
Homayoun

Reference 38

PATENT OWNER DIRECTSTREAM, LLC
EX. 2150, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

EZHPC: Easy Access to High Performance Computing

Patti Duett, Wes Monceaux, and Keith Rappold
USACE Engineer Research and Development Center (ERDC), Vicksburg, MS
{Patti.S.Duett, Weston.P.Monceaux, Keith.N.Rappold}@erdc.usace.army.mil

Abstract

 EZHPC is a Simple Object Access Protocol (SOAP)-
based Web service that represents an Application
Programming Interface (API) for securely accessing and
manipulating high performance computing (HPC)
resources. This service was created to make it “easy” for
users who are unfamiliar with the HPC environment but
would benefit from the utilization of these resources. It
not only promotes HPC resources but also allows for the
development of future applications through the reuse of
this architecture.
 The API is exposed to developers as a SOAP-based
Web service. Numerous API method calls are available,
some of which include, but are not limited to, the ability
to authenticate users against the HPC Kerberos system,
move files to and from the HPC systems, submit and
monitor batch jobs, access the Data Management System
(DMS), etc. The Web service paradigm was chosen so
that any type of user front end could be constructed to
interact with the HPC resources. This includes stand
alone user applications, Personal Digital Assistant
(PDA)-based applications, Web applications, or inclusion
in existing applications (ArcInfo, Watershed Modeling
System (WMS), Groundwater Modeling System (GMS),
Surface-Water Modeling System (SMS), etc. A fully
functional client application has been developed to
demonstrate the usage of the API.
 The authors will present a detailed inspection of the
EZHPC architecture. The structure, usage, and security
implications are described for each component of the
system. In addition, the HPC-issued Kerberos user
utilities, the Web server components, and the database
component will be discussed. The client reference
implementation will also be covered. The presentation
will conclude with a summary of future enhancements and
how these enhancements will expand the functionality of
EZHPC, increasing its value to the user community.

1. Introduction

 EZHPC attempts to make accessing HPC resources
easier by providing an Application Programming
Interface (API) for securely accessing and manipulating
HPC resources. The API is represented as a SOAP-based
Web service that provides many method calls to
developers for utilizing HPC resources. They include the
ability to authenticate users against the HPC Kerberos
system, move files to and from the HPC systems, submit
and monitor batch jobs, access the Data Management
System (DMS), and others.
 By creating an API, the user interface is completely
separated from the functionality of the architecture. This
allows access to HPC resources to be included in new,
and added to existing, applications on various platforms
and form factors. Developers could use the API with
stand alone user applications, Personal Digital Assistant
(PDA)-based applications, Web applications, or inclusion
in existing applications (ArcInfo, Watershed Modeling
System, Groundwater Modeling System, Surface-Water
Modeling System, etc.). A functional user interface has
been constructed to demonstrate the usage of this API.
 This paper presents a detailed inspection of the
EZHPC architecture. The structure, usage, and security
implications are described for each component of the
system. In addition, the HPC-issued Kerberos user
utilities, the Web server components, and the database
component will be discussed. The client reference
implementation will also be covered.

2. Kerberos Utilities

2.1. Description.

 The Kerberos utilities used are the Linux binary
versions of the HPC-issued Kerberos and SSH utilities.
No modifications have been made to the tools. They are
used “as is.” The primary benefit of using the standard

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2150, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Kerberos tools is that if the tools are updated, few, if any,
coding changes are necessary to utilize new versions of
the tools.

2.2. Structure.

The Kerberos tools are installed on the host Linux
system and placed in the environment PATH of the Web
server user. The Kerberized versions of the tools must
come first in the user’s PATH. This ensures that the
proper versions of the tools are invoked. If not properly
set incorrect versions of SSH and other tools will be used
and will generally fail to function as expected.

2.3. Usage.

The Web server is used to invoke a number of
wrapper scripts, which in turn call the various Kerberos
tools. These are Bourne shell scripts that take a number
of parameters necessary to set up the proper environment
variables to point to the current user’s Kerberos ticket
cache. The command to the HPC system can then be
executed on behalf of the user. An Expect script is used
for calling the kinit command.

2.4. Security.

Aside from ease of upgrading tool chains, the choice
of using the standard Kerberos tools means that there are
no new security issues introduced by using nonstandard
Kerberos utilities.

3. Web Server Components

3.1. Description.

This system is designed to be Web-based. All
communication between a client and the HPC systems
happens via the Web server components. Three software
components make up the Web server components; these
are the Apache Web server, Apache Tomcat Java Servlet
Container, and the Apache Axis Web Service library.

3.2. Structure.

The Web server components are organized as seen in
the following diagram.

The Apache Web Server (Apache) receives all
incoming Web requests. The Apache Tomcat Java
Servlet Container (Tomcat) runs as a separate process that
is not accessible directly by the network. Apache
forwards all requests to Tomcat. For those Web requests
destined for the API Web service, Tomcat invokes the
proper code within the Apache Axis Web Services (Axis)
Web application. Axis runs as code within the Tomcat
process.

The Web requests destined for the API Web service
are SOAP requests, XML messages transported over
HTTP. A SOAP request first arrives at Apache, which is
then forwarded to Tomcat, which processes it into
appropriate calls to the Axis code, which in turn invokes
the API Web service code. Depending on the contents of
the SOAP request, different actions are taken by the API
Web service. Most actions involve invoking the Kerberos
wrapper scripts to execute a command on an HPC system.
The results of the SOAP request are returned back up the
chain to the user as a SOAP response.

This structure is a Web-based remote-procedure-call
(RPC) implementation. This is the basis for how all
commands are issued to the API.

3.3. Usage.

The Apache, Tomcat, and Axis components will
remain dormant until something invokes methods from
the API Web service. Methods are invoked by SOAP-
aware applications. SOAP is a programming language-
neutral-protocol. Several language libraries exist for it,
including Microsoft .NET (C#, VB, etc.), Java, Python,

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2150, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PHP, Perl, and numerous others. Axis is able to generate
Web Service Description Language (WSDL) descriptions
of the API Web service automatically. WSDL is an
XML-based description of the available methods and
parameters for a Web service. Using a WSDL file, most
SOAP implementations can generate a library of stub and
header files (or equivalent) for invoking the Web service.
Basically, this means that all that needs to be provided to
other developers is the WSDL description of the API Web
service for them to use it. There is no need to distribute
code libraries.

3.4. Security.

 Tomcat is actually able to run as a standalone Web
server. Apache is layered on top because it provides
better control over Secure Socket Layer (SSL)
parameters. Apache is used to enforce AES or Triple
DES encrypted SSL connections to the Web server.
Clients connect to Apache using AES or 3DES SSL, and
the requests are then forwarded (locally, not over the
network) to Tomcat unencrypted.
 The initial connection to the Web server is a
presentation of authentication tokens that are used to try
to authenticate the user. If kinit fails, an HTTP level error
is reported to the client. If kinit succeeds, subsequent
requests are honored and passed along to the API Web
service. The generated granting ticket is passed back to
the client to be used in future requests. The ticket is not
stored on the Web server system. If a client submits a
ticket as part of the HTTP authentication, it is used to
process the request. All calls to the API Web service are
logged.

4. Database

4.1. Description.

 The database used is MySQL. It runs on the Linux
system along with the Web server components. It is not
accessible over the network. It is used to hold
configuration information for all “configured” HPC
systems. It also holds nonsensitive user information, such
as job run statistics, application preferences, etc.

4.2. Structure.

The MySQL database is used to hold all configuration
information for the API Web service. The API Web
service provides a uniform method interface across
multiple HPC systems by creating mappings from the
general desired functionality of the API to the specific
implementation of that functionality on each HPC system.
For instance, an API call to retrieve a directory listing

makes use of the ‘ls’ command on most HPC systems.
However, an HPC system existing that uses some other
command to retrieve a directory listing, such as ‘dir’ is
conceivable. The database is used to maintain the
function-to-command mappings for each HPC system.
Each HPC system must have similar configuration
information placed into the database before the API Web
service will know how to properly interact with it.
 The other type of information stored in the database
is the user-centric data. The database is used to hold
statistics on all job runs submitted through the API Web
service. The following data are stored in the database:

User Principle

HPC System configuration needed for EZHPC
operation (e.g., location of utility binaries such
as ls, unzip, gzip, and bsub)

User job information (e.g., job submission time,
job name, and job status)

User-defined application scripts (e.g., bsub
scripts for running a specific model)

4.3. Usage.

 The database is configured to communicate only with
the Web service. When an API Web service method is
called, the database is consulted to determine the proper
commands to execute based on the selected host.

4.4. Security.

 The database is protected from direct client access.
Network connections are not permitted to the database.
Database connections are limited to the local system.
Arbitrary database queries are not permitted via the API
Web service.

5. Client Reference Implementation

5.1. Description.

 The EZHPC Client is a reference implementation of a
client that makes use of the API Web service. In addition
to being a proof of concept, the client is designed to be a
solid, easy-to-use front end for widespread use.

5.2. Structure.

 The reference implementation client is a Windows-
based application. It is designed for ease of use for
common user-oriented actions on the HPC systems. The
client performs all of its interaction with the HPC systems
via the API Web service. The client is, therefore,

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2150, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

considered a reasonably thin client. The bulk of the client
processing involves accessing local PC resources (files,
etc.). Otherwise, the API Web service does most of the
work. The user, of course, will need network access, and
the ability to connect to the API Web service. The client
needs only to have network access to the API Web service
system and not any of the HPC systems, as all HPC
system interaction is performed by the API Web service
on behalf of the user.

5.3. Usage.

 Using the client, users are able to log in using
Kerberos, move files to and from HPC systems, submit
and monitor jobs, access the Data Management System
(DMS), create and save commonly used batch scripts, and
view job history statistics.

5.4. Security.

 The EZHPC API service is designed to be secure
regardless of whether a secure or an insecure client
connects to it. In securing the API Web service, future
clients of the API service will be implicitly secure in
accessing HPC resources. This should more easily enable
other clients to securely benefit from HPC resources.

6. Conclusion

 The EZ HPC architecture is designed with flexibility,
extensibility, and security in mind. The current design is
believed to fulfill these design goals. In addition, the
architecture will be continuously improved to provide
additional scalability and robustness.

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2150, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

