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FIGURE 3.14 MC88200 table structure. 
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a pointer in the leaf tables that point not to the page in real memory 
but to another leaf table. This feature supports sharing of real pages but 
can significantly increase the number of references to memory that are 
required before a page fault is detected. I believe that there is a time­
out feature to stop endless looping around indirect addresses. 

MC88200. It is interesting to note that Motorola eliminated the 
programmability of the MC68851 in the MMU of the MC88200 
[MOTO90a]. The table structure of the MC88200 is shown in Figure 
3.14. This device supports a fixed page size of 4 Kbytes. The 32-bit 
effective address is extended by 20 bits using two registers found in the 
MMU that are loaded by the processor. Depending upon the mode of 
operation, the user of supervisor extension is concatenated to the effec­
tive address, providing a 52-bit virtual address. There are two levels 
of translation. The first level, called the segment table, has 230 entries 
of 20 bits that are concatenated with the 10-bit page field that address 
the page table. Motorola calls their system a segmented system; segment­
ation is provided by software that determines the values to be used in 
the extension registers. The balance of the system is a hardware-paged 
system. 

As with the i386, i486 page name translation systems, the MC88200 
is a partial implementation of a direct map. There are 23 0 entries in the 
page table rather than 240 as required for a full implementation. The 
number of entries is greater than that of the i386, i486, thus requiring 
fewer allocations of translation information to the page table. 

Control Bits 

The use of control bits in a multilevel page table system is illustrated 
with the MC88200, which has an extensive control bit repertoire to 
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provide flexible support of differing operating. systems. The first level of 
control bits is contained in the two area descriptors that are selected by 
mode to extend the processor effective address, as shown in Figure 3.14. 
These bits, noted as C in the figure, consist of 

WT Write Through: controls the write policy of the cache; 
G Global: controls the scope of snoopy coherency measures 

(Chapter 5); 
CI Cache Inhibit: inhibits caching of local instructions; 
TE Translation Enable: if not set, no page name translation. 

The first-level table, known as the segment table, has entries called 
segment descriptors , with the following control bits: 

WT Write Through; 
G Global; 
CI Cache Inhibit; 
SP Supervisor Protection: controls translation of supervisor; 
WP Write Protect: controls write protection; 
V Valid: if not valid, translation fault (table not present). 

The second level , known as the page table, has entries called page 
descriptors , with the following control bits: 

WT Write Through; 
G Global; 
CI Cache Inhibit; 
SP Supervisor Protection; 
WP Write P r otect; 
V Valid (Page is valid); 
M Modified: indicates that the page has been modified; 
U Used: indicates that a page has been accessed. 

Note that some of the levels have control bits for the same function. 
An example is the WT, Write Through bit. These bits are ORed together, 
and if any one is set the resulting action is taken based on this test of 
the control bits. 

Inverted Page Table Translation 

Direct multilevel table translation has served well for processors with 
virtual addresses limited to 32 bits. With virtual address extensions, 
partial page table implementations have been required. In the early 
1980s designers at IBM contemplated very large virtual addresses and 
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determined t~at a different translation method would be required. For 
a system with a 1-Kbyte page and a 52-bit virtual address, the leaf 
nodes would require approximately 6 x 242 bytes. Systems that followed 
this study are the IBM System 38 with a virtual address of 48 bits 
[HOUDB0. HOUD81] and the IBM RS/6000 with a 52-bit virtual address 
[OEHL90]. A direct page table for a large virtual address would not only 
be very large but also sparsely populated and inefficient. The inverted 
page translation systems described in this section are both small and 
densely populated. 

To reduce the size of the translation table, an inverted page table 
that contains only the virtual pages that are currently resident in real 
memory can be used [CHANS ] to translate long virtual addresses. An 
inverted page table can provide a substantial reduction in the size of 
the page tables and reduce the number of memory accesses required for 
a page name translation. The page name can be translated into the real 
address by either an associative search of the translation table, an n­
wise set associative search, or by hashing into a linked list. Current 
design practice does not use n-wise set associative searching, thus associ­
ative search and hashing are discussed in the following paragraphs. 

All known contemporary implementations of inverted page table 
virtual memory have been designed by either IBM, Hewlett-Packard. 
or the IBM/Motorola/Apple group (Sumerset). These systems will be 
described in the following sections. 

Inverted Associative Page Table Search 
An inverted associative page table (APT) has one entry for each of the 
pages in real memory. This page table is accessed by an associative 
search from the page name in the virtual address. As with all known 
virtual memory systems, an APT system is early select and congruent 
mapped. 

The Atlas [KILB62, MATI77] is an example of an inverted API'. 
This memory system has a page size of 512 words, a virtual address of 
2048 pages, and a real memory of 32 pages (16K words). A block diagram 
of the map is shown in Figure 3.15. The dotted arrow with A at its head 
signifies an associative search. The page table contains the page frame 
address and the page name of the pages in real memory, called tags. A 
page name is the key for an associative search of the tags. Note the one­
to-one correspondence in the number of entries in the page table and the 
number of page frames in real memory. 

A hit on the tags produces a 5-bit page frame address that is concat· 
enated with the 9-bit displacement from the virtual address. The result• 
ing 14-bit address is presented to the real memory. If the addressed page 
is not in real memory and therefore not in the page table, a miss occurs 
and the page is fetched from a drum memory in virtual address space. 
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FIGURE 3.15 Atlas page name translation. 
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The drum address is found by sequentially searching a table holding the 
11-bit virtual page number and the corresponding drum address (a pro­
cess described in Section 3.5.9). 

The designers of Atlas considered using a direct table method with 
the table in real memory. However, this form of translation requires 
that at least one real memory reference must be processed to see if there 
is a page fault and to generate the real memory address. This design 
would make every reference to real memory cost (at a minimum) two 
memory cycles. The APT method provides a faster associative search of 
a hardware table, adding only a small increment of time to the real 
memory access latency. Because it is faster, the associative method is 
superior and is used on the Atlas even though there was a significant 
circuit cost for the associative translation table. 

For very large virtual addresses and large real memory, the size of 
an inverted APT is too large and costly for consideration. The small 
virtual address of the Atlas will never be used again. However, the APT 
is used in systems in the form of translation lookaside buffers (discussed 
in Section 3.4). 

APT Control Bits 

Systems using APT control the page name translation process by an 
associative search mechanism and require no control bits. Recall that 
there is one table entry for each real page frame. The entries in the 
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inverted page table contain the page base address in real memory and 
the page name. If there is a hit on the search, the translation is complete. 
If there is a miss, then there is a page fault. 

Protection bits should be required with the APT as with the other 
page name translation systems. However, as protection was not a re­
quirement for APT systems that were implemented , such as the Atlas, 
there are no examples to cite of protection bits. Protection bits are used 
in TLBs (described in Section 3.4), which are similar to APTs. For exam­
ple, valid bits are required to indicate the presence of valid translation 
information in the page table. 

Hashed Inverted Page Table Search 

The inverted translation scheme of the Atlas is costly to implement if 
the size of the real memory and the virtual address become very large. 
This is now the case with many virtual memory systems. Hashing is the 
translation technique of choice today for IBM systems with large virtual 
addresses. The index into an inverted page table is found by hashing 
the page name (the displacement bits are not hashed). The hash number 
is then used as an index into the page table, which provides the page 
frame address. This technique is properly known as key transformatwn 
[PRIC71]. The key transformation technique reduces the large number 
of virtual page addresses into one of a number of noncongruent classes 
in which the real page addresses are linked together. 

Hashed access into large address spaces or data structures was 
developed in the 1960s for access to symbol tables and the like [JOHN61, 
MORR68]. These techniques were then applied to the accessing of large 
files and have been, since the late 1970s, applied to virtual memory 
page name translation. A good hash transformation is one that "spreads 
the calculated address (sometimes known as hash addresses) uniformly 
across the available addresses" [MORR68]. The design of hashing func­
tions is beyond the scope of this book, however, a tutorial on hashing­
can be found in [LEWI88]. 

It is possible to have a one level translation table that is accessed 
by hashing the virtual page name as illustrated in Figure 3.16. This 
method for translating virtual addresses into real memory addresses 
divides the virtual address into the page name field and the displace­
ment field. The page name field is hashed for an index that accesses the 
page frame table. The table contains entries for all of the pages that are 
resident in real memory-an inverted translation system. The page 
frame table entry carries the page name tag and the page frame address 
of the page in real memory. When the page table is accessed the tag is 
compared to the page name and, if the comparison is true, the page 
frame address is gated out and concatenated with the displacement to 
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FIGURE 3.16 Hashed page name translation. 

form the real memory address. If the comparison is false , the addressed 
page is not in real memory and a page fault is signaled. 

A problem with this simple hashed translation is that two or more 
virtual addresses can hash into the same value, creating a collision into 
the same page frame table entry. These collisions increase the page name 
translation fault rate, significantly increasing the average page name 
translation time. A number of techniques for managing collisions and 
reducing their performance impact have been developed and im­
plemented in real systems [MORR68]; a list of these techniques is given 
in Table 3.2 with examples noted. These examples will be described in 
the following paragraphs. 

One-Level Large Page Frame Table 

HP Precision Architecture. A system that uses a one-level page frame 
is the Hewlett-Packard Precision Architecture as shown in Figure 3.17 

Technique 

One-level large page frame table 
One-level linked list 
Two-level linked list 
One-level sequentially indexed list 
One-level disjoint collision table 
n-way set associative 

Example 

HP Precision Architecture 
None 
IBM S/38-RS/6000 
PowerPC 601 
Proposed [HUCK93] 
IBM S/360/168 TLB 

TABLE 3.2 Collision handling techniques. 
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[MA.HO86, LEE89]. This sy tern depends on reducing the probability 
of a collision by implementing a large page frame table. Because the 
translation time through this system is quite fast, a translation look.aside 
buffer is not used. However, Hewlett-Packard describes this system as 
a translation look.aside buffer without another table structure for hand­
ling TLB misses. 

The virtual address is composed of an 11-bit displacement, a virtual 
page number (either 19, 35, or 51 bits), and a 16-bit space ID. Nine bits 
of the virtual page number and 11 bits of the space ID are hashed int.o 
an 11-bit index. This index references a one-level, direct page frame 
table, called a translation lookaside buffer by HP. An entry contains a 
26-bit tag that is compared to 26 bits in the virtual page name. The 
table produces a 16-bit page frame address that is concatenated with the 
11-bit page displacement. A collision (no match on the tag but with a 
true valid bit) requires a full virtual software page name translation. 

One-Level Linked List Page Frame Table 

The approach to collision management discussed in this section is com­
monly used today because it provides a good balance between speed and 
cost. A one level system that mitigates the problem of hashing into the 
same page table entry by using a linked list is shown in Figure 3.18. 
Each entry of the page frame table ( the name used in the IBM RS/6000) 
contains three fields: a page name tag, a page frame address, and a link 
field (chain). When a page is loaded into a page frame in real memory, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 157



Virtual Address 

YIN 

Hash Index 
Generator 

3.3 Virtual Memory Organizations 141 

Tag 

*Page Frame Address 

Real Memory 
Address 

FIGURE 3.18 One-level hash accessed inverted page table!. 

its page name and the page frame address are placed into the page frame 
table. 

A virtual memory page name translation is performed by hashing 
the page name to an index into the page frame table. The page name 
field of the addressed entry is compared to the page name of the virtual 
address. If they are the same, the correct page frame address is concat­
enated with the displacement to give the real memory address. If the 
page name is not the same, a hash collision has occurred and the link 
pointer accesses another entry, and so on, until there is a match on the 
tags or a terminator symbol is encountered in the last entry. If the last 
entry has been accessed without a match on the page names, the refer­
enced page is not in real memory and a page fault results. 

A one-level hash accessed translation suffers from a significant prob­
lem. For some update cases, the entries in the page frame table must be 
moved to make room for the allocation of a new entry in the page frame 
table. Moving entries in the page frame table consumes time and reduces 
the overall performance of the system. Allocation in a one-level system 
is illustrated in Figure 3.19, which shows the states of the page frame 
table before and after allocation. Before allocation we see three linked 
lists of page translation information. Note that the page names A and B 
both hash into "l", the page name D hashes into "8", and the page names 
P, Q, and R hash into "17". In this example, the page frame table 
entries have been allocated into consecutive locations following the hash 
address and are linked via the link fields. A valid bit is needed in 
each entry to identify the page frame table entries that are allocated or 
vacant. 
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FIGURE 3.19 Allocation with a one-level hash accessed inverted page table. 

Consider what happens if a new page is allocated and its page name 
"Z" hashes to the value "18". The entry "18" in the page frame table is 
already occupied by Q and must be moved in order to vacate location 
"18". This can be accomplished by moving the Q entry into location "25' 
and adjusting the link pointers. A vacant entry is found by scanning the 
PFT until a "O" is found, signifying a vacant table entry that can be 
allocated. 

If there is a second allocation of a page with a page name that hashes 
into "18", its translation information is allocated to a vacant page frame 
table entry and appended to the linked list that starts with "18". Another 
situation exists for a new allocation hashed to an unused entry in the 
page frame table (the valid bit is 0). For this case, the tag and address 
information are allocated and the link field is loaded with the terminator 
symbol. This is a simple case, and no entry movement is required. 

Two-Level Linked List Page Frame Table 

A solution to the problem of page frame table movement is to introduce 
another level in the translation process that, in effect, provides an 
indirect pointer to the translation information in the page frame table. 
With a level of indirection, allocating new entries to the page frame 
table does not require that other entries be moved. This first-level tabll!y 
named a scatter index table in the early literature, is known as a hllsh 
index table in the IBM System 38, a hash table in the IBM 801, and a 
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FIGURE 3.20 Two-level hash accessed inverted page table. 
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hash anchor table with the IBM RT PC and RS/6000, which is the term 
used in this text. 

A two-level system is shown in Figure 3.20 [JOHN61, MORR68]. 
With this system, the page name is hashed for an index into the hash 
anchor table, which contains an index into the page frame table. The 
page frame table contains the page name (that is compared to the virtual 
address page name), the page frame address, and a link. The page frame 
address is concatenated with the displacement to form the real memory 
address. 

The allocation example in Figure 3.18 used for the one-level system 
is illustrated in Figure 3.21 with the before and after cases shown. Here, 
the hash anchor table contains a pointer into the page frame table. For 
this example, the linked list A, B is located starting at location 100 of 
the page frame table, D is located at 200, and the linked list P, Q, R 
starts at 300. A memory reference to pages P, Q, or R, for example, 
hashes into address "17" and the p9inter 300 is found that indexes to 
location 300 of the page frame table. The proper page frame address is 
found by compa•ring the tags to the virtu~l page name and traversing 
the linked list if necessary. 

When page "Z" is allocated, location "18" in the hash anchor table 
is vacant and the page frame table entry is placed in a vacant location, 
250 for example, of the page frame table. No movement of page frame 
table entries is required to effect the allocation of the new page. If a page 
is allocated with a page name that hashes into an already used hash 
anchor table address, the allocation can be to any vacant location in the 
page frame table. It is only necessary to append the entry to the linked 
list. The more successful the hashing function is in providing a uniform 
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distribution of transformed keys, the more balanced will be the length 
of the linked lists. 

How many entries should there be in the page frame table and the 
hash anchor table? First consider the page frame table. Because an 
inverted page translation system has one entry for each page frame of 
real memory, the minimum number of entries is the number of real 
page frames . A large page frame table will have more vacant positions, 
reducing the length of the linked lists and the time required to find a 
page frame address. 

The size of the hash anchor table is determined by the desired 
performance. A large hash anchor table has a larger hashed address, 
reducing the frequency of collisions in the page frame table. Johnson 
[JOHN61] determined that the average number of probes (reference 
attempts) into the page frame table is a function of the size of the page 
frame table and the hash anchor table: 

p = 1 + no. of entries in page frame table 
2 x no. of entries in hash anchor table 

where P is the average number of probes into the page frame table to 
translate a page name. 

For example, if the hash anchor table has the same number of entries 
as the page frame table, 1.5 probes are required, on average, into the 
page frame table plus th~ access of the hash anchor table to translate a 
page name. If the hash anchor table has only 10% of the entries of the 
page frame table, six probes are required on average. An explanation of 
this model is found in the following consideration. If there is only one 
entry in the hash anchor table, every page name hashes into the same 
entry and all of the entries of the page frame table are linked together 
in one linked list. In this situation, the average number of probes ap­
proaches half the number of entries in the page frame table. This be­
havior is as expected from the time required to search a linked list 
sequentia lly. On the other hand, if the hash access table is very large, 
there are no collisions and each entry in the page frame table is unique 
(not linked). In this case only one probe is required. 

Four IBM systems (S/38, 801, PC RT, and RS/6000) use a two-level 
hash access technique and are discussed in the following paragraphs. 

IBM S/38. The virtual memory of the S/38 resulted from research 
at IBM in the late 1960s and early 1970s on the so-called Future System, 
which was abandoned due to lack of compatibility with S/370 [LEVY84]. 
The _S/38 virtualized a segmentation system on top of the hardware­
paged system [HOUD79, HOUD81]. The S/38 has a 48-bit virtual 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 162



146 Virtual Memory 

40 Bit Vinual Address 

Seg. ID Page Name I Displacement I 

Page Frame Table 

:··iiasiiAnciior·tahie··················· ···························· 

Page Seg. ID. Page Nnmr C PFA-LNK 

Index 
: ...................... !J?.~~··································· 

FIGURE 3.22 IBM 801 page name translation. 

Real Memory 
Addreu 

address, with a 512-byte page. The 39-bit virtual page name is hashed 
by logical XORing three fields (two of which are bit reversed) in the 
virtual page name in order to generate a 7-bit index into the hash anchor 
table. A page frame table index that indexes into the 128-entry page 
frame table is produced, and the entries in the page frame table are 
linked together with pointers. Approximately 2.5 memory accesses are 
required to translate a page name in the page frame table; the total 
translation time is 3.5 accesses. 

IBM 801. The inverted page table system of the S/38 evolved into 
the virtual memory system of the experimental IBM 801; its page name 
translation tables are shown in Figure 3.22 [CHAN88]. The IBM 801 
generates a 32-bit effective address that is expanded to a 40-bit virtual 
address using a map that is similar to that adopted by the RS/6000 
shown in Figure 3.5. Page name translation is via a hash anchor table 
and a page frame table stored in real main memory. Unfortunately the 
published literature does not give the sizes of the three fields of the 
virtual address. 

The IBM 801 design combined the page frame address and link into 
one field of the page frame table. This field is noted in Figure 3.22 as 
the PFA-LNK field and is large enough to address any page frame in 
real memory (at the page level) or to address the next entry in the page 
frame table [CHAN88]. The operation of this combined field is described 
below. 

A page name extended with a segment ID is hashed for an index 
into the hash anchor table, which then provides an index into the page 
frame table. If there is not a match on the page name, the link field 
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indexes into another entry. If there is a match, the link field is the page 
frame address in real memory and is concatenated with the displacement 
field from the virtual address. In other words, the link field is multiplied 
by 2 to the power of the displacement bits (left shifted the number of 
bits of the displacement). When there is not a match, the link field has 
its MSBs set to zero and the resulting value becomes the index into the 
page frame table. This process assumes that the page tables are allocated 
in the low address page frames of real memory. 

Both the hash anchor table and the page frame table are stored in 
real memory. Therefore, a translation requires a minimum of two mem­
ory accesses to translate a page name. The size of the hash anchor table 
and page frame table are set when the system is g~nerated depending 
upon the amount of installed real memory in the system. The hash 
anchor table can be set to be either equal to or twice the size of the page 
frame table. 

IBM PC RT. The IBM PC RT also stores both the hash anchor table 
and the page frame table in memory [SIMP86, HEST86], as shown in 
Figure 3.23. The 32-bit effective address is expanded to a 40-bit virtual 
address by means of a 16-entry segment register. The page size can be 
set at either 2 Kbytes or 4 Kbytes, leaving either 28 or 29 bits that are 
hashed by an XOR operation for an index into the hash anchor table. 

Experience with the IBM RT PC [CHAN88] shows that 2.5 storage 
accesses, or 1.5 probes to the page frame table, are required per page 
name translation. From this result we would assume that the hash 
anchor table has the same number of entries as the page frame table­
a conclusion based on the Johnson [JOHN61] model. As with the IBM 
801, setting the size of these tables is done when the system is generated. 

40 Bit Virtual Address 

28 or29 Bits 11 or 12 Bits 

Page Name Displacement ! 

Page Frame Table 

Page Name 

Index 
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FtGURE 3.23 IBM PC RT page name translation. 
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FIGURE 3.24 IBM RS/6000 page name translation. 

IBM RS/6000. The IBM RS/6000 continues the approach started 
with the IBM Future System development [IBM90]. Because the 
RS/6000 is a recently introduced computer, its virtual memory system 
is described in more detail than the other IBM systems described above. 
The RS/6000 can be viewed as a paged-segmented system with the 
segments defined by the address map of Figure 3.5; the balance of the 
system is pure paged. A block diagram of the RS/6000 page name 
translation is shown in Figure 3.24. 

The 52-bit virtual address is divided into three fields: a 24-bit seg­
ment ID, a 16-bit transaction page ID, and a 12-bit byte displacement 
[IBM90]. The hash generator XORs the 24-bit SID and the 16-bit TID 
extended with zeros to 24 bits. The low-order r + l bits of the result 
index the hash anchor table. 

The size of the hash anchor table is set to be twice the number of 
real pages installed on the system, while the number of entries in the 
page frame table is set equal to the number of pages in installed real 
memory, which can reach a maximum of 220 pages. These table size 
selections are made by the operating system. 

Each entry in the page frame table consists of 16 bytes (4 words). A 
20-bit link field (PFA-LNK) links to the next entry if the comparison 
fails. If the comparison succeeds, the link value of the entry point to the 
succeeding comparison is the page frame address and is concatenated 
with the 12-bit displacement, providing a 32-bit real memory address. 
In other words, on a hit the link field is multiplied by 2 12

, while on a 
miss the link is used as the address into the page frame table in the low 
addresses of real memory. 
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S/38 801 PC-RT RS/6OOO 

Names Level 1 Hash Hash Hash Hash 
Index Table Anchor Anchor 
Table Table Table 

Level 2 Page Page Inverted Page 
Directory Table Page Frame 
Table Table Table 

Sizes Level 1 128 r 2r+l Up 
to 221 

Level 2 64 r 2r up to 
220 

No. of Real Memory Page up to 220 

Frames 
Page Size 512 bytes 2 Kor 4 4 Kbytes 

Kbytes 

Virtual Address 48 bits 40 bits 52 bits 

Max Real Memory Size 222 bytes 232 bytes 

Note. r = lg2 (Number of page frames in real memory). 

TABLE 3.3 IBM hash accessed inverted page tables. 

A linked list presents the danger of an infinite translation loop due 
to a programming error. That is, the links can create a circular list and, 
if there is no hit on tag comparisons, the translation can run forever. 
To prevent this from happening, a maximum of 127 probes are permitted 
before a search is declared a failure. The number of probes for the other 
systems described above is not known. 

The IBM systems have evolved over a period of time. In order to 
illustrate this evolution, Table 3.3 contains a summary of the relevant 
parameters of the IBM systems discussed above. 

As noted previously, the· hash anchor tables and page frame tables 
are too large to be stored in fast hardware registers. Consequently, it 
is necessary to enhance the performance of these systems by using a 
translation lookaside buffer [HOUD81, CHAN88, OEHL90]. After a page 
miss, the requested page is loaded into the real memory. In addition, the 
TLB, the hash anchor table, and page frame tables are updated. A 
subsequent reference to this page will find the page name translation 
information in the TLB. However, later references may find that an 
address cannot be translated in the TLB and recourse to the translation 
tables is required. After this translation, the TLB is updated. TLBs are 
described in Section 3.4 and memory allocation is discussed in Section 
3.5.2. 
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FIGURE 3.25 PowerPC 601 page name translation. 

One-Level Sequential Indexed Page Frame Table 

PowerPC 601. The PowerPC 601 uses a hash-indexed inverted page 
name translation that resolves collisions by sequentially searching the 
page table entries. A simplified description of this system is given and 
illustrated in Figure 3.25; the terminology of [MOTO93] is used . 

The virtual address is formed by a map that is similar to that of the 
RS/6000 shown in Figure 3.5. This 52-bit address is used in conjunction 
with a 32-bit register called the table search description register 1. A 
19-bit hash index is formed by talci.ng the XOR of the 19 LSBs of the 
segment ID and the 16-bit page index, zero extended to 19 bits. The 9-
bit mask of the TSDRl is ANDed with the 9 MSBs of the hash output; 
the result is ORed with 9 LSBs of the physical address field of the 
TSDRI. These fields are concatenated to form the 32-bit page table 
address. 

The page table is organized as a collection of the 64-bit (8 bytes) 
page table entries. The page table address indexes into a page table entry 
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Total Main Memory for Number of Number of 
Memory Page Tables PTEGs PTEs 

8 Mbytes 64 Kbytes lK BK 
128 Mbytes 1 Mbytes 16 K 128 K 
4 Gbytes 32 Mbytes 512 K 4M 

TABLE 3.4 PowerPC 601 page table size recommendation. 

group (PTEG) consisting of eight PTEs. The VSI + API bits of PTE0 are 
compared to 30 bits of the virtual address. If there is a miss, the low­
order bits of the page table address are incremented by 8, to give a new 
PTE, and the tag of PTEl is compared. ,This process continues until all 
eight PTEs have been tested. If there is still no hit, a second hash 
function is applied and the page table is again accessed. An excerpt of 
the recommended size of the page table is given in Table 3.4. 

As with other table translation systems, the PowerPC 601 uses a 
translation lookaside buffer (described in Section 3.4). 

One-L evel Linked List Into a Disjoint Collision Table 

J. Huck et al. [HUCK93] describes an inverted name translation system 
that combines a one-level system with the combined page frame address 
and link field of the IBM systems. This system is shown in Figure 3.26 
and is called by the author a hashed page translation table. The first 
allocated entry to a hashed index is placed in the page frame table, 
and subsequent allocations are placed in the disjoint collision resolution 
table. 

The page name is hashed, providing an index into the page frame 
table. A collision is followed by the link accessing another entry in a 
disjoint address space called the collision resolution table that cannot be 
accessed by a hashed index. Thus when new page information is allo­
cated, its entry can go into (1) the page frame table if vacant or (2) any 
vacant slot in the collision reservation table. The entries in the collision 
resolution table are organized as a linked list. The advantages of this 
system are that noncolliding translations require only one memory refer­
ence and that the need to move entries in the page frame table is 
eliminated with disjoint link entry storage. As with all hashed access 
systems, increasing the size of the table will reduce the probability of a 
collision. 
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FIGURE 3.26 Hashed page translation tables. 

Control Bits 

Real Memory 
Address 

This section uses the IBM RS/6000 design to illustrate the control bits 
used in these systems. The hash anchor table has only one control bil 
a valid bit that is used to indicate whether or not there is a valid pointer 
into the page frame table. If valid, the translation proceeds; if not, then 
a page fault results because an inverted page table has entries for all 
resident pages. In addition, there are various control and protection bits. 

i Invalid Lock Type 
f Reference w Grant Write Lock 
C Change r Grant Read Lock 
p Protection keys ( 4 bits) a Allow Read 
b Lock Bit for cache lines 

Other bits provide a transaction ID, and there are a number of 
reserved bits. Note that the RS/6000 treats valid bits nonuniformly 
across the hash anchor table and the page frame table. The valid bit of 
the hash anchor table signifies that the entry is vacant and can be 
allocated to a new translation. The valid bit in the page frame table 
signifies the presence of the requested page in real memory, assuming 
a hit on the page name comparison. 
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3.3.2 Segmented Systems 
Segmented systems have a variable-length allocation unit known as a 
segment that should not be confused with the fixed-length virtual ad­
dress extensions shown in Table 3.1. Segment name translation can be 
accomplished with both one-level and multilevel systems. A one-level 
system is described first. The operating system sets the length of a 
segment under the constraint that the sum of all active segments must 
be no greater than the available real memory. 

This discussion on segmented systems is brief because of the many 
problems associated with these systems. No segmented systems have 
been designed since the first early machines; paged-segmented systems 
h~ve replaced them. Interactive programming systems such as Lotus 
1-2-3 virtualize a rudimentary form of segmentation to provide inter­
active allocation and de-allocation of segments. 

The motivation for segmentation is that the size of each allocation 
unit can be set to reduce internal fragmentation. With fixed size pages, 
some fraction of a page frame (on average, 1/2 page) will be wasted 
when allocating variable-length records, an issue extensively studied by 
Wolman [WOLM65]. Because real memory was very expensive, wasted 
memory was a cost that was difficult to justify and segmentation minim­
ized this undesirable cost. However, as will be discussed, segmentation 
introduces a number of undesirable problems that must be solved. 

The address translation process for a segmented system consists of 
the steps [DENN76] 

virtual address:::;> (n, d) ::::;> (f(b), d) ::::;> f{b) + d = real address. 

That is, the virtual address is first de-allocated into the pair (seg­
ment name (n), displacement (d)). The segment name portion is trans­
lated by a function f, and the result is added to the displacement. Recall 
that for paged systems, the translated page name and displacement are 
concatenated because the allocation unit is fixed at some binary multiple. 

The design of the processor, by selecting a displacement field length, 
sets the maximum length of a segment. Any allocated segment must be 
equal to or less than this length. Thus, the segment length (SL) field 
of the segment table will be the same length as the virtual address 
displacement field. When a segment is accessed, the contents of the 
displacement and segment length fields are compared and the access is 
valid if (d) :5 (SL). 

Figure 3.27 shows a one-level segment translation table that is recog­
nized as a direct map with an entry for every virtual segment. Because 
f(n ) is not constrained, segmented systems are not congruence mapped. 
That is, segments can be of variable length with the maximum length 
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I Segment N arne I Displacement 

lnde.x 

YIN 
Segment Table 

FIGURE 3.27 One-level segment table. 

Real Memory 
Address 

set by the displacement d. Variable-length segments lead to the require­
ment that there must be a way of specifying the length in the segment 
table. 

Segment table entries have at least the following fields: 

1. present bit~ similar to the present bit of a one-level direct page table. 
2. access rights or control bits, 
3. segment length, 
4. segment base address. 

The segment name indexes into the segment table. If the present bit 
is set, the access rights are proper, and the segment length is equal to 
or greater than the displacement value, then the segm.ent base address 
is added to the displacement providing the real memory address. Note 
that because the segment base address is added to the displacement. 
segments can overlap, unlike paged systems. If the present bit is not 
set, a missing segment fault is indicated that requires a segment fetch 
from virtual memory. When a segment is allocated to real memory, its 
length is placed in the segment length field of the segment table. If the 
segment length is less than the displacement value or if the access rights 
do not check, an error signal is generated and the name translation 
process will not continue. 

There are a number of serious problems with segmentation. For 
example, it can be more difficult to find a place in real memory to allocat~ 
a requested segment. This allocation problem exists because of the need 
to find a contiguous space in real memory that is large enough for 
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the new segment, a problem similar to Relocatable Partitioned Memory 
described in Figure 3.2. 

Another problem with segmented systems is external fragmentation , 
previously defined. As segments of various sizes are moved in and out 
of real memory, open or unused spaces appear in real memory and the 
available space becomes fragmented. It becomes difficult, if not impos­
sible, to find a contiguous space for a new segment even though there 
is ample, but fragmented, space in real memory. From time to time the 
operating system must compress or compact the allocated spaces to open 
up contiguous space for new segments. Note that as the allocated space 
is exactly the space needed, there is no internal fragmentation as with 
a paged system, one of the benefits of a segmented system. Section 3.5.2 
discusses the allocation of segments. 

I am only aware of one system that is implemented with a one-level 
segment table, the Rice University Computer [LEVY84]. This processor, 
implemented in the early 1950s, had a virtual address that specified a 
maximum 32-K word segment (a 15-bit displacem1mt field). The experi­
mental purpose of this computer was to evaluate capabilities addressing 
objects in conjunction with a segmented virtual memory. 

Control Bits 

The use of the present bit was noted above. The access rights bits 
provide for various levels of protection. For example, read-only data 
segments and r ead/write segments can be indicated in the access rights 
field. Other information such as lexical level and the data type of the 
segment can also be indicated. 

Multilevel Segmentation Systems 

A multilevel segmented system uses the first-level table to select subse­
quent translations for each of the active processes as shown in Figure 
3.28. Note that the first level is indexed by the MSBs of the segment 
name and organized like a paged system with the first level similar to 
the map shown in Figure 3.5. The second level is identical to that shown 
in Figure 3.27. 

The LSBs of the segment name and the table address are concat­
enated to form the segment table address, thus segment overlap is 
prevented. Said another way, there are 2'8 nonoverlapping segment 
tables of 2 Table Address entries. I know of no actual system that is 
implemented with multilevel segment tables. Concurrent with the real­
ization of the problems with pure segmentation, paged segmentation 
became the implementation method of choice and is discussed in the 
following section. 
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FIGURE 3.28 Two-level segment table. 

3.3.3 Paged Segmentation 

. . . . 

As noted previously, there are a number of problems with segmentation 
systems that have hampered their u se. One significant problem involves 
finding space for a new segment in real memory. This allocation problem 
is difficult, and external fragmentation can significantly reduce the effec­
tiveness of real memory. If compaction is used, there can be a serious 
reduction in performance. Another significan t problem is that a TLB, 
described in Section 3.5, has to be allocated at the word or byte level; 
this process makes the TLB quite la rge, slow, and expensive. Research­
ers have recognized that if the allocation unit is a page of, say, 1 Kbyte, 
a compromise system combining the characteristics of a segment system 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 173



3.3 Virtual Memory Organizations 157 

with a paged system could be designed. In other words, a segment is not 
a variable number of AUs but is a variable number of pages. 

The tradeoffs that favor a paged-segmented system over a pure 
segmented system concern accepting internal fragmentation for no exter­
nal fragmentation, the simplicity of allocating a page as compared to a 
variable-length segment, and the perfqrmance improvement due to 
simpler allocation. 

The organization of a paged-segmentation system is shown in Figure 
3.29. This system has two levels; the first level establishes the segments 
of pages while the second level is a one-level page system. Note that 
the second level could translate page names by any one of the techniques 
discussed above. This translation can be associatively searched, one­
level or multilevel page tables or translation information could be hash 
addressed. The example shown, however, is a one-level page translation 
system. 

The virtual address is divided into three fields: segment name, page 
name, and displacement. The segment name may be concatenated with 
a user ID number, forming an index into the segment table. The register 
holding the user ID is also known as segment table origin register. A 
length field in the segment table is compared with the virtual page name 

User ID I Segment Name I Page Name I Displacement I 

YIN 

P AccR Segment Length Page Table Address 

0 
n 

2 -1 

~ 
Page Tables 

□ 
FIGURE 3.29 Paged segmentation. 
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field to verify that the length of the segment, in increments of pages, is 
proper. In other words, the page name is a displacement into a segment. 
The page table address, from the segment table, is concatenated to the 
page name field to index into the page tables. The selected page frame 
address is concatenated with the displacement field to give the real 
memory address. A present bit indicates whether or not an entry in the 
segment table has its corresponding page table in real memory. Access 
rights bits provide for protection and control. 

Only multilevel paged-segmentation systems are possible; one-level 
systems cannot be implemented. This is because, as shown in Figure 
3.29, at least on~ level is required for the segmentation table and another 
for the page tables. As with the other systems discussed earlier, all of 
the page tables do not need to be resident in real memory at once, only 
the active tables. If an access is made to a segment or page table that 
is not in memory, it can be assumed that the page is not in memory and 
the operating system must fetch the page(s) and update the segment/ 
age tables. The Multics system paged the segment table, leading t.o 
complications discussed below. 

The paged-segmented system overcomes many of the problems of a 
pure segmented system. The unit of allocation of a segmented system is 
a word or byte, while the unit of allocation of a paged system is a page. 
Because of this difference, the segment system can now operate as a 
demand paged system that shifts the problem of finding space to the 
page system. Also, the problem of external fragmentation and space 
compaction found in pure segmented systems are eliminated. However, 
because the pages of a segment are not placed in contiguous locations of 
real memory, locality for caching may be degraded; the same effect is 
found with a paged system that does not consider locality during a page 
swap. 

For the above reasons, many of the high-performance microprocessor 
memory management units now support both paged and paged-seg­
mented operation [MILE90]. The operating system can manage a virtual 
segment table on top of a pure paged system. The page tables are stored 
in memory, loaded and modified by the operating system, and may be 
paged themselves. See [MOT087] for the details of a system. With such 
a system, no special hardware is needed to support the segment table 
as a paged-segmented system can be implemented in software on a 
hardware-paged system. Thus the two systems are isomorphic. 

Segment Table Support 

Because of the complicated organization of segment tables, interpretive 
segmentation has been found to be out of the question for performance 
reasons. Therefore, hardware support is mandatory if a reasonable level 
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FIGURE 3.30 Multics name translation tables. 

of performance is to be achieved. One of the earliest segmentation sys­
tems is Multics, which was developed at MIT in conjunction with General 
Electric. A GE 635 computer was modified to support paged segmentation 
becoming the GE 645. Multics system [SCHR71, ORGA72] used a multi­
level paged-segmentation system completely implemented in software, 
augmented with a TLB. Figure 3.30 shows a simplified view of the 
Multics segment name translation system. 

The processor produces a 36-bit effective address, the page size is 
lK Words, and a segment can have up to 256 pages or 256K Words. The 
effective address is augmented with an 18-bit program loaded descriptor 
base reg ister that points to the beginning of a segment in the descriptor 
table allocation of real memory that contains segment descriptors. Note 
that the segment descriptors are themselves paged. 

A segment descriptor contains a segment length field of 8 bits, a 
page table address of 18 bits, and various control bits. The segment 
length field is compared, by the processor, to the eight MSBs of the 
displacement to verify that a displacement is within the allocated seg­
ment. The page table address is concatenated with the eight MSBs of 
the displacement to form the address into the page table, also in real 
memory and paged. The entries in the page table contain the page frame 
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address that is concatenated with the ten LSBs of the displacement to 
form the real memory address. 

This system required two memory accesses to perform a name tr~ 
lation, a rather slow process as the processor did not have a cache. As 
will be described in Section 3.47 the GE 645 also used a translation 
lookaside buffer to cache the most recently used segment d escriptors. 

Due to the poor performance of a segmented system that is vir­
tualized in real memory. two forms of hardware supported segment 
tables have evolved. One system supports segment length checking. 
while the other does not. Examples of these two types are given in this 
section. 

Hardware Support with Segment Length Checking 

An example of hardware support for the segment table of paged 
segmentation is found in the Intel i386, i486, and Pentium micropro­
cessors shown in Figure 3.31. which is an extension of Figure 3.6. The 
i386 member of the x86 family had s ignificant changes to the memory 
management system that have carried over into all subsequent members 
of the family. While there are differences between these later processors. 
they are sufficiently similar that only one description is given. The 
terminology used is that of the i486 and Pentium, which is different from 
the terminology of the i386. The segmentation system evolved from 
steps taken to extend the address space of the ix86 family of processors. 
Evolution of the mapping structure design was constrained by the re­
quirement for upward compatibility for MS-DOS and applications 
software. A break in this capability occurred with the i386 with its 
effective address extended to 32 bits compared to the 16 bits of previous 
members of the family [MORS80]. 

There are two paths for obtaining a segment base a ddress value: 
one path uses active descriptors stored in segment registers, the other 
path uses descriptors found in descriptor tables in memory. The m 
active descriptors, found in the invisible part of the segment registers. 
are indexed by implication with each memory reference in parallel with 
the selectors in the visible part of the segment registers; this is essen­
tially a zero time access. The descriptors (both in the segment registers 
and descriptor tables) have a 32-bit segment base address field , a 20-bit 
segment limit field, and 12 control bits. One of the control bits is a valid 
bit, indicating that the descriptor information contained is valid. If the 
entry is valid, segment base address value selection is performed ,u 
the descriptor table and the memory resident translation tables are 
bypassed. The linear address is formed by adding the segment base 
address to the displacement field from the instruction. 

In addition to various access checks based on the control bits. the 
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FIGURE 3.31 i386, i486, and Pentium segmentation support. 

segment length is also checked. A bit in the control field determines if 
the comparison is between the 20 MSBs or the 20 LSBs of the displace­
ment: if the MSBs, the segment length is measured in pages as a page 
is 4 Kbytes; if the LSBs, the segment length is measured in bytes. Thus 
the segment size is either 220 

- 1 pages or bytes. 
If the segmentation information in the segment registers is not valid, 

segment base address values are obtained via memory-based descriptor 
tables indexed by one of six, 16-bit selector registers, called visible selec­
tors. These selectors are indexed by implication in parallel with the 
hidden descriptors. The 13 MSBs of the indexed selector register are 
used, after being added to a 32-bit base register value, as an address 
into memory to access a descriptor table entry; each descriptor is eight 
bytes. These tables are in two halves: the global table and the local table. 
The field allocation to the entries of the descriptor tables is identical to 
the hidden descriptors. The same access checks and segment limit checks 
are made before a memory access can proceed. The segment base and 
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displacement are added to form the linear address that will be the 
address for the paged system, as shown in Figure 3.12. 

With two instances of the same segmentation information in the 
segment registers and descriptor tables, the normal provisions must be 
made to ensure that coherency is maintained. This problem is made 
difficult because the- segment registers are updated by hardware while 
the descriptor tables are updated by soft.ware. Thus, software can change 
a descriptor in memory and the descriptor in the segment registers must 
be invalid.ated. 

Hardware Support Without Segment Length Checking 

A number of systems provide hardware segment tables without segment 
length checking. Examples are RS/6000, PowerPC 601, and the HP 
Precision Architecture. For example, the RS/6000 map of segment regis­
ters, as shown in Figure 3.5, is loaded with values that are created by 
the operating system. The function of assuring that valid displacementa 
do not exceed the segment length and generating the page table ad­
dresses is an operating system task. 

The PowerPC 601, one of the examples of paged segmentation with-­
out hardware for segment length checking, is shown in Figure 3.25. 'Ibe 
page index is 16 bits, which constrains the segment size to be no more 
than 2 16-1 pages. With a page size of 4 Kbytes, a segment is 26 Mbytes. 

3.4 Translation Lookaside Buffers 

The translation of a virtual page name into the page frame address \ia 
memory resident tables can take a significant number of memory cycla 
To hide the translation time, a page table system (direct or inverted is 
usually augmented with a cache of active page frame addresses. Th.i5 
type of cache is usually known as a translation lookaside buffer (TLB 
a name used by IBM. Motorola uses the term address translation cac~ 
(ATC); DEC uses the term translation buffer (TB); and Intel uses the 
term page translation cache (PTC). The Multics system employed ~ 
first known instance of a TLB [SCHR71]. 

Translating page names and block names, as shown in Figure 3.32. 
is usually performed in a hierarchy of translation systems, much as a 
memory reference is processed in a hierarchical memory. This figure 
illustrates the number of translation maps possible, not the tables for 
any particular processor. Usually, all of the TLBs are accessed in parallel 
and the first valid translation is used to form the real memory address 
If translation fails in the TLBs, the page tables, either direct or inverted 
are then accessed before a page fault is declared. As will be discussed 
when the MC88200 TLBs are described, one level of this hierarchy may 
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FIGURE 3.32 Canonical name translation hierarchy. 

be implemented for both page and block name translation. Also, portions 
of the page tables may be resident in the processor's cache, further 
improving the name translation time. 

Multilevel TLBs have many of the design problems of multilevel 
caches and hierarchical memories. There are design issues of information 
allocation, coherency, particularly when the processor is used in a 
multiprocessor configuration, and multilevel inclusion. There is no 
need for read and write policies as with a cache, but there are issues 
dealing with invalidating the contents of TLBs. 

The reduction in name translation latency with a TLB is similar to 
that of a data or instruction cache. There is some probability that the 
page frame address will not be found in the TLB; as a result, the name 
translation time is the weighted average of the time to translate in the 
TLBs or in the page tables. On a TLB miss, the delay in access time is 
the two or more memory cycles for accessing the page tables plus the 
table walking time (discussed in Section 3.5.5). Note that there can be 
two reasons for a TLB miss. First, if the referenced page is not in real 
memory, there will be a miss in the translation tables. Second, a miss 
occurs when the page is in real memory and its translation tables are 
correct but the translation information is not in the TLB. It is this second 
form of TLB miss that is most often noted in the literature. 

A TLB holds the translated addresses of pages that are also resident 
in the page tables. Most access checks have been made and do not 
require verification when translating a •virtual page or segment name 
in a TLB. Because t4e name translation process can be hierarchical, the 
treatment of multilevel inclusion is a design issue. 

The PowerPC 601 has three levels of translation: the Instruction 
TLB (ITLB), Unified TLB (UTLB), and the hash-accessed inverted page 
tables. For this system, multilevel inclusion is maintained with the 
following policy. Allocation of translation information to the page tables 
is a software process that follows a page fault. Allocation to the ITLB 
and UTLB is performed by hardware following a page fault that brings 
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select entry to be replaced. 

Valid bit is reset explicitly 
by the execution of tibie 
instruction or as a side 
effect of some other 
instructions. 

UTLB 

Add on most recent 
translation (MRT), set 
valid bit. 

Replace if II new entry is 
trunslntcd and there is no 
vacant slot. MRT bits 
select the slot within the 
sector if there is a set 
conflict. 

Valid bit is reset explicitly 
by the execution of the 
tibie instruction or as a 
side effect of some other 
instructions. 

TABLE 3.5 PowerPC 601 maintaining translation multilevel inclusion. 

Page Table 

The page table is locked, 
the entry added with a 
move instruction, then the 
table is unlocked, all under 
program control. 

An entry is: locked, 
invalidated, flushed, 
updated, marked valid and 
unlocked, all under 
program control. 

All entries have their 
valid bits reset when there 
is a context switch. 
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a new page into the real memory. At any time, entries that are in the 
ITLB are in the UTLB and the page tables and entries in the UTLB are 
in the page tables but not necessarily in the ITLB. 

The management policy of the three tables, ITLB, UTLB, and the 
page tables, is shown in Table 3.5. Three cases must be comprehended 
to assure multilevel inclusion: adding. a new entry, modifying an old 
entry, and deleting an old entry. Note that the two TLBs are managed 
by hardware, while the page table is managed by software. Also note the 
synchronization operations that are required to lock and unlock the page 
tables. 

3.4.1 TLB Organization 
The organization of a canonical TLB is shown in Figure 3.33. Note that 
this figure is similar to Figure 2.4 and differs only in that page table 
entries (PTEs) with page frame addresses are stored rather than data 
and only a valid bit is required. If a page is evicted to the disk, the 
entry in the TLB can become invalid and is modified by the operating 
system or microcode. A TLB, being a cache of translation information, 
can be organized for access as: (1) associative search, (2) n-way set 
associative search, and (3) hash accessed. 

Note that the size of a TLB is sometimes described by its length or 
size, not the number of sets. With associative TLBs, the size is described 
in entries, not sectors as with caches. A TLB operates on the principle 
of temporal page locality; when a page is loaded into real memory, the 
page tables and TLB are updated. Because of page locality, caching 
addresses can be quite effective in reducing the latency of name transla­
tion and the access of real memory. Simulations and measurements show 
that TLBs have a hit ratio in the range of 90% [SATY81]. The hit ratio 

Sector 1 Sect.or 2 Sect.or SE 

V TAG PTE V TAG PTE V TAG PTE 

■ ■ ■ . ■ . 
. ■ ■ ■ 

. . 
Sets . . . ■ 

. . 
. . . . . . 
. . . . ■ . 

FIGURE 3.33 Canonical TLB. 
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of a TLB is, as with other caches, a function of its size. D. W. Clark et 
al. [CLAR85] and M. D. Hill [HILL87] provide data on TLB hit ratios. 

In general, TLBs are invisible to the program as they are loaded 
under hardware control and serve to speedup the name translation 
process. However, TLBs must usually be invalidated when there are 
changes to the page tables such as will occur when a page table change 
occurs that will violate coherency. There must be a replacement policy 
for the n-way set associative TLB, and the same policies described in 
the section on caches apply here. For example. the policies may be MRU, 
LRU, Random, Clock, and others [BAER80]. 

Associative Searched TLBs 

Associative searched TLBs have a number of positive features. One 
feature is that, for small TLBs, the latency of translating a name is quite 
small. Another feature is the ease of expandability. As there is only 
one set, the number of sectors in the TLB can be increased without 
architectural change. And, the number of sectors need not be an even 
power of two. This feature eases implementation of TLBs on a chip. 
For these reasons, most contemporary microprocessors use associative 
searched TLBs. Examples are discussed in the following paragraphs. 

MC68451. An example of an associatively searched TLB, called an 
address register translatwn table, is the Motorola MC68451, shown in 
part in Figure 3.34 [MOTO83]. This rather strange device was designed 
for use with the MC68000 to support paged segmentation. Providing 
virtual page and segmentation support for functions such as segmen 
length checking and table management is a pure software function. 

The virtual 23-bit word address is divided into a segment name and 
displacement fields. The segment name is the key for an associative 
access of the page directory, reading out a page frame address, mask. 
and control bits. The mask selects the MSBs of the page address and 
the LSBs of the segment name concatenating them with the 7-bit dis­
placement field to form the 23-bit real address. By adjusting the mask, 
the size of the segment varies for 128 words (mask all ls) to 65K words 
(mask all Os). 

Wakerly [WAKE89] states that the MC68451 was not successful 
because of its limitations, which are believed to be the limited virtual 
address space and too much flexibility. For this and other reasons, the 
MC68451 was not used by eariy customers for the MC68000. Sun and 
Apollo crafted their own MMU, which are modeled after the memory 
mapping system of the Atlas Computer (described in Figure 3.15). 

IBM RS/6000. This processor architecture specification calls for a 
unified TLB, but specific implementations may have separate ITLBs and 
DTLBs [IBM90]. One such implementation has a split TLB. The DTLB 
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Virtual Address 

16 Bits 7 Bits 

j Segment Name I Displacement j 
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Segment/Page Table 
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23 Bit Real Address 

FIGURE 3.34 Associative register name translation . 

r 
J 

is organized as (64, 2, 1, PTE) and is late select. However, the ITLB of 
this processor is believed to be associatively searched as shown in Figure 
3.35. The 40-bit page name is used as the key to search the ITLB asso­
ciatively; the number of sectors· is not revealed in the literature. A 
hit on a translation provides a 20-bit page frame address that is con­
catenated with the 12-bit displacement of the virtual address. If the 
translation is successful, the reference to real memory is initiated. Hnot 
successful, the r eference address is translated in the translation tables 
resident in either the cache or real memory. 

Note the similarity between this TLB design and the Atlas name 
translation system depicted in Figure 3.15. The major differences be­
tween the two are the design parameters, not the organization. 

MC88200. The MC88200 that supports several Motorola processors 
(88100, 68030) has two UTLBs, one for user programs with 4-Kbyte 
pages and one for system programs with 512-Kbyte blocks [MOTO90a]. 
Note that Motorola calls TLBs address translation caches. Both of the 
TLBs are unified, translating the page and block names of both instruc-
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40 Bits 12 Bits 

I Page Name I Displacement \ Virtual Address 

~ -...,---

O Page Name Control PFA 

?? 

; 
A 

FIGURE 3.35 RS/6000 ITLB. 

32 Bit 
Translated 

Real Address 

tions and data. Block diagrams for these TLBs are shown in Figure 3.31. 
ar.d note should be taken again of the similarity between these TLBs 
and the Atlas name translation system. 

The block TLB contains high-use translation information that is 
cached at the block level , thereby reducing TLB misses. Operating sys­
tems occupy the same address space, for instructions and data, over long 
periods of time. Thus, having a large page, called a block, can signifi­
cantly reduce the number of block name translation misses and page 
misses. Note that these blocks are not the same as cache blocks. 

The block TLB has 10 sectors that are associatively searched on the 
13-bit block name and is organized as (1, 10, 1, PFA). On a hit, the 13-bit 
page frame address is concatenated with the 17-bit block displacement to 
give a 30-bit real memory address. Two of the 10 sectors are hardwired 
to provide an identity mapping in the upper IM bytes of real memory 
for supervisor space. 

User programs have higher paging activity, and the page TLB re­
duces external and internal fragmentation that would occur if the page 
is the same size as the block. The page TLB, also shown in Figure 3.36, 
has 56 sectors that are associatively searched on the 20-bit page name 
from the virtual address. The organization is (1, 56, 1, PFA). The 20-bit 
page name is associatively compared to the 56 page name tags of the 
resident pages. Upon a hit, the 20-bit page frame address is concatenated 
with the 10-bit page displacement to give a 30-bit real memory address. 
The page TLB is managed by the operating system with entries being 
evicted on a FIFO basis; a new entry pushes out the oldest entry. 

A page name translation is conditionally and concurrently attempted 
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PTLB 

Hit 
Hit 
Miss 
Miss 

BTLB 

Hit 
Miss 
Hit 
Miss 

Action 

Use BTLB 
Use PTLB 
Use BTLB 
Table search, update PTLB and retry translation 

Note. The BTLB is loaded by the operating system. 

TABLE 3.6 MC88200 TLB management. 

in both TLBs. If an access misses on both of the TLBs, the name transla­
tion is made via the page tables previously described. Table 3.6 shows 
the action taken for the four possible events when accessing the two 
TLBs. 

MIPS R2000. This processor has a TLB integrated onto the pro­
cessor chip [MIPS87]. The TLB has 64 entries and is accessed by an 
associative search on the 20-bit virtual page name. The page size is 
fixed at 4 Kbytes. Each TLB entry has the fields: 

20 bits: virtual page name; 
20 bits: page frame address; 

6 bits: Pill number that must match the PID value in a processor 
register; 

4 bits: Control bits: Read Only, Non-Cacheable, Valid and Global; 
14 bits: unused. 

The page name from the effective address plus the PID value gives 
a virtual name space of 26 bits. The addressable unit is a 4-byte (32-bit) 
word. The 20-bit page frame number is concatenated with the 10-bit 
displacement, giving a 30-bit real memory address or 4 Gbytes. 

DEC Alpha. The DEC Alpha processor has split, associative TLBs: 
one for the instruction page names and one for the data page names 
[DIGI92J. The virtual memory of the Alpha system is paged with vari­
able page sizes. The I-Stream TLB has 12 sectors, 8 for 8-Kbyte pages 
and 4 for 4-Mbyte pages. The D-Stream TLB has 32 sectors, each of 
which can be used to translate to 8-Kbyte, 64-Kbyte, 512-Kbyte, or 4-
Mbyte pages. 

PowerPC 601. The PowerPC 601 has a small first-level instruction 
TLB (ITLB) for translating instruction page names and a unified TLB 
(UTLB) for data page names and instruction page names that miss in 
the ITLB [MOT093]. The ITLB is searched associatively and has four 
sectors. The 20-bit page name of the 32-bit effective address is the search 
key. A hit provides a 20-bit page frame address that is concatenated 
with the 12-bit displacement to give the real memory address. Note that 
the extension to the virtual address is not part of the search key. 
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If the instruction page name translation fails in the ITLB, the trans­
lation is attempted in the UTLB organized as (256, 2, 1, PFA). If this 
translation fails, page name translation is then performed via the tables 
described in Section 3.3.1. 

In addition to the ITLB and UTLB, the processor can also translate 
block names in a small TLB, called block-address translation registers 
(BATR). These registers are organized as (1, 4, 1, PFA). The BATR holds 
four block name translated base addresses. The size of the blocks is a 
programmable parameter and can be in the range of 18 Kbytes doubling 
to 8 Mbytes. 

VAX 11/780. The VAX 11/780 has a small first-level instruction 
TLB, called an instruction translation buffer. This ITLB has only one 
sector organized as (1, 1, 1, PFA). In other words, the last translated 
page name is held in the ITLB and is concatenated to the displacement 
for every instruction read. Thus instruction page name translation is a 
zero time process. If an instruction fetch crosses the boundary of the 
page (the page name changes), the new page name is translated in a 
second-level unified page table. 

n-Way Set Associative TLBs 

A number of TLBs are implemented with n-way set associative organiza­
tions in which the page name is congruence mapped for translation. To 
accomplish this, the page name is allocated to a set index field and an 
unnamed field that is compared to the tags of an accessed set. Some of 
the TLBs that use this organization are discussed below. 

i386, i486, and Pentium. These processors support paged segmen­
tation, and virtual page names are translated via a multilevel page 
tables system as shown in Figure 3.12. A TLB organized as (8, 4, 1, PFA) 
is implemented as a unified TLB on the i386, as shown in Figure 3.37. 
This same design is also used as a unified TLB on the i486. With the 
Pentium, t wo copies of the same TLB are used as split TLB without a 
unified TLB. 

The page name is allocated into two fields: an 8-bit index into the 
TLB and a 12-bit field that is compared to the TLB tags. If there is a 
true comparison on one of the four sectors, the 20-bit page frame address 
is concatenated with the 12-bit page displacement to form the real mem­
ory address. If there is a miss in the TLB, the address is translated via 
the multilevel page tables. 

Note that the TLB provides name translation of the 20-bit page 
name and not the extended virtual address; the 20-bit extension is not 
translated. The consequence of this restriction is that only translated 
page names for one root directory at a time are in the TLB. As a result, 
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aliases are possible. To prevent aliases, any change of the root directory 
by the executing program requires a reload of the TLB. 

VAX 11/780. The VAX 11/780 has a unified TLB that translates the 
page names of data references and misses in the ITLB [SATY81] and 
[HAMA90]. A block diagram of the unified TLB is shown in Figure 3.38. 
The 32-bit virtual address is divided into a 9-bit page displacement field 
and a 23-bit page name field. The five LSBs of the page name are 
concatenated with the MSB to form a 6-bit index into the 2-way set 
associative TLB organized as (64, 2, 1, PFA). An interesting feature of 
this TLB is that the MSB of the page name (system/user bit) is used as 
the MSB of the index to select between two halves of the TLB. This 
guarantees that the system and user both have full access to 1/2 of the 
TLB and 1/2 of virtual memory space. 

PowerPC 601. The PowerPC 601 has a first-level TLB and a unified 
(UTLB) that translates instruction page names that failed to translate 
in the ITLB and data page names. This TLB is organized as {256, 2, 1, 
PFA). 

Hash-Accessed TLBs 

IBM S/370/168. This system has a unified TLB translating both instruc­
tion and data references. The 14-bit page name is hashed to create a 
6-bit index into the TLB that is organized as {64, 2, 1, PFA), an unusual 
organization [MATI77]. By making the TLB 2-way set associative, two 
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TLB Access Method Page Table Access Method 

Associative 

n-Way set associative 
Hashed 

Direct 

MC88200, 
MC88110 
i386, i486, Pentium 
IBM S/370/168 

TABLE 3.7 Name translation methods. 

Inverted 

IBM RS/6000 
PowerPC 601 (Inst.) 
PowerPC 601 (Unified) 
HP Precision 
(only one in the 
system) 

virtual page names can hash into the same page table entry and yet 
produce a valid translation. Remember that approximately two probes 
are required for a successful translation. This level of redundancy 
eliminates the need to link entries (common with full name translation 
in hash accessed systems), and a large fraction of collisions can be accom­
modated with this design. 

HP Precision Architecture. This processor does not have a TLB 
to speedup the name translation process. The hashed access page transla­
tion (Figure 3.24} is as fast as a TLB, thus one is not used. 

Summary of TLB Organizations 

The selection of the TLB organization by a designer is sometimes con­
strained by the design of the translation tables. Table 3. 7 shows the TLB 
design and the table translation method for a number of processors. 

3.4.2 TLB Miss Ratio Data 
Satyanarayanan and Bhandarker [SATY81] performed a miss ratio 
evaluation of TLB size, degree of associativity, sensitivity to context 
switching, and replacement algorithms. The tests are conducted by 
means of a simulator and FORTRAN programs for the VAX product 
family. The evaluation was performed to set the design parameters prior 
to the construction of a processor. A clear interval is used as a surrogate 
for context switching. By periodically clearing the TLB, the effect of 
clearing based on a context switch can be evaluated. The authors of this 
evaluation characterize TLB performance as 

TLB . . no. of main memory references to page table 
IlllSS ratio= --------.:,c__.-----~~~--

explicit virtual memory reference 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 191



3.4 Translation Lookaside Buffers 175 

No. of Sectors No. of Sets 
per Set 

32 64 128 256 

1 97 47 22 8 
2 25 9 3 2 
4 7 2 1.5 1 

Number of page table references x 103 for 
5.5 x 106 explicit references. 

TABLE 3.8 VAX TLB miss ratios. 

fi:xplicit virtual memory references are those references generated by 
the program. In addition, there are implicit references to memory that 
are generated by the translation process itself. The number of implicit 
references is influenced by the organization of the translation tables 
themselves, such as the number oflevels. One of the performance results 
of the VAX study is shown in Table 3.8. The data indicates the reduction 
in page table references as the size and organization of the TLB are 
changed. 

As with other figures that show Pnuss data for cache, the diagonals 
of this figure are for TLBs of equal size. The total number of expli­
cit references to the memory system is 5.5 x 106 , and the number of 
references that miss the TLB are shown. Thus, for this table, small 
numbers represent an improvement in the number of page names trans­
lated in the fast TLB. This data indicates a clear preference for a large 
TLB and for higher degrees of associativity and a smaller number of 
sets. Higher degrees of associativity reduce the occurrence of set con­
flicts. Thus the preference is for associative TLBs in many processors 
that are implemented in VLSI technology where the increase in tag bits 
is not a significant cost problem. 

Another source of TLB miss data is [WOOD86]. Five benchmarks 
are executed on six processors. Four of the processors are of the VAX 
family (512-byte page) and two are IBM S/370 or Amdahl compatibles 
(4-Kbyte page); excerpted results of the tests for TLB miss ratios, ex­
pressed in percentages, are shown in Table 3.9. 

This information is quite interesting in that while the size and or­
ganization of the TLB are important, the size of the page is even more 
important. A la rger page will result in a lower miss ratio for TLBs of 
equal size. This result confirms the use of a page TLB, as with the 
MC88200 and the PowerPC 601, for the operating system. This data also 
confirms the advantage of associative TLBs. 

Saavedra and Smith [SAAV93] measured TLB miss ratios on a 
number of commercial processors for six SPEC benchmarks. Table 3.10 
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No. 9f Sectors per Set No. of Sets 

128 256 512 

1 (VAX, 512 Kbytes) 3.68 0.639 
2 (VAX, 512 Khytes) 1.78 0.324 
2 (IBM S/370, 4 Kbyte) 0.097 0.023 0.014 

LISZT Benchmark. 

TABLE 3 .9 TLB miss ratios (%). 

Processor No. of Sets Sectors per Page Size Miss Ratio 
Set (%) 

DECstation 3100 64 64 4096 Bytes 2.42 
DECstation 5400 64 64 4096 Bytes 2.42 
DECstation 5500 64 64 4096 Bytes 2.42 
MIPS R/2000 64 64 4096 Bytes 2.42 
VAX.9000 1024 2 8192 Bytes 0 
RS/6000 530 128 2 4096 Bytes 1.31 
HP 9000/720 64 64 8192 Bytes 1.30 

TABLE 3.10 TLB percentage miss ratios for SPEC Benchmarks. 

shows an excerpt of their results; the average TLB miss ratio is given 
for the six benchmarks. 

This data also indicates the primacy of page size in determiningTLB 
miss ratios. A large page, or the granularity of the TLB, significantly 
reduces the miss ratio. 

We can speculate that the arguments advanced by Hill and others on 
the advantage of direct caches will apply to TLBs as well. The arguments 
(discussed in Chapter 2) suggest that a direct cache, with its shorter 
logic path but with a higher miss ratio, may be the most effective design 
for reducing TLB translation time. [HILL86] also provides TLB miss 
ratio data for a number of processors and three benchmarks. 

As discussed in Chapter 5, TLB translation time is of significant 
importance for caches that are addressed with translated real addresses. 
However, for some cache organizations, the TLB must be only fast 
enough to match the access time of the cache. Thus, higher degrees of 
set associativity, with lower miss ratios, may be quite satisfactory. 
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TLB Size, 
Sectors 

0 
4 
8 

16 

Normalized No. 
of Instructions 
Executed 

1.0 
2.3 
2.6 
2.8 

Note. LRU algorithm. 

TLB Miss 
Ratio 

1.0 
0.106 
0.029 
0.0125 

TABLE 3.11 GE-645 Multics performance. 

3.4.3 TLB Impact on Virtual Memory 
Performance 

There is little published information on the performance of a virtual 
memory system as the various parameters (for example, page size, TLB 
size and organization, and main memory size) are varied. The little data 
that does exist is some material on performance: the papers on Multics 
[SHEM66, SCHR71] and the VAX 11/780 [CLAR85]. 

Schroeder [SCHR71] reports on the performance of a virtual memory 
system as the TLB size is varied. The system is the GE-645; the operat­
ing system is Multics, which is a paged-segmented system. The page size 
is lK words or 4.5 Kbytes. The system was evaluated with associative 
TLBs having 0, 4, 8, and 16 entries. The time for a TLB search is 
between 200 and 600 ns, while the main memory is 1.2 us-a ratio of 
2: 6 to one. This ratio is probably valid today under the assumption the 
tables are cached. Table 3.11 shows the normalized number of instruc­
tions executed per unit of time. This metric is a relatively good measure 
of the TLB's effectiveness; the larger the number, the more effective is 
the TLB. Table 3.11 also shows the TLB miss ratios as the size is varied. 

These data indicate that an associative TLB with 8 sectors is proba­
bly large enough, nor do these data support the large TLBs found in 
modern memory systems; the reason being that the GE-645 is a 
microprogrammed machine that takes many clocks to execute an in­
struction, unlike modern pipelined processors with CPis of 1-2. Thus, 
with modern pipelined processors, name translation delays have a gre­
ater impact on overall performance. Additional information on the im­
pact of TLBs on performance is found in [SHEM66]. 

3.4.4 Instruction Support for TLBs 

TLBs are generally considered to be invisible to the program, as with 
early caches, and serve only to reduce the time of name translation. 
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Unfortunately, this simple view is not completely correct. Recall the use 
of processor instructions for enforcing MLI, described in Table 3.5. Two 
classes of instructions are required. First, some of the TLB registers 
must be loaded explicitly under program control; second, the TLB must 
be invalidated in order to maintain coherency. The complexity of 
invalidation is illustrated by the PowerPC 601 translation lookaside 
buffer invalidate entry (tibie) instruction, which is used for MLI control. 

A name translation of the page name of the tibie instruction (a 
supervisor-level instruction) is attempted. If there is a hit on the TLB, 
the TLB entry is invalidated by setting the valid bit to zero. A TLB 
invalidate is also broadcast on the system bus so that coherency can be 
maintained across the system. 

With a multiprocessor system, the broadcast tibie must be in a critical 
section controlled by software locking so that only one tibie can be issued 
at a time. Resynchronization is established by issuing a sync instruction 
after every tibie at the end of the critical section. When a processor 
receives a broadcast tibie instruction, it halts the execution of new load, 
store, cache control, and tibie instructions; waits for the completion of 
all memory operations; and then invalidates both sectors in the user 
TLB. 

3.5 Virtual Memory Accessing Rules 

This section discusses the rules that are followed when a virtual memory 
system is accessed for reads and writes. The effect of a cache on this 
process is ignored; however, the combination of a cache with virtual 
memory is addressed in Chapter 4. The reader should note that all of 
the design ideas and much of the published performance data on virtual 
memory systems are from an earlier time when small memory was the 
rule. Today, with significantly larger memories, these designs may no 
longer be appropriate. Caution should therefore be exercised in the use 
of specific design data. 

3.5.1 Read Accesses 

The various policies that govern the actions when a paged virtual mem­
ory is accessed are discussed in this section. The various design issues 
involved are described here with illustrations taken from an actual 
virtual memory system. The basic steps in performing a read access into 
a virtual memory system consist of the following. 

1. Determine if a referenced page is in real memory; detect for a 
page fault. 

2. On a hit (the referenced page is determined to be in real memory) 
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translate the virtual page name to the page frame address and fetch the 
AU into the processor. 

3. On a miss (the referenced page is determined to be absent from 
real memory): 

(a) Determine if a page must be evicted because of a capacity miss; 
identify the page to move; evict the page to the disk. This policy is 
known as the replacement policy. 

(b) Depending upon the organization of the virtual memory, a determi­
nation of the page frame to receive the loaded page may need to be 
made. Fetch the page from the disk into the real memory and adjust 
the tags and valid bits in the name translation tables. This policy is 
known as the placement rule. Translating the virtual address to the 
disk address is discussed in Section 3.5.9. 

(c) Complete the read of the AU into the real memory. 

Note that if the system is multitasking, a new task may be swapped 
in during this process. There are commonly three successful name trans­
lation paths through a virtual memory with a TLB and a cache; the 
fourth path is the page miss path. These paths are shown in Table 3.12. 

Path 1. The page frame address is found in the TLB. 
Path 2. The page frame address is not in the TLB but is found in 

the page tables that have been placed in the cache. After the reference, 
the TLB is updated with page name translation information for use by 
a future reference. 

Path 3. The page frame address is found by table walking in real 
memory. After the reference, the cache and the TLB are updated with 
page name translation information. 

Path 4. The translation misses on the TLB, cache, and tables in 
memory. This is a page fault path and requires the allocation of the 
missed page into real memory. All translation tables are updated. 

The three successful cases above are for the name translation only. 
The assumption is made that a name translation miss on a page that is 
resident in real memory is not permitted. For Path 4, the total failure 

Path Page Name Translation Path 
Hit/Miss 

TLB Cache Memory 

1 Hit X X 
2 Miss Hit X 
3 Miss Miss Hit 
4 Miss Miss Miss 

TABLE 3.12 Name translation paths. 
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of name translation indicates that the page is not in real memory and 
results in a page fault. 

3.5.2 Allocation 

This section discusses the issues of allocating new pages or segmenu 
into real memory following a page fault-a problem that can be different 
from late select cache allocation. Recall that congruence-mapped, n-way 
set associative (including direct} late select caches dictate the sector into 
which a new allocation must be placed. Only the block within the sector 
is open to choice. Associative caches, on the other hand, can allocate into 
any segment with the choice based on one of the replacement policies 
discussed in Chapter 2. 

Virtual memory page or segmentation organization is early select, 
which is an associative accessing process. Therefore, allocation of pages 
to real memory is a matter of (1 ) finding a vacant location and (2) if a 
vacant location cannot be found, creating a vacant space using one of the 
policies discussed in Section 2.1.7. In addition to the allocation problems 
associated with finding space for a page frame or a segment, the name 
translation information must be allocated to the name translation tables 
as well. The problem here is quite similar to the allocation problems of 
caches, noted above. The organization of the translation tables dictates 
the allocation of name translation information. 

The techniques for performing allocation in virtual memory systems 
have their historical roots in the problems of allocating files to disks, 
discussed in many texts on operating systems. Also, because allocation 
is highly dynamic and interactive in LISP systems, research in these 
systems has made significant contributions. Even interactive program­
ming environments such as Lotus 1-2-3 must have solutions to the 
requirement for dynamic allocation and de-allocation of segments. 

Page Allocation 
The procedure for allocating pages to page frames is the same regardless 
of the name translation method. That is, either direct or inverted map­
ping systems use the same procedure. The operating system maintains 
a free page frame list (a linked list of vacant page frames in real memory I 
that contains the starting addresses of all unallocated pages. The list 
can be maintained as a linked list or a LIFO stack. Upon a page fault, 
the free page frame list is searched; if there is a free page frame, it is 
allocated. Recall that because a paged virtual memory is early select, 
congruence mapped, and associative, any free page frame can be allo­
cated. If a page frame is not available, a replacement policy is then 
invoked. 
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There can be additional policies imposed by the operating system on 
page allocation from the free list. For example, should there be reserved 
page frames for the operating system and the user? If the system is 
multiprogrammed, should there be page frames reserved for each of the 
resident programs? These issues are beyond the scope of this book but 
are treated in books on operating systems. 

The hardware must support reading and writing the free page frame 
list. Thus linked list or stack manipulation is needed. Most processors 
designed today provide for stack manipulation, which is the implemen­
tation of choice. Processors that have been optimized for list or LISP 
processing use linked lists for the free page frame list. The size of the 
free page frame list is not excessive, as there must be, at most, one entry 
for each real memory page. For a system with a 4-Kbyte page and 16 
Mbytes of real memory the free page frame list has only 4K entries. If 
an entry is 4 bytes, 4 pages are occupied by the free page frame list, 
approximately 0.1 % of the total real memory space. 

The question of whether or not the free page frame list itself is paged 
or locked into an unpaged region of real memory is addressed in Section 
3.5.4. Recall that most virtual memory systems today provide for an 
identity page name translation for operating system access to memory. 
In addition, some systems provide block name translation facilities to 
enhance the management of the operating system in virtual memory 
space. A block composed of a number of pages eliminates much of the 
paging that could occur if only pages are implemented. 

Segment Allocation 

For the discussions to follow, it is helpful to remember that space in 
memory, either page frames or space for segments, can be in one of three 
states. 

1. Free. The space is vacant and available for allocation. 
2. Allocated. The space is occupied by a valid segment, either clean or 

dirty . 
3. Garbage . The space is occupied by a segment that has been deallo­

cated. 

Segmented systems pose additional, and significant, allocation prob­
lems to those of paged systems. There must be a way to locate a contigu­
ous region of free space in real memory that is equal to or larger than 
the segment to be allocated. This requirement means that a free space 
list (called spaces because they are not yet allocated to segments) must 
contain not only the starting address of free space but the length of each 
space as well. Note that the size of a free space list is not bounded, as 
is a free page frame list, because in the limit, every space can be one 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 198



182 Virtual Memory 

addressable unit and the free space list would occupy all of real memory! 
Segments can overlap for sharing, thereby creating further allocation 
problems. Allocation for nonoverlapping segments follows three steps. 

1. Find a free space that is large enough to receive the allocated seg­
ment. 

2. If step 1 fails, determine if there is enough total free space in real 
memory. If there is, compact enough available free space to create a 
space for the segment to be allocated. 

3. If steps 1 and 2 fail, find an allocated segment that is large enough 
and can be evicted based on criteria discussed in Chapter 2. 

Step 1. This step is similar to page allocation. A free space list is 
maintained that lists the starting addresses and length of all free space. 
A number of algorithms have been proposed [KNEE68, DENN70] for 
segment allocation from the free space list. A detailed discussion of 
these algorithms is outside the scope of this book; nevertheless, four 
algorithms are 

1. First-fit. Search the free space list, and find the first space into which 
the segment will fit regardless of the efficiency of space use. Place 
any unallocated portion of this space on the free space list. 

2. Best-fit. Search the complete free space list, and find the free space 
that gives the most efficient use of space. Place any unallocated 
portion of this space on the free space list. 

3. Worst-fit. Search the complete free space list, and find the free space 
segment that gives the least efficient use of space. Place any unallo­
cated portion of this space on the free space list. 

4. Buddy. Free space is initially divided into groups having even power 
of two AUs as with pages. When a page is allocated one of three 
allocations is made: (i) half the group with the other half placed on 
the free space list; (ii) the full group; or (iii) two groups, four groups, 
etc. This requires that all free space groups and allocated segments 
must be even power of two in length. 

Knuth [KNUT68] reports on simulations that show that the first-fit 
policy gives the best results, defined to be that allocations continue 
longer before Step 1 fails and a garbage collection pass is required. 

Step 2. When a new segment is to be allocated the total free space 
may be sufficient to hold a segment but the space may not be contiguous, 
which is a condition required for segmentation. A full discussion of the 
many techniques for compacting fragmented free space and de-allocated 
space, generally known as garbage collection, is outside the scope of this 
book. However, I want to provide a brief discussion of the issues in­
volved. A comprehensive survey of garbage collection techniques can 
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be found in [COHE81]. Note that not all algorithms for managing free 
space are known as "garbage collectors." 

One of many types of compacting garbage collection systems is illus­
trated by the example shown in Figure 3.39. In the initial state the map 
of memory shows areas that are of the three states noted above: free, 
allocated, and garbage. The state of each area is denoted by means of a 
tag in either the space lists or by two control bits that impart coloring 
to the three states. 

The initial state of the memory is shown and consists of three allo­
cated spaces, three free spaces, and two garbage spaces. The first step, 
to State 1, in the garbage collection process searches out the garbage 
spaces and turns them into free space by placing these spaces on the free 
space list. The tag bits are also changed as required, and no movement in 
memory takes place. The second step moves both the allocated and free 
spaces into two compact regions of real memory. Thus all of free space 
is in one compact space and is available for allocation. 

Step 3. If garbage collection and compaction do not yield a space that 
is large enough for allocating the new segment, an already allocated 
segm.ent must be evicted. The algorithms for making the selection for 
eviction are based on (1) selection of a segment of appropriate size, (2) 
the usage criteria, and (3) the choice of a modified or nonmodified seg­
ment (clean or dirty). 

If a modified segment is chosen for eviction, it must be copied back 
onto the disk. The free space thus made available is placed on the free 
space list and allocation Step 1 is initiated. In the chosen segment is not 
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modified, it is only necessary to place the segment on the free space list 
and proceed. with allocation Step 2. 

From the above brief discussion of segment allocation it is clear that 
considerable operating system overhead is required. Hardware assist for 
this process consists of stack and block move support. The amount of 
overhead is proportional to the s ize of the segment be ing allocated and 
the state of the memory prior t o the allocation. This overhead can be 
observed in Lotus 1-2-3 by the difference in t ime taken to return to the 
READY state after alloca ting small and large numbers of cells by, for 
example, a COPY command . 

3.5.3 Write Access 

Write accesses proceed just like read accesses. This is because virtual 
memory systems are early select and the presence or absence of a page 
or segment is determined before real memory is accessed. 

If the write access is a hit. the write is made to the AU in real 
memory and the page table dirty bit, if used, is set. A dirty bit is used 
in conjunction with t h e valid bit to manage the de-allocation and allo­
cation of pages or segments in real memory. Unlike caches, there are no 
known implementations of the equivalent of a write through strategy 
for a virtual memory system, because the time to write a single AU to 
the disk is quite large and would block the disk from other activity. 
Write buffers would not eliminate this problem. Th us, all virtual memory 
systems use a write back strategy. 

If the write access is a miss, the missed page is allocated into real 
memory and the write operation is performed again. There are no known 
no-write-allocate strategies, like those of caches, with virtual memory 
systems. The reason for this is the same as for not using a write through 
strategy: the very long transport time makes writin g a single AU to disk 
unjustifiable. 

3.5.4 Location o f Tables 

The first virtual memory machine, t h e Atlas shown in Figure 3.15, bad 
its page table in an associatively searched hardw are register file. As the 
size of the virtual address space has increase d , larger tables have been 
required and placed in real memory. 

One might ask if the tables in real memory are addressed in real 
memory space or virtual space? To my knowledge, (except for Multics ) 
the tables are never placed in just any virtual space b ut in dedicated 
pages (identity name translations) of virt ual memory space. If the page 
tables are paged, there can be a deadlock in paging as one name transla-
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tion is forced to wait on another name translation that is waiting on the 
first, and so on. Thus, access to page tables is mapped by identity and 
the time for name translation via a page table tree is eliminated. The 
RS/6000 accesses its table in real addresses without the identity transla­
tion step [IBM90]. 

In addition to storing the page tables in real memory (or an identity 
translation), if the system has a data cache the page tables may be 
cached as well. Caching of page tables can further reduce the name 
translation time, as is described in the model found in Section 3.6. There 
is no known published data on cache P miss when storing page tables. It 
may well be that a page table cache could be a useful variation of caches. 
On the other hand, any chip area needed for this cache may be more 
usefully devoted to larger TLBs. 

Section 3.4 discusses the Motorola MC88200 [MOTO90a), which pro­
vides a dual TLB facility. A separate TLB known as the block address 
translation cache (BATC) translates the virtual address into a pointer 
into a 512-Kbyte block of real memory. Management of the BATC is 
under program control as there is no recourse to a multilevel translation 
table if there is a TLB miss. With a miss, the operating system is invoked 
to perform all of the management function s and is supported by some 
special instructions for loading the BATC. 

3.5.5 Table Walking Methods 

The MC68040 multilevel direct page tables are stored in real memory, 
as shown in Figure 3.40. If a successful name translation cannot be 
accomplished in the TLB, the address is translated with the memory 
resident tables. The various address fields and control bits of the table 
entries are allocated into groups of the AUs. The use of real memory for 
page tables leads to the requirement that the tables must be traversed 
by fetching and decoding the entries of each valid level of the hierarchy, 
a function called table walking. 

Early systems such as the GE-645 Multics [DENN72, ORGA72, 
MATI80) and at least one contemporary system, the MIPS R2000/R4000 
[MIPS87] , perform table walking with a program using the normal in­
struction set of the processor. For these systems, referencing each level 
of the page table requires a sequence of instructions such as 

1. Load page entry. 
2. Select valid bit. 
3. Branch to 8 on not valid. 
4. Select pointer field. 
5. Extract Index value from address. 
6. Concatenate to form memory address. 
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7. Leaf node? no, branch to 1; yes branch to 9. 
8. Fault exit. 
9. Continue. 

Each level of the page table will have an overhead of approximately 
eight instructions. A three-level system has an overhead of approxi­
mately 24 instructions or 30 memory cycles for each memory reference 
that is not translated in the TLB. The actual time required for a transla­
tion is a function of whether or not the page tables are cached and 
whether or not there is an instruction cache that may be holding the 
short program. Also, if the program is paged and the page is not "locked 
in" there could even be page faults during a table walk. 

This software approach is still possible, but many modern memory 
management units have special logic that performs these functions. The 
logic is known as table walking hardware, and it significantly reduces 
the time required to access the page tables. Motorola calls this operation 
translation table searching, a function implemented in microcode. 

The page table walking overhead burden is reduced by incorporating 
a state machine controller that implements the table walking function; 
an example of this controller is found in the MC88200 Memory Manage­
ment Unit. Using hardware table walking eliminates most of the memory 
cycles and the possibility of cache misses and page faults. The net result 
is that the time required to translate is approximately one memory cycle 
per level of translation. 

Inverted page tables, such as those used in the RS/6000, use a form 
of table walking in their linked list structure. For these systems, the 
control of searching down the list is vested totally in hardware. There are 
no known systems that are software-based. The reduction in weighted 
average name translation time with hardware over software table walk­
ing is dramatic and is modeled for the VAX 11/780 in Section 3.6. 

3.5.6 Instruction Set Support for Virtual 
Memory 

As I noted previously, a major portion of the work (but not the time) 
associated with servicing a page or segment fault is performed by the 
processor. Instruction set support is found in the three general areas of 
(1) table walking, (2) table management, and (3) interrupt support. For 
multitasking systems, the time to execute a table walk is important if it 
cannot be overlapped with other processing. For single-user virtual 
memory systems, the table walk time is small with respect to the disk 
time and can usually be ignored. 
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Table Walking Support 

Table walking with software requires instruction set support to execute 
the algorithm noted above. The instruction set should include the usual 
field extraction, logical operations, and testing instructions found in gen­
eral purpose instruction sets. In general, no additional instructions are 
required. Table walking code can be provided as a subroutine that is 
called when there is a miss on the TLB. 

If page faults are frequent, a special subroutine call/return, designed 
for this purpose only, can eliminate most of the overhead for this rather 
special subroutine. It may also be helpful if the subroutine is locked into 
the cache to eliminate instruction cache misses. 

Table Management Support 

Table management support is required due.to the large number of tables 
that must be loaded and stored under program control. The extension 
register(s) portion of the virtual address are loaded by the operating 
system with special load instructions. Special load instructions are also 
necessary for the segment registers for those systems that use this me­
thod for extending the effective address. 

The IBM RS/6000 is one example of the special load instructions. 
There are a number of hardware registers collectively named storage 
control registers. First, there are 16 segment registers (SR); the most 
significant bit of each signifies if the segment is an VO or processing 
(normal) segment. Another register is the transaction ID register (TID); 
this register contains a 16-bit segment identification number. Two other 
registers are named the storage description registers (SDRO and SDRl). 
Special instructions are provided to load all of these registers. Note that 
these registers are never modified by a translation or a side effect of a 
translation; however, they can be modified as the result of a page fault. 
Thus, a store instruction must also be provided to store these tables for 
a context switch. Loads and stores are accomplished with move to sri 
(mtsri) and move from sri (mfsri) instructions that are moves between 
the special registers and the general purpose registers. 

An inverted hash access system has other tables, the hash anchor 
table and page tables, that must be loaded and stored under program 
control. These tables are located in real memory, and the usual instruc­
tions that manipulate memory locations serve to load and store these 
tables. TLBs and other cachelike translation tables must be loaded and 
stored as well. The need to store the tables is a consequence of the fact 
that these tables can be modified between context switches. 
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Page Fault Interrupt Support 

An executing program references memory with name translations via 
the TLB and the page tables assuming that the referenced pages are in 
real memory. If the page is not in real memory, the present bit in the 
translation system will trigger an interrupt, an action known as a page 
fault or memory exception trap. When there is a page fault, there are a 
number of tasks that must be accomplished. The following list is for a 
uniprogramming environment. Multiprogramming or multitasking re­
quires other steps and is outside the scope of this book. 

1. Trap the operating system. 
2. Save the user and process state. 
3. Write out a "dirty page" if necessary (virtual memory uses write 

back). 
4. Allocate the new page to real memory. 
5. Translate the virtual address to a disk file address. 
6. Issue a read to the file system. 
7. Read page into the allocated location. 
8. Update translation tables and TLB. 
9. Restore user and process state. 

10. Resume processing. 

The actual time required to execute these steps is not as great as 
the length of the list would suggest. For example, assume eight of the 
steps (not counting the transport times of steps 3 and 7) require an 
average of 1,000 instructions and each instruction requires 50 ns. The 
total time to service a page fault interrupt is 0.4 ms, a trivial part of 
the one or two 20-ms to 30-ms disk latencies. 

3.5.7 Memory Access Control 

Thls section discusses two issues: protection and proper access. Protection 
has to do with assuring that a reference to memory is authorized. Proper 
access has to do with the correctness of the access, as in not attempting 
to execute a floating point datum as an instruction. The issues of protec­
tion of objects or abstract data types and system access security are 
outside the scope of this book, and references to these subjects can be 
found in most books on operating systems. 

Protection 

Early research into the implementation of multiuser time sharing sys­
tems pointed to the need to protect programs and data from unauthor­
ized access [DENN65, GRAH65, WILK68, GRAH72]. For reasons of 
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efficiency, however, it is desirable to permit sharing between users of 
programs and some data, a desiderata that introduced the need for 
protection. Graham [GRAH72] lists seven levels of protection for mul­
tiuser time sharing systems; each level requires additional hardware 
support for their implementation. The requirement for sharing and pro­
tection is just as important in processors that execute a number of tasks 
(multiprogramming or multitasking) that share resources. 

The view of protection we have today has its roots in the MIT Project 
MAC and Multics. Graham [GRAH65] published the idea of rings of 
protection, which is shown in Figure 3.41. Briefly stated, Graham's idea 
is that a "process executing in ring i has no access whatever to any 
segment in ring}, where}< i." This view of protection leads immediately 
to the requirement that somewhere in the name translation system there 
must be a tag to denote the level of protection. Because control bits are 
somewhat limited in the page table entries, there is a limit to the number 
of rings of protection. 

For paged virtual memory systems, protection is exerted at the page 
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level, or at the block level if block translation is employed. Examples of 
the use of control bits that provide protection can be found in a number of 
processors. The i386, i486, and Pentium devote two bits in the descriptor 
tables, which provide four levels of protection. These levels are: kernel, 
system services, custom extensions, and application. Two protection bits 
are also used in the page frame table entry of the RS/6000. In the 
most general implementation of rings of protection, if control is being 
transferred to a ring other than the current one, an interrupt occurs and 
the operating system is invoked to perform the proper housekeeping 
tasks. 

Proper Access 
Protecting memory from an improper access is the second issue of access 
control. One task should not be able to interfere with another task 
without mutual agreement. Four possible ways [SITE80] of providing 
memory protection are 

1. bounds registers, 
2. memory keys, 
3. translation table keys, 
4. distinct addresses spaces. 

These four protection methods are discussed individually below. It 
should be noted, however, that combinations of the four methods are 
implemented in some specific computers. 

Bounds registers were first used in nonvirtual memory machines. 
Bounds registers provide two pointers: one to an upper address limit, 
the other to a lower address limit. Bounds can also be specified with a 
starting address and length. If a reference is found to be outside these 
bounds, an error interrupt is signaled. The bounds registers are loaded 
and stored by the operating systems using privileged instructions. 

For a system that will have a number of tasks resident in memory 
at one time, there may be a number of bounds register pairs, one for 
each task. The register pairs are addressed by a pointer that is set when 
a task is switched in. The use of bounds registers assumes that a task, 
program, and/or data, is allocated within a contiguous address space. 
Bounds registers permit sharing between tasks of an address space by 
identifying· overlapping spaces by the bounds registers. Bounds registers, 
however, present restrictions with, for example, a single word containing 
a semaphore that is accessed by a number of tasks. The semaphore would 
have to be in the highest address of one task and in the lowest address 
in a second task. Access by three tasks is difficult. 

For paged systems, protection is at the page or block level and for 
segmented systems at the segment level. For example, the segment 
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length field of a segment table operates in the fashion of a bounds 
register. An example of this is the block translation system of the Pow­
er PC 601 that has a block partition of memory that is similar to a 
segment. A block name is presented to the block TLB and is checked for 
being within the starting address and the length of the block. Block 
length is encoded with six bits, rather than having an upper address, in 
the BAT registers discussed previously. The length of the block is a 
binary progression: 128 Kbytes, 256 Kbytes, 512 Kbytes, ... , 8 Mbytes, 
an encoding designed to facilitate length checking [MOT093]. 

Memory keys specify the type of access that is permitted to a memory 
location, page, or segment. Typical access types are: Unlinlited, Read 
Only, Execute Only. and/or a task I.D. The executing program. key is 
usually found in the processor status register that, in combination with 
the type of access, is compared to the "lock" associated with the memory 
and found in the name translation system. If the key matches the lock, 
the requested access is performed. There is usually a "skeleton key" that 
can be used by the operating system to access all of memory regardless 
of the key associated with each of the keyed memory spaces. 

The memory keys are usually contained in the nru:ne translation 
maps and/or the TLB. Thus, an improper access is terminated before 
the read or write is actually performed. Memory keys permit access to 
noncontiguous page frames in real memory, unlike bounds registers. 
Sharing is more difficult. however as sharing is at the block level. 
Shared variables may need to be relocated with a context switch increas­
ing context switch overhead. If different accesses are legal for different 
tasks, the protection fields in the TLB must be changed when tasks are 
switched. 

The PowerPC 601 illustrates the use of memory keys. The supervisor 
mode has the keyed accesses of read/write and read only, while the user 
mode has the keyed accesses of no access, read only, and read/write. The 
operating system can block user programs from accesses by evoking the 
no access key. This description is not complete; additional information 
can be found in [MOTO93]. 

Translation table keys provide protection by having an access table 
for each task. These tables, one for each task, contain the legal access 
methods for each page of real memory and permit different legal accesses 
for different tasks with a minimum of overhead. As there are multiple 
tables, only a switch of a pointer is needed to select the table for the new 
task. Images of the keys are found in the page tables and are checked 
along with the check of the virtual address tag. 

Distinct address spaces can be used to provide protection by assuring 
that different tasks do not share the same virtual address space. This 
protection is accomplished by making the task name a part of the virtual 
address. With the task name in the most significant bits, there can be no 
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overlap between addresses in different tasks. One example of a distinct 
address space system is found in the ix86 processors that have segment 
registers associated with each type of access, for example, code and stack. 

3.5.8 Choice of Page Size 
This section addresses four tradeoffs in determining page size. 

1. Reducing internal fragmentation. 
2. Reducing disk/memory transfer time. 
3. Matching the page size to the levels of the name translation tables. 
4. Reducing the miss ratio. 

Internal fragmentation was introduced in Section 3.1. When a page 
size is selected, there is a waste of usable memory space. First, because 
the allocation block is not an exact multiple of the page size, internal 
fragmentation occurs. Internal fragmentation is reduced with small 
pages because the wasted space is limited to a fraction of a smaller page. 
Second, when a program and its data is allocated to real memory, space 
must be provided for the page table entry of the allocated page. Page 
table space is not available for the program and data; it is pure overhead 
space. As the page size decreases, more pages must be allocated and the 
space used for page table entries increases. Thus, what page size will 
balance these two counterforces and minimize the loss of memory? Early 
work on this design problem, and the model derived below, is found in 
[WOLM65], who attributes the first version of the model to J.B. Kruskal. 
This model determines an optimum page size to minimize wasted real 
memory. 

Assume that the number of AUs that must be allocated for a program 
(instructions and data) is n; the page size is p; and a AUs are required 
for each page table entry. A direct one-level page table, in memory, is 
assumed. Thus, the use of main memory by page tables and internal 
fragmentation represents a loss of real memory to the user. 

Memory loss = loss due to internal fragmentation + loss for allocating a 
page table entry, 

Loss due to internal fragmentation = P.., 
2 

Loss for allocating a page table entry = an, 
p 
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p an 
Memory loss= C = -+ -. 

2 p 

The derivative of C with respect top is taken and set to zero as 

Popt=~. 

This model shows that in order to minimize the loss of real memory 
due to internal fragmentation and page table entries, large pages are 
best for large programs and data sets that are becoming more common. 
However, with lower cost memory resulting in larger real memory, in­
ternal fragmentation is not viewed to be the problem it was three decades 
ago. 

As described in Section 3.3.1, today, page tables are allocated into 
pages themselves, making this model incorrect as the first allocation 
requires a full page. With the internal fragment loss of one-half page 
and with page tables allocated to pages that lose one-half page, the 
total loss is one page and is invariant with page size or the number of 
allocations. Thus, the size of a page is more-or-less not an issue as far 
as real memory loss is concerned. 

Reducing disk/menwry transfer time is the second tradeoff option for 
determining page size. Pages transported between the disk and real 
memory incur a significant overhead due to the long access time of the 
disk. The time per byte transferred is reduced as the page size is in­
creased. As with the discussion of block size for caches found in Chapter 
2, if the page size is very large, the transfer time per byte approaches 
the data transfer time with the access time overhead totally prorated. 
Note, however, that page sizes today are far from this limit. The larger 
main memories of modern computers and the reduction in disk access 
and transfer time, discussed in Chapter 5, tend to drive the page size 
upward. 

Matching the page size t,o the levels of the name translation tab/,es is 
a determining factor. The choice of page size can determine the number 
of levels in a direct multilevel page table. This issue is discussed in 
Section 3.3.1. Larger page sizes require fewer levels for name transla­
tion. 

Reducing the TLB miss ratio is another consideration in the selection 
of a page size. The larger the page size, the smaller the TLB miss ratio 
and the smaller can be the TLB. This is the reason for the use of two 
TLBs for two different page sizes in a number of processors such as the 
MC88200 as described in Section 3.3. Larger page sizes led to smaller 
TLBs, which is an important consideration in some designs. A large page 
has another virtue because a cache can be placed in virtual memory 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 211



3.5 Virtual Memory Accessing Rules 195 

space. That is, the displacement in the virtual address addresses the 
cache while the virtual name translation is being performed. This cache 
architecture is discussed in Chapter 4. 

From the above discussion, it can be seen that page size selection is 
a tradeoff process to achieve a balance between transport time, internal 
fragmentation, and name translation time. It is interesting to note that 
the flexibility in page size provided by the Motorola 6851 has been 
largely abandoned by designers for a fixed page size. However, the IBM 
RS/6000 gives a choice of two page sizes while the Digital Alpha pro­
vides page sizes of 8 Kbytes, 64 Kbytes, 512 Kbytes, and 4 Mbytes. The 
evolution of virtual memory systems has arrived at the consensus of a 
4-Kbyte page size. The page sizes of some contemporary processors are 
given. below. 

VAX 
IBM S/370 
RS/6000 
PowerPC 601 
i486 
Pentium 
MC88200 
MC88100 
R2000 
SPARC 

3.5.9 Addressing the Disk 

512 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
4096 bytes 
8192 bytes 

This section discusses the way that the disk address is found when a 
new page is allocated following a page fault. Recall from Section 3.1 that 
the required name translation is referred to as using Map 3. This name 
translation problem is similar to the issues discussed in the preceding 
sections, which deal with translating virtual names to page frame ad­
dresses. Here we need to translate a virtual name to the disk addresses 
of a page, a process that requires a table(s) to hold translation infor­
mation. Note that as with virtual memory, only page names need trans­
lating as the disk is never addressed at a lower level. 

There are two ways of providing translation tables. First, the disk 
page address is contained in the page table entry [TANN84]. With this 
approach, the leaf page table entry would contain not only a field for the 
page frame address of the page in real memory but also a field that 
contains the address of the page on the disk. These disk address fields 
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FIGURE 3.42 Disk translation table placement. 

would have information on drive, head, track, record, and the like, which 
as Figure 3.42 indicates, is a relatively large number of bits. 

A variation of this technique is found in the i386, i486, and Pentium 
[INTE90]. Because multilevel tables are direct with an entry for each 
page in virtual memory, the page table entries can be either the transla­
tion address or the disk address (MAP 2 or MAP 3). Only one map is 
valid at a time; the valid bits indicate which address is stored. When 
there is a page fault, the disk address is used to access the disk and is 
then replaced with the page frame address and the various control bits. 

Neither version of the technique of placing disk address information 
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in the page tables is suitable for inverted page table name translation. 
The reason is that an inverted page table contains only the name transla­
tion information of pages resident in real memory. Thus, another tech­
nique for disk address translation is needed. 

This second technique, also shown in Figure 3.42, starts anew, upon 
a page fault, with the virtual address that caused the page fault, and 
translates that address via a dedicated translation table (MAP 3). With 
this method, the same number of bits are required to address the disk, 
but they are managed in a separate table. The translation of the virtual 
address into the disk address can be via direct multilevel translation or 
the file management system of the operating system. 

3.6 Virtual Memory Performance Issues 
and Models 

There are two major performance issues with virtual memory systems: 
name translation time and page fault time. The time to service a page 
fault has been discussed previously; thus this section deals only with 
name translation time. A rather old annotated bibliography of virtual 
memory performance measurements is found in [PARM72]. 

Name translation time is the weighted average time needed to trans­
late a name and is added to the access time of main memory for systems 
without a cache and is added to cache access time for real address caches, 
as with the VAX 11/780 discussed in Chapter 4. Name translation by 
accessing tables can be a lengthy process,· and multilevel translation 
tables create a significant performance problem. Each virtual memory 
reference requires one or more real memory references to access the 
tables, and if page table walking hardware is not provided, a number of 
instructions must be executed by the processor to interpret the contents 
of each page table entry. 

A simple model for the time required to make a name translation is 
given below. This model is based on the unified TLB design of the VAX 
11/780 [SATY81, CLAR83, EMER84, CLAR85]. The steps of translating 
an address are 

1. Search the TLB and use the page frame address on a hit. 
2. If the TLB search fails, the address is translated with cached page 

table information. On a translation hit, the translation information 
is placed in the TLB and the name translation is restarted in the 
TLB. Note that while a normal cache access requires a translated 
address, microcode has untranslated access to the cache for name 
translation purposes. 

3. If the cache translation fails, the name is translated with page table 
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FIGURE 3 .43 Name translation time. 

information found in real memory. The translated information is 
placed in the cache and, in parallel, the TLB. The name translation 
is restarted in the TLB. Note that microcode table walking is provided 
for untranslated access to the page tables in real memory. 

The VAX 11/780 memory performs name translation on data ac­
cesses and instruction accesses that miss the small instruction TLB. A 
timing diagram of the name translation process is shown in Figure 3.43. 

The weighted average translation time (WATT) for a successful 
translation is 

where 

ft = fraction translated in TLB, 
fc = fraction translated in cache, 

f rn = fraction translated in memory, 
tt1b = time for a TLB translation or update, 

tc = time for translation in the cache and a cache cycle (read or write), 
tm.m. = time for a translation in main memory. 

The following assumptions are made: 

Note that the fraction of translations performed at each level are 
equivalent to global hit ratios of multilevel caches. Clark [CLAR85] 
provides values for the parameters for this model derived from simu­
lation. These parameters are 

ft= 0.97, 
tub = 1 clock, 

fc = 0.012, 
tc = 6 clocks, 

fm = 0.018, 
tmm = 18 clocks. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 215



3.6 Virtual Memory Performance Issues and Models 199 

Using these parameters in the model gives a weighted average name 
translation time of 1.56 clocks. For the VAX 11/780, the average number 
of clocks per instruction, without TLB miss delays, is approximately 10. 
This time includes the one clock for translating the data addresses 
through the TLB. Thus, for the parameters above, 0.56 clocks must be 
added to the 10 clocks of the basic execution time. TLB misses, therefore, 
add approximately 6% to the total execution time. This result compares 
favorably to the measured results of [CLAR85] of 5.1 % to 8.0%, for 
various benchmarks. From the same parameters, 19.8 clocks are spent 
for each miss on the TLB. This result also compares favorably to the 
measured results of 21.0 to 22.1 clocks [CLAR85]. 

A name translation time of 1.56 clocks is a reasonable penalty for a 
processor that spends 10 clocks per instruction. For pipelined processors, 
however, discussed in Chapters 6 to 10, the clocks per instruction is 
approximately 1.5 (without translation delays). If there is an additional 
0.64 clocks for name translation, the total execution time will be 
increased by approximately 30%. This is a major reason why real ad­
dressed caches are not used in most pipelined processors (described in 
Chapter 4). 

Another issue can be addressed with this model. What is the perfor­
mance benefit of hardware table walking? Assume that tmm is 48 clocks 
rather than 18 with table walking. The weighted average translation 
time is 3.08 clocks rather than 1.56. The performance impact on the VAX 
11/78 would be approximately 20% rather than 6%, a clear performance 
advantage for a processor with a cache addressed with real addresses. 

3.6.1 Published Page Fault Ratio Data 
This section discusses the identified published page fault ratios; unfortu­
nately, little current information has been found. Rather old information 
on page fault ratios, as a function of page and real memory size (ex­
pressed as number of allocated pages), is provided by [CHU74] and 
excerpted in Table 3.13. Note that this data was taken in the era of small 
memory on the Sigma 7 and may not be representative of contemporary 
systems. 

The presentation of this data is similar to other tables displaying 
miss ratio data. Diagonals from lower left to upper right are equal real 
memory sizes. This data shows very interesting properties. First, and 
this is to be expected, for any page size, as the size of real memory is 
increased permitting more pages to be allocated, the page fault ratio 
becomes constant at the value required to page in/out the working set. 
Once a working set is in memory, no further paging is required until the 
working set is paged out to the disk. When the memory is large,~ larger 
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Memory Partition 
in Pages 

Page Size in 24-Bit Words 

8 
16 
32 
64 

128 
256 

64 

.0012 

.00007 

.00007 

128 

.0012 

.000035 

.000035 

256 

.0012 

.00002 

.00002 

Note. FORTRAN compilation. LRU replacement. 

TABLE 3.13 Page fault ratios. 

512 

.0018 

.0002 

.00001 

page size will give a smaller page fault ratio because fewer page faults 
are required to page in the working set. Loading and storing the working 
set presents a minimum page fault ratio regardless of the page size, thus 
larger pages will reduce the page fault ratio. 

Another interesting observation is that for a fixed memory size, the 
page size should also be as large as possible. For example, with a parti­
tion of 256 pages and a page size of 64 words, the fault ratio is 0.00007, 
while with a partition of 32 pages and a page size of 512 words, the fault 
ratio is 0.00001. 
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4 
Memory Addressing 
and 1/0 Coherency 

4.0 Overview 

The issues addressed in this chapter are frequently viewed as related 
to multiprocessors. However, contemporary uniprocessors with caches, 
virtual memory, and concurrent input/output data transfers have the 
same characteristics and problems that must be solved. This chapter 
addresses these issues in the uniprocessor context. 

In the 1970s, before virtual memory systems gained acceptance, 
processor designers debated the advantages and disadvantages of the 
type of address generated by the processor; should this address be real 
or virtual? Morris and Ibbett present the arguments in [MOOR79]. With 
the almost universal acceptance of virtual memory, however, the issues 
now become the nature of the address presented to the cache and the 
address domain of the I/0 system. This chapter considers two issues: 
(1) the addresses presented to the cache and I/0 in a virtual memory 
system, and (2 ) coherency (also known as consistency) maintenance be­
tween the various spaces in a computer and its memory. These issues 
are present in even rather simple systems and become quite complex 
with larger multiprocessors. 

Virtual memory computers must cope with the coexistence of virtual 
and real addresses in the system. Problems arise from two sources: 
multiple virtual addresses and replicated memory spaces. Examples are 

Multiple virtual addresses ■ Concurrent processors, such as I/0 
and the main processor 

■ Multiple processes; 
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Replicated spaces ■ Two processes accessing the same 
value but in two locations 

■ A value can be in the cache and 
main memory 

For systems with multiple virtual addresses and replicated spaces, 
there are four cases of relationships, which are noted below couched in 
terms of virtual address and real address. 

Case I. Multiple instances of the same virtual address-same real 
address. A normal and correct access results when the same virtual 
address issued from any process accesses the same real address or entity. 

Case II. different virtual addresses-different real addresses. This 
situation is normal and presents no problems in the correct execution of 
a program. 

Case III. different virtual addresses -same real address. This situ­
ation is called a syrwnym or alias and is illustrated by 

Program l, Virtual Address A-+ z; 
Program 2, Virtual Address B-+ z. 

Synonyms are viewed as either a virtue or a vice by different system 
designers. For example, the Multics system depends on synonyms for 
sharing and has a system call to provide a synonym for a given name 
[ORGA72]. The CMU system MACH also depends on synonyms. On the 
other hand, the prevention of synonyms is important to other systems. 
A discussion of the unique problems of synonyms in real address caches 
is found in [WHEE92]. 

Case IV. Multiple instances of the same virtual address-different 
real addresses. This situation has the potential for a coherency problem 
if the values in the different real addresses are different. For example, 

Program 1, NameA-+x; 
Program 2, Name A-+ y. 

If the values in x and y are different, the values are not coherent. Note 
that addresses x and y may be in the same physical memory, such as a 
cache, or in multiple physical memories, such as multiple caches. One 
solution to this problem is to include the process name in the virtual 
address thereby creating unique names for the variables, converting a 
Case IV into a Case II. This solution requires a longer virtual address 
and more tag bits but is consistent with the view of large virtual ad­
dresses, a technique used with the IBM S/38 [DAHL80] and AS/400. 
There are other solutions to ensuring coherency that are discussed in 
later sections in terms of cache coherency. 
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4.1 Cache Addressing, Virtual or Real 

Chapter 2, on caches, takes the simple view that an address is presented 
to the cache. Chapter 3 introduced the concept of virtual and real ad­
dresses. This section discusses the relationships between virtual ad­
dresses and real address as applied to caches. Recall that a cache is used 
to reduce the latency of a memory system while a virtual memory system 
introduces a name translation step that can add latency to the memory­
system. It would seem, therefore, that caches and virtual memories are 
at odds with each other. The primary design problem addressed in this 
section is balancing synonym and coherency control with cache perfor­
mance and cache size. Note that nonvirtual memory systems do not 
have. the problems discussed in this section as all addresses are real. 

Before proceeding further, I give a brief review of addresses that 
are present in a system. Figure 4.1 shows seven address forms of inter­
est: virtual address, effective address, real address, cache address, TLB 
address, BTB/BTC address, and I/0 address. A virtual address has a 
page name field that may be divided into two or more subfields for 
addressing translation tables and a displacement field. A real address 
has a page frame address, which is the translated page name, and a 
displacement field. The cache address consists of a sector name, field 
that may or may not align with the boundaries in a real address or a 
virtual address, a set index field, a block address field, and a displace­
ment field . Note that in the discussion to follow, the term sector is used 
even if there is only one block per sector. Finally, the address used by 
the TLB, BTB or BTC, and the 1/0 system for reading and writing 
memory will be either real or virtual and have fields allocated by the 
details of the specific designs. 

Are real or virtual addresses presented to the cache and what are 
the consequences of one or the other? The issue is more complicated than 

Effective Address 

L., ____ P...c:j::.ge_N_;.~m_e _ __,_!_D_is....:p_la_ce_m_e_n---'t I Virtual Address 

Page Frame Address I Displacement Real Address 

Sect.or Name I Set Index I B I Disp. Cache Address 

Real or Virtual 

Real or Virtual 

Real or Virtual 

FIGURE 4 .1 System address. 
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BTB/BTC Address 

I/OAddress 
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Set Index Sector Name Cache Name 

Real 
Real 
Virtual 
Virtual 

Real 
Virtual 
Real 
Virtual 

Untranslated displacement 

Real address cache 
No known implementation or name 
Pipelined real address cache 
Virtual address cache 
Restricted virtual cache 

TABLE 4.1 Cache addressing options. 

suggested by the simple choice of real or virtual addresses. Recall from 
Chapter 2 that a cache is addressed via two paths: the set index path 
and the sector name that is compared with the tag. These two paths 
can be either virtual or real, leading to four design options as shown in 
Table 4.1. The taxonomy of Table 4.1 is similar to that of [WU93]. 

The following sections will discuss these four design options. The 
real/virtual design is not considered. 

4.1.1 Real Address Caches 

Figure 4.2 shows the organization of a cache that is in real address 
space. The page name of the virtual address is translated via the TLB 
and page tables and then concatenated with the displacement. This 
process forms the real address, as shown. Fields of the real address are 
delineated to form the address into the cache: the sector name, the set 
index, block address if used, and the displacement. As the cache can be 
organized in any of the ways discussed in Chapter 2, the fields shown 
are for illustration only. 

The sector name portion of the real address is stored in the cache 
tags and is compared to the sector name field. If a hit occurs, the data 
found in the cache is valid and is sent to the processor. If the comparison 
fails, a cache miss occurs, the memory is referenced with the real address, 
and the cache is updated. 

A major benefit of a real address cache is that synonym.s are not a 
problem. Two or more different virtual addresses cannot translate to the 
same real address location in either real memory or the cache. Another 
virtue of this organization is that there is no limit to the size of the 
cache. As many bits as desired can be selected from the real address for 
the cache address. The designer does not have to resort to extending the 
degree of associativity to increase the size of the cache. The only con­
straints on cache size is the total number of bits in the real address. 

The most significant problem with a real address cache is its perfor­
mance. With a cache in real address space, the virtual address must be 
translated before the cache can be accessed. The time to perform the 
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FIGURE 4.2 Real address cache. 

page name translation via the TLB and/or page tables is added to the 
cache's access time. Since the TLB and the cache are usually constructed 
from the same technology, the cache's access time can be more than 
doubled. Recall from Chapter 3 that a typical address translation time 
can be 1.5 cycles. These cycles add directly to the cache access time. For 
processors such as the VAX 11/780 that have a CPI of 10 cycles, this 
overhead is not a significant loss of performance. The effective access 
time of a real address cache is 

Eff. tea= (WATT+ tea) 

where WATI = weighted average translation time. 
However, note that because of unlimited cache address space, a 

large cache can be used, and the P miss of the real address cache may be 
significantly lower than the P miss of a virtual address cache. Reducing 
the P mies of the cache may overcome some of the performance loss due 
to the serial name translation. 

The cache addressing of the VAX 11/780 is a good example of a real 
address cache, as shown in Figure 4.3. The 30-bit virtual address is 
divided into a byte displacement field and a virtual page name field. 
The page name is translated via a TLB and page tables, which gives 
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FIGURE 4.3 VAX 11/780 cache address generation. 

Real Address 

Cache Address 

the real page frame address concatenated with the untranslated displace­
ment. The real address is partitioned into a sector name, set index, and 
displacement fields that constitute the cache address [LEVY80, 
LEON87]. 

The VAX 11/780 has a rapid address translation of an instruction 
page name (described in Chapter 3). Thus, for instruction fetches, the 
WAIT delay is quite small. The benefits of a real cache (lack of synonyms 
and unlimited size) are realized at a small performance cost for a pro­
cessor with a large CPL 

4.1.2 Pipelined Real Caches 
From the above discussiqns, we see that a pure real address cache can 
have a significant performance problem. A form of cache that has the 
benefit of no synonyms of a real address cache and very small access 
latency has been called a pipelined cache [STON93] and is called a 
pipelined real cache in this book. As Figure 4.4 shows, the displacement 
field of the virtual address accesses the cache. In parallel with the cache 
access, a virtual page name is translated into a page frame address, a 
portion of which is compared to the page frame address that is stored in 
the cache's tag field. If the tags compare, the data is gated out of the 
cache to the processor. Otherwise, the real address accesses the main 
memory to fetch a new block into the cache. This cache organization 
permits the cache access and the translation operations to proceed in 
parallel. 

The price paid for low latency and lack of synonyms is that the size 
of the cache is limited. The size limitation is bowided by "the page size 
is larger than the cache size divided by the associativity" [AGAR84]. For 
example, a byte displacement field of 10 bits and a set associativity of 
4 limits the cache size to 4 Kbytes or AUs. While the logic paths via the 
cache and address translation are roughly equivalent, strict pipelining 
with latches may be required because a TLB miss can lengthen the 
translation time. 
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FIGURE 4.4 Pipelined real address cache. 

If a constant stream of addresses is presented to a pipelined real 
address cache, this cache scheme will run very close to the pipeline rate 
of one cache access per clock. The effective clock period, however, will 
be determined by the maximum of the delays through the address trans­
lation path or the cache access time. The effective cache access time is 

Eff. tea = Max[WATI', tea]. 

It may be unnecessary to use strict pipelining with latches; a tech­
nique called maximum rate pipelining does not use latches and is dis­
cussed in Chapter 6. The result of the address translation and the cache's 
output should arrive at the compare circuit at approximately the same 
time and then can gate out the data on a valid compare. Provisions 
must be made for long translations on a TLB miss. 

Designers of the IBM S/360 pioneered the use of the pipelined real 
cache [MATI77]. The IBM 3090 has continued this cache design 
[TUCK86] as have cache designs in other processors. Figure 4.5 shows 
the pipelined real address cache address formulation for the IBM 
S/370/168, the Intel i486, and the IBM RS/6000. 

The IBM S/360/168 cache is early select; the displacement provides 
the set index and displacement into a table of cache address information. 
The real sector names are found by translating the page name with the 
user ID via hash tables and comparing it with the real sector name tags 
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FIGURE 4.5 IBM 370/ 168, Intel i486, and Pentium, IBM RS/6000 cache address 
generation. 

in the cache address cache. The output of the table is concatenated with 
the 5-bit displacement field to form the cache address itself. 

The Intel i486 also uses the pipelined real cache organization. Al­
though I am unfamiliar with implementation details of the i486, I believe 
that it does not have latches. The i486 cache is late select. The set 
index and displacement select the data from the cache sector that was 
identified by the translated directory and table names. For the i486, with 
a page size of 4 Kbytes and a 4-way set associative cache, a maximum 
cache size is 16 Kbytes. 

The RS/6000 cache is another variation of the pipelined real cache. 
The 12-bit virtual address displacement accesses four 16-Kbyte caches 
in parallel as shown in Figure 2.20. Each of these four caches has 32 
sets, 4 sectors with one block, and 128 bytes per sector. After the virtual 
page name and ID are translated, the two LSBs provide a late select of 
one of the four caches. Documentation on the RS/6000 indicates that 
latches are used to delineate the stages of this pipeline. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 225



4.1 Cache Addressing, Virtual or Real 209 

The PowerPC 601 changed the cache mapping of the RS/6000 by 
dropping the translated late select scheme. The 12-bit displacement is 
divided into a 6-bit set index and a 6-bit displacement; the cache is 
8-way set associative. The 20 bits of the translated virtual page name 
are compared with the eight tags of the selected set. The organization 
of the cache is (64, 8, 1, 64) for a 32-Kbyte cache, half the size of the 
RS/6000 cache. 

4.1.3 Virtual Address Cache 
A solution to the performance problem with real address caches is the 
elimination of the translation latency by addressing the cache with vir­
tual addresses, as shown in Figure 4.6. With this cache scheme, the 
virtual address is allocated into fields for accessing the cache. These 
fields are the usual ones: sector name, set index, and displacement. This 
scheme allows full flexibility in selecting these fields so that a cache of 
any size can be addressed. In parallel with the cache access, the page 
name is translated and concatenated with the displacement to form the 
real memory address. 

Because page name translation is required only on a cache miss, the 
effective access time of this organization in the absence of cache misses 

Virtual Address 

:page Naitje Displacement 

Sector Name Set Index Disp. Cache Address 

Cache 

Page Name 

• Translation 
Displacement Miss 

Real Address 

Page Frame Address Displacement 

Real Memory 

FIGURE 4.6 Virtual address cache. 
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is merely the access time of the cache. 

Synonyms are a major problem with a virtual address cache that 
does not use the entire page name for the sector name because two 
virtual names can refer to the same address in the cache. Figure 4.6 
illustrates this problem in that not all of the page name is used as the 
sector name. A cache hit signifies that the AU has been stored in the 
cache under the page name that is currently being used and the AU is 
loaded into the processor. However, what happens if there is another 
access with a different page name that has the same LSBs and displace• 
ment but differs only in its MSBs? This access will use the same sector 
name and find the same AU in the cache. 

What is to be done? A solution is to ensure that different MSBs of 
the page name are not used if a synonym will be a problem. M .D. Hil] 
[HILL86] points out that most context switches call for a change of 
virtual address space. Thus there must be a guarantee against two 
processes using the same symbolic addresses that would permit the new 
process to read valid but incorrect data from the cache. One solution is 
to provide the capability to flush the cache on a context switch. Another 
solution is to extend · the sector name to the length of the full virtual 
address. This is very expensive as the cache tags must be extended as 
well. 

Another problem occurs if the operating system permits synonyms. 
If there is a cache miss, the miss is not conclusive evidence that the 
referenced AU is not in the cache; it can be there under a different page 
name. If the miss is processed, a new instance of the same variable is 
placed in the cache, which produces a potential coherency problem. 

To prevent two instances of the value, there must be a search of al] 

the real addresses of all the sets and sectors in the cache to see if 
the requested value is resident under a different virtual a ddress. This 
procedure requires performing an inverse mapping of the cache sector 
name (that is, finding its real address) and comparing it to the inverse 
mappings of all the blocks in the cache. If this search of real addresses 
finds that the value is really in the cache, the tag must be adjusted so 
that the access can proceed without processing the miss. If the search 
fails, there is a true cache miss that is processed in the knowledge that 
a coherency problem is not being created. 

The process of searching for a synonym in the cache cbn be ac• 
complished in hardware; the Intel i860XP provides an example 
[INTE92a]. This processor has split instruction and data caches that 
both have support to prevent synonyms from becoming coherency prob-
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FIGURE 4.7 Intel i860XP caches. 

lems. The caches are organized as (128, 4, 1, 32), and each ·sector has 
both virtual and real tags, as shown in Figure 4. 7. 

The cache is accessed with the index and sector name taken from 
the virtual address. If the tag matches, the cache access is normal for 
both a read or write. However, if the tag does not match, there is a 
potential miss, and a search is made of the real tags by comparing them 
with the now-available real address. If there is no match on the real 
sector name, there is a true miss and a bus cycle to the memory is 
initiated with the translated (real) address. Table 4.2 shows the action 
taken for four cases of read-write and hit-miss on the search of the real 
tags. 

It can be seen that this system permits synonyms and ensures that 
there cannot be duplicate entries in the cache that can cause coherency 
problems. 

The virtual address cache address fields of the i860 and SPUR 
processor [HILL86] are shown in Figure 4.8. The i860 has a very large 
virtual page, 22 2 bytes, and an unextended virtual address that is consis­
tent with the intended purpose of this processor. The caches are or­
ganized as (128, 4, 1, 32), and they carry a long (20 bits) tag. 

Access Real Tag Hit 

Read Use entry and replace virtual 
tag with virtual page name 
that caused the miss 

Write Write to block and replace 
virtual tag with the virtual 
page name that caused the 
miss 

TABLE 4.2 i860 synonym processing. 

Real Tag Miss 

Place block returned from 
memory into cache and 
update both the virtual and 
real tags 

Use no-allocate policy and 
write direct to memory 
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FIGURE 4.8 SPUR cache address generation. 

Virtual Address 

Cache Address 

The SPUR cache is organized as (4096, 32, 1) for 128 Kbytes and is 
word addressed. There are 13 tag bits with each sector along with a 
valid bit; the cache uses the write through policy. The two MSBs of the 
virtual address index into a table to select a virtual address extension 
of eight bits, giving a 38-bit global virtual address. This global virtual 
address is translated via tables if there is a cache miss. 

D. Roberts et al. [ROBE90] and C. E. Wu [WU93] discuss the MIPS 
R6000 processors that use virtual first-level caches for instruction and 
data. However, the second-level cache is indexed by a translated real 
address while its tags are virtual. This hybrid scheme uses the second­
level cache to help resolve synonyms and reduce the size of the on-chip 
TLB. 

4.1.4 Restricted Virtual Caches 
Restricted virtual caches are special cases of virtual caches. This organi­
zation combines the positive features of a virtual cache and a pipelined 
real cache. As shown in Figure 4.9, the cache set index plus displacement 
are constrained to be no longer than the displacement field of the virtual 
address. A portion of the full page name becomes the sector name of the 
cache address and is compared to the tags. A cache miss uses the trans­
lated virtual address to access the memory. 

The advantage of this cache organization is performance because a 
page name translation is not required before the cache is accessed and 
pipeline delays of the pipelined real cache are eliminated. The problem, 
however, of synonyms remains and, as with pipelined real caches, the 
cache size is limited to the address span of the displacement (page size) 
times the degree of associativity. The size of the cache, once the page size 
is fixed, can be increased only by increasing the degree of associativity. 
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FIGURE 4.9 Restricted virtual cache. 

Two examples of restricted virtual caches are the MC68030 and 
MC68040. Figure 4.10 shows the address generation for these two de­
signs. These two caches are both on-chip and are accessed in parallel 
with the TLB. If a cache miss occurs, the off-chip memory is addressed 
by the real already-translated address. 

The caches of the MC68040 use a smaller portion of the virtual 
address displacement for the set index and displacement. The MC68040 
has a larger page-4 Kbytes or 8 Kbytes-than does the MC68030, and 
the full displacement field is not used for generating the cache address. 
The 6-bit set index is taken from the page displacement field of the 
virtual address. Each set consists of four words, each selected by the 2-
bit displacement field. Note that the number of sets or the number of 
words in a set, or both, can be increased by a factor of 8 for future 
expansion. 

4.1.5 Summary 

Table 4.3 summarizes the characteristics of the four cache design options. 
There is no clear advantage to any one of these designs, as illustrated 
by the fact that all are used in contemporary processors. Note again that 
there are no known implementations of a cache with a real index and 
virtual tags . 
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FIGURE 4.1 0 MC68030 and MC68040 restricted virtual caches. 

Cache Synonym Coherency Performance Cache Example 
Type Problem Problem Address System 

Size 

Real No Yes Translation Unlimited VAX 11/780 
delay 

Pipelined No Yes Pipeline Limited by i486 
real degree of PowerPC 601 

associativity 
Virtual Yes No No delays Unlimited i860 

SPUR 
Restricted Yes No No delays Limited by MC68040 
virtual degree of 

associativity 

TABLE 4.3 Cache characteristics. 
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C.E. Wu [WU93] performed extensive simulations for evaluating 
the performance of these cache addressing options, cache organizations, 
and replacement policies. They conclude that pipelined real cache or the 
restricted virtual cache using MRU replacement provides the best choice 
for high-performance computers. These results are confirmed by the 
number of processors that use this cache today. 

4.1.6 TLB Addressing 

Translation Lookaside Buffers (TLB) are cache-like buffers that contain 
pretranslated page names. The purpose of a TLB is to reduce the latency 
of a page name translation when a reference to main memory is required. 
Because a TLB translates only the page name, the displacement field of 
a virtual address is usually (there are exceptions) not a component of 
the TLB address. Three examples ofTLB addressing are shown in Figure 
4.11. 

The IBM RS/6000 has an associative TLB as shown in Figure 3.35. 
The 40-bit extended page name is used as the key to search the tag field 
of the TLB. The MC68040 has a 4-way set associative TLB with 16 sets. 
The set index and segment name are extracted directly from the virtual 
address. The VAX TLB has 32 sets and is 2-way set associative. 

4.2 1/0 System Addressing Design Issues 

Section 4.1 discussed the issue of cache and TLB addressing with either 
real or virtual addresses. The same issue is present with the I/O system; 
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should the I/O system be in real or virtual address space? The address­
ing issue is usually only a consideration for the case when an I/O process 
is writing into the system main memory and ultimately the I/O system 
must provide real addresses for storing data in the memory. As will be 
discussed in this section, designers must consider certain performance 
and coherency problems with I/O systems. 

Before discussing I/O addressing, I will discuss the issue of routing 
data between the I/O processor and the memory. Figure. 4.12 shows two 
ways of routing data: (1) I/O via the cache and (2) I/O via the system 
bus to main memory. 

Placement of the I/O transfer path impacts two areas: performance 
and coherency. The performance issue here is that if the I/O data path 
is via the cache, valuable cache cycles can be stolen from the processor. 
If the processors have a multiple cycle CPI (such as the Amdahl 470/v6), 
this is not a significant problem. But, with the I/O data path via the 
system bus to memory, bus cycles can be stolen that, with heavy bus 
loading, can impact the time for servicing a cache miss. Recall from 
Chapter 2 that bus utilization with a single processor can be approxi­
mately 50%. 

With modern pipelined processors that can generate two cache ac­
cesses per clock, loading the bus seems to be a less serious problem than 
loading the cache. Data caches, however, are not as loaded as instruction 
caches and warrant investigation for data cache routing. In addition , 
contemporary microprocessors with on-chip caches transfer via the sys­
tem bus-a practical consideration based on the need to minimize pin 
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count. Only older processors without on-chip caches transfer via the 
internal bus and cache. Given these considerations, the design of choice 
today is to route via the system bus to memory. For systems that route 
the I/0 data via the system bus, the issue of the logical consistency or 
coherency becomes a significant design consideration which is discussed 
in the following sections. 

4.2.1 Cache Coherency 

The literature discusses the concept of coherency, discussed briefly in 
Section 4.0, in terms of shared-variable cache coherency for shared mem­
ory multiprocessors [CENS78, STEN90]. As pointed out, however, in 
[LEON87, GROC89, CRAW90], coherency problems can exist in unipro­
cessors with a concurrent I/0. Knuth [KNUT66] and Dijkstra [DIJK71] 
provide seminal references to the general issues of coherency. The follow­
ing is an informal definition of a coherent system: 

A memory system is coherent if the value returned on a LOAD 
instruction is always the value given by the latest STORE instruc­
tion with the same address [CENS78]. 

van de Goor [V AND89] states that this definition is too weak to 
cover multiple-access problems found in multiprocessors or even proces­
sors with I/0 channels. van de Goor's definition covers the case of a 
Read-Modify-Write operation that is sometimes used for synchronization, 
as in a Test and Set instruction (discussed in Section 6.7). 

A memory scheme is coherent if the value, returned on a LOAD 
instruction, is always the value of the latest STORE instruction to 
the same address; and a multiple-access operation has to be executed 
atomically-that is, excluding any other operation to the same ad­
dress. 

Based upon his definition, van de Goor gives two conditions that 
must be met to achieve coherency. 

1. There is a single path to every AU. 
2. There is a single copy of every AU. 

Clearly both of these conditions can never be met in any reasonable 
computer system. The one path consideration is usually achieved, in 
part, for memory if the system contains only one memory bus. Dijkstra 
[DIJK71] states the requirement in another way, with regard to mutual 
exclusion, when he says: "The switch granting access to store on word 
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basis provides a built in mutual exclusion." Having only a single copy 
of every AU is difficult for systems with caches, register files, TLBs, and 
other such resources where an AU can reside in more than one space at 
a time. 

Ensuring coherency and resolving true dependencies are closely re­
lated issues. Coherency relates to values, while true dependencies relate 
to spaces (discussed in Chapter 8). However, since values are bound to 
spaces during execution, the solutions to both problems revolve around 
managing spaces. 

The potential for the lack of coherency in a shared memory multipro­
cessor with private caches is well documented. However, the potential 
coherency problems associated with an I/0 process that reads and writes 
in memory concurrently with processor reads and writes are not covered 
as well. Consider the following operations and the related problem 
spaces. 

Cache write through. As discussed in Chapter 2, if the memory 
system has a write buffer, the value in the buffer can be different from 
the value in the memory. Thus, reads from the cache must be checked 
against the value in the buffer. 

Cache write back. This operation mode can only have a coherency 
problem if another processor (such as autonomous I/0 systems) refer­
ences the memory before the write-back has been accomplished. 

A lack of coherency arises from the following situation: An AU has 
been fetched into the cache, loaded into the processor's register files, 
modified, and stored from the processor into the cache with a write­
through policy. During the time from when the AU is modified in the 
processor to when the store into the main memory is completed, the AU 
is incoherent. That is, a read reference to the same main memory address 
by an I/0 processor during this time will not produce the most current 
value of the AU. A write-back policy increases the time of incoherency. 

Designers use four basic methods to maintain cache coherency for 
either a multiprocessor with multiple caches or a uniprocessor with a 
cache and concurrent I/0 systems. 

Method 1. Noncached shared-variables. Shared-variables are pro­
hibited from being cached. Thus, all references to shared-variables must 
be served from the main memory. This method is sometimes called static 
coherency protection. 

The VAX. 8800 and the i486 are two examples of processors that use 
Method 1 to ensure that coherency problems do not occur with I/0 
operations. A buffer area in memory, addressed with real addresses, is 
reserved for I/0, and interlocks are provided to ensure that information 
in the buffer is not placed in the cache until the I/0 operation is com­
pleted. These processors reserve 64-Kbyte buffers for I/0. When the 
I/0 transfers are in the assigned buffer spaces, the system inhibits the 
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detection of possible false alarm coherency problems, as they cannot 
occur. Note that this method depends on the software to ensure that 
coherency problems do not occur. 

Method 2. One space for shared-variables. Shared variables are 
cached in only one cache. This cache m!iy be a dedicated cache or may 
be one of the multiple caches in the system. 

This method requires that 1/0 be via the internal bus to/from the 
cache. The only known example of the use of this method is found in the 
Amdahl 4 70/v6. The performance penalty is too great for this method 
to be used with today's processors. 

Method 3. Write invalidate. This method requires that a write to a 
shared-variable result in the invalidation of all other instances of that 
variable. Two forms of invalidation have been used: total invalidation 
of the cache and selective invalidation of the invalid AU [CASE78]. 

Method 4. Write update (write broadcast). This method requires that 
a write to a shared-variable be broadcast to all other instances of that 
variable, which are then updated. 

Site [SITE80] generalizes Methods 3 and 4 by giving the design 
principle involved whenever buffers of any type (for example, caches, 
register files, and TLBs) are used to improve a processor's performance. 
This principle is: "If a datum is copied and the copy i~ to match the 
original at all times, then all changes to the original must cause the copy 
to be immediately updated or invalidated." 

For both Methods 3 and 4, all caches must have the ability to detect 
a write from another processor to a variable currently resident and 
either invalidate that entry or update it. For the uniprocessor case with 
only one cache and one I/O port, the bus activity is observed to detect 
a write from the I/O port to the memory that should either invalidate 
or update the cache, a process called bus snooping. With the VAX, this 
action is called watching the bus [LEON87]. 

Methods 3 and 4 for maintaining cache coherency result in significant 
overhead to the memory system. If a write results in an update, all of 
the caches must halt and perform the update cycle even if the AU in 
the cache will not be later referenced. On the other hand, an invalidation 
strategy requires that the valid bits be turned off in all of the caches, 
causing a cache miss if the AU is later referenced. Weber [WEBE89] 
presents a study on invalidation patterns that shows 0.3 to 3.0 invalida­
tions per shared-variable write for systems with 4 to 16 processors. Note 
that this data will not apply to the uniprocessor I/O coherency problem, 
which is the subject of this book, and no published data is known to 
exist. 

If the caches are multilevel, the system must contain a method of 
identifying all of the caches that require invalidation or updating. The 
complexity of this task is reduced if multilevel inclusion is enforced. 
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4 .2.2 Snoopy Controllers 

As noted above, the problem of coherency exists in a uniprocessor with 
a cache and an I/0 system with or without virtual memory capabilities. 
I/0 reads-and-writes over the system bus have a policy that depends 
on the types of addresses used by the cache and the I/0 system. The 
situations that will have a coherency problem can be detected by means 
of a Snoopy Controller, as shown in Figure 4.13. 

When there is a write-to-memory by the 1/0 processor, a test mu.st 
be performed to see if the address is present in the cache, indicating a 
possible cache coherency problem. With a snoopy controller, the system 
bus accesses a copy of the cache tags, or the tags themselves, with the 
set index and compares the accessed tag with the sector name. In general 
the snoopy controller is accessed by every bus. If there is a hit on the 
tags, the sector is resident in the cache and must be either invalidated 
or updated. If there is a miss, there is no coherency problem. 

The snoopy controller function requires access to cache tags, a ca­
pability that can be provided in one of three ways. The design selection 
is based on cost and performance criteria. 

Shared tags. One set of tags is shared between the users (I/0 and 
processor) with the potential of a structural hazard. Concurrent accesses 
to the tags will result in a loss of perlormance, but sharing eliminates 
any tag coherency problem. 

The least costly method for providing a snoopy controller is for the 
1/0 processor to steal a cache cycle, access the cache tags themselves 
via the index field, and compare the tags with the sector name. This 
method eliminates the cost of duplicating the cache tags but has the 
problem ofreducing the system's performance due to cache cycle stealing. 
As a point of interest, if one directory of tags for the system exists as 
compared to a directory of each cache's tags, the system is called directory 
based. 
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Replicated tags. There is one set of tags for each user. There will be 
no structural hazards, but coherency of tag information itself must be 
maintained. 

A data coherency check is made by accessing memories containing 
replicated cache tags that can be accessed in parallel with cache cycles. 
Each of the tag memories for each of the sets must be replicated. Ob­
viously, the tag memory of the snoopy controller must contain an exact 
image of the cache tag memories in order for the tags to be coherent. 
Thus, when a change is made to the cache's content that modifies a tag 
field , this change must be reflected in all the snoopy controller's tags. 

With a replicated snoopy tag memory, the tag memories must be as 
large as the total tag memory of the cache. For a high degree of associa­
tivity,. this can be a significant burden on the snoopy memory, another 
reason for the preference of direct caches in contemporary processors. 
The IBM S/370/195 reduces the cost of its snoopy controller by snooping 
only the tags of one cache sector by the replacement policy, thus re­
stricting I/0 operations to the snooped cache sector. 

Shared tags with multiports. Concurrent access can be performed 
without a loss in performance and without the tag concurrency problem. 

The third approach to snoopy capability is to make the processor's 
cache tag memory multiported. This approach gives the performance of 
replicated tag memories at a relatively small cost. This approach also 
eliminates the tag memory coherency problem as there is only one copy 
of tag information. The Intel Pentium and the Power PC 601 processors 
provide examples of multiported snoopy cache tag memory. 

For the i486 and MC88200, snooping is used only for multiprocessor 
systems, not for I/0. For these processors, duplication of tags is an 
unacceptable cost over the tags of the on-chip data caches. Writes to 
memory should be infrequent for small multiprocessors and the snooping 
function using the cache tags themselves eliminates the problem of tag 
coherency with replicated tags. The Intel i486 and the MC88200 use 
invalidation with the consequence that a subsequent reference to the 
invalidated location by the processor will cause a cache miss. For proces­
sors with on-chip caches, invalidation is the preferred design when the 
processors are used in a multiprocessor configuration. The processor 
detecting the conflict broadcasts an invalidation signal to all the other 
processors. 

1/0 Snoopy Operation 

The snoopy controller must detect four cases that are the combinations 
of Read or Write of memory and the addressed sector being cached 
or not cached. Each of these four cases calls for a different action, as 
summarized in Table 4.4. The snoopy controller must detect the presence 
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Operation Sector in Cache? 

Yes No 

Write to memory Invalidate or update cache and Write to memory 
write to memory 

Read from memory Write through cache: Read from memory 
Read from memory 
Write back cache: 
Read from cache and 
write back 

TABLE 4.4 1/0 cache coherency. 

of the sector in the cache, comprehend the type of I/0 operation, and 
co=and the proper action. 

The first case consists of an 1/0 write to memory and a sector that 
is not cached. In this case, no coherency problem exists and the write 
can proceed without a problem. The second case is an I/0 write to 
memory and a sector that is cached. There are two basic design options: 
(1) write to memory and invalidate the sector in the cache, or (2) write 
to memory and update the sector in the cache. 

The third case occurs when there is an I/0 read from memory of a 
sector that is not in the cache. In this case, the read proceeds with the 
danger of a future coherency problem. Finally, the fourth case occurs 
when there is an I/0 read from memory and a sector that is in the cache. 
If the cache is write through, the read is made from memory. If the cache 
is write back, the read is made from the cache. These policies ensure 
that the most current value is sent to the I/0 system. 

There are a number of papers describing the performance of various 
snoopy cache systems when used in multiprocessors [ARCH86] and 
[EGGE89]. To my knowledge, however, no similar published data exists 
on the performance for the uniprocessor case with I/0 operations. 

4.2.3 DMA 110 Configurations 
With the above background, I turn to the design options for virtual 
memory systems with caches and concurrent DMA I/0, that is, the 
design options for addressing the cache and the type of address used by 
the DMA I/0 system. The term DMA I/0 is used here to signify not 
only DMA but programmable channel controllers as found in systems 
such as the S/360. Table 4.5 shows the four design options for real/ 
virtual cache and real/virtual DMA I/0 addressing. In the discussions 
to follow on these four design options, attention in the figures is focused 
on the addresses. The data routing for each of these cases is via the 
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Design Cache DMA I/0 
Options 

1 Real Real 
2 Real Virtual 
3 Virtual Real 
4 Virtual Virtual 

TABLE 4.5 Cache and OMA 1/0 addressing. 

system bus as shown in Figure 4.12. For expository purposes, Figures 
4.14 to 4.17 show the snoopy controller with replicated tags. 

D.esign Option 1, real cache-real DMA I/0. The cache is accessed 
with real addresses, as shown in Figure 4.14, and the DMA I/0 processor 
writes into the memory with real addresses. A coherency problem can 
result if a DMA 1/0 port is writing into a cache sector of memory that 
is resident in the cache. If a DMA I/0-write is allowed to proceed, an 
incoherent situation can result between the memory and the cache. The 
bus snooper, indicated by S, observes all addresses passing across the 
bus and the addresses are compared to tags in the cache that are repre­
sented in the snoopy controller. If a match is found, the cache is directed 
to invalidate or update the sector in the cache. 

Design Option 2, real cache-virtual DMA I/0. The cache is accessed 
with real addresses, as shown in Figure 4.15, while the DMA I/0 pro­
cessor uses virtual addresses. The virtual DMA I/0 system addresses 
must be translated to give real memory addresses. This translation can 
be accomplished either by time sharing or multiporting one address 
translation system or by duplicating the address translation system. 
Time sharing one translation system may create a performance problem, 
while duplication has a cost and a coherency penalty because the dupli­
cate tags must also be coherent. 

Design Option 3, virtual cache-real DMA 1/0. A virtual cache with 

Processor 

Input 
Output 

Translation 

Real Address 

FIGURE 4.14 Real cache-real DMA 1/0. 

Invalidate or Update 
,·· ·· ···························· 

Real Tags 
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Processor 

·· ·····- ····· ··· ······ ·· 

Translation 

Shared 
or 

Duplicat.ed 

Data 

Real Memory 

Input 

Output 
TranslatioP ,-;------"'-------.--~ s ------

Real Tags 

FIGURE 4.15 Real cache-virtual DMA 1/0 . 

I nvalidate or Update 
:·• ·······--· -·· · ·- · ·--········ · ·: 

Vtrb.IalAddress 
Processor Data 

Translation 

Real Address 

Input 

Output 

Inverse 

'I'ranslatiDn 

FIGURE 4.16 Virtual cache-real DMA 1/0. 

Virtual Address 

a real DMA I/0 system presents a major design problem. Figure 4.16 
shows this configuration. The cache is addressed with virtual addresses 
and the DMA I/0 processor reads or writes into memory with real 
addresses that, in themselves, require no translation. A coherency prob­
lem, however, can exist if a sector is in the cache from the real address 
space being used by the DMA I/0. This problem is detected by perform­
ing an inverse address translation (real addresses to virtual addresses\ 
that is applied to the tags of the snoopy controller. The cache sector is 
either invalidated or updated depending upon the detection of a coher­
ency problem. The inverse translation system is usually called an inuerse 
translator or a reuerse translation buffer. 

Design Option 4, virtual cache-virtual DMA 110. Figure 4.17 illus­
trates this design in which both the cache and the DMA I/0 processor 
use virtual addresses. Thus, the DMA I/0 processor virtual addresses 
must be translated into real addresses for accessing memory. The ad-
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Processor 

Input 
Output 

Virtual Address 

FIGURE 4.17 Virtual cache-virtual DMA 1/0. 

Invalidate or Update 
,- ....... -. -.................... . 

Data 

I Real Memory 

Virtual 
Tags 

dress translation can be by a shared or replicated translation facility. 
Because the address translation system for the processor is used only on 
cache misses it seems reasonable to share the translation facility. A 
shared syste~ should have a minimum performance penalty plus the 
elimination of translation table coherency problems. 

4.2.4 Processor Control Over Snoopy 
Controllers 

For a number of reasons, the processor needs to be able to exert control 
over the snoopy controller. This is particlarly true for designs where the 
snoopy controller time shares the cache tags between the processor and 
DMA I/O. As discussed in Chapter 5, DMA I/O data transfer activity 
can be relatively high, in the range of one to eight bytes per instruction 
executed. Thus, there is the potential for . a cache access conflict every 
eight or so instructions-a significant performance hit due to locking out 
the cache from the processor. For these systems, it is desirable to have 
the capability of inhibiting snooping to improve performance. Further­
more, for systems that have program control over the data cache for 
write through or write back, the snoopy controller must respond properly 
for invalidation or update on a snoopy hit, as noted in Table 4.4. 

From the above discussion, the basic cache effective access time 
model from Chapter 2 can be modified, as follows, to comprehend shared 
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snoopy accesses of the data cache tags. The tag snoop by the processor 
is accounted for in the normalized access time of the cache as 

tea= 1 + P m1,,.,.T + Pan X tan 

where Pan is the probability of a snoopy cache access concurrent with a 
normal cache access and tsn denotes the time to snoop the cache, usually 
one cache cycle or 1. The net effect of shared snoopy cache access is to 
lengthen the effective cache access time, in the absence of a miss, from 
1 cycle to 1 + P.0 cycles. High DMA I/0 activity (Pan--'» 1) can result in 
a significant performance penalty. For cases where snoopy activity is 
this high, the snoopy tag memory should be replicated or multiported. 

For systems with write through caches, all DMA I/0 reads from 
memory can be accomplished without accessing the cache, as shown in 
Table 4.4. Only DMA I/0 writes to memory need to access the cache. 
This policy has the potential for reducing the need to access the cache 
by approximately 50% and provides an argument in favor of write­
through caches. If the cache, in the example above, is write through, the 
effective access time would be approximately 1.13 rather than the 1.27 
with a write-back cache. 

The MC68040 provides an example of a snoopy controller under 
control of the processor [MOT089]. Within the status word there are two 
control bits (SCl, SCO) for the snoopy controller interpreted as shown in 
Table 4.6. 

The MC68040 shares the cache tags with the snoopy controller. Thus 
there are two access paths and priority must be established for access; 
snooping has priority over data accesses from the processor. Also, the 
MC68040 snoopy controller provides functions to support multiproces­
sors that exceed the requirements of DMA I/0 data transfers only. 
Interested readers should see [MOT089) for additional details. 

The Power PC 601 shares the on-chip data cache tags with the snoop­
ing function. To reduce the cycle stealing from bus snoops, explicit control 

Control 

SCI SCO 

0 0 
0 1 
1 0 
1 1 

Requested Snoopy Operation 

Read Access 

Inhibit 
Read from cache 
Read from memory 
Reserved, inhibit 

Write Access 

Inhibit 
Update cache, write mem. 
Invalidate cache, write mem. 
Reserved, inhibit 

TABLE 4.6 MC68040 snoopy control. 
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must be asserted by the bus. There are two bus signals, TS' (transfer 
start) and GBL' (Global, and I/0 signal), that must be simultaneously 
asserted to qualify a snoop operation. When a snoop is initiated and 
there is a hit on the tags, the processor emits signals to the bus that are 
used by other processors. Motorola [MOT093] provides details on the 
behavior of loads for different bus operations and cache sector states. 
Similar information is provided for stores as well. 

4.3 Other Considerations 

This section will briefly discuss three other considerations with I/0 
syste:ins: memory-mapped I/0, the MESI cache coherency protocol, and 
snooping on write queues. Some of these issues are relevant to multipro­
cessor systems and are only briefly discussed. 

4.3.1 Memory-Mapped 110 

A nwnber of processors augment the DMA I/0 systems described above 
with memory-mapped I/0. This form of I/0 reserves a region of the 
processor's address space for I/0 control and data registers. Transfers 
to and from I/0 can then be accomplished with the normal load and 
store instructions of the processor. The advantage of this form of I/0 is 
low latency; the disadvantages are the loss of some address space, the 
use of program space to explicitly perform I/0, and complications to the 
bus so that the addresses can be recognized. 

With memory-mapped I/0, the virtual addresses created by the 
processor must be translated into real addresses before they can be 
placed on the bus. Thus, the TLB will be called upon to hold an entry 
for I/0. The protection afforded in the TLB is available for I/0 as 
well as normal data movement due to page faults. A significant design 
consideration is whether or not tci cache the address space reserved for 
I/0. Write-back caches are unacceptable because of the long delay that 
can occur with an output operation. 

The PowerPC 601 uses a bit in its segment registers (discussed in 
Chapter 3) to identify when an address is to memory or to a reserved 
space for memory-mapped I/0 [MOT093). Likewise, the Pentium uses 
memory-mapped I/0 while providing direct I/0 instructions. 

4.3.2 Cache Coherency Protocols 

The previous discussion on the response of a cache to a snoopy hit 
assumes a simple model of cache behavior; the block is either valid or 
invalid [DUB088]. This is an appropriate model for a simple write-
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through cache in a uniprocessor because a sector can be in only one of 
two states. 

As discussed previously, when the snoopy controller finds that a 
write to memory by the I/0 will invalidate the contents of the cache, 
the cache sector can be either invalidated or updated depending upon 
the protocol selected by the designer. 

With multiprocessors, the write-through protocol creates bus traffic 
that can be detrimental to the performance of the system, leading to the 
use of the write-back protocol. With a multiplicity of caches, the problem 
of coherency must be addressed, and a number of protocols have been 
investigated for this purpose. Some of these are: Write-Once protocol 
with four states, the Synapse protocol with three states, Berkeley proto­
col with four states, the Illinois protocol with four states, the Firefly 
protocol with three states, and the Dragon protocol with four states. 
These protocols are described by Archibald and Baer [ARCH86J. 

In the early 1980s, a working committee of IEEE started drafting a 
standard protocol that would be used with the IEEE Futurebus 
[GALL91] and a write-back protocol. The result of this early work is a 
five-state protocol called MOESI for Modified, Owned, Exclusive, 
Shared, or Invalid. Table 4. 7 shows the state of the three sector control 
bits-valid, dirty, and shared-along with the five state names of the 
MOESI protocol. Note that if the sector is invalid, the clean and shared 
bits are don't cares. 

The five-state protocol would be very expensive to implement for 
on-chip caches. Motorola's Greiner noted that the owned state could be 
eliminated if the modified and shared states were made illegal at the 
same time [GALL91]. This results in the MESI protocol that has been 
adopted as an IEEE standard and is considerably less costly to im­
plement [IEEE90). 

A sequence of events that must be taken for a read or write for each 
of the four states (eight events) is specified in the standard. The design 
of a cache consistency protocol is tied closely to the design of the bus 

Sector Control Bits 

Valid Dirty Shared MOESI MESI 

Valid Clean Shared Shared Shared 
Valid Clean Not shared Exclusive Exclusive 
Valid Dirty Shared Owned Not permitted 
Valid Dirty Not shared Modified Modified 
Invalid X X Invalid Invalid 

TABLE 4.7 Cache sector coherency control. 
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because signals must be transmitted over the bus to inform the other 
processors about what is happening. Thus, there must be signal lines on 
the bus to permit a cache to signal to other processors a code, indicating 
the state of the cache sector and the transition that is being made. 

The MESI protocol is used with the unified caches of the PowerPC 
601 [MOTO93) and the internal data cache and external unified cache 
of the Pentium [INTE93, INTE93a). The Pentium on-chip instruction 
cache implements only the invalid, shared portion of the protocol as the 
instruction cache is read only and does not have to contend with data. 

4.3.3 Snooping on Write Queues 

As discussed in Chapter 2, processor writes update the cache before the 
block is written back to memory over the bus. This action presents the 
potential for a coherency problem, and the PowerPC 601 is an example 
of how coherency is maintained [MOTO93). The write queue (buffer) 
holds a dirty block (eight words or 32 bytes) that is being written out to 
memory as a result of a cache miss. Each entry of the write queue carries 
the virtual address for the write along with the block of data. A bus 
action from an I/O operation that is to be snooped on the processor is 
presented as a key to the addresses that are associatively searched. If 
there is a hit on a write queue element, the block is first loaded into 
memory before it is used as an update to the cache of the snooping 
master. 

If the source of the snoop signal is a DMA I/O read operation, the 
transfer to memory is accomplished before the read. If the DMA I/O 
operation is a write, the DMA I/O write to memory is completed and 
the contents of the write queue are erased. 

Configuration 

Real cache-real DMA I/0 
Real cache-virtual DMA I/0 
Pipelined real cache-real DMA 1/0 
Pipelined real cache-virtual DMA I/0 
Virtual cache-real DMA I/0 
Virtual cache-virtual DMA I/0 
Restricted virtual cache-real DMA I/0 
Restricted virtual cache-virtual DMA I/0 
* Not snooped, software controls coherency. 

DMA I/0 via System Bus 

VAX*, IBM 370 

i386, i486, Pentium 
IBM RS/6000, PowerPC 601 
i860* 
SPARC II 

MC68030, MC68040 

TABLE 4.8 Example cache-OMA 1/0 configurations. 
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4.3.4 Summary 

Consider the four methods of cache access, discussed previously, com­
bined with the two variations of DMA I/0 system addressing, real and 
virtual, giving eight possible system configurations. Table 4.8 shows 
these configurations and identifies known comput.ers for each. 

Six of the eight organizations are represented by actual implemen­
tations. I can only speculate on the reason for the omission of the real 
cache-virtual D.MA I/0 and restricted virtual cache-real DMA 1/0. 
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5 
Interleaved Memory 
and Disk Systems 

5.0 Overview 

This chapter discusses two important subjects, interleaved memory and 
disk systems, that are usually given only minor attention. Interleaved 
memory, which is used to provide high bandwidth, was of great impor­
tance prior to the advent of practical high-speed memories for caches. 
Currently, innovative architectures of modern DRAMS and various 
forms of interleaving are receiving design and research attention. Disk 
technology has had a remarkable life since the first co= ercial disks in 
1956, the IBM 350 RAMAC. Disks have survived all predictions that 
the technology could go no further; indeed, cost and performance of disks 
have continued to improve. 

5.1 Interl eaved Memory 

Interleaved memories provide high-memory bandwidth by distributing 
the read or write accesses over a number of memory modules, which is 
a form of parallelism. The array disk to be described in Section 5.2.3 is 
another instance of memory interleaving. Early research into interleav­
ing was concurrent with and a "back up" to hierarchical memory re­
search. In the late 1950s and 1960s no one was sure if cache technology 
development would be successful. 

The first known reference to interleaving is found in a description 
of the IBM Stretch [BLOC59]: "The memories themselves are in­
terleaved so that the first two memories have their address distributed 
modulo 2 and the other four are interleaved modulo 4." 

A later reference to the IBM 8/360 [FAGG64] points out that: ''When 
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accesses are made to sequential storage addresses, the storage units 
operate in an interleaved fashion." 

Pirtle [PIRT67] observes: " ... the addresses are distributed over an 
n module memory so that address O is in m(O), address 1 is in m(l) and, 
in general, address Xis in m(i) where i = X modulo n." 

We can see from these statements that there are two uses of the 
word interleaved. One use concerns the units or modules. Interleaved 
modules subdivide the module cycle time into clock periods that establish 
the streaming rate of the memory system. The degree of module in­
terleaving is m and is formally defined as the number of requests that 
can be issued by the processor in one memory module cycle [BURN70]. 
Note that the clock period of the memory and the bus system are related 
as m = tmltc where tm denotes the memory cycle time and tc the bus or 
processor clock time. The other use of the term interleaving concerns 
addresses. Interleaving addresses across modules establishes the se­
quence of module access for a stream of requests. The degree of address 
interleaving is n, which is defined as the number of memory modules 
over which the addresses are interleaved [BURN70]. 

In this chapter, memory systems are described for 1 < m :5 n. With 
many systems, the two degrees of interleaving are equal; that is, m = 
n. However, with some systems, such as those found with supercompu­
ters, the degree of address interleaving is greater than the degree of 
module interleaving; that is, m < n, which is called superinterleaving 
and is discussed in Section 5.1.3. 

Interleaving presents two questions of interest to researchers. First, 
can interleaved memories provide enhanced bandwidth to supply in­
struction and data streams to a processor? And second, what are the 
design parameters of an interleaved memory that supports vector reads 
and writes of supercomputers? With the success of caches, the first 
research objective has almost disappeared as an interesting topic. The 
second research topic is still an area of active research and is discussed 
in more detail in Section 5.1.3. Note that the IBM RT uses a noncache 
interleaved memory system [ROWL86] to provided instruction and data 
bandwidth. 

The requirement for accessing vectors comes from two sources. The 
first source is found in the main memory references of supercomputers. 
Scientific programs frequently access arrays of data stored in memory 
as vectors. The second source is found in the interface between a cache 
and the main memory. A block of AUs are transferred between these 
two memories; this block is a vector of length 4 to 16 and is discussed 
in Chapter 2. 

Interleaved memories are ideal for providing high bandwidth access 
to a long vector of data (either read or write). An interleaved memory 
requires two addresses: the address of the module and the address of 
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FIGURE 5.1 Four-way interleaved memory. 

the word within the module. Low-order interleaving generates these two 
addresses by dividing the memory address by the address interleaving 
degree n: the quotient is the word address presented to each module and 
the reminder selects the module. This division by an integer power of 
two is a trivial operation for designs having a degree of interleaving 
that is an integer power of two. 

Consider a memory of total size 2•, with m = n = 4, as shown in 
Figure 5.1. The four modules are addressed by the two LSBs of the 
address, and the word within the addressed module is selected by the 
high-order bits. This process is called low-order interleaving. 

Addressable units are stored in the modules according to the se­
quence 

Module Addresses 
O 0, 4, ... , 2• - m + 0 

1 1, 5, ... , 2' - m + 1 
2 2, 6, ... , 2• - m + 2 
3 3, 7, ... , 2• - m + 3 

A major disadvantage of low-order interleaving is the difficulty of 
expanding the installed memory. If the installed memory is to be ex­
panded by a factor of 2, for example, how is this to be done? Should the 
degree of interleaving be increased by 2, or should the module size be 
increased by a factor of 2? Increasing the interleaving factor requires a 
major hardware modification. Increasing the size of each of the modules 
is a rather straightforward task. However, both expansion methods be­
come completely intractable if the expansion is something other than an 
integer power of 2. 

Another form of interleaving is called high-order interleaving, in 
which the quotient selects the module and the remainder selects the 
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word within the module. High-order interleaving does not enhance the 
bandwidth of the system over the bandwidth of a single memory module 
but instead provides for easy memory expansion. High-order interleav­
ing also permits the easy intermixing of different memory technology 
such as a combination of RAM and ROM in a small dedicated controller. 

5.1.1 Performance Models 

Performance models for various types of accessing patterns were de­
veloped during early research on interleaved memories. The following 
paragraphs will briefly describe the models of Flores [FLOR64], Heller­
man [HELL67], and Burnett and Coffman [BURN70]. These models were 
created to assist designers evaluate the performance impact of various 
interleaved memories with different workloads. 

There are three useful metrics for measuring and evaluating the 
performance of an interleaved memory. These are 

1. Speedup, S = ratio of the bandwidth of an interleaved memory 
to the bandwidth of a single module. 

2. Acceptance ratio, AR = steady-state ratio of accepted memory re­
quests to total memory requests [CHEU86], 0 :SAR :S 1. AR is an indi­
cator of how effectively the memory design sustainable bandwidth is 
being used. 

3. Mean acceptance ratio, MAR = acceptance ratio that prorates the 
latency of accessing the first module over all of the AUs accessed 
[CHEU86]; 0 s; MAR s 1. 

Instruction and Data Streams 

The models for estimating the performance of an interleaved memory 
are of three forms: (1) instruction references, {2) data references, and (3) 
combined references. The addressing patterns of these three streams are 
quite different and require different performance models. Note that the 
problems or conflicts associated with interleaved memory systems are 
special cases of structural dependencies (discussed in Chapter 8). 

Flores [FLOR64] modeled the situation where a processor and I/0 
channels are contending for access to an interleaved memory. He mod­
eled the time that a request must wait, waiting time, as a function of 
the degree of interleaving, the ratio of I/0 time to processor time, and 
the fraction of time that the memory is busy. For an equal ratio of 1/0 
time and as the memory busy time approaches one, the model gives the 
expected result that the speedup (ratio of waiting time of an interleaved 
memory to a single module memory) is equal to m, the number of in­
terleaved modules. 

The next published model is by Hellerman [HELL67]. This model 
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can be used to predict the performance of an interleaved memory when 
operands are being fetched. Hellerman assumed an equal probability of 
access to each module for the first fetch, followed by fetches to sequen­
tially addressed modules until the Kth reference, as 

S = f (m - 1)! K2 
x-1 (m - k)! mK 

where K denotes the length of a sequence of reads ending in a nonsequen­
tial access. With an approximate solution 

S = m 0 ·56 = Vm for 1 s m s 45. 

The implication ofHellerman's model is that if four memory modules 
are interleaved, the effective bandwidth is approximately twice the 
bandwidth of one module for the data streams of a typical general pur­
pose computer. 

Coffman and Burnett [COFF68] developed performance models for 
instruction, data, and combined streams. Their performance model for 
interleaved memories supplying an instruction stream is 

. . 1 - (1- Ar 
1nstruct10n speedup = ---'---'-­

A 

where A, the probability that an instruction is a taken branch, is equal 
to 1/K. For example, consider a program stream with A = 0.2 and m = 
8. The speedup over a single memory module is 4.16, while Hellerman's 
model suggests a speedup of 2.82 for a random data reference stream, 
which is not a surprising result. The Hellerman model should have 
poorer spatial locality than an instruction stream, hence a smaller 
speedup. 

A data stream model is developed by Burnett and Coffman 
[BURN70] and described in [BAER80]. This model, called the a-{3 model, 
estimates speedup for a data request stream. The assumption is made 
that the first module is selected at random and that for each subsequent 
request there is a stationary probability 1 -A that the next module in 
sequence is accessed on the next request. Any one of the other modules 
is accessed with equal probability f3 = (1 - A)/(m - 1). This model, with­
out a closed form solution, is solved numerically. This solution convinc­
ingly shows the advantage memories where n > m. 

Models such as the a-/3 model are no longer useful to designers 
because most computers buffer instructions, and the data references are 
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for vectors with a stride of one. Models that have stride as a parameter 
are discussed in the following sections. 

Vector Data Streams 

Interleaved memory has been recognized as an ideal organization for 
providing high bandwidth for long vectors of reads or writes. Vector 
access of memory has a characterization parameter, stride, that is not 
present with the models above. 

Stride is the difference between addresses of successive references. 
The addresses, starting at O, for various strides are 

Stride= 1 
Stride= 2 
Stride= 3 

0,1,2,3, ... , 
0,2 ,4,6, ... , 
0,3,6,9 , ... . 

A basic performance model assumes that a vector of consecutive 
AUs (stride= 1) is fetched from an interleaved memory. For a stride of 
one (illustrated in Fig. 2.12), the time per AU is equal to 

~ m-1) tAu = 1 + --. 
tc K 

The speedup of the interleaved memory is 

m 
speedup = S = ------

1 + (m - 1)/K 

The time per AU model assumes that the first reference is to a module 
that is nonbusy. Subsequent references are to non-busy modules as 
guaranteed by the degree of interleaving and stride. Table 5.1 shows 
the performance limits of vector data streams on an interleaved memory 
over a single module memory. 

From the speedup limit we can see that the speedup of an in-

Vector Length K 

1 00 

tAu tm 
Speedup 1 

TABLE 5.1 Vector performance limits. 
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terleaved memory accessing a vector that has a stride of 1 is in the 
range 1 s S :S m. 

The acceptance ratio and mean acceptance ratio indicate how well 
the memory system supports the demands placed upon it. For AR = 1, 
all requests are being serviced without delay. For MAR = 1, the vector 
length must be very long, K - oo, or the effective startup overhead must 
be reduced by concurrency. 

5.1.2 Reducing the Effect of Strides #- 1 

The models presented above show, for strides of 1, the influence that 
the degree of interleaving has on performance. As the models will show, 
strides other than 1 reduce the performance of an interleaved memory. 
For this reason, there is a body of research directed to decoupling the 
effect of stride and leaving only the degree of interleaving in the perfor­
mance models. Most of the reported research was performed in the 1960s; 
however, there is renewed interest in this line of research today. 

When low-order interleaved memories were applied to pipelined and 
array computers, performance problems were discovered. For example, 
if a matrix is stored by row in an interleaved memory and is read by 
column, the read AR may not be the same as the write AR. Instead of 
the addresses smoothly progressing from module to module as with the 
writes, there can be conflicts in the modules when the array is read. 
Figure 5.2 illustrates an example of this problem. In this example, a 
4 x 4 matrix is stored by column in a 4-way interleaved memory. That 
is, successive AUs of each column are placed in different memory mod­
ules with a stride of 1. If the matrix is then read by row, each AU of a 
row is read from the same module with a stride of 4 resulting in S = 1 
and AR = 0.25. The first row (1,1 1,2 1,3 and 1,4) is contained within 
memory module O and can be read no faster than the cycle time of one 
module. 

The reduction in potential speedup when accessing this matrix can 
be generally attributed to conflicts resulting from the interactions of 
stride values and degree of interleaving. Reducing conflicts with in­
terleaved memories has been a research topic for over two decades 

MO Ml M2 M3 [' ,,, ,, '·~ 1,1 2,1 3,1 4,1 
2,1 2,2 2,3 2,4 1,2 2,2 3,2 4,2 
3,1 3,2 3,3 3,4 1,3 2,3 3,3 4,3 
4,1 4,2 4,3 4,4 1,4 2,4 3,4 4,4 

FIGURE 5.2 Matrix stored in interleaved memory. 
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Stride 

1 
2 
3 
4 
5 

s 

4 
2 
4 
1 
4 

AR 

1 
0.5 
1 
0.25 
1 

TABLE 5.2 Speedup and AR for various strides, m = 4. 

[BUDN71, HARP91, RAU91]. Access conflicts can result in a significant 
performance decrease with vector processors when, for example, the 
output of one vector operation is stored by row and the next operation 
needs to read the matrix by column. 

Conflictfree access is possible only if the stride is not a factor or a 
multiple of the degree of interleaving, except for a stride of 1. In the 
example above, the stride is 4 when reading by column and the degree 
of interleaving is also 4. A stride of 3 would be accessed with no degra• 
dation. Table 5.2 shows the acceptance ratio of a 4-way interleaved 
memory for various strides. 

For strides of 1, 3, and 5, AR = 1 while for a stride of 4, AR = 0.25 
because all of the references are to the same module. Several approaches 
have been proposed and used to solve the stride-induced conflict problem 
for interleaved memories having m = n. These approaches are discussed 
below. 

1. Skewed addressing; 
2. Dynamic skewed addressing; 
3. Pseudorandom skewed addressing; 
4. Prime number interleaving; 
5. Superinterleaving, m < n (discussed in Section 5.1.3). 

Skewed Addressing 

Skewed addressing maps an address into the modules in such a way as 
to reduce the conflicts [BUDN71]. An example of skewed storage is shown 
in Figure 5.3, which shows the 4 x 4 matrix mapped into skewed storage. 
If the matrix is stored by row, the AUs of row 1 are stored in MO, 
Ml, M2, M3. However, the second row is skewed one memory module, 
beginning with Ml and wrapping around to MO. The second row is stored 
with an additional skew of 1 and the third with an additional skew of 1 
and so on. Note that the word addresses from the high-order bits are 
unchanged from the nonskewed case. However, the low-order bits of the 
address must be mapped into the module selection bits. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2142, p. 255



5. 1 Interleaved Memory 239 

MO Ml M2 M3 
~~ 

[' 1,2 ,, 1~ 
1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 2,4 2,1 2,2 2,3 
3,1 3,2 3,3 3,4 3,3 3,4 3,1 3,2 
4,1 4,2 4,3 4,4 4,2 4,3 4,4 4,1 

- - .....___ ,..___ 

FIGURE 5.3 s kewed address interleaving. 

The full speedup, S = m and AR = 1, can now be obtained with 
either row or column accessing. Observe that there are strides that will 
interfere with the degree of interleaving and reduce S. For example, if 
one ·or the diagonals of the matrix is read, the AUs 2,2 and 3,3 are both 
found in MO while 2,2 and 4,4 are both in M2, which results in S = 2 
and AR= 0.5. The other diagonal finds all AUs in M3, resulting in S = 
1 and AR= 0.25. Skewed storage requires that a skew factor be built 
into the hardware and used by all accesses. This poses a design problem 
for selecting the skew factor that will give the best performance over 
the anticipated workload. 

Table 5.3 shows the addresses that needed to read the third column 
of the matrix with both normal and skewed (skew = 1) interleaving. The 
word address is the high-order bits, while the module address is the low­
order bits. To read a column, the stride is four; for normal interleaving, 
the module address is unchanged as the word address is incremented. 
With skewed addressing, the word address increases as with normal 
addressing while the module address is formed by adding the skew factor 
to the current module address modulo the degree of interleaving. That 
is, add the skew factor to the module address but do not propagate a 
carry into the word address. The normal interleaved case works the 

Interleaving Method 

Normal Skewed 

Word Module Word Module 

00 10 00 10 
01 10 01 11 
10 10 10 00 
11 10 11 01 

TABLE 5.3 Skewed address 
interleaving. 
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240 Interleaved Memory and Disk Systems 

same way: the skew of zero is added to the module address, keeping the 
module address unchanged. 

An interesting application of skewed storage is found in [MATI 89). 
This study describes the design of a cache that uses multiple chips, 
requiring skewed storage. With this design, reading words from the cache 
into the processor and loading a block from memory into the cache will 
not have stride conflict s. 

Dynamic Skewed Addressing 

Unlike the skew scheme discussed above, dynamic skewed addressing 
selects a skew for the anticipated access pattern of the data that is 
currently active [HARP91]. This technique assumes that the compiler 
can determine the skew that is added to the remainder of the address. 
The addition is done dynamically and can be implemented for a relatively 
low hardware cost. 

In order for dynamic skewed storage to work properly, there must 
be some way to bind the skew value that is u sed for a write to a 
subsequent read of the same data. In other words, a read must have 
access to the corresponding write skew. 

Pseudorandom Skewed Addressing 

Rau [RAU91] points out that any scheme for reducing conflicts that 
depends upon a fixed skew mapping of any type is suspect because 
there are some address patterns that will conflict. As an alternative, he 
describes and evaluates pseudorandom skewing of addresses. 

Two schemes for providing pseudorandom skewing are discussed. 
First, the module address is XORd with a key generated with a pseudo­
random generator; and second, the module address is XORd with a 
polynomial whose coefficients are in the Galois Field. As with dynamic 
skewed addressing, the skew factor must be stored by a write and be 
available for future read operations. 

Prime Number Interleaving 

Recall that conflicts will occur if, and only if, the stride is a factor or a 
multiple of the degree of interleaving. Thus, by selecting m to be prime, 
the number of strides that can produce conflicts is significantly reduced. 
For example, if m = 5, then AR = 1 for all strides except 5, 10, 15, . . .. 
For many problems the stride is an even power of two, thus these strides 
can be process conflictfree. 

The first known proposal for prime number interleaving in the litera­
ture is found in [BUDN71]. I believe that prime number interleaving 
was used on some early drum computers to assist in minimum latency 
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scheduling. The Burroughs Scientific Processor used prime number in­
terleaving with m = 17 [LA WR82]. 

Yang [YANG93] describes a cache for vector processors with a prime 
number of sets rather than an even power of two. The cache is late select 
with the sets interleaved to achieve a high streaming rate. With prime 
sets, the addressing patterns of various strides is broken up, permitting 
the cache to stream without interference. Recall from Chapter 2 that a 
variation of the SPARC has a prime number of sectors [WEIS92]. 

The problem with prime number interleaving is that the address, 
as with all interleaved memory systems, must be divided by the prime 
number degree of interleaving. The quotient is the high-order word 
address into the modules while the remainder is the module select ad­
dress. Division by an even power of two is much simpler than division 
by a prime number. However, it is possible with available VLSI technol­
ogy to perform the division, so prime number interleaving may become 
a viable alternative. The Yang design is based on interleaving with a 
Mersenne prime number of the set (3, 7, 15, ... , (2° - 1)), thus facilitating 
the generation of the cache address. 

5.1.3 Superinterleaving 
Another t echnique for reducing the effect of stride on speedup and AR 
of an interleaved memory is to provide more memory modules than the 
address degree of interleaving, that is, m < n; this method is called 
superinterleaving. Recall that for any m, the clock rate of the system is 
the memory module cycle time divided by m. By implementing a memory 
,.vith m < n, the number of strides that will produce a conflict in a module 
is reduced. 

Computers such as the CDC6600 have addresses interleaved over 
more memory modules than the module degree of interleaving; m < n. 
This technique is also used in the Cray-1 and other computers of the 
Cray family. For the CDC 6600, the memory module cycle time is 1,600 
ns, the system clock is 100 ns, and there are 32 memory modules giving 
m = 16 and n = 32 [THOR70]. The Cray-1 has 16 50 ns modules with 
m = 4, n = 16, and a clock period of 12.5 ns. 

Figure 5.4 illustrates, by example, the benefit of superinterleaving. 
For this example, the addresses are interleaved eight ways (n = 8) while 
the modules are interleaved four ways (m = 4). Recall that m is set by 
the clock period of the processor and the cycle time of the memory 
modules. Eight cases are shown as the stride is varied from 1 to 8. A form 
of reservation table is used to illustrate the operation of this memory; 
reservation tables will be described in greater detail in Chapter 6. A 
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Stride= 5 
l 

1 2 3 4 5 6 7 8 9 0 
1 1 l l 

29 29 29 29 

22 22 22 22 

15 15 15 15 

8 8 8 8 

Stride= 7 

l 
2 

1 
2 

1 
1234567890 
l 1 l l 9 9 9 9 

3 3 3 3 11 11 11 11 

5 5 6 6 12 12 12 12 

7 7 7 7 13 18 13 

Stride= 2 

l 
1234567890 
1 1 1 1 9 9 9 9 17 17 

5 5 5 5 13 13 13 13 

Stride = 4 
l 

1234567890 
l l I 1 25 25 25 25 

19 19 19 19 

13 13 13 13 

7 7 7 7 

Stride= 6 

1 
1234567890 
1 I 1 l 9 9 9 9 17 17 

Stride= 8 

FIGURE 5.4 Superinterleaving example, m = 4, n = 8. 
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Stride s AR Memory Utilization 

1 4 1 0.5 
2 4 1 0.5 
3 4 1 0.5 
4 2 0.5 0.25 
5 4 1 0.5 
6 4 1 0.5 
7 4 1 0.5 
8 1 0.25 0.125 

TABLE 5.4 Superinterleaving performance, 
m = 4, n = 8. 

reservation table is a display of space (the memory modules) on the 
vertical axis and time (in clocks periods) shown on the horizontal axis. 

For the first case with a stride of one, the addresses are applied to 
modules 1, 2, 3, . .. , 8, 9, 10, .... Each module is busy for four clocks, 
indicated by the address number in the table. Because m = 4, each mod­
ule is busy for four clocks when it is cycled. For this case, AR = 1. 

Considers a stride of 3. The modules addressed are 1, 4, 7, .. . , 2, 
5, .... The memory can sustain one reference per clock, AR= 1, after 
the initial 3 clocks oflatency. Note that AR= 1 is obtained because each 
of the modules is used half of the time. In other words, there is a 2X 
overdesign in bandwidth that is devoted to ensuring that AR = 1 is 
sustainable. 

Drawing from the information presented in Figure 5.4, Table 5.4 
tabulates S, AR, and memory utilization for the different strides. For 
strides except four and eight, this memory has S = 1 and AR = 1. Inter­
ference resulting from a stride of four reduces to S = 2 and AR = 0.5, 
while a stride of eight will have S = 4 and AR= 0.25-a performance 
that is no better than a single module because all of the references are 
to one memory module. 

The reservation tables clearly show how excess latent bandwidth is 
used to improve the performance for different strides. Except for the 
cases where the stride is a factor or multiple of n; the utilization of the 
memory modules is 

t .1. t· used bandwidth AR x m 
u 11za 10n=--------

available bandwidth n 

With this example of superinterleaving, if the strides are uniformly 
distributed, the weighted average AR is 0.84 as compared to the m = 
n = 4 case shown in Table 5.1 with a weighted average AR of 0.68. 
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Processor Memory Words Bus Words Memory Utilization; 
per Clock per Clock AR= 1 

Cray-1 16/4 = 4 1 0.25 
Cray X-MP 32/4 = 8 3 0.375 

TABLE 5.5 Cray memory system designs. 

The Cray-1 memory is superinterleaved and has one port between 
the memory and its internal registers . The memory is organized m = 4, 
n = 16. This means that approximately 75% (12/16) of the latent band­
width of the memory is wasted to reduce stride conflicts. The Cray X­
MP extends the address interleaving to n = 32, which provides eightfold 
bandwidth over the capacity of one port [CHEN84]. With this overcapac­
ity, three ports (two input and one output) to/from the internal registers 
can sustain continuous transfers for many strides. However, the Cray 
X-MP memory must support multiprocessors plus an I/O port per 
processor that reduces the bandwidth available for any one processor. 
The memory of these two processors is described in Table 5.5. 

The memory words per clock indicates the maximwn bandwidth of 
the memory. Bus words per clock represents the m.u:nber of buses, and 
the maximum memory utilization is for AR = l and includes the effect 
of the number of memory ports. 

Memories with one port to the processor and a relatively small 
interleaving factor , as is the case of the Cray-1, are relatively simple to 
implement. When the address interleaving is increased along with an 
increase in the number of ports to memory, the complexity of the in­
terleaving schemes becomes costly to implement. The memory system 
of the TI ASC, for example, had· eight memory modules (m = n = 8) and 
eight user ports, requiring two racks of equipment for the crossbar switch 
[CRAG89] (which is a very expensive system component). 

Two of the major changes from the Cray-1 to the Cray X-MP are an 
increase in the number of memory modules from 16 to 32, and an increase 
in the number of ports from one to four (two read, one write, one I/0). 
The memory module cycle time is 36 ns, and with n = 32 the potential 
streaming rate out of the memory system is one word every 1.125 ns. 
Given the complexity of a full 32 x 4 crossbar switch, some hierarchical 
interconnection or multiplexing system is called for, as shown in Figure 
5.5. 

The 32 memory modules are grouped into four sections of eight 
modules each. The modules of a section pass data via eight lines (8 to 1 
multiplexer-demultiplexer) that are then selected by a 4 x 4 crossbar 
switch. With this interconnection scheme, the potential bandwidth of the 
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Modules (banks) 
0 4 24 28 

Section 0 

Line 

1 

Section 1 
Line 

2 4x4 
Read Ports 

Crossbar Write Port 
Section2 Switch 

Line I/O Port 

3 31 

Section 3 
One Processor 

Line Configuration 

Line: 8 to 1 Multiplexer 

FIGURE 5.5 Cray X-MP-2, one processor, memory organization. 

memory is reduced from 32 possible memory references per clock to 
4 memory references per clock because of the constrictions imposed by 
the four lines. With four ports active, there is no excess bandwidth to 
mitigate the effects of conflicts. Note that for each processor in the system 
the four lines and the crossbar switch are replicated. 

The crossbar switch of Figure 5.5 is assumed to be conflictfree for 
all accesses from all ports. However, conflicts exist with the Cray X-MP-
2 memory in addition to the stride conflicts of the Cray-1. The conflicts 
are: 

1. Module (bank) conflict due to access from one port-a stride conflict; 
2. Module (bank) conflict due to access of an idle module by two or more 

ports-a simultaneous bank conflict; 
3. Line conflict due to access by two or more ports-a section conflict. 

The effects of these three types of conflicts have been extensively 
studied [CHEU84, CHEU86, OED85, WEIS92, CALA88, CALA88a]. 
Cheung and Smith [CHEU84] used reservation table analysis of memory 
conflicts to evaluate MAR values; excerpted results are shown in Table 
5.6. Their reservation tables include memory banks and lines as re­
sources. In all of the cases evaluated, stride is set to 1. Their results 
indicate that MARs of 0.8 or better are achievable with the Cray X-MP-
2 memory. 
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Conditions 

Two-vector stream 
Three-vector stream 

TABLE 5.6 Cray X-MP-2 memory conflicts. 

MAR 

0.975 
0.80 

The line conflict problem of the Cray X-MP-2 suggested an improve­
ment for the Cray X-MP-4. This improvement renumbers the memory 
modules, which is a technique similar to skewed storage described in 
Section 5.1.2. The address interleaving (module numbering) scheme for 
these two processors is shown in Table 5. 7 for the first 32 references, 
starting with 0. For example, for the X-MP-2, address 13 is found in 
Bank 3, Module S1. With renumbering, the X-MP-4 address 13 is found 
in Bank 1, Module S3. 

Cheu [CHEU86] shows that the renumbering scheme of the X-MP-
4 improves the MAR over that of the X-MP-2. Specifically, this reassign­
ment changes MAR from 0.929 to 1.0, an improvement of approximately 
7%. 

Note that the number of interleaved addresses per line, called 

Cray X-MP-2 

Bank 

0 1 2 3 4 5 6 7 

Section 0 0 4 8 12 16 20 24 28 
Section 1 1 5 9 13 17 21 25 29 
Section 2 2 6 10 14 18 22 26 30 
Section 3 3 7 11 15 19 23 27 31 

Cray X-MP-4 

Bank 

0 1 2 3 4 5 6 7 

Section 0 0 1 2 3 16 17 18 19 
Section 1 4 5 6 7 20 21 22 23 
Section 2 8 9 10 11 24 25 26 27 
Section 3 12 13 14 15 28 29 30 31 

TABLE 5.7 Cray X-MP-2 and X-MP-4 address interleaving. 
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Number of Sections (NS) 

NBPS 2 4 8 16 

1 0.5 0.25 0.125 
2 1.5 0.75 0.38 
4 3.5 1.75 0.88 
8 7.5 3.75 1.88 0.94 

16 15.5 7.75 3.87 1.93 

TABLE 5.8 Cray X-MP memory latency 
(clocks). 

number of banks per section (NBPS), can be 1 (X-MP-2), 2, 4 (as shown 
above), or 8. Another parameter is the number of sections (NS). The 
selection of NBPS for a given NS can have a pronounced effect on the 
performance of the memory system. However, improving MAR. by 
module renumbering works at the expense of increasing the latency 
(sometimes called startup delays) while transient conflicts are resolved. 
Simulation results on the latency for various NBPS and NS from 
[CALA.88) are given in Table 5.8 for a two-port system. 

The change in interleaving for the Cray X-MP-4 results in an ad­
ditional 1.25 clocks of latency. Similar results for a three-port access 
show that the Cray X-MP-2 has a delay of 0.67 clocks and that the Cray 
X-MP-4 has a delay of 5.11 clocks. Latency is reduced as the number of 
sections increases. This is not a surprising result because if the number 
of sections is equal to the number of modules, then a full crossbar switch 
is specified. For one section, all memory modules are connected by one 
line or a multiplexer offering the maximum potential for conflict from 
references from another port. 

The memory designer must face the issue of balancing MAR and 
latency. As discussed in Chapter 11, for short vectors latency should be 
minimized while for long vectors MAR. should be minimized. Additional 
recent research on the issue of high-performance interleaved memory 
for vector processors is found in [CHEN91] and [HARP91]. 

An interesting comparison of the memory configurations for various 
members of the Cray X-MP family is shown in Table 5.9. 

The data in this table is extracted from [THOM86] and shows the 
number of memory modules in bold and the number of modules per port 
in italics. For example, a four-processor configuration with 8 Mwords of 
memory has 32 memory modules. The number of modules/port is based 
on three ports per processor; the I/0 port is ignored. For example, the 
four-processor system with 64 memory modules has 12 ports and 5.33 
modules per port. 
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Memory Modules Modules/Port 
No. of Processors No. of Processors 

Memory Size 1 2 4 1 2 4 

16 Mwords 32 64 5.33 5.33 
8 Mwords 32 32 32 10.6 5.33 2.66 
4 Mwords 16 16 4.33 2.66 
2 Mwords 16 16 4.33 2.66 
1 Mwords 16 4.33 

TABLE 5.9 Cray X-MP memory modules and modules/port. 

With n = 4, the observation can be made that some models of this 
processor do not have enough memory modules to support the number 
of ports. Any module/port value less than 4 is marginal in memory 
bandwidth and may suffer performance degradation for some bench­
marks. The X-MP-4 with 8 Mwords of memory can be a marginal 
performer. 

5.1.4 Interleaving for Multiport Access 

Memory module interleaving is also used to permit concurrent access to 
a memory when two or more addresses are not to the same module. This 
capability is a feature of the Cray memories described in Section 5.1.3. 
However, a simpler system is used in the Intel Pentium for its data cache 
[ALPE93]. This processor is a superscalar implementation (discussed in 
Chapter 10) that has the need to perform two cache transactions in one 
clock period. This memory system is discussed in this chapter because 
the technique is applicable to multi-access memories in general, not just 
to caches for superscalar processors. 

The basic idea is that with addresses interleaved across m modules 
(m = n), accesses to adjacent address will not conflict and can be pro­
cessed in parallel. Only when there is a module conflict will one of the 
requests be deferred. A simplified block diagram of the Pentium data 
cache is shown in Figure 5.6. This cache has 8 modules, m = n = 8, with 
each module organized 256 x 4 bytes. The total cache capacity is 8 
Kbytes. 

Two addresses can be presented at the same time to the cache. If 
the addresses are not the same, the two addressed memory banks are 
cycled and the two AUs are gated out through the multiplexers. If there 
is a conflict, the U access has priority and the V access stalls for one 
cycle. The designers of the Pentium considered a dual-port cache as well 
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Each bank can be independenUy accessed 

MO Ml M2 M7 
2 
10 

7 
15 

. .. . ... .. .... ....... . .. ... ~•------· ................ -

UData VData 

FIGURE 5 .6 Pentium interleaved data cache. 

as thls interleaved cache and selected this design based on its smaller 
area and reduced complexity for handling data dependencies. This cache 
is discussed further in Section 10_2.2_ 

5. 1 .5 Cache-Memory Transfers 

The use of interleaved memory as a technique for reducing the transport 
time of a block to/from a cache is discussed in Section 2.2.1 and Figure 
2_13_ Because a block is a vector with a stride of one, an efficient transfer 
is achleved. For example, the IBM S/360/85 has a 4-way interleaved 
core memory, each module having a word length of 16 bytes and cycle 
time of 1.04 µ.s_ The processor and cache have a cycle of 80 ns. The 
interleaving is specifically designed to transfer a 64-byte block. After 
the first module cycle is initiated, the second module read starts 80 ns 
later, then the third, then the fourth _ The first 16 bytes of the block are 
transferred at the end of the access portion of the cycle, and each of the 
other 16 bytes comes 80 ns later. For this design, a = 1.04 ns and b = 
80 ns_ Note that the parameters a and b are defined in Chapter 2 in 
terms of clocks, not time. 

The performance effect of block size and interleaving is modeled in 
[SMIT87]. The length of the block can have a critical impact on the 
cache performance if the cache is blocked during a block load. However, 
if one of the methods of load forward or fetch bypass is used, this perfor­
mance penalty can be reduced. 
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5.1 .6 Nib b le, Page, and Static Column Mode 
Dram s 

This section briefly describes memory chips that achieve an efficient 
transfer similar to that possible with interleaving. Nibble-mode DRAMS 
supply four bits in one cycle. A page-mode DRAM accesses the array and 
holds the accessed row in a buffer that is then accessed by the row (low­
order bits) address. The size of the buffer is the square root of the number 
of bits in the chip. For example, a 1 M-bit device will have a 1024-bit 
buffer, which provides a possible block size of 128 bytes. The static 
column mode is similar to the page-mode DRAM and provides a faster 
transfer of bits after accessing the row. 

The Texas Instruments TMS44C256 DRAM serves as an example 
of a nibble-mode device, shown in Figure 5.7. The TMS44C256 is or­
ganized 256 Khits x 4 bits (1 M-bit DRAM). Internally it consists of 4, 
256-Khit arrays as shown in Figure 5.6. This device is supplied in three 
speed ranges; this example uses the highest speed one. 

A read cycle is initiated with the presentation of the address (18 
bits), and each of the four arrays are read. As shown in the cut-out, each 
array is organized 512 x 512 bits. Nine bits select a word in each array, 
and the output bit is selected by the other nine bits. The read cycle 
places 512 bits in each of four buffers for a total of 2 Kbits. These bits 
are gated into the output, either as a 4-bit nibble or, ifin the page mode, 
up to 512 nibbles in sequence. 

The performance model for the nibble, page, and static column de­
vices is the same as that of interleaved memory. That is, there is a time 
a required to fetch the first AU and then a time b to fetch each of the 
successive AUs. The total transport time increases monotonically with 
the block size unless another fetch is required to start the cycle over 
again. For the TMS44C256, the read and write cycle time is 150 ns and 
the read or write page mode is 50 ns. The parameters for computing the 
transport time are a = 150 ns and b = 50 ns. 

Data Out 

FIGURE 5.7 DRAM organization. 

9 Bil Address 
Row Select. 

9 Bil Address 
Column Select. 

· · · · ·· ···•·······-···--lli_t_Q!'.t ............. . 
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5.1.7 Wide-Word Interleaved Modules 

Another method for increasing the bandwidth of a memory is to increase 
the width, in bits, of a memory module to a multiple of the addressable 
unit (2X, 4X, ... ). In addition, a number of these modules can be module 
interleaved for even greater bandwidth. 

Consider a memory module with a width of two AUs and with four 
of these modules interleaved as shown in Figure 5.8. The matrix of 
Figure 5.2 is stored in this memory as shown. The high-order address 
bits select the word in each of the modules; the low-order address bits 
select the module and the left-hand or right-hand word of the addressed 
module. 

~fthe matrix is accessed by row, the maximum bandwidth is obtained 
because the stride is one. Under these conditions, the speedup is S = 
m x W; where W = number of AUs per memory word= 2, S = 4 x 2 = 8. 

On the other hand, there can be addressing patterns that will refer­
ence only one module. Under these conditions, S = 1. Thus we see that 
1 ::;; S ::;; (m x W ). 

Experience has shown that wide-word interleaving yields a speedup 
that is similar to module interleaving. Expressing this relationship in 
the terms of Hellerman's model for random data addressing patterns, 
the effect of interleaving is Vm and the effect of having a wide-word is 
v'W. Furthermore, the effect of these to enhancement steps is multiplic­
ative;S = Y(m x W ). 

It is interesting to note that von Neumann [BURK46] proposed wide­
word interleaving as a memory organization. The memory is discussed 
in Chapter 2 in terms of being a queue. In the simple example given in 

Word Address 

MO 
1,1 1,2 
3,1 3,2 

Ml 

1,3 1,4 
3,3 3,4 

M2 

2,1 2,2 
4,1 4,2 

M3 

2,3 2,4 
4,3 4,4 

._ _ _ ....,.....i.---~-----+---- OR 
;_ _____ __:,;_ __ .....'._:=""'"---....i..--,-+....i.------- OR 

MSBs 

Address L-----...i Multiplexer 

FtGURE 5.8 Wide-word interleaving. 
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Chapter 2, three memory cycles are required to read five instructions. 
A memory that is only 20 bits wide would require five memory cycles. 
Thus, the speedup is 5/3 or 1.666, which is rather close to 
YlX2 = 1.414. The simple model and example give speedup predict ions 
that are reasonably close to each other. 

The most compelling reason for wide-word memories today is t,o 

reduce the cache miss transport time. Wide-word memories complement 
wide busses, reducing the number of clocks required to transfer a block 
to/from a cache. Recall from section 2.2.1 that the memory modules of 
the IBM S/360/85 are eight bytes wide. Thus only four clocks are needed 
to transport a 32-byte block from the memory to the cache. 

5.2 Disk Systems 

The input/output of a computer has always been a bottleneck in system 
performance. During the early years, punched cards were the primary 
I/0 media, followed later by magnetic tape. With the advent of the first 
commercial disk in 1956. cards have disappeared and magnetic tape has 
become archival media. The IBM 350 RAMAC, introduced in 1956, had 
a capacity of 40 Mbits (not bytes!) on 100 surfaces with an access time 
of 0.5 seconds [MATI 77]. Access t,o the RAMAC is random when com­
pared to magnetic tape, and the name RAMAC is taken from Random 
Access Memory with the then-common suffix AC. Even though magnetic 
drums were used for mass storage and virtual memory as early as 1948, 
they were severely limited in capacity and the RAMAC type disk was a 
welcome replacement. 

A disk is organized in a hierarchy of data storage areas described in 
Figure 5.9. The basic storage unit is the sector, which contains 32 Kbytes 
t,o 4 Kbytes. A sector is the unit of transfer between the disk and main 
memory and is usually the page in a virtual memory system. A track 
consists of 4 Ksectors to 8 Ksect.ors, and there are 30 to 2,000 tracks on 
a surface. Note that the disk sector and cache sector are not the same 
thing. The tracks are accessed with Read/Write (R/W) heads on an arm 

Sector: Track: Surface: ·Disk: 

QOOO~ 
32-4K Bytes 4-SK Sectors 30-2,000 Tracks 1-20 Platters 

FIGURE 5.9 Disk storage hierarchy. 
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positioned over a track by an actuator. Each platter has one or two 
surfaces, and 1 to 20 surfaces make a disk unit. Needless to say, these 
hierarchy numbers change with time, generally increasing, and are only 
a guide to the relative dimensions. 

Another component of disk organization concerns the relationship 
between the arms with their R/W heads and the tracks; each surface 
has at least one arm with its R/W head. Disk systems with more than 
one arm (either more than one arm for one surface or more than one 
surface each with one arm) can have either independent arm movement 
(independent actuators) or the arms can be ganged together in groups. 
The tracks under a ganged group of heads are known as a cylinder, a 
term taken from drum technology. A cylinder consists of the tracks that 
are under the heads at one time. Note that for a system with independent 
arm movement, cylinders can be virtualized by positioning the arms 
over the tracks of a cylinder. 

The discussion above highlights heads that have the combined func­
tion of read and write. However, disk technology is moving in the di­
rection of independent read and write heads. The reason for this is that 
recording and reading are no longer complementary with the higher 
areal densities and purpose-designed heads are required as well as ac­
companying arms and positioning circuits. 

Two examples of disk organization hierarchy are shown in Table 
5.10: the Cray DD-49 disk unit, as reported in [KATZ89], and the EX-2, 
5-1/4" floppy reported by [SARG86]. The first is a high-capacity disk for 
a supercomputer. These parameters reflect formatted disks. 

Disk surface areal density (bits/inch x tracks/inch) has increased 
at a rate of 26% per year since 1971, and these increases have translated 
almost directly into cost reduction. However, even with improvements 
in both latency and transfer rate of the early disks as compared to 
magnetic tape, disk systems remain a limiting factor in computer system 
performance because of their mechanical characteristics that limit lat-

Bytes/Sector 
Sectors/Track 
Tracks/Surface 
Surfaces/Platter 
Platters/Disk 
Total Capacity 

Cray EX-1 

42 
4096 
443 
2 
8 
1.2 Gbytes 

Cray EX-2 
(floppy) 

512 
15 
80 
2 
1 
1.2 Mbytes 

TABLE 5.10 Example disk parameters. 
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ency reductions. In this chapter several issues concerning disk systems 
are addressed, including disk latency, bandwidth requirements, perfor­
mance, cost projections, interleaved disks (RAID), and disk caches. 

5.2.1 Disk Requirements 
There is very little solid information published on the question of the 
disk bandwidth and storage requirements based upon workloads that 
can serve as a design guide [GOLD87]. The usual design approach is to 
assume that all of the disk parameters are inadequate to the task and 
the designer should provide the needed capacity and then just provide 
the best performance possible with the selected disks. In fact, most of 
the research in the use of disks has been directed toward this second 
step: overcoming the inadequacies of the disks. For example, [MILL91] 
reports on measurements of I/0 activity made on a Cray Y-MP 8/832 
when executing scientific benchmarks. Unfortunately, most of the data 
is referenced to CPU time and are therefore of limited use for design 
guidance. 

Five parameters are commonly used to characterize a disk system. 

1. Capacity. Bytes of storage (formatted). 
2. Bandwidth. Bytes transferred/unit of time. 
3. Service rate. Number of service requests satisfied/unit of time. 
4. Response time. Time between the start and completion of an event. 
5. Cost. $/Mbyte. 

The reader should keep in mind that the requirements for disk 
systems are different for mainframes and single-user computers. In the 
former case, capacity and service rate are of prime importance; for the 
latter, response time is of prime importance. These differences are dis­
cussed in the following paragraphs. 

Capacity 
A study by Goldstein [GOLD87] indicates, for mainframe computers, 
that the average disk storage capacity is 3. 7 Gbytes per MIPS; see 
Figure 5.10. The plot shows the capacity per MIPS from a customer 
survey taken in 1985. This data is for large mainframe applications and 
does not reflect the requirements of work stations and other single-user 
computer systems. However, servers should have approximately the 
same disk capacity per MIPS as mainframes. 

Other data from Goldstein's study, reflected in Table 5.11, shows 
that the capacity index has remained relatively constant at 3. 7 Gbytes/ 
MIPS since 1980. 

The capacity of the hard disk of a typical personal computer has 
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300 

200 Slope=3.7 GB/MIPS 

Gigabytes ■ 
■ 

100 

0 20 40 
MIPS 

FIGURE 5.10 Mainframe disk capacity versus MIPS. 

Year GB/MIPS 

1972 1.5 
1974 2.0 
1976 2.6 
1978 3.5 
1980 3.7 
1982 3.6 
1983 3.7 

■ 

TABLE 5.11 Mainframe disk capacity versus year of survey. 

60 

grown from 5 Mbytes in 1988 to 250 Mbytes in 1994, which is an absolute 
capacity growth rate of 32% per year. A typical PC of 1980 and 1994 both 
have approximately 5 Mbytes per MIPS; installed hard disk capacity is 
tracking the increase in processing rate. Note, however, that the PC 
ratio of 5 Mbytes per MIPS is 1/740 that of the Goldstein mainframe 
ratio noted above. We can see from this information that there can be 
a major difference in ratio of disk capacity to MIPS depending upon the 
particular use and application of the computer. 

Bandwidth 

One of the famous computer design "laws" is the Amdahl Law, also 
called the CASE/AMDAHL law [HENN90, AKEL91), that states that a 
balanced system should provide a bit of 1/0 transfer for every instruc-
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Problem Type 

Scientific 
Commercial 
Interactive 

Bits Transferred 
per Instruction Executed 

1 
2 
4-8 

TABLE 5.12 1/ 0 bandwidth requirements. 

tion executed. However, I cannot find a reference to this law in the 
published literature attributable to either Amdahl or Case. I can only 
conclude that this law is a rule-of-thumb in the computer art with no 
recognized reference to an author. A balanced system is one in which all 
of the queue depths are stable and are approximately equal to one and 
one component is not significantly limiting the performance of the 
system. 

The definition of bandwidth in Chapter 2 is changed when referring 
to Amdahl's law in that the normalizing function is an executed instruc­
tion rather than time. Taken at its face value, Amdahl's law means that 
a processor executing at the rate of 10 MIPS will require an average 
I/O transfer of 10 million bits (1.25 Mbytes) per second. And, because 
the transfers would be in bursts, the peak transfer rate will be much 
higher. 

Another view of the bandwidth requirement is given by Matick 
[MATI77] and shown in Table 5.12. The data shown is a composite view of 
data published by other researchers in 1970 and 1971 and is quite old. 

Notice that for scientific processing, one bit is transferred for each 
instruction executed, which is the same value cited as Amdahl's Law. 
However, for interactive processing, the I/O requirement is 4 to 8 times 
more demanding, and transaction processing should have approximately 
the same requirement. As interactive and transaction processing 
increase in importance, the need to provide high I/0 bandwidth is an 
important design problem. 

A small amount of contemporary data exists on this issue. An I/O 
demand of 0.73 bits per instruction has been reported for a VAX 8800 
executing a mix of batch, system, and interactive tasks [CLAR88]. For 
a scientific program, an atmospheric simulation model on a Cray-2, 0.32 
bytes per instruction are required [CATL92]. 

Data presented in [KATZ89] shows that the bandwidth of a single­
disk system is in the range of0.3-3.0 Mbytes per second. Based upon one 
bit per instruction, these disks are capable of supporting approximately 1 
MIPS of interactive processing. Thus, a single disk is inadequate for 
high-performance processors in most programming environments. 

Current research concerns techniques for improving disk system 
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bandwidth by spreading the data over a number of disks, or disk array. 
An early survey of disk array research is found in [KATZ89]. A simple 
example of the disk array technique is to consider that 32 disks are used 
to store data. If the basic disk bandwidth per disk is 2 Mbytes per second, 
the aggregate bandwidth is 64 Mbytes per second. The technique of 
arraying disks is similar to interleaving memory modules discussed 
previously. Some of the major design issues with disk arrays are data 
layout, buffering, reliability, and error recovery (discussed further in 
Section 5.2.3). The first known example of a commercial disk array can 
be found in the Connection Machine Data Vault [KATZ89]. 

Latency 

The deficiency in disk bandwidth or transfer rate is usually masked by 
the very long latency of a disk access. Latency of a disk consists of two 
components: (1) seek time and (2) rotational latency. Seek time is the 
time needed to position the head under the desired track and consists of 
the arm start time, traverse time, and stop time. Complex hardware 
mechanisms have been designed to reduce seek time and improve the 
positioning accuracy of the head. Nevertheless, seek time can be in the 
range of 2 ms to 10 ms depending upon the number of tracks to be 
crossed. 

In addition to hardware approaches to reducing seek time, arm 
scheduling algorithms can be employed to reduce effective seek time. 
Effective seek time reduction can be achieved by taking requests off the 
queue such that the request for a close track is served before a request 
for a distant one. For heavily loaded systems that have a large number 
of requests in the queue, arm scheduling works well. However, arm 
scheduling does not always improve seek time. For example, systems 
that are balanced with regards to processing and 1/0 should have an 
average queue depth of less than one; consequently, arm scheduling 
becomes ineffective [KIM 87]. Also, arm scheduling is of little benefit to 
single-user systems unless there are background batch jobs executing 
that will fill the request queue. 

Rotational latency is the time required for the desired sector to reach 
the R/W head and is set by the rotational speed of the disk. Rotational 
latency is, on average, one half of the disk's rotation time. Many disks 
rotate at 3,600 RPM, giving an average rotational latency of 8.3 ms. 

One approach to improving the rotational latency of a disk is ro­
tational positioning sensing (RPS). One use of RPS is to schedule disk 
transfers of the queue based on serving the first sector that will be under 
the heads, which is similar to arm scheduling. Another use of RPS is to 
improve the utilization of the disk channels. With RPS, after the access 
command is presented to the disk, the channel is disconnected and made 
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available for another access. Then the position of the disk is sensed and 
as the desired sector approaches the head the channel is reconnected. 
RPS is discussed further in Section 5.2.2. 

Ng points out that there is a potential problem with RPS when used 
to improve channel utilization [NG91]. Because of the great difference 
between latency and data transfer time, large systems disconnect the 
channel after a request has been made to the disk for an access. There­
fore, the channel is free to transfer data to/from another disk. However, 
there is a possibility that the channel is still connected to the other disk 
and cannot be restored to the disk that released it. When this happens, 
an RPSmiss occurs, requiring another complete rotation before the re­
quest can be serviced. The latency of an RPSmiss can be greater that 
the seek time. Ng discusses four methods by which the problem with 
RPSmiss can be reduced. These include three forms of data redundancy 
and a dual actuator approach. 

The dual actuator approach has a heritage in the paging drums of 
the 1960s, which had two heads per track and zero seek time because 
each track had a head and the average rotational latency was cut in 
half to. approximately 4 ms. Data redundancy is also used on paging 
drums with only one head per track; redundant data is placed 180 
degrees apart. Thus, one copy is always within a half rotation of the 
head. Another trick for eliminating rotational latency is to have the 
sector size equal a full rotation of the drum. The sector is transferred 
into a random access memory; consequently, the transfer could start at 
any point in the sector. Paging drums are no longer used because of the 
availability of low-cost RAM used as either main memory or as a disk 
cache. 

The total latency (seek plus rotation) for one actuator of a main­
frame class disk has decreased from approximately 30 ms in 1985 to 
approximately 15 ms in 1990-a reduction rate of 13% per year. Even if 
the rate of decrease in total latency continues to the year 2000, the 
latency will still be approximately 4 ms-the same as that obtained with 
paging drums. 

In addition to arm scheduling and RPS, the use of buffers or disk 
caches has significantly improved the latency of disks where either (1) 
software prefetching is effective or (2) the pages demonstrate temporal 
locality. A hypothetical system, circa 1965, is shown at the top of Figure 
5.11. This system transfers I/0 directly into and out of main memory. 
Using the Matick data of 1 million bits per 1 million instructions for 
scientific programs and assuming that the sector size is 8 Kbits, the 
sector accesses per million instructions is 

accesses/million inst. = 1 x 106 x 103 = 125. 
8 
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System circa 1965 

M:,, I • L • I """''' 
: 125 Access/ Million Instructions : 

: .. ........ ~ -~-iY !.!!~~~?.~~- ......... : 

System circa 1985 

I Main ~---11o~1 BLuftiargeer I Iii ► I Disk(s) 
Memory "' _ . t _ 

··················· ···················· 
: 15 Accesses/ Million Instructions : 
:_ ......... ~ -~-i~-~ l.r;~~~?.~~- ......... : 

FIGURE 5.11 Disk requirements reduced with disk buffers. 

The systems of the 1960s had small buffers that only smoothed the 
flow of data between the main memory and the disk. However, as the 
buffers increased in size, the "miss rate" on these buffers decreased and 
the traffic on the bus between the buffer and the disk decreased. The 
transition is now underway to convert the buffers into hardware-man­
aged "disk caches." The benefits of buffers can be found in Goldstein's 
data from a 1985 survey, which shows 15 disk accesses per second are 
required for each MIPS or 15 accesses/million instructions; see the bot­
tom of Figure 5.11. The 1985 system has a buffer between the main 
memory and the disk that operates similar to a cache and has a P miss 

estimated to be 15/ 125 = 0.12. 
Note that the number of bits of real-disk I/0 and the number of 

real-disk accesses per instruction is reduced by the use of buffers only 
to the extent that files have temporal locality. The buffers decouple 
many of the disk accesses and transfers from the physical disk by servic­
ing them in the buffer, hence reducing the number of real-disk accesses/ 
instruction by a factor of eight over this twenty-year period. This reduc­
tion is 11 % each year, which is close to the 10% reported by Goldstein 
for the period 1980-1985. 

Because of increasing instruction processing .rates, ever higher ac­
cess rates and I/0 bandwidth are required. Table 5.13 shows projections 
of bytes/instruction, bytes/second, and accesses/second for the disk sys­
tem (that is, buffer accesses of the disk). This projection is based on an 
increase in MIPS of 30% per year and a decrease in I/0 bytes per 
instruction of 10% per year resulting from buffering. By the year 2000, 
the disk must be capable of 6 Mbytes/sec and 225 accesses/sec. 

The developments in disk arrays will ensure that the bandwidth 
requirements are achieved. However, research into short latency disks 
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Disk, After Buffering 

Year MIPS Bytes/Inst. Bytes/Second Accesses/Sec. 

1985 5 0.10 500,000 15 
1990 20 0.06 1,200,000 36 
2000 300 0.02 6,000,000 225 

TABLE 5.13 Disk bandwidth requirement projection. 

has not yet indicated a way to achieve the goal shown in the table. As 
with caches and virtual memory, buffers must still be loaded with the 
working set and, this time, may be a major determinant in the response 
time of a system, regardless of the use of a buffer. Long response time 
or disk latency is particularly detrimental to single-user workstations 
and PCs. 

Service Rate 

Service rate (also called throughput and bandwidth) is defined as "the 
a.mount of work completed in a specific interval of time" [DONO72]. 
There are two views of service rate: The theoretical maximum service 
rate of a system and the actual service rate of a system that is receiving 
work requests. The latter is always less than the former. Factors such 
as the number of disk channels and load on the CPU play significant 
roles in setting the service rate of a disk system. 

The combination of latency, bandwidth, and scheduling produce a 
service rate measure of the disk in terms of transactions/second. The 
first co=ercial disks, circa 1965, could perform approximately 3 ac­
cesses per second. Referring again to the data of [KATZ89], for the disks 
listed, the maximum service rate is in the range of 0.8 to 50.0 I/Os per 
second per actuator, not counting queue time. 

Analytic modeling techniques have been developed that permit de­
signers to evaluate trial designs and to assess tentative system changes 
to improve performance. Buzen developed a canonical model of a pro­
cessor system [BUZE71, DENN78] that is used to evaluate processor 
and disk configurations and the level of multiprogramming. The issues 
discussed in the next paragraphs concern how the mean service rate 
varies as the system parameters are changed. 

The Buzen model, as shown in Figure 5.12, is called the central 
server model. The central server model has one CPU and m I/O devices 
with service rates m,. As a task completes processing, it is put into one 
of the 1/0 queues or exits and is replaced by an identical task that is 
placed on the CPU queue. The probabilities of these paths are given by 
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I/0 Devices 

CPU • • 
• • 

FIGURE 5.12 Central server model. 

Pm· After an I/O event, the job is placed on the CPU queue. The I/O 
devices are assumed to be disks, drums, or a combination of the two. 
The response time solution to this model is found by recursively evaluat­
ing the response as the degree of multiprogramming is increased from 1 
to 2 and so on. In addition to response time, the utilization of each of 
the I/0 devices and the CPU can be determined. 

Allen [ALLE80] provides an example of the use of the central server 
model for a system with a CPU and two I/O devices. The service rates 
and transition probabilities are 

!Lo = 100/sec, 
/J-1 = 25/sec, 
/J-2 = 40/sec, 

P0 = 0.1; 
P 1 = 0.2; 
P2 = 0.7. 

The level of multiprogramming is set to 4. A proposed change is to 
replace I/O device # 2 with a faster device; what are the original and 
the improved service rates? The results from the Buzen Central Server 
model are shown in Figure 5.13. By doubling the service rate of the disk 
# 2 from 40 to 80 I/Os per second, the service rate of the system increases 
from 5.17 to 7 .43 tasks per second-an increase of 43%. Other system 
changes can be investigated, such as a faster processor and/or increasing 
the performance of the slowest I/O device. Note that the asymptotic 
service rate of this system, with I/O devices that are infinitely fast, is 
10 tasks per second as 10 passes through the CPU are required to 
complete a task. With these very fast disks, the system becomes CPU 
bound. 
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10 ··················· •·•····················•·· 

Mean 
Service Rate 5 

Gobt>Jsec) 

10 50 

FIGURE 5.13 Service rate, mean jobs per second. 

100 

Analysis of systems performing conventional file-based 1/0 clearly 
indicates the detrimental effect of slow disk systems on total system 
performance. Reddy and Banerjee [REDD89] examined various alterna­
tive configurations of multiple disks and evaluated their performance 
for various scientific workloads. Akella and Siewiorek [AKEL91) survey 
various performance models. They measure the performance of VAX 
processors in relation to the measured performance of their models. 

Response Time 

Response time (also called latency) is the time between the start and 
completion of an event. The techniques of queuing theory are useful in 
evaluating response time for certain classes of systems. A thorough 
discussion of queuing theory is outside the scope of this book. However, I 
want to discuss a simple model; interested readers can consult (JAIN92). 

For transaction processing and batch systems, response time is an 
important service parameter. While the system owner is interested in 
service rate and system utilization, users want rapid response time. A 
large transaction system may process thousands of transactions per se­
cond, and each transaction may require tens of disk accesses. Thus, the 
service rate of the disk system is an important parameter in satisfying 
a response time specification. 

An open system queue model can provide an estimate of the response 
time of a transaction-processing system. The model assumes that there 
is an infinite pool of requesters and that when a request is serviced, the 
requester leaves the system. The arrival rates and service rates have 
Poision distribution. Transaction-processing systems, as well as grocery 
checkout and airline service counters, can be analyzed by this model. 
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where tq denotes the mean time in the system, that is, queue 
time + service time; µ, is the mean service rate; and A is the mean 
arrival rate. 

Two observations can be made about this model. If the arrival rate 
approaches zero, the mean time in the system is 1/ µ,, and if the mean 
arrival rate approaches the mean service rate, the mean time in the 
system approaches infinity. Both of these results can be observed in real 
life situations. 

We can apply this model to the system described in the discussion 
on service rate, that is, a system with µ, = 5.17 tasks per second. If tasks 
are arriving at A = 2 requests per second, the mean time in the system 
for a task is 0.315 seconds. A task is in the queue for 0.122 seconds and 
is processed for 0.193 seconds. With the infinitely fast disks,µ, becomes 
10 and the mean time in the system increases to 0.125 seconds. With 
this model, a system designer can trade off system cost with customer 
response time. 

Note that the open system model can give misleading results if not 
properly applied. The assumption of an infinite source of requesters and 
no return to the input is not valid for many systems. For example, a 
system with a number of terminals must be modeled by a closed system 
model. Denning [DENN78] provide an excellent treatment of closed sys­
tem models. 

Disk Cost Projections 

The areal density of disk recording increased from 0.002 Mbits/in2 in 
1957 to 10 Mbits/in2 in 1980-an increase of approximately 43% per 
year [HARK81] that continues today. The cost of disk storage is shown 
in Figure 5.14, using data taken from IBM prices to the user that do not 
reflect the cost for PC related disks today. The slope of the curve is 
indicative of the reductions in price that have resulted from the stimulus 
of cost reductions of PC disks. Note that the figure uses dollars of the 
year. As inflation has been approximately 5% per year over the period 
1965-1990, the reductions in disk price in constant dollars have been 
an astounding 25% per year. Note that 1 Mbyte of Model 2311 disk cost 
$3,300 in 1964. By 1993, the user price of the IBM 9377 disk array is 
$6.64 per Mbyte. There is little reason to doubt that similar cost reduc­
tions will continue at approximately the same rate over the next 10 
years. 

The lowest cost per Mbyte in the 1990s is found in disks used in 
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FIGURE 5.14 Disk cost history. 
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personal computers; high-volume applications costs are one-third to one­
half those shown in Figure 5.14. Replacement disk systems for PCs cost 
approximately 50t per Mbyte in 1995. The major reason for this differ­
ence in cost, I believe, is that the cost learning curve that has been at 
work in the semiconductor industry is at work in the disk industry as 
well. Another reason for this difference is that high-volume PCs are sold 
with overhead and profit margins significantly lower than those found 
with mainframe computers. 

Summary of Disk Projections 

Goldstein's [GOLD87] survey, for moderate to large commercial MVS 
installations, shows that disk system response time in 1980 was in the 
range of 40 to 60 ms; an average of 46 ms is used in his· studies. One 
survey shows response time averaged 30 ms- a decrease of 9% per year. 
It is projected that the trend to shorter response times will continue. 
Goldstein believes that a reduction of 13% per year in average response 
time will be required by systems and is possible to be obtained. 

Goldstein combined his projections of 1987 and made a forecast of 
the performance of an "average installation" using a 30% per year growth 
rate in the installed MIPS. His projections are shown in Table 5.14. 

The reduction in response time for the systems of 1990 and 1995 is 
predicated on caching. These caches are assumed to have a hit ratio of 
approximately 0.9. For any of the years, the installed disk capacity is in 
excess of a single drive and requires an aggregation of disk drives. 
The 510 Gbytes of 1990 requires 68 IBM 3380 units. Large computer 
installations often speak of their disk "farms" in terms of"acres of disks." 
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1985 1990 1995 

Installed MIPS 35 130 483 
Gbytes of Disk 130 510 2092 
Accesses/Sec (A) 525 1387 3078 
Response Time (tq) 30ms 15ms 4.9ms 
Disk Access Time 34ms 22ms 22ms 
Acc/Sec/Gbyte 4.1 2.7 1.8 

TABLE 5.14 Average installation disk system projections. 

An approach to the design of arrays of small disks is discussed in Section 
5.2.3. 

5.2.2 Disks in File 110 and Virtual Memory 

Up to this point, disks have been discussed in terms of a peripheral 
device. There are two ways that disks are connected to the processor 
and memory: (1) a file I/0 system in which files of variable length are 
transferred or (2 ) as the lowest level in a virtual memory system in 
which pages are transferred. This section briefly discusses the issues of 
these two uses of disks. 

The earliest computer systems used magnetic tape mass storage 
organized as files, usually of variable length. These files were transferred 
to/from the main memory under an operating system that managed files. 
With the advent of disk storage in the mid 1960s, the concept of a 
variable-length file was difficult to incorporate into operating systems. 
Because disks are physically divided into a hierarchy (sector, track, and 
surface), the sector is a natural addressable unit and is the unit of 
transfer between the tape, disk, and main memory; the sector is similar 
to a page in a virtual memory system. The operating system allocates a 
file to a set of consecutive sectors on the disk, hence wasting a portion 
of the last sector. 

Files were user-defined collections of sectors that were managed in 
much the same way that pages are managed in real memory in a virtual 
memory system. The system must allocate space for new files on the 
disk, manage free space, and collect the garbage when blocks are de­
allocated. The subject of allocation and de-allocation is discussed in 
Chapter 3, and reference to a book on operating systems is suggested for 
further details. 

The most widely used operating system today, MS-DOS, is, as its 
name implies, a disk operating system. The user creates files that are 
managed, with considerable user intervention, by the operating system. 
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It is quite likely that disk file operating systems will continue to be used 
for many years. In fact, as discussed in Chapter 3, the disk file operating 
system is used in some virtual memory systems to map the virtual 
address to the q.isk when a page fault occurs. 

The first virtual memory system, Atlas, used a drum for low-level 
memory backed up with tape. Drum technology was rapidly replaced by 
disks as they became available. With a virtual memory system, the 
concept of a file can, in theory. disappear into the very large virtual 
address space. That is, as every addressable unit is within the scope of 
the address space, no files are required. The IBM System/38 is an 
example of a fileless system. The elimination of a conventional file sys­
tem leads to all sorts of problems that are outside the scope of this book; 
however, I want to mention a few. 

One problem with a fileless system is the naming of virtual pages. 
In a system with a very long virtual address, a page name is assigned 
when a page is allocated and that name is never used again. The S/38 
has a 55-bit virtual page name, and if 1 million names are assigned 
every second, over 1,000 years would elapse before the pool of names is 
exhausted. 

Programming systems such as LISP assume a large name space. 
These systems and multiprocessor configurations of large name space 
machines present the problem of managing names. For example, how 
are new names assigned and how does one program that is calling a 
procedure with a name find the location of that name in the system? A 
distributed database known as the namespace database is used with a 
network of LISP machines to solve the problem of a very large name 
space [BROM87]. 

Another problem with a pure virtual memory system is backup and 
recovery. With a file-based I/0 system, files can be periodically archived 
on magnetic tape or other removable media. If the system should fail , 
the system is restored from the backup material. With a virtual memory 
system, how does one back up an address space of 264, as is the case 
with the S/38? Furthermore, how is garbage collection (discussed in 
Chapter 3) performed on a very large virtual address space? 

The problems of virtual memory described above lead to the design 
of systems that employ their disks in a hybrid configuration. That is, 
virtual memory demands that paged systems are implemented on top of 
conventional disk I/0. An example of this hybrid trend is found in the 
IBM RS/6000 and the various interactive systems implemented on top 
of MS-DOS, such as Windows and Lotus 1-2-3. I believe that these 
hybrid systems will be the implementation of choice for many years. 
There are just too many problems with fileless pure virtual memory 
system implementation for them to be viable. 
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Interconnection Topology 

I now consider the issue of the connection between the processor and 
the disk(s). Figure 5.15 shows three typical disk system organizations 
[KIM86]. A single-disk system is shown in Figure 5.15(a); disk requests 
arrive at a rate A, pass through the channel, and are serviced by the 
disk. The disk must have a service rate greater than A, otherwise 
the queue in the processor will overflow. The model described above for 
the open system queue model applies, approximately, to this system. 

Figure 5.15(b) shows a multiple-disk system with a single channel 
and multiple queues in the processor. By scheduling requests to the 
disks, the requests can be evenly distributed across the disks in a fashion 
similar to interleaved memory modules. Because the disks all share a 
single channel, rotational positioning sensing (RPS) is required to inform 
the queues when a request can be released to a particular disk. RPS 
sensing permits seek, latency, and RPS misses to be overlapped. 

Figure 5.15(c) shows a system where more than one disk shares a 
channel, that is, a common system configuration. There is a queue in 
the processor for each disk, and disk requests are taken off the queues 
as each disk completes its current transaction. Disk requests arrive at 
the rate A and are placed in the proper queues. Experience has shown 
that in a multiple-disk coniiguration there is a concentration of requests 
to a few of the disks, which is a distribution of requests known as skew 
[KIM86]. Reported skews for an eight-disk system are 0.388, 0.225, 0.153, 
0.12, 0.068, 0.054, 0.01, and 0.001 for each of the eight disks (the con­
ditions or operating system are unknown but are believed to be a data 
base machine). Thus the requests serviced by each disk are ,\ Skew(i). 
If the requests to the disks are balanced, the skew for each disk would 
be 0.125 for the eight-disk system. Three of the disks are overused and 
five are underused, leading to a diminution of potential response time 
of the system. Models show that a system with balanced skews gives 
the lowest weighted average response, as would be expected. 

Shortest Access Time First Scheduling 

A form of scheduling that was used prior to RPS with disks is shortest 
access time first scheduling (SATF), which was used with paging drum 
storage in early multiprogrammed systems [DENN67]. This scheduling 
technique is now routinely used in disk systems. A typical paging drum 
performed reads and writes, bit-parallel, with one R/W head per track; 
there is no head positioning time, and the tracks are divided into sectors 
of 1,024 bits. For a 32-bit word and with 32 R/W heads, each sector has 
4 Kbytes. 

Each sector has a queue, as shown in Figure 5.16, and the sectors 
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rotate under the R/W heads in order (1, 2, ... , n, 1, 2, ... ). When, for 
example, sector 2 rotates to the point that the head could read or write 
from/to that sector, · a request would be taken from the #2 queue and 
serviced. For a fully loaded system that has requests in all the queues, 
the drum would be continuously reading or writing, thereby achieving 
its maximum utilization. 

A simple drum or disk without SATF scheduling has an average 
rotational latency equal to half the rotation time or an average service 
rate of two requests per revolution or a latency of one half-rotation. With 
SATF scheduling, the rotational latency is reduced because sectors are 
served as soon as possible but not necessarily in the order received by 
the drum system [FULL75]. Fuller and Baskett, whose work is modified 
by Pohm [POHM81], give an approximate service rate model of a paging 
drum using SATF scheduling: 

[ 
-(J.+1)] 

/.Ld = f, 1 - e ----;:;:-i-

where /.Ld is the paging drum service rate; s is the number of sectors; tr 
is the rotation time of the drum; and J d is the mean number of requests 
in the disk queues, 1 s Jd :S 10. 
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Jd Service Utilization 
Rate 

1 106 QllO 
2 155 0.161 
3 201 0.210 
4 244 0.254 
5 286 0.298 
6 324 0.337 
7 361 0.375 

TABLE 5.15 Paging drum service rate and utilization. 

The utilization of the disk is 

_<J.+1) 

utilization= 1 - e <s + ll 

An example of the results obtained from this paging drum model for 
t, = 0.0166 seconds (3600 RPM) ands= 16 is shown in Table 5.15. The 
number of requests in the queues, J d, is varied from one to seven. 

As the load increases, the service rate increases from 106 trans­
actions per second to 361 transactions per second-a 3x increase in 
service rate. Note that the simple model for one queue is 2/0.0166 = 
120 transactions per second, which approximately agrees with the Fuller 
model results for Jd = 1. The utilization of the paging drum also increases 
by a factor of three from 0.110 to 0.375. For very large values of J'" 
the service rate approaches sit.= 16/0.0166 = 960, and the utilization 
approaches 1. 

As noted previously, SATF scheduling only improves the service 
rate if there is a full queue of requests to be serviced. SATF scheduling 
does nothing to reduce the latency or increase the service rate for an 
interactive single-user system that has only a small mean number of 
requests in the disk queue, say, 0 or 1. SATF scheduling can be used on 
moving head disks if there is more than one request in the queue for 
the current track or cylinder. Note that sector scheduling is similar to the 
balanced system of Figure 5.15(b), where each R/W head is equivalent to 
a disk. 

Multiprogrammed Systems 

Large mainframe computers or servers are generally multiprogrammed 
systems for which the processing rate is usually more important than 
latency or response ti.me. The first, known to me, multiprogramming 
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system is the Burroughs B5000. It was built in 1960 and was also 
the first commercial virtual memory system with pure segmentation 
[LEVI84]. A restricted form of multiprogramming is found today in 
systems that support foreground/background processing. The UNIX op­
erating system is an example because its foreground process is usually 
interactive while its background is batch. 

The basic idea of multiprogramming is that when an executing pro­
gram must wait for an I/0 operation, the CPU switches to another 
program that is resident in main memory. Another form of multipro­
gramming switch is based on a fixed elapsed time, say every 100 ms. 
The purpose of multiprogramming is to increase the utilization of the 
system. The number of resident programs is known as the level (degree) 
of multiprogramming. 

Increased CPU utilization is not without cost. To be effective, there 
is processor overhead not required for a uniprogramming system such 
as context switching and queue management. In addition, there must be 
sufficient real memory to hold the additional programs and their data. 
Also there must be enough I/0 channels (either real or shared) to support 
the concurrent I/0 transactions generated by the resident programs. 

Consider the issue of the real memory required to support multi­
programming. With a virtual memory system, memory capacity does 
not, at first, seem to be a problem. With a very long virtual address, 
each resident program has an almost unlimited memory space. However, 
as the real memory is finite, programs are competing for the limited real 
memory space and excessive paging may result. This causes another 
program to be switched into execution, which in its turn causes more 
paging until the system fails due to thrashing or lockout. Multiprogram­
ming will not work unless there is enough real memory to support the 
degree of multiprogramming. 

The capacity of the I/0 system is also an issue. The executing pro­
gram calls for an I/0 operation, the next program is switched in, and it 
calls for an I/0 operation and so on. Thus there must be sufficient I/0 
channels and bandwidth to support the degree of multiprogramming if 
100% CPU utilization is to be achieved. Some smart I/0 channels start 
the disk access for a read, disconnect while waiting for the disk latency, 
and can process another access. Nevertheless, the number of disks and 
channels (real or virtual) must be equal to the degree of multiprogram­
ming and the accesses must be distributed over these disks; otherwise 
the queues will build up in front of one or more of the disks and further 
delay the access. The foreground/background type of multiprogramming 
may not suffer from the problem of large queues and blocking because 
the foreground may be inactive due to the user's thinking or otherwise 
not using the processor. There are a number of techniques for scheduling 
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the swapping of jobs that are outside the scope of this book. Reference 
to most books on operating systems will find a description of these 
techniques. 

5.2.3 Disk Arrays 
Disk arrays are receiving extensive attention from both university and 
industrial researchers. This attention results from the desire to over­
come some of the aforementioned deficiencies of disks (cost, bandwidth, 
latency). 

A disk array is a grouping of a number of physical disks that makes 
these appear to applications as a single logical disk (paraphrased 
from [KATZ89]). 

Various researchers [PATT88, HENN90] have observed that the 
cost learning curve has overtaken the law of scale with disk technology. 
In other words, the cost reductions due to vastly greater manufacturing 
volume produce a lower cost per bit than the reduction in cost due to 
the design and manufacturing of large scale disks. 

In addition to potential cost advantages, disk arrays can provide, 
in some situations, a reduction in latency and an increase in bandwidth. 
If disk requests are interleaved across a number of disks in a balanced 
organization, a significant reduction in response time is possible if there 
are a number of active disk I/0 requests. Also, because there are more 
than one active R/W head, the bandwidth is increased and the transport 
time can be reduced. Thus, proposals have been made to con£gure large­
capacity disk systems from arrays of relatively small disk modules. If 
the overhead of interconnection can be controlled, an array system will 
have a lower cost than a single-disk system. 

Consider the problem of designing a 100-MIPS computer installation 
requiring 3.7 x 109 bytes per MIPS. If this installation is served by IBM 
3380 class disks having 7.5 x 109 byte capacity, approximately 50 disks 
are required. On the other hand, if an array of 300 x 106 byte modules 
are used, approximately 1,250 disks are required. Thus, disk array design 
must comprehend arraying large numbers of disks to support mainframe 
computers. 

Arrays of disks will also have a higher transfer bandwidth because of 
the number of R/W heads that can be active at one ti.me. The bandwidth 
increase is a function of the design approach, to be discussed below. It 
should go without saying that as the bandwidth of the disks is increased 
with arrays of disks that the bandwidth of the channel must also in-
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crease. In all of the discussions to follow it is assumed that channel 
bandwidth is not a limiting factor. 

There are a number of instances of array like operation with conven­
tional drums and disks. Special purpose drums that provide equal band­
width for access of a matrix [CRAG68] and operating systems that use 
more than one disk channel are found on supercomputers such as 
SCOPE OS [JOHN84]. Thus the current thinking on disk arrays builds 
upon these early efforts. A recent product announcement from IBM is 
for the IBM 9337 Disk Array Subsystem [IBM 92), which offers up to 
seven 3.5-inch disk drives. One model uses 542-Mbyte disks while the 
other uses 970-Mbyte disks. The implementation is RAID-5, which is 
discussed later in this section. 

Disk Array Taxonomy 

There are a number of design options for a disk array that are described 
in a taxonomy with three dimensions shown in Figure 5.17. These dimen­
sions are (1) the degree of interleaving, which concerns the layout of the 
sectors on the disks; (2) the rotation of the disks, which can be synchron­
ous or asynchronous; and (3) R/W heads, which can be positioned either 
independently or as a group. This disk array taxonomy is based on 
[KATZ89]. 

There are three possible design cases of rotation and arm movement 
(shown in Figure 5.17) that are discussed later. There is no known 
implementation of a synchronous disk with independent arm movement. 
Two definitions from [KATZ89] apply to disk arrays. 

Stripe unit (SU) is the unit of data interleaving, that is, the amount 
of data that is placed on one disk before data is placed on the next disk. 
The stripe unit may be as small as one byte [KIM86] and as large as a 
disk sector. In terms of interleaved memory discussed in Section 5.1, a 
stripe unit is an addressable unit. 

Data stripe (DS) is a sequence of logically consecutive stripe units. 

Synchronized 
Rotation 1------1<'------..(" 

Asynchronous 

As Unit Independent 
Arm Movement 

FIGURE 5.17 Disk array design options. 
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A logical 1/0 request to a disk array corresponds to a data stripe. In 
terms of an interleaved memory (discussed earlier), a data stripe is a 
vector of AUs with a stride of 1. 

Degree of interleaving (m) is equal to the number of disks in the 
system over which the stripe unit is stored. This term is equivalent 
to the interleaving factor, m (discussed in Section 5.1 in reference to 
interleaved memory modules). 

Degree of Interleaving 

The degree of interleaving depends on the number of disks in the array 
and the size of the stripe unit. In other words, at any one ti.me a number 
of R/W heads can be active depending on the number of disks in the 
array. The stripe unit can be, for exan1ple, a byte, word, quadword, or 
sector. The selection of the stripe unit size is a tradeoff between the 
number of disks in the array, the size of the data stripe and whether it 
is of fixed or variable length. 

Figure 5.18 shows, for expository purposes, a disk array system with 
four disks, with one track per disk, and with four 1-Kbyte segments per 
track. The stripe unit is a sector. There are obviously more tracks, but 
only one track per disk is active at the time in this example. 

Assume that a data stripe or file consisting of five stripe units, or 
five sectors, is to be written to the disk array. There are four possible 
assignments of these five sectors to the four disks; this assignment is 
similar to skewed interleaving of memory modules. The time required 
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FIGURE 5.18 Disk array layout. 
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to write these five segments is the latency of the disks (rotation, head 
position) plus the time to transfer two segments rather than the time to 
transfer five segm.ents if all of the segments are on one track of one disk. 
Note that the four disks are assumed to be accessed in parallel. Another 
assumption is that the disks are rotating synchronously, that is, the 
same sectors of all disks are under the R/W head at the same time. The 
other case (to be discussed later) is for asynchronous rotation. 

Case I. Synchronous Disk With As-Unit Arm 
Movement 

The synchronous disk organization, as shown in Figure 5.19, is an organi­
zation similar to the single-disk system of Figure 5.14(a). Fiducial marks 
are provided to the drive controller in order to maintain synchrony and 
to identify the beginning of the first sector, similar to RPS. The m heads 
are reading or writing in parallel, and the same sector is under the R/W 
heads of each disk at the same time. The access delays of head positioning 
and rotation are in parallel. The channel issues a request and, when the 
correct sector appears under the R/W heads, the request is honored. 
Kim [KIM86] named this system organization synchronous disk in­
terleaving and assumes that the stripe unit is a byte-an assumption 
that is not a requirement for this organization. 

The number of segment read/write times is 

t t . I data stripe size l segm.en 1mes = 
stripe unit size x sector size x number ofdisks(m) 

For example, if a data stripe is 16 Kbytes, a stripe unit is 1 Byte, 
the sector size is 1 Kbyte, and m = 4, the data stripe can be transferred 
in four sector times as compared to sixteen sector times if disk interleav­
ing is not used. 

A conversion buffer is required to format a data stripe into the serial 

Drive Controllers 

FIGURE 5.19 Synchronous disk organization. 
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streams required for each disk, as shown in Figure 5.20. This buffer 
design assumes that the incoming data stripe is serial by byte and the 
stripe unit is a byte. After the buffer is loaded horizontally, the buffer 
is then unloaded vertically into the disk units [KIM86]. 

There are a number of implementation problems with synchronous 
disks. The paramount one is providing synchronization of the disk 
spindles themselves. Kim [KIM86] discusses the problems of using 
synchronous motors driven from a common clock with feedback control 
(the fiducial marks noted in Figure 5.19). Another problem is coping with 
sectors that go bad after the disk array is placed in service. Reliability 
and failures are discussed later in this section. 

Kim provides extensive model results on performance parameters 
such as service time, peak transfer rates, queuing delays, disk utiliz­
ation, and weighted average response time. The effect of block (data 
stripe) size on response time and service rate is also evaluated [KIM86]. 
Chen and Patterson [CHEN90] have also investigated the impact of the 
size of the stripe unit on the service rate of this organization. The most 
significant parameter is the degree of concurrency of the input requests 
to the disk system. 

Case II. Asynchronous Disk With As-Unit Arm 
Movement 

An asynchronous disk organization is shown in Figure 5.21. With this 
system, after the data stripe has been loaded into a conversion buffer, 
the access operations (head positioning) of the disks are initiated and 
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FIGURE 5.21 Asynchronous disk organization. 

RPS informs the channel when each sector of each disk is available to 
receive its allocated stripe units. This system organization has the major 
advantage of not requiring synchronization of the spindles and the disad­
vantage of potentially lower performance due to the lack of concurrency 
in the read/write operations between the disks. 

The conversion buffer of Figure 5.20 is modified so that the stripe 
units are read or written to/from the sectors of the disk at the correct 
time. This system organization has been named asynchronous disk in­
terleaving by M. Y. Kim et al. [KIM87] and disk striping by [SALE86]. 

Case Ill. Asynchronous Disk With Independent Arm 
Movement 

This system organization not only has asynchronous disk rotation but 
each arm of each disk can be independently positioned. This system 
organization appears to provide the greatest possibility for concurrency 
and therefore should improve the disk system's performance. This sys­
tem organization is also the most consistent with the concept of an 
array of independent disk modules as would be created by racking up a 
multiplicity of PC disk modules. 

Kim and Tantawi [KIM87] modeled this system configuration, and 
they point out that the effective rotational latency approaches that of 
the disk having the longest latency for a data stripe. That is, the expected 
seek plus rotational latency is greater than that expected of a synchron­
ous system with unit arm movement. This result is intuitive in that the 
complete data stripe cannot be transferred until the last stripe units 
are transferred. Another variant of this system organization is named 
declustering under the assumption that the stripe unit is a sector 
[LIVN87]. 
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Data Redundancy and MTBF 
A direct consequence of the use of a disk array is the danger of reducing 
the reliability of the disk system, that is, decreasing the mean time 
between failure (MTBF). A conventional multiple-disk system, as shown 
in Figure 5.12(b), will have a disk failure from time to ti.me, with the 
consequence that a portion of the stored data is lost. When the disks are 
arrayed as described above, a failure of one disk can corrupt all of the 
stored data because the data is interleaved. 

In general, the MTBF of a disk array system is lower than that of a 
single unified disk. The reason is that disk units have roughly equal 
MTBFs. For example, the IBM 3380, a large mainframe disk, has an 
MTBF of 52,000 hours while the Conner CP3100, a smaller PC class 
disk, has an MTBF of 30,000 hours [KATZ89]. 

Katz illustrates the MTBF problem by comparing the MTBF of the 
IBM 3380 to an array of CP3100 disks that have the same storage 
capacity. Equal capacity, not considering redundancy, is achieved with 
75 of the CP3100 disks that have an MTBF of 16.6 days. The single IBM 
3380 has an MTBF of 2,166 days. The design of an array of disk modules 
must anticipate a high failure rate and the corruption of all or part of 
the stored data. Thus, an important and vital consideration in disk array 
design is providing a high level of data reliability in the face of poor 
hardware reliability or low MTBF. 

The goal of schemes to cope with the low MTBF of disk arrays is to 
"fail soft," that is, operation continues while a repair is made. Fail soft 
schemes all depend upon some form of redundancy. A simple example is 
the use of error correcting codes in memory or communications systems. 
The design issue thus becomes one of choosing the best form of redun­
dancy. There is an extensive body of knowledge on the use of redundancy 
for error detection and correction to give fail soft operation [SIEW82]. 

Kim [KIM86] proposed expanding the conversion buffer of Figure 
5.20 to include horizontal error correcting codes (ECC). Check words are 
stored in an added disk along with vertical end-of-block check bytes. The 
described form of X-Y check bits has been used extensively in magnetic 
tape drives for many decades [MATI77]. With EBCDIC encoding, there 
is a parity bit for each byte (giving nine tracks) and a longitudinal parity 
byte recorded at the end of the record. 

Patterson et al. have created a taxonomy of six disk array configur­
ations that can be used to achieve data reliability or fail soft operation 
[PAIT88, KATZ 89). The term RAID (redundant array of inexpensive 
disks) is used to describe these systems briefly discussed in the following 
paragraphs. The six RAID configurations are shown in Figures 5.22 and 
5.23. 

RAID 1. Basically this reliability technique is simple redundancy­
a traditional approach to the reliability of any disk system, arrayed or 
not. RAID 1 is also known as mirrored disks and shadowing. All reads 
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and writes go to/from two identical disks, and the read and write band­
width is not compromised. However, the cost is 2 times that of a nonre­
dundant system. Errors are detected by comparing the results of both 
reads. If the comparison fails, the operating system must intervene 
to determine the correct data, which is a fundamental problem with 
duplicate redundancy. This organization may give a marginal perfor­
mance increase if a read operation selects the disk unit that has the 
shortest latency using RPS information from both disks. 

RAID 2. The data stripe is interleaved bitwise across a number of 
disks as shown in Figure 5.22. The redundancy is provided by horizontal 
ECC bits stored in separate disks. The use of ECC across a wide memory 
word has been used in computers using semiconductor memories for 
several decades. ECC identifies not only that an error has been made 
but the location of the bit(s) that are in error. The number of bits, thus 
ECC disks, required to detect two errors and correct one error (DEDSEC) 
must satisfy the relationship 2c ~ d + c + 1 where c is the number of 
check bits and d is the number of data bits [HAMM50]. A discussion of 
the number of required ECC bits is outside the scope of this book, but 
there are many_ good references. However, the degree of redundancy 
required for this scheme is O(log2m). For example, if the data stripe is 
applied across eight disks, four disks are needed to store the DEDSEC 
bits. The DEDSEC bits must themselves be interleaved because of the 
potential for a failure in one of the redundant disks. Simple parity 
for detecting but not correcting an error can be accomplished with one 
redundant disk. 

Because a fraction of a data stripe will reside in a sector and the 
data in the sectors of all disks participate in the generation of the ECC 
bits, writes must be conducted as Read-Modify-Write operations, which 
reduce the bandwidth of the system. Read-Modify-Write operations are 
required for any memory where the memory word is larger than the 
addressable unit. 

RAID 3. This method, as shown in Figure 5.22, of providing dat.a 
correction in the face of a disk failure is a simplification of RAID 2. The 
stripe unit is a bit or byte. Because there is significant data checking 
provided on each of the disk drives, it is not necessary to have full ECC 
capability as with RAID2, simple parity will suffice. The redundant disk 
contains simple parity that is used to identify and correct the bit(s) in 
the disk that has failed or produced an error. The failed disk is identified 
by the internal checking hardware in each of the disks. 

For example, assume a byte is interleaved across eight disks with 
even parity in the parity disk, as shown in Table 5.16. If disk 4 fails, 
the value of the bit is unknown: it could be a one or zero. The fact that 
the disk has failed is known, and the parity bit is 1 while there is an 
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Disk 

1 2 3 4 5 6 7 8 p 

Normal 1 0 1 1 1 0 0 1 1 
Disk 4 fails 1 0 1 X 1 0 0 1 0 
Restored 1 0 1 1 1 0 0 1 1 

TABLE 5.16 RAID 3 example. 

even number of remaining good bits. From this information, the true 
value of 1 can be reconstructed. 

The RAID 3 scheme requires Read-Modify-Write operations to com­
pute the parity bit. However, the incremental hardware cost is small as 
the degree of redundancy is fixed at one disk module for any degree of 
disk interleaving. 

RAID 4. This redundancy method is a modification of RAID 3 in that 
the stripe unit is a sector rather than a bit or byte. However, RAID 4 
does not interleave across the disks, thus there is no improvement in 
transfer rate for a single stripe unit compared to a single disk. Some of 
this performance loss can be recovered with independent head move­
ment that permits more then one read/write to be in process at once. 
For writes to the disk, the Read-Modify-Write operation is still required. 
Parity is provided at the byte level in the parity disk, and internal 
checking of each disk unit is used to identify the location of the data 
failure. 

RAID 5. This redundant disk array system, shown in Figure 5.23, 
distributes the contents of the parity disk of RAID 3 or RAID 4 across 
all of the disks. The internal checking of RAID 3 and RAID 4 is not 
shown. A fraction of all of the disks is used to store parity bits rather 
than a separate disk; the amount of storage is the same even though a 
parity disk is not used. There are two failure modes that can be handled. 
First, a disk can fail that does not contain the parity of the accessed 
data stripe, this case is identical to RAID 3 or 4. For example, for the 
stripe unit identified •, if disk 1 fails, the data can be recovered because 
parity is not lost. Second, if the disk that fails contains the parity of the 
accessed data stripe, the correct data can still be recovered since only 
the parity bit is unknown. For example, if disk m fails the identified 
stripe unit can be recovered. As noted previously, the IBM 9337 is a 
RAID 5 system. 

RAID 6. This disk array system extends the two-dimensional organi­
zation (one dimension of disks and one dimension of sector) of RAID 5 
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to the three-dimensional (two dimensions of disks and one dimension of 
sectors). Each disk now contains both row and column parity plus the 
parity in the segments. Thus, RAID 6, due to its two-dimensional redun­
dancy, can sustain two disk failures and still function. The RAID 6 
redundant system checks the data in the column and does not depend 
on the internal checking hardware. Multidimensional disk arrays and 
their redundancy codes are discussed in [GIBS89]. 

5.2.4 D isk Caches 
The yery long latency of disks leads to significant delays for servicing 
page faults and requests for I/O. As with caches that effectively reduce 
the latency of main memory, a method for reducing the effect of disk 
latency is via use of the disk cache. Discussion in Section 5.2.1 shows how 
the use of software buffers has reduced the number of actual accesses to 
the disk. The question addressed in this section is whether or not a 
hardware-managed cache would be effective in reducing latency while 
transparent to the operating system. 

I have no knowledge of specific disk cache implementations, thus I 
will speculate on their organization. A disk cache would probably be 
organized early select, direct access. The disk cache sector would proba­
bly be a disk track composed of a number of disk sectors that would be 
the disk cache blocks. The reason for this organization is that the transfer 
of a track from the disk to the cache sector would not have rotational 
latency because the read can start at any point of the track and can be 
mapped into the random access cache sector. A transfer from the cache 
that evicts a sector to the disk can also start at any point in the track 
since the source is a random access memory. A track size segment has 
been used with some paging drums to eliminate rotation latency. 

A major design issue is where to place the disk cache in the processor­
disk path. Figure 5.24 shows the typical topology for connecting disks to 
a processor. There can be a multiplicity of channels, a multiplicity of 
storage controllers, and a multiplicity of string controllers, each con­
nected to a multiplicity of disk units. 

The options for placing a disk cache are: (1) main memory, (2) 
channels, (3) storage controllers, (4) string controllers, or (5) at each of 
the disks. As the location of the caches is moved toward the processor, 
more disk accesses are handled by the cache and the utilization of the 
cache increases. For example, when placed at the main memory, all disk 
references pass through the cache. If placed at one of the disks, only the 
accesses to that disk are handled. Because of disk skew, it can be argued 
that the disk cache should be placed at the disk that has the heaviest 
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