
Homayoun

Reference 42

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 1



Multiprocessors 

Thus far we have treated methods for speeding up a single instruction stream. 
Although there is but a single program in execution, the designs discussed 
earlier exploit concurrency within the instruction stream and within individ-
ual instructions. In this chapter we turn to the discussion of multiprocessors-
computer systems composed of several independent processors. The mo-
tivation for moving towards multiple processors is strictly a matter of 
performance because device technology places an upper bound on the speed 
of any single processor. To exceed that bound requires multiple processors. 

The central themes of this chapter are multiprocessor structures and 
performance. Our objective is to show several interesting techniques for or-
ganizing multiple processors into highly parallel systems and to give insight 
into the potential performance improvements and bottlenecks of such sys-
tems. Chapter 7 treats software strategies for using the available parallelism 
of these systems. 

278 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 2



Sec. 6.1 Background 279 

6.1 Background 
Our earlier discussions of high-performance machines study two important 
classes of parallelism. Pipeline machines produce high performance by plac-
ing several stages of a pipeline in operation simultaneously. Machines for 
continuum calculations have multiple processors, each executing the same 
program. In both cases, a single program is used to operate on vectors or 
arrays of data. Flynn [1966] termed this type of parallelism single-instruction 
stream, multiple-data stream (SIMD) parallelism. Recall, for example, an ex-
treme implementation of this idea in the form of the GF-11, ih which each of 
576 processors executes identical instructions broadcast to them by a single 
control unit. 

Another SIMD machine with massive parallelism is the Connection Ma-
chine [Hillis 1986] with 64K 1-bit processors. The architect is truly fortunate 
when an application can be executed on machines that are built around the 
lock-step parallelism required for SIMD machines because the architecture 
efficiently executes programs well suited to SIMD execution. 

High performance on such machines requires rewriting conventional al-
gorithms to manipulate many data simultaneously by means of instructions 
broadcast to all processors. Although programming for these machines can 
be difficult in principle, in the ideal case, a serial algorithm can be converted 
to an SIMD algorithm by replacing each inner loop with a single broadcast 
instruction that implements the complete loop. The fact that an important, 
but limited, class of problems fits this model extremely well has provided the 
impetus for the design and construction of these machines. 

Clearly, some large problems do not lend themselves to efficient exe-
cution in an SIMD architecture. The operations required for such problems 
cannot easily be organized into repetitive operations on uniformly structured 
data. They tend to be unstructured and unpredictable. Addressing patterns 
tend to be data dependent, so the architecture cannot easily preload data by 
anticipating future accesses. 

The architect who must attain high performance for such problems inevi-
tably looks for a solution in a multiprocessor structure. Such an architecture 
is composed of several independent computers, each capable of executing its 
own program. Flynn [1966] calls this type of architecture multiple-instruction 
stream, multiple-data stream, (MIMD) architecture. The processors of a multi-
processor are interconnected in some fashion to permit programs to exchange 
data and synchronize activities. 

A model of such an architecture is shown in Fig. 6.1. In this figure each 
processor has registers, arithmetic and logic units, and access to memory and 
input/output modules. In Fig. 6. l(a) we show the memory and input/output 
systems as separate subsystems shared among all of the processors. Figure 
6.l(b) shows the memory and input/output units attached to individual pro-

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 3



280 

Processor 1 

Processor 2 

Processor N 

Processor 1 

Processor 2 

Processor N 

Multiprocessors 

Interconnection 
Network 

(a) 

Memory 

Memory 

Memory 

(b) 

1/0 

1/0 

1/0 

Fig. 6.1 Two multiprocessor structures: 
(a) All memory and 110 are remote and shared; and 
(b) All memory and 1/0 are local and private. 

Memory 

Memory 

Memory 

Interconnection 
Network 

Chap. 6 

1/0 

1/0 

cessors. No sharing of memory and input/output is permitted in Fig. 6.l(b). In 
both cases, because the system contains multiple processors, each capable of 
executing an independent program, the system fits Flynn's MIMD model. 

In both systems depicted in Fig. 6.1 the processors cooperate by ex-
changing data through the interconnection system and by synchronizing 
activities. The shared memory in Fig. 6.l(a) provides a convenient means for 
information interchange and synchronization since any pair of processors 
can communicate through a shared location. The structure in Fig. 6.l(b) 
supports communication through point-to-point exchange of information. 
Obviously, multiprocessors can have any reasonable combination of shared 
global memory or private local memory. Fig. 6.1 shows the extremes in the 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 4



Sec. 6.1 Background 281 

design space, and practical designs lie at the extremes or anywhere in be-
tween. 

The main purpose of a high-speed multiprocessor is to complete a job 
faster by using several machines concurrently than can be done by using a 
single copy of the same machine. In some applications, the main purpose for 
using multiple processors is for reliability rather than high performance. The 
idea is that if any single processor fails, its workload can be performed by 
other processors in the system. Since the design principles of such systems 
are quite different from the principles that guide the design of high-
performance systems, we do not address design for reliability in this text, but 
rather we limit our attention to issues related to performance. 

When a multiprocessor is operating at peak performance, all processors 
are engaged in useful work. No processor is idle, and no processor is executing 
an instruction that would not be executed if the same algorithm were exe-
cuting on a single processor. In this state of peak performance, all N pro-
cessors of a multiprocessor are contributing to effective performance, and the 
processing rate is increased by a factor of N. 

Peak performance is a very special state that is rarely achievable. There 
are several factors that introduce inefficiency. Among the factors are: 

• The delays introduced by interprocessor communications; 
• The overhead in synchronizing the work of one processor with another; 
• Lost efficiency when one or more processors run out of tasks; 
• Lost efficiency due to wasted effort by one or more processors; and 
• The processing costs for controlling the system and scheduling oper-

ations. 

Both scheduling and synchronization are sources of overhead on serial 
machines. In citing these factors together with the other factors, we are citing 
how they degrade multiprocessor performance beyond the effects that may 
already be present on individual processors. 

A high-performance vector processor is free from many of the problems, 
but it does suffer from lost performance because it is unable to keep all of the 
processing units busy. This latter problem arises particularly when a 
computation is not easily implemented as a sequence of vector operations 
performed on highly structured, densely stored data. 

The architect who designs and builds a multiprocessor must pay close 
attention to the sources of inefficiency exposed here. They can lead to serious 
degradation in performance. For example, if the combined inefficiencies pro-
duce an effective processing rate of only ten percent of the peak rate, then ten 
processors are required in a multiprocessor system just to do the work of a 
single processor. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 5



282 Multiprocessors Chap.6 

Fortunately, for a small number of processors, careful design can hold the 
inefficiency to a low figure, but inefficiencies tend to climb as the number of 
processors increase. There is a point where adding additional processors can 
lengthen, not shorten, computation time. 

The fact that inefficiency tends to grow with the number of processors is 
the underlying reason why many commercial offerings of multiprocessors 
have a small number of processors, such as 4, 8, or 16. The fastest machines 
are built from the fastest devices available and have relatively few processors. 

Consider, for example, the Cray XMP, a four-processor version of the Cray 
I. Another example is the IBM 309X family for which from one to six pro-
cessor systems are available. Both of these implementations start with very 
high-speed devices and use architectural techniques such as cache and pipe-
lining to produce very high-performance single processors for their respective 
markets. 

Users of these machines may have workloads or individual problems 
whose needs exceed the capacity of a single machine. Additional performance 
is not readily available from faster versions of the same machine because the 
machines are already at the limits imposed by architecture and device tech-
nology. An effective way to attain small multiples of performance im-
provement is to group together two or four identical processors. 

Some computer architects take note of a cost characteristic mentioned in 
Chapter 1. The discussion there indicates that high-speed device technology 
is much more expensive than lower-speed technology. 

Moreover, with today's devices the cost of fast devices tends to grow faster 
than the performance benefit of the increased device speed. Hence, the cost 
per unit of computing power tends to be greater for high-end machines than 
for low-end machines, although this trend is technology dependent and could 
change over time. Nevertheless, when lower-speed technology has a cost 
advantage, we have an opportunity to create a cost-effective high-
performance system by combining hundreds or thousands of slow-speed pro-
cessors built with low-cost devices. 

The cost advantage of using low-cost technology is balanced by the deg-
radation in efficiency that inevitably occurs as the number of processors 
increases. If the degradation due to the large number of processors exceeds 
the cost advantage of the low-cost technology, then there is no particular 
advantage to using hundreds of slow processors over using a few very fast 
processors. 

Moreover, the complexity of programming a machine with hundreds of 
processors far exceeds the complexity of programming a single processor or a 
computer system with just a few processors. Consequently, although eco-
nomics might enhance the attractiveness of a machine with hundreds of 
low-speed computers, the advantage of this structure disappears if efficiency 
is not held high. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 6



Sec. 6.2 Multiprocessor Performance 283 

Thus, there is no particular magic in the parallelism of a multiprocessor. 
The parallelism yields a useful benefit when it successfully produces higher 
performance. When the parallelism cannot be tapped effectively, it simply 
adds to the system cost and complexity. In such a case, the end user is best 
served by reducing the parallelism to a point where the parallelism available 
can be used effectively. Whether there are ten, 1,000, or one million pro-
cessors, it is bad practice to squander processing power. The argument that 
"processors are cheap" is irrelevant if, by using fewer processors, per-
formance goes up. 

In the next section we address the question of efficiency more carefully, 
especially considering the ratio of the time spent executing useful in-
structions compared to the time spent communicating with other processors. 

6.2 Multiprocessor Performance 
The point of this section is to analyze the performance benefits of multiple 
processors in the face of overhead incurred to create parallelism. The models 
studied are variations of models introduced by Indurkhya, Stone, and Xi-
Cheng [1986]. 

This section shows that performance benefits strongly depend on the 
ratio RIC, where R is the length of a run-time quantum and C is the length of 
communications overhead produced by that quantum. The ratio expresses 
how much overhead is incurred per unit of computation. When the ratio is 
very low, it becomes unprofitable to use parallelism. When the ratio is very 
high, parallelism is potentially profitable. Note that a large ratio can be 
obtained by partitioning a computing job into relatively few large pieces, and 
that the amount of parallelism for such a ratio might be much smaller than 
the maximum available. 

The ratio RIC is a measure of task granularity: 

• In coarse-grain parallelism, RIC is relatively high, so each unit of 
computation produces a relatively small amount of communication; and 

• In fine-grain parallelism, RIC is very low, so there is a relatively large 
amount of communication and other overhead per unit of computation. 

Coarse-grain parallelism arises when individual tasks are large and over-
head can be amortized over many computational cycles. Fine-grain 
parallelism usually provides opportunities to perform execution on many 
more processors than can fruitfully support coarse-grained parallelism. The 
idea of fine-grain parallelism is to partition a program into increasingly 
smaller tasks that can run in parallel. At the ultimate limit, each individual 
task may be as small as a single operation. More commonly, however, a 
fine-grained task contains a small number of instructions. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 7



284 Multiprocessors Chap.6 

The programmer seeking maximum performance is strongly tempted to 
partition a problem into the finest possible granularity to create the max-
imum amount of parallelism. But if the maximum parallelism also has the 
maximum overhead, it is not clear that maximum parallelism leads to the 
fastest solution. 

The main reason for the presentation of the performance models in this 
section is to show the pervasive role of the RIC ratio on performance. The 
discussion that follows shows how a fine-grain partition that happens to have 
a low RIC ratio produces poorer performance than a much coarser partition 
with a higher RIC ratio. Hence the much higher parallelism of the fine-grain 
partition need not produce higher net speed. 

The purpose of presenting a number of different performance models to 
make this point is that no one model is truly representative of multi-
processors or of multiprocessor algorithms. We consider a number of differ-
ent variations of the basic model to cover a variety of program behaviors and 
multiprocessor architectures. In every case, the role of RIC is the same. Small 
ratios lead to poor performance because of high overhead. Large ratios usu-
ally reflect poor exploitation of parallelism. For maximum performance, it is 
necessary to balance parallelism against overhead. The only difference from 
model to model is the point where the two factors become balanced. 

Architects have long debated the relative qualities of fine and course 
granularity. For SIMD machines, the GF-11 is a coarse-grained machine 
whose individual processors can sustain a peak rate as high as 20 Mflops. The 
Connection Machine is an SIMD machine whose 1-bit processors are better 
suited to fine-grained tasks and whose performance stems from the massive 
number of processors rather than from the computational power of 
individual processor. 

What reasoning led the architects of one machine to seek such a vastly 
different solution than did the architects of the other machine? The range of 
applications is the primary motivation for the difference. The Connection 
Machine is designed to exploit parallelism of tasks such as image analysis, in 
which a significant portion of the work is characterized by fine-grained tasks. 
The GF-11, which is designed for much larger-grained tasks, would be bur-
dened by overhead if the tasks carried the additional overhead attributable to 
fine granularity. Thus the architects of each machine attempted to match 
granularity to the applications for the machine. 

At one end of the multiprocessor scale are the Cray multiprocessors, such 
as the Cray XMP-a four-processor system in which each processor is a Cray I 
supercomputer. Under ideal circumstances, communication in this system 
occurs only at the end of major phases, which might well be every few million 
or few billion instructions. 

Smaller granularity is evident on microprocessor-based multiprocessors 
such as the Cosmic Cube and a number of commercial versions of this 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 8



Sec. 6.2 Multiprocessor Performance 285 

hypercube-based design. These machines typically use 64 to 256 copies of a 
high-performance 32-bit microprocessor. The different granularity biases the 
machines somewhat to different application programs. 

The remainder of this section is devoted to performance models. In each 
model, observe how the ratio RIC determines the strategy that achieves the 
optimum performance. To simplify the models, we have generally ignored the 
effects of synchronization and contention except as crudely approximated by 
the models. In practical systems, the effects ignored here tend to lower 
performance from that predicted by these models. In most instances, the best 
way to compensate for the unmodeled effects is to increase the granularity of 
tasks. 

6.2.1 The Basic Model-Two Processors with Unoverlapped 
Communications 

For the first model, consider an application program that contains M tasks. 
Our objective is to execute this program at maximum speed on a system with 
N processors. For simplicity, we first consider a system with just two pro-
cessors and then let the number of processors increase. To model per-
formance we need to characterize the combination of execution time and 
overhead that will be incurred. 

Let us make the following assumptions to obtain our initial results. Sub-
sequently we relax the assumptions and see how the performance changes. 
Specifically, we assume that: 

1. Each task executes in R uni ts of time; and 
2. Each task communicates with every other task at an overhead cost of C 

units of time when the communicating tasks are not on the same 
processor, and at no cost when the communicating tasks are coresident. 

We have various choices of how to execute such an application on a 
two-processor system. We can assign all tasks to one processor and ignore the 
second processor, which is a solution that minimizes communication 
overhead but fails to take advantage of available parallelism, or we can 
partition the tasks to the two processors in any combination. If the tasks are 
split across the processors, then the total execution time is a combination of 
the time spent in execution and the time spent engaged in overhead activities. 
Although we use the notation C as if C were exclusively due to communica-
tion, it is convenient to lump overhead from all sources into C. 

To some extent, overhead can be overlapped with computation, especially 
if processors can perform communication through input/output ports while 
executing concurrently. However, not all sources of overhead can be hidden 
by overlapping with computation. Processors can contend for shared data or 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 9



286 Multiprocessors Chap.6 

shared communication paths, and they may be idle during synchronization 
periods. Therefore, we assume that some portion of overhead operations 
lengthen total processing time because overhead cannot be fully overlapped 
with computation. In this case the equation that describes total processing 
time is the following: 

Execution time= R Max(M -k,k) + C(M - k)k (6.1) 

Equation (6.1) expresses execution time as the sum of two terms, one attrib-
uted to run time and one to communication and other overhead. The run time 
for two processors is the larger of the run times experienced and is therefore 
the larger of R (M - k) or Rk when k tasks are assigned to one processor and 
M - k to the other. The second term models overhead to be proportional to 
the number of pair-wise communications that must take place as a function 
of how tasks are partitioned to the two processors. Note that the first term is a 
linear function of k, and the second term is a quadratic function of k. 

What is the minimum execution time for Eq. (6.1) as a function of k? That 
is, how shall we assign tasks to two processors to produce the minimum 
execution time? Figure 6.2 shows a graphic way of finding a solution. The 
answer for this model is to assign all tasks to one processor if RIC is below 
Ml2, or split the tasks evenly between two processors if RIC exceeds that 
threshold. That is, either k = 0ork=M12. (If k is odd, then make k as close to 
Ml2 as possible.) 

Figure 6.2 shows the two different cases that arise for the different values 
of the RIC ratio. The first term of Eq. (6 .1) is piece-wise linear, and Fig. 6 .2(a) 
shows that this term looks like the letter V because it is symmetric at about 
the point k = M 12. In this figure, when the piece-wise linear term is added to 
the quadratic term, the resulting figure has a minimum at Ml2. 

In Fig. 6.2(b), the minimum occurs at k = 0. The minimum has to be at an 
extreme point in the region 0::; k::; M 12 because the quadratic curve k(M - k) 
is concave downward, and, after adding a linear term to this curve, the 
concavity is unchanged. A curve that is concave downward has its minimum 
at one of its endpoints. The endpoint of the curve at k = 0 (or at k = M) is the 
minimum when RIC< M 12; otherwise the minimum occurs at k = M 12. 

6.2.2 Extension to N Processors 

Now let's consider what happens when there are N processors. In this case, 
we assign k; tasks to the ith processor. The generalization of Eq. (6.1) becomes 

Execution time= R Max (k;) + Lk;(M - k;) 
I 

= R Max (k;) + M 2 
-

(6.2) 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 10



Sec. 6.2 

Q) 80 E 
i= 70 r:: 
.Q 60 :; 

50 >< w 
40 

..... 30 
20 
10 

0 

60 

50 
Q) 
E 
i= 40 
r:: 
0 :s 30 u 
Q) 
>< w 
co 20 

10 

0 

Multiprocessor Performance 

10 

10 

20 30 
Partition Parameter k 

(a) 

Run Time 

20 30 
Partition Parameter k 

(b) 

40 

M = 50 
RIC= 40 

40 

Fig. 6.2 Parallel execution time for two different RIC ratios: 
(a) Optimum partition parameter k = O; and 
(b) Optimum partition parameter k = M/2. 

287 

The first term counts the longest running time among the N execution times. 
To that time is added the overhead from the second term. That term counts 
the number of distinct pair-wise links between k; tasks and M - k; tasks, each 
of which contributes an amount C to the total time. The second term in Eq. 
(6.2) is quadratic just as in Eq. (6.1). 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 11



288 Multiprocessors Chap.6 

If the reasoning used to analyze Eq. (6.1) holds for this equation, then we 
expect that the minimum value is for an extreme assignment, and indeed this 
is the case. Either all tasks are assigned to a single processor, or they are 
distributed "evenly" across all processors. By "evenly," we mean that if Mis a 
multiple of N, then each processor receives MIN tasks. Otherwise, all but one 
processor receives the integer ceiling of MIN tasks, and one processor receives 
whatever is left over. This assignment does not necessarily use all N pro-
cessors. For example, when there are 19 tasks and six processors, the assign-
ment places four tasks on four processors and three tasks on a fifth processor, 
leaving no tasks assigned to the sixth processor. 

To show that the even distribution produces a local minimum, assume 
that k1 has the maximum number of tasks assigned to it, and show that an 
assignment in which two processors receive fewer than k1 tasks can be 
changed to an assignment with a lower cost, as computed by Eq. (6.2). 

For example, assume that both k2 and k3 satisfy k1 > k2 ;:::::: k3 ;:::::: 1. Consider 
the assignment that shifts one task from the third processor to the second 
processor and examine how the cost changes as per Eq. (6.2). The first term 
does not change because the change does not affect the maximum number of 
tasks assigned to a processor. The value of the second term is reduced, how-
ever, by the amount C(k2 - k3 + 1). This assignment produces higher per-
formance, and we can iterate this improvement process until no more than 
one processor has less than the maximum number of tasks assigned to it. 

Equation (6.2) has a threshold for an assignment, just as Eq. (6.1) has, and 
by a remarkable coincidence the thresholds are identical! We must compare 
the even assignment of tasks to the assignment that places all tasks on one 
processor. The latter assignment is preferred when RIC is sufficiently small. 

The difference in costs of the "even" distribution to N processors and a 
1-processor assignment is given by 

RM CM 2 CM 2 

Time difference= - + -- - -- - RM 
N 2 2N 

(6.3) 

where the first three terms form the cost of the even distribution of tasks and 
the last term is the cost of assigning all tasks to one processor. 

To simplify the analysis, we have ignored values of M that are not exact 
multiples of N. To solve for the threshold value of RIC, we set the value of Eq. 
(6.3) to 0. By removing a factor of Mand then grouping terms by coefficients R 
and C, we can remove another factor of (1 - l!N). This yields the equation 

or 

Time difference= - R = 0 (6.4) 

R M 
c 2 (6.5) 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 12



Sec. 6.2 Multiprocessor Performance 289 

This model shows that if RIC is greater than the threshold M 12, then an even 
distribution of tasks to as many processors as are available will produce the 
best time. On the other hand, if RIC is below that threshold, then no matter 
how many processors are available, no assignment produces a faster time 
than the assignment that uses only one processor. Here is a situation in which 
the role of overhead becomes quite clear. 

Unless overhead is kept below a certain percentage of execution time, 
parallel execution cannot be beneficial. If this model holds for a parallel 
algorithm and architecture, then the control of overhead costs is absolutely 
essential for parallelism to be successful. 

Although this analysis has looked at performance rather than costs, RIC 
determines the point at which parallelism is cost-effective. Even when RIC is 
sufficiently high to warrant parallelism, the performance gain is diminished 
by the second term of Eq. (6.2). The speedup attributable to parallelism is the 
ratio of the time to run on one processor to the time expressed by Eq. (6.2). 
This is approximately 

RM Speedup = -----'-"'-----

(RM+ CM 2 
_ CM 2

) 

N 2 2N 

R 

+ CM(l 2- l!N)) 
RN 
c 

+ M(N
2 

- 1)) 

(6.6) 

If the first term of the denominator is large compared with the second, then 
the speedup is proportional to N. This requires M and N to be small and for 
RIC to be large. If parallelism is increased to the extent that the denominator 
is dominated by its second term because N is very large, the speedup is 
proportional to RICM, which does not depend on the number of processors. 
Hence, as N increases, the speedup approaches a constant asymptote. 

At this point each processor added to the system brings extra cost while 
yielding negligible performance benefit. Even though performance can im-
prove incrementally as processors are added, the diminishing returns in per-
formance are not worth the added cost. The number of processors should not 
be increased beyond some maximum that is a function of cost and the ratio 
RIC. 

This model is a general picture of how granularity and overhead affect the 
performance gain of a multiprocessor, and it gives some indication of the 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 13



290 Multiprocessors Chap.6 

importance of minimizing overhead and selecting the right granularity. It is 
only one model, however, and it cannot encompass the full spectrum of actual 
applications. 

Let us alter the model in various ways and observe how the findings 
change. In general, we discover that RIC plays a critical role, regardless of the 
model. In some cases, there is the same type of threshold in which the best 
solutions are extreme. That is, use all available processors or just one pro-
cessor, depending on the value of RIC. In some models, the extreme solutions 
are not the best. The best solutions for these models distribute work among 
several processors, but do not use all processors because the use of too many 
leads to performance degradation and extra cost. Moreover, in the general 
case, work need not be distributed evenly to achieve the optimum per-
formance. 

6.2.3 A Stochastic Model 

Consider what happens when all tasks are not equal in execution time. The 
leading term in Eq. (6.2) is smallest when all processors run for equal lengths 
of time, so the objective is to scatter tasks among processors so that all 
processors are occupied for equal times. If this is not possible, the maximum 
running time among the processors should be as short as possible. 

The second term in Eq. (6.2) is smallest when tasks are distributed as 
unevenly as possible. Consequently, among all ways of distributing tasks to 
processors so that processors have nearly equal running times, find a distri-
bution in which the number of tasks assigned to each processor is as uneven 
as possible. That is, find schemes that assign as few or as many tasks per 
processor as possible, subject to the requirement that the total workload on a 
processor be equal to a given amount. 

In this model, the best assignment need not be the most evenly distrib-
uted workload. If the workload is slightly uneven, it may become possible to 
assign tasks to processors in such a way that overhead is greatly diminished. 
That is, a small increase in the linear first term of Eq.(6.2) can be more than 
balanced by a large decrease in the quadratic second term. 

A stochastic variation of the deterministic model presented here appears 
in Indurkhya, Stone, and Xi-Cheng [1986]. Instead of having all execution and 
communication times as fixed constants, the model assumes that the times 
are independent and identically distributed random variables with a mean R 
for the running times and a mean C for the communication times. To solve the 
model, lndurkhya et al. appeal to the Central Limit Theorem and the addi-
tional assumption that 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 14



Sec. 6.2 Multiprocessor Performance 291 

The E in Eq. (6.7) denotes the expected value. Equation (6.7) says that the 
maximum of a set of expected values of sums of independent and identically 
distributed random variables r;, the running times of the tasks, is equal to the 
expected value of the maximum of the sums. With these two assumptions, the 
model reduces to the deterministic model expressed by Eq.(6.2), and the 
results are identical. 

The assumption underlying Eq. (6.7) is actually false, as is stated by 
Indurkhya et al., but the point is that when the equation breaks down, it is 
close enough to being correct that the results produced are reasonably accu-
rate. If one of the summations in Eq. (6.7) has many more summands than 
any other, then almost surely it has the maximum expected value, and its 
expected value is the value of both sides of Eq. (6.7). If two or more sum-
mations have almost the same number of terms, and this number is max-
imum among all equations, then it is possible for the left-hand side of Eq. 
(6.7) to select one summation and the right-hand of Eq. (6.7) to select another 
summation, but the values of summations will be fairly close, so that Eq. (6.7) 
is approximately if not exactly correct. 

Nicol [1986] explored the model more deeply and discovered that the 
results reported by Indurkhya et al. can be proved to be true in some instances 
without relying on Eq. (6.7). Indeed, the model appears to be robust in the 
sense that small perturbations in the underlying assumptions do not alter the 
gross conclusions from the model, although specific details in the conclusions 
may change. 

6.2.4 A Model with Linear Communication Costs 

Let us examine a model that is less drastic with regard to communication 
costs to show a more optimistic result with regard to parallelism. Our first 
model assumes that each task communicates with every other task, and, as a 
consequence, the communications overhead grows quadratically as the 
number of processors increases. This is the case when each task sends unique 
information to every other task, but such a program structure is very poorly 
suited for multiple processors. Some programs may well have this structure, 
and if so, our results suggest how much speedup one can expect and at what 
cost. But there are surely many other programs better suited for parallel 
computation on multiprocessors. We need to know the performance potential 
for such programs and how to achieve it. What is rather surprising is that the 
analysis is remarkably similar with a rather similar optimal strategy, 
although the speedup available is greater. 

For this model, assume that the cost of communication is proportional to 
the number of processors, not to the number of tasks assigned remotely. This 
model holds if a task has to communicate with all other tasks but sends the 
same information to all other tasks. Then the information has to be sent only 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 15



292 Multiprocessors Chap.6 

once to each processor, and after it reaches a remote processor it can be sent 
from task to task within that processor for no charge. 

In this model the cost of an assignment on N processors becomes 

Execution time= R Max (k;) + CN (6.8) 

For each value of N, the first term depends on the assignment but the second 
does not. This model produces the best time by distributing tasks evenly 
across all processors to make the first term approximately equal to RM IN. 
However, as the value N increases, the increase in the second term eventually 
becomes larger than the decrease in the first term, so there is a maximum 
value of N for which performance increases, and this is a function of RIC. 

Since the best assignment produces a first term of approximately RM IN, 
the decrease in time in going from N to N + 1 processors is approximately 

Execution time decrease= - N 1)- C 

RM -C 
N(N + 1) 

This decrease is negative, that is, it becomes a time increase when 

or equivalently when 

R N(N + 1) 
C M 

(6.9) 

(6.10) 

The square root function in Eq. (6.10) is a disaster. We expect that M tasks can 
be done quickly on M independent processors, but this model says that be-
cause of communication costs, the effective parallelism is reduced to the 
square root of what we anticipated. The bad news is mitigated somewhat by a 
high RIC factor, so coarse granularity is desirable here, but its effect is also 
diminished by a square root factor. 

The news is even more pessimistic if we consider the cost of the extra 
processors in relation to their benefit. Given that the time no longer decreases 
when we reach the threshold given in Eq. (6.10), long before N becomes that 
large, we have reached the point at which the cost of adding an extra pro-
cessor is not justified by the benefit gained. Thus a problem with 10,000 tasks 
that fits this model may well run faster with up to 100 processors and might 
be economical with at most ten processors. 

This model differs from our original model in the second term. In the 
original model the cost of the second term grows quadratically with the 
constant Mand diminishes inversely with N. The dependence on N is due to 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 16



Sec. 6.2 Multiprocessor Performance 293 

the reduction in overhead when N things are grouped together on one pro-
cessor. Because both the first and second terms grow smaller with N, exe-
cution time decreases for all N. 

In the present model, the second term grows linearly with N, and this 
accounts for the threshold for N above which performance degrades. The two 
models tell us that the penalty for overhead exists, and it manifests itself by 
limiting the effective use of parallelism in some way. 

6.2.5 An Optimistic Model-Fully Overlapped Communication 

Perhaps the models described thus far are too pessimistic. After all, they all 
incur an overhead penalty for communication since none provides a means 
for overlapping overhead with useful and necessary computation. We have 
argued that in practical systems some overhead cannot be masked because 
contention, finite communications bandwidth, and synchronization each 
make their own contributions to elapsed computation time, although in the 
best circumstances some overhead penalties can be successfully overlapped 
with useful computation to reduce the overhead penalty. 

Let us develop an optimistic model in which overhead potentially can go 
to zero if overlapped with computation. We simply alter our model in Eq. 
(6.2) to permit the overhead in the second term to be overlapped as much as 
possible with the first term. The equation becomes 

Execution time= Max {Max (k;), - k;)} (6.11) 

For two processors, the situation described by Eq. (6.11) is depicted in 
Fig. 6.2. The piece-wise linear line expresses the contribution of the first term, 
and the quadratic curve expresses the contribution of the second term. Their 
intersection is the minimum value of the maximum function expressed in Eq. 
(6.11). At this point the execution time is just long enough to mask completely 
the overhead that is occurring concurrently. 

This model is obviously optimistic because it is rather unlikely that over-
head can be fully overlapped with processing. Nevertheless, we can compute 
where the threshold occurs. For two processors, we seek the point of inter-
section of the linear and quadratic curves in Fig. 6.2. This occurs at the point 

which occurs at 

R(M - k) = C(M - k)k 

R k=-c 

(6.12) 

(6.13) 

with k restricted to the range 1 s ks M 12. If we substitute Eq. (6.13) into Eq. 
(6.11) the computation time becomes R(M - RIC), and the speedup is 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 17



294 Multi processors Chap. 6 

11[(1 - RICM)]. Since k is restricted in range for Eq. (6.13), the equivalent 
restriction on RIC is that 1 s RIC s M 12. For RIC in this range, the speedup for 
two processors lies between 1 and 2 and is maximized when RIC= M 12, the 
same value obtained in the first model. 

At the maximum speedup, the tasks are evenly divided among the pro-
cessors, that is, k = Ml2. As RIC decreases towards 1, the speedup falls off 
towards unity, and the optimum task distribution becomes more skewed. 
Hence, this model also depends on RIC, but it is more optimistic in its per-
formance predictions because all or a substantial portion of overhead can be 
overlapped with computation if RIC is high enough. 

For N processors, the overlapped-overhead model is easy to analyze be-
cause of the results reported here. For any given maximum value of k; that 
determines the contribution of execution time, the even distribution of tasks 
to processors as defined earlier produces the minimum communication time. 
Hence, the best possible execution time for fully overlapped communication 
occurs when 

RM = CM 
2 

( l _ _!. ) 
N 2 N (6.14) 

which for large N occurs roughly when 

R NM -=--c 2 (6.15) 

In this case, for a minimum total time, the number of processors as a function 
of RIC and Mis given by the function 

N= 2R 
CM (6.16) 

and the optimum choice for the number of processors is inversely propor-
tional to the number of tasks available. 

As the available parallelism grows, the best policy is to use increasingly 
fewer processors. For small N, we cannot neglect the l!N term in (6.14), and 
we obtain slightly different but consistent results. For N = 2, Eq. (6.14) pro-
duces a minimum-time solution when M 12 =RIC, which is consistent with 
our previous findings. 

The fact that the number of processors decreases with the available paral-
lelism in this model is clearly the result of overhead time climbing M times 
faster than execution time. The effect of overlapping overhead with computa-
tion time is actually more pessimistic than we imagined because this model 
makes elapsed time totally dependent on communication overhead time 
when run time is smaller than communication time. Hence, it is absolutely 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 18



Sec. 6.2 Multiprocessor Performance 295 

essential to keep communication time no greater than execution time if there 
is to be speedup. 

6.2.6 A Model with Multiple Communication Links 

A common assumption in all previous models is that parallelism allows run 
time to be overlapped in several processors, but overhead operations ac-
counted by the term with coefficient Care done sequentially. If the overhead 
operations are strictly limited to communications costs, then this model 
holds for systems in which there is a single communications channel common 
to all processes. This is the case when all processors are connected to a single 
bus or ring or when all processors access the same shared-memory cell in an 
exclusive-access manner. 

It is perfectly possible to replicate communications links and other 
architectural features that contribute to the overhead bottleneck of the sec-
ond term. In so doing, the factor C is not a constant, but itself becomes a 
function of N. For example, consider a model in which every process has to 
communicate with every other process. Our original estimate for run time is 
Eq. (6.2). 

If we allow communication links to increase with N so that each processor 
has a dedicated link to every other processor, then communication operations 
can be overlapped among themselves. However, even with O(N 2) links 
installed, we still cannot support more than O(N) concurrent conversations 
because each processor can talk or listen only to one other processor at a time. 

In this case, we can divide the second term of Eq. (6.2) by N, and we obtain 

Execution time= R Max (kJ + s_ L k,(M - k;) 
2N 1 

(6.17) 

Equation (6.17) assumes that a processor is either computing, communi-
cating, or idle, and that the total cost of communications decreases inversely 
with N because up to N conversations can be held concurrently. The idle time 
is in part due to the fact that early finishers have to wait for late finishers. 

The first term of Eq. (6.17) tends to decrease inversely with N, and the 
second term tends to increase linearly with N, which is a situation studied 
earlier in this section. The first term is minimized by an even distribution of 
tasks to processors, but this is offset by an increase in the second term. 

We know that for any N, Eq. ( 6 .17) is minimized by assigning tasks as 
evenly as possible, so that all except possibly one processor are given the 
maximum number of tasks. Under such an assignment, the execution time for 
Eq. (6.17) becomes 

E . . RM CM 2 
( l 1 ) xecut10n time= N + 2N - N (6.18) 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 19



296 Multiprocessors Chap. 6 

Parallelism is useful in this case until execution time fails to decrease as new 
processors are added. This occurs when 

RM+ CM2 (CM2)(2N + 1) 
E . . d 2 2 xecut10n time ecrease = N(N + 1) --[N-(N_+_l_)]-2 - (6.19) 

By removing a factor of MIN(N + 1) and letting N become very large, Eq. 
(6.19) reduces to 

Execution time decrease= [ R + ( 1 - ](N(:+ 0) (6.20) 

which is positive for N > 2, and so execution time improves for all N, except 
possibly for small N. 

To discover if N processors yield a better time than does one processor, 
compare Eq. (6.18) with RM, the time for one processor. These times are equal 
when 

RM (CM 2 
)( 1 ) RM =N+ 2N l-N 

The breakeven point occurs when 

R M 
C 2N 

(6.21) 

(6.22) 

In this case the granularity factor RIC and N are inversely related at the 
breakeven point. Hence, the larger that N is, the smaller the granularity that 
we can permit at the breakeven point. 

At breakeven, however, the parallel machine is a gross failure in terms of 
cost/performance. Its total performance for N processors is identical to that of 
a single processor, yet its cost is higher by a factor of O(N) for processors and 
O(N 2

) for communication links. We never want to operate a parallel system at 
breakeven! 

The point of this example is that by increasing the bandwidth of the 
communication links, we can permit smaller granularity than is otherwise 
possible. However, the smaller granularity comes at an expense that rises 
faster than the increase in processing cost. Whether or not the speed obtained 
by the higher bandwidth communications is worth the cost depends very 
strongly on the technology available for processor-to-processor communica-
tions. 

To summarize the findings of the models presented in this section, we 
have discovered: 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 20



Sec. 6.2 Multiprocessor Performance 297 

1. Multiprocessor architecture produces an overhead cost that is an addi-
tional burden not present in serial processors and vector (or other single 
instruction-stream) architectures. The overhead cost includes the cost of 
scheduling, contention for shared resources, synchronization, and 
processor-to-processor communications. 

2. Although running time for a computational portion of a program tends to 
diminish as the number of processors working on that program increases, 
the overhead costs tend to grow with the number of processors. In fact, it 
is possible for overhead costs to grow faster than linearly in the number of 
processors. 

3. The ratio RIC is a measure of the amount of program execution (running 
time) per unit overhead (communication time), within a program 
implementation on a specific architecture. The larger this ratio, the more 
efficient the computation because a relatively smaller proportion of time 
is devoted to overhead as this ratio increases. However, if the ratio is 
made large by partitioning a computation into a few large pieces instead 
of many small pieces, the parallelism available is greatly reduced, which 
limits the speedup that can be attained on a multiprocessor. 

We clearly have a dilemma. On the one hand, RIC has to be small to create a 
large number of potentially concurrent tasks, and on the other hand, RIC has 
to be large to prevent the overhead costs from becoming excessive. Because of 
the dilemma, we cannot expect to build fast multiprocessors simply by ex-
panding the number of processors as much as technology allows. 

There is some maximum number of processors that is cost-effective, and 
that number depends a great deal on the architecture of the machine, on the 
underlying technology (especially communications technology), and on the 
characteristics of each specific application. 

6.2.7 Multiprocessor Models 
The multiprocessor challenges the computer architect and the algorithm 
designer somewhat differently. The computer architect must produce a sys-
tem for which RIC is acceptably high and provide a number of processors that 
can be used effectively at that ratio. The algorithm designer has a different 
problem. 

Given a fixed system with N processors and a ratio RIC that reflects an 
achievable ratio of running time per unit overhead, how can an application be 
partitioned and executed on the multiprocessor architecture to make the 
most effective use of resources? The algorithm designer has to partition the 
application across the multiprocessor and must choose a granularity that 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 21



298 Multi processors Chap.6 

balances useful parallel computation against communications and other 
overhead. 

For some applications the most effective solution might not use all of the 
processors available. Fewer processors might complete the job earlier or at 
lower cost. In essence, we are trying to determine if it is better to plow a field 
with one ox, four horses, or 1024 chickens. The solution with the maximum 
parallelism is not always the fastest. 

Most people take as an act of faith that one might as well use as many 
processors as available if there is work to be done. However, some models 
discussed in this section show that computation speed can eventually decline 
as processors are added. So maximum parallelism is not synonymous with 
maximum speed. Moreover, the multiprocessor is somewhat less effective at 
producing speed at reasonable cost than are several techniques described 
earlier in the text. 

For example, cache memory boosts the effective speed of all of central 
memory, yet only a relatively small fraction of memory actually needs to run 
at cache memory speed. Hence, there is a performance leverage in using a 
cache. You pay for a small fraction of what you obtain. 

Similarly, pipeline computers improve performance in proportion to the 
number of stages in the pipeline. In the best case, an N-stage pipeline 
achieves an N-fold speedup. But the N-fold speedup does not require an 
N-fold replication of hardware. Again, there is leverage in this type of 
architecture because by less than an N-fold increase hardware, one obtains 
up to an N -fold improvement in speed. 

In both cases the leverage is available because the item replicated is a 
bottleneck that leaves other system resources idle. By breaking the bottleneck 
the idle resources become available, and the total gain appears to be greater 
than the gain that can be attributed to the fixed bottleneck by itself. 

For cache, the bottleneck is memory, specifically the frequently refer-
enced areas of memory. For pipelines, it is some computational stage or 
critical register. Cache replicates memory; pipelines replicate storage cells 
and arithmetic units. But multiprocessors do not obviously offer the same 
leverage as do caches and pipelines. The component replicated is the full 
processor, not some critical portion of the processor. Moreover, we are likely 
to obtain less than proportionate return as we add processors. 

Therefore, the design of multiprocessor architecture is far more chal-
lenging than the techniques we describe earlier. One cannot simply lash 
together 1000 processors and expect to obtain 1000-times improvement. In 
fact, performance improvements of only 100 to 200 might be all that could be 
achieved under favorable circumstances, and under less favorable circum-
stances, improvement might be only around 10 or less. 

On the other hand, with a greater understanding of overhead costs, algo-
rithms, and design approaches available, it is possible to construct efficient 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 22



Sec. 6.3 Multiprocessor Interconnections 299 

multiprocessors. Our analyses in this section strongly suggest that efficiency 
becomes limited as the number of processors increases. Perhaps an architec-
ture with four to 16 processors can be viewed as "general purpose", but with 
lK or 64K processors, almost surely the architecture is limited to applica-
tions for which the inherent parallelism is large and the granularity is in the 
range for which the architecture runs well. 

Efficiency is clearly a major concern in the design of multiprocessors. A 
design that uses 2N processors inefficiently cannot compete on a cost basis 
with a design that uses N identical processors twice as efficiently. The next 
section treats some of the more promising candidate architectures for multi-
processors. 

6.3 Multiprocessor Interconnections 
This chapter investigates the following leading candidates for multiprocessor 
systems: 

• Bus-oriented systems; 
• Multilevel switched-network systems; 
• Hypercubes; and 
• Crossbar-connected systems. 

This is not an exhaustive, but rather a representative list of the possi-
bilities. As we examine low-cost, low-bandwidth communications through 
high-cost, high-bandwidth communications, the system issues are fairly 
constant across the spectrum. 

Our major conclusion is that the multiprocessor interconnection struc-
ture is felt most strongly by imposing a saturation point for system communi-
cations. Consequently, peak throughput is limited by the interconnection 
structure. For performance below saturation, the interconnection structure 
affects performance through the ratio of RIC. A good design is one that runs 
below saturation for typical workloads, and at a typical operating point, it 
produces high throughput by attaining a large RIC ratio. 

6.3.1 Bus Interconnections 

Our discussion of performance stresses the need for efficiency and shows the 
important role of the ratio RIC. The simplest way to construct a multi-
processor that meets the efficiency goals is to connect the processors on a 
shared bus, which thereby provides shared global memory to all processors. 
Figure 6.3 illustrates the block diagram of such a system. 

Each processor has access to a common bus. To this bus is attached the 
central memory, which is a global resource for all processors. Each processor, 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 23



300 Multiprocessors 

Processor 1 
Cache Local 

Memory 

Processor 2 
Cache Local 

Memory 

Processor N 
Cache 

Fig. 6.3 A bus-connected multiprocessor. 

GLOBAL 
MEMORY 

Chap.6 

in addition, has a local memory and a cache memory. The local memory and 
local cache enable the processors to reduce their use of the shared bus and 
thereby limit the effects of contention on performance when processors have 
to go to shared memory. 

If neither cache nor local memory were present, the cost of memory 
access would be relatively high, and, moreover, since all processes access 
memory frequently under these conditions, there could be severe contention 
at the bus, causing arbitration delays that reduce performance. So the long 
delays due to remote access coupled with additional delays due to contention 
effectively increase the value of C in the RIC ratio and thereby reduce speedup 
and the number of processors for which the scheme is effective. 

The objective in using cache and local memory is to shorten the effective 
memory cycle and reduce the use of the bus so that one processor does not 
slow down another through bus interference. If together the local memory 
and cache reduce accesses on the bus by 90 percent (which should be readily 
achievable), then ten times as many processors can share a bus at a given level 
of contention than in the system that has no local memory or cache. If the 
global accesses are reduced by 95 percent, the factor climbs to 20 times as 
many processors. 

We expect that bus-oriented systems can support ten processors effi-
ciently and possibly can be stretched to 20 or 30. Beyond this range, bus 
contention leads to degraded performance to the extent that such systems are 
unlikely to support 1000 processors or more unless a technological break-
through provides very high bus bandwidth at very low cost. Even then, such a 
breakthrough may simply shift the bottleneck from the bus to the shared 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 24



Sec. 6.3 Multiprocessor Interconnections 301 

memory. Shared memory, too, is a source of contention different from the 
bus, and shared-memory may well saturate at, for example, 100 processors, 
even when the bus bandwidth can support 1000 processors. 

There are special issues involved in using caches in a bus-oriented archi-
tecture that we examine later in this chapter. The problems stem from the 
need to maintain consistency of data in all of the caches. If a shared item is 
changed in one cache and read by another processor, the second processor 
must be able to locate the new value of the shared variable. This forces the 
cache controllers to follow a protocol that guarantees that all loads and stores 
access the correct value of an item, regardless of whether that item is in local 
cache, remote cache, local memory or shared memory. 

Usually such a protocol produces additional operations on the shared bus 
whose purpose is to guarantee cache consistency. If caches were not present, 
these operations might not be necessary. Hence, a cache architecture reduces 
bus accesses when the cache hit ratio is high, but the reduction is partially 
offset by additional bus transactions caused by the consistency protocol. 

Technology plays a major role in making a bus-oriented multiprocessor 
practical, and, in fact, the bus presents an excellent opportunity for tech-
nology leverage. An N-processor system requires a bus whose bandwidth is 
on the order of N times that of a uniprocessor bus. Therefore, the bus band-
width constrains the number of processors that can be interconnected. 

If exotic technology is used for the bus and its interfaces, but ordinary 
technology is used in the processors, then the cost of the exotic technology can 
be held fairly low, while the gains due to its use are amplified by greatly 
increasing the number of processors on the bus. Consequently, it may be 
feasible to use bus interconnections that run perhaps 100 times faster than 
basic processor technology and are capable of supporting 1000 processors. A 
possibility for the future is to use optical links whose information rate is in 
the 1 GHz to 10 GHz region. 

But exotic technology can also work against the architect. If it can be used 
in the communication link, then equivalent technology might well be used 
throughout the system, boosting basic throughput in each processor by per-
haps a hundredfold. In this case, perhaps only ten super-technology pro-
cessors can do the work of 1000 low-technology processors with a super-
technology bus. 

The ten-processor, all-super-technology system might well be more cost-
effective than the 1000-processor system because it is more likely to be more 
efficient and less complex. The computer architect has to evaluate where and 
how to use exotic technology, carefully considering reasonable alternatives 
rather than committing arbitrarily to a specific use of the technology in a 
particular architecture. 

Note that the bus is only one potential bottleneck in the bus-oriented 
multiprocessor. The shared memory is another one. As bus bandwidth in-

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 25



302 Mui ti processors Chap. 6 

creases, performance is eventually limited by the bandwidth of the shared 
memory. Because processes synchronize their activities by reading and writ-
ing shared memory cells, as the number of processes increases, there is a 
tendency for some shared cells to receive an increasing proportion of the 
memory references. 

For example, consider a single memory cell that controls the execution of 
N processors by acting as a barrier. Processes wait at the barrier until all have 
reached it. Then they are free to continue. The barrier cell can be initialized to 
the value N, and, as each process reaches it, the cell is decremented. When the 
cell is decremented to 0, all processes are released. 

If the shared cell is accessed by one processor at a time, then clearly the 
time required for the barrier to go from N to 0 is O(N) time. If the processes 
executing in parallel are performing some function that requires constant 
time, then for sufficiently large N the barrier itself becomes a bottleneck of 
the computation and greatly limits the useful work performed by the system. 

To overcome the bottleneck in the shared memory, it is necessary to seek 
creative solutions in technology, architecture, or algorithms: 

• Technology: use very high-speed devices for shared memory or move to an 
exotic memory technology that supports multiple simultaneous accesses. 

• Architecture: design a system with high-bandwidth architectural support 
for sharing and control. 

• Algorithms: for specific applications, seek means to distribute control to 
reduce or eliminate bottlenecks at centralized control variables. 

All of the approaches are potentially viable. Any one approach may be suf-
ficient to create a system of the desired performance. Unfortunately, there is 
no guarantee that any of the approaches will succeed. 

Returning to the bus interconnection, consider what techniques are avail-
able for bus implementation. The highest-speed electrical buses must be very 
short. This limitation is strictly a matter of physics because high speed 
implies fast changes of voltage and current. Such physical quantities are 
limited in their switching speed by capacitance and inductance. To hold these 
quantities small requires small physical distances because capacitance and 
inductance are proportional to conductor length. 

Signal fidelity also diminishes when signals are sent over long distances, 
and the degradation in fidelity increases the probability of error during trans-
mission. Therefore, if a bus is long or has other characteristics that slow 
transmission or degrade signal quality, the bandwidth of such a bus is lower 
than that of a short bus with excellent signal qualities. Yet another problem is 
crosstalk noise stemming from mutual interference from adjacent signals. 
This too grows with physical distance. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 26



Sec. 6.3 Multiprocessor Interconnections 303 

The problem is that as the number of processors tied to a bus increases, 
most electrical buses suffer degradation that tends to reduce bandwidth. 
Hence, not only does each processor have to share the bus bandwidth with 
N - 1 other processors, but as N increases, the bandwidth available to share 
decreases. Bus technology suitable for small N is probably not feasible for 
large N, and for N somewhere in between lies a region where buses change 
from being effective to being unacceptable. The exact breakpoint is tech-
nology dependent and has to be evaluated for each individual type of bus and 
interface technology. 

One possible way to build a bus with many processors is to build a 
physically short bus, as shown in Fig. 6.4, and to tie the processors to the bus 
through a longer connection that attaches to the bus through a special inter-
face, as shown in the figure. The objective of the short bus is to provide a me-
dium for the interchange of signals with physically acceptable parameters 
and good signal quality. It might be only 25 cm long, for example, and pro-
vide 100 connection points. The 100 interfaces must be located very close to 
the physical bus, which is possible for interfaces alone, but may be very dif-
ficult to accomplish if all 100 processors have to be physically close to the bus. 

The interfaces provide signal buffering that permits the processors to be 
located at least far enough away to meet the packaging requirements of the 
processor technology. Although Fig. 6.4 suggests that the electrical bus is 
external to the modules that hold processors, the structure in the figure also 
holds to some extent for super-VLSI systems with the bus and multiple 
processors implemented together, possibly on a whole wafer if not on one 
chip. 

Processor 1 

Processor 2 

Processor N •1--------rj}-1 
Bus 

Interfaces 

Short 
High-Speed 

Bus 

Fig. 6.4 A high-speed bus with a short physical length connecting a collection of 
processors. The I-unit is an interface that permits processors to be relatively far from 
the bus when compared to the physical length of the bus itself. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 27



304 Multi processors Chap.6 

6.3.2 Ring Interconnections 

Although a bus interconnection has advantages for a small number of pro-
cessors, electrical buses are highly constrained by fundamental physical 
principles. The goal of the architect is to find an interconnection that has the 
simplicity of the bus for support of computation, but is able to exceed the 
physical limitations inherent in buses. One possible solution is to build a 
logical bus that is physically something else. 

Figure 6.5 shows a loop arrangement with point-to-point connections 
between processors and a cyclic interconnection overall. In this system, a 
transmitting process places a message on the loop, and it is repeated by each 
receiver until it returns to the transmitter, which stops the message by failing 
to repeat it. 

There are various ways to operate such a loop, but one protocol that turns 
the loop into a logical bus is the IEEE 802.5 token-ring standard. A 
transmitting processor is distinguished from all other processors because it 
holds a token, of which one and only one exists among all processors. When 
the transmitting processor sends a message through the token ring, the ring 
acts like a bus, and all other processors listen. 

At the end of transmission, the transmitter broadcasts a token, which is a 
unique combination of signals that cannot exist in an ordinary message. Each 
receiver sees the token in turn, and if a receiver is waiting to be a transmitter, 
it accepts the token without retransmitting it, and instead transmits its mes-
sage on the ring. If no receiver is waiting to transmit, the token circulates on 
the ring and can subsequently be removed by any processor that needs to 
transmit. 

Processor 1 Processor 2 

Processor 8 Processor 3 

Processor 7 Processor 4 

Processor 6 Processor 5 

Fig. 6.5 A multiprocessor based on a loop interconnection. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 28



Sec. 6.3 Multiprocessor Interconnections 305 

The advantage of the token ring is that the connections are point to point, 
not bus connections. Physical parameters can be more readily kept in control. 
In fact, the token ring is ideally suited to very high bandwidth optical fibers, 
which are difficult to adapt to bus technology for small numbers of pro-
cessors and have not yet been adapted to buses for large numbers of pro-
cessors. 

A major disadvantage of the token ring is that each bus interface adds a 
short delay, usually a 1-bit delay, when it repeats an incoming message. As 
the number of processors increases, the delay around the ring increases pro-
portionately. The bandwidth, however, does not necessarily decrease as it 
does for buses when they are heavily loaded. 

To take advantage of the token ring, the architect views the token ring as if 
it were a pipeline with a short cycle time and long delay. The effective band-
width can be utilized as long as computations keep the pipeline filled. 
Therefore, each processor should overlap transmissions with local computa-
tions. 

Moreover, a protocol for a high-speed ring protocol ought to provide a 
means for a transmitter to pass its token to a new transmitter without having 
to wait to receive its own transmission. Such a protocol provides for pipe-
lining messages on long rings, which is necessary to tap the available band-
width. If a new message can be started only if no other message is on the ring, 
the net effect is the same as requiring a pipeline to drain between operations, 
which causes severe bandwidth degradation as the number of processors on 
the ring increases. 

In today's technology, short electrical buses are limited to run at 10 to 50 
MHz, depending on their length and maximum loading. Obviously, the 
longer and more heavily loaded buses run at the low end of the speed spec-
trum. Buses that are limited to the confines of a single VLSI chip can run in 
the high end of the range, and it is conceivable to run such systems at clock 
rates in excess of 100 MHz. However, if a bus leaves a chip, then maximum 
clock rates fall back to the 10-to-50 MHz area, and only denser packaging 
with special attention to low capacitance and inductance can increase the 
speed. 

Optical connections for a token ring can run at much higher speeds. Early 
commercial installations of optical loops had bandwidths of 100 MHz in 
1982, and a clock speed of 400 MHz is readily achievable. Clock rates exceed-
ing 1 GHz should eventually be released commercially. 

6.3.3 Crossbar Interconnections 

The bus interconnection offers the simplest topology but has the highest 
potential contention. The crossbar is the antithesis of the bus. It offers the 
least contention, but has the highest complexity. We take a brief look at 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 29



306 Multiprocessors Chap.6 

crossbars here. In the next section we look at interconnections that fall be-
tween crossbars and buses. 

Figure 6.6 shows a crossbar that connects N processors with N memories. 
Although the number of memories is equal to the number of processors in the 
figure, this need not be the case in general. Usually, the number of memories 
is at least equal to or a small multiple of the number of processors. 

The path between a processor and memory has a delay only at the cross-
point, so each processor is a unit (one crosspoint) delay from any memory. 
The communications network has no contention. Contention exists only at 
processors and memories-that is, if Processor 1 has to access Memory 1, and 
Processor 2 has to access Memory 2, then both accesses can occur simulta-
neously in the crossbar switch. In fact, any number of simultaneous accesses 
up to N can be done simultaneously, providing that no two accesses involve 
the same memory or processor. 

Con ten ti on occurs if two or more accesses are made to the same memory. 
Consequently, if both Processor I and 2 attempt to access Memory I in the 
same cycle, one of the processors has to wait for the other to complete. 

There are various architectural tricks available to reduce contention. If 
the contention occurs because processors are attempting to access different 
data that happen to be stored in the same memory module, then one possible 
solution is to allocate data so that accesses tend to be more evenly distributed 
across all memories rather than clustered to a single memory. 

An obvious way to achieve this goal is to allocate blocks of data so that 
successive elements lie in successive modules. Similarly, shared program 

Memory 1 Memory 2 Memory N 

Processor 1 

Processor 2 

Fig. 6.6 An N X N crossbar switch in an N-processor multiprocessor. At each crossing 
in the network is a switch that permits any processor to connect to any memory. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 30



Sec. 6.3 Multiprocessor Interconnections 307 

code should be allocated so that sequentially increasing addresses lie in 
successive modules. In either case, when shared data or code is accessed by 
two or more processors simultaneously, contention will delay one processor, 
and thereafter the later processor will trail the earlier processor without 
conflict as long as the two processors continue to access memories se-
quentially. This same addressing technique is used in pipelined processors 
that access vectors of data with a stride of unity. 

If the accesses that cause contention are to a single cell or to a few shared 
cells, there is a more fundamental problem that requires a different 
approach. Some of the issues are explained in more detail in Chapter 7, but 
the discussion here illustrates the problem more clearly. 

Consider Program 6.1, which shows the code for a processor that is for-
ming the sum of local data and then adding the local sum to a global sum. 
Presumably, the local data are placed in a memory that is physically close to 
a processor and can be accessed without contention. The shared variable 
Global_Sum is to contain the sum of all elements in the data vectors. 

The objective is to obtain speedup by adding the local data in parallel, 
then tallying the local sums into Global_Sum. This is much like an election 
process, where each precinct tallies its ballots locally, then reports the results 
to Election Central, where precinct tallies are summed. The problem is that 
the tallying at the shared datum can take O(N) time, and thereby it becomes a 
serious bottleneck that negates the parallelism achievable. 

Program 6.1 The use of locking to assure correct updating of a shared variable. 

Procedure Add_to_Sum (var Global_ Sum: Real, Shared; Local_Tab/e: 
array of Real); 

var 
i: integer; 
Local_Sum: real; 

Begin 
Local_ Sum: = 0.0; 
For i:= 1 to Max do 

Local_Sum:= Local_Sum + Loca/Jable[i]; 
{The next statement obtains exclusive access to Global_Sum by some mechanism built 
into the architecture. At any given time, only one processor can be executing statements 
in the region between LOCK and UNLOCK. } 
LOCK( Global_ Sum); 
Global_ Sum : = Global_ Sum + Local_ Sum; 
UNLOCK( Global _Sum); 

end{* Procedure Add_to_Sum *}; 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 31



308 Multiprocessors Chap.6 

In Program 6.1, the local operation computation tallies data into 
Local_Sum, and from there Local_Sum is added to Global_Sum. The addition 
into the shared variable has to be done very carefully. Therefore, we must 
provide a mechanism for that variable to be read and rewritten by a single 
processor without an intervening operation occurring. 

For example, if Processor 1 has to add the value 10 to Global_Sum, it must 
obtain the current value, add 10 to the current value, then write back the new 
value. If several processors attempt to do the same process concurrently, the 
results of global tallying can be incorrect. For example, consider the follow-
ing situation in which the initial value of Global_Sum is 0, and Processors 1 
and 2 attempt to add 10 and 15, respectively, to the sum. 

1. Processor 1 reads the value 0 from Global_Sum. 
2. Processor 2 reads the value 0 from Global_Sum. 
3. Processor 1 computes the updated value of Global _Sum to be 15 and 

writes this back to Global Sum. 
4. Processor 2 computes the updated value of Global _Sum to be 10 and 

writes this back to Global_Sum. 
5. The final value of Global_Sum is 10. 

The error in this process causes the final outcome to miss the tally of 15 
computed by Processor 1. Processor 2 reads the value of Global_Sum to be 0, 
but the instantaneous residence location of Global_Sum in shared memory is 
temporarily incorrect. 

The true location of Global_Sum has moved to Processor 1, where it is 
updated and then restored in shared memory. During the time that Processor 
1 "owns" Global_Sum, access to it in shared memory must be prevented. In 
essence, Processor 1 should be able to read, modify, and write Global_Sum as 
a single primitive operation without any other processor accessing Global 
Sum in the meantime. In Program 1, this is indicated by the statements 
LOCK( Global _Sum) and UNLOCK( Global _Sum) that surround the read/ 
modify/write operation on Global_Sum. 

The Lock statement permits a processor to pass the statement if the 
variable is currently unlocked. Otherwise it forces the processor to wait until 
the variable becomes unlocked. It has to be implemented very carefully in 
both hardware and software because it is prone to error. 

One possible failure mode from improper implementation or incorrect 
use is a situation known as deadlock, in which two or more processes mutually 
block each other from further progress. Neither process can continue until 
the other unlocks a variable, but since they cannot continue, they cannot 
reach the unlock point in a program. An erroneous implementation of a Lock 
primitive can cause deadlock if it inadvertently leaves a variable in a locked 
state, and no processor can thereafter unlock that variable. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 32



Sec. 6.3 Multiprocessor Interconnections 309 

If a LOCK/UNLOCK is embedded in a program, such as Program 1, then 
no matter how the LOCK/UNLOCK is implemented, we have a potential 
bottleneck in a parallel processor. In computers with bus interconnections, 
the bottleneck is more likely to be at the bus rather than the memory. When 
the bus is replaced by a crossbar, communications bottlenecks disappear, but 
performance is limited by the next tightest bottleneck, which might be at the 
shared memory. 

The LOCK/UNLOCK code of Program 6.1 demonstrates a realistic way 
that the shared-memory bottleneck can arise. Of course, the major reason to 
move to a crossbar is to remove a critical bottleneck that causes N simulta-
neous bus requests to take O(N) time. The crossbar drops this time to 0(1) 
time, but the shared-variable bottleneck is still O(N), so all the crossbar 
brings us is high performance in some portions of a program, with other 
portions of code dominating the performance and forcing the system to oper-
ate inefficiently. 

These are performance-oriented arguments. We must also look at cost. 
The cost of a crossbar is usually proportional to the number of crosspoints, 
which grows as N 2 , whereas the cost of a bus grows only linearly in N since 
cost is proportional to the number of bus interfaces. For large N, the crossbar 
is extremely expensive and may well dominate the entire cost of a multi-
processor. Large crossbars are feasible only if the cost per crosspoint can be 
held very low. The danger in building a crosspoint switch is that the band-
width available cannot be used effectively, so the extra cost brings little 
benefit. 

A very interesting example of a crosspoint architecture is the C.mmp 
computer [Mashburn 1982] built and in operation at Carnegie-Mellon Uni-
versity over a span that ran from the early 1970s to the early 1980s. This 
architecture tied 16 PDP-11/40's to 16 memories. It was never intended to be a 
prototype of a commercial system, but rather served as a proving ground for 
developing parallel applications and parallel operating systems. As such, it 
stimulated a substantial pool of research results that formed the foundation 
of the present knowledge of multiprocessor systems. 

Our major thrust is high performance, but that was not the major thrust 
of C.mmp. If all 16 PDP-11 s could be put together on one problem to obtain a 
16-fold speedup, then the total speed would be much slower than the speed 
available on high-end uniprocessors, although a 16-way PDP-11 might pro-
vide a less expensive way to attain that type of performance than would the 
purchase of a single 16-times-faster machine. 

One benefit that the C.mmp did provide is the access to a 16-fold larger 
memory than was available for a single PDP-11 at that time. Since memory 
was relatively expensive, the C.mmp provided a way of allocating the ex-
pensive resource among several independent processes. This was a cost-
effective alternative to configuring each of N machines with a fixed amount of 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 33



310 Multiprocessors Chap.6 

unshared memory. The larger shared memory provided a resource pool that 
could be allocated dynamically to individual processes. 

The C.mmp also provided a pool of processors that could be allocated 
flexibly and dynamically to programs. In theory, all 16 processors could be 
used on a single program, or, for example, one program could be assigned five 
processors, another program three processors, and so on, until all processors 
are assigned. 

In practice, programs often needed fairly large chunks of memory for 
individual processes, so fewer than 16 processors could easily exhaust the 
supply of memory. Nevertheless, the C.mmp demonstrated the feasibility of 
multiprocessors and parallel programming on various types of problems. 
This demonstration held even though the crossbar interconnection itself may 
not necessarily be feasible for large numbers of processors. 

One can easily substitute any other connection of sufficient bandwidth 
for the crossbar in C.mmp, and there would be virtually no difference in 
performance from the crossbar-based C.mmp. The important point is that the 
replacement interconnection structure should be fast enough to meet the 
C.mmp demands without introducing a new bottleneck into the system. The 
new structure does not necessarily have to have a bandwidth equal to a 
crossbar. 

C.mmp illustrates an important principle for the architect of a multi-
processor system. The total system cost and performance is the factor of 
major importance; the interconnection network is but one component of the 
system. The lesson is that if the architect expends extra effort to remove a 
communication bottleneck, that effort may just move the bottleneck to a 
different part of the system, and the cost may not be justifiable. 

In terms of applications, it is most important to determine if an applica-
tion can run effectively on a multiprocessor even if the communications 
subsystem has infinite bandwidth and is contention-free. If this can be done, 
then the next most important consideration is how to provide at reasonable 
cost a communications network whose finite bandwidth does not reduce 
performance below a reasonable threshold. 

If within an application the architect discovers inherent difficulties that 
limit performance, then another approach is required. The following section 
describes an implementation technique that offers a unique way to update a 
shared variable without forcing the update to be executed serially. For some 
problems, this approach might be the only means available to avoid a shared-
memory bottleneck. 

6.3.4 The Shuffle-Exchange Interconnection and the Combining Switch 

The shuffle-exchange connection described earlier in this text can be used to 
interconnect independent multiple processors as well as vector processors, 
such as those used for cyclic reduction or recursive doubling. In this section 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 34



Sec. 6.3 Multiprocessor Interconnections 311 

we consider the shuffle-exchange as an alternative to the shared bus or the 
crossbar, since both the bandwidth and cost of the shuffle-exchange lie be-
tween those of the bus and the crossbar. 

The shuffle-exchange network offers an important additional function 
known as a combining switch which can reduce contention by performing 
operations in parallel within the network that otherwise must be serialized at 
the memory. This technique has excellent potential for parallel applications 
that require processes to have momentary exclusive access to a shared vari-
able. 

The exclusive-access requirement limits the performance of most multi-
processor architectures, so when access to a shared variable is saturated, no 
additional speed improvement is possible no matter how many more pro-
cessors are added to the system. However, this limitation does not exist in the 
RP3 and Ultracomputer systems, described later in this section, when the 
exclusive access can be accomplished in part in the communication network 
and in part in the memory. In effect, the exclusive access is done in parallel, 
rather than serially, by making use of facilities built into the shuffle-exchange 
network. 

The conditions under which exclusive access can be supported efficiently 
by the network are rather stringent, and some applications may not satisfy 
these conditions. Those applications have a fundamental bottleneck 
stemming from contention for access to shared variables, and unless another 
advance in technology becomes available, multiprocessor architectures may 
be unsuitable for these problems except for small values of N. 

The shuffle-exchange network depicted in Fig. 6.7 shows processors at one 
side and memories at the other. Although the memories are quite far from the 
processors in terms of delay, the processors can have large caches and local 
memories to reduce the traffic to remote memories. 

The important aspect of the architecture shown in the figure is that it 
supports the same multiprocessor applications as do the bus and crossbar 
interconnections. Its bandwidth is higher than the bus, but lower than the 
crossbar. Its cost is O(Nlog N) as opposed to O(N) for the bus and O(N 2

) for the 
crossbar. The shuffle-exchange network lies at an intermediate point in the 
spectrum of possible networks. 

The bandwidth for shuffle-exchange is very high for operations that do 
not conflict. Lawrie [1975] has shown that if N processors place simultaneous 
synchronized requests so that Processor i requests data from Memory i + c, 
for any constant c, the requests can be honored simultaneously without con-
flict. Moreover, no contention occurs if Processor i requests data from 
Memory pi+ c, where pis an odd number, provided that N is a power of 2. 

Although we presume that the processors are independent and need not 
be synchronized precisely, many applications require processors to 
synchronize at certain points before proceeding. In most multiprocessor 
implementations of the Fast Fourier Transform, for example, each of the log N 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 35



312 Multiprocessors Chap.6 

p 

Fig. 6.7 A shuffle-exchange network for connecting eight processors to eight memo-
ries. Processors are labeled with P and memories with M. 

iterations is completed by all processors before the next is begun, so there are 
synchronization points at the end of each iteration. 

Once processors are synchronized, they launch their new accesses to 
memory more or less concurrently. If in a vector architecture a collection of 
accesses to a vector has little or no contention, the equivalent accesses will 
tend to have low contention after synchronization in a multiprocessor 
architecture. 

6.3.5 The Butterfly Operation and the Reverse-Binary Transformation 

For the FFT there are two types of processor-to-processor communications. 
One is a butterfly operation, in which pairs of processors exchange data and 
compute weighted sums and differences of the items exchanged. The other is 
a reverse-binary transformation that alters the order of the output data from 
the ordering produced by the computations to one that is lexically ascending 
in the independent variable. 

Cvetanovic [1986] showed that the two operations are incompatible with 
the shuffle-exchange operation in the sense that if data are stored among 
processors so that the butterfly operation proceeds without conflict, then the 
reverse-binary operation results in a maximum conflict in the network. Con-
versely, if the reverse binary is conflict free, then the butterfly results in 
maximum conflicts. 

At least one of the two types of operations will cause some problems in the 
network. A typical implementation of the FFT uses log N butterfly operations 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 36



Sec. 6.3 Multiprocessor Interconnections 313 

on N -vectors, followed by or preceded by one reverse-binary operation. 
Consequently, it is best to organize data across the memories so that the 
butterfly is conflict free and then pay the conflict penalty for the reverse-
binary operation. 

How bad can the conflicts be? The worst possible case is that all N items 
to be accessed reside in a single memory at one node of the shuffle-exchange 
network. O(N) time is required to obtain the data, as opposed to 0(1) time if 
data are ideally stored across the network. However, the conflicts that arise 
for the reverse-binary permutation while doing the FFT are not this bad. 
Since the butterfly operation is assumed to be able to access N distinct items 
in a single operation, those items must be distributed across all memories. 

When these same N items are subsequently accessed for a reverse-binary 
transformation, contention does not occur at the memories, but rather it 
occurs within the communications network. According to Cvetanovic's 
results, the worst-case contention for the reverse-binary permutation 
actually occupies only O(N 112) time, not O(N) time, which essentially wastes 
O(N 112) of the O(N) bandwidth available. 

For a permutation of data to be free of conflicts as it passes through a 
shuffle-exchange network, at each switch node the two operands at the inputs 
must be directed to two distinct outputs. A conflict occurs if the two operands 
go to the same destination. 

The bottleneck of the network for a permutation access is the stage (or 
pair of stages) in the center of the network. To see why this is true, consider a 
permutation that has the maximum possible contention. At the first stage, 
the worst possible situation is for each of the N 12 switch nodes to direct both 
their inputs to only one output. This creates a situation at the second stage in 
which half of the inputs are empty and half have two operands. 

The same contention problem can occur at each successive stage up to the 
middle of the network, creating 2°0 g NJ12 operands queued on each of 2°0 g NJ12 

lines, and with all other lines empty. However, since the operands lie in 
distinct memories at the far end of the network, the paths followed by the 
queued operands in reaching the far end of the network must diverge, starting 
at the bottleneck. Therefore, at each successive stage the queue lengths di-
minish by a factor of 2, and twice as many lines become active, until at the far 
end all lines are active and contain one operand. 

Figure 6.8 shows the reverse-binary transformation for a network with 16 
processors and 16 memories. For this permutation, the target of Processor i is 
Memory i ',where i' is the integer obtained by reversing the binary digits of i. 
Thus Processor 2 targets Memory 4 because the reversal of (0,0,1,0) = 2 is 
(0,1,0,0) = 4. 

The discussion on contention within the shuffle-exchange network reveals 
that there exist algorithms for which we must suffer 0(2°0 gNJ12) = 0(N 112 ) delay 
because of communication contention, even when there is no contention at 
the memory at all. In a crossbar network, the FFT has neither communication 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 37



314 Multiprocessors Chap. 6 

0 = 0000 0 = 0000 

1 = 0001 1 = 0001 
2 = 0010 2 = 0010 
3 = 0011 3 = 0011 

4 = 0100 4 = 0100 

5 = 0101 5 = 0101 
6 = 0110 6=0110 

7 = 0111 7 = 0111 
8 = 1000 8 = 1000 
9 = 1001 9 = 1001 

10 = 1010 10 = 1010 

11=1011 11=1011 

12 = 1100 12=1100 
13 = 1101 13= 1101 
14=1110 14=1110 

15=1111 15=1111 

Fig. 6.8 The interconnections used to create a reverse-binary transformation in a 
shuffle-exchange network. Note that only some of the interconnections are used 
among the internal paths of the network. 

nor memory contention, and therefore it is potentially faster by a factor of 
O(N 112). The problem is restricted solely to the reverse-binary transformation 
applied at the last step, and this step is rarely discussed in the literature in 
evaluating parallel execution of the FFT. Cvetanovic's work has brought the 
communication-contention issue directly into focus. 

Now that we understand the poor performance of the reverse-binary 
transformation, we can reduce its effects. For example, in some applications, 
the processing steps are: 

1. Use the FFT to transform from the time domain to the frequency domain. 
2. Process in the frequency domain. 
3. Use the FFT to transform from the frequency domain back to the time 

domain. 

We need not apply the reverse-binary transformation at the end of the first 
step if the frequency-domain operations are ordered compatibly. This places 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 38



Sec. 6.3 Multiprocessor Interconnections 315 

the input to the last step in reverse-binary order, rather than lexical order. 
For such an input, the FFT produces an output that is in lexical order. Hence, 
no reverse-binary transformation is performed, and the bottleneck is neatly 
sidestepped. 

More generally, it is necessary to locate the contention problems in the 
communication network and to take steps to remove the problems if this is 
possible. The FFT is an example in which the bottleneck can be removed in 
the context given. We cannot promise that this is always possible, but clearly 
the bottlenecks have to be discovered if they are to be removed. 

The discussion thus far illustrates a potential shortcoming of the shuffle-
exchange network. This particular defect occurs for accesses that are bal-
anced across the outputs of the network. But accesses do not have to be 
balanced at the outputs. Algorithms might well bias their accesses to 
memory, so that on the whole the accesses are uniformly distributed, but 
some small fraction of accesses is directed to a particular memory module. 
This might be the case if processors operate on data scattered across all 
memories, then reference shared control-variables to synchronize activity 
with other processors. We are interested in the effective bandwidth of the 
switch under these circumstances. 

The calculation of effective bandwidth is difficult even for simpler prob-
lems. Consider the least-restrictive set of assumptions, namely that accesses 
are uniformly distributed and uncorrelated. The reason that this becomes 
difficult to evaluate is that we do not have a good model of how to deal with 
internal conflicts in the network. When two operands collide somewhere, for 
example because they both request the same output of a particular switching 
node, what happens? The network can 

1. Abandon one arbitrarily and pass the other; 
2. Queue one request in a local memory and pass the other; or 
3. Refuse one request while passing the other, under the assumption that 

the request refused is buffered by the sender and will be repeated. 

This list of options is representative but not exhaustive in the assumptions 
that have been treated in the literature in papers by Dias and Jump [1981], 
Thanawastien and Nelson [1981], Chen et al. [1981], Kruskal and Snir [1983], 
Yew et al. [1983], and Padmanabhan and Lawrie [1985]. 

Kruskal and Snir have a very elegant result based on the solution of a 
difference equation that describes the number of messages remaining after 
conflicting messages are discarded. They found that the effective bandwidth 
is O(N /log N), so the contention within the network reduces bandwidth by a 
factor of O(log N). The other researchers have obtained roughly comparable 
findings using queueing analyses and simulations. 

The analyses in general do not relate the assumed input to the access 
patterns of real programs. To what extent is the literature realistic? From 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 39



316 Mui ti processors Chap. 6 

Cvetanovic's work on the FFT we know that the effect of periodic synchroniza-
tion could be either beneficial or disastrous. Synchronization tends to cause 
accesses to the network to come in clumps. This is beneficial if the accesses 
are nonconflicting, so that a large number of accesses can be honored in a 
short time. It is disastrous when the accesses are highly conflicting because it 
causes much higher contention than predicted by statistical methods. 

The architect cannot take for granted that average bandwidth will be 
O(N), O(N /log N), O(N 112), 0(1), or any other function that we have ascribed to 
the switching network. The architect has to explore the performance of the 
network on realistic applications, if they are available, or on faithful models 
of the access patterns of real applications. 

This is the problem attacked by Pfister and Norton [1985] in their influ-
ential paper on hot-spot contention in shuffle-exchange networks. They 
sought the effective bandwidth of shuffle-exchange networks when accesses 
are not entirely uniformly distributed across memory. Their model permits a 
small number of accesses to be made to a specific memory and all others to be 
uniformly distributed. Their results show that effective bandwidth falls off 
dramatically as correlation of accesses increases. 

In the Pfister-Norton model, a "hot" memory module is referenced with 
probability h; otherwise accesses are uniformly distributed. Therefore, when 
each of N processors produces r references per cycle to the memory system, 
the hot memory module receives requests at the rate: 

Requests at hot memory= r(l - h) + rhN (6.23) 

The first term accounts for the uniform share of the load, and the second term 
accounts for the hot module receiving more than its share ofrequests from all 
processors. 

Since a memory cannot honor more than one request per cycle, the re-
quest rate on the left hand-side of Eq. (6.23) cannot exceed unity. Therefore 
the maximum effective rate of generating requests, R, is the rate at which Eq. 
(6.23) reaches unity and is given by: 

M . . R 1 ax1mum generat10n rate = -----
1 + h(N - 1) 

(6.24) 

This function falls off dramatically with increasing N. The effective band-
width of the switching network is N times the generation rate given in Eq. 
(6.24). 

When h is 0, Eq. (6.24) is unity, bandwidth is N, and no degradation 
due to nonuniform access is present. Ash increases just a little bit, for exam-
ple to one percent, then for 1024 processors the denominator of (6.24) in-
creases to 11, and bandwidth is down by a factor of 11 from the ideal. Even 
when hot-spot probability is tiny, for example 0.1 percent, the impact is an 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 40



Sec. 6.3 Multiprocessor Interconnections 317 

increase in the denominator to a value of 2, which reduces bandwidth by a 
factor of 2. 

Pfister and Norton confirmed their findings by means of simulations, 
which showed that contention caused the network to saturate in tree-like 
regions, as shown in Fig. 6.9. This figure assumes that requests are held until 
they can be honored. The internal queue at a node can be of any integral 
length, including 0. 

The hot memory cannot accept new data, so its predecessors become 
backed up when those predecessors cannot output their data to the memory. 
Next, the predecessors of predecessors saturate, and so on. As nodes saturate, 
they interfere with communication to other nodes in the system, and 
performance diminishes rapidly. In Fig. 6 .9 the saturated nodes are indicated 
by shading, and they form a tree whose root is the hot memory. 

A path from a processor to a different memory that has to use a saturated 
path becomes blocked, so bandwidth is somewhat lower than predicted by 
Eq. (6.24), depending on the size of the tree of saturated nodes. This in turn 
depends on the amount of queueing available within each node. If the archi-
tect wants to install queues in the network, Fig. 6.9 suggests that to reduce 
hot-spot contention, the best place to put such queues is in the rank of 
switches closest to the memory system. The queues might well be placed 
elsewhere, perhaps uniformly through the switching network to make all 
switches alike, to alleviate other forms of contention. 

p 1-------1 

Fig. 6.9 A "hot" spot in a memory module (indicated by shading) and the switching 
modules that block as a result. The path from Processor 0 (the top processor) to 
Memory 3 is blocked, although neither Processor 0 nor Memory 3 is very active. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 41



318 Multiprocessors Chap. 6 

6.3.6 The Combining Network and Fetch-and-Add 

Whether queues are added at the hot memory or somewhere within the 
network, they smooth out the effects of peak loads over longer periods. 
Queues do not alleviate the bottleneck caused by frequent memory accesses. 
To solve the problem, the request rate to the hot memory has to be decreased. 

Gottlieb et al. [1983] propose a very unusual solution that involves using 
logic within the switch nodes to perform computations whose effect is to 
reduce the rate of requests to a shared-memory cell. In essence, two or more 
requests for access to the same shared cell can be combined into a single 
access under certain conditions. This tends to reduce the peak access-rate to a 
shared cell and thereby reduces contention and the bandwidth reduction due 
to contention. 

The architectural solution is sometimes called a combining network, and 
the functional capability it gives programs is a collection of new instructions, 
one of which is called the Fetch-and-Add instruction. 

To illustrate how the combining switch works, we propose to examine 
some subtree of the communication network, namely the tree of shaded nodes 
that appears in Fig. 6.9, and note that its root is a specific memory module 
that receives more than its share of references. In this example we give a 
possible case for the contention and show how the Fetch-and-Add instruction 
solves the problem. 

The sample problem is a queueing problem in which each of N requesters 
attempts to add an item to a queue. In conventional solutions, the queue 
pointers cannot be updated by two or more processors concurrently because, 
if this is attempted, a pointer update might be done incorrectly for the same 
reasons that cause a concurrent summation on a shared variable to fail. Our 
solution in Program 6.1 forces the updates to be done sequentially, with each 
process using LOCK and UNLOCK operations to obtain exclusive access to a 
shared variable while updating that variable. 

Our present solution permits all processors or any subset of processors to 
update the queue pointer simultaneously. To do so, we make use of Fetch-and-
Add as defined here for a single processor. 

Definition: Fetch-and-Add(Address,lncrement); 
Temp:= Memory[Address]; 
Memory[Address] :=Memory [Address]+ Increment; 
Return Temp; 

When Fetch-and-Add is used concurrently by M processors, we require the 
following conditions: 

1. The cell at Memory[Address] is read only once and written only once, 
rather than read and written M times, to satisfy the M concurrent re-
quests. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 42



Sec. 6.3 Multiprocessor Interconnections 319 

2. The set of M values returned to the M requesters is the same as some set of 
values that would be returned to the M requesters for some ordering of 
the requests executed serially, with each request having exclusive access 
to Memory[Address] during the update of the cell. 

The definition is not particularly unusual. Fetch-and-Add acts much like an 
Add-to-Memory instruction. The only difference of note is that Fetch-and-Add 
returns the prior contents of memory. The first characteristic of concurrent 
execution is crucial, for it is this characteristic that reduces bandwidth in 
mu! ti processors. 

As an example of the basic idea, consider three processors that execute 
Fetch-and-Add concurrently to the same memory cell, SUM. If the initial 
value of SUM is 10, the three increments are respectively 2, 5, and 12. Then 
the network produces the total of the increments, 19, which is the only num-
ber added to SUM. SUM is fetched once to obtain the value 10, and the new 
value 29 = 19 + 10 is the updated value of SUM. Meanwhile the network 
computes the values to return to the three requesters. One possible set of 
values that could be returned is 10, 12, and 17, which are the values that 
would have been returned had the increments 2, 5, and 12 been used se-
quentially in that order. 

The trick to the implementation is illustrated in Fig. 6.10, where we see 
how the cells in the shaded subtree produce the necessary behavior. Each cell 

+2 +2 

+7 +10 

MEMORY MEMORY 

(a) (b) 

Fig. 6.10 Two phases of a Fetch-and-Add instruction: 
(a) The data flow towards memory when increments of 2, 5, and 12 are applied. The 
numbers in the switch cells show the saved datum; and 
(b) The data flow away from memory for the return of information to the requesting 
processors. The memory returns the value+ 10, and the switching cells modify the 
returned datum as shown before reporting the datum back to the requester. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 43



320 Multiprocessors Chap. 6 

combines data moving towards memory and does an inverse operation for 
data moving away from memory. In this case, each cell detects when two 
Fetch-and-Add operations for the same shared variable reach its inputs si-
multaneously. The two increments are added internally to produce a sum, 
which is routed to the memory. Thus, one cell adds 2 and 5 to produce 7, and 
the second cell adds 7 and 12 to produce 19. 

To prepare for the return trip, each cell stores the value of one of the two 
increments, in this case the left-hand input. Hence the first cell stores the 
value 2, and the second one stores the value 7. By storing the value of the 
left-hand input, when data traverse the network from memory to processors, 
the results returned will be as if the left-hand increment were used before the 
right-hand increment to update the shared variable. In this case, on the 
return trip, the number 10 reaches the cell with the stored value. It places the 
10 on the left-hand port, and the sum 17 = 10 + 7 on the right-hand port. The 
right-hand port now has a value that would be seen if the value of SUM were 
17 just before the 12 were added to it. 

Meanwhile the value 10 travels to the first cell. There the unmodified 
value of 10 is reported to the left port, and the sum 12 = 10 + 2 is reported to 
the right port. The left port, therefore, has a value of 10, which would be the 
value before the increment 2 is used to update SUM. The right-hand port has 
the value 12, which is the value it would see if SUM were updated by 2 just 
before the 5 from the right-hand port is used to update SUM. 

Each cell in the combining switch has at least the following capabilities: 

1. Detect a matching address on left and right inputs. 
2. Add two increments. 
3. Save one increment. 
4. Match a returning value for Fetch-and-Add to a saved increment for the 

instruction. 

These capabilities in a combining switch are fairly costly, but the combining 
switch potentially has large gains if it is successful in reducing hot-spot 
contention by removing critical sections for some shared variables. 

As a concrete example of an extremely important use of Fetch-and-Add, 
consider the problem of enqueueing and dequeueing requests in a multi-
processor. An obvious mechanism for controlling a multiprocessor is to place 
tasks on a queue when no processor is available to execute them. As a pro-
cessor completes its present work, it inspects the queue and removes a new 
task for execution if there is one. 

The queue itself is a bottleneck when queue pointers must be locked and 
unlocked for safe updating. If, for example, a queue holds N independent 
tasks, all ready for immediate execution, and N processors suddenly complete 
a phase of activity and become available for new task assignments, ideally we 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 44



Sec. 6.3 Multiprocessor Interconnections 321 

would like to hand over the tasks in a single cycle so that all processors can 
start immediately. However, when pointer updating is serialized, then 
handing out the tasks takes O(N) time, which could be quite significant for 
large N. This overhead is intolerable if the tasks are short, for example 0(1) 
time in length. 

The case depicted here may seem artificial, but it is quite realistic. Pro-
grams are often written with barriers at which processors must halt until all 
processors reach the barrier. At the moment when the last process reaches the 
barrier, all processors become free. Hence, the normal case at a barrier is for 
N processors to become free simultaneously. When this occurs, they all reach 
for new work at the same queue, and the queue becomes a severe bottleneck. 

The basic idea in using the Fetch-and-Add is that each processor at-
tempting to enqueue an item requests a position in the queue. This can be 
done with a statement of the form: 

enqueue _position := Fetch_ and_ Add(Head, 1); 

In this case the first argument of Fetch-and-Add is a counter, Head, which 
gives the present position in the queue at which an item is to be added. The 
second argument is the increment by which Head is increased when a new 
item is added to the queue. 

When the code is executed serially, the Fetch-and-Add returns the posi-
tion of the next item. When the code is executed concurrently by two or more 
processes, all Fetch-and-Adds can be done at the same time, yet each pro-
cessor will receive a unique, valid index into the queue because the values 
returned by Fetch-and-Add are the same values that would have been re-
turned for some serialization of the Fetch-and-Adds. Any serialization of the 
enqueue requests yields correct code for sequencing N requests, and the 
Fetch-and-Add mimics one such serialization, but it does so with as little as 
one memory cycle. 

We have not treated here the need to make the queue cyclical, nor have we 
treated the case of the empty or full queue. Chapter 7 studies these pro-
gramming issues more fully. The example has served our purposes suf-
ficiently well to show the potential use of the Fetch-and-Add instruction. It is 
the only mechanism proposed to date that is seriously being implemented for 
solving the hot-spot problem and for eliminating serial bottlenecks in multi-
processor code. 

Our discussion has mentioned the potential of Fetch-and-Add, but the 
concept has not been fully evaluated at the time of this writing. Several 
questions have to be resolved to determine if Fetch-and-Add and the com-
bining network will truly be cost-effective for multiprocessors. 

In the ideal case, the combining network removes a bottleneck, and the 
next bottleneck is at a much higher level of throughput. The value of the 
combining network is the gain in speed in being able to operate at a much 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 45



322 Multiprocessors Chap.6 

higher throughput rate than permitted without the combining network. 
However, it is quite possible to find that the combining network eliminates a 
bottleneck that is only marginally below the next bottleneck in the system, so 
its cost is hardly justified in such circumstances. 

An essential element of the Fetch-and-Add instruction is that it returns 
data sufficient to serialize a computation. Sullivan et al. [1977] propose a 
machine that reduces bandwidth by combining read accesses to a common 
address in memory. If two or more accesses ask for the same i tern, the shuffle-
exchange network in their architecture has the ability to combine the multi-
ple requests into a single request and route the resulting data from memory 
to all requestors. 

This design undoubtedly influenced the inventors of the combining 
switch, but it is generally less useful than is the combining switch, which 
eliminates the major bottleneck of a critical section in an enqueue/dequeue 
routine. Sullivan et al. did not solve the serialization problem and this 
severely restricts the utility of their idea. 

Can a combining network actually eliminate hot-spot contention? A hot 
memory can be hot if it receives a disproportionate number of accesses, but a 
combining network is effective only if all those accesses are to the same 
address. Is this case realistic? Perhaps it is if the reason for the biased distri-
bution of accesses is due to accesses to shared data. 

A research effort that is exploring this question and many other related 
ones is the RP3 project at IBM [Pfister et al. 1985]. Its structure is outlined in 
Fig. 6.11. At the left is a processor, one of 512 in the largest configuration 
planned, and at the right is a combining network comprised of shuffle-
exchange stages. 

This network is shown with its inputs and outputs on the same side. In 
effect each processor node of Fig. 6.9 is identical to the corresponding 
memory node in that figure. The global memory is spread among the pro-

Processor Mapper--....------ Network 
Interface 

Cache 
Local 1 Global 

Memory : Memory 

Switching 
Network 

Fig. 6.11 The structure of one of the 512 processors of the full implementation of the 
IBM RP3. The switching network is a shuffle-exchange network with combining logic. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 46



Sec. 6.3 Multiprocessor Interconnections 323 

cessors so that each processor has one independent block of memory, some of 
which can be used as global memory, and the remainder of which is used for 
local data. Between the processor and the network is an address mapper, a 
cache, and an interface for routing requests to local or global memory or to 
the network, where it can be routed to a remote block of global or local 
memory. 

Addressing in this system is rather novel. To reduce contention, it is 
extremely advantageous to multiplex the global address space evenly across 
all memory modules to balance requests across all modules. This is most 
easily done by using the least-significant bits of a memory address to specify 
the module that has the data. Then references to items close to each other in 
logical address space are scattered more or less uniformly to all physical 
modules. 

Local memory, however, cannot be treated in the same way. Local 
memory should be physically close to its associated processor. Local memory 
should use the most-significant, not the least-significant, bits to select a 
physical memory. Thus, items that lie close to each other in the address space 
of local memory should lie in the same physical memory module. 

RP3's approach to this dilemma is to use a boundary within the address 
space to separate the subspace that has interleaved addresses from the sub-
space that has block addressing. If an effective address falls above the bound-
ary, for example, then the least-significant bits determine the physical mod-
ule, and the most-significant bits are the address within module. If an 
effective address falls below the boundary, the most-significant bits deter-
mine the physical module arid the least-significant bits are the address within 
the module. In the former case, the address subspace is used for shared, 
global data, and in the latter case, the address subspace is used for local data. 

Local data are not private in the sense that it is possible for a processor to 
produce an address in the local address space of a remote processor, but the 
main objective is to use the local address space for items that are unshared 
and frequently accessed and that should be held in close proximity to a 
processor. The RP3 has an additional degree of freedom in that the boundary 
between local and global subspaces is software controllable. Thus a control 
program can select a suitable ratio for the sizes of the subspaces, and this is 
not fixed in advance by the hardware. 

In closing this section, we mention that there is a trade-off in time and 
cost in the selection of interconnections. The shuffle-exchange network lies 
somewhere in the middle of the possible trade-offs, where buses represent one 
extreme and crossbars represent the other. 

The shuffle-exchange is not the only network in the middle of the range. 
There can be higher fan-in and fan-out per switch if increasing fan-in and 
fan-out can be done inexpensively and reduces delay through the network. 
Several hypercube computers based on this general principle were 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 47



324 Multi processors Chap. 6 

introduced in the mid-1980s, the most parallel being the Connection Ma-
chine, with 64K processors [Hillis 1986], and the most influential being the 
Cosmic Cube [Seitz 1985], with 128 processors. Although neither of these 
machines incorporates combining switches per se in its design, the hypercube 
connection pattern is an extension of the shuffle-exchange connection, and, 
consequently, the notion of a combining switch for the shuffle-exchange net-
work extends to the hypercube network by analogy. 

Hillis and Steele [1986] describe how the Connection Machine imple-
ments combining and serialization in O(log2 N) time by means of SIMD 
broadcast instructions. So in spite of being quite different from the RP3 and 
Ultracomputer, the Connection Machine's hypercube connections support a 
similar function. 

In all cases, from bus to crossbar and in between, the ratio RIC deter-
mines how many processors can fruitfully be put to work on a single problem 
simultaneously. The bus has the lowest potential value of RIC, and it is the 
topology most likely to be ineffective as the number of processors increases. 
Note that the architecture of the RP3 attempts to keep local data and fre-
quently used data within a processor, thereby increasing the RIC ratio and 
the number of processors that can be used effectively. 

At this writing the multiprocessor is still in its infancy in the commercial 
world. One dramatic lesson of the experience obtained thus far is that the 
major unknown area to explore is software. What are good parallel algo-
rithms for solving various important problems? The key approach is the 
ability to partition the problem into modules that require relatively little 
intermodule communication. If the partitioning can be done successfully, 
then communication requirements are rather small, and the dependency on 
the interconnection topology is greatly diminished. On the other hand, if 
communication requirements cannot be made small, then the interconnec-
tion topology becomes important, and the major parameter of interest is the 
RIC ratio. 

6.4 Cache Coherence in 
Multiprocessors 

The key to using interconnection networks in processors is to send data over 
the networks rather rarely. This tends to reduce contention, and, as the use 
per processor diminishes, the number of processors that can be served in-
creases. Obviously, a cache memory provides an effective means for main-
taining local copies of data to reduce the need to traverse a network for 
remote data. We point out in the previous section that if a cache misses only 
ten percent of the time, and remote fetches occur only on misses, then the 
number of processors supportable on the interconnection network is ten 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 48



Sec. 6.4 Cache Coherence in Multiprocessors 325 

times greater than for a cacheless processor. The multiplier climbs inversely 
with the miss ratio, so the potential parallelism is quite dramatic when the 
miss ratio is near 0. 

Caches in multiprocessors must operate in concert with each other. Spe-
cifically, any datum that can be updated simultaneously by two or more 
processors must be treated in a special way so that its value can be updated 
successfully regardless of the instantaneous location of the most recent 
version of the datum. The purpose of this section is to explore multiprocessor 
caches and examine the control algorithms required for these caches to be-
have correctly. 

First, let us examine the nature of how caches might reach inconsistent 
states. This will give us some insight into mechanisms suitable for correcting 
the problem. 

We have discussed the special requirement for handling shared variables 
in memory, and a similar requirement holds for shared variables in caches. 
When a shared variable is resident in memory, we can view the memory cell 
as being the current residence of the variable. 

Earlier in this chapter we find a problem in trying to update the value of a 
variable shared by two processors. What goes wrong with the update process 
is that momentarily the current value of the shared variable moves from 
memory to the first processor, Processor 1. While Processor 1 holds the cur-
rent value and updates that value, Processor 2 accesses shared memory. But 
the current value of the variable is no longer there. The variable has moved to 
Processor 1, but Processor 2's request is not redirected. It erroneously goes to 
the normal place for storing the shared variable. 

Our example presumes that Processor 1 updates the shared variable and 
immediately returns it to memory, but in a cache-based system, Processor 1 
may well hold the variable indefinitely in the cache. The failure exhibited in 
the example becomes much more likely when caches are present. The failure 
interval is not limited to a very brief update period, but can happen for any 
access to the variable in shared memory while that variable is held in Pro-
cessor l 's cache. 

Whether the failure probability is low or high, the treatment of shared 
variables must be handled correctly. There has to be some solution that has 
truly zero probability of failure. Can you imagine the havoc wreaked in a 
system in which this were not the case? Programs would almost always work 
correctly, but would fail randomly when timing conditions caused the shared 
variables to be misread. The failures would be nonrepeatable and extremely 
difficult to diagnose. They might well be misdiagnosed as intermittent hard-
ware failures. 

There is a related failure mode that also has to be considered. If Processor 
1 copies a shared variable to its cache and updates that variable both in cache 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 49



326 Multi processors Chap.6 

and in shared memory, then problems can arise if the values in cache and in 
shared memory do not track each other identically. 

Suppose, for example, that Processor 2 updates shared memory. At a later 
time Processor 1 requests the value of the variable, but takes that value from 
its copy in the cache and ignores altogether the change in the variable from 
the update performed by Processor 2. Processor 1 's access is to a stale copy of 
the data held in cache, and it should be to the fresh data held in shared 
memory. 

Another form of the stale-data problem occurs when a program's foot-
print is not flushed completely from cache when that program is moved to a 
different processor and returns at a later time. Suppose that Processor 1 is 
running a program that leaves in cache the value 0 for variable X. Then the 
program shifts to a different processor and writes a new value of 1 for variable 
X in the cache of that processor. Finally, the program shifts back to Processor 
1 and attempts to read the current value of X. It obtains the old, stale value of 
0 when it should have obtained the new, fresh value of 1 for X. Note that X 
does not have to be a shared variable for this type of error to occur. 

In all failure modes discussed here, the common problem is for each 
processor to direct its memory accesses to the current active location of any 
variable whose true physical location can change. Simple solutions are 
possible, but they have performance penalties. 

For example, each shared datum can be made noncacheable to eliminate 
the difficulty in finding its current location among N caches and main 
memory. This can be done, for example, by providing a special range of 
addresses for noncacheable data, or by using special LOAD and STORE in-
structions that do not access cache at all. 

To eliminate stale-data problems for cacheable, nonshared data, the pro-
cessor can flush its cache each time a program leaves a processor. This guar-
antees that main memory becomes the current active location for each 
variable formerly held in cache. 

While these simple solutions have been adopted in some multiprocessors, 
the solutions have a negative effect on performance because they reduce the 
effective use of cache. We want to explore other solutions that retain a higher 
effective use of cache while still guaranteeing that the total system can oper-
ate error free. 

The general problem is called the cache-coherence problem, and it has 
been studied in the literature by Dubois and Briggs [1982] and Archibald and 
Baer [ 1986]. These articles examine the performance impact of protocols for 
maintaining consistent caches. Goodman [1983] is an early paper that out-
lines in detail a reasonably efficient cache-coherence mechanism. Sweazey 
and Smith [1986] explore a variety of cache-coherence protocols and delin-
eate virtually all the possible variations of the Goodman proposal. 

In all of the studies, the solutions are limited to ensuring cache coherence 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 50



Sec. 6.4 Cache Coherence in Multiprocessors 327 

for shared variables. The stale-data problem caused by moving a program 
away from and then back to the processor has to be solved by other means, 
such as by flushing the cache when a program is moved away. 

Of the many proposals, our discussion picks a single reasonable solution 
to cache coherence. We examine its characteristics to determine its per-
formance limitations in a multiprocessor. Architects should be familiar with 
the entire spectrum of protocols and with the relative performance of differ-
ent solutions as measured on their own workloads on their own machine 
environments. We specifically do not recommend any one approach because 
the actual choice of the best protocol is quite dependent on the computer 
structure and the workload for which it is used. 

Here are the basic operations that must take place to maintain cache 
coherence: 

1. If a READ opera ti on for a shared datum misses in cache, then all caches in 
the system must be interrogated for a copy of the datum. 

2. All WRITE operations to a shared datum, whether they are hits or misses, 
force all caches in the system to be checked for a copy of the datum. A 
possible exception to this rule is if the datum is tagged as being the only 
cached copy of the data in the system, in which case no external broadcast 
is necessary. 

Before discussing alternatives, note that there is a severe performance pen-
alty associated with cache-coherency protocols. The first requirement causes 
a broadcast operation followed by a cache read in every cache in the system, 
which tends to increase network contention and reduces available cache 
bandwidth. Since this operation takes place only on misses to shared data, its 
frequency should be just a few percent of the reads on any single processor. 

As the number of processors increases, however, the load on the commu-
nications network and cache traffic quickly approaches saturation. For 
example, a one-percent miss rate on shared data in each of 100 processors of a 
multiprocessor generates 100 x 0.01=1 broadcast request and one cache 
read per clock cycle. This broadcast will saturate the communications system 
and the individual caches of all processors. 

Potentially greater degradation is caused by the second requirement, 
which requires a broadcast on every WRITE to a shared datum unless the 
system is able to tell that the shared datum is not resident in any other cache. 
The difference between the READ and WRITE penalties is that immediately 
after a READ miss occurs, the shared item becomes available in a local cache, 
and subsequent READs can be performed without broadcast. However, if two 
or more processors attempt to access and modify the same shared variable 
several times over a brief period of time, and if the requests by each processor 
are interleaved in some order, then the cache-coherency protocol generally 
causes heavy traffic due to frequent broadcasts that progressively move the 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 51



328 Multiprocessors Chap. 6 

datum from one cache to another as it is read and modified repeatedly. 
Although this behavior appears to be unlikely, it is extremely likely to occur 
in multiprocessor systems at barriers in programs and at locks that protect 
regions requiring exclusive access. 

The basic mechanism for broadcast is best suited for a bus inter-
connection because a bus transaction is automatically assured that all re-
ceivers are listening to the bus when the transmitting processor gains access 
to the bus. Broadcasts can easily be implemented in shuffle-exchange net-
works and hypercubes, but they suffer from the problem that extra band-
width available in these networks is lost momentarily when a broadcast 
saturates the interconnection network. 

Similarly, a crossbar network is saturated by a single broadcast message, 
and that broadcast has to be delayed until all receivers are listening, which 
causes additional loss of useful bandwidth. Most proposals for cache-
coherence protocols are therefore based on bus-connected multiprocessors. 
The RP3, for example, with its combining-switch network does not have a 
cache-coherency protocol, but instead caches only nonshareable data. Refer-
ences to shared data are routed directly to memory without interrogating 
cache. 

Given the basic principles of cache coherency, the least complex solution 
is to broadcast a READ on every read miss of shared data, and to broadcast a 
WRITE on every write to shared data. A cache listener responds to a READ by 
interrogating its own cache and reporting back the data. 

If two or more respondents exist, then any respondent can report back 
data because the data should be identical. Most protocols, however, provide a 
unique ownership tag that dictates which respondent should deliver the data 
requested. When a WRITE is received, a listener can respond either by re-
placing the local value with the broadcast value or by purging the local value. 
Which of these is preferred depends on such factors as the cache size and the 
likelihood of accessing a shared variable again in the immediate future. 

The basic protocol provides an opportunity to reduce broadcasts on 
WRITEs if there is a means for tagging an item in cache to indicate that it is 
the only copy of the item in any cache. If we add such a tag, then WRITE 
broadcasts need to occur only for cache misses and for cache hits to items that 
are resident elsewhere as well. But the tag has to be maintained so that its 
state is an accurate reflection of the state of the caches. 

It is clear that if any datum is flagged as exclusive, then at any point that 
a broadcast for that item is observed, the tag has to be altered. Each of the 
proposed protocols provides a means for updating that tag. For example, a 
possible protocol for maintaining the flag is the following: 

1. If the item in a cache is exclusive, and a read request for the item is 
observed on the network, then change the flag to nonexclusive and deliver 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 52



Sec. 6.5 Summary 329 

a copy of the item to the requester. The requester tags the item as non-
exclusive as well. 

2. Purge any item in the cache when a write to that address is observed on 
the network. 

3. When writing a datum to the cache, mark the datum as exclusive and 
notify other processors that the datum has been written. Write the new 
value of the item in shared memory as well. 

A modification of the protocol avoids the purge noted in Item 2 and retains 
the new value of the item. If this is done, then the tags throughout the system 
must show nonexclusive ownership, so that Item 3 marks an item as exclusive 
if no other cache has the item, and otherwise marks the item as nonexclusive. 

We cannot easily judge if the modification gives better or worse 
performance overall because much depends on the likelihood of repeated 
accesses to shared variables. The modified protocol gives better performance 
for heavy use of shared variables, whereas the basic protocol gives better 
performance when the right decision is to purge the variable when the va-
cancy in the cache can be put to immediate use holding other data. 

Very little is known today about the likely access patterns to shared data 
in multiprocessors, so all coherency protocols are worthy of consideration in 
the immediate future. As multiprocessors become more widely used, 
performance data that can be used to evaluate the protocols and identify 
which one or ones are best for specific implementations should become 
available. 

6.5 Summary 
This chapter treats multiprocessors from a performance and topological 
point of view. The fundamental advantage of the multiprocessor architecture 
is its generality. Algorithms for such systems are much less constrained than 
are algorithms for vector and continuum-model computations because the 
individual processes in execution need not be identical or nearly identical. 

The disadvantage of a multiprocessor architecture is that performance 
relies strongly on replication of hardware, but replication introduces serious 
problems regarding cost and contention. Programming complexity is greatly 
increased because of matters regarding synchronization and the correct use 
of shared data. 

The negative factors tend to make multiprocessors most attractive for 
architectures with a small number of processors. The problem size is also 
important. To keep overhead low compared to useful computation, 
multiprocessors are best suited for large problems that cannot easily be 
treated on a single processor. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 53



330 Multiprocessors Chap.6 

Because of the extra complexity and overhead cost introduced to support 
parallel execution, multiprocessors become less attractive for dealing with 
problems that are solvable in reasonable time on a uniprocessor. Break-
throughs in languages and operating systems for multiprocessors could en-
hance the relative attractiveness of multiprocessors by eliminating the 
complexity that now falls on the programmer, but, to tap the potential power 
of the multiprocessor, the breakthroughs must necessarily provide high effi-
ciency as well as complexity reduction. 

For the near future, the likelihood of success in multiprocessor systems is 
assured for systems with a small number of processors. Chances for success 
diminish rapidly as N approaches 100 to 1000. It will take the efforts of many 
talented researchers pushing at the frontiers of computing research to make 
the 1000-processor system a cost-effective reality. 

Our comments here suggest that overhead and communications costs 
have to be held to a minimum to achieve that reality. The hardware and 
software technology to keep those costs low is just developing. The combining 
switch is an example of a new technology that could make a substantial 
difference in the future. We expect other ideas of this type to emerge in the 
next few years to help shape future architectural developments. 

Exercises 
6.1 Consider the performance model expressed by Eq. (6.1). Suppose the two pro-

cessors have unequal speeds and that Processor 1 is n times faster than Processor 
2. What is the optimum distribution of tasks to processors? 

6.2 The model expressed by Eq. (6.2) is suitable for a system in which transmission 
time is independent of the number of processors. The cost of communication is a 
fixed constant C, and the formula multiplies this cost by the number of communi-
cation transactions. In a token ring, the time of transmission increases with the 
number of processors. Develop a model that reflects this characteristic of token 
rings, and find the optimum task allocation for your model. 

6.3 The purpose of this exercise is to find a performance model that fits a realistic 
program. Consider Program 5.1. The innermost pair of loops updates a rectan-
gular region of a matrix. The outer loop repeats this operation N times. To answer 
the questions that follow, ignore the cost of synchronization and count only the 
communications costs for data. 
a) Partition the problem so that each row of the matrix lies totally within one 

processor. Determine the processor-to-processor communication transactions 
that have to occur within the algorithm. If there is no broadcast capability, 
how many communications occur during the algorithm? Compare this to the 
number of times that the innermost loop is executed on a serial computer and 
on the multiprocessor you are modeling. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 54



Exercises 331 

b) If your architecture supports a one-cycle broadcast transaction in which a 
transmitting processor can send a common message to all listeners, how does 
this facility change your answer to a? 

c) Let N = 10, and RIC= 1. What is the optimum distribution of tasks to pro-
cessors for your system with a broadcast capability? 

6.4 Repeat Exercise 6.4, but this time assign each column of the matrix to lie totally 
within one processor. Compare your answers for row and column assignments 
and discuss how the storage format affects the optimum way to distribute tasks 
among processors. 

6.5 The purpose of this exercise is to investigate the effects of synchronization. For the 
row-oriented data structure of Exercise 6.3, reexamine Program 5.1 and discover 
where synchronization is required. That is, find where processors have to wait for 
events in other processors before they can proceed. Alter the performance model 
of Exercise 6.3 to account for the synchronization operations required. 

6.6 Assume that the matrix of Program 5.1 is stored in N processors with one column 
in each processor of a multiprocessor. Let each column be updated in parallel 
when the subarray is updated. At the end of the update, assume that synchroniza-
tion is done by means of a shared semaphore resident in Processor 0. Before an 
iteration begins, the variable is initialized to a value equal to the number of active 
processors in the forthcoming iteration. As each processor completes its work, the 
processor gains exclusive access to the shared variable, decrements the variable, 
then releases exclusive access. If a processor produces the value zero after a 
decrement, it initiates the next subarray update. Otherwise, processors become 
idle after decrementing the shared variable. 
a) For N = 16, 32, and 128, determine the values of parameters rand h in Eq. 

(6.23) for a multiprocessor based on a crossbar-interconnection scheme. From 
these parameters, compute the maximum generation rate for memory re-
quests. 

b) Consider the question in a for a multiprocessor based on a bus interconnection. 
For this system, the point of contention is the shared bus rather than the 
memory system. Extend the model of a to cover all sources of bus contention to 
find a maximum rate for generating requests similar in intent to Eq. (6.24). 

c) Consider the same problem executed on a machine with a shuffle-exchange 
network and the capability of performing Fetch-and-Add. Find the maximum 
rate for generating requests for this architecture for Program 5.1. 

6.7 The structure of Program 5.1 requires access to both rows and columns of a 
matrix. Consider a very simple algorithm that accesses a matrix by two scans of 
the matrix. In the first scan, the matrix is accessed by rows. In the second scan, the 
matrix is accessed by columns. The matrix is N x N. 
a) For a crossbar-based multiprocessor with N processors and memories, show 

how to store the matrix to minimize the time for the required forms of access 
and state how much time is required to complete the two scans. 

b) Repeat a for a bus-based multiprocessor. 

PATENT OWNER DIRECTSTREAM LLC 
EX. 2154, p. 55




