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Abstract 

Convolution is a fundamental operation in many 
signal and image processing applications. Since the 
computation and communication pattern in a convolu­
tion operation is regular, a number of special architec­
tures have been designed and implemented for this op­
erator. The Von Neumann architectures cannot meet 
the real-time requirements of applications that use con­
volution as an intermediate step. We combine the 
advantages of systolic algorithms with the low cost of 
developing application specific designs using field pro­
grammable gate arrays (FPGAs) to build a scalable 
convolver for use in computer vision systems. The 
performance of the systolic algorithm of Kung et al. 
{1] is compared theoretically and experimentally with 
many other convolution algorithms reported in the lit­
erature. The implementation of a convolution opera­
tion on Splash 2, an attached processor based on Xilinx 
4010 FPGAs, is reported with impressive performance 
gains. 

1 Introduction 

Convolution is an important operator in digital sig­
nal and image processing. Many machine vision sys­
tems use 2-dimensional convolution for image filtering, 
edge detection, and template matching. Convolution 
of two signals f and g is often expressed as h = f * g, 
where h is the result of applying convolution mask g 

on input signal f. For 2-dimensional discrete images, 
convolution can be defined as follows: 

00 00 

h(x,y) = L L f(x-i,y-j)g(i,j). (1) 
i=-ooj=-oo 

For images of finite size (say N x N), and masks of 
finite size (say k x k), 2-dimensional convolution off 
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(image) and g (mask) can be expressed as 

k-lk-1 

h(x, y) =LL f(x + i, y + j)g(i, j). . (2) 
i=O j=O 

In the second form, it is also known as template match­
ing, or correlation. The image size and mask size need 
not contain square number of elements in general. 

Typical use of convolution in image processing is for 
edge detection using, for example, Sobel, and Prewitt 
masks; computing texture orientation; object location 
using template matching; and image smoothing using 
Gaussian masks. Convolution operation described in 
Eq. (2) can include integer-valued and real-valued in­
put images and masks. Examples ofreal-valued masks 
are image smoothing using Gaussian masks, and com­
puting texture features using Gabor filters. Most com­
monly used masks such as Laplacian, Sobel, and Pre­
witt have not only integer mask values, but the mask 
values can be expressed as powers of two. In a typical 
application involving many image processing stages, 
each stage should be capable of processing real-valued 
images. Based on this observation, we can have a tax­
onomy of convolution operation as shown in Figure 1. 

Many approaches to perform convolution using spe­
cial architectures have been reported in the litera­
ture [1, 2, 3]. A very simple distributed approach for 
convolution is to split the input image into a set of 
smaller, possibly overlapping, sub-images; the num­
ber of subimages is the same as the number of pro­
cessing elements (PEs). Each PE produces the result 
for the sub-image it receives. The spatial support for 
the convolution mask is provided through the overlap 
at the boundaries or data replication. However, this 
simplistic approach may not be suitable for all target 
architectures. For example, if the image is being ac­
quired line by line, this approach may not be efficient 
as we have to wait till we acquire the whole image. 
In order to understand the advantages and disadvan-
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tages of various algorithms reported in the literature, 
we need to look at the communication and computa­
tion pattern in 2-dimensional convolution. The basic 
convolution operation is shown schematically in Fig­
ure 2. Suppose the value of the convolution operation 
is desired at the point (x,y). The center of the mask 
is placed at (x,y). A point-wise inner product of the 
image pixels and mask values is computed, followed by 
a reduction sum operation. This computes the output 
value at (x, y). The reduction operation can also be a 
prefix sum, although the intermediate results are not 
directly useful. This basic set of operations is repeated 
at all possible (x, y) locations. 

The sequential version of convolution algorithm is 
very simple and is shown in Figure 3. There are four 
loops in the algorithm and its overall complexity is 
O(N 2k2). The simple data partitioning approach de­
scribed above can reduce the total time by a factor 
equal to the number of available processors, ignoring 
the extra computations needed in the overlapping ar­
eas by each PE. 

The previous work described in the literature can 
be summarized based on the target architecture on 
which convolution operation is implemented. 

• Systolic: One of the most widely used convolu­
tion algorithm is the systolic algorithm by Kung 
et al. [l]. The algorithm is fairly straight forward 
and also scalable to higher dimensions using the 
1-dimensional convolution algorithm as the build­
ing block. In his landmark paper "Why systolic 
architectures?" [4], Kung described many convo­
lution algorithms on systolic structures. Based 
on a general inner product computation, Kulka­
rni and Yen [5] proposed a systolic algorithm for 
1-dimensional and 2-dimensional convolution. 

• Hypercube: Fang et al. [2] have described an 
O(k 2 /p 2 + klog(N/p) + logN * logp) algorithm, 
where 1 ~ p ~ k, and using N 2 k2 PEs and 
an O(N 2 M 2 

/ L 2
) algorithm using L2 PEs. Us­

ing N2 PEs, Prasanna Kumar and Krishnan [6] 
proposed an algorithm with the best time com­
plexity of O(N 2 / K 2 + logN). With a fixed num­
ber of PEs, their time complexity changes to 
O(k 2logk + logN). 

• Mesh: Many researchers [7, 3] have proposed 
schemes for convolution on mesh connected ar­
chitectures. Lee et al. [7] use computation 
along a Hamiltonian path ending at the center 
of the convolution mask, called the convolution 
path. Ranka and Shani [3] do not broadcast the 
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data values, thereby improving the performance 
of their algorithm by an order of magnitude. 

• Pyramid: Pyramid architectures are useful in 
dealing with multi-resolution images. An O(k 2 + 
logN) time complexity algorithm is described by 
Chang et al. [8]. · 

• VLSI/ ASIC: Most of the approaches recommend 
the suitability of their algorithm for a VLSI im­
plementation. Chakrabarti and Jaja use a linear 
array of processors in their algorithm [9]. In [5] 
convolution is viewed as a generalized inner prod­
uct and a VLSI implementation for 2-dimensional 
convolution is described. Ranganathan and Venu­
gopal [10] have described a VLSI architecture for 
template matching using k2 PEs and they achieve 
a time complexity of O(N 2 /2 + K 2 ). 

In this paper, we describe a convolution algorithm 
suitable for implementation on field programmable 
gate arrays (FPGAs). FPGAs have been used in 
designing many custom computing structures. Re­
cent advances in hardware technology, enabling more 
logic blocks in FPGAs, make them more suitable for 
many complex applications needing more logic. Re­
cently, Barros and Akil [11] have used FPGAs for 
low-level image processing. Athanas et al. [12] de­
scribe many image processing functions implemented 
on Splash 2. We use Splash 2, an attached processor 
on Sun SPARCstations based on Xilinx 4010 FPGA 
PEs. Our 2-dimensional convolution algorithm im­
plementation has been designed and synthesized for 
Splash 2 architecture. · 

The rest of the paper is organized as follows. Splash 
2 architecture and software environment is described 
in Section 2. The convolution algorithm is described 
in section 3. The performance of the proposed algo­
rithm is evaluated by comparing its execution time 
and its complexity against some other algorithms re­
ported in the literature. The computer aided design 
(CAD) tools provide a performance estimate which is 
also compared with the real speed achieved in section 
4. In Section 5 conclusions and plans for future work 
are given. 

2 Splash 2 Architecture 

The Splash 2 system consists of an array of Xilinx 
4010 FPGAs, improving on the design of the Splash 
1 hMed on Xilinx 3090s [13]. The Splash 2 system 
is connected to the Sun host through an interface 
board that extends the address and data buses. The 
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host can read/write to memories and memory-mapped 
control registers of Splash 2 via these buses. A de­
tailed description of the system is given in [14]. Each 
Splash 2 processing board has 16 Xilinx 4010s as PEs 
(X 1 - X 16 ) in addition to a seventeenth Xilinx 4010 
(Xo) which controls the data flow into the processor 
board. Each PE has 512 KB of memory. The Sun 
host can read/write this memory. The PEs. are con­
nected through a crossbar that is programmed by X 0 . 

There is a 36-bit linear data path (SIMD Bus) running 
through all the PEs. The PEs can read data either 
from their respective memory or from any other PE. 
A broadcast path also exists by suitably programming 
Xo. 

Splash 2 system supports several models of com­
putation, including PEs executing the same instruc­
tion on multiple data (SIMD mode) and PEs executing 
multiple instructions on multiple data (MIMD mode). 
It can also execute the same or different instructions 
on single data by receiving data through the global 
broadcast bus. The most common mode of operation 
is systolic in which the SIMD Bus is used for data 
transfer. Also individual memory available with each 
PE makes it convenient to store temporary results and 
tables. 

To program Splash 2, we need to program each of 
the PEs (X1- X16 ), the crossbar, and the host inter­
face. The crossbar sets the communication paths be­
tween PEs. In case the crossbar is used, Xo needs to 
be programmed. The host interface takes care of data 
transfer's in and out of the Splash 2 board. A spe­
cial library is available for these facilities for VHDL 
programming as described in [14]. 

3 Convolution Algorithm on Splash 2 

Image processing algorithms, in general, convolu­
tion, in particular, demand high I/O bandwidth. Most 
of the algorithms proposed on special architectures as­
sume that data are already available on the PEs. This, 
in a way, avoids the I/O bandwidth problem of the 
convolution operation. We do not make this assump­
tion. Jonker [15] argues that linear arrays are better 
for image processing algorithms. A linear array of PEs 
operating in a systolic mode offers two advantages: (i) 
systolic arrays can balance I/O with computations, (ii) 
the nearest neighbor communication can eliminate the 
need for a global communication facility for some class 
of algorithm. One of the preferred modes of computa­
tions on Splash 2 is the systolic mode. In this mode, 
we assume nothing about availability of data in the 
individual PEs. The computations needed in a PE 
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are also fairly simple. This helps us in balancing the 
I/O bandwidth requirement and computation require­
ment at a PE. Hence, we prefer a systolic algorithm 
for convolution on Splash 2. 

First, we describe the I-dimensional convolution al­
gorithm. A systolic I-dimensional convolution is sim­
ple. Let us assume that we have k PEs, where k is 
the size of the mask. Each PE receives from its left 
neighbor the pixel value and the partial result avail­
able so far. The PE multiplies the pixel value with 
the mask value it handles and adds the partial sum 
to it. This result and the pixel value are passed to its 
right neighbor. At the end of the systolic path, we get 
the convolution result after taking into account initial 
latency. A schematic diagram of I-dimensional convo­
lution on a set of PEs connected linearly is shown in 
Figure 4(a). 

The above algorithm assumes that the PEs can 
do multiplication. In a FPGA-based PE, this is not 
true. A double precision floating point multiplier 
needs more logic than what is available in a PE. We 
can use the local PE memory to store the multipli­
cation table indexed by the pixel value. This results 
in an additional delay of one cycle necessary to refer­
ence the multiplication result from the memory. This 
scheme is shown in Figure 4(b). 

Our 2-dimensional convolution is an extension of 
the I-dimensional convolution described above. The 
basic idea is based on the algorithm proposed by Kung 
et al. [1]. The k x k mask is extended to a k x N 
mask with O's placed at locations where no entry was 
present. These kN entries are serialized to get a sin­
gle I-dimensional mask of kN entries. Now, we can 
apply the I-dimensional convolution algorithms out­
lined above. Note that there are (N - k) locations 
with O's as their mask value. Hence, we can simply 
have (N - k) stages of shift registers. Secondly, for 
improper positions of this new N k-element mask we 
get values which are not really part of the output. 
These need to be ignored. Finally, the assumption on 
the input is that the pixels are being communicated 
in a raster scan order. Note that we can use either 
of the I-dimensional convolution algorithms described 
above depending on the value of the convolution mask 
coefficients. The scheme is shown in Figure 4(c). 

Implementation Issues 
The general convolution algorithm needs to be tuned 
for the special hardware being used. For example, we 
have only 16 PEs. We need to map virtual PEs to 
physical PEs. The second issue is the number of shift 
registers which depends on the row size of the im­
age. The third issue is implementation of multipliers 
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needed by the PEs. Following is a summary of our 
solution to these issues. 

• Large number of mask entries: If mask size ( k) 
is greater than the number of available PEs, the 
virtual PEs are mapped to available PEs. In car­
rying out the mapping, the timing model between 
PEs must be satisfied. 

• Larger image width: Image has to be split into 
smaller sub-images of some predefined size. In or­
der to handle this, we develop the 2-dimensional 
convolution with a fixed width (32 in our case). 
Larger images are split into sub-images of 32 x 
32 pixels and depending on the mask size the re­
quired rows and columns at the border are copied. 

• Multiplier implementation: 

- Masks with integer values: If mask values 
are of the type 2P, then the multiplier in each 
virtual PE can be replaced with simple bit 
shifters. 

- Integer masks but not powers of 2: An effi­
cient scheme for this is being developed. 

- Real valued masks: If mask values are nor­
malized (ranges between -1 to 1), then a suit­
able scheme for implementation on FPGAs 
is needed. 

The Splash PEs carry out two different activities, 
namely, (i) additions and multiplications, and (ii) shift 
operations. We have built two different elements for 
each of the activities, namely, (i) compute element, 
and (ii) shift element. The number of compute ele­
ments and shift registers is determined by the mask 
size and image width. The schematics of both these 
elements are shown in Figure 5. 

4 Results 

A brief summary of the analysis of several convolu­
tion algorithms is given in Table 1 based on the com­
munication facility available on the respective archi­
tectures. In a systolic algorithm, the communication 
overhead is balanced by the computation phase. More­
over, no complex communication facility is needed. In 
this sense, systolic algorithm is better in terms of total 
work done and communication simplicity. 

We compare our implementation on Splash 2 with 
implementations on different platforms in terms of to­
tal execution time. The timings for 3 x 3 convolution­
based Sobel edge detector on a 512 x 512 image are 
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shown in Table 2. The basic sequential convolution 
algorithm (Figure 3) running on different Sun host 
machines has been timed. In addition, timing on a 
recently developed i-860 based system from Alacron is 
reported. The timing results on CM-5 are taken from 
[16] and are for edge detection using a set of six 5 x 
5 convolution masks. 

For implementing the convolution algorithm on 
Splash 2, we have chosen three standard edge detectors 
used in low-level computer vision algorithms. The fil­
ters and their mappings on Splash 2 PEs are shown in 
Figure 6. These operators have two convolution stages 
and a final stage to compute the edge magnitude at 
each pixel by computing the absolute sum of the two 
convolution output images. Each PE accommodates 
the required shift registers for that stage. The outputs 
for the house image using 3 x 3 Sobel edge detector, 
5 x 5 Prewitt edge detector and 7 x 7 Prewitt edge 
detector are shown in Figure 7. The timings for these 
edge detectors on Splash 2 are shown in Table 3. 

Our approach for implementing convolution oper­
ation on Splash 2 is different in many ways from the 
approach taken by Peterson et al. [17]. The main dif­
ferences are: (i) We are not limited by a fixed mask 
size of 8 x 8 as done in [17]. For smaller masks, Pe­
terson et al. [17] have used the same 8 x 8 masks filled 
with zeros. This may be due to hard-coded model of 
computing on Splash 2; (ii) Peterson et al. use all the 
16 PEs for implementing their algorithm. We use less 
number of PEs for smaller mask sizes (k < 8). There­
fore, in our approach, we will have more PEs available 
for implementing many other stages of a vision sys­
tem; and (iii) Our mapping on Splash 2 results in a 
higher performance of nearly 100 frames per second 
compared to 15 frames per second reported by Peter­
son et al. [17]. 

5 Conclusions 

Convolution with integer mask values that are pow­
ers of two has been efficiently implemented on Splash 
2. The algorithm scales well with mask size. For the 
most general case of real-valued masks could be han­
dled using look-up tables. 

We are currently designing a fixed point multiplier 
on the chip to achieve an efficient implementation with 
real-valued masks. Because of the limit on logic that 
can be accommodated in a PE in Splash 2, mapping of 
virtual PEs to physical PEs will become difficult after 
a certain point. Moreover, if we have a large number 
of lookups, then the performance degrades linearly. 
Manseur [18] has proposed a scheme to decompose 
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