
Homayoun

Reference 31

PATENT OWNER DIRECTSTREAM, LLC
EX. 2143, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Introduction

This text is devoted to the study of the architecture of high-speed computer
systems, with emphasis on design and analysis. We view a computer system
as being constructed from a variety of functional modules such as processors,
memories, input/output channels, and switching networks. By architecture,
we mean the structure of the modules as they are organized in a computer
system. The architectural design of a computer system involves selecting
various functional modules such as processors and memories and organizing
them into a system by designing the interconnections that tie them together.
This is analogous to the architectural design of buildings, which involves
selecting materials and fitting the pieces together to form a viable structure.

1.1 Technology and Architecture

Computer architecture is driven by technology. Every year brings new de­
vices, new functions, and new possibilities. An imaginative and effective
architecture for today could be a klunker for tomorrow, and likewise, a

1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2143, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

spudukot
Highlight

https://www.docketalarm.com/

2 Introduction Chap. l

ridiculous proposal for today may be ideal for tomorrow. There are no abso­
lute rules that say that one architecture is better than another.

The key to learning about computer architecture is learning how to evalu­
ate architecture in the context of the technology available. It is as important
to know if a computer system makes effective use of processor cycles, memory
capacity, and input/output bandwidth as it is to know its raw computational
speed. The objective is to look at both cost and performance, not performance
alone, in evaluating architectures. Because of changes in technology, relative
costs among modules as well as absolute costs change dramatically every few
years, so the best proportion of different types of modules in a cost-effective
design changes with technology.

This text takes the approach that it is methodology, not conclusions, that
needs to be taught. We present a menu of possibilities, some reasonable today
and some not. We show how to construct high-performance systems by mak­
ing selections from the menus, and we evaluate the systems produced in
terms of technology that exists in the mid-1980s. The conclusions reached by
these evaluations are probably reasonable through the end of the decade, but
in no way do we claim that the architectures that look strongest today will be
the best in the next decade.

The methodology, however, is timeless. From time to time the computer
architect needs to construct a new menu of design choices. With that menu
and the design and evaluation techniques described in this text, the architect
should be able to produce high-quality systems in any decade for the tech­
nology at that time.

Performance analysis should be based on the architecture of the total
system. Design and analysis of high-performance systems is very complex,
however, and is best approached by breaking the large system into a hier­
archy of functional blocks, each with an architecture that can be analyzed in
isolation. If any single function is very complicated, it too can be further
refined into a collection of more primitive functions. Processor architecture,
for example, involves putting together registers, arithmetic units, and control
logic to create processors-the computational elements of a computer
system.

An important facet of processor architecture is the design of the instruc­
tion set for the processor, and we shall learn in the course of this text that
there are controversies raging today concerning whether instruction sets
should be very simple or very complex. We do not settle this controversy here;
there cannot be a single answer. But we do illuminate the factors that deter­
mine the answer, and in any technology an architect can measure those
factors in the course of a new design.

Computer architecture is sometimes confused with the design of com­
puter hardware. Because computer architecture deals with modules at a
functional level, not exclusively at a hardware level, computer architecture

PATENT OWNER DIRECTSTREAM, LLC
EX. 2143, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

spudukot
Highlight

https://www.docketalarm.com/

Sec. 1.2 But Is It Art? 3

must encompass more than hardware. We can specify, for example, that a
processor performs arithmetic and logic functions, and we can be reasonably
sure that these functions will be built into the hardware and not require
additional programming. If we specify memory management functions in the
processor, the actual implementation of those functions may be some mix of
hardware and software,, with the exact mix depending on performance, avail­
ability of existing hardware or software components, and costs.

When very-large-scale integration (VLSI) was in its infancy, memory­
management functions were implemented in software, and the processor
architecture had to support such software by providing only a collection of
registers for address mapping and protection. With VLSI it becomes possible
to embed a greater portion of memory management in hardware. Many sys­
tems employ sophisticated algorithms in hardware for performing memory­
management functions once exclusively implemented in software.

The line between hardware and software becomes somewhat fuzzy when
last year's software is embedded directly in read-only memory on a memory­
management chip where it is invisibly invoked by the programs being man­
aged. Once such a chip is packaged and is then a "black box" that does
memory management, the solution becomes a hardware solution. The archi­
tect who uses the chip need not provide additional software for memory
management. If a chip does most, but not all, memory-management func­
tions internally, then the architect must look into providing the missing
features by incorporating software modules.

In retrospect, computer architecture makes systems from components,
and the components can be hardware, software, or a mixture of both. The
skill involved in architecture is to select a good collection of components and
put them together so they work effectively as a total system. Later chapters
show various examples of architectures, some proven successful and some
proposals that might succeed.

1.2 But Is It Art?
An article in the New York Times in January 1985 described a discovery of an
unsigned painting by de Kooning that raised a few eyebrows among art
critics. Although it does not bear his signature, there was no doubt that it is
his work, and it was hung in a gallery for public viewing. The piece is a bench
from the outhouse of his summer beach house that de Kooning painted ab­
stractly to give the appearance of marble. Is this piece a great work of art by a
renowned master, or is it just a painted privy seat? The point is that art
appreciation is based on aesthetics, for which we have no absolute measures.
We have no absolute test to conclude whether the work is a masterpiece or a
piece of junk. If the art world agrees that it is a masterpiece, then it is a
masterpiece.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2143, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 Introduction Chap. 1

Computer architecture, too, has an aesthetic side, but it is quite different
from the arts. We can evaluate the quality of an architecture in terms of
maximum number of results per cycle, program and data capacity, and cost,
as well as other measures that tend to be important in various contexts. We
need never debate a questions such as, "but is it fast?"

Architectures can be compared on critical measures when choices must
be made. The challenge comes because technology gives us new choices each
year, and the decisions from last year may not hold this year. Not only must
the architect understand the best decision for today, but the architect must
factor in the effects of expected changes in technology over the life of a design.
Therefore, not only do evaluation techniques play a crucial role in individual
decisions, but by using these techniques over a period of years, the architect
gains experience in understanding the impact of technological developments
on new architectures and is able to judge trends for several years in the
future.

Here are the principal criteria for judging an architecture:

• Performance;

• Cost; and

• Maximum program and data size.

There are a dozen or more other criteria, such as weight, power consumption,
volume, and ease of programming, that may have relatively high significance
in particular cases, but the three listed here are important in all applications
and critical in most of them.

1.2.1 The Cost Factor

The cost criterion deserves a bit more explanation because so many people
are confused about what it means. The cost of a computer system to a user is
the money that the user pays for the system, namely its price. To the designer,
cost is not so clearly defined. In most cases, cost is the cost of manufacturing,
including a fair amortization of the cost of development and capital tools for
construction. All too often we see comparisons of architectures that compare
the parts cost of System A with the purchase price of System B, where System
A is a novel architecture that is being proposed as an innovation, and System
B represents a model in commercial production.

Another fallacious comparison is often made when relating hardware to
software. In the early years of computing, software was often bundled free of
charge with hardware, but, as the industry matured, software itself became a
commodity of value to be sold.

We now discover that what was once a free good now commands a signifi­
cant portion of a computing budget. The trends that people quote are de­
picted in Fig. 1.1, where we see the cost of software steadily rising with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2143, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

saimanojpd
Highlight

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

