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In Praise of Memory Systems: Cache, DRAM, Disk

Memory Systems: Cache, DRAM, Disk is the fi rst book that takes on the whole hierarchy in a way that is 
consistent, covers the complete memory hierarchy, and treats each aspect in signifi cant detail. This book will 
serve as a defi nitive reference manual for the expert designer, yet it is so complete that it can be read by a relative 
novice to the computer design space. While memory technologies improve in terms of density and performance, 
and new memory device technologies provide additional properties as design options, the principles and meth-
odology presented in this amazingly complete treatise will remain useful for decades. I only wish that a book 
like this had been available when I started out more than three decades ago. It truly is a landmark publication. 
Kudos to the authors.

—Al Davis, University of Utah 

Memory Systems: Cache, DRAM, Disk fi lls a huge void in the literature about modern computer architecture. 
The book starts by providing a high level overview and building a solid knowledge basis and then provides the 
details for a deep understanding of essentially all aspects of modern computer memory systems including archi-
tectural considerations that are put in perspective with cost, performance and power considerations. In addi-
tion, the historical background and politics leading to one or the other implementation are revealed. Overall, 
Jacob, Ng, and Wang have created one of the truly great technology books that turns reading about bits and bytes 
into an exciting journey towards understanding technology.

—Michael Schuette, Ph.D., VP of Technology Development at OCZ Technology 

This book is a critical resource for anyone wanting to know how DRAM, cache, and hard drives really work. 
It describes the implementation issues, timing constraints, and trade-offs involved in past, present, and future 
designs. The text is exceedingly well-written, beginning with high-level analysis and proceeding to incredible 
detail only for those who need it. It includes many graphs that give the reader both explanation and intuition. 
This will be an invaluable resource for graduate students wanting to study these areas, implementers, designers, 
and professors.

—Diana Franklin, California Polytechnic University, San Luis Obispo

Memory Systems: Cache, DRAM, Disk fi lls an important gap in exploring modern disk technology with accu-
racy, lucidity, and authority. The details provided would only be known to a researcher who has also contributed 
in the development phase. I recommend this comprehensive book to engineers, graduate students, and research-
ers in the storage area, since details provided in computer architecture textbooks are woefully inadequate.

—Alexander Thomasian, IEEE Fellow, New Jersey Institute of Technology and Thomasian and Associates

Memory Systems: Cache, DRAM, Disk offers a valuable state of the art information in memory systems that 
can only be gained through years of working in advanced industry and research. It is about time that we have 
such a good reference in an important fi eld for researchers, educators and engineers.

—Nagi Mekhiel, Department of Electrical and Computer Engineering, Ryerson University, Toronto

This is the only book covering the important DRAM and disk technologies in detail. Clear, comprehensive, and 
authoritative, I have been waiting for such a book for long time.

—Yiming Hu, University of Cincinnati
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Memory is often perceived as the performance bottleneck in computing architectures. Memory Systems: 
Cache, DRAM, Disk, sheds light on the mystical area of memory system design with a no-nonsense approach to 
what matters and how it affects performance. From historical discussions to modern case study examples this 
book is certain to become as ubiquitous and used as the other Morgan Kaufmann classic textbooks in computer 
engineering including Hennessy and Patterson’s Computer Architecture: A Quantitative Approach.

—R. Jacob Baker, Micron Technology, Inc. and Boise State University.

Memory Systems: Cache, DRAM, Disk is a remarkable book that fi lls a very large void. The book is  remarkable 
in both its scope and depth. It ranges from high performance cache memories  to disk systems. It spans circuit 
design to system architecture in a clear, cohesive manner. It is the memory architecture that defi nes  modern 
computer systems, after all. Yet, memory systems are often considered as an appendage and are covered in a 
piecemeal fashion. This book recognizes that memory systems are the heart and soul of modern computer 
systems and takes a ‘holistic’ approach to describing and analyzing memory systems.

The classic book on memory systems was written by Dick Matick of IBM over thirty years ago. So not only does 
this book fi ll a void, it is a long-standing void. It carries on the tradition of Dick Matick’s book extremely well, 
and it will  doubtless be the defi nitive reference for students and designers of memory  systems for many years to 
come. Furthermore, it would be easy to build a top-notch memory systems course around this book. The authors 
clearly and succinctly describe the important issues in an easy-to-read manner. And the fi gures and graphs are 
really great—one of the best parts of the book.

When I work at home, I make coffee in a little stove-top espresso maker I got in Spain. It makes good coffee very 
effi ciently, but if you put it on the stove and forget it’s there, bad things happen—smoke, melted gasket—‘burned 
coffee meltdown.’ This only happens when I’m totally engrossed in a paper or article. Today, for the fi rst time, it 
 happened twice in a row—while I was reading the fi nal version of this book.

—Jim Smith, University of Wisconsin—Madison
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You can tell whether a person plays or not by the way he carries the 
instrument, whether it means something to him or not.

Then the way they talk and act. If they act too hip, you know they can’t 
play [jack].

—Miles  Davis

[...] in connection with musical continuity, Cowell remarked at the 
New School  before a concert of works by Christian Wolff, Earle Brown, 
Morton Feldman, and myself, that here were four composers who were 
getting rid of glue. That is: Where people had felt the necessity to stick 
sounds together to make a continuity, we four felt the opposite neces-
sity to get rid of the glue so that sounds would be themselves.

Christian Wolff was the fi rst to do this. He wrote some pieces vertically 
on the page but recommended their being played horizontally left to 
right, as is conventional. Later he discovered other geometrical means 
for freeing his music of intentional continuity. Morton Feldman di-
vided pitches into three areas, high, middle, and low, and established 
a time unit. Writing on graph paper, he simply inscribed numbers of 
tones to be played at any time within specifi ed periods of time.

There are people who say, “If music’s that easy to write, I could do it.” Of 
course they could, but they don’t. I fi nd Feldman’s own statement more 
affi rmative. We were driving back from some place in New England 
where a concert had been given. He is a large man and falls asleep 
easily. Out of a sound sleep, he awoke to say, “Now that things are so 
simple, there’s so much to do.” And then he went back to sleep.

—John Cage, Silence
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"It’s the Memory, Stupid!"
If you develop an ear for sounds that are musical it is lil~e developing an ego. You begin m refuse sounds that are not musical
and that way cut yourself off from a good deal of experience.

--John Cage

In 1996, Richard Sites, one of the fathers of
computer architecture and lead designers of the DEC
Alpha, had the following to say about the future of
computer architecture research:

Across the industry, today’s chips are largely
able m execute code faster than we can feed
them with instructions and data. There are
no longer performance bottleneclcs in the
floating-point multiplier or in having only
a single integer unit. The real design action
is in memory subsystems--caches, buses,
bandwidth, and latency.

An anecdote: in a recent database benchmarlc
study using TPC-C, both 200-MHz Pentium
Pro and 400MHz 21164 Alpha systems were
measured at4.2-4.5 CPU cycles per instruction
retired. In other words, three out of every four
CPU cycles retired zero instructions: most were
spent waiting for memory. Processor speed has
seriously outstripped memory speed.

Increasing the width of instruction issue
and increasing the number of simultaneous
instruction streams only malces the memory
bottleneclc worse. Ira CPU chip today needs to
move 2 GBytes/s (say, 16 bytes every 8 ns) across
the pins to Iceep itself busy, imagine a chip in
the foreseeable future with twice the cloclc rate,
twice the issue width, and two instruction

streams. All these factors multiply together ~o
require about 16 GBytes/s of pin bandwidth ~o
lceep this chip busy. It is not clear whether pin
bandwidth can lceep up--32 bytes every 2ns?

I expect that over the coming decade memory
subsystems design will be the only important
design issue for microprocessors. ]Sites 1996,
emphasis Sites’]

The title of Sites’ article is "It’s the Memory, Stupid!"
Sites realized in 1996 what we as a community are only
now, more than a decade later, beginning to digest
and internalize fully: uh, guys, it really is the memory
system ... little else matters right now, so stop wasting
time and resources on other facets of the design. Most
of his colleagues designing next-generation Alpha
architectures at Digital Equipment Corp. ignored his
advice and instead remained focused on building
ever faster microprocessors, rather than shifting their
focus to the building of ever faster systems. It is per-
haps worth noting that Digital Equipment Corp. no
longer exists.

The increasing gap between processor and memory
speeds has rendered the organization, architecture,
and design of memory subsystems an increasingly
important part of computer-systems design. Today,
the divide is so severe we are now in one of those
down-cycles where the processor is so good at

xxxJ
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numb er- crunching it has completely sidelined itself; it
is too fast for its own good, in a sense. Sites’ prediction
came true: memory subsystems design is now and has
been for several years the onlyimportant design issue
for microprocessors and systems. Memory-hierarchy
parameters affect system performance significantly
more than processor parameters (e.g., they are
responsible for 2-10× changes in execution time, as
opposed to 2-10%), making it absolutely essential
for any designer of computer systems to exhibit an
in-depth knowledge of the memory system’s orga-
nization, its operation, its not-so-obvious behavior,
and its range of performance characteristics. This is
true now, and it is likely to remain true in the near
future.

Thus this book, which is intended to provide
exactly that type of in-depth coverage over a wide
range of topics.

Topics Covered
In the following chapters we address the logical

design and operation, the physical design and opera-
tion, the performance characteristics (i.e., design
trade-offs), and, to a limited extent, the energy con-
sumption of modern memory hierarchies.

In the cache section, we present topics and per-
spectives that will be new (or at least interesting) to
even veterans in the field. What this implies is that
the cache section is not an overview of processor-
cache organization and its effect on performance--
instead, we build up the concept of cache from
first principles and discuss topics that are incom-
pletely covered in the computer-engineering lit-
erature. The section discusses a significant degree
of historical development in cache-management
techniques, the physical design of modern SRAM
structures, the operating system’s role in cache
coherence, and the continuum of cache archi-
tectures from those that are fully transparent (to
application software and/or the operating system)
to those that are fully visible.

DRAM and disk are interesting technologies
because, unlike caches, they are not typically

integrated onto the microprocessor die. Thus any
discussion of these topics necessarily deals with the

issue of communication: e.g., channels, signalling,
protocols, and request scheduling.

DRAM involves one or more chip-to- chip crossings,
and so signalling and signal integrity are as funda-
mental as circuit design to the technology. In the
DRAM section, we present an intuitive understand-
ing of exactly what happens inside the DRAM so that
the ubiquitous parameters of the interface (e.g., tRc,
tRcD, tCis, etc.) will make sense. We survey the various
DRAM architectures that have appeared over the years
and give an in-depth description of the technologies
in the next generation memory-system architecture.
We discuss memory-controller issues and investigate
performance issues of modern systems.

The disk section builds from the bottom up,
providing a view of the disk from physical record-
ing principles to the configuration and operation of
disks within system settings. We discuss the opera-
tion of the disk’s read/write heads; the arrangement
of recording media within the enclosure; and the
organization-level view of blocks, sectors, tracks, and
cylinders, as well as various protocols used to encode
data. We discuss performance issues and techniques
used to improve performance, including caching and
buffering, prefetching, request scheduling, and data
reorganization. We discuss the various disk inter-
faces available today (e.g., ATA, serial ATA, SCSI, fibre
channel, etc.) as well as system configurations such
as RAID, SAN, and NAS.

The last section of the book, Cross-Cutting Issues,
covers topics that apply to alllevels of the memory hier-
archy, such as the tools of analysis and how to use them
correctly, subthreshold leakage power in CMOS devices
and circuits, a look at power breakdowns in future
SRAMs, codes for error detection and error correction,
the design and operation of virtual memory systems,
and the hardware mechanisms that are required in
microprocessors to support virtual memory.

Goals and Audience
The primary goal of this book is to bring the reader

to a level of understanding at which the physical
design and/or detailed software emulation of the
entire hierarchy is possible, from cache to disk. As we
argue in the initial chapter, this level of understanding
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is important now and will become increasingly
necessary over time. Another goal of the book is to
discuss techniques of analysis, so that the next gen-
eration of design engineers is prepared to tackle the
nontrivial multidimensional optimization problems
that result from considering detailed side-effects that
can manifest themselves at any point in the entire
hierarchy.

Accordingly, our target audience are those plan-
ning to build and/or optimize memory systems: i.e.,
computer-engineering and computer-science faculty
and graduate students (and perhaps advanced under-
graduates) and developers in the computer design,
peripheral design, and embedded systems industries.

As an educational textbook, this is targeted at
graduate and undergraduate students with a solid
background in computer organization and archi-
tecture. It could serve to support an advanced
senior-level undergraduate course or a second-year
graduate course specializing in computer-systems
design. There is clearly far too much material here for
any single course; the book provides depth on enough
topics to support two to three separate courses. For
example, at the University of Maryland we use the
DRAM section to teach a graduate class called High-
Speed Memory Systems, and we supplement both our
general and advanced architecture classes with mate-
rial from the sections on Caches and Cross-Cutting
Issues. The Disk section could support a class focused
solely on disks, and it is also possible to create for
advanced students a survey class that lightly touches
on all the topics in the book.

As a reference, this book is targeted toward both
academics and professionals alike. It provides the
breadth necessary to understand the wide scope of
behaviors that appear in modern memory systems,
and most of the topics are addressed in enough depth
that a reader should be able to build (or at least model
in significant detail) caches, DRAMs, disks, their
controllers, their subsystems ... and understand their
interactions.

What this means is that the book should not only
be useful to developers, but it should also be useful
to those responsible for long-range planning and
forecasting for future product developments and
their issues.
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On Memory Systems
and Their Design

Memory is essential to the operation of a computer
system, and nothing is more important to the devel-
opment of the modern memory system than the con-
cept of the memory hierarchy. While a fiat memory
system built of a single technology is attractive for
its simplicity, a well-implemented hierarchy allows a
memory system to approach simultaneously the per-
formance of the fastest component, the cost per bit of
the cheapest component, and the energy consump-
tion of the most energy-efficient component.

For years, the use of a memory hierarchy has
been very convenient, in that it has simplified the
process of designing memory systems. The use of a
hierarchy allowed designers to treat system design
as a modularized process--to treat the memory
system as an abstraction and to optimize individual
subsystems ~caches, DRAMs [dynamic RAM], disks)
in isolation.

However, we are finding that treating the hierar-
chy in this way--as a set of disparate subsystems
that interact only through well-defined functional
interfaces and that can be optimized in isola-
tion-no longer suffices for the design of modern
memory systems. One trend becoming apparent is
that many of the underlying implementation issues
are becoming significant. These include the phys-
ics of device and interconnect scaling, the choice
of signaling protocols and topologies to ensure
signal integrity, design parameters such as granu-
larity of access and support for concurrency, and
communication-related issues such as scheduling
algorithms and queueing. These low-level details
have begun to affect the higher level design process

quite dramatically, whereas they were considered
transparent only a design-generation ago. Cache
architectures are appearing that play to the limita-
tions imposed by interconnect physics in deep sub-
micron processes; modern DRAM design is driven
by circuit-level limitations that create system-level
headaches; and modern disk performance is domi-
nated by the on-board caching and scheduling poli-
cies. This is a non-trivial environment in which to
attempt optimal design.

This trend will undoubtedly become more impor-
tant as time goes on, and even now it has tremendous
impact on design results. As hierarchies and their
components grow more complex, systemic behav-
iors-those arising from the complex interaction of
the memory system’s parts--have begun to domi-
nate. The real loss of performance is not seen in the
CPU or caches or DRAM devices or disk assemblies
themselves, but in the subtle interactions between
these subsystems and in the manner in which
these subsystems are connected. Consequently, it is
becoming increasingly foolhardy to attempt system-
level optimization by designing/optimizing each of
the parts in isolation ~which, unfortunately, is often
the approach taken in modern computer design).
No longer can a designer remain oblivious to issues
"outside the scope" and focus solely on design-
ing a subsystem. It has now become the case that a
memory-systems designer, wishing to build a prop-
erly behaved memory hierarchy, must be intimately
familiar with issues involved at all levels of an imple-
mentation, from cache to DRAM to disk. Thus, we
wrote this book.
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Ov.1 Memory Systems

tiple functions that are seemingly mutually exclusive.
We start at random-access memory (RAM): all micro-
processors (and computer systems in general) expect
a random-access memory out of which they operate.
This is fundamental to the structure of modern soft-
ware, built upon the von Neumann model in which
code and data are essentially the same and reside in
the same place (i.e., memory). All requests, whether
for instructions or for data, go to this random-access
memory. At any given moment, any particular datum
in memory may be needed; there is no requirement
that data reside next to the code that manipulates
it, and there is no requirement that two instructions
executed one after the other need to be adjacent in
memory. Thus, the memory system must be able to
handle randomly addressed1 requests in a manner
that favors no particular request. For instance, using
a tape drive for this primary memory is unacceptable
for performance reasons, though it might be accept-
able in the Turing-machine sense.

Where does the mutually exclusive part come in?
As we said, all microprocessors are built to expect a
random-access memory out of which they can oper-
ate. Moreover, this memory must be fast, match-
ing the machine’s processing speed; otherwise, the
machine will spend most of its time tapping its foot
and staring at its watch. In addition, modern soft-
ware is written to expect gigabytes of storage for data,
and the modern consumer expects this storage to be
cheap. How many memory technologies provide both
tremendous speed and tremendous storage capacity
at a low price? Modern processors execute instruc-
tions both out of order and speculatively--put sim-
ply, they execute instructions that, in some cases, are
not meant to get executed--and system software is
typically built to expect that certain changes to mem-
ory are permanent. How many memory technologies
provide non-volatility and an undo operation?

While it might be elegant to provide all of these
competing demands with a single technology (say,

for example, a gigantic battery-backed SRAM [static
RAM]), and though there is no engineering problem
that cannot be solved (if ever in doubt about this, sim-
ply query a room full of engineers), the reality is that
building a full memory system out of such a technol-
ogy would be prohibitively expensive today.2 The good
news is that it is not necessary. Specialization and
division of labor make possible all of these competing
goals simultaneously. Modern memory systems often
have a terabyte of storage on the desktop and provide
instruction-fetch and data-access bandwidths of 128
GB/s or more. Nearly all of the storage in the system
is non-volatile, and speculative execution on the part
of the microprocessor is supported. All of this can be
found in a memory system that has an average cost of
roughly 1 / 100,000,000 pennies per bit of storage.

The reason all of this is possible is because of a
phenomenon called locality of reference [Belady 1966,
Denning 1970]. This is an observed behavior that
computer applications tend to exhibit and that, when
exploited properly, allows a small memory to serve in
place of a larger one.

0v.1.1 Locality of Reference Breeds the
Memory Hierarchy

We think linearly (in steps), and so we program the
computer to solve problems by working in steps. The
practical implications of this are that a computer’s
use of the memory system tends to be non-random
and highly predictable. Thus is born the concept of
locality of reference, so named because memory refer-
ences tend to be localized in time and space:

¯ If you use something once, you are likely to
use it again.

¯ If you use something once, you are likely to
use its neighbor.

The first of these principles is called temporal local-
ity;, the second is called spatial locality.We will discuss
them (and another type of locality) in more detail in
Part I: Cache of this book, but for now it suffices to

1Though "random" addressing is the commonly used term, authors actually mean arbitrarily addressed requests because,
in most memory systems, a randomly addressed sequence is one of the most efficiently handled events.
2Even Cray machines, which were famous for using SRAM as their main memory, today are built upon DRAM for their
main memory.
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say that one can exploit the locality principle and
render a single-level memory system, which we just
said was expensive, unnecessary. If a computer’s use
of the memory system, given a small time window, is
both predictable and limited in spatial extent, then
it stands to reason that a program does not need all
of its data immediately accessible. A program would
perform nearly as well if it had, for instance, a two-
level store, in which the first level provides immediate
access to a subset of the program’s data, the second
level holds the remainder of the data but is slower and
therefore cheaper, and some appropriate heuristic is
used to manage the movement of data back and forth
between the levels, thereby ensuring that the most-
needed data is usually in the first-level store.

This generalizes to the memory hierarchy, multiple
levels of storage, each optimized for its assigned task.
By choosing these levels wisely a designer can produce
a system that has the best of all worlds: performance
approaching that of the fastest component, cost per
bit approaching that of the cheapest component, and
energy consumption per access approaching that of
the least power-hungry component.

The modern hierarchy is comprised of the following
components, each performing a particular function or
filling a functional niche within the system:

Cache (SRAM): Cache provides access to
program instructions and data that has
very low latency (e.g., 1/4 nanosecond per
access) and very high bandwidth (e.g., a
16-byte instruction block and a 16-byte

data block per cycle => 32 bytes per i/4
nanosecond, or i28 bytes per nanosecond,
or 128 GB/s). It is also important to note
that cache, on a per-access basis, also has
relatively low energy requirements
compared to other technologies.
DRAM: DRAM provides a random-access
storage that is relatively large, relatively fast,
and relatively cheap. It is large and cheap
compared to cache, and it is fast compared
to disk. Its main strength is that it is just fast
enough and just cheap enough to act as an
operating store.
Disk: Disk provides permanent storage at
an ultra-low cost per bit. As mentioned,
nearly all computer systems expect some
data to be modifiable yet permanent, so the
memory system must have, at some level, a
permanent store. Disk’s advantage is its very
reasonable cost (currently less than 50¢ per
gigabyte), which is low enough for users to
buy enough of it to store thousands of songs,
video clips, photos, and other memory hogs
that users are wont to accumulate in their
accounts (authors included).

Table Ov.1 lists some rough order-of-magnitude
comparisons for access time and energy consump-
tion per access.

Why is it not feasible to build a fiat memory system
out of these technologies? Cache is far too expensive
to be used as permanent storage, and its cost to store a
single album’s worth of audio would exceed that of the

TABLE Ov,1 Cost-performance for various memory technologies

On-chip Cache

Off-chip Cache

DRAM

Disk

10

lO0

1000 (internally
fetched

1000

100 of picoseconds

Nanoseconds

10-1 O0
nanoseconds

Milliseconds

$1-100

$1-10

$0.1

$0.001

1 nJ

10-1 O0 nJ

1-100 nJ (per
device)

100-1000 mJ

aCost of semiconductor memory is extremely variable, dependent much more on economic factors and sales volume than on
manufacturing issues. In particular, on-chip caches (i.e., those integrated with a microprocessor core) can take up half of the
die area, in which case their "cost" would be half of the selling price of that microprocessor. Depending on the market (e.g.,
embedded versus high end) and sales volume, microprocessor costs cover an enormous range of prices, from pennies per
square millimeter to several dollars per square millimeter.
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original music CD by several orders of magnitude. Disk
is far too slow to be used as an operating store, and its
average seek time for random accesses is measured in
milliseconds. Of the three, DRAM is the closest to pro-
viding a fiat memory system. DRAM is sufficiently fast
enough that, without the support of a cache front-end,
it can act as an operating store for many embedded
systems, and with battery back-up it can be made to
function as a permanent store. However, DRAM alone
is not cheap enough to serve the needs of human
users, who often want nearly a terabyte of permanent
storage, and, even with random access times in the
tens of nanoseconds, DRAM is not quite fast enough to
serve as the only memory for modern general-purpose
microprocessors, which would prefer a new block of
instructions every fraction of a nanosecond.

So far, no technology has appeared that provides
every desired characteristic: low cost, non-volatility,
high bandwidth, low latency, etc. So instead we build
a system in which each component is designed to offer
one or more characteristics, and we manage the opera-
tion of the system so that the poorer characteristics of
the various technologies are "hidden." For example, if
most of the memory references made by the micro-
processor are handled by the cache and/or DRAM
subsystems, then the disk will be used only rarely,
and, therefore, its extremely long latency will contrib-
ute very little to the average access time. If most of the
data resides in the disk subsystem, and very little of it
is needed at any given moment in time, then the cache
and DRAM sub systems will not nee d much storage, and,

therefore, their
Speed Cost Size

FIGURE Ov.l: A memory hierachy.

higher costs per
bit will contrib-
ute very little to
the average cost
of the system.
If done right, a
memory system
has an average
cost approaching
that of bottom-

most layer and an average access time and bandwidth
approaching that of topmost layer.

The memory hierarchy is usually pictured as a pyra-
mid, as shown in Figure Ov. 1. The higher levels in the

hierarchy have better performance characteristics
than the lower levels in the hierarchy; the higher levels
have a higher cost per bit than the lower levels; and the
system uses fewer bits of storage in the higher levels
than found in the lower levels.

Though modern memory systems are comprised of
SRAM, DRAM, and disk, these are simply technologies
chosen to serve particular needs of the system, namely
permanent store, operating store, and a fast store. Any
technology set would suffice if it (a) provides perma-
nent and operating stores and (b) satisfies the given
computer system’s performance, cost, and power
requirements.

Permanent Store

The system’s permanent store is where everything
lives ... meaning it is home to data that can be modi-
fied (potentially), but whose modifications must be
remembered across invocations of the system (power-
ups and power-downs). In general-purpose systems,
this data typically includes the operating system’s
files, such as boot program, OS (operating system)
executable, libraries, utilities, applications, etc., and
the users’ files, such as graphics, word-processing
documents, spreadsheets, digital photographs, digi-
tal audio and video, email, etc. In embedded systems,
this data typically includes the system’s executable
image and any installation-specific configuration
information that it requires. Some embedded systems
also maintain in permanent store the state of any par-
tially completed transactions to withstand worst-case
scenarios such as the system going down before the
transaction is finished (e.g., financial transactions).

These all represent data that should not disap-
pear when the machine shuts down, such as a user’s
saved email messages, the operating system’s code
and configuration information, and applications and
their saved documents. Thus, the storage must be non-
volatile, which in this context means not susceptible to
power outages. Storage technologies chosen for perma-
nent store include magnetic disk, flash memory, and
even EEPROM (electrically erasable programmable
read-only memory), of which flash memory is a special
type. Other forms of programmable ROM (read-only
memory) such as ROM, PROM (programmable ROM),
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or EPROM (erasable programmable ROM) are suitable
for non-writable permanent information such as the
executable image of an embedded system or a gen-
eral-purpose system’s boot code and BIOS.3 Numerous
exotic non-volatile technologies are in development,
including magnetic RAM (MRAM), FeRAM (ferroelec-
tric RAM), and phase-change RAM (PCRAM).

In most systems, the cost per bit of this technology
is a very important consideration. In general-purpose
systems, this is the case because these systems tend
to have an enormous amount of permanent storage. A
desktop can easily have more than 500 GB of perma-
nent store, and a departmental server can have one
hundred times that amount. The enormous number
of bits in these systems translates even modest cost-
per-bit increases into significant dollar amounts.
In embedded systems, the cost per bit is important
because of the significant number of units shipped.
Embedded systems are often consumer devices that
are manufactured and sold in vast quantities, e.g., cell
phones, digital cameras, MP3 players, programmable
thermostats, and disk drives. Each embedded system
might not require more than a handful of megabytes
of storage, yet a tiny 1¢ increase in the cost per mega-
byte of memory can translate to a $100,000 increase
in cost per million units manufactured.

Operating (Random-Access) Store
As mentioned earlier, a typical microprocessor

expects a new instruction or set of instructions on
every clock cycle, and it can perform a data-read or
data-write every clock cycle. Because the addresses
of these instructions and data need not be sequential
(or, in fact, related in any detectable way), the mem-
ory system must be able to handle random access--it
must be able to provide instant access to any datum
in the memory system.

The machine’s operating store is the level of memory
that provides random access at the microprocessor’s
data granularity. It is the storage level out of which the
microprocessor could conceivably operate, i.e., it is
the storage level that can provide random access to its

storage, one data word at a time. This storage level is
typically called "main memory." Disks cannot serve as
main memory or operating store and cannot provide
random access for two reasons: instant access is pro-
vided for only the data underneath the disk’s head at
any given moment, and the granularity of access is not
what a typical processor requires. Disks are block-ori-
ented devices, which means they read and write data
onlyin large chunks; the typical granularityis 512 B. Pro-
cessors, in contrast, typically operate at the granularity
of 4 B or 8 B data words. To use a disk, a microprocessor
must have additional buffering memory out of which it
can read one instruction at a time and read or write one
datum at a time. This buffering memory would become
the de facto operating store of the system.

Flash memory and EEPROM (as well as the exotic
non-volatile technologies mentioned earlier) are poten-
tially viable as an operating store for systems that have
small permanent-storage needs, and the non-volatil-
ity of these technologies provides them with a distinct
advantage. However, not all are set up as an ideal oper-
ating store; for example, flash memory supports word-
sized reads but supports only block-sized writes. If this
type of issue can be handled in a manner that is trans-
parent to the processor (e.g., in this case through addi-
tional data buffering), then the memory technology can
still serve as a reasonable hybrid operating store.

Though the non-volatile technologies seem posi-
tioned perfectly to serve as operating store in all manner
of devices and systems, DRAM is the most commonly
used technology. Note that the only requirement of
a memory system’s operating store is that it provide
random access with a small access granularity. Non-
volatility is not a requirement, so long as it is provided
by another level in the hierarchy. DRAM is a popular
choice for operating store for several reasons: DRAM
is faster than the various non-volatile technologies (in
some cases much faster); DRAM supports an unlim-
ited number of writes, whereas some non-volatile
technologies start to fail after being erased and rewrit-
ten too many times (in some technologies, as few as
1-10,000 erase/write cycles); and DRAM processes
are very similar to those used to build logic devices.

3BIOS = basic input/output system, the code that provides to software low-level access to much of the hardware.
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DRAM can be fabricated using similar materials and
(relatively) similar silicon-based process technologies
as most microprocessors, whereas many of the various
non-volatile technologies require new materials and
(relatively) different process technologies.

Fast (and Relatively, Low-Power) Store
If these storage technologies provide such reason-

able operating store, why, then, do modern systems use
cache? Cache is inserted between the processor and the
main memory system whenever the access behavior
of the main memory is not sufficient for the needs or
goals of the system. Typical figures of merit include per-
formance and energy consumption (or power dissipa-
tion). If the performance when operating out of main
memory is insufficient, cache is interposed between the
processor and main memory to decrease the average
access time for data. Similarly, if the energy consumed
when operating out of main memory is too high, cache
is interposed between the processor and main memory
to decrease the system’s energy consumption.

The data in Table Ov. 1 should give some intuition
about the design choice. If a cache can reduce the
number of accesses made to the next level down in the
hierarchy, then it potentially reduces both execution
time and energy consumption for an application. The
gain is only potential because these numbers are valid
only for certain technology parameters. For example,
many designs use large SRAM caches that consume
much more energy than several DRAM chips com-
bined, but because the caches can reduce execution
time they are used in systems where performance is
critical, even at the expense of energy consumption.

It is imp ortant to note at this point that, even though
the term "cache" is usually interpreted to mean SRAM,
a cache is merely a concept and as such imposes
no expectations on its implementation. Caches are

Metadata Data

Input Key

best thought of as compact databases, as shown in
Figure Ov.2. They contain data and, optionally,
metadata such as the unique ID (address) of each
data block in the array, whether it has been updated
recently, etc. Caches can be built from SRAM, DRAM,
disk, or virtually any storage technology. They can be
managed completely in hardware and thus can be
transparent to the running application and even to
the memory system itself; and at the other extreme
they can be explicitly managed by the running appli-
cation. For instance, Figure Or.2 shows that there is
an optional block of metadata, which if implemented
in hardware would be called the cache’s tags. In that
instance, a key is passed to the tags array, which
produces either the location of the corresponding
item in the data array (a cache hit) or an indication
that the item is not in the data array (a cache miss).
Alternatively, software can be written to index the
array explicitly, using direct cache-array addresses,
in which case the key lookup (as well as its associ-
ated tags array) is unnecessary. The configuration
chosen for the cache is called its organization. Cache
organizations exist at all spots along the continuum
between these two extremes. Clearly, the choice of
organization will significantly impact the cache’s per-
formance and energy consumption.

Predictability of access time is another common fig-
ure of merit. It is a special aspect of performance that is
very important when building real-time systems or sys-
tems with highly orchestrated data movement. DRAM
is occasionally in a state where it needs to ignore exter-
nal requests so that it can guarantee the integrity of its
stored data (this is called refresh and will be discussed in
detail in Part II of the book). Such hiccups in data move-
ment can be disastrous for some applications. For this
reason, many microprocessors, such as digital signal
processors (DSPs) and processors used in embedded
control applications (called microcontrollers), often

,.    Data
Entry in Available

Data Array

FIGURE Ov.2: An idealized cache lookup. A cache is logically comprised of two elements: the data array and some management
information that indicates what is in the data array (labeled "metadata"). Note that the key information may be virtual, i.e., data
addresses can be embedded in the software using the cache, in which case there is no explicit key lookup, and only the data
array is needed.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 7

have special caches that look like small main memo-
ries. These are scratch-pad RAMs whose implementa-
tion lies toward the end of the spectrum at which the
running application manages the cache explicitly. DSPs
typically have two of these scratch-pad SRAMs so that
they can issue on every cycle a new multiply-accumu-
late (MAC) operation, an important DSP instruction
whose repeated operation on a pair of data arrays pro-
duces its dot product. Performing a new MAC opera-
tion every cycle requires the memory system to load
new elements from two different arrays simultaneously
in the same cycle. This is most easily accomplished
by having two separate data busses, each with its own
independent data memory and each holding the ele-
ments of a different array.

Perhaps the most familiar example of a software-
managed memory is the processor’s register file, an
array of storage locations that is indexed directly by bits
within the instruction and whose contents are dictated
entirely by software. Values are brought into the register
file explicitly by software instructions, and old values
are only overwritten if done so explicitly by software.
Moreover, the register file is significantly smaller than
most on-chip caches and typically consumes far less
energy. Accordingly, software’s best bet is often to opti-
mize its use of the register file [Postiff& Mudge 1999].

over another, a designer should be familiar with con-
cepts such as Pareto optimality (described later in this
chapter). The various figures of merit, in no particu-
lar order other than performance being first due to
its popularity, are performance, energy consumption
and power dissipation, predictability of behavior (i.e.,
real time), manufacturing costs, and system reliability.
This section describes them briefly, collectively. Later
sections will treat them in more detail.

Performance
The term "performance" means many things to

many people. The performance of a system is typically
measured in the time it takes to execute a task (i.e., task
latency), but it can also be measured in the number of
tasks that can be handled in a unit time period (i.e.,
task bandwidth). Popular figures of merit for perfor-
mance include the following:4

¯ Cycles per Instruction (CPI)

Total execution cycles
= Total user-level instructions committed

¯ Memory-systemCPI overhead

= Real CPI - CPI assuming perfect memory

0v.1.2 Important Figures of Merit
The following issues have been touched on during

the previous discussion, but at this point it would be
valuable to formally present the various figures o fmerit

that are important to a designer of memory systems.
Depending on the environment in which the memory
system will be used (supercomputer, departmental
server, desktop, laptop, signal-processing system,
embedded control system, etc.), each metric will carry
more or less weight. Though most academic studies
tend to focus on one axis at a time (e.g., performance),
the design of a memory system is a multi-dimensional
optimization problem, with all the adherent complex-
ities of analysis. For instance, to analyze something in
this design space or to consider one memory system

Memory Cycles per Instruction (MCPI)

Total cycles spent in memory system
= Total user-level instructions committed

Cache miss rate = Total cache misses
Total cache accesses

Cache hit rate = 1 - Cache miss rate

¯ Average access time

= (hit rate ¯ average to service hit) +
(miss rate ¯ average to service miss)

¯ Million Instructions per Second (MIPS)

Instructions executed (seconds)
106" Average required for execution

4Note that the MIPS metric is easily abused. For instance, it is inappropriate for comparing different instruction-set
architectures, and marketing literature often takes the definition of "instructions executed" to mean any particular given
window of time as opposed to the full execution of an application. In such cases, the metric can mean the highest possible
issue rate of instructions that the machine can achieve (but not necessarily sustain for any realistic period of time).
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A cautionary note: using a metric of performance
for the memory system that is independent of a pro-
cessing context can be very deceptive. For instance,
the MCPI metric does not take into account how much
of the memory system’s activity can be overlapped
with processor activity, and, as a result, memory sys-
tem A which has a worse MCPI than memory system
B might actually yield a computer system with better
total performance. As Figure Or.5 in a later section
shows, there can be significantly different amounts
of overlapping activity between the memory system
and CPU execution.

How to average a set of performance metrics cor-
rectly is still a poorly understood topic, and it is very
sensitive to the weights chosen (either explicitly or
implicitly) for the various benchmarks considered
[John 2004[. Comparing performance is always the
least ambiguous when it means the amount of time
saved by using one design over another. When we ask
the question this machine is how much faster than
that machine? the implication is that we have been
using that machine for some time and wish to know
how much time we would save by using this machine
instead. The true measure of performance is to com-
pare the total execution time of one machine to
another, with each machine running the benchmark
programs that represent the user’s typical workload
as often as a user expects to run them. For instance,
if a user compiles a large software application ten
times per day and runs a series of regression tests
once per day, then the total execution time should
count the compiler’s execution ten times more than
the regression test.

Energy Consumption and Power Dissipation
Energy consumption is related to work accom-

plished (e.g., how much computing can be done
with a given battery), whereas power dissipation is
the rate of consumption. The instantaneous power
dissipation of CMOS (complementary metal-oxide-
semiconductor) devices, such as microprocessors,
is measured in watts (W) and represents the sum
of two components: active power, due to switching
activity, and static power, due primarily to subthresh-
old leakage. To a first approximation, average power

dissipation is equal to the following (we will present a
more detailed model later):

Pavg (Pdynamic + Pstatic) ~ Ctot V2ddf+ /leakVdd (EQ Ov.1)

where Ctot is the total capacitance switched, Vdd is
the power supply, Cis the switching frequency, and !leak

is the leakage current, which includes such sources
as subthreshold and gate leakage. With each genera-
tion in process technology, active power is decreas-
ing on a device level and remaining roughly constant
on a chip level. Leakage power, which used to be
insignificant relative to switching power, increases as
devices become smaller and has recently caught up
to switching power in magnitude [Grove 2002]. In the
future, leakage will be the primary concern.

Energy is related to power through time. The energy
consumed by a computation that requires Tseconds is
measured in joules (J) and is equal to the integral of the
instantaneous power over time T. If the power dissipa-
tion remains constant over T, the resultant energy con-
sumption is simply the product of power and time.

E (Pavg’~ ------ GotV2ddN+ IleakVddT (EQ Ov.2)

where Nis the number of switching events that occurs
during the computation.

In general, if one is interested in extending battery
life or reducing the electricity costs of an enterprise
computing center, then energy is the appropriate
metric to use in an analysis comparing approaches.
If one is concerned with heat removal from a system
or the thermal effects that a functional block can cre-
ate, then poweris the appropriate metric. In informal
discussions (i.e., in common-parlance prose rather
than in equations where units of measurement are
inescapable), the two terms "power" and "energy" are
frequently used interchangeably, though such use is
technically incorrect. Beware, because this can lead to
ambiguity and even misconception, which is usually
unintentional, but not always so. For instance, micro-
processor manufacturers will occasionally claim to
have a "low-power" microprocessor that beats its pre-
decessor by a factor of, say, two. This is easily accom-
plished by running the microprocessor at half the
clock rate, which does reduce its power dissipation,
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 9

but remember that power is the rate at which energy
is consumed. However, to a first order, doing so dou-
bles the time over which the processor dissipates that
power. The net result is a processor that consumes the
same amount of energy as before, though it is branded
as having lower power, which is technically not a lie.

Popular figures of merit that incorporate both
energy/power and performance include the following:

Energy-Delay Product

= (Energy required ). (Time required/
\to perform task \to perform task/

¯ Power-Delay Product
(Power required )m.

\to perform task x Time required /
to perform task/

¯ MIPS per watt

Performance of benchmark in MIPS
Average power dissipated by benchmark

The second equation was offered as a generalized
form of the first (note that the two are equivalent when
m = 1 and n = 2) so that designers could place more
weight on the metric (time or energy/power) that
is most important to their design goals [Gonzalez &
Horowitz 1996, Brooks et al. 2000a].

Predictable (Real-Time) Behavior
Predictability of behavior is extremely important

when analyzing real-time systems, because correct-
ness of operation is often the primary design goal for
these systems (consider, for example, medical equip-
ment, navigation systems, anti-lock brakes, flight

control systems, etc., in which failure to perform as
predicted is not an option).

Popular figures of merit for expressing predictabil-
ity of behavior include the following:

Worst-Case Execution Time (WCET), taken
to mean the longest amount of time a func-
tion could take to execute
Response time, taken to mean the time
between a stimulus to the system and the
system’s response (e.g., time to respond to
an external interrupt)

¯ Jitter, the amount of deviation from an
average timing value

These metrics are typically given as single num-
bers (average or worst case), but we have found that
the probability density function makes a valuable aid
in system analysis [Baynes et al. 2001, 2003].

Design (and Fabrication and Test) Costs
Cost is an obvious, but often unstated, design goal.

Many consumer devices have cost as their primary
consideration: if the cost to design and manufacture
an item is not low enough, it is not worth the effort
to build and sell it. Cost can be represented in many
different ways (note that energy consumption is a
measure of cost), but for the purposes of this book, by
"cost" we mean the cost of producing an item: to wit,
the cost of its design, the cost of testing the item, and/
or the cost of the item’s manufacture. Popular figures
of merit for cost include the following:

¯ Dollar cost (best, but often hard to even
approximate)

¯ Design size, e.g., die area (cost of manufactur-
ing aVLSI (very large scale integration) design
is proportional to its area cubed or more)

¯ Packaging costs, e.g., pin count
¯ Design complexity (can be expressed in

terms of number of logic gates, number of
transistors, lines of code, time to compile
or synthesize, time to verify or run DRC
(design-rule check), and many others,
including a design’s impact on clock cycle
time [Palacharla et al. 1996])

Cost is often presented in a relative sense, allowing
differing technologies or approaches to be placed on
equal footing for a comparison.

¯ Costper storagebit/byte/KB/MB/etc.
(allows cost comparison between different
storage technologies)

¯ Die area per storage bit (allows size-
efficiency comparison within same process
technology)
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"10 Memor,/S~,stems: Cache, DRAM, Disk

In a similar vein, cost is especially informative
when combined with performance metrics. The
following are variations on the theme:

Bandwidth per package pin (total sustain-
able bandwidth to/from part, divided by
total number of pins in package)
Execution-time-dollars (total execution time
multiplied by total cost; note that cost can
be expressed in other units, e.g., pins, die
area, etc.)

An important note: cost should incorporate all
sources of that cost. Focusing on just one source of
cost blinds the analysis in two ways: first, the true cost
of the system is not considered, and second, solutions
can be unintentionally excluded from the analysis.
If cost is expressed in pin count, then all pins should
be considered by the analysis; the analysis should not
focus solely on data pins, for example. Similarly, if
cost is expressed in die area, then all sources of die
area should be considered by the analysis; the analy-
sis should not focus solely on the number of banks,
for example, but should also consider the cost of
building control logic (decoders, muxes, bus lines,
etc.) to select among the various banks.

Reliabilib’
Like the term "performance," the term "reliabil-
ity" means many things to many different people.
In this book, we mean reliability of the data stored
within the memory system: how easily is our stored
data corrupted or lost, and how can it be protected
from corruption or loss? Data integrity is depen-
dent upon physical devices, and physical devices
can fail.

Approaches to guarantee the integrity of stored
data typically operate by storing redundant infor-
mation in the memory system so that in the case of
device failure, some but not all of the data will be lost
or corrupted. If enough redundant information is
stored, then the missing data can be reconstructed.
Popular figures of merit for measuring reliability

characterize both device fragility and robustness of a
proposed solution. They include the following:

¯ Mean Time Between Failures (MTBF): 5
given in time (seconds, hours, etc.) or num-
ber of uses

¯ Bit-error tolerance, e.g., howmanybit errors
in a data word or packet the mechanism can
correct, and how many it can detect (but not
necessarily correct)

¯ Error-rate tolerance, e.g., howmany errors
per second in a data stream the mechanism
can correct

¯ Application-specificmetrics, e.g., how
much radiation a design can tolerate before
failure, etc.

Note that values given for MTBF often seem astro-
nomically high. This is because they are not meant
to apply to individual devices, but to system-wide
device use, as in a large installation. For instance, if
the expected service lifetime of a device is several
years, then that device is expected to fail in several
years. If an administrator swaps out devices every
few years (before the service lifetime is up), then the
administrator should expect to see failure frequen-
cies consistent with the MTBF rating.

Ov.1.3 The Goal of a Memory Hierarchy
As already mentioned, a well-implemented hierar-

chy allows a memory system to approach simultane-
ously the performance of the fastest component, the
cost per bit of the cheapest component, and the energy
consumption o fthe mo st energy- efficient component.
A modern memory system typically has performance
close to that of on-chip cache, the fastest component
in the system. The rate at which microprocessors
fetch and execute their instructions is measured in
nanoseconds or fractions of a nanosecond. A modern
low-end desktop machine has several hundred giga-
bytes of storage and sells for under $500, roughly half
of which goes to the on-chip caches, off-chip caches,
DRAM, and disk. This represents an average cost of

5A common variation is "Mean Time To Failure (MTTF)."
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several dollars per gigabyte--very close to that of disk,
the cheapest component. Modern desktop systems
have an energy cost that is typically in the low tens of
nanojoules per instruction executed--close to that of
on-chip SRAM cache, the least energy-costly compo-
nent in the system (on a per-access basis).

The goal for a memory-system designer is to create
a system that behaves, on average and from the point
of view of the processor, like a big cache that has the
price tag of a disk. A successful memory hierarchy is
much more than the sum of its parts; moreover, suc-
cessful memory-system design is non-trivial.

How the system is built, how it is used (and what
parts of it are used more heavily than others), and on
which issues an engineer should focus most of his effort
at design time--all these are highly dependent on the
target application of the memory system. Two com-
mon categories of target applications are (a) general-
purpose systems, which are characterized by their
need for universal applicability for just about any
type of computation, and (b) embedded systems,
which are characterized by their tight design restric-
tions along multiple axes (e.g., cost, correctness of
design, energy consumption, reliability) and the fact
that each executes only a single, dedicated software
application its entire lifespan, which opens up pos-
sibilities for optimization that are less appropriate for
general-purpose systems.

General-Purpose Computer Systems
General-purpose systems are what people normally

think of as "computers." These are the machines on
your desktop, the machines in the refrigerated server
room at work, and the laptop on the kitchen table.
They are designed to handle any and all tasks thrown
at them, and the software they run on a day-to-day
basis is radically different from machine to machine.

General-purpose systems are typically overbuilt.
By definition they are expected by the consumer to
run all possible software applications with accept-
able speed, and therefore, they are built to handle
the average case very well and the worst case at least
tolerably well. Were they optimized for any particu-
lar task, they could easily become less than optimal
for all dissimilar tasks. Therefore, general-purpose

systems are optimized for everything, which is another
way of saying that they are actually optimized for
nothing in particular. However, they make up for this
in raw performance, pure number-crunching. The
average notebook computer is capable of perform-
ing orders of magnitude more operations per sec-
ond than that required by a word processor or email
client, tasks to which the average notebook is fre-
quently relegated, but because the general-purpose
system may be expected to handle virtually anything
at any time, it must have significant spare number-
crunching ability, just in case.

It stands to reason that the memory system of this
computer must also be designed in a Swiss-army-
knife fashion. Figure Ov.3 shows the organization of
a typical personal computer, with the components
of the memory system highlighted in grey boxes. The
cache levels are found both on-chip (i.e., integrated
on the same die as the microprocessor core) and
off-chip (i.e., on a separate die). The DRAM system
is comprised of a memory controller and a number
of DRAM chips organized into DIMMs (dual in-line
memory modules, printed circuit boards that contain
a handful of DRAMs each). The memory controller
can be located on-chip or off-chip, but the DRAMs
are always separate from the CPU to allow memory
upgrades. The disks in the system are considered
peripheral devices, and so their access is made
through one or more levels of controllers, each rep-
resenting a potential chip-to-chip crossing (e.g., here
a disk request passes through the system controller
to the PCI (peripheral component interconnect) bus
controller, to the SCSI (small computer system inter-
face) controller, and finally to the disk itself).

The software that runs on a general-purpose sys-
tem typically executes in the context of a robust
operating system, one that provides virtual memory.
Virtual memory is a mechanism whereby the operat-
ing system can provide to all running user-level soft-
ware (i.e., email clients, web browsers, spreadsheets,
word-processing packages, graphics and video edit-
ing software, etc.) the illusion that the user-level soft-
ware is in direct control of the computer, when in fact
its use of the computer’s resources is managed by the
operating system. This is a very effective way for an
operating system to provide simultaneous access by
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FI6URE Ov.3." Typical PC organization. The memory subsystem is one part of a relatively complex whole. This figure illustrates a
two-way multiprocessor, with each processor having its own dedicated off-chip cache. The parts most relevant to this text are
shaded in grey: the CPU and its cache system, the system and memory controllers, the DIMMs and their component DRAMs, and
the hard drive/s.

large numbers of software packages to small num-
bers of limited-use resources (e.g., physical memory,
the hard disk, the network, etc.).

The virtual memory system is the primary constit-
uent of the memory system, in that it is the primary
determinant of the manner/s in which the memory
system’s components are used by software run-
ning on the computer. Permanent data is stored on
the disk, and the operating store, DRAM, is used as
a cache for this permanent data. This DRAM-based
cache is explicitly managed by the operating system.
The operating system decides what data from the
disk should be kept, what should be discarded, what
should be sent back to the disk, and, for data retained,

where it should be placed in the DRAM system. The
primary and secondary caches are usually transpar-
ent to software, which means that they are managed
by hardware, not software (note, however, the use of
the word "usually"--later sections will delve into this
in more detail). In general, the primary and second-
ary caches hold demand-fetched data, i.e., running
software demands data, the hardware fetches it from
memory, and the caches retain as much of it as pos-
sible. The DRAM system contains data that the oper-
ating system deems worthy of keeping around, and
because fetching data from the disk and writing it
back to the disk are such time-consuming processes,
the operating system can exploit that lag time (during
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FIBURE Ov.4." DSP-style memory system. Example based on Texas Instruments’ TMS320C3x DSP family.

which it would otherwise be stalled, doing nothing)
to use sophisticated heuristics to decide what data to
retain.

Embedded Computer Systems
Embedded systems differ from general-purpose

systems in two main aspects. First and foremost,
the two are designed to suit very different purposes.
While general-purpose systems run a myriad of
unrelated software packages, each having poten-
tially very different performance requirements and
dynamic behavior compared to the rest, embed-
ded systems perform a single function their entire
lifetime and thus execute the same code day in and
day out until the system is discarded or a software
upgrade is performed. Second, while performance is
the primary (in many instances, the only) figure of
merit by which a general-purpose system is judged,
optimal embedded-system designs usually represent
trade-offs between several goals, including manufac-
turing cost (e.g., die area), energy consumption, and
performance.

As a result, we see two very different design strat-
egies in the two camps. As mentioned, general-
purpose systems are typically overbuilt; they are
optimized for nothing in particular and must make
up for this in raw performance. On the other hand,
embedded systems are expected to handle only one
task that is known at design time. Thus, it is not only
possible, but highly beneficial to optimize an embed-
ded design for its one suited task. If general-purpose
systems are ouerbuilt, the goal for an embedded sys-
tem is to be appropriately built. In addition, because
effort spent at design time is amortized over the life
of a product, and because many embedded systems
have long lifetimes (tens of years), many embedded
design houses will expend significant resources up
front to optimize a design, using techniques not gen-
erally used in general-purpose systems (for instance,
compiler optimizations that require many days or
weeks to perform).

The memory system of a typical embedded system
is less complex than that of a general-purpose sys-
tem.6 Figure Ov.4 illustrates an average digital signal-
processing system with dual tagless SRAMs on-chip,

6Note that "less complex" does not necessarily imply "small," e.g., consider a typical iPod (or similar MP3 player), whose
primary function is to store gigabytes’ worth of a user’s music and/or image files.
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an off-chip programmable ROM (e.g., PROM, EPROM,
flash ROM, etc.) that holds the executable image, and
an off-chip DRAM that is used for computation and
holding variable data. External memory and device
controllers can be used, but many embedded micro-
processors already have such controllers integrated
onto the CPU die. This cuts down on the system’s die
count and thus cost. Note that it would be possible
for the entire hierarchy to lie on the CPU die, yielding
a single-chip solution called a system-on-chip. This
is relatively common for systems that have limited
memory requirements. Many DSPs and microcon-
trollers have programmable ROM embedded within
them. Larger systems that require megabytes of stor-
age (e.g., in Cisco touters, the instruction code alone
is more than a 12 MB) will have increasing numbers
of memory chips in the system.

On the right side of Figure Ov.4 is the software’s
view of the memory system. The primary distinction
is that, unlike general-purpose systems, is that the
SRAM caches are visible as separately addressable
memories, whereas they are transparent to software
in general-purpose systems.

Memory, whether SRAM or DRAM, usually rep-
resents one of the more costly components in an
embedded system, especially if the memory is
located on-CPU because once the CPU is fabricated,
the memory size cannot be increased. In nearly all
system-on-chip designs and many microcontrollers
as well, memory accounts for the lion’s share of avail-
able die area. Moreover, memory is one of the pri-
mary consumers of energy in a system, both on-CPU
and off-CPU. As an example, it has been shown that,
in many digital signal-processing applications, the
memory system consumes more of both energy and
die area than the processor datapath. Clearly, this is
a resource on which significant time and energy is
spent performing optimization.

Ov.2 Four Anecdotes on Modular Design
It is our observation that computer-system design

in general, and memory-hierarchy design in par-
ticular, has reached a point at which it is no lon-
ger sufficient to design and optimize subsystems

in isolation. Because memory systems and their
subsystems are so complex, it is now the rule, and not
the exception, that the subsystems we thought to be
independent actually interact in unanticipated ways.
Consequently, our traditional design methodologies
no longer work because their underlying assump-
tions no longer hold. Modular design, one of the
most widely adopted design methodologies, is an oft-
praised engineering design principle in which clean
functional interfaces separate subsystems (i.e., mod-
ules) so that subsystem design and optimization can
be performed independently and in parallel by dif-
ferent designers. Applying the principles of modular
design to produce a complex product can reduce the
time and thus the cost for system-level design, inte-
gration, and test; optimization at the modular level
guarantees optimization at the system level, provided
that the system-level architecture and resulting mod-
ule-to-module interfaces are optimal.

That last part is the sticking point: the principle
of modular design assumes no interaction between
module-level implementations and the choice of
system-level architecture, but that is exactly the kind
of interaction that we have observed in the design
of modern, high-performance memory systems.
Consequently, though modular design has been
a staple of memory-systems design for decades,
allowing cache designers to focus solely on caches,
DRAM designers to focus solely on DRAMs, and disk
designers to focus solely on disks, we find that, going
forward, modular design is no longer an appropriate
methodology.

Earlier we noted that, in the design of memory
systems, many of the underlying implementation
issues have begun to affect the higher level design
process quite significantly: cache design is driven
by interconnect physics; DRAM design is driven by
circuit-level limitations that have dramatic sys-
tem-level effects; and modern disk performance is
dominated by the on-board caching and scheduling
policies. As hierarchies and their components grow
more complex, we find that the bulk of performance
is lost not in the CPUs or caches or DRAM devices or
disk assemblies themselves, but in the subtle interac-
tions between these subsystems and in the manner in
which these subsystems are connected. The bulk of lost
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performance is due to poor configuration of system-
level parameters such as bus widths, granularity of
access, scheduling policies, queue organizations, and
so forth.

This is extremely important, so it bears repeat-
ing: the bulk of lost performance is not due to the
number of CPU pipeline stages or functional units or
choice of branch prediction algorithm or even CPU
clock speed; the bulk of lost performance is due to
poor configuration of system-level parameters such
as bus widths, granularity of access, scheduling poli-
cies, queue organizations, etc. Today’s computer-
system performance is dominated by the manner in
which data is moved between subsystems, i.e., the
scheduling of transactions, and so it is not surprising
that seemingly insignificant details can cause such a
headache, as scheduling is known to be highly sensi-
tive to such details.

Consequently, one can no longer attempt system-
level optimization by designing/optimizing each of
the parts in isolation (which, unfortunately, is often
the approach taken in modern computer design). In
subsystem design, nothing can be considered "out-
side the scope" and thus ignored. Memory-system
design must become the purview of architects, and
a subsystem designer must consider the system-level
ramifications of even the slightest low-level design
decision or modification. In addition, a designer must
understand the low-level implications of system-
level design choices. A simpler form of this maxim is
as follows:

A designer must consider the system-level
ramifications of circuit- and device-level
decisions as well as the circuit- and device-
level ramifications of system-level decisions.

To illustrate what we mean and to motivate our
point, we present several anecdotes. Though they
focus on the DRAM system, their message is global,
and we will show over the course of the book that the
relationships they uncover are certainly not restricted
to the DRAM system alone. We will return to these
anecdotes and discuss them in much more detail
in Chapter 27, The Case for Holistic Design, which
follows the technical section of the book.

Ov.2.1 Anecdote I: Systemic Behaviors £xist
In 1999-2001, we performed a study of DRAM

systems in which we explicitly studied only system-
level effects--those that had nothing to do with the
CPU architecture, DRAM architecture, or even DRAM
interface protocol. In this study, we held constant the
CPU and DRAM architectures and considered only a
handful of parameters that would affect how well the
two communicate with each other. Figure Ov.5 shows
some of the results [Cuppu & Jacob 1999, 2001, Jacob
2003]. The varied parameters in Figure Ov.5 are all
seemingly innocuous parameters, certainly not the
type that would account for up to 20% differences in
system performance (execution time) if one param-
eter was increased or decreased by a small amount,
which is indeed the case. Moreover, considering the
top two graphs, all of the choices represent intui-
tively "good" configurations. None of the displayed
values represent strawmen, machine configurations
that one would avoid putting on one’s own desktop.
Nonetheless, the performance variability is signifi-
cant. When the analysis considers a wider range of
bus speeds and burst lengths, the problematic behav-
ior increases. As shown in the bottom graph, the ratio
of best to worst execution times can be a factor of

three, and the local optima are both more frequent
and more exaggerated. Systems with relatively low
bandwidth (e.g., 100, 200, 400 MB/s) and relatively
slow bus speeds (e.g., 100, 200 MHz), if configured

well, can match or exceed the performance of sys-
tem configurations with much faster hardware that is

poorly configured.
Intuitively, one would expect the design space to

be relatively smooth: as system bandwidth increases,
so should system performance. Yet the design space
is far from smooth. Performance variations of 20% or
more can be found in design points that are imme-
diately adjacent to one another. The variations from
best-performing to worst-performing design exceed a
factor of three across the full space studied, and local
minima and maxima abound. Moreover, the behav-
iors are related. Increasing one parameter by a fac-
tor of two toward higher expected performance (e.g.,
increasing the channel width) can move the system off
a local optimum, but local optimality can be restored
by changing other related parameters to follow suit,
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FIGURE Ov.5: Execution time as a function of bandwidth, channel organization, and granularity of access. Top two graphs from
Cuppu & Jacob [2001] (© 2001 /EEE); bottom graph from Jacob [2003] (© 2003/EEE).

such as increasing the burst length and cache block
size to match the new channel width. This complex
interaction between parameters previously thought
to be independent arises because of the complexity

of the system under study, and so we have named
these "systemic" behaviors.7 This study represents
the moment we realized that systemic behaviors exist
and that they are significant. Note that the behavior

7There is a distinction between this type of behavior and what in complex system theory is called "emergent system"
behaviors or properties. Emergent system behaviors are those of individuals within a complex system, behaviors that
an individual may perform in a group setting that the individual would never perform alone. In our environment, the
behaviors are observations we have made of the design space, which is derived from the system as a whole.
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is not restricted to the DRAM system. We have seen
it in the disk system as well, where the variations in
performance from one configuration to the next are
even more pronounced.

Recall that this behavior comes from the varying
of parameters that are seemingly unimportant in the

grand scheme of things--at least they would certainly
seem to be far less important than, say, the cache
architecture or the number of functional units in the

processor core. The bottom line, as we have observed,
is that systemic behaviors--unanticipated interac-
tions between seemingly innocuous parameters
and mechanisms--cause significant losses in per-
formance, requiring in-depth, detailed design-space
exploration to achieve anything close to an optimal
design given a set of technologies and limitations.

0v.2.2 Anecdote I1: The DLL in DDR SDRAM
Beginning with their first generation, DDR (double

data rate) SDRAM devices have included a circuit-level
mechanism that has generated significant contro-
versy within JEDEC (Joint Electron Device Engineer-
ing Council), the industry consortium that created
the DDR SDRAM standard. The mechanism is a delay-
locked loop (DEE), whose purpose is to more precisely

align the output of the DDR part with the clock on the
system bus. The controversy stems from the cost of the
technology versus its benefits.

The system’s global clock signal, as it enters the
chip, is delayed by the DEE so that the chip’s inter-
nal clock signal, after amplification and distribution
across the chip, is exactly in-phase with the origi-
nal system clock signal. This more precisely aligns
the DRAM part’s output with the system clock. The
trade-off is extra latency in the datapath as well as
a higher power and heat dissipation because the
DEE, a dynamic control mechanism, is continuously
running. By aligning each DRAM part in a DIMM
to the system clock, each DRAM part is effectively
de-skewed with respect to the other parts, and the
DEEs cancel out timing differences due to process
variations and thermal gradients.

Figure Ov.6 illustrates a small handful of alterna-
tive solutions considered by JEDEC, who ultimately
chose Figure Ov.6(b) for the standard. The interest-
ing thing is that the data strobe is not used to cap-
ture data at the memory controller, bringing into
question its purpose if the DEE is being used to help
with data transfer to the memory controller. There is
significant disagreement over the value of the cho-
sen design; an anonymous JEDEC member, when

strob~     DATA

e     ~

(a) Unassisted

~~ DATA IDLD~~    strobe

(c) DLL on module

~ RCLK
~ ~

~
DATA

(e) Read clock

(b) DLL on DRAM (d) DLL on MC (f) Static delay w/recalibration

FIGURE Or.6: Several alternatives to the per-DRAM DLL. The figure illustrates a half dozen different timing conventions (a dotted
line indicates a signal is unused for capturing data): (a) the scheme in single data rate SDRAM; (b) the scheme chosen for DDR
SDRAM; (c) moving the DLL onto the module, with a per-DRAM static delay element (Vernier); (d) moving the DLL onto the memory
controller, with a per-DRAM static delay; (e) using a separate read clock per DRAM or per DIMM; and (f) using only a static delay
element and recalibrating periodically to address dynamic changes.
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asked "what is the DLL doing on the DDR chip?"
answered with a grin, "burning power." In applica-
tions that require low latency and low power dissipa-
tion, designers turn off the DLL entirely and use only
the data strobe for data capture, ignoring the system
clock (as in Figure Ov.6(a)) [Kellogg 2002, Lee 2002,
Rhoden 2002].

The argument for the DLL is that it de-skews
the DRAM devices on a DIMM and provides a path
for system design that can use a global clocking
scheme, one of the simplest system designs known.
The argument against the DLL is that it would be
unnecessary if a designer learned to use the data
strobe--this would require a more sophisticated
system design, but it would achieve better perfor-
mance at a lower cost. At the very least, it is clear
that a DLL is a circuit-oriented solution to the prob-
lem of system-level skew, which could explain the
controversy.

Ov.2.3 Anecdote II1: A Catch-22 in the Search
for Bandwidth

With every DRAM generation, timing parameters
are added. Several have been added to the DDR spec-
ification to address the issues of power dissipation
and synchronization.

tFAw (Four-bankActivation Window) and
tRRD (Row-to-Row activation Delay) put a
ceiling on the maximum current draw of a
single DRAM part. These are protocol-level
limitations whose values are chosen to pre-
vent a memory controller from exceeding
circuit-related thresholds.
tDQS is our own name for the DDR system-
bus turnaround time; one can think of it as
the DIMM-to-DIMM switching time that
has implications only at the system level
(i.e., it has no meaning or effect if consid-
ering read requests in a system with but a
single DIMM). By obeying tDQS, one can
ensure that a second DIMM will not drive

the data bus at the same time as a first when
switching from one DIMM to another for
data output.

These are per-device timing parameters that were
chosen to improve the behavior (current draw, timing
uncertainty) of individual devices. However, they do
so at the expense of a significant loss in system-level
performance. When reading large amounts of data
from the DRAM system, an application will have to
read, and thus will have to activate, numerous DRAM
rows. At this point, the tFAW and tRRD timing param-
eters kick in and limit the available read bandwidth.
The tI~RD parameter specifies the minimum time
between two successive row activation commands
to the same DRAM device (which implies the same
DIMM, because all the DRAMs on a DIMM are slaved
togetherS). The tFAW parameter represents a slid-
ing window of time during which no more than four
row activation commands to the same device may
appear.

The parameters are specified in nanoseconds and
not bus cycles, so they become increasingly problem-
atic at higher bus frequencies. Their net effect is to
limit the bandwidth available from a DIMM by limit-

ing how quickly one can get the data out of the DRAM’s
storage array, irrespective of how fast the DRAM’s I/O
circuitry can ship the data back to the memory con-
troller. At around 1 GBps, sustainable bandwidth hits
a ceiling and remains fiat no matter how fast the bus

runs because the memory controller is limited in how
quickly it can activate a new row and start reading
data from it.

The obvious solution is to interleave data from
different DIMMs on the bus. If one DIMM is limited
in how quickly it can read data from its arrays, then
one should populate the bus with many DIMMs and
move through them in a round-robin fashion. This
should bring the system bandwidth up to maximum.

However, the function of tDQS is to prevent exactly
that: tDQS is the bus turnaround time, inserted to
account for skew on the bus and to prevent different
bus masters from driving the bus at the same time.

8This is a minor oversimplification. We would like to avoid having to explain details of DRAM-system organization, such as
the concept of rank, at this point.
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To avoid such collisions, a second DIMM must wait
at least tDQS after a first DIMM has finished before
driving the bus. So we have a catch:

¯ One set of parameters limits device-level
bandwidth and expects a designer to go to
the system level to reclaim performance.

¯ The other parameter limits system-level
bandwidth and expects a designer to go to
the device level to reclaim performance.

The good news is that the problem is solvable
(see Chapter 15, Section 15.4.3, DRAM Command
Scheduling Algorithms), but this is nonetheless a
very good example of low-level design decisions that
create headaches at the system level.

Ov.2.4 Anecdote IV: Proposals to £xploit
Variability in Cell Leakage

The last anecdote is an example of a system-level
design decision that ignores circuit- and device-level
implications. Ever since DRAM was invented, it has
been observed that different DRAM cells exhibit dif-
ferent data-retention time characteristics, typically
ranging between hundreds of milliseconds to tens
of seconds. DRAM manufacturers typically set the
refresh requirement conservatively and require that
every row in a DRAM device be refreshed at least once
every 64 or 32 ms to avoid losing data. Though refresh
might not seem to be a significant concern, in mobile
devices researchers have observed that refresh can
account for one-third of the power in otherwise
idle systems, prompting action to address the issue.
Several recent papers propose moving the refresh
function into the memory controller and refreshing
each row only when needed. During an initialization
phase, the controller would characterize each row
in the memory system, measuring DRAM data-
retention time on a row-by-row basis, discarding
leaky rows entirely, limiting its DRAM use to only
those rows deemed non-leaky, and refreshing once
every tens of seconds instead of once every tens of
milliseconds.

The problem is that these proposals ignore
another, less well-known phenomenon of DRAM cell

variability, namely that a cell with a long retention
time can suddenly (in the time frame of seconds)
exhibit a short retention time [Yaney et al. 1987,
tlestle et al. 1992, Ueno et al. 1998, Kim 2004]. Such
an effect would render these power-efficient pro-
posals functionally erroneous. The phenomenon is
called uariable retention time (VRT), and though its
occurrence is infrequent, it is non-zero. The occur-
rence rate is low enough that a system using one of
these reduced-refresh proposals could protect itself
against VRT by using error correcting codes (ECC,
described in detail in Chapter 30, Memory Errors and
Error Correction), but none of the proposals so far
discuss VRT or ECC.

Ov.2.5 Perspective
To summarize so far:

Anecdote I: Systemic behaviors exist and are sig-
nificant (they can be responsible for factors of two to
three in execution time).

Anecdote II: The DLL in DDR SDRAM is a circuit-
level solution chosen to address system-level skew.

Anecdote III: tDQs represents a circuit-level solu-
tion chosen to address system-level skew in DDR
SDRAM; tFAw and tRRD are circuit-level limitations
that significantly limit system-level performance.

Anecdote IV: Several research groups have rec-
ently proposed system-level solutions to the DRAM-
refresh problem, but fail to account for circuit-level
details that might compromise the correctness of the
resulting system.

Anecdotes II and III show that a common practice
in industry is to focus at the level of devices and cir-

cuits, in some cases ignoring their system-level rami-
fications. Anecdote IV shows that a common practice

in research is to design systems that have device- and
circuit-level ramifications while abstracting away the

details of the devices and circuits involved. Anecdote I
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illustrates that both approaches are doomed to failure
in future memory-systems design.

It is clear that in the future we will have to move
away from modular design; one can no longer
safely abstract away details that were previously
considered "out of scope." To produce a credible
analysis, a designer must consider many different
subsystems of a design and many different levels
of abstraction--one must consider the forest when
designing trees and consider the trees when design-
ing the forest.

Ov.3.1 Cost/Performance Analysis
To perform a cost/performance analysis correctly,

the designer must define the problem correctly, use
the appropriate tools for analysis, and apply those
tools in the manner for which they were designed.
This section provides a brief, intuitive look at the
problem. Herein, we will use cost as an example of
problem definition, Pareto optimality as an example
of an appropriate tool, and sampled averages as an
example to illustrate correct tool usage. We will dis-
cuss these issues in more detail with more examples
in Chapter 28, Analysis of Cost and Performance.

Ov.3 Cross-Cutting Issues
Though their implementation details might apply

at a local level, most design decisions must be con-
sidered in terms of their system-level effects and
side-effects before they become part of the system/
hierarchy. For instance, power is a cross-cutting,
system-level phenomenon, even though most power
optimizations are specific to certain technologies and
are applied locally; reliability is a system-level issue,
even though each level of the hierarchy implements
its own techniques for improving it; and, as we have
shown, performance optimizations such as widening
a bus or increasing support for concurrency rarely
result in system performance that is globally optimal.
Moreover, design decisions that locally optimize along
one axis (e.g., power) can have even larger effects on
the system level when all axes are considered. Not
only can the global power dissipation be thrown off
optimality by blindly making a local decision, it is
even easier to throw the system off a global optimum
when more than one axis is considered (e.g., power/
performance).

Designing the best system given a set of con-
straints requires an approach that considers multiple
axes simultaneously and measures the system-level
effects of all design choices. Such a holistic approach
requires an understanding of many issues, includ-
ing cost and performance models, power, reliabil-
ity, and software structure. The following sections
provide overviews of these cross-cutting issues, and
Part IV of the book will treat these topics in more
detail.

Problem Definition: Cost
A designer must think in an all-inclusive manner

when accounting for cost. For example, consider a
cost-performance analysis of a DRAM system wherein
performance is measured in sustainable bandwidth
and cost is measured in pin count.

To represent the cost correctly, the analysis
should consider all pins, including those for con-
trol, power, ground, address, and data. Otherwise,
the resulting analysis can incorrectly portray the
design space, and workable solutions can get left
out of the analysis. For example, a designer can
reduce latency in some cases by increasing the
number of address and command pins, but if the
cost analysis only considers data pins, then these
optimizations would be cost-free. Consider DRAM
addressing, which is done half of an address at a
time. A 32-bit physical address is sent to the DRAM
system 16 bits at a time in two different commands;
one could potentially decrease DRAM latency by
using an SRAM-like wide address bus and sending
the entire 32 bits at once. This represents a real cost
in design and manufacturing that would be higher,
but an analysis that accounts only for data pins
would not consider it as such.

Power and ground pins must also be counted
in a cost analysis for similar reasons. High-speed
chip-to-chip interfaces typically require more
power and ground pins than slower interfaces. The
extra power and ground signals help to isolate the
I/O drivers from each other and the signal lines
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from each other, both improving signal integrity
by reducing crosstalk, ground bounce, and related
effects. I/O systems with higher switching speeds
would have an unfair advantage over those with
lower switching speeds (and thus fewer power/
ground pins) in a cost-performance analysis if
power and ground pins were to be excluded from
the analysis. The inclusion of these pins would pro-
vide for an effective and easily quantified trade-off
between cost and bandwidth.

Failure to include address, control, power, and
ground pins in an analysis, meaning failure to be all-
inclusive at the conceptual stages of design, would
tend to blind a designer to possibilities. For example,
an architecturally related family of solutions that at
first glance gives up total system bandwidth so as to
be more cost-effective might be thrown out at the
conceptual stages for its intuitively lower perfor-
mance. However, considering all sources of cost in the
analysis would allow a designer to look more closely
at this family and possibly to recover lost bandwidth
through the addition of pins.

Comparing SDtlAM and tlambus system archi-
tectures provides an excellent example of consid-

ering cost as the total number of pins leading to a
continuum of designs. The tlambus memory sys-
tem is a narrow-channel architecture, compared
to SDtlAM’s wide-channel architecture, pictured
in Figure Ov.7 tlambus uses fewer address and
command pins than SDtlAM and thus incurs an
additional latency at the command level, tlambus
also uses fewer data pins and occurs an additional
latency when transmitting data as well. The trade-off
is the ability to run the bus at a much higher bus fre-
quency, or pin-bandwidth in bits per second per pin,
than SDtlAM. The longer channel of the DtlDtlAM
(direct tlambus DRAM) memory system contributes
directly to longer read-command latencies and lon-
ger bus turnaround times. However, the longer chan-
nel also allows for more devices to be connected to
the memory system and reduces the likelihood that
consecutive commands access the same device. The
width and depth of the memory channels impact
the bandwidth, latency, pin count, and various cost
components of the respective memory systems. The
effect that these organizational differences have on
the DRAM access protocol is shown in Figure Ov.8
which illustrates a row activation and column read

SDRAM and
DDR SDRAM
Memory System
Topology

\\

DIMM 0

Short and Wide Channel

DIMM 1

DRDRAM Memory System Topology

Long and Narrow Channel

FI6URE Ov.7." Difference in topology between SDRAM and Rambus memory systems.
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FI6URE 0v.8." Memory access latency in SDRAM and DDR SDRAM memory systems (top) and DRDRAM (bottom).

command for both DDR SDRAM and Direct Rambus
DRAM.

Contemporary SDRAM and DDR SDRAM memory
chips operating at a frequency of 200 MHz can activate a
row in 3 clock cycles. Once the row is activated, memory
controllers in SDRAM or DDR SDRAM memory systems
can retrieve data using a simple column address strobe
command with a latency of 2 or 3 clock cycles. In Figure
Ov.8(a), Step 1 shows the assertion of a row activation
command, and Step 2 shows the assertion of the column
address strobe signal. Step 3 shows the relative timing
of a high-performance DDR SDRAM memory module
with a CASL (CAS latency) of 2 cycles. For a fair compar-
ison against the DRDRAM memory system, we include
the bus cycle that the memory controller uses to assert
the load command to the memory chips.With this addi-
tional cycle included, a DDR SDRAM memory system
has a read latency of 6 clock cycles (to critical data). In a
SDRAM or DDR SDRAM memory system that operates
at 200 MHz, 6 clock cycles translate to 30 ns of latency for
a memory load command with row activation latency

inclusive. These latency values are the same for high-
performance SDRAM and DDR SDRAM memory
systems.

The DRDRAM memory system behaves very
differently from SDRAM and DDR SDRAM memory sys-
tems. Figure Ov.8 (b) shows a row activation command in
Step 1, followed by a column access command in Step 2.
The requested data is then returned by the memory
chip to the memory controller in Step 3. The row acti-
vation command in Step 1 is transmitted by the mem-
ory controller to the memory chip in a packet format
that spans 4 clock cycles. The minimum delay between
the row activation and column access is 7 clock cycles,
and, after an additional (also minimum) CAS (column
address strobe) latency of 8 clock cycles, the DRDRAM
chip begins to transmit the data to the memory control-
ler. One caveat to the computation of the access latency
in the DRDRAM memory system is that CAS delay in the
DRDRAM memory system is a function of the number
of devices on a single DRDRAM memory channel. On a
DRDRAM memory system with a full load of 32 devices
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TABLE Ov.2 Peak bandwidth statistics of SDRAM, DDR SDRAM, and DRDRAM memory systems

SDRAM controller
DDR SDRAM controller
DRDRAM controller
x16 SDRAM chip
x16 DDR SDRAM chip

133

2 * 200

2 * 600

133

2 *200

64

64

16

16

16

1064 M B/s
3200 MB/s
2400 MB/s
256 MB/s

800 MB/s

28

42

9

9

11

465 MB/s
1050 M B/s
1350 M B/s
150 MB/s

275 MB/s

3O
3O
8

15

15

500 MB/s

750 MB/s

1200 MB/s

250 MB/s

375 MB/s

TABLE Ov.3 Cross-comparison of SDRAM, DDR SDRAM, and DRDRAM memory systems

SDRAM

DDR SDRAM

DRDRAm

133

2 * 200

2 * 600

152

171

117

1064 MB/s

3200 MB/s

2400 MB/s

540 MB/s

1496 MB/s

1499 MB/s

0.4211

0.3743

0.1368

0.2139

O. 1750

0.0854

on the data bus, the CAS-latency delay may be as large
as 12 clock cycles. Finally, it takes 4 clock cycles for the
DRDRAM memory system to transport the data packet.
Note that we add half the transmission time of the data
packet in the computation of the latency of a memory
request in a DRDRAM memory system due to the fact
that the DRDRAM memory system does not support
critical word forwarding, and the critically requested
data may exist in the latter parts of the data packet;
on average, it will be somewhere in the middle. This
yields a total latency of 21 cycles, which, in a DRDRAM
memory system operating at 600 MHz, translates to a
latency of 35 ns.

The Rambus memory system trades off a longer
latency for fewer pins and higher pin bandwidth (in
this example, three times higher bandwidth). How do
the systems compare in performance?

Peak bandwidth of any interface depends solely
on the channel width and the operating frequency
of the channel. In Table Ov.2, we summarize the sta-
tistics of the interconnects and compute the peak
bandwidths of the memory systems at the interface

of the memory controller and at the interface of the
memory chips as well.

Table Ov.3 compares a 133-MHz SDRAM, a 200-
MHz DDR SDRAM system, and a 600-MHz DRDRAM
system. The 133-MHz SDRAM system, as represented
by a PC-133 compliant SDRAM memory system on
an AMD Athlon-based computer system, has a the-
oretical peak bandwidth of 1064 MB/s. The maxi-
mum sustained bandwidth for the single channel of
SDRAM, as measured by the use of the add kernel
in the STREAM benchmark, reaches 540 MB/s. The
maximum sustained bandwidth for DDR SDRAM
and DRDRAM was also measured on STREAM, yield-
ing 1496 and 1499 MB/s, respectively. The pin cost of
each system is factored in, yielding bandwidth per
pin on both a per-cycle basis and a per-nanosecond
basis.

Appropriate Tools: Pareto Optimality
It is convenient to represent the "goodness" of a

design solution, a particular system configuration,
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as a single number so that one can readily compare
the number with the goodness ratings of other can-
didate design solutions and thereby quickly find the
"best" system configuration. However, in the design
of memory systems, we are inherently dealing with
a multi-dimensional design space (e.g., one that
encompasses performance, energy consumption,
cost, etc.), and so using a single number to represent
a solution’s worth is not really appropriate, unless
we can assign exact weights to the various figures
of merit (which is dangerous and will be discussed
in more detail later) or we care about one aspect to
the exclusion of all others (e.g., performance at any
cost).

Assuming that we do not have exact weights for the
figures of merit and that we do care about more than
one aspect of the system, a very powerful tool to aid
in system analysis is the concept of Pareto optimality
or Pareto efficiency, named after the Italian economist
Vilfredo Pareto, who invented it in the early 1900s.

Pareto optimality asserts that one candidate solution
to a problem is better than another candidate solution
only if the first dominates the second, i.e., if the first is
better than or equal to the second in all figures of merit.
If one solution has a better value in one dimension but
a worse value in another, then the two candidates are
Pareto equivalent. The best solution is actually a set

Cost

Cost

¯ l_-

.
Execution time                                                    Execution time

(a) a set of data points (b) the Pareto-optimal wavefront

Cost ¯ ¯ ¯ ¯

D

Execution time Execution time

(¢) the addition of four new points to set (d) the new Pareto-optimal wavefront

FIGURE Ov.9." Pareto optimality. Members of the Pareto-optimal set are shown in solid black; non-optimal points are grey.
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of candidate solutions: the set of Pareto-equivalent
solutions that is not dominated by any solution.

Figure Ov.9(a) shows a set of candidate solutions
in a two-dimensional space that represent a cost/
performance metric. The x-axis represents system
performance in execution time (smaller numbers

are better), and the y-axis represents system cost in
dollars (smaller numbers are better). Figure Ov.9(b)
shows the Pareto-optimal set in solid black and

connected by a line; non-optimal data points are
shown in grey. The Pareto-optimal set forms a wave-
front that approaches both axes simultaneously.
Figures Ov.9(c) and (d) show the effect of adding four
new candidate solutions to the space: one lies inside
the wavefront, one lies on the wavefront, and two lie
outside the wavefront. The first two new additions,
A and B, are both dominated by at least one member
of the Pareto-optimal set, and so neither is considered
Pareto optimal. Even though B lies on the wavefront,
it is not considered Pareto optimal. The point to the
left of B has better performance than B at equal cost.
Thus, it dominates B.

Point C is not dominated by any member of the
Pareto-optimal set, nor does it dominate any mem-
ber of the Pareto-optimal set. Thus, candidate-
solution C is added to the optimal set, and its addition
changes the shape of the wavefront slightly. The last
of the additional points, D, is dominated by no mem-
bers of the optimal set, but it does dominate several
members of the optimal set, so D’s inclusion in the
optimal set excludes those dominated members from
the set. As a result, candidate-solution D changes

the shape of the wave front more significantly than
candidate-solution C.

Tool Use: Taking Sampled Averages Correctly
In many fields, including the field of computer

engineering, it is quite popular to find a sampled
average, i.e., the average of a sampled set of numbers,
rather than the average of the entire set. This is useful

when the entire set is unavailable, difficult to obtain,
or expensive to obtain. For example, one might want
to use this technique to keep a running performance
average for a real microprocessor, or one might want
to sample several windows of execution in a terabyte-
size trace file. Provided that the sampled subset is

representative of the set as a whole, and provided that
the technique used to collect the samples is correct,
this mechanism provides a low-cost alternative that
can be very accurate.

The discussion will use as an example a mecha-
nism that samples the miles-per-gallon performance
of an automobile under way. The trip we will study is
an out and back trip with a brief pit stop, as shown
in Figure Ov.10. The automobile will follow a simple
course that is easily analyzed:

1. The auto will travel over even ground for
60 miles at 60 mph, and it will achieve 30
mpg during this window of time.

2. The auto will travel uphill for 20 miles at 60
mph, and it will achieve 10 mpg during this
window of time.

60 miles, 60 mph, 30 mpg

10 minutes idling
0 mph, 0 mpg

FI6URE Ov.lO." Course taken by the automobile in the example.
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10 samples
Points at which samples are taken:

60 minutes 20 min 10 min 20 min 60 minutes

170 min
total

FI6URE 0v.11: Sampling miles-per-gallon (mpg) over time. The figure shows the trip in time, with each segment of time labeled
with the average miles-per-gallon for the car during that segment of the trip. Thus, whenever the sampling algorithm samples
miles-per-gallon during a window of time, it will add that value to the running average.

The auto will travel downhill for 20 miles at
60 mph, and it will achieve 300 mpg during
this window of time.
The auto will travel back home over even
ground for 60 miles at 60 mph, and it will
achieve 30 mpg during this window of time.
In addition, before returning home, the driver
will sit at the top of the hill for
10 minutes, enjoying the view, with the auto
idling, consuming gasoline at the rate of 1 gal-
lon every 5 hours. This is equivalent to 1/300
gallon per minute or 1/30 of a gallon during
the 10-minute respite. Note that the auto will
achieve 0 mpg during this window of time.

Our car’s algorithm samples evenly in time, so for
our analysis we need to break down the segments of
the trip by the amount of time that they take:

¯ Outbound: 60 minutes
¯ Uphill: 20 minutes
¯ Idling: i0 minutes
¯ Downhill: 20 minutes
¯ Return: 60 minutes

This is displayed graphically in Figure Ov.ll, in
which the time for each segment is shown to scale.
Assume, for the sake of simplicity, that the sampling
algorithm samples the car’s miles-per-gallon every
minute and adds that sampled value to the running
average (it could just as easily sample every second
or millisecond). Then the algorithm will sample the
value 30 mpg 60 times during the first segment of the
trip, the value 10 mpg 20 times during the second
segment of the trip, the value 0 mpg 10 times during

the third segment of the trip, and so on. Over the trip,
the car is operating for a total of 170 minutes. Thus,
we can derive the sampling algorithm’s results as fol-
lows:

1~030 + 1~010 + 1~00 + 1~0300 + 1~030 57.5mpg
(EQ Ov.3)

The sampling algorithm tells us that the auto
achieved 57.5 mpg during our trip. However, a quick
reality check will demonstrate that this cannot be
correct; somewhere in our analysis we have made
an invalid assumption. What is the correct answer,
the correct approach? In Part IV of the book we will
revisit this example and provide a complete picture.
In the meantime, the reader is encouraged to figure
the answer out for him- or herself.

0v.3.2 Power and Energy
Power has become a "first-class" design goal in

recent years within the computer architecture and
design community. Previously, low-power circuit,
chip, and system design was considered the purview
of specialized communities, but this is no longer the
case, as even high-performance chip manufacturers
can be blindsided by power dissipation problems.

Power Dissipation in Computer Systems

Power dissipation in CMOS circuits arises from two
different mechanisms: static power, which is primar-
ily leakage power and is caused by the transistor not
completely turning off, and dynamic power, which
is largely the result of switching capacitive loads
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between two different voltage states. Dynamic power
is dependent on frequency of circuit activity, since no
power is dissipated if the node values do not change,
while static power is independent of the frequency
of activity and exists whenever the chip is powered
on. When CMOS circuits were first used, one of their
main advantages was the negligible leakage current
flowing with the gate at DC or steady state. Practically
all of the power consumed by CMOS gates was due
to dynamic power consumed during the transition
of the gate. But as transistors become increasingly
smaller, the CMOS leakage current starts to become
significant and is projected to be larger than the
dynamic power, as shown in Figure Ov. 12.

In charging a load capacitor C up AV volts and
discharging it to its original voltage, a gate pulls
an amount of current equal to C - AV from the Vdd

supply to charge up the capacitor and then sinks
this charge to ground discharging the node. At the
end of a charge/discharge cycle, the gate/capacitor
combination has moved C- AV of charge from Vdd

to ground, which uses an amount of energy equal to
C-AV- Vdd that is independent of the cycle time. The
average dynamic power of this node, the average rate
of its energy consumption, is given by the following
equation [Chandrakasan & Brodersen 1995]:

Pdynamic C" AV- Vdd- c~ -f (EQ Ov.4)

Dividing by the charge/discharge period (i.e., mul-
tiplying by the clock frequencyJ) produces the rate of
energy consumption over that period. Multiplying by
the expected actiuity ratio ~, the probability that the
node will switch (in which case it dissipates dynamic
power; otherwise, it does not), yields an average power
dissipation over a larger window of time for which the
activity ratio holds (e.g., this can yield average power
for an entire hour of computation, not just a nano-
second). The dynamic power for the whole chip is the
sum of this equation over all nodes in the circuit.

It is clear from EQ Ov.4 what can be done to reduce
the dynamic power dissipation of a system. We can
either reduce the capacitance being switched, the volt-
age swing, the power supply voltage, the activity ratio,
or the operating frequency. Most of these options are
available to a designer at the architecture level.

Note that, for a specific chip, the voltage swing
AVis usually proportional to Vdd, so EQ Ov.4 is often
simplified to the following:

Pdynamic C" V2dd "o~ -f (EQ Ov.5)

Moreover, the activity ratio ~ is often approximated
as 1/2, giving the following form:

Pdynamic ½" C" V2aa-f (EQ Ov.6)
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FIGURE 0v.12: Projections for dynamic and leakage, along with gate length. (Figure taken from Kim et al. [2004a]).
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Static leakage power is due to our inability to
completely turn off the transistor, which leaks cur-
rent in the subthreshold operating region [Taur &
Ning 1998]. The gate couples to the active channel
mainly through the gate oxide capacitance, but there
are other capacitances in a transistor that couple the
gate to a "fixed charge" (charge which cannot move)
present in the bulk and not associated with current
flow [Peckerar et al. 1979, 1982]. If these extra capaci-
tances are large (note that they increase with each
process generation as physical dimensions shrink),
then changing the gate bias merely alters the densi-
ties of the fixed charge and will not turn the channel
off. In this situation, the transistor becomes a leaky
faucet; it does not turn off no matter how hard you
turn it.

Leakage power is proportional to Vdd. It is a linear,
not a quadratic, relationship. For a particular process
technology, the per-device leakage power is given as
follows [Butts & Sohi 2000]:

Pstatic ]leakage " V2dd (EQ Ov.7)

Leakage energy is the product of leakage power
times the duration of operation.

It is clear from EQ Ov.7 what can be done to reduce
the leakage power dissipation of a system: reduce
leakage current and/or reduce the power supply volt-
age. Both options are available to a designer at the
architecture level.

Heat in VLSI circuits is becoming a significant and
related problem. The rate at which physical dimen-
sions such as gate length and gate oxide thickness
have been reduced is faster than for other parameters,
especially voltage, resulting in higher power densities
on the chip surface. To lower leakage power and main-
tain device operation, voltage levels are set according
to the silicon bandgap and intrinsic built-in potentials,
in spite of the conventional scaling algorithm. Thus,
power densities are increasing exponentially for next-
generation chips. For instance, the power density of
Intel’s Pentium chip line has already surpassed that
of a hot plate with the introduction of the Pentium
Pro [Gelsinger 2001]. The problem of power and heat
dissipation now extends to the DRAM system, which

traditionally has represented low power densities and
low costs. Today, higher end DRAMs are dynamically
throttled when, due to repeated high-speed access to
the same devices, their operating temperatures sur-
pass design thresholds. The next-generation memory
system embraced by the DRAM community, the Fully
Buffered DIMM architecture, specifies a per-module
controller that, in many implementations, requires
a heatsink. This is a cost previously unthinkable in
DRAM-system design.

Disks have many components that dissipate
power, including the spindle motor driving the plat-
ters, the actuator that positions the disk heads, the
bus interface circuitry, and the microcontroller/s and
memory chips. The spindle motor dissipates the bulk
of the power, with the entire disk assembly typically
dissipating power in the tens of watts.

Schemes for Reducing Power and Energy
There are numerous mechanisms in the litera-

ture that attack the power dissipation and/or energy
consumption problem. Here, we will briefly describe
three: dynamic voltage scaling, the powering down
of unused blocks, and circuit-level approaches for
reducing leakage power.

Dynamic Voltage Scaling Recall that total energy
is the sum of switching energy and leakage energy,
which, to a first approximation, is equal to the
following:

Etot [(Got" V2dd "o~ "f)

+ (Ntot " Ileakage- Vdd)] - T (EQ Ov.8)

T is the time required for the computation, and
Ntot is the total number of devices leaking current.
Variations in processor utilization affect the amount
of switching activity (the activity ratio ~). However,
a light workload produces an idle processor that
wastes clock cycles and energy because the clock
signal continues propagating and the operating
voltage remains the same. Gating the clock during
idle cycles reduces the switched capacitance Ctot
during idle cycles. Reducing the frequency fduring
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periods of low workload eliminates most idle cycles
altogether.

None of the approaches, however, affects CtotV2dd
for the actual computation or substantially reduces
the energy lost to leakage current. Instead, reducing
the supply voltage Vdd in conjunction with the fre-
quency f achieves savings in switching energy and
reduces leakage energy. For high-speed digital CMOS,
a reduction in supply voltage increases the circuit
delay as shown by the following equation [Baker et al.
1998, Baker 2005[:

where

¯ Td is the delay or the reciprocal of the
frequencyf

¯ Vdd is the supply voltage
¯ CL is the total node capacitance
¯ 13 is the carrier mobility
¯ Cox is the oxide capacitance
¯ V~ is the threshold voltage
¯ W/L is the width-to-length ratio of the

transistors in the circuit

This can be simplified to the following form, which
gives the maximum operating frequency as a func-
tion of supply and threshold voltages:

fMJ~ (Vdd Vt)2 (EQ Ov.lO)
vaa

As mentioned earlier, the threshold voltage is
closely tied to the problem of leakage power, so it
cannot be arbitrarily lowered. Thus, the right-hand
side of the relation ends up being a constant pro-
portion of the operating voltage for a given process
technology. Microprocessors typically operate at
the maximum speed at which their operating volt-
age level will allow, so there is not much headroom
to arbitrarily lower Vdd by itself. However, Vdd can be
lowered if the clock frequency is also lowered in the
same proportion. This mechanism is called dynamic
uoltage scaling (DVS) [Pering & Broderson 1998] and

is appearing in nearly every modern microprocessor.
The technique sets the microprocessor’s frequency to
the most appropriate level for performing each task
at hand, thus avoiding hurry-up-and-wait scenarios
that consume more energy than is required for the
computation (see Figure Or. 13). As Weiser points out,

Power o~ V2F

2FPower o~ V ,6

Power o~ (V~2F

Task ready at time 0;
~ no other task is ready.
Task requires time T to
complete, assuming
top clock frequency E

Task’s output
is not needed
until time 2T

Energy E              ,

Time(a)

Reducing the clock frequency F by half
lowers the processor’s power dissipation
and still allows task to complete by, deadline.
The energy consumption remains the same.

Energy E

Time(b)
Reducing the voltage level V by half reduces
the power dissipation further, without any
corresponding increase in execution time.

Energy El4       ,

Time(c)

FIGURE 0v.13: Dynamic voltage scaling. Not every task
needs the CPU’s full computational power. In many cases, for
example, the processing of video and audio streams, the only
performance requirement is that the task meet a deadline,
see (a). Such cases create opportunities to run the CPU at
a lower performance level and achieve the same perceived
performance while consuming less energy. As (b) shows,
reducing the clock frequency of a processor reduces power
dissipation but simply spreads a computation out over time,
thereby consuming the same total energy as before. As (c)
shows,reducing the voltage level as well as the clock fre-
quency achieves the desired goal of reduced energy con-
sumption and appropriate performance level. Figure and
caption from Varma et al. [2003].

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2141, p. 63



30 Memor~ S~,stems: Cache, DRAM, Disk

idle time represents wasted energy, even if the CPU
is stopped [Weiser et al. 1994].

Note that it is not sufficient to merely have a chip
that supports voltage scaling. There must be a heu-
ristic, either implemented in hardware or software,
that decides when to scale the voltage and by how
much to scale it. This decision is essentially a pre-
diction of the near-future computational needs of
the system and is generally made on the basis of
the recent computing requirements of all tasks and
threads running at the time. The development of
good heuristics is a tricky problem (pointed out by
Weiser et al. [1994]). Heuristics that closely track
performance requirements save little energy, while
those that save the most energy tend to do so at the
expense of performance, resulting in poor response
time, for example.

Most research quantifies the effect that DVS has
on reducing dynamic power dissipation because
dynamic power follows Vdd in a quadratic relation-
ship: reducing Vdd can significantly reduce dynamic
power. However, lowering Vdd also reduces leak-
age power, which is becoming just as significant as
dynamic power. Though the reduction is only linear,
it is nonetheless a reduction.

Note also that even though DVS is commonly
applied to microprocessors, it is perfectly well suited
to the memory system as well. As a processor’s speed
is decreased through application of DVS, it requires
less speed out of its associated SRAM caches, whose
power supply can be scaled to keep pace. This will
reduce both the dynamic and the static power dissi-
pation of the memory circuits.

Powering-Down IJnused Blocks A popular
mechanism for reducing power is simply to turn
off functional blocks that are not needed. This is
done at both the circuit level and the chip or I/O-
device level.

At the circuit level, the technique is called clock
gating. The clock signal to a functional block (e.g.,
an adder, multiplier, or predictor) passes through
a gate, and whenever a control circuit determines
that the functional block will be unused for several
cycles, the gate halts the clock signal and sends

a non-oscillating voltage level to the functional
block instead. The latches in the functional block
retain their information; do not change their out-
puts; and, because the data is held constant to the
combinational logic in the circuit, do not switch.
Therefore, it does not draw current or consume
energy.

Note that, in the na’fve implementation, the cir-
cuits in this instance are still powered up, so they
still dissipate static power; clock gating is a tech-
nique that only reduces dynamic power. Other
gating techniques can reduce leakage as well. For
example, in caches, unused blocks can be pow-
ered down using Gated-Vdd [Powell et al. 2000]
or Gated-ground [Powell et al. 2000] techniques.
Gated-Vdd puts the power supply of the SRAM in
a series with a transistor as shown in Figure Or.14.
With the stacking effect introduced by this tran-
sistor, the leakage current is reduced drastically.
This technique benefits from having both low-
leakage current and a simpler fabrication process
requirement since only a single threshold voltage
is conceptually required (although, as shown in
Figure Or.14, the gating transistor can also have a
high threshold to decrease the leakage even further
at the expense of process complexity).

At the device level, for instance in DRAM chips
or disk assemblies, the mechanism puts the device
into a low-activity, low-voltage, and/or low-fre-
quency mode such as sleep or doze or, in the case
of disks, spin-down. For example, microprocessors
can dissipate anywhere from a fraction of a watt to
over 100 W of power; when not in use, they can be
put into a low-power sleep or doze mode that con-
sumes milli-watts. The processor typically expects
an interrupt to cause it to resume normal operation,
for instance, a clock interrupt, the interrupt output
of a watchdog timer, or an external device interrupt.
DRAM chips typically consume on the order of 1 W
each; they have a low-power mode that will reduce
this by more than an order of magnitude. Disks typi-
cally dissipate power in the tens of watts, the bulk
of which is in the spindle motor. When the disk is
placed in the "spin-down" mode (i.e., it is not rotat-
ing, but it is still responding to the disk controller),
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FIGURE 0v.14: Gated-Vdd technique using a high-V t transistor to gate Vdd.
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FIGURE 0v.15: Different multi-Vt configurations for the 6T memory cell showing which leakage currents are reduced for each
configuration.

the disk assembly consumes a total of a handful of
watts [Gurumurthi et al. 2003].

Leakage Power in SRAMs Low-power SRAM
techniques provide good examples of approaches
for lowering leakage power. SRAM designs targeted
for low power have begun to account for the increas-
ingly larger amount of power consumed by leakage
currents.

One conceptually simple solution is the use of
multi-threshold CMOS circuits. This involves using
process-level techniques to increase the threshold
voltage of transistors to reduce the leakage cur-
rent. Increasing this threshold serves to reduce
the gate overdrive and reduces the gate’s drive
strength, resulting in increased delay. Because
of this, the technique is mostly used on the non-
critical paths of the logic, and fast, low- Vt transistors

are used for the critical paths. In this way the delay
penalty involved in using higher Vt transistors can
be hidden in the non-critical paths, while reducing
the leakage currents drastically. For example, multi-
Vt transistors are selectively used for memory cells
since they represent a majority of the circuit, reap-
ing the most benefit in leakage power consumption
with a minor penalty in the access time. Different
multi-Vt configurations are shown in Figure Ov.15,
along with the leakage current path that each con-
figuration is designed to minimize.

Another technique that reduces leakage power in
SRAMs is the Drowsy technique [Kim et al. 2004a].
This is similar to gated-Vdd and gated-ground
techniques in that it uses a transistor to condition-
ally enable the power supply to a given part of the
SRAM. The difference is that this technique puts
infrequently accessed parts of the SRAM into a
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VDD(1V) VDD(0.3V)

LowVolt -~I _ 1 ~)- LowVolt

FIGURE 0v.16: A drowsy SRAM cell containing the transistors
that gate the desired power supply.

state-preserving, low-power mode. A second power
supply with a lower voltage than the regular sup-
ply provides power to memory cells in the "drowsy"
mode. Leakage power is effectively reduced because
of its dependence on the value of the power sup-
ply. An SRAM cell of a drowsy cache is shown in
Figure Ov. 16.

0v.3.3 Reliability
Like performance, reliability means many things

to many people. For example, embedded systems
are computer systems, typically small, that run dedi-
cated software and are embedded within the context
of a larger system. They are increasingly appearing in
the place of traditional electromechanical systems,
whose function they are replacing because one can
now find chip-level computer systems which can be
programmed to perform virtually any function at a
price of pennies per system. The reliability problem
stems from the fact that the embedded system is a
state machine (piece of software) executing within

the context of a relatively complex state machine
(real-time operating system) executing within the
context of an extremely complex state machine
(microprocessor and its memory system). We are
replacingsimpleelectromechanicalsystemswithultra-
complex systems whose correct function cannot be
guaranteed. This presents an enormous problem
for the future, in which systems will only get more

complex and will be used increasingly in safety-
critical situations, where incorrect functioning can
cause great harm.

This is a very deep problem, and one that is not
likely to be solved soon. A smaller problem that we

can solve right now--one that engineers currently
do--is to increase the reliability of data within the
memory system. If a datum is stored in the memory

system, whether in a cache, in a DRAM, or on disk, it
is reasonable to expect that the next time a processor
reads that datum, the processor will get the value that
was written.

How could the datum’s value change? Solid-state
memory devices (e.g., SRAMs and DRAMs) are sus-
ceptible to both hard failures and soft errors in the
same manner that other semiconductor-based elec-
tronic devices are susceptible to both hard failures
and soft failures. Hard failures can be caused by elec-
tromigration, corrosion, thermal cycling, or electro-
static shock. In contrast to hard failures, soft errors
are failures where the physical device remains func-
tional, but random and transient electronic noises
corrupt the value of the stored information in the
memory system. Transient noise and upset comes
from a multitude of sources, including circuit noise
(e.g., crosstalk, ground bounce, etc.), ambient radia-
tion (e.g., even from sources within the computer
chassis), clock jitter, or substrate interactions with
high-energy particles. Which of these is the most
common is obviously very dependent on the operat-
ing environment.

Figure Or. 17 illustrates the last of these examples. It
pictures the interactions between high-energy alpha
particles and neutrons with the silicon lattice. The fig-

ure shows that when high-energy alpha particles pass
through silicon, the alpha particle leaves an ionized
trail, and the length of that ionized trail depends on
the energy of the alpha particle. The figure also illus-

trates that when high-energy neutrons pass through
silicon, some neutrons pass through without affect-
ing operations of the semiconductor device, but some
neutrons collide with nuclei in the silicon lattice. The
atomic collision can result in the creation of multiple
ionized trails as the secondary particles generated
in the collision scatter in the silicon lattice. In the
presence of an electric field, the ionized trails of
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FIGURE 0v.17: Generation of electron-hole pairs in silicon by alpha particles and high-energy neutrons.

TABLE Ov.4 Cross-comparison of failure rates for SRAM, DRAM, and disk

SRAM

DRAM

Disk

100 per million device-hours

1 per million device-hours

1 per million device-hours

1 O-2O%

Several years

Several years

Several years

aNote that failure rate, i.e., a variation of mean-time-between-failures, says nothing about the expected performance of a
single device. However, taken with the expected service life of a device, it can give a designer or administrator an idea of
expected performance. If the service life of a device is 5 years, then the part will last about 5 years. A very large installation
of those devices (e.g., in the case of disks or DRAMs, hundreds or more) will collectively see the expected failure rate: i.e.,
several hundred disks will collectively see several million device hours of operation before a single disk fails.

electron-hole pairs behave as temporary surges in
current or as charges that can change the data values
in storage cells. In addition, charge from the ionized
trails of electron-hole pairs can impact the volt-
age level of bit lines as the value of the stored data
is resolved by the sense amplifiers. The result is that
the soft error rate (SER) of a memory-storage device
depends on a combination of factors including the
type, number, and energy distribution of the incident
particles as well as the process technology design
of the storage cells, design of the bit lines and sense

amplifiers, voltage level of the device, as well as the
design of the logic circuits that control the movement
of data in the DRAM device.

Table Ov.4 compares the failure rates for SRAM,
DRAM, and disk. SRAM device error rates have his-
torically tracked DRAM devices and did so up until
the 180-nm process generation. The combination
of reduced supply voltage and reduced critical cell
charge means that SRAM SERs have climbed dra-
matically for the 180-nm and 130-nm process gen-
erations. In a recent publication, Monolithic System
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Technology, Inc. (MoSys) claimed that for the 250-nm
process generation, StlAM SEtls were reported to be
in the range of 100 failures per million device-hours
per megabit, while SEtls were reported to be in the
range of 100,000 failures per megabit for the 130-nm
process generation. The generalized trend is expected
to continue to increase as the demand for low power
dissipation forces a continued reduction in supply
voltage and reduced critical charge per cell.

Solid-state memory devices (StlAMs and DtlAMs)
are typically protected by error detection codes
and/or ECC. These are mechanisms wherein data
redundancy is used to detect and/or recover from
single- and even multi-bit errors. For instance, par-
ity is a simple scheme that adds a bit to a protected
word, indicating the number of even or odd bits in
the word. If the read value of the word does not match
the parity value, then the processor knows that the
read value does not equal the value that was initially
written, and an error has occurred. Error correction
is achieved by encoding a word such that a bit error
moves the resulting word some distance away from
the original word (in the Hamming-distance sense)
into an invalid encoding. The encoding space is cho-
sen such that the new, invalid word is closest in the
space to the original, valid word. Thus, the original
word can always be derived from an invalid code-
word, assuming a maximum number of bit errors.

Due to StlAM’s extreme sensitivity to soft errors,
modern processors now ship with parity and single-
bit error correction for the StlAM caches. Typically,
the tag arrays are protected by parity, whereas the
data arrays are protected by single-bit error cor-
rection. More sophisticated multi-bit ECC algo-
rithms are typically not deployed for on-chip StlAM
caches in modern processors since the addition
of sophisticated computation circuitry can add to
the die size and cause significant delay relative to
the timing demands of the on-chip caches. More-
over, caches store frequently accessed data, and in
case an uncorrectable error is detected, a proces-
sor simply has to re-fetch the data from memory.
In this sense, it can be considered unnecessary to
detect and correct multi-bit errors, but sufficient to
simply detect multi-bit errors. However, in the

physical design of modern StlAMs, often designers
will intentionally place capacitors above the StlAM
cell to improve SEtl.

Disk reliability is a more-researched area than data
reliability in disks, because data stored in magnetic
disks tends to be more resistant to transient errors
than data stored in solid-state memories. In other
words, whereas reliability in solid-state memories is
largely concerned with correcting soft errors, reliabil-
ity in hard disks is concerned with the fact that disks
occasionally die, taking most or all of their data with
them. Given that the disk drive performs the function
of permanent store, its reliability is paramount, and,
as Table Ov.4 shows, disks tend to last several years.
This data is corroborated by a recent study from
researchers at Google [Pinheiro et al. 2007]. The study
tracks the behavior and environmental parameters of
a fleet of over 100,000 disks for five years.

tleliability in the disk system is improved in much
the same manner as ECC: data stored in the disk sys-
tem is done so in a redundant fashion, tlAID (redun-
dant array of inexpensive disks) is a technique wherein
encoded data is striped across multiple disks, so that
even in the case of a disk’s total failure the data will
always be available.

0v.3.4 Virtual Memory
Virtual memory is the mechanism by which the

operating system provides executing software access
to the memory system. In this regard, it is the primary
consumer of the memory system: its procedures, data
structures, and protocols dictate how the compo-
nents of the memory system are used by all software
that runs on the computer. It therefore behooves
the reader to know what the virtual memory system
does and how it does it. This section provides a brief
overview of the mechanics of virtual memory. More
detailed treatments of the topic can also be found
on-line in articles by the author []acob& Mudge
1998a-c].

In general, programs today are written to run on
no particular hardware configuration. They have
no knowledge of the underlying memory system.
Processes execute in imaginary address spaces that
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are mapped onto the memory system (including
the DRAM system and disk system) by the operat-
ing system. Processes generate instruction fetches
and loads and stores using imaginary or "virtual"
names for their instructions and data. The ulti-
mate home for the process’s address space is non-
volatile permanent store, usually a disk drive; this
is where the process’s instructions and data come
from and where all of its permanent changes go
to. Every hardware memory structure between
the CPU and the permanent store is a cache for
the instructions and data in the process’s address
space. This includes main memory--main memory
is really nothing more than a cache for a process’s
virtual address space. A cache operates on the prin-

ciple that a small, fast storage device can hold the
most important data found on a larger, slower stor-
age device, effectively making the slower device
look fast. The large storage area in this case is the
process address space, which can range from kilo-
bytes to gigabytes or more in size. Everything in the
address space initially comes from the program file
stored on disk or is created on demand and defined
to be zero. This is illustrated in Figure Ov. 18.

Address Translation
Translating addresses from virtual space to physi-

cal space is depicted in Figure Ov.19. Addresses are
mapped at the granularity of pages. Virtual memory is

(a) PROCESS VIEW

CPU: ~

STORES

LOADS
and

INSTRUCTION
FETCHES

I Stack

Heap

Code/BSS

Process Address Space

(b) IDEAL PHYSICAL MODEL

CPU:     ~

Cache
Hierarchy

I S tack

Heap

Code/BSS

Process Address Space

(c) REALITY

CPU: ~ ~"

Cache Dynamically
Allocated DataHierarchy "~ Space

Main
Memory

HARDWARE-MEDIATED OS-M EDIATED

FIGURE 0v.18: Caching the process address space. In the first view, a process is shown referencing locations in its address
space. Note that all loads, stores, and fetches use virtual names for objects. The second view illustrates that a process references
locations in its address space indirectly through a hierarchy of caches. The third view shows that the address space is not a linear
object stored on some device, but is instead scattered across hard drives and dynamically allocated when necessary.
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One page

0xFFFFF
0xFFFFE
0xFFFFD
0xFFFFC
0xFFFFB

0x0000a
0x00009
0x00008
0x00007
0x00006
0x00005
0x00004
0x00003
0x00002
0x00001
0x00000

VIRTUAL SPACE
Divided into uniform virtual pages,
each identified by its virtual page

number.

16
~ ~ 15

14
13

~," ~ 12
11

10
9
8
7

6
5
4
3
2

0

PHYSICAL MEMORY
Divided into uniform page frames,
each identified by its page frame

number.

FIGURE 0v.19: Mapping virtual pages into physical page frames.

essentially a mapping of virtual page numbers (VPNs)
to page frame numbers (PFNs). The mapping is a func-
tion, and any virtual page can have only one location.
However, the inverse map is not necessarily a function.
It is possible and sometimes advantageous to have sev-
eral virtual pages mapped to the same page frame (to
share memory between processes or threads or to allow
different views of data with different protections, for
example). This is depicted in Figure Ov.19 by mapping
two virtual pages (0x00002 and 0xFFFFC) to PFN 12.

If DRAM is a cache, what is its organization? For
example, an idealized fully associative cache (one in
which any datum can reside at any location within
the cache’s data array) is pictured in Figure Ov.20.
A data tag is fed into the cache. The first stage com-
pares the input tag to the tag of every piece of data
in the cache. The matching tag points to the data’s

location in the cache. However, DRAM is not physi-
cally built like a cache. For example, it has no inher-
ent concept of a tags array: one merely tells memory
what data location one wishes to read or write, and
the datum at that location is read out or overwritten.
There is no attempt to match the address against a
tag to verify the contents of the data location. How-
ever, if main memory is to be an effective cache for
the virtual address space, the tags mechanism must
be implemented somewhere. There is clearly a myr-
iad of possibilities, from special DtlAM designs that
include a hardware tag feature to software algorithms
that make several memory references to look up one
datum. Traditional virtual memory has the tags array
implemented in software, and this software structure
often holds more entries than there are entries in the
data array (i.e., pages in main memory). The software
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structure is called a page table; it is a database of
mapping information.

The page table performs the function of the tags
array depicted in Figure Ov.20. For any given memory
reference, it indicates where in main memory (corre-
sponding to "data array" in the figure) that page can
be found. There are many different possible organi-
zations for page tables, most of which require only a
few memory references to find the appropriate tag
entry. However, requiring more than one memory
reference for a page table lookup can be very costly,
and so access to the page table is sped up by cach-
ing its entries in a special cache called the transla-

tion loolcaside buffer (TLB) [Lee 1960], a hardware
structure that typically has far fewer entries than
there are pages in main memory. The TLB is a hard-
ware cache which is usually implemented as a con-
tent addressable memory (CAM), also called a fully
associative cache.

The TLB takes as input a VPN, possibly extended
by an address-space identifier, and returns the cor-
responding PFN and protection information. This is
illustrated in Figure Ov.21. The address-space identi-
fier, if used, extends the virtual address to distinguish it
from similar virtual addresses produced by other pro-
cesses. For a load or store to complete successfully, the

Input Key

Tags Array

Entry in
Data Array

Data Array

Data
Available

Input Key: ZXC

Tags Array

tag KJH: slot 2
tag POl: slot 5
tag ZXC: slot 1
tag QWE: slot 4
tag ---: invalid

tag WER: slot 3
tag ASD: slot 7
tag ---: invalid

Entryin ~
Data Array

Data Array

data slot 7
data slot 6
data slot 5
data slot 4
data slot 3
data slot 2
data slot 1
data slot 0

Data
Available

FIGURE Ov.20: An idealized cache lookup. A cache is comprised of two parts: the tag’s array and the data array. In the example
organization, the tags act as a database. They accept as input a key (an address) and output either the location of the item in the
data array or an indication that the item is not in the data array.

Virtual Address:

Address Space (ASI D)Identifier
L

Physical Address:

Virtual Page Number (VPN)

TLB

Page Frame Number (PFN)

Page Offset

Page Offset

FIGURE 0v.21: Virtual-to-physical address translation using a TLB.
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TEB must contain the mapping information for that
virtual location. If it does not, a TLB miss occurs, and
the system9 must search the page table for the appro-
priate entry and place it into the TEB. If the system fails
to find the mapping information in the page table, or
if it finds the mapping but it indicates that the desired
page is on disk, a page fault occurs. A page fault inter-
rupts the OS, which must then retrieve the page from
disk and place it into memory, create a new page if the
page does not yet exist (as when a process allocates a
new stack frame in virgin territory), or send the pro-
cess an error signal if the access is to illegal space.

Shared Memory
Shared memory is a feature supported by vir-

tual memory that causes many problems and gives
rise to cache-management issues. It is a mecha-
nism whereby two address spaces that are normally

protected from each other are allowed to intersect at
points, still retaining protection over the non-inter-
secting regions. Several processes sharing portions
of their address spaces are pictured in Figure Ov.22.
The shared memory mechanism only opens up a
pre-defined portion of a process’s address space; the
rest of the address space is still protected, and even
the shared portion is only unprotected for those pro-
cesses sharing the memory. For instance, in Figure
Ov.22, the region of A’s address space that is shared
with process B is unprotected from whatever actions
B might want to take, but it is safe from the actions
of any other processes. It is therefore useful as a sim-
ple, secure means for inter-process communication.
Shared memory also reduces requirements for physi-
cal memory, as when the text regions of processes are
shared whenever multiple instances of a single pro-
gram are run or when multiple instances of a com-
mon library are used in different programs.

Process A

Shared by A & B

Process B

Process C

Shared by B &
C

Shared by C &
D

Shared by B &
C&D

Shared by B &
D

Process D

FIGURE 0v.22: Shared memory. Shared memory allows processes to overlap portions of their address space while retaining
protection for the nonintersecting regions. This is a simple and effective method for inter-process communication. Pictured are
four process address spaces that have overlapped. The darker regions are shared by more than one process, while the lightest
regions are still protected from other processes.

9In the discussions, we will use the generic term "system" when the acting agent is implementation-dependent and can
refer to either a hardware state machine or the operating system. For example, in some implementations, the page table
search immediately following a TLB miss is performed by the operating system (MIPS, Alpha); in other implementations, it
is performed by the hardware (PowerPC, x86).
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The mechanism works by ensuring that shared
pages map to the same physical page. This can be
done by simply placing the same PFN in the page
tables of two processes sharing a page. An example is
shown in Figure Ov.23. Here, two very small address
spaces are shown overlapping at several places, and
one address space overlaps with itself; two of its vir-
tual pages map to the same physical page. This is
not just a contrived example. Many operating sys-
tems allow this, and it is useful, for example, in the
implementation of user-level threads.

Some Commercial Examples
A few examples of what has been done in industry

can help to illustrate some of the issues involved.

MIPS Page Table Design MIPS [Heinrich 1995,
Kane & Heinrich 1992] eliminated the page table-
walking hardware found in traditional memory man-
agement units and, in doing so, demonstrated that
software can table-walk with reasonable efficiency. It
also presented a simple hierarchical page table design,
shown in Figure Ov.24. On a TLB miss, the VPN of the

Process A’s Address Space Process B’s Address Space

A’s Page Table:

Physical Memory

FIGURE 0v.23: An example of shared memory. Two process address spaces--one comprised of six virtual pages and the other
of seven virtual pages--are shown sharing several pages. Their page tables maintain information on where virtual pages are
located in physical memory. The darkened pages are mapped to several locations; note that the darkest page is mapped at two
locations in the same address space.

Root page table: 2KB
A 4-byte PTE,

¯ which maps 4KB ~ ’=
4B

v Maps

A 4KB PTE Page: 1024
1 PTEs, maps 4MB

4 KB

Unmapped Physical Memory

Mapped Virtual Memory

User page table: 2MB

A 4-byte PTE, which maps the darkened
4KB virtual page in the user address space

Maps

User address space: 2GB
A 4MB virtual
region

MB                                                    4KB page ~,

Structure typically wired down in physical
memory while process is running

Structure generally kept in virtual space so that
it is contiguous and can be paged; usually kept
in kernel’s mapped area

FIGURE 0v.24: The MIPS 32-bit hierarchical page table. MIPS hardware provides support for a 2-MB linear virtual page table that
maps the 2-GB user address space by constructing a virtual address from a faulting virtual address that indexes the mapping PTE
(page-table entry) in the user page table. This 2-MB page table can easily be mapped by a 2-KB user root page table.
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address that missed the TLB is used as an index into
the user page table, which is accessed using a virtual
address. The architecture provides hardware support
for this activity, storing the virtual address of the base
of the user-level page table in a hardware register
and forming the concatenation of the base address
with the VPN. This is illustrated in Figure Ov.25. On
a TEB miss, the hardware creates a virtual address
for the mapping PTE in the user page table, which
must be aligned on a 2-MB virtual boundary for the
hardware’s lookup address to work. The base pointer,
called PTEBase, is stored in a hardware register and is
usually changed on context switch.

PowerPC Segmented Translation The IBM 801
introduced a segmented design that persisted through
the POWER and PowerPC architectures [Chang
& Mergen 1988, IBM & Motorola 1993, May et al. 1994,
Weiss & Smith 1994]. It is illustrated in Figure Ov.26.
Applications generate 32-bit "effective" addresses that
are mapped onto a larger "virtual" address space at the
granularity of segments, 256-MB virtual regions. Sixteen
segments comprise an application’s address space. The
top four bits of the effective address select a segment
identifier from a set of 16 registers. This segment ID
is concatenated with the bottom 28 bits of the effec-
tive address to form an extended virtual address. This
extended address is used in the TLB and page table.
The operating system performs data movement and
relocation at the granularity of pages, not segments.

The architecture does not use explicit address-
space identifiers; the segment registers ensure
address space protection. If two processes duplicate
an identifier in their segment registers, they share
that virtual segment by definition. Similarly, protec-
tion is guaranteed if identifiers are not duplicated. If
memory is shared through global addresses, the TLB
and cache need not be flushed on context switch1°

because the system behaves like a single address
space operating system. For more details, see Chapter
31, Section 31.1.7, Perspective: Segmented Addressing
Solves the Synonym Problem.

Virtual address for PTE

TLBOontext: I PTEBaseI Virtual Page Number

Page Table EntryLOAD !

PageFrameNumber    I StatusBits I

Inserted into TLB, along with Virtual Page Number

FIGURE 0v.25: The use of the MIPS TLB context register. The
VPN of the faulting virtual address is placed into the context
register, creating the virtual address of the mapping PTE. This
PTE goes directly into the TLB.

32-bit Effective Address

~ Segment Offset

Segment Registers

52-bit
Virtual
Address

Segment ID Segment Offset Pa~age 3ffsetJ

Virtual Page Number ~/

;
TLB and

Page Table

TAG COMPARE

Cache

DATA

FIGURE 0v.26: PowerPC segmented address translation. Pro-
cesses generate 32-bit effective addresses that are mapped
onto a 52-bit address space via 16 segment registers, using the
top 4 bits of the effective address as an index. It is this extended
virtual address that is mapped by the TLB and page table. The
segments provide address space protection and can be used for
shared memory.

]°Flushing is avoided until the system runs out of identifiers and must reuse them. For example, the address-space identi-
fiers on the MIPS R3000 and Alpha 21064 are six bits wide, with a maximum of 64 active processes [Digital 1994, Kane &
Heinrich 1992]. If more processes are desired, identifiers must be constantly reassigned, requiring TLB and virtual-cache
flushes.
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Ov.4 An £xample Holistic Analysis
Disk I/O accounts for a substantial fraction of an
application’s execution time and power dissipation.
A new DRAM technology called Fully Buffered DIMM
(FB-DIMM) has been in development in the industry
[Vogt 2004a, b, Haas &Vogt 2005], and, though it provides
storage scalability significantly beyond the current
DDRx architecture, FB-DIMM has met with some resis-
tance due to its high power dissipation. Our modeling
results show that the energy consumed in a moderate-
size FB-DIMM system is indeed quite large, and it can
easily approach the energy consumed by a disk.

This analysis looks at a trade-off between storage in
the DRAM system and in the disk system, focusing on
the disk-side write buffer; if configured and managed
correctly, the write buffer enables a system to approach
the performance of a large DRAM installation at half
the energy. Disk-side caches and write buffers have
been proposed and studied, but their effect upon total
system behavior has not been studied. We present
the impact on total system execution time, CPI, and
memory-system power, including the effects of the
operating system. Using a full-system, execution-
based simulator that combines Bochs, Wattch, CACTI,
DRAMsim, and DiskSim and boots the RedHat Einux
6.0 kernel, we have investigated the memory-system
behavior of the SPEC CPU2000 applications. We study
the disk-side cache in both single-disk and RAID-5
organizations. Cache parameters include size, orga-
nization, whether the cache supports write caching
or not, and whether it prefetches read blocks or not.
Our results are given in terms of E1/E2 cache accesses,
power dissipation, and energy consumption; DRAM-
system accesses, power dissipation, and energy con-
sumption; disk-system accesses, power dissipation,
and energy consumption; and execution time of the
application plus operating system, in seconds. The
results are not from sampling, but rather from a simu-
lator that calculates these values on a cycle-by-cycle
basis over the entire execution of the application.

Ov.4.1 Fully-Buffered DIMM vs. the Disk Cache
It is common knowledge that disk I/O is expen-

sive in both power dissipated and time spent wait-
ing on it. What is less well known is the system-wide

breakdown of disk power versus cache power versus
DRAM power, especially in light of the newest DRAM
architecture adopted by industry, the FB-DIMM. This
new DRAM standard replaces the conventional mem-
ory bus with a narrow, high-speed interface between
the memory controller and the DIMMs. It has been
shown to provide performance similar to that of
DDRx systems, and thus, it represents a relatively low-
overhead mechanism (in terms of execution time) for
scaling DRAM-system capacity. FB-DIMM’s latency
degradation is not severe. It provides a noticeable
bandwidth improvement, and it is relatively insensi-
tive to scheduling policies [Ganesh et al. 2007].

FB-DIMM was designed to solve the problem of
storage scalability in the DRAM system, and it pro-
vides scalability well beyond the current JEDEC-style
DDRx architecture, which supports at most two to
four DIMMs in a fully populated dual-channel sys-
tem (DDR2 supports up to two DIMMs per channel;
proposals for DDR3 include limiting a channel to a
single DIMM). The daisy-chained architecture of
FB-DIMM supports up to eight DIMMs per channel,
and its narrow bus requires roughly one-third the
pins of a DDRx SDRAM system. Thus, an FB-DIMM
system supports an order of magnitude more DIMMs
than DDRx. This scalability comes at a cost, however.
The DIMM itself dissipates almost an order of mag-
nitude more power than a traditional DDRx DIMM.
Couple this with an order-of-magnitude increase in
DIMMs per system, and one faces a serious problem.

To give an idea of the problem, Figure Ov.27 shows
the simulation results of an entire execution of the
gzip benchmark from SPEC CPU2000 on a complete-
system simulator. The memory system is only mod-
erate in size: one channel and four DIMMs, totalling
a half-gigabyte. The graphs demonstrate numerous
important issues, but in this book we are concerned
with two items in particular:

Program initialization is lengthy and repre-
sents a significant portion of an application’s
run time. As the CPI graph shows, the first
two-thirds of execution time are spent deal-
ing with the disk, and the corresponding CPI
(both average and instantaneous) ranges
from the 100s to the 1000s. After this initial-
ization phase, the application settles into a
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