
Homayoun

Reference 45

PATENT OWNER DIRECTSTREAM, LLC
EX. 2157, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Convolution on Splash 2

N alini K. Ratha, Anil K. Jain & Diane T. Rover*
Department of Computer Science

* Department of Electrical Engineering
Michigan State University

East Lansing, MI 48824
ratha@cps.msu.edu, jain@cps.msu.edu, rover@ee.msu.edu

Abstract

Convolution is a fundamental operation in many
signal and image processing applications. Since the
computation and communication pattern in a convolu­
tion operation is regular, a number of special architec­
tures have been designed and implemented for this op­
erator. The Von Neumann architectures cannot meet
the real-time requirements of applications that use con­
volution as an intermediate step. We combine the
advantages of systolic algorithms with the low cost of
developing application specific designs using field pro­
grammable gate arrays (FPGAs) to build a scalable
convolver for use in computer vision systems. The
performance of the systolic algorithm of Kung et al.
{1] is compared theoretically and experimentally with
many other convolution algorithms reported in the lit­
erature. The implementation of a convolution opera­
tion on Splash 2, an attached processor based on Xilinx
4010 FPGAs, is reported with impressive performance
gains.

1 Introduction

Convolution is an important operator in digital sig­
nal and image processing. Many machine vision sys­
tems use 2-dimensional convolution for image filtering,
edge detection, and template matching. Convolution
of two signals f and g is often expressed as h = f * g,
where h is the result of applying convolution mask g

on input signal f. For 2-dimensional discrete images,
convolution can be defined as follows:

00 00

h(x,y) = L L f(x-i,y-j)g(i,j). (1)
i=-ooj=-oo

For images of finite size (say N x N), and masks of
finite size (say k x k), 2-dimensional convolution off

0-8186-7086-X/95 $04.00 © 1995 IEEE
204

(image) and g (mask) can be expressed as

k-lk-1

h(x, y) =LL f(x + i, y + j)g(i, j). . (2)
i=O j=O

In the second form, it is also known as template match­
ing, or correlation. The image size and mask size need
not contain square number of elements in general.

Typical use of convolution in image processing is for
edge detection using, for example, Sobel, and Prewitt
masks; computing texture orientation; object location
using template matching; and image smoothing using
Gaussian masks. Convolution operation described in
Eq. (2) can include integer-valued and real-valued in­
put images and masks. Examples ofreal-valued masks
are image smoothing using Gaussian masks, and com­
puting texture features using Gabor filters. Most com­
monly used masks such as Laplacian, Sobel, and Pre­
witt have not only integer mask values, but the mask
values can be expressed as powers of two. In a typical
application involving many image processing stages,
each stage should be capable of processing real-valued
images. Based on this observation, we can have a tax­
onomy of convolution operation as shown in Figure 1.

Many approaches to perform convolution using spe­
cial architectures have been reported in the litera­
ture [1, 2, 3]. A very simple distributed approach for
convolution is to split the input image into a set of
smaller, possibly overlapping, sub-images; the num­
ber of subimages is the same as the number of pro­
cessing elements (PEs). Each PE produces the result
for the sub-image it receives. The spatial support for
the convolution mask is provided through the overlap
at the boundaries or data replication. However, this
simplistic approach may not be suitable for all target
architectures. For example, if the image is being ac­
quired line by line, this approach may not be efficient
as we have to wait till we acquire the whole image.
In order to understand the advantages and disadvan-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2157, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

mailto:ha@cps.msu.edu
mailto:ha@cps.msu.edu
mailto:ha@cps.msu.edu
mailto:ha@cps.msu.edu
http://msu.edu
http://msu.edu
http://msu.edu
http://msu.edu
mailto:ee.msu.edu
mailto:ee.msu.edu
mailto:ee.msu.edu
mailto:ee.msu.edu
https://www.docketalarm.com/

tages of various algorithms reported in the literature,
we need to look at the communication and computa­
tion pattern in 2-dimensional convolution. The basic
convolution operation is shown schematically in Fig­
ure 2. Suppose the value of the convolution operation
is desired at the point (x,y). The center of the mask
is placed at (x,y). A point-wise inner product of the
image pixels and mask values is computed, followed by
a reduction sum operation. This computes the output
value at (x, y). The reduction operation can also be a
prefix sum, although the intermediate results are not
directly useful. This basic set of operations is repeated
at all possible (x, y) locations.

The sequential version of convolution algorithm is
very simple and is shown in Figure 3. There are four
loops in the algorithm and its overall complexity is
O(N 2k2). The simple data partitioning approach de­
scribed above can reduce the total time by a factor
equal to the number of available processors, ignoring
the extra computations needed in the overlapping ar­
eas by each PE.

The previous work described in the literature can
be summarized based on the target architecture on
which convolution operation is implemented.

• Systolic: One of the most widely used convolu­
tion algorithm is the systolic algorithm by Kung
et al. [l]. The algorithm is fairly straight forward
and also scalable to higher dimensions using the
1-dimensional convolution algorithm as the build­
ing block. In his landmark paper "Why systolic
architectures?" [4], Kung described many convo­
lution algorithms on systolic structures. Based
on a general inner product computation, Kulka­
rni and Yen [5] proposed a systolic algorithm for
1-dimensional and 2-dimensional convolution.

• Hypercube: Fang et al. [2] have described an
O(k 2 /p 2 + klog(N/p) + logN * logp) algorithm,
where 1 ~ p ~ k, and using N 2 k2 PEs and
an O(N 2 M 2

/ L 2
) algorithm using L2 PEs. Us­

ing N2 PEs, Prasanna Kumar and Krishnan [6]
proposed an algorithm with the best time com­
plexity of O(N 2 / K 2 + logN). With a fixed num­
ber of PEs, their time complexity changes to
O(k 2logk + logN).

• Mesh: Many researchers [7, 3] have proposed
schemes for convolution on mesh connected ar­
chitectures. Lee et al. [7] use computation
along a Hamiltonian path ending at the center
of the convolution mask, called the convolution
path. Ranka and Shani [3] do not broadcast the

205

data values, thereby improving the performance
of their algorithm by an order of magnitude.

• Pyramid: Pyramid architectures are useful in
dealing with multi-resolution images. An O(k 2 +
logN) time complexity algorithm is described by
Chang et al. [8]. ·

• VLSI/ ASIC: Most of the approaches recommend
the suitability of their algorithm for a VLSI im­
plementation. Chakrabarti and Jaja use a linear
array of processors in their algorithm [9]. In [5]
convolution is viewed as a generalized inner prod­
uct and a VLSI implementation for 2-dimensional
convolution is described. Ranganathan and Venu­
gopal [10] have described a VLSI architecture for
template matching using k2 PEs and they achieve
a time complexity of O(N 2 /2 + K 2).

In this paper, we describe a convolution algorithm
suitable for implementation on field programmable
gate arrays (FPGAs). FPGAs have been used in
designing many custom computing structures. Re­
cent advances in hardware technology, enabling more
logic blocks in FPGAs, make them more suitable for
many complex applications needing more logic. Re­
cently, Barros and Akil [11] have used FPGAs for
low-level image processing. Athanas et al. [12] de­
scribe many image processing functions implemented
on Splash 2. We use Splash 2, an attached processor
on Sun SPARCstations based on Xilinx 4010 FPGA
PEs. Our 2-dimensional convolution algorithm im­
plementation has been designed and synthesized for
Splash 2 architecture. ·

The rest of the paper is organized as follows. Splash
2 architecture and software environment is described
in Section 2. The convolution algorithm is described
in section 3. The performance of the proposed algo­
rithm is evaluated by comparing its execution time
and its complexity against some other algorithms re­
ported in the literature. The computer aided design
(CAD) tools provide a performance estimate which is
also compared with the real speed achieved in section
4. In Section 5 conclusions and plans for future work
are given.

2 Splash 2 Architecture

The Splash 2 system consists of an array of Xilinx
4010 FPGAs, improving on the design of the Splash
1 hMed on Xilinx 3090s [13]. The Splash 2 system
is connected to the Sun host through an interface
board that extends the address and data buses. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2157, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

host can read/write to memories and memory-mapped
control registers of Splash 2 via these buses. A de­
tailed description of the system is given in [14]. Each
Splash 2 processing board has 16 Xilinx 4010s as PEs
(X 1 - X 16) in addition to a seventeenth Xilinx 4010
(Xo) which controls the data flow into the processor
board. Each PE has 512 KB of memory. The Sun
host can read/write this memory. The PEs. are con­
nected through a crossbar that is programmed by X 0 .

There is a 36-bit linear data path (SIMD Bus) running
through all the PEs. The PEs can read data either
from their respective memory or from any other PE.
A broadcast path also exists by suitably programming
Xo.

Splash 2 system supports several models of com­
putation, including PEs executing the same instruc­
tion on multiple data (SIMD mode) and PEs executing
multiple instructions on multiple data (MIMD mode).
It can also execute the same or different instructions
on single data by receiving data through the global
broadcast bus. The most common mode of operation
is systolic in which the SIMD Bus is used for data
transfer. Also individual memory available with each
PE makes it convenient to store temporary results and
tables.

To program Splash 2, we need to program each of
the PEs (X1- X16), the crossbar, and the host inter­
face. The crossbar sets the communication paths be­
tween PEs. In case the crossbar is used, Xo needs to
be programmed. The host interface takes care of data
transfer's in and out of the Splash 2 board. A spe­
cial library is available for these facilities for VHDL
programming as described in [14].

3 Convolution Algorithm on Splash 2

Image processing algorithms, in general, convolu­
tion, in particular, demand high I/O bandwidth. Most
of the algorithms proposed on special architectures as­
sume that data are already available on the PEs. This,
in a way, avoids the I/O bandwidth problem of the
convolution operation. We do not make this assump­
tion. Jonker [15] argues that linear arrays are better
for image processing algorithms. A linear array of PEs
operating in a systolic mode offers two advantages: (i)
systolic arrays can balance I/O with computations, (ii)
the nearest neighbor communication can eliminate the
need for a global communication facility for some class
of algorithm. One of the preferred modes of computa­
tions on Splash 2 is the systolic mode. In this mode,
we assume nothing about availability of data in the
individual PEs. The computations needed in a PE

206

are also fairly simple. This helps us in balancing the
I/O bandwidth requirement and computation require­
ment at a PE. Hence, we prefer a systolic algorithm
for convolution on Splash 2.

First, we describe the I-dimensional convolution al­
gorithm. A systolic I-dimensional convolution is sim­
ple. Let us assume that we have k PEs, where k is
the size of the mask. Each PE receives from its left
neighbor the pixel value and the partial result avail­
able so far. The PE multiplies the pixel value with
the mask value it handles and adds the partial sum
to it. This result and the pixel value are passed to its
right neighbor. At the end of the systolic path, we get
the convolution result after taking into account initial
latency. A schematic diagram of I-dimensional convo­
lution on a set of PEs connected linearly is shown in
Figure 4(a).

The above algorithm assumes that the PEs can
do multiplication. In a FPGA-based PE, this is not
true. A double precision floating point multiplier
needs more logic than what is available in a PE. We
can use the local PE memory to store the multipli­
cation table indexed by the pixel value. This results
in an additional delay of one cycle necessary to refer­
ence the multiplication result from the memory. This
scheme is shown in Figure 4(b).

Our 2-dimensional convolution is an extension of
the I-dimensional convolution described above. The
basic idea is based on the algorithm proposed by Kung
et al. [1]. The k x k mask is extended to a k x N
mask with O's placed at locations where no entry was
present. These kN entries are serialized to get a sin­
gle I-dimensional mask of kN entries. Now, we can
apply the I-dimensional convolution algorithms out­
lined above. Note that there are (N - k) locations
with O's as their mask value. Hence, we can simply
have (N - k) stages of shift registers. Secondly, for
improper positions of this new N k-element mask we
get values which are not really part of the output.
These need to be ignored. Finally, the assumption on
the input is that the pixels are being communicated
in a raster scan order. Note that we can use either
of the I-dimensional convolution algorithms described
above depending on the value of the convolution mask
coefficients. The scheme is shown in Figure 4(c).

Implementation Issues
The general convolution algorithm needs to be tuned
for the special hardware being used. For example, we
have only 16 PEs. We need to map virtual PEs to
physical PEs. The second issue is the number of shift
registers which depends on the row size of the im­
age. The third issue is implementation of multipliers

PATENT OWNER DIRECTSTREAM, LLC
EX. 2157, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

needed by the PEs. Following is a summary of our
solution to these issues.

• Large number of mask entries: If mask size (k)
is greater than the number of available PEs, the
virtual PEs are mapped to available PEs. In car­
rying out the mapping, the timing model between
PEs must be satisfied.

• Larger image width: Image has to be split into
smaller sub-images of some predefined size. In or­
der to handle this, we develop the 2-dimensional
convolution with a fixed width (32 in our case).
Larger images are split into sub-images of 32 x
32 pixels and depending on the mask size the re­
quired rows and columns at the border are copied.

• Multiplier implementation:

- Masks with integer values: If mask values
are of the type 2P, then the multiplier in each
virtual PE can be replaced with simple bit
shifters.

- Integer masks but not powers of 2: An effi­
cient scheme for this is being developed.

- Real valued masks: If mask values are nor­
malized (ranges between -1 to 1), then a suit­
able scheme for implementation on FPGAs
is needed.

The Splash PEs carry out two different activities,
namely, (i) additions and multiplications, and (ii) shift
operations. We have built two different elements for
each of the activities, namely, (i) compute element,
and (ii) shift element. The number of compute ele­
ments and shift registers is determined by the mask
size and image width. The schematics of both these
elements are shown in Figure 5.

4 Results

A brief summary of the analysis of several convolu­
tion algorithms is given in Table 1 based on the com­
munication facility available on the respective archi­
tectures. In a systolic algorithm, the communication
overhead is balanced by the computation phase. More­
over, no complex communication facility is needed. In
this sense, systolic algorithm is better in terms of total
work done and communication simplicity.

We compare our implementation on Splash 2 with
implementations on different platforms in terms of to­
tal execution time. The timings for 3 x 3 convolution­
based Sobel edge detector on a 512 x 512 image are

207

shown in Table 2. The basic sequential convolution
algorithm (Figure 3) running on different Sun host
machines has been timed. In addition, timing on a
recently developed i-860 based system from Alacron is
reported. The timing results on CM-5 are taken from
[16] and are for edge detection using a set of six 5 x
5 convolution masks.

For implementing the convolution algorithm on
Splash 2, we have chosen three standard edge detectors
used in low-level computer vision algorithms. The fil­
ters and their mappings on Splash 2 PEs are shown in
Figure 6. These operators have two convolution stages
and a final stage to compute the edge magnitude at
each pixel by computing the absolute sum of the two
convolution output images. Each PE accommodates
the required shift registers for that stage. The outputs
for the house image using 3 x 3 Sobel edge detector,
5 x 5 Prewitt edge detector and 7 x 7 Prewitt edge
detector are shown in Figure 7. The timings for these
edge detectors on Splash 2 are shown in Table 3.

Our approach for implementing convolution oper­
ation on Splash 2 is different in many ways from the
approach taken by Peterson et al. [17]. The main dif­
ferences are: (i) We are not limited by a fixed mask
size of 8 x 8 as done in [17]. For smaller masks, Pe­
terson et al. [17] have used the same 8 x 8 masks filled
with zeros. This may be due to hard-coded model of
computing on Splash 2; (ii) Peterson et al. use all the
16 PEs for implementing their algorithm. We use less
number of PEs for smaller mask sizes (k < 8). There­
fore, in our approach, we will have more PEs available
for implementing many other stages of a vision sys­
tem; and (iii) Our mapping on Splash 2 results in a
higher performance of nearly 100 frames per second
compared to 15 frames per second reported by Peter­
son et al. [17].

5 Conclusions

Convolution with integer mask values that are pow­
ers of two has been efficiently implemented on Splash
2. The algorithm scales well with mask size. For the
most general case of real-valued masks could be han­
dled using look-up tables.

We are currently designing a fixed point multiplier
on the chip to achieve an efficient implementation with
real-valued masks. Because of the limit on logic that
can be accommodated in a PE in Splash 2, mapping of
virtual PEs to physical PEs will become difficult after
a certain point. Moreover, if we have a large number
of lookups, then the performance degrades linearly.
Manseur [18] has proposed a scheme to decompose

PATENT OWNER DIRECTSTREAM, LLC
EX. 2157, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

