
Homayoun

Reference 33

PATENT OWNER DIRECTSTREAM, LLC
EX. 2145, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We learn in Chapter 2 that memory is a major bottleneck in high-speed
computers, and that the bottleneck can be relieved somewhat by taking ad
vantage of the characteristics of typical programs. The objective has been to
store the most-frequently referenced items in fast memory and less
frequently referenced items in slower memory. It is not necessary to make all
memory equally fast; we need use only as much fast memory as necessary to
hold the active regions of a program and data.

This chapter concerns a different approach to relieving bottlenecks. The
idea is to use parallelism at the point of the bottleneck to improve per
formance globally. If the design techniques are successful, then the extra
hardware devoted to performance enhancement is present in only a small
portion of a computer system, yet its effect is to increase performance as if the
full computer system were replicated.

To contrast the approaches of the last chapter and the present one, in one
case the speed differential is due to faster hardware, whereas in the second

102

PATENT OWNER DIRECTSTREAM, LLC
EX. 2145, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Sec. 3.1 Principles of Pipeline Design Techniques 103

case the speed increase is obtained by replicating slower hardware. In both
cases, clever architecture is required to create efficient computer systems in
which enhancements of a relatively small cost have a global impact on per
formance.

Pipeline computer techniques described in this chapter are by far the
most popular means for enhancing performance through parallel hardware.
The basic ideas from which pipeline techniques developed are apparent
in von Neumann's proposal to build the first stored-program computer.
In Burks et al. [1946], a discussion on input/output techniques describes a
buffer arrangement that would permit computation to be overlapped with
input/output operations and thereby provide a crude form of pipeline pro
cessing that is used widely in today's machines.

Although von Neumann did not build the input/output capability into his
first machine, the basic ideas for pipelined computer design evolved rapidly
after the first appearance of magnetic-core memory as the primary storage
medium for main memory. This storage was roughly a factor of 10 or more
slower per cycle than the transistor technology used in high-speed registers
and control logic. Designers quickly conceived of a variety of techniques to
initiate one or more concurrent accesses to memory while executing in
structions in the central processor. This body of techniques eventually
evolved and is exemplified in the pipeline-processing structures described in
this chapter.

In the 1960s, when hardware costs were relatively high, pipelined com
puters were the supercomputers. IBM's STRETCH and CDC's 6600 were two
such designs from the early 1960s that made extensive use of pipelining, and
these designs strongly influenced the structure of supercomputers that fol
lowed. By the 1980s, hardware costs had diminished to the extent that pipe
line techniques could be implemented across the entire range of performance,
and indeed, even the Intel 8086 microprocessor that costs just a few dollars
uses pipeline accesses to memory while performing on-chip computation.

Our approach is to develop a basic understanding of the principles of
pipeline design in the next section. In subsequent sections we observe where
it can be used and how to design effective pipelines.

3.1 Principles of Pipeline Design

The basic idea behind pipeline design is quite natural; it is not specific to
computer technology. In fact the name pipeline stems from the analogy with
petroleum pipelines in which a sequence of hydrocarbon products is pumped
through a pipeline. The last product might well be entering the pipeline
before the first product has been removed from the terminus. In the remain
der of this section we treat pipeline design first in abstract terms, and then
follow with concrete examples.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2145, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

104 Pipeline Design Techniques Chap.3

The key contribution of pipelining is that it provides a way to start a new
task before an old one has been completed. Hence the completion rate is not a
function of the total processing time, but rather of how soon a new process
can be introduced.

Consider Fig. 3.1, which shows a sequential process being done step-by
step over a period of time. The total time required to complete this process is
N units, assuming that each step takes one time unit. In the figure, each box
denotes the execution of a single step, and the label in the box gives the
number of the step being executed.

To perform this same process using pipeline techniques, consider Fig. 3.2,
which shows a continuous stream of jobs going through the N sequential
steps of the process. In this case each horizontal row of boxes represents the
time history of one job. Each vertical column of boxes represents the activity
at a specific time. Note that up to N different jobs may be active at any time in
this example, assuming that we have N independent stations to perform the
sequence of steps in the process.

The pipeline timing of Fig. 3.2 is characteristic of assembly lines and
maintenance depots as well as oil pipelines. The total time to perform one
process does not change between Fig. 3.1 and Fig. 3.2, and it may actually be
longer in Fig. 3.2 if the pipeline structure forces some processing overhead in
moving from station to station. But the completion rate of tasks in Fig. 3.2
is one per cycle as opposed to one task every N cycles in Fig. 3.1.

Figure 3.3(a) shows a box that represents a server that can perform any of
the N processing steps in a single unit of time. If the job stream is processed
by this one server, then the rate of completion is one job every N steps, and the
time behavior of the job stream is as described in Fig. 3.1.

Compare Fig. 3.3(a) with Fig. 3.3(b), which shows N servers concatenated
in a sequence. A task flows through the collection of servers by visiting Server
1, then Server 2, and so on, and finally emerging from Server N after N steps.
The time behavior of this system is described by Fig. 3.2. Figure 3.3(b) is an
ideal model of a constant-speed assembly line, such as an automobile assem
bly plant.

Now let's relate the general ideas presented in Figs. 3.1-3.3 to computer
design. Where can we find an N-step task that can conveniently be broken up,
as shown in Fig. 3.2? Consider the steps required to execute a single in-

---~

Fig. 3.1 An N-step sequential process.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2145, p. 4

104 Pipeline Design Techniques Chap. 3

The key contribution of pipelining is that it provides a way to start a new
task before an old one has been completed. Hence the completion rate is not a
function of the total processing time, but rather of how soon a new process
can be introduced.

Consider Fig. 3.1, which shows a sequential process being done step-by-
step over a period of time. The total time required to complete this process is
N units, assuming that each step takes one time unit. In the figure, each box
denotes the execution of a single step, and the label in the box gives the
number of the step being executed.

To perform this same process using pipeline techniques, consider Fig. 3.2,
which shows a continuous stream of jobs going through the N sequential
steps of the process. In this case each horizontal row of boxes represents the
time history of one job. Each vertical column of boxes represents the activity
at a specific time. Note that up to N different jobs may be active at any time in
this example, assuming that we have N independent stations to perform the
sequence of steps in the process.

The pipeline timing of Fig. 3.2 is characteristic of assembly lines and
maintenance depots as well as oil pipelines. The total time to perform one
process does not change between Fig. 3.1 and Fig. 3.2, and it may actually be
longer in Fig. 3.2 if the pipeline structure forces some processing overhead in
moving from station to station. But the completion rate of tasks in Fig. 3.2
is one per cycle as opposed to one task every N cycles in Fig. 3.1.

Figure 3.3(a) shows a box that represents a server that can perform any of
the N processing steps in a single unit of time. If the job stream is processed
by this one server, then the rate of completion is one job every N steps, and the
time behavior of the job stream is as described in Fig. 3.1.

Compare Fig. 3.3(a) with Fig. 3.3(b), which shows N servers concatenated
in a sequence. A task flows through the collection of servers by visiting Server
1, then Server 2, and so on, and finally emerging from Server N afterN steps.
The time behavior of this system is described by Fig. 3.2. Figure 3.3(b) is an
ideal model of a constant-speed assembly line, such as an automobile assem-
bly plant.

Now let's relate the general ideas presented in Figs. 3.1—3.3 to computer
design. Where can we find an N -step task that can conveniently be broken up,
as shown in Fig. 3.2? Consider the steps required to execute a single in-

m"-

Fig. 3.1 An N—step sequential process.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2145, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Sec. 3.1 Principles of Pipeline Design Techniques

2 3 r---~

2 I 3 ~---~
,~ -1----.-2--r,~3~r---~

._____._I _2___,_I _3___/r- - -~
'---'--2~1~3~r---~

Time---

Fig. 3.2 Pipelined execution of an N-step process.

105

struction. This sequence has traditionally been implemented using pipeline
design. A typical instruction-execution sequence might be:

1. Instruction fetch: obtain a copy of the instruction from memory.

2. Instruction decode: examine the instruction and prepare to initialize the
control signals required to execute the instruction in subsequent steps.

3. Address generation: compute the effective address of the operands by per
forming indexing or indirection as specified by the instruction.

4. Operand fetch: for READ operations, obtain the operand from central
memory.

Job Stream

(N Units/Job)

Job
Stream SERVER

(1 Unit)

SERVER One Completion
(N Units) 1---+ Every N Units

(a)

SERVER
(1 Unit)

(b)

SERVER
(1 Unit)

Fig. 3.3 Two ways to execute N -unit jobs in a stream:
(a) Sequential execution with a 1-unit server; and
(b) Pipelined execution with 1-unit servers.

One Completion
Every 1 Unit

PATENT OWNER DIRECTSTREAM, LLC
EX. 2145, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

