lj I;-1F1
Q; = C (1)

where J is the input data stream, F is the set of filter coefficients, C is a constant
scale factor, and Q is the output data stream.

In this example the input data is a stream of 12-bit signed integer samples, the
output is a stream of 16-bit signed integers, and the filter is a five-tap low-pass filter
with constant coefficients. The filter can be viewed as a weighted sum computed on
a sliding window of the input data followed by the application of a constant scale
factor. A block diagram of this interpretation of the filter is shown in Figure B.1.

This application is simple enough to be mapped entirely onto a single Processing
Element, obviating the need to partition across multiple FPGAs. The input data
arrives on the left port of the PE at the rate of one 12-bit sample per clock cycle
conditioned by a valid data tag. The output data is produced at the same rate on the
right port. For the sake of simplicity we assume the filter coefficients are powers of
two, F = {l, 4, 8, 4, l}, eliminating the need for combinational multipliers. The five­
input add operator is implemented as a pipelined tree of two input adders. Finally,
the division by the constant scale factor C is implemented by table lookup in the

1 A version of this chapter appeared as Arnold and Buell [I) and is used with permission.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 203

Petitioner Microsoft Corporation - Ex. 1007, p. 187

Appendix B An Example Application

I

Q
FIGURE 8.1 Block Diagram of
Five-Tap FIR Filter

187

external RAM. The output of the add operator is used to index into the table and the
contents of the addressed location is returned as the output of the filter.

Figure B.2 shows the annotated VHDL FIR program. The Processing Element
entity declaration is shown in Figure 6.1 and is not reproduced here. The 12-bit input
stream enters the PE on the left port (XP_Lef t), a weighted sum over a five-element
window of the stream is computed, the sum is scaled by table lookup in the external
memory, and a 16-bit result stream is sent to the right port (XP_Right). The first four
lines of the architecture specify data type and parametric information that would be
placed more appropriately in a separate package, but are included here for brevity.
Line 2 defines the type of the input stream samples to be 12-bit signed integers.
Line 3 declares the data type to be used for vectors of Sample s. The number of
filter taps (the data "window") is defined to be a constant 5 in line 4. Line 5 defines
the set of coefficients by which each element of the window is to be multiplied.
Note that for the sake of efficiency the coefficients are chosen to be powers of two,
obviating the need to synthesize combinational multipliers. In general, though, the
coefficient vector could be any set of constant integers; the compilation tools will
synthesize the appropriate logic.

The next five lines (6-10) are declarations of internal signal objects, the storage
elements of the program. Line _Buf f e r contains the sliding window of data samples
to be filtered. suml, s um2, and s um3 are temporary registers that hold intermediate
values. The remaining signals constitute the interfaces to the external memory and
to the neighboring PEs.

The body of the architecture contains two synchronous processes and one con­
current procedure call. The synchronous processes respectively compute the weighted
sum and interface to the external memory. The Filter process declares an internal
variable, Sum, which is used as an identifier for an intermediate value. By choosing
to make sum a variable rather than a signal, no register will be inferred. Within the
body of the process, the call to the procedure Pad_Input performs type conversion
from the port type RBit 3 to the intrinsic BiLVe c t o r type. By placing the procedure
call within the body of the clocked process, a pipeline register is implicitly added.
This is a standard practice used on most input and output ports, designed to improve
performance by allowing the IOB flip-flops in the Xilinx XC4010 FPGA to be used
to stage data onto and off of the PE.

The FOR loop in lines 17-19 shifts the data window by one sample each clock
cycle. Because signal assignments take effect after the execution of the process, all

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 204

Petitioner Microsoft Corporation - Ex. 1007, p. 188

188 An Example Application Appendix B

1 ARCHITECTURE FIR OF Processing_Element IS
2 SUBTYPE Sample IS Integer range -(2**11) to (2**11 - 1);
3 TYPE Sample_Vector IS Array (Integer range<>) of Sample;
4 CONSTANT NTaps Integer := 5;
5 CONSTANT Coeff Sample_Vector(0 to NTaps-1) := (1,4,8,4,1);
6 Sample_Vector(0 to NTaps-1); SIGNAL Line_Buffer
7 sum3 Integer range -(2**14) to (2**14 - 1); SIGNAL suml, sum2,
8 Bit_Vector(MAR_RANGE-1 downto 0); SIGNAL madr
9 Bit_Vector(MEM_WIDTH-1 downto 0); SIGNAL mdata_in
10 Bit_Vector(Datapath_Width-1 downto 0); SIGNAL Left, Right
11 BEGIN FIR
12 Filter: PROCESS
13 VARIABLE Sum Integer;
14 BEGIN
15 WAIT UNTIL XP_Clk'Event and XP_Clk '1';
16 Pad_Input(XP_Left, Left);
17 FOR i IN 1 to NTaps-1 LOOP
18 Line_Buffer(i) <= Line_Buffer(i-1);
19 END LOOP;
20 IF (Left(35) = '1') THEN
21 Line_Buffer(0) <= Conv_Integer(Left(ll downto 0));
22 ELSE
23 Line_Buffer(0) <= 0;
24 END IF;
25 suml <= (Line_Buffer(0) * Coeff(0)) + (Line_Buffer(l) * Coeff(l));
26 sum2 <= (Line_Buffer(2) * Coeff(2)) + (Line_Buffer(3) * Coeff(3));
27 sum3 <= Line_Buffer(4) * Coeff(4);
28 sum .- suml + sum2 + sum3;
29 madr <= CONV_Unsigned(sum, MAR_Range);
30 END PROCESS Filter;
31 Mem_Access : PROCESS
32 BEGIN
33
34

WAIT UNTIL XP_Clk'Event and XP_Clk
XP_Mem_Rd_L <= '0';

35 XP_Mem_Wr_L <= '1';
36 Pad_Output (XP_Mem_A, madr);
37 Pad_Input (XP_Mem_D, mdata_in);
38 Right(15 downto 0) <= mdata_in;
39 END PROCESS Mem_Access;
40 Pad_Output(XP_Right, Right);
41 END FIR;

, 1';

FIGURE B.2 Body of Finite Impulse Response Program

assignments occur in parallel, so the direction of iteration is not significant. Lines 20
through 25 control the loading of the window buffer: if bit 35 of the input stream is
a '1' the low-order 12 bits are converted to integer and shifted into Line_Buffer;
otherwise a constant zero is shifted in. The weighted sum is computed in two pipeline
stages by lines 25-29. In the first stage each window element is "multiplied" by
its coefficient (in zero time and area, as the coefficients are powers of two), and
three partial sums are computed and stored in registers (suml, sum2, and sum3). In

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 205

Petitioner Microsoft Corporation - Ex. 1007, p. 189

References 189

28a sum4 <= suml + sum2;

28b sums < = sum3;

2 8c sum . - sum4 + sum4; FIGURE B.3 Optimized Final Addition

the second stage a three-input sum is computed, the type is converted to unsigned

bit vector and zero extended to the length of MAR_Range (the size of the memory

address), and stored in the memory address register, madr, in preparation for the

table lookup.
The second synchronous process latches the address (the weighted sum com­

puted by Filter) to the external memory, and the scaled result returned from the

memory. These pipeline stages are necessary to ensure that the memory address, data,

and control signals are registered in the IOBs of the FPGA. The memory control sig­

nals, XP ...Mem_Rd_L, and XP ...Mem_wr _L, are held constant by lines 34-35, forcing the

memory to always read. Line 38 is an additional pipeline register on the return data

prior to transmission to the next PE. By registering the data here, the assignment

to the XP_Right port may be performed outside of the process by the concurrent

procedure call in line 40.
There are six total pipeline stages in this program:

• the assignment of the input data to the Left signal (line 16)

• the computation of the partial sums suml, sum2, and sum3 (lines 25-27)

• the calculation of the final sum, madr (lines 28-29)

• the assignment to the memory address register, XP ...Mem_A (line 36)

• the return data from the memory, mdata_in (line 37)

• the assignment into the output data register, Right (line 38)

When this program is compiled it occupies 61 of the 400 CLBs, or 15 percent of the

available real estate. The critical path delay is 106 ns, limiting the maximum clock

frequency to 9.3 MHz. The static timing analyzer shows the critical path is through

the three-input adder in line 28. If we needed to optimize the performance of this

design further, an extra pipeline stage could be added as shown in Figure B.3.

REFERENCES

[1] J.M. Arnold and D.A. Buell, "VHDL programming on Splash 2," in W. Moore and W.

Luk, eds., More FPGAs, Abingdon EE & CS Books, Abingdon, England, UK, 1994, pp.

182-191.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 206

Petitioner Microsoft Corporation - Ex. 1007, p. 190

Bibliography

190

"Application Briefs: Computer Graphics in the Detective Business," IEEE Computer Graphics
and Applications, Vol. 5, Apr. 1985, pp. 14-17.

A.L. Abbott et al., "Fir.ding Lines and Building Pyramids with Splash-2," Proc. IEEE Work­
shop FPGAsfor Custom Computing, CS Press, Los Alamitos, Calif., 1994, pp. 155-163.

A.L Abbott, R.M. Haralick, and X. Zhuang, "Pipeline Architectures for Morphologic Image
Analysis," Machine Vision and Applications, Vol. 1, No. 1, 1988, pp. 23-40.

L. Agarwal, M. Wazlowski, and S. Ghosh, "An Asynchronous Approach to Efficient Execution
of Programs on Adaptive Architectures Utilizing FPGAs," Proc. IEEE Workshop FPGAs
for Custom Computing, CS Press, Los Alamitos, Calif., 1994, pp. 101-110.

Algotronix Ltd., The Configurable Logic Data Book, Algotronix Ltd., Edinburgh, Scotland,
UK, 1990.

R. Amerson et al., "Teramac-Configurable Custom Computing," Proc. IEEE Symp. FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 32-38.

A.A. Apostolico et al., "Efficient Parallel Algorithms for String Editing and Related Problems,"
SIAM J. on Computing, Vol. 19, 1990, pp. 968-988.

J.M. Arnold, "The Splash 2 Software Environment," Proc. IEEE Workshop FPGAsfor Custom
Computing Machines, CS Press, Los Alamitos, Calif. , 1993, pp. 88-94.

J.M. Arnold, "The Splash 2 Software Environment," J. of Supercomputing, Vol. 9, 1995,
pp. 277-290.

J.M. Arnold and D.A. Buell, "VHDL Programming on Splash 2," in W. Moore and W. Luk,
eds., More FPGAs, Abingdon EE & CS Books, Abingdon, England, UK, 1994, pp. 182-191.

__J

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 207

Petitioner Microsoft Corporation - Ex. 1007, p. 191

1
:1
I

Bibliography 191

J.M. Arnold, D.A. Buell, and E.G, Davis, "Splash 2," ACM Symp. Parallel Algorithms and
Architectures, ACM Press, New York, 1992, pp. 316-322.

J.M. Arnold et al., "The Splash 2 Processor and Applications," Proc. Int'l Conj Computer
Design, CS Press, Los Alamitos, Calif., 1993, pp. 482-485.

J.M. Arnold and M.A. McGarry, "Splash 2 Programmer's Manual," Tech. Report SRC-TR-
93-107, SRC, Bowie, Md., 1993.

P.M. Athanas, "Functional Reconfigurable Architecture and Compiler for Adaptive Comput­
ing," Proc. 1993 Int'l Phoenix Computer and Comm. Conj, CS Press, Los Alamitos, Calif.,
1993, pp. 49-55.

P.M. Athanas and AL. Abbott, "Processing Images in Real Time on a Custom Computing
Platform," in R.W. Hartenstein and M.Z. Servit, eds., Field-Programmable Logic: Archi­
tectures, Synthesis, and Applications, Springer-Verlag, Berlin, 1994, pp. 156-167.

P.M. Athanas and K.L. Pocek, eds., Proc. IEEE Symp. FPGAs for Custom Computing
Machines, CS Press, Los Alamitos, Calif., 1995.

P.M. Athanas and H.F. Silverman, "An Adaptive Hardware Machine Architecture for Dynamic
Processor Reconfiguration," Proc. Int'l Conj Computer Design, CS Press, Los Alamitos,
Calif., 1991, pp. 397-400.

P.M. Athanas and H.F. Silverman, "Processor Reconfiguration through Instruction Set Meta­
morphosis: Architecture and Compiler," Computer, Vol. 26, No. 3, Mar. 1993, pp. 11-18.

J. Babb, R. Tessier, and A. Agarwal, "Virtual Wires: Overcoming Pin Limitations in FPGA­
Based Logic Emulators," Proc. IEEE Workshop FPGAs for Custom Computing Machines,

, CS Press, Los Alamitos, Calif., 1993, pp. 142-151.

S.L. Bade and B.L. Hutchings, "FPGA-Based Stochastic Neural Networks-Implementation,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 189-199.

J.P. Banatre, D. Lavenier, and M. Vieillot, "From High Level Programming Model to FPGA
Machines," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1994, pp. 119-125.

R.A. Bergamaschi, "High-Level Synthesis in a Production Environment: Methodology and
Algorithms," in J.P. Mermet, ed., Fundamentals and Standards in Hardware Description
Languages, Kluwer Academic Publishers, Boston, 1993, pp. 195-230.

N.W. Bergmann and J.C. Mudge, "Comparing the Performance of FPGA-Based Custom
Computers with General-Purpose Computers for DSP Applications," Proc. IEEE Work­
shop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,
pp. 164-172.

P. Bertin, Memoires Actives Programmables: Conception, Realisation et Programmation, PhD
thesis, Universite Paris 7, 1993.

P. Bertin, D. Roncin, and J. Vuillemin, "Programmable Active Memories: A Performance
Assessment," in G. Borriello and C. Ebeling, eds., Research on Integrated Systems: Pro­
ceedings of the '93 Symposium, MIT Press, Cambridge, Mass., 1993, pp. 88-102.

P. Bertin and H. Touati, "PAM Programming Environments: Practice and Experience," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1994, pp. 133-139.

B. Box, "Field Programmable Gate Array Based Reconfigurable Preprocessor," Proc. IEEE
Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,
pp. 40-49.

B. Box and J. Nieznanski, "Common Processor Element Packaging," Proc. IEEE Symp. FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 39-46.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 208

Petitioner Microsoft Corporation - Ex. 1007, p. 192

192 Bibliography

F. Brooks, The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1975. (The notion of
"second-system effect" seems to come from Brooks, although this precise definition comes
from The Hacker's Dictionary, by Guy L. Steele, Jr.)

S.D. Brown et al., Field-Programmable Gate Arrays, Kluwer Academic Publishers, Boston,
1992.

D.A. Buell and K.L. Pocek, eds., Proc. IEEE Workshop FPGAs for Custom Computing

Machines, CS Press, Los Alamitos, Calif., 1993.

D.A. Buell and K.L. Pacek, eds., Proc. IEEE Workshop FPGAs for Custom Computing

Machines, CS Press, Los Alamitos, Calif., 1994.

D.A. Buell and K.L. Pocek, "Custom Computing Machines: An Introduction," J. of Super­

computing, Vol. 9, 1995, pp. 219-230.

D.A. Buell and N. Shirazi, "A Splash 2 Tutorial," Tech. Report SRC-TR-92-087 (revised),

SRC, Bowie, Md., 1993.

P.J. Burt and E.H. Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE Trans.

Coinm., Vol. COM-31 , No. 4, Apr. 1983, pp. 532-540.

R. Camposano et al., "The IBM High-Level Synthesis System," R. Camposano and Wayne
Wolf, eds., High Level Synthesis, Kluwer Academic Publishers, Boston, 1991, pp. 79-104.

J.M. Carrera et al., "Architecture of a FPGA-Based Coprocessor: The PAR-1," Proc. IEEE

Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp. 20-29.

S. Casselman, "Virtual Computing and the Virtual Computer," Proc. IEEE Workshop FPGAs

for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 43--49.

P.K. Chan and M.D.F. Schlag, "Architectural Tradeoffs in Field-Programmable-Device-Based
Computing Systems," Proc. IEEE Workshop FPGAs for Custom Computing Machines,

CS Press, Los Alamitos, Calif., 1993, pp. 152-162.

L. Chen, "Fast Generation of Gaussian and Laplacian Image Pyramids Using an FPGA-based
Custom Computing Platform," master's thesis, Virginia Polytechnic Inst., Blacksburg, Va.,
1994.

H.A. Chow, H. Alnuweiri, and S. Casselman, "FPGA-Based Transformable Computers for
Fast Digital Signal Processing," Proc. IEEE Symp. FPGAsfor Custom Computing Machines,

CS Press, Los Alamitos, Calif., 1995, pp. 197-203.

Concurrent Logic Inc., Cli6000 Series Field-Programmable Gate Arrays, Concurrent Logic
Inc., Sunnyvale, Calif., 1992.

N.G. Core et al., "Supercomputers and Biological Sequence Comparison Algorithms," Com­

puters and Biomedical Research, Vol. 22, No. 6, 1989, pp. 497-515.

C.P. Cowen and S. Monaghan, "A Reconfigurable Monte-Carlo Clustering Processor

(MCCP)," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los

Alamitos, Calif., 1994, pp. 59-66.

C.E. Cox and W. Ekkehard Blanz, "Ganglion-a Fast Hardware Implementation of a Con­
nectionist Classifier," IBM Research Report RJ8290, Proc. 1991 IEEE Custom Integrated

Circuits Conf., IEEE Press, Piscataway, NJ., 1991, pp. 6.5.1-6.5.4.

S.A. Cuccaro and C.F. Reese, "The CM-2X: A Hybrid CM-2/Xilinx Prototype," Proc. IEEE

Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993,
pp. 121-131.

M. Dahl et al., "Emulation of the Sparcle Microprocessor with the MIT Virtual Wires Emu­
lation System," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif. , 1994, pp. 14-23.

i

.l

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 209

Petitioner Microsoft Corporation - Ex. 1007, p. 193

Bibliography 193

M. Dao et al., "Acceleration of Template Based Ray Casting for Volume Visualization Using

FPGAs," Proc. IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alami­

tos, Calif., 1995, pp. 116-124.

J. Damauer et al., "A Field Programmable Multi-Chip Module (FPMCM)," Proc. IEEE

Workshop FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,

pp. 1-11.

Datacube, Inc., The MaxVideo 200 Reference Manual, Datacube, Inc., Danvers, Mass., 1994.

A. DeHon, "DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st Century,"

Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,

Calif., 1994, pp. 31-40.

A.S. Deshpande, D.S. Richards, and W.R. Pearson, "A Platform for Biological Sequence

Comparison on Parallel Computers," CAB/OS, Vol. 7, No. 2, April 1991, p. 237.

P.M. Dew, R.A. Earnshaw, and T.R. Heywood, eds., Parallel Processing for Computer Vision

and Display, Addison-Wesley, Reading, Mass., 1989.

P. Dhaussy et al., "Global Control Synthesis for an MIMD/FPGA Machine," Proc. IEEE

Workshop FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,

pp. 72-82.

T. Drayer et al., "MORRPH: A MOdular and Reprogrammable Real-Time Processing Hard­

ware," Proc. IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alamitos,

Calif., 1995, pp. 11-19.

R.O. Duda and P.E. Hart, "Use of the Hough Transform to Detect Lines and Curves in

Pictures," Comm. oftheACM, Vol. 15, 1972, pp. 11-15.

J.G. Eldredge and B.L. Hutchings, "Density Enhancement of a Neural Network Using FPGAs

and Run-Time Reconfiguration," Proc. IEEE Workshop FPGAs for Custom Computing

Machines, CS Press, Los Alamitos, Calif., 1994, pp. 180-189.

R. Elliott, "Hardware Implementation of a Straight Line Detector for Image Processing,"

master's thesis, Virginia Polytechnic Inst., Blacksburg,Va., 1993.

Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses, U.S.

Govt. Printing Office, Washington, D.C., 1984.

P.W. Foulk, "Data Folding in SRAM Configurable FPGAs," Proc. IEEE Workshop FPGAs

for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 163-172.

P.C. French and R.W. Taylor, "A Self-Reconfiguring Processor," Proc. IEEE Workshop

FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 50-60.

K.A. Frenkel, "The Human Genome Project and Informatics," Comm. of the ACM, Vol. 34,

No. 11, 1991, pp. 41-51.

D. Gajski, ed., Silicon Compilation, Addison-Wesley, Reading, Mass., 1988.

D. Galloway, "The Transmogrifier C Hardware Description Language and Compiler for

FPGAs," Proc. IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alami­

tos, Calif., 1995, pp. 136-144. ··

G.J. Gent, S.R. Smith, and R.L. Haviland, "An FPGA-Based Custom Coprocessor for Auto­

matic Image Segmentation Applications," Proc. IEEE Workshop FPGAs for Custom Com­

puting Machines, CS Press, Los Alamitos, Calif., 1994, pp. 172-180.

M. Gokhale, W. Holmes, and K. Jobst, "Processing in Memory: The Terasys Massively Parallel

Processor Array," Computer, Vol. 28, No. 4, Apr. 1995, pp. 23-31.

M. Gokhale et al., "Building and Using a Highly Parallel Programmable Logic Array," Com­

puter, Vol. 24, No. 1, Jan. 1991, pp. 81-89.

M. Gokhale et al., "The Logic Description Generator," Tech. Report SRC-TR-90-011, SRC,

Bowie, Md., 1990.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 210

Petitioner Microsoft Corporation - Ex. 1007, p. 194

194 Bibliography

M. Gokhale and R. Minnich, "FPGA Programming in a Data Parallel C," Proc. IEEE Workshop
FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 94-102.

M. Gokhale and B. Schott, "Data Parallel C on a Reconfigurable Logic Array," J. of Super­
computing, Vol. 9, 1995, pp. 291-314.

J.P. Gray and T.A. Kean, "Configurable Hardware: A New Paradigm for Computation," C.L.
Seitz, ed., Advanced Research in VLSI, MIT Press, Cambridge, Mass., 1989, pp. 279-295.

H. Grtinbacher and R.W. Hartenstein, eds., Field Programmable Gate Arrays: Architectures
and Tools for Rapid Prototyping, Springer-Verlag, Berlin, 1993. (Lecture Notes in Computer
Science #705).

S.A. Guccione and M.J. Gonzalez, "A Data-Parallel Programming Model for Reconfigurable
Architectures," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif., 1993, pp. 79-88.

R.K. Gupta and C.N. Coelho Jr., "Program Implementation Schemes for Hardware-Software
Systems," Computer, Vol. 27, No. 1, Jan. 1994, pp. 48-55.

J. Hadley and B. Hutchings, "Design Methodologies for Partially Reconfigured Systems,"
Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1995, pp. 78-84.

R.W. Hartenstein, R. Kress, and H. Reinig, "A Reconfigurable Data-Driven ALU for Xputers,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 139-147.

S. Hauck and G. Borriello, "Pin Assignment for Multi-FPGA Systems," Proc. IEEE Workshop
FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 11-14.

K. Hayashi et al., "Reconfigurable Real-Time Signal Transport System Using Custom FPGAs,"
Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1995, pp. 68-75.

B.U. Heeb, Debora: A System for the Development of Field-Programmable Hardware, and Its
Application to a Reconfigurable Computer, PhD thesis, VDF, Informatik Dissertationen 45,
ETH Ziirich, Ziirich, Switzerland, 1993.

B.U. Heeb and C. Pfister, "Chameleon, a Workstation of a Different Color," in H. Grtinbacher
and R.W. Hartenstein, eds., Field Programmable Gate Arrays: Architectures and Tools for
Rapid Prototyping, Springer-Verlag, Berlin, 1993, pp. 152-161.

J.H. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kauffmann Publishers, San Mateo, Calif., 1990.

H.-J. Herpel et al., "A Reconfigurable Computer for Embedded Control Applications," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 111-121.

Sir W.J. Herschel, The Origin of Fingerprinting, AMS Press, New York, 1974.

W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1986.

D.T. Hoang, "A Systolic Array for the Sequence Alignment Problem," Tech. Report CS-92-22,
Brown Univ., Providence, R.I., 1992.

D.T. Hoang, "Searching Genetic Databases on Splash 2," Proc. IEEE Workshop FPGAs for
Custom Computing Machines, CS Press, Los Alamitos, Calif. , 1993, pp. 185-192.

D.T. Hoang and D.P. Lopresti, "FPGA Implementation of Systolic Sequence Alignment," in
H. Grtinbacher and R.W. Hartenstein, eds., Field Programmable Gate Arrays: Architectures
and Tools for Rapid Prototyping, Springer-Verlag, Berlin, 1993, pp. 183-191.

H. Hog! et al. , "Enable++: A Second Generation FPGA Processor," Proc. IEEE Symp. FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 45-53.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 211

Petitioner Microsoft Corporation - Ex. 1007, p. 195

Bibliography 195

P.V.C. Hough, "A Method and Means for Recognizing Complex Patterns," U.S. Patent
No. 3,069,654, 1962.

R.P. Hughey, Programmable Systolic Arrays, PhD thesis CS-91-34, Brown Univ., Providence,
R.I., 1991.

IEEE Standard VHDL Language Reference Manual, Std 1076-1987, IEEE Press, New York,

1988.

IEEE Standard VHDL Language Reference Manual, Std 1076-1992, IEEE Press, New York,
1992.

C. Iseli and E. Sanchez, "Spyder: A Reconfigurable VLIW Processor Using FPGAs," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1993, pp. 17-25.

C. Iseli and E. Sanchez, "A C++ Compiler for FPGA Custom Execution Units Synthesis,"
Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1995, pp. 173-179.

C. Iseli and E. Sanchez, "Spyder: A SURE, SUperscalar and REconfigurable, Processor," J. of
Supercomputing, Vol. 9, 1995, pp. 231-252.

B. Jahne, Digital Image Processing, Springer-Verlag, New York, 1991.

AK. Jain, "Advances in Statistical Pattern Recognition," in Pattern Recognition Theory and
Applications, P.A. Devijer and J. Kittler, eds., Springer-Verlag, New York, 1987, pp. 1-19.

A. Jantsch et al., "A Case Study on Hardware/Software Partitioning," Proc. IEEE Work­
shop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,
pp. 111-119.

C. Jones et al., "Issues in Wireless Video Coding Using Run-Time-Reconfiguration FPGAs,"
Proc. IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1995, pp. 85-89.

R. Jones, "Protein Sequence and Structure Comparison on Massively Parallel Computers, Int'l
J. of Supercomputer Applications, Vol. 6, No. 2, 1992, pp. 138-146.

T.A. Kean, Configurable Logic: A Dynamically Programmable Cellular Architecture and Its
VLSI Implementation, PhD thesis, Univ. of Edinburgh Dept. of Computer Science, Edin­
burgh, Scotland, UK, 1988.

T.A. Kean and C. Carruthers, "Bipolar CAL Chip Doubles the Speed of FPGAs," in W. Moore
and W. Luk, eds., FPGAs, Abingdon EE & CS Books, Abingdon, England, UK, 1991,
pp. 46-53.

T.A. Kean and J.P. Gray, "Configurable Hardware: Two Case Studies of Micrograin Compu-
tation," J. of VLSI Signal Processing, Vol. 2, 1990, pp. 9-16.

A. Kopser, "Splash 2: Architectural Motivation," tech. report, SRC, Bowie, Md., 1991.

H.T. Kung, "Why Systolic Architectures?" Computer, Vol. 15, 1982, pp. 37-46.

H.T. Kung and C.E. Leiserson, "Systolic Arrays for VLSI," in C.A. Mead and L.C. Conway,
eds., Introduction to VLSI Systems, Addison-Wesley, Reading, Mass., 1980, pp. 271-292.

E.S. Lander, R. Langridge, and D.M. Saccocio, "Computing in Molecular Biology: Mapping
and Interpreting Biological Information," Computer, Vol. 24, No. 11, Nov. 1991, pp. 6-13.

E.S . Lander, R. Langridge, and D.M. Saccocio, "Mapping and Interpreting Biological Infor­
mation," Comm. of the ACM, Vol. 34, 1991, pp. 32-39.

H.C. Lee and R.E. Gaensslen, Advances in Fingerprint Technology, Elsevier, New York, 1991.

E. Lemoine and D. Merceron, "Run Time Reconfiguration of FPGA for Scanning Genomic -
Databases," Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 90-98.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 212

Petitioner Microsoft Corporation - Ex. 1007, p. 196

196 Bibliography

A. Lew and R. Halverson, "A FCCM for Dataflow (Spreadsheet) Programs," Proc. IEEE Symp.
FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 2-10.

D.M. Lewis, M.H. van Ierssel, and D.H. Wong, "A Field Programmable Accelerator
for Compiled-Code Applications," Proc. IEEE Workshop FPGAs for Custom Computing
Machines, CS Press, Los Alamjtos, Calif., 1993, pp. 60-68.

J. Li and C.K. Cheng, "Routability Improvemt>Tl! Using Dynamic Interconnect Architecture,"
Proc. IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1995, pp. 61-67.

X.-P. Ling and H. Amano, "W ASMII: A Data Driven Computer on a Virtual Hardware,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1993, pp. 33-43.

X.-P. Ling and H. Amano, "W ASMII: A MPLD with Data Driven Control on a Virtual
Hardware," J. of Supercomputing, Vol. 9, 1995, pp. 253-276.

R.J. Lipton and D.P. Lopresti, "A Systolic Array for Rapid String Comparison," Proc. 1985
Chapel Hill Conf VLSI, Computer Science Press, Rockville, Md., 1985, pp. 363-376.

D.P. Lopresti, Discounts for Dynamic Programming with Applications in VLSI Processor
Arrays, PhD thesis, Princeton Univ., Princeton, N.J., 1987.

D.P. Lopresti, "Fast Dictionary Searching on Splash," tech. report, SRC, Bowie, Md., 1991.

D.P. Lopresti, "Rapid Implementation of a Genetic Sequence Comparator Using Field Pro­
grammable Logic Arrays," in C.H. Sequin, ed., Advanced Research in VLSI, MIT Press,
Cambridge, Mass., 1991, pp. 138-152.

D.P. Lopresti and R.J. Lipton, "Comparing Long Strings on a Short Systolic Array," Tech.
Report CS-TR-026-86, Princeton Univ., Princeton, N.J., 1?86.

M.E. Louie and M.D. Ercegovac, "A Digit-Recurrence Square Root Implementation for
Field Programmable Gate Arrays," Proc. IEEE Workshop FPGAs for Custom Computing
Machines, CS Press, Los Alamitos, Calif., 1993, pp. 178-184.

M.E. Louie and M.D. Ercegovac, "A Variable Precision Square Root Implementation for Field
Programmable Gate Arrays," J. of Supercomputing, Vol. 9, 1995, pp. 315-336.

W. Luk, "Pipelining and Transposing Heterogeneous Array Designs," J. of VLSI Signal Pro­
cessing, Vol. 5, 1993, pp. 7-20.

W. Luk, "A Declarative Approach to Incremental Custom Computing," Proc. IEEE
Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp. 164-172.

W. Luk, V. Lok, and I. Page, "Hardware Acceleration of Divide-and-Conquer Paradigms: A
Case Study," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif., 1993, pp. 192-202.

W. Luk, T. Wu, and I. Page, "Hardware-Software Codesign of Multidimensional Programs,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 82-91.

P. Marchal and E. Sanchez, "CAFCA (Compact Accelerator for Cellular Automata): The Meta­
morphosable Machine," Proc. IEEE Workshop FPGAsfor Custom Computing Machines, CS
Press, Los Alamitos, Calif., 1994, pp. 66-72.

W.J. Masek and M.S. Paterson, "How to Compute String-Edit Distances Quickly," in Time
Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Compari­
son, D. Sankoff and J. Kruskal, eds., Addison-Wesley, Reading, Mass., 1983.

MasPar, Inc., MasPar Application Language Reference Manual, MasPar, Inc., Sunnyvale,
Calif., 1990.

I

~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 213

Petitioner Microsoft Corporation - Ex. 1007, p. 197

Bibliography 197

J.T. McHenry, "Dictionary · Search Application on Splash," tech. report, SRC, Bowie, Md.,

1991.

J.T. McHenry and A. Kopser, "Keyword Searching on Splash," tech. report, SRC, Bowie,

Md., 1991.

Mead Data Central, LEXIS Quick Reference, Mead Data Central, New York, 1976.

R. Meier, "Rapid Prototyping of a RISC Architecture for Implementation in FPGAs," Proc.

IEEE Symp. FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,

pp. 190- 196.

P.J. Menchini, "An Introduction to VHDL," in J.P. Mermet, ed., Fundamentals and Stan­

dards in Hardware Description Languages, Kluwer Academic Publishers, Boston, 1993,

pp. 359-384.

B. Miller, "Vital Signs of Identity," IEEE Spectrum, Vol. 31, No. 2, Feb. 1994, pp. 22-30.

G. Milne et al., "Realizing Massively Concurrent Systems on the SPACE Machine," Proc.

IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,

1993, pp. 26-33.

L. Moll, J. Vuillemin, and P. Boucard, "High-Energy Physics on DEC PeRLe-1 Programmable

Active Memory," Proc. FPGA95, ACM, ACM Press, New York, 1995, pp. 47-52.

S. Monaghan and C.P. Cowen, "Reconfigurable Multi-Bit Processor for DSP Applications

in Statistical Physics," Proc. IEEE Workshop FPGAs for Custom Computing Machines ,

CS Press, Los Alamitos, Calif., 1993, pp. 103-111.

W. Moore and W. Luk, eds., FPGAs, Abingdon EE & CS Books, Abingdon, England, UK,

1992. (Proc., Oxford 1991 Int'l Workshop on Field Programmable Logic and Applications.)

W. Moore and W. Luk, eds., J. of VLSI Signal Processing, 1993, (Special Issue on Field­

Programmable Gate Arrays.)

W. Moore and W. Luk, eds., More FPGAs, Abingdon EE & CS Books, Abingdon, Eng­

land, UK, 1994. (Proc., Oxford 1993 Int'l Workshop on Field Programmable Logic and

Applications.)

Q. Motiwala, "Optimizations for Acyclic Dataflow Graphs for Hardware-Software Codesign,"

master's thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994.

Nat'! Library of Medicine, MEDLARS, The Computerized Literature Retrieval Services of the

Nat'l Library of Medicine, Publication NIH 79-1286, U.S. Dept. of Health, Education and

Welfare, Washington, D.C., 1979.

M. Newman, W. Luk, and I. Page, "Constraint-Based Hierarchical Hardware Compilation of

Parallel Programs," in R.W. Hartenstein and M.Z. Servft, eds., Field-Programmable Logic:

Architectures, Synthesis, and Applications. Springer-Verlag, Berlin, 1994, pp. 220--229.

R.J. Offen, VLSI Image Processing, McGraw-Hill, New York, 1985.

J.K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, Reading, Mass., 1994.

I. Page and W. Luk, "Compiling Occam in FPGAs," in W. Moore and W. Luk, eds., FPGAs,

Abingdon EE & CS Books, Abingdon, England, UK, 1991, pp. 271-283.

D.L. Perry, VHDL, McGraw-Hill, New York, 1991.

D.L. Perry, VHDL, McGraw-Hill, New York, 2nd ed., 1994.

W.K. Pratt, Digital Image Processing, Wiley, New York, 1978.

D.V. Pryor, M.R. Thistle, and N. Shirazi, "Text Searching on Splash 2," Proc. IEEE Workshop

FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, 172-178.

G. Purcell and D. Mar, "SCOUT: Information Retrieval from Full-Text Medical Literature,"

Knowledge Systems Lab. Report KSL-92-35, Stanford Univ., Palo Alto, Calif. , 1992.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 214

Petitioner Microsoft Corporation - Ex. 1007, p. 198

198 Bibliography

G.M. Quenot et al., "A Reconfigurable Compute Engine for Real-Time Vision Automata
Prototyping," Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press,
Los Alamitos, Calif., 1994, pp. 91-101.

R. Rachakonda, "Region Detection and Labeling in Real-time Using a Custom Computing
Platform," master's thesis, Virginia Polytechnic Inst., Blacksburg, Va., 1994.

F. Raimbault et al., "Fine Grain Parallelism on a MIMD Machine Using FPGAs," Proc. IEEE
Workshop FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993,
pp. 2-9.

N.K. Ratha, A.K. Jain, and D.T. Rover, "Fingerprint Matching on Splash 2," tech. report,
Dept. of Computer Science, Michigan State Univ., East Lansing, Mich., Mar. 1994.

N.K. Ratha, A.K. Jain, and D.T. Rover, "Convolution on Splash 2," Proc. IEEE Symp. FPGAs
for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 204-213.

A. Rosenfeld and A. Kak, Digital Picture Processing, 2nd ed., Academic Press, New York,
1982.

G. Salton, Automatic Text Processing, Addison-Wesley, Reading, Mass., 1989.
G. Salton and M.J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New

York, 1983.

D. Sankoff and J. Kruskal, eds., Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, Reading, Mass., 1983.

J. Schlesinger and M. Gokhale, dBC Reference Manual. Tech. Report SRC-TR-92-068,
Revision 2, SRC, Bowie, Md., 1993.

H. Schmit et al., "Behavioral Synthesis for FPGA-Based Computing," Proc. IEEE Work­
shop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1994,
pp. 125-133.

H. Schmit and D. Thomas, "Implementing Hidden Markov Modelling and Fuzzy Controllers
in FPGAs," Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 214-221.

J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.
M. Shand, "Flexible Image Acquisition Using Reconfigurable Hardware," Proc. IEEE

Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995,
pp. 125-134.

M. Shand, P. Bertin, and J. Vuillemin, "Hardware Spe.::dups for Long Integer Multiplication,"
ACM Symp. Parallel Algorithms and Architectures, ACM, ACM Press, New York, 1990,
pp. 138-145.

N. Shirazi, "Implementation of a 2-D Fast Fourier Transform on an FPGA-based Computing
Platform," master's thesis, Virginia Polytechnic Inst., 1995.

N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating-Point Arithmetic on
FPGA-based Custom Computing Machines," Proc. IEEE Symp. FPGAs for Custom Com­
puting, CS Press, Los Alamitos, Calif., Apr. 1995, pp. 155-162.

S. Singh, "Architectural Description for FPGA Circuits," Proc. IEEE Symp. FPGAsfor Custom
Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 145-154.

S. Singh and P. Bellec, "Virtual Hardware for Graphics Applications Using FPGAs," Proc.
IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos, Calif.,
1994, pp. 49-59.

N. Sitkoff et al., "Implementing a Genetic Algorithm on a Parallel Custom Computing
Machine," Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los
Alamitos, Calif., 1995, pp. 180-187.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 215

Petitioner Microsoft Corporation - Ex. 1007, p. 199

Bibliography 199

C. Stanfill and B. Kahle, "Parallel Free-Text Search on the Connection Machine System,"

Comm. of the ACM, Vol. 29, No. 12, 1986, pp. 1229-1239.

J. Stigliani, Writing SBus Device Drivers, Sun Microsystems, Inc., Mountain View, Calif.,

1990.

Synopsys, Inc., Design Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif.,

1991.

Synopsys, Inc., VHDL Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif.,

1991.

Synopsys, Inc., FPGA Compiler Reference Manual, Synopsys, Inc., Mountain View, Calif.,

1994.

A. Tarmaster, "Median and Morphological Filtering of Images in Real Time Using an FPGA­

based Custom Computing Platform," master's thesis, Virginia Polytechnic Inst., Blacksburg,

Va., 1994.

Texas Instruments Inc., The SN74ACT8800 Family Data Manual (SCSS006A), Texas Instru­

ments Inc., Dallas, 1988.

Thinking Machines, Inc., C* Programming Guide, Thinking Machines, Inc., Cambridge,

Mass., 1993.

D.E. Thomas and P.R. Moorby, The Verilog Hardware Description Language, Kluwer Aca­

demic Publishers, Boston, 1991.

S.M. Trimberger, ed., Field Programmable Gate Array Technology, Kluwer Academic Pub­

lishers, Boston, 1994.

Reference Manual for the Ada Programming Language, ANSVMIL-STD-1815A-1983, U.S.

Department of Defense, Washington, D.C., Feb. 1983.

L. Uhr, ed., Parallel Computer Vision, Academic Press, New York, 1987.

M. van Daalen, P. Jeavons, and J. Shawe-Taylor, "A Stochastic Neural Architecture That

Exploits Dynamically Reconfigurable FPGAs," Proc. IEEE Workshop FPGAs for Custom

Computing Machines, CS Press, Los Alamitos, Calif. , 1993, pp. 202-212.

D.E. Van den Bout, "The Anyboard: Programming and Enhancements," Proc. IEEE Workshop

FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 68-78.

G. VanDerWal and P. Burt, "A VLSI Pyramid Chip for Multiresolution Image Analysis,"

Int'l J. of Computer Vision, Vol. 8, No. 3, 1992, pp. 177-189.

R. Vogt, Automatic Generation of Morphological Set Recognition Algorithms, Springer-Verlag,

New York, 1989.

J. Vuillemin et al., "Programmable Active Memories: Reconfigurable Systems Come of Age,"

IEEE Trans. VLSI Systems, to be published in Mar. 1996.

M. Wazlowski et al., "PRISM II: Compiler and Architecture," Proc. IEEE Workshop FPGAs

for Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 9-17.

J.H. Wegstein, An Automated Fingerprint Identification System, Special Publication 500-89,

Nat'! Bureau of Standards, Washington, D.C., 1982.

R. Wieler, Z. Zhang, and R. McLeod, "Emulating Static Faults Using a Xilinx Based Emula­

tor," Proc. IEEE Symp. FPGAs for Custom Computing Machines, CS Press, Los Alamitos,

California, 1995, pp. 110-115.

M. Wirthlin and B. Hutchings, "A Dynamic Instruction Set Computer," Proc. IEEE Symp.

FPGAsfor Custom Computing Machines, CS Press, Los Alamitos, Calif., 1995, pp. 99-107.

M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson, "The Nano Processor: A Low Resource ·

Reconfigurable Processor," Proc. IEEE Workshop FPGAsfor Custom Computing Machines,

CS Press, Los Alamitos, Calif., 1994, pp. 23-31.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 216

Petitioner Microsoft Corporation - Ex. 1007, p. 200

200 Bibi iography

D. Wo and K. Forward, "Compiling to the Gate Level for a Reconfigurable Co-Processor,"
Proc. IEEE Workshop FPGAs for Custom Computing Machines, CS Press, Los Alamitos,
Calif., 1994, pp. 147-155.

L.F. Wood, "High Performance Analysis and Control of Complex Systems Using Dynami­
cally Reconfigurable Silicon and Optical Fiber Memory," Proc. IEEE Workshop FPGAsfor
Custom Computing Machines, CS Press, Los Alamitos, Calif., 1993, pp. 132-142.

Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, Calif., 1993.
Xilinx, Inc., The XC4000 Data Book, Xilinx, Inc., San Jose, Calif. 1994.
C.-C. Yeh, C.-H. Wu, and J.-Y. Juang, "Design and Implementation of a Multicomputer

Interconnection Using FPGAs," Proc. IEEE Symp. FPGAsfor Custom Computing Machines,
CS Press, Los Alamitos, Calif., 1995, pp. 56-60.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 217

Petitioner Microsoft Corporation - Ex. 1007, p. 201

Index

Ada, 36, 50
AFIS, see Automatic Fingerprint

Identification System
Algotronix, Ltd., 4, 7, 95
Analytic Instruments Inc., 24
Aptix, 181
arch, fingerprint, 123
Array Board, 12, 13, 19

architecture, 16-17
implementation, 25-30
programming, 29

Atmel Corp., 4
attached processors, 6, 169, 171
Automatic Fingerprint Identification

System, 119

band-pass pyramids, 145
Bank Register, 21
Batley's formula, 119
broadcast, 17
Brown University, 3, 95, 183
Burroughs Corp.

B1700, 2, 174
bypass mode, 25

C*, 80
Center for Computing Sciences, see

Supercomputing Research Center
CERN, 177
CHAMP, 6, 174
CLB, see Configurable Logic Block

clock, 18
free-running, 57
hardware, 24
implementation, 24
regulation of system, 18
setting frequency, 58
SIMD, 57
single-step, 18
software, 24, 57
variable frequency, 24

c omp. a r ch. fpga newsgroup, 3
compression, 177
Concurrent Logic, Inc., 4

CLi6005 FPGA, 37
Configurable Logic Block, 4

flip-flops, 169
configuration register, 30
Control Element, 20

entity declaration, 62
implementation, 28
programming view, 56-57

control/status register, see CSR
convolutional filtering, 177
coprocessors, 5-6, 169, 173-174
core point, fingerprint, 123
comer turning, 24
Cray Research

YMP processor, 2
cross-correlation example, 81
crossbar, 16-17, 181

configuration of, 30, 68-69

■

201

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 218

Petitioner Microsoft Corporation - Ex. 1007, p. 202

202

■

crossbar continued
dataflow modes, 170
implementation, 28-29
programming view, 56

CSR, 25

data-driven model, 175
Datacube MaxVideo 200, 162
dbC, 49, 77-95, 174,176
De La Rue Printrak, 119
DEC, see Digital Equipment Corp.
Department of Defense, 180
Development Board, 19, 57

implementation, 21
device driver, 74-75
diagnostic software, 75-76
Digital Equipment Corp., see Paris

research lab, DEC's
digital signal processor, 172
dilation, 146
direct memory access, see DMA
discrete Fourier transform, 14 7
DMA, 12, 19
DMA Channel

daughterboard, 20
implementation, 23

DNA sequence, see sequence comparison
D0D, see Department of Defense
double loop, fingerprint, 123
DSP, see digital signal processor

edge detection, 16
edif2xnf, 53, 56, 70
edit distance, 98

dynamic programming algorithm, 98
modular encoding, I 05

erosion, 146

FBI, see Federal Bureau of Investigation
Federal Bureau of Investigation,

118, 183
Field Programmable Gate Array, 2, 4-5,

11, 20, 37
architecture, 172

fingerprint
matching algorithm, 125-128
performance, 137-139
registration, 126

FIR filter, 186-189
FPGA, see Field Programmable Gate

Array
Futurebus+, 12, 19, 181

Index

Ganglion, 5
Gaussian pyramid, 145, 154
generic SIMD instructions, 82, 84
genetic database search, see sequence

comparison
global OR signal, 18, 43
global tri-state signal, 28, 54
Gordon Bell prize

1989, 34
GTS signal, see global tri-state signal

handshake register, 30, 58
hard macros, 12, 52, 61
Henry formula, 117
high-pass filters, 145
host computer

programming view, 57-58
Hough transform, 2, 147
Human Genome Initiative, 97

IDA, see Institute for Defense Analyses
Identification register, 25
IEEE, 3, 50
image expansion, 158
image processing, 141-163, 177

fingerprint, 119
performance, 159-162

image pyramid, 153
image pyramid generation, 153
image subtraction, 158
Input Output Block, 4

exploiting flip-flops, 56, 187
Institute for Defense Analyses, 183
instruction set synthesis, 84
Intel Corp.

8086 processor, 173
Interface Board, 12, 19

architecture, 17-18
implementation, 21-25
memory, 24
programming view, 57

interrupt register, 30
interrupts, 24
JOB, see Input Output Block

Laplacian pyramid, 146, 157
LDG, 32, 46, 78, 179
LED register, 26
LEXIS, 110
libsplas h.a, see runtime library
Light-Emitting Diodes, see LED register
linear data path, 13-14, 20

--

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 219

Petitioner Microsoft Corporation - Ex. 1007, p. 203

Index

Lockheed Sanders, 174
Logic Description Generator, see LDG
logic synthesis, 6, 48
Logica, 119
loop, fingerprint, 123
low-pass filter, 144
low-pass pyramids, 145

macro instructions, 92-94
mask register, 30
mathematical morphology, 146
median filtering, 146, 150-153
MED LARS, 110
memory

architecture of, 44, 167-168
host access to, 21, 28
initialization, 69
mapped into address space, 58

Michigan State University, 183
minutia, 118, 123

matching, 126
Model Technologies, Inc., 182
MPL, 80

National Cancer Institute
Dept. of Mathematical Biology, 180

National Center for Biotechnology
Information, 183

National Semiconductor Corp., 4
NCI, see National Cancer Institute
nearest-neighbor communication, 88
NEC Information Systems, 119
North American Morpho, 119

opPar, see generic SIMD
instructions

Oxford University, 95

P-NAC, 31, 97
PAM, see Paris research lab, DEC's
Paris research lab, DEC's, 166, 174

PeRLe, 2
PeRLe-1, 6, 171, 177

Paris research lab, DEC's
PeRLe-0, 6

pattern recoginition systems, 121
PeRLe, see Paris research lab, DEC's
physical mapping, 48
placement and routing, 6
poly data type, 81
Princeton Nucleic Acid Comparator, see

P-NAC

Princeton University, 31
PRISM, 3, 5, 183
Processing Element, 20

entity declaration, 61
implementation, 26-28
programming, 24-25
programming view, 56-57

Processor-in-Memory (PIM), 79
protein sequence, see sequence

comparison
PRS, see pattern recoginition systems
pyramid, 145, see Gaussian pyramid,

Laplacian pyramid

203

Quick and Dirty Board, see Development
Board

Quickturn Design Systems, Inc., 178

rapid prototyping, 177
RBus, 14, 20

data register, 58
readback, 24-25, 29

role in symbolic debugging, 58, 169
real-time control, 177
reduction operation, 80, 89-91
reset, 25, 29
ridge, fingerprint, 123
robocop, 76
RSA decryption, 2, 166
RSA encryption, 166
runtime library, 54, 73

SBus, 12, 19
Adapter Board, 19
address space, 18, 21
choice of, 38
DMA performance, 75
slave accesses, 22

sequence comparison, 15, 100-104, 111,
182

bidirectional algorithm, 100, 103
dbC example, 94-95
performance, 107

SIMD Bus, 13, 20
data register, 58

SIMD model, 11, 13, 17
single-instruction multiple-data, see

SIMD model
size estimation, see utilization
Sobel operators, 145
SPARCstation 2, 12, 19, 38
special-purpose devices, 5

II

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 220

Petitioner Microsoft Corporation - Ex. 1007, p. 204

204

Splash 1, 6, 179
architecture, 31-32

Splash 2, 179
Splash 2 Library,51,61
Splash 2 simulator, 51, 66-70

configuring, 67-68
SRC, see Supercomputing Research

Center
Sun Microsystems, Inc., 12, 19, 3.8
Supercomputing Research Center, 4
Synopsys, Inc., 182

Design Compiler, 53, 70
FPGA Compiler, 53, 71, 168, 182

systolic, 13

T2 debugger, 55, 72-73
tags, 14

valid data, 57
Tel language, 55
TERASYS, 79, 181, 184
Texas Instruments

crossbar chip, 28, 41, 181
text searching

16-bit approach, 115
8-bit implementation, 113-114
algorithm, 111-112
general approach, 111
performance, 114, 116

Thinking Machines Corp.
CM-2, 2, 81, 183
CM-2X, 5

timing analysis, 49
tolerance box, 128
trigger debugger, 32
tsdb debugger, 55, 76

utilization, 56

valley, fingerprint, 123
Verilog, 51

VHDL, 36-37, 49-51, 182
choice of, 36, 45
history of, 50
pipelining in, 189
synchronous processes in, 187

VHSIC initiative, 47, 50
Viewlogic, 32
Virginia Polytechnic Institute

and State University, 183
virtual computer, 3
VMEbus, 34, 39
VTSplash, 142

whirl, fingerprint, 123

XO, 13, 17
purpose, 43
use in dbC, 86, 89
use in fingerprint matching,

132-133
XACT editor, 32
XBLOX, 168
Xilinx, 2, 4, 7, 11

apr tool, 33
choice of, 38
Netlist Format (XNF), 53
XC3090 FPGA, 32, 182
XC4010 FPGA, 4, 11-12,

182
XL, 15

entity declaration, 63
implementation, 23-24
purpose, 43
use in dbC, 86
use in text search, 111

xnfer, 54, 56, 71
XR, 15

implementation, 23-24
purpose, 43
use in text search, 112

Index

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 221

Petitioner Microsoft Corporation - Ex. 1007, p. 205

Contributors

A. Lynn Abbott, Bradley Department of Electrical Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia 24061. 703-231-4472

Jeffrey M. Arnold, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7479
Peter Athanas, Bradley Department of Electrical Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia 24061. 703-231-7010

Duncan A. Buell, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7372
Maya Gokhale, David Sarnoff Research Center, CN 5300, Princeton, New Jersey

08543. 609-734-3119
Dzung T. Hoang, Department of Computer Science, Duke University, Durham, North

Carolina 27706. 919-660-6598
Anil Jain, Department of Computer Science, Michigan State University, East Lan­

sing, Michigan 48824. 517-353-5150

Walter J. Kleinfelder, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7355
Daniel V. Pryor, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7407
Nalini Ratha, Department of Computer Science, Michigan State University, East

Lansing, Michigan 48824. c/o A. Jain 517-353-5150

Diane Rover, Department of Electrical Engineering, Michigan State University, East

Lansing, Michigan 48824. 517-353-7735

Nabeel Shirazi, Bradley Department of Electrical Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia 24061. c/o P. Athanas 703-231-

7010L
Mark R. Thistle, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7413

205

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 222

Petitioner Microsoft Corporation - Ex. 1007, p. 206

IEEE Computer Society Press Editorial Board

Advances in Computer Science and Engineering
Editor-in-Chief

Jon Butler, Naval Postgraduate School

Associate Editor-in-Chief/Acquisitions
Pradip K. Srimani, Colorado State University

The IEEE Computer Society Press Advances Board seeks manuscripts that describe new and sig­

nificant advances in computer science and engineering. Although immediate application is not neces­

sary, ultimate application to advanced computing systems is an important quality . Publications represent

technically substantive and clear expositions of innovative ideas.

Editorial Board
Dharma P. Agrawal, North Carolina State University

Ruud Solle, IBM T.J. Watson Research Center
Vijay K. Jain, University of South Florida

Yutaka Kanayama, Naval Postgraduate School
Gerald M. Masson, The Johns Hopkins University

Sudha Ram, University of Arizona
David C. Rine, George Mason University

A.R.K. Sastry, Rockwell International Science Center
Abhijit Sengupta, University of South Carolina

Mukesh Singha!, Ohio State University
Scott M. Stevens, Carnegie Mellon University

Michael Roy Williams, The University of Calgary
Ronald 0. Williams, University of Virginia

Lotti Zadeh, University of California, Berkeley

Additional Advances Board Titles

A Probabilistic Analysis of Test-Response Compaction
Slawomir Pilarski and Tiko Kameda

The Cache Coherence Problem in Shared-Memory Multiprocessors: Software Solutions

Igor Tartalja and Veljko Milutinovic

The Cache Coherence Problem in Shared-Memory Multiprocessors: Hardware Solutions

Igor Tartalja and Veljko Milutinovic

Advanced Multimicroprocessor Bus Architectures
Janusz Zalewski

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 223

Petitioner Microsoft Corporation - Ex. 1007, p. 207
•

~ COMPUTER SOCIETY
~ 5QYEARS OF SERVICE •1946-1996

http://www.computer.org

Press Activities Board

Vice President:
Joseph Boykin
CLARiiON Advanced Storage Solutions
Goslin Drive
Southborough, MA 01772
(508) 480-7286
FAX (508) 480-7908
j.boykin@computer.org

Jon T. Butler, Naval Postgraduate School
James J. Farrell 111, Motorola Corp.
Mohammed E. Fayad, University of Nevada
I. Mark Haas, Tandem Computers, Inc.
Ronald G. Hoelzeman, University of Pittsburgh
Gene F. Hoffnagle, IBM Corporation
John R. Nicol, GTE Laboratories
Yale N. Patt, University of Michigan
Benjamin W. Wah, University of Illinois
Ronald D. Williams, University of Virginia

Editor-in-Chief
Advances in Computer Science and Engineering Board
Jon T. Butler
Naval Postgraduate School
Dept. of Electrical and Computer Engineering
833 Dyer Road #437, Code EC/BU
Monterey, CA 93943-5121
Phone: 408-656-3299 FAX: 408-656-2760
butler@cs.nps.navy.mil

Editor-in-Chief
Practices for Computer Science and Engineering Board
Mohamed E. Fayad
Computer Science, MS/171
Bldg. LME, Room 308
University of Nevada
Reno, NV 89557
Phone: 702-784-4356 FAX: 702-784-1833
fayad@cs.unr.edu

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director

H. True Seaborn, Publisher
Matthew S. Loeb, Assistant Publisher

IEEE Computer Society Press Publications
The world-renowned Computer Society Press publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available in two formats:
100 percent original material by authors preeminent in their field who focus on relevant topics and
cutting-edge research, and reprint collections consisting of carefully selected groups of previously
published papers with accompanying original introductory and explanatory text.

Submission of proposals: For guidelines and information on CS Press books, send e-mail to
csbooks@computer.org or write to the Acquisitions Editor, IEEE Computer Society Press, P.O. Box
3014, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380. FAX +1
714-761-1784.

IEEE Computer Society Press Proceedings
The Computer Society Press also produces and actively promotes the proceedings of more than 130
acclaimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on CS Press proceedings, send e-mail to csbooks@computer.org or write to Proceed­
ings, IEEE Computer Society Press, P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1314. Telephone +1 714:821-8380. FAX +1 714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings,
CD-ROMs, videos, and books can also . be accessed from our web site at
www.computer.org.

3121/96

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 224

Petitioner Microsoft Corporation - Ex. 1007, p. 208

Splash 2
FPGAs in a Custom Computing Machine \lli{illlll
edited by Duncan A. Buell, Jeffrey M. Arnold, and Waite o 003 497 088 9 t
Details the complete Splash 2 project-the hardware and software sys­
tems, their architecture and implementation, and the design process by
which the architecture evolved from an earlier version machine. In addi­
tion to the description of the machine, this book explains why Splash 2
was engineered. It illustrates several applications in detail, allowing you
to gain an understanding of the capabilities and the limitations of this
kind of computing device.

The Splash 2 program is significant for two reasons. First, it is part of a
complete computer system that achieves supercomputer like perfor­
mance on a number of different applications. The second significant
aspect is that this large system is capable of performing real computa­
tions on real problems. In order to understand what happens when the
application programmer designs the processor architecture of the
machine that executes his programs, it is necessary to see the system as
a whole. This book looks in-depth at one of the handful of data points
in the design space of this new kind of machine.

Contents:

• Custom Computing Machines: An Introduction
• The Architecture of Splash 2
• Hardware Implementation
• Splash 2: The Evolution of a New Architecture
• Software Architecture
• Software Implementation
• A Data Parallel Programming Model
• Searching Genetic Databases on Splash 2
• Text Searching on Splash 2
• Fingerprint Matching on Splash 2
• High-Speed Image Processing with Splash 2
• The Promise and the Problems
• An Example Application

Published by the IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314

IEEE Computer Society Press Order Number BP07413
Library of Congress Number 95-47397
ISBN 0-8186-7413-X

ISBN □ -8186-7413-X

90000>

9

PATENT OWNER DIRECTSTREAM, LLC
EX. 2170, p. 225

