
Homayoun

Reference 39

PATENT OWNER DIRECTSTREAM, LLC
EX. 2151, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A Self-Adapting Web Server Architecture: Towards Higher Performance and
Better Utilization

Farag Azzedin Khalid Al-Issa
Information and Computer Sciences Department
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
fazzedin@kfupm.edu.sa khalid.issa@aramco.com

ABSTRACT

The way at which a Web server handles I/O operations has
a significant impact on its performance. Servers that allow
blocking for I/O operations are easier to implement, but ex-
hibit less efficient utilization and limited scalability. On the
other hand, servers that allow non-blocking I/O usually per-
form and scale better, but are not easy to implement and
have limited functionality. This paper presents the design
of a new, self-adapting Web server architecture that makes
decisions on how future I/O operations would be handled
based on load conditions. The results obtained from our
implementation of this architecture indicate that it is capa-
ble of providing competitive performance and better utiliza-
tion than comparable non-adaptive Web servers on different
load levels.

KEYWORDS: Operating systems; Internet and Web com-
puting; Synchronous and asynchronous I/O; Concurrency

1. INTRODUCTION

Performance is a vital factor behind the success of Web-
based services. As a result, working towards improv-
ing the performance of Web servers becomes a critical
issue. As a matter of fact, the tremendous growth of
Web-based services and applications over the past several
years, the growth of network bandwidth, and the pres-
ence of a very demanding, large and growing commu-
nity of Web users, are expected to put more heat on Web
servers [16] [5] [2] [19] [18].

In general, performance can be looked at as either macro
or micro performance [20]. A Web server’s macro per-
formance refers to the side of performance observed by
clients, including throughput and response time. Micro per-
formance, on the other hand, represents the server’s inter-

nal performance, including lots of metrics like clock Cy-
cles Per Instruction (CPI) and cache hit rate. While both
of the two classes of enhancement contribute to the over-
all performance of a Web server, they differ in complexity,
significance and effectiveness. For instance, a simple ap-
proach towards improving the overall performance is to use
replication, which is precisely used to give better macro per-
formance by providing multiples of the original throughput.
This approach, however, only provides a workaround that
would still suffer from the same set of issues that exist in
the server architecture [19]. A more effective alternative
would be to look into enhancing a Web server’s micro per-
formance, which would not only improve the overall per-
formance, but also allows for eliminating major limitations
and defects. As an example, some earlier work has shown
that a server would be able to satisfy its clients with bet-
ter throughput and response time if its cache locality is im-
proved [11], or if more clients requests are taken every time
the server accepts new requests [5] [3].

The primary task of Web servers is to deliver Web con-
tents in a concurrent fashion. In order to deliver contents,
frequent disk I/O operations have to take place, and that
hits concurrency significantly. Concurrency is generally
achieved either through asynchronous system calls to avoid
blocking the server, or through multiple server instances us-
ing threads or sub-processes in which case the use of syn-
chronous system calls becomes acceptable. The former ap-
proach is typically used in the Single-Process Event-Driven
(SPED) Web server architecture. As shown in Figure 1, a
client request is first accepted by the SPED server process.
Then, the server performs all necessary computations as re-
quested by the client. In case I/O operations are needed, the
server would enqueue these I/O requests against an asyn-
chronous system call like select(), which should relieve the
server from having to block waiting for the I/O operation to
be completed. While the I/O is being performed, the server
may start processing computations associated with another

96978-1-4244-4907-1/09/$25.00 ©2009 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2151, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1. The SPED Web Server Architecture

Figure 2. The Multi-Threaded Web Server Architecture

client request.

While the SPED model works pretty well when serving
cached contents, it is not efficient when contents are to
be fetched from disk, in which case the server is ex-
pected to interleave the serving of requests with slow I/O
operations [16] [13]. In addition, asynchronous system
calls available for use to implement concurrency in this
model causes the server process to actually block in cer-
tain cases [16] [8]. The alternative for achieving con-
currency through asynchronous calls is to run multiple
server instances through either multiple processes or mul-
tiple threads. As shown in Figure 2, in a multi-threaded
server, a thread is responsible for processing all computa-
tions as well as any needed I/O associated with the client
request. While the multi-process and multi-threaded archi-
tectures are rather easier to implement [13] [4], they exhibit
relatively low utilization of a server’s resources since they
allow processes and threads to block. In addition, the fact
that every connection gets assigned a unique server thread or
process has a negative impact on scalability. Moreover, the
introduction of persistent connections in HTTP 1.1, which
permits a connection to stay active while different objects
are transferred, allowed for even less efficient utilization of
the server [4].

The fact that both of the two alternatives have signifi-
cant limitations in concurrently handling I/O operations and
clients requests has motivated researchers to: (1) come up
with hybrid architectures that combine certain features of
the two approaches [16] [19] [4], (2) implement libraries to

replace available, less efficient system calls [21] [8] [12],
and (3) suggest and implement enhancements to these two
architectures [11] [2] [5] [1] [9] [13] [3], . What is com-
mon about all the proposals we survey is that their technique
for handling I/O operations is pre-determined, and can not
adapt to the continuously changing state of the server. How-
ever, there are situations in which allowing a server thread to
block is more cost-effective. There are also cases in which
a server thread is so expensive that it should be allowed to
only perform computations, and no I/O. As a result, we be-
lieve that a server should be allowed to determine what is
best I/O scheme to follow based on load conditions.

This research work proposes the algorithm and structure of
a self-adapting, multi-threaded server architecture that has
the ability to switch between two different I/O schemes de-
pending on load conditions. To the best of our knowledge,
this is the first proposed adaptiveWeb server model that can
follow more than one I/O scheme.

1.1. Motivation

Enhancing the way at which a Web server handles I/O has
been an active topic in literature over the last decade. The
key motivation was to propose ideas for higher concurrency,
despite the long latency of disk I/O. Hybrid architectures,
which rely on combinations of the two original approaches,
are among the most interesting proposed ideas. For in-
stance, one of the first hybrid models suggests employing a
pool of helper processes whose role is to perform I/O. This
relieves SPED servers from the need for inefficient asyn-
chronous I/O, and greatly increases these servers’ capacity.

While different hybrid models employed different tech-
niques for achieving the primary goal of improving perfor-
mance through increasing utilization and scalability, they
are common in that they enforce a fixed I/O scenario. Pro-
posed hybrid models that allowed blocking I/O to take place
would allow that even under overloaded conditions. Simi-
larly, models that utilize helper processes would pass I/O
requests to helper processes even under lower load condi-
tions, in which case blocking might both faster and less of
an overhead. This motivates us to propose a self-adapting
Web server architecture and evaluate its effectiveness to out-
perform non-adaptive architectures in both throughput and
response time on different load conditions.

1.2. Objectives

The main objective of this research work is to outline two
major limitations present in today’s widely used I/O model
in Web servers, the synchronous blocking I/O model. Scal-
ability is highly affected due to allowing server threads to
block for I/O. This would consequently have negative ef-
fects on a Web server’s overall performance as it limits

97

PATENT OWNER DIRECTSTREAM, LLC
EX. 2151, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

throughput and increases response time. In addition, allow-
ing server threads to perform blocking I/O operations rep-
resents an inefficient utilization of this valuable resource.
Utilization becomes a critical issue as the rate of incoming
clients requests increases while server threads are idle over
I/O.

We still believe that blocking for I/O is the right choice un-
der certain circumstances. Therefore, we propose in this pa-
per a Web server architecture that can use both the blocking
and the non-blocking I/O models under different load condi-
tions to enhance performance and provide better utilization
of server threads.

1.3. Contributions

This research work contributes to literature by first provid-
ing a survey and classification of current Web server ar-
chitectures. Over the past several years, a number of ar-
chitectures have been proposed to overcome limitations in
the original models, as well as to improve performance and
cope with the increasing popularity of Web-based services.
In this research, we present a survey of these models along
with a classification that is based on how they handle I/O
requests.

Second, this research work brings to attention the need for
adaptability in Web servers. This feature will enable the
server to choose a more practical work scenario depending
on past, current, or foreseeable circumstances.

Third, this research work promotes the use of asynchronous
I/O for multi-threaded servers. The highly improved scal-
ability obtained with this technique compared to the very
common contender justifies it very well.

Last, this research work introduces a performance evalua-
tion of an implementation of the proposed Web server ar-
chitecture.

The paper is organized as follows: Section 2 presents a
survey and a classification of existing Web server architec-
tures. In Section 3, we explain the I/O models and outline
strengths and weaknesses of each one of them. Section 4
describes the advantages of implementing self-adaptability
in Web servers. Then, we describe the internals of the self-
adapting Web server architecture in Section 5. In Section 6,
we present the results obtained from our experiments in
which we compare the performance of an implementation
of the self-adapting Web server model to non-adaptiveWeb
servers. We then explain how utilization is enhanced in the
self-adapting Web server architecture in Section 7. Finally,
Section 8 presents a conclusion of this paper, along with
plans for future work.

Table 1. Some Existing Web Server Architectures

Year Contribution Class Remarks

1999 AMPED 1 This is a SPED server that passes
I/O requests to helper processes
or threads

2001 Cohort scheduling 3 In this server, the order of exe-
cuting threads is changed in or-
der to execute similar compu-
tations consecutively, which re-
duces cache misses.

2001 SEDA 1 A pipelined server that consists
of multiple stages, each is asso-
ciated with a pool of threads.

2001 Multi-Accept 3 Instead of accepting a single in-
coming connection, a bulk of
incoming connections are taken
every time accept() is called.

2003 Cappriccio 2 A multi-threaded package that
uses asynchronous I/O and pro-
vides high scalability.

2004 Lazy AIO 2 A new asynchronous I/O library
that is meant to resolve issues
with the available asynchronous
libraries.

2005 Hybrid 1 A multi-threaded server that em-
ploys an event-dispatcher to re-
solve issues with allowing per-
sistent HTTP connections.

2007 SYMPED 1 This server employs multiple
SPED instances.

2008 MEANS 2 A software architecture that uses
micro-threads for scheduling
event-based tasks to Pthreads.

2. LITERATURE REVIEW

Themulti-threaded and the event-based architectures are the
original approaches for implementing a server. As each of
the two has its own limitations and areas for improvement,
many proposals over the last several years came to sug-
gest and implement enhancements to overcome limitations
and improve performance. We classify these proposals into
three classes: (1) proposals for hybrid architectures, (2) pro-
posals that suggest replacement libraries, and (3) proposals
that disregard the I/O issue and focus on other aspects to
improve performance. Table 1 summarizes our classification
of the available Web server architectures.

2.1. Proposals for Hybrid Approaches

The first class of these proposals focused on deriving hy-
brid architectures that would combine features from the
two original models. One of the early attempts was the
asymmetric multi-process event-driven (AMPED) architec-
ture [16], which provides a more effective solution for per-
forming I/O operations in SPED servers, in which asyn-
chronous system calls like select() are used. The AMPED

98

PATENT OWNER DIRECTSTREAM, LLC
EX. 2151, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

architecture is similar to SPED in that it typically runs a
single thread of execution. However, instead of perform-
ing asynchronous I/O using descriptors through select(),
AMPED passes I/O operations to helper processes. As a
result, if blocking for I/O ever takes place, only helper pro-
cesses will have to set idle and not the server’s process.

A more recent hybrid model is the Staged event-driven ar-
chitecture (SEDA) [19]. In SEDA, the entire work-flow
of processing requests is re-structured into a sequence of
stages, which makes it very similar to a simple pipeline.
The main motivation behind introducing SEDA is to pro-
vide massive concurrency by allowing pools of threads to
handle specific sets of tasks at the same time.

D. Carrera et. al. [4] proposes a solution for the case in
which an idle client continues to hug a server thread, which
is an undesirable consequence of allowing persistent con-
nections in HTTP/1.1 for multi-threaded servers. To re-
solve this issue, they introduce a hybrid model in an event-
dispatcher is used to identify sockets with readable contents
and assign them to a server thread, which would read and
process the request.

D. Pariag et. al [17] proposes the Symmetric Multi-
Processor Event Driven (SYMPED) architecture. The
SYMPEDmodel consists of multiple SPED instances work-
ing together to increase the level of concurrency. Whenever
one of these instances blocks for disk accesses, other in-
stances can take over processing clients requests.

2.2. Proposals for Replacement Libraries

The second class of proposals started from the fact that
available asynchronous system calls are not efficient, and
suggested that they should be replaced. For instance, the
way select() works requires it to block when used on disk
I/O [16] [8]. Proposals in this area focus on provid-
ing replacements to these limited libraries. Elmeleegy et.
al. [8] proposed Lazy Asynchronous I/O (LAIO), an asyn-
chronous I/O interface to better support non-blocking I/O
that would be more appropriate for event-driven program-
ming. LAIO basically provides a non-blocking counterpart
for each blocking system call. It handles blocking I/O oper-
ations for the application setting on top, while the applica-
tion is allowed to move on with processing other requests.

Capriccio [1] is a scalable thread package that has the ability
to scale up to 100,000 threads. This package was designed
to resolve the scalability issue of the multi-threaded archi-
tecture. This high scalability in this solution was achieved
through the use of epoll(), an asynchronous I/O interface
that has proven to perform better than both the select() and
the poll() interfaces with the right optimizations [9].

Lei et. al. [12], proposes MEANS, a micro-thread software

architecture that consists of two thread-layers setting be-
tween the application and the operating system. An applica-
tion that makes use of MEANS will assign work to MEANS
micro-threads, which assign tasks in an event-based sce-
nario to Pthreads interacting directly with the operating sys-
tem.

2.3. Proposals for Modifying Other Architectural
Components

The last class of proposals focused on enhancing the way
the original models operate, while allowing the same I/O
scenarios to take place. Chandra et. al. [5] and Brecht et.
al. [3] suggest modifying the way a Web server accepts new
connections. In the case of SPED, instead of accepting only
a single new connection every time the server checks for in-
coming connections, they suggest accepting multiple con-
nections [5]. This method increases the rate of accepting
new connections, and increases concurrency of the server
by providing more work that is ready to be processed at any
instance.

Larus et. al. [11] suggest enhancing Web server perfor-
mance by increasing locality and minimizing cache misses.
They proposed a server model in which different requests
are analyzed to identify similar computations. The order
at which these requests are processed would be altered to
allow similar computations to be processed consecutively.
Executing similar computations as a group increases local-
ity, and consequently improves performance.

3. I/O MODELS

Whenever an I/O operation needs to be performed by a Web
server, the operating system actually takes care of it. This is
due to many reasons, including maintaining a layer of secu-
rity through which only privileged applications are granted
access to certain files. While the I/O operation is being car-
ried out, a server could either be blocked waiting for it to
complete, or is free to process other requests. This depends
entirely on the type of I/O the server initiated.

3.1. Synchronous I/O Operations

Synchronous I/O could be blocking or non-blocking to the
calling process [10]. While both are performed through the
same read and write system calls, the non-blocking requires
the “O NONBLOCK” option to be set when the open() sys-
tem call is issued. The main issue with the synchronous
non-blocking model is that it would require the calling pro-
cess to send numerous calls to get the status of the requested
I/O. As a result, this model is known to be extremely ineffi-
cient [10].

The synchronous blocking model, on the other hand,

99

PATENT OWNER DIRECTSTREAM, LLC
EX. 2151, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

