
434 Exceptions and Interrupts

Pipeline External Software Internal
Stage Interrupts Interrupts Interrupts

IF
IS
RF Bus error Breakpoint Illegal instruction

Syscall Instruction translation
ECC instruction Coprocessor is
Virtual coherency unusable
instruction

EX Interrupt
DF
DS Floating point Overflow
TC TLB modified

Data translation
WB Data Virtual coherency Bus error data

Watch
NMI
Reset

TABLE 9.2 R4000 stage designation of interrupted instruction.

stages are discussed in Chapter 10. However, note that a bus error on
an instruction fetch from the cache is not signaled until the RF stage.
The reason for this is that the data cache is pipelined and the checks of
the cache tags occur in the RF stage as shown in Figure 2.31. For
concurrent interrupts, the R4000 gives priority to the interrupted in­
struction furthest down the pipeline. This processor illustrates the
need to recognize interrupts and save the program counter value over
most of the stages of the pipeline.

9.1.2 Handling Preceding Instructions

The methods for handling preceding instructions, described below, are
for systems that issue one instruction at a time. Systems that issue more
than one instruction at a time are described in Chapter 10. Preceding
instructions have the potential to modify the processor state in registers
and/or memory. Recall that Smith's Condition #1 states that: All in­
structions preceding the instruction indicated by the saved program
counter have been executed and have modified the process (processor)
state correctly. This sequential execution model condition is defined as:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2142, p. 451

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

9. 1 Precise Interrupts 435

A processor that satisfies the condition that "the result of an ex­
ecution is the same as if the operations had been executed in the
order specified by the program" [LAMP79]. Note that a processor
that executes the serial execution model also executes the sequential
execution model.

The sequential execution model is enforced by one of the three design
options for handling preceding instructions shown in Table 9.1. The
options are:

1. to flush the pipeline, retiring all issued instructions;
2. to take steps to ensure that all issued instructions retire in-order;
3. to undo the processor state changes of any instructions that have

been retired out-of-order.

The design issues involved in selecting the option for handling the
preceding instructions are whether or not to (1) penalize the normal
performance of the pipeline, as measured by CPI, at the expense of a
longer interrupt latency when there is an interrupt, or (2) have a smaller
CPI and a longer latency. Cost and complexity are also design consider­
ations.

Only a Type A instruction window (described in Chapter 8) with in­
order release will always have in-order retirements. The other types of
windows have the potential for out-of-order completions and out-of-order
retirements. Figure 9.3 shows windows with two execution units that
can produce out-of-order retirements. Multiple execution units can have
a different number of stages, such as an integer unit and a floating point
unit as found in many microprocessors. Multiple register files, for integer
and floating points, are not shown but have the same out-of-order retire­
ment problem. Systems with a common result bus that store integer and
floating point values in the same register file can have structural haz­
ards on the output bus and the register file.

The operation of these windows and pipelines is illustrated with two
examples of a four-instruction sequence using the long and the short
execution units. For the Type C window, if an interrupt occurs at the
end of t4 , i2 has already been retired out-of-order by writing to the
register file. In addition, even if the interrupt had not occurred, there
will be a structural hazard on the result bus and register file at t6 that
must be resolved.

For the Type D or E window, the instructions issue in-order to the
reservation stations. For this example, instruction i3 is delayed two
clocks because of a dependency on i2 (without forwarding). If an interrupt
occurs at t5 , i2 will have been retired out-of-order. Notice that the release
is out-of-order; i4 releases before i3 due to the dependency. The character­
istics of these two configurations follow.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2142, p. 452

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

436 Exceptions and Interrupts

Release on Dependency Resolution

EU #1

Type C Window

2

EU#l 3

4

WB

il

2 S 4 5

i4

i1

il

il □
il Structunl

Hazard
il Long
i2 Short
i3 Short
i4 Long

EU#2 l~"i3
2 i2 i:l

WB i2 i8

Release on Dependency Resolution

Type Dor E Wmdow

#1

il Long
i2 Short
i3 Short
i4 Long

R.S.

EU#I
2

3

4

WB

R.S.

EU#2
2

WB

True dependency on i3, i2

FIGURE 9.3 Multiple execution units.

t Inte1TUpt

i1 i4

il i4

il

il

il

i2 i3 i3 i3

i2

i2
1---+---+-+---+---+---f

i2

t Intern.pl

Type C window (Cray-1, MIPS, Pentium integer) characteristics in­
clude

1. in-order issue,
2. dependencies resolved before release,
3. in-order release,
4. deterministic time from issue to completion.

Type Dor E window (CDC 6600, IBM S/36O/91 Flt. Pt., MC68110•
characteristics include

1. in-order issue,
2. dependencies resolved in the reservation stations,
3. out-of-order release,
4. nondeterministic time from issue to completion.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2142, p. 453

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

9.1 Precise Interrupts 437

Resolving Structural Hazards
For systems with multiple-variable length execution units, the potential
exists for a structural hazard on the result bus and register file even if
instructions are released in-order. There are two methods for resolving
this structural hazard.

1. Deterministically schedule the "issue or release of instruction to
eliminate the hazard.

2. Resolve the hazard with priority logic.

Consider the first method. Structural hazards can be resolved by
delaying an instruction release until the hazard is eliminated; the result
bus is scheduled so that hazards will not occur. Figure 9.4 shows a result
shift register [SMITH85], called a RSR(a), that schedules the result bus
and writes to a common register file.

The reservation table of a shift register, shown on the right of the
figure, is the same length as the longest execution unit pipeline; in this
case four stages, and the stages are numbered in reverse order. This
result shift register reserves a time slot for the result bus and the path
to the register file but does not ensure in-order retirement. Scheduling of
instructions into the execution units is illustrated by a three-instruction
sequence. Instruction il, because it uses the long pipeline, places its
destination address in stage four at t 1 . Then i2 releases and places its
destination address into stage 2 at t2 • Instruction i3 cannot release into
EU #2 at t3 because the bus will be blocked by the result of il. Thus, i3
is delayed one clock and releases at t4 • When a result is ready to exit
the execution unit, the result bus is gated on.

The TI ASC uses a Type C window and a RSR(a) to schedule its four
execution units into the result bus and register file. Because of the
number of data types, the RSR required seven bits to indicate the ad­
dress and type of register. For example, an operation with an upper half-

EU#l
2 345 678

i-o Write to 4 il

Release EU#2 Registers
3 il

2 i2 il i3

il: Long, EU #1 1 i2 il i3

i2: Short, EU #2 WB i2 il i3
i3: Short, EU #2

• Reserves Bus and Register
• Does Not Preserve Order
• Requires 6 Clocks

FIGURE 9.4 Result shift register (a).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2142, p. 454

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

438 Exceptions and Interrupts

word result will not have a structural hazard with a result with a lower
half-word result.

The second method for resolving the structural hazard employs pri­
ority logic. Type C, D, and E windows cannot easily use a RSR(a) to
schedule the result bus because of the possible release delays while
waiting for dependencies to be resolved. The CDC 6600 scoreboard and
CDB must resolve these structural hazards on their result bus(ses) and
move the delays to the completion end of the execution uni ts . In the case
of the scoreboard, each of the busses, called trunks, has priority hardware
to delay lower priority bus requests. I am not certain, but I believe that
some form of priority scheme is used with the CDB as well . The two
floating point execution units probably receive COB access priority based
on a random selection.

Retirement by Flushing

After ensuring that there are no structural hazards, the requirements
for properly handling the preceding instructions must be satisfied. A
common method, used in a number of processors, is a simple flush of the
pipelines; that is, the issued instructions in the pipelines are run to
completion and all results are retired. After flushing, the processor state
is correct, the context switch can be performed, and the interrupt ser­
viced.

Flushing is illustrated with the reservation table in Figure 9.5.
which shows an instruction sequence: long, short, long, short. The v.in­
dow can be Type C, D, or E.

12345678

il Long

i2 Short

i3 Long

i4 Short

2

3

4

WB

il

il

l 2

i3

i3

il i3

il i3

il

3 4 Is 6

ii lllll..l
+ Interrupt

FIGURE 9.5 Flush pipelines.

i3

7

I

8

I

EU #1
Reservation Table

EU #2
Reservation Table

..
Context Switch

PATENT OWNER DIRECTSTREAM, LLC
EX. 2142, p. 455

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

