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In Praise of Memory Systems: Cache, DRAM, Disk

Memory Systems: Cache, DRAM, Disk is the first book that takes on the whole hierarchy in a way that is
consistent, covers the complete memory hierarchy, and treats each aspect in significant detail. This book will
serve as a definitive reference manual for the expert designer, yet it is so complete that it can be read by a relative
novice to the computer design space. While memory technologies improve in terms of density and performance,
and new memory device technologies provide additional properties as design options, the principles and meth-
odology presented in this amazingly complete treatise will remain useful for decades. I only wish that a book
like this had been available when I started out more than three decades ago. It truly is a landmark publication.
Kudos to the authors.

—Al Davis, University of Utah

Memory Systems: Cache, DRAM, Disk fills a huge void in the literature about modern computer architecture.
The book starts by providing a high level overview and building a solid knowledge basis and then provides the
details for a deep understanding of essentially all aspects of modern computer memory systems including archi-
tectural considerations that are put in perspective with cost, performance and power considerations. In addi-
tion, the historical background and politics leading to one or the other implementation are revealed. Overall,
Jacob, Ng, and Wang have created one of the truly great technology books that turns reading about bits and bytes
into an exciting journey towards understanding technology.

—Michael Schuette, Ph.D., VP of Technology Development at OCZ Technology

This book is a critical resource for anyone wanting to know how DRAM, cache, and hard drives really work.
It describes the implementation issues, timing constraints, and trade-offs involved in past, present, and future
designs. The text is exceedingly well-written, beginning with high-level analysis and proceeding to incredible
detail only for those who need it. It includes many graphs that give the reader both explanation and intuition.
This will be an invaluable resource for graduate students wanting to study these areas, implementers, designers,
and professors.

—Diana Franklin, california Polytechnic University, San Luis Obispo

Memory Systems: Cache, DRAM, Disk fills an important gap in exploring modern disk technology with accu-
racy, lucidity, and authority. The details provided would only be known to a researcher who has also contributed
in the development phase. I recommend this comprehensive book to engineers, graduate students, and research-
ers in the storage area, since details provided in computer architecture textbooks are woefully inadequate.

—Alexander Thomasian, IEEE Fellow, New Jersey Institute of Technology and Thomasian and Associates

Memory Systems: Cache, DRAM, Disk offers a valuable state of the art information in memory systems that
can only be gained through years of working in advanced industry and research. It is about time that we have
such a good reference in an important field for researchers, educators and engineers.

—Nagi Mekhiel, Department of Electrical and Computer Engineering, Ryerson University, Toronto

This is the only book covering the important DRAM and disk technologies in detail. Clear, comprehensive, and
authoritative, I have been waiting for such a book for long time.

—Yiming Hu, University of Cincinnati
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Memory is often perceived as the performance bottleneck in computing architectures. Memory Systems:
Cache, DRAM, Disk, sheds light on the mystical area of memory system design with a no-nonsense approach to
what matters and how it affects performance. From historical discussions to modern case study examples this
book is certain to become as ubiquitous and used as the other Morgan Kaufmann classic textbooks in computer
engineering including Hennessy and Patterson’s Computer Architecture: A Quantitative Approach.

—R. Jacob Baker, Micron Technology, Inc. and Boise State University.

Memory Systems: Cache, DRAM, Disk is a remarkable book that fills a very large void. The book is remarkable
in both its scope and depth. It ranges from high performance cache memories to disk systems. It spans circuit
design to system architecture in a clear, cohesive manner. It is the memory architecture that defines modern
computer systems, after all. Yet, memory systems are often considered as an appendage and are covered in a
piecemeal fashion. This book recognizes that memory systems are the heart and soul of modern computer
systems and takes a ‘holistic’ approach to describing and analyzing memory systems.

The classic book on memory systems was written by Dick Matick of IBM over thirty years ago. So not only does
this book fill a void, it is a long-standing void. It carries on the tradition of Dick Matick’s book extremely well,
and it will doubtless be the definitive reference for students and designers of memory systems for many years to
come. Furthermore, it would be easy to build a top-notch memory systems course around this book. The authors
clearly and succinctly describe the important issues in an easy-to-read manner. And the figures and graphs are
really great—one of the best parts of the book.

When I work at home, I make coffee in a little stove-top espresso maker I got in Spain. It makes good coffee very
efficiently, but if you put it on the stove and forget it’s there, bad things happen—smoke, melted gasket— ‘burned
coffee meltdown.’ This only happens when I'm totally engrossed in a paper or article. Today, for the first time, it
happened twice in a row—uwhile I was reading the final version of this book.

—Jim Smith, University of Wisconsin—Madison
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You can tell whether a person plays or not by the way he carries the
instrument, whether it means something to him or not.

Then the way they talk and act. If they act too hip, you know they can’t
play ljack].

—Miles Davis

[...] in connection with musical continuity, Cowell remarked at the
New School before a concert of works by Christian Wolff, Earle Brown,
Morton Feldman, and myself, that here were four composers who were
getting rid of glue. That is: Where people had felt the necessity to stick
sounds together to make a continuity, we four felt the opposite neces-
sity to get rid of the glue so that sounds would be themselves.

Christian Wolff was the first to do this. He wrote some pieces vertically
on the page but recommended their being played horizontally left to
right, as is conventional. Later he discovered other geometrical means
for freeing his music of intentional continuity. Morton Feldman di-
vided pitches into three areas, high, middle, and low, and established
a time unit. Writing on graph paper, he simply inscribed numbers of
tones to be played at any time within specified periods of time.

There are people who say, “If music’s that easy to write, I could do it.” Of
course they could, but they don't. I find Feldman's own statement more
affirmative. We were driving back from some place in New England
where a concert had been given. He is a large man and falls asleep
easily. Out of a sound sleep, he awoke to say, “Now that things are so
simple, there’s so much to do.” And then he went back to sleep.

—TJohn Cage, Silence
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XXXii  Preface

number-crunchingithas completelysidelineditself; it
is too fast for its own good, in a sense. Sites’ prediction
came true: memory subsystems design is now and has
been for several years the onlyimportant design issue
for microprocessors and systems. Memory-hierarchy
parameters affect system performance significantly
more than processor parameters (e.g., they are
responsible for 2-10X changes in execution time, as
opposed to 2-10%), making it absolutely essential
for any designer of computer systems to exhibit an
in-depth knowledge of the memory system’s orga-
nization, its operation, its not-so-obvious behavior,
and its range of performance characteristics. This is
true now, and it is likely to remain true in the near
future.

Thus this book, which is intended to provide
exactly that type of in-depth coverage over a wide
range of topics.

Topics Covered

In the following chapters we address the logical
design and operation, the physical design and opera-
tion, the performance characteristics (i.e., design
trade-offs), and, to a limited extent, the energy con-
sumption of modern memory hierarchies.

In the cache section, we present topics and per-
spectives that will be new (or at least interesting) to
even veterans in the field. What this implies is that
the cache section is not an overview of processor-
cache organization and its effect on performance—
instead, we build up the concept of cache from
first principles and discuss topics that are incom-
pletely covered in the computer-engineering lit-
erature. The section discusses a significant degree
of historical development in cache-management
techniques, the physical design of modern SRAM
structures, the operating system’s role in cache
coherence, and the continuum of cache archi-
tectures from those that are fully transparent (to
application software and/or the operating system)
to those that are fully visible.

DRAM and disk are interesting technologies
because, unlike caches, they are not typically
integrated onto the microprocessor die. Thus any
discussion of these topics necessarily deals with the

issue of communication: e.g., channels, signalling,
protocols, and request scheduling.

DRAM involves one or more chip-to-chip crossings,
and so signalling and signal integrity are as funda-
mental as circuit design to the technology. In the
DRAM section, we present an intuitive understand-
ing of exactly what happens inside the DRAM so that
the ubiquitous parameters of the interface (e.g., 7.,
Loy Toag €t€.) Will make sense. We survey the various
DRAM architectures thathave appeared over the years
and give an in-depth description of the technologies
in the next generation memory-system architecture.
We discuss memory-controller issues and investigate
performance issues of modern systems.

The disk section builds from the bottom up,
providing a view of the disk from physical record-
ing principles to the configuration and operation of
disks within system settings. We discuss the opera-
tion of the disk’s read/write heads; the arrangement
of recording media within the enclosure; and the
organization-level view of blocks, sectors, tracks, and
cylinders, as well as various protocols used to encode
data. We discuss performance issues and techniques
used to improve performance, including caching and
buffering, prefetching, request scheduling, and data
reorganization. We discuss the various disk inter-
faces available today (e.g., ATA, serial ATA, SCSI, fibre
channel, etc.) as well as system configurations such
as RAID, SAN, and NAS.

The last section of the book, Cross-Cutting Issues,
covers topics that apply to alllevels of the memory hier-
archy, such as the tools of analysis and how to use them
correctly, subthreshold leakage power in CMOS devices
and circuits, a look at power breakdowns in future
SRAMSs, codes for error detection and error correction,
the design and operation of virtual memory systems,
and the hardware mechanisms that are required in
microprocessors to support virtual memory.

Goals and Audience

The primary goal of this book is to bring the reader
to a level of understanding at which the physical
design and/or detailed software emulation of the
entire hierarchy is possible, from cache to disk. As we
argue in the initial chapter, this level of understanding
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is important now and will become increasingly
necessary over time. Another goal of the book is to
discuss techniques of analysis, so that the next gen-
eration of design engineers is prepared to tackle the
nontrivial multidimensional optimization problems
that result from considering detailed side-effects that
can manifest themselves at any point in the entire
hierarchy.

Accordingly, our target audience are those plan-
ning to build and/or optimize memory systems: i.e.,
computer-engineering and computer-science faculty
and graduate students (and perhaps advanced under-
graduates) and developers in the computer design,
peripheral design, and embedded systems industries.

As an educational textbook, this is targeted at
graduate and undergraduate students with a solid
background in computer organization and archi-
tecture. It could serve to support an advanced
senior-level undergraduate course or a second-year
graduate course specializing in computer-systems
design. There is clearly far too much material here for
any single course; the book provides depth on enough
topics to support two to three separate courses. For
example, at the University of Maryland we use the
DRAM section to teach a graduate class called High-
Speed Memory Systems, and we supplement both our
general and advanced architecture classes with mate-
rial from the sections on Caches and Cross-Cutting
Issues. The Disk section could support a class focused
solely on disks, and it is also possible to create for
advanced students a survey class that lightly touches
on all the topics in the book.

As a reference, this book is targeted toward both
academics and professionals alike. It provides the
breadth necessary to understand the wide scope of
behaviors that appear in modern memory systems,
and most of the topics are addressed in enough depth
that a reader should be able to build (or atleast model
in significant detail) caches, DRAMs, disks, their
controllers, their subsystems ... and understand their
interactions.

What this means is that the book should not only
be useful to developers, but it should also be useful
to those responsible for long-range planning and
forecasting for future product developments and
their issues.
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2 Memory Systems: Cache, DRAM, Disk

Ov.1 Memory Systems

A memory hierarchy is designed to provide mul-
tiple functions that are seemingly mutually exclusive.
We start at random-access memory (RAM): all micro-
processors (and computer systems in general) expect
arandom-access memory out of which they operate.
This is fundamental to the structure of modern soft-
ware, built upon the von Neumann model in which
code and data are essentially the same and reside in
the same place (i.e., memory). All requests, whether
for instructions or for data, go to this random-access
memory. At any given moment, any particular datum
in memory may be needed; there is no requirement
that data reside next to the code that manipulates
it, and there is no requirement that two instructions
executed one after the other need to be adjacent in
memory. Thus, the memory system must be able to
handle randomly addressed! requests in a manner
that favors no particular request. For instance, using
a tape drive for this primary memory is unacceptable
for performance reasons, though it might be accept-
able in the Turing-machine sense.

Where does the mutually exclusive part come in?
As we said, all microprocessors are built to expect a
random-access memory out of which they can oper-
ate. Moreover, this memory must be fast, match-
ing the machine’s processing speed; otherwise, the
machine will spend most of its time tapping its foot
and staring at its watch. In addition, modern soft-
ware is written to expect gigabytes of storage for data,
and the modern consumer expects this storage to be
cheap. How many memory technologies provide both
tremendous speed and tremendous storage capacity
at a low price? Modern processors execute instruc-
tions both out of order and speculatively—put sim-
ply, they execute instructions that, in some cases, are
not meant to get executed—and system software is
typically built to expect that certain changes to mem-
ory are permanent. How many memory technologies
provide non-volatility and an undo operation?

While it might be elegant to provide all of these
competing demands with a single technology (say,

for example, a gigantic battery-backed SRAM [static
RAM]), and though there is no engineering problem
that cannot be solved (if ever in doubt about this, sim-
ply query a room full of engineers), the reality is that
building a full memory system out of such a technol-
ogy would be prohibitively expensive today.? The good
news is that it is not necessary. Specialization and
division of labor make possible all of these competing
goals simultaneously. Modern memory systems often
have a terabyte of storage on the desktop and provide
instruction-fetch and data-access bandwidths of 128
GB/s or more. Nearly all of the storage in the system
is non-volatile, and speculative execution on the part
of the microprocessor is supported. All of this can be
found in a memory system that has an average cost of
roughly 1/100,000,000 pennies per bit of storage.

The reason all of this is possible is because of a
phenomenon called locality of reference [Belady 1966,
Denning 1970]. This is an observed behavior that
computer applications tend to exhibit and that, when
exploited properly, allows a small memory to serve in
place of a larger one.

Ov.1.1 Locality of Reference Breeds the
Memory Hierarchy

We think linearly (in steps), and so we program the
computer to solve problems by working in steps. The
practical implications of this are that a computer’s
use of the memory system tends to be non-random
and highly predictable. Thus is born the concept of
locality of reference, so named because memory refer-
ences tend to be localized in time and space:

e Ifyou use something once, you are likely to
use it again.

¢ Ifyou use something once, you are likely to
use its neighbor.

The first of these principles is called temporal local-
ity, the second is called spatial locality. We will discuss
them (and another type of locality) in more detail in
Part I Cache of this book, but for now it suffices to

IThough “random” addressing is the commonly used term, authors actually mean arbitrarily addressed requests because,
in most memory systems, a randomly addressed sequence is one of the most efficiently handled events.
2Even Cray machines, which were famous for using SRAM as their main memory, today are built upon DRAM for their

main memory.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 5

or EPROM (erasable programmable ROM) are suitable
for non-writable permanent information such as the
executable image of an embedded system or a gen-
eral-purpose system’s boot code and BIOS.? Numerous
exotic non-volatile technologies are in development,
including magnetic RAM (MRAM), FeRAM (ferroelec-
tric RAM), and phase-change RAM (PCRAM).

In most systems, the cost per bit of this technology
is avery important consideration. In general-purpose
systems, this is the case because these systems tend
to have an enormous amount of permanent storage. A
desktop can easily have more than 500 GB of perma-
nent store, and a departmental server can have one
hundred times that amount. The enormous number
of bits in these systems translates even modest cost-
per-bit increases into significant dollar amounts.
In embedded systems, the cost per bit is important
because of the significant number of units shipped.
Embedded systems are often consumer devices that
are manufactured and sold in vast quantities, e.g., cell
phones, digital cameras, MP3 players, programmable
thermostats, and disk drives. Each embedded system
might not require more than a handful of megabytes
of storage, yet a tiny 1¢ increase in the cost per mega-
byte of memory can translate to a $100,000 increase
in cost per million units manufactured.

Operating (Random-Access) Store

As mentioned earlier, a typical microprocessor
expects a new instruction or set of instructions on
every clock cycle, and it can perform a data-read or
data-write every clock cycle. Because the addresses
of these instructions and data need not be sequential
(or, in fact, related in any detectable way), the mem-
ory system must be able to handle random access—it
must be able to provide instant access to any datum
in the memory system.

The machine’s operating store is the level of memory
that provides random access at the microprocessor’s
data granularity. It is the storage level out of which the
microprocessor could conceivably operate, i.e, it is
the storage level that can provide random access to its

storage, one data word at a time. This storage level is
typically called “main memory.” Disks cannot serve as
main memory or operating store and cannot provide
random access for two reasons: instant access is pro-
vided for only the data underneath the disk’s head at
any given moment, and the granularity of access is not
what a typical processor requires. Disks are block-ori-
ented devices, which means they read and write data
onlyinlarge chunks; the typical granularityis 512 B. Pro-
cessors, in contrast, typically operate at the granularity
of 4 B or 8 B data words. To use a disk, a microprocessor
must have additional buffering memory out of which it
canread oneinstruction at a time and read or write one
datum at a time. This buffering memory would become
the de facto operating store of the system.

Flash memory and EEPROM (as well as the exotic
non-volatile technologies mentioned earlier) are poten-
tially viable as an operating store for systems that have
small permanent-storage needs, and the non-volatil-
ity of these technologies provides them with a distinct
advantage. However, not all are set up as an ideal oper-
ating store; for example, flash memory supports word-
sized reads but supports only block-sized writes. If this
type of issue can be handled in a manner that is trans-
parent to the processor (e.g., in this case through addi-
tional data buffering), then the memory technology can
still serve as a reasonable hybrid operating store.

Though the non-volatile technologies seem posi-
tioned perfectly toserve as operating storein allmanner
of devices and systems, DRAM is the most commonly
used technology. Note that the only requirement of
a memory system’s operating store is that it provide
random access with a small access granularity. Non-
volatility is not a requirement, so long as it is provided
by another level in the hierarchy. DRAM is a popular
choice for operating store for several reasons: DRAM
is faster than the various non-volatile technologies (in
some cases much faster); DRAM supports an unlim-
ited number of writes, whereas some non-volatile
technologies start to fail after being erased and rewrit-
ten too many times (in some technologies, as few as
1-10,000 erase/write cycles); and DRAM processes
are very similar to those used to build logic devices.

¥BI0S = basic input/output system, the code that provides to software low-level access to much of the hardware.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 7

have special caches that look like small main memo-
ries. These are scratch-pad RAMs whose implementa-
tion lies toward the end of the spectrum at which the
running application manages the cache explicitly. DSPs
typically have two of these scratch-pad SRAMs so that
they can issue on every cycle a new multiply-accumu-
late (MAC) operation, an important DSP instruction
whose repeated operation on a pair of data arrays pro-
duces its dot product. Performing a new MAC opera-
tion every cycle requires the memory system to load
new elements from two different arrays simultaneously
in the same cycle. This is most easily accomplished
by having two separate data busses, each with its own
independent data memory and each holding the ele-
ments of a different array.

Perhaps the most familiar example of a software-
managed memory is the processor’s register file, an
array of storage locations that is indexed directly by bits
within the instruction and whose contents are dictated
entirely by software. Values are brought into the register
file explicitly by software instructions, and old values
are only overwritten if done so explicitly by software.
Moreover, the register file is significantly smaller than
most on-chip caches and typically consumes far less
energy. Accordingly, software’s best bet is often to opti-
mize its use of the register file [Postiff & Mudge 1999].

Ov.1.2 Important Figures of Merit

The following issues have been touched on during
the previous discussion, but at this point it would be
valuableto formally present the various figures of merit
that are important to a designer of memory systems.
Depending on the environment in which the memory
system will be used (supercomputer, departmental
server, desktop, laptop, signal-processing system,
embedded control system, etc.), each metric will carry
more or less weight. Though most academic studies
tend to focus on one axis at a time (e.g., performance),
the design of a memory system is a multi-dimensional
optimization problem, with all the adherent complex-
ities of analysis. For instance, to analyze something in
this design space or to consider one memory system

over another, a designer should be familiar with con-
cepts such as Pareto optimality (described later in this
chapter). The various figures of merit, in no particu-
lar order other than performance being first due to
its popularity, are performance, energy consumption
and power dissipation, predictability of behavior (i.e.,
real time), manufacturing costs, and system reliability.
This section describes them briefly, collectively. Later
sections will treat them in more detail.

Performance

The term “performance” means many things to
many people. The performance of a system is typically
measured in the time it takes to execute a task (i.e., task
latency), but it can also be measured in the number of
tasks that can be handled in a unit time period (.e.,
task bandwidth). Popular figures of merit for perfor-
mance include the following:*

e Cycles per Instruction (CPI)

_ Total execution cycles
" Total user-level instructions committed

* Memory-system CPI overhead

= Real CPI - CPI assuming perfect memory

* Memory Cycles per Instruction (MCPI)

_ Total cycles spent in memory system
" Total user-level instructions committed

e (Cache miss rate — Total cache misses
Total cache accesses

e (Cache hitrate = 1 — Cache miss rate

* Average access time
— (hit rate - average to service hit) +
(miss rate - average to service miss)
* Million Instructions per Second (MIPS)

_Instructions executed (seconds)
108+ Average required for execution

“*Note that the MIPS metric is easily abused. For instance, it is inappropriate for comparing different instruction-set
architectures, and marketing literature often takes the definition of “instructions executed” to mean any particular given
window of time as opposed to the full execution of an application. In such cases, the metric can mean the highest possible
issue rate of instructions that the machine can achieve (but not necessarily sustain for any realistic period of time).
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 9

but remember that power is the rate at which energy
is consumed. However, to a first order, doing so dou-
bles the time over which the processor dissipates that
power. The net result is a processor that consumes the
same amount of energy as before, though itis branded
as having lower power, which is technically not a lie.
Popular figures of merit that incorporate both
energy/power and performance include the following:

e Energy-Delay Product
- (Energy required > (Time required )

to perform task to perform task

¢ Power-Delay Product

_ (Power required )m . ( Time required >n
to perform task to perform task

e MIPS per watt

Performance of benchmark in MIPS
Average power dissipated by benchmark

The second equation was offered as a generalized
form of the first (note that the two are equivalent when
m = 1 and n = 2) so that designers could place more
weight on the metric (time or energy/power) that
is most important to their design goals [Gonzalez &
Horowitz 1996, Brooks et al. 2000a].

Predictable (Real-Time) Behavior

Predictability of behavior is extremely important
when analyzing real-time systems, because correct-
ness of operation is often the primary design goal for
these systems (consider, for example, medical equip-
ment, navigation systems, anti-lock brakes, flight
control systems, etc., in which failure to perform as
predicted is not an option).

Popular figures of merit for expressing predictabil-
ity of behavior include the following:

¢  Worst-Case Execution Time (WCET), taken
to mean the longest amount of time a func-
tion could take to execute

* Response time, taken to mean the time
between a stimulus to the system and the
system’s response (e.g., time to respond to
an external interrupt)

e Jitter, the amount of deviation from an
average timing value

These metrics are typically given as single num-
bers (average or worst case), but we have found that
the probability density function makes a valuable aid
in system analysis [Baynes et al. 2001, 2003].

Design (and Fabrication and Test) Costs

Cost is an obvious, but often unstated, design goal.
Many consumer devices have cost as their primary
consideration: if the cost to design and manufacture
an item is not low enough, it is not worth the effort
to build and sell it. Cost can be represented in many
different ways (note that energy consumption is a
measure of cost), but for the purposes of this book, by
“cost” we mean the cost of producing an item: to wit,
the cost of its design, the cost of testing the item, and/
or the cost of the item’s manufacture. Popular figures
of merit for cost include the following:

* Dollar cost (best, but often hard to even
approximate)

* Designsize, e.g., die area (cost of manufactur-
ing aVLSI (very large scale integration) design
is proportional to its area cubed or more)

e Packaging costs, e.g., pin count

* Design complexity (can be expressed in
terms of number of logic gates, number of
transistors, lines of code, time to compile
or synthesize, time to verify or run DRC
{(design-rule check), and many others,
including a design’s impact on clock cycle
time [Palacharla et al. 1996])

Cost is often presented in a relative sense, allowing
differing technologies or approaches to be placed on
equal footing for a comparison.

* Cost per storage bit/byte/KB/MB/etc.
(allows cost comparison between different
storage technologies)

* Die area per storage bit (allows size-
efficiency comparison within same process
technology)
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In a similar vein, cost is especially informative
when combined with performance metrics. The
following are variations on the theme:

* Bandwidth per package pin (total sustain-
able bandwidth to/from part, divided by
total number of pins in package)

¢ Execution-time-dollars (total execution time
multiplied by total cost; note that cost can
be expressed in other units, e.g., pins, die
area, etc.)

An important note: cost should incorporate all
sources of that cost. Focusing on just one source of
cost blinds the analysis in two ways: first, the true cost
of the system is not considered, and second, solutions
can be unintentionally excluded from the analysis.
If cost is expressed in pin count, then all pins should
be considered by the analysis; the analysis should not
focus solely on data pins, for example. Similarly, if
cost is expressed in die area, then all sources of die
area should be considered by the analysis; the analy-
sis should not focus solely on the number of banks,
for example, but should also consider the cost of
building control logic (decoders, muxes, bus lines,
etc.) to select among the various banks.

Reliability

Like the term “performance,” the term “reliabil-
ity” means many things to many different people.
In this book, we mean reliability of the data stored
within the memory system: how easily is our stored
data corrupted or lost, and how can it be protected
from corruption or loss? Data integrity is depen-
dent upon physical devices, and physical devices
can fail.

Approaches to guarantee the integrity of stored
data typically operate by storing redundant infor-
mation in the memory system so that in the case of
device failure, some but not all of the data will be lost
or corrupted. If enough redundant information is
stored, then the missing data can be reconstructed.
Popular figures of merit for measuring reliability

”»

5A common variation is “Mean Time To Failure (MTTF).”

characterize both device fragility and robustness of a
proposed solution. They include the following:

* Mean Time Between Failures (MTBF): °
given in time (seconds, hours, etc.) or num-
ber of uses

e Bit-error tolerance, e.g., how many bit errors
in a data word or packet the mechanism can
correct, and how many it can detect (but not
necessarily correct)

¢ FError-rate tolerance, e.g., how many errors
per second in a data stream the mechanism
can correct

¢ Application-specific metrics, e.g., how
much radiation a design can tolerate before
failure, etc.

Note that values given for MTBF often seem astro-
nomically high. This is because they are not meant
to apply to individual devices, but to system-wide
device use, as in a large installation. For instance, if
the expected service lifetime of a device is several
years, then that device is expected to fail in several
years. If an administrator swaps out devices every
few years (before the service lifetime is up), then the
administrator should expect to see failure frequen-
cies consistent with the MTBF rating.

Ov.1.3 The Goal of a Memory Hierarchy

As already mentioned, a well-implemented hierar-
chy allows a memory system to approach simultane-
ously the performance of the fastest component, the
costperbit ofthe cheapestcomponent, and the energy
consumption ofthe most energy-efficient component.
A modern memory system typically has performance
close to that of on-chip cache, the fastest component
in the system. The rate at which microprocessors
fetch and execute their instructions is measured in
nanoseconds or fractions of a nanosecond. A modern
low-end desktop machine has several hundred giga-
bytes of storage and sells for under $500, roughly half
of which goes to the on-chip caches, off-chip caches,
DRAM, and disk. This represents an average cost of
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several dollars per gigabyte—very close to that of disk,
the cheapest component. Modern desktop systems
have an energy cost that is typically in the low tens of
nanojoules per instruction executed—close to that of
on-chip SRAM cache, the least energy-costly compo-
nent in the system (on a per-access basis).

The goal for a memory-system designer is to create
a system that behaves, on average and from the point
of view of the processor, like a big cache that has the
price tag of a disk. A successful memory hierarchy is
much more than the sum of its parts; moreover, suc-
cessful memory-system design is non-trivial.

How the system is built, how it is used (and what
parts of it are used more heavily than others), and on
whichissuesanengineershouldfocusmostofhiseffort
at design time—all these are highly dependent on the
target application of the memory system. Two com-
mon categories of target applications are (a) general-
purpose systems, which are characterized by their
need for universal applicability for just about any
type of computation, and (b) embedded systems,
which are characterized by their tight design restric-
tions along multiple axes (e.g., cost, correctness of
design, energy consumption, reliability) and the fact
that each executes only a single, dedicated software
application its entire lifespan, which opens up pos-
sibilities for optimization that are less appropriate for
general-purpose systems.

Genera|—Purpose Computer Systems

General-purposesystemsarewhatpeoplenormally
think of as “computers.” These are the machines on
your desktop, the machines in the refrigerated server
room at work, and the laptop on the kitchen table.
They are designed to handle any and all tasks thrown
at them, and the software they run on a day-to-day
basis is radically different from machine to machine.

General-purpose systems are typically overbuilt.
By definition they are expected by the consumer to
run all possible software applications with accept-
able speed, and therefore, they are built to handle
the average case very well and the worst case at least
tolerably well. Were they optimized for any particu-
lar task, they could easily become less than optimal
for all dissimilar tasks. Therefore, general-purpose

systems are optimized for everything, whichis another
way of saying that they are actually optimized for
nothing in particular. However, they make up for this
in raw performance, pure number-crunching. The
average notebook computer is capable of perform-
ing orders of magnitude more operations per sec-
ond than that required by a word processor or email
client, tasks to which the average notebook is fre-
quently relegated, but because the general-purpose
system may be expected to handle virtually anything
at any time, it must have significant spare number-
crunching ability, just in case.

It stands to reason that the memory system of this
computer must also be designed in a Swiss-army-
knife fashion. Figure Ov.3 shows the organization of
a typical personal computer, with the components
of the memory system highlighted in grey boxes. The
cache levels are found both on-chip (i.e., integrated
on the same die as the microprocessor core) and
off-chip (i.e., on a separate die). The DRAM system
is comprised of a memory controller and a number
of DRAM chips organized into DIMMs (dual in-line
memory modules, printed circuit boards that contain
a handful of DRAMs each). The memory controller
can be located on-chip or off-chip, but the DRAMs
are always separate from the CPU to allow memory
upgrades. The disks in the system are considered
peripheral devices, and so their access is made
through one or more levels of controllers, each rep-
resenting a potential chip-to-chip crossing (e.g., here
a disk request passes through the system controller
to the PCI (peripheral component interconnect) bus
controller, to the SCSI (small computer system inter-
face) controller, and finally to the disk itself).

The software that runs on a general-purpose sys-
tem typically executes in the context of a robust
operating system, one that provides virtual memory.
Virtual memory is a mechanism whereby the operat-
ing system can provide to all running user-level soft-
ware (i.e., email clients, web browsers, spreadsheets,
word-processing packages, graphics and video edit-
ing software, etc.) the illusion that the user-level soft-
ware is in direct control of the computer, when in fact
its use of the computer’s resources is managed by the
operating system. This is a very effective way for an
operating system to provide simultaneous access by
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14  Memory Systems: Cache, DRAM, Disk

an off-chip programmable ROM (e.g., PROM, EPROM,
flash ROM, etc.) that holds the executable image, and
an off-chip DRAM that is used for computation and
holding variable data. External memory and device
controllers can be used, but many embedded micro-
processors already have such controllers integrated
onto the CPU die. This cuts down on the system’s die
count and thus cost. Note that it would be possible
for the entire hierarchy to lie on the CPU die, yielding
a single-chip solution called a system-on-chip. This
is relatively common for systems that have limited
memory requirements. Many DSPs and microcon-
trollers have programmable ROM embedded within
them. Larger systems that require megabytes of stor-
age (e.g., in Cisco routers, the instruction code alone
is more than a 12 MB) will have increasing numbers
of memory chips in the system.

On the right side of Figure Ov.4 is the software’s
view of the memory system. The primary distinction
is that, unlike general-purpose systems, is that the
SRAM caches are visible as separately addressable
memories, whereas they are transparent to software
in general-purpose systems.

Memory, whether SRAM or DRAM, usually rep-
resents one of the more costly components in an
embedded system, especially if the memory is
located on-CPU because once the CPU is fabricated,
the memory size cannot be increased. In nearly all
system-on-chip designs and many microcontrollers
as well, memory accounts for the lion’s share of avail-
able die area. Moreover, memory is one of the pri-
mary consumers of energy in a system, both on-CPU
and off-CPU. As an example, it has been shown that,
in many digital signal-processing applications, the
memory system consumes more of both energy and
die area than the processor datapath. Clearly, this is
a resource on which significant time and energy is
spent performing optimization.

Ov.2 Four Anecdotes on Modular Design

It is our observation that computer-system design
in general, and memory-hierarchy design in par-
ticular, has reached a point at which it is no lon-
ger sufficient to design and optimize subsystems

in isolation. Because memory systems and their
subsystems are so compley, it is now the rule, and not
the exception, that the subsystems we thought to be
independent actually interact in unanticipated ways.
Consequently, our traditional design methodologies
no longer work because their underlying assump-
tions no longer hold. Modular design, one of the
most widely adopted design methodologies, is an oft-
praised engineering design principle in which clean
functional interfaces separate subsystems (i.e., mod-
ules) so that subsystem design and optimization can
be performed independently and in parallel by dif-
ferent designers. Applying the principles of modular
design to produce a complex product can reduce the
time and thus the cost for system-level design, inte-
gration, and test; optimization at the modular level
guarantees optimization at the system level, provided
that the system-level architecture and resulting mod-
ule-to-module interfaces are optimal.

That last part is the sticking point: the principle
of modular design assumes no interaction between
module-level implementations and the choice of
system-level architecture, but that is exactly the kind
of interaction that we have observed in the design
of modern, high-performance memory systems.
Consequently, though modular design has been
a staple of memory-systems design for decades,
allowing cache designers to focus solely on caches,
DRAM designers to focus solely on DRAMs, and disk
designers to focus solely on disks, we find that, going
forward, modular design is no longer an appropriate
methodology.

Earlier we noted that, in the design of memory
systems, many of the underlying implementation
issues have begun to affect the higher level design
process quite significantly: cache design is driven
by interconnect physics; DRAM design is driven by
circuit-level limitations that have dramatic sys-
tem-level effects; and modern disk performance is
dominated by the on-board caching and scheduling
policies. As hierarchies and their components grow
more complex, we find that the bulk of performance
is lost not in the CPUs or caches or DRAM devices or
disk assemblies themselves, but in the subtle interac-
tions between these subsystems and in the manner in
which these subsystems are connected. The bulk of lost
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 15

performance is due to poor configuration of system-
level parameters such as bus widths, granularity of
access, scheduling policies, queue organizations, and
so forth.

This is extremely important, so it bears repeat-
ing: the bulk of lost performance is not due to the
number of CPU pipeline stages or functional units or
choice of branch prediction algorithm or even CPU
clock speed; the bulk of lost performance is due to
poor configuration of system-level parameters such
as bus widths, granularity of access, scheduling poli-
cies, queue organizations, etc. Today’s computer-
system performance is dominated by the manner in
which data is moved between subsystems, i.e., the
scheduling of transactions, and so it is not surprising
that seemingly insignificant details can cause such a
headache, as scheduling is known to be highly sensi-
tive to such details.

Consequently, one can no longer attempt system-
level optimization by designing/optimizing each of
the parts in isolation (which, unfortunately, is often
the approach taken in modern computer design). In
subsystem design, nothing can be considered “out-
side the scope” and thus ignored. Memory-system
design must become the purview of architects, and
a subsystem designer must consider the system-level
ramifications of even the slightest low-level design
decision or modification. In addition, a designer must
understand the low-level implications of system-
level design choices. A simpler form of this maxim is
as follows:

A designer must consider the system-level
ramifications of circuit- and device-level
decisions as well as the circuit- and device-
level ramifications of system-level decisions.

To illustrate what we mean and to motivate our
point, we present several anecdotes. Though they
focus on the DRAM system, their message is global,
and we will show over the course of the book that the
relationships they uncover are certainly not restricted
to the DRAM system alone. We will return to these
anecdotes and discuss them in much more detail
in Chapter 27, The Case for Holistic Design, which
follows the technical section of the book.

Ov.2.1 Anecdote I: Systemic Behaviors Exist

In 1999-2001, we performed a study of DRAM
systems in which we explicitly studied only system-
level effects—those that had nothing to do with the
CPU architecture, DRAM architecture, or even DRAM
interface protocol. In this study, we held constant the
CPU and DRAM architectures and considered only a
handful of parameters that would affect how well the
two communicate with each other. Figure Ov.5 shows
some of the results [Cuppu & Jacob 1999, 2001, Jacob
2003]. The varied parameters in Figure Ov.5 are all
seemingly innocuous parameters, certainly not the
type that would account for up to 20% differences in
system performance (execution time) if one param-
eter was increased or decreased by a small amount,
which is indeed the case. Moreover, considering the
top two graphs, all of the choices represent intui-
tively “good” configurations. None of the displayed
values represent strawmen, machine configurations
that one would avoid putting on one’s own desktop.
Nonetheless, the performance variability is signifi-
cant. When the analysis considers a wider range of
bus speeds and burst lengths, the problematic behav-
ior increases. As shown in the bottom graph, the ratio
of best to worst execution times can be a factor of
three, and the local optima are both more frequent
and more exaggerated. Systems with relatively low
bandwidth (e.g., 100, 200, 400 MB/s) and relatively
slow bus speeds (e.g., 100, 200 MHz), if configured
well, can match or exceed the performance of sys-
tem configurations with much faster hardware that is
poorly configured.

Intuitively, one would expect the design space to
be relatively smooth: as system bandwidth increases,
so should system performance. Yet the design space
is far from smooth. Performance variations of 20% or
more can be found in design points that are imme-
diately adjacent to one another. The variations from
best-performing to worst-performing design exceed a
factor of three across the full space studied, and local
minima and maxima abound. Moreover, the behav-
iors are related. Increasing one parameter by a fac-
tor of two toward higher expected performance (e.g.,
increasing the channel width) can move the system off
a local optimum, but local optimality can be restored
by changing other related parameters to follow suit,
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18 Memory Systems: Cache, DRAM, Disk

asked “what is the DLL doing on the DDR chip?”
answered with a grin, “burning power.” In applica-
tions that require low latency and low power dissipa-
tion, designers turn off the DLL entirely and use only
the data strobe for data capture, ignoring the system
clock (as in Figure Ov.6(a)) [Kellogg 2002, Lee 2002,
Rhoden 2002].

The argument for the DLL is that it de-skews
the DRAM devices on a DIMM and provides a path
for system design that can use a global clocking
scheme, one of the simplest system designs known.
The argument against the DLL is that it would be
unnecessary if a designer learned to use the data
strobe—this would require a more sophisticated
system design, but it would achieve better perfor-
mance at a lower cost. At the very least, it is clear
that a DLL is a circuit-oriented solution to the prob-
lem of system-level skew, which could explain the
controversy.

0v.2.3 Anecdote lII: A Catch-22 in the Search
for Bandwidth

With every DRAM generation, timing parameters
are added. Several have been added to the DDR spec-
ification to address the issues of power dissipation
and synchronization.

* tpaw (Four-bank Activation Window) and
tgrp (Row-to-Row activation Delay) put a
ceiling on the maximum current draw of a
single DRAM part. These are protocol-level
limitations whose values are chosen to pre-
vent a memory controller from exceeding
circuit-related thresholds.

* Ipggis our own name for the DDR system-
bus turnaround time; one can think of it as
the DIMM-to-DIMM switching time that
has implications only at the system level
(i.e., it has no meaning or effect if consid-
ering read requests in a system with buta
single DIMM). By obeying tpgg, one can
ensure that a second DIMM will not drive

the data bus at the same time as a first when
switching from one DIMM to another for
data output.

These are per-device timing parameters that were
chosen to improve the behavior (current draw, timing
uncertainty) of individual devices. However, they do
so at the expense of a significant loss in system-level
performance. When reading large amounts of data
from the DRAM system, an application will have to
read, and thus will have to activate, numerous DRAM
rows. At this point, the tpaw and tgpp timing param-
eters kick in and limit the available read bandwidth.
The tggp parameter specifies the minimum time
between two successive row activation commands
to the same DRAM device (which implies the same
DIMM, because all the DRAMs on a DIMM are slaved
together®). The tgpyy parameter represents a slid-
ing window of time during which no more than four
row activation commands to the same device may
appeatr.

The parameters are specified in nanoseconds and
not bus cycles, so they become increasingly problem-
atic at higher bus frequencies. Their net effect is to
limit the bandwidth available from a DIMM by limit-
ing how quickly one can get the data out of the DRAM’s
storage array, irrespective of how fast the DRAM’s I/0O
circuitry can ship the data back to the memory con-
troller. At around 1 GBps, sustainable bandwidth hits
a ceiling and remains flat no matter how fast the bus
runs because the memory controller is limited in how
quickly it can activate a new row and start reading
data from it.

The obvious solution is to interleave data from
different DIMMs on the bus. If one DIMM is limited
in how quickly it can read data from its arrays, then
one should populate the bus with many DIMMs and
move through them in a round-robin fashion. This
should bring the system bandwidth up to maximum.
However, the function of tpgg is to prevent exactly
that: tpgg is the bus turnaround time, inserted to
account for skew on the bus and to prevent different
bus masters from driving the bus at the same time.

8This is a minor oversimplification. We would like to avoid having to explain details of DRAM-system organization, such as

the concept of rank, at this point.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 19

To avoid such collisions, a second DIMM must wait
at least tpqg after a first DIMM has finished before
driving the bus. So we have a catch:

* One set of parameters limits device-level
bandwidth and expects a designer to go to
the system level to reclaim performance.

¢ The other parameter limits system-level
bandwidth and expects a designer to go to
the device level to reclaim performance.

The good news is that the problem is solvable
(see Chapter 15, Section 15.4.3, DRAM Command
Scheduling Algorithms), but this is nonetheless a
very good example of low-level design decisions that
create headaches at the system level.

Ov.2.4 Anecdote IV: Proposals to Exploit
Variability in Cell Leakage

The last anecdote is an example of a system-level
design decision that ignores circuit- and device-level
implications. Ever since DRAM was invented, it has
been observed that different DRAM cells exhibit dif-
ferent data-retention time characteristics, typically
ranging between hundreds of milliseconds to tens
of seconds. DRAM manufacturers typically set the
refresh requirement conservatively and require that
every row in a DRAM device be refreshed atleast once
every 64 or 32 ms to avoid losing data. Though refresh
might not seem to be a significant concern, in mobile
devices researchers have observed that refresh can
account for one-third of the power in otherwise
idle systems, prompting action to address the issue.
Several recent papers propose moving the refresh
function into the memory controller and refreshing
each row only when needed. During an initialization
phase, the controller would characterize each row
in the memory system, measuring DRAM data-
retention time on a row-by-row basis, discarding
leaky rows entirely, limiting its DRAM use to only
those rows deemed non-leaky, and refreshing once
every tens of seconds instead of once every tens of
milliseconds.

The problem is that these proposals ignore
another, less well-known phenomenon of DRAM cell

variability, namely that a cell with a long retention
time can suddenly (in the time frame of seconds)
exhibit a short retention time [Yaney et al. 1987,
Restle et al. 1992, Ueno et al. 1998, Kim 2004]. Such
an effect would render these power-efficient pro-
posals functionally erroneous. The phenomenon is
called variable retention time (VRT), and though its
occurrence is infrequent, it is non-zero. The occur-
rence rate is low enough that a system using one of
these reduced-refresh proposals could protect itself
against VRT by using error correcting codes (ECC,
described in detail in Chapter 30, Memory Errors and
Error Correction), but none of the proposals so far
discuss VRT or ECC.

Ov.2.5 Perspective
To summarize so far:

AnecdoteI: Systemic behaviors exist and are sig-
nificant (they can be responsible for factors of two to
three in execution time).

AnecdoteIl: The DLLin DDRSDRAM isa circuit-
level solution chosen to address system-level skew.

AnecdotelIl: tpgg represents a circuit-level solu-
tion chosen to address system-level skew in DDR
SDRAM; tpaw and tgpp are circuit-level limitations
that significantly limit system-level performance.

Anecdote IV: Several research groups have rec-
ently proposed system-level solutions to the DRAM-
refresh problem, but fail to account for circuit-level
details that might compromise the correctness of the
resulting system.

Anecdotes II and III show that a common practice
in industry is to focus at the level of devices and cir-
cuits, in some cases ignoring their system-level rami-
fications. Anecdote IV shows that a common practice
in research is to design systems that have device- and
circuit-level ramifications while abstracting away the
details of the devices and circuits involved. AnecdoteI
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20 Memory Systems: Cache, DRAM, Disk

illustrates that both approaches are doomed to failure
in future memory-systems design.

It is clear that in the future we will have to move
away from modular design; one can no longer
safely abstract away details that were previously
considered “out of scope.” To produce a credible
analysis, a designer must consider many different
subsystems of a design and many different levels
of abstraction—one must consider the forest when
designing trees and consider the trees when design-
ing the forest.

Ov.3 Cross-Cutting Issues

Though their implementation details might apply
at a local level, most design decisions must be con-
sidered in terms of their system-level effects and
side-effects before they become part of the system/
hierarchy. For instance, power is a cross-cutting,
system-level phenomenon, even though most power
optimizations are specific to certain technologies and
are applied locally; reliability is a system-level issue,
even though each level of the hierarchy implements
its own techniques for improving it; and, as we have
shown, performance optimizations such as widening
a bus or increasing support for concurrency rarely
result in system performance that is globally optimal.
Moreover, design decisions thatlocallyoptimize along
one axis (e.g., power) can have even larger effects on
the system level when all axes are considered. Not
only can the global power dissipation be thrown off
optimality by blindly making a local decision, it is
even easier to throw the system off a global optimum
when more than one axis is considered (e.g., power/
performance).

Designing the best system given a set of con-
straints requires an approach thatconsiders multiple
axes simultaneously and measures the system-level
effects of all design choices. Such a holistic approach
requires an understanding of many issues, includ-
ing cost and performance models, power, reliabil-
ity, and software structure. The following sections
provide overviews of these cross-cutting issues, and
Part IV of the book will treat these topics in more
detail.

Ov.3.1 Cost/Performance Analysis

To perform a cost/performance analysis correctly,
the designer must define the problem correctly, use
the appropriate tools for analysis, and apply those
tools in the manner for which they were designed.
This section provides a brief, intuitive look at the
problem. Herein, we will use cost as an example of
problem definition, Pareto optimality as an example
of an appropriate tool, and sampled averages as an
example to illustrate correct tool usage. We will dis-
cuss these issues in more detail with more examples
in Chapter 28, Analysis of Cost and Performance.

Problem Definition: Cost

A designer must think in an all-inclusive manner
when accounting for cost. For example, consider a
cost-performance analysis of a DRAM system wherein
performance is measured in sustainable bandwidth
and cost is measured in pin count.

To represent the cost correctly, the analysis
should consider all pins, including those for con-
trol, power, ground, address, and data. Otherwise,
the resulting analysis can incorrectly portray the
design space, and workable solutions can get left
out of the analysis. For example, a designer can
reduce latency in some cases by increasing the
number of address and command pins, but if the
cost analysis only considers data pins, then these
optimizations would be cost-free. Consider DRAM
addressing, which is done half of an address at a
time. A 32-bit physical address is sent to the DRAM
system 16 bits at a time in two different commands;
one could potentially decrease DRAM latency by
using an SRAM-like wide address bus and sending
the entire 32 bits at once. This represents a real cost
in design and manufacturing that would be higher,
but an analysis that accounts only for data pins
would not consider it as such.

Power and ground pins must also be counted
in a cost analysis for similar reasons. High-speed
chip-to-chip interfaces typically require more
power and ground pins than slower interfaces. The
extra power and ground signals help to isolate the
I/0 drivers from each other and the signal lines
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 21

from each other, both improving signal integrity
by reducing crosstalk, ground bounce, and related
effects. I/0 systems with higher switching speeds
would have an unfair advantage over those with
lower switching speeds (and thus fewer power/
ground pins) in a cost-performance analysis if
power and ground pins were to be excluded from
the analysis. The inclusion of these pins would pro-
vide for an effective and easily quantified trade-off
between cost and bandwidth.

Failure to include address, control, power, and
ground pins in an analysis, meaning failure to be all-
inclusive at the conceptual stages of design, would
tend to blind a designer to possibilities. For example,
an architecturally related family of solutions that at
first glance gives up total system bandwidth so as to
be more cost-effective might be thrown out at the
conceptual stages for its intuitively lower perfor-
mance. However, considering all sources of cost in the
analysis would allow a designer to look more closely
at this family and possibly to recover lost bandwidth
through the addition of pins.

Comparing SDRAM and Rambus system archi-
tectures provides an excellent example of consid-

I
4

—

ering cost as the total number of pins leading to a
continuum of designs. The Rambus memory sys-
tem is a narrow-channel architecture, compared
to SDRAM’s wide-channel architecture, pictured
in Figure Ov.7 Rambus uses fewer address and
command pins than SDRAM and thus incurs an
additional latency at the command level. Rambus
also uses fewer data pins and occurs an additional
latency when transmitting data as well. The trade-off
is the ability to run the bus at a much higher bus fre-
quency, or pin-bandwidth in bits per second per pin,
than SDRAM. The longer channel of the DRDRAM
(direct Rambus DRAM) memory system contributes
directly to longer read-command latencies and lon-
ger bus turnaround times. However, the longer chan-
nel also allows for more devices to be connected to
the memory system and reduces the likelihood that
consecutive commands access the same device. The
width and depth of the memory channels impact
the bandwidth, latency, pin count, and various cost
components of the respective memory systems. The
effect that these organizational differences have on
the DRAM access protocol is shown in Figure Ov.8
which illustrates a row activation and column read
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FIGURE Ov.7: Difference in topology between SDRAM and Rambus memory systems.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2141, p. 55



22 Memory Systems: Cache, DRAM, Disk

0 1 2 3 4 5 6 7

8 9
Bus Clock '

(a) SDRAM and DDR SDRAM

CommandBus| \:/l [ \:/I | [

DataBus | | | | |
| | | | | |

row activation
latency

CASL=2

N— g

YT o
overall load request latency (activation)

@ Activation command asserted to DRAM chip
@ Column Address Strobe asserted
@® lowest latency CASL 2

(b) Direct Rambus DRAM

L1 | | | | |
Row Command j@de)DMX' ! !

|
Data Bus T ' ‘ ‘ '

|
I
Col Command )@(XMMX i
|
[
|

]
| I | | |J|¥
o ¥ Y
row activation RCD CAC
command (RASto CAS (CAS access
delay) delay)

data packet

@ Activation command asserted to DRAM chip
@ Column Access command sent to DRAM chip
@ Data packet returned by DRAM chips

FIGURE Ov.8: Memory access latency in SDRAM and DDR SDRAM memory systems (top) and DRDRAM (bottom).

command for both DDR SDRAM and Direct Rambus
DRAM.

Contemporary SDRAM and DDR SDRAM memory
chips operating at a frequency of 200 MHz can activate a
row in 3 clock cycles. Once the row is activated, memory
controllers in SDRAM or DDR SDRAM memory systems
can retrieve data using a simple column address strobe
command with a latency of 2 or 3 clock cycles. In Figure
Ov.8(a), Step 1 shows the assertion of a row activation
command, and Step 2 shows the assertion of the column
address strobe signal. Step 3 shows the relative timing
of a high-performance DDR SDRAM memory module
with a CASL (CAS latency) of 2 cycles. For a fair compar-
ison against the DRDRAM memory system, we include
the bus cycle that the memory controller uses to assert
the load command to the memory chips. With this addi-
tional cycle included, a DDR SDRAM memory system
has a read latency of 6 clock cycles (to critical data). In a
SDRAM or DDR SDRAM memory system that operates
at200 MHz, 6 clock cycles translate to 30 ns of latency for
a memory load command with row activation latency

inclusive. These latency values are the same for high-
performance SDRAM and DDR SDRAM memory
systems.

The DRDRAM memory system behaves very
differently from SDRAM and DDR SDRAM memory sys-
tems. Figure Ov.8(b) showsarowactivation commandin
Step 1, followed by a column access command in Step 2.
The requested data is then returned by the memory
chip to the memory controller in Step 3. The row acti-
vation command in Step 1 is transmitted by the mem-
ory controller to the memory chip in a packet format
that spans 4 clock cycles. The minimum delay between
the row activation and column access is 7 clock cycles,
and, after an additional (also minimum) CAS (column
address strobe) latency of 8 clock cycles, the DRDRAM
chip begins to transmit the data to the memory control-
ler. One caveat to the computation of the access latency
in the DRDRAM memory system is that CAS delay in the
DRDRAM memory system is a function of the number
of devices on a single DRDRAM memory channel. On a
DRDRAM memory system with a full load of 32 devices
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 25

of candidate solutions: the set of Pareto-equivalent
solutions that is not dominated by any solution.

Figure Ov.9(a) shows a set of candidate solutions
in a two-dimensional space that represent a cost/
performance metric. The x-axis represents system
performance in execution time (smaller numbers
are better), and the y-axis represents system cost in
dollars (smaller numbers are better). Figure Ov.9(b)
shows the Pareto-optimal set in solid black and
connected by a line; non-optimal data points are
shown in grey. The Pareto-optimal set forms a wave-
front that approaches both axes simultaneously.
Figures Ov.9(c) and (d) show the effect of adding four
new candidate solutions to the space: one lies inside
the wavefront, one lies on the wavefront, and two lie
outside the wavefront. The first two new additions,
A and B, are both dominated by at least one member
ofthe Pareto-optimal set, and so neither is considered
Pareto optimal. Even though B lies on the wavefront,
it is not considered Pareto optimal. The point to the
left of B has better performance than B at equal cost.
Thus, it dominates B.

Point C is not dominated by any member of the
Pareto-optimal set, nor does it dominate any mem-
ber of the Pareto-optimal set. Thus, candidate-
solution Cis added to the optimal set, and its addition
changes the shape of the wavefront slightly. The last
of the additional points, D, is dominated by no mem-
bers of the optimal set, but it does dominate several
members of the optimal set, so D’s inclusion in the
optimal set excludes those dominated members from
the set. As a result, candidate-solution D changes

the shape of the wave front more significantly than
candidate-solution C.

Tool Use: Taking Sampled Averages Correctly

In many fields, including the field of computer
engineering, it is quite popular to find a sampled
average, i.e., the average of a sampled set of numbers,
rather than the average of the entire set. This is useful
when the entire set is unavailable, difficult to obtain,
or expensive to obtain. For example, one might want
to use this technique to keep a running performance
average for a real microprocessor, or one might want
to sample several windows of execution in a terabyte-
size trace file. Provided that the sampled subset is
representative of the set as a whole, and provided that
the technique used to collect the samples is correct,
this mechanism provides a low-cost alternative that
can be very accurate.

The discussion will use as an example a mecha-
nism that samples the miles-per-gallon performance
of an automobile under way. The trip we will study is
an out and back trip with a brief pit stop, as shown
in Figure Ov.10. The automobile will follow a simple
course that is easily analyzed:

1. The auto will travel over even ground for
60 miles at 60 mph, and it will achieve 30
mpg during this window of time.

2. The auto will travel uphill for 20 miles at 60
mph, and it will achieve 10 mpg during this
window of time.

10 minutes idling
0 mph, 0 mpg

60 miles, 60 mph, 30 mpg

FIGURE 0v.10: Course taken by the automobile in the example.
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idle time represents wasted energy, even if the CPU
is stopped [Weiser et al. 1994].

Note that it is not sufficient to merely have a chip
that supports voltage scaling. There must be a heu-
ristic, either implemented in hardware or software,
that decides when to scale the voltage and by how
much to scale it. This decision is essentially a pre-
diction of the near-future computational needs of
the system and is generally made on the basis of
the recent computing requirements of all tasks and
threads running at the time. The development of
good heuristics is a tricky problem (pointed out by
Weiser et al. [1994]). Heuristics that closely track
performance requirements save little energy, while
those that save the most energy tend to do so at the
expense of performance, resulting in poor response
time, for example.

Most research quantifies the effect that DVS has
on reducing dynamic power dissipation because
dynamic power follows V4 in a quadratic relation-
ship: reducing Vg4 can significantly reduce dynamic
power. However, lowering Vy4 also reduces leak-
age power, which is becoming just as significant as
dynamic power. Though the reduction is only linear,
it is nonetheless a reduction.

Note also that even though DVS is commonly
applied to microprocessors, it is perfectly well suited
to the memory system as well. As a processor’s speed
is decreased through application of DVS, it requires
less speed out of its associated SRAM caches, whose
power supply can be scaled to keep pace. This will
reduce both the dynamic and the static power dissi-
pation of the memory circuits.

Powering-Down Unused Blocks A popular
mechanism for reducing power is simply to turn
off functional blocks that are not needed. This is
done at both the circuit level and the chip or I/0-
device level.

At the circuit level, the technique is called clock
gating. The clock signal to a functional block (e.g.,
an adder, multiplier, or predictor) passes through
a gate, and whenever a control circuit determines
that the functional block will be unused for several
cycles, the gate halts the clock signal and sends

a non-oscillating voltage level to the functional
block instead. The latches in the functional block
retain their information; do not change their out-
puts; and, because the data is held constant to the
combinational logic in the circuit, do not switch.
Therefore, it does not draw current or consume
energy.

Note that, in the naive implementation, the cir-
cuits in this instance are still powered up, so they
still dissipate static power; clock gating is a tech-
nique that only reduces dynamic power. Other
gating techniques can reduce leakage as well. For
example, in caches, unused blocks can be pow-
ered down using Gated-Vyq [Powell et al. 2000]
or Gated-ground [Powell et al. 2000] techniques.
Gated- V4 puts the power supply of the SRAM in
a series with a transistor as shown in Figure Ov.14.
With the stacking effect introduced by this tran-
sistor, the leakage current is reduced drastically.
This technique benefits from having both low-
leakage current and a simpler fabrication process
requirement since only a single threshold voltage
is conceptually required (although, as shown in
Figure Ov.14, the gating transistor can also have a
high threshold to decrease the leakage even further
at the expense of process complexity).

At the device level, for instance in DRAM chips
or disk assemblies, the mechanism puts the device
into a low-activity, low-voltage, and/or low-fre-
quency mode such as sleep or doze or, in the case
of disks, spin-down. For example, microprocessors
can dissipate anywhere from a fraction of a watt to
over 100 W of power; when not in use, they can be
put into a low-power sleep or doze mode that con-
sumes milli-watts. The processor typically expects
an interrupt to cause it to resume normal operation,
for instance, a clock interrupt, the interrupt output
of a watchdog timer, or an external device interrupt.
DRAM chips typically consume on the order of 1 W
each; they have a low-power mode that will reduce
this by more than an order of magnitude. Disks typi-
cally dissipate power in the tens of watts, the bulk
of which is in the spindle motor. When the disk is
placed in the “spin-down” mode (i.e., it is not rotat-
ing, but it is still responding to the disk controller),
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FIGURE Ov.14: Gated-Vyq4 technique using a high- | transistor to gate Vyq.

Sulizalicn
jHJ\—{i fwi Pty

high—Vt
NMOS

high-Vt
PMOS

FIGURE Ov.15: Different multi-V; configurations for the 6T memory cell showing which leakage currents are reduced for each

configuration.

the disk assembly consumes a total of a handful of
watts [Gurumurthi et al. 2003].

Leakage Power in SRAMs Low-power SRAM
techniques provide good examples of approaches
for lowering leakage power. SRAM designs targeted
for low power have begun to account for the increas-
ingly larger amount of power consumed by leakage
currents.

One conceptually simple solution is the use of
multi-threshold CMOS circuits. This involves using
process-level techniques to increase the threshold
voltage of transistors to reduce the leakage cur-
rent. Increasing this threshold serves to reduce
the gate overdrive and reduces the gate’s drive
strength, resulting in increased delay. Because
of this, the technique is mostly used on the non-
critical paths of the logic, and fast, low- V; transistors

are used for the critical paths. In this way the delay
penalty involved in using higher V; transistors can
be hidden in the non-critical paths, while reducing
the leakage currents drastically. For example, multi-
V; transistors are selectively used for memory cells
since they represent a majority of the circuit, reap-
ing the most benefit in leakage power consumption
with a minor penalty in the access time. Different
multi- V; configurations are shown in Figure Ov.15,
along with the leakage current path that each con-
figuration is designed to minimize.

Another technique thatreduces leakage power in
SRAMs is the Drowsy technique [Kim et al. 2004a].
This is similar to gated-Vyq and gated-ground
techniques in that it uses a transistor to condition-
ally enable the power supply to a given part of the
SRAM. The difference is that this technique puts
infrequently accessed parts of the SRAM into a
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FIGURE Ov.16: A drowsy SRAM cell containing the transistors
that gate the desired power supply.

state-preserving, low-power mode. A second power
supply with a lower voltage than the regular sup-
ply provides power to memory cells in the “drowsy”
mode. Leakage power is effectively reduced because
of its dependence on the value of the power sup-
ply. An SRAM cell of a drowsy cache is shown in
Figure Ov.16.

Ov.3.3 Reliability

Like performance, reliability means many things
to many people. For example, embedded systems
are computer systems, typically small, that run dedi-
cated software and are embedded within the context
of alarger system. They are increasingly appearing in
the place of traditional electromechanical systems,
whose function they are replacing because one can
now find chip-level computer systems which can be
programmed to perform virtually any function at a
price of pennies per system. The reliability problem
stems from the fact that the embedded system is a
state machine (piece of software) executing within
the context of a relatively complex state machine
(real-time operating system) executing within the
context of an extremely complex state machine
(microprocessor and its memory system). We are
replacingsimpleelectromechanicalsystemswithultra-
complex systems whose correct function cannot be
guaranteed. This presents an enormous problem
for the future, in which systems will only get more

complex and will be used increasingly in safety-
critical situations, where incorrect functioning can
cause great harm.

This is a very deep problem, and one that is not
likely to be solved soon. A smaller problem that we
can solve right now—one that engineers currently
do—is to increase the reliability of data within the
memory system. If a datum is stored in the memory
system, whether in a cache, in a DRAM, or on disk, it
is reasonable to expect that the next time a processor
reads that datum, the processor will get the value that
was written.

How could the datum’s value change? Solid-state
memory devices (e.g., SRAMs and DRAMs) are sus-
ceptible to both hard failures and soft errors in the
same manner that other semiconductor-based elec-
tronic devices are susceptible to both hard failures
and soft failures. Hard failures can be caused by elec-
tromigration, corrosion, thermal cycling, or electro-
static shock. In contrast to hard failures, soft errors
are failures where the physical device remains func-
tional, but random and transient electronic noises
corrupt the value of the stored information in the
memory system. Transient noise and upset comes
from a multitude of sources, including circuit noise
(e.g., crosstalk, ground bounce, etc.), ambient radia-
tion (e.g., even from sources within the computer
chassis), clock jitter, or substrate interactions with
high-energy particles. Which of these is the most
common is obviously very dependent on the operat-
ing environment.

Figure Ov.17 illustrates the last of these examples. It
pictures the interactions between high-energy alpha
particles and neutrons with the silicon lattice. The fig-
ure shows that when high-energy alpha particles pass
through silicon, the alpha particle leaves an ionized
trail, and the length of that ionized trail depends on
the energy of the alpha particle. The figure also illus-
trates that when high-energy neutrons pass through
silicon, some neutrons pass through without affect-
ing operations of the semiconductor device, but some
neutrons collide with nuclei in the silicon lattice. The
atomic collision can result in the creation of multiple
ionized trails as the secondary particles generated
in the collision scatter in the silicon lattice. In the
presence of an electric field, the ionized trails of
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Technology, Inc. (MoSys) claimed that for the 250-nm
process generation, SRAM SERs were reported to be
in the range of 100 failures per million device-hours
per megabit, while SERs were reported to be in the
range of 100,000 failures per megabit for the 130-nm
process generation. The generalized trend is expected
to continue to increase as the demand for low power
dissipation forces a continued reduction in supply
voltage and reduced critical charge per cell.
Solid-state memory devices (SRAMs and DRAMs)
are typically protected by error detection codes
and/or ECC. These are mechanisms wherein data
redundancy is used to detect and/or recover from
single- and even multi-bit errors. For instance, par-
ity is a simple scheme that adds a bit to a protected
word, indicating the number of even or odd bits in
the word. If the read value of the word does not match
the parity value, then the processor knows that the
read value does not equal the value that was initially
written, and an error has occurred. Error correction
is achieved by encoding a word such that a bit error
moves the resulting word some distance away from
the original word (in the Hamming-distance sense)
into an invalid encoding. The encoding space is cho-
sen such that the new, invalid word is closest in the
space to the original, valid word. Thus, the original
word can always be derived from an invalid code-
word, assuming a maximum number of bit errors.
Due to SRAM’s extreme sensitivity to soft errors,
modern processors now ship with parity and single-
bit error correction for the SRAM caches. Typically,
the tag arrays are protected by parity, whereas the
data arrays are protected by single-bit error cor-
rection. More sophisticated multi-bit ECC algo-
rithms are typically not deployed for on-chip SRAM
caches in modern processors since the addition
of sophisticated computation circuitry can add to
the die size and cause significant delay relative to
the timing demands of the on-chip caches. More-
over, caches store frequently accessed data, and in
case an uncorrectable error is detected, a proces-
sor simply has to re-fetch the data from memory.
In this sense, it can be considered unnecessary to
detect and correct multi-bit errors, but sufficient to
simply detect multi-bit errors. However, in the

physical design of modern SRAMs, often designers
will intentionally place capacitors above the SRAM
cell to improve SER.

Disk reliability is a more-researched area than data
reliability in disks, because data stored in magnetic
disks tends to be more resistant to transient errors
than data stored in solid-state memories. In other
words, whereas reliability in solid-state memories is
largely concerned with correcting soft errors, reliabil-
ity in hard disks is concerned with the fact that disks
occasionally die, taking most or all of their data with
them. Given that the disk drive performs the function
of permanent store, its reliability is paramount, and,
as Table Ov.4 shows, disks tend to last several years.
This data is corroborated by a recent study from
researchers at Google [Pinheiro et al. 2007]. The study
tracks the behavior and environmental parameters of
a fleet of over 100,000 disks for five years.

Reliability in the disk system is improved in much
the same manner as ECC: data stored in the disk sys-
tem is done so in a redundant fashion. RAID (redun-
dantarray ofinexpensive disks) is a technique wherein
encoded data is striped across multiple disks, so that
even in the case of a disk’s total failure the data will
always be available.

Ov.3.4 Virtual Memory

Virtual memory is the mechanism by which the
operating system provides executing software access
to the memory system. In this regard, itis the primary
consumer of the memory system: its procedures, data
structures, and protocols dictate how the compo-
nents of the memory system are used by all software
that runs on the computer. It therefore behooves
the reader to know what the virtual memory system
does and how it does it. This section provides a brief
overview of the mechanics of virtual memory. More
detailed treatments of the topic can also be found
on-line in articles by the author [Jacob & Mudge
1998a—c].

In general, programs today are written to run on
no particular hardware configuration. They have
no knowledge of the underlying memory system.
Processes execute in imaginary address spaces that
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Ov.4 An Example Holistic Analysis

Disk I/0 accounts for a substantial fraction of an
application’s execution time and power dissipation.
A new DRAM technology called Fully Buffered DIMM
(FB-DIMM) has been in development in the industry
[Vogt 20044, b, Haas &Vogt 2005], and, though it provides
storage scalability significantly beyond the current
DDRx architecture, FB-DIMM has met with some resis-
tance due to its high power dissipation. Our modeling
results show that the energy consumed in a moderate-
size FB-DIMM system is indeed quite large, and it can
easily approach the energy consumed by a disk.

This analysis looks at a trade-off between storage in
the DRAM system and in the disk system, focusing on
the disk-side write buffer; if configured and managed
correctly, thewrite buffer enables a system to approach
the performance of a large DRAM installation at half
the energy. Disk-side caches and write buffers have
been proposed and studied, but their effect upon total
system behavior has not been studied. We present
the impact on total system execution time, CPI, and
memory-system power, including the effects of the
operating system. Using a full-system, execution-
based simulator that combines Bochs, Wattch, CACTI,
DRAMsim, and DiskSim and boots the RedHat Linux
6.0 kernel, we have investigated the memory-system
behavior of the SPEC CPU2000 applications. We study
the disk-side cache in both single-disk and RAID-5
organizations. Cache parameters include size, orga-
nization, whether the cache supports write caching
or not, and whether it prefetches read blocks or not.
Our results are given in terms of L1/L2 cache accesses,
power dissipation, and energy consumption; DRAM-
system accesses, power dissipation, and energy con-
sumption; disk-system accesses, power dissipation,
and energy consumption; and execution time of the
application plus operating system, in seconds. The
results are not from sampling, but rather from a simu-
lator that calculates these values on a cycle-by-cycle
basis over the entire execution of the application.

Ov.4.1 Fully-Buffered DIMM vs. the Disk Cache

It is common knowledge that disk I/0 is expen-
sive in both power dissipated and time spent wait-
ing on it. What is less well known is the system-wide

breakdown of disk power versus cache power versus
DRAM power, especially in light of the newest DRAM
architecture adopted by industry, the FB-DIMM. This
new DRAM standard replaces the conventional mem-
ory bus with a narrow, high-speed interface between
the memory controller and the DIMMs. It has been
shown to provide performance similar to that of
DDRx systems, and thus, it represents a relatively low-
overhead mechanism (in terms of execution time) for
scaling DRAM-system capacity. FB-DIMM’s latency
degradation is not severe. It provides a noticeable
bandwidth improvement, and it is relatively insensi-
tive to scheduling policies [Ganesh et al. 2007].

FB-DIMM was designed to solve the problem of
storage scalability in the DRAM system, and it pro-
vides scalability well beyond the current JEDEC-style
DDRx architecture, which supports at most two to
four DIMMs in a fully populated dual-channel sys-
tem (DDR2 supports up to two DIMMs per channel;
proposals for DDR3 include limiting a channel to a
single DIMM). The daisy-chained architecture of
FB-DIMM supports up to eight DIMMs per channel,
and its narrow bus requires roughly one-third the
pins of a DDRx SDRAM system. Thus, an FB-DIMM
system supports an order of magnitude more DIMMs
than DDRx. This scalability comes at a cost, however.
The DIMM itself dissipates almost an order of mag-
nitude more power than a traditional DDRx DIMM.
Couple this with an order-of-magnitude increase in
DIMMs per system, and one faces a serious problem.

To give an idea of the problem, Figure Ov.27 shows
the simulation results of an entire execution of the
gzip benchmark from SPEC CPU2000 on a complete-
system simulator. The memory system is only mod-
erate in size: one channel and four DIMMs, totalling
a half-gigabyte. The graphs demonstrate numerous
important issues, but in this book we are concerned
with two items in particular:

* Program initialization is lengthy and repre-
sents a significant portion of an application’s
run time. As the CPI graph shows, the first
two-thirds of execution time are spent deal-
ing with the disk, and the corresponding CPI
(both average and instantaneous) ranges
from the 100s to the 1000s. After this initial-
ization phase, the application settles into a
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