
584 Chapter 27 ■ SPIHT Image Compression

63 48 47 32 31 16 15
Coefficient 4 Coefficient 3 Coefficient 2 Coefficient 1

Left memory port

63 32 31 25 24
Threshold and sign data for 16 children 4 Children and parent's threshold data

Right memory port

0

0

15 14 0
11 Coefficient magnitude I

Si{n Coefficient
bit

FIGURE 27.15 ■ Data passed to the SPIHT coder to calculate a single block.

Spatial Orientation Tree

Stack

Child
Child maximum Current

coefficients magnitudes coefficients

■ilEEEE i3 El
■ ■■

■
FIGURE 27.16 ■ A depth-first search of the spatial orientation trees.

The second block in the second level is now complete, and its maximum magni­
tude can now be calculated, shown as the dark gray block in the stack's highest
level. In addition, the 16 child coefficients in the lowest level were saved and
are available. There are no child values for the lowest level since there are no
children.

Another benefit of scanning the image in a depth-first search order is that Mor­
ton Scan Ordering is naturally realized within each level, although it is intermixed
between levels. By writing data from each level to a separate area of memory and
later reading the data from the highest wavelet level to the lowest, the Morton

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 601

Read

27.4 Hardware Implementation 585

memory port

t
Coefficient Encode

Magnitude
stack and maximum Write

- maximum - magnitudes - f--+ memory
calculation

magnitude and group port 1
calculation block data

Depth-first

i
Memory

search state buffer and
machine and : address
control logic generator

Write
r+ memory

port 2

FIGURE 27.17 ■ A block diagram of the SPIHT maximum magnitude phase.

Scan Ordering is naturally realized. A block diagram of the maximum magnitude
phase is provided in Figure 27 .17. Since two pixels are read together and the
image is scanned only once, the runtime of this phase is half a clock cycle per
pixel. Because the maximum magnitude phase computes in less time than the
wavelet phase, the throughput of the overall system is not affected.

27 .4.5 The SPIHT Coding Phase

The final SPIHT coding phase performs the Fixed Order SPIHT encoding in
parallel, based on the data from the maximum magnitude phase. Coefficient
blocks are read from the highest wavelet level to the lowest. As information is
loaded from memory it is shifted from the variable fixed-point representation to
a common fixed-point representation for every wavelet level. Once each block
has been adjusted to an identical numerical representation, the parallel version
of SPIHT is used to calculate what information each block will contribute to
each bit plane.

The information is grouped and counted before being added to three separate
variable FIFOs for each bit plane. The data that the variable FIFO components
receive range in size from Oto 37 bits, and the variable FIFOs arrange the block
data into regular sized 32-bit words for memory access. Care is also taken to
stall the algorithm if any of the variable FIFOs becomes too full.

Data from each buffer is output to a fixed location in memory and the number
of bits in each bitstream is output as well. Given that data is added dynamically
to each bitstream, there needs to be a dynamic scheduler to select which buffer

' .

□□ □
.

□

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 602

586 Chapter 27 ■ SPIHT Image Compression

should be written to memory. Since there are a large number of FIFOs that all
require a BlockRAM, the FIFOs are spread across the FPGA, and some type
of staging is required to prevent a signal from traveling too far. The scheduler
selects which FIFO to read based on both how full a FIFO is and when it was
last accessed.

Our studies showed that the LSP bitstream is roughly the same size of the
LIP and LIS streams combined. Because of this the LSP bitstreams transfer
more data to memory than the other two lists. In our design the LIP and LIS
bitstreams share a memory port while the LSP stream writes to a separate mem­
ory port. Since a 2 x 2 block of coefficients is processed every clock cycle, the
design takes one-quarter of a clock cycle per pixel, which is far less than the
three-quarters of a clock cycle per pixel for the DWT. The block diagram for
the SPIHT coding phase is given in Figure 27.18.

With 22 total bit planes to calculate, the design involves 66 individual
data grouping and variable FIFO blocks. Although none consume a significant
amount of FPGA resources individually, 66 blocks do. The entire design required
160 percent of the resources in a Virtex 2000E, and would not fit in the target
system. However, by removing the lower bit planes, less FPGA resources are
needed, and the architecture can easily be adjusted to fit the FPGA being used.
Depending on the size of the final bitstream required, the FPGA size used in the
SPIHT phase can be varied to handle the number of intermediate bitstreams
generated.

Removing lower bit planes is possible since the final bitstream transmits data
from the highest bit plane to the lowest. In our design the lower 9-bit planes

LIP and LIS
address

generator

Write
memory

port 1

Write
memory

port 2

LSP
address

generator

Dynamic
FIFO

scheduler

Select and Read FIFOs

Address
generator and
control logic

Read
memory
port 1

Read
memory

port 2

Shift data LIP LIS LSP
data data data

Calculate
bit plane 21

FIGURE 27.18 ■ A block diagram of the SPIHT coding phase.

LIP LIS LSP
data data data

Calculate
bit plane 0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 603

27.5 Design Results 587

were eliminated. Yet, without these lower planes, bitrates of up to 6 bpp can
still be achieved. We found the constraint to be acceptable because we are inter­
ested in high compression ratios using low bitrates, and 6 bpp is practically a
lossless signal. Since SPIHT is optimized for lower bitrates, the ability to cal­
culate higher bitrates was not considered necessary. Alternatively, the use of a
larger FPGA would alleviate the size constraint.

27 .5 DESIGN RESULTS

The system was designed using VHDL with mqdels provided by Annapolis Micro
Systems to access the PCI bus and memory ports. Simulations for debugging
purposes were carried out with ModelSim EE 5.4e from Mentor Graphics. Syn­
plify 6.2 from Synplicity was used to compile the VHDL code and generate a
netlist. The Xilinx Foundation Series 3.li tool set was used to place and route
the design. Lastly, the peutil. exe utility from Annapolis Micro Systems gen­
erated the FPGA configuration streams.

Table 27.3 shows the speed and runtime specifications of the final architec­
ture. All performance numbers are measured results from the actual hardware
implementation. Each phase computes on separate memory blocks, which can
operate at different clock rates. The design can process any square image where
the dimensions are a power of 2: 16 x 16, 32 x 32, up to 1024 x 1024.

Since the WildStar board is connected to the host computer by a relatively
slow PCI bus, the throughput of the entire system we built is constrained by
the throughput of the PCI bus. However, since the study is on how image com­
pression routines could be implemented on a satellite, such a system would be
designed differently, and would not contain a reconfigurable board connected to
some host platform though a PCI bus. Instead, the image compression routines
would be inserted directly into the data path and the data transfer times would
not be the bottleneck of tlie system. 1;1or this reason we analyzed the throughput
of just the SPIHT compression engine and analyzed how quickly the FPGAs can
process the images.

The throug}iput of the system was constrained by the discrete wavelet trans­
form at 100 MPixels/sec. One method to increase this rate is to compute
more rows in parallel. If the available memory ports accessed 128 bits of
data instead of the 64 bits with our WildStar board, the number of clock
cycles per pixel could be reduced by half and the throughput could double.

TABLE 27.3 ■ Performance numbers

Clock cycles per Clock cycles FPGA area

Phase 512 x 512 image per pixel Clock rate Throughput (%)

Wavelet 182465 3/4 75 MHz 100 MPixels/sec 62

Magnitude 131132 1/2 73 MHz 146 MPixels/sec 34

SPIHT 65793 1/4 56 MHz 224 MPixels/sec 98

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 604

588 Chapter 27 ■ SPIHT Image Compression

Assuming the original image consists of 8 bpp, images are processed at a rate of
800 Mbits/sec.

The entire throughput of the architecture is less than one clock cycle for
every pixel, which is lower than parallel versions of the DWT. Parallel ver­
sions of the DWT used complex scheduling to compute multiple wavelet levels
simultaneously, which left limited resources to process multiple rows at a time.
Given more resources though, they would obtain higher data rates than our
architecture by processing multiple rows simultaneously. In the future, a DWT
architecture other than the one we implemented could be selected for additional
speed improvements.

We compared our results to the original software version of SPIHT provided
on the SPIHT web site [15]. The comparison was made without arithmetic cod­
ing since our hardware implementation does not perform any arithmetic coding
on the final bitstream. Additionally, in our testing on sample NASA images, arith­
metic coding added little to overall compression rates and thus was dropped
[11]. An IBM RS/6000 Model 270 workstation was used for the comparison,
and we used a combination of standard image compression benchmark images
and satellite images from NASA's web site. The software version of SPIHT com­
pressed a 512 x 512 image in 1.101 seconds on average without including disk
access. The wavelet phase, which constrains the hardware implementation, com­
putes in 2.48 milliseconds, yielding a speedup of 443 times for the SPIHT engine.
In addition, by creating a parallel implementation of the wavelet phase, further
improvements to the runtimes of the SPIHT engine are possible.

While this is the speedup we will obtain if the data transfer times are not a
factor, the design may be used to speed up SPIHT on a general-purpose pro­
cessor. On such a system the time to read and write data must be included as
well. Our WildStar board is connected to the host processor over a PCI bus,
which writes images in 13 milliseconds and reads the final datastream in 20.75
milliseconds. Even with the data transfer delay, the total speedup still yields an
improvement of 31.4 times.

Both the magnitude and SPIHT phases yield higher throughputs than the
wavelet phase, even though they operate at lower clock rates. The reason for
the higher throughputs is that both of these phases need fewer clock cycles
per pixel to compute an image. The magnitude phase takes half a clock cycle
per pixel and the SPIHT phase requires just a quarter. The fact that the SPIHT
phase computes in less than one clock cycle per pixel, let alone a quarter, is
a striking result considering that the original SPIHT algorithm is very sequen­
tial in nature and had to consider each pixel in an image multiple times per
bit plane.

27 .6 SUMMARY AND FUTURE WORK

In this chapter we demonstrated a viable image compression routine on a recon­
figurable platform. We showed how by analyzing the range of data processed by
each section of the algorithm, it is advantageous to create optimized memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 605

27.6 Summary and Future Work 589

structures as with our variable fixed-point work. Doing so minimizes memory

usages and yields efficient data transfers. Here each bit transferred between
memory and the processor board directly impacted the final results. In addi­
tion, our Fixed Order SPIHT modifications illustrate how by making slight
adjustments to an existing algorithm, it is possible to dramatically increase the
performance in a custom hardware implementation and simultaneously yield
essentially identical results. With Fixed Order SPIHT the throughput of the
system increased by over an order of magnitude while still matching the original
algorithm's PSNR curve.

This SPIHT work was part of a development effort funded by NASA.

References

[1] V. R. Algazi, R. R. Estes. Analysis-based coding of image transform and subband
coefficients. Applications of Digital Image Processing XVIII, SPIE Proceedings 2564,
1995.

[2] Annapolis Microsystems. WildStar Reference Manual, Annapolis Microsystems, 2000.
[3] A. Benkrid, D. Crookes, K. Benkrid. Design and implementation of generic 2D

biorthogonal discrete wavelet transform on an FPGA. IEEE Symposium on Field­
Programmable Custom Computing Machines, April 2001.

[4] M. Carraeu. Hubble Servicing Mission: Hubble is fitted with a new "eye."
http://www.chron.com/contentlinteractive/space!missions/sts-103/hubblelarchive/
931207.html, December 7, 1993.

[5] C. M. Chakrabarti, M. Vishwanath. Efficient realization of the discrete and contin­
uous wavelet transforms: From single chip implementations to mappings in SIMD
array computers. IEEE Transactions on Signal Processing 43, March 1995.

[6] C. M. Chakrabarti, M. Vishwanath, R. M. Owens. Architectures for wavelet trans­
forms: A survey. Journal of VLSI Signal Processing 14, 1996.

[7] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms, MIT Press, 1997.
[8] T. W. Fry. Hyper Spectral Image Compression on Reconfigurable Platforms, Master's

thesis, University of Washington, Seattle, 2001.
[9] R. C. Gonzalez, R. E. Woods. Digital Image Processing, Addison-Wesley, 1993.

[10] A. Graps. An introduction to wavelets. IEEE Computational Science and Engineering
2(2), 1995.

[11] T. Owen, S. Hauck. Arithmetic Compression on SP/TH Encoded Images, Technical
report UWEETR-2002-2007, Department of Electrical Engineering, University of
Washington, Seattle, 2002.

[12] K. K. Parhi, T. Nishitani. VLSI architectures for discrete wavelet transforms. IEEE
Transactions on VLSI Systems 1(2), 1993.

[13] J. Ritter, P. Molitor. A pipelined architecture for partitioned DWT based lossy image
compression using FPGAs. ACMISIGDA Ninth International Symposium on Field­
Programmable Gate Arrays, February 2001.

[14] A. Said, W. A. Pearlman. A new fast and efficient image codec based on set parti­
tioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Vuleo
Technology 6, June 1996.

[15] A. Said, W. A. Pearlman. SPIHT image compression: Properties of the method.
http://www.cipr.rpi.edu/research!SPIHT/spihtl.html.

[16] H. Sava, M. Fleury, A. C. Downton, A. Clark. Parallel pipeline implementations of
wavelet transforms. IEEE Proceedings Part 1 (Vision, Image and Signal Processing)
144(6), 1997.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 606

590 Chapter 27 ■ SPIHT Image Compression

[17] J. M. Shapiro. Embedded image coding using zero trees of wavelet coefficients.
IEEE Transactions on Signal Processing 41(12), 1993.

[18] W. Sweldens. The Lifting Scheme: A new philosophy in biorthogonal wavelet con­
structions. Wavelet Applications in Signal and Image Processing 3, 1995.

[19] NASA. TERRA: The EOS flagship. The EOS Data and Information System (EOS­
DIS). http://terra.nasa.gov/Brochure/Sect ..5-1.html.

[20] C. Valens. A really friendly guide to wavelets. http://perso.wanadoo.fr/polyvalens/
clemenslwaveletslwavelets.html.

[21] M. Vishwanath, R. M. Owens, M. J. Irwin. VLSI architectures for the discrete
wavelet transform. IEEE Transactions on Circuits and Systems, Part II, May 1995.

[22] Xilinx, Inc. The Programmable Logic Data Book, Xilinx, Inc., 2000.
[23] Xilinx, Inc. Serial Distribli,ted Arithmetic FIR Filter, Xilinx, Inc., 1998.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 607

CHAPTER 28

AUTOMATIC TARGET RECOGNITION SYSTEMS

ON RECONFIGURABLE DEVICES

Young H. Cho
Open Acceleration Systems Research

An Automatic Target Recognition (ATR) system analyzes a digital image or video
sequence to locate and identify all objects of a certain class. There are several
ways to implement ATR systems, and the right one is dependent, in large part,
on the operating environment and the signal source. In this chapter we focus
on the implementations of reconfigurable ATR designs based on the algorithms
from Sandia National Laboratories (SNL) for the U.S. Department of Defense
Joint STARS airborne radar imaging platform. STARS is similar to an aircraft
AWACS system, but detects ground targets.

ATR in Synthetic Aperture Radar (SAR) imagery requires tremendous process­
ing throughput. In this application, data come from high-bandwidth sensors, and
the processing is time critical. On the other hand, there is limited space and power
for processing the data in the sensor platforms. One way to meet the high compu­
tational requirement is to build custom circuits as an ASIC. However, very high
nonrecurring engineering (NRE) costs for low-volume ASICs, and often evolving
algorithms, limit the feasibility of using custom hardware. Therefore, reconfig­
urable devices can play a prominent role in meeting the challenges with greater
flexibility and lower costs.

This chapter is organized as follows: Section 28.1 describes a highly paralleliz­
able Automatic Target Recognition (ATR) algorithm. The system based on it is
implemented using a mix of software and hardware processing, where the most
computationally demanding tasks are accelerated using field-programmable gate
arrays (FPGAs). We present two high-performance implementations that exercise
the FPGA's benefits. Section 28.2 describes the system that automatically builds
algorithm-specific and resource-efficient "hardwired" accelerators. It relies on the
dynamic reconfiguration feature of FPGAs to obtain high performance using lim­
ited logic resources.

The system in Section 28.3 is based on an architecture that does not
require frequent reconfiguration. The architecture is modular, easily scalable,
and highly tuned for the ATR application. These application-specific processors
are automatically generated based on application and environment parameters.
In Section 28.4 we compare the implementations to discuss the benefits and the
trade-offs of designing ATR systems using FPGAs. In Section 28.5, we draw our
conclusions on FPGA-based ATR system design.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 608

592 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

28.1 AUTOMATIC TARGET RECOGNITION ALGORITHMS

Sandia real-time SAR ATR systems use a hierarchy of algorithms to reduce the
processing demands for SAR images in order to yield a high probability of detec­
tion (PD) and a low false alarm rate (FAR).

28.1.1 Focus of Attention

As shown in Figure 28.1, the first step in the SNL algorithm is a Focus of
Attention (FOA) algorithm that runs over a downsampled version of the entire
image to find regions of interest that are of approximately the right size and
brightness. These regions are then extracted and processed by an indexing stage
to further reduce the datastream, which includes target hypotheses, orientation
estimations, and target center locations. The surviving hypotheses have the full
resolution data sent to an identification executive that schedules multiple iden­
tification algorithms and then fuses their results.

The FOA stage identifies interesting image areas called "chips." Then it com­
poses a list of targets suspected to be in a chip. Having access to range and
altitude information, the FOA algorithm also determines the elevation for the
chip, without having to identify the target first. It then tasks the next stage with
evaluating the likelihood that the suspected targets are actually in the given
image chip and exactly where.

28.1.2 Second-level Detection

The next stage of the algorithm, called Second Level Detection (SLD), takes the
extracted imagery (an image chip), matches it against a list of provided target

I Synthetic aperture radar sensors I
_,

--------c==:::

Focus of attention

--------·----------

Second-level detection driver I

-------------=----

Reporting module

,

,

,

,

'

'

'

M-47 Tank
Angle: 355°

\ Elevation: 10 ft

FIGURE 28.1 ■ The Sandia Automatic Target Recognition algorithm.

c=_~===-···· ·--.::·:iJ]
~ -~ ___J_--_ -_--- ·--<:··□

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 609

28.1 Automatic Target Recognition Algorithms 593

hypotheses, and returns the hit information for each image chip consisting of
the best two orientation matches and other relevant information.

The system has a database of target models. For each target, and for each
of its three different elevations, 72 templates are defined corresponding to its
all-around views. The orientations of adjacent views are separated by 5 degrees.

SLD is a binary silhouette matcher that has a bright mask and a surround
mask that are mutually exclusive. Each template is composed of several param­
eters along with a "bright mask" and a "surround mask," where the former
defines the image pixels that should be bright for a match, and the latter defines
the ones that should not. The bright and surround masks are 32x32 bitmaps,
each with about 100 asserted bits. "Bright" is defined relative to a dynamic
threshold.

On receiving tasks from the FOA, the SLD unit compares all of the stored
templates for this target and elevation and the applicable orientations with
the image chip, and computes the level of matching (the "hit quality"). The
two hits with the highest quality are reported to the SLD driver as the most
likely candidates to include targets. For each hit, the template index number,
the exact position of the hit in the search area, and the hit quality are pro­
vided. After receiving this information, the SLD driver reports it to the ATR
system.

The purpose of the first step in the SLD algorithm, called the shape sum, is to
distinguish the target from its surrounding background. This consists of adap­
tively estimating the illumination for each position in the search area, assuming
that the target is at that orientation and location. If the energy is too little or
too much, no further processing for that position for that template match is
required. Hence, for each mask position in the search area, a specific threshold
value is computed as in equation 28.1.

31 31

SMx,y = L [.Bu,vMx+u,y+v
u=0v=0

SMx,y
THx y = -- -Bias

' BC

(28.1)

(28.2)

The next step in the algorithm distinguishes the target from the background
by thresholding each image pixel with respect to the threshold of the cur­
rent mask position, as computed before. The same pixel may be above the
threshold for some mask positions but below it for others. This thresholci.
calculation determines the actual bright and surround pixel for each posi­
tion. As shown in equation �-2, it consists of dividing the shape sum by the
number of pixels in the bright mask and subtracting a template-specific Bias
constant.

As shown in equation 28.3, the pixel values under the bright mask that are
greater than or equal to the threshold are counted; if this count exceeds the
minimal bright sum, the processing continues. On the other hand, the pixel

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 610

594 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

values under the surround mask that are less than the threshold are counted to
calculate the surround sum as shown in equation 28.4. If this count exceeds the
minimal surround sum, it is declared a hit.

31 31 BSx,y = L E,Bu,v [Mx+u,y+v 2'.'. THx,y] u=0 v=0
31 31 SSx,y = L E,Su,v [Mx+u,y+v < THx,y] u=0v=0

(28.3)

(28.4)

Once the position of the hit is determined, we can calculate its quality by
taking the average of bright and surround pixels that were correct, as shown in
equation 28.5. This quality value is sent back to the driver with the position to
determine the two best targets.

Q _ ! (BSx,y SSx,y) x,y - 2 BC + SC (28.5)

28.2 DYNAMICALLY RECONFIGURABLE DESIGNS

FPGAs can be reconfigured to perform multiple functions with the same logic
resources by providing a number of corresponding configuration bit files. This
ability allows us to develop dynamically reconfigurable designs. In this section,
we present an ATR system implementation of UCLA's Mojave project that uses
an FPGA's dynamic reconfigurability.

28.2.1 Algorithm Modifications

As described previously, the current Sandia system uses 64 x 64 pixel chips
and 32 x 32 pixel templates. However, the Mojave system uses chip sizes of
128 x 128 pixels and template sizes of 8 x 8 pixels. It uses different chip and tem­
plate sizes in order to map into existing FPGA devices that are relatively small.
A single template moves through a single chip to yield 14,641 (121 x 121) image
correlation results. Assuming that each output can be represented with 6 bits,
the 87,846 bits are produced by the system.

There is also a divide step in the Sandia algorithm that follows the shape
sum operation and guides the selection of threshold bin for the chip. This sys­
tem does not implement the divide, mainly because it is expensive relative to
available FPGA resources for the design platform.

28.2.2 Image Correlation Circuit

FPGAs offer an extremely attractive solution to the correlation problem. First of
all, the operations being performed occur directly at the bit level and are domi­
nated by shifts and adds, making them easy to map into the hardware provided
by the FPGA. This contrasts, for example, with multiply-intensive algorithms

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 611

28.2 Dynamically Reconfigurable Designs 595

that would make relatively poor utilization of FPGA resources. More important,
the sparse nature of the templates can be utilized to achieve a far more efficient
implementation in the FPGA than could be realized in a general-purpose corre­
lation device. This can be illustrated using the example of the simple template
shown in Figure 28.2.

In the example template shown in the figure, only 5 of the 20 pixels are
asserted. At any given relative offset between the template and the chip, the
correlation output is the sum of the 5 binary pixels in the chip that match
the asserted bits in the template. The template can therefore be implemented in
the FPGA as a simple multiple-port adder. The chip pixel values can be stored
in flip-flops and are shifted to the right by one flip-flop with each clock cycle.
Though correlation of a large image with a small mask is often understood con­
ceptually in terms of the mask being scanned across the image, in this case the
opposite is occurring-the template is hardwired into the FPGA while the image
pixels are clocked past it.

Another important opportunity for increased efficiency lies in the potential to
combine multiple templates on a single FPGA. The simplest way to do this is to
spatially partition the FPGA into several smaller blocks, each of which handles
the logic for a single template. Alternatively, we can try to identify templates
that have some topological commonality and can therefore share parts of their
adder trees. This is illustrated in Figure 28.3, which shows two templates sharing
several pixels that can be mapped using a set of adder trees to leverage this
overlap.

A potential advantage FPGAs have over ASICs is that they can be dynam­
ically optimized at the gate level to exploit template characteristics. For our
application, a programmable ASIC design would need to provide large general­
purpose adder trees to handle the worst-case condition of summing all possi­
ble template bits, as shown in Figure 28.4. In constrast, an FPGA exploits the
sparse nature of the templates and constructs only the small adder trees required.
Additionally, FPGAs can optimize the design based on other application-specific
characteristics.

Template A

ii
Doo-....._
D10::0-
D
0
20 + Result A
01-

021 ---

Image
030 ... 7

FIGURE 28.2 ■ An example template and a corresponding register chain with an adder tree.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 612

596 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

Template A

Template8

FIGURE 28.3 ■ Common hardware shared between two templates.

Template A
Image

, . .. •

,
•
. Registers

ResultA

Result8

' ,' ' , ' '(, '
'I ,,1

\ I
A

' ,I
I\

,
,

,
, , ,

,
•

for image chip
and templates ,

'-+-'-�--+-, �,..,,•, /, ,\ : :
\ I

I '
,.

1 '\,' ', I I I
1 I � I\ r " I I

\, 6,-o' 'o' 'c
f

'tj ! AND gates

\0 O O (J (J: used to
' • perform
0 0 0 0 0 dot product

QQ099

·--��/
Large adder

FIGURE 28.4 ■ The ASIC version of the equivalent function.

28.2.3 Performance Analysis

Using a template-specific adder tree achieves significant reduction in routing
complexity over a general correlation device, which must include logic to sup­
port arbitrary templates. The extent of this reduction is inversely proportional
to the fraction of asserted pixels in the template. While this complexity reduc­
tion is important, alone it is not sufficient to lead to efficient implementations
on FPGAs. The number of D-flip-flops required for storing the data points can
cause inefficiencies in the design. Implementing these on the FPGA using the
usual flip-flop-based shift registers is inefficient.

This problem can be resolved by collapsing the long strings of image pixels­
those not being actively correlated against a template-into shift registers, which
can be implemented very efficiently on some lookup table (LUT)-based FPGAs.
For example, LUTs in the Xilinx XC4000 library can be used as shift registers
that delay data by some predetermined number of clock cycles. Each 16 x 1-bit

~. EffiE
~ a±lli

' ' . ' ' .
' '

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 613

28.2 Dynamically Reconfigurable Designs 597

LUT can implement an element that is effectively a 16-bit shift register in which
the internal bits cannot be accessed. A flip-flop is also needed at the output of
each RAM to act as a buffer and synchronizer. A single control circuit is used to
control the stepping of the address lines and the timely assertion of the write­
enable and output-enable signals for all RAM-based shift register elements. This
is a small price to pay for the savings in configurable logic block (CLB) usage
relative to a brute-force implementation using flip-flops.

In contrast, the 256-pixel template images, like those shown in Figure 28.5,
can be stored easily using flip-flop-based registers. This is because sufficient
flip-flops are available to do this, l;lnd the adder tree structures do not consume
them. Also, using standard flip-flop-based shift registers for image pixels in the
template simplifies the mapping process by allowing every pixel to be accessed.
New templates can be implemented by simply connecting the template pixels
of concern to the inputs of the adder tree structures. This leads to significant
simplification of automated template-mapping tools.

The resources used by the two components of target correlation-namely,
storage of active pixels on the FPGA and implementation of the adder tree cor­
responding to the templates-are independent of each other. The resources used
by the pixel storage are determined by the template size and are independent of
the number of templates being implemented. Adding templates involves adding
new adder tree structures and hence increases the number of function genera­
tors being used. The total number of templates on an FPGA is bounded by the
number of usable function generators.

The experimental results suggest that in practice we can expect to fit 6 to 10
surround templates having a higher number of overlapping pixels onto a 13,000-
gate FPGA. However, intelligent grouping of compatible templates is important.
Because the bright templates are less populated than the surround templates, we
estimate that 15 to 20 of them can be mapped onto the same FPGA.

■
•• ••

•••
FIGURE 28.5 ■ Example of eight rotation templates of a SAR 16 x 16 bitmap image.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 614

598 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

28.2.4 Template Partitioning
To minimize the number of FPGA reconfigurations necessary to correlate a given
target image against the entire set of templates, it is necessary to maximize the
number of templates in every configuration of the FPGA. To accomplish this
optimization goal, we want to partition the set of templates into groups that
can share adder trees so that fewer resources are used per template. The set of
templates may number in the thousands, and the goal may be to place 10 to 20
of them per configuration; thus, exhaustive enumeration of all of the possible
groupings is not an option. Instead, we use a heuristic method that furnishes a
good, although perhaps suboptimal, solution.

Correlation between two templates can establish the number of pixels in com­
mon, and it is a good starting point for comparing and selecting templates. How­
ever, some extra analysis, beyond iterative correlations on the template set, is
necessary .. For example, a template with many pixels correlates well with several
smaller templates, perhaps even completely subsuming them, but the smaller
templates may not correlate with each other and involve no redundant compu­
tations. There are two possible solutions to this. The first is to ensure that any
template added to an existing group is approximately the same size as the tem­
plates already in it. The second is to compute the number of additions required
each time a new template is brought in-effectively recomputing the adder tree
each time.

Recomputing the entire adder tree is computationally expensive and not a
good method of partitioning a set of templates into subsets. However, one of
the heuristics used in deciding whether or not to include a template in a newly
formed partition is to determine the number of new terms that its inclusion
would create in the partition's adder tree. The assumption is that more terms
would result in a significant number of new additions, resulting in a wider and
deeper adder tree. Thus, by keeping to a minimum the number of new terms
created, newly added templates do not increase the number of additions by a
significant amount.

Using C++, we have created a design tool to implement the partitioning pro­
cess that uses an iterative approach to partitioning templates. Templates that
compare well to a chosen "base" template (usually selected by largest area) are
removed from the main template set and placed in a separate partition. This
process is repeated until all templates are partitioned. After the partitions have
been selected, the tool computes the adder tree for each partition.

Figure 28.6 shows the creation of an adder tree from the templates in a par­
tition. Within each partition, the templates are searched for shared subsets of
pixels. Called terms, these subsets can be automatically added together, leading
to a template description that uses terms instead of pixels.

The most common addition of two terms is chosen to be grouped together, to
form a new term that can be used by the templates. In this way, each template
is rebuilt by combining terms in such a way that the most redundant additions
are shared between templates; the final result is terms that compute entire tem­
plates. For the sample templates shown in Figure 28.6, 39 additions would be
required to compute the correlations for all 5 in a naive approach. However,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 615

28.2 Dynamically Reconfigurable Designs 599

■■■■■
A B C D E

Template A= 1 + 3 + 4

Template B = 3 + 4 + 5

Template C = 2 + 3 + 6 + 7

Template D = 1 + 2 + 6 + 7

Template E = 1 + 3 + 7

FIGURE 28.6 ■ Example of template grouping and rewritten as sums of terms.

after combining the templates through the process just described, only 17
additions are required.

28.2.5 Implementation Method

For a configurable computing system, the problem of dividing hardware and
software is particularly interesting because it is both a hardware and a software
issue. Consider the two methods for performing addition shown in Figure 28.7.
Method A, a straightforward parallel implementation requiring several FPGAs,
has several drawbacks. First, the outputs from several FPGAs converge at the
addition operation, which may create a severe 1/0 bottleneck. Second, the sys­
tem is not scalable-if it requires more precision, and therefore more bit planes,
more FPGAs must be added.

Method B in Figure 28. 7 illustrates our approach. Each bit plane is correlated
individually and then added to the previous results in temporary storage. It is
completely scalable to any image or template precision, and it can implement
all correlation, normalization, and peak detection routines required for ATR.
One drawback of method B is the cost and power required for the resulting
wide temporary SRAM. Another possible drawback is the extra execution time
required to run ATR correlations in serial. The ratio of performance to number
of FPGAs is roughly equivalent for the two methods, and the performance gap
can be closed simply by using more of the smaller method B boards.

The approach of a reconfigurable FPGA connected to an intermediate memory
allows us a fairly complicated flow of control. For example, the sum calculation
in ATR tends to be more difficult than the image-template correlation. Thus, we
may want a program that performs two sum operations and forwards the results
to a single correlation.

Reconfigurations for 1 OK-gate FPGAs are typically around 20 kB in length.
Reconfiguring every 20 milliseconds gives a reconfiguration bandwidth of
approximately 1 MB per FPGA per second. Coupled with the complexity of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 616

600 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

Bitplaneo­

Bitplane 1-

Bitplane7-

(a)

Bit plane 0
Bit plane 1

Bit plane 7

(b)

FIGURE 28.7 ■ Each of eight FPGAs correlating each bit plane of the template (a). A single FPGA
correlating bit planes and adding the partial sums serially (bl.

flow control, this reconfiguration bandwidth can be handled by placing a small
microcontroller and configuration RAM next to every FPGA. The microcontroller
permits complicated flow of control, and since it addresses the configuration
RAM, it frees up valuable 1/0 on the FPGA. The microcontroller is also impor­
tant for debugging, which is a major issue in configurable systems because the
many different hardware configurations can make it difficult to isolate problems.

The principal components include a "dynamic" FPGA, which is reconfigured
on the fly and performs most of the computing functions, and a "static" FPGA,
which is configured only once and performs control and some computational
functions. The EPROM holds configuration bitstreams, and the SRAM holds
the input image data (e.g., the chip). Because the correlation operation involves
the application of a small target template to a large chip, a first in, first out
(FIFO) is needed to hold the pixels being wrapped around to the next row of
the template mask. The templates used in this implementation are of size 8 x 8,
whereas the correlation image is 128 x 128. Each configuration of the dynamic
FPGA implements a total of four template pairs (four bright templates and four
surround templates).

The large amount of sum in the algorithm can be performed in parallel. This
requires a total of D clock cycles, where D is each pixel's depth of representa­
tion. Once the sum results are obtained, the correlation outputs are produced
at the rate of 1 per clock cycle. Parallelism cannot be as directly exploited in
this step because different pixels are asserted for different templates. However,
in the limit of very large FPGAs the number of clock cycles to compute the cor­
relation is upper-bounded by the number of possible thresholds, as opposed to
the number of templates.

28.3 RECONFIGURABLE STATIC DESIGN

Although the idea of reusing reconfigurable hardware to dynamically perform
different functions is unique to FPGAs, the main weaknesses of dynamic FPGA
reconfiguration are the lengthy time and additional resources required for
FPGA reconfiguration and design compilation. Although reconfiguration time

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 617

28.3 Reconfigurable Static Design 601

has improved dramatically over the years, any time spent on reconfiguration is
time that could be used to process more data.

Unlike the dynamic reconfigurable architecture describe in the previous sec­
tion, we describe another efficient FPGA design that does not require complete
design reconfiguration. However, like the previous system, it uses a number of
parameters to design a highly pipelined custom design to maximize utilization
of the design space to exploit the parallelism in the algorithm.

28.3.1 Design-specific Parameters

To verify our understanding of the algorithm, we first implemented a soft­
ware simulator and ran it on a sample dataset. Our simulations reproduced the
expected results. Over time this algorithm simulator became a full hardware
simulator and verifier. It also allowed us to investigate various design options
before implementing them in hardware.

The dataset includes 2 targets, each with 72 templates for 5-degree orientation
intervals. In total, then, we have 144 bright masks and 144 surround masks, each
a 32 x 32 bitmap. The dataset also includes 16 image chips, each with 64 x 64
pixels at 1 byte per pixel. Given a template and an image, there are 441 matrix
correlations that must take place for each mask. This corresponds to 21 search
rows, each 21 positions wide. The total number of search row correlations for
the sample data and templates is thus 48,384. The behavior of the simulator
on the sample dataset revealed a number of algorithm-specific characteristics.
Because the design architecture was developed for reconfigurable devices, these
characteristics are incorporated to tune the hardware engine for the best cost
and performance.

28.3.2 Order of Correlation Tasks

Correlation tasks for threshold calculation (equation 28.2), bright sum (equa­
tion 28.3), and surround sum (equation 28.4) are very closely related. Valid
results for all three must exist in order to calculate the quality of the hit, so
invalid results from any one of them make other calculations unnecessary.

For the data samples, about 60 percent of the surround sums and 40 percent
of the threshold results were invalid, while all of the bright sum results were
valid. The low rejection rate by bright sum is the result of the threshold being
computed using only the bright mask, regardless of the surround mask. The
threshold is computed by the same pixels used for computing bright sum, so we
find that, for a typical dataset, checking for invalid surround sums before the
other calculations drastically reduces the total number of calculations needed.

Zero mask rows

Each mask has 32 rows. However, many have all-zero rows that can be skipped.
By storing with each template a pointer to its first nonzero row we can skip
directly to that row "for free." Embedded all-zero rows are also skipped.

The simulation tools showed that, for our template set, this optimization
significantly reduces the total computational requirements. For the sample

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 618

602 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

template set, there are total of 4608 bitmap rows to use in the correlation tasks.
Out of 4608 bright rows, only 2206 are nonzero, and out of 4608 surround rows,
2815 are nonzero. Since the bright mask is used for both threshold and bright
sum calculations, and the surround mask is used once, skipping the zero rows
reduces the number of row operations from 13,824 to 7227, which produces a
savings of about 52 percent.

It is also possible to reduce the computation by skipping zero columns. How­
ever, as will be described in following section, the FPGA implementation works
on an entire search row concurrently. Hence, skipping rows reduces time but
skipping columns reduces the number of active elements that work in parallel,
yielding no savings.

28.3.3 Reconfigurable Image Correlator

Although it is possible to reconfigure FPGAs dynamically, the time spent on
context switching and reconfiguration could be used instead to process data on
a register-based static design. For this reason, minimizing reconfiguration time
during computation is essential in effective FPGA use. Nevertheless, when we
use FPGAs as compute engines, reconfiguration allows the hardware to take on
a large range of task parameters.

The SLD tasks represented in equations 28.1, 28.3, and 28.4 are image cor­
relation calculations on sliding template masks with radar images. To explain
our design strategies, we examine each equation by applying the algorithm on a
small dataset consisting of a 6 x 6 pixel image, a 3 x 3 mask bitmap, and a 4 x 4
result matrix.

For this dataset, the shape sum calculation for a mask requires multiplying
all 9 mask bits with the corresponding image pixels and summing them to find
1 of 16 results. To build an efficient circuit for the sum equations 28.3 and 28.4,
we write out the subset of both equations as shown in Table 28.1. By expanding
the summation equations, we expose opportunities for hardware to optimize the
calculations. First, the same Buv is used to calculate the nth term of all of the
shape sum results. Thus, when the summation calculations are done in parallel,
the Buv coefficient can be broadcast to all of the units that calculate each result.
Second, the image data in the nth term of the SMxy is in the (n + l)th term of
SMxy-1, except when v returns to 0, the image pixel is located in the subsequent
row. This is useful in implementing the pipeline datapath for the image pixels
through the parallel summation units.

TABLE 28.1 ■ Expanded sum equations 28.3 and 28.4

Term 1 2 3 4 5 6 7 8 9

u 0 0 0 1 1 1 2 2 2
V 0 1 2 0 1 2 0 1 2
SMoo

= BooMoo+ Bo1Mo1+ Bo2Mo2+ B10M10+ BuMu+ B12M12+ B20M20+ B21M21 + B22M22
SM01

=
BooM01+ Bo1Mo2+ Bo2Mo3+ B10Mu+ BuM12+ B12Mi3+ B20M21+ B21M22+ B22M23

SM02
= Bo0Mo2+ 801 Mo3+ Bo2Mo4+ B10M12+ BuM13+ B12M14+ B20M22+ B21M23+ B22M24

SM03
= Bo0Mo3+ Bo1Mo4+ Bo2Mo5+ B10M13+ BuM14+ B12M15+ B20M23+ B21M24+ B22M25

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 619

28.3 Reconfigurable Static Design 603

4-byte pipeline

1-bit (mask) broadcast

FIGURE 28.8 ■ A systolic image array pipeline.

Based on the characteristics of the expanded equations, we can build a
systolic computation unit as in Figure 28.8. To save time while changing the
rows of pixels, the pixel pipeline can either operate as a pipeline or be directly
loaded from another set of registers. At every clock cycle, each Uy unit performs
one operation, v is incremented modulo 3, and the pixel pipeline shifts by one
stage (U1 to Uo, U2 to U1, ...). When v returns to 0, u is incremented modulo 3,
and the pixel pipeline is loaded with the entire (u + x)th row of the image. When
u returns to 0, the results are offloaded from the Uy stage, their accumulators
are cleared, and x is incremented modulo 4. When x returns to 0, this computing
task is completed.

The initial loading of the image pixel pipeline is from the image word pipeline,
which is word wide and so four times faster than the image pixel pipeline. This
speed advantage guarantees that the pipeline will be ready with the next image
row data when u returns to 0.

28.3.4 Application-specific Computation Unit
Developing different FPGA mappings for equations 28.1, 28.3, and 28.4 in paral­
lel processing unit is one way to implement the design. At the end of each stage,
the FPGA device is reconfigured with the optimal structure for the next task. As
appealing as this may sound, current FPGA devices have typical reconfiguration
times of tens of milliseconds, during which the reconfiguring logic cannot be
used for computation.

As presented in Section 28.3, each set of template configurations also has to
be designed and compiled before any computation can take place. This can be
a time-consuming procedure that does not allow dynamic template sets to be
immediately used in the system.

Fortunately, we can rely on the fact that FPGAs can be tuned to target-specific
applications. From the equations, we derived one compact structure, shown in
Figure 28.9, that can efficiently perform all ATR tasks. Since the target ATR

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 620

604 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

8-bit Image pixel

Mx+u,y+v

Surround Shape sum (SM
x
,y)

sum (SSx,y) Bright
sum (BSx,y)

FIGURE 28.9 ■ Computation logic for equations 28.1, 28.3, and 28.4.

system can be seen as "embarrassingly parallel," the performance of the FPGA
design is linearly scalable to the number of the application-specific units.

28.4 ATR IMPLEMENTATIONS

In this section we present the implementation results of two reconfigurable San­
dia ATR systems, researched and developed on different reconfigurable plat­
forms. Both designs leverage the unique characteristics of reconfigurable devices
to accelerate ATR algorithms while making efficient use of available resources.
Therefore, they both outperformed existing software as well as custom ASIC
solutions. By analyzing the results of the reconfigurable solutions, we examine
design trade-offs in cost and performance.

28.4.1 A Dynamically Reconfigurable System

All of the component technologies described in this chapter have been des­
igned, implemented, tested, and debugged using the Mojave board shown in
Figure 28.10. This section discusses various performance aspects of the com­
plete system, from abstract template sets through application-specific CAD tools
and finally down to the embedded processor and dynamic FPGA. The current
hardware is connected to a video camera rather than a SAR data source, though
this is only necessary for testing and early evaluation.

The results presented here are based on routing circuits to two devices: the
Xilinx 4013PG223-4 FPGA and the Xilinx 4036. Xilinx rates the capacity of these
parts as 13K and 36K equivalent gates.

Table 28.2 presents data on the effectiveness of the template-partitioning
phase. Twelve templates were considered for this comparison: in one case they
were randomly divided into three partitions; in the other, the CAD tool was used
to guide the process. The randomly selected partitions required 33 percent more
CLBs than those produced by the intelligent partitioning tool. These numbers

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 621

28.4 ATR Implementations 605

FIGURE 28.10 ■ Photograph of second-generation Mojave ATR system.

Table 28.2 ■ Comparison of scored and random partitioning
on an Xilinx 4036

Random grouping CLB count Initial partitioning CLB count

1961

1959

1958

1491

1449

1487

Table 28.3 ■ Comparison of resources used for the dynamic
and static FPGAs

Flip-flops Function generators l/0 pins

Dynamic FPGA 532 939 54

Support FPGA 196 217 96

Available 1536 1536 192

account for the hardware requirements of the entire design, including the con­
trol hardware that is common to all designs as well as the template-specific
adder trees. Relative savings in the adder trees alone are higher.

Table 28.3 lists the overall resources used for both FPGAs in the system,
the dynamic devices used for correlation, and the static support device used
to implement system control features. Because the image source is a standard
video camera rather than a SAR sensor, the surround template is the comple­
ment of the bright template, resulting in more hardware than would be required
for true SAR templates. The majority of the flip-flops in the dynamic FPGA

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 622

606 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

are assigned to holding the 8-bit chip data in a set of shift registers. This load
increases as a linear function of the template size.

Each configuration of the dynamic FPGA requires 16 milliseconds to complete
an evaluation of the entire chip for four template pairs. The Xilinx 4013PG223-4
requires 30 milliseconds for reconfiguration. Thus, a total of 4 template pairs can
be evaluated in 46 milliseconds, or 84 template pairs per second. This timing
will increase logarithmically with the template size.

Comparing configurable machines with traditional ASIC solutions is neces­
sary but complicated. Clearly, for almost any application, a bank of ASICs could
be designed that used the same techniques as the multiple configurations of the
FPGA and would likely achieve higher performance and consume less power.
The principal advantage of configurable computing is that a single FPGA may
act as many ASICs without the cost of manufacturing each device. If the com­
parison is restricted to a single IC (e.g., a single FPGA against a single ASIC of
similar size), relative performance becomes a function of the hardware savings
enabled by data specificity. For example, in the ATR application the templates
used are quite sparse-only 5 to 10 percent of the pixels are important in the
computation-which translates directly into a hardware savings that is much
more difficult to realize in an ASIC. Further savings in the ATR application are
possible by leveraging topological similarities across templates. Again, this is an
advantage that ASICs cannot easily exploit.

If the power and speed advantages of ASICs over FPGAs are estimated at a
factor of 10, the configurable computing approach achieves a factor of improve­
ment anywhere from 2 and 10 (depending on sparseness and topological prop­
erties) for the ATR application.

28.4.2 A Statically Reconfigurable System

The FPGA nodes developed by Myricom integrate reconfigurable computing
with a 2-level multicomputer to promote flexibility of programmable compu­
tational components in a highly scalable network architecture. The Myricom
FPGA nodes and its motherboard are shown in Figure 28.11. The daughter nodes
are 2-level multicomputers whose first level provides the general-purpose infras­
tructure of the Myrinet network using the LANai RISC microprocessor. The
FPGA functions as a second-level processor responsible for application-specific
tasks.

The host is a SparcStation IPX running SunOS 4.1.3 with a Myrinet inter­
face board having a 512K memory. The FPGA node-consisting of Lucent Tech­
nologies' ORCA FPGA 40K and Myricom's LANai 4.1 running in 3.3 Vat 40
MHz-communicates with the host through an 8-port Myrinet switch.

Without additional optimization, static implementation of the complete ATR
algorithm on one FPGA node processes more than 900 templates per second.
Each template requires about 450,000 iterations of 1-bit conditional accumulate
for the complete shape sum calculation. The threshold calculation requires one
division followed by subtraction. The bright and surround sum compares all the
image pixels against the threshold results. Next, 1-bit conditional accumulate is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 623

28.4 ATR Implementations 607

FIGURE 28.11 ■ A Myrinet 8-port switch motherboard with Myricom ORCA FPGA daughter
nodes. Four FPGA nodes can be plugged into a single motherboard.

executed for each sum. And then the quality values are calculated using two
divides, an add, and a multiply.

Given that 1-bit conditional accumulate, subtract, divide, multiply, and 8-bit
compare are one operation each, the total number of 8-bit operations to process
one 32 x 32 template over a 64 x 64 image is approximately 3.1 million. Each
FPGA node executes over 2.8 billion 8-bit operations per second (GOPS).

After the simulations, we found that the sparseness of the actual templates
reduced their average valid rows to approximately one-half the number of total
template rows. This optimization was implemented to increase the throughput
by 40 percent. Further simulations revealed more room for improvements, such
as dividing the shape sum in the FPGA, transposing narrow template masks, and
skipping invalid threshold lines. Although these optimizations were not imple­
mented in the FPGA, the simulation results indicated an additional 94 percent
increase in throughput. Implementing all optimizations would yield a result
equivalent to about a 7.75 GOPS correlator.

28.4.3 Reconfigurable Computing Models

The increased performance of configurable systems comes with several costs.
These include the time and bandwidth required for reconfiguration, the memory
and I/0 required for intermediate results, and the additional hardware required
for efficient implementation and debugging. Minimizing these costs requires
innovative approaches to system design.

Figure 28.12 illustrates the fundamental difference between a traditional com­
puting model and the two reconfigurable computing architectures discussed
in this chapter. The traditional processor receives simple operands from data

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 624

608 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

Instruction
memory

Tradltlonel

proceuor

Data
memory

(a)

Configuration
memory

Data
memory

FPGA

(b)

Intermediate
result

storage

Configuration
memory

FPGA

Data
memory

(c)

FIGURE 28.12 ■ A comparison of a traditional computing model (a) with a dynamically
reconfigurable model (b) and a statically reconfigurable custom model (c).

memory, performs a simple operation in the program, and returns the result to
data memory. Similarly, dynamic computing uses a small number of rapidly
reconfiguring FPGAs tightly coupled to an intermediate result memory, data
memory, and configuration memory. A reconfigurable custom computer is simi­
lar to a fixed ASIC device in that, usually, only one highly tuned design is config­
ured on the FPGA-there is no need to reconfigure to perform a needed function.

In most cases, a custom ASIC performs far better than a traditional processor.
However, traditional processors continue to be used for their programmability.
FPGAs attempts to bridge the gap between custom ASICs and software by allow­
ing designers to build custom hardware using programmable firmware. There­
fore, unlike in pure ASIC designs, configuration memory is used to program the
reconfigurable hardware as instructions in a traditional processor would dictate
the functionality of a program. Unlike software, once the FPGA is configured, it
can function just like a custom device.

As shown in previous sections, an ATR was implemented in an FPGA using
two different methods. The first implementation uses the dynamic computer
model, where parts of the entire algorithm are dynamically configured to pro­
duce the final results. The second design uses simulation results to produce a
highly tuned fixed design in the FPGA that does not require more than a single
reconfiguration. Because of algorithm modifications made to the first design,
there is no clear way to compare the two designs. However, looking deeper, we
find that there is not a drastic difference in the subcomponents or the algo­
rithm; in fact, the number of required operations for the algorithm in either
design should be the same.

The adders make up the critical path of both designs. Because both
designs are reconfigurable, we expect the adders used to have approximately
the same performance as long as pipelining is done properly. Clever use of
adders in the static design allows it to execute more than one calculation

;-------------1
' ' ' ' ' ' ' ' ' .
L----- I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 625

28.5 Summary 609

simultaneously. However, it is possible to make similar use of the hardware
to increase performance in the dynamic design.

The first design optimizes the use of adders to skip all unnecessary calcu­
lations, also making each configuration completely custom. The second design
has to be more general to allow some programmability. Therefore, depending
on the template data, not all of the adders may be in use at all times. If all of
the templates for the first design can be mapped onto a single FPGA, the first
method results in more resource efficiency than the second. The detrimental
effect of idle adders in the static design becomes increasingly more prominent
as template bitmap rows grow more sparse.

On the other hand, if the templates do not all fit in a single FPGA, the
first method adds a relatively large overhead because of reconfiguration latency.
Unfortunately, the customized method of the second design works against mak­
ing the design smaller. Every bit in the template maps to a port of the adder
engine, so the total size of the design is proportional to the number of total
bits in all of the templates. Therefore, as the number of templates increases,
the total design size must also increase. Ultimately, the design must be divided
into several smaller configurations that are dynamically reconfigured to share a
single device.

From these results, we observe the strengths and weaknesses of dynamic
reconfiguration in such applications. Dynamic reconfiguration allows a large
custom design to successfully run in a smaller FPGA device. The trade-off is
significant time overhead in the system.

28.5 SUMMARY

Like many streaming image correlation algorithms, the Sandia ATR system dis­
cussed in this chapter can be efficiently implemented on an FPGA. Because of
the high degree of parallelism in the algorithm, designers can take full advan­
tage of parallel processing in hardware while linearly scaling total throughput
with available hardware resources. In this chapter we presented two different
ways of implementing such a system.

The first system employs a dynamic computing model to effectively imple­
ment a large custom design using a smaller reconfigurable device. To fit, high­
performance custom designs can be divided into subcomponents, which can
then share a single FPGA to execute parts of the algorithm at a high speed.
For the ATR algorithm, this process produced a resource-efficient design that
exceeded the performance of previous custom ASIC-based systems.

The second system is based on a more generic architecture highly tuned for a
given set of templates. Through extensive simulations, many parameters of the
algorithm are tuned to efficiently process the incoming data. With algorithm­
specific optimizations, the throughput of the system increased threefold from
an initial naive implementation. Because of the highly pipelined structure of
the design, the maximum clock frequency is more than three times that of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 626

610 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

dynamic computer design. Furthermore, a larger FPGA on the platform allowed
the generic processing architecture to duplicate the specifications of the original
algorithm. Therefore, the raw performance of the static design was faster than
the dynamically reconfigurable system.

Although the second system is a static design, it is best suited for reconfigurable -
platforms because of its highly tuned parameters. Since this system is reconfig­
urable, it is conceivable that the dynamic computational model can be applied on
top of it. Thus, the highly tuned design may be implemented efficiently, even on a
device with enough resources for only a fraction of the entire design.

Acknowledgments I would like to acknowledge Professor William H. Mangione­
Smith for permission to integrate publications on the Mojave project into this
chapter.

References

[1] P. M. Athanas, H. F. Silverman. Processor reconfiguration through instruction-set
metamorphosis. IEEE Computer 26, 1993.

[2] J. G. Eldredge, B. L. Hutchings. Run-time reconfiguration: A method for enhancing
the functional density of SRAM-based FPGA.s. Journal of VLSI Signal Processing 12,
1996.

[3] J. Villasenor, W. H. Mangione-Smith. Configurable computing. Scientific American
276, 1997.

[4] E. Mirsky, A. Dellon. MATRIX: A reconfigurable computing architecture with
configurable instruction distribution and deployable resources. Proceedings of
the IEEE International Symposium on Field-Programmable Custom Computing
Machines, 1996.

[5] R. Razdan, M. D. Smith. A high-performance microarchitecture with hardware­
programmable functional units. Proceedings of the 27th Annual International Sym­
posium on Microarchitecture, pp. 172-180, 1994.

[6] G. Estrin. Organization of computer systems-the fixed plus variable structure
computer. Proceedings of the Western Joint Computer Conference, 1960.

[7] M. Shand, J. Vuillemin. Fast implementations of RSA cryptography. Proceedings of
the Symposium on Computer Arithmetic, 1993.

[8] K. W. Tse, T. I. Yuk, S. S. Chan. Implementation of the data encryption stan­
dard algorithm with FPGAs. Proceedings of International Symposium on Field­
Programmable Logic and Applications, 1993.

[9] J. Leonard, W. H. Mangione-Smith. A case study of partially evaluated hardware
circuits: Key-specific DES. Proceedings of the 7th International Workshop on Field­
Programmable Logic and Applications 1304:151-160, 1997.

[10] P. M. Athanas, A. L. Abbott. Real-time image processing on a custom computing
platform. IEEE Computer 28, 1995.

[11] J. G. Eldredge, B. L. Hutchings. Density enhancement of a neural network using
FPGAs and run-time reconfiguration. Proceedings of the IEEE International Sym­
posium on Field-Programmable Custom Computing Machines, 1994.

[12] J. G. Eldredge, B. L. Hutchings. RRANN: The run-time reconfiguration artificial
neural network. Proceedings of the Custom Integrated Circuits Conference, 1994.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 627

28.5 Summary 611

(13] B. Schoner, C. Jones, J. Villasenor. Issues in wireless coding using run-time­
reconfigurable FPGAs. Proceedings of the IEEE International Symposium on Field­
Programmable Custom Computing Machines, 1995.

(14] C. Chou, S. Mohanakrishnan, J.B. Evans. FPGA implementation of digital filters.
Proceedings of the Fourth International Conference on Signal Processing Applications
and Technology, pp. 80-88, 1993.

(15] G. Estrin, B. Bussell, R. Turn, J. Bibb. Parallel processing in a restructurable
computer system. IEEE 1ransactions on Electronic Computers EC-12(5):747-755,
December 1963.

(16] G. Estrin, R. Tum. Automatic assignment of computations in a variable structure
computer system. IEEE Transactions on Electronic Computers EC-12(6):755-773,
December 1963.

(17] M. J. Wirthlin, B. L. Hutchings. Improving functional density through run-time
constant propagation. Proceedings of the 1997 ACM Fifth International Symposium
on.Field-Programmable Gate Arrays, 1997.

(18] P. Lee, M. Leone. Optimizing ML with run-time code generation. Proceedings of
Programming Language Design and Implementation, 1996.

(19] D. R. Engler, T. A. Proebsting. DCG: An efficient, retargetable dynamic code gen­
eration system. Proceedings of the Sixth International Symposium on Architectural
Support for Programming Languages and Operating Systems, 1994.

(20] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating
System Services, Ph.D. thesis, Columbia University, Department of Computer
Science, 1992.

(21] W. H. Mangione-Smith, B. Hutchings. Configurable computing: The road ahead.
Proceedings of the Reconfigurable Architectures Workshop, 1997.

(22] P. Bertin, H. Touati. PAM programming environments: Practice and experience.
Proceedings of the International Symposium on Field-Programmable Custom Com­
puting Machines, April 1994.

(23] Y. H. Cho. Optimized automatic target recognition algorithm on scalable
Myrinet/field programmable array nodes. Thirty-fourth IEEE Asilomar Conference
on Signals, Systems, and Computers, October 2000.

(24] K. N. Chia, H. J. Kim, S. Lansing, W. H. Mangione-Smith, J. Villasenor. High­
performance automatic target recognition through data-specific very large scale
integration. IEEE Transactions on Very Large Scale Integration Systems 6(3), 1998.

(25] J. Villasenor, B. Schoner, K. N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lansing,
W. H. Mangione-Smith. Configurable computing solutions for automatic target
recognition. Proceedings of the IEEE International Symposium on FPGAs for Custom
Computing Machines, April 1996.

(26] R. Sivilotti, Y. Cho, D. Cohen, W. Su, B. Bray. Scalable network based FPGA accel­
erators for an automatic target recognition application. Proceedings of the Interna­
tional Symposium on Field-Programmable Custom Computing Machines, April 1998.

[27] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Scalable, Network-connected, Reconfigurable,
Hardware Accelerators for an Automatic-Target-Recognition Application, Myricom
technical report, May 1998.

(28] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Myricom's FPGA-based Approach to ATRISLD,
DARPA ACS PI meeting slide presentation, November 1997.

(29] R. Sivilotti, Y. Cho, W. Su, D. Cohen. Production-quality, LANai-4-based quad­
FPGA-node VME boards. http://www.myri.com/researchldarpa/97a-fpga.html,
October 1997.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 628

612 Chapter 28 ■ Automatic Target Recognition Systems on Reconfigurable Devices

[30] C. L. Seitz, Tactical network and multicomputer technology. http://www.myri.com/
researchldarpalindex.html, March 1997, July 1997, August 1998.

[31] C. L. Seitz. Two-level-multicomputer project: Summary. http://www.myri.com/
researchldarpa/96summary.html, July 1996.

[32] W. C. Athas, L. Seitz. Multicomputers: Message-passing concurrent computers.
IEEE Computer 21, 1988.

[33] M. Shand, J. Vullemin. Fast implementations of RSA cryptography. Proceedings of
11th Symposium on Computer Arithmetic, 1993.

[34] J. G. Eldredge, B. L. Hutchings. RRANN: The run-time reconfiguration artificial
neural network. Proceedings of the IEEE Custom Integrated Circuits Conference,
1994.

[35] Xilinx, Inc. RAM-based Shift Register v9.0, LogiCORE Datasheet, Xilinx, Inc.,
July 13, 2006.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 629

CH A PT ER 29

BOOLEAN SATISFIABILITY: CREATING

SOLVERS OPTIMIZED FOR SPECIFIC

PROBLEM INSTANCES

Peixin Zhong
Department of Electrical and Computer Engineering
Michigan State University

Margaret Martonosi, Sharad Malik
Department of Electrical Engineering
Princeton University

Boolean satisfiability (SAT) is a classic NP-complete problem with a broad range
of applications. There have been many projects that use reconfigurable compu­
ting to solve it. This chapter presents a review of the subject with emphasis on
a particular approach that employs a backtrack search algorithm and generates
solver hardware according to the problem instance. This approach utilizes the
reconfigurability and fine-grained parallelism provided by FPGAs.

The chapter is organized as follows: Section 29.1 is an introduction to the SAT
formulation and applications. Section 29.2 describes the algorithms to solve the
SAT problem. Sections 29.3 and 29.4 describe in detail two SAT solvers that use
reconfigurable computing, and Section 29.5 provides a broader discussion.

29.1 BOOLEAN SATISFIABILITY BASICS

The Boolean satisfiability problem is well known in computer science [1]. Given
a Boolean formula, the goal is to find an assignment to the variables so that
the formula evaluates to true or 1 (it satisfies the formula), or to prove that
such an assignment does not exist (the formula is not satisfiable). It has many
applications, including theorem proving [SJ, automatic test pattern generation
[2], and formal verification [3,4].

29. 1.1 Problem Formulation

The Boolean formula in an SAT problem is typically represented in conjunctive
normal form (CNF), also known as product-of-sums. Each sum of literals is
called a clause. A literal is either a variable or the negation of a variable, denoted
with a negation symbol or a bar (such as -,v1 or v1). Equations 29.1 and 29.2
are examples of simple CNFs.

(29.1)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 630

614 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

or

(29.2)

Each sum term, such as (v1 +v2 +v3), is a clause. In the clause, v1 or ,v1 is
called a literal. It can be easily tested that v1 = 1, v2 = 1, v3 = 0 is a solution to the
problem.

The SAT clauses represent implication relationships between variables. To
satisfy the CNF, each clause should be satisfied (i.e., at least one literal in each
clause should be 1). For a given partial assignment, if only one literal in a
clause is not assigned but all others are assigned to 0, the unassigned literal
is implied to be 1 to satisfy the clause. The first clause in equation 29.1 contains
three possible implications. If v1 = 0 and v2 = 0, v3 is implied to be 1, denoted as
,v1,v2 :::> V3. Similarly, v1 = 0 and v3 = 0 imply v2 = 1, and v2 = 0 and v3 = 0 imply
v1 = 1. Such implications can be used to construct powerful logic expressions.
They are also the key to SAT-solving algorithms.

29.1.2 SAT Applications

The many applications of SAT include test pattern generation [2] and model
checking [3, 4]. The logic relations of a digital circuit can also be represented
in SAT CNF. Each logic gate is represented by a group of clauses, with each
signal represented by a variable with two possible values, 1 or 0. A circuit is
represented by a conjunction of clauses representing all gates in the circuit.
What follows is the transformation from simple gates to clauses:

AND gate, z<=ab, maps to (a+,z)(b+,z)(,a+,b+z)
NANO gate, z<=,(ab), maps to (a+z)(b+z)(,a+,b+,z)
OR gate, z <=a +b, maps to (,a+z)(,b +z)(a+b+,z)

NOR gate, z<=,(a +b), maps to (,a+,z)(-,b+,z)(a+b+z)
XOR gate, z <=a (f)b, maps to (,a+,b+,z)(,a+b+z)(a +,b +z)(a+b+,z)

Buffer gate, z<=a, maps to (,a+z)(a+,z)
Inverter gate, z <=,a, maps to (a+ z)(,a+ -,z)

SAT can be used in test pattern generation or to verify the equivalence of
two combinational circuits. The circuit construction is shown in Figure 29.1.
In equivalence checking, the two representations of the circuit are fed with
the same primary inputs signals, and the corresponding primary outputs feed
into an exclusive-or (XOR) gate. If an assignment of primary inputs can be
found such that any of the XOR gates has 1 as an output, the circuits are
different. If no such assignment can be found, the circuits are functionally
identical.

For test pattern generation, instead of using two representations of one
circuit, we use two copies of the same circuit. However, one copy has a fault
introduced into the design, which we can detect by searching for some pat­
tern of inputs. In this case any input pattern that can generate a 1 on an XOR
output is a test for that fault. If no such assignment is possible, that fault is
untestable.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 631

Primary inputs

FIGURE 29.1 ■ Test pattern generation.

Reference
circuit

Circuit
under test

29.2 SAT-SOLVING ALGORITHMS

29.2.1 Basic Backtrack Algorithm

29.2 SAT-solving Algorithms 615

There are many algorithms to solve the SAT problem. They can be divided
into two categories: complete and incomplete. A complete algorithm guarantees
either to find a solution on termination or to prove that there is no solution.
Complete algorithms typically employ a methodical search of the variable
assignment space. For hard problems, the runtime may well exceed accept­
able levels. An incomplete algorithm does not guarantee to find the solution and
typically involves greedy or randomized search [22]. It can often find a solution
of an easy problem very quickly, but if it fails to do so within a given time, it
does not prove that no solution exists. Many applications require a complete
algorithm to provide a definite answer, so this chapter concentrates on such
algorithms for SAT.

An early SAT algorithm was proposed by Davis and Putnam [S]. Like theirs,
most complete SAT algorithms are based on backtrack search [6-9], which is
similar to depth-first search in traversing a tree. The pseudo-code of the basic
algorithm, shown in Figure 29.2, starts with an empty variable partial assign­
ment (i.e., every variable value is assumed to be unknown, or free). The search
level is increased by branching-that is, assigning a value for a free variable.
The algorithm checks if the incremented partial assignment can be part of a
solution. If not, we say a conflict is detected. If there is no conflict, the algorithm
will choose another free variable and branch on it; if a conflict is detected, it
will backtrack to the most recently assigned variable and choose the opposite
value. All decisions made after that backtrack point will be undone.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 632

616 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

Solve_SAT ()

{

}

assign all variables to unknown;

while (true) {

if (implications force an unknown variable to a specific value)

set that variable to that specific value;

if (the current assignment has a conflict) {

undo all implications and branches up to most recent untoggled branch;

if (all branches undone)

return No_solution;

toggle value assigned to the variable of last untoggled branch;

)

if (no unassigned variables remain)

return Solved;

) else {

}

}

start new branch by assigning a value to the next free variable;

FIGURE 29.2 ■ The basic backtrack algorithm to solve SAT.

The algorithm has two possible terminating conditions. If all variables values
are known and the formula is satisfied, a solution is found. If all branches fail
to find a solution and the algorithm must backtrack beyond the first branch
variable, there is no solution and the formula is unsatisfiable.

The key to the efficiency of the backtrack algorithm is effectively pruning the
search space. Early detection of a conflict assignment avoids useless searches
along this branch. The following are some basic rules and techniques used in
the algorithm. At each stage of the search, a variable can have one of three
possible values: 1, 0, and free (unassigned).

1. If at least one literal of a clause evaluates to 1, this clause is satisfied. There
is no need to check other literals in the clause.

2. If all literals of a clause evaluate to 0, the partial assignment is a conflict
and cannot be part of the solution.

3. If only one literal of a clause is free and all other literals evaluate to 0, the
free literal is implied to be 1. This is called unit resolution or implication.
Implication is a powerful mechanism because it can deduce implied values
of variables not yet branched on. However, it can create another case of
conflict if a variable is implied by two clauses to be of opposite values.

4. If all of the literals of a free variable in the as yet unsatisfied clauses are all
of the same polarity (i.e., inverted or not inverted), a value can be chosen
for this variable that safely satisfies these clauses.

5. Because the variable ordering of branches has a large impact on the effi­
ciency of the algorithm, different dynamic or static ordering schemes have
been investigated. A simple heuristic orders the variables based on the
number of clauses they appear in. A variable with the most appearances

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 633

29.2 SAT-solving Algorithms 617

often has more influence than others. Therefore, branching on it early
typically prunes the search space more quickly.

A basic algorithm can use a static variable ordering. It can also use a fixed
branching scheme, such as always branching with value 1, in which, after each
branch or backtrack, implication is checked exhaustively. This basic algorithm
corresponds to the reconfigurable SAT solver described in Section 29.2.

29.2.2 Improving the Backtrack Algorithm

Among the advanced features explored to further improve the efficiency of the
backtrack search algorithm [6, 7], an effective one is learning based on conflict
analysis. With the search algorithm moving back and forth by branching and
backtracking, similar spaces are explored many times. Consider a problem, as
in equation 29.3, where some of the clauses are

(29.3)

The variable Vi is branched to be 1, and many other variables may have been
tested before v; is branched on. When v; is branched on and 1 is tested, a conflict
on vk is detected. Then v; is switched to 0, which again causes a conflict. Thus,
the algorithm will backtrack to the previous branch variable. However, switching
variable assignments other than vi will not help. The algorithm may reenter the
same region many times before it backtracks to Vi. Conflict analysis would be
helpful in this situation.

A new variable value is implied by the value choices of all other literals in this
clause being 0. Each literal has obtained its value either from branch decisions
or from earlier implications. Therefore, we can create a transitive implication
graph where an implied variable is ultimately implied by a set of branch deci­
sions. A conflict is detected when a variable is implied to be of opposite values. It
can be identified by backtracking the implication graph to identify the complete
set of branch assignments that led to it. This set of decisions is responsible for
the conflict.

In the example just given, the first conflict is caused by Vi = 1 and v; = 1. A new
clause can be derived as (,vi +,v;). This is a redundant clause that can be added
to the formula without changing the solution. It can also be viewed as applying
the following consensus theorem to clauses 3 and 4 in equation 29.4:

(x+y)(,x +z) = (x +y)(,x +z)(y +z) (29.4)

With the conflict on v; = 1 detected, it can be interpreted as v; is implied to
be 0. In this case, it is implied by Vi = 1. Another round of implication will
render a conflict because of the first two clauses in the original formula. From
the second conflict, a new clause can be derived as (,vi +v;). Combined with
the conflict analysis result of the previous conflict, the resulting clause is (,vi),
which dictates vi = 0.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 634

618 Chapter 29 • Boolean Satisfiability: Creating Solvers

The algorithm should instead directly backtrack to vi, in what is called
nonchronological backtracking by Marques-Silva and Sakallah [6]. The new
clause can be added to the problem and thus help prune the future search space.

This example is extremely simple, but the principle is applicable to all
conflicts and can reduce runtime by several orders of magnitude on many
problems. For example, for the AIM200 group of problems, GRASP takes
10.8 seconds, whereas many other SAT solvers take more than 10,000 seconds.
However, because of the heuristic nature of the algorithms, they show different
performance characteristics with different problems.

Leaming also has its trade-offs. Every conflict will generate one redundant
clause, and storage will explode if every such clause is recorded permanently.
Heuristics for discarding long or unused redundant clauses can keep the storage
size manageable and still achieve significant speedup.

29.3 A RECONFIGURABLE SAT SOLVER GENERATED ACCORDING

TO AN SAT INSTANCE

This section presents an example of generating an SAT solver according to the
SAT instance [10-12]. That is, instead of creating a generic, hardware SAT solver,
we generate a new configuration for the reconfigurable computing machine for
each SAT equation being solved.

29.3.1 Problem Analysis

A hard SAT problem can take a very long time to solve, limiting the application
of the formula and the solvers' powerful formalism. Therefore, we will look at
the use of reconfigurable computing techniques to accelerate SAT solutions. For
this it is necessary to compare the relative merit of FPGAs and CPUs and look
at the characteristics of SAT algorithms to identify an efficient solution.

FPGAs allow the full customization of control and datapaths. In particu­
lar, they make it efficient to perform bit-level operations. Also, by allocating
more computing resources for bottleneck operations, they can provide massive
parallelism and deep pipelining for suitable applications. However, FPGA clock
rates are lower than those for microprocessors of the same technology genera­
tion, so raw chip performance may suffer.

Two opportunities for parallel processing in the SAT algorithm stand out, one
of which is the parallelism in the vast search space. For a problem with n vari­
ables, there are 2n possible assignments (though with the backtrack algorithm
pruning the search space, that number is actually much smaller). It is possible
to split at the branch choices and allocate each subspace to its own processor.
However, because the search space is typically unbalanced, such parallelization
requires rebalancing the load and this would be very complex to implement
in hardware. Another source of potential performance gain is implication and
conflict checking. Whenever a new value is assigned to a variable, all clauses

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 635

29.3 A Reconfigurable SAT Solver 619

containing the variable should be checked for implication and conflict. New
implied values will trigger further checking and implication. Additionally, the
variables are Boolean and suitable for low-level processing by logic circuits, and
thus implication and conflict checking are good candidates· for hardware accel­
eration. It has also been confirmed through software profiling that implication
and conflict checking take up the majority of computing time.

The basic backtrack search includes branch, implication, and backtrack func­
tions, which are relatively simple and can be implemented with finite-state
machines. Many projects implement a full SAT solver on one or multiple FPGAs.
The next section describes one of them.

29.3.2 Implementing a Basic Backtrack Algorithm
with Reconfigurable Hardware

Since implication and conflict checking are time-consuming processes, they are
good candidates for hardware acceleration. Checking all clauses in parallel is
one approach enabled by reconfigurable computing techniques. The circuit used
for such parallel checking is presented as follows. . .

·

During the search, a variable can take one of three possible values: unknown,
1 (true), and 0 (false). A 2-bit encoding, denoted (v, v), is used for the three
variable values because it can conveniently represent them: (0, 0) is an unknown
(free) variable; (1, 0) is value 1; and (0, 1) is value 0. The fourth combination,
(1, 1), is used for conflict. The 2•bit encoding can be easily used for implication
as well; For example, a clause with three literals (vi+ ,v; +vk) represents three
possible implications that can be expressed with the 2-bit encoding as logical
assignments, as shown in equation 29.5:

V{<=VjVk
v; <=ViVk
Vk <= ViVj

(29.5)

When a literal appears in multiple clauses, its value is 1 if any one of the
cl�uses • implies it to be 1. The general fo:i;m can be written as

Vinew <= I:,
each clause v;

appears in
Vinew <= I:,

each clause v;
appears in

(Il Vk
each uninverted

literal vk
(Il Vk
each uninverted

literal Vk

fl Vz)
each inverted

literal ,v,
n vz)

each inverted
literal ,v,

The summation r, is a logic OR over the set of clauses in which the implied
literal appears. The production Il is a logic AND over all other literals in the
clause. Note that the literal in the formula is inverted from the one in the clause,
meaning that the implication is effective if and only if all other literals are known
to be 0. With this formula, a complete CNF can be converted to circuits that
evaluate all possible implications in parallel.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 636

620 Chapter 29 • Boolean Satisfiability: Creating Solvers

V2

V2'

V1

Lconflict

V1'

Lchange

Vl•_set

Gclear

FIGURE 29.3 ■ The implication circuit for one variable, Vl.

The implication circuit for Vl, shown in Figure 29.3, corresponds to the
partial CNF of (v1 +,v2 +,v3)(v1 +v2 +,v4)(,v1 +v2 +vs)(,v1 +,v4 +,v6), and is
directly derived from the implication equation. A variable may assume a value
because of either a branch decision or implication. An OR gate adds the assigned
value. Since a newly implied variable may take part in generating new implica­
tions, registering the newly implied values allows implication to propagate one
level in each clock cycle and avoids combinational cycles. To determine when
implications have settled, an XOR gate checks the difference between the cur­
rent and the next value. An AND gate checks if both literals of a variable are
assigned to 1. If such a situation exists, the conflict (also called contradiction)
signal is raised.

The other part of the algorithm is the control for the backtrack search.
A distributed control architecture is used, with each finite-state machine (FSM)
controlling one variable. Using a predetermined variable ordering, the architec­
ture can be implemented by a linear array of communicating FSMs, as shown in
Figure 29.4. Other than a few global signals, each FSM communicates only with
the two neighboring FSMs. During the SAT-solving process, only one variable is
active in terms of branching and backtracking. Its active status is represented
by an active token. Two wires connect each pair of FSMs to pass the active
token back and forth. Only one variable is the owner of the token at any given
time.

In addition to the basic clock and reset signals, there are three global control
signals. Gconflict is asserted when a conflict is detected. It is the wide OR
function of all local conflicts, Lconflict. A local conflict is asserted when both

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 637

I Gco�flict Gchange

1�

-'"' �

- Gchange Lehan� Gchange
� Gconflict Lconflict -- � Gconflict

� Gclear Lclear --- - Gclear
E_il E_or E_il
E_ol E_il E_ol

\.'i-1

29.3 A Reconfigurable SAT Solver 621

I

Gclear

l

Lchange D Gchange Lchange
Lconflict '-- - Gconflict Lconflict L-

Lclear ...__ Gclear Lclear L---

E_or E_il E_or
E_il E_ol E_il

½+1

FIGURE 29.4 ■ The global topology for a basic SAT solver circuit.

Vi and Vi are assigned or implied to be 1. Gchange is asserted when any variable
has changed value. It is the wide OR function of all local changes, Lchange.

A local change is asserted when Vinew is different from Vi or when Vinew
is different from vi. Gel ear tells each state machine to clear the implied
values. It is issued when the algorithm needs to backtrack and erase earlier
implications.

With the external interface defined, each FSM should hold the assigned
value, the implied value, and its state of backtrack search. The state machine is
designed as registers for the implied value and an FSM combining the assigned
value and state in the backtrack search. The state diagram of the latter FSM,
shown in Figure 29.5, contains five states:

■ Idle: This is the initial state, in which the internal variable value is (O, O).
The FSM will stay in the idle state unless it has received the active token
from its neighbor through branching or backtracking. When the token is
received, if this variable already has an implied value, there is no need to
branch, and the FSM will simply pass the token to the next variable at
the next clock. If this variable has no implied value and the token has
been passed from the left, it will branch and choose the branch value as
1 (the active 1 state).

■ Active 1: This state is the result of branching from the idle state, in which
the variable value is chosen to be 1. The new value will be available for
implication and conflict checking. The FSM will keep the token until
there is no more change or until a conflict is detected. In the case of no
conflict, it will pass the token to the right and will transition to the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 638

622 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

Not E_il and not
E_lr/nothing

E_ir/send token
to left

Gconflict/send token to left and clear

E_il and not Implied
/nothing

Gchange and not
Gconflict/nothing

E_ir/send token to left and clear

FIGURE 29.5 ■ The FSM associated with one variable.

Not E_ir/nothing

passive 1 state. If a conflict is detected, it will transition to the active 0
state and restart the implication and conflict checking.

■ Active 0: This state is the result of a conflict in the active 1 state or of the
token being passed to passive 1 by backtracking. The variable value is set
to 0. Implication and conflict are checked. If there is no conflict, the FSM
passes the token to the right and transitions to passive 0. If there is a
conflict, it will transition to the idle state and pass the token to the left.

■ Passive 1: This state is the result of branching further from active 1. If
the FSM receives a token from the right because of backtracking, it will
transition to active 0.

■ Passive 0: This state is the result of branching further from active 0. If
the FSM receives a token from the right because of backtracking, it will
transition to _idle and pass the token to the left.

With these FSMs logically forming a linear chain, the branching of the
algorithm corresponds to passing the token to the right and performing impli­
cations during the process. When a conflict is detected, backtracking is needed.
Backtrack switches a value from 1 to 0. If it is already 0, the token is passed
to the left. Whenever a conflict is detected, all of the implied values are cleared
by the global clear signal and reset to free. The termination condition is easy
to test: If the token is passed to the left of the first variable, the problem is
unsatisfiable; if it is passed to the right of the last variable, a solution has been
found. In addition to the regular problem-solving mode, the linear chain of vari­
ables can also be configured as a shift register. When a solution is found, it can
be shifted out as a bitstream.

E ii and implied/send
token to right

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 639

29.3 A Reconfigurable SAT Solver 623

At the time of the design of this SAT solver (1997-1998), a single FPGA chip
provided a very limited number of logic gates, and so for typical problems a
multi-FPGA solution was needed. The algorithm was implemented ori an IKOS
(now part of Mentor Graphics) VirtualLogic SLI Emulator, which contained one

. to six FPGA boards, each containing 64 Xilinx XC4013E FPGA chips to form an
8 x 8 mesh. Thus, it provided the logic capacity to handle a midsize to large SAT
problem. While the FPGA itself could support a clock rate of about 20 MHz, the
Ikos system used a time-multiplexing 1/0 scheme called VrrtualWire to overcome
the pin limitation (see Section 6.4). Thus, the system clock rate was reduced to
the 1-MHz range. An HP logic analyzer/function generator was connected to
provide the initial input signal and collect the result.

To provide perspective, in 1992 the mainstream FPGA XC4013E had 1368
logic cells. lri 2006, the large XC4VLX200 FPGA had 200,448 logic cells
(i.e., about 146 times the logic capacity), which was more than what two big
Ikos boards could provide.

To solve an SAT problem on this platform, the following steps are needed:

1. Generate VHDL. A software tool written in C++ reads in the problem CNF
file and generates the VHDL code that models the SAT solver circuit. The
FSM is manually coded in VHDL and reused for each SAT problem.

2. Compile the FPGA. The VHDL is compiled to bitstream files for program­
ming the FPGAs. For a single FPGA implementation, this can be done by
the FPGA tools. For the Ikos emulator, in contrast, this process takes three
steps: (1) the design is synthesized into a netlist and partitioned to.multiple
FPGAs by the IKOS tool; (2) the partitioned netlist is generated; and (3) the
netlist is compiled by Xilinx tools into bitstream files. The main function
of the Xilinx tools is placement and routing.

3. Configure the FPGA. The bitstream is downloaded to the FPGA board, and
the FPGA is configured with these files.

4. Run the problem solver in the FPGA and load the result. The logiG ana­
lyzer/function generator creates the initial signals to start the - computa­
tion. When the problem is solved, the solution is shifted out, where it can
be captured by a logic analyzer.

The runtime performance of the FPGA SAT accelerator is shown in
Figure 29.6 as a histogram of speedup ratios. This test was carried out in
1998 using the problem set from the DIMACS SAT challenge benchmark. The
software runtime basis was obtained by running GRASP with parameter set­
tings close to those of the basic backtrack algorithm. GRASP was run on a Sun
5 workstation with a 110-MHz processor and 64 MB of RAM. The hardware
performance was normalized to a 1.33-MHz system clock rate, which is repre­
sentative of implementations on the IKOS emulator. In the figure, the x-axis is
the ratio of software solver runtime to reconfigurable hardware runtime. It does
not include the compilation time and the time· to configure the FPGAs.

As we see from Figure 29.6, the result indicates that· even though the
reconfigurable solution has a clock rate 82 times slower than that of the
microprocessor-based system, it can still achieve 20 times or greater speedup

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 640

624

C
h

ap
ter 29

 •
B

o
o

lean
 S

atisfi
ab

ility: C
reatin

g S
o

lvers

2
0

-

1
5

-

I ,o
-.

5
-

0

I

I

1.
I

S
p

e
e

d
u

p
 ra

tio

FIG
U

R
E 2

9
.6

 ■
 A

 p
e

rfo
rm

a
n

c
e

 c
o

m
p

a
risio

n
 o

f th
e

 F
P

G
A

 S
A

T
 a

c
c

e
le

ra
to

r an
d

 th
e

 so
ftw

a
re

 ve
rsio

n

im
p

le
m

e
n

tin
g

 th
e

 sa
m

e
 a

lg
o

rith
m

 a
s h

a
rd

w
a

re
.

fo
r m

a
n

y p
ro

b
lem

s. It sh
o

u
ld

 b
e n

o
ted

 th
a
t th

e co
m

p
a
riso

n
 is b

a
sed

 o
n

 ru
n

­
tim

e a
lo

n
e. T

h
e reco

nfi
g
u

ra
b

le a
p

p
ro

a
ch

 su
ff

ers fr
o

m
 co

m
p

ila
tio

n
 o

verh
ea

d
,

w
h

ich
 in

 1
9

9
8 re

q
u

ired
 h

o
u

rs to
 p

erf
o

rm
 lo

g
ic syn

th
esis a

n
d

 p
la

cem
en

t a
n

d

ro
u

te fo
r th

e F
P

G
A

s. C
u

rr
en

t F
P

G
A

 to
o

ls ca
n

 p
erf

o
rm

 su
ch

 co
m

p
ila

tio
n

 w
ith

in

a

m
in

u
te.

Wa
ys

to

a
m

elio
ra

te
co

m
p

ila
tio

n

issu
es

w
ill

b
e

d
iscu

ssed

in

la
ter

sectio
n

s.
F

o
r a

n
 u

n
d

ersta
n

d
in

g
 o

f th
e sp

eed
u

p
 resu

lts, T
a
b

le 2
9

.1
 sh

o
w

s th
e sp

eed
u

p

ra
tio

s fo
r d

iff
eren

t p
ro

b
lem

s.
T

h
e a

vera
g
e n

u
m

b
er o

f cla
u

se
eva

lu
a
tio

n
s p

er
cycle serv

es a
s a

 ro
u

gh
 m

ea
su

re o
f th

e u
tiliza

tio
n

 o
f p

a
ral

lelism
. It is d

efi
n

ed

a
s th

e n
u

m
b

er o
f. cla

u
ses th

a
t co

n
ta

in
 a

t lea
st o

n
e litera

l fr
o

m
 th

e va
ria

b
les

n
ew

ly a
ssign

ed
 in

 th
e p

revio
u

s clo
ck

 cycle. T
h

ere is a
 co

rr
ela

tio
n

 b
etw

een
 p

a
r­

a
llelism

 in
 cla

u
se eva

lu
a
tio

n
 a

n
d

 sp
eed

u
p

 ra
tio

. An
o

th
er fa

cto
r in

 th
e sp

eed
u

p
 is

th
a
t cu

sto
m

 h
a
rd

w
a
re eff

ectively red
u

ces a
 co

m
p

lex o
p

era
tio

n
 in

to
 sin

g
le-cycle

im
p

lica
tio

n
.

2
9

.3
.3

Im

p
le

m
e
n
tin

g
 an Im

p
ro

ve
d
 B

a
c
k
tra

c
k
 A

lg
o
rith

m

w
ith

 R
e
c
o
n
fig

u
ra

b
le

 H
a
rd

w
a
re

T
h

e exa
m

p
le in

 th
e p

revio
u

s sectio
n

 sh
o

w
s th

e p
erf

o
rm

a
n

ce b
en

efi
t o

f reco
n

fi
­

g
u

ra
b

le co
m

p
u

tin
g
. H

o
w

ever, th
e h

a
rd

w
a
re so

lu
tio

n
 w

a
s im

p
lem

en
ted

 w
ith

 th
e

0-1
1-10

10-20 = :::::::::::-:.-:.-:.-:.-:.------------
40-50 ------
50-60-11111 __ _

60-70
70-S0
80-90

90-100
100-110

110-120 ----
120-130

130-140 ---------

140-150 ➔---------------.-.-.-: 150-160

160-170 ::::::::::---
170-180

180-190 ----
190-200
200-...

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 641

29.3 A Reconfigurable SAT Solver 625

TABLE 29.1 ■ Speedup ratios for different problems

Number of Average clause Clock rate Speedup
Problem clauses evaluations/cycle (MHz) ratio

aim-50-2_0-yesl-2 100 7.1 1.78 44.5

ai m-100-2_ 0-yes 1-4 200 8.4 0.95 20.9

aim-200-6_0-yesl-1 1200 62.3 0.92 101

dubois20 160 8.0 1.78 13.9

hole7 204 18.3 1.78 44.5

hole8 297 21.9 1.78 45.6

hole9 415 25.9 1.57 40.2

holelO 561 30.1 1.48 41.4

ii8a2 800 15.8 1.07 923

par-8-1-c 254 29.4 1.57 174

par-16-1-c 1264 60.4 0.99 153

pret60_40 160 8.5 2.05 39

ssa0432-003 1027 11.0 0.95 24.7

basic backtrack algorithm, and improvements to the algorithm have brought
thousands of times speedup in the software solution. The following example
shows a more sophisticated backtrack algorithm with reconfigurable computing.
As demonstrated by GRASP, conflict analysis helps identify the true reasons for
conflict. Nonchronological backtracking and learning based on the analysis can
greatly improve search efficiency.

Knowing that the hardware can perform fast implication checking, an
alternative to conflict analysis-based backtracking was developed through trial
assignments. When a conflict is detected, there are two possible scenarios
regarding the most recently assigned variable. In the first, the variable has just
been assigned by branching-it will be assigned the alternative value and tested.
In the second, the variable has been assigned to an alternative value because
of previous conflicts, so backtracking is needed. GRASP shows that conflict
analysis can identify the reasons for conflict and may backtrack multiple levels,
saving search time.

In the reconfigurable hardware approach, trial backtrack is performed. The
algorithm moves back one decision level at a time and flips the assigned
variable. Unlike a real backtrack, the most recent assignment is not turned
to unknown. Instead, two implication/conflict tests are run for both value 0
and value 1. If both lead to conflict, we can trial-backtrack another level. ff
either case leads to no conflict, we have seen the real backtrack destination
and the search reverts to regular search mode. This leads to much improved
performance, with the only drawback being an increase in finite-state machine
complexity.

Figure 29.7 is a diagram of the state machine for this enhanced algorithm.
It is an extension of the basic backtrack algorithm, but with nine states instead
of five.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 642

626 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

Not Gchange and not Gconflictlnothing

E_ir/send token to left
not Gchange and not
Gconflictlnothing

Not E_il and not
E_lr/nothlng E_il and not

implied/nothing
Gonflictlclear

Gchange and not
Gconflictlnothing

Not Gchange and not
Gconfllctlsend token to right

Not E_ir/nothing

E_ir/send token to left and clear

FIGURE 29.7 ■ A state diagram of the improved algorithm.

■ Idle: This is the state before branch; it is also the state if the value is
already determined by implication.

■ Active 1: This is the state after branch on value 1.
■ Active 0: This is the state after backtrack on the branched value 1. When

a conflict is detected, instead of a simple backtrack, a new phase of
testing is added. It passes the token to the left and transitions to leaf 1.

■ Passive 1: The variable value is 1 because of branching, and active control
has been passed to the right in branching.

■ Passive 0: The variable value is O because of backtracking, and active
control has been passed to the right in branching.

Not Gchange and not
Gconflict/send token to right

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 643

29.4 A Different Approach to Reduce Compilation Time 627

■ Leaf 1: Leaves 1 and O are testing states after conflict is detected with
value 0. If the testing settles with no conflict, we have found the most
recent branch assignment that contributes to the conflict. The FSM will
backtrack directly to that variable. If a conflict is detected, it will try a 0
value in the leaf O state.

■ Leaf 0: This is also a testing state. If the testing settles with no conflict,
we have found the most recent branch assignment that contributes to the
conflict. The FSM will backtrack directly to that variable. If a conflict is
detected, it will switch to 1 and continue the testing.

■ bkOa: This state works in coordination with the leaf O state. It is reached
through testing backtrack to the passive 1 state. If the test results in no
conflict, this variable is the backtrack target.

■ bkOb: This state works in coordination with the leaf 1 state. If the test
results in no conflict, this variable is the backtrack target. If the conflict
persists, FSM passes the token to the left and returns to idle.

29.4 A DIFFERENT APPROACH TO REDUCE COMPILATION TIME
AND IMPROVE ALGORITHM EFFICIENCY

A practical issue in creating an FPGA-based SAT solver circuit optimized to
a specific problem instance is the time needed to generate the circuit. While
the VHDL for the solver circuit can be generated in less than a second,
the process of FPGA compilation is quite long. It can take at least 10 to
20 minutes to compile the mapping for a single FPGA. FPGA hardware and soft­
ware have improved to the point that a compilation may take a few minutes;
however, compilation time still cannot be ignored. In the next section we
describe an SAT solver with reduced compilation time and a further improved
algorithm.

29.4.1 System Architecture

The solution described in the previous section directly maps the SAT formula
into an SAT solver circuit. It does, however, have limitations:

■ The circuit design does not take into account any physical design issues.
The implication circuit includes connections between state machines that
may be placed far away from each other. There are also wide OR gates
that generate global control signals. The solver requires massive routing
resources, and the system clock rate is low.

■ The circuit is a complex netlist with little locality, and it takes a long time
to compile into FPGA configurations.

■ The solver implements the basic backtrack search algorithm. Although
an improved nonchronological backtracking was implemented, the
architecture does not support learning.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 644

628 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

To deal with these issues, we developed a follow-on SAT solver with lessons
learned from the previous design [13, 14]. The following characteristics of the
new design address the previous design's shortcomings:

■ Structural regularity is a high priority. A regular structure allows easier
physical design. Specially designed processing elements allow regular
placement and distributed processing. Overall, modular approaches can
improve clock speed and allow fast circuit generation.

■ Shared-wire global signaling is used to distribute data across the system.
For example, a pipelined ring-style bus replaces the random
interconnects. The bus allows a faster clock rate, a low pin count
between chips, and a regular structure.

■ The algorithm control is separated from the parallel data processing in
the architecture. This allows the development of sophisticated control
algorithms.

■ Algorithm improvements have been implemented. In addition to
implication, the circuit is capable of conflict analysis. Therefore,
nonchronological backtracking and learning can be implemented.

The core of the new design is an optimized pipelined bus system, in which
the bus width can be customized according to the hardware resources. The
bus includes both control and data bits. The control bits notify the processing
elements of actions to take; the data bits utilize a fixed sequence to encode the
variable values. The system uses the same 2-bit encoding for variable values.
Thus, a width of 32 data bits supports 16 variables. Also, the variables are
encoded with a fixed order. For example, if at clock t the variables are Vt through
Vt 6, then, at t + 1, the variables are Vt 7 through V32. In n clock cycles, w * n vari­
ables pass through a stage, where 2w is the bit width of the data bus. The bus
only propagates the variable value. There is no need to propagate the variable
identification because it is inferred from the sequence. At each stage, the data
bit may be OR' ed with a local signal, allowing it to be set to 1.

Figure 29.8 shows the global topology. The bus width is 40 bits, with 32 bits
for data and 8 bits for control. Figure 29.9 shows one stage of the bus. The
value is accessible to the PE as Vi_in. The propagated value can be set or
reset through the signals Vi_set and Vi_reset_n. The main control block is
the core of the algorithm control. It maintains an internal copy of the variable
states and controls the backtrack algorithm.

40 40 40 40

PE3 . . . PEn

FIGURE 29.8 ■ The global topology for processing and communication in the new SAT
architecture, with improved conflict analysis and nonchronological backtracking.

40

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 645

29.4 A Different Approach to Reduce Compilation Time 629

CLR Q

Vi_set Vi_reset_n

Vi_in

FIGURE 29.9 ■ One stage of the pipelined bus.

Multiclause modules can be placed in one processing element (PE). The total
number of PEs depends on the total number of clauses in the CNF and the
number of clauses per PE. Each PE contains a resettable counter to count the
sequence of variables. The clause modules use the counter to identify variables
on the bus.

A clause module holds the data corresponding to one clause. To simplify the
hardware design, a 3-SAT formula is assumed (i.e., each clause has at most three
literals). This assumption does not lose generality, because any SAT formula can
be transformed into a 3-SAT formula in polynomial time by introducing new
variables and breaking up long clauses. Each clause module has the following
functions:

■ Implication. Each clause should check for implication and put implied
values onto the bus.

■ Confiict analysis. This is the reversal of the implication process. Given an
implied variable, the module finds the variables that lead to the
implication.

■ Storage and interface. The module interfaces with the bus, taking
commands and variable values from it. It also sends new values and flags
for value updates to the bus. It needs to store the values of variables
related to the clause as well as the implication information.

Clause modules have three basic states: reset, implication, and analysis. The
reset state will reset variables to (O, O) if the corresponding value on the bus
is (0, O) and the state bus dictates reset. It is used during backtrack to undo
the decisions and implications made after the backtrack point. Implication uses
the same algorithm defined in the previous section. However, because the varia­
ble value is propagated on the bus, the clause module should also hold variable
values locally. The data latching takes place when the PE counter matches the
count stored in the module. The implied value is also stored locally until the cor­
rect bit passes through. The module will update the bus value at that moment.
An internal flag denotes the implied value. It will be used in the analysis phase.

The analysis phase is the reverse of implication. The goal is to find the list
of branch decisions that are transitive predecessors. This can be easily obtained

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 646

630 Chapter 29 • Boolean Satisfiability: Creating Solvers

if the history is stored. When the clause module is in analysis mode, it will be
idle if it has not generated an implication. If it has generated an implication,
it will check if the implied literal is asserted on the bus during analysis. If so,
the module will reset this literal on the bus and set the complement of other
literals in the clause. In this way it signals to the units that generated the values
of these other literals. For example, in the clause (Vi+ Vj + -,vk), if Vi is implied,
the implying predecessors are Vj = 0 and vk = 1. These variables may in turn be
implied by other variables.

The main control unit handles fl.ow control and decision making. It has the
following major states and functions:

■ Branch. Branch chooses the next free variable and assigns a value to it.
Using a fixed variable order and always choosing 1 simplifies the
function. A priority encoder can quickly select the first row with a free
variable and assign it to 1. The branch state is associated with the first
round of broadcasting the variable values. The next state is implication.

■ Implication. The controller checks for conflicts, in which case it performs
conflict analysis. Alternatively, if in two cycles of data movement no new
values have been found, all iterative implications have settled. It then
performs the next round of branching.

■ Conflict analysis. This step identifies the variable assignments leading to
the conflict. The control bus shows the analysis state. The conflict
variable is set to (1, 1), while all other variables are set to (0, 0). When a
clause that implied a variable currently asserted on the bus is found, that
implied literal is reset to O and the implying literals are all set to· 1.

When a conflict arises from a branch, a list of variable assignments contribu­
ting to it can be collected through conflict analysis. The current branching vari­
able is considered to be implied by this set of literals. The implication is stored
in the main control unit and can be expressed as a redundant clause. For exam­
ple, if assignments Vi = 1, Vj = 1, vk = 1, v1 = 1 lead to conflict, the new clause
is (-,vi + -,vi + -,vk + -,v1). If v1 is the current branch variable, it is implied to
be O by this new clause. Conceptually, the new value is not a branch decision.
Rather, it is forced to be the opposite value because of the recent conflict. It is
a redundant implication not explicitly visible from the original formula. Adding
the new clause to the database is a learning process that has been used in mod­
ern SAT solvers to prune future search space. Such learning can be carried out
in hardware by reserving some FPGAs for this purpose and generating new com­
pilations during runtime.

29.4.2 Performance

The performance of the new design is shown in Table 29.2. It should be noted
that the table lists the cycle counts, but the clock rates of the two designs
are different. The new design has a regular structure, and communication is
pipelined. It is therefore easy to achieve a much higher clock rate. Based on
the same Xilinx XC4000 FPGAs, the earlier design, implemented on the IKOS

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 647

29.4 A Different Approach to Reduce Compilation Time 631

TABLE 29.2 ■ Performance comparison

Acceleration of new Acceleration of new
design without added design with added

Problem clauses clauses

aim-50_2_0-yesl-2 33.00 65.87

aim-200-6_0-yesl-1 1.32 3.66

aim-50-1_6-no-1 8.10 487.19

aim-50-2_0-no-l 4.95 2449.26

aim-50-2_0-no-4 13.89 1121.68

aim-100-1_6-yesl-1 20.57 4354.04

aim-100-3_ 4-yesl-4 2.81 10.58

hole? 4.63 4.63

hole8 3.95 3.95

hole9 3.46 3.46

par8-1-c 5.03 5.03

parl6-l-c 1.29 1.29

pret60_40 4.05 2154.23

ssa0432-003 0.65 2.04

Note: The comparison is based on normalized speedup against the old
design, assuming 20 x clock speed improvement in the new design.

Logic Emulator, achieved a 1- to 2-MHz clock rate. The new design could
easily achieve a 20-MHz clock rate in 1998. In 2006, the achievable clock rate
was in the range of 200 MHz. This. shows that the new design will likely achieve
better performance even without added clauses. Still, added clauses can bring
dramatic improvement in many problems.

29.4.3 Implementation Issues

One of the objectives of the new design is to reduce compilation time by exploi­
ting its regular structure. However, typical FPGA tools use simulated annealing
or similar algorithms to place the components. They are not capable of uti­
lizing the regular structure automatically, and so a regular structure will not
yield faster compilation times. It is necessary to bypass the automated tool and
directly generate the system layout.

JBits is a tool set that allows direct programming of Xilinx FPGAs. It is an
application programming interface (API) to the Xilinx configuration bitstream
file that permits Java applications to dynamically modify Xilinx XC4000EX/XL
bitstream configurations quickly.

A two-step approach can take advantage of the JBits tool and effectively
reduce compilation time. The first step is to create a generic SAT solver tem­
plate mapped to the FPGAs. The second step is customization to modify the
configuration according to a specific problem instance. For each instance, only
the second step is needed to compile the SAT solver. It can be performed quickly
if the number of changes is small.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 648

632 Chapter 29 • Boolean Satisfiability: Creating Solvers

The architecture described in the previous section is used with additional
constraints to minimize the customization. At each pipelined stage of the bus,
multiple clause modules are connected to the bus. By limiting the problem
formulation to 3-SAT, all clause modules are the same. The only difference is
the variable identification of these three variables and the bus connection. The
variable identification is expressed as a constant that can be programmed as a
ROM that feeds a comparator. The connection to the bus also depends on the
variable identity and polarity.

The points where a clause module wire interconnects with the bus wire should
be programmed in the second step. Another simple constraint, that each bus
wire connect to no more than one clause module, can be met with a simple
greedy assignment algorithm.

The complete methodology to create an SAT solver is as follows:

1. Design of a single clause module. An SAT clause module is designed in
VHDL. The synthesized netlist is further optimized manually. The design
is expressed by schematic capture, which provides a more direct corre­
spondence between design and implementation.

2. Placement and routing of the module in a bounding box. Placement
constraints/floorplanning sets the bounding box of the clause module. The
Xilinx tool automatically places and routes within the bounding box.

3. Manual improvement. The Xilinx EPIC tool provides a graphical user inter­
face to manually edit the placement and routing on the FPGA.

4. Solver generation. With the bounding box constraints, a sample SAT solver
is generated. Additional manual editing creates a regular layout.

5. Template extraction. The JBits tool reads the configuration bitstream and
identifies the modification points.

6. Java generator. The SAT solver generator is created in Java with the JBits
library and templates.

7. Instance-specific bitstream. The SAT solver generator is run with the prob­
lem instance, and the bitstream files are created.

8. Load/run. The programming is loaded to the FPGAs and the solver is run.

Only steps 7 and 8 are needed for each problem instance. For this reason, the
compilation time is reduced from hours to merely seconds compared to the logic
emulator implementation.

The target implementation is the Xilinx XC4036EX FPGA. Each FPGA con­
tains 36 x 36 CLBs, and each clause module takes 4 x 16 CLBs. Sixteen clauses
are placed in each FPGA. Each FPGA forms a stage of the pipeline, and multiple
FPGAs can form a ring. The Sun Java 1.1. 7 tool is used to compile and run the
Java program. The host computer is an Intel Pentium Pro running Microsoft
NT 4.0. The CPU clock rate is 200 MHz, and the main memory is 128 MB.

Table 29.3 shows the performance comparison, with times given in seconds.
The Old Hardware and New Hardware columns include the time to create
the FPGA mapping (CAD) and the time to find the solution on the hardware
engine (HW). Numbers in parentheses are speedups as compared to the GRASP
software.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 649

29.5 Discussion 633

Table 29.3 ■ Performance comparison between the standard GRASP software and two
versions of the hardware SAT solver

GRASP Old hardware New hardware

Problem SW CAD HW Total CAD HW Total

a50-2_0-yl-2 0.05 10783 0.0011 10783 1.9 0.0004 19 (<lx)
(45x) (125x)

al00-2_0-yl-4 894 89530 42 (21x) 89572 2.4 9.7 (92x) 12.1 (74x)

a200-6_0-yl-1 128 >lO0K 1.35 (94x) >lO0K 7.9 0.89 (144x) 8.8 (14x)

dubois20 986 11377 70.8 (14x) 11447 2.3 8.44 (117x) 10.7 (92x)

par8-1-c 0.02 12834 0.000011 12834 2.7 0.000035 2.7 (<lx)
(1818x) (571x)

par16-1-c 202 83191 1.3 (155x) 83192 9.4 2.2 (92x) 11.6 (17x)

pret60_40 705 12396 18 (39x) 12414 2.3 9 (78x) 11.3 (62x)

Geometric 75.6x <lx (134x) (4.14x) (27 .6x
Mean speedup

problems only)

29.5 DISCUSSION

Many groups have demonstrated that reconfigurable computing, compared to
software, can achieve speedups of about 100 times in solving SAT problems.
The main reasons are massive parallelism and fine-grained operation due to cus­
tomized hardware. Software/hardware solutions have been explored to reduce
hardware complexity and allow larger problems to be solved. A recent swvey of
these systems is presented by Skliarova and Ferrari [15].

In each of the software/hardware systems, the massive computation to find
unit resolutions/implications and conflicts is the target of hardware acceleration.
However, there are several differences among these SAT solvers:

■ Algorithms. The base algorithms are different. Several of them are based
on backtracking similar to that of GRASP. Some use a full variable
. assignment and employ flipping during the search. Some use matrix
representations.

■ Logic engine implementation. Different styles are used to implement the
massively parallel engine. Some use circuit translation, where the SAT
formula is translated into logical circuits. This means that the FPGA
configuration must be compiled for each problem instance, which is slow.
Alternatively, the formula is translated into memory, often distributed
into small blocks, which can avoid the compilation time.

■ HW/SW organization. Some implementations are all hardware, where
the entire solver is mapped onto one or multiple FPGAs. Some imple­
mentations are SW/HW, in which part of the problem is handled by
software.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 650

634 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

While there has been significant progress in reconfigurable SAT solvers, we do
not see them replacing software solvers in real applications for several reasons:

■ The need for flexibility. The SAT problem is NP-complete-that is, the
worst case is assumed to be exponential to the problem size. However,
sophisticated heuristics make many large. problems solvable in practice.
Modem software SAT solvers typically contain many heuristics and allow
the user to choose different heuristic combinations to tackle especially
hard problems. Reconfigurable solvers generally have only a few
heuristics, and there is little flexibility on which ones to use.

■ Algorithm effi.ciency. Most reconfigurable SAT solvers have algorithm
efficiencies similar to that of the basic backtrack algorithm with some
simple heuristics. In the meantime, software algorithms have made
significant efficiency gains. More elaborate analysis, such as conflict
analysis, leads to more efficient backtracking and learning. Leaming can
improve SAT solver speed by several orders of magnitude. Reconfigurable
SAT solvers generally lag in algorithm sophistication.

■ The scalability of hardware. The implementations of reconfigurable SAT
solvers are generally limited to moderate-size problems. However, large
problems are more likely to benefit from hardware acceleration.

Many projects have designed Boolean satisfiability solvers with reconfigu­
rable computing. These projects demonstrate the performance potential of these
solvers through fine-grained custom hardware and massively parallel process­
ing. Significant progress has been made in software algorithms as well, and
recently, reconfigurable computing solutions have not kept up in incorporating
these innovations. This is partly because the tools for reconfigurable computing
are not yet mature.

Future research may result in a breakthrough by studying these issues:

■ Hardware/software solution. The complex algorithms are difficult to
implement and verify in hardware. It is more efficient to partition the
problem and allocate only the massively parallel portion to the
reconfigurable hardware. With microprocessors embedded in FPGAs,
such as Xilinx Virtex-11 Pro and Virtex-4, communication between the
processor and the FPGA is greatly improved. The proliferation of
multicore processors and high-bandwidth interconnects enables the
exploitation of parallelism at different levels with heterogeneous
processing technologies.

■ System-level design and synthesis methodologies. Models of computation
that preserve concurrency can be mapped to heterogeneous multicore
architectures. The designer can decide the trade-off between parallelism
and hardware usage. FPGA-based fabrics provide the massive parallelism
and low-level customization, while other components, such as embedded
processor or controller, can be chosen for their desirable characteristics.

■ Distribution of data and customization of hardware. Mapping SAT
formulas to FPGA circuits generates random routing and requires long
compilation times. Mapping problem instances into distributed memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 651

29.5 Discussion 635

blocks can solve the time issue but it forces some degree of sequential
access. Learning from the design of content addressable memory may
lead to hardware architectures better able to solve SAT and other Boolean
problems.

■ Simultaneous exploration of multiple states. Creating an algorithm
that can efficiently explore multiple states in the assignment space
simultaneously will allow the utilization of large amounts of computing
resources. A simplified approach is to simultaneously run the search on
multiple machines with different heuristics. However, efficient utilization
of learning across different searches remains an open problem.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms, MIT Press,
1990.

[2] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Transactions
on Computer-Aided Design 11, January 1992.

[3] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic model checking without BDDs.
Proceedings of the Workshop on Tools and Algorithms for Analysis and Construction
of Systems (TACAS) 1579, LNCS, 1999.

[4] A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar. Leaming from BDDs in SAT-based
bounded model checking. Proceedings of the Design Automation Conference, 2003.

[5] M. Davis, H. Putnam. A computing procedure for quantification theory. Journal of
the ACM 7, 1960.

[6] J. P. Marques-Silva, K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), May 1999.

[7] R. J. Bayardo Jr., R. C. Schrag. Using CSP look-back techniques to solve real­
world SAT instances. Proceedings of the 14th International Conference on Artificial
Intelligence, 1997.

[8] E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. Design, Automation
and Test in Europe, 2002.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering
an efficient SAT solver. Proceedings of the 38th Design Automation Conference, 2001.

[10] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Using configurable computing to accele­
rate Boolean satisfiability. IEEE Transactions on Computer-Aided Design of Inte­
grated Circuits and Systems 18(6), June 1999.

[11] P. Zhong, P. Ashar, S. Malik, M. Martonosi. Using reconfigurable computing tech­
niques to accelerate problems in the CAD domain: A case study with Boolean
satisfiability. Proceedings of the 35th Design and Automation Conference, June 1998.

[12] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Accelerating Boolean satisfiability with
configurable hardware. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 1998.

[13] P. Zhong, M. Martonosi, P. Ashar, S. Malik. Solving Boolean satisfiability with
dynamic hardware configurations. Proceedings of the Eighth International Work­
shop on Field-Programmable Logic and Applications: From FPGAs to Computing
Paradigms, August-September 1998.

[14] P. Zhong, M. Martonosi, P. Ashar. FPGA-based SAT solver architecture with near­
zero synthesis and layout overhead. IEE Proceedings on Computer and Digital Tech­
niques 147(3), May 2000.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 652

636 Chapter 29 ■ Boolean Satisfiability: Creating Solvers

[15] I. Skliarova, A. B. Ferrari. Reconfigurable hardware SAT solvers: A survey of
systems. IEEE 1ransactions on Computers 53(11), November 2004.

[16] M. Yokoo, T. Suyama, H. Sawada. Solving satisfiability problems using field­
programmable gate arrays: First results. Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, 1996.

[17] T. Suyama, M. Yokoo, H. Sawada, A. Nagoya. Solving satisfiability problems using
reconfigurable computing. IEEE 'lransactions on VLSI Systems 9(1), 2001.

[18] T. Suyama, M. Yokoo, A. Nagoya. Solving satisfiability problems on FPGAs using
experimental unit propagation. Proceedings of the Fifth International Conference on
Principles and Practice of Constraint Programming, 1999.

[19] T. Suyama, M. Yokoo, H. Sawada. Solving satisfiability problems using logic syn­
thesis and reconfigurable hardware. Proceedings of the 31st Hawaii International
Conference on System Sciences 7, 1998.

[20] J. de Sousa, J. P. Marques-Silva, M. Abramovici. A configware/software approach
to SAT solving. Proceedings of the Ninth IEEE International Symposium on Field­
Programmable Custom Computing Machines, 2001.

[21] I. Skliarova, A. B. Ferrari. A software/reconfigurable hardware SAT solver. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12(4), April 2004.

[22] J. Gu. Local search for satisfiability (SAT) problem. IEEE Transactions on Systems,
Man, and Cybernetics 23(4), July 1993.

[23] H. Zhang, M. Stickel. An efficient algorithm for unit-propagation. Proceedings of the
Fourth International Symposium on Artificial Intelligence and Mathematics, 1996.

[24] H. Zhang. SATO: An efficient propositional prover. Proceedings of the International
Conference on Automated Deduction, 1997.

[25] L. Zhang, S. Malik. The quest for efficient Boolean satisfiability solvers. Proceedings
of the Eighth International Conference on Computer-Aided Deduction; Proceedings of
14th Conference on Computer-Aided Verification, July 2002.

[26] L. Zhang, S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. DATE2003, March
2003.

[27] F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah. Solving difficult instances of
Boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer­
Aided Design of Integrated Circuits and Systems 22(9), September 2003.

[28] P. T. Darga, M. H. Liffiton, K. A. Sakallah, I. L. Markov. Expl9iting structure in
symmetry detection for CNF. Proceedings of the 41st IEEE/ACM Design Automation
Conference, 2004.

[29] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. Proceedings of the 41st IEEE/ACM
Design Automation Conference, 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 653

MULTI-FPGA SYSTEMS: LOGIC

EMULATION

Russell Tessier
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst

CH A PT ER 30

Application specific integrated circuit (ASIC) verification has been an important
and commercially successful application of field-programmable gate arrays
(FPGAs) for over a decade. By mapping the logic of a new chip design onto
a system of FPGAs, logic emulation systems provide a high-speed simulation
of the design under development. As FPGA technology has matured and FPGA
logic cai:)acity has grown, the use of FPGAs for functional logic emulation has
increased. Contemporary emulation systems often include a sizable number of
FPGA and memory devices organized in topologies that allow for efficient logic
evaluation and inter-FPGA communication.

Although the hardware architecture of an emulator plays an important role
in defining its effectiveness, system usability is often most closely tied to an
emulator's compilation environment. To successfully map a complete ASIC
design to an emulation system, emulators require optimized compilation steps
that effectively distribute design logic across available FPGA resources and coor­
dinate intra-FPGA computation and inter-FPGA communication.

To illustrate contemporary approaches to FPGA-based logic emulation, we
profile here the hardware and software systems of a commercial FPGA-based
emulator. We show that, although off-the-shelf FPGAs have been used effec­
tively in a number of commercial logic emulators, several issues related to
FPGA compile time, design debugging, and emulator host interfacing must be
addressed to maintain their commercial viability.

30.1 BACKGROUND

Research in reconfigurable computing has been active for well over a decade,
but the widespread commercial use of FPGAs as computing devices has been
limited. A notable commercial success story for reconfigurable computing has
been the use of FPGAs in ASIC logic verification. Over the past decade, the
number of transistors that can be integrated into application-specific devices has
grown exponentially with Moore's Law, leading to an increased need to verify
design functionality prior to device fabrication. Currently, it is estimated that 60

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 654

638 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

to 80 percent of ASIC design time is spent performing verification [29], primarily
because of the high nonrecurring engineering (NRE) cost associated with ASIC
fabrication. The flexibility, parallelism, and reprogrammability of FPGAs make
them an ideal platform for verifying, prior to fabrication, the functionality of
ASIC designs. The availability of automatic FPGA mapping tools, such as those
described in Chapters 13, 14, and 17, have streamlined the design conversion
process, making the path from ASIC design to FPGA implementation more
straightforward.

FPGA-based logic verification is often used to augment or replace
microprocessor-based simulation of register transfer level (RTL) or gate-level
designs. The primary source of emulation speed improvement versus simulation
is the parallel implementation of circuit logic in the FPGA. While the amount
of logic evaluated per clock cycle in a microprocessor-based simulator is con­
strained by a limited number of ALUs (typically four or five at most), the num­
ber of per-cycle FPGA operations per emulation system is constrained only by
the available amount of total FPGA resources. This increase in logic evalua­
tion capacity comes at a cost. Unlike its simulation counterparts, FPGA-based
emulation can provide only functional verification for designs. Because the fun­
damental technology used to implement the emulated logic differs from the
source ASIC technology, postlayout timing information cannot be replicated.
As a result, FPGA-based emulators support only cycle-accurate logic evaluation
that is synchronized to design clock edges of the emulated design. Additionally,
circuit debugging for emulation systems is often more complex than debugging
with simulators. The sequential nature of simulation-based verification facili­
tates debugging and logic tracing. Logic analysis in a parallel verification envi­
ronment requires the use of specialized hardware resources and debugging tools.

FPGA-based emulators take on a variety of forms, ranging from single­
device systems to commercial emulation systems that include hundreds of
devices. Although specific system implementations vary, most FPGA-based
logic emulators contain a tightly connected collection of FPGA devices. These
systems can be distinguished by their CCJmponent FPGA and memory devices,
interconnection topology, design-mapping software, and external interfaces. The
system topology defines the positions of FPGAs and inter-FPGA communica­
tion resources. The need for multiple devices to emulate many ASIC designs is
due to the cost of FPGA reconfigurability. Because the silicon area overhead of
FPGA versus ASIC technology has been measured to be about 40x [15], FPGA
programming technology requires that an ASIC logic design be partitioned
across multiple FPGA devices to achieve the necessary device logic capacity.

For most emulators, there is a strong association between the physical archi­
tecture of the FPGA system and the compiler used to map user designs to the
emulator. Like the intra-FPGA mapping flow outlined in Chapters 13, 14, and 17,
emulation mapping for multi-FPGA emulators requires a series of complex
and interrelated algorithms. As we will see later in this section, emulation
system compilation is complicated by the variety of design features in con­
temporary ASICs. These features include multiple asynchronous clock domains,
multiported memories, and testing and debugging interfaces, which are playing

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 655

30.2 Uses of Logic Emulation Systems 639

an increasingly important role. In assessing modem emulation, the interfaces
between emulators, simulators, logic analyzers, and prototype systems must be
considered. It will be shown that, in the future of FPGA-based logic emulation,
both design compilation and testing interfaces will play a critical role.

To illustrate the complexity of contemporary FPGA-based emulation, the
hardware, compilation, and testing components of a VirtuaLogic VLE-2M
emulation system from Mentor Graphics [21] will be profiled. This commercially
successful system demonstrates not only the benefits of FPGA-based emulation,
but also some of its limitations.

30.2 USES OF LOGIC EMULATION SYSTEMS

Logic emulation systems are typically used in one of two verification scenarios:
(1) as a physical replacement for an ASIC in a target system, or (2) as a
simulation accelerator. The ASIC replacement approach requires the use of a
physical connection between the emulator and the target system. As shown
in Figure 30.1, one end of the connection typically plugs into connectors on
the emulation system that are interfaced to selected FPGA 1/0 pins. The other
end of the connection plugs into the location on the target system that would
normally hold the package of the emulated device. This emulation pod typically
has the same pin configuration as the emulated device package. The use of
in-circuit emulation allows for complete target system verification, including the
emulated design and surrounding interfaces and peripherals. Although many
times the target system is forced to operate at clock speeds of 0.5 to 5 MHz,
a substantial amount of system functionality can generally be evaluated via
in-circuit emulation. An attached logic analyzer is often used to probe specific
design signals.

An alternative to in-circuit emulation is coverification (sometimes called
cosimulation). In this mode of operation, the logic emulator works in con­
cert with a host workstation to verify an emulated design without the use of

□ Host interface
·��

Host workstation

Logic emulator

□□□

□□□

□□□

Probes

Logic
analyzer

Emulation
pod

FIGURE 30.1 ■ A typical configuration of a logic emulation system.

Target system

(CJ 1

'. D .!
••························

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 656

640 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

a physical target system. 'fypically, the host workstation (Figure 30.1) performs
the simulation of target system components and provides inputs to the emulated
design via a host interface such as a backplane bus or cable. Design outputs are
returned to the host workstation via the same path. In most cases, only the most
time-consuming portion of the design under test is mapped to the emulator. The
rest is simulated on the companion processor located in the host workstation.
Coverification is often used to concurrently verify software components running
on both the processor in the host workstation and in the emulated design.

In contrast to simulation, the use of in-circuit emulation and coverification
allows for exhaustive prefabrication functional testing [3]. Typically, logic emu­
lation can provide about five to six orders of magnitude speedup versus simula­
tion for a logic design [2, 14]. Numerous commercial ASIC projects have used
coverification to confirm the functionality of end applications with billions of
test vectors prior to chip fabrication [3]. The speed of in-circuit emulation often
allows for complete software system design verification as soon as a functionally
specified ASIC design is complete. In the case of microprocessor design, a signi­
ficant fraction of the emulated processor's software system can be tested long
before processor fabrication, ensuring the functionality of both hardware and
software. For example, Unix was successfully booted on an emulated M68060
microprocessor in about two hours [14]. This value represents a 40,000 times
speedup over RTL simulation for the same processor operation.

30.3 TYPES OF LOGIC EMULATION SYSTEMS

For many designers of small ASICs, a large, expensive multi-FPGA emulation
system may be unnecessary because one large FPGA and some associated
external memory may be sufficient to implement the entire ASIC design.

30.3. 1 Single-FPGA Emulation
The use of a single FPGA simplifies emulation system mapping because design
partitioning and inter-FPGA routing are unneeded. Often, an unmodified RTL
description of the ASIC design can be resynthesized for the FPGA with the use
of an alternate synthesis library. Standard FPGA compilation tools are then used
to complete the design mapping. As shown in Figure 30.2, the FPGA used for
prototyping is typically mounted on a custom board that receives design inputs
either from a target system where the completed ASIC design eventually will be
located or from a workstation that provides input test vectors via a download
cable. Additional interfaces are usually provided to allow for connections to a
power supply and a logic analyzer. Since most FPGAs used for prototyping are
SRAM based, resources must be provided to store and download the configura­
tion bitstream to the FPGA at power-up.

As the logic capacity of FPGAs grows, it may appear that an increasing
number of ASIC designs could be prototyped using a single FPGA. However,
since both FPGA and ASIC gate counts follow the same VLSI process trends,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 657

30.3 'fypes of Logic Emulation Systems 641

□ Download cable

SAAM
Host workstation

-----.11+- Target system

Logic analyzer

interface

---SRAM
configuration
memory

Power supply

FIGURE 30.2 ■ An example of a single-FPGA logic emulation system.

it is likely that most ASIC designs will continue to require multiple FPGAs for
verification.

30.3.2 Multi-FPGA Emulation

Contemporary multi-FPGA emulation systems are complex verification platforms
containing hundreds of FPGA and memory chips, high-speed interfaces to target
systems, hosts, logic analyzers, and support for interactive debugging [11]. Since
their initial commercial introduction in 1988, these systems have evolved into
important functional verification platforms [7]. Typical systems include multiple
boards each containing tens of FPGA devices interconnected in a fixed topology.
Interboard communication is performed via fixed connections or a back.plane
bus. Because of the need to communicate signals between FPGAs, the typical
frequency of an emulated design is in the range of 0.5 to 5 MHz.

Two distinguishing characteristics of a multi-FPGA logic emulator are the
topology used to interconnect FPGAs and the approach used to communi­
cate interpartition logic signals between them. Before addressing the issues of
topology, two possible approaches for assigning logical signals to inter-FPGA
wires will be analyzed.

Consider the mapping of a simple circuit shown in Figure 30.3(a) to two
FPGAs as shown in Figure 30.3(b). For this circuit, two interpartition signals
(x and y) exist. One approach to mapping these signals to inter-FPGA wires
is to dedicate them to inter-FPGA wires A and B, respectively, as shown in
Figure 30.3(b). This dedicated-wire mapping preserves the original structure
of the circuit and does not require the, inclusion of any additional logic. In
contrast, the mapping shown in Figure 30.3(c), adds pipeline flip-flops and a
multiplexer to interpartition signals so that inter-FPGA wire A can be shared.
From the figure it can be seen that wire A is multiplexed to transport both
x and y. This multiplexed-wire approach allows for more efficient use of FPGA

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 658

642 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

pins and inter-FPGA wires, at the cost of additional FPGA logic and flip-flops.
However, in most emulation systems 1/0 pins are a more precious resource than
logic and flip-flops.

Both dedicated-wire and multiplexed-wire FPGA-based emulators are com­
mercially available. Dedicated-wire systems include the SystemRealizer [24] and
Mercury [25] families from Cadence; multiplexed-wire systems include Cadence
Xcite [36] and the Mentor Graphics VirtuaLogic [21] and VStation [22] families.
For dedicated-wire systems, design logic partitions must meet both the pin and
gate count requirements of the target FPGAs. In virtually all cases, the FPGAs
are pin limited, constraining the amount of logic and associated 1/0 that can be
assigned to each FPGA. Rent's Rule [17], an empirical relationship that quan­
tifies the growth of pin requirements as logic capacity increases, indicates that
this problem is likely to get worse as FPGA logic capacity increases. As a result,

(a)

X A

y B

(b)

A

(c)

FIGURE 30.3 ■ The mapping of a simple circuit (a) by dedicated-wire(b) and multiplexed-wire
(c) assignment.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 659

30.3 'fypes of Logic Emulation Systems 643

the time-multiplexed use of pin resources is prevalent in contemporary emula­
tion systems.

A series of topologies for FPGA interconnection have been investigated
for both dedicated-wire and multiplexed-wire emulators. A number of early
commercial dedicated-wire emulation systems organized FPGAs primarily in a
near-neighbor or low-dimensional mesh topology, as illustrated in Figure 30.4(a).
Although these topologies are easy to build, their lack of routing flexibility
complicates design partitioning. Since many interpartition connections may not
have direct FPGA-to-FPGA connections, one or more FPGAs are required to
provide through-hop connectivity. Not only does this make the timing along
interpartition connections unpredictable, but scarce FPGA pin resources must
be dedicated to through-hop connections. As a result, direct-connect dedicated­
wire systems are now used only for emulation systems with a very small number
of FPGAs (typically four or less) [4]. These systems often allow direct connec­
tions between all FPGAs, eliminating the need for through-hops.

In an attempt to provide predictable FPGA delay and eliminate the need for
through-hops, a series of emulation systems were developed that use specialized
crossbar devices called field-programmable interconnect chips (FPICs) in
addition to FPGAs [7]. These systems route most or all inter-FPGA connections
through the FPICs so that the length of each inter-FPGA path is predictable. For
basic systems, such as the one shown in Figure 30.4(b), some of each FPGA's 1/0
pins are dedicated to bidirectional connections on each FPIC device forming a
crossbar. As a result, any inter-FPGA connection can be made by passing through
a single FPIC, leading to predictable timing. Multiple levels of FPIC interconnect
allow for system scaling to hundreds of FPGAs. The delay for each individual
path is predictable because the FPIC's timing is predictable, although the num­
ber of FPICs traversed by different inter-FPGA paths may vary.

Most multiplexed-wire systems use meshes with primarily near-neighbor con­
nectivity [7, 34]. Inter-FPGA paths are pipelined, so each path has a predictable

(a) (b)

FIGURE 30.4 ■ Example FPGA-based logic emulator topologies: (a} mesh; (b} crossbar. Source: Adapted
from Hauck [7].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 660

644 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

delay, which is a multiple of the system clock frequency. Additionally, inter-FPGA
routing congestion is overcome by the reuse of inter-FPGA routing resources, elim­
inating the restrictions created by through-hops. Although some multiplexed-wire
systems that use partial or full crossbars (FPICs) have been proposed [19], the
need for these expensive devices in time-multiplexed systems is unclear.

30.3.3 Design-mapping Overview
Several key issues drive the use of logic emulation systems. For most emulation
products, system ease of use and resource utilization are important factors
in system design. The translation of designs from ASIC netlist to multi-FPGA
implementation must be fully or nearly automatic. These ease-of-use issues
require sophisticated multi-FPGA computer-aided design approaches to process
netlists in addition to the per-FPGA processing for numerous individual FPGAs.

A high-level flow for multi-FPGA logic emulation similar to the flow
outlined by Hauck and Agarwal [8] is shown in Figure 30.5. It starts with a
circuit description that is specified at the behavioral or register transfer level.
Design translation, which typically includes logic synthesis, converts the high­
level netlist to a gate-level structural equivalent. Following design translation,
design logic is partitioned into pieces that will fit within the logic resources of
individual FPGA devices. Partitioning is often performed to minimize required
inter-FPGA interconnect, control system-wide critical path delay, and localize
memory access. For some systems, partitioning must be performed so that
inter-FPGA routing restrictions in terms of available FPGA pin count and
system topology are considered. If the logic emulator contains memory chips
that are external to the FPGA, design memory must be partitioned across
memory resources to meet memory chip capacity constraints.

Partitioned design logic and memory structures are subsequently assigned
to specific system devices via global placement. For some systems, swap-based
placement algorithms, which are similar to the FPGA placement approaches
described in Chapter 14, are used. A placement cost metric based nn distance
and delay is often iteratively used to judge placement quality. Partitioning and
placement are sometimes combined into a single step to concurrently optimize
interpartition bandwidth and inter-FPGA signal delay and distance [8]. The com­
munication of interpartition signals between FPGAs is determined based on
routing algorithms. For most multi-FPGA emulators, routing involves the deter­
mination of the shortest feasible path between FPGAs using available board
interconnect resources for each inter-FPGA signal [2]. Topology constraints often
require these signals to pass through intermediate (through-hop) FPGAs.

The last mapping step in logic emulation involves the individual compilation
of the FPGAs. Multi-FPGA emulation systems have a number of constraints that
can lead to less-than-efficient FPGA use. The FPGA compilation step may require
hundreds of individual compiles. If even one design partition fails to success­
fully map to its target FPGA, the emulation flow shown in Figure 30.5 must
be restarted from the design partitioning step. As a result, design partitions are
often sized conservatively to ensure successful compilation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 661

Circuit
description

Tech mapping

FPGA placement

FPGA routing

30.3 Types of Logic Emulation Systems 645

Design translation

Partitioning and
global placement

Global routing

Tech mapping

FPGA placement

FPGA routing

Individual
FPGA compile

Tech mapping

FPGA placement

FPGA routing

Mi#WM

4A4A5

i f@

Programming
files

FIGURE 30.5 ■ A typical multi-FPGA emulator mapping flow. Source: Adapted from Hauck and Agarwal [8].

Although the steps just described define the high-level mapping flow for
FPGA-based logic emulators, the specific partitioning, placement, and routing
approaches used by individual emulators are heavily influenced by the approach
used to communicate intermediate data signals between FPGAs. Although
similar, dedicated-wire and multiplexed-wire emulators require specialized par­
titioning, placement, and routing algorithms.

30.3.4 Multi-FPGA Partitioning and Placement Approaches

Design partitioning and placement play an important role in system perfor­
mance for dedicated-wire FPGA-based logic emulators. Because FPGA pins are
such critical resources for these systems, the primary goal of partitioning is
to minimize communication between partitions. A large number of algorithms

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 662

646 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

have been developed that split logic into two pieces (bipartitioning) and multiple
pieces (multiway partitioning) based on both logic and 1/0 constraints. Unfor­
tunately, the need to satisfy dual constraints complicates their application to
dedicated-wire emulation systems.

One way to address the partitioning and placement problem is to perform
both operations simultaneously [8]. For example, a multiway partitioning
algorithm can be used to simultaneously generate multiple partitions while
respecting inter-FPGA routing limitations [28]. Unfortunately, multiway parti­
tioning algorithms are computationally expensive (often exhibiting exponential
runtime in the number of partitions), which makes them infeasible for systems
containing tens or hundreds of FPGA devices. As a result of inter-FPGA band­
width limitations and the need for reasonable CAD tool runtime, most dedicated­
wire FPGA emulation systems use iterative bipartitioning for combined
partitioning and placement [6]. This approach has been effectively applied to
both crossbar and mesh topologies [31].

The use of recursive bipartitioning for dedicated-wire emulators creates
several problems. Although it can be used effectively to locate an initial cut,
it is inherently greedy. The bandwidth of the initial cut is optimized, but may
not serve as an effective start point for further cuts. This issue may be resolved
by ordering hierarchical bipartition cuts based on criticality [S].

Partitioning for multiplexed-wire systems is simple compared to the
dedicated-wire case, because it must meet only FPGA logic constraints, rather
than both logic and pin constraints. Unlike the dedicated-wire case, partitioning
and placement are generally performed not simultaneously but rather sequen­
tially [2]. First, recursive bipartitioning successively divides the original design
into a series of logic partitions that meet the logic capacity requirements of the
target FPGAs. During partitioning, the amount of logic required to multiplex
inter-FPGA signals must be estimated because both design partition logic and
multiplexing logic must be included in the logic capacity analysis. Following
partitioning, individual partitions are assigned to individual FPGAs. Place­
ment typically attempts to minimize system-wide communication by minimizing
inter-FPGA distance, particularly on critical paths. To fully explore placemeni.
choices, simulated annealing is frequently used for multi-FPGA placement [2].

30.3.5 Multi-FPGA Routing Approaches

The global routing step determines which FPGAs are used to route inter-FPGA
signals. Inter-FPGA routes may directly connect source and destination FPGAs,
or intermediate through-hops may be necessary. Global routing algorithms
typically attempt to minimize distance and inter-FPGA routing resource usage
while ensuring that no routing resources are overused.

The routing problem for dedicated-wire systems is similar to the intra­
FPGA routing problem described in Chapter 17. In dedicated-wire systems, the
amount of available inter-FPGA wiring is fixed, possibly leading to infeasible or
inefficient routes if an effective routing algorithm is not employed. Groups of
wires between FPGAs are considered a communication channel, and inter-FPGA

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 663

30.3 'fypes of Logic Emulation Systems 647

routing channels can be represented as a directed channel graph. As seen in
Figure 30.6, for a direct-connect topology, the edge weight in the channel graph
represents the number of physical wires in the channel [8]. Prior to routing, the
channel graph for the system topology in Figure 30.6(a) can be represented as
in Figure 30.6(b).

As routing is performed, inter-FPGA connections are assigned to wires,
reducing the available capacity in each channel. A variant of maze routing [18]
is typically used to assign inter-FPGA signals to specific system wires. Like the
maze-routing algorithms used for intra-FPGA connections, multiple router iter­
ations are often necessary. The maze-routing algorithm works by selecting a
wire and finding the shortest feasible path from its source to its destination
partition. Multiple iterations involving rip-up may be necessary to complete all
routes.

The example mapping in Figure 30. 7 provides an overview of the use of channel
graph representation. Following the assignment oflogical signals from the mapped
design in Figure 30.7(a) to inter-FPGA wires, the channel availability is modi­
fied to take used wires into account. The effects of this assignment are shown in
Figure 30.7(b), where the modified channels are shown with dashed lines.

For multiplexed-wire systems, both intra-FPGA computation and inter-FPGA
communication are synchronized by a global system clock. This clock provides
control over the sequence of events in the time-multiplexed system. Because
many combinational evaluations and signal transfers occur in a single design
(emulation) clock cycle, the system clock must operate at a faster speed than that
of the design clock of the emulated design. Thus, routing in multiplexed-wire

2

0...,___. 0
(a) (b)

FIGURE 30.6 ■ (a) A multi-FPGA interconnection and (b) the associated channel graph for
dedicated-wire routing. Source: Adapted from Hauck and Agarwal [8].

0 1 0
·111 ·H

1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 664

648 Chapter 30 • Multi-FPGA Systems: Logic Emulation

(a)

0 2 0
I ♦
I

I

: I

2 IO 1
1

I
I

I
I

I :

0----�---�0
(b)

FIGURE 30.7 ■ Assignment of logic signals to inter-FPGA wires in a dedicated-wire system
(a), and the resultant mapping (b).

systems assigns each interpartition wire a source-destination path schedule in
both time and space.

Routing for multiplexed-wire systems generally requires two routing steps
to connect an inter-FPGA signal: the determination of a feasible path between
FPGAs and the scheduling of multiplexed signal transport along the path [2].
Initially, a path between source and destination FPGAs is determined using a
shortest-path algorithm. Unlike dedicated-wire routing, the utilization of wires
in the channel is less restrictive because a different signal may be assigned to
each wire on each clock cycle. Following path selection, a data signal can be
transmitted along an inter-FPGA path as soon as it is assigned a valid logic
value by the flip-flop or logic gate that drives it. To complete the transmission,
the signal is assigned to a series of inter-FPGA wires along the path until it
reaches the destination FPGA. One clock cycle of the system clock is allowed
for each inter-FPGA hop along the path. Because inter-FPGA paths are synchro­
nized at FPGA boundaries with pipeline flip-flops, long combinational paths are
effectively broken into a series of discrete timesteps. A number of scheduling
algorithms that perform the assignment of interpartition signals to inter-FPGA
wires have been developed [2, 32].

The result of routing using multiplexed wires is illustrated in the following
example taken from Tessier and Jana [34]. In Figure 30.8, the circuit shown in
Figure 30.7(a) has once again been partitioned onto FPGAs interconnected using
the direct-com1ect FPGA topology shown in Figure 30.6(a). Each inter-FPGA signal
can travel only between two FPGAs during each system clock cycle. In the figure,
pipeline flip-flops, which have been added to allow multiplexed communication
on each path, are shaded. Circuit communication and computation in terms of
system clock cycles can be determined by evaluating the critical path from signal
a to signal d, as shown in Figure 30.9. In both Figures 30.8 and 30.9, system
clock cycles are labeled V1 through V5. In Figure 30.8, communication delays

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 665

30.3 Types of Logic Emulation Systems

FIGURE 30.8 ■ Circuit mapping to FPGAs for a multiplexed-wire system.

Design
clock _j

System
clock

Signal a I· n=1 ·I

Signal b I· ·I· n = 2 ·I

Signal d h

FIGURE 30.9 ■ The design clock cycle for the circuit mapping shown ir
labeled n indicate a communication delay of n system clock cycles.

are listed, with n equal to the number of system clock
munication. Combinational evaluations are listed, wit
system cycle Vs, signal dis latched into a design flip­
clock cycle.

-~-·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 666

o�O

30.4

/

/

Chapter 30 ■ Multi-FPGA Systems· Logi E u1 · c m anon /

t

The schedule for this e 1 d of individual signals Each �t P e . �s not depend ori\
d . · Ill erpart1tion signal · � es1gn cycle, whether or not it has cha is �ansmh '>i:

o. approaches, which only transmit changJg�!.ai Alt:ia�e, d�;? lla.J
ll For dynamic scheduling, the availabili s1 s, ve _so �een ,:,�•� eac

e
be determined at runtime which c � �f the co�mumcation reso,Jll]ir,_

ti
munication control circuitry, d an_ significantly mcrease the amoum.

.,, fa global controll d h
nee ed m each FPGA. Kwon and Kyung [le

movement. er an a s ared bus to control dynamically scheduled

ISSUES RELATED TO CONTEMPORARY LOGIC EMULATION

30.4.1 In-circuit Emulation
As ?iscuss� _in Section 30.2, a logic emulation system is often used to replace design logic m a target system. In-circuit emulation presents a series of chal-"llges that often must be addressed by the user of the emulation system [11]. �e emulated designs operate at relatively slow clock rates, all or a portion of

�et system must be modified to operate at a clock rate that is substan-

V

� than the planned product clock rate. Special care must be taken to
• actions such as DRAM refresh and device phase-locked loop activity

�ely affected. The clock for the target system must be interfaced to
control emulator logic evaluation. In some cases, the emulator

-t system clock, simplifying synchronization.

,

", coverification requires the logic emulator to verify a
� time the rest of the design is simulated on a host

'cal interface between the host and the emulator
ion performance [12]. A cycle-based approach

·•ange between the host and the FPGA-based
·le edge. This exchange includes collating

.,, simulation database, transferring the
1Jriate software driver, collecting the

•1rning the values to the simulator.
C:orm these transfer operations is

te the logic for a single design
een introduced as a way

interfac�ng, the host-based
independently for a number

t of data that must be trans­
. Transaction-based interfacing often

I
/

-

/
/

/

/
/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 667

30.3 Types of Logic Emulation Systems 649

FIGURE 30.8 ■ Circuit mapping to FPGAs for a multiplexed-wire system.

Design
clock

System
clock

Signal a

Signal b

Signal d

I· n=1 ·I

I· • I • n = 2 • I

I· ·I

FIGURE 30.9 ■ The design clock cycle for the circuit mapping shown in Figure 30.8. Spans
labeled n indicate a communication delay of n system clock cycles.

are listed, with n equal to the number of system clock cycles required for com­
munication. Combinational evaluations are listed, with a number (e.g., 1). After
system cycle V5, signal dis latched into a design flip-flop, completing the design
clock cycle.

_J

-~~-
··--· 1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 668

650 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

The schedule for this example does not depend on the binary value
of individual signals. Each interpartition signal is transmitted during each
design cycle, whether or not it has changed. Alternative, dynamic scheduling
approaches, which only transmit changed signals, have also been proposed [16].
For dynamic scheduling, the availability of the communication resources must
be determined at runtime, which can significantly increase the amount of com­
munication control circuitry needed in each FPGA. Kwon and Kyung [16] used
a global controller and a shared bus to control dynamically scheduled data
movement.

30.4 ISSUES RELATED TO CONTEMPORARY LOGIC EMULATION

30.4.1 In-circuit Emulation

As discussed in Section 30.2, a logic emulation system is often used to replace
design logic in a target system. In-circuit emulation presents a series of chal­
lenges that often must be addressed by the user of the emulation system [11].
Since emulated designs operate at relatively slow clock rates, all or a portion of
the target system must be modified to operate at a clock rate that is substan­
tially less than the planned product clock rate. Special care must be taken to
ensure that actions such as DRAM refresh and device phase-locked loop activity
are not adversely affected. The clock for the target system must be interfaced to
the emulator to control emulator logic evaluation. In some cases, the emulator
provides the target system clock, simplifying synchronization.

30.4.2 Coverification

As described in Section 30.2, coverification requires the logic emulator to verify a
portion of a design at the same time the rest of the design is simulated on a host
workstation. Typically, the physical interface between the host and the emulator
is the limiting factor to coverification performance [12]. A cycle-based approach
to coverification requires a data exchange between the host and the FPGA-based
emulator during each design clock cycle edge. This exchange includes collating
inputs for the emulated design from the simulation database, transferring the
inputs to the host interface via the appropriate software driver, collecting the
generated results from the emulator, and returning the values to the simulator.
The amount of time needed by the host to perform these transfer operations is
often significantly longer than the time to evaluate the logic for a single design
clock cycle on the emulator.

Transaction-based host-emulator interfacing has been introduced as a way
to reduce interface time [12]. In transaction-based interfacing, the host-based
simulator and FPGA-based emulator operate independe�tly for a number
of design clock cycles, limiting the amount of data that must be trans­
ferred across the host-emulator interface. Transaction-based interfacing often

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 669

30.4 Issues Related to Contemporary Logic Emulation 651

works best for stream-based computations where dependencies between the
simulated and emulated designs are minimal, allowing independent operation
[27]. A detailed example of transaction-based coverification will be presented in
Section 30.7.

For coverification environments, the simulation performed on the host work­
station can take a variety of forms. Most commonly, an RTL or behavioral repre­
sentation of a system component written in a hardware description language is
simulated with a commercial HDL simulation tool. Following preliminary veri­
fication, some simulated components may then be synthesized and mapped to
the logic emulator. Alternately, a software version of the simulated system com­
ponents (typically in CIC++) may be used [27].

30.4.3 Logic Analysis

Logic analysis, the capturing of signal state around specific events of inter­
est, plays an important role in FPGA-based logic emulation for both in-circuit
emulation and coverification. Unlike processor-based logic simulation, which
stores intermediate logic signals in a centralized memory, intermediate signals in
FPGA-based emulation are physically distributed throughout the emulation sys­
tem. As a result, for emulation the signal set of interest usually must be selected
prior to compilation so that probing circuitry can be added to the design under
test. The data collected by this circuitry can then be connected to an external
logic analyzer or sent back to the host workstation for display. In some cases,
combinational signals can be reconstructed from saved design flip-flop values via
simulation once emulation is complete [20]. Signal reconstruction allows for a
significant reduction in the amount of probe circuitry required within the logic
emulator, and limits the amount of signal data transferred from the emulator
after each design clock cycle.

Because of their cycle-accurate operation, logic analysis for FPGA-based emu­
lators has several additional, unique characteristics:

■ FPGA-based emulators can only perform functional verification, so only
combinational and flip-flop values captured on design clock edges
accurately indicate design behavior.

■ If the set of design signals selected for probing is changed, one or more
FPGAs may need to be recompiled to implement the change.

■ Logic analysis for a design can be triggered by prespecified logic
conditions in the design. This triggering circuitry can be added to the
design under test.

Logic emulators can be used to evaluate millions of design clock cycles, so there
often has to be a trade-off between the number of probes and the number of
consecutive clock cycles probing is performed. If emulation can be stopped,
intermediate probe values can be offloaded to the host workstation or to a disk.
Emulation can then be restarted [20].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 670

652 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

30.5 THE NEED FOR FAST FPGA MAPPING

Commercially available FPGAs are optimized to provide good performance and
mapping efficiency to a wide range of user designs. As seen in. Chapter 1,
contemporary off-the-shelf FPGAs offer a diverse and flexible routing network to
reach this goal. To achieve modest to high logic resource utilization (e.g., greater
than 75 percent lookup table [LUT] usage) and high design performance, an
FPGA's mapping tools must perform a detailed evaluation of FPGA placement
and routing choices, typically requiring 30 minutes to several hours of compile
time per device. As a result, most FPGA-based logic emulators suffer from long
compile times, which is a major limitation to their widespread deployment. The
presence in an emulator of hundreds of FPGAs with significant compile times
can considerably delay the debug, redesign, and retest cycle for a design under
test. As noted in Chapter 20, several research projects have investigated acceler­
ated FPGA mapping to solve this problem.

There are several reasons why fast FPGA design mapping for logic emulation
is important:

1. The sheer number of FPGAs needed for logic emulation necessitates fast
compilation. If compilation can be accelerated by an order of magnitude, so too,
roughly, can the turnaround time from design change to emulator implementa­
tion. For many systems, faster design turnaround time can make a substantial
difference in emulator usability, especially early in the design cycle when design
errors are more prevalent.

2. A fast mapping is useful for determining if all logic partitions will fit within
emulation system FPGA devices. If any partition fails to map into the emulator,
the entire emulation mapping flow typically must be restarted from scratch.

3. Because multiplexed-wire emulation systems require the use of a
synchronous global clock to coordinate computation and communication, the
overall system clock speed is dependent on the slowest FPGA. A fast evaluation
of achievable clock speed is therefore important. A fast mapping helps identify
if the partitions are likely to meet the emulator's target system clock speed.

4. The inclusion of probes, which are frequently changed, necessitates a fast
design compilation turnaround. Changes generally affect only a small number
of FPGAs, which usually can be recompiled quickly.

Of the emulation system mapping steps shown in Figure 30.5, the individual
FPGA compiles collectively require over 90 percent of the total compilation
time. However, unlike the other steps, individual FPGA compiles can be easily
distributed to multiple PCs and workstations for parallel compilation [9]. A cen­
tralized server is used to control distribution of the compiles to the client work­
stations, collect the resulting FPGA configuration bitstreams, and verify that all
compilation constraints have been met.

It will be difficult to significantly accelerate compilation for FPGAs with
existing commercial architectures without a substantial increase in the ratio
of routing resources to logic resources per device or improved parallel mapping

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 671

30.6 Case Study: The VirtuaLogic VLE Emulation System 653

approaches for individual FPGAs. Fundamentally, FPGA placement and routing
are dedicated resource assignment problems, and the search for a mapping
solution is accelerated only through additional available resources or a par­
allel search. Although compile times for logic emulation can be significantly
reduced by underpopulating commercial FPGA device logic in emulators, the
hardware cost involved is prohibitive. Therefore, parallel FPGA placement and
routing offer the most promise in improving compile times for existing FPGA
architectures.

In many ways, FPGA compilation for a partition of an emulated design under
test is more difficult than FPGA compilation for a single-chip design specifically
created for an FPGA. All FPGA compiles for logic emulators must be performed
with constrained pin assignments because inter-FPGA channel assignments are
determined prior to individual FPGA compilation. Forced pin assignments make
designs more difficult to map and require extended FPGA compilation times.
Since partitions were not specifically designed for an FPGA, performance or
utilization issues may sometimes arise during mapping.

30.6 CASE STUDY: THE VIRTUALOGIC VLE EMULATION SYSTEM

To illustrate many of the issues in logic emulation, we consider the VirtuaLogic
VLE emulator from Mentor Graphics [9]. This system represents one point in
a spectrum of similar FPGA-based emulation systems from Mentor Graphics,
including the Avatar and the VStation [23]. The following analysis illustrates
the basic approaches used by this family for system architecture, design compi­
lation, external system interfacing, and coverification.

30.6.1 The Virtualogic VLE Emulation System Structure

Figure 30.10 illustrates the components of the VLE emulation system hardware,
including its interfaces to a host workstation and target system [9]. The system
chassis, shown on the right, can contain up to six multi-FPGA array boards,
which emulate the logic and memory of a design under test. Two array boards
are shown in the configuration in the figure. Each board contains 64 Xilinx
XC4036XL FPGAs, arranged in an 8 x 8 array, and 32 32K x 32 single-port syn­
chronous SRAM chips. As shown in Figure 30.11, each FPGA connects to its
four nearest neighbors in both horizontal and vertical directions and to FPGAs
two hops away in the horizontal and vertical directions. A single memory device
is shared between each pair of FPGAs. Direct connections between each FPGA
and the six 1/0 connectors on the array board provide an interface for in-circuit
emulation connections, logic analysis, and host interfacing. As shown in
Figure 30.10, these connectors are located at the front of each board.

The FPGA array boards connect to a passive backplane in the system chassis
to create a scalable system. Each FPGA has direct connections through the
backplane to FPGAs on other array boards. All intra-FPGA computation and
inter-FPGA communication throughout the system is coordinated via a global

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 672

654 Chapter 30 • Multi-FPGA Systems: Logic Emulation

Array boards

Configuration cable

' FIGURE 30.10 ■ A Virtualogic VLE-2M logic emulation system with two array boards.

system clock. The system board in the emulator controls the configuration of
array board FPGAs and coordinates the distribution of the global system clock.
Configuration bitstreams are loaded into the system board from the host work­
station via an SCSI-2 cable.

30.6.2 The Virtualogic Emulation Software Flow

The emulation mapping flow for the VirtuaLogic VLE system follows the flow
outlined earlier in this section. During design translation, an RTL netlist is con­
verted to a gate-level design through the use of RTL synthesis. The mapped
netlist is then partitioned into pieces appropriate for the logic capacity of each
FPGA using algorithms that attempt to minimize bandwidth and encapsulate
critical design paths within individual FPGAs.

Partitioning is performed so that the logic capacity of the FPGA is considered
while partitioning to minimize bandwidth [l, 8]. For the multiplexed-wire VLE
system, the number of logic gates required per partition can be represented as

G � Gp +c*P

where G is the number of available gates in the FPGA, Gp is the number of user
design logic gates in the partition, c is a constant representing the amount of

Coverification cable

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 673

30.6 Case Study: The VirtuaLogic VLE Emulation System 655

Two-hop

Memory

FIGURE 30.11 ■ The array board connections for an FPGA in the VLE logic emulation system.

logic required to multiplex a pin, and P is the number of 1/0 signals associated
with the partition.

Design partitions assigned to an FPGA have a required gate count that is
less than G. The partitioning process for the VLE system starts with an initial
assignment of logic to partitions. Iterative mincut swapping is then performed to
reduce the amount of 1/0 needed by each partition (the value Pin the equation).
Not only does this optimization reduce the amount of subsequent pin multiplex­
ing for I/Os, but the amount of required logic per device is also reduced because
G depends on P [B]. Partitions for this emulation system are subsequently placed
using a simulated annealing placement algorithm [30]. In general, placement is
performed to minimize the overall distance of inter-FPGA connections assuming
that all connections will be scheduled along shortest paths. The logic partition

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 674

656 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

to FPGA assignment formulation is similar to the one used to place clusters
inside an island-style FPGA.

A distinctive aspect of the VLE system is the statically scheduled routing
approach used to make connections between signal sources and destinations.
The approach used by the VirtuaLogic compiler follows that described in
Section 30.4 [8, 34]. All intra-FPGA computation and inter-FPGA communica­
tion is synchronized to the global system clock cycle so that multiple system
clock cycles are required to complete an emulation clock cycle. A signal may be
routed between FPGAs on a specific system clock cycle once it is known to be
valid for the current emulation cycle based on signal dependencies. The follow­
ing steps are then taken to perform the statically scheduled routing of the signal
between a source FPGA sr and a destination FPGA dr [34]:

1. The shortest feasible path Psd between FPGAs sr and dr in terms of inter­
FPGA channels is determined.

2. The send time Ts of the signal is determined. This is the system clock time
slot at which the signal leaves sr.

3. The signal arrives at FPGA dr at the arrival time Ta of the signal. The arrival
time is defined as Ta = Ts +n, where n is the number of FPGA chip bound­
aries (hops) between source FPGA sr and destination FPGA dr-

To illustrate the use of Ts and Ta, the schedule of the circuit shown in
Figure 30.8 can be augmented to include send and arrival times. The communi­
cation schedule, including Ts and Ta values, is shown in Figure 30.12. Note that
in Figure 30.8 signal b passes unchanged through FPGA F2 on the path from

Design
clock

V1 V2 V3 V4 Vs
System

clock

Signal a I· n = 1 • I
Ts Ta

Signal b I· ·I· n = 2 • I
Ts Ta

Signal d I· • I

FIGURE 30.12 ■ The design clock cycle for the circuit mapping shown in Figure 30.8, including
send times Ts and arrive times Ta.

·-··---
1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 675

30.6 Case Study: The VirtuaLogic VLE Emulation System 657

FPGA F 3 to FPGA F 1 · This through-hop is necessary given the lack of a direct
FPGA F 3 to FPGA F 1 connection.

After each interpartition signal is scheduled for communication, the chosen
schedule is implemented by synthesizing multiplexers, registers, and state
machines that are added to the circuit partition for each FPGA. The result­
ing circuits are then applied to standard Xilinx Foundation design-mapping
tools [37].

Most ASIC designs that are targeted for emulation contain complex logic
and memory structures that require specialized processing outside the standard
emulation mapping flow. For VLE systems, specialized mapping techniques have
been developed to map complex design memories to emulation system memory
chips' [1], to map designs that contain multiple asynchronous design clocks
[13], and to incrementally map design changes [34]. The algorithms created to
address these mapping issues are important keys to system usability.

30.6.3 Multiported Memory Mapping

In a VLE system, multiple accesses to a 32K x 32 synchronous single-ported
SRAM can be scheduled within a design (emulation) cycle to emulate the
behavior of a multiport RAM. For example, Figure 30.13(a) shows a user­
specified dual-port memory with two read ports and a single write port. During
an emulation cycle access that requires reads from both read ports, both reads
can be performed in sequence from the single-ported SRAM chip. As shown in
Figure 30.13(b), a state machine can be used to sequence the application of the
addresses to the single-ported SRAMs, and the storage of the read data in the
output registers.

The VirtuaLogic compiler determines the schedule for data accesses in con­
junction with routing address, data, and control signals to the on-board phys­
ical memory devices. Although not shown in the Figure 30.13, for data wider
than the width of the physical memory, memory accesses can be made by
sequentially accessing consecutive memory locations. For example, a read of a
128-bit value requires four system clock cycles. Dependency relationships for
multiported RAMs (e.g., read-after-write) can be handled via the sequential
scheduling of RAM accesses.

30.6.4 Design Mapping with Multiple Asynchronous Clocks

In Section 30.4 it was shown that for multiplexed-wire systems both intra-FPGA
computation and inter-FPGA communication are coordinated to a global system
clock. Because multiple system clock cycles are required to perform computa­
tion and communication for a single emulation clock cycle, a fixed relationship
must exist between the clocks. Many contemporary ASIC designs contain mul­
tiple design clocks that operate asynchronously to each other. While synchro­
nization between a system clock and a single design clock can be addressed
by rising design clock edges that delineate functional evaluations, deriving a
relationship between multiple asynchronous design clocks and a system clock
is more difficult.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 676

658 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

A
RAO

SRAM
A A

RA1 Adr

WA
A

WD
D

Data

RD0
D

RAO D WEN

D RDO Q D

RA1 RD1 OEN
Ld

RD1
D

Q D

WA
Ld

D
WD

WEN

WEN CLK

(a) (b)

FIGURE 30.13 ■ A mapping of a multiported design memory to a single-ported emulator memory:
(a) parallel-accessed multiport memory; {b) sequentially accessed single-port multiplexed memory.
Source: Adapted from Agarwal [1].

In the circuitry shown in Figure 30.14, taken from Kudlugi and Tessier [13],
the asynchronous clocks CLKl and CLK2 drive state elements. It can be seen
that signal NS is a multidomain signal because it changes value and is sampled
as a result of both CLKl and CLK2 clock transitions. Now consider a situation
where the circuit in Figure 30.14 is partitioned so the multidomain signal NS
must be transported from FPGA 1 to FPGA 4 as shown in Figure 30.15. In a
multi-FPGA VLE system, the physical wires that connect FPGAs are grouped
into unidirectional channels, where each physical wire is capable of carrying
multiple signals that belong to the same emulation clock domain (e.g., CLKl
or CLK2).

Signal routing may include several intermediate FPGA hops. To simplify
scheduling, logical signals assigned to the same inter-FPGA wire must be asso­
ciated with the same clock domain. For designs with multidomain signals, this
restriction requires that each multidomain signal be logically split into separate
single-domain versions prior to transport. These single-domain values are then
transmitted separately along separate physical channel links and combined at
the destination to support multidomain behavior. Unfortunately, this approach
of separately routing copies of the same signal along different links can lead to
scheduling problems because each copy may arrive at the destination at differ­
ent system clock cycles.

This issue is best illustrated through an example. As shown in Figure 30.15,
communication for each asynchronous clock domain takes place over a different

A

A

A

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 677

30.6 Case Study: The VirtuaLogic VLE Emulation System 659

N1 ---D

CLK1

N2 ---D

CLK2

FF1

FF2

a

N3

G1

Q

N4

N5
.-----.. D

CLK1

N5
D

FF3

FF4

Q

N6

Q

N7

FIGURE 30.14 ■ A circuit that requires clocks from multiple asynchronous clock domains.

N3

N4

FPGA1

N5

A
,

:' -�
'

'

'

'

'

FPGA2 ;_- .;

FPGA

HOP

Domain D1
channels

'
,, .. ·

,r

'-'---------------------·

,

, .. -�
'

'
'

'

: '

.,_
Domain D2

_.:channels '

' �---�

,,---------------------,
'-'---------------------·

FPGA4

B

FPGA3

FPGA

HOP

FF3

FF4

FIGURE 30.15 ■ An example of multidomain signal transport. Source: Adapted from Kudlugi and
Tessier [13].

-0-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 678

660 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

set of inter-FPGA channels. In the case of NS, paths using both domain 1 (D1)
and domain 2 (D2) channels are needed to transport NS between FPGA 1 and
FPGA 2. The disjoint nature of multiple routing paths for the same logical signal
can lead to differing arrival times for the copies of signal NS at the destination
FPGA. If both copies of signal NS leave FPGA 1 at the same time, the D 1 version
of the signal will arrive at FPGA 2 two system clock cycles before the D2 version.
This arrival order can lead to an incorrect logic evaluation if an attempt is made
to use the D1 version of the signal before the D2 version arrives.

A requirement in transporting multidomain signals is to ensure that causality
of events is guaranteed irrespective of routing delays. Causality can be preserved
by ensuring that the length of the route for each domain from the source to the
destination requires exactly the same number of system clock cycles. This can
be accomplished by requiring the scheduler to use the same number of system
clock cycles to communicate versions of the same signal to a destination FPGA.
In Figure 30.16, for example, the scheduler must determine a path from FPGA 1
to FPGA 2 of length 3 for domain D 1, since this is the path length of the domain
D2 version. Each path now contains three pipeline flip-flops. The determination
of the specific schedule may require several scheduling iterations because the
length of the longest path is not known until each path is initially scheduled.

The scheduler used by the VirtuaLogic compiler takes multidomain paths
into account and can handle designs with any number of asynchronous clock

N3

N4

FPGA 1

A

I "'�

.

.

.

.

.

FPGA 2 :,- �

FPGA

HOP

Domain D1
channels

,., • -,r,

'-'---------------------·

.

..

-�
. .

: .

'

..,_ Domain D2
channels �

.

� .. - ..)

"'---------------------·

FPGA4

B

FPGA3

FPGA

HOP

FF3

FF4

FIGURE 30.16 ■ A retimed version of the multidomain signal transport shown in Figure 30.15.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 679

30.6 Case Study: The VirtuaLogic VLE Emulation System 661

domains. The mapping of this multidomain logic to the emulator takes place
automatically. The asynchronous design clock signals may be interfaced to the
emulator from outside the system through the system board.

30.6.5 Incremental Compilation of Designs

The need for incremental design support in VLE systems is a result of recent
interest in core-based design and system-on-a-chip integration. Most ASIC ver­
ification flows involve numerous iterations of design test, debug, and recom­
pilation. As modifications are evaluated and errors are identified, the original
design is subjected to a series of minor modifications. Often, a change may be
isolated to a component that was originally spread across two or more FPGAs
in the emulator. If emulator recompilation can be limited primarily to those
FPGAs that contain logic affected by the change, the compilation process can
be greatly accelerated. The ability to support design changes in a small set of
FPGAs is crucial to avoid the need to recompile all FPGAs in the system from
scratch. In addition to providing fast design turnaround, the resulting emulation
performance of the incrementally compiled design should be the same or close
to the same as the performance of the original design mapping [34].

The use of scheduling for VirtuaLogic inter-FPGA routing facilitates the man­
agement of incremental design compilation. A series of steps are required to
address changes in the design and map them to the FPGA-based emulator [34]:

1. Netlist comparison. The first step in the incremental compilation process is
to identify the logic and interconnect associated with the initial design that is no
longer in the modified design. Subsequently, the logic and interconnect added
to the initial design to create the modified design are identified. Logic removed
from the initial design was assigned to a set of FPGAs as a result of initial design
mapping. These modified FPGAs provide a possible destination for added logic.

2. Incremental path identification. In the VLE system, individual FPGAs may
serve as through-hop steps for intermediate routes. Thus, even if a given FPGA
does not contain logic that has changed, these FPGAs will require recompilation
if they are used as through-hops for the modified logic. To limit compile time, the
number of unmodified FPGAs selected to perform through-hop routing should
be minimized.

3. Incremental partitioning. Once the modified and required through-hop
FPGAs have been identified, newly added design logic can be partitioned onto
them subject to processor logic and memory capacity constraints.

4. Incremental routing. Following incremental partitioning, routing is per­
formed to create a path for the added design signals connecting the modified
FPGAs. Because FPGAs surrounding the modified FPGAs are unaltered, this
incremental routing must be performed using board-level routing resources that
have not been consumed by unchanged design routes. Feasible shortest paths
between FPGAs are evaluated and then incremental scheduling is used to form
a communication pipeline.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 680

662 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

The most important part of incremental compilation for multiplexed-wire
systems is the scheduling of added signals onto available inter-FPGA wires
(incremental routing). In some cases, portions of previously routed inter-FPGA
links may need to be rerouted as a result of changed logic depth and depen­
dency. Consider the circuit shown in Figure 30.17, taken from Tessier and Jana
[34]. The circuit is the same as the one assigned to FPGAs in Figure 30.8 except
that the OR gate F and signals e and f have been added. One potential incre­
mental mapping for the modified circuit appears in Figure 30.18. A design clock

a • f§>•
e � c�i---d _.. L--10

_
E
___,

o I

FIGURE 30.17 ■ A modified version of the circuit assigned to FPGAs in Figure 30.8.
Source: Adapted from Tessier and Jana [34].

D

A

a

a

FPGA F0

I

d

I

D

E

a

FPGAF'.2

FIGURE 30.18 ■ An incremental mapping of the circuit shown in Figure 30.17.

--0-·

FPGAF1

v,

FPGAFa

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 681

30.6 Case Study: The VirtuaLogic VLE Emulation System 663

cycle associated with the scheduled route of the circuit mapping in Figure 30.17
is shown in Figure 30.19.

When these waveforms are compared to the waveforms in Figure 30.12, it can
be seen that an extra cycle of combinational delay has been added because of
the OR gate evaluation in FPGA F2 , extending the number of system clock cycles
needed to evaluate the design. Closer examination of the two sets of waveforms
indicates that although signal b was previously routed between FPGA F2 and
FPGA F 1 in the initial design, it will have to be rerouted for the modified map­
ping. For the initial design, signal b has been routed between FPGA F2 and FPGA
F1 on system clock cycle V4. As a result of the mapping shown in Figure 30.18,
signal b cannot be routed until system clock cycle Vs because of combinational
dependencies. This results in a need to recompile both FPGA F2 to transmit the
signal on cycle Vs and FPGA F1 to receive the value on system clock cycle Vs,

After dependencies are determined, the new links are scheduled for communi­
cation using the VirtuaLogic compiler two-step routing approach described ear­
lier. Only added interpartition signals are routed; previously routed signals that
are unchanged are left in place. Incremental routing of added signals may lead
to an emulation system performance loss. For example, the waveforms shown in
Figure 30.19 represent the schedule of the incrementally modified design shown
in Figure 30.17. The new schedule requires six system clock cycles to complete a
design clock cycle as opposed to the five required for the original design. Although
not shown in Figure 30.19, a global control signal distributed to all FPGAs indi­
cates the end of the design clock cycle. Following recompilation, this signal can
be asserted every six rather than five system clock cycles. This requires FPGAs

Design _J
clock �---�'

V1 V2

System
clock

Signal a I· n = 1 ·I
Ts Ta

Signal f I·

Signal b

·I· n = 1 ·I FPGA F2 --->FPGA F1
Ts Ta

!
I- ·I- ·In = 1

Ts Ta

Signal d I· · I

FIGURE 30.19 ■ The design clock cycle for the incremental mapping shown in Figure 30.18.

1

·---·--·
1

•--·
1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 682

664 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

that were not recompiled to hold data values for an extra system clock cycle while
the recompiled FPGAs complete computation. All results are then clocked into
design flip-flops system-wide after six clock cycles by the design clock.

30.6.6 VLE Interfaces for Coverification

The VLE system has a number of interfaces to support both in-circuit emulation
and coverification. For in-circuit emulation, an emulation pod can be interfaced
to one of six connectors on each of the array boards shO\.n in Figure 30.10.
These signals are directly connected to FPGAs and drive/receive 1/0 signals on
the emulated design. Tuned clock cables are used to control clocking both on the
target system and in the emulator when the emulator has completed evaluation
for an emulation clock. To permit in-circuit emulation the target system must
be slowed to accommodate the 0.5- to 2-MHz design emulation rate.

In addition to support for in-circuit emulation, the VLE emulator has sig­
nificant support for a variety of coverification modes. This support is primarily
provided through a series of software interfaces created at the host workstation
and on the emulator. These interfaces allow the emulator to be used in a variety
of coverification scenarios [9]. Designers initiate ASIC verification by represent­
ing the ASIC using a high-level language such as C or SystemC (a C-compatible
language that represents the concurrency and darking associated with hardware
implementations). As a design matures, portions of it are migrated to hardware.
Inputs and outputs to the portion of the design on the emulator are interfaced
to the emulator via an application programming interface (API).

The transfer, execution, and collection of results using the emulator can be
represented as shown in Figure 30.20. This implementation of coverification is
performed with a series of components. The software test environment interacts
with an application adapter-that is, an interface to a series of library-based
drivers that packetize the data and prepare it for transfer via a PCI-based board.
The use of library-based drivers allows for communication at functional, bus­
cycle-accurate, and cycle-accurate levels [27].

An interface circuit is required at the destination to reassemble data for sub­
sequent use as input to the design. A transactor accepts the reassembled data,
generates an emulation clock for use with the design under test, and coordinates
per-cycle data transfer to and from the design. Generally, the interface circuit
and transactor are created in RTL and added to the design. VLE systems use
the transaction-based approach described earlier in this section. Transactions
contain both data and synchronization information. A single transaction results
in multiple verification cycles of work being performed by the emulator. The
transaction can be as simple as a memory read or as complex as the transfer
of an entire structured packet through a channel. To support coverification, the
host for the VLE emulator contains an SPCI (Springtime PCI) card [27]. This
custom PCI card implements the physical layer of transaction-based interfacing
between the host and the emulator via a cable.

The transaction application protocol interface (TAPI) forms the application
adapter for the VLE system [27]. TAPI consists of a library of C functions. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 683

p

1,

30.6 Case Study: The VirtuaLogic VLE Emulation System 665

p
Software User

application OUT

Clock cycle
accurate pin
events

Application Transactor
adapter

Transactions Transactions

PClcard lnterfae&

andcable circuit

(a) (b)

FIGURE 30.20 ■ The coverification flow between the workstation (a) and the emulator (b).

adapter is a utility package that converts raw signals into transactions by making
calls to the C function library. It supports a verification environment that allows
a C model to interact with an RTL model running on the emulator. The transfer
of data across the host-emulator cable can be aided by buffering data in mem­
ory and transferring it as a block. This approach is preferable to the individual
transfer of values from discrete memory locations in a file. Data buffering in
arrays can be implemented in the same C modules that contain the TAPI driver
calls for the emulator.

For the VLE system, the emulator system clock speed is set to 30 MHz. The
same six multi-FPGA board connectors used for interfacing to an in-circuit emu­
lation pod can also be used as an interface for coverification. The remaining con­
nectors on the multi-FPGA boards can allow for direct access to logic analyzers
for signal probing.

30.6.7 Parallel FPGA Compilation for the VLE System

Given the number of FPGAs in the VLE system, parallel compilation of the indi­
vidual devices is a necessity. An FPGA compile server is used to distribute the
numerous Xilinx XC4036XL compiles out to a number of available workstations
that can perform the needed operations [9]. Unfinished compiles are held in a
queue until compilation resources become available. Following design compila­
tion, configuration bitstream information and status reports are returned to the
server for subsequent transfer to the emulation system.

I
I I l I

I I I I

I I I I I I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 684

666 Chapter 30 • Multi-FPGA Systems: Logic Emulation

30. 7 FUTURE TRENDS

Although FPGAs have played an important role in the development and
success of commercial logic emulation hardware, current trends indicate a
possibly reduced role for them in future emulation systems. Over the past few.
years, special-purpose custom logic processors hav� replaced FPGAs in a num­
ber of commercial emulation systems [26, 35]. Processor-based emulators gener­
ally contain a series of logic resources that perform a different Boolean function
during every system clock cycle [10]. Data values, which are stored in on-chip
RAM, are supplied to the logic resources every cycle via time-multiplexed on­
chip routing resources. The per-cycle logic function definition and routing con­
figuration information form instructions that are stored in on-chip instruction
memory.

The depth of the memory constitutes the amount of multiplexing that can be
performed both on the processor and in the interprocessor interconnect struc­
ture. Like multiplexed-wire FPGAs, interprocessor communications are time­
sliced based on combinational logic dependencies so that processor pins are
reused.

In general, the compile time for processor-based emulation is very fast
compared to FPGA-based emulation. This disparity is a result of the assign­
ment of intra-FPGA (processor) logic to interconnect resources. In multiplexed­
and dedicated-wire emulation systems, internal FPGA logic and interconnect are
dedicated to specific design resources. This has three implications:

1. For long combinational paths, each logic block and intra-FPGA wire
is used only a small fraction of the time, effectively limiting system
efficiency.

2. The dedicated assignment of signals to intra-FPGA wires is a problem of
limited resource allocation. To significantly reduce compile time, a sub­
stantial increase in routing resources is needed relative to available logic
to make FPGA routing linear time (a value of at least 20 percent is reported
by Swartz et al. [33]). According to Rent's Rule, this disparity is likely to
become worse as designs and FPGAs increase in size.

3. Because FPGA routers are unpredictable, it is impossible to determine both
whether a device will route and what the per-FPGA (and hence global sys­
tem) performance will be until all FPGAs have been successfully mapped.

In contrast, in processor-based emulator hardware, internal logic and routing
structures are time-multiplexed. As a result, simpler routing structures with fixed
memory to processor delays for all intra-processor paths are set. This, too, has
implications:

1. Logic and interconnect resources are multiplexed over time to increase
resource use efficiency per clock cycle.

2. The assignment of both inter- and intra-FPGA resources is a scheduling
problem. Unlike search-based FPGA routing, scheduling algorithms

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 685

30.8 Summary 667

typically can be performed quickly and have runtimes largely proportional
to circuit combinational depth.

3. The global system clock period is fixed by the architecture of the device,
not by individual designs.

Specialized logic processors have other potential benefits. Specialized circuitry
for signal probing and coverification transactions do not have to be fashioned
out of generic FPGA logic, but rather can be customized to limit silicon overhead
and optimize speed.

FPGA-based emulators do have some advantages. In some cases, they may
provide more parallelism for certain designs that have shallow combinational
depth. Rather than multiplexing logic resources, FPGAs can perform all logic
operations simultaneously. The use of specialized logic processors in emula­
tion introduces additional overhead for the emulation system provider. Because
FPGAs typically use the newest silicon fabrication processes, specialized logic
processors are likely to be at least one silicon generation behind the state of the
art. Additionally, mapping tools for the logic processors must be developed and
maintained by the emulation company rather than by the FPGA vendor. Recent
trends indicate that despite these issues, the benefits of orders of magnitude
faster compile time are driving emulation vendors in the direction of special­
purpose logic processors.

Several developments in the design of FPGAs may swing this trend back in
their favor. Recent FPGAs provide high-speed I/Os such as low-voltage differen­
tial signaling (LVDS) that support rapid I/0 multiplexing. Additionally, the intro­
duction of fixed cores, such as multipliers and microprocessors, may provide
faster mapping and higher performance for emulation once they are integrated
in the emulator compilation flow.

30.8 SUMMARY

FPGA-based logic emulation is a distinct example of a commercially successful
reconfigurable computing application. A key aspect of its success has been the
development of sophisticated software systems that can seamlessly map a large
ASIC design to hundreds of FPGAs with minimal or no designer intervention.
An important characteristic of most multi-FPGA emulators is the scheduling
of both intra-FPGA computation and inter-FPGA communication in concert
with a global system clock. The use of scheduling overcomes limited FPGA pin
resources and takes advantage of signal dependencies, so that only portions of
a design are active at a given time. Contemporary multi-FPGA logic emulators
are used as both physical replacements in circuit and as coverification engines
to accelerate design simulation. These supporting environments have advanced
in recent years to include multiple asynchronous clock domains and support for
incremental design changes.

Extended compile times are quickly becoming a dominant issue for FPGA­
based emulators, and have motivated the development of fast FPGA compile

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 686

668 Chapter 30 ■ Multi-FPGA Systems: Logic Emulation

approaches. Although emulation systems with custom-designed logic processors
have been developed, recent FPGA trends and faster compile approaches may
spur renewed interest in FPGA-based emulation.

References

[1] A. Agarwal. VirtualWires: A Technology for Massive Multi-FPGA Systems, Mentor
Graphics Corp., 2002.

[2] J. Babb, R. Tessier, M. Dahl, S. Hanano, D. Hoki, A. Agarwal. Logic emulation with
virtual wires. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 16(6), June 1997.

[3] M. Butts. Future directions of dynamically reprogrammable systems. IEEE Custom
Integrated Circuits Conference, May 1995.

[4] C. Chang, K. Kuusilinna, B. Richards, R. Broderson. Implementation of BEE:
A real-time, large-scale hardware emulation engine. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, February 2003.

[5] S. Hauck, G. Borriello. Logic partition orderings for multi-FPGA systems.
ACMISIGDA International Symposium on Field-Programmable Gate Arrays,
February 1995.

[6] S. Hauck, G. Borriello. An evaluation of bipartitioning techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16(8),
August 1997.

[7] S. Hauck. The role of FPGAs in reprogrammable systems. Proceedings of the IEEE
86(4), April 1998.

[8] S. Hauck, A. Agarwal. Software Technologies for Reconfigurable Systems, Technical
report, Department of ECE, Northwestern University, 1996.

[9] IKOS Systems. VirtuaLogic VLE Emulation System Manual, 2001.
[10] D. Jones, D. Lewis. A time-multiplexed FPGA architecture for logic emulation.

IEEE Custom Integrated Circuits Conference, May 1995.
[11] H. Krupnova, G. Saucier. FPGA-based emulation: Industrial and custom

prototyping solutions. International Conference on Field-Programmable Logic and
Applications, August 2000.

[12] M. Kudlugi, S. Hassoun, C. Selvidge, D. Pryor. A transaction-based unified
simulation/emulation architecture for functional verification. ACM/IEEE. Design
Automation Conference, June 2001.

[13] M. Kudlugi, R. Tessier. Static scheduling and multidomain circuits for fast
functional verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21(11), November 2002.

[14] J. Kumar. Prototyping the M68060 for concurrent verification. IEEE Design and
Test of Computers 24(1), January 1997.

[15] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. International
Symposium on Field-Programmable Gate Arrays, February 2006.

[16] Y. Kwon, C. Kyung. Performance-driven event-based synchronization for multi­
FPGA simulation accelerator with event time-multiplexing bus. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 24(9), September 2005.

[17] B. Landman, R. Russo. On a pin versus block relationship for partitioning of logic
graphs. IEEE Transactions on Computers C20(12), December 1971.

[18] C. Lee. An algorithm for path connections and its applications. IRE Transactions
on Electronic Computers EC-10(2), September 1961.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 687

30.8 Summary 669

[19] J. Li, C.-K Cheng. Routability improvement using dynamic interconnect architec­
ture. IEEE Workshop on FPGA-Based Custom Computing Machines, April 1995.

[20] J. Marantz. Enhanced visibility and performance in functional verification by
reconstruction. ACM/IEEE Design Automation Conference, June 1998.

[21] Mentor Graphics Corp. VirtuaLogic Datasheet, 2002.
[22] Mentor Graphics Corp. VStation Datasheet, 2004.
[23] Mentor Graphics. Emulation products web page: http://www.mentor.com/emulation,

April 2006.
[24] Quicktum Design Systems. System Realizer Data Sheet, 1998.
[25] Quicktum Design Systems. Mercury Data Sheet, 1999.
[26] Quicktum Design Systems. Cobalt Systems User Guide, 2001.
[27] R. Ramaswamy, R. Tessier. The integration of SystemC and hardware-assisted

verification. International Conference on Field-Programmable Logic and Applications,
September 2002.

[28] K. Roy-Neogi, C. Sechen. Multiple FPGA partitioning with performance
optimization. ACMISIGDA International Symposium on Field-Programmable Gate
Arrays, February 1995.

[29] M. Santarini. ASIC prototyping: Make versus buy. EDN, November 21, 2005.
[30] K. Shahookar, P. Mazumder. VLSI cell placement techniques. ACM Computing

Su111eys 23(1), June 1991.
[31] G. Snider, P. Kuekes, W. Culbertson, R. Carter, A. Berger, R. Amerson. The Teramac

configurable compute engine. International Conference on Field-Programmable Logic
and Applications, August 1995.

[32] H. Su, Y. Lin. A phase assignment method for virtual-wire-based hardware
emulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 16(7), July 1997.

[33] J. S. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. ACM/
SIGDA International Symposium on Field-Programmable Gate Arrays, February
1998.

[34] R. Tessier, S. Jana. Incremental compilation for parallel verification systems. IEEE
Transactions on VLSI Systems 10(5), October 2002.

[35] Tharas Systems. Tharas Hammer Product Brief, 2002.
(36] P. Tseng. Reconfigured engines REV simulation. EE limes, July 10, 2000.
[37] Xilinx, Inc. Xilinx Foundation Tools User Guide, 2002.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 688

THE IMPLICATIONS OF FLOATING

POINT FOR FPGAs

Keith D. Underwood, K. Scott Hemmert
Sandia National Laboratories

CHAPTER 31

FPGA-based computing has a long history of accelerating assorted types of
computations in integer and fixed-point arithmetic. Until recently, however,
applications based on floating-point arithmetic have been a relative rarity. This
stems from early work [6, 12, 13] that indicated that IEEE-754 standard [11]
floating point was a poor match for field-programmable gate array (FPGA) tech­
nology. This led directly to numerous efforts that created libraries using special­
ized floating-point formats [1, 3, 7], where the width of the exponent and the
width of the mantissa could be specified. Unfortunately, many scientific applica­
tions require compliance with the IEEE standard. While seemingly an arbitrary
requirement, it is driven by several factors. Foremost, some scientific applica­
tions have data with high dynamic ranges and high precision requirements. A
good example is a typical linear solver that needs high precision to guarantee
convergence of the algorithm. Second, application developers rely on the porta­
bility of their applications and the reproducibility of their results. Put another
way, it is difficult to trust results that differ on every platform that runs them.

Fortunately, recent work indicates that FPGAs are viable competitors in IEEE­
compliant floating-point arithmetic [14], and there has been an explosion of
interest in mapping floating-point kernels to FPGA platforms [2, 5, 8-10, 15,
17, 18]. However, while FPGAs are now capable of implementing floating-point
applications, the use of floating point in FPGAs still requires a great deal of care.
This chapter introduces the IEEE floating-point standard and discusses imple­
mentations of compliant floating-point units for FPGAs. Section 31.2 contains
case studies of three floating-point application kernels and their implementation
on FPGAs.

31.1 WHY IS FLOATING POINT DIFFICULT?

Floating-point arithmetic is fundamentally different from typical integer or fixed­
point arithmetic. Where integer and fixed-point values are typically stored in 2's

Note: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 689

672 Chapter 31 • The Implications of Floating Point for FPGAs

complement, floating-point numbers are typically stored in signed-magnitude
format. Floating-point numbers also add an exponent field to control the position
of the decimal point in the value. The most widely used floating-point format
is the IEEE-754 standard. As an example, the IEEE double-precision floating­
point format is shown in Figure 31.1. The mantissa (fraction part) is 52 bits,
the exponent is 11 bits, and the sign is a single bit. A simple picture, however,
cannot tell the full story of the complexities of the IEEE format.

First, as the figure suggests, the exponent in the IEEE format is maintained
in biased notation. That is, rather than being in a signed-magnitude or 2's com­
plement format, a bias is added to the true exponent to store it. For double
precision, the bias is 1023 (approximately half the range). This means that an
exponent of -1022 is stored as a 1. The second complication in the format is
the use of an implied 1. An implied 1 means that the stored number is main­
tained in a normalized format such that there is a 1 immediately to the left of
the decimal and the decimal is immediately to the left of the stored value. This
allows the format to have an extra bit of precision without having to store it.
Thus, the value can be extracted as shown in equation 31.1.

(-1)8 x 2exp-bias x I .mantissa (31.1)

The format, as discussed so far, would have a major shortcoming. The num­
ber O would be impossible to represent. Since humanity has had the use of 0
for a few millennia now, the format inventors thought it best to include it by
reserving a special value. They also saw fit to include representations for 00

,
-00

,

and not-a-number (NaN), which is used as the result of meaningless operations
(e.g., 00 x 0). The reserved special values are summarized in Table 31.1.

As the table implies, both positive and negative Oare possible (O and 1 for the
sign bit, respectively) as are positive and negative infinity. Several values require
that the maximum possible value be loaded into the exponent field (i.e., all bits
are set to 1 in the field). Finally, there is a set of values known as denormals.

IS! exp (+1023)

11

Mantissa

52

FIGURE 31.1 ■ IEEE double-precision floating-point format.

TABLE 31.1 ■ Special values in the IEEE-754 format

Special value Sign Exponent Mantissa

Zero 0/1 0 0

00 0 MAX 0

-00 1 MAX 0

NaN 0/1 MAX nonzero

Denormal 0/1 0 nonzero

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 690

31.1 Why Is Floating Point Difficult? 673

Denormals are a special form of IEEE floating-point numbers that provide a
small amount of extra precision as the result of an operation approaches under­
flow. Unlike most IEEE floating-point numbers, they do not include the implied
1. Instead, they have an exponent of 0, keep the decimal immediately to the left
of the stored value, and allow the first 1 to fall anywhere in the stored value.
Denormals are particularly useful for code such as: if (x ! = y) z = 1 / (x - y) .
This code should never cause an exception, but without denormal support it
can easily cause a divide by O when x and y are small enough and close enough
that the format cannot represent the difference. Floating-point hardware within
a microprocessor typically implements denormals with an exception that then
computes the value via software. However, in an FPGA-based implementation,
to support full IEEE floating point we must generally add denormal support
into the hardware itself. Thus, for denormal numbers, the value is extracted as
in equation 31.2.

(- 1)8
x 2exp-bias x 0.mantissa (31.2)

31.1.1 General Implementation Considerations

To produce the smallest, fastest circuits, it is necessary to efficiently use the
structure of the FPGA. This comes up in two areas: (1) It is necessary to fully
utilize every lookup table (LUT), whenever possible and (2) it is advantageous
to provide an optimized layout for each unit. The floating-point units presented
here have been written using JHDL-a structural design tool that provides a
clean mechanism for mapping and relationally placing logic.

The units were optimized by identifying opportunities to combine logic into
the LUT architecture of the FPGA. This can be challenging, particularly for oper­
ations that use the carry-chain logic. However, the special values in the IEEE
format make it vital that carry-chain and other logic be mixed. For example,
there are many instances where the output of the exponent logic is either the
result of an arithmetic operation or a constant. For FPGA architectures, such as
the Xilinx Virtex family, it is possible to map the arithmetic operation and the
constant generation into the same LUT (along with its associated carry logic).

Take, for example, the passAddOrConstant circuit. It has four possible out­
puts: a +b, a, cO, or cl, where a and b are variables and cO and cl are constants.
The inputs to the circuit are a, b, s, and c.11. When c.11 = 0, the output is one
of the two constants, which is selected by the s input. Otherwise, the result
is a+ b when s = 1 and a when s = 0. The logic used for each bit is shown in
Figure 3 l .2(a). The circuit is only possible because of the mi:i1 t_and added in
the Virtex family of FPGAs. mul t_and was originally intended for use in multi­
pliers built from logic, but it enables many other useful optimizations. The same
basic logic can also create a passSubOrConstant, and if the AND gate before
the arithmetic operation is left off, the circuit is simply an addOrConstant or
subOrConstant. These circuits are used to reduce the amount of logic and the
logic delay required to compute the exponents. The JHDL code used to generate
each bit of this circuit is shown in Figure 31.2(b). Note that all the logic is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 691

674 Chapter 31 ■ The Implications of Floating Point for FPGAs

'

'

' '
, ___________________ _

mult and

(a)

cout

cin

I I Produce the constant bit. The Xilinx tools believe

II that gnd and vcc are inputs to the LUT, so we can't
II use them. Instead, use c_n, which will be 0

II when the constant is selected.
Wire cbit0 = ((c0 >> i) & 1) == 1 ? not (c_n) c_n;
Wire cbitl = ((cl>> i) & 1) == 1? not(c_n) c_n;
Wire constant_result = mux(cbit0,cbitl,s);

I I Generate the sum bit.
Wire sum = mux(constant_result,

xor(a.gw(i),and(s,b.gw(i))),c_n);

II Map all the above logic in a single LUT
Cell x = map(c_n,s,a.gw(i),b.gw(i),s_partial);
place (x, 0, virtex ? maxrow - il2 : il2);

Wire mult_and_out = wire (1, "mult_and_out" +i);
x = newmult_and(this,c_n,a.gw(i),mult_and_out);
place(x,0,virtex? maxrow - il2: il2);

x = newmuxcy(this,mult_and_out,cin,s_partial,cout);
place(x,0,il2);

x = new xorcy(this,s_partial, cin, output.gw(i));
place(x,0,il2);

(b)

FIGURE 31.2 ■ Logic (a) and JHDL code (b) for the i th bit of the passAddOrConstant.

first mapped into LUTs using the map function, then relationally placed, using
the place function. The same place function is used to relationally place the
lower-level blocks at each level of hierarchy. The overall unit is placed into a
rectangular area so that it can be easily tiled in a design (see the descriptions
of the adder and multiplier in Sections 31.1.2 and 31.1.3).

In addition to concerns about efficiently using the LUT and providing good
placement directives, there are concerns about where to pipeline the units. The
major concern that largely determined the pipelining of the units presented here
involves the carry-chain logic. In the Virtex family, the times to initalize and
finalize the carry chain are large relative to the per-bit propagation time on the

c_i~~=~s=~====~!~~___J~
b--+ __ _,____,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 692

31.1 Why Is Floating Point Difficult? 675

carry chain. Thus, it is necessary to avoid having cascaded carry chains in the
same stage. In most cases, this constraint determines the stage mapping.

31 . 1.2 Adder Implementation

The most noticeable difference between integer operations and floating-point
operations is in the implementation of the adder. A 64-bit registered integer
adder requires 64 4-LUTs, 64 flip-flops, and the associated carry-chain logic. It
can be packed into 32 slices in a Xilinx Virtex-41 or similar family. In stark
contrast, a 64-bit floating-point adder requires hundreds of 4-(UTs, hundreds
of flip-flops, and nearly 700 slices. The core of the differences can be seen in
Figure 31.3(a).

The fundamental problem is that two numbers of the form

(-1)80 x 2expO-bias x 1.mantissa0 (31.3)

and
(-1)81 x 2expl-bias x 1.mantissal (31.4)

must be added together. The signs can be the same or different, so the actual
operation may be an addition or a subtraction. Worse, the exponents can dif­
fer (dramatically), so the two mantissas must be aligned before the operation
can proceed. When the two are combined (different signs and different expo­
nents), it becomes necessary to determine which number is larger so that they
are subtracted in the right order. If the exponents are the same but the signs are
different, the result can yield a very small mantissa, which must be normalized
(i.e., the leftmost one is moved to the leftmost position) before it can be stored.

Looking again at Figure 31.3(a), we can see the impact of the extra format.
Each horizontal dashed line represents a register, and the vertical dashed line
separates the exponent path from the mantissa path. Note that the first two
stages are spent inspecting and preparing the numbers and determining whether
either of the inputs is one of the special values. The third and fourth stages are
needed to align the mantissas, and it is not until the fifth stage that the actual
operation occurs. In the exponent path, stages six through nine clean up the
exponent to handle a variety of exception conditions. The sixth and seventh
mantissa stages have two parallel paths: one for rounding the result and one
for computing the shift value if the result must be renormalized. The last two
stages are used to renormalize the result (if needed).

Figure 31.3(b) shows the approximate layout of the logic used in an imple­
mentation of the floating-point adder. For the adder implementation, it is possi­
ble to place all pipelining registers in the same slices as the logic, though some
registers are placed in slices with unrelated logic. Of the total area, approxi­
mately 39 percent is used to align the mantissas prior to the actual add or sub­
tract operation; this area includes right-shift logic and swap logic. These oper­
ations would be required for any floating-point format; however, the left-shift
on the backend is only required because of the existence of the implicit 1 in
the format. This case arises during a loss of precision when two numbers with

1 A slice is two 4-LUTs, two flip-flops, and the associated carry-chain logic in this generation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 693

6
7

6

C
h

a
p

ter 3
1

■
T

h
e Im

p
lica

tio
n

s o
f F

lo
a
tin

g
 P

o
in

t fo
r F

P
G

A
s

E
O

E
l

M

O

·M
l

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
r

-
-

-
-

-
-

-
-

1-
-

-
-

t
= -

= -
= -

= -
= -

= -
� -

� -
- -

_ -
_ -

_ -
_ -

-.. -
-

-
-

-
-

-
-

1

d
i

f
f

e
r

e
n

c
e

g

r
e

a
t

e
r

t

h
a

n

2

3 4

5

m
u

x

'
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

r
-' '

r
i

g
h

t

s
h

i
f

t

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
r

-
-

-
-

-
-

-
-

a
d

d
/

s
u

b

'
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

r
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

6

d
e

n
o

r
m

a
l

?

7

p
r

i
o

r
i

t
y

e

n
c

o
d

e
r

-
-

-
-

-
-

-
-

-
-

-
L

-
-

-
-

-
-

-
-

-
-

-
•

-
-

-
-

-
-

-
-

-
-

1
o

r

2

,

l
e

f
t

s

h
i

f
t

v
a

l
u

e

r
o

u
n

d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

8

s
u

b
O

r
C

o
n

s
t

a
n

t

'

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
�

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

9
s

u
b

O
r

C
o

n
s

t
a

n
t

l
e

f
t

s

h
i

f
t

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

E

(a
)

9

(b
)

F
IG

U
R

E

3

1
.3

■

A

d
d

e
r b

lo
c

k

(a
) a

n
d

 a
d

d
e

r
la

yo
u

t
(b

) d
ia

g
ra

m
s

.

,great.er than,- - - - - -- - - --- - --- - - - - - - -'
:

swap ..,

--- --- -- ------ ----------------

~---------------~,!!'-/_,;~------ -· -· -"' .

- -- - -
"' -•: priority : ·

i encoder •
- - --

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 694

31.1 Why Is Floating Point Difficult? 677

identical, or very close, exponents are subtracted and require normalization.
The normalization logic, including a priority encoder to locate the first 1, uses
another 39 percent of the logic. For comparison, the actual add and round logic
consumes only 9 percent of the area.

31.1.3 Multiplier Implementation

The relationship between a floating-point multiplication and a fixed-point multi­
plication is a little more unusual. A fixed-point multiplier grows with the square
of the width of the input. At the core of a floating-point multiplier is a fixed-point
multiplier that multiplies the mantissas. Since the mantissa is significantly nar­
rower than the floating-point number, a 64-bit fixed-point multiplier actually has
a much larger core operation than a 64-bit floating-point multiplier because the
floating-point multiplier only has to multiply two 53-bit mantissas. It does, how­
ever, have a lot of other work to do that more than makes up for the difference.

Floating-point multiplication starts with two numbers:

(-1)80 x 2expO-bias x l .mantissa0

and

(-1)81 x 2expl-bias x I.mantissa 1

that produce the result:

(-l)<SOE&Sl) x 2(exp0-bias)+(expl-bias) x l.mantissa0 x l.mantissal

(31.5)

(31.6)

(31.7)

Conceptually, the dataflow shown in Figure 31.4(a) is quite simple. The first
three stages unpack the IEEE format looking for special cases and preparing a
possible denormal mantissa for the multiplier core. Stages F4 through F6 oper­
ate concurrently with the multiplier core and compute the resulting exponent
and determine whether the result is denormal. The four backend stages provide
shifting for creating denormal numbers, rounding, and normalization, which
includes adjusting the exponent when required.

Figure 31.4(b) gives the approximate layout of the logic for the front- and
backends of the multiplier. The multiplier core (not shown in the figure) uses
nine 17 x 17 multiplier blocks plus additional logic to sum the partial products
to create a 53 x 53 multiplier core. The logic used in the core is about 40 percent
of the total multiplier logic. Unlike the adder, it is not possible to place all of
the required pipelining registers in slices used by the logic. The black regions in
Figure 31.4(b) are either unused or used by pipelining registers.

The logic required to support the IEEE format is nontrivial. Support for
denormals consumes 40 percent of the multiplier area and includes logic to
gather information about the mantissa, swap the mantissa, and shift the man­
tissa. Thus, supporting denormals requires approximately the same amount of
logic resources as the multiplier core. An additional 7 percent of the area is
used for rounding and normalization to put the number back into the IEEE
format.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 695

678 Chapter 31 • The Implications of Floating Point for FPGAs

EC El MO Ml

Fl
add

F2

F3

F4

FS �--'--� •�_.,___,_ __ � Multiplier
_______________ ��l?!?A��� ______ : _r:_i_��t;_-���!� ___ core __ _

F6 �--r--'
: value

-------------------- -----------}-----
'
' -------------------- -----------�----- ------------- -----------·

Bl

B2
-----------�------------- ri9ht _shift ___ _

E

F3

-1.J
.....
.....
.a
Ul

-1.J
.....
II)
......

(a)

(b)

normalize

r-------- �

' '

Bl

--. '
,, ,, ,,
,,
, .
,,
,,,,,, ,,

1· - - I

IP
""

"'• ,,
,, ,, ,, ,,
,, ,,

M

:: , •
,, '
,, '

--------- , ,

FIGURE 31.4 ■ Multiplier block (a) and multiplier layout (bl diagrams.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 696

31.2 Floating-point Application Case Studies 679

31.2 FLOATING-POINT APPLICATION CASE STUDIES

Floating-point applications that are appropriate to map to FPGAs differ
dramatically from integer applications that are typically mapped to FPGAs. The
differences can be understood by realizing that a single floating-point opera­
tion can easily consist of 30 integer operations; thus, where a 2005-era FPGA
can easily implement 1000 integer operations, it is more likely that it can only
implement 32 double-precision floating-point operations. Furthermore, floating­
point operations are much higher latency than corresponding integer opera­
tions, which significantly affects designs.

This section considers three kernel operations implemented with double­
precision floating point to demonstrate three important considerations when
using floating point operations on FPGAs. The first operation is matrix multiply,
which demonstrates the FPGA's ability to exploit high degrees of parallelism
and to programmably manage local storage to significantly reduce the amount
of external RAM bandwidth needed. The second kernel is a vector dot prod­
uct, which highlights the ability of the FPGA to provide large amounts of RAM
bandwidth; plus it highlights limitations introduced by the high latency of the
floating-point units. The third kernel is the fast Fourier transform (FFT), which
can find similar advantages in mitigating the need for memory bandwidth as the
matrix multiply, but has similar limitations from the latency of the floating-point
units to the dot product.

31.2.1 Matrix Multiply

The standard matrix multiply (the DGEMM BLAS routine) is defined as:

N-I

Ci;+ = E AikBk;
k=O

(31.8)

The operation multiplies two matrices and adds it to a third (in place). Con­
ceptually, this means performing the dot product of a single row of A with a sin­
gle column of B and adding the result to a single point of C. Each dot product is
completely independent, which means there are N2 independent dot products.
In practice, neither microprocessors nor FPGAs implement it this way because
of the nature of modem memory hierarchies. In all modem systems (including
FPGAs), main memory is "far away" and there is one or more caches signifi­
cantly "closer."

The primary performance characteristic of matrix multiply is that it does
O(N3) operations on O(N2) data. Thus, for every data item loaded from memory,
it should be hypothetically possible to do O(N) operations. Performing matrix
multiplication as a series of independent dot products would throw away this
advantage; thus, all matrix multiply implementations attempt to exploit some
form of locality within the cache structure.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 697

680 Chapter 31 • The Implications of Floating Point for FPGAs

X +

FIGURE 31.5 ■ Block decomposition of a matrix multiply.

FPGA implementation
To understand an FPGA implementation of matrix multiply, it helps to first
understand how it is done on a microprocessor. To exploit (or rather compen­
sate for) the nature. of modern memory hierarchies, the typical approach to
matrix multiplication on a microprocessor breaks the matrices into smaller S x S
blocks [16]. A g1ven block from each matrix is loaded into the processor, a matrix
multiply is performed on the block, and partial results are stored. An example
for an 8x8 matrix multiply is shown in Figure 31.5. Each matrix is broken into
four regions that are 4 x 4. A row of these blocks is then multiplied by a column
of these blocks to create a 4 x 4 block of the result; thus, Cl =A1*Bl +A2 *B3 +Cl.
In the process, the partial result (a 4 x 4 block) is updated two times (although
typically in local storage or cache).

The same approach can be used on FPGAs. After all, FPGAs and micropro­
cessors are similar in that they have a small amount of local memory with high
bandwidth and a large amount of external, slower memory. FPGAs differ, how­
ever, in that they have a drastically large number of floating-point units that
should be kept fully utilized. Whereas microprocessors must supply inputs to
two functional units per cycle, FPGAs must supply inputs to 32 functional units
(in a 2005 FPGA).

A matrix multiply can be decomposed into a series of multiply-accumulate
(MACC) operations that multiply the individual elements of a row with elements
of a column and accumulate the result into one element of the final matrix.
The MACC unit has a multiplier, an adder, and a feedback path. In an FPGA,
16 MACC units are operating concurrently. Unfortunately, the latency of the
adder is very high (10 cycles). This means that we must keep at least 10 con­
current operations (row x column operations) in progress at all times to hide
the latency of the adder. In a perfect world, each unit could work on a block of
the matrix, with the concurrent operations happening on the independent row­
column dot prqduct in that block. Unfortunately, this would require far more
internal memory than is available in typical FPGAs.

To exploit the parallelism available in FPGAs without exhausting the limited
internal memory, we can further decompose the view of the problem. A sim­
ple way to view one block-level matrix multiplication is as a collection of S

matrix-vector multiplications. As such, significantly more parallelism is obvi­
ous. Figure 31.6 shows an FPGA-based implementation that first decomposes
the problem into blocks and then distributes portions of the work to multiply
the two blocks as matrix-vector multiplications.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 698

31.2 Floating-point Application Case Studies 681

Store C

X

Replicate

A B C

FIGURE 31.6 ■ Matrix multiply implementation.

To perform the full matrix multiplication, each matrix is decomposed into
S x S blocks. In Figure 31.6, S is 4, but in practice, S is typically set large enough
to cover the adder's latency (currently 10 cycles). Blocks of B are broken into
m columns, where m is the number of MACC units (m is assumed to be 4 in
the figure); thus, independent columns of a block of B go to each MACC unit.
All the blocks of A are broadcast to all MACC units. Thus, in Figure 31.6, one
column of block B is multplied by all four rows from the A block. This requires
that four copies (in the general case S copies) of the B block be made by the
replicate unit. This creates the concurrency needed to cover the latency of the
adder.

Matrix C is managed similarly. A block of C is loaded and distributed in the
same order as the block of B, but there is no need to replicate it. In addition,
taking the example from Figure 31.5, two A blocks and two B blocks are needed
for each C block. Thus, Al, Bl, and Cl are loaded and used to create an inter­
mediate product Cl - 2 that is used as the C block when A2 and B2 are mul­
tiplied. Overall, this requires no more than 6S2 elements of storage at 8 bytes

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 699

682 Chapter 31 ■ The Implications of Floating Point for FPGAs

per element. This includes two copies of each matrix block-one to operate on
and one to change it from row-major to column-major order.

Performance
By nature, a matrix multiply requires at least 4N2 memory accesses2 and per­
forms 2N3 floating-point operations. This yields � floating-point operations
for each element retrieved from memory, but it assumes that two matrices
(A and B) can be kept resident in the chip (processor or FPGA) for the entire
operation. In the perfect scenario, the maximum sustainable floating-point rate
would be

!::!. xBW
FLOPs =

2

8
(31.9)

where BW is the memory bandwidth in bytes per second, N is the dimension of
the matrix, and 8 bytes are required to store a double-precision floating-point
number.

While this is unrealistic for all but relatively small matrices, using blocking
techniques [16] to manage the local storage makes it possible to sustain a high
percentage of peak performance with relatively low memory bandwidth. The
result is that the matrices are fetched several times more than would otherwise
be necessary. For blocks of dimension S, this yields a factor of � increase in
accesses to the A and B matrices, leading to 2N2 + 2t memory accesses. For
large matrices, this approaches a floating-point rate of

FLOPs=
SxBW

8
(31.10)

This is shown in Figure 31. 7(a) as MFLOP/s versus MB/s on a log-log graph.
Delineations that map memory bandwidth needs to the generation of FPGAs
are provided for clarity, based on earlier work [14, 15].

A slightly different perspective is presented in Figure 31.7(b) where the total
amount of on-chip memory needed to sustain peak performance is graphed.
What is notable about these graphs is the relatively small amount of memory
and· relatively small amount of memory bandwidth needed to sustain peak per­
formance on FPGAs. This stands in stark contrast to modem microprocessors
(2005 era) that only sustain 85 to 90 percent of peak performance on a matrix
multiply using several times as much on-chip memory and off-chip memory
bandwidth. This is a product of the ability of the FPGA to directly manage local
storage and to separate data prefetching from computation.

We can also compare performance over time using data from 2004 [see 14,15].
Table 31.2 shows parts used for comparison. The performance of FPGAs gained
rapidly on microprocessors during this era, as shown in Figure 31.8.'

2 This assumes square matrices and includes retrieving three matrices and storing one matrix.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 700

31.2 Floating-point Application Case Studies 683

Performance
(MFLOP/s)

3.5e+06
38+06

2.5e+06
2e+06

1.58+06
1e+06

500000

0

Cache
required (MB)

90
80
70
60
50
40
30
20
10
0

(a)

Insufficient to sustain FPGA peak In 2003 -­
Insufficient to sustain FPGA peak In 2005 • • - - • ·
lnsufflclenl to suatafn FPGA peak In 2007 - - - - - ·
lnsufflclent to sustain FPGA peak In 2009 ••••••••••·

Sufllclent to -'8ln FPGA peak In 2009 ·······--

(b)

FIGURE 31.7 ■ Maximum achievable performance versus memory bandwidth and block size (a);
on-chip memory needed versus memory bandwidth and block size (b).

31.2.2 Dot Product

The standard vector dot product (the DDOT BLAS routine) is the sum of the
pairwise products of two vectors, or

N-1

P = E XiYi (31.11)
i=O

100
1000

Memory bandwidth (MB/s)

100
1000

Memory bandwidth (MB/s)

800

1000
800

400 Block slze
200 (elements)

Block size
(elements)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 701

684 Chapter 31 ■ The Implications of Floating Point for FPGAs

TABLE 31.2 ■ Parts used for performance comparison

Year FPGA CPU

1997 XC4085XLA-09 Pentium 266 MHz

1999 Virtex 1000-5

2000 Virtex-E 3200-7 Athlon 1.2 GHz

2001 Virtex-II 6000-5

2003 Virtex-11 Pro 100-6 Pentium-4 3.2 GHz

100000.------.-------,------,-----.------..------,

10000

9 1000
LL
:ii

.,,..-"·
""

·
�-

CPU matrix multiply
CPU matrix multiply trend

FPGA matrix multiply -·•·-·
FPGA matrix multiply trend

10�---�---�---�--------�---�
1997 1998 1999 2000

Year

2001 2002 2003

FIGURE 31.8 ■ Matrix multiply performance of FPGAs and microprocessors from 1997-2003.

which requires 2N memory accesses to perform 2N floating-point operations.
This means that a double-precision floating-point number (8 bytes) must be
fetched from memory for every floating-point operation that will be done.
Modem processors are not built with this type of balance between memory
bandwidth and floating-point capability. A processor capable of providing five
GFLOP/s may only have 6.4 GB/s of memory bandwidth. Streaming problems
(like this one) provide FPGAs an opportunity to excel-processors have a fixed­
memory bandwidth that is configured based on a balance between the require­
ments for various markets and the cost of providing that bandwidth. In contrast,
each board containing an FPGA can decide how many FPGA pins are used for
memory bandwidth, including dedicating almost all available user pins to mem­
ory connections.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 702

31.2 Floating-point Application Case Studies 685

FPGA implementation
Although the potential for increased memory bandwidth on an FPGA gives it
a distinct advantage, it also faces significant challenges imposed by the large
number of functional units and the high latency of the units. Like many BLAS
routines, DDOT is based on multiply-accumulate operations; however, it differs
from many BLAS routines in that it exposes a relatively limited amount of paral­
lelism. Where a DGEMM operation computes N2 independent results and a DGEMV

operation computes N independent results, a DDOT operation produces a sin­
gle number as the final result. This means than any partial products must be
reduced through a long, slow pipeline. The nature of the.problem is best realized
through a comparison to microprocessors.

Current microprocessors typically have a floating-point pipeline depth of four
to six cycles for the functional unit running at 2 GHz or more. Obviously, we
would not want every addition to depend on the previous addition, so the micro­
processor can easily keep six running sums in progress and then reduce those
sums to one result. This leads to several pipeline stalls in the final reduction,
but the total time is a small number of nanoseconds. In contrast, FPGAs differ
in three dramatic ways:

■ The adder pipeline is deeper.
■ Multiple MACC units are required to fully utilize high bandwidth

memory.
■ The clock rate is lower.

A modem FPGA would have tens of functional units with a pipeline depth
of 10-cycles running at approximately 300 MHz. Assuming 16 adders with a
pipeline depth of 10 cycles means that there must be 160 concurrent summa­
tions. This is impossible for short vectors and challenging even for longer vec­
tors. Furthermore, the process of reducing these partial sums to a single result
is slow and cumbersome.

To achieve reasonable performance, additional control logic is required inside
and outside the multiply-add and MACC units. First, a multiplier bypass mul­
tiplexer (labeled MB) is required in the multiply-add (Figure 31.9(b)) to reuse
the adder for portions of the final summation. Second, the adder has a 10-cycle
latency; thus, the MACC must perform 10 concurrent operations to keep the
adder pipeline filled. This requires a second feedback path (with associated con­
trol) through the FP multiplexer in the MACC (Figure 31.9(c)) to sum the 10
results. The added logic is shown with dashed lines in Figure 31.9(b) and (c).

Performance
If we work from the memory bandwidth as the typical limiting factor, the
maximum sustainable floating-point rate is

BW
FLOPs=-

8
(31.12)

where BW is the memory bandwidth in bytes per second and 8 bytes are
required to store a floating-point number. This is graphed in Figure 31.l0(a)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 703

686 Chapter 31 ■ The Implications of Floating Point for FPGAs

(a) (b) (c)

,,-FP'­
-r_l_, ''''

FIGURE 31.9 ■ A standard multiply-accumulate (a); a modified multiply-add for the dot product
(b); a modified multiply-accumulate for the dot product (c).

on a log-log graph. Like Figure 31.8, Figure 31.lO(b) compares performance
projections for both FPGAs and microprocessors [14, 15]. In this case, how­
ever, the FPGA shows a much more dramatic advantage over a microprocessor.
This is because large FPGAs provide sufficient 1/0 resources to obtain much
higher memory bandwidths than commodity microprocessors offer. Since this
is a memory bandwidth-limited problem, the platform with the most memory
bandwidth wins.

The other notable feature of Figure 31.lO(b) is that it is somewhat more
crowded than the matrix-multiply comparison. This is because FPGAs face a
second challenge in implementing the dot product operation: the latency of the
floating-point unit. Thus, the size of the vector has a much greater impact on
sustained performance on the FPGA than the microprocessor. The top FPGA
line represents a scenario whereby the FPGA achieves 90 percent of its peak
performance, but this requires a nearly 6000-element vector. 3 The second FPGA
line shows the FPGA achieving 50 percent of peak performance by using an
800-element vector. Despite this hefty penalty, the FPGA still has a remarkable
advantage (4x in 2003) over the microprocessor.

31.2.3 Fast Fourier Transform

The fast Fourier transform (FFT) is a reduced-complexity implementation of the
discrete Fourier transform (OFT), which takes as input N complex numbers and
returns as output N complex numbers where each of the outputs is determined
by the following equation:

3 Earlier work by Underwood and Hemmert [15] specified a 7500-element vector, but the floating­
point unit latency has been optimized since then.

,, ___ ---,
,-' MB , ,:__ --------r·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 704

31.2 Floating-point Application Case Studies 687

�

10000�....,...--,--,,............,....,..,...,..,....----.--�� ��---.--.
Maximum sustained dot product performance -­

Maximum sustained matrix vector multiply performance - - - - , , - '

,
..... ,,,'

� 1000
cc

,,,'

,,
..
..,

..

..

5

.g 100

10.___,__ _ _.._..._.._. __ _.__.....__.._,._,_....._. ___,
1000

Memory bandwidth (MB/s)

(a)

10000

100000c----�--.,....---...-----,----,----,

10000

1000

100

CPU dot product -+­
Extrapolated CPU dot product
Peak single FPGA dot product ···*···

Extrapolated peak single FPGA dot product
50% peak single FPGA dot product -·•··

50% extrapolated peak single FPGA dot product

10""C----'---��--...._ __ _,__ __ ��----'
1997 1998 1999 2000

Year

(b)

2001 2002 2003

FIGURE 31.10 ■ Maximum achievable performance versus memory bandwidth (a) and dot product
performance on FPGAs and microprocessors from 1997-2003 (b).

(31.13)

"k -i'W,ik where WN = e

The FFT exploits symmetries in the DFT and is implemented in stages, where
each stage combines r items to create r outputs. The value r is known as the
radix. For the implementation discussed here, r = 2 (radix-2). For the radix-2

2l
C:
m
E
a,
a.

N-1

Y[j] = E X{k]W!
k=O

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 705

688 Chapter 31 ■ The Implications of Floating Point for FPGAs

Xo

X4

X2

Xe

X1

X5

X3

X1

FFT, each stage operates pairwise on the data, although there are different for­
mulations of the algorithm that determine how the data are combined. These
operations are commonly referred to as butterflies and in the formulation used
in this example, each pairwise operation is identical and consists of one complex
multiply and two complex adds. This is shown graphically in Figure 31.ll(a).

Even after selecting the formulation that gives the structure of the butterfly,
there is some flexibility in the structure of the stages. The basic stage structures
are shown in Figure 31.12. Both structures require data reordering, either on

X;-v--X;

x.-A.--x
i

wn
J

(a)

1mg (�)

1mg (X;)

(b)

FIGURE 31.11 ■ Basic butterfly operation (a) and basic butterfly datapath (b). The component S
is a switch that directs inputs to alternate outputs. The components marked as R replicate the
input once and C is a crossover to facilitate the complex multiply.

Xo Xo Xo

X1 X1 X4

X2 X2 X2

Xa Xa Xe

X4 � X1

Xs X5 Xs

Xs Xe X3

X1 X1 X1

(a) (b)

FIGURE 31.12 ■ Variations of the 8-point, radix-2 FFTs with reordered inputs (a) and reordered outputs (b).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 706

31.2 Floating-point Application Case Studies 689

the frontend or backend, and produce the identical set of computations (though
in different orders). This example uses the ordering shown in Figure 31.12(b),
because this structure provides an increasing number of independent datasets as
the computation progresses. This approach is easier for implementations that
use units in parallel to process data within a single stage since all interunit
communication can reside at the front of the pipeline.

FPGA implementation
The butterfly computation requires four multiplications and six additions to
implement one complex multiply and two complex adds. The hardware pre­
sented here uses two double-precision multiplies and three double-precision
adds (see Figure 31.ll(b)). Each floating-point unit is used twice for each set
of inputs, which results in an average throughput of one data item per clock
cycle. Although it is possible to design a datapath that accepts two data items
per clock cycle, this design was chosen because it matches the available band­
width of internal RAM blocks in the target architecture and because it provides
the greatest flexibility when scaling the parallelism of the final implementation.

Parallelism in the FFT computation can be exploited in two ways: (1) pipe­
lined units, or parallelism in the stages (S), and (2) parallel units, or parallelism
(P) within a stage. Three architectures, which exploit the two types of parallelism
to differing degrees, are explored.

Parallel architecture The parallel implementation exploits only parallelism with­
in a stage (P). This is shown in Figure 3 l.13(a). In this implementation, data are
read from external memory, processed iteratively, and written back to external
memory. Each of the butterfly units operates on a subset of the data and is able
to work independently of the other units for a large part of the computation
(the datasets are completely independent after log2 (P) stages).

The advantages of this architecture are that the utilization of the units is high
because the pipeline depth is short. The parallel version can also take advantage
of higher-memory bandwidths. The disadvantages of this architecture as imple­
mented are that it requires a large amount of internal memory and it requires a
parallelism that is a power of 2. This second restriction is important because it
can limit the number of butterfly units that can be used. For example, if six but­
terfly units fit in an FPGA, the parallel architecture is still only able to use four.

Pipelined architecture At the other extreme, one butterfly unit can be dedi­
cated to each of the stages of the FFT in a pipelined fashion, as illustrated in
Figure 31.13(c). Data is read from memory and passed through a series of but­
terfly units before being written back to memory. Data delays and permutations
are needed between each of the stages and between the pipelined FFT unit and
DRAM memory. When the number of stages, S, that can be implemented in
the FPGA is less than the number of stages needed by the FFT (log2(N)), then
log�(N) passes to memory are needed, with the final pass using a subset, R, of the
stages. For each pass to memory, data must be read and written in a particular
permutation to optimize the delay and storage requirements in the pipeline.

,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 707

690

.9-::t
v�
50

i

� H
8

ii �8° i
�

I I I 1

Butterfly
datapath

t �"',ald'3 r\ � .. >,, ,,."--

\,,(' ,{ On-chip ' \ / 'data

:P=4

stora.9.e r

(a)

S = number of stages
�------------------------------------�

i e
c

Butterfly 8 8 Butterfly
datapath �

...
� datapath

i -

�i as I
C: 0 0
8

�
. * . .

. . .

-
. . .

I e e
0 c c

Butterfly 8 8 Butterfly
datapath �

...
� datapath

I
0 0

• First log(P) stages must be able to communicate date between butterfly units In the stage.

(b)

"T"

E
.!ll
ai
i
Cl.
0
Cl)

I!!

"C
II

ll.

S= number of stages
�---�

�g
.e- ::i!: 8
v� �

Butterfly
50 datapath

i
al

0

(c)

e
c

8

�
...

i as
0

i
8 ;: H Butterfly
8 datapath
al
1ii
0

FIGURE 31.13 ■ Three architectures: (a) parallel, (b) parallel-pipelined, and (c) pipelined for
exploiting parallelism in the FFT-from using all parallelism within a single stage to using all
parallelism in the stages.

J

Cl
Cl)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 708

31.2 Floating-point Application Case Studies 691

The pipelined architecture works well when streaming a large number of
small FFTs. This is because the architecture gets good performance with min­
imal memory bandwidth requirements. Another benefit of this architecture is
that it can take advantage of parallelism at a finer granularity than the parallel
version (i.e., it can use a nonpower of 2 number of processors). However, there
are some major disadvantages to this architecture. First, for single FFTs, the
unit utilization is low because of the depth of the overall pipeline. Second, it is
unable to take advantage of higher-memory bandwidth. Last, the buffer space
required between stages for data reordering grow as 28, where S is the number
of stages in the circuit. For a large number of stages, the memory required for
buffering can easily exceed available on-chip memory.

Parallel-pipelined architecture Figure 31.13(b) is a cross between the two
previous architectures. Data moves from external memory, through a set of P
parallel pipelines-each with S stages-and back to external memory. The first
log2(P) stages must have additional data exchange circuits (for the first pass
through the pipeline) because these stages have data dependencies between the
pipelines. This approach leverages the ability of the pipelined architecture to
reduce bandwidth demands and the ability of the parallel architecture to toler­
ate shorter input vectors (as well as a wider variety of vector lengths) than the
pure pipelined approach. In contrast, the parallel-pipelined hybrid has a higher
bandwidth demand than the purely pipelined approach and less tolerance of
short vectors than the parallel approach.

Performance

In evaluating the performance of the FFT, the floating-point operation count
that is typically used is SNlog2(N); there are log2(N) stages that each contain
SN computations (four multiplies and six additions for each pair of data). To
determine performance, it is necessary to know how long it will take the FPGA
to compute the FFT. For the parallel version, the number of cycles required to
complete the FFT is given by the following equation:

32N N
T=

BW +BL+(
p

+BL)(log2(N)-2) (31.14)

The first term of equation 31.14 is the time to read and then write N items
based on the memory bandwidth, BW, in bytes per cycle. The usable bandwidth
is limited to the number of units, P. The second term is the latency of passing
through the butterfly units during the read from memory. The third term is
the time to perform the iterations-using P butterfly units of latency BL for
log2(N) -2 iterations, assuming that the first and last iterations are performed
as part of reading and writing the data.

The pipelined and parallel-pipelined architectures share the same equation
for determining the number of clock cycles required to complete the oper­
ation. The only difference is that the pipelined architecture is limited to a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 709

692 Chapter 31 ■ The Implications of Floating Point for FPGAs

bandwidth (BW) of 2. The number of cycles to compute the FFT for these
architectures is

T = P(S) x llog�(N) j +P(R)

2N P(J) = BL x J + I(J) + BW + (B - 1) x 21

K-1

I(K) = L B x i = B x 2K

i=O
R = log2(N) mod S

(31.15)

(31.16)

(31.17)

(31.18)

Each pass, P(J), through J butterfly stages (each having a latency of BL) requires
the time shown in equation 31.16.

Data dependencies between the stages introduce a delay that doubles at each
stage, and create a total interstage delay given by I(K). Using standard DRAM
memories introduces a penalty associated with the burst length (B) required to
maintain full memory bandwidth to both the interstage delay and a backend
reordering time. The time to retrieve the data from memory and write them
back is defined by �- The final term represents the final pass through a subset
of the stages, R, with the corresponding delays.

The preceding equations point to the fact that the best implementation for
the FFr depends on many factors: memory bandwidth, size of the FFT, and size
of the FPGA. The performance (in FLOPs per cycle) for a single FFT of the dif­
ferent FPGA architectures on a Xilinx Virtex-11 Pro (a late 2005 part) are shown
in Figure 31.14(a). For single short vectors, the parallel architecture provides
the best performance. This is because of the high utilization of the floating­
point units. For longer FFTs, all three units provide good performance, though
the pipelined version requires less external memory bandwidth. Figure 31.14(b)
shows that the FPGA implementations (running at 160 MHz) compare favorably
to microprocessors for large FFTs.

31.3 SUMMARY

Implementing floating-point arithmetic on FPGAs requires significant effort. Sup­
porting the IEEE-754 standard poses particularly unique challenges, but much
of the effort is expended in coping with the interaction between exponent logic
and mantissa logic. Great care is required to minimize the latency through the
unit without significantly decreasing clock rate by having two dependent carry
chains in a single pipeline stage. Even with effort, floating-point operations are
significantly bigger and have significantly deeper pipelines than their fixed-point
counterparts. This adds additional challenges to the design of applications.

Although FPGAs can now deliver impressive performance on double-precision
floating-point operations, it requires a very different mind-set from working
with fixed-point arithmetic. Increased operation latency leads to a need to find
more parallelism to exploit in paths with the cyclic data dependencies typical of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 710

40

35

a, 30
u
t 25

20
B

15

10a.

5

0
64 256 1024

31.3 Summary 693

Parallel BW-2 unlts-4
Parallel BW-4 unlts-4

Pipelined BW-2 unlls-6
Parallel-pipelined BW-2 unlls-6 (P = 2)

Parallel-pipelined BW-4 unlls-6

.......... ,,.-

····::···• .•.•.•. •····
····

· ··• .. � ...

··
• .•..... •

·········
·········

··········
····

--
--

..
..

.
···········•

'"

4096 16384 65536 262144
FFT size (elements)

(a)

6000 r-�-"""T""--r--.--�-"""T""---r--.-----.--.----r--..----,

5000

� 4000
...I
u.

B 3000

Pentium-4 2.8 GHz -­
Pentium-4 3.8 GHz (e811mallld) -­

Parallel BW-4 unlts-4 •••·••••••
Pipelined BW-2 unlls-6 ··········

-_.._ ____ ""\ Parallel-pipelined BW-4 units-6 •••••••
.....

...
.... .,,,. .. ,,.,.

l;;-j!.-·····-·

_... ... _,.,.
.
...... "'· ... �-✓

,:�-���·��� ... -··/'···········
········''

.

.g 2000
� •• .,,

✓
,,,,.1'

,,

1000 �:;;;!/
0 L.....--1_ _.....1..._....,_ _ _.___....___,__ _.....1..._....,_ _ _.___....___.

64 256 1024 4096 16384
FFT size (elements)

(b)

65536 262144

FIGURE 31.14 ■ A comparison of performance for different FFT architectures in FLOPs per
cycle (a) and a comparison of FFT implementation on FPGAs and CPUs (b).

iterative solutions. Simultaneously, the increased size of a single operation
reduces the portion of a given dataflow graph that can be implemented directly
and pushes a designer toward more iterative solutions. The dot product is an
excellent example because it is forced to reuse adders to compute a summation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 711

694 Chapter 31 • The Implications of Floating Point for FPGAs

that would typically be done as a tree of adders in a fixed-point solution. The
result is that only longer vectors make sense.4

Even simple feedforward paths incur a penalty from the high latency of the
floating-point units. The FFT provides an example whereby the latency of a sin­
gle butterfly path can approach the length of a short vector. Thus, if the FFT
implementation in an FPGA is not used for a long FFT or a series of short FFTs,
it cannot offer competitive performance.

There are, however, floating-point kernels that offer abundant parallelism
for the FPGAs to exploit. Matrix-multiply (DGEMM), for example, is an N3

operation with minimal data Jependencies. Similar things can be said about
LU solvers, which form the basis of the traditional Linpack benchmark [4].
Three-dimensional FFTs are another example in which hundreds of one­
dimensional FFTs can be carried out simultaneously.

References

[1] P. Belanovic, M. Leeser. A library of parameterized floating-point modules and
their use. Proceedings of the International Conference on Field-Programmable Logic
and Applications, 2002.

[2] M. deLorimier, A. DeHon. Floating point sparse matrix-vector multiply for FPGAs.
Proceedings of the ACM International Symposium on Field-Programmable Gate
Arrays, February 2005.

[3] J. Dido, N. Geraudie, L. Loiseau, 0. Payeur, Y. Savaria, D. Poirier. A flexible
floating-point format for optimizing data-paths arid operators in FPGA based
DSPs. Proceedings of the ACM International Symposium on Field-Programmable
Gate Arrays, February 2002.

[4] J. J. Dongarra. The linpack benchmark: An explanation. First International Confer­
ence on Supercomputing, June 1987.

[5] Y. Dou, S. Vassiliadis, G. Kuzmanov, G. Gaydadjiev. 64-bit floating-point FPGA
matrix multiplication. Proceedings of the ACM International Symposium on Field­
Programmable Gate Arrays, February 2005.

[6] B. Fagin, C. Renard. Field-programmable gate arrays and floating point arithmetic.
IEEE Transactions on VLSI 2(3), 1994.

[7] A. A. Gaar, W. Luk, P. Y. Cheung, N. Shirazi, J. Hwang. Automating customisa­
tion of floating-point designs. Proceedings of the International Conference on Field­
Programmable Logic and Applications, 2002.

[8] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, V. Sridhar. A high­
performance and energy-efficient architecture for floating-point based LU decom­
position on FPGAs. Proceedings of the 11th Reconfigurable Architectures Workshop
(RAW), April 2004.

[9] G. Govindu, L. Zhuo, S. Choi, P. Gundala, V. K. Prasanna. Area and power
performance analysis of a floating-point based application on FPGAs. Proceed­
ings of the Seventh Annual Workshop on High-Performance Embedded Computing,
September 2003.

[10] K. S. Hemmert, K. D. Underwood. An analysis of the double-precision floating­
point FFT on FPGAs. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2005.

4 A long series of short vectors can also be made to work using an appropriate architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 712

31.3 Summary 695

[11] IEEE Standards Board. IEEE Standard for Binary Floating-Point Arithmetic.
Technical Report ANSI/IEEE Std. 754-1985, The Institute of Electrical and Elec­
tronics Engineers, 1985.

[12] L. Louca, T. A. Cook, W. H. Johnson. Implementation of IEEE single precision
floating point addition and multiplication on FPGAs. Proceedings of the IEEE Sym­
posium on FPGAs for Custom Computing Machines, 1996.

[13] N. Shirazi, A. Walters, P. Athanas. Quantitative analysis of floating-point arithmetic
on FPGA based custom computing machines. Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines, 1995.

[14] K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. Pro­
ceedings of the ACM International Symposium on Field-Programmable Gate Arrays,
February 2004.

[15] K. D. Underwood, K. S. Hemmert. Closing the gap: CPU and FPGA trends in
sustainable floating-point BLAS performance. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 2004.

[16] R. C. Whaley, A. Petitet, J. J. Dongarra. Automated empirical optimizations of
software and the ATLAS project. Parallel Computing 27(1-2), 2001.

[17] L. Zhuo, V. K. Prasanna. Scalable and modular algorithms for floating-point matrix
multiplication on FPGAs. l Bth International Parallel and Distributed Processing Sym­
posium, April 2004.

[18] L. Zhuo, V. K. Prasanna. Sparse matrix-vector multiplication on FPGAs. Pro­
ceedings of the ACM International Symposium on Field-Programmable Gate Arrays,
February 2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 713

CH APTER 32

FINITE DIFFERENCE TIME DOMAIN:

A CASE STUDY USING FPGAs

Wang Chen, Miriam Leeser
Department of Electrical and Computer Engineering

Northeastern University

This chapter presents a reconfigurable hardware accelerator that implements the
FDTD method. We first present background, including applications of the FDTD
method. We then provide analysis and design details of the FPGA accelerator for
FDTD.

32.1 THE FDTD METHOD

Modeling electromagnetic behavior has become a requirement for key technolo­
gies such as cellular phones, mobile computing, lasers, and photonic circuits.
The finite-difference time-domain (FDTD) method, which provides a direct, time
domain solution to Maxwell's equations in differential form with relatively good
accuracy and flexibility, has become a powerful method for solving a wide
variety of electromagnetic problems [1-3]. The main drawback to FDTD is its
high computational complexity.

32. 1.1 Background

The discovery of Maxwell's equations was one of the outstanding achievements
of nineteenth-century science. The equations give a unified and complete theory
for understanding electromagnetic (EM) wave phenomena. Solving Maxwell's
equations is an important method for investigating the propagation, radiation,
and scattering of EM waves.

The FDTD method, first introduced by Yee in 1966 [4], is a way to solve
Maxwell's equations. The differential form of these equations and constitutive
relations can be written as follows:

- an - -
VxH=at+aeE+J

(32.1)

(32.2)

- a.B - -
V x E = -at - CJmH - M

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 714

698 Chapter 32 ■ Finite Difference Time Domain

- -

V-D=pe; V-B=Pm

D=eE;

In equations 32.1 through 32.4, the following symbols are used:

E: electric field ii: magnetic field

D: electric flux density .B: magnetic flux density

(32.3)

(32.4)

J: electric current density

e: electrical permittivity

M: equivalent magnetic current density

µ: magnetic permeability

O'e : electric conductivity O'm: equivalent magnetic conductivity

First, the FDTD method replaces D and .B in equations 32.1 and 32.2 with E

and ii according to the constitutive relations in equation 32.4, which yields
Maxwell's curl equation.

aii - - -
µ- = -VxE-0' H-M·

at
m ,

aE - - -
E- = V X H -O'eE - J

at
(32.5)

All of the curl operators are then written in differential form and replaced by
partial derivative operators, as shown in equation 32.6, with the E and ii vectors
separated into three vectors in three dimensions (i.e., E is separated into Ex , By ,

Ez , and ii is separated into Hx , Hy , Hz):

curlF = VXF = x(aFz - aFy)+y(aFx - aFz)+z(
aFy - aFx)

a;, az az ax ax a;,
(32.6)

We then can rewrite Maxwell's curl equations into six equations in differential
form in rectangular coordinates.

(32.7)

(32.8)

(32.9)

Second, in preparation for "discretizing" the model in the next step, the model
size, unit size, and unit timestep must be determined. The FDTD method estab­
lishes a model space, which is the physical region where Maxwell's equations
are solved or the simulation is performed. The model space is then discretized
to a number of cells, and the time duration, t, is discretized to a number of
timesteps. The unit cell size should be small enough to ensure the accuracy of
the result, but large enough to minimize the number of cells in order to save
computation resources.

aEy aHx aHz Eat= Tz-¥-cr,Ey-ly

aHz _ aEx _ aEy _ H _ M .
µ at - ~ ax <Jm z z,

aEz aHy aHx
E- =----cr,Ez-l

at ax ~ z

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 715

32.1 The FDTD Method 699

Although half of the EM wavelength is an upper bound of the cell size by the
Nyquist sampling theorem, the cell size is often set to less than one-tenth of the
EM wavelength for better results [l]. The model size depends on the number of
cells in the model space, which is usually inversely proportional to the size of
the unit cell. The unit timestep is calculated by following the Courant condition,
which states that it must be less than the time the EM wave spends traveling
to the adjacent unit cell. For a ground-penetrating radar example, assuming a
central frequency of 1.25 GHz, the central wave length is 0.24 m. We set the unit
cell size to 0.012 m, which is one-twentieth of the central wave length, for good
simulation quality. The timestep can be set to 0.02 ns, which meets the Courant
condition.

Every cell in the model space has its associated electric and magnetic fields.
The material type of each cell is specified by its permittivity e, permeability µ,
and conductivity cr. The three-dimensional grid shown in Figure 32.1, the "Yee
cell" [4], is helpful for understanding the discretized EM model space. The Yee
cell is a small cube that can be treated as a single cell picked from the discretized
model space; Ax, Ay, and Liz are the three dimensions of this cube. We use (i, j, k)
to denote the point whose real coordinate is (iAx,jAy,kAz) in the model space.
Instead of placing the E and H components in the center of each cell, the E and
H field components are interlaced so that every E component is surrounded by
four circulating H components and every H component is surrounded by four
circulating E components.

Maxwell's equations in rectangular coordinates-equations 32.7 through
32.9-can be clearly illustrated by Yee's cell. For example, the Hx component
located at point (i,j + ½, k +½)is surrounded by four circulating E components,
two Ey components, and two Ez components, matching equation 32.7, which
states that the Hx component increases directly in response to a curl of E com­
ponents in the x direction. Similarly, the Ex component increases directly in
response to ,the curl of the H components, as shown in Figure 32.2, also match­
ing equation 32.7. We represent an electric component Ez at the discretized
three-dimensional coordinate (iAx,jAy, (k + -

2

1)Liz) as Ez l· . k 1, and when the
t,J, + i

�y

-�

_-0,.'b,.>-------------
-,:"': y-axis

FIGURE 32.1 ■ The geometrical representation of the three-dimensional Yee cell.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 716

700 Chapter 32 ■ Finite Difference Time Domain

,'i-- -♦- ------:,�- -♦--..,.. __ -:�
,

, : I /
, : I JJ

,'
:

,' : ,' : ,' '
(------1-.----,-.-----+-�---(I I F I I I
: : :Hy : I - ... : l I I I I I

: ,,�- -1- - -:-E�.;,-,�--,--t-- - �;� I ,' ' J I .,. I T I ,' I
: ..,, : Hz : , : Hz - : ,,' :
� - - - - - � ... - - - +: - - - - -: - - - -:' ' I I I I I I . . r--.! . _ _,
� .l-----.-�--:J-----t----:J

✓ I , I '
.. ,-✓ : ,,,' : ,> I , f ' I,

�'-----_..., ___ .}� ----,._ --- .,J,
.,

FIGURE 32.2 ■ Example of electric and magnetic components on a 4-cell grid.

current time is in the discretized tvili timestep, we denote the same component
as Ezl-�- k 1•

1,1, + :z

Third, all of the partial derivative operators in equations 32.7 through
32.9 are replaced by their central difference approximations, as illustrated in
equation 32.10. The second-order part of the Taylor series expansion is discard­
ed to keep the algorithm simple and reduce the computational cost. Also, the
variable without partial derivative can be approximated by time averaging, as
shown in equation 32.11, which has a similar structure to the central difference
approximation.

f(uo) = f(uo +Liu) +f(uo -Liu)
2

For example, equation 32. 7 is changed to

Hx (to + �)-Hx (to- �) Ey (Zo + �)-Ey (zo- �)
µ At = dz

(32.10)

(32.11)

(32.12)

After these modifications, the FDTD method turns Maxwell's equations into
a set of linear equations from which we can calculate the electric and magnetic
fields in every cell in the model space. We call these equations the electric and
magnetic field updating algorithms. Six field-updating algorithms form the basis
of the FDTD method. For example, the field-updating algorithm for the Hx

af(uo) = f(uo +!:!.U)-f(uo -1:!.U) +O[(!:!.U)2]
au 21:!.U

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 717

32.1 The FDTD Method 701

component, derived from equation 32.12 or equation 32.7, is given by

(�+C1m)·H
I
N+} -(��C1m)H

1
N-} (32.13) flt 2 x i,i+½,k+} - flt 2 x i,i+},k+}

+ � [By I Zi+½,k+l -By I Zi+½,k]-1y [Bz I Zj+l,k+}

- Bz I !! • k 1] - Mx I !! . 1 k 1 1,1, +z 1,1+2, +z

32.1.2 The FDTD Algorithm

The FDTD algorithm, whose flow diagram is shown in Figure 32.3, is based on
these equations. It first establishes the model space and specifies the material
properties and the excitation source. The source can be a point source, a plane
wave, an electric field, or another option depending on the application. The
algorithm then runs through the electric and magnetic updating algorithms on
every cell in the model space and loops through every timestep. The output of
the FDTD algorithm can be any electric or magnetic field data from any cell in
any timestep.

The electric and magnetic fields depend on each other. As we can see from
equation 32.13, the current timestep's magnetic field depends on the electric
fields in the surrounding cells. Similarly, the current timestep's electric field
depends on the magnetic fields in the surrounding cells. Because of this
dependence between the electric and magnetic fields, we cannot update them

No, go to next
timestep

FIGURE 32.3 ■ The flow diagram of the FDTD algorithm.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 718

702 Chapter 32 ■ Finite Difference Time Domain

in parallel. So the FDTD algorithm updates the electric and magnetic fields in
an interlaced manner, timestep by timestep, until the job finishes. First, all the
magnetic fields in all cells in the model space are updated; next, all the electric
fields in all cells, then the source excitation and boundary conditions, are given
to the model space; finally the algorithm goes to the next timestep and starts
from the magnetic fields again.

The boundary condition computation consists of special algorithms to deal
with the unit cells located on the boundary of the model space. The preceding
electric and magnetic updating algorithms work accurately in the interior of the
model space; however, because the cells on the boundary do not have the adja­
cent cells needed, the algorithm does not work properly and, as a result, there
are algorithm-introduced reflections on the boundary. Special techniques, called
absorbing boundary conditions (ABC), are necessary to deal with boundary cells,
to prevent nonphysical reflections from outgoing waves, and to simulate the
extension of the model space to infinity. The development of efficient ABCs is
very important for the FDTD method.

The perfect matched layers (PMLs) ABC [SJ sets the outer boundary of the
model space to an absorbing material medium layer, which absorbs most of
the impinging wave and has low reflection for most incidence angles. The
UPML (uniaxial PML) ABC [3]-a modification of PML-uses a generalized
formulation on the entire FDTD model space that integrates the boundary
condition and electric field updating algorithms, simplifies the FDTD algorithm,
and makes a good model for hardware datapath design. Although UPML intro­
duces extra computation and memory consumption, the quality of the uniaxial
PML is especially good for dispersive media, which is useful in solving many
realistic problems (e.g., the dispersive soil found in modeling ground-penetrating
radar and medical studies of EM waves' effects on dispersive human tissue).

The FDTD algorithm is an accurate and successful modeling technique for
computational electromagnetics. It is flexible, allowing the user to model a
wide variety of EM materials and environments on most scales. It is also easy
to understand, with its clear structure and direct time domain calculation.
However, FDTD is data and computationally intense. It needs to visit all the cells
in every step of the calculation, forcing a large working set. The amount of data
in the FDTD model space can be very large for large model sizes, creating a heavy
burden on both memory storage and access. The computation is also intense for
each cell in the FDTD model space, including updating six electric and magnetic
fields and the boundary conditions. This complexity makes the FDTD algorithm
run slowly on a single processor-modeling an electromagnetic problem using the
FDTD method can easily require several hours. Without powerful computational
resources, FDTD models are too time consuming to be implemented on a single
computer node. Accelerating FDTD with inexpensive and compact hardware will
greatly expand its application and popularity, which is the purpose of an FPGA
implementation.

The FDTD algorithm can be viewed as a cellular automata (CA) (see
Section 5.2.5). A cellular automaton is a discrete model that consists of an
infinite or finite grid of cells, where the state of every cell at discrete time t is a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 719

32.1 The FDTD Method 703

function of the states of a finite number of neighborhood cells at discrete time
t - 1. Every cell has the same rule for updating. The updating algorithm loops
through the whole discrete model and then goes to the next discrete time t + 1.
The FDTD algorithm exactly fits the definition of a CA. First, it creates a dis­
crete model space, discretizing both physical space and time with a uniform
grid. Second, every cell in the model space follows the same rule (six uniform
updating algorithms) for updating the electric and magnetic fields. Finally, the
calculation loops though cells to simulate the phenomenon of the whole model
space through time. A hardware implementation of the FDTD method is thus a
template hardware design for most CA problems.

32. 1.3 FDTD Applications
The FDTD method is an important tool for investigating the propagation, radia­
tion, and scattering of EM waves. Before the 1990s the cost of solving Maxwell's
equations directly was high and most of the related research was for military­
defense purposes. For example, engineers used huge parallel supercomputing
arrays to model the radar wave reflection of airplanes by solving Maxwell's
equations, trying to develop an airplane with a low radar cross-section [6]. The
difficult task of solving Maxwell's equations has had more economical solutions
since 1990 with the development of fast computing resources applied to the
FDTD method. Now FDTD has spread to many areas, including discrete scat­
tering analysis, antenna and radar design [3], EM wave phenomena analysis on
multilayer circuit boards [6], subsurface sensing and ground-penetrating radar
(GPR) detection [7,8], studies of EM wave phenomena in the human body, and
the study of breast cancer detection using EM waves [9, 10]. We apply our FDTD
solution to landmine detection using GPR, breast cancer detection, and spiral
antenna modeling.

Ground-penetrating radar
The FDTD method has been used to simulate GPR applications for buried land­
mine detection [7,8]. A three-dimensional FDTD model, as shown in Figure 32.4,
simulates the wave propagation and scatter response of three-dimensional GPR
geometries with realistic dispersive soil along with air, metal, and dielectric
media. The UPML ABC produces good results for this application. The three­
dimensional model has been validated by experiments performed with a com­
mercially available GPR system and realistic soil.

Breast cancer detection
Because of the large difference in electromagnetic properties between malignant
tumor tissue and normal fatty breast tissue, microwave breast cancer detection
has attracted much interest because it may overcome some of the shortcomings
of X-ray detection. Accurate computational modeling of microwaves in human
tissue with the FDTD method is promising for breast cancer detection research.
Researchers built a three-dimensional model of the human breast [9, 10], shown
in Figure 32.5, that includes a semi-ellipsoid geometric representation of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 720

704 Chapter 32 • Finite Difference Time Domain

z

y

Receiving
antenna

FIGURE 32.4 ■ A three-dimensional FDTD application of landmine detection using GPR.

100 15 100

80 80

60 10 60

40 40

20 5 20

0

(a) (b)

FIGURE 32.5 ■ Three-dimensional FDTD application of microwave breast cancer ·detection:
(a) geometry map; (b) simulated model space.

0.04

0.02

0

-0.02

breast and a planar chest wall. The modeling is in the range of 30 MHz to
20 GHz, and the UPML ABC is implemented.

Spiral antenna model
The spiral antenna is a popular frequency-independent antenna. As shown
in Figure 32.6, we use the FDTD method to simulate the radiation of the
Archimedean spiral antenna as an example of its application to antenna design.

Clearly, FDTD is a powerful tool that can be used in many different applications.
However, its data-intense and computationally intense properties make it run
slowly on a single processor.

The reconfigurable hardware implementation of the FDTD method can
greatly accelerate the running speed of the algorithm and maintain its
accuracy and flexibility. For example, the breast cancer detection FDTD algo­
rithm running on a single processor may require hours, while the hardware
implementation delivers results in minutes, enabling a medical device that

50 100 150 50 100 150

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 721

32.1 The FDTD Method 705

20 40 60 80 100 120

(a)

120

100,

[
80

60

40,

20

20 40 60 80 100 120

(b)

FIGURE 32.6 ■ (a) The floorplan of the spiral antenna model; (bl an FDTD-simulated

two-dimensional space.

0.5

0

-0.5

-1

-1.5

delivers an answer during the examination. With the help of faster compu­
ting technology, the FDTD method will be applied to more research areas and
applications.

32.1.4 The Advantages of FDTD on an FPGA

Compared to software running on a general-purpose processor, the advantages
of an FPGA implementation are evident-faster speed, smaller size, lower power
consumption; the last two advantages are significant, especially compared to a
large computer cluster.

Compared to an ASIC finite-difference time-domain design, the FDTD field­
programmable gate array (FPGA) implementation has the advantage of flexibil­
ity while accelerating the algorithm. The FDTD method models a wide variety
of electromagnetic problems that are difficult to cover with a single hardware
design. With an FPGA, a designer can modify the model size, the materials, and
the parameters and even introduce new updating algorithms and boundary con­
ditions easily. While the ASIC may outperform the FPGA as to speed, size, and
power, the reconfigurable property of an FPGA makes it more suitable for the
FDTD algorithm.

We can achieve fast computation in an FPGA for finite-difference time­
domain because FDTD has properties that make it very suitable for hard­
ware implementation. These properties are its favorable structure for pipelining
and parallelism and its constrained data ranges, which are good for fixed­
point representation. They make the FDTD method especially suitable for FPGA
implementation.

Parallelism and deep pipelining
The FDTD algorithm repeats the same electric and magnetic updating algo­
rithms on every cell of the model space. These calculations are independent
between each cell. As long as there are adequate hardware resources, the

120~--:-- -

100

80

60

3

2

0

-1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 722

706 Chapter 32 • Finite Difference Time Domain

fields for several cells can be calculated in parallel. Also, although the electric
and magnetic updating algorithms depend on each other, the hardware design
can still run these calculations in parallel with a carefully designed memory
interface. The parallelism between electrical and magnetic fields and the paral­
lelism between space cells make the FDTD algorithm very suitable for parallel
hardware implementation, which is a key method for hardware acceleration.

The six electric and magnetic updating algorithms can also be constructed
with deep pipelining because they repeat the same calculation on each cell.
Deep pipelining, another key method for hardware acceleration, maximizes data
throughput and greatly increases overall design performance.

Most cellular automata have properties similar to the FDTD algorithm with
repeated, independent computation on every cell of the model space. The CA
computation can be constructed with deep pipelining, and the parallelism
between discrete cells is the same as that available in any CA problem.

Fixed-point arithmetic
Floating-point representation provides high resolution and large dynamic range,
but it can be costly. In hardware design, floating point uses slower arithmetic
components and consumes more area. In contrast, fixed-point components have
much faster speed and occupy less area. In applications where data resolution
and dynamic range can be constrained, such as the FDTD algorithm, fixed-point
arithmetic can provide similar precision and much faster speed than floating­
point arithmetic.

The majority of the data in the FDTD algorithm is the six EM field variables
and nine intermediate field variables for each cell in the model space. Since all
the calculations in the FDTD method are linear, we can maintain the EM field
data at a certain level of magnitude by normalizing the incoming source field
magnitude. For example, if the source fields are between -1 and 1, all the EM
field variables are between -1 and 1. In rare cases, we simulate the model space
with a focus lens to magnify the EM field data. In this case we can estimate the
EM data range and still keep the variables between -1 and 1 by normalizing the
source field. Since all the EM field variables can be controlled in a fixed range,
a fixed-point representation can be used for better performance with a relatively
low error rate.

The uniaxial PML FDTD algorithm must be optimized for fixed-point repre­
sentation. Several parameters in the algorithm have a much different order of
magnitude than the EM fields. They may not be representable in fixed point
directly or may result in a large error when quantized. Additional error can arise
from arithmetic calculations with these parameters in fixed point. These errors
can be canceled by making a few changes to the original FDTD algorithm. For
example, very large and small coefficients can be multiplied together to create a
medium-value coefficient to be used in the new equation. The modification has
no effect on the result of the algorithm.

Careful analysis is important for fixed-point quantization to avoid errors. For
normalized EM field values that range between -1 and 1, the data tends to
be accurate to a relative error of 0.5 percent. The resolution of the fixed-point

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 723

32.2 FDTD Hardware Design Case Study 707

representation is determined by its data bit width. The longer the bit width, the
higher the resolution, so the smaller the error. However, longer bit-width data
uses more hardware resources. After careful study of the FDTD algorithm and
representative data, we can pick a suitable bit-width with relatively small error
(see also Chapter 23).

In conclusion, the FDTD algorithm is very suitable for hardware implemen­
tation. The FPGA implementation of the finite-difference time-domain method
will empower many FDTD applications in medical, military, and other areas
by providing fast, small, low-power, and inexpensive implementations. Many
cellular automata, which share similar properties, are also suitable for FPGA
hardware implementation. The FDTD hardware design we present in the next
section is a good example of hardware implementations for CA.

32.2 FDTD HARDWARE DESIGN CASE STUDY

The FDTD algorithm has a clear structure for hardware design. For each cell in
the model space, it reads the electric and magnetic data out of the memories,
passes them through the updating algorithms, and writes the results back to
the memories. The algorithm repeats this processing until it completes the
model space; then it goes to the next timestep and does the same calculations
again.

It is easy to separate any hardware design into datapath, memory interface,
and control logic. For FDTD, the datapath implements all the electric and mag­
netic updating algorithms; the memory interface controls data reading, writing,
and caching; and the control logic uses a finite-state machine (FSM) to con­
trol the progress of the whole design. However, because of its complexity, an
efficient hardware implementation of FDTD is not straightforward. The FDTD
algorithm is data intense. The electric and magnetic updating algorithms inter­
face a lot with the input and output memories, which creates a heavy burden
on the memory interface and data bandwidth. Also, the EM field dataset for
the whole model space can be very large for a large model size (a 100 x 100 x 100
model may require 60 MB of memory space), meaning that local FPGA memory
is insufficient to contain the entire problem.

The FDTD algorithm is also computationally intense. Every EM field has its
own updating algorithms and boundary conditions. A special interlaced mecha­
nism is used between the electric and magnetic updating algorithms, making
them depend on each other. Many problems arise when considering the pipeli­
ning and parallelism of the datapaths. The FDTD algorithm is complex enough
to reach the resource limits of most advanced FPGAs available on the market.
Consideration of fixed-point quantization and resource performance trade-offs
is very important for efficient hardware design.

One of the main purposes of a hardware implementation is to achieve better
performance. To implement the FDTD algorithm on an FPGA efficiently, we need
to consider the following:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 724

708 Chapter 32 • Finite Difference Time Domain

■ Determining the right precision for fixed-point representation
(Section 32.2.2)

■ Determining the memory hierarchy and designing the memory inter­
face and cache module (see Memory hierarchy and memory interface
subsection of Section 32.2.3)

■ Determining the pipelining and parallelism by considering the trade-off
between resources and performance (see Pipelining and parallelism
subsection of Section 32.2.3)

It is important to analyze the data structures, algorithm structure, hardware
architecture, and resource limits before design of hardware implementation. This
section introduces a target reconfigurable platform, the WildStar-11 Pro FPGA
board, and lists its detailed specifications. Then we choose the suitable fixed­
point representation by analyzing the quantization error of a fixed-point FDTD
algorithm and the hardware resource limits. Then we go through the problems
in the FDTD hardware implementation and provide detailed solutions and anal­
yses. By carefully considering the trade-offs between hardware resources and
performance, we can design the FDTD accelerator with the memory interface,
pipelining, and parallelism optimal to the current FPGA computing board.

32.2.1 The WildStar-11 Pro FPGA Computing Board

The FPGA board used here is a WildStar-11 Pro/PCI reconfigurable FPGA
computing board from Annapolis Micro Systems [12]. Its main features are sum­
marized in Table 32.1; a block diagram of this board is shown in Figure 32.7.
There are two Xilinx Virtex-11 Pro FPGAs, each with 328 embedded 18x18
signed multipliers and 328x 18-Kb BlockRAMs.

The embedded multipliers are much faster than a multiplier component imple­
mented withreconfigurablelogic, so itis best to use them if possible. TheBlockRAMs
are the fastest memory the designer can use in an FPGA design, ope1-c:1.ting as fast
as 200+ MHz on the Virtex-11 Pro chip. Critical data interchange and interfac­
ing can be programmed using the BlockRAMs. A pair consisting of an embedded
multiplier and a BlockRAM shares the same data and address buses in the Xilinx
Virtex-11 architecture, so once the embedded multiplier is used, we cannot use its

TABLE 32.1 ■ The main features of the WildStar-II Pro FPGA board

FPGA chips

Memory

ports

Memory

bandwidth

PCI interface

Two Xilinx Virtex-II Pro XC2V70 FPGAs (33,088 slices,

328 embedded multipliers, and 5904 Kb BlockRAM)

Twelve DDRII SRAM ports totaling 54 MBytes

(6x4.5 MBytes for each FPGA chip)

Eleven GB/s memory bandwidth

(6x72 bits for each FPGA chip)

133 MHz/64-bit PCI-X up to 1.03 GB/s

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 725

_..,. Rocket l/O
- Differential pairs

Single ended

32.2 FDTD Hardware Design Case Study 709

20

32 32

FIGURE 32.7 ■ A block diagram of the WildStar-11 Pro FPGA board.

corresponding BlockRAM, and vice versa. Thus, the sum of the total number of
embedded multipliers and BlockRAMs used must be less than 328.

Each FPGA is connected to six independent onboard memories, which are
1-Mx36-bit DDRII SRAM that have 72-bit data bandwidth and speeds up to
200 MHz. The size of each SRAM is 36 Mbits, or 4.5 MBytes, so the total SRAM
attached to each FPGA is 27 MBytes. The WildStar-11 Pro board is connected to
the desktop computer via a PCI-X interface, with a DMA data transfer rate up
to 1 GB/s between the host PC and the FPGA.

The WildStar-11 Pro is a typical commercial off-the-shelf (COTS) FPGA
computing board, which is widely available and easy to set up. These boards
normally contain one or two FPGA chips. Each FPGA chip may be connected to
several onboard memories consisting of SRAM or DRAM. The computing boards
are often PCI boards for a desktop computer or PCM CIA cards for a laptop. Data
and control signals can be transferred between the FPGA computing board and
the host PC via either standard PCI transfer or fast DMA transfer. The FDTD
hardware design is based on the WildStar-11 Pro board but can be easily modi­
fied for other COTS FPGA boards.

32.2.2 Data Analysis and Fixed-point Quantization

Because of its limited data range and favorable algorithm properties, the FDTD
method is suitable for fixed-point arithmetic (see Section 32.1.4). To use fixed­
point representation with the algorithm, we need to first decide its representa­
tion and the right data precision.

For simplicity, we use a 2's complement fixed-point representation that has
a fixed number of digits before and after the binary point. Because the EM

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 726

710 Chapter 32 • Finite Difference Time Domain

I S i 1 1.1 ____ F_ra_c_tio_n_a _l b_it_s ___ �
1 N

FIGURE 32.8 ■ The data structure of the fixed-point representation.

field data in the FDTD algorithm fits in the range -1 to 1, and the results of
the intermediate calculations (i.e., add, subtract, and multiply) fit in the range
-2 to 2, we set the fixed-point data structure as one sign bit S, one integer bit/
before the binary point, and N fractional bits Fi after the binary point, as shown
in Figure 32.8. The fixed-point data value is V = -S-2 +I+ fN Et0

1 iFi. The data
range given by this representation is between -2.0 and 1.999.

The data precision depends on the smallest absolute value that can be repre­
sented. Because the binary point position is fixed, the smallest absolute value is
2-N, which depends solely on the bit width N of the fractional part. To determine
the right value for N, we need to consider the trade-off between quantization error
and resource costs. To avoid quantization error, which is the difference between
the fixed-point and corresponding floating-point data, a longer data bit width is
preferable. However, longer data bit widths require larger and slower arithmetic
components and put more burden on memory bandwidth and data storage. The
problem is how to pick the optimal data bit width such that the fixed-point FDTD
algorithm generates acceptable quantization error and consumes a reasonable
amount of hardware resources.

To determine this, we wrote the FDTD algorithm in C code both in double­
precision floating-point and fixed-point arithmetic and compared the results.
Fixed-point representation is simulated by long integers in C, which have a
32-bit maximum bit width. We used two long integer variables to represent one
fixed-point datum up to 64 bits. Based on this representation, we created add,
subtract, and multiply components for each fixed-point bit width. The C code
simulates the fixed-point arithmetic and produces results that are exactly the
same as the hardware output. Thus, this C code also can be used for hardware
results verification.

By comparing floating-point and the corresponding fixed-point data results
for the same model space, we can calculate the relative error, defined in equation
32.14, over the time period that the algorithm runs.

Rel .

!floating-point data -fixed-point data I
ative error = . .

lfloatmg-pomt datal
(32.14)

We studied the following six experimental FDTD models to investigate quanti­
zation errors:

■ The two-dimensional and three-dimensional soil media-based GPR
landmine detection models

■ The two-dimensional and three-dimensional human tissue media-based
tumor detection models

■ The two-dimensional and three-dimensional spiral antenna models

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 727

32.2 FDTD Hardware Design Case Study 711

TABLE 32.2 ■ Detailed specifications of the experimental FDTD models

2D landmine 3D landmine 2D breast 3D breast 2D spiral 3D spiral

detection detection detection detection antenna antenna

Size 150x 100 50x50x50 240xl40 80x60x40 120xl20 120x 120x25

nme duration 2000 2000 2000 2000 2000 2000

Source Plane wave Point source Point source

Media Soil, air, dielectric Human tissue, dielectric Metal, air, dielectric

TABLE 32.3 ■ Relative error between fixed-point and floating-point representation

Timestep (%) Average
Bit width Field 400 600 1000 1400 1600 across timestep (%)

29 Ex 9.187 3.503 0.280 0.182 0.558 2.742

Hy 12.440 0.124 1.431 0.244 0.264 2.901

Hz 2.706 1.925 0.472 0.200 0.235 1.108

31 Ex 3.861 0.941 0.058 0.032 0.110 1.001

Hy 3.681 0.025 0.295 0.042 0.001 0.809

Hz 1.905 0.461 0.105 0.039 0.046 0.511

33 Ex 2.155 0.209 0.016 0.010 0.031 0.484

Hy 2.101 0.007 0.077 0.012 0.014 0.442

Hz 1.479 0.120 0.029 0.010 0.013 0.330

35 Ex 1.729 0.063 0.004 0.002 0.008 0.361

Hy 1.420 0.002 0.021 0.003 0.004 0.290

Hz 1.314 0.030 0.007 0.003 0.003 0.271

The specifications of these models are listed in Table 32.2. For all of them, we
studied the average relative errors between the floating-point and the fixed-point
results. This section analyzes the GPR model results. The other model spaces are
similar.

Table 32.3 shows average relative errors for the fractional data bit-width range
from 29 to 35 bits in the two-dimensional GPR landmine detection model. Ex ,
H

y
, and Hz are electric and magnetic field data. The relative errors are plotted

in Figure 32.9. Those of both electric and magnetic field data decrease as bit
widths increase. However, the rate of decrease slows as the bit widths increase.
Considering both the relative error and the bit-width cost, a 33-bit fractional
part is a good choice for the trade-off between data precision and hardware
resources. The average absolute error for this representation is on the order of
1 o-8 for magnetic field data and on the order of 1 o-6 for electric field data;
the average relative error is about 0.3 to 0.5 percent. Thus, this representation
satisfies the accuracy requirement that the relative error is less than 0.5 percent.

In addition to quantization error analysis, we need to consider the resource
limits of the real hardware device in determining the fixed-point data bit width.
The FDTD model space will be stored in the onboard SRAMs on the WildStar-11

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 728

712 Chapter 32 • Finite Difference Time Domain

3.500 ----------------�

3.000 4-------------------1

2.500 4-------------------1

� 2.000 4-------'-------------1

8!, 1.500 ------'------------!

1.000 -t--....::,,""<::"" _ __,�::--
---------;

0.500 ,-------'-==:::::::==t=§§�--i

0.000 �---�---�---�----,
29 31 33 35

Bit width after the binary point

-+-Ex
---Hy

--Hz

FIGURE 32.9 ■ The relative error between fixed-point and floating-point arithmetic for different
bit widths.

Pro FPGA board. The SRAM memory chip we used has size 512K x 36 bit.
The data is stored in the memory in units of 36 bits. Any data more than 36 bits
wide will take two memory units. To keep the memory interface working effi­
ciently, we want to set the data bit width less than or equal to 36 bits.

The embedded multiplier provided on the Xilinx Virtex II-Pro FPGA chip, an
18x 18-bit 2's complement signed multiplier, is much faster than the multiplier
component implemented by normal reconfigurable logic. Four embedded multi­
pliers can form a 35 x 35-bit signed multiplier. However, to construct a 36 x 36-bit
signed multiplier, nine embedded multipliers are needed. Because the number
of multipliers is limited and very useful in the FDTD algorithm, it is uneco­
nomical to use a 36 x 36 multiplier or 36-bit data. A data bit width of 35 bits is
more efficient for the embedded multiplier. Because the fixed-point quantization
error analysis performed in the last section also recommends a data bit width
of 35, we choose 35 bits of data as the fixed-point data structure based on both
quantization error and resource limits.

32.2.3 Hardware Implementation

After choosing the fixed-point data representation, we then study two very
important problems in the FDTD hardware implementation: memory interfac­
ing and pipelining and parallelism.

Memory hierarchy and memory interface
Because the EM field data is proportional to the number of cells in the FDTD
model space, the dataset can be very large. Every cell in the FDTD model space
has 6 EM field data and 9 intermediate field data for the UPML computation,
adding up to 15 field data. An FDTD model space may have millions of cells,
require hundreds of megabytes of memory space, and easily exceed the limits of
the memory available inside the FPGA chip. Therefore, the data must be stored

I
I ~
I '\

I:! I \.
I A. "-

I ~ ~
- I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 729

32.2 FDTD Hardware Design Case Study 713

in larger memories, which are normally slower than the fast on-chip memories,
outside the FPGA chip.

The data stored in the slower memories needs to be transferred to the
processing core in the FPGA. The processing core is composed of six electric
and magnetic updating algorithms, which require very large amounts of input
data. In the worst case, three electric updating algorithms require 36 input data
and three magnetic ones require 18, adding up to 54 input data for each dis­
persive UPML FDTD cell. In other words, to make sure that the processing core
works at full speed, we need to transfer 54 input data from off-chip memory to
the FPGA for each cell. The data transfer puts a heavy burden on the interface
between the off-chip memories and the FPGA design. To provide the necessary
data at the right time and to optimize the efficiency of the memory interface,
we need to determine how to organize the memory resources efficiently by con­
sidering the size, speed, and interface bandwidth of each memory resource.

There are three levels of memory hierarchy, based on the WildStar-11 Pro/PCI
FPGA computing board:

■ The fast and wide data-width on-chip memory (BlockRAM) integrated on
the FPGA chip

■ The fast but limited data-width onboard memory located on the FPGA
computing board

■ The slow memory for the FPGA to access located in the host PC

BlockRAMs are programmable memories that are integrated inside modem
FPGA chips. A Xilinx Virtex-11 Pro XC2V70 FPGA contains 328 BlockRAMs,
18 Kb each, with a maximum data width of 36 bits. They can be implemented
as small memory blocks or cascaded to form large memory blocks. They also
can be programmed to be different depths and widths to fit the hardware design
and data structures. They are fast memory units in terms of latency, with only
one clock cycle delay for clock cycles up to 200 MHz.

Although BlockRAMs are fast and flexible memory resources, there is much
less BlockRAM available compared to off-chip memory. So normally we do not
fit the entire model space's data into BlockRAMs. Instead, they are used to build
cache modules that read from and write to off-chip memories continuously and
feed data to the processing core. What's more, the BlockRAMs are true dual­
ported RAM units, and a group of BlockRAMs can provide a very wide data
width to the processing core when aggregated together. For example, 54 Block­
RAMs on the input side can provide a 54 x 36-bit data width every clock cycle,
which allows the FDTD processing core to run at full speed. The data width is
the number of bits that can be transferred in one clock cycle. Along with clock
frequency, data width determines the data transfer speed (bandwidth) of the
memory interface.

Onboard memories, which directly communicate with the FPGA chip, are
relatively slower than BlockRAMs in terms of latency, but they are usually much
larger in size, varying from megabytes to hundreds of megabytes. The interface
between the memory chips and the FPGA chips follows the read/write cycles
of the specific memory chips, which are normally single-ported data access

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 730

714 Chapter 32 ■ Finite Difference Time Domain

with limited data transfer width. Because of the heavy data access required by
the FDTD algorithm, the onboard memory bandwidth is very important to the
performance of the FDTD design.

As discussed before, the six electric and magnetic updating algorithms need
54 input data for each FDTD cell, which is around 54 x 36-bitx 100 MHz = 194
Gb/s-far beyond the onboard memory bandwidth of typical FPGA boards. The
input data of a single cell have to be transferred to the updating algorithms in
several clock cycles, while the updating algorithms can calculate results with
a throughput of one cell per clock cycle. So, the onboard memory data trans­
fer bandwidth is the bottleneck of the FDTD design. Memory bandwidth is an
important specification in choosing the FPGA computing board for a finite­
difference time-domain implementation. To solve this bottleneck, we introduce
the managed-cache module that is explained in the next subsection.

The memories in the host PC can be accessed by the FPGA via the PCI or
other interfaces. These interfaces are normally slower than the two memory
interfaces we have discussed, so we treat the memories in the host PC as the
slowest memory, no matter what the actual speed. This memory can be used for
data initialization at design startup and data retrieval at the end. At the start of
processing, the model space data are loaded from the host PC to the onboard
memory and loaded back to memory in the PC at the end of the design. If the
onboard memory is not big enough to hold the whole model space, the memory
in the host PC will be the primary memory and the data need to be transferred
to and from the onboard memory throughout the entire calculation, slowing
down the whole design. The size of onboard memories is thus another critical
specification in choosing an FPGA computing board.

The memory hierarchy and memory interface structure used in this design
is shown in Figure 32.10. We use one FPGA and six onboard memories on the
WildStar-II FPGA board. The FDTD field data stored in the on board memories
are sent to the electric and magnetic field-processing cores for calculation via

P'"'=; - DESIGN - ' ,,..,
/ / Onboard GI

Electric field
GI Onboard

:i :i memory
"0 pipeline "0 memory
0 0 It

�

�>
E module

Jo, E � ,..., '-
Cl Cl

r
LJ

"
Memo<y

Magnetic field ---y C In PC

Onboard :E :E
\.n /

PCI bus
" pipeline " Onboard

"-memory as module � memory >�0

p-o:;
y Memo<y - �

n lnPC
Input Ouput

/Onboard BlockRAMs BlockRAMs,) PChoat

Onboard
memory FPGA memory

COTS FPGA computing board

FIGURE 32.10 ■ A structural diagram of the memory interface.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 731

32.2 FDTD Hardware Design Case Study 715

the caching modules built using the BlockRAMs on the FPGA chip. The 3-level
memory hierarchy formed from the host PC, the onboard memories, and the
BlockRAM caching modules ensure that the electric and magnetic field updating
algorithms work at optimal speed.

As shown in Figure 32.10, the BlockRAM caching modules are split into two
parts: input and output. The six onboard memories, which are used to store
EM field data, are split into two parts also. The entire FDTD model space of the
previous timestep is stored in the input onboard memories, and the calculation
results, which comprises the data in the current timestep, will be stored in the
output onboard memories. In the next timestep, the role of the onboard memo­
ries is swapped. The original output onboard memories, which store the current
timestep's data, will be connected to the input caching module and the original
input onboard memories will be connected to the output module to store the
next timestep' s result.

The separation of the input and output onboard memories eliminates the need
for simultaneous read/write access to the same memory. Because the onboard
memories are single ported, shifting between reading and writing to the same
memory will create overhead and greatly reduce the speed of the design. By sepa­
rating input and output memory, we can read from and write to the onboard
memories at the same clock cycle, and continue reading and writing a group of
data on every clock cycle. So, although the separation of the memory interface
does not change the memory bandwidth, the data-transfer rate of the memory
interface is increased. Also, the separation makes the structure of the memory
interface clearer and the swapping mechanism avoids the extra effort of transfer­
ring data from output memories to input memories at the end of every timestep.
This swapping of input and output memories is a common hardware design
technique to increase throughput.

Managed-cache module
As introduced in the previous section, onboard memory data bandwidth is
limited on the FPGA computing board, so the EM field data cannot be trans­
ferred to the FPGA fast enough to allow the processing core to run at full speed.
To solve this memory transfer bottleneck, we need to introduce the managed­
cache module, which is an important part of the memory interface design.

Memory transfer bottleneck Although the FDTD processing core requires a large
amount of input data, the input data for each cell are the EM field data in
their nearest-neighbor cells. For two cells located near each other in the FDTD
model space, some of the nearest-neighbor cells are the same. The cache module
between the onboard memories and the hardware processing cores is designed
to avoid reading the same data multiple times from onboard memories.

All of the input data for each cell are from their near neighbors, which
means the data are located in a small cubic window around the current cell.
If the managed-cache module is designed to be larger than this cubic win­
dow, when we calculate the fields of the next cell, the processing core can get
all the necessary input data from the cache module. Among the input data,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 732

716 Chapter 32 ■ Finite Difference Time Domain

only a little is new, so we only need to fetch the new data from the onboard
memories every clock cycle, which greatly reduces the data-transfer burden. At
the same time, some of the old data becomes obsolete. In the managed-cache
module, we can replace the obsolete data with the new data fetched from onboard
memory.

Ideally, we keep the processing core running at full speed so that it calculates
one cell's EM data per clock cycle. The managed-cache module needs to be
designed to provide all the necessary input data for the processing core, while
fetching only one new cell's data from onboard memory every clock cycle. Since
every UPML FDTD cell has 15 field data and the processing core needs up to
54 field data inputs, an ideal managed-cache module will fetch 15 field data
from onboard memory every clock cycle and provide a data width of 54 field
data to the processing core, solving the memory bandwidth bottleneck problem
by reducing the number of fetches to 15 every clock cycle, which is 15 x 36-
bit x 100 MHz = 54 Gb/s. This rate can be supported by the WildStar-11 Pro FPGA
computing board. We explain how to realize this ideal cache module in the next
two subsections.

Data-flow and processing core optimization To simplify the explanation of how
to optimize the dataflow and how to optimize the processing core, we start from
a two-dimensional FDTD algorithm, which can be directly reduced from the
three-dimensional FDTD algorithm by considering only one plane in the three­
dimensional model. The two-dimensional algorithm updates three EM field data
instead of six, handling much less data transfer and calculation, but it keeps the
same algorithm structure and datapath. For a two-dimensional model plane of
size NxN, we assume that each N cell row is a basic processing unit. Calculating
one row of data means updating all EM field data for this row.

The cache modules separate the whole dataflow of the FDTD design into three
processes: (1) READ from the input onboard memory and store to the input
cache module; (2) read from the input cache module, CALCULATE, and write
the result to the output cache module; (3) read from the output cache module
and WRITE to the output onboard memory. These three processes can be run in
parallel since the cache module can be read from and written to at the same
time (i.e., because the cache modules are built from dual-ported BlockRAMs).
The parallelism of READ, CALCULATE, and WRITE means that the FDTD design
can, at the same time, READ one row of data, CALCULATE the previous loaded
row, and WRITE out the results of the row before that. We can understand this
as systemwide pipelining in the dataflow. Each process is a pipeline stage. Rows
of data are pushed into this 3-stage pipeline, one at a time. Compared to run­
ning the three processes serially, this optimized dataflow structure increases the
throughput by a factor of 3.

For a two-dimensional plane of size N x N, a simple 2-row cache module (size
2 xN) realizes the READ/CALCULATE/WRITE pipelining. As shown in Figure 32.11,
the data can be READ from input onboard memory and stored in the second
input cache row while the CALCULATE process works on the previously loaded
data in the first input cache row. The result is stored in the first output cache

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 733

32.2 FDTD Hardware Design Case Study 717

READ CALCULATE WRITE

Onboard
memory input Cache module

BlockRAM
input

1st cache row

2nd cache row

Cache module
BlockRAM

output

1st cache row

2nd cache row

Onboard
memory output

FIGURE 32.11 ■ A structural diagram of the simple 2-row cache module.

READ

Onboard
memory input

Cache module
BlockRAM

input

N4# P#iidWt 4i 4

&%MME&

CALCULATE

lp1=•el
Electric

Magnetic

Magnetic field
plpellne module

WRITE

Cache module
BlockRAM

output

¥1«##% WMI

+ah%Mi

Onboard
memory output

"

\ "''(., �

' ,. "
5,; $

FIGURE 32.12 ■ A structural diagram of the two-dimensional managed-cache module.

row while the previous row's result is read from the second output cache row
and WRITTEN to output onboard memory. This cache module structure can be
applied to other CA designs.

Furthermore, for FDTD implementation the managed-cache module enables
parallel implementation of the electric and magnetic updating algorithms in the
implementation of the processing core. Because of the data dependency of the
electric updating algorithm on the magnetic updating algorithm-the former
needs the current result of the latter-we cannot directly update the M-field
and E-field in parallel until we introduce two extra rows in the managed-cache
module (see Section 32.1.2). Why two extra rows?

The electric updating algorithm needs to have newly updated magnetic data
in the current cell and newly updated magnetic data in the cell below as inputs.
So, the electric updating algorithm needs to wait until the magnetic updating
algorithm finishes two rows of computation. As long as the cache has two extra
rows to save the newly calculated magnetic data, we can run the magnetic updat­
ing algorithms two rows ahead of the electric updating algorithms and partially
overlap their computation. This is illustrated in Figure 32.12.

For a two-dimensional model space of size NxN, the managed-cache module
stores four rows (4xN) of field data. While the READ process is working on
the fourth cache row, the magnetic updating algorithm can work on the data
in the third row, which was just read from the memories by the last READ. At

I II I I I

f

d

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 734

718 Chapter 32 • Finite Difference Time Domain

the same time, the electric updating algorithm can work on the first cache row,
which is two rows after the magnetic algorithm. Finally, WRITE also works on the
fourth row, sending out both calculation results from the electric and magnetic
updating algorithms. The four rows of field data roll over in the cache modules
until the entire model space is calculated. This 4-row cache module improves
the total computation time by a factor of almost 2, or (N +2)!(2N +2), by partially
parallelizing the electric and magnetic updating implementations.

Thus, the managed-cache module optimizes the design here in two ways:
(1) systemwide pipelining of the design dataflow, and (2) processing-level paral­
lelism of the electric and magnetic updating algorithms.

Expansion to three dimensions Here we expand the two-dimensional cache
module design to three dimensions. The memory interface and the cache mod­
ules are more complex in the three-dimensional FDTD hardware implementa­
tion, which handles many more data transfers and calculations. There are two
possible approaches for upgrading the cache module to three dimensional. The
first is a direct upgrade of the two-dimensional memory interface, as shown in
Figure 32.13. Instead of a 4-row cache module, we need to build a 4-slice cache
module. Here we READ one slice, CALCULATE one slice, and WRITE out one slice
of data at each time interval. However, a 4 x 100 x 100 cache module consumes
more than 1200 18-Kb BlockRAMs, which is over three times all the BlockRAMs
on the targeted Virtex-11 Pro XC2V70. This approach is not feasible for large
three-dimensional model spaces.

The second approach reduces the size of the cache module to 4 x 3 rows of
field data by cutting the model space into slices and then into rows. As shown
in Figure 32.14, the cache module reads three rows of field data at each time
interval, goes through the current vertical slice until it finishes, and then goes
to the next vertical slice in the model space. Instead of a 4-slice cache module,
we only need to build a 4 x 3 row cache module. This method minimizes Block­
RAM consumption; however, it sacrifices overall design speed to achieve larger
model space compatibility. We READ three rows of data at each time interval to
CALCULATE only one row of results. This is because we need the current row

Onboard
memory input

Cache module
BlockRAM input

Four slices of data:
READ one slice of data while CALCULATE one slice;
WRITE one slice of data at the same time

FIGURE 32.13 ■ A structural diagram of the 4-slice caching design.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 735

32.2 FDTD Hardware Design Case Study 719

Onboard
memory input Cache module

BlockRAM
input

4 x 3 rows of data:
READ approximately two rows
while CALCULATE one row

FIGURE 32.14 ■ A structural diagram of the 4x3 row caching module.

and adjacent two rows of data to calculate the current row's results. Because
only one row of results is calculated from the field-updating pipelines, the READ
process is longer than the CALCULATE and WRITE processes. At this point the
other two processes need to wait for the READ process.

This waiting process slows down hardware design. Fortunately, we do not
need to READ all three rows (45 data per cell) to start processing since
the field-updating algorithm only needs part of the data in adjacent rows.
We only need to READ approximately two rows of data (36 data per cell),
CALCULATE one row, and WRITE one row at each time interval. Due to the limited
number of BlockRAMs, the second approach is more practical. From the pre­
ceding analysis of the managed-cache modules, we conclude that the efficiency
of the memory interface plays a key role in the performance of the complete
FPGA design. The speed and manner in which the memory interface handles
the input data often limits the speed of the entire design.

Pipelining and parallelism
Given an efficient memory interface and proper fixed-point data representations,
the designer next needs to adjust the architecture and optimize design perfor­
mance by considering pipelining and parallelism.

As discussed before, we can implement the electric and magnetic updating
algorithms in parallel with the correct cache structure. We can also implement
the three key processes-READ, CALCULATE, and WRITE-in parallel by separating
the input and output memory interfaces and building dual-ported cache modules.
In hardware design, parallelism translates to faster speed; however, it also "costs"
more in hardware resources. The FDTD algorithm is large enough to reach the
resource limits of the most advanced FPGAs on the market. One of the important
problems in FDTD hardware design is determining the design architecture by
considering the trade-offs between resources and performance. The hardwa�.:
resource limit of each FPGA chip and computing board is different. The resource-

. performance trade-off analysis here is based on the targeted WildStar-11 Pro FPGA
computing board.

Pipelining The FDTD algorithm repeats the same electric and magnetic updating
algorithms, which are independent of each other, on every cell of the model

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 736

720 Chapter 32 ■ Finite Difference Time Domain

space. The algorithms can be implemented with complex combinational logic
with long delay. Building them with deep pipelining helps reduce the clock cycle
and increase the throughput of the hardware design. Because of the advantages,
we pipeline all the updating algorithms. The embedded multipliers, which are
the slowest components in the datapath, can also be pipelined to several stages to
reduce delay. Because the lengths of the electric and magnetic updating pipelines
are different, state machines are used to control the start and end of the pipelines
and to synchronize them.

Parallelism Because the updating calculations on every cell in the FDTD model
space are independent of each other, as long as there are adequate hardware
resources, the computation of two or more FDTD cells can be implemented in
parallel. However (see Section 32.2.3), the bandwidth of the memory interface
is the bottleneck of the FDTD hardware design. The memory data width here
is 3x72 bits, which can transfer six 35-bit field data inputs at each clock cycle.
This memory bandwidth needs 6 clock cycles to prepare one cell's 36 input data
when using the 4 x 3 row cache module. Can this memory interface handle the
increased parallelism?

Running two cells in parallel actually saves memory bandwidth per cell. As
shown in Figure 32.15, two adjacent FDTD cells share a portion of their nearest­
neighbor cells. For each single cell, we need to read three rows of data (36 field
data per cell) from the onboard memories, which is when running two cells in
parallel, we only need to read four rows of data, or 24 data per cell. Because
the bottleneck of the design is the memory bandwidth, the 2-cell parallelism
mechanism improves the performance of the whole design. We can use the ratio
between input data and result data as a metric to measure the efficiency of the
memory interface. After implementing 2-cell parallelism, the input-result ratio
decreases from 6:1 to 4:1.

Running two cells in parallel creates an extra burden on the cache size and
the calculation pipelines, however. The cache module needs to hold 4x4 rows
of data at the same time instead of 3x4 rows. Fortunately, the Virtex-11 Pro
XC2V70 FPGA has adequate BlockRAMs for the 4x4 row cache, but there is no
space for increasing the cache beyond this, which is why we choose not to run
three cells in parallel, even though this would further save memory bandwidth
per cell arid improve the input-result ratio.

FIGURE 32.15 ■ Running two cells in parallel.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 737

32.2 FDTD Hardware Design Case Study 721

Also, the Virtex-11 Pro FPGA XC2V70 does not have enough reconfigurable
logic to implement all the updating pipelines in parallel. Instead, because the
memory interface takes four clock cycles to transfer enough input data for one
cell's calculation, the number of parallel updating pipelines can be reduced. The
calculation core can run several updating algorithms serially in one updating
pipeline, taking more than one clock cycle to finish the calculation for one cell.
The serial calculation reduces the level of parallelism, saves reconfigurable logic,
and still maintains the performance of the hardware design.

Two hardware implementations The preceding input-result ratio is calculated
based on the input data needed for the uniaxial PML FDTD algorithm. This
algorithm .treats the whole model space as UPML cells and provides a uniform
structure for both the UPML cells and the non-UPML center cells, as shown in
Figure 32.16. However, the UPML FDTD algorithm requires nine extra field data
for each cell in the model space, which adds overhead to the memory interface.
The cells in the center of the model space that are not located in the UPML
layer can be calculated by the normal FDTD algorithm, which has only six field
data for each cell. Small modifications to the UPML updating pipelines can
make the new updating pipelines work on both the UPML cells and non-UPML
center cells.

Therefore, we can save memory bandwidth and memory space on the center
cells by combining the UPML and center cell algorithms in the hardware design.
The input-result ratio of a center cell is 3:1 and will be 2:1 after applying 2-cell
parallelism. For the normal model space, where half the cells are center cells
and the other half are UPML cells, the overall input-result ratio will decrease
to approximately (4:1 + 2:1)/2 = 3:1, raising the performance of the hardware
design.

UPMLcells

Center cells

FIGURE 32.16 ■ Uniaxial PML boundary condition cells and non-uniaxial PML center cells in
the model space.

' .

l _-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 738

722 Chapter 32 • Finite Difference Time Domain

We have two hardware implementations for the uniaxial PML FDTD algo­
rithm. The first implementation treats the whole model space as UPML cells,
with a simpler design structure and an input-result ratio of 4: 1. The second
implementation, which includes center cell and UPML cell calculations, has a
more complex memory interface and better performance (the input-result ratio
depends on the number of center cells and UPML cells).

The analysis of resources and performance trade-offs here is based on the
WildStar-11 Pro FPGA computing board. For other FPGA devices, the analysis
is similar. A wider onboard memory data width, which can ease the memory
bottleneck, will raise the design performance proportionally. A bigger FPGA chip,
which can hold larger cache modules and more updating pipelines, will speed
up the hardware design by calculating more cells in parallel.

32.2.4 Performance Results

A comparison of performance results for three-dimensional FDTD software and
hardware implementations is shown in Table 32.4. The sample model is a
50 x 50 x 50 three-dimensional uniaxial PML FDTD algorithm model with 500
timesteps of FDTD iteration. The fixed-point FDTD hardware design, which
treats all cells as UPML boundary cells, runs at 90 MHz on the WildStar-11 Pro
FPGA board. The UPML FDTD FPGA implementation is 16 times faster than
the floating-point Fortran software implementation running on a 3.0-GHz PC.
Hardware times are measured on the board and include the time to transfer data
between the FPGA board and the host PC at the start and end of computation.
The hardware design speedup can increase to 25 times with the implementation
that combines the center and UPML region. The Vrrtex-11 Pro XC2V70 FPGA chip
is almost fully utilized because the FDTD hardware design occupies 99 percent
of the reconfigurable slices, 51 percent of the BlockRAMs, and 46 percent of the
embedded multipliers. There are two Xilinx Virtex-11 Pro FPGAs on a WildStar-11
Pro FPGA board. Dual-FPGA parallel implementations of the FDTD algorithm
are expected to double the speedup.

TABLE 32.4 ■ Three-dimensional FDTD hardware implementation performance results

Software

floating-point Hardware Hardware Hardware

Fortran code fixed-point design fixed-point design fixed-point design

on 3.0 GHz PC running at 90 MHz running at 90 MHz running at 90 MHz

All cells as All cells as Combined center

center cells UPML boundary cells and UPML region

Runtime (sec) 49 1.59 2.985 1.89

Million 1.27 39.31 20.93 33.07
nodes/sec

Speedup 1 30.9 16.5 25.9

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 739

32.3 SUMMARY

32.3 Summary 723

Implementing the FDTD algorithm in hardware greatly increases its computa­
tional speed. The speedup is due to three major factors: fixed-point
representation, custom memory interface design, and pipelining and parallelism.
FDTD is a data-intense algorithm; the bottleneck of the hardware design is
its memory interface. With the limited bandwidth between the FPGA and data
memories, a carefully designed custom memory interface allows for full utiliza­
tion of the memory bandwidth and greatly improves performance. The FDTD
algorithm is also a computationally intense algorithm; by considering the trade­
offs between resources and performance, we implement as much pipelining and
parallelism as possible to speed up the design.

The FDTD algorithm is also a cellular automata, sharing a similar algorithmic
structure with many other CA problems. The hardware design techniques and
memory interface architecture presented in this chapter can be applied to a wide
range of other CA problems to achieve speedup on an FPGA and to provide fast,
small, low-power, and inexpensive implementations.

References

[1] K. S. Kunz, R. J. Luebbers. The Finite Difference Time Domain Method for Electro­
magnetics, CRC Press, 1993.

[2] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 2nd ed., Artech House, 2000.

[3] A. Taflove. Advances in Computational Electrodynamics: The Finite-Difference Time­
Domain Method, Artech House, 1998.

[4] K. Yee. Numerical solution of initial boundary value problems involving Maxwell's
equations in isotropic media. IEEE Transactions on Antennas and Propagation
16, 1966.

[5] J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of
electromagnetic waves. Journal of Computational Physics 127, 1996.

[6] A. Taflove. Reinventing electromagnetics: Emerging applications for FD-TD com­
putation. IEEE Computational Science and Engineering 2(4), 1995.

[7] B. Yang, C. Rappaport. Response of realistic soil for GPR applications with
two-dimensional FDTD. IEEE Transactions on Geoscience and Remote Sensing,
June 2001.

[8] P. Kosmas, Y. Wang, C. Rappaport. Three-dimensional FDTD model for GPR detec­
tion of objects buried in realistic dispersive soil. SPIE Proceedings 4742, April 2002.

[9] P. Kosmas, C. Rappaport. Modeling with the FDTD method for microwave breast
cancer detection. IEEE Transactions on Microwave Theory and Technology 52(8),
2004.

[10] P. Kosmas, C. Rappaport. Use of the FDTD method for time reversal: Application
to microwave breast cancer detection. SPIE Proceedings Computational Imaginary
5299, 2004.

[11] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,
2004.

[12] Annapolis Micro Systems. WildStar-II Hardware Reference Manual, 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 740

EVOLVABLE FPGAs

Andres Upegui, Eduardo Sanchez
School of Computer and Communication Sciences
Ecole Polytechnique Federale de Lausanne

CH APTER 33

Reconfigurable and Embedded Digital Systems Institute
Haute Ecole d'Ingenierie et de Gestion du Canton de Vaud

One of the main advantages of living beings over engineered computing systems
is their capacity to adapt. While computers are tied to a fixed architecture prede­
fined at design time, the human brain exhibits an impressive structural plasticity
whereby interconnections are constantly being reinforced or destroyed according
to environmental interactions. This and other comparisons between computers
and living beings have given rise to what we know today as bioinspired hardware
design.

Evolvable hardware is a bioinspired technique that has enjoyed impressive
growth during the last decade. In 1993 Higuchi et al. and de Garis proposed
an analogy between living beings and programmable hardware devices [1,2]: In
both cases specification of the system is by means of a finite string of symbols.
In the case of living beings, DNA determines how the organism develops into its
final phenotypic representation; in programmable hardware devices, a configura­
tion bitstream drives behavior. This parallel suggests the utilization of so-called
evolutionary algorithms in the design of hardware systems.

33.1 THE POE MODEL OF BIOINSPIRED DESIGN METHODOLOGIES

Living organisms, from microscopic bacteria to giant sequoias, including animals
such as butterflies and humans, have successfully survived on Earth for
millions of years. If we had to propose but one key to explain this success, it
certainly would be adaptation. In contrast with nature, adaptation has been very
elusive to human technology. The model examples of adaptive systems are not
among human's creations but among nature's-natural organisms show a strik­
ing capacity to adapt to changing circumstances, thus ensuring their continued
functionality.

During the last few years, computer scientists, inspired by certain biological
processes, have given birth to domains such as artificial neural networks and
evolutionary computation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 741

726 Chapter 33 • Evolvable FPGAs

Living organisms are complex systems exhibiting a range of desirable
characteristics, such as evolution, adaptation, and fault tolerance, which have
proved difficult to realize using traditional engineering methodologies. Such sys­
tems are characterized by a genetic program-the genome-that guides their
development, their functioning, and their death. If one considers life on Earth
from its very beginning, the following three levels of organization can be
distinguished [3].

Phylogeny: The first level is the temporal evolution of the genetic program, the
hallmark of which is the evolution of species, or phylogeny. The multipli­
cation of living organisms is based on the reproduction of the program,
subject to an extremely low error rate at the individual level to ensure that
the species of the offspring remains unchanged. Mutation (asexual repro­
duction) or mutation with recombination (sexual reproduction) gives rise
to new organisms. The phylogenetic mechanisms are fundamentally non­
deterministic, with the mutation and recombination rate providing a major
source of diversity. This diversity is indispensable for the survival of living
species, for their continuous adaptation to a changing environment, and
for the appearance of new species.

Ontogeny: This level constitutes the developmental process of multicellular
organisms. The successive divisions of the mother cell, the zygote, into
newly formed cells, each possessing a copy of the original genome, is fol­
lowed by a specialization of the daughter cells in accordance with their
surroundings (i.e., their--position within the ensemble). This latter phase
is known as cellular differentiation. The ontogenetic process is essen­
tially deterministic: An error in a single base within the genome can
provoke an ontogenetic sequence that results in notable, possibly lethal,
malformations.

Epigenesis: The ontogenetic program is limited in the amount of information
it can store, rendering the complete specification of the organism impos­
sible. A well-known example is the human brain, whose some 1010 neu­
rons and 1014 connections are far too many to be completely specified in
the 4-character genome with a length of approximately 3 x 109 • Therefore,
when a certain level of complexity is reached, there must emerge a different
process that permits the individual to integrate its vast quantity of interac­
tions with the outside world. This is known as epigenesis, which primarily
includes the nervous, immune, and endocrine systems. These systems are
characterized by a basic structure that is entirely defined by the genome
(the innate part), which is then subjected to modification through the indi­
vidual's lifetime interactions with the environment (the acquired part).
The epigenetic processes can be grouped under the heading of learning
systems.

Analogous to nature, the space of bio-inspired hardware systems can be
partitioned along the phylogenic, ontogenic, and epigenetic axes; we refer to this
as the POE model [3, 4]. The distinction between the axes cannot be easily drawn

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 742

33.2 Artificial Evolution 727

where nature is concerned. We therefore define each axis within the model's
framework as follows:

■ The phylogenetic axis involves evolution.
■ The ontogenetic axis involves the development of a single individual

from its own genetic material, essentially without environmental
interactions.

■ The epigenetic axis involves learning through environmental interactions
that take place after the individual is formed.

As an example, consider the following three paradigms, whose hardware imple­
mentations can be positioned along the POE axes:

■ P-evolutionary algorithms are the simplified artificial counterpart of
phylogeny.

■ 0-self-replicating and self-repairing cellular automata are based on the
concept of ontogeny, where a single mother cell gives rise through
multiple divisions to a multicellular organism.

■ £-artificial neural networks embody the epigenetic process, where the
system's synaptic weights and perhaps topological structure change
through interactions with the environment.

The domains collectively referred to as soft computing [SJ often involve the
solution of ill-defined problems coupled with the need for continual adaptation
or evolution. The paradigms listed yield impressive results, frequently rivaling
those of traditional methods.

We will talk about the phylogenetic axis of hardware bio-inspired systems,
most known as evolvable hardware (EHW). The scope of EHW covers diverse
areas ranging from analog circuits to antenna design, but this chapter focuses
on evolution of digital circuits using reconfigurable computing devices, more
precisely, field-programmable gate arrays (FPGAs).

33.2 ARTIFICIAL EVOLUTION

The idea of applying the biological principle of natural evolution to artificial sys­
tems, introduced more than three decades ago, has seen impressive growth in the
past few years. Usually grouped under the term evolutionary algorithms (EAs) or
evolutionary computation, we find the domains of genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming [6-9].

33.2.1 Genetic Algorithms

As a generic example of artificial evolution, we consider genetic algorithms
(GAs) [10]. As illustrated in Figure 33.1, a GA is an iterative procedure applied to
a constant-size population of individuals. Each individual represents a possible

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 743

728 Chapter 33 ■ Evolvable FPGAs

Initialize random
population

(1)

00100101110
10101101010
01010101110
00101011101

00101101000
00010111100

Population
of genomes

(5)

011101 11110
001001 011!l()

�ecodin�

(2)

(Crossover)

FIGURE 33.1 ■ A genetic algorithm.

011101011go
00100111110
00101011101
001101og110
01101011101
0001og11100

Evaluation

���(;;)! "'�0.43111. �0.72

(3)

111.� 0.21,l.� 0.54

(Mutation)

(4b)

(Selection)
(4a)

01010101110
00100101110
00101011101
00100101110
00101011101
00010111100

solution to the given problem, and eventually one is chosen as the searched
solution.

Each individual is coded by a finite string of symbols from a given alphabet,
known as the genome. Each genome gives rise to the individual's phenotype,
which constitutes the actual solution (a program or a circuit) to the problem
at hand (e.g., a robot controller for the example in Figure 33.1). The individual
receives a score (better known as fitness) depending on the performance exhib­
ited during its evaluation. The process from the genome to a fitness value can
be seen as an n-dimensional function (where n is the genome size), and the set
of all possible solutions can be seen as an n-dimensional search space.

A GA can be summarized in the following steps:

1. Initialization: Create an initial population of individuals by defining a
set of genomes in a random or heuristic manner.

2. Decoding: Generate the phenotypes for the individuals in the current
population by decoding (mapping) the genotypes.

3. Fitness evaluation: Evaluate individuals according to some predefined
quality criterion, referred to as fitness or fitness function.

4. Genetic operators: Apply genetically inspired operators to the current
population:

(a) Selection: Individuals are selected into a mating pool for repro­
duction according to their fitness. With stochastic or deterministic

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 744

33.3 Evolvable Hardware 729

selection mechanisms, the fittest individuals have more chances to
transmit their genetic material to the next generation.

(b) Mutation: The genome is randomly changed; and
(c) Crossover: Two genomes are selected to be split and swapped at a

random position.
5. If a predefined convergence condition has not been met, go back to step 2

to evaluate a new generation. Otherwise, deliver the best individual
evaluated.

The basic components of GAs are always the same: a population of individu­
als, a decoding mechanism from a genotype to a phenotype, a fitness evaluation,
genetic operators, and an iterative process. However, GAs allow variants: There
exist several methods for defining each of the steps just listed. By running a
large enough number of generations, the GA should eventually find an accept­
able solution (i.e., one with high fitness).

EAs can be considered as a family of stochastic global optimization algo­
rithms, mainly differing from their deterministic counterparts [11] by the lower
knowledge of the problem they require and by the absence of mathematical
proofs of convergence due to their stochastic nature. For highly nonlinear search
spaces, EAs have exhibited faster convergence than deterministic methods, given
their population-based approach. In most cases, the applications solved by EAs
can also be tackled with deterministic optimization methods.

EAs are very common, having been successfully applied to numerous pro­
blems from domains as diverse as optimization, circuit design, disease diagnosis
assistance, precision agriculture, self-organizing systems, automatic program­
ming, machine learning, economics, immune systems, ecology, population
genetics, studies of evolution and learning, and social systems [9].

33.3 EVOLVABLE HARDWARE

In the case of humans, adaptation due to evolution comes about through mod­
ifications in our DNA (deoxyribonucleic acid), which constitutes the encoding
of every living being on Earth. DNA is a double-stranded molecule composed
of two sugar-phosphate chains linked together by pairs of the bases adenine,
cytocine, guanine, and thymine, constituting a string of symbols from a qua­
ternary alphabet (A, C, G, T). Similarly, reconfigurable logic devices are con­
figured by a string of symbols (the configuration bitstream) from a binary
alphabet (O, 1). This string determines the function implemented by each of
the programmable components and the connectionism of each of the switch
matrices.

With this description, a rough analogy arises naturally between DNA and a
configuration bitstream and between a living being and a circuit (Figure 33.2).
In both cases there is a mapping from a string representation to an entity that
will perform one or more actions: growing, moving, reproducing, and so forth,
for living beings; computing a function for circuits.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 745

730 Chapter 33 • Evolvable FPGAs

Genotype

T

Genotype

101010001100101101

Circuit on an FPGA

FIGURE 33.2 ■ The analogy between living beings and digital circuits.

Genotype Genotype

(a) (b)

After

several
generations

Genotype

Phenotype

(c)

FIGURE 33.3 ■ The evolutionary design of digital circuits: (a) intial random circuit, (b) intermediate circuit,
and (c) final circuit.

This analogy between living beings and digital circuits suggests the possibility
of applying the principles of artificial evolution to circuit design (Figure 33.3).
Designing analog and digital electrical circuits is, by tradition, a hard engineer­
ing task vulnerable to human error, and for large circuits the optimality of a solu­
tion cannot be guaranteed. Design automation has become a challenge for tool
designers, and given the increasing complexity of circuits, higher abstraction
levels are needed. Evolvable hardware arises as a promising solution to this

■ Phenotype

001110100110100101 After 0010010111101010010 l 101010001100101101 I
several :::::..m;

~~~~~ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 746



33.3 Evolvable Hardware 731 

problem: From a given behavior specification of a circuit, an EA will search for 
a bitstream describing a circuit that satisfies it. 

If we carefully examine the EHW work carried out to date, it becomes evident 
that it mostly involves the application of EAs to the synthesis of digital systems 
[12-23]. From this perspective, EHW is simply a subdomain of artificial evolu­
tion, where the final goal is the synthesis of an electronic circuit. The work of 
Koza [8], which includes the application of genetic programming to the evolu­
tion of a 3-variable multiplexer and a 2-bit adder, may be considered an early 
precursor along this line. It should be noted that, in Koza's time, the main goal 
was to demonstrate the capabilities of the genetic programming methodology 
rather than to design actual circuits. We argue that the term evolutionary circuit 
design would be more descriptive of such work than the term evolvable hard­
ware [24]. For now, we will stay with the latter (popular) term; however, we will 
return to the issue of definitions in Section 33.4. 

Taken as a design methodology, EHW offers a major advantage over classical 
methods. The designer's job is reduced to constructing the evolutionary setup, 
which involves specifying the circuit requirements, the basic elements, a deco­
ding mechanism, and the testing scheme used to assign fitness (this last phase 
is often the most difficult). If the setup has been well designed, evolution may 
then (automatically) generate the desired circuit. Currently, most evolved digi­
tal designs are suboptimal with respect to traditional methodologies; however, 
improved results are regularly demonstrated. 

There are two critical questions to ask when setting up a system to be evolved: 
how to map a phenotype from a genotype and how to compute the fitness of a 
circuit. The answers to these questions are critical and can make the difference 
between a successful and an unsuccessful evolution. 

33.3.1 Genome Encoding 

In examining the EHW work carried out to date, we can derive a classification of 
current EHW in accordance with genome encoding (i.e., the circuit description) 
and the calculation of a circuit's fitness. 

High-level languages 
Using a high-level functional language to encode the evolving population implies 
an additional step to obtain the final circuit implementation: The chosen indi­
vidual must be synthesized. Koza's evolved solution [8] was a program that 
described the (desired) multiplexer or adder rather than an interconnection 
diagram of logic elements (the actual hardware representation). Mermoud 
et al. [25] used fuzzy rules as evolvable components, and Murakawa et al. [26] 
and Upegui et al. [27] proposed the evolution of artificial neural network 
topologies at the neuron and layer levels. Hemmi et al. [28] used a high-level 
HDL to represent the genomes. Koza et al. [29] used the rewriting operator, in 
addition to crossover and mutation, to form a hierarchical structure. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 747



732 Chapter 33 ■ Evolvable FPGAs 

Low-level languages 
The idea of directly incorporating the bit string representing the configuration of 
a programmable circuit within the genome was presented early on by Atmar [30] 
and more recently by Higuchi et al. [1] and de Garis [2]. As a first step, a set of 
basic logic gates must be chosen (e.g., AND, OR, and NOT) and suitably codified, 
along with the interconnections between gates, to produce the genome encoding. 
For example, Higuchi et al. [31] used a low-level bit-string representation of 
the system's logic diagram to describe small-scale programmable array logics 
(PALs), where the circuit is restricted to a logic sum of products. The limitations 
of PAL circuits have been overcome to a large extent by the introduction of 
FPGAs, as used initially by Thompson [32,33] and later by a number of research 
groups. 

The use of a low-level circuit description that requires no further transforma­
tion is an important step forward because it potentially enabled the placing of 
the genome directly into the actual circuit and thus paved the way toward true 
EHW (we will elaborate on this in Section 33.4). However, FPGAs presented two 
major problems: (1) The genome's length was on the order of tens of thousands 
of bits, rendering evolution practically impossible using current technology, and 
(2) within the circuit space, consisting of all representable circuits, many circuits
were invalid.

With the introduction of the Xilinx XC6200 [34] family of FPGAs, these 
problems were reduced. As with previous FPGA families, there was a direct 
correspondence between the bit string of a cell and the actual logic circuit; 
however, because the XC6200 was completely multiplexer based, the result was 
always a viable system with no short circuits. Moreover, as opposed to previ­
ous FPGAs where the entire system had to be configured, the XC6200 family 
permitted the separate configuration of each cell, which was markedly faster 
and more flexible. Thompson [32] employed this feature to reduce the genome's 
size, although he did not introduce real-time, partial system reconfigur­
ations. Unfortunately, the XC6200 was discontinued after a few years; however, 
the results achieved by directly evolving its bitstream led to increased visibility 
for the EHW community and made possible the growth of this research field. 

Fitness calculation 
Note the following with regard to calculations for fitness with evolvable 
hardware. 

■ Off-chip. The use of a high-level language for genome representation
means that we have to transform the encoded system to evaluate its
fitness. This is usually carried out by simulation, and only the final
solution found by evolution is actually implemented in hardware.

■ On-chip. As noted previously, the low-level genome representation enables
a direct configuration (and reconfiguration) of the circuit, which leads
to the possibility of using real hardware during the evolutionary process.
An example of on-chip fitness calculation is presented in the next section
in the form of an intrinsic evolvable system.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 748



33.4 Evolvable Hardware: A Taxonomy 733 

33.4 EVOLVABLE HARDWARE: A TAXONOMY 

In EHW, the phylogenetic axis admits four qualitative subdivisions of evolution 
(Figure 33.4) according to the level of bio-inspiration: extrinsic, intrinsic, com­
plete, and open ended. 

33.4.1 Extrinsic Evolution 

At the bottom of this axis, we find what is in essence evolutionary circuit design, 
where all operations are carried out in software, and the resulting solution may 
be loaded onto a real circuit. Though a potentially useful design methodology, 
this falls completely within the realm of traditional evolutionary techniques. 
This category is also widely known as extrinsic EHW. 

Extrinsic EHW has typically targeted the synthesis of circuits-that is, from 
a desired behavior specification, an EA finds a schematic of a circuit imple­
menting a function that satisfies the specification [29]. This category supports 
different levels of abstraction, allowing to evolve logical gates, arithmetic opera­
tions, more complex functional blocks, or HDL code; however, it is not suited for 
evolving circuits at the bitstream level. Evolution has also been used in other 
extrinsic aspects of circuit design such as placement and routing [35, 36] and 
scheduling and allocation [37]. 

>, 
C: 
Q) 
Cl 
0 

Open-ended evolution 

Complete evolution 

Intrinsic evolution 

Extrinsic evolution 

Ontogeny 

FIGURE 33.4 ■ The divisions of phylogenetic hardware. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 749



734 Chapter 33 • Evolvable FPGAs 

33.4.2 Intrinsic Evolution 

Moving upward along the axis, we find research in which a real circuit is used 
during the evolutionary process for fitness computation, although most opera­
tions are still carried out offline, in software, as depicted in Figure 33.5. 

The very first intrinsic evolution was reported by Thompson [32]. He evolved 
a section of an XC6216 FPGA, consisting of l0x 10 cells (the full array size 
was 64 x 64), to discriminate between square waves of 1 kHz and 10 kHz pre­
sented as inputs. His complete system setup is depicted in Figure 33.6 (see 
Thompson [33]). From a PC, he configured the FPGA with a configuration bit­
stream generated by a GA, which used a genome of 1800 bits (18 configuration 
bits per cell) to represent a possible circuit. Then the individual's fitness was 
automatically evaluated as follows: 

1. The tone generator, driven by the PC, presented five bursts each of both
waves (1 kHz and 10 kHz) to the circuit. The analog integrator was reset
before the generation of each burst, and it then integrated the circuit's
output during the presentation of the burst.

2. Back in the PC, the individual's fitness was computed by a function
aiming to maximize the difference between the average output voltages
when presenting both waves.

3. After running the experiment for 2 to 3 weeks, during which 5000
generations of 50 individuals were evaluated, the resulting circuit
achieved successful discrimination of the waves. However, the perfect
desired behavior was obtained around generation 4100.

In another interesting project, Thompson et al. [38] evolved a hardware con­
troller for a two-wheeled autonomous mobile robot that was required to display 
simple wall avoidance behavior in an empty rectangular arena. 

A very important aspect of Thompson's work is the unconstrained use of hard­
ware. Conventional (human) design requires that constraints be applied to the 
circuit's spatial structure and dynamic behavior, but evolution can do away with 

EA execution + 
Fitness computation Genotype = 

configuration bitstream 

101010001100101101 

� Results 
�.-------------' 

FIGURE 33.5 ■ Intrinsic evolution. 

Phenotype = FPGA circuit 

□□ 
□□□□□□□□ 
□□□□□□□□ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 750



Output 
(to oscilloscope) 

33.4 Evolvable Hardware: A Taxonomy 735 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

XC6216 FPGA 

Analog 
integrator 

Tone 
generator 

Desktop 
PC 

FIGURE 33.6 ■ Adrian Thompson's intrinsic evolvable system setup. 

these. The circuits evolved by Thompson [33, 38] and Ly and Mowchenko [37] 
had no enforced spatial structure (e.g., limitations on recurrent connections), no 
impositions upon modularity, and no dynamic constraints such as a synchroniz­
ing clock or handshaking between modules. Unconstrained circuit design can 
better exploit the dynamics of the circuit supporting it; however, such circuits 
exhibit two main drawbacks. One is the impossibility of reproducing a solu­
tion: The same bitstream does not behave in the same manner in two different 
devices. The other is the circuit's high sensitivity to external conditions: Slight 
temperature changes can modify its behavior. 

Two more examples from this subdivision of the phylogenetic axis are the 
works of Murakawa et al. [39] and Iwata et al. [ 40]. One of the major obstacles 
these researchers hoped to overcome was large genome size ( defining the FPGA' s 
full configuration). They suggested two solutions: 

1. Variable-length chromosome GAs (VGA), where the genome does not
directly represent the configuration bit string but rather codifies the
possible logical operations and interconnections [ 40].

2. Evolution at the function level, where the basic units are not elementary
logic gates (e.g., AND, OR, and NOT) but rather higher-level functions
(e.g., sine-wave generator, multiplier) [39].

Because no such commercial FPGA currently exists, Murakawa and Iwata and 
their colleagues proposed a novel architecture, dubbed F2PGA (function-based 
FPGA). 

It is important to note that while experiments of the above type have been 
referred to by some as intrinsic evolution, they have a prominent extrinsic aspect 
because the population is stored in an external computer, which also controls 
the evolutionary process. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 751



736 Chapter 33 • Evolvable FPGAs 

33.4.3 Complete Evolution 

Still further along the phylogenetic axis, we find systems in which all operations 
(selection, crossover, mutation), as well as fitness evaluation, are carried out 
intrinsically, in hardware (Figure 33.7). This category, called complete evolution 
by Haddow and Tufte [41], has as its main motivation attaining adaptive systems 
that are able to accomplish difficult tasks, possibly involving real-time behavior 
in a complex, dynamic environment. The major aspect missing here, compared 
with biological evolution, is that the evolution is not open ended (i.e., there is a 
predefined goal and no dynamic environment to speak of). 

Within the category of complete evolution, we find two subdivisions: 
centralized and population oriented. 

Centralized evolution 

The main characteristic of centralized evolution is the existence of a single evolv­
able circuit and a single evolvable algorithm computation (Figure 33.7(a)). With 
this approach an on-chip genetic machine, a hardwired EA, is implemented. 
The approach also comprises implementations where the EA is executed in 
an on-chip processor. Centralized evolution holds special interest because it 
greatly enhances the autonomy of the circuit, allowing the EHW to adapt to 
a changing environment during its lifetime. Implementations of EAs in general­
purpose processors, in spite of their lower performance compared to their fully 
hardwired counterparts, exhibit several important advantages that permit them 
to benefit from a more general framework: They provide a more user-friendly 
interface for implementing chromosome manipulations, fitness evaluations, and 
memory access; they support easier algorithm upgrades; and they enhance the 
possibilities of immediately using the evolving circuit for useful computations. 

FPGA 

EA + fitness computation 
(specialized or general-purpose 

processor) 

Phenotype (P) 

(a) 

FPGA 

p p 

(b) 

FIGURE 33.7 ■ Complete evolution: centralized (al and population oriented (b). 

p 
Genotype (G) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 752



33.4 Evolvable Hardware: A Taxonomy 737 

One example of a self-reconfigurable platform that performs online and on-chip 
evolution is that of Upegui and Sanchez [ 42, 43]. Their standalone platform 
consists of a MicroBlaze processor with memory access control, ICAP (internal 
configuration access port) access, and a reconfigurable evolvable section, as 
depicted in Figure 33.8. The full system, implemented in a Virtex-11 FPGA, 
runs an EA on the MicroBlaze processor, reads a section of the configuration 
bitstream through the ICAP, modifies the bitstream according to the genome 
currently evaluated in the MicroBlaze, sends back the bitstream though the ICAP 
for partially reconfiguring the FPGA, and evaluates the fitness of the current 
individual by interacting with the reconfigurable evolvable section through the 
standard OPB bus. Upegui and Sanchez [ 42] evolve nonuniform cellular rules 
and FPGA lookup table (LUT) configurations with fixed interconnectivity. In 
Upegui and Sanchez [ 43], Boolean networks are evolved as well, but in this case 
the interconnectivity is not fixed, so the system topology is also driven by the 
evolutionary algorithm. 

Other interesting experiments were carried out by Haddow and Tufte [41] in 
which a hardware implementation of a GA, the "GA pipeline," evolves a robot 
controller. Glette and Torresen [ 44] report the implementation of a GA on an 
embedded PowerPC processor in a Virtex-11 Pro FPGA that evolves a circuit in 
the same FPGA. 

Population-oriented evolution 
A hardware implementation of the full population, not only of one individual (as 
was the case in previous categories), is the distinctive feature of the population­
oriented approach (Figure 33.7(b)). A significant example is the work of Goeke 
et al. [ 45], where an evolving cellular system was implemented in which 
evolution takes place completely on-chip. This system is based on the cellu­
lar automata model-a discrete dynamic system that performs computations in 

Mic rob laze 
core 

OPB bus 

LMB bus ::E 
<( 
a: 
al 

FIGURE 33.8 ■ The setup of a complete and centralized self-reconfigurable evolvable platform. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 753



738 Chapter 33 • Evolvable FPGAs 

a distributed fashion on a spatially extended grid. A cellular automaton consists 
of an array of cells, each of which can be in one of a finite number of possible 
states, updated synchronously in discrete timesteps according to a local, identi­
cal interaction rule [ 46]. The state of a cell at the next timestep is determined 
by the current state of a surrounding neighborhood of cells. This transition is 
usually specified in the form of a rule table, which delineates the cell's next 
state for each possible neighborhood configuration. The cellular array (grid) is 
n-dimensional, where typically n = 1, 2, 3. Nonuniform cellular automata have
also been considered in which the local update rule need not be identical for all
grid cells [ 4 7].

Based on the cellular programming EA of Sipper [47], Goeke et al. [45] 
implemented an evolving, one-dimensional, nonuniform cellular automaton. 
The main feature of the cellular programming algorithm is the fact that genetic 
operators are computed in a distributed way: Each automaton modifies its own 
rule based on its own and its neighbors' fitness. Each of the system's 56 binary­
state cells contains a genome that represents its rule table. These genomes are 
initialized at random and then are subjected to evolution. 

The environment imposed on the system specifies the resolution of a global 
synchronization task: On presentation of a random initial configuration of cel­
lular states, the system must reach, after a bounded number of timesteps, a 
configuration for which the states of the cells oscillate between all zeros and 
all ones on successive timesteps. This may be compared to a swarm of fireflies, 
thousands of which may flash on and off in unison, having started from totally 
uncoordinated flickerings. Each insect has its own rhythm, which changes only 
through local interactions with its neighbors'. Because of the local connectivity 
of the system, this global behavior, which involves the entire grid, makes for a 
difficult task. Nonetheless, applying the evolutionary process of Sipper [47], the 
system evolves (i.e., the genomes change) such that the task is completed. 

The evolving cellular system described here exhibits complete on-chip evo­
lution in that all operations are performed in hardware in a distributed 
population-based manner with no reference to an external computer. 

33.4.4 Open-ended Evolution 

The last subdivision, situated at the top of the phylogenetic axis, involves a popu­
lation of hardware entities evolving in an open-ended environment. When the 
fitness criterion is imposed by the user in accordance with the task to be per­
formed (currently the rule with artificial evolution techniques), we attain a form 
of guided, or directed, evolution. This is to be contrasted with the open-ended 
evolution that occurs in nature, which admits no externally imposed fitness cri­
terion but rather an implicit, emergent, dynamic one (which can arguably be 
summed up as reproducibility). Open-ended undirected evolution is the only 
form of evolution known to produce such devices as eyes, wings, and nervous 
systems and to give rise to the formation of species. Undirectedness may have to 
be applied to artificial evolution if we want to observe the emergence of comp­
letely novel systems. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 754



33.5 Evolvable Hardware Digital Platforms 739 

We argue that only open-ended evolution can be truly considered EHW, which 
is still an elusive goal at present. We point out that a more correct term would 
probably be evolving hardware. A natural application area for such systems is the 
field of autonomous robots-that is, machines capable of operating in unknown 
environments without human intervention [ 48]. Specifically, collective robotics 
exhibits a population of individuals interacting in a common environment, in 
which they can learn to cooperate or to compete for achieving their goals [ 49]. 
In their interactions the individuals exhibit a high level of emergence as a first 
step to open endedness. Modular robotics, a subtype of collective robotics, also 
offers a promising open-ended real environment. 

A modular robotic platform well suited for evolving distributed hardware 
is YaMoR. This is a modular robot composed of mechanically homogeneous 
modules [SO], each of which contains an FPGA-based system that allows wire­
less FPGA configuration and on-board self-reconfiguration. Another interesting 
example is what we call Hard-Tierra. This involves the hardware implementation 
(e.g., FPGA circuits) of the Tierra "world," which consists of an open-ended envi­
ronment of evolving computer programs [51]. Hard-Tierra is important because 
it demonstrates that open-endedness does not necessarily imply a real, biological 
environment. 

33.5 EVOLVABLE HARDWARE DIGITAL PLATFORMS 

The hardware substrate that supports evolution is one of the most important 
initial decisions to make when evolving hardware. The hardware architecture is 
closely related to the type of solution being evolved. Hardware platforms usually 
have a cellular structure composed of uniform or nonuniform components. In 
some cases, we can evolve the components' functionality; in others, the connec­
tivity; or sometimes both, with the most powerful ones. FPGAs fit well into this 
third category because they are composed of configurable logic elements inter­
connected by configurable switch matrices. FPGA configuration is contained in 
a configuration bitstream, which holds every function and switch position to 
be configured for implementing a given design. Current FPGAs allow the pro­
cessing of partial bitstreams, reconfiguring just a sector of the FPGA while the 
remaining logic stays the same. 

When evolving a circuit on an FPGA, we consider the logic cell as the basic 
element. The logic cells' configuration and their interconnectivity are defined 
by the evolution. However, this implies a huge search space to explore and can 
prevent the EA from finding a solution. A common technique to constrain the 
search space is to define a basic block as a set of logic cells. In this way each 
basic block can be an artificial neuron, a fuzzy rule, or a more complex cell in 
general. Another option is to constrain the connectionism, using layered archi­
tectures, to a certain neighborhood, or by just defining it as fixed. 

The most basic requirement when evolving hardware is to have a set of high­
or low-level evolvable components and a hardware substrate supporting them. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 755



740 Chapter 33 ■ Evolvable FPGAs 

These evolvable components are the basic elements from which the evolved 
circuits will be built (transistors, logic gates, arithmetic functions, functional 
cells, etc.), and the evolvable substrate must be a flexible hardware platform that 
allows arbitrary configurations mapped from a genome. FPGAs constitute the 
perfect hardware substrate, given their connectivity and functional flexibility. 
The evolvable substrate can be implemented using one of two main techniques: 
(1) exploiting the flexibility provided by the FPGA's configuration logic and
(2) building a virtual flexible substrate on top of the logic.

In the first approach the configuration bitstream of the FPGA is directly gene­
rated. In this way, we can make better use of FPGA resources-logic functions 
are directly mapped into the FPGAs LUTs, and connections are directly mapped 
to routing switch matrices and multiplexers-but the penalty is very low-level 
circuit descriptions [33, 38, 52]. In the second approach a virtual reconfigurable 
circuit is built on top of the actual circuit [53]. In this way the designer can also 
define the configuration bitstream and determine which features of the circuit 
to evolve. This approach has been widely used by several groups, as it produces 
enhanced flexibility and ease of implementation. The penalty here is the cost of 
an inefficient use of logic resources [25, 27, 42, 45, 53-60]. 

Different custom chips have been proposed for this purpose with very 
interesting results: The main interest in proposing an architecture is that 
commercial FPGAs are designed for general-purpose applications, so they do 
not necessarily fit the requirements for evolvable architectures. For example, 
commercial devices may have illegal configurations that cause short circuits; 
this is reasonable for standard FPGA users who rely on the CAD flow to create 
the design, but it can be disastrous for genetically evolved bitstreams. Custom 
evolvable chips generally provide dynamic and partial reconfiguration, contain 
multi-context configuration memories, and can be configured with arbitrary bit­
streams. However, although the custom chips are better suited to EHW appli­
cations, the commodity devices benefit from economies of scale and access to 
more advanced fabrication processes. 

Different chips and platforms have been developed to provide the flexibility 
necessary for evolving analog, digital, and mixed circuits; some of them have 
been designed specifically for EHW, while for others EHW is just another appli­
cation field. Among them we find different levels of granularity, different types 
of reconfiguration including dynamic and static reconfigurations, and the possi­
bility of loading partial configuration bitstreams, and the utilization of context 
memories. 

33.5.1 Xilinx XC6200 Family 

The obsolete Xilinx XC6200 family [61] deserves a special mention in a 
discussion of EHW platforms. For several years, the XC6200 family constituted 
the perfect platform for intrinsic EHW, because it made possible downloading 
any arbitrary bitstream without risking contention given its multiplexer-based 
connection architecture. It also allowed dynamic reconfiguration, making it 
more flexible for adaptive algorithms in a general sense. The results reported 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 756



33.5 Evolvable Hardware Digital Platforms 741 

by Thompson [32, 33, 38, 62], discussed previously, are a very good example of 
the XC6200's potential for evolving circuits. 

The XC6200 represents an important initial stepping-stone in the EHW field. 
It has also been used for implementing several types of applications, among 
them cooperative robot controllers [63], sorting networks [64], and image­
processing algorithms [65]. 

33.5.2 Evolution on Commercial FPGAs 

After the XC6200 disappeared, many research groups turned to the Xilinx 
XC4000 family. However, these FPGAs had an important drawback for evolving 
hardware: They were not partially reconfigurable, and no arbitrary bitstreams 
were allowed. When the Virtex FPGAs appeared, they exhibited two well­
appreciated features for the EHW community: partial and dynamic recon­
figuration. However, not all the evolution-friendly features from the XC6200 
were kept. Specifically, the connection mechanism does not support arbit­
rary bitstreams, making these FPGAs susceptible to damage by internal short 
circuits. 

Recent work on evolvable circuits in commercial FPGAs has focused on the 
Virtex and Virtex-11 architectures from Xilinx [66] and will extend its focus to 
Virtex-4 in the near future. Two main approaches have been used for evolving Vir­
tex circuits: using virtual reconfigurable circuits [67] and partially reconfiguring 
the FPGA. 

Vn1ual reconfiguration

Two solutions were used in order to replace the obsolete XC6200 fam­
ily: implementing an ASIC evolvable circuit ( only achievable by some priv­
ileged groups, summarized in Section 33.5.3) and building a reconfigurable 
circuit on top of another reconfigurable circuit (i.e., a virtual reconfigu­
rable device [53]). The concept of a virtual reconfigurable circuit is depicted 
in Figure 33.9, where a reconfigurable neuron cell constitutes the device's basic 
logic cell. 

In the beginning, the most intuitive method was to reconstruct the XC6200 
architecture. At the University of York, a virtual XC6200 CLB was implemented 
in Vrrtex FPGAs [68, 69]. Slorach and Sharman [54] also used virtual XC6200 
cells in the Xilinx XC4010 and Altera EPF6010A, evolving configuration bit­
streams that configured not the FPGA itself but the virtual XC6200 CLBs. After­
ward, other research groups developed different reconfigurable architectures 
with enhanced features, several of which had the goals of flexibility and easy 
reconfiguration [54-59, 70-72]. For example, Sekanina and Drabek [70] devel­
oped a virtual reconfigurable cell called a functional block (FB) and used an 
array of FBs for image compression. Durbeck and Macias [71] implemented an 
8 x 8 cell matrix using a Xilinx Spartan-2 FPGA. 

With this approach came the possibility of designing any desired reconfigu­
rable fabric. In most cases the architecture consists of a fine-grained cellular 
array in which a general-purpose evolvable architecture is proposed. However, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 757



742 Chapter 33 ■ Evolvable FPGAs 

FPGA 

□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□ 
□□□□□
□□□□□ ........... � 

---+-l 

---+--t 

elk 

cir 

set 

LUT 
CLRO 

LUT 

Logic cell 

I 

Virtual reconfigurable cell 

FIGURE 33.9 ■ A virtual reconfigurable circuit with a reconfigurable neuron. 

problem-oriented reconfigurable fabrics can use coarser-grained architectures, 
whe�e a reduced set of features is evolved. 

Dynamic partial reconfiguration 
In addition to the Xilinx XC6200, other commercial platforms have been 
partially reconfigured for evolving circuits, with the main focus on the Xilinx 
Virtex families. However, there are two main issues in evolving circuits by par­
tially reconfiguring Virtex architectures. The first is the size of their configu­
ration bitstreams, which implies a huge search space for the EA. The second 
js the generation of invalid bitstreams-that is, bitstreams that cause internal 
contentions. Different solutions to these problems have been suggested. 

Haddow and Tufte proposed a two-dimensional array of Sblocks [72], each 
containing a flip-flop, a 5-input LUT, and some routing resources. Sblocks pro­
vide a reduced configurability compared to Virtex cells in order to reduce the 
search space size and to guarantee contention-free configurations. Even though 
the Sblock array is virtually reconfigurable, the functionality is reconfigured 
by partially reconfiguring a Virtex FPGA. Haddow and Tufte used a partial 
bitstream for reconfiguring only the LUT contents. 

W1 

~--------_J----

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 758



33.5 Evolvable Hardware Digital Platforms 743 

At the University of York, JBits [73] has been used for evolving circuits. JBits 
is a Java API for describing circuits and manipulating configuration bitstreams. 
It allows safe-generation of partial bitstreams, permitting the modification of 
internal modules in the FPGA design. At York, LUT contents have been mapped 
from a genome for evolving simple combinatorial functions [74], fault tolerance 
circuits [69], and robot controllers for obstacle avoidance [75]. Also using JBits, 
Levi and Guccione from Xilinx developed a tool called GeneticFPGA [76], which 
translates a configuration bitstream from a chromosome, making it easy to gen­
erate legal bitstreams. 

Even though JBits provides interesting features for EHW, it has several lim­
itations, such as the impossibility of running on an embedded platform (for 
on-chip evolution), dependence on supported FPGA families and supported 
boards, incompatibility with other hardware description languages (HDLs), and 
limited support from Xilinx, mainly reflected in insufficient documentation. 

Several ways to overcome these limitations have been proposed at the 
EPFL. Upegui and Sanchez [52] summarize three techniques for EHW by par­
tially reconfiguring Virtex and Virtex-11 families dynamically, without using 
JBits. The first is a coarse-grained high-level solution based on the modular 
partial reconfiguration flow proposed by Xilinx [77]. It defines large evolv­
able functions, implemented as modules, that are well suited for architecture 
exploration [27]. 

The second and third techniques are fine-grained low-level solutions. In 
both of the cases, hard-macros are used to define an evolvable compo­
nent. Then by placing the hard-macros they modify, the bitstream partially 
reconfigures components of the hard macros. The second technique uses the 
difference-based partial reconfiguration flow proposed by Xilinx [77]. The 
third technique directly manipulates the bitstream in a manner similar to 
the XC6200, by adding some constraints (only LUT and multiplexer configu­
ration modifications are allowed). These techniques are well suited for fine­
tuning. With the difference-based approach, Mermoud et al. [25] report the 
intrinsic evolution of a fuzzy classifier; and with the bitstream manipula­
tion, they report a complete evolution of cellular automata [ 42] and Boolean 
networks [43]. 

33.5.3 Custom Evolvable FPGAs 

One of the more recent evolvable chips is the POEtic tissue [78, 79], a computa­
tional substrate optimized for the implementation of digital systems inspired by 
the POE model presented in the introduction to this chapter. The POEtic tissue 
is a self-contained, flexible physical substrate designed (1) to interact with the 
environment through spatially distributed sensors and actuators; (2) to develop 
and adapt its functionality through a process of evolution, growth, and learn­
ing to a dynamic and partially unpredictable environment; and (3) to self-repair 
parts damaged by aging or environmental factors in order to remain viable and 
retain the same functionality. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 759



744 Chapter 33 ■ Evolvable FPGAs 

The POEtic tissue is composed of a two-dimensional array of POEtic cells, 
each designed as a 3-layer structure following the three axes of bio-inspiration 
(Figure 33.10): 

■ The phylogenetic layer acts on a cell's genetic material. It can be used
to find and select the genes of the cells for the genotype layer, which is
conceptually the simplest of the three tissue layers as it is mainly a
memory containing the genetic information of the organism.

■ Ontogeny concerns the development of the individual and thus the
mapping or configuration layer of the cell, which implements cellular
differentiation and growth. In addition, it has an impact on the system
as a whole for self-repair. The configuration layer selects which gene will
be expressed depending on a user-defined differentiation algorithm.

■ The epigenetic axis modifies the behavior of the organism during its
operation and is therefore best applied to the phenotype, which is
probably the most application-dependent layer. If the final application
is a neural network, the phenotype layer will consist of an artificial
neuron.

A key aspect of the applicability of the POEtic tissue, in addition to its archi­
tecture, is its reconfigurability. A molecule can be partially reconfigured by an 
on-chip microprocessor or by neighbor molecules. For EHW, this feature is 

Epigenesis > Execution unit 

Communication unit 

Ontogenesis > 

Phylogenesis > 

FIGURE 33.10 ■ The organizational layers of the P0Etic cell. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 760



33.6 Conclusions and Future Directions 745 

very important in terms of execution time. Because only two clock cycles are 
needed for a write, and three words of 32 bits define a complete molecule, the 
configuration of the entire array (or a part of it) is very fast. In comparison with 
commercial FPGAs, such as the Virtex-11, in which at least a full configuration 
frame must be sent each time, reconfiguration takes place in parallel, allowing 
a huge speedup. 

A distinctive feature of the POEtic tissue is its two-dimensional array of rout­
ing units that implement a dynamic routing algorithm [80]. It is used for inter­
cellular communication, allowing the tissue to dynamically create paths between 
cells. The dynamic routing can be performed by a distributed algorithm [80] or 
by the on-chip processor. 

Another very important circuit is the evolvable LSI chip developed by 
Higuchi's group [81]. It includes a GA unit and has the ability to process two 
chromosomes in parallel. Higuchi's group is famous for the large number of 
applications implemented in their chips [82, 83]. They have implemented an 
adaptive prosthetic hand controller [84, 85] that can adapt to the user's elec­
tromyographic signals in less than 10 minutes with a much more compact cir­
cuit than required with a neural network (before that, the user had to adapt 
to the hand instead of the hand to the user, requiring more than a month 
of training). They have also evolved data compressors for electrophotographic 
printing [86, 87], often attaining compression ratios twice those obtained with 
international standard compression algorithms such as Lempel-Ziv, JBIG, and 
JBIG2. It must be noted that Higuchi's applications often finish as part of 
a commercial product. Other interesting applications implemented by the 
same group include robot navigation controllers [88] and low-power integrated 
circuits [89]. 

This chapter focused primarily on evolution for digital devices; however, 
several platforms have been proposed for analog and mixed-signal circuit 
evolution. At the Jet Propulsion Laboratory of the California Institute of Tech­
nology, a field-programmable transistor array (FPTA) [90] has been developed 
that is the basis of the Standalone Board-level Evolvable System (SABLES) [91]. 
Layzell [92] proposed the evolvable motherboard: a diagonal matrix of analog 
switches connected to up to six plug-in daughter boards, which contain the 
desired basic elements for evolution. 

33.6 CONCLUSIONS AND FUTURE DIRECTIONS 

EHW has been shown to be effective at finding solutions [82, 83] for real-world 
applications. Additionally, some solutions have proven to perform better than 
their engineered counterparts [83, 89, 93]. On the other hand, EHW generally 
performs poorly, as a system-level solution: Microprocessor architectures, for 
example, are not among evolution results. As a matter of fact, evolution works 
better when the target is a complex cellular architecture: cellular automata, neu­
ral networks, or gate arrays. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 761



746 Chapter 33 • Evolvable FPGAs 

If we look at the EHW work carried so far, we find many common 
characteristics spanning most current systems that often differ from biological 
evolution (this difference is not necessarily disparaging): 

■ Evolution pursues a predefined goal: The design of an electronic circuit
is subject to precise specifications. On finding the desired circuit, the
evolutionary process terminates.

■ The population has no material existence. At best, in what has been
called intrinsic and complete evolution, there is one circuit available
onto which individuals from the population are loaded one at a time

to evaluate their fitness.
■ The absence of a real population in which individuals coexist simul­

taneously entails notable difficulties in the realization of interactions
between "organisms." This usually results in a completely independent
fitness calculation, contrary to nature, which exhibits a coevolutionaxy
scenario.

■ The different phases of evolution are carried out sequentially, controlled
by a central unit.

These limitations suggest that the simple application of EAs to hardware 
design is not enough and that future research in EHW must not be limited to 
exploration of architectures and substrates; there is also much to do at the algo­
rithmic level. Human-made adaptable systems are still far from exhibiting an 
adaptation comparable to living beings, and even though we have yet to attain 
circuits of equivalent complexity, limitations are not just a matter of magnitude. 
Only by modeling together the three axes of life (phylogeny, ontogeny, and epi­
genesis) will we be able to build systems featuring naturelike adaptation. 

Future trends in nanotechnology are also guiding us toward "Avogadro 
computers"-that is, massively parallel devices with 1023 transistors. What to do 
with such huge number of transistors, and how to use, interconnect, and pro­
gram them, goes beyond present engineering knowledge; however, EHW archi­
tectures and algorithms arise as a promising solution for dealing with the design 
complexity of these machines. 

In this chapter we focused on evolving silicon circuits, which constitute the 
main developments achieved by the EHW community. However, other types of 
substrates have been evolved that extend the domain and represent new direc­
tions for evolvable hardware. For example, NASA researchers have been working 
on evolving antennas for space missions [94, 95]. Miller and Downing are cur­
rently working on evolving liquid crystals (LC) [96]-by applying electric fields 
mapped from a genome, they modify the LC molecular alignment to implement 
a desired function. Molecular circuit design is another promising evolvable sub­
strate. Masiero et al. [97] report the use of a GA for tuning component param­
eters in a molecular circuit. Quantum circuit synthesis, too, is a potential field 
for EHW [98], given that designing circuits in such a substrate will require new 
design paradigms. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 762



References 

33.6 Conclusions and Future Directions 747 

[1] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya. Evolving hardware
with genetic learning: A first step towards building a Darwin Machine. From
animals to animals 2. Proceedings of the International Conference on Simulation
of Adaptive Behavior , 1993.

[2] H. de Garis. Evolvable hardware: Genetic programming of a Darwin Machine.
Proceedings of the International Conference on Artificial Neural Nets and Genetic
Algorithms, 1993.

[3] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, A. Stauffer.
Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for
softening hardware. Evolvable Systems: From Biology to Hardware, LNCS 1259,
1997.

[ 4] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, A. Stauffer.
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems.
IEEE Transactions on Evolutionary Computation 1(1), 1997.

[5] S. Mitra, Y. Hayashi. Neuro-fuzzy rule generation: Survey in soft computing frame­
work. IEEE Transactions on Neural Networks 11(3), 2000.

[6] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, 1996.

[7] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, 2nd ed., IEEE Press, 2000.

[8] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

[9] M. Mitchell. An Introduction to Genetic Algorithms, MIT Press, 1996.

[10] M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory, MIT Press,
1999.

[11] J. Pinter. Global Optimization in Action (Continuous and Lipschitz Optimization:
Algorithms, Implementations and Applications), Kluwer Academic Press, 1996.

[12] E. Sanchez, M. Tomassini. Towards evolvable hardware. LNCS 1062. Springer­
Verlag, 1996.

[13] Y. Liu. Evolvable systems: from biology to hardware. Proceedings of the Fourth
International Conference, ICES, October 2001.

[14] A. M. 'fyrrell, P. C. Haddow, J. Torresen. Evolvable systems: From biology to
hardware. Proceedings of the 5th International Conference, LNCS, March 2003.

[15] J.M. Moreno, J. Madrenas, J. Cosp. Evolvable systems: From biology to hardware.
Proceedings of the Sixth International Conference, ICES 2005, September 2005.

[16] T. Higuchi, M. Iwata, W. Liu. Evolvable systems: From biology to hardware.
Proceedings of the First International Conference, October 7-8, 1996. LNCS 1259,
Heidelberg: Springer-Verlag, 1997.

[17] M. Sipper, D. Mange, A. Perez-Uribe. Evolvable systems: From biology to hard­
ware. Proceedings of the Second International Conference, September, LNCS 1478,
Heidelberg: Springer, 1998.

[18] J. Miller. Evolvable systems: From biology to hardware. Proceedings of the Third
International Conference, ICES 2000, April 17-19, 2000. LNCS 1801, Heidelberg:
Springer, 2000.

[19] A. Stoica, D. Keymeulen, J. D. Lohn. Proceedings of the First NASA/DOD Workshop
on Evolvable Hardware, July. IEEE Computer Society, 1999.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 763



748 Chapter 33 ■ Evolvable FPGAs 

[20] A. Stoica, J. D. Lohn, R. Katz, D. Keymeulen, R. Zebulum. Proceedings of the 2002
NASA/DOD Conference on Evolvable Hardware, July. IEEE Computer Society, 2002.

[21] J. D. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M. Ferguson.
Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, July. IEEE
Computer Society, 2003.

[22] R. Zebulum, D. Gwaltney, G. Homby, D. Keymeulen, J. D. Lohn. A. Stoica.
Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware, July 2004.
IEEE Computer Society.

[23] J. D. Lohn, D. Gwaltney, G. Homby, R. Zebulum, D. Keymeulen. A. Stoica.
Proceedings of the 2005 NASA/DOD Conference on Evolvable Hardware, June 2005.
IEEE Computer Society.

[24] X. Yao, T. Higuchi. Promises and challenges of evolvable hardware. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
29(1), 1999.

[25] G. Mermoud, A. Upegui, C. A. Pena. E. Sanchez. A dynamically-reconfigurable
FPGA platform for evolving fuzzy systems. Computational Intelligence and
Bioinspired Systems, LNCS 3512, 2005.

[26] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, T. Higuchi.
The GRD chip: Genetic reconfiguration of DSPs for neural network processing.
IEEE Transactions on Computers 48(6), 1999.

[27] A. Upegui, C. A. Pena-Reyes, E. Sanchez. An FPGA platform for on-line topology
exploration of spiking neural networks. Microprocessors and Microsystems 29(5),
2005.

[28] H. Hemmi, J. Mizoguchi, K. Shimohara. Development and evolution of hardware
behaviors. Towards Evolvable Hardware, LNCS 1062, 1996.

[29] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane. Synthesis of topology and sizing
of analog electrical circuits by means of genetic programming. Computer Methods
in Applied Mechanics and Engineering 186(2), 2000.

[30] J. W. Atmar. Speculation on the Evolution of Intelligence and Its Possible Real­
ization in Machine Form, Ph.D. dissertation, New Mexico State University, Las
Cruces, 1976.

[31] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, F. T. Furuya, B. Manderick.
Evolvable hardware and its application to pattern recognition and fault-tolerant
systems. Towards Evolvable Hardware, LNCS 1062, 1996.

[32] A. Thompson. Silicon evolution. Proceedings of Genetic Programming, J. R. Koza
et al. (eds.), MIT Press, 1996.

[33] A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics.
Evolvable Systems: From Biology to Hardware, LNCS 1259, 1997.

[34] Xilinx, Inc. The Programmable Logic Data Book, 1996.
[35] G. K. Venayagamoorthy, V. G. Gudise. Swarm intelligence for digital circuits imple­

mentation on field-programmable gate array platforms. Proceedings of the 2004
NASA/DOD Conference on Evolvable Hardware, July 2004.

[36] B. C. Kahne. A Genetic Algorithm-Based Place-and-Route Compiler for a Run-time
Reconfigurable Computing System, Master's thesis, Virginia Polytechnic Institute
and State University, Blacksburg, VA, 1997.

[37] T. A. Ly, J. T. Mowchenko. Applying simulated evolution to high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
12(3), 1993.

[38] A. Thompson, I. Harvey, P. Husbands. Unconstrained evolution and hard conse­
quences. Towards Evolvable Hardware, LNCS, 1996.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 764



33.6 Conclusions and Future Directions 749 

[39] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, T. Higuchi. Hard­
ware evolution at function level. Parallel Problem Solving from Nature (PPSN N),
LNCS 1141, 1996.

[ 40] M. Iwata, I. Kajitani, H. Yamada, H. Iba, T. Higuchi. A pattern recognition sys­
tem using evolvable hardware. Parallel Problem Solving from Nature (PPSN N),
LNCS 1141, 1996.

[41] P. Haddow, G. Tufte. Evolving a robot controller in hardware. Proceedings of the
Norwegian Computer Science Conference, 1999.

[ 42] A. Upegui, E. Sanchez. On-chip and on-line self-reconfigurable adaptable platform:
The non-uniform cellular automata case. Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium, 2006.

[ 43] A. Upegui, E. Sanchez. Evolving hardware with self-reconfigurable connectivity in
Xilinx FPGAs. Proceedings of the First NASAIESA Conference on Adaptive Hardware
and Systems, 2006.

[ 44] K. Glette, J. Torresen. A flexible on-chip evolution system implemented on a Xilinx
Virtex-H Pro device. Evolvable Systems: From Biology to Hardware, LNCS 3637,
2005.

[ 45] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini. Online
autonomous evolware. Evolvable Systems: From Biology to Hardware, LNCS 1259,
1997.

[46] T. Toffoli, N. Margolus. Cellular Automata Machines: A New Environment for
Modeling. MIT Press Series in Scientific Computation, 1987.

[ 4 7] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming 
Approach, Springer, 1997. 

[48] R. A. Brooks. New approaches to robotics. Science 253, 1991.
[ 49] Y. U. Cao, A. S. Fukunaga, A. B. Kahng. Cooperative mobile robotics: Antecedents

and directions. Autonomous Robots 4(1), 1997.
[SO] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, A. Ijspeert. YaMoR and 

Bluemove: An autonomous modular robot with Bluetooth interface for exploring 
adaptive locomotion. Proceedings of the 8th International Conference on Climbing 
and Walking Robots (CLAWAR), 2005. 

[51] T. S. Ray. An approach to the synthesis of life. Artificial Life II, SFI Studies in the
Sciences of Complexity 10, 1992.

[52] A. Upegui, E. Sanchez. Evolving hardware by dynamically reconfiguring Xilinx
FPGAs. Evolvable Systems: From Biology to Hardware, LNCS 3637, 2005.

[53] L. Sekanina. Evolvable Components: From Theory to Hardware Implementations,
Springer, 2004.

[54] C. Slorach, K. Sharman. The design and implementation of custom architectures
for evolvable hardware using off-the-shelf programmable devices. Evolvable Sys­
tems: From Biology to Hardware, LNCS, 2000.

[55] Y. Zhang, S. Smith, A. Tyrrell. Digital circuit design using intrinsic evolvable
hardware. Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware,
July 2004.

[56] L. Sekanina, S. Friedl. On routine implementation of virtual evolvable devices using
COMBO6. Proceedings of the 2004 NASA/DOD Conference on Evolvable Hardware,
July 2004.

[57] K. Vinger, J. Torresen. Implementing evolution of FIR-filters efficiently in an FPGA.
Proceedings of the 2003 NASA/DOD Conference on Evolvable Hardware, July 2003.

[58] L. Sekanina. Towards evolvable IP cores for FPGAs. Proceedings of the 2003
NASA/DOD Conference on Evolvable Hardware, July 2003.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 765



750 Chapter 33 • Evolvable FPGAs 

[59] P. C. Haddow, G. Tufte. An evolvable hardware FPGA for adaptive hardware.
Proceedings of the 2000 Congress on Evolutionary Computation, 2000.

[60] M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini. The firefly
machine: Online evolware. Proceedings of the IEEE International Conference on
Evolutionary Computation, 1997.

[61] Xilinx, Inc. The XC6200 Data Sheet v.1.7, 1996.
[62] A. Thompson, P. Layzell. Evolution of robustness in an electronics design. Evolvable

Systems: From Biology to Hardware, LNCS 1801, 2000.
[63] D.-W. Lee, C.-B. Ban, K.-B. Sim, H.-S. Seok, L. Kwang-Ju, B.-T. Zhang. Behavior

evolution of autonomous mobile robot using genetic programming based on evolv­
able hardware. Proceeding of the 2000 IEEE International Conference on Systems,
Man, Cybernetics, 2000.

[64] J. R. Koza, F. H. Bennett, J. Hutchings, S. L. Bade, M. A. Keane, D. Andre.
Evolving sorting networks using genetic programming and rapidly reconfigurable
field-programmable gate arrays. Workshop on Evolvable Systems. International Joint
Conference on Artificial Intelligence, 1997.

[65] J. Dumoulin, J. A. Foster, J. F. Frenzel, S. McGrew. Special purpose image convolu­
tion with evolvable hardware. Real-World Applications of Evolutionary Computing,
Evo Workshops 2000, LNCS, 2000.

[66] Xilinx, Inc. Virtex-II Platform FPGA User Guide (www.xilinx.com), March 2005.
[67] L. Sekanina. Virtual reconfigurable circuits for real-world applications of evolvable

hardware. Evolvable Systems: From Biology to Hardware, LNCS 2606, 2003.
[68] G. Hollingworth, S. Smith, A. Tyrrell. Safe intrinsic evolution of Vrrtex devices.

Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, 2000.
[69] R. 0. Canham, A. Tyrrell. Evolved fault tolerance in evolvable hardware. Proceed­

ings of the Congress on Evolutionary Computation, 2002.
[70] L. Sekanina, V. Drabek. The concept of pseudo evolvable hardware. Proceedings of

the IFAC Workshop on Programmable Devices and Systems, 2000.
[71] L. Durbeck, N. J. Macias. Defect-tolerant, fine-grained parallel testing of a cell

matrix. Proceedings of SPIE ITCom 4867, 2002.
[72] P. Haddow, G. Tufte. Bridging the genotype-phenotype mapping for digital FPGAs.

Proceedings of the Third NASA/DoD Workshop on Evolvable Hardware, 2001.
[73] S. A. Guccione, D. Levi, P. Sundararajan. JBits: A Java-based interface for recon­

figurable computing. Proceedings of the Second Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference, 1999.

[74] G. Hollingworth, S. Smith, A. Tyrrell. The intrinsic evolution of Virtex devices
through Internet reconfigurable logic. Evolvable Systems: From Biology to Hard­
ware, LNCS 1801, 2000.

[75] A. M. 'fyrrell, R. A. Krohling, Y. Zhou. Evolutionary algorithm for the promotion
of evolvable hardware. IEE Proceedings-Computers and Digital Techniques 151(4),
2004.

[76] D. Levi, S. A. Guccione. Genetic FPGA: Evolving stable circuits on mainstream
FPGA devices. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
1999.

[77] Xilinx, Inc. XAPP 290: Two Flows for Partial Reconfiguration: Module Based or
Difference Based (www.xilinx.com), September 2004.

[78] Y. Thoma, E. Sanchez. A reconfigurable chip for evolvable hardware. Proceedings
of the Genetic and Evolutionary Computation Conference, 2004.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 766



33.6 Conclusions and Future Directions 751 

[79] Y. Thoma, G. Tempesti, E. Sanchez, J.M.M. Arostegui. POEtic: An electronic tissue
for bio-inspired cellular applications. Biosystems 76(1-3), 2004.

[80] Y. Thoma, E. Sanchez, J.M.M. Arostegui, G. Tempesti. A dynamic routing algorithm
for a bio-inspired reconfigurable circuit. Proceedings of the International Conference
on Field-Programmable Logic and Applications 2778, 2003.

[81] M. Iwata, I. Kajitani, Y. Liu, N. Kajihara, T. Higuchi. Implementation of a gate­
level evolvable hardware chip. Evolvable Systems: From Biology to Hardware, LNCS
2210, 2001.

[82] T. Higuchi, M. Iwata, H. Sakanashi, E. Takahashi, M. Murakawa, I. Kajitani.
Dynamic adaptive devices and their applications. Bulletin of the Electrotechnical
Laboratory, Special Issue: RWC Research Toward Realization of Real World Intelli­
gence 64(415), 2000.

[83] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, M. Salami, N. Kajihara, N. Otsu. Real-world applications
of analog and digital evolvable hardware. IEEE Transactions on Evolutionary Com­
putation 3(3), 1999.

[84] I. Kajitani, M. Iwata, M. Harada, T. Higuchi. A myoelectric controlled prosthetic
hand with an evolvable hardware LSI chip. Technology and Disability, Special Issue:
Advances in the Control of Prosthetic Arms 15(2), 2003.

[85] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, T. Higuchi. An evolvable hardware
chip and its application as a multi-function prosthetic hand controller. Proceedings
of the 16th National Conference on Artificial Intelligence, 1999.

[86] H. Sakanashi, M. Iwata, T. Higuchi. Evolvable hardware for lossless compression
of very high resolution bi-level images. IEE Proceedings-Computers and Digital
Techniques 151(4), 2004.

[87] H. Sakanashi, M. Iwata, D. Keymulen, M. Murakawa, I. Kajitani, M. Tanaka,
T. Higuchi. Evolvable hardware chips and their applications. Proceedings of the
International Conference on Systems, Man, and Cybernetics, 1999.

[88] D. Keymeulen, M. Iwata, Y. Kuniyoshi, T. Higuchi. Online evolution for a self­
adapting robotic navigation system using evolvable hardware. Artificial Life 4, 1998.

[89] E. Takahashi, M. Murakawa, Y. Kasai, T. Higuchi. Power dissipation reductions
with genetic algorithms. Proceedings of the 2003 NASA/DoD Conference on Evolvable
Hardware, 2003.

[90] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, A. Thakoor. Recon­
figurable VLSI architectures for evolvable hardware: From experimental field­
programmable transistor arrays to evolution-oriented chips. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9(1), 2001.

[91] A. Stoica, R. Zebulum, M. Ferguson, D. Keymeulen, V. Duong. Evolving circuits in
seconds: Experiments with a stand-alone board-level evolvable system. Proceedings
of the 2002 NASA/DOD Conference on Evolvable Hardware, July 2002.

[92] P. Layzell. A new research tool for intrinsic hardware evolution. Evolvable Systems:
From Biology to Hardware, LNCS, 1998.

[93] L. Sekanina, R. Ruzicka. Easily testable image operators: The class of circuits
where evolution beats engineers. Proceedings of the 2003 NASA/DOD Conference on
Evolvable Hardware, July 2003.

[94] J. Lohn, J. Crawford, A. Globus, G. Homby, W. Kraus, G. Larchev, A. Pryor,
D. Srivastava. Evolvable systems for space applications. Proceedings of the Inter­
national Conference on Space Mission Challenges for Information Technology, 2003.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 767



752 Chapter 33 • Evolvable FPGAs 

[95] J. Lohn, D. Linden, G. Homby, W. Kraus, A. Rodriguez-Arroyo. Evolutionary design
of .an X-band antenna for NASA's space technology 5 mission. Proceedings of the
2003 NASA/DoD Conference on Evolvable Hardware, 2003.

[96] J. F. Miller, K. Downing. Evolution in materio: Looking beyond the silicon box.
Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, 2002.

[97] L. P. Masiero, M. Pacheco, C. R. Hall, C. Santini. Molecular circuit design. Proceed­
ings of the 2005 NASA/DOD Conference on Evolvable Hardware. June-July, 2005.

[98] L. Spector, H. Barnum, H. J. Bernstein, N. Swamy. Quantum computing
applications of genetic programming. Advances in Genetic Programming, MIT Press,
1999.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 768



NETWORK PACKET PROCESSING 

IN RECONFIGURABLE HARDWARE 

John W. Lockwood 

CHAPTER 34 

Washington University in St. Louis and Stanford University 

This chapter will show, through an example, how networking systems have been 
built with reconfigurable hardware. It will describe how data can be switched, 
routed, buffered, processed, scanned, and filtered over networks using field­
programmable gate arrays (FPGAs). 

The chapter begins by describing the mechanisms by which Internet packets 
are segmented into frames and cells for transmission across a network. Inter­
net Protocol (IP) wrappers are introduced, and it is shown how they simplify 
the implementation of large packet-processing systems. Next, a framework for 
building modular systems that implement Internet firewalls and intrusion pre­
vention systems is presented. The chapter continues with a detailed explanation 
of how Bloom filters can scan streams of data for fixed strings and how finite 
automata can be used to scan for regular expressions. 

Case studies are provided that show how deep packet inspection systems 
are implemented in reconfigurable hardware. One circuit detects the spread of 
worms and viruses across an Internet link. Another circuit analyzes the seman­
tics of the text in traffic flows to determine which language is used within 
attached documents. A hardware-accelerated version of the popular SNORT 
intrusion detection system is illustrated, and it is shown how the FPGA hardware 
wor� with the software on a host to analyze packets. 

34.1 NETWORKING WITH RECONFIGURABLE HARDWARE 

34.1.1 The Motivation for Building Networks with Reconfigurable 
Hardware 

Although modem microprocessors continue to improve their performance, they 
are not improving as fast as the rate at which data flows over Internet connec­
tions. As the limits of Moore's Law are reached, alternative computational meth­
ods are needed to route, process, filter, and transform Internet datastreams. 

Networking systems created with reconfigurable hardware are flexible and 
easily modified to provide new functionality. Reconfigurable hardware enables 
features on networking platforms to be implemented in ways that are quite dif­
ferent from current platform implementations. It allows new modular compo­
nents to be created and then dynamically installed in remote networksystems. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 769



754 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

By processing network packets in hardware rather than in software, networking 
applications do not suffer the performance penalty caused by sequential data 
processing. 

The Internet evolves as new protocols, features, and capabilities are added to 
the routers that implement the underlying network. Protocols, such as IP ver­
sion 6 (IPv6), allow more devices to be individually addressed. Added features, 
such as per-flow queuing, allow voice and video to be reliably delivered in real 
time. Firewalls and intrusion prevention systems (IPSs) enhance Internet security. 

Network platforms have been built to route network traffic, filter packets, 
and queue data in reprogrammable hardware. With reconfigurable hardware, 
networking platform operation can change over time as packet-processing algo­
rithms and protocols evolve. With FPGAs, all features of the packet-processing 
system are configurable down to the logic gates. These systems enable new ser­
vices to deploy and operate at the rate of the highest-speed backbone links. 

34.1.2 Hardware and Software for Packet Processing 

For their packet-processing operations, today's fastest routers use network pro­
cessing elements implemented in custom silicon or in application-specific inte­
grated circuits (ASICs). As shown in Figure 34.1, network processing elements 
reside between the line card where packets are transmitted and received and the 
Gigabit/second rate switch fabric that interconnects ports. They contain hun­
dreds to thousands of parallel logic circuits and finite-state machines that are 
optimized to route, filter, queue, and/or process Internet datagrams in hardware. 

Several platform types have been developed, many of which use standard micro­
processors such as the Intel Pentium, AMD Athlon, or Motorola/IBM PowerPC. 
Others use ASICs from vendors such as Agere, Intel, Motorola, Cavium, Broadcom 
and Vitesse. Although software-based systems have outstanding flexibility, their 
packet processing is limited because of the sequential nature of their instruction 
execution. ASICs and custom silicon networking chips have high performance, 
but they offer little flexibility as measured by their ability to reprogram. 
Figure 34.2 illustrates the trade-offs between flexibility and performance. 

Network 
packets 

I 
Network 
packets 

-- Network 
... processing 

element 

Network 
processing 

element 

FIGURE 34.1 ■ A reconfigurable network processing element located between a line card and 
switch fabric. 

□-
~---~---□--- ., =--l.::_J-

Gigabit 
switch 
fabric 

- ~I 

~ ·~ 
'· , q 

' ~ 

·--•J 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 770



34.1 Networking with Reconfigurable Hardware 755 

Microprocessor 
Reprogrammable 

hardware 

-

Fully 
reprogrammable 

Network 
processor 

Performance 

t High
I performance

•�IC 

FIGURE 34.2 ■ Flexibility and performance trade-offs for networking systems that use 
microprocessors, network processors, ASICs, and reprogrammable hardware. 

34.1.3 Network Data Processing with FPGAs 

Reconfigurable hardware devices share the performance advantage of ASICs 
because they can implement parallel logic functions in hardware. However, they 
also share the flexibility of microprocessors and network processors because 
they can be dynamically reconfigured. 

Using FPGAs for high-performance asynchronous transfer mode (ATM) net­
working was explored during the development of the Illinois Pular-based Optical 
Interconnect (iPOINT) testbed. In this project, an ATM switch with FPGAs [2] 
was developed and an advanced queuing module was implemented that pro­
vided per-flow queuing functionality in FPGA hardware. The FPGAs were used 
to implement the datapath of the switch and to control the state machines that 
buffered the ATM cells as they arrived on each switch port of the switch. The 
lookup tables (LUTs) in the FPGA fabric were used to build the multiplexers that 
switched the data between the ports. Finally, combinational logic was used to 
implement the state machines that controlled how packets were written to and 
read from SRAM [3]. 

FPGAs have also proven effective for implementation of bit-intensive func­
tion networking, such as forward error correction (FEC), and for boosting the 
performance of networking protocols [ 4]. The bitwise processing function maps 
well into the fine-grained logic on an FPGA. On-chip LUTs are used to encode 
data patterns as symbols with redundant bits of information. When the symbols 
are decoded, the redundant bits allow the receiver to reconstruct the data even 
with a few bits in error. Reconfigurable logic allows algorithms that use varying 
amounts and types of error correction to be programmed on-chip. 

Through the development of the Field-Programmable Port Extender (FPX) 
platform [1], it was demonstrated that high-performance network packet­
processing systems implemented with FPGAs are both useful and practical. The 

ID 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 771



756 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

FPX platform used two multi-Gigabit/second network interfaces, four banks of 
off-chip memory, and two FPGAs to implement over 30 networking applications. 
Applications developed for the FPX platform included modules that performed 
Internet Protocol IP address lookup for routing [7]; payload scanning for detec­
tion of fixed strings and regular expressions within the body of a packet; data 
queuing to provide quality of service (QoS); intrusion detection to determine 
when a network may be under attack; intrusion prevention to halt such attacks; 
and semantic processing of network data. 

34.1.4 Network Processing System Modularity 

Modularity is a key feature of networking systems. Network developers need 
standard interfaces to interface high-level network processing components to 
the underlying network infrastructure. In systems with reconfigurable hard­
ware, modules can be implemented in regions of an FPGA and bound by a 
well-defined interface to the datapath and to external memory. Multiple modu­
lar data-processing components can be integrated to compose systems. Memory

interfaces can connect logic to off-chip memory in order to buffer data and hold 
large lookup tables LUTs. 

For the FPX platform modules, data was received and transmitted via a series 
of ATM cells carried over a 32-bit-wide Utopia interface. ATM cells contained 
48 bytes of payload data and 4 bytes of a header that included a virtual path 
identifier (VPI) and a virtual circuit identifier (VCI). Each ATM cell also included 
an 8-bit checksum that covered the ATM cell header. Larger IP datagrams were 
sent between modules using layered protocol wrappers that segmented and 
reassembled multiple cells into ATM adaptation layer 5 (AALS) frames. These 
frames contained data from a series of ATM cells and a 32-bit checksum at the 
end that covered all bytes of the payload. Segmentation and reassembly of cells 
into frames were performed to transfer packets over the network. 

The FPX platform (Figure 34.3) stored and loaded data from two types of off­
chip memory. Two interfaces supported transfer of 36-bit-wide data to and from 
an on-chip SRAM. SDRAM interfaces provided 64-bit-wide interfaces to multiple 
banks of high-capacity, off-chip memory. In the implementation of the IP lookup 

. module, the off-chip SRAM was used to store data structures for IP lookup, 
while the SDRAM was used to buffer packets. The lower latency of SRAM access 
was important for the implementation of lookup functions where there was a 
data dependency for the result; the larger capacity of the SDRAM was beneficial 
for reducing the cost of storing bulk data, including buffering dataflows. 

A switch was implemented using the reprogrammable application device 
(RAD) FPGA logic that allowed traffic to be routed to extensible modules. Lay­
ered protocol wrappers performed the segmentation and reassembly of AALS 
frames so that full packets could be processed by the FPGA hardware. To repro­
gram the RAD FPGA that contained the extensible modules, configuration and 
control logic was implemented on the network interface device (NID) FPGA. 

The FPX platform was integrated into the Washington University Gigabit 
Switch (WUGS) to process packets as they passed into and out of the networking 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 772



(a) 

34.2 Network Protocol Processing 757 

(b) 

FIGURE 34.3 ■ A block diagram and a physical implementation of the FPX platform. 

ports of a scalable network switch. The WUGS switching platform provided a 
backphne for transferring ATM cells between ports. By adding the FPX between 
the line cards and the switch fabric, the system was able to analyze, process, 
route, and filter IP packets as they flowed through the system. OC-3 to OC-48 line 
cards were used to directly send and receive ATM cells, while Gigabit Ethernet 
line cards were used to segment frames into multiple ATM cells and reassemble 
them. After data passed through the FPX, they were forwarded to the switch 
fabric, where cells were forwarded to other FPX modules in the chassis based 
on their VPI and VCI values. 

34.2 NETWORK PROTOCOL PROCESSING 

The Open Systems Interconnection (OSI) Reference Model defines how multiple 
layers can be used to transport data over a computer network. OSI divides the 
functions of a protocol into a series of layers, each of which has two properties: 
(1) It uses only the functions of the layer below, and (2) it exports functionality
only to the layer above. A system that implements protocol behavior consisting
of a series of these layers is known as a protocol stack. Protocol stacks can be
implemented in hardware, in software, or in a mixture of the two (typically, only
the lower layers are implemented in ha�dware; the higher layers, in software).
This logical separation makes reasoning about the behavior of protocol stacks
much easier and allows their design to be elaborate but highly reliable. Each
layer performs services for the next highest layer and makes requests for the
next lowest layer [S].
· For real systems that process Internet data, the OSI model is not directly
implemented but instead serves as a reference for implementation of the real
protocols. Layers are important for processing IP data, however, because they
permit application-processing modules to abstract details of the lower-layer

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 773



758 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

FIGURE 34.4 ■ Integration of a network application within one or more wrappers. 

network protocols. At the lowest layer, networks modify raw cells of data that 
move between interfaces. At higher layers, the applications process variable­
length frames or IP packets. To send and receive data at the user level, a network 
application may transmit directly or receive user datagram protocol (UDP) mes­
sages by instantiating all wrappers and sending data from a network application 
down through a series of wrappers [6] (see Figure 34.4). 

34.2.1 Internet Protocol Wrappers 

Hundreds of millions of computers deployed throughout the world communi­
cate over the Internet. Traffic from these machines is concentrated to flow over 
a smaller number of routers that forward traffic through the Internet core. Cur­
rently, Internet backbones operate over communication links ranging in speed 
from OC-3 (155 Mbps) to OC-768 (40 Gbps). Fast links that process small 
packets have the ability to process millions of IP packets per second. 

A library of layered protocol wrappers (see Figure 34.5) was developed to 
process Internet packets in reconfigurable hardware. Collectively, the wrappers 
simplified and streamlined the implementation of high-level networking func­
tions by abstracting the operation of lower-level packet-processing functions. 
The library infrastructure was synthesized into FPGA logic and integrated into 
an FPX network platform. At the lowest levels, the library processes ATM cells. 
Complete frames of data are segmented and reassembled using ATM adaptation 
layer 5 (AAL5), over which IP messages are then transported. 

When only a single message needs to be transmitted, the UDP can send one 
packet over the Internet. UDP encapsulates a variable-length message into an 
IP packet and allows the system to specify source and destination port numbers 
that identify from which application on a machine the data was sent and to 
which application it should be delivered. UDP/IP also provides a checksum to 
ensure the integrity of the data. Using the FPX protocol-processing library, this 
checksum is automatically computed, using FPGA hardware, as the sum over 
the payload bytes of the message. 

34.2.2 TCP Wrappers 

Over 85 percent of all traffic on the Internet today uses the Transmission Con­
trol Protocol (TCP). TCP is stream oriented and guarantees delivery of data with 

-.. 
L...,;J 

Wrapper 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 774



34.2 Network Protocol Processing 759 

External memory interfaces � 

TCP/UDP processor 

IP packet processor 

Frame processor 

Cell processor 

Data 
output 

FIGURE 34.5 ■ Implementation of layered protocol wrappers on the FPX platform.

an ordered byte flow. Processing TCP dataflows in the middle of the network is 
extremely difficult because network packets can be dropped, duplicated, and 
reordered. Packet sequences observed within the interior of the network may be 
different from packets received and processed at the connection endpoints. The 
complexities associated with tracking the state of end systems and reconstruct­
ing byte sequences based on observed traffic are significant. 

A TCP processing circuit was developed that handles the complexities associ­
ated with flow classification and TCP stream reassembly. It provided the FPGA 
logic with a view of network traffic flow data through a simple client interface. 
The TCP wrapper enabled other high-performance data-processing subsystems 
to operate on TCP network content without needing to implement their own 
state-tracking operations. The TCP module used a state store to track the status 
of each TCP/IP flow and, using a hash function, assigned a unique flow number 
to each session [8]. 

Figure 34.6 is a block diagram of the TCP processor. Internet packets arrive 
as frames of data to the input state machine of the TCP processing engine. The 
input state machine forwards the frames to a first in, first out (FIFO) that buffers 
the packet; a checksum engine that computes and verifies the correctness of the 
TCP checksum; and a flow classifier that computes a flow identifier (flow ID) 
using a hash over fields in the packet header. 

The flow ID is passed to the state store manager that retrieves the state asso­
ciated with the particular flow. Results are written to the control and state FIFO, 
and the state store is updated with the current flow state. The output state 
machine reads data from the frame and control FIFO buffers and passes data 
to the packet-routing engine. Most traffic flows through the content-scanning 
engines, which scan the data. Packet retransmissions bypass these engines and 
go directly to the flow-blocking module. 

Data returning from the content-scanning engines also goes to the flow­
blocking module. This stage updates the per-flow state store with application­
specific state information. If a content-scanning engine indicates that it has a 
need to block a flow, the flow-blocking module can enforce this rule by com­
paring the packet's sequence number with the sequence numbers for which 
flow blocking should take place. If the packet meets the blocking criteria, the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 775



760 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

TCP protocol processing 

Read 
interface 

Write 
interface 

State store manager 

SDRAM controller 

512MB SDRAM module 

FIGURE 34.6 ■ A block diagram of the TCP processor. 

Enhanced flow 
management 

Read/write 
interface 

flow-blocking module drops it from the network. Any remaining packets go to 
the outbound protocol wrapper. 

The state store manager processes requests to read and write flow state 
records. It also handles all interactions with SDRAM memory and caches 
recently accessed flow state information. The SDRAM controller exposes three 
memory access interfaces: a read/write, a write-only, and a read-only. The con­
troller prioritizes requests in that order, with the read/write interface having the 
highest priority. 

34.2.3 Payload-processing Modules 

Many network applications have a common requirement for string matching 
in the payload of packets or flows. Once the data being transported over the 
network has been reconstructed using the IP and TCP modules, it can be exam­
ined in the payload. For example, the presence of a string of bytes (or a sig­
nature) can identify the presence of a media file, an attachment, or a security 
exploit. Well-known Internet worms, such as Nimda, Code Red, and Slammer, 
propagate by sending malicious executable programs identifiable by certain byte 
sequences in payloads [14]. Because the location (or offset) of such strings and 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 776



34.2 Network Protocol Processing 761 

their length are unknown, such applications must be able to detect strings of 
different lengths starting at arbitrary packet payload locations. 

Packet inspection applications, when deployed at router ports, must operate 
at wire speeds. As network rates increase, the implementation of packet moni­
tors that process data at Gigabit/second line rates has become increasingly diffi­
cult. Thus, the growth in network traffic has motivated specialized packet- and 
payload-processing modules in hardware. 

34.2.4 Payloa_d Processing with Regular Expression Scanning 
A regular expression (RE) is a pattern that describes a set of strings. The 
basic building blocks for these patterns consist of individual characters, such as 
{a, b, and c}. These characters can be combined with meta-characters, such 
as: { *, I , and ? } , to form regular expressions with wildcards. For two regular 
expressions, rl and r2, rules define that rl * matches any string composed of 
zero or more occurrences of rl; rl? matches any string composed of zero or 
one occurrence of rl; rl I r2 matches any string composed of rl or r2; and 
rlr2 matches any string composed of rl concatenated with r2. For instance, 
a is an RE that denotes the singleton set {a}, while a I b denotes the set { a, b} 
and a* denotes the infinite set {null, a, aa, aaa, ... }. REs can be identified 
using nondeterministic finite automata (NFA). 

Research on RE matching in hardware has been performed by Sidhu and 
Prasanna [16] and Franklin et al. [17]. Sidhu and Prasanna were primarily 
concerned with minimizing the time and space required to construct NFAs. 
They ran their NFA construction algorithm in hardware as opposed to software. 
Franklin et al. followed with an analysis of this approach for the large set of 
expressions found in a SNORT database [18]. 

The search function FPgrep was implemented by Mascola et al. to search 
packet payloads for substrings that belong to the language defined by the RE 
[15]. When FPgrep matched a substring in a packet, it transmitted information 
about the packet to a monitoring host system. The information sent for network 
intrusion detection functions specified the content found and the sender's and 
receiver's IP addresses. The search ran in linear time (proportional to packet 
size), O(n) (where n was the number of bytes in a packet), and in constant space. 
That is, there was never a need to examine a character more than once and the 
amount of hardware was proportional to the size of the RE. Approximately one 
flip-flop was required per character. 

A streaming content editor, FPsed, was implemented as a module on the FPX 
platform. The FPsed module selectively replaced content in packet payloads. 
String replacement for an RE is not as straightforward or efficient as searching. 
It requires that the machine do more than simply determine the presence of 
matching substrings in a record-it must also determine the position of the 
first and last character of all complete substrings that are matched by it. It is 
this requirement that makes RE search and replace more complicated and less 
efficient than a simple search. Searching for the complete substring is logical 
when the goal is to replace it. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 777



762 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

Consider the replacement of every occurrence of a certain hexadecimal string 
associated with a computer virus, 3n*4n*5n*B, with the text Virus Pattern 
Detected. For the sake of brevity, the previous expression uses n as shorthand 
for any hexadecimal character (i.e., O 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I BI c ID IE IF). 
For the input string 31 72F34435B6B7B8, the substring can be replaced from 
the point where the machine starts running, 3 4, to the point where the substring 
is accepted, just before B6 (i.e., substring 34435B). However, this would allow 
a portion of the virus to remain in the content stream. In most situations, it is 
preferable to replace complete substrings; here the complete substring match 
starts with 31 and includes everything to just before BB (i.e., the substring 
3172F34435B6B7B). 

34.2.5 Payload Scanning with Bloom Filters 
A hash table is one of the most attractive choices for quick lookups. Hash tables 
require only constant time, 0(1), average memory accesses per lookup. Because 
of their versatile applicability in network packet processing, it is useful to imple­
ment these hashing functions in hardware [19, 20]. 

Bloom filters can detect strings of characters that appear in streaming data 
moving at very high data rates. A Bloom filter is a data structure that stores a set 
of signatures compactly by computing multiple hash functions on each member 
of the set. It queries a database of strings to check for the membership of a 
particular string. The answer to this query can be false positive but never false 
negative. The average computation time to perform a query remains constant so 
long as the sizes of the hash tables scale linearly with the number of strings they 
store. Because each table entry stores only a hashed version of the content, the 
amount of storage required by the Bloom filter for each string is independent 
of its length. 

34.3 INTRUSION DETECTION AND PREVENTION 

Existing firewalls that examine only the packet headers do little to protect 
against many types of attack. Multiple new worms transport their malicious soft­
ware, or malware, over trusted services and cannot be detected without exam­
ining the payload. Intrusion detection systems (IDSs) perform deep scanning of 
the payload to detect malware, but do nothing to impede the attack because 
they only operate passively. An intrusion prevention system (IPS), on the other 
hand, can intervene and stop malware from spreading. The configuration of a 
network intrusion prevention system is shown in Figure 34.7. 

One problem with software-based IDSs is that they cannot keep pace with the 
high volume of traffic that transits high-speed networks. Existing systems that 
implement IPS functions in software limit the bandwidth of the network and 
delay the end-to-end connection. 

A reconfigurable system that can keep pace with high-speed network traffic 
has been developed. It scans data quickly, reconfigures to search for new attack 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 778



34.3 Intrusion Detection and Prevention 763 

intrusion 
prevention 

FIGURE 34.7 • Configuration of an in-line network IPS situated between two hosts attached to a 
router and to the Internet. 

patterns, and takes immediate action when attacks occur. By processing the 
content of Internet traffic in real time within an extensible network, data that 
contains computer viruses or Internet worms can be detected and prevented. By 
adding only a few filtering devices at key network aggregation points, Internet 
worms and computer viruses can be quarantined to the subnets where they were 
introduced. 

A complete system has been designed and implemented that scans the full 
payload of packets to route, block, and track the packets in the flow based on 
their content. The result is an intelligent gateway that provides Internet worm 
and virus protection in both local and wide area networks. 

Network intrusion detection and prevention systems search for predefined 
virus or worm signatures in network traffic flows (see Section 34.2.3). Such sig­
natures can be loaded into the system manually by an operator or automatically 
by a signature detection system. (Note that string is synonymous with signature 

throughout the chapter.) 
Once a signature is found, an intrusion detection and prevention system 

(IDPS) can use it to block traffic containing infected data from spreading 
throughout a network. To perform this operation on a high-speed network, the 
signature scanning and data blocking must operate quickly. Comparing a variety 
of systems running the SNORT rule-based NID sensor reveals that most general­
purpose computer systems are inadequate as NID sensor platforms even for 
moderate-speed networks. Factors such as microprocessor, operating system, 
main memory bandwidth, and latency limit the performance that an NIDS sen­
sor platform can achieve [22]. 

34.3.1 Worm and Virus Protection 

Computer virus and Internet worm attacks are pervasive, aggravating, and expen­
sive, both in terms of lost productivity and consumption of network bandwidth. 
Attacks by Nimba, Code Red, Slammer, SoBig.F, and MSBlast have infected com� 
puters globally, clogged large computer networks, and degraded corporate pro­
ductivity. It can take weeks to months for information technology professionals 
to sanitize infected computers in a network after an outbreak [24]. 

In the same way that a human virus spreads among people coming in contact 
with each other, computer viruses and Internet worms spread when computers 
communicate electronically [25]. Once a few systems are compromised, they 
infect other machines, which in tum quickly spread the infection throughout 
a network. As is the case with the spread of a contagious disease, the number 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 779



764 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

of infected computers grows exponentially unless contained. Computer systems 
spread contagion much more quickly than humans do because they can com­
municate instantaneously over large geographical distances. The Blaster worm, 
for example, infected over 400,000 computers in less than five days. In fact, 
about one in three Internet users are infected with some type of virus or worm 
every year. 

Malware can propagate as a computer virus, an Internet worm, or a hybrid of 
both. Viruses spread when a computer user downloads unsafe software, opens 
a malicious attachment, or exchanges infected computer programs over a net­
work. An Internet worm spreads over the network automatically when malware 
exploits one or more vulnerabilities in an operating system, a web server, a 
database application, or an email exchange system. 

Malware can appear as a virus embedded in software that a user has down­
loaded. It can also take the form of a Trojan that is embedded in what appears 
to be benign freeware. Alternatively, it can spread as content attached to an 
email message, as content downloadable from a web site, or in files transferred 
over peer-to-peer systems. Modem attacks typically use multiple mechanisms 
to execute. Malware, for example, can spoof messages that lure users to sub­
mit personal financial information to cloaked servers. In the future, malware is 
likely to spread much faster and cause much more damage. 

Today, most anti-virus solutions run in software on end systems. To ensure 
that an entire network is secure from known attacks, integrated systems were 
developed that can perform multiple network processing functions. 

34.3.2 An Integrated Header, Payload, and Queuing System 

An integrated system that incorporated the payload-scanning function, a ternary 
content addressable memory (TCAM) for header matching, and a flow buffer and 
queue manager for packet storage was implemented [13]. It is shown as a block 
diagram in Figure 34.8. 

Payload 
scanner 

Interfaces to off­
chip memories 

Layered protocol wrappers 

FIGURE 34.8 ■ Complete on-chip networking header and payload processing integrated with a 
flow buffer and a queue manager. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 780



34.3 Intrusion Detection and Prevention 765 

SNORT is a lightweight NID sensor that can filter packets based on predefined 
rules over packet headers and payloads [18]. With the TCP option enabled, 
SNORT matches strings that appear anywhere within traffic flows. Each SNORT 
rule operates first on the packet header to verify that the packet is from a source 
or to a destination network address and/or port of interest. If the packet matches 
a certain header rule, its payload is scanned against a set of predefined patterns 
associated with that rule. Matching of one or multiple patterns implies a com­
plete match of a rule, and further action can be taken on either the packet or 
the TCP flow. 

To provide complete detection of all known attacks, an intrusion system must 
process all packets. Several thousand patterns appeared in the version 2.2 rule 
set for SNORT. SNORT's rule database continually expands as new threats are 
observed. As the number of headers and signatures to match increases, the CPU 
on a PC running SNORT becomes overloaded and not all packets are processed. 

A SNORT intrusion filter for TCP (SIFT) was implemented in reconfigurable 
hardware and is illustrated in Figure 34.9. SIFT data entered the system via 
the TCP de-serialize wrapper. Control signals marked specific locations in the 

Control 
FSM 

Header 
check 

Off-chip SDRAM 
(64-512 MBytes) 

Communication wrapper 

On-chip Xilinx BlockRAMs 

Bloom 
filters 

0 0 0 

FIGURE 34.9 ■ A block diagram of SIFT. 

Alert Alerts 
generator 1--...,---. 

SNMP 
alerter 

Off-chip ZBT 
SAAM (2 MBytes) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 781



766 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

packet that included the starts of the IP header, the TCP header, and the payload. 
The value of the header was sent to a header check component to determine 
if the packet matches a header-only rule. The payload was sent through an 
8-stage pipeline where each byte offset is searched for signatures by Bloom fil­
ters. If a match was detected, the match decoder determines the string identi­
fier (ID), which was next sent to the action retriever to determine what to do
with the packet. Suspect packets were forwarded to software for further inspec­
tion. Those that had no match were not inspected further; those that did need
additional processing were sent to the outgoing side of the TCP de-serialized
wrapper.

To match payloads, SIFT used Bloom filters to allow signatures to be incre­
mentally programmed into hardware. Signatures could be added or deleted 
via messages embedded in UDP control packets. These packets were sent 
through the communication wrapper to a control finite-state machine (FSM). In 
turn, the FSM set the appropriate bits in BlockRAM memories on the FPGA to 
add the signature to the Bloom filter. To achieve high throughput, four engines 
ran in parallel [21]. 

34.3.3 Automated Worm Detection 

Outbreaks of new worms constitute a major threat to Internet security. IDPSs 
described previously only filter traffic that contain known worms. Systems that 
automatically detect new worms in real time by monitoring traffic on a network 
allow detection and protection from new outbreaks. 

Internet worms spread by exploiting vulnerabilities in operating systems and 
application software that run on end systems. Once they infect a machine, they 
use it to attack other hosts; these attacks compromise security and degrade net­
work performance, causing large economic losses for businesses resulting from 
system downtime and lowered worker productivity. The Susceptible/Infective 
(SI) model illustrates the spread of Internet worms [25]. With this model, a well­
known equation can be used to estimate how fast a worm will infect vulnerable 
machines. 

Worms can be prevented by writing code that has no vulnerabilities, and the 
computer security community has made great strides toward this goal. Program­
mers analyze the vulnerability that the worm exploits and release a "patch" to 
fix it. However, it takes time to analyze and patch software. In addition, many 
end users may never apply the patch, and as a result a significant number of 
machines in the network remain vulnerable. 

Another way to prevent the spread of worms is to have the network contain 
them. When intrusion prevention systems scan traffic for a predetermined signa­
ture and filter the flows that match, the spread of a known worm can be blocked. 
The EarlyBird System [26, 27] detects the signatures for unknown worms in 
real time, identifying them by their repeating content. Because worms consist 
of malicious code, frequently repeated content on the network can be a useful 
warning of worm activity. Large flows are identified by computing a hash of 
packet content in combination with a destination port. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 782



34.4 Semantic Processing 767 

A hardware-accelerated worm detection circuit implemented in reconfigur­
able hardware draws from two ideas presented in the EarlyBird system [23]. To 
detect commonly occurring content, a hash is computed over 10-byte windows 
of streaming data. The hash value is used to identify a counter in a vector that 
is instructed to increment by one. At periodic intervals (called timeouts), the 
counts in each of the vectors are decremented by the average number of arrivals 
due to normal traffic. When a counter reaches a predetermined threshold, an 
alert is generated and its value is reset to zero. 

For the implementation of the circuit on an FPGA, the count vector was 
implemented by configuring dual-ported, on-chip BlockRAMs as an array of 
memory locations. Each memory afforded one read operation and one write 
operation every clock cycle, which allowed a 3-stage pipeline to be implemented 
that reads, increments, and writes memory every clock cycle. Because the signa­
ture changes every clock cycle and because every occurrence of every signature 
must be counted, the dual-ported memories allow the occurrence count to be 
written back while another count is being read. 

When an on-chip counter crosses the threshold, the corresponding signature 
is hashed to a table in off-chip SRAM. The next time the same string causes 
the counter to ¢xceed the threshold, it is hashed to the same location in SRAM 
and the two strings are compared. If they are the same, it is determined that the 
match is not a false positive and the counter is incremented. If they are different, 
the contents of the string stored in SRAM is overwritten with the value of the 
new string and the count is reset. 

On receiving confirmation from the SRAM analyzer that a signature fre­
quently occurs, a UDP control packet is sent to an external computer. The packet 
contains the offending signature, which is the string of bytes by which the hash 
was computed. The computer, in tum, programs other IDS/IDP systems to filter 
traffic that contains this signature. 

34.4 SEMANTIC PROCESSING 
I 

Next-generation networks route and forward data based on the semantics of 
the data within documents. Rather than assigning arbitrary headers to packets, 
routers use the meaning of the text itself to determine the packet routing. 

34.4.1 Language Identification 
As of 2004, nearly two-thirds of the world's Internet users spoke a non-English 
native language [29], and nearly one-third of the pages available on the Inter­
net were written in a non-English language [29, 30]. As the rate at which data 
is transferred over the Internet increases, the rapid ,identification of languages 
becomes an increasingly difficult problem. A system capable of quickly identi­
fying the primary language or languages used in documents can be useful as a 
preprocessor for document classification and translation services. It can also be 
used as a mechanism for language-based document routing. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 783



768 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

A hardware-accelerated algorithm was designed to automatically identify the 
primary languages used in documents transferred over the Internet [28]. The 
module was implemented in hardware on the FPX platform. Referred to as 
Hardware-Accelerated Identification of Languages (HAIL), this complete sys­
tem identified the primary languages used in content transferred over TCP/IP 
networks. It operated on streaming data at a rate of 2.4 Gigabits/second using 
FPGA hardware. This level of performance far outstripped software algorithms 
running on microprocessors. 

Several methods have been shown to be effective for the classification of 
document characteristics based on principles from linguistics and artificial intel­
ligence. Some methods used dictionary-building techniques [31], while others 
used Markov Models, trigram frequency vectors [32], and/or n-gram-based text 
categorization [33, 34]. Although these methods are capable of achieving high 
degrees of accuracy, most require floating-point mathematics, large amounts of 
memory, and/or generous amounts of processing time. 

HAIL uses n-grams to determine the language of a document. These are 
sequential patterns of exactly n characters that are found in written documents, 
and when they are used as indicators of language, the primary language or lan­
guages of a document can be reliably determined. HAIL can use any n-gram 
length, although experiments have shown that n-grams of length 3 (trigrams) 
and length 4 (tetragrams) provide the most accurate results. 

Before processing data with HAIL, the target system is trained with infor­
mation on languages. Training is performed by scanning a set of documents in 
the languages of interest. When an n-gram appears significantly more frequently 
in the documents of one language than in any other, it is associated with that 
language. After training has established which n-grams best correspond to par­
ticular languages, memory modules on the hardware platform implementing 
HAIL have to be programmed. Memory is populated by using a hash to map 
each n-gram to a particular memory location. The memory location that cor­
responds to a particular n-gram is labeled with the associated language. Once 
data processing begins, the n-grams are sampled from the datastream and used 
as addresses into memory to discern the language associated with then-gram. 
The final language is determined by the statistics of the words that appear in 
each language. 

34.4.2 Semantic Processing of TCP Data 

Within the intelligence community, there is a need to search through massive 
amounts of multilingual documents that are encoded using different charac­
ter sets. It has been shown that computational linguistics and text-processing 
techniques are effective for sorting through large information sets, extracting 
relevant documents, and discovering new concepts [33]. There is a problem, 
however, in that the computational complexity of the text-processing algorithms 
is such that the document ingest rate is too slow to keep up with the high rate 
of information flow [34]. 

To overcome this problem, a system using FPGA hardware was devel­
oped for accelerated concept discovery and classification algorithms [35, 36]. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 784



34.4 Semantic Processing 769 

Circuits were implemented as reconfigurable hardware modules that dramatically 
increased data ingest rates. It was found that text analysis algorithms that perform 
"bag of words" processing were widely used and appropriate for many types of 
computational linguistics tasks. To investigate the utility of hardware-accelerated 
text analysis algorithms, a reconfigurable FPGA-based semantic-processing sys­
tem was developed. The hardware tested a variety of target problems involving 
concept classification, concept discovery, and language identification [36]. 

A blend of high-speed network devices and reconfigurable hardware was used 
to rapidly ingest and process data [35]. Data were received from the network as 
text or HTML documents and carried over standard TCP/IP packets. The TCP 
processor decoded the packets that contained the document in one or more 
TCP/IP input flows. Every word (baseword) in the document was analyzed for 
its semantic meaning. All words in each document were then counted to deter­
mine their frequency of occurrence. A document vector was generated that char­
acterized the document content. It was then scored against a set of vectors that 
represented known or emerging concepts. Thresholds were used to determine if 
content could be classified as existing or if a new cluster should be formed. 

Figure 34.10 diagrams the dataflow of the semantic-processing system. 
The FPGAs enabled streaming, computationally intensive semantic-process­
ing functions to be performed in constant time. They performed all of the 

Receive large volume of input content 
over network (e.g., HTML documents) 

!!!!:;;-�i.. iir-
.d :;.� Decode input TCP datastreams and interpret content

� 
Map ba,ewo,ds to semaou, meaolag 

�-
i■l:) · S Count word frequencies in each document

1 ·l· 1 

'tll Sco,e doc,meals agaiast koowa
:E ... :E :E :E and emerging concepts 

o.o 0.2 o.• 0.11 o.s 1.0 

... 

Automatically threshold, classify, and 
cluster content in to groups for analyst 

FIGURE 34.10 ■ Dataflow for the semantic processing system.

J , .. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 785



770 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

data-processing functions for tl)e system shown in the figure except for threshold 
and classification (which were performed and displayed on a computer console). 
By using FPGAs to implement all parts of the text processing, the entire sys­
tem could be dynamically reconfigured to allow variations of algorithms to be 
evaluated for their content classification or concept-clustering ability. Massive 
volumes of data were streamed through the system, and the system's precisibn, 
recall, throughput, and latency were measured [36]. 

The RAD circuits on the FPX (shown in Figure 34.3) were used to implement 
the TCP processor, the baseword module, the count module, the score module, 
and the report module. All were implemented as modular hardware compo­
nents on individual FPX platforms connected in a vertical stack. The high-speed 
network interfaces allowed the FPX platforms to communicate intermediate 
results of processing to other modules in the system and to send reports to soft­
ware running on a computer outside the system using standard IP datagrams. 
Multiple copies of the FPX platform were stacked on each other to implement 
network intrusion detection and network intrusion prevention. Figure 34.11 is 
a photograph displaying how five FPX cards were stacked to implement the 
semantic processing system. Additional modules were added to tag tokens in a 
context-free grammar [37]. 

34.5 COMPLETE NETWORKING SYSTEM ISSUES 

To deploy complete network systems, additional issues must be considered. 
First, the hardware must be placed in a form factor appropriate for use in 
remote network closets. Second, the control and configuration of the hardware 
must be secure. And third, reconfiguration mechanisms are needed so that entire 
FPGAs, or (as needed) only parts, can be reconfigured over the network. With 
dynamic hardware plug-ins, most of the system can remain operational while 
parts of it are reconfigured. Partial bitfile reconfiguration allows the system itself 
to remain operational 24 hours a day (which is necessary to maintain a good 
network uptime) while individual components can still be modified quickly and 
efficiently. The PARBIT tool allows precompiled partial bitfile configurations 
to be generated and then quickly deployed into regions of FPGA networking 
hardware. 

34.5. 1 The Rack-mount Chassis Form Factor 

Networking equipment is typically deployed in the form factor of a chassis that 
can be mounted into a 19-inch rack. Each unit (U) of a rack is 1.75 inches tall. 
In a 3U rack-mount chassis, up to four FPX modules could be stacked on each 
of two ports in the system. Data entered and left the system through the Gigabit 
Ethernet ports on the front panel. Figure 34.12 is a photograph of FPX modules 
integrated in a rack-mount chassis. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 786



34.5 Complete Networking System Issues 771 

Outgoing scored 
document vectors 

Incoming network traffic 

TCP processor 

Word mapping module 

Count module 

Reporting module 

FIGURE 34.11 ■ A stack of the FPX modules implemented the semantic processing system. 

FIGURE 34.12 ■ FPX modules integrated in a rack-mount chassis. 

34.5.2 Network Control and Configuration 

Reconfigurable hardware circuits perform a variety of functions in the network­
ing system. Some parts of the system implemented the infrastructure while 
others implemented the dynamically reconfigurable logic. Static circuits are 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 787



772 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

used to switch cells between modules. The extensible modules implemented as 
plug-ins perform the reconfigurable features. The FPX used a combination 
of statically configured and dynamically configurable logic to implement the 
complete platform. 

On the FPX, the NID was statically configured using a bitfile stored in a 
PROM. It controlled how data was routed between network modules. and 
included switching modules that forwarded traffic flows based on virtual paths 
and circuits found in the ATM cell headers. The NID also contained the logic 
that enabled other hardware modules to be dynamically loaded over the net­
work. This logic implemented a circuit that used a reliable network protocol to 
receive full and partial bitfiles over the network. The NID, in tum, buffered this 
data in a configuration cache and streamed the bitstream into the programming 
port of the attached FPGA. 

The RAD on the FPX was a Xilinx VirtexE-2000E FPGA that received the 
configuration data and performed application-specific functions implemented 
as dynamic hardware plug-in (DHP) modules. A DHP consisted of a region of 
FPGA gates and internal memory bound by the well-defined interface. For bit­
files that used all of the logic on the RAD, the interface was defined by user con­
straints file (UCF) pins. For partial bitfiles that used less than the entire FPGA, 
a standard on-chip interface was developed to transmit and receive packet 
data between modules. A full or partial bitfile was built using standard CAD 
tools [11]. 

34.5.3 A Reconfiguration Mechanism 

The NID allowed modules created for the FPX platform to be remotely and 
dynamically loaded into the RAD. This bitstream was sent over the network into 
the configuration cache, which was implemented by a circuit that controlled an 
off-chip SRAM. Once a full or partial bitfile was received, a command was sent 
to the NID to initiate the RAD reconfiguration. On a Xilinx Virtex, the SelectMAP 
interface loaded a new bitstream into the FPGA. To reprogram the RAD, the NID 
read the configuration memory and wrote a preprogrammable number of config­
uration bytes into the RAD FPGA's SelectMAP interface. Figure 34.13 illustrates 
this process. 

The NCHARGE API [9] was developed for debugging, programming, and 
configuring an FPX. Specifically, it included commands to check the status , 
an FPX, configure routing on the NID, and perform memory updates ancl 
and partial RAD reprogramming. 

NCHARGE provided a mechanism for applications to define their ow 
control interface. Control cells were transmitted by NCHARGE anr' / 
by control cell processors (CCPs) on the RAD or NID. To config--/ 
the traffic flowing through the system, NCHARGE sent control 
mands that modified routing tables on the Gigabit switch <' 
check the status of the FPX, NCHARGE sent a control eel' 
FPX, the NID updated fields in the cell, and the softwar, 
response. 

I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 788



34.5 Complete Networking System Issues 773 

1. New module
created

•··
2. Full or partial bitstream

sent over network to NID 
on the FPX and stored
in configuration cache 

Configuration 
cache 

3. Command 4. NID reads memory
issued to and reprograms 
reconfigure RAD via SelectMAP
hardware interface

FIGURE 34.13 ■ Remote reconfiguration of the FPX platform. 

34.5.4 Dynamic Hardware Plug-ins 

Use of runtime reconfiguration in networking systems enables developers of 
hardware packet-processing applications to achieve a capability similar to that 
of the dynamically linked libraries (DLLs) used in software applications. Just 
as a DLL is a software module that can be attached to or removed from 
a running program as an application demands, DHPs can be loaded into 
or removed from a running FPGA without disturbing other circuits operat­
ing in it. The ability to change the hardware feature set in a running sys­
tem is particularly useful in packet-processing applications such as firewalls 
and routers where it is not desirable to suspend the network operation during 
reprogramming. 

A practical system for implementing DHPs was implemented on the FPX and 
provided sufficient resources for networking, well-defined interfaces to hard­
ware, a complete design methodology, scripts that ran physical implementation 
tools to place and route logic, and tools that allowed selective reconfiguration 
of portions of the bitstream. These five elements were analogous to an operat­
ing system platform, application programming interface, modular programming 
methodology, compiler, and linker needed to implement DLLs in the software 
domain. 

34.5.5 Partial BiHile Generation 

Tools and a design methodology were developed to support partial runtime 
reconfiguration of DHP modules on the FPX platform. The PARBIT tool 
was developed to transform and restructure bitstreams created by standard 
computer-aided design tools into partial bitstreams that programmed DHPs. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 789



774 Chapter 34 • Network Packet Processing in Reconfigurable Hardware 

The methodology allowed the platform to hot-swap application-specific DHP 
modules without disturbing the operation of the rest of the system [12]. 

To partially reconfigure an FPGA, it is necessary to isolate a specific area in 
it and download the configuration only for the bits related to that area. PARBIT 
transformed and restructured the Xilinx bitstreams to extract and merge data 
from the bitfile's regions. To restructure the configuration bitfile, it read the orig­
inal bitfile, a target bitfile, and parameters given by the user that specified the 
block coordinates of the logic implemented on a source FPGA, the coordinates of 
the area for a partially programmed target FPGA, and the programming options. 
After reading these data, PARBIT copied to the target bitstream only the part of 
the original bitstream related to the area defined by the user. 

The target bitstream was used by PARBIT to preserve the part of the config­
uration data that was in a column specified by the user but outside the partial 
reconfigurable area. On a Xilinx VirtexE FPGA, the use of the target bitstream 
was necessary because one reconfiguration frame could span all rows of a col­
umn but have a partial reconfigurable area smaller than the column's height. 
PARBIT allowed arbitrary block regions of a compiled design to be retargeted 
into any similarly sized region of an FPGA. 

To relocate blocks from the original bitfile, a user defined the start and end 
columns and rows for the block in the original design. Then the user defined 
where to put this block in a target bitfile of the same device type. The tool 
generated the partial bitfile containing the area selected by the user (from the 
original bitfile). This data was used to reconfigure the target device. The config­
uration bits for the top and bottom input/output blocks (IOBs) from the target 
device did not change after the partial bitfile was loaded. Those for the columns 
from the original and target bitfile were merged according to the rows defined 
by the user. 

34.5.6 Control Channel Security 

For devices deployed remotely on the Internet, security of the control channel is 
critical. Remote systems need to be safe from both passive and active network 
attacks by malicious users. In passive attacks, malicious users glean information 
by monitoring the system. In active attacks, they attempt to change the system's 
behavior or paralyze it. Access control mechanisms have been developed to pro­
tect remotely configured systems from unauthorized use. 

Common attacks include passive eavesdropping, active tampering, replay, and 
denial of service (DoS). For a passive eavesdropping attack, a malicious user 
taps the network to copy and analyze its traffic. If the attacker can see clear text 
control and configuration information, he or she may discover how to control 
and configure the system. In an active tampering attack, an unauthorized user 
attempts to gain control of the remote system by issuing bogus control packets. 
For a replay attack, a malicious user passively captures legitimate traffic and 
then attempts to change the operation of the system by resending the captured 
traffic at a later time. For an active DoS attack, the user paralyzes the system 
by overloading the network with massive amounts of traffic. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 790



34.6 Summary 775 

Remotely configurable network systems can be made safe by mechanisms that 
ensure confidentiality of data, provide authentication of the administrator, and 
guarantee integrity of the messaging. By encrypting messages with the Advanced 
Encryption Standard (AES) or other secure encryption algorithms, data confi­
dentiality can be protected. With digital signatures generated by public key algo­
rithms, the administrator of the system can be authenticated to guarantee that 
no one else attempts to modify its operation. The integrity of messages can be 
ensured by verifying that exactly what is transmitted by the administrator is 
received by the system. Use of a message authentication code (MAC) can assure 
users that data are not modified and that no additional control messages are 
inserted. 

The Internet Protocol Security (IPSec) standard provides a mechanism to 
secure communications across the Internet. Many companies, such as Cisco, 
have implemented IPSec capability in their networking products. To secure a 
remotely reconfigurable FPGA, an IPSec in transport mode was designed for a 
Xilinx Virtex-11 Pro FPGA [10]. Security policies at network access points defined 
who could gain access and under what conditions access was granted. Encryp­
tion keys and hash keys remained secret using the security services previously 
described. The Internet key exchange (IKE) protocol negotiated and exchanged 
shared secrets between communication entities. 

34.6 SUMMARY 

As the limits of processor clock scaling are reached, systems that route, pro­
cess, filter, and transform Internet data scale better in reconfigurable hardware 
than in software alone. Networking platforms created with FPGA hardware are 
both fast and flexible. The FPX platform was used to implement over 30 core 
networking functions. 

The combination of Gigabit network interfaces, parallel banks of SRAM and 
SDRAM, and a large array of reconfigurable logic on the FPX platform enabled 
it to perform a wide range of networking applications. Modules and protocol 
wrappers created in reconfigurable hardware were developed on the FPX and 
provided functionality similar to the procedures and DLLs in software for net­
work processing. Reconfiguration of the modules over the network proved to 
be as effective for remotely loading new functionality on the FPX as the repro­
gramming of software on remote PCs. 

By using IP wrappers, the FPX platform provided the ability to process ATM 
cells, AALS frames, IP packets, UDP datagrams, and/or TCP/IP flows. Parallel 
finite automata engines proved useful in detecting regular expressions in packet 
payloads and TCP traffic flows. Bloom filters that performed parallel hash 
lookups also proved to be effective for detecting fixed strings in packets and 
TCP flows. A complete IDS system was implemented that performed a large sub­
set of SNORT using a combination of protocol-processing wrappers, IP header 
matching circuits, and Bloom filter payload-scanning circuits. A worm and virus 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 791



776 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

detection and blocking system was built using an FPX that demonstrated its util­
ity in providing Internet security. 

Reconfigurable hardware holds great promise for new types of networking 
applications. A language detection circuit was demonstrated that routed traffic 
based on the language used in a document. A semantic-processing circuit was 
demonstrated that allowed documents to be classified based on their topic. 

Going forward, reconfigurable hardware is becoming the technology of choice 
for future networking systems. Reconfigurable hardware is the key feature of a 
new platform, called the NetFPGA. This open platform enables switching and 
routing of network packets on Gigabit Ethernet links. Because the NetFPGA has 
many of the same resources as the FPX, it can implement most of the features 
first prototyped on the FPX [38, 39]. 

References 

[1] J. W. Lockwood. Evolvable Internet hardware platforms. NASA/DoD Workshop on
Evolvable Hardware, July 2001.

[2] J. W. Lockwood, H. Duan, J. M. Morikuni, S. M. Kang, S. Akkineni, R. H. Campbell.
Scalable optoelectronic ATM networks: The iPOINT fully functional testbed. IEEE
Journal of Lightwave Technology, June 1995.

[3] H. Duan, J. W. Lockwood, S. M. Kang, J. D. Will. A high-performance OC-12/OC-48
queue design prototype for input-buffered ATM switches. IEEE Infocom '97, April
1997.

[ 4] W. Marcus, I. Hadzic, A. McAuley, J. Smith. Protocol boosters: Applying program­
mability to network infrastructures. IEEE Communications Magazine 36(10), 1998.

[5] Wikipedia. OSI model. http://wikipedia.org/wiki/OSI_model, July 2006.
[6] F. Braun, J. W. Lockwood, M. Waldvogel. Protocol wrappers for layered network

packet processing in reconfigurable hardware. IEEE Micro 22(3), February 2002.
[7] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, D. B. Parlour. Scalable

IP lookup for Internet routers. IEEE Journal on Selected Areas in Communications
21(4), May 2003.

[8] D. Schuehler, J. W. Lockwood. A modular system for FPGA-based TCP flow pro­
cessing in high-speed networks. Proceedings of the 14th International Conference
on Field-Programmable Logic and Applications, August 2004.

[9] T. S. Sproull, J. W. Lockwood, D. E. Taylor. Control and configuration software
for a reconfigurable networking hardware platform. IEEE Symposium on Field­
Programmable Custom Computing Machines, April 2002.

[10] J. Lu, J. W. Lockwood. IPSec implementation on Xilinx Virtex-11 Pro FPGA and its
application. Reconfigurable Architectures Workshop, April 2005.

[11] E. D. Horta, J. W. Lockwood, D. E. Taylor, D. Parlour. Dynamic hardware plugins
in an FPGA with partial run-time reconfiguration. Design Automation Conference,
June 2002.

[12] E. Horta, J. W. Lockwood. Automated method to generate bitstream intellectual
property cores for Virtex FPGAs. Proceedings of the 14th International Conference
on Field-Programmable Logic and Applications, August 2004.

[13] J. W. Lockwood, C. Neely, C. Zuver, D. Lim. Automated tools to implement and
test Internet systems in reconfigurable hardware. SIGCOMM Computer Communi­
cations Review 33(3), July 2003.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 792



34.6 Summary 777 

[14] J. W. Lockwood, J. Moscola, D. Reddick, M. Kulig, T. Brooks. Application of hard­
ware accelerated extensible network nodes for Internet worm and virus protection.
International Working Conference on Active Networks, December 2003.

[15] J. Moscola, J. W. Lockwood, R. P. Loui, M. Pachos. Implementation of a content­
scanning module for an Internet firewall. IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2003.

[16] R. Sidhu, V. K. Prasanna. Fast regular expression matching using FPGAs. IEEE
Symposium on Field-Programmable Custom Computing Machines, April 2001.

[17] R. Franklin, D. Carver, B. L. Hutchings. Assisting network intrusion detection with
reconfigurable hardware. IEEE Symposium on Field-Programmable Custom Com­
puting Machines, April 2002.

[18] M. Roesch. Snort: Lightweight intrusion detection for networks. Proceedings of the
13th Administration Conference, LISA, November 1999.

[19] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W. Lockwood. Deep packet
inspection using parallel Bloom filters. IEEE Micro 24(1), January 2004.

[20] H. Song, S. Dharmapurikar, J. Turner, J. W. Lockwood. Fast hash table lookup
using extended Bloom filter: An aid to network processing. ACM SIGCOMM,
August 2005.

[21] M. Attig, J. W. Lockwood. SIFT: SNORT intrusion filter for TCP. IEEE Symposium
on High Performance Interconnects (Hot Interconnects-13), August 2005.

[22] L. Schaelicke, T. Slabach, B. Moore, C. Freeland. Characterizing the performance
of network intrusion detection sensors. Proceedings of the Sixth International Sym­
posium on Recent Advances in Intrusion Detection, September 2003.

[23] B. Madhusudan, J. W. Lockwood. A hardware-accelerated system for real-time
worm detection. IEEE Micro 25(1), January 2005.

[24] D. Moore, C. Shannon, G. Voelker, S. Savage. Internet quarantine: Requirements
for containing self-propagating code. IEEE INFOCOM, 2002.

[25] S. Staniford, V. Paxson, N. Weaver. How to own the Internet in your spare time.
Usenix Security Symposium, August 2002.

[26] S. Singh, C. Estan, G. Varghese, S. Savage. The Earlybird System for the Real­
time Detection of Unknown Worms, Technical report CS2003-0761, University of
California, San Diego, Department of Computer Science, 2003.

[27] C. Estan, G. Varghese. New directions in traffic measurement and accounting. ACM
SIGCOMM, August 2002.

[28] C. M. Kastner, G. A. Covington, A. A. Levine, J. W. Lockwood. HAIL: A hardware­
accelerated algorithm for language identification. Proceedings of the 15th Annual
Conference on Field-Programmable Logic and Applications, August 2005.

[29] Global Reach. Global Internet statistics by language. http://www.glreach.com/
globstats/index.php3, December 2004.

[30] Global Reach. Global Internet statistics: Sources and references. http://www.glreach.
comlglobstatslrefs.php3, December 2004.

[31] R. Paulsen, M. Martino. Word Counting Natural Language Determination, U.S.
Patent 6,704,698, 1996.

[32] J. Schmitt. Trigram-based Method of Language Identification, U.S. Patent 5,062,143,
1990.

[33] M. Damashek. Method of Retrieving Documents that Concern the Same Topic,
U.S. Patent 5,418,951, 1994.

[34] J. B. Sharkey, D. Weishar, J. W. Look.wood, R. Loui, R. Rohwer, J. Byrnes,
K. Pattipati, D. Cousins, M. Nicolletti, S. Eick. Information processing at very

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 793



778 Chapter 34 ■ Network Packet Processing in Reconfigurable Hardware 

high-speed data ingestion rates. In Emergent Information Technologies and Enabling 
Policies for Counter Terrosiom, edited by R. Popp and J. Yin. IEEE Press/Wiley, 
2006. 

[35] J. W. Lockwood, S. G. Eick, D. J. Weishar, R. Loui, J. Moscola, C. Kastner,
A. Levine, M. Attig. Transformation algorithms for datastreams. IEEE Aerospace
Conference, March 2005.

[36] J. W. Lockwood, S. G. Eick, J. Mauger, J. Byrnes, R. Loui, A. Levine, D. J. Weishar,
A. Ratner. Hardware accelerated algorithms for semantic processing of document
streams. IEEE Aerospace Conference, March 2006 .

. [37] Y. H. Cho, J. Moscola, J. W. Lockwood. Context-free grammar based token tagger 
in reconfigurable devices. Proceedings of the International Workshop on Data Engi­
neering, April 2006. 

[38] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, J. Luo. NetFPGA-An open platform for Gigabit-rate network
switching and routing. IEEE International Conference on Microelectronic Systems
Education (MSE2007), June 2007.

[39] J. Luo, J. Pettit, M. Casado, N. McKeown, J. W. Lockwood. Prototyping fast, simple,
secure switches for ethane. IEEE Symposium on High-Performance Interconnects
(Hot Interconnects-JS), August 2007.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 794



CH APTER 35 

ACTIVE PAGES: MEMORY-CENTRIC 

COMPUTATION 

Diana Franklin 

Department of Computer Science 
California Polytechnic State University 

Although field-programmable gate arrays (FPGAs) excel at tailoring the compu­
tation and interconnect to an application's needs, we can go one step further. In 
many applications, regardless of the speed of the computation, memory perfor­
mance always will be the limiting factor. This problem, referred to as the memory 
wall, is broken up into two parts-memory latency and bandwidth. For large­
scale data-parallel applications, the computation can be moved to memory. This 
allows for both parallel computation and increased bandwidth. The replication 
of small computation units provides parallelism, and the sum of their memory 
ports provides increased bandwidth. Because they are located in memory, there 
is no shared-bus resource to serialize communication. 

One such system, Active Pages, places computation with each page of DRAM. 
It is unique in that it targets the commodity DRAM market. This decision has 
both advantages and disadvantages. One advantage is that it supports both data 
streaming and general-purpose computation, and the computational resources 
scale automatically with memory allocation. One disadvantage is that, to keep 
costs low, there is no additional interconnect, and parallelism is only at the 
page level. 

Many of the characteristics of Active Pages are present in any memory-centric 
system. This case study explores several characteristics of the Active Pages 
design. It begins, in Section 35.1, with an overview of the Active Pages architec­
ture and programming model. Section 35.2 shows the performance potential of 
a scalable, memory-centric design. Section 35.3 then looks at how this scaling of 
computational resources, but not the interconnect resources, affects the asymp­
totic properties of several algorithms. Finally, Sections 35.4 and 35.5, explore 
the parallelism properties and the defect tolerance provided by the Active Pages 
design. Active Pages is just one of many projects in this realm, and Section 35.6 
presents related work, followed by some conclusions in Section 35.7. 

35. 1 ACTIVE PAGES 

This section gives a brief description of the Active Pages system. We present 
three aspects of the design: the hardware design, the interface between Active 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 795



780 Chapter 35 • Active Pages: Memory-centric Computation 

i 
-�
� 
0 

E 
Q) 

E 

ca 
E 

ctl 
"'Cl 
C 

Pages and the Central Processor, and the programming model that arises 
naturally from the design and interface. 

35.1.1 DRAM Hardware Design 

High-density DRAMs are divided into subarrays, complete with row and column 
decoders, to minimize column capacitance and decrease power consump­
tion [1]. The proposed Active Pages implementation exploits this natural struc­
ture, treating each subarray as an Active Page. As shown in Figure 35.1, a small 
computational unit and cache-a Page Processor and Page Cache-are embedded 
next to each subarray to implement Active Page functions [2]. Using commodity 
1-Gb DRAM technology as a target [3], we expect subarray size to be 512 KB
and the embedded processing to consume less than 31 percent of the chip area.

To minimize DRAM modification and reduce hardware overhead, the Active 
Pages implementations do not provide hardware support for communication 
between Active Pages. If two Active Pages need to share data, the Central 
Processor reads the data from one and writes to the other. The disadvantage of 
this process-mediated approach is that interpage communication must be infre­
quent to maintain performance with a single processor. 

35.1.2 Hardware Interface 

To interface with the Central Processor, Active Pages leverage conventional page­
based memory mechanisms to "virtualize" hardware for memory-based com­
putation. Computations for each page can be suspended, restarted, and even 
swapped to disk. Computations for several pages can be multiplexed on a single 
embedded processing element. 

Further, Active Pages use the same interface as conventional memory systems. 
Active Pages data are modified with conventional memory reads and writes; 
Active Pages functions are invoked through memory-mapped writes. Synchro­
nization is accomplished through user-defined memory locations. 

�■■��■• DRAM subarray (512 KB) 

Row decoder 
Column decoder 

�luii7r.:plljl�r.:ol� Page-based computational engine
����L.!J��� Page-cache (512-bit data/1024-byte instruction) 

[}]��[}][}]��[}] 

�■■m■■� 
FIGURE 35.1 ■ The Active Pages architecture (8 pages). 

== 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 796



35.1.3 Programming Model 

35.2 Performance Results 781 

The programming model of Active Pages was determined by several design 
decisions. First, communication between Active Pages and the Central Processor 
is accomplished through traditional reads and writes, allowing the Central Pro­
cessor to operate on Active Pages data just as it does on any other data. Second, 
Active Pages were intended for commodity DRAM systems, which may be run­
ning general-purpose applications. Thus, we could not assume a traditional data 
parallel, streaming model. Third, there is no interconnect between Active Pages 
processors. The model needs to limit the Pages to their own data, with no knowl­
edge of neighboring cells. Finally, each Active Page has compqtation associated 
with it. This is a direct association of data with computation. For these two 
reasons, the model of computation here is object-oriented programming. 

To program a Page Processor, the programmer creates an object in C++. The 
choice of C++ is not critical; it is used because it has no runtime system associ­
ated with it and has well-defined interfaces for object manipulation. The 512 KB 
allocated to each Page Processor is divided between code, stack, and data. These 
512 KB, larger-than-typical operating systems' virtual pages are referred to as 
superpages. The code must fit within the code segment, and the data size of the 
object is padded appropriately. 

The operating system (OS) is responsible for allocating Active Pages mem­
ory and loading the code into the correct region. The Page Processor begins 
on activation, first performing any initialization similarly to a C++ object con­
structor, and then polling a variable waiting for an invocation of a function. To 
maintain pin compatibility, all Active Pages functions are designed to use con­
ventional reads and writes. The Central Processor invokes Active Pages functions 
by writing the parameters into appropriate places in the Active Pages memory. 
The Central Processor then changes the Running variable, on which the Page 
Processor is polling, indicating which function to execute next. 

When the Page Processor has completed the function, it resets the looping 
variable (Running) and waits for the next invocation. Figure 35.2 shows the 
object declaration and implementation for execution on a Page Processor for 
LCS. More details on the LCS algorithm can be found in Section 35.3.3. In the 
LCS algorithm, the application requires only a single function, so the event loop 
is not actually necessary. It is shown, however, to illustrate how an application 
with many functions would use the Central Processor to invoke functions on the 
Page Processors. The main function run on the Central Processor is not shown. 
The Central Processor can poll the Running variable to determine whether a 
Page Processor has completed a particular function. 

35.2 PERFORMANCE RESULTS 

Now that we have an idea of what the Active Pages architecture looks like and 
how it is programmed, this section presents performance results for several 
applications using a simulated Active Pages system. A more detailed study can 
be found in Oskin et al. [ 4 ]. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 797



782 Chapter 35 • Active Pages: Memory-centric Computation 

Class LCS{ 
//int CodeAndStack[8192]; 
public: 

I I added by compiler 

int Running, Data[WIDTH-1] [LENGTH-1]; 
char X [WIDTH], Y [LENGTH]; 
LCS () { Running = AP _WAIT; 
void Start () ; 
void DoLCS () ; 

void LCS: : DoLCS () 
int i, j; 

} 

for(i=l;i<LENGTH;i++) // row O, column O initialized by Central Processor 
for(j=l;j<WIDTH;j++) { 

if (X[i] == Y[j]) 
Data[i] [j] = Data[i-1] [j-1] + l; 

else if (Data[i-1] [j] > Data[i] [j-1]) 
Data[i] [j] = Data[i-1] [j]; 

else 
Data[i] [j] = Data[i] [j-1]; 

) 

void LCS: : Start () 
volatile int *act = &(Running); 
while (*act ! = AP _STOP) { 

while(*act == AP_WAIT) 
switch (*act) { 
case (AP_LCS): 

DoLCS(Val); 

I I wait for Central Processor 

*act = AP_WAIT; // it is done
break;

FIGURE 35.2 ■ A code example of an Active Pages object. Each Page Processor initializes its 
own space on allocation using the constructor. The Central Processor starts the PagP- Processor 
by writing to the Running variable. When the call is finished, the Page Processor sets R:mning 
back to AP _WAIT. 

To estimate the performance of Active Pages configurations, each Active Pages 
function was hand-coded in a high-level circuit-description language, such as 
VHDL (see Chapter 6 and [5]), and synthesized to an Altera lOK FPGA. The map­
ping was carried out all the way to placed and routed designs [6]. 

To demonstrate effective partitioning of applications between the Central 
Processor and Active Pages, we chose a range of applications representing 
both memory- and processor-centric partitioning. Table 35.1 summarizes the 
attributes of these applications. 

35.2.1 Speedup over Conventional Systems 

To evaluate performance of the Active Pages memory system, each application 
was executed on a range of problem sizes. The speedup of the applications 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 798



35.2 Performance Results 783 

TABLE 35.1 ■ Summary of the partitioning of applications between the Central Processor 
and Active Pages 

Memory-centric applications 

Central Processor Active Pages 

Name Application computation computation 

Array C++ standard template C++ code using array Array insert, delete, 
library array class class cross-page moves and find 

Database Address database Initiates queries Searches unindexed 
summarizes results data 

Median Median filter for Image 1/0 Median of neighboring 
images pixels 

Dynamic Protein sequence Backtracking Compute MINs and 
program matching fills table 

Processor-centric applications 

Matrix Matrix multiply for Floating-point multiplies Index comparison and data 
Simplex and finite gathering and scattering 
element 

MPEG-MMX MPEG decoder using MMX dispatch MMX instructions 
MMX instructions Discrete cosine transform 

running on an Active Pages memory system compared to a conventional mem­
ory system is shown in Figure 35.3. Each application was run on a range of 
problem sizes, given in terms of number of Active Pages (512-KB superpages). 
The following are two primary observations about this graph. 

First, the performance results qualitatively scale as expected. This shows the 
advantage of memory-centric computation. We observe that most applications 
show little growth in speedup as data size grows within the subpage region 
(below one page). In this region, Active Pages applications have little parallelism 
to offset activation costs. When leaving this region, however, we enter the scal­
able region and see that· performance on all applications grows as data size 
increases. Four applications-database, MMX, matrix-simplex, matrix-hoeing, 
and median-filtering-also reach the saturated region. Here, Active Pages per­
formance is limited by the progress of the Central Processor. This limitation 
may be because of either too much work for a given-speed Central Processor or 
too much data travelling between the Central Processor and Active Pages across 
the memory bus. Performance can actually decrease as coordination costs dom­
inate performance. Given a large enough problem size, all applications would 
eventually reach the saturated region. 

Second, we see that the array-delete primitive performs poorly in the subpage 
region. This is because of the difference between the FPGA implementation and the 
instruction set used to implement the Central Processor. The Central Processor's 
instruction set is especially well suited for the array-delete primitive. Thus, unless 
there is sufficient parallelism to justify using Active Pages, it is faster to use the 
Central Processor. So, for small deletes, we use only the Central Processor. This 
benchmark was a combination of small deletes and large deletes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 799



784 Chapter 35 • Active Pages: Memory-centric Computation 

1000 

100 

a. 10 
::, 

a. 
en 

,◊ 

,,2}--6 
,,;,0 

t,' ,, 

,, .. ' ,
,,;,, 

◊------o' ,. 
□-----

,/{ 

1:s-----'I<'----

10 100 

Problem size (in 512 KB pages) 

--o-- array-delete --o - array-find --<>-- array-insert --tr - database 

--- dyn-prog -+- matrix-boeing --o- matrix-simplex 

--o- median-kernel -<>- median-total --tr- MMX 

FIGURE 35.3 ■ Active Pages speedup as problem size varies. 

As problem size grows, and the Central Processor is used for both the 
coordination of large deletes and the complete execution of small deletes, the 
Central Processor becomes the limiting factor in performance and the perfor­
mance gets closer to that of the uniprocessor. This shows an interesting trade­
off between the FPGA and the Central Processor. Some computations, though 
not many, will perform better on the Central Processor. If this coincides with a 
part of the application that does not require parallelism, then the advantage of 
the memory-centric FPGA implementation will be reduced. 

35.2.2 Processor-Memory Nonoverlap 

The saturated region of Active Pages performance emphasizes the importance of 
partitioning applications to efficiently use the Central Processor in a system. For 
processor-centric applications, this dependence is obvious. The goal is to keep 
the Central Proces�or computing by providing a steady stream of useful data 
from the memory system. For memory-centric partitions, however, the Central 
Processor is still a vital resource. Active Pages cannot compute without activa­
tion and interpage communication, both provided by the Central Processor. 

As data size grows in an Active Pages application, so does the load on the 
Central Processor. We measure the remaining capacity of a Central Processor to 
handle this load with a metric, processor-memory nonoverlap time. Nonoverlap 
is the time the Central Processor spends waiting for the memory system and can 
be used to estimate the boundary between the scalable and saturated regions of 
application performance. 

The relative percentage of time the Central Processor is stalled, waiting 
for memory system computation, is shown in Figure 35.4. As described in 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 800



100 

� 
C. 

80
G) 

C: 
0 60 C: 

0 

E 
G) 40 E 

0 
1/) 
1/) 

20 G) 

35.2 Performance Results 785 

10 100 

Problem size (in 512 KB pages) 

--<r- array-delete --o- array-find --<>-- array-insert --t.- database 

- dyn-prog -+- matrix-boeing --<>- matrix-simplex 

--o- median-kernel -<>- median-total --ts- MMX 

FIGURE 35.4 ■ The percent of cycles that the Central Processor is stalled on Active Pages as 
problem size varies. 

the previous section, the applications that reached the saturated region of 
speedup were database, matrix-simplex, matrix-hoeing, and median-filtering. As 
Figure 35.4 shows, these applications also reach a point of complete processor­
memory overlap. 

We also observe that for the array primitives and the dynamic programming 
application, the nonoverlap percentage remains relatively high. These appli­
cations are largely memory-centric with very little Central Processor activity. 
In fact, the array primitives operate asynchronously to the end of the applica­
tion and are artificially forced into synchronous operation for this study. This 
means that an application can use the array-insert and array-delete primitives 
with only the cost of Active Pages function invocation. Modulo dependencies on 
the array, the time spent by the memory system shifting data, can be overlapped 
with operations outside of the STL array class. This overlap occurs in a natural 
way with no additional effort required by the programmer who uses the Active 
Pages STL array class. Opportunities for overlapping execution of data structure 
operations with data structure usage are intriguing and are being investigated 
further. 

The dynamic programming example maintains a very high processor-memory 
nonoverlap; however, preliminary results indicate that processor-mediated com­
munication required by the Active Pages memory system eventually dominates 
performance. This occurs for extremely large problems that are well beyond 
the range of problem sizes presented in this study. Dedicating more resources 
to the interconnect increases the range of problems that Active Pages can 
help solve. 

<U 
-c:: 

~ 

~ 

.L 

(.) 

e 
a. 

0 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

4,\ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 801



786 Chapter 35 ■ Active Pages: Memory-centric Computation 

35.2.3 Summary 

Memory-centric computation provides a scalable source of performance for 
large-scale applications. Active Pages provides a large number of simple, recon­
figurable computational elements that can achieve speedups up to 1000 times 
faster than conventional systems. Systems with rich interconnects have the 
potential for scalable gains on an even wider range of applications. 

35.3 ALGORITHMIC COMPLEXITY 

Although the simulated results show great promise, to truly understand how 
Active Pages improves runtimes as problem sizes grow, we need to explore 
asymptotic properties of algorithms in conventional systems as well as Active 
Pages systems [7]. For this study, we use a set of kernels whose asymptotic 
properties are well known in algorithmic literature. 

While it is unrealistic to expect the number of processors in a conventional 
multiprocessor to scale arbitrarily, the amount of DRAM in a system is expected 
to scale with problem size for a majority of problems. With Active Pages DRAMs, 
computational hardware also scales. This scaling provides parallelism that can 
improve asymptotic performance. Table 35.2 gives a preview of such gains for a 
variety of algorithms. Note that Active Pages execution times rely on the optimal 
page size given in the table. In practice, we expect Active Pages hardware to 
support a small range of page sizes designed to support target applications and 
problem sizes. 

The challenge in the analysis is to take communication costs into account. In 
any system, the interconnect will affect the asymptotic properties of the perfor­
mance as the problem scales. Active Pages, in particular, requires careful con­
sideration of the communication between Page Processors as well as between 
the Central Processor and the Page Processors. The partitioned computations 
and restricted communication model here differ substantially from traditional 
parallel models such as PRAM [8]. This section presents an analysis of each 
algorithm that considers these issues. These analyses are also validated with 
simulation results. 

TABLE 35.2 ■ Algorithmic complexity (summary} 
Execution time 

Application Conventional within Active Pages Page size 

Array insert O(n) O(v,i) O(v,i) 
20 LCS O(n2) O(nv,i) O(n} 
30 LCS O(n3) O(n7'3) O(n2) 
All-pairs shortest path O(n3) O(n713) O(n413)
Sorting O(n- log2(n)) O(n • log2(1og2(n))) O(nlz) 

where n = z· fl 
Volume rendering O(n3) O(n5 '2) O(n3'2) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 802



35.3 Algorithmic Complexity 787 

35.3. 1 Algorithms 

Active Pages can dramatically improve the performance of many algorithms. 
This section maps several common algorithms to an Active Pages system and 
analyzes performance gains. Figure 35.5 introduces the notation used here. With 
these conventions, we analyze the worst-case execution time of the algorithms: 
insertion of an element into a linear array of elements, longest common subse­
quence of two- and three-dimensional sequences using a dynamic programming 
formulation, all-pairs shortest path using a dynamic programming formulation, 
sorting of a linear array of elements, and volume rendering using ray-tracing 
and linear absorption coefficients [7, 9]. 

Each analysis is provided by first presenting a general model for the algo­
rithm's execution time. Next, various model-specific parameters are assumed to be 
constants. After this simplification, the derivative of execution time with respect 
to page size is used to find an optimal page size. This page size is then substi­
tuted back into the model, and execution time is expressed again as a function of 
problem size. 

These results are then validated with a high-level simulator. The simulator 
models Active Pages execution using parameters based on execution of the cycle­
level simulator. The parameters used are given in Table 35.3. Typical parame­
ters correspond to the target architecture studied here and often exhibit better 
performance than a purely asymptotic analysis would suggest. Asymptotic 
parameters emphasize the dominant terms in asymptotic performance while 
remaining within realistic problem sizes. These exaggerated parameters are used 
to validate the more conservative analyses. 

Table 35.3 summarizes the parameters used in the high-level simulator. Ta is the 
amount of time required by the processor to invoke a function on a memory-based 

n is the size of the input. 
p is the number of data elements in an Active Page. 
q is a problem-specific function of p that is used for most algorithms to define p. For instance, 

for dynamic programming algorithms where a two-dimensional result set is generated, it is 
convenient to describe pas equal to p=(f. 

k is a function of the number of Active Pages used for the problem-usually k=nlq.

FIGURE 35.5 ■ The notation used for algorithmic analysis. 

TABLE 35.3 ■ Summary of simulation parameters 

Array 
Parameter APSP* Sort insert LCS* LCS3 Render 

Activation time (Ta) 100/0 0 2058 100/100 100 100 
Central Processor per-page processing time (T

p
) 1 387 5 

Page processing per-element processing time (Tel 10/10 1 2 10 10 
Fixed communication overhead ( T sal 
Per-element communication cost (T5b) 

* Typical/asymptotic.

1/1 

1/1 

10/10 
1/100 

1 

1 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 803



788 Chapter 35 ■ Active Pages: Memory-centric Computation 

processor. This includes setup, argument passing, and invocation. This constant is 
per page. Tp is the amount of time required by the processor to complete execution 
of an algorithm associated with a particular page. Generally, the "focus" of execu­
tion traverses from the Central Processor to the Active Pages and then back again. 
This may proceed many times and involve overlap throughout the execution of 
the algorithm. However, for the analysis presented here the focus is on a single set 
of transitions from host to memory and back. Hence, Tp is the time spent by the 
Central Processor per page when completing the Central Processor portion of the 
computation for that page. Tc is the amount of time required by the memory-based 
processing element to compute its portion of the algorithm for a single data item 
within the page. For instance, on a conventional processor and memory system, 
an O(n) algorithm requires some time, Tc, to compute the solution for each ele­
ment; hence, the execution time is described as T = Tc· n. Tsa is the amount of time 
that corresponds to the "fixed overhead" associated with each interpage communi­
cation. Inter-Active Pages communication is a necessarily expensive process, and 
this constant quantifies the relatively large fixed overhead associated with each 
such communication request. Tsb is the amount of time, per data item, associated 
with an interpage communication. Not all algorithms use interpage communica­
tion, and some use portions of Ta or Tp to perform such communication as part of 
activation and postprocessing, respectively. 

This short section can present detailed analysis only of the array and LCS 
applications. We refer the reader to a technical report by Oskin et al. for the full 
set of analyses and results [9]. 

35.3.2 Array-Insert 

The analysis begins with a simple array library. Specifically, we examine an inser­
tion operation performed on an array of elements arranged in a linear fashion. A 
conventional system requires O(n) execution to complete this task. In an Active 
Pages memory system, we partition these n elements into k pages, with each 
Active Page managing nlk elements. To insert an element at position j within 
the array, each Active Page from the page containing j up to the last page of 
the array shifts the elements up by one to make room for the new element. 
These shifts proceed in parallel, however, since each Active Page operates inde­
pendently. Note, though, that some form of communication between pages is 
required to migrate elements across page boundaries. This communication is 
grouped within the activation portion of each Active Page. The algorithm can 
be expressed as shown in Figure 35.6. 

for j=l to k 

communicate the last element of 

page j to page j+l 

activate page j informing it to 

shift elements upward 

FIGURE 35.6 ■ The array-insert algorithm.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 804



35.3 Algorithmic Complexity 789 
The analysis begins with s(i), the nonoverlap (stall) time for page i. The nonoverlap time, discussed in Section 35.2.2, is the amount of time spent by the processor waiting for the Active Pages memory system to finish. Essen­tially, this algorithm (and many other Active Pages algorithms) proceeds by hav­ing the Central Processor set up and activate memory-based processing, then wait for a page to complete computing. After the memory-based computation section is complete, the processor can return to finish its section of the com­putation. It turns out that quantifying how much a processor stalls while waiting for memory-based computation to complete, for traditionally linear algorithms, is an important and measurable quantity that can be used to tune applications to achieve maximum performance. We use it to quantify execution time. Three functions-Tb, TP, and Tb-are used to quantify portions of the execu­tion time. These are expressed as functions because several linear-based algo­rithms can be mapped to an execution time analysis similar to that presented here. The functions correspond to activation time, host processor postexecution time, and per-page memory-based computation time, respectively. For array insertion, these are essentially constant functions; hence, Tc(i) = Tc, Ta(i) =- Ta , and Tp(i) = Tp

. Figure 35.7 shows the timing of the array-insert operation ( or any other linear-based function) on the Active Pages system using Ta, Tc, and Tp. Next, note that I:f:
1 
s(i) � Tc ·P allows us to simplify execution time and take the derivative of T with respect top. This gives us a new expression for T given the optimal value for p:

k k 

T = E[Ta+Tp +s(i)] =k(Ta +T
p ) + Es(i) �1 �1 

dT -n ) n(Ta +T
p ) -d 

= 2 (Ta + T
p 

+Tc ⇒P =
p p � 

Topt = � (Ta +Tp ) +Tc ·p = 2 · Jn · (Ta +T
p
) •Tc= O(yn) 

p 

k 

T = L [Ta(i) + Tp(i) + s(i)] i=l 
s(i) = max { 0, 

s (i) 
( k i-1 ) s' (i) = Tc(i)- J;1 Ta(j) + fi (Tp(j) +s(j))

(35.1) 
F 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 805



790 Chapter 35 ■ Active Pages: Memory-centric Computation 

s(1) 
Processor ITa(1)1Ta(2)1Ta(3)I ___________ ITa(K)�-------� Tp(1) I Tp(2) I Tp(3) I ______________ r:::i=e®J

Active Page 1 - ----�
'-

-
-;:::====T=c(

::::
1)

=========-
f
_
-
_
--

_,
-----------------------------------------

Active Page 2 ----------� Tc(2) I---------------------------------------

Active Page 3 ---------------� Tc(3) I----------------------------------

Active Page K ---------- ------------------�._ ______ T_c(�K)�----�1---------------------

Time 

FIGURE 35.7 ■ An array-insert operation demonstrating processor and Active Page computations. 

7.0E+06 

6.0E+06 

Q) 

5.0E+06 

Q) 

4.0E+06 

"C 3.0E+06 
Q) 

2.0E+06 

1.0E+06 

0.0E+00 

0 125 M 250M 375M 500M 625M 

n 

FIGURE 35.8 ■ Simulation results for the array-insert operation. 

This analysis makes the conservative assumption that computation proceeds 
in serializable steps. First, all pages are activated; then all pages compute; finally, 
all pages finish and the processor performs some minimal postpage computa­
tion for each page. In reality, there is substantial overlap of these functions, 
and only during asymptotic performance is this serializing behavior observed. 
During practical application of this algorithm, the dominant term is Tc • p, and 
execution time is held relatively constant. This behavior is observed until the 
point at which the number of pages times the activation and postpage process­
ing per page starts to significantly approach Tc • p. Figure 35.8 depicts simu­
lated application performance versus problem size. As can be seen from the 
graph, simulated performance follows an O( y'n) growth curve, as predicted by 
the analytical model here. 

CJ) 

.!: 

.c 

~ 

Y = 135837 n o.s_.--~ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 806



35.3 Algorithmic Complexity 791 

35.3.3 LCS (Two-dimensional Dynamic Programming) 

Moving to a more complex algorithm, we examine a dynamic programming 
formulation for computing the longest common subsequence in a protein. The 
conventional execution time of this algorithm is O(n2 ). Figure 35.9 outlines 
the algorithm. For a more in-depth discussion of the LCS algorithm with fine­
grained parallel execution in a systolic model, see Hoang [10]. 

Parallel execution of this algorithm proceeds in "wave-fronts," as depicted in 
Figure 35.10. Once the first subproblem is solved and the results have been dis­
patched, two other problems can immediately start computing, and when they 
are done, three other Active Pages can start their computation in parallel. The 
processor is responsible for activating a wave-front. When processor-mediated 
communication is used, the wave-front is uneven, with certain pages of the com­
putation executing slightly ahead of other pages. This is because of the overlap­
ping nature of Active Pages computation and processor activity. In the model of 
computation here, this overlap is very important to performance, and we take 
advantage of it to lower overall execution time. Also note that the subproblem 
solution that an Active Page will make available consists only of the items on 
two edges of the page. 

For this problem we assume the following constants. Tc is the time required 
by the Active Pages processor to compute the result of a single item of the LCS 
computation. Tsa is the fixed overhead cost associated with an interpage com­
munication. T5b is the cost to transfer items between pages on a per-item basis. 

partition x and y into k segments 

divide the computation into x/q and y/q smaller computations 

initialize page (i, j) with the corresponding component i of string x 

and with component j of string y. 

let page ( i, j) perform the conventional LCS algorithm after subproblems 

(i, j-1), (i-1, j), and (i-1, j-1) have been solved. 

page (i,j) dispatches results to neighboring subproblems. 

FIGURE 35.9 ■ The two-dimensional LCS algorithm. 

xlqpages 

FIGURE 35.10 ■ Parallel execution of two-dimensional LCS on Active Pages. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 807



792 Chapter 35 • Active Pages: Memory-centric Computation

Further, since the dynamic programming model dictates that the number of
items in a page be quadratic in terms of the length of sequence x and the length
of sequence y, we define the page size p to be equal to q2 , where q is a variable.

This makes the reasonable analytical assumption that x and y are of similar
lengths. We can express application execution time as

j nlq 

T<2·E [rc•l+Tsa+q·Tsb] +2· L, i-[3·Tsa+(2·q+l)•Tsb] 
i=l i=j+l 

(35.2)

where j represents the particular wave-front in which the overall execution
switches from being bounded by computation to being bounded by commu­
nication. Focusing on the first half of the computation-bound area, each wave­
front has an ever-increasing cost of communication. This is because more Active
Pages are involved in each wave-front.

At first, the communication is hidden by computation, but eventually the cost
of communicating the required data between wave-fronts exceeds the cost of
computation for the wave-front. At this point, the algorithm crosses over from
being bounded by computation to being bounded by communication; thus, com­
putation completely overlaps with communication. We denote the wave-front
where this occurs as j. This chapter presents an analysis that achieves a bet­
ter theoretical upper-bound than the conventional sequential solution. Based on
particular protein sequence sizes, computer-assisted analysis can reveal the ideal
j and q, which minimize the execution time of this algorithm, thus tailoring the
behavior of Active Pages in terms of the given problem size. The simulation
results show that computer-calculated ideal page sizes entail even a slightly b1;;Y­
ter performance than the theoretical analysis. As will be seen, this is because of
a simplification in the analysis.

Suppose we force j 2'. nlq. This implies that the algorithm will never become
bounded by communication resources. We can do this by carefully selecting q
and then demonstrating that this q does indeed force j 2'. nlq. To find a q that
satisfies these conditions, we require that the communication always weighs less
than computation:

Then simplify this inequality by:

�-[3·Tsa+(2·q+l)•Tsb] $ [Tc·q2+Tsa+q•Tsb]

�-[3·q•(Tsa+Tsb+l)] $ [Tc•q2+Tsa+q•Tsb]
Tc·q2 $ [rc•q2+Tsa+q•Tsb]

(35.3)

(35.4)

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 808



35.3 Algorithmic Complexity 793 

This simplification will not lead to an absolute lower-bound on execution time, 
but it does present a tractable alternative that can be used to find an "ideal" q: 

q?:./n· (35.5) 

Then use this q to drop j from the equation, since the algorithm will never be 
bound by communication: 

(35.6) 

= 2 · .J;_ · [ Tc · n · a.2 + Tsa + /n · Tsb +a] = O(n /n) 

While O(n/n) is a loose upper-bound, it is faster than the conventional runtime 
of O(n2). The simulation results concurred with the findings and suggested a
slightly better than O(nvn) lower worst-case execution bound. 

Figure 35.11 depicts simulated performance of the LCS algorithm; two curves 
are shown. The first curve depicts the predicted performance of O(nvn) (using 
asymptotic parameters from Table 35.3). The second curve predicts a more realistic 

performance of O(n413) (using typical parameters). The discrepancy is because of
communication performance. If communication were more expensive, then the 
ideal page size would shift away from communication requirements and toward 
increased computational requirements, amplifying that term in the execution time 
expression. This in tum would reveal the asymptotic order of the LCS algorithm. 

7.0E+07 

6.0E+07 

Q) 

5.0E+07 
0 

Q) 

4.0E+07 
0 

"O 3.0E+07 

2.0E+07 

1.0E+07 

0.0E+00 
0 

y = 53.031n1 ·54 

/ 

�/ 

/,/ 
�;...- y = 35.469n 1 ·3772 

� 

5000 10000 15000 20000 25000 30000 35000 
n 

FIGURE 35.11 ■ Simulation results for the two-dimensional LCS. 

.5 

.s::. 
(ll 

E 

. nlq ] n [ ] 
T < 2 · l: [ Tc •q2 + Tsa +q • Tsb = 2 · - · Tc .q2 + Tsa +q · Tsb 

i-1 q 

/ 
/ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 809



794 Chapter 35 ■ Active Pages: Memory-centric Computation 

1.2E+10 

1.0E+10 

i 8.0E+09
Q) 
C: 

i 6.0E+09

J 
� 4.0E+09

2.0E+09 

,.,· ,
.///y = 6.8863x2·3554 , ' 

/ 

// 
_../ 

�/ 
./ 

0.0E+00 +---';�=--r---..----r---�---r---.----,----, 
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

n 

FIGURE 35.12 ■ Simulation results for the three-dimensional LCS. 

A more realistic depiction of application performance follows an O(n413 ) trend.

A similar analysis predicts performance of O(n713 ) for three-dimensional LCS.
Figure 35.12 shows that the simulated performance for three-dimensional LCS 
closely matches this prediction. -------

35.3.4 Summary 

We can see that with a memory-centric architecture such as Active Pages, 
in which die computation scales with the communication, the asymptotic 
complexity can be reduced. We also see that it is a much more complex equa­
tion than one might think. The overhead of the Active Pages, the delay of any 
communication, and the page size need to be taken into account. Two algo­
rithms, along with validated simulations, have been presented to show their new 
asymptotic properties. We have found that the inexpensive parallelism provided 
by page-based intelligent memories can have a significant affect on asymptotic 
performance. We have also found the optimal page sizes that are required to max­
imize performance. 

35.4 EXPLORING PARALLELISM 

In any memory-centric system, we must decide the proper balance between 
memory resources and computation power. To save money, we could share a 
single computational element with twice as much memory. Allowing sharing can 
potentially even out the computational requirements of two processing elements 
because their needs may not always be identical. 

Cl) 
Q) 

w / 

j> 

/ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 810



35.4 Exploring Parallelism 795 

This section looks at virtualizing the computational logic across superpages 
in the Active Pages chip. Virtualization is accomplished by time-slicing a VLIW 
processor (see VLIW datapath control subsection of Section 5.2.2) across one to 
eight Active Pages. We refer to this time-slicing as the multiplexing of the com­
putational logic. This study presents an analysis of multiplexing and its effects 
on performance in a multiprocess environment. In addition, it looks at how 
varying individual processor widths affects performance. By combining these 
approaches, we demonstrate that multiplexing is a more effective technique 
for reducing logic area requirements than reducing individual Page Processor 
performance. 

In this study, we chose to use VLIW computational elements rather than an 
FPGA so that we could explore the trade-off between instruction-level paral­
lelism and task-level parallelism. The results hold for FPGAs as well. From a 
high level, it is merely the trade-off between smaller dedicated resources per 
memory segment and shared resources between memory segments. The study 
is cleaner when using processor width rather than FPGA area. 

35.4.1 Speedup over Conventional 

We begin with the raw speedups of a commodity workload that is used for 
this study. Because the focus is on multi-programmed systems, we are using 
a slightly different workload than before. 

Figure 35.13 depicts application speedup when applications use an Active 
Pages memory system. Speedup is measured in terms of wall-clock time for 
the application in a conventional memory system divided by its wall-clock time 

10 
41 18 

9 

iii 
8 

C: 

0 7 

> 6 C: 
0 

cii 5 
> 
0 

4a.

3Cl) 
Cl) 
a. 

2 

0 
Array MPEG Render gee gzip Perl 
(78 M) (8 M) (256 M) (2.5 M) (0.5 M) (1 M) 

Application 

FIGURE 35.13 ■ Speedup over conventional. 

u 

en 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 811



796 Chapter 35 ■ Active Pages: Memory-centric Computation 

using an Active Pages memory system. We observe that Active Pages applications 
continue to show substantial speedups when executed in a multiprocess envi­
ronment. That is, even when many independent applications are executed at 
once, the applications experience speedup. 

35.4.2 Multiplexing Performance 

We continue by exploring how much performance degradation occurs as 
resources are shared between Active Pages. Figure 35.14 depicts relative appli­
cation performance as the degree of multiplexing is increased. We normalize 
the results to a configuration with no multiplexing, where a one-to-one relation­
ship exists between 4-wide VLIW processors and DRAM subarrays. Multiplexing 
factors of two, four, and eight make up the remaining data points. Note that 
hardware multiplexing of eight incurs no more than a 17 percent performance 
penalty, and a multiplexing factor of four incurs no more than a 6 percent per­
formance penalty for all Active Page applications in the workload. 

35.4.3 Processor Width Performance 

It is promising that with a 4-wide VLIW, performance does not degrade sub­
stantially, as it is shared between Active Pages. Is this because the VLIW proces­
sor is not being used efficiently? We now examine the inherent instruction-level 
parallelism (ILP) in our applications. Figure 35.15 depicts relative application 
performance as VLIW processor width is varied. Here, processor widths of one, 
two, four, and eight were evaluated. We observe that half of the applications 
show a 20 to 80 percent increase in performance from increasing processor 
width, but the other half do not. It should be noted that MPEG suffers adverse 

1.05 "'T""""-----------------------, 

g> 1.00
Q) 

·x

u�
i� 
E el o.95 
.g 0 
Q) C: 
a. 0 
Q) -
� � 0.90 
a, N 
"ijj= 
a: � 

0 -S 0.85 

0.80 
Array 
(78 M) 

1, 2, 4, 8 

MPEG 
(8 M) 

Render 
(256 M) 

gee 
(2.5 M) 

Application 

FIGURE 35.14 ■ Performance versus hardware multiplexing. 

gzip 
(0.5 M) 

Perl 
(1 M) 

•

--

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 812



2.00 

0 1.80 
0 

Cl) -6 
0 "C 

1.60lij"§ 
E ,._ 

0 5l 't: rn 
Cl) 

Cl) 1.40 
a. g
Cl) ... > a.
.:.o 
a,- 1.20 
ai al
a: .!::! 

0 
1.00 

0.80 
Array 
(78 M) 

1,2,4,8 

MPEG 
(8 M) 

35.4 Exploring Parallelism 797 

Render 
(256 M) 

gee 

(2.5 M) 

Application 

gzip 
(0.5 M) 

Perl 
(1 M) 

FIGURE 35.15 ■ Performance of multiplexing versus VLIW processor width. 

cache effects with a VLIW width of eight, thus lowering performance relative 
to a 4-wide VLIW. We note that the largest performance gains because of VLIW 
processor width are achieved with processor widths of two and four, and not 
with eight. 

35.4.4 Processor Width versus Multiplexing 

Taking another look at Figure 35.15, we find that the Active Pages applica­
tions do not have the static instruction-level parallelism to use much beyond 
a 4-wide VLIW processor. In addition, Figure 35.14 shows that degradation 
because of multiplexing is superlinear, suggesting that too much coarse-grained 
parallelism exists within the application workloads to substantially multiplex 
processor resources. 

An experiment designed to compare these two forms of parallelism is depicted 
in Figure 35.16. Here we compare an Active Pages device using a single-issue 
processor with no multiplexing against a device using a 2-wide VLIW with two­
way multiplexing, a 4-wide VLIW with four-way multiplexing, and an 8-wide 
VLIW with eight-way multiplexing. 

In the Active Pages applications, a 2-wide VLIW with two-way multiplexing 
shows a performance gain. This implies that the gain from the increased ILP 
outweighs the reduced coarse-grained parallelism. Because several conventional 
applications are active in the workloads, this makes sense because many of the 
pages do not need the page processors. A 4-wide VLIW with four-way multi­
plexing is the best configuration studied. Hence, we use this configuration in 
the remainder of this study. 

--

.s 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 813



798 Chapter 35 ■ Active Pages: Memory-centric Computation 

Q) 

1.6 

1.4Q) 

Q) 

1.2 
Q) 

Array 
(78 M) 

MPEG 
(8 M) 

Render 
(256 M) 

gee 
(2.5 M) 

Application 

FIGURE 35.16 ■ Performance versus processor y.,idth. 

gzip 
(0.5 M) 

Perl 
(1 M) 

To describe why multiplexing performs well in a multiprocess environment, 
we identify three key factors: nonactive memory, Active Pages processing time, 
and partitioning. 

Nonactive memory 
This helps mask the performance degradation because of multiplexing. By 
definition, all pages of memory in a conventional application require no com­
putation in memory. Some pages in an Active Pages application also require no 
memory computation. 

Active Pages processing time 
This is the amount of time spent by the Active Pages computing without 
main processor intervention. The time varies with Page Processor performance. 
Simple data manipulations are easily offloaded to the memory system. This leads 
to longer per-page computation times, most notably MPEG, with Active Pages 
processing time on the order of seconds. 

The combination of low Active Pages processing times and context switch­
ing in the Central Processor hides the effects of multiplexing in the memory

system. In the absence of multiplexed Active Pages, when the main processor 
switches to another process, the Active Pages associated with the previous pro­
cess quickly finish their work and stall until the process regains control of the 
Central Processor. Multiplexing allows efficient utilization of Page Processors 
by context-switching them to another Active Pages process when they would 
otherwise be idle. 

In an environment with Active Pages processing times longer than a Central 
Processor time slice, such as those observed in MPEG, we would expect 
multiplexing to degrade performance. Within this study, however, degradation 

0 
C: as e 
.g 
C. 

> 
§ 
a: 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 814



35.5 Defect Tolerance 799 

is minimal due to the relatively low memory requirements of MPEG and the 
effects of conventional memory (without computational capability). 

Partitioning 

This is the process of dividing an application into work done in Active Pages and 
work done in the Central Processor. As long as the main processor can keep up 
with the Active Pages, an application is scalable and will exhibit linear speedup 
as its dataset grows and more Active Pages are used. Once the main processor 
becomes saturated with work, however, performance will no longer increase as 
more Active Pages are used. 

We find that multiprocess environments change the position at which an 
application transitions from scalable to saturated. Multiprocessing time slices 
the Central Processor, which may be viewed as artificially slowing down the 
processor from the perspective of a single process. This will shift the scalable­
saturated point toward smaller problem sizes. We may use multiplexing to 
reverse this shift. Essentially, multiplexing slows down the Active Pages compu­
tation, shifting the scalable-saturated point back toward larger problem sizes. 

Because of the preceding properties of multi-programming environments, we 
observe that multiplexing is an efficient mechanism for reducing logic area 
requirements in an Active Pages memory device. A four-way multiplexed 4-wide 
VLIW Active Pages device is estimated to require 12 percent of the available chip 
area for computational logic while still providing substantial performance gains. 
This estimate is based on the reduced logic area coupled with a 20 percent logic 
area increase because of additional interconnect requirements. 

35.4.5 Summary 

This study has looked at a promising method for reducing the computational 
logic area requirements of an Active Pages memory device. Such an approach 
could be exploited by any memory-centric device. By multiplexing the compu­
tational logic among one to four Active Pages, hardware cost can be reduced 
by four times with little performance impact in a multiprogrammed environ­
ment. Further, we find that it is more important to have fewer, faster compu­
tational logic elements that are time-shared across pages than more abundant, 
slower ones available for direct computation at each page. With a 4-wide VLIW 
processor multiplexed-with every four Active Pages, computational logic area 
can be reduced to 12 percent of total chip area in a gigabit DRAM. 

35.5 DEFECT TOLERANCE 

The previous section explored the parallelism trade-offs gained by sharing 
computational units between pages. This section focuses on another major fac­
tor in cost: manufacturing defects. DRAM architectures use redundant cells 
to tolerate defects, dramatically increasing chip yields and reducing cost. 
Embedded processors, however, do not have an analogous unit of redundancy. 
While multiplexing several Active Pages with one embedded processor reduces 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 815



800 Chapter 35 ■ Active Pages: Memory-centric Computation 

chip area, multiplexing each group of pages with two processors allows each 
group to tolerate a processor defect. This associativity requires some additional 
interconnect, but tolerance to randomly distributed processor defects increases 
from 33 percent to more than SO percent. 

In this section, we use associativity to increase the defect tolerance of 
an Active Pages system. The focus is on manufacturing defects that render 
embedded processors inoperative. The goal is to provide some degree of pro­
cessor redundancy under the assumption that memory cells already have their 
own redundancy techniques. 

Instead of four Active Pages sharing one 4-wide VLIW processor, we allow 
eight pages to share two processors. We study the effect of randomly distributed 
processor defects on this associative system. If a group suffers two defects, the 
operating system will only map conventional pages to that group (pages with no 
computation). 

The performance degradation because of randomly distributed processor 
defects is depicted in Figure 35.17. We note that up to a SO-percent defect rate 
is tolerated. Increasing the defect rate to 60 percent decreased the number of 
functional Active Pages below that required by the workload without page swap­
ping. Virtualizing Active Pages to disk was studied by Oskin et al. [ 11], and a 
similar mechanism can be used to further increase defect tolerance. 

Associativity creates an increased tolerance to defects. The benefits are 
straightforward. 'Iwo processors must fail instead of one in order to disable any 
Active Pages. If SO percent of embedded processors fail in the test system, we 
see that with two-way associativity up to 75 percent of the memory will still be 
available for Active Pages use. 

8 0.95 

Cl) 

Cl) 

a: 

0.9 

0.85 

0.8 

0.75 

0.7 
Array 
(78 M) 

MPEG 
(8 M) 

Render 
(256 M) 

gee 

(2.5 M) 

Application 

FIGURE 35.17 ■ Performance versus random processor defects. 

gzip 
(0.5 M) 

Perl 
(1 M) 

C: 
a, 

E 
.g 
8. 
-~ 
]! 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 816



35.6 Related Work 801 

Second, not all of the system memory is required to be "active" at the same 
time. This allows the OS to map around defect areas and use fully defective 
functional groups for conventional applications. Further, the workloads do not 
require the full 512 MB available to the system, and the unutilized memory 
is available to map into defective regions. The OS can tolerate some defects 
without associativity by taking advantage of underutilization and conventional 
applications. 

As noted in this section, multiplexing, associativity, and clever OS resource 
allocation can map around manufacturing defects with only a 20 percent perfor­
mance penalty with 50 percent random logic defects. An Active Pages-aware OS 
can be defect tolerant and allow a lower-cost system to be developed by increas­
ing manufacturing chip yield. These incremental costs make Active Pages an 
attractive memory-based computation model, though the same principles would 
hold for FPGA-based systems (see Chapter 37). 

35.6 RELATED WORK 

DRAM densities have made intelligent memory attractive as commodity 
components. Intelligent memory, however, was proposed well before the current 
commodity thrust. The SWIM project [12] combined reconfigurable logic and 
memory to perform fast protocol computations. The J-Machine integrated pro­
cessor, memory, and network router in a single chip to form building blocks for 
a fine-grained multiprocessor [13]. The RAW [14], MORPH [15], and RaPiD [16] 
projects continue to explore the use of reconfigurable technology to exploit 
parallelism. The RAW project, in particular, has also examined issues of proces­
sor width, dynamically trading off ILP and speculation. The HPAM project [17] 
takes a hierarchical approach to intelligent memory. 

The project that is most similar to Active Pages is FlexRAM [18], which 
targeted general-purpose computation. The goal was to find computation that 
could take advantage of the bandwidth provided within a DRAM chip. FlexR.AM 
proposed a hierarchical solution with simple computational elements within 
each page and a more complex processor for each DRAM. This allowed commu­
nication to be handled by an on-chip processor rather than the Central Proces­
sor. This had the disadvantage of adding pins to commodity DRAM packaging. 

Several other projects explored placing processors in DRAM for more mas­
sively parallel computation. IRAM [19] solved this problem by placing a single­
vector processor in DRAM. For applications amenable to vectorization, this is 
an excellent match between a high, bandwidth memory and a processing ele­
ment. Notre Dame's PIM [20] project uses SIMD functional units to consume 
the extra bandwidth. DIVA [21] has the most sophisticated design, allowing for 
a kernel to run on the PIM processors. It also features a dedicated PIM commu­
nication network, allowing for communication between PIM processors without 
host processor intervention. Currently, there is a single computational element 
in each DRAM. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 817



802 Chapter 35 • Active Pages: Memory-centric Computation 

The Impulse project [22] has similar goals to Active Pages but focuses on 
adding address manipulation functions to the memory controller. Its applica­
tions, such as gather-scatter for multiplying a sparse matrix by a dense vector, 
are also enhanced by more efficiently feeding the microprocessor with data. 
All the Active Pages applications, however, require some small computations 
that cannot be supported without more generalized computation in the memory 
system than Impulse provides. 

35. 7 SUMMARY

This chapter presented the enormous potential for memory-centric computa­
tion, along with several issues specific to the Active Pages DRAM environment. 
The potential for all memory-centric designs is the bandwidth between mem­
ory and the nearest computational unit. The challenge, just as in Active Pages, 
is how to communicate between units. As the ratio of memory to processing 
units decreases, the total bandwidth increases, but the communication needs 
increase. This different balance between computation and communication can 
affect the asymptotic properties of algorithms. 

The barriers for intelligent memory, in particular, are the need for explicit 
parallel programming and the buy-in by manufacturers to put it in commodity 
production to lower the price. DIVA is working on a migration path for this tech­
nology. The advent of multicore commodity processors pushes the field in two 
directions. First, it provides performance improvements in multi-programmed 
environments without the need for parallel programming. This hurts the case for 
intelligent memory. The prevalence of parallel processors on the market, how­
ever, increases the utility of parallel programming so that this may not be such 
a rare skill in the future. If parallel programming becomes commonplace, then 
intelligent memory will be poised for success in the commodity market. 

Acknowledgments Like any large-scale project, Active Pages was the work of 
several people over several years. Fred Chong and Mark Oskin were the driving 
force behind the project. Matt Farrens provided valuable advice. Several grad­
uate and undergraduate students contributed to the project, including Justin 
Hensley, Lucian Vlad-Lita, Tim Sherwood, Ravishankar Rao, Aneet Chopra, 
Paul Sultana, and Jennifer Hollfelder. 

References 

[1] K. Itoh et al. Limitations and challenges of multigigabit DRAM chip design. IEEE

Journal of Solid-State Circuits 32(5), 1997.
[2] M. Oskin, J. Hensley, D. Keen, F. T. Chong, M. K. Farrens, A. Chopra. Exploiting

ILP in page-based intelligent memory. International Symposium on Microarchitec­
ture, 1999.

[3] Semiconductor Industry Association. The national technology roadmap for semi­
conductors. http:/lwww.sematech.org/public/roadmapl, 1994.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 818



35.7 Summary 803 

[4] M. Oskin, F. T. Chong, T. Sherwood. Active pages: A computation model for intelli­
gent memory. Proceedings of the 25th Annual International Symposium on Computer
Architecture, 1998.

[SJ P. Ashenden. The Designer's Guide to VHDL, 2nd ed., Morgan Kaufmann, 2002. 
[6] Altera Corporation. FLEX JOK Embedded Programmable Logic Family, May 1998.
[7] M. Oskin, L. V. Lita, F. T. Chong, J. Hensley, D. K. Franklin. Algorithmic complexity

with page-based intelligent memory. Parallel Processing Letters 10(1), 2000.
[8] A. Kautonen, V. Leppnen, M. Penttonen. PRAM model. http/lwww.cs.joensuu.fi/

pages/penttonen/paralleVpram.pram.html.
[9] M. Oskin, L.-V. Lita, F. T. Chong, J. Hensley, D. K. Franklin. Algorithmic Complexity

with Page-Based Intelligent Memory. Technical Report CS-01-00, Department of
Computer Science, University of California, Davis, February 2000.

[10] D. T. Hoang. Searching genetic database on Splash 2. In D. Buell, J. Arnold,
W. Kleinfelder, Splash 2: FPGAs in a Custom Computing Machine, IEEE Computer
Society Press, 1996.

[ 11] M. Oskin, F. T. Chong, T. Sherwood. ActiveOS: Virtualizing intelligent memory.
Proceedings of the IEEE International Conference on Computer Design, 1999.

[12] A. Asthana, M. Cravatts, P. Krzyzanowski. Design of an active memory system for
network applications. International Workshop on Memory Technology, Design and
Testing, IEEE Computer Society Press, 1994.

[13] M. Noakes, D. Wallach, W. Dally. The J-Machine multicomputer: An architec­
tural evaluation. Proceedings of the 20th Annual ACM International Symposium on
Computer Architecture, May 1993.

[14] W. Lee. Space-time scheduling of instruction-level parallelism on a Raw machine.
Proceedings of the 8th International Conference on Architectural Support for Pro­
gramming Languages and Operating Systems, October 1998.

[15] A. A. Chien, R. K. Gupta. MORPH: A system architecture for robust high perfor­
mance using customization. Frontiers, 1996.

[16] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
Symposium on FPGAs for Custom Computing Machines, April 1997.

[17] Z. Miled, R. Eigenmann, J. Fortes, V. Taylor. Hierarchical processors-and-memory
architecture for high performance computing. Sixth Symposium on the Frontiers
of Massively Parallel Computation, October 1996.

[18] Y. Kang, M. Huang, S. Yoon, Z. Ge, D. K. Franklin, V. Lam, P. Pattnaik, J. Torrellas.
FlexRAM: An advanced intelligent memory system. International Conference on
Computer Design, October 1999.

[19] D. Patterson. Microprocessors in 2020. Scientific American, September 1995.
[20] P. M. Kogge, T. Sunaga, E. A. E. Retter. Combined DRAM and logic chip for mas­

sively parallel applications. 16th IEEE Conference on Advanced Research in VLSI;
1995.

[21] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,
C. Chen, C. W. Kang, I. Kim, G. Daglikoca. Architecture: The architecture of
the DIVA processing-in-memory chip. International Conference on Supercomputing,
2002.

[22] J. Carter, et al. Impulse: Building a smarter memory controller. Proceedings of
the International Symposium on High-Performance Computer Architecture, January
1999.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 819



THEORETICAL UNDERPINNINGS 

AND FUTURE DIRECTIONS 

PA RT VI 

Parts I through V addressed what reconfigurable architectures look like 
(Part I), how we can develop reconfigurable solutions (Parts I, II, IV, V), and, 
by example, where reconfigurable solutions can be particularly beneficial 
(Part V). In this, the final part of the book, we examine why reconfigurable 
architectures are beneficial and we gain insight into the areas where the 
benefits of reconfigurable solutions lie. We also observe technology trends 
and examine why reconfigurable architectures may become increasingly 
important over time. To support and ground these discussions, the follow­
ing chapters delve into the technology basis from which we build these 
architectures, and their alternatives, and discuss physical issues including 
area, defects, faults, and manufacturing trends. 

Chapter 36 constructs a simplified model of the architectural design 
space in which postfabrication programmable architectures (e.g., proces­
sors, FPGAs, VLIWs, SIMD arrays) are built. Using this model, the chapter 
illustrates the trade-offs inherent in different architectures and the impact 
these trade-offs have on the architectures' efficiency in implementing vari­
ous applications. This simple analysis illuminates the appropriate roles for 
processors and FPGAs, underscores how we can use FPGAs efficiently, and 
suggests why, as component capacities continue to grow, reconfigurable 
architectu:i;-es may be important for carrying out an ever-enlarging set of 
high-throughput tasks. 

Chapters 37 and 38 explore how continued feature size scaling will 
influence the design of integrated circuits. As device feature sizes 
approach the atomic scale, our traditional techniques, abstractions, and 
solutions may no longer be appropriate. Manufacturing at the atomic 
scale demands higher regularity and produces less controlled structures. 
At the same time, physical imperfections (e.g., defects, faults, wear) occur 
at significantly higher rates. Postfabrication configurability appears to be 
an essential tool for dealing with these atomic-scale effects. This, too, sug­
gests the growing importance of reconfigurable architectures for future 
technologies. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 820



806 Part VI ■ Theoretical Underpinnings and Future Directions 

Chapter 37 addresses defect and fault tolerance. It shows how con­
figurable designs can accommodate defects and suggests in what direc­
tions our design and usage paradigms should evolve in order to deal with 
increasing defect rates. The chapter also examines how transient faults 
will affect future configurable systems. 

Chapter 38 further explores the impact of technologies in which fea­
ture sizes are measured in single-digit atomic widths. It reviews emerging 
atomic-scale technologies and shows how they can be assembled into a 
complete reconfigurable architecture. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 821



THEORETICAL UNDERPINNINGS 

Andre DeHon 

Department of Electrical and Systems Engineering 
University of Pennsylvania 

CHAPTER 36 

Throughout this book there are examples for which reconfigurable designs offer 
superior performance to processor-based solutions. The reconfigurable imple­
mentation is typically orders of magnitude faster than the processor-based 
system. Even when we normalize the performance advantage to the number 
of components used in the solution, or to' the number of square millimeters of 
silicon in the same process technology, we often see the reconfigurable solu­
tion providing one to two orders of magnitude higher computational capacity 
per square millimeter. These observations raise questions about reconfigurable 
computing systems. 

■ Why do we see this greater computational capacity per unit area?
■ How can we predict when reconfigurable systems can deliver significantly

higher performance than processor-based implementations?
■ What does this tell us about how we should engineer reconfigurable

designs?

This computational density advantage is not an accident. It occurs for real, 
structural reasons resulting from where silicon is allocated in reconfigurable 
architectures. Field-programmable gate arrays (FPGAs) and reconfigurable archi­
tectures organize their instructions differently from processors, making different 
trade-offs between instruction and computational density. Processors give up raw 
computational capacity for the ability to support large and irregular computations 
robustly, while FPGAs give up the ability to switch rapidly among diverse tasks to 
maximize available compute density and spatial parallelism. This chapter devel­
ops a simple model of programmable devices and uses it to illustrate the gross 
design space, which includes processors and FPGAs, the trade-offs each makes, 
and the consequences of those trade-offs. 

36.1 GENERAL COMPUTATIONAL ARRAY MODEL 

Let us start by focusing exclusively on a capabilities viewpoint, ignoring, for the 
moment, costs. What would be good to have for a general-purpose programmable 
computing architecture? 

Copyright © 2008 by Andre DeHon. Published by Elsevier Inc. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 822



808 Chapter 36 ■ Theoretical Underpinnings 

The most general and flexible programmable architecture we might build 
would have: 

■ Computational operators (e.g., programmable gates) that compute an
output bit from some number of input bits

■ Full, bit-level interconnect among computational operators
■ Local data storage for each bit operator
• The ability to issue a unique instruction to each bit-level computational

operator on every cycle; this instruction should indicate:

- Which computational function the operator should perform on each
cycle

- Where the inputs for the operator should come from, including both
spatially from any other operator and temporally from local memory

- Where the output of the operator on this cycle should go into local
memory

Figure 36.1 shows a diagram of this architecture. For this simple model, we 
assume that all the programmable blocks are identical. We call the instruction 
that controls each programmable block (including interconnect and memory, as 
just summarized) a primitive instruction, or pinst for short (see Figure 36.2). 
With an array of N blocks, the full instruction word issued on every cycle to 
control the computational array is the composition of N pinsts. 

This array provides a computational capacity of N-bit operations (bitops) on 
each cycle. We have great flexibility in using this array since every bitop can 
have a unique pinst on every cycle. So, if we need to process an irregular collec­
tion of operations, such as a 17-bit add, an 8-bit subtract, a 13-bit exclusive-or 
(XOR), the next state evaluation on a 23-state finite-state machine (FSM), and a 
5-bit shift left by 3, we can direct each bitop independently to keep all bitops
performing exactly the operations needed for the computation. Further, if the
following cycle needs a very different set of operations, such as a 9-bit multiply
by the constant 27, a 12-bit AND, the next state evaluation on a 23-state FSM,

. . . 

. . . 

___,! _.!, ....! 
---

---tComoute unltl 

. . . 

. . . 

• ....! � 
- -

---tComnuTA unitl 

. . . 

. . . 

. . . 

---tComoute unitl 

Jt-
fi�=

=======

=-----_J= 

FIGURE 36.1 ■ The general computational array model.

. . . 

. . . 

• ==:::::

=--

T 

IComN"" unitl 

I I I I 

C::::.- _J~ _J~ 1 
.--- .--- ' ' 

~ Data storer ~ Data store 

~ Data storel .. ~ !Datastorel 

L...!- L..). --Z 
_.., 

I 
---- -·-

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 823



i' 
C 

C 
0 

2 
.5 

-�,.. 
·c 

D. 

ll C 
C 0 

�) 
i =

"O .. I!! 

m = � 
GI� S 
�"O Ill 
;: i "O 

s 

C 

:i � .Q c.::, ll 
.5 lil i 

C 

�i 

36.2 Implications of the General Model 809 

FIGURE 36.2 ■ Primitive instruction (pinst) for programmable bitops. 

and an 11-bit shift right by 2, we can issue the next array-wide instruction to 
control the computational array accordingly. 

We get to use all the bitops all the time. Mapping designs to this array is 
simply a matter of scheduling the bit-level computational needs onto the N-bit 
operations provided by the array. With this full ability to control the cycle­
by-cycle operation of each bitop independently, scheduling is relatively easy. 
(Strictly speaking, optimal scheduling remains NP-hard, but it can be approxi­
mated within a factor of 2 of optimal using a variant of Johnson's Algorithm [1].) 
So, why is it that we do not have a popular architecture that provides this model? 

36.2 IMPLICATIONS OF THE GENERAL MODEL 

From a purely logical standpoint, we cannot fault the general computational 
array model. However, we must implement any architecture in a physical com­
putational medium (e.g., out of a number of discrete vacuum tubes or transis­
tors, on a silicon die, ultimately out of molecules and atoms). To support the 
architecture, we must commit physical resources. Those resources have a cost 
in terms of area, delay, and energy. The general computational array model turns 
out to be extravagant-so much so that we are generally willing to compromise 
its power to build more practical architectures. 

E 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 824



810 Chapter 36 ■ Theoretical Underpinnings 

This section illustrates two ways in which the instruction organization of 
the general model is unreasonably expensive. The focus here is on silicon 
VLSI implementations, and we discuss the sizes and areas of components in 
VLSI. To make the discussion general, resource areas are measured in terms of 
technology-normalized units. In particular, we will measure widths in units of 
F-the minimum feature size in a VLSI process; as a consequence, areas are
measured in units of F2 • VLSI technologies are normally named by their min­
imum feature size, so when we talk about a 45 nm technology, we are talking
about a technology with F = 45 nm. Ideally, when we scale from a larger tech­
nology to a smaller technology, everything scales as F. Features 900nm wide in
a 90nm technology are l0F wide and should become 450nm wide in a 45nm
technology. Features do not always scale perfectly linearly like this, but they
scale close enough for illustrative purposes. Details and estimates on how the
industry expects silicon technology to scale are summarized by the ITRS [2]; the
industry collaborates to produce an updated or revised version of this document
annually.

36.2. 1 Instruction Distribution 

This section starts by considering the resource implications of delivering a sep­
arate pinst to every bitop. We assume the following: 

■ The bitops are arranged in a dense v'N x v'N array (see Figure 36.3).
■ The area required for each bitop, including compute, storage, and

interconnect, is Abop 
= 250,000F2 ; we further assume that the bit operator

itself is laid out as a square 500F on a side. This size assumes that the
interconnect has also been designed in a more restrictive way than the
most general model (see Section 36.1), perhaps resembling something
closer to traditional FPGA interconnect capabilities.

■ The metal pitch available for distributing an instruction bit is Wmetal = 4F.
The minimum pitch possible in a given technology is 2 F because we need
to leave one feature size worth of space between features so that they do
not short together. The smallest feature sizes tend to be polysilicon for
transistor gate widths, with metal pitches being a little wider. A modem
VLSI process has many metal layers, and the ones higher in the stack
(farther from the silicon base) tend to be wider.

■ We have one complete horizontal metal layer and one complete vertical
metal layer available to distribute instructions. As noted, modem VLSI
processes generally have many metal layers; for example, an F = 6 5  nm
process might have 11 metal layers. Some of the layers will be needed for
local wiring in the cell, some for power and clock distribution, and some
for interconnect. Dedicating two complete metal layers to instruction
distribution is extravagant even with 11 metal layers.

■ Each pinst requires /bits
= 64 to specify its instruction. This may seem

small if we think about how many bits are required per 4-LUT in an
FPGA, or large if you think about 32-bit processor instructions. Encoded
densely, FPGA configurations could be much smaller [3]. The capabilities
of the pinst might be closer to two processor instructions than one.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 825



36.2 Implications of the General Model 811 

□□□ 1�□-
□□□ D­
B□□ □-
lrnrn1ffiffirnF��mm 

Wires/side = �Wmetal 

FIGURE 36.3 ■ Wiring for instruction distribution.

As we will see, the preceding assumptions only affect the particular quantitative 
conclusion we reach. The qualitative effect remains even if we assume two or 
four times as many metal layers, half the metal pitch, more compact instruction 
encodings, or larger bitop cell sizes. 

If the instructions must all come into the computational array, then the total 
wiring capacity available for instruction distribution is equal to the perimeter 
of the array. 

A5u1e(N) = v'N X jA;:; 
Lperimeter(N) = 4 X A

5u1e(N) 

(36.1) 

(36.2) 

Note that the two metal layers allow the connections on the top and bottom 
layers to cross over each other to reach into the array. However, if the lower 

• I I • I • • • 
• I •• • I • 

~ • I • -~-

• • • I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 826



812 Chapter 36 ■ Theoretical Underpinnings

layer is completely dense, we will have trouble making connections between the
upper layer and the bit operations (i.e., we need to reserve space for vias through
the lower level). To keep the math simple, general, and illustrative, we will not
model that effect, which will only tend to make the problem more severe than
the simple model indicates.

To feed the N-bit operators into the array, we need:
ltotal.bits(N) = N X [bits

Linstr ..dist(N) = W metal X [total.bits (N)
For the distribution to be viable, we need:

LperirneterCN) > Linstr ..dist (N)
Substituting into the previous equations, this results in:

4 X vNx � > Wmetal xNxlbits

4x� 
---->vNW metal X I bits 

( 
4x� )

2 

N 
< W metal X I bits

Using the preceding assumptions:

N (4 x 500F
)

2 

= 61 < 4Fx 64 

(36.3)
(36.4)

(36.5)

(36.6)

(36.7)

(36.8)

(36.9)

This says that we cannot afford to feed more than about 60 bit-processing
units without saturating available instruction distribution bandwidth. If we want
to support more bit-processing elements, we must increase the perimeter and
effectively make the bitops larger. Re.arranging equation 36.6 with Abap as the
variable:

✓ A (N) W metal X vN X I bits
bop > 4 

A1,op(N) = ( W ="'1 x ;" x I bu,)' 
Abop(N) = 

4096 x NF2 

(36.10) 

(36.11)

(36.12) 

That is, the area of each bitop needs to grow linearly with N, meaning that the
array area is actually growing quadratically with N.

Equivalently, we can recognize this effect as a difference between the growth
rate of the area and the perimeter. If we assume the bitop area is constant,
then the total area in the array is growing linearly in the number of bitops.
However, the perimeter of the array is only growing as the square root of the

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 827



36.2 Implications of the General Model 813 

array area. So it is not surprising that we reach a point where the array's need 
for instructions, which is also growing linearly with bitops, exceeds the ability to 
feed instructions into the array that grows only as the square root of the number 
of bitops in it. The particular assumptions used for this example starkly illustrate 
that this effect is already an issue for very small arrays. You can substitute your 
favorite assumptions about instruction bits, metal pitch, metal layers, or bit­
operator area, but the qualitative conclusion remains as follows: 

If we support this model, either we are limited in the size of the arrays 
we can build, or instruction distribution wiring ends up dominating all 
other resources and forces us to scale only as the square root of the area 
we spend on the computational array. 

36.2.2 Instruction Storage 

The previous section illustrated that instruction distribution from outside the 
cpmputational array is not scalable to large computations. Alternately, consider 
storing the instructions inside the array. In particular, each bitop could include 
an instruction memory that holds its instruction (see Figure 36.4). We would 

,._� 

i� 
C: .!: 
0 a. 

tl � 
::::, "' 
ti c?:

5: 

c: en 
·- "C 
<ii 0 
0 .s:: 
o­
....1 

Instruction address 

D ta store 

FIGURE 36.4 ■ A bitop with local instruction memory. 

Q) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 828



814 Chapter 36 ■ Theoretical Underpinnings 

then only need to broadcast an address into the array, and each bitop could 
translate that through the instruction memory to its instruction. Even a 64-bit 
address is small compared to L

perimeterO), so this solution does not challenge 
wiring capacity. However, it does raise the question of how large the instruction 
memory should be to begin to approximate the general model. 

In any case, storing the instructions requires area. So we should assess the 
cost of storing these instructions. Assume that the instruction memory lives 
in SRAM, and that the area of an SRAM cell to hold an instruction bit is 
Abit = 200F2 • This means that the area per instruction is: 

Apinst = Abit X I b its 

Apinst = 200F2 x 64 = 12,800F2 

The total area per bitop is now: 

Abitop_wJmem = Abop + Ninstrs X Apinst 

Abitop_wJmem = 250,000F2 +Ninstrs X 12,800F2 

(36.13) 

(36.14) 

(36.15) 

(36.16) 

Equation 36.16 now tells a very interesting story. The area required to store a 
single instruction is small compared to the area required for compute and inter­
connect in the bit operator (one-twentieth the area). If we store 20 instructions 
locally, we place half of the area into instruction memory. When we store 200 
instructions locally, the instruction memory area ends up dominating (i.e., is 10 
times the size of) the area required for computation. That is, given fixed area, 
the design with 200 instructions will only fit one-tenth the number of bitops as 
the design with a single local instruction. 

Unless we can limit the number of different, array-wide instructions we need 
to issue, the instruction memory needed to approximate the general model will 
end up dominating the computational area. Taken together with the result on 
instruction distribution, these examples illustrate why the general model is not 
typically supported: 

To support the general model, instruction resources would dominate all 
other resources, forcing limited computational density. 

We are left with the choice of either accepting very low computational density 
or looking for compromises in the general model that will allow us to avoid the 
huge instruction expense it implies. 

36.3 INDUCED ARCHITECTURAL MODELS 

If the general model was viable, we would not have the varied set of computer 
architectures that exist. That is, computer architectures arise because (1) the 
general model is too expensive, and (2) there is structure in typical computa­
tional tasks that permits more economical implementations. Having identified 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 829



36.3 Induced Architectural Models 815 

that it is unreasonable to support the general computational array model, we 
ask: Which structure exists in typical computations that can be exploited to 
provide a more economical implementation? 

36.3.1 Fixed Instructions (FPGA) 

If the instructions never change, we do not need to distribute them into the 
computational array, nor do we need to allocate instruction memory area to 
store more than a single instruction. We still allow each bitop a pinst, so each 
can perform a unique operation; however, we do not allow the pinst to change 
from cycle to cycle. Unchanging instructions is an extreme form of temporal 
locality, where computation remains the same over time. This allows us to build 
large arrays and keep the computation dense. If we need to, or can an·ange to, 
perform the same computation on every cycle, then we use the array efficiently. 
This restriction on the general model effectively gives us an FPGA or spatially 
reconfigurable architecture. In Chapter 5, Section 5.2, we saw many system 
architectures that illustrate how we might organize computation to enhance 
this kind of structure. 

36.3.2 Shared Instructions (SIMD Processors) 

Another structure common to applications is SIMD datapaths (see Single pro­
gram, multiple data subsection of Section 5.2.4)-that is, it is common for us to 
identify sequences of bit-level operations that are the same across a number of 
data bits. The most common case is word�wide operations, such as multibit adds 
or bitwise logical operations (e.g., OR, AND, XOR). At a higher level, we would 
perform a number of identical word-wide operations on different data (e.g., per­
forming a component-wise multiplication on the elements of two arrays as part 
of a dot product). Here we perform the same operation across many bitops. 
Rather than providing a unique instruction for each bitop, we can arrange to 
share a single instruction across a large number of bit operators, amortizing the 
instruction distribution or storage expense. 

In the extreme, we would distribute a single instruction to all the bitops in 
the array. This is the opposite of the simplification used in the FPGA. Here, all 
bitops in the array must perform the same operation on a given cycle, but this 
operation may change from cycle to cycle. 

We can view conventional, word-wide processors as exploiting this idea. 
A processor instruction typically only tells the datapath to do one homogeneous 
thing-that is, the processor instruction asks every bit in the arithmetic logic 
unit (ALU) bit slice to perform the same computation (e.g., perform a full adder 
bit, perform an XOR, perform a shift). For example, a 32-bit processor data­
path could perform many more operations if each individual bit slice of the 
ALU could operate independently; instead, ALUs are constrained to operate in 
SIMD fashion to keep the cycle-by-cycle instruction size small. 

In the general computational array model, we saw that the instruction mem­
ory took up the same area as the computation when we stored only 20 instruc­
tions in the array (equation 36.16). If we instead share each instruction across 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 830



816 Chapter 36 ■ Theoretical Underpinnings 

W simd = 32 bitops to form a SIMD datapath, it takes 625 instructions for the 
instruction memory to reach parity with the computation-that is: 

Abitop_w.imem (Ninstrs, 32) = 250, 000F2 +Ninstrs x 400F2 

(36.17) 

(36.18) 

From these illustrations, we can see how the more familiar FPGA and processor 
architectures fall out as simplifications of the general computational array model 
that exploits different kinds of structures that exist in typical computations. 

36.4 MODELING ARCHITECTURAL SPACE 

The demonstrations in Sections 36.2 and 36.3 highlight the fact that choices 
about instruction architecture can have a first-order impact on the area, and 
hence density, of programmable computing components. We can take this a 
step farther and build models of the density, and ultimately relative efficiency, 
of architectural design points. 

Table 36.1 summarizes where some familiar architectures fall in the 
(Wsimd, Nisntr) architectural space. Nonetheless, remember that we are using a 
deliberately simple model and that many other effects and issues are associated 
with each architecture, some of which are mentioned in Section 36.4.3. 

36.4.1 Raw Density from Architecture 
Using equation 36.17, we can plot the relative densities of each bit operator as a 
function of the local instruction memory, Ninstr, and the SIMD instruction width, 
Wsimd · Figure 36.5 shows plots of the computational density for the instruc­
tion memory from 1 to 16,384 and the instruction width from 1 to 1024. Here, 
note that peak densities vary over three orders of magnitude. As we increase 
instruction depth (Ninstr), we shift area into instructions rather than compute, 
often significantly reducing computational density. Wide-word architectures can 
reduce the memory costs at a particular instruction depth, but there also may 
be significant computational density reductions as instruction depth grows. 

TABLE 36.1 ■ Placement of sample architectures in ( Wsimd, N;nstr) space

Architecture W.;m11 N;ns1r Reference 

FPGA 1 1 

GARP fabric 2 4 Chapter 2, Section 2.1.1 

KiloCore256 8 16 Chapter 2, Section 2.1.2 

MIPS-X 32 512 [4] 

IA-64 (Montecito) 64 200,000 [5] 

Cell SPU 128 65,536 [6] 

Abitop_wJmem(Wsimd,Ninstrs) = Abop + (:~trs) xApinst 
s1md 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 831



0.1 

0.01 

0.001 

36.4 Modeling Architectural Space 817 

FIGURE 36.5 ■ Relative peak computational density from the model (normalized to the density 
of N;nstr = L W5;md = 1024 design points}. 

36.4.2 Efficiency 

The previous section showed peak raw densities achievable at various architec­
tural points. If peak raw density was all that mattered, we would build SIMD 
designs with shallow instruction memories, as Figure 36.5 illustrates. However, 
it is seldom the case today that we can keep_ the millions of SIMD bit-processing 
elements we might be able to put on a die performing useful computations. 
When we cannot match the structure assumed by the architecture, the yield is 
only a fraction of the potential density-that is, another architecture, perhaps 
one with lower peak density, often can deliver more net density to the applica­
tion. In particular, the architectural point whose structure assumptions exactly 
match the application will deliver the highest net density on that application. 
This leads to an interesting set of questions: 

■ How does the efficiency of an architecture fall off as it becomes
mismatched to the structure of the application?

■ How doe_s the net density compare between various matched and
mismatched architectures?

Since there is a model for the area of architectural design points in the 
(Wsimd • Ninstr) design space (equation 36.17), we can use that to measure effi­
ciency. In particular, it is possible to measure the efficiency of an architecture 
design point (Arch(Wsimd,Ninstr)) processing applications with a particular struc­
ture (App (Wapp,Lpath)) as the ratio of the area of the architecture that exactly 
matches the application structure to the area of the point being evaluated: 

Efficiency ( Arch (Wsimd, Ninstr ), App (Wapp, Lpath)) 

Area (Arch (Wapp
,Lpath),App (Wapp

,Lpath)) (36.19)

= Area (Arch(Wsimd,Ninstr),App (Wapp
,�ath)) 

64 256 1024 409616384 1 N;nstr 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 832



818 Chapter 36 ■ Theoretical Underpinnings 

TABLE 36.2 ■ Sample applications in the (Wapp
, L

pathl space 

Application Wapp Lcritpath Lpath Comments 

Conway's Game of 1 1 1 Bit-level CA (71 

"Life" 

Error correcting 1 1 1-10,000 At memory interface, 

codes need one per cycle; 
on audio-rate, real-
time data can be 
low throughput 

Entropy coding 1 1-10 1-10,000 (similar to previous) 

Video processing 8 1-6 12 1024 X 1024 at 30 
of pixel data frames per second 

on a 500 MHz cycle 
can afford approxi-
mately 12 cycles per 
pixel 

CD audio 16 1-10 10,000 44 kHz real-time vs. 
500 MHz cycle 

SPIHT image 16 10 10+ Chapter 27 
compression 

FDTD 35 1-5 1-5 Chapter 32 

To characterize the structure of the architecture separately from the struc­
ture of the application, equation 36.19 keeps Wsimd and Ninstr as parameters 
characterizing the architecture and adds the dual parameters Wapp and L

path to 
characterize the application structure. Wapp is simply the natural SIMD datapath 
width of the application, while L

path is the path length of the application (see 
the Mismatch in Ninstr subsection). 

For illustrative purposes, Table 36.2 summarizes where several applications 
appear in the (Wapp , L

path) space. The area of the mismatched design is always 
larger, so the efficiency metric in equation 36.19 effectively tells us how much 
lower the mismatched point's net density is than the matched point's net density. 

To develop the intuition and keep the explanation simple, we stay with 
the assumption that applications have homogeneous structure (i.e., single­
characteristic Wapp and L

path). One of the reasons we are interested in how well
an architecture deals with different, mismatched structures is that a real appli­
cation will typically contain heterogeneity in the structure it exhibits. 

Mismatch in Wsimd 
What happens when the application width Wapp 

is mismatched to the architec­
tural width Wsimd? 

■ Wsimd > Wapp: Here we do not have as fine-grained control of the bit
operators as the application requires. Consequently, bitops go unused.
In particular, we will actually need a larger array so that we match the

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 833



36.4 Modeling Architectural Space 819 
instruction control needs of the application. For example, if Wapp = 5 and Wsimd = 8, then three bitops in every architectural SIMD datapath will go idle. To satisfy the application requirements, we end up needing �imd = � = 1.6 times as many physical bitops as the application actually

app requires. 
■ Wsimd < Wapp: There are two effects that can work to make implemen­tations in this architecture larger than the optimally matchedarchitecture:1. We have finer-grained control, but may still need more physical bitoperators because of granularity problems. For example, when 

Wapp = 8 and Wsimd = 5, we need r �:: l = 2 groups of wsimd 

bi tops to cover each application group, or r � l x Warch = 10 bitops,
of which only Wapp = 8 are doing useful work. 2. Since we have more control than necessary for the application, thearea of each bitop is larger than necessary in order to accommodateadditional instruction memory; this extra instruction memory holdsredundant information. Continuing the Wapp = 8 and Wsimd = 5
example, each bit operator effecti�ely pays for 

W
W�pp = �5 = 1.6 times

stmd as many instructions as necessary for the application. 
Assuming that instruction storage depth is matched to application path length (Ninstr = Lpath ) to focus on the width mismatch, we can show this in an areamodel as: 

Area (Arch (Wsimd • Lpath), App (Wapp , Lpath)) 
( Wsimd ) r 

Wapp 
l ( ) = -

W 
X -

W
. xAbitop_wJmem Wsimd, Lpath (36.20) 

app stmd 

( Wsimd ) r Wapp l ( ( Lpath ) ) = � x � x Abop
+ � xApinst 

app stmd stmd 

This allows us to compute the efficiency of the mismatched SIMD datapath width at a matched Lpath as: 
Efficiency [Lpath] (Wsimd, Wapp) 

(36.21) 
( Abop + ( ~:;; ) X Apinst) 

( ~) X 
Wapp 

1 ~1 (A ( Lpath ) A ) I wsimd X bop + wsimd X pinst 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 834



820 Chapter 36 ■ Theoretical Underpinnings

0.1 

O.Q1 

Figure 36.6 shows plots of the efficiency from equation 36.21 versus Wapp fora collection of Wsimls and L
path 's. Perhaps more significant than the large den­sity range shown in Figure 36.5, we see that SIMD width mismatches can costus orders of magnitude in net density delivered to an application. Interestingly,we see some SIMD width selections that do not show orders of magnitude effi­ciency losses (e.g., Wsimd = l for L

path = l, Wsimd = 3 for L
path = 64, Wsimd = 32 forL

path = 640). These robust points occur when the instruction area is equal to thecompute and interconnect area. That is: 
A ( Lpath ) bop = � X Apinst 

s1md (36.22)
In these cases, half the area is allocated to storing instructions and half to com­pute. For illustration, consider the L

path = 640 and Wsimd = 32 case. Here, if we
are processing Wapp = l data, then we use only one-thirty-second of the compute

0.1 

0.o1 

0.001 �_..___,__�_....____,__...J....._.__......1.._....____, 0.001 L-......__......L_..___.____.'--_.__--'---'--�-L-_J 
1 4 16 

Wapp 

(a) 

64 

0.1 

O.Q1 

256 1024 

--- ........ 
........ 

_
_
_ ,,,,----

1 

,,,, ,, ,,,, 

4 16 

0.001 ---�__,__....____,__..__--'-�'--_..__--'---'----' 
1 4 16 

(c) 

64 

w ... 

256 1024 

64 
w ... 

(b) 

256 

Wsimd = 1 
W81""' =3 

W81""' = 32 · 
Ws1""' = 64 

w,,""' = 1024 

FIGURE 36.6 ■ Efficiency as a function of Wapp for various L
path values: (a) L

path = 1, (b) L
path = 640, 

and (c) L
path = 64. 

1024 

I w 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 835



36.4 Modeling Architectural Space 821 

area. However, we are able to use all the memory area; a matched architecture 
can, at most, be half the size of this design point since it still requires the 640 
instructions, even if they drive a smaller datapath. At the opposite extreme, if 
Wapp= 16,384, we can use all the compute operators but we underutilize the 
instructions. Here, a matched architecture could have used a factor of 512 lower 
instruction area; however, since half the area is in compute, the matched archi­
tecture is, at best, only half the size of this robust point. 

It should be clear that this observation holds for any choice of Wapp when the 
area is allocated evenly between compute and instruction memory. In contrast, 
if we make Wsirnd = 1 for this L

path = 640 case, then 97 percent of the area goes 
into memory; if this Wsirnd = 1 architecture now has a task with Wapp = 16,384, 
it is much larger (at least 33 times larger) than a design with matched width, 
which can put significantly less area into instruction memory. 

If we can design to a single application width, or a small range of widths, it 
is best to select a matched width, or the width that provides the highest average 
efficiency over the range. However, if we don't have tight bounds on the appli­
cation width, these robust points show how we can select organizations that 
remain fairly efficient for any application width. 

Mismatch in Ninstr 
A similar phenomenon occurs when Ninstr does not match the structure of the 
application. First, we need to understand L

path-the application demand for 
Ninstr• In particular, let us consider an inner loop in a kernel or the computation 
required for each invocation of a transform operator (see Transform or object 
subsection of Section 5.1.2). To compute each inner loop iteration, or each 
operator invocation, we need to evaluate a set of Naps bitops. In general, there 
may be a set of cyclic sequential dependencies, or a critical path, of depth 
Lcritpath among the bitops in the computation that prevent us from starting 
the next iteration of the loop or invocation of the operator until the Lcritpath 

array cycles have completed. For example, consider the loop body of a saturated 
accumulation: 

y[i] = max (min (x[i] + y[i - 1 ], 255), 0) 

Before performing the next addition to compute y[i + 1] from y[i], we must com­
plete the computation of y[i], including both the addition and the selection of 
maximum or minimum bound limits (see Figure 36. 7).1 Assume the following:

■ The addition requires a path length of six sequential bitops.
■ The comparisons can be performed in parallel.
■ Each comparison requires a path of three sequential bitops.
■ The final selection requires a single bitop.

The critical path Lcritpath is 10 for this computation. With a path length of Lcritpath, 
we can schedule the Naps required to evaluate the application into Lcritpath cycles 

1 With care, this actually can be avoided using sophisticated transformations [8].

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 836



822 Chapter 36 ■ Theoretical Underpinnings 

x[i] 

0 

FIGURE 36.7 ■ Saturated accumulator cyclic dependency. 

on the array without slowing down the application, the sequentially dependent 
paths guarantee that it will always take at least Lcritpath cycles to perform the 
operation. 

The application may not actually demand that the computation be performed 
every Lcntpath cycle. Perhaps the data throughput is lower and new samples, x[i],

are arriving every 20 ns while the array cycle time is 1 ns. Here, evaluating with 
Lcritpath = 10 leaves the array sitting idle for 10 cycles before the next input sample 
is available to compute. Consequently, it would be possible to schedule to L

path = 
20 > Lcritpath and cut the number of bitops needed by at least a factor of 2. In 
this way, the loop or transform body is efficiently implemented by scheduling the 
computations onto a minimum number of bitops in a period of L

path cycles, with 
each operator potentially getting a unique instruction on each cycle Ninstr = L

path . 
For examples, see Table 36.2, which summarizes the throughput L,,arh required 
in a few applications. 

Now consider the two mismatched cases: 

■ Ninstr > L
path: In this case, by scheduling the computation into L

path cycles,
(Ninstr - L

path ) instruction memory slots in each bitop go unused. The
matched architecture is smaller because it does not spend area on these
unused instruction memories. In the aforementioned saturated accu­
mulation, if L

path = 20 and an array with Ninstr = 100 is used, then 80
instruction slots go unused.

■ Ninstr < L
path: In this case, we cannot necessarily reuse each bit operator

in L
path in different ways on each of the L

path cycles. Since we can only
use each operator in Ninstr ways, to solve the entire problem we may need

a total of rt: l times as many bitops to perform the computation.

Continuing with the example, if Ninstr = 5 and there is an L
path = 20, we

may need four times as many bitops as the optimally matched
architecture. The total amount of memory is the same between these
cases; however, an Ninstr = 5 architecture pays for four times as many

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 837



36.4 Modeling Architectural Space 823
compute blocks (Abop

)- There is also a granularity effect here; for example, we still need four times as many bitops even when Ninstr = 6.
Assuming that the datapath width is matched (Wsimd = Wapp), allows us tofocus on the instruction mismatch; we can show this in an area model as: 

Area (Arch (Wapp , Ninstr), App (Wapp , Lpath))
r Lpath l ( ) = 

Ninstr xAbitop_w.imem Wapp , Ninstr 
r Lpath l ( ( Ninstr) )=

Ninstr X Abop + Wapp 
XApinst 

(36.23)

This allows us to compute the efficiency of the mismatched instruction store at
a matched Wapp as:

Efficiency [Wapp] ( Ninstr, Lpath)
(36.24)

Figure 36.8 plots the efficiency from equation 36.24 versus Lpath for a collec­tion of Ninstrs 's and Wapps 's. Again, note that instruction store mismatches can
cost orders of magnitude in net density. We also see robust points here where thenet density remains within 50 percent of the matched architecture. The effectis the same as for datapath width mismatch (see previous section), and the effi­cient points are governed by an analogous equation: 

(36.25)

For any of these robust points, at the minimum value, Lpath = 1, we are usingall the compute area and only a fraction of the instruction memory area, so anoptimally matched architecture could, at best, be implemented in half the area.Similarly, for arbitrarily large L
path, if Ninstr < L,,ath, all the instruction memory. area is used to hold instructions, but this may leave the compute area idlemost of the time. Here, again, with only SO percent of the area in compute,the design is, at most, twice the size of an optimally matched architecture withless area allocated to computation. In contrast, if we put 90 percent of the areainto compute, then we could end up wasting 90 percent of the area in scenar­ios where Lpath >> Ninstr; matched architectures can be an order of magnitudesmaller in such cases. Similarly, if 90 percent of the area is put into instruc­tion memory, we can end up wasting almost 90 percent of the area when L,,ath is small. 

( ( Lpath) ) 
Abop + Wapp X Apinst 

ILpath l (A (Ninstr) A ) ~. X bop + ~ X pinst 
instr app 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 838



824 Chapter 36 ■ Theoretical Underpinnings 

0.1 

............. , ...................
....... ..

0.01 

,," 

--
-
-
- _

,, 
,, ,, 

,, 

./' 

,, 

,, 
,, 

,, 

0.01 

0.001 �����-�����-�--� 
1 4 16 

(a) 

I 

256 1024 4096 

···················-'•····•::·:::
·
�:· 

. L.•·;:-···· 
x 

0.01 

b----7'<·'""'""""""''""'"..,...
...... .. ......... 

4 16 

0.001 �----�----------
1 4 16 64 256 1024 4096 

Lpau, 

(c) 

64 
L

pa
., 

(b) 

256 1024 4096 

N,ns1r = 1 
N,ns1r = 20 

N,ns1r = 160 
N,,.,, = 1280 

N,nstr = 10240 

FIGURE 36.8 ■ Efficiency as a function of Lpath for various Wapp 
values: (a) Wapp

= l, (b) Wapp = 64, and
(c) Wapp = 8. 

Composite effects 
Combining the effects of SIMD width mismatch and local instruction storage 
mismatch, we get the total efficiency: 

Efficiency (Arch(Ws imd,Ninstr), App (Wapp
,L

path)) 
(36.2,6) 

Unfortunately, if both the SIMD width and the local instruction storage mis­
match, it is not possible to pick a robust point as we did in previous sections. 

Returning to equations 3{>.22 and 36.25, we note that the robust points occur 
when we can match the instruction storage area, (�nstr) x A

p inst, and the com-
s,md 

putation and interconnect area, Abop
· However, when both Wapp and L

path vary, 
even when the area is matched, we can have cases where the allocation of width 

0.1 

··_···~ 
.. '\ ...... 

-­ ............ 

0.001 -~_,__..__...,___,__.__...,___,_~~_J_ 
1 

.. v..-: .... u • .,,i(._. 

,, 
,, ,, ,, , .. l ~ --------~-<- --- ---

r-----------~ 

........ ___ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 839



36.4 Modeling Architectural Space 825 

versus storage size within that area can prevent us from using the computational 
units efficiently. 

Efficiency of processors and FPGAs 
The previous section suggests that we will not find an architectural point in this 
(Wsimd,Ninstr) design space that is efficient across a wide range of application 
structures. To understand where processors and FPGAs are efficient, we can use 
the composite efficiency relation (equation 36.26) and estimate how efficient 
they each can be across a portion of the design space (see Figure 36.9). Here the 
FPGA is naturally modeled with Ninstr = 1 and Ws imd = 1. We model a processor 
as ws imd = 64 and Ninstr = 16,384. 

· Figure 36.9 shows starkly that the FPGA and processor are both designed
for different points in the application space. Notice that each can be less than 
1 percent efficient in some portions of the space. Further, we note that in the 
places where the processor is very inefficient ( < 1 percent), the FPGA is highly 
efficient; the reverse is true as well. This effect, coupled with the heterogeneous 
nature of applications, explains why it is often useful to have reconfigurable 
systems that mix FPGA or reconfigurable fabrics along with processors (e.g., 
Instruction augmentation subsection of Section 5.2.2 and Chapter 26). 

Efficiency 
1 

0.1 
0.01 

0.001 
0.0001 

36.4.3 Caveats 

As noted in the introduction to this chapter, we are deliberately using a sim­
ple model to illustrate key effects in instruction organization. There are many 
other application structural opportunities and architectural variables that can 
also have a large effect on resource balance and efficiency, including intercon­
nect richness (e.g., [9]) and organization, data storage and memory hierarchy 
capacities, bandwidth and latencies, threads of control, dynamic instruction 
selection, and integration of hardware functional units (e.g., multipliers [10, 11] 

FPGA efficiency 

16 64 2561 4 
L

pa
th 02440961 63s-? 

ws/md = 1, L
pa

th = 1 
(a) 

r 
r 

Efficiency 
1 

0.1 
0.01 

0.001 
0.0001 

Processor efficiency 

wsimd = 64 , L
pa

th = 16,384 

(b) 

r 

FIGURE 36.9 ■ Efficiency of FPGA-like (a) and processor-like (b) designs across both L
p
ath and Wap

p
• 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 840



826 Chapter 36 • Theoretical Underpinnings 

and floating-point units [12]). In processors, the SIMD control of ALUs is 
coupled with fast logic to support carries in arithmetic (e.g., [13]), which 
serves to reduce Lcritpath ; FPGAs also employ fast cascade structures for sim­
ilar reasons (e.g., [14], Chapter 1) but do not tie them to SIMD datapaths. 
Nonetheless, the simple model shows that these instruction organization deci­
sions can have a significant impact on computational density, and it illustrates 
why FPGAs can be more efficient than processors for important classes of 
applications. 

36.5 IMPLICATIONS 

36.5. 1 Density of Computation versus Description 

From this model, we can clearly see a trade-off between computational density 
and instruction density. Equation 36.16 illustrates that the instruction store area 
for a single bitop can be an order of magnitude smaller than the computation 
to support it. This means an Ninstr = 1 design stores instructions an order of 
magnitude less densely than an Ninstr = 200 design, and an Ninstr = 200 design 
packs computation an order of magnitude less densely than an Ninstr = 1 design. 

When the goal is to simply pack a large, irregular computation into a small 
area, we are best off focusing on instruction density; this minimizes the area for 
the implementation, at the expense of lower performance. When the goal is to 
perform the computation at high throughput, designs with high computational 
density allow us to meet the throughput with the least area. 

36.5.2 Historical Appropriateness 

When we first started building programmable integrated circuits, the premium 
for describing large computations was high. The capacity on a single integrated 
circuit was very low when they were built with F = 3 µm technology. In the 
mid-1980s, with Ninstr = 1 and Wsimd == 1, we could put only 64 bitops on a 
die [15], limiting computations to those that could be described by 64 instruc­
tions. At roughly the same time, one could put Ninstr = 512 instructions on the 
die along with 32 bitops controlled in an SIMD fashion by a single pinst on each 
cycle (Wsimd = 32) [4]. The struggle at this point in history was to fit an entire 
computational kernel onto a single die, and the deep instruction, word-wide pro­
cessor design could begin to fit interesting kernels while the FPGA designs could 
fit only the most trivial computations. 

By 2005, however, with F 5, 0.lµm, the landscape had changed. Moore's Law 
process scaling has given us more than a 10,000-fold increase in capacity per 
integrated circuit. Modem processors, still built with ever-deeper memories, 
have large enough instruction stores to contain large applications. At the same 
time, FPGAs hold hundreds of thousands of active bitops. Even kernels with 
thousands of 64-bit-wide operations can fit spatially on the FPGA and exploit 
the higher computational density. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 841



36.5 Implications 827 

The question with today's silicon is less "Can we get the application to fit on 
the die?" and more "How do we tum the available die area into performance?" 
Consequently, as we ·continue to scale feature sizes, the fraction of tasks where 
high instruction density remains the premium is shrinking, while the fraction 
where the application fits on the die and high computational density offers a 
benefit is increasing. 

36.5.3 Reconfigurable Applications 

Understanding why FPGAs can be efficient and where they are most efficient 
(e.g., Figure 36.9) provides additional insight into where we should use FPGAs 
and how to fully exploit their strengths. Certainly, if the task has low throughput 
requirements (i.e., large L

path), then FPGAs are often not an efficient implemen­
tation. The FPGA is efficient when we operate at minimum path length, prefer­
ably L

path = 1, where we are performing the same operation over and over and 
keeping all the bitops active during the operation. For FPGAs with a variable 
clock cycle, we want to keep the cycle time to the minimum, maximizing the 
reuse rate of each operation. This underscores why retiming operations such 
as pipelining and C-slow (see Chapter 18) are important for optimizing FPGA 
efficiency, as well as behavioral transformations that reduce Lcritpath . 

When L
path is large simply because of a low throughput demand, we can 

often tum the SIMD structure, Wapp, into additional operation regularity. In 
particular, when Wapp > 1, that is an indication that a number of bit-level 
operators do perform the same operation. By moving this regularity into 
time rather than space, we can reduce the number of unique instruction 
combinations needed and hence reduce the Ninstr required. For example, if 
Wapp= 16 and L

path » Lcritpath , we can implement the SIMD datapath bit seri­
ally so that the necessary instruction storage depth is a factor of 16 smaller 
(N:

nst
r = �=;�).As shown in Figure 36.10, this can increase the FPGA's domain of 

efficiency. 

0.0 

0.00 

0.000 

FPGA efficiency 

FIGURE 36.10 ■ FPGA efficiency when datapath regularity can be used to increase temporal 
regularity. 

4 
16 64 256 102'\og5163M Lpa., 

4 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 842



828 Chapter 36 • Theoretical Underpinnings 

References 

[1] D. S. Hochbaum, ed. Approximation Algorithms for NP-Hard Problems,
PWS Publishing, 1997.

[2] International technology roadmap for semiconductors. http://www.itrs.net/Linksl
2005/TRS/Home2005.htm, 2005.

[3] A. DeHon. Entropy, counting, and programmable interconnect. Proceedings of the
International Symposium on Field-Programmable Gate Arrays, ACM/SIGDA, 1996.

[4] M. Horowitz, J. Hennessy, P. Chow, G. Gulak, J. Acken, A. Agarwal, C.-Y. Chu,
S. McFarling, S. Przybylski, S. Richardson, A. Salz, R. Simoni, D. Stark,
P. Steenkiste, S. Tjiang, M. Wing. A 32b microprocessor with on-chip 2 Kbyte
instruction cache. IEEE International Solid-State Circuits Conference, Digest of
Technical Papers, IEEE, 1987.

[5] C. McNairy, R. Bhatia. Montecito: A dual-core, dual-thread Titanium processor.
IEEE Micro 25(2), 2005.

[6] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki.
Synergistic processing in cells multicore architecture. IEEE Micro 26(2), 2006.

[7] M. Gardner. The fantastic combinations of John Conway's new solitaire game
"Life." Scientific American 223, 1970.

[8] K. Papadantonakis, N. Kapre, S. Chan, A. DeHon. Pipelining saturated accum­
ulation. Proceedings of the International Conference on Field-Programmable
Technology, 2005.

[9] A. DeHon. Balancing interconnect and computation in a reconfigurable computing
array (or, why you don't really want 100% LUT utilization). Proceedings of the
International Symposium on Field-Programmable Gate Arrays, 1999.

[10] A. DeHon. The density advantage of configurable computing. IEEE Computer
33(4), 2000.

[11] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 26(2), 2007.

[12] M. J. Beauchamp, S. Hauck, K. D. Underwood, K. S. Hemmert. Embedded
floating-point units in FPGAs. Proceedings of the International Symposium on Field­
Programmable Gate Arrays, 2006.

[13] R. P. Brent, H. T. Kung. A regular layout for parallel adders. IEEE Transactions on
Computers 31(3), 1982.

[14] S. Hauck, M. M. Hosler, T. W. Fry. High-performance carry chains for FPGAs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 8(2), 2000.

[15] W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y. Ja, J. E. Mahoney,
L. T. Ngo, S. L. Sze. A user programmable reconfigurable logic array. Proceedings
of the IEEE Custom Integrated Circuits Conference, 1986.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 843



DEFECT AND FAULT TOLERANCE 

Andre DeHon 
Department of Electrical and Systems Engineering 
University of Pennsylvania 

CH A PT ER 37 

As device size F continues to shrink, it approaches the scale of individual atoms 
and molecules. In 2007, 65-nm integrated circuits are in volume production for 
processors and field-programmable gate arrays (FPGAs). With atom spacing in 
a silicon lattice around 0.5 nm, F = 65-nm drawn features are a little more than 
100 atoms wide. Key features, such as gate lengths, are effectively half or a third 
this size. Continued geometric scaling (e.g., reducing the feature size by a factor 
of 2 every six years) will take us to the realm where feature sizes are measured 
in single-digit atoms sometime in the next couple of decades. 

Very small feature sizes will have several effects on integrated circuits, 
including: 

■ Increased defect rates: Smaller devices and wires made of fewer atoms and
bonds are less likely to be "good enough" to function properly.

■ Increased device variation: When dimensions are a few atoms wide, the
addition, absence, or exact position of each atom has a significant affect
on device parameters.

■ Increased change in device parameters during operational lifetime: With
only a few atoms making up the width of wires or devices, small changes
have large impacts on performance, and the likelihood of a complete
failure grows. The fragility of small devices reduces traditional
opportunities to overstress them as a means of forcing weak devices to
fail before the component is integrated into an end system. This means
many weak devices will only tum into defects during operation.

■ Increased single die capacity: Smaller devices allow integration of more
devices per die. Thus, not only do we have devices that are more likely to
fail, but there also are more of them, meaning more chances that some
device on the die will fail.

■ Increased susceptibility to transient upsets: Smaller nodes use less charge
to hold state or configuration data, making them more susceptible to
upset by noise, including ionizing particles, thermal noise, and shot
noise. Coupled with the greater capacity, which means more nodes that
can be upset, dies will have significantly increased upset rates.

Accommodating and exploiting these effects will demand an increasing role for 
postfabrication configurable architectures. Nonetheless, some usage paradigms 

Copyright © 2008 by Andre DeHon. Published by Elsevier Inc. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 844



830 Chapter 37 • Defect and Fault Tolerance 

will need to shift to fully exploit the potential benefits of reconfigurable 
architectures at the atomic scale. 

This chapter reviews defect tolerance approaches and points out how the 
configurability available in reconfigurable architectures is a key tool for coping 
with defects. It also touches briefly on lifetime and transient faults and their 
impact on configurable designs. 

37. 1 DEFECTS AND FAULTS 

A defect is a persistent error in a component. Because defects are persistent, we 
can test for defect occurrences and record their locations. We contrast defects 
with transient faults that may produce the wrong value on one or a few cycles 
but do not continue to corrupt calculations. For the sake of simple discussion 
here, we classify any persistent problem that causes the circuitry to work incor­
rectly for some inputs and environments as defects. Defects are often modeled as 
stuck-at-1, stuck-at-0, or shorted nodes. They can also be nodes that are exces­
sively slow, such that they compute correctly but not in a timely fashion, or 
excessively leaky, such that they do not hold their value properly. A large num­
ber of physical effects and causes may lead to these manifestations, including 
broken wires, shorts or bridging between nodes that should be distinct, excessive 
or inadequate doping in a device, poor contacts between materials or features, 
or excessive variation in device size. 

A transient fault is a temporary error in a circuit result. Transient faults 
can occur at random times. A transient fault may cause a gate output or 
node to take on the incorrect value on some cycle of operation. Examples of 
transient faults include ionizing particles (e.g., a-particles), thermal noise, and 
shot noise. 

37 .2 DEFECT TOLERANCE 

37 .2.1 Basic Idea 

An FPGA or reconfigurable array is a set of identical (programmable) bit­
processing operators with postfabrication configurable interconnect. When a 
device failure renders a bitop or an interconnect segment unusable, we can 
configure the computation to avoid the failing bitop or segment (see Figure 37.1). 
If the bitop is part of a larger SIMD word (Chapter 36, Section 36.3.2) or other 
structure that does not allow its independent use, we may be forced to avoid the 
entire structure. In any case, as long as all the resources on the reconfigurable 
array are not being used, we can substitute good resources for the bad ones. As 
defect rates increase, this suggests a need to strategically reserve spare resources 
on the die so that we can guarantee there are enough good resources to compen­
sate for the unusable elements. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 845



A .... 

-

Short 
to ground 

B 

(a) 

(b) 

37.2 Defect Tolerance 831 

LJ 

Spare logic 
block 

C 

Defect 
(c) 

FIGURE 37.1 ■ Configuring computation to avoid defective elements in a reconfigurable array: 
(a) logical computation graph, (b) mapping to a defect-free array with spare, and (c) mapping
to an array with defects.

This basic strategy of (1) provisioning spare resources, (2) identifying and 
avoiding bad resources, and (3) substituting spare resources for bad resources 
is well developed for data storage. DRAM and SRAM dies include spare rows and 
columns and substitute the spare rows and/or columns for defective rows and 
columns (e.g., see [1, 2]). Magnetic data storage (e.g., hard disk) routinely has 
bad sectors; the operating system (OS) maps the bad sectors and takes care not 
to allocate data to those sectors. These two forms of storage actually illustrate 
two models for dealing with defects: 

1. Perfect component: In the perfect component model, the component has to
look perfect; that is, we require every address visible to the user to perform
correctly. The spare resources are added beyond those required to deliver
the promised memory capacity and are substituted out behind the- scenes
so that users never see that there are defective elements in the component.
DRAM and SRAM components are the traditional example of the perfect
component model.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 846



832 Chapter 37 • Defect and Fault Tolerance 

2. Defect map: The defect map model allows elements to be bad. We expose
these defects to higher levels of software, typically the OS, which is respon­
sible for tracking where the defects occur and avoiding them. Magnetic
disks are a familiar example of the defect map model-we permit sectors
to be bad and format the disk to avoid them.

37 .2.2 Substitutable Resources 

Some defects will be catastrophic for the entire component. While a recon­
figurable array is composed largely of repeated copies of identical instances, 
the device infrastructure is typically unique; defects in this infrastructure may 
not be repairable by substitution. Common infrastructures include power and 
ground distribution, clocking, and configuration loading or instruction distribu­
tion. It is useful to separate the resources in the component into nonrepairable 
and repairable resources. Then we can quantify the fraction of resources that 
are nonrepairable. 

We can minimize the impact of nonrepairable resources either by reducing 
the fraction of things that cannot be repaired or by increasing the reliability of 
the constituent devices in the nonrepairable structures. Many of the infrastruc­
ture items, such as power and ground networks, are built with larger devices, 
wires, and feature sizes. As such, they are less susceptible to the failures that 
impact small features. Memocy components (e.g., DRAMs) also have distinct 
repairable and nonrepairable components; they typically use coarser feature 
sizes for the nonrepairable infrastructure. Memocy designs only use the smallest 
features for the dense memocy array, where row and column sparing can be used 
to repair defects. In FPGAs, it may be reasonable to provide spares for some 
of the traditional infrastructure items to reduce the size of the nonrepairable 
region. For example, modem FPGAs already include multiple clock generators 
and configurable clock trees; as such, it becomes feasible to repair defective 
clock generators or portions of the clock tree by substitution. We simply need 
to guarantee that there are sufficient alternative resources to use instead of the 
defective elements. 

For any design there will be a minimum substitutable unit that defines the 
granularity of substitution. For example, in a memocy array we cannot subs­
titute out individual RAM cells. Rather, with a technique like row sparing, 
the substitutable unit is an entire row. In the simplest sparing schemes, a 
defect anywhere within a substitutable unit may force the discard of the entire 
element. Consequently, the granularity of substitution can play a big role in 
the viable yield of a component (see the Perfect yield subsection that follows). 
Section 37.2.5 examines more sophisticated sparing schemes that relax this 
constraint. 

37 .2.3 Yield 

This section reviews simple calculations for the yield of components and substi­
tutable units. We assume uniform device defect rates and independent, random 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 847



37.2 Defect Tolerance 833 

failure (i.e., identical, independently distributed-iid). Using these simple models, 
we can illustrate the kinds of calculations involved and build intuition on the 
major trends. 

Perfect yield 
A component with no substitutable units will be nondefective only if all the 
devices in the unit are not defective. Similarly, in the simplest models each sub­
stitutable unit is nondefective only when all of its constituent devices are not 
defective. If we have a device defect probability Pd and if a unit contains N 
devices, the probability that the entire component or unit is nondefective is: 

(37.1) 

We can expand this as a binomial: 

(37.2) 

If N x Pd << l, then we observe that each successive power of Pd is much 
smaller than the previous term. We can approximate this yield as: 

(37.3) 

This tells us we have a substitutable unit defect rate, Psd, or a component 
defect rate, roughly equal to the product of the number of devices and the device 
defect rate: 

(37.4) 

This simple equation indicates several things: 

■ For today's large chips with N > 109 devices, the defect rate Pd must be
below 10-10 to expect 90 percent or greater chip yield.

■ To maintain constant yield (P defect-free) for a chip as N scales, we must
continually decrease Pd at the same rate. For example, a 10 x increase in
device count, N, must be accompanied by a 10 x decrease in per-device
defect rate.

■ As noted in this chapter's introduction, we expect the opposite effect for
atomic-scale devices; smaller devices mean a higher likelihood of defects.
This exacerbates the challenge of increasing device counts.

■ At the same defect rate, Pd , a finer-grained substitutable unit (e.g., an
individual LUT or bitop) will have a higher unit yield rate than a
coarser-grained unit (e.g., a cluster of 10 LUTs, such as an Altera LAB
(Section 1.5.1) or an SIMD collection of 32 bitops). Alternatively, if one
reasons about defect rates of the substitutable units, a defect rate of
Psd = 0.05 for a coarse-grained block corresponds to a much lower device
defect rate, Pd, than the same Psd for a fine-grained substitutable unit.

Pdefect-free (N,Pa) = (1-Pal 

Pdefect-free(N,Pa) = ~ ((~)(-Pai) = 1-N ·Pa+(~) (Pal- ... 

P defect-free (N, Pa)"" 1 -N · Pa 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 848



834 Chapter 37 • Defect and Fault Tolerance 
■ To keep substitutable unit yield rates at some high value, we mustdecrease unit size, N, as Pd increases. For example, if we design for a Psd = 10-4 and the device defect rate doubles, we need to cut the substitutable block size in half to achieve the same block yield; thissuggests a trend toward fine-grained resource sparing as defect rates increase (e.g., see Fine-grained Pterm matching subsection ofSection 37.2.5 and Section 38.6). 

Yield with sparingWe can significantly increase overall yield by providing spares so that there is no 
need to demand that every substitutable unit be nondefective. Assume for nowthat all substitutable units are interchangeable. The probability that we will haveexactly i nondefective substitutable units is: 

Pyield(N, i) = ( ( �) (Psdi (1 -Psd)N-i) (37.5) 
That is, there are (1) ways to select i nondefective blocks from N total blocks, 
and the yield probability of each case is (Psdi(l-Porl-i. An ensemble with at least M items is obtained whenever M or more items yield, so the ensemble yield is actually the cumulative distribution function, as follows: 

(37.6) 
As an example, consider an Island-style FPGA cluster (see Figure 37.2) com­

posed of 10 LUTs (e.g., Altera LAB, Chapter 1). Assume that each LUT, alongwith its associated interconnect and configuration, is a substitutable unit and
that the LUTs are interchangeable. Further, assume Psd = 10-4• The probabilityof yielding all 10 LUTs is: 

Pyield(10, 10) = ( 10-4) IO ( 1-10-4) o = 0.9990005 (37.7) 
Now, if we add two spare lookup tables, the probability of yielding at least 10LUTs is: 
Pyield (12, 10) = ( 10-4) 12 ( 1 -10-4) o + 12 (10-4) 1 1 ( 1 -10-4) 1

+ l2 � 1l ( 10-4) 1° ( 1 -10-4) 2 (37.8) 
= 0. 99880065978 + 0.0011986806598 + 0.0000006593402969
= 0.9999999998 > 1-10-9 

Without the spares, a component with only 1000 such clusters would bedifficult to yield. With the spares, components with 1,000,000 such clusters yieldmore than 99.9 percent of the time. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 849



Cluster inputs 

I 

37.2 Defect Tolerance 835 

Cluster outputs 

: _________ Cluster _______ _ 

FIGURE 37.2 ■ An island-style FPGA cluster with five interchangeable 2-LUTs. 

The assumption that all substitutable units are interchangeable is not directly 
applicable to logic blocks in an FPGA since their location strongly impacts 
the interconnections available to other logic block positions. Nonetheless, the 
sparing yield is illustrative of the trends even when considering interconnect 
requirements. 

To minimize the required spares, it would be preferable to have fewer large 
pools of mostly interchangeable resources rather than many smaller pools of 
interchangeable resources. This results from Bernoulli's Law of Large Num­
bers (the Central Limit Theorem) effects [3, 4], where the variance of a sum 
of random variables decreases as the number of variables increases. For a more 
detailed development of the impact of the Law of Large Numbers on defect yield 
statistics and strategies see DeHon [S]. 

37 .2.4 Defect Tolerance through Sparing 

To exploit substitution, we need to locate the defects and then avoid them. Both 
testing (see next subsection) and avoidance could require considerable time for 
each individual device. This section reviews several design approaches, inclu­
ding approaches that exploit full mapping (see the Global sparing subsection) 
to minimize defect tolerance overhead, approaches that avoid any extra mapping 
(see the Perfect component model subsection), and approaches that require only 
minimal, local component-specific mapping (see the Local sparing subsection). 

Testing 
Traditional acceptance testing for FPGAs (e.g., [6]) attempts to validate that 
the FPGA is defect free. Locating the position of any defect is generally not 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 850



836 Chapter 37 ■ Defect and Fault Tolerance 

important if any chip with defects is discarded. Identifying the location of all 
defects is more difficult and potentially more time consuming. Recent work 
on group testing [7-9] has demonstrated that it is possible to identify most of 
the nondefective resources on a chip with N substitutable components in time 
proportional to ./N. 

In group testing, substitutable blocks are configured together and given a self­
test computation to perform. If the group comes back with the correct result, 
this is evidence that everything in the group is good. Conversely, if the result 
is wrong, this is evidence that something in the group may be bad. By arran­
ging multiple tests where substitutable blocks participate in different groups 
(e.g., one test set groups blocks around rows while another groups them along 
columns), it is possible to identify which substitutable units are causing the 
failures. 

For example, if there is only one failure in each of two groupings, and the 
failing groups in each grouping contain a single, common unit, this is strong 
evidence that the common unit is defective while the rest of the substitutable 
units are good. As the failure rates increase such that multiple elements in each 
group fail in a grouping, it can be more challenging to precisely identify failing 
components with a small number of groupings. As a result, some group testing 
is conservative, marking some good components as potential defects; this is a 
trade-off that may be worthwhile to keep testing time down to a manageably 
low level as defect rates increase. 

In both group testing and normal FPGA acceptance testing, array regularity 
and homogeneity make it possible to run tests in parallel for all substitutable 
units on the component. Consequently, testing time does not need to scale as the 
number of substitutable units, N. If the test infrastructure is reliable, group tests 
can run completely independently. However, if we rely on the configurable logic 
itself to manage tests and route results to the test manager, it may be necessary 
to validate portions of the array before continuing with later tests. In such cases, 
testing can be performed as a parallel wave from a core test manager, testing 
the entire two-dimensional device in time proportional to the square root of the 
number of substitutable units (e.g., [8]). 

Global sparing 
A defect map approach coupled with component-specific mapping imposes low 
overhead for defect tolerance. Given a complete map of the defects, we per­
form a component-specific design mapping to avoid the defects. Defective subs­
titutable units are marked as bad, and scheduling, placement, and routing are 
performed to avoid these resources. An annealing placer (Chapter 14) can mark 
the physical location of the defective units as invalid or expensive and penalize 
any attempts to assign computations to them. Similarly, a router (Chapter 17) 
can mark defective wires and switches as "in use" or very costly so that they are 
avoided. The Teramac custom-computing machine tolerated a 10 percent defect 
rate in logic cells (Psd1og;c 

= 0.10) and a 3 percent defect rate in on-chip intercon-
nect (Psdint

erronnect = 0.03) using group testing and component-specific mapping [7]. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 851



37.2 Defect Tolerance 837 

With place-and-route times sometimes running into hours or days, the 
component-specific mapping approach achieves low overhead for defect tole­
rance at the expense of longer mapping times. As introduced in Chapter 20, 
there are several techniques we could employ to reduce this mapping time, 
including: 

■ Tuning architectures to facilitate faster mapping by overprovisioning
resources and using simple architectures that admit simple mapping;
the Plasma chip-an FPGA-like component, which was the basis of the
Teramac architecture-takes this approach and was highlighted in
Chapter 20.

■ Trading mapping quality in order to reduce mapping time.
■ Using hardware to accelerate placement and routing (also illustrated

in Sections 9.4.2 and 9.4.3).

Perfect component model 
To avoid the cost of component-specific mapping, an alternate technique to 
use is the perfect component model (Section 37.2.1). Here, the goal is to use 
the defect map to preconfigure the allocation of spares so that the component 
looks to the user like a perfect component. Like row or column sparing in 
memory, entire rows or columns may be the substitutable units. Since recon­
figurable arrays, unlike memories, have communication lines between blocks, 
row or column sparing is much more expensive to support than in memories. 
All interconnect lines must be longer, and consequently slower, to allow configu­
ration to reach across defective rows or columns. The interconnect architecture 
must be designed such that this stretching across a defective row is possible, 
which can be difficult in interconnects with many short wires (see Figure 37.3). 

Extended segment in use bypassing defective row (column) 

FIGURE 37.3 ■ Arrays designed to support row and column sparing. 

Segment extension beyond defective row (column) 

~ 
- - - - - - .1 - - - - - - "'i 

□ □ □ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 852



838 Chapter 37 ■ Defect and Fault Tolerance 

A row of FPGA logic blocks is a much coarser substitutable unit than a memory 
row. FPGAs from Altera have used this kind of sparing to improve component 
yield [10, 11], including the Apex 20KB series. 

Local sparing 
With appropriate architecture or stylized design methodology, it is possible to 
avoid the need to fully remap the user design to accommodate the defect map. 
The idea here is to guarantee that it is possible to locally transform the design 
to avoid defects. For example, in cases where all the LUTs in a cluster are inter­
changeable, if we provision spares within each cluster as illustrated earlier in the 
Yield with sparing subsection of Section 37.2.3, it is simply a matter of locally 
reassigning the functions to LUTs to avoid the defective LUTs. 

For regular arrays, Lach et al. [12] show how to support local interchange at a 
higher level without demanding that the LUTs exist in a locally interchangeable 
cluster. Consider a k x k tile in the regular array. Reserve s spares within each 
k x k tile so that we only populate (k2 -s) LUTs in each such region. We can now 

compute placements for the (k2 -s) LUTs for each of the possible combinations 

of s defects. In the simplest case, s = 1, we precalculate k2 placements for each 
region (e.g., see Figure 37.4). Once we have a defect map, as long as each region 
has fewer than s errors, we simply assemble the entire configuration by selecting 
an appropriate configuration for each tile. 

When a routing channel provides full crossbar connectivity, similarly, it may 
be possible to locally swap interconnect assignments. However, typical FPGA 
routing architectures do not use fully populated switching; as a result, intercon­
nect sparing is not a local change. Yu and Lemieux [13, 14] show that FPGA 
switchboxes can be augmented to allow local sparing at the expense of 10 to SO 
percent of area overhead. The key idea is to add flexibility to each switchbox that 
allows a route to shift one (or more) wire track(s) up or down; this allows routes 
to be locally redirected around broken tracks or switches and then restored to 
their normal track (see Figure 37.5). 

To accommodate a particular defect rate and yield target, local interchange 
will require more spares than global mapping (see the Global sparing subsec­
tion). Consider any of the local strategies discussed in this section where we allo­
cate one spare in each local interchange region (e.g., cluster, tile, or channel). If 
there are two defects in one such region, the component will not be repairable. 
However, the component may well have adequate spares; they are just assigned 
to different interchange regions. With the same number of resources, a global 
remapping would be able to accommodate the design. Consequently, to achieve 
the same yield rate as the global scheme, the local scheme always has to allocate 
more spares. This is another consequence of the Law of Large Numbers (see the 
Yield with sparing subsection): 

The more locally we try to contain replacement, the higher variance 
we must accommodate, and the larger overhead we pay to guarantee 
adequate yield. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 853



.-----------

. 

. 

□ 

.. _________ _ 

.-----------

. 

. 

□ 

.. _________ _ 

. 

. 

-- --· 

37.2 Defect Tolerance 839 

,-----------

. 

. 

.. _________ _ 

·
··--------- - - - -------------- -

. 

. 

.. _________ _ 

. 

. 

- - --·

. 

FIGURE 37.4 ■ Four placements of a three-gate subgraph on a 2 x 2 tile. 

(a) 

_)1ill7 Jnlt� 
----i 

L--

-cm ;;£�m, 
(b) 

FIGURE 37.5 ■ Added switchbox flexibility allows local routing around interconnect defects: 
(a) defect free with spare and (bl configuration avoiding defective track.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 854



840 Chapter 37 ■ Defect and Fault Tolerance 

37 .2.5 Defect Tolerance with Matching 
In the simple sparing case (Section 37.2.4), we test to see whether each sub­
stitutable unit is defect free. Substitutable units with defects are then avoided. 
This works well for low-defect rates such that Psd remains low. However, it can 
also be highly conservative. In particular, not all capabilities of the substitutable 
unit are always needed. A configuration of the substitutable unit that avoids the 
particular defect may still work correctly. Examples where we may not need to 
use all the devices inside a substitutable unit include the following: 

■ A typical FPGA logic block, logic element, or slice includes an optional
flip-flop and carry-chain logic. Many of the logic blocks in the user's
design leave the flip-flop or carry chain unused. Consequently, these
"defective" blocks may still be usable, just for a subset of the logical
blocks in the user's design.

■ When the substitutable unit is a collection of Wsimd bitops, a defect in
one of the bitops leaves the unit imperfect. However, the unit may work
fine on smaller data. For example, maybe a Wsimd = 8 substitutable unit
has a defect in bit position 5. If the application requires some com­
putations on Wapp = 4 bit data elements, the defective 8-bit unit may still
perform adequately to support 4 bitops.

■ A product term (Pterm) in a programmable logic array (PLA) or
programmable array logic (PAL) is typically a substitutable unit. Each
Pterm can be configured to compute the AND of any of the inputs to the
array (see Figure 37.6). However, all the Pterms configured in the array
will never need to be connected to all the inputs. Consequently, defects
that prevent a Pterm from connecting to a subset of the inputs may not
inhibit it from being configured to implement some of the Pterms
required to configure the user's logic.

Instead of discarding substitutable units with defects, we characterize their 
capabilities. Then, for each logical configuration of the substitutable unit 

Enabled 
crosspoint 
allows input 
to participate 
in Pterm 

Inputs 

FIGURE 37.6 ■ A PAL OR-term with a collection of substitutable Pterm inputs. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 855



37.2 Defect Tolerance 841

demanded by the user's application, we can identify the set of (potentially
defective) substitutable units capable of supporting the required configuration.
Our mapping then needs to ensure that assignments of logical configurations to
physical substitutable units obey the compatibility requirements.
Matching formulation 
To support the use of partially defective units as substitutable elements, we can
formulate the mapping between logical configurations and substitutable units
as a bipartite matching problem. For simplicity and exposition, it is assumed
that all the substitutable units are interchangeable. This is likely to be an accu­
rate assumption for LUTs in a cluster or Pterms in a PAL or PLA, but it is not
an accurate assumption for clusters in a two-dimensional FPGA routing array.
Nonetheless, this assumption allows precise formulation of the simplest version
of the problem.

We start by creating two sets of nodes. One set, R = {ro, r1, r2 ••• }, represents
the physical substitutable resources. The second set, L = {10 , 11, 12 ... }, represents·
the logic computations from the user's design that must be mapped to these
substitutable units. We add a link (li, r;) if-and-only-if logical configuration li 
can be supported by physical resource r;. This results in a bipartite graph, with
L being one side of the graph and R being the other. What we want to find is a
complete matching between nodes in L and nodes in R-that is, we want every
li E L to be matched with exactly one node r; E R, and every node r; E R to be
matched with at most one node li E L.

We can optimally compute the maximal matching between L and R in poly­
nomial time using the Ford-Fulkerson maximum flow algorithm [15] with time
complexity O(IVI • IEI) or a Hopcroft-Karp algorithm [16] with time complexity
0 ( Jlvf · IEI). In the graph, IVl = ILi + IRI and IEI = O(ILI · IRJ). Since there must be
at least as many resources as logical configurations, ILi � JRJ, the Hopcroft-Karp
algorithm is thus O (IRl2 ·5); for local sparing schemes, JRI might be reasonably
in the 10 to 100 range, meaning that the matching problem is neither large nor
growing with array size. If the maximal matching fails to be a complete mat­
ching (i.e., assign each li to a unique match in ri), we know that it is not possible
to support the design on a particular set of defective resources.
Fine-grained Pterm matching 
Naeimi and DeHon use this matching to assign logical Pterms to physical
nanowires in a nanoPLA (Chapter 38, Section 38.6) [17, 18]. Before conside­
ring defects, all the Pterm nanowires in the PLA are freely interchangeable.
Each nanowire that implements a Pterm has a programmable diode between
the input nanowires and the nanowire itself. If the diode is programmed into
an off state, it disconnects the input from the nanowire Pterm. If the diode is
in the on state, it connects the input to the nanowire, allowing it to participate
in the AND that the Pterm is computing.

The most common defect anticipated in this technology is that the pro­
grammable diode is stuck in an off state-that is, it cannot be programmed into
a valid on state. Consequently, a Pterm nanowire with a stuck-off diode at a

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 856



842 Chapter 37 ■ Defect and Fault Tolerance 

particular input location cannot be programmed to include that input in the 
AND it is performing. 

A typical PLA will have 100 inputs, meaning each product-term nanowire is 
connected to 100 programmable diodes. A plausible failure rate for the product­
term diodes is 5% (Pd = 0.05). If we demanded that each Pterm he defect free in 
order to use it, the yield of product terms would be: 

Pnwptenn (100, 0.05) = (1-0.05)100 "' 0.006 (37.9) 

However, since none of the product terms use all 100 inputs, the probability 
that a particular Pterm nanowire can support a logical Pterm is much higher. 
For example, if the Pterm only uses 10 inputs, then the probability that a 
particular Pterm nanowire can support it is: 

Pnwptenn (10, 0.05) = (1-0.05)10 "' 0.599 (37.10) 

Further, typical arrays will have 100 product-term nanowires. This suggests 
that, on average, this Pterm will be compatible with roughly 60 of the Pterm 
nanowires in the array-that is, the li for this Pterm will end up with compati­
bility edges to 60 r/s in the bipartite matching graph described before. 

As a result, DeHon and Naeimi [18] were able to demonstrate that we can 
tolerate stuck-off diode defects at Pd = 0.05 with no allocated spare nanowires. 
In other words, we can have ILi as large as IRI and, in practice, always find a 
complete matching for every PLA. This is true even though the probability of a 
perfect nanowire is below 1 percent (equation 37.9), suggesting that most arrays 
of 100 nanowires contain no perfect Pterm nanowires. 

This strategy follows the defect map model and does demand component­
specific mapping. Nonetheless, the required mapping is local (see the Local 
sparing section) and can be fast. Naeimi and DeHon [17] demonstrate the results 
quoted previously using a greedy, linear-time assignment algorithm rather than 
the slower, optimal algorithm. Further, if it is possible to test the compatibility 
of each Pterm as part of the trial assignment, it is not necessary to know the 
defect map prior to mapping. 

FPGA component level 
It is also possible to apply this matching idea at the component level. Here, 
the substitutable unit is an entire FPGA component. Unused resources will be 
switches, wires, and LUTs that are not used by a specific user design. Certainly, 
if the specific design does not fill the logic blocks in the component, there will be 
unused logic blocks whose failure may be irrelevant to the proper functioning 
of the design. Even if the specific design uses all the logic blocks, it will not use 
all the wires or all the features of every logic block. So, as long as the defects in 
the component do not intersect with the resources used by an particular FPGA 
configuration, the FPGA can perfectly support the configuration. 

Xilinx's EasyPath series is one manifestation of this idea. At a reduced cost 
compared to perfect FPGAs, Xilinx sells FPGAs that are only guaranteed to 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 857



37.3 Transient Fault Tolerance 843 

work with a particular user design, or a particular set of user designs. The user 
provides their designs, and Xilinx checks to see whether any of their defective 
devices will successfully implement those designs. Here, Xilinx's resource set, R, 

is the nonperfect FPGAs that do not have defects in the nonrepairable portion 
of the logic. The logical set, L, is the set of customer designs destined for Easy­
Path. Xilinx effectively performs the matching and then supplies each customer 
with FPGA components compatible with their respective designs. 

Hyder and Wawrzynek [19] demonstrate that the same idea can be exploited 
in board-level FPGA systems. Here, their resource set, R, is the set of FPGAs 
on a particular board with multiple FPGAs. Their logical set is the set of FPGA 
configurations intended for the board. If all the FPGAs on the board were inter­
changeable, this would also reduce to the previous simple matching problem. 
However, in practice, the FPGAs on a board typically have different connections. 
This provides an additional set of topological constraints that must be consid­
ered along with resource compatibility during assignment. Rather than creating 
and maintaining a full defect map of each FPGA in the system, they also use 
application-specific testing (e.g., Tahoori [20]) to determine whether a particu­
lar FPGA configuration is compatible with a specific component on the FPGA . 
board. 

37 .3 TRANSIENT FAULT TOLERANCE 

Recall that transient faults are randomly occurring, temporary deviations from 
the correct circuit behavior. It is not possible to test for transient faults and 
configure around them as we did with defects. The impact of a transient fault 
depends on the structure of the logic and the location of the transient fault. 
The fault may be masked (hidden by downstream gates that are not currently 
sensitive to this input), may simply affect the circuit output temporarily, or may 
corrupt state so that the effect of the transient error persists in the computation 
long after the fault has occurred. Examples include the following: 

■ If both inputs to an OR gate should be 1, but one of the inputs is
erroneously 0, the output of the OR gate will still have the correct value.

■ If the transient fault impacts the combinational output from a circuit,
only the output on that cycle is affected; subsequent output cycles will be
correct until another transient fault occurs.

■ If the transient fault results in the circuit incorrectly calculating the next
state transition in a finite-state machine (FSM), the computation may
proceed in the incorrect state for an indefinite period of time.

To deal with the general case where transient faults impact the observable 
behavior of the computation, we must be able to prevent the errors from prop­
agating into critical state or to observable outputs from the computation. This 
demands that we add or exploit some form of redundancy in the calculation 
to detect or correct errors as they occur. This section reviews two general 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 858



844 Chapter 37 ■ Defect and Fault Tolerance 

approaches to transient fault tolerance: feedfoxward correction (Section 37.3.1) 
and rollback error recovery (Section 37.3.2). 

37 .3. 1 Feedforward Correction 

One common strategy to tolerate transient faults is to provide adequate redun­
dancy to correct any errors that occur. This allows the computation to continue 
without interruption. The simplest example of this redundancy is replication. 
That is, we arrange to perform the intended computation R times and vote on 
the result, using the majority result as the value allowed to update state or to 
be sent to the output. The smallest example uses R = 3 and is known as triple 
modular redundancy (TMR) (see Figure 37.7). In general, for there to be a clear 
majority, R must be odd, and a system with R replicas can tolerate at least ¥ 
simultaneous transient faults. We can perform the multiple calculations either 
in space, by concurrently placing R copies of the computation on the reconfig­
urable array, or in time, by performing the computation multiple times on the 
same datapath. 

In the simple design in Figure 37.7, a failure in the voter may still corrupt 
the computation. This can be treated similarly to nonrepairable area in defect­
tolerance schemes: 

■ If the computation is large compared to the voter, the probability of voter
failure may be sufficiently small so that it is acceptable.

■ The voter can be implemented in a more reliable technology, such as a
coarser-grained feature size.

■ The voter can be replicated as well. For example, von Neumann [21] and
Pippenger [22] showed that one can tolerate high transient fault rates
(up to 0.4 percent) using a gate-level TMR scheme with replicated voters.

TMR strategies have been applied to Xilinx's Virtex series [23]. Rollins et al. [24] 
evaluate various TMR schemes on Vrrtex components, including strategies with 
replicated voters and replicated clock distribution. 

A key design choice in modular redundancy schemes is the granularity at 
which voting occurs. At the coarsest grain, the entire computational circuit 
could be the unit of replication and voting. At the opposite extreme, we can 
replicate and vote individual gates as the Von Neumann design suggests. The 
appropriate choice will balance area overhead and fault rate. From an area 

Replica of computation 

Replica of computation Vote Outputs 

Replica of computation 

FIGURE 37.7 ■ A simple TMR design. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 859



37.3 Transient Fault Tolerance 845 

overhead standpoint, we would prefer to vote on large blocks; this allows the 
area of the voters to be amortized across large logic blocks so that the total area 
grows roughly as the replication factor, R. From an area overhead standpoint, we 
also want to keep R low. From a reliability standpoint, we want to make it suffi­
ciently unlikely that more than R2

1 replicas are corrupted by transient errors in 
a single cycle. Similar to defects (equation 37.4), the failure rate of a computa­
tion, and hence a replica, scales with the number of devices in the computation 
and the transient fault rate per device; consequently, we want to scale the unit 
of replication down as fault rate increases to achieve a target reliability with 
lowR. 

Memory 

A common form of feedforward correction is in use today in memories. Mem­
ories have traditionally been the most fault-sensitive portions of components 
because: (1) A value in a memory may not be updated for a large number 
of cycles; as such, memories integrate faults over many cycles. (2) Memories 
are optimized for density; as such, they often have low capacitance and drive 
strength, making them more susceptible to errors. 

We could simply replicate memories, storing each value in R memories or 
memory slots and voting the results. However, over the years information theory 
research has developed clever encoding schemes that are much more efficient 
for protecting groups of data bits than simple replication [25,26]. For example, 
DRAMs used in main memory applications generally tolerate a single-bit fault in 
a 64-bit data-word using a 72-bit error correcting code. Like the nonrepairable 
area in DRAMs, the error correcting circuitry in memories is generally built 
from coarser technology than the RAM memory array and is assumed to be 
fault free. 

37 .3.2 Rollback Error Recovery 

An alternative technique to feedforward correction is to simply detect when 
errors occur and repeat the computation when an error is detected. We can 
detect errors with less redundancy than we need to correct errors (e.g., two 
copies of a computation are sufficient to detect a single error, while three 
are required for correction); consequently, detection schemes generally require 
lower overhead than feedforward correction schemes. If fault rates are low, 
it is uncommon for errors to occur in the logic. In most cycles, no errors 
occur and the normal computation proceeds uninterrupted. In the uncommon 
case in which a transient fault does occur, we stop processing and repeat the 
computation in time without additional hardware. With reasonably low 
transient-fault rates, it is highly unlikely that repeated computation will also 
be in error; in any case, detection guards against errors in the repeated compu­
tation as well. 

To be viable, the rollback technique demands that the application tolerate 
stalls in computation during rollback. This is easily accommodated in streaming 
models (Chapter 5, Section 5.1.3) that exploit data-presence signaling (see Data 

- -

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 860



846 Chapter 37 ■ Defect and Fault Tolerance 

presence subsection of Section 5.2.1) to tolerate variable timing for operator 
implementations. When detection and rollback are performed on an operator 
level, stream buffers between operator datapaths can isolate and minimize the 
performance impact of rollback. 

Detection 

To detect errors we use some form of redundancy. Again, this can be either 
temporal or spatial redundancy. 

To minimize the performance impact, we can employ a concurrent-error detec­

tion (CED) technique-that is, in parallel with the normal logic, we compute 
some additional function or property of the output (see Figure 37.8). We con­
tinuously check consistency between the logical output and this concurrent 
calculation. If the concurrent calculation ever disagrees with the base computa­
tion, this means there is an error in the logic. 

In the simplest case, the parallel function could be a duplicate copy of the 
intended logic (see Figure 37.S(b)). Checking then consists of verifying that the 
two computations obtained the equivalent results. However, it is often possible 
to avoid recomputing the entire function and, instead, compute a property of 
the output, such as its parity (see Figure 37.S(c)) [27]. 

The choice of detection granularity is based on the same basic considerations 
discussed before for feedforward replica granularity. Larger blocks can amor­
tize out comparison overhead but will increase block error rates and hence the 
rate of rollback. For a given fault rate, we reduce comparison block granularity 
until the rollback rate is sufficiently low so that it has little impact on system 
throughput. 

F 

Copy of 
F 

(b) 

Property of 
F 

(a) 

===::;:.:::; 
---�- Outputs ! :::Sa:ESE!

Error 

Error 

F 

Parity of 
F 

(c) 

FIGURE 37.8 ■ A concurrent error-detection strategy and options: (a) generic formulation, 
(b) duplication, and (c) parity. 

~ a. 
.5 

.e 
::, 
a. 
.5 

F 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 861



Recovery 

37.3 Transient Fault Tolerance 847 

When we do detect an error, it is necessary to repeat the computation. This 
typically means making sure to preserve the inputs to a computation until we 
can be certain that we have reliably produced a correct result. Conceptually, 
we read inputs and current state, calculate outputs, detect errors, then produce 
outputs and save state if no errors are detected. In practice, we often want to 
pipeline this computation so that we detect errors from a previous cycle while 
the computation continues, and we may not save state to a reliable storage on 
every calculation. However, even in sequential cases, it may be more efficient to 
perform a sequence of computations between error checks. 

A common idiom is to periodically store, or snapshot, state to reliable 
memory, store inputs as they arrive into reliable memory, perform a series of 
data computations, and store results to reliable memory. If no errors are detected 
between snapshots, then we continue to compute with the new state and discard 
the inputs used to produce it. If errors are detected, we discard the new state, 
restore the old state, and rerun the computation using the inputs stored in reli­
able memory. As noted earlier in the Memory subsection, we have particularly 
compact techniques for storing data reliably in fault-prone memories; this effi­
cient protection of memories allows rollback recovery techniques to be robust 
and efficient. 

In streaming systems, we already have FIFO streams of data between opera­
tors. We can exploit these memories to support rollback and retry. Rather than 
discarding the data as soon as the operator reads it, we keep it in the FIFO but 
advance the head pointer past it. If the operator needs to rollback, we effectively 
reset the head pointer in the FIFO to recover the data for reexecution. When an 
output is correctly produced and stored in an output FIFO, we can then discard 
the associated inputs from the input FIFOs. For operators that have bounded 
depth from input to output, we typically know that we can discard an input set 
for every output produced. 

Communications 
Data transmission between two distant points, especially when it involves 
crossing between chips and computers, is highly susceptible to external noise 
(e.g., crosstalk from nearby wires, power supply noise, clock jitter, interference 
from RF devices). As such, for a long time we have protected communication 
channels with redundancy. As with memories, we simply need to reliably deliver 
the data sent to the destination. 

Unlike memories, we do not necessarily need to guarantee that the correct data 
can be recovered from the potentially corrupted data that arrive at the destination. 
When the data are corrupted in transmission, it suffices to detect the error. The 
sender holds onto a copy of the data until the receiver indicates they have been 
successfully received. When an error is detected, the sender can retransmit the 
data. The detection and retransmission are effectively a rollback technique. 

When the error rates on the communication link are low, such that error 
detection is the uncommon event, this allows data to be protected with 
low overhead error-detecting codes, or checksums, instead of more expensive 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 862



848 Chapter 37 ■ Defect and Fault Tolerance 

error correcting codes. The Transmission Control Protocol (TCP) used for 
communication across the Internet includes packet checksums and retransmis­
sion when data fail to arrive error free at the intended destination [28]. 

37 .4 LIFETIME DEFECTS 

Over the lifetime of a component, the physical device will change and degrade, 
potentially introducing new defects into the device. Individual atomic bonds 
may break or metal may migrate, increasing the resistance of the path or even 
breaking a connection completely. Device characteristics may shift because of 
hot-carrier injection (e.g., [29,30]), NBTI (e.g., [31]), or even accumulated radi­
ation doses (e.g., [32, 33]). These effects become more acute as feature sizes 
shrink. To maintain correct operation, we must detect the errors (Section 37.4.1) 
and repair them (Section 37.4.2) during the lifetime of the component. 

37 .4.1 Detection 

One way to detect lifetime failures is to periodically retest the device-that is, 
we stop normal operation, run a testing routine (see the Testing subsection in 
Section 37.2.4), then resume normal operation if there are no errors. It can be 
an application-specific test, determining whether the FPGA can still support the 
user's mapping [20], or an application-independent test of the FPGA substrate. 
Application-specific tests have the advantage of both being more compact and 
ignoring new defects that do not impact the current design. Substrate tests 
may require additional computation to determine whether the newly defective 
devices will impact the design. While two consecutive, successful tests generally 
mean that the computation between these two points was correct, the compo­
nent may begin producing errors at any time inside the interval between tests 
and the error will not be detected until the next test is run. 

Testing can also be interleaved more directly with operation. In partially 
reconfigurable components (see Section 4.2.3), it is possible to reconfigure por­
tions of a component while the rest of the component continues operating. This 
allows the reservation of a fraction of the component for testing. If we then 
arrange to change the specific portions of the component assigned to testing 
and operation over time, we can incrementally test the entire component with­
out completely pulling it out of service (e.g., [34, 35]). 

In some scenarios, the component may need to stall operation during the 
partial reconfiguration, but the component only needs to stall for the reconfig­
uration period and not the entire testing period. When the total partial recon­
figuration time is significantly shorter than the testing time, this can reduce the 
fraction of cycles the application must be removed from normal operation. This 
still means that we may not detect the presence of a new defect until long after 
it occurred and started corrupting data. 

If it is necessary to detect an error immediately, we must employ one of the 
fault tolerance techniques reviewed in Section 37.3. CED (see the Detection 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 863



37.5 Configuration Upsets 849 

subsection in Section 37.3.2) can identify an error as soon as it occurs and 
stall computation. TMR (Section 37.3.1) can continue correct operation if only 
a single replica is affected; the TMR scheme can be augmented to signal higher­
level control mechanisms when the voters detect disagreement. 

37 .4.2 Repair 

Once a new error has occurred, we can repeat global (see the Global sparing 
subsection in Section 37.2.4) or local mapping (see the Local sparing subsec­
tion in Section 37.2.4) to avoid the new error. However, since the new defect 
map is most likely to differ from the old defect map by only one or a few 
defects, it is often easier and faster to incrementally repair the configuration. In 
local mapping schemes, we only need to perform local remapping in the inter­
changeable region(s) where the new defect(s) have occurred. This may mean 
that we only need to move LUTs in a single cluster, wires in channel, or remap 
a single tile. Even in global schemes the incremental work required may be 
modest. Lakamraju and Tessier [36] show that incrementally rerouting connec­
tions severed by new lifetime defects can be orders of magnitude faster than 
performing a complete reroute from scratch. 

A rollback scheme (Section 37.3.2) can stall execution during the repair. 
A replicated, feedforward scheme (Section 37.3.1) with partial reconfiguration 
may be able to continue operating on the functional replicas while the newly 
defective replica is being repaired. 

Lifetime repair strategies depend on the ability to perform defect mapping 
and reconfiguration. Consequently, the perfect component model cannot support 
lifetime repair. Even if the component retains spare redundancy, redundancy 
and remapping mechanisms are not exposed to the user for in-field use. 

37 .5 CONFIGURATION UPSETS 

Many reconfigurable components, such as FPGAs, rely on volatile memory 
cells to hold their configuration, typically static memory cells (e.g., SRAM). 
Dynamic memory cells have long had to cope with upsets from ionizing particles 
(e.g., a-particles). As the feature sizes shrink, even static RAM cells can be upset 
by ionizing particles (e.g., Harel et al. [37]). In storage applications, we can typi­
cally cope with memory soft errors using error correcting codes (see the Memory 
subsection in Section 37.3.1) so that bit upsets can be detected and correcter! 
However, in reconfigurable components, we use the memory cells directly and 
continuously as configuration bits to define logic and interconnect. Upsets of 
these configuration memories will change, and potentially corrupt, the logic 
operation. 

Unfortunately, although memories can amortize the cost of a large error 
correction unit across a deep memory, FPGA configurations are shallow (i.e., 
Ninstr = 1); an error correction scheme similar to DRAM memories would end 
up being as large as or larger than the configuration memory it protects. Data 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 864



850 Chapter 37 • Defect and Fault Tolerance 

and projections from Quinn and Graham [38] suggest that ionizing radiation 
upsets can be a real concern for current, large FPGA-based systems and will be 
an ongoing concern even for modest systems as capacity continues to increase. 

Because these are transient upsets of configuration memories, they can be 
corrected simply by reloading the correct bitstream once we detect that the bit­
stream has been corrupted. Logic corruption can be detected using any of the 
strategies described earlier for lifetime defects (Section 37.4.1). Alternatively, we 
can check the bitstream directly for errors. That is, we can compute a check­
sum for the correct bitstream, read the bitstream back periodically, compute the 
checksum of the readback bitstream, and compare it to the intended bitstream 
checksum to detect when errors have occurred. When an error has occurred, the 
bitstream can be reloaded [38, 39]. Like interleaved testing, bitstream readback 
introduces a latency, which can be seconds long, between configuration corrup­
tion and correction. If the application can tolerate infrequent corruption, this 
may be acceptable. 

Asadi and Tahoori [ 40] detail a rollback scheme for tolerating configuration 
upsets. Pratt et al. [41] use TMR and partial TMR schemes to tolerate configu­
ration upsets; their partial TMR scheme uses less area than a full TMR scheme 
in cases where it is acceptable for the outputs to be erroneous for a number of 
cycles as long as the state is protected so that the results return to the correct 
values when the configuration is repaired. 

37 .6 OUTLOOK 

The regularity in reconfigurable arrays, coupled with the resource configurability 
they already possess, allow these architectures to tolerate defects. As features 
shrink and defect rates increase, all devices, including ASICs, are likely to 
need some level of regularity and configurability; this will be one factor that 
serves to narrow the density and cost gap between FPGAs and ASICs. Further, 
at increased defect rates, it will likely make sense to ship components with 
defects and defect maps. Since each component will be different, some form 
of component-specific mapping will be necessary. 

Transient upsets and lifetime defects further suggest that we should 
continuously monitor the computation to detect errors. To tolerate lifetime 
defects, repair will become part of the support system for components through­
out their operational lifetime. Increasing defect rates further drive us toward 
architectures with finer-grained substitutable units. FPGAs are already fairly fine 
grained, with each bit-processing operator potentially serving as a substitutable 
unit, but finer-grained architectures that substitute individual wires, Pterms, or 
LUTs may be necessary to exploit the most aggressive technologies. 

References 

[1] S. E. Schuster. Multiple word/bit line redundancy for semiconductor memories.
IEEE Journal of Solid State Circuits 13(5), 1978.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 865



37.6 Outlook 851 

[2] B. Keeth, R. J. Baker. DRAM Circuit Design: A Tutorial. Microelectronic Systems,
IEEE Press, 2001.

[3] J. Bernoulli. Ars Conjectandi. lmpensis thumisiorum, fratrum, Basel, Switzerland,
1713.

[4] A. W. Drake. Fundamentals of Applied Probability Theory, McGraw-Hill, 1988.
[5] A. DeHon. Law of large numbers system design. Nano, Quantum and Molecu­

lar Computing: Implications to High Level Design and Validation, S. K. Shukla,
R. I. Bahar (eds.), Kluwer Academic, 2004.

[6] W. K. Huang, F. J. Meyer, X.-T. Chen, F. Lombardi. Testing configurable LUT­
based FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
6(2), 1998.

[7] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider. Defect tolerance on
the TERAMAC custom computer. Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, 1997.

[8] M. Mishra, S. C. Goldstein. Defect tolerance at the end of the roadmap. Proceedings
of the International Test Conference (ITC), 2003.

[9] M. Mishra, S. C. Goldstein. Defect tolerance at the end of the roadmap. Nano,
Quantum and Molecular Computing: Implications to High Level Design and Valida­
tion, S. K. Shukla, R. I. Bahar (Eds.), Kluwer Academic, 2004.

[10] R. G. Cliff, R. Raman, S. T. Reddy. Programmable logic devices with spare circuits
for replacement of defects. U.S. Patent number 5,434,514, July 18, 1995.

[11] C. McClintock, A. L. Lee, R. G. Cliff. Redundancy circuitry for logic circuits. U.S.
Patent number 6,034,536, March 7, 2000.

[12] J. Lach, W. H. Mangione-Smith, M. Potkonjak. Low overhead fault-tolerant FPGA
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26(2),
1998.

[13] A. J. Yu, G. G. Lemieux. Defect-tolerant FPGA switch block and connection block
with fine-grain redundancy for yield enhancement. Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2005.

[14] A. J. Yu, G. G. Lemieux. FPGA defect tolerance: Impact of granularity. Proceedings
of the International Conference on Field-Programmable Technology, 2005.

[15] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. MIT Press, 1990.
[16] J. E. Hopcroft, R. M. Karp. An n2

·
5 algorithm for maximum matching in bipartite

graphs. SIAM Journal on Computing 2(4), 1973.
[17] H. Naeimi, A. DeHon. A greedy algorithm for tolerating defective crosspoints in

nanoPLA design. Proceedings of the International Conference on Field-Programmable
Technology, IEEE, 2004.

[18] A. DeHon, H. Naeimi. Seven strategies for tolerating highly defective fabrication.
IEEE Design and Test of Computers 22(4), 2005.

[19] Z. Hyder, J. Wawrzynek. Defect tolerance in multiple-FPGA systems. Proceedings of
the International Conference on Field-Programmable Logic and Applications, 2005.

[20] M. B. Tahoori. Application-dependent testing of FPGAs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 14(9), 2006.

[21] J. von Neumann. Probabilistic logic and the synthesis of reliable organisms from
unreliable components. Automata Studies C. Shannon, J. McCarthy (ed.), Princeton
University Press, 1956.

[22] N. Pippenger. Developments in "the synthesis of reliable organisms from unreliable
components." Proceedings of the Symposia of Pure Mathematics 50, 1990.

[23] C. Carmichael. Triple Module Redundancy Design Techniques for Virtex FPGAs.
San Jose, 2006 (XAPP 197-http:/lwww.xilinx.com/bvdocslappnotes/xappl97.pdf).

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 866



852 Chapter 37 ■ Defect and Fault Tolerance 

[24] N. Rollins, M. Wrrthlin, P. Graham, M. Caffrey. Evaluating TMR techniques in
the presence of single event upsets. Proceedings of the International Conference on
Military and Aerospace Programmable, 2003.

[25] G. C. Clark Jr., J. B. Cain. Error-Correction Coding for Digital Communications,
Plenum Press, 1981.

[26] R. J. McEliece. The Theory of Information and Coding, Cambridge University Press,
2002.

[27] S. Mitra, E. J. McCluskey. Which concurrent error detection scheme to choose?
Proceedings of the International Test Conference, 2000.

[28] J. Postel (ed.). Transmission Control Protoc9l-DARPA Internet Program Protocol
Specification, RFC 793, Information Sciences Institute, University of Southern
California, Marina del Rey, 1981.

[29] E. Takeda, N. Suzuki, T. Hagiwara. Device performance degradation to hot-carrier
injection at energies below the Si-SiO2 energy barrier. Proceedings of the Interna­
tional Electron Devices Meeting, 1983.

[30] S.-H. Renn, C. Raynaud, J.-L. Pelloie, F. Balestra. A thorough investigation of the
degradation induced by hot-carrier injection in deep submicron N- and P-channel
partially and fully depleted unibond and SIMOX MOSFETs. IEEE 1ransactions on
Electron Devices 45(10), 1998.

[31] D. K. Schroder, J. A. Babcock. Negative bias temperature instability: Road to cross
in deep submicron silicon semiconductor manufacturing, Journal of Applied Physics
94(1), 2003.

[32] J. Osborn, R. Lacoe, D. Mayer, G. Yabiku. Total dose hardness of three commer­
cial CMOS microelectronics foundries. Proceedings of the European Conference on
Radiation and Its Effects on Components and Systems, 1997.

[33] C. Brothers, R. Pugh, P. Duggan, J. Chavez, D. Schepis, D. Yee, S. Wu. Total-dose
and SEU characterization of 0.25 micron CMOS/SOI integrated circuit memory
technologies. IEEE Jransactions on Nuclear Science 44(6) 1997.

[34] J. Emmert, C. Stroud, B. Skaggs, M. Abramovici. Dynamic fault tolerance in
FPGAs via partial reconfiguration. Proceedings of the IEEE Symposium on Field­
Programmable Custom Computing Machines, 2000.

[35] S. K. Sinha, P. M. Kamarchik, S. C. Goldstein. Tunable fault tolerance for run­
time reconfigurable architectures. Proceedings of the IEEE Symposium on Field­
Programmable Custom Computing Machines, 2000.

[36] V. Lakamraju, R. Tessier. Tolerating operational faults in cluster-based FPGAs.
Proceedings of the International Symposium on Field-Programmable Gate A"ays,
2000.

[37] S. Harel, J. Maiz, M. Alavi, K. Mistry, S. Walsta, C. Dai Impact of CMOS process
scaling and SOI on the soft error rates of logic processes. Proceedings of Symposium
on VLSI Digest of Technology Papers, 2001.

[38] H. Quinn, P. Graham. Terrestrial-based radiation upsets: A cautionary tale. Proceed­
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2005.

[39] C. Carmichael, M. Caffrey, A. Salazar. Co"ecting Single-Event Upsets Through Virtex
Partial Configuration. Xilinx, Inc., San Jose, 2000 (XAPP 216-http://www.xilinx.com/
bvdocs/appnoteslxapp216.pdf).

[ 40] G.-H. Asadi, M. B. Tahoori. Soft error mitigation for SRAM-based FPGAs. Proceed­
ings of the VLSI Test Symposium, 2005.

[ 41] B. Pratt, M. Caffrey, P. Graham, K. Morgan, M. Wirthlin. Improving FPGA design
robustness with partial TMR. Proceedings of the IEEE International Reliability
Physics Symposium, 2006.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 867



RECONFIGURABLE COMPUTING 

AND NANOSCALE ARCHITECTURE 

Andre DeHon 

Department of Electrical and Systems Engineering 
University of Pennsylvania 

CHAPTER 38 

For roughly four decades integrated circuits have been patterned top down with 
optical lithography, and feature sizes, F, have shrunk in a predictable, geometric 
fashion. With feature sizes now far below optical wavelengths ( c.f. 400 nm vio­
let light and 65 nm feature sizes) and approaching atomic lattice spacings (c.f. 
65 nm feature sizes and 0.5 nm silicon lattice), it becomes more difficult and 
more expensive to pattern arbitrary features. 

At the same time, fundamental advances in synthetic chemistry allow the 
assembly of structures made of a small and precise number of atoms, provid­
ing an alternate, bottom-up approach to constructing nanometer-scale devices. 
Rather than relying on ever-finer precision and control of lithography, bottom­
up techniques exploit physical phenomena (e.g., molecular dimensions, film 
thicknesses composed of a precise number of atomic layers, nanoparticles con­
structed by self-limiting chemical processes) to directly define key feature sizes 
at the nanometer scale. Bottom-up fabrication gives us access to smaller feature 
sizes and promises more economical construction of atomic-scale devices and 
wires. 

Both bottom-up structure synthesis and extreme subwavelength top-down 
lithography can produce small feature sizes only for very regular topologies. 
In optical lithography, regular interference patterns can produce regular struc­
tures with finer resolution than arbitrary topologies [ 1]. Bottom-up syntheses 
are limited to regular structures amenable to physical self-assembly. 

Further, as noted in Chapter 37, construction at this scale, whether by top­
down or bottom-up fabrication, exhibit high defect rates. High defect rates also 
drive increasing demand for regularity to support resource substitution. 

At the same time, new technologies offer configurable switchpoints that can fit 
in the space of a nanoscale wire crossing (Section 38.2.3). The switches are much 
smaller than current SRAM configurable switches and can reduce the cost of 
reconfigurable architectures relative to ASICs. Smaller configurable switchpoints 
are particularly fortuitous because they make fine-grained configurability for 
defect tolerance viable. 

High demand for regularity and fine-grained defect tolerance coupled with 
less expensive configurations increase the importance of reconfigurable archi­
tectures. Reconfigurable architectures can accommodate the requirements of 

Copyright © 2008 by Andre DeHon. Published by Elsevier Inc. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 868



854 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

these atomic-scale technologies and exploit the density benefits they offer. 
Nonetheless, to fully accommodate and exploit these cost shifts, reconfigurable 
architectures continue to evolve. 

This chapter reviews proposals for nanoscale configurable architectures that 
address the demands and opportunities of atomic-scale, bottom-up fabrication. 
It focuses on the nanoPLA architecture (see Section 38.6 and DeHon [2]), which 
has been specifically designed to exploit nanowires (Section 38.2.1) as the key 
building block. Despite the concrete focus on nanowires, many of the design 
solutions employed by the nanoPLA are applicable to other atomic-scale tech­
nologies. The chapter also briefly reviews nanoscale architectures (Section 38.7), 
which offer alternative solutions to key challenges in atomic-scale design. 

38.1 TRENDS IN LITHOGRAPHIC SCALING 

In the conventional, top-down lithographic model, we define a minimum, litho­
graphically imageable feature size (i.e., half pitch, F) and build devices that are 
multiples of this imageable feature size. Within the limits of this feature size, 
VLSI layout can perfectly specify the size of features and their location rela­
tive to each other in three dimensions-both in the two-dimensional plane of 
each lithographic layer and with adequate registration between layers. This gives 
complete flexibility in the layout of circuit structures as long as we adhere to 
the minimum imageable and repeatable feature size rules. 

Two simplifying assumptions effectively made this possible: (1) Feature size 
was large compared to atoms, and (2) feature size was large compared to the 
wavelength of light used for imaging. With micron feature sizes, features were 
thousands of atoms wide and multiple optical wavelengths. As long as the two 
assumptions held, we did not need to worry about the discreteness of atoms nor 
the limits of optical lithography. 

Today, however, we have long since passed the point where optical wave­
lengths are large compared to feature sizes, and we are rapidly approaching 
the point where feature sizes are measured in single-digit atom widths. We have 
made the transition to optical lithography below visible light (e.g., 193 nm wave­
lengths) and subwavelength imaging. Phase shift masking exploits interference 
of multiple light sources with different phases in order to define feature sizes 
finer than the wavelength of the source. This has allowed continued feature 
size scaling but increases the complexity and, hence, the cost of lithographic 
imaging. 

Topology in the regions surrounding a pattern now impacts the fidelity of 
reproduction of the circuit or interconnect, creating the demand for optical 
proximity correction. As a result, we see an increase both in the complexity 
of lithographic mask generation and in the number of masks required. Region­
based topology effects also limit the structures we can build. Because of both 
limitations in patterning and limitations in the analysis of region-based pattern­
ing effects, even in "full-custom" designs, we are driven to compose functions 
from a small palette of regular structures. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 869



38.2 Bottom-up Technology 855 

Rock's Law is a well-known rule of thumb in the semiconductor industry that 
suggests that semiconductor processing equipment costs increase geometrically 
as feature sizes shrink geometrically. One version of Rock's Law estimates that 
the cost of a semiconductor fabrication plant doubles every four years. Fabrica­
tion plants for the 90 nm generation were reported to cost $2 to 3 billion. 

The increasing cost comes from several sources, including the following: 

■ Increasing demand for accuracy: Alignment of features must scale with
feature sizes.

■ Increasing demand for purity: Smaller features mean that even smaller
foreign particles (e.g., dust and debris) must be eliminated to prevent
defects.

■ Increasing demand for device yield: As noted in Chapter 37 (see Perfect
yield, Section 37.2.3), to keep component yield constant, the per-device
defect rate, Pd, must decrease as more devices are integrated onto
each component.

■ Increasing processing steps: More metal layers plus increasingly complex
masks for optical resolution enhancement (described before) demand
more equipment and processing.

It is already the case that few manufacturers can afford the capital investment 
required to develop and deploy the most advanced fabrication plants. Rising fab­
rication costs continue to raise the bar, forcing consolidation and centralization 
in integrated circuit manufacturing. 

Starting at around 90 nm feature sizes, the mask cost per component typically 
exceeds $1 million. This rising cost comes from the effects previously noted: 
more masks per component and greater complexity per mask. Coupled with ris­
ing component design and verification complexity, this raises the nonrecurring 
engineering (NRE) costs per chip design. 

The economics of rising NRE ultimately lead to fewer unique designs. That 
is, if we hope to keep NRE costs to a small fraction-for example 10 percent-of 
the potential revenue for a chip, the market must be at least 10 times the NRE 
cost. With total NRE costs typically requiring tens of millions of dollars for 
90 nm designs, each chip needs a revenue potential in the hundreds of millions 
of dollars to be viable. The bar continues to rise with NRE costs, decreasing the 
number of unique designs that the industry can support. This decrease in unique 
designs creates an increasing demand for differentiation after fabrication (i.e., 
reconfigurability). 

38.2 BOTTOM-UP TECHNOLOGY 

In contrast, bottom-up synthesis techniques give us a way to build devices and 
wires without relying on masks and lithography to define their atomic-scale 
features. They potentially provide an alternative path to device construction 
that may provide access to these atomic-scale features more economically than 
traditional lithography. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 870



856 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

This section briefly reviews the bottom-up technology building blocks exploited 
by the nanoPLA, including nanowires (Section 38.2.1), ordered assembly of 
nanowires (Section 38.2.2), and programmable crosspoints (Section 38.2.3). 
These technologies are sufficient for constructing and understanding the basic 
nanoPLA design. For a roundup of additional nanoscale wire and crosspoint tech­
nologies, see the appendix in DeHon's 2005 article [2]. 

38.2.1 Nanowires 

Chemists and material scientists are now regularly producing semiconducting 
and metallic wires that are nanometers in diameter and microns long using 
bottom-up synthesis techniques. To bootstrap the process and define the smallest 
dimensions, self-limiting chemical processes (e.g., Tan et al. [3]) can be used to 
produce nanoparticles of controlled diameter. From these nanoparticle seed cat­
alysts, we can grow nanowires with diameters down to 3nm [4]. The nanowire 
self-assembles into a crystalline lattice similar to planar silicon; however, growth 
is only enabled in the vicinity of the nanoparticle's catalyst. As a result, catalyst 
size defines the diameter of the grown nanowires [S]. Nanowires can be grown 
to millimeters in length [6], although it is more typical to work with nanowires 
tens of microns long [7]. 

Bottom-up synthesis techniques also allow the definition of atomic-scale fea­
tures within a single nanowire. Using timed growth, features such as compo­
sition of different materials and different doping levels can be grown along 
the axis of the nanowire [8-10]. This effectively allows the placement of device 
features into nanowires, such as a field effect gateable region in the middle of 
an otherwise ungateable wire (see Figure 38.1). Further, radial shells of differ­
ent materials can be grown around nanowires with controlled thickness using 
timed growth [11, 12] or atomic-layer deposition [13, 14] (see Figure 38.2). These 
shells can be used to force the spacing between device and wire features, to act 
as dielectrics for field effect gating, or to build devices integrating heterogeneous 
materials with atomic-scale dimensions. 

After a nanowire has been grown, it can be converted into a metal-silicon 
compound with lower resistance. For example, by coating select regions of 

Conduct only 
with field < 1 V 

Conduct any field < 5 V 

FIGURE 38.1 ■ An axial doping profile. By varying doping along the axis of the nanowire, 
selectively gateable regions can be integrated into the nanowire. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 871



FIGURE 38.2 ■ A radial doping profile. 

38.2 Bottom-up Technology 857 

FIGURE 38.3 ■ The Langmuir-Blodgett alignment of nanowires. 

the nanowire with nickle and annealing, we can form a nickle-silicide (NiSi) 
nanowire [15]. The NiSi resistivity is much lower than the resistivity of heav­
ily doped bulk silicon. Since nanowires have a very small cross-sectional area, 
this conversion is very important to keep the resistance, and hence the delay, 
of nanowires low. Further, this conversion is particularly important in reducing 
contact resistance between nanowires and lithographic-scale power supplies. 

38.2.2 Nanowire Assembly 

Langmuir-Blodgett (LB) flow techniques can be used to align a set of nanowires 
into a single orientation, close-pack them, and transfer them onto a surface 
[16, 17] (see Figure 38.3). The resulting wires are all parallel, but their ends 
may not be aligned. By using wires with an oxide sheath around the conducting 
core, the wires can be packed tightly without shorting together. The oxide sheath 
defines the spacing between conductors and can, optionally, be etched away after 
assembly. The LB step can be rotated and repeated so that we get multiple layers 
of nanowires [16, 18], such as crossed nanowires for building a wired-OR plane 
(Section 38.4.1). 

38.2.3 Crosspoints 

Many technologies have been demonstrated for nonvolatile, switched crosspoints. 
Common features include the following: 

■ Resistance that changes significantly between on and off states
■ Ability to be made rectifying (i.e., to act as diodes)
■ Ability to tum the device on or off by applying a voltage differential

across the junction
■ Ability to be placed within the area of a crossed nanowire junction

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 872



858 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

FIGURE 38.4 ■ Switchable molecules sandwiched between nanoscale wires. 

Chen et al. [19, 20] demonstrate a nanoscale Ti/Pt-[2Jrotaxane-Ti/Pt sandwich 
(see Figure 38.4), which exhibits hysteresis and nonvolatile state storage show­
ing an order of magnitude resistance difference between on and off states. The 
state of these devices can be switched at ±2 V and read at ±0.2 V. The basic 
hysteretic molecular memory effect is not unique to the [2Jrotaxane, and the 
junction resistance is continuously tunable [21]. The exact nature of the phys­
ical phenomena involved is the subject of active investigation. LB techniques 
also can be used to place the switchable molecules between crossed nanowires 
(e.g., Collier et al. [22], Brown et al. [23]). 

In conventional VLSI, the area of an SRAM-based programmable crosspoint 
switch is much larger than the area of a wire crossing. A typical CMOS switch 
might be 600F2 [24], compared to a 3F x 3F bottom-level metal wire cross­
ing, making the crosspoint more than 60 times the area of the wire crossing. 
Consequently, the nanoscale crosspoints offer an additional device size reduc­
tion beyond that implied by the smaller nanowire feature sizes. This particular 
device size benefit reduces the overhead for configurability associated with pro­
grammable architectures (e.g., FPGAs, PLAs) in this technology, compared to 
conventional CMOS. 

38.3 CHALLENGES 

Although the techniques reviewed in the previous section provide the ability to 
create very small feature sizes using the basic physical properties of materials to 
define dimensions, they also bring with them a number of challenges that any 
nanoscale architecture must address, including the following: 

■ Required regularity in assembly and architecture: These techniques do not
allow the construction of arbitrary topologies; the assembly techniques
limit us to regular arrays and crossbars of nanowires.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 873



38.4 Nanowire Circuits 859 

■ Lack of correlation in features: The correlation between features is
limited. It is possible to have correlated features within a nanowire, but
only in a single nanowire; we cannot control which nanowire is placed
next to which other nanowire or how they are aligned.

■ Differentiation: If all the nanowires in a regular crossbar assembly
behaved identically (e.g., were gated by the same inputs or were
diode-connected to the same inputs), we would not get a benefit out
of the nanoscale pitch. It is necessary to differentiate the function
performed by the individual nanowires in order to exploit the benefits
of their nanoscale pitch.

■ Signal restoration: The diode crosspoints described in the previous
section are typically nonrestoring; consequently, it is necessary to pro­
vide signal restoration for diode logic stages.

■ Defect· tolerance: We expect a high rate of defects in nanowires and
crosspoints. Nanowires may break or make poor contacts. Crosspoints
may have poor contact to the nanowires or contain too few molecules
to be switched into a low-resistance state.

38.4 NANOWIRE CIRCUITS 

It is possible to build a number of key circuits from the nanoscale building 
blocks introduced in the previous section, including a diode-based wired-OR 
logic array (Section 38.4.1) and a restoring nanoscale inverter (Section 38.4.2). 

38.4.1 Wired-OR Diode Logic Array 
The primary configurable structure we can build is a set of tight-pitched, crossed 
nanowires. With a programmable diode crosspoint at each nanowire inter­
section, this crossed nanowire array can serve as a programmable OR-plane. 
Assuming the diodes point from columns to rows (see Figure 38.5), each row 
output nanowire serves as a wired-OR for all of the inputs programmed into 
the low-resistance state. In the figure, programmed on crosspoints are shown 
in black; off crosspoints are shown in gray. Bold lines represent a nanowire 
pulled high, while gray lines remain low. Output nanowires are shown bold 
starting at the diode that pulls them high to illustrate current flow; the entire 
output nanowire would be pulled high in actual operation. Separate circuitry, 
not shown, is responsible for pulling wires low or precharging them low so that 
an output remains low when no inputs can pull it high. 

Consider a single-row nanowire, and assume for the moment that there is 
a way to pull a nondriven nanowire down to ground. If any of the column 
nanowires that cross this row nanowire are connected with low-resistance cross­
point junctions and are driven to a high voltage level, the current into the col­
umn nanowire will be able to flow into the row nanowire and charge it up to a 
higher voltage value (see 01, 03, 04, and 05 in Figure 38.5). However, if none of 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 874



860 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

A B C D E F 

1 0 1 0 1 0 

1 

01 = A+C+E 

0 
02 = B+E 

1 

03 = D+E+F 

1 

04 =A+E 

1 

05 = C+D 

0 
06 = B+F 

FIGURE 38.5 ■ The wired-OR plane operation. 

the connected column nanowires is high, the row nanowire will remain low (see 
02 and 06 in the figure). Consequently, the row nanowire effectively computes 
the OR of its programmed inputs. 

The output nanowires do pull their current directly off the inputs and may not 
be driven as high as the input voltage. Consequently, these outputs will require 
restoration (Section 38.4.2). 

A special use of the wired-OR programmable array is for interconnect. That 
is, if we restrict ourselves to connecting a single row wire to each column wire, 
the crosspoint array can serve as a crossbar switch. This allows any input 
(column) to be routed to any output (row) (see Figure 38.6). This structure 
is useful for postfabrication programmable routing to connect logic functions 
and to avoid defective resources. In the figure, programmed on crosspoints are 
shown in black; off crosspoints are shown in gray. This means that the crossbar 
shown in the figure is programmed to connect A-+T, B-+Q, C-+V, D-+S, E-+U, 
and F-+R. 

38.4.2 Restoration 

As noted in Section 38.4.1, the programmable, wired-OR logic is passive and 
nonrestoring, drawing current from the input. Further, OR logic is not universal. 
To build a good, composable logic family, we need to be able to isolate inputs 
from output loads, restore signal strength and current drive, and invert signals. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 875



A B C D 

38.4 Nanowire Circuits 861 

E F 

FIGURE 38.6 ■ An example crossbar routing configuration. 

Fortunately, nanowires can be field effect controlled. This provides the poten­
tial to build gates that behave like field effect transistors (FETs) for restoration.However, to realize them, we must find ways to create the appropriate gate topol­
ogy within regular assembly constraints (Section 38.5). 

If two nanowires are separated by an insulator, perhaps using an oxide core
shell, we can use the field from one nanowire to control the other nanowire.Figure 38.7 shows an inverter built using this basic idea. The horizontal
nanowire serves as the input and the vertical nanowire as the output. This gives
a voltage transfer equation of

Vout = Vhigh ( Rpd )Rpd + Rfet (Input) + Rpu (38.1)

For the sake of illustration, the vertical nanowire has a lightly doped P-typedepletion-mode region at the input crossing that forms a FET controlled by theinput voltage (Rfet (Input)). Consequently, a low voltage on the input nanowireallows conduction through the vertical nanowire (Rfet = Ron-fet is small), and a
high input depletes the carriers from the vertical nanowire and prevents con­duction (Rfet = Roff-fet is large). As a result, a low input allows the nanowire to
conduct and pull the output region of the vertical nanowire up to a high voltage.A high input prevents conduction and the output region remains low. A secondcrossed region on the nanowire is used for the pulldown (Rpd). This region canbe used as a gate for predischarging the output so that the inverter is pulled low

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 876



862 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

Ohmic contact to 
voltage source 

OXide separation 

Input 

Lightly doped 
field effect 

controllable 
region 

FIGURE 38.7 ■ A nanowire inverter. 

Precharge or ____,....j 
- isolation control - �

- Input --- --q Rre,

Inverted 
(restored) 

1------ output -----1 

Ground 

Voltage control 
for static load ____,....j 

- or precharge - �
control 

Ground 

before the input is applied, then left high to disconnect the pulldown voltage 
during evaluation. Alternatively, it can be used as a static load for PMOS-like 
ratioed logic. By swapping the location of the high- and low-power supplies, 
this same arrangement can be used to buffer rather than invert the input. 

Note that the gate only loads the input capacitively. Consequently, the output 
current is isolated from the input current at this inverter or buffer. Further, 
nanowire field effect gating has sufficient nonlinearity so that this gate provides 
gain to restore logic signal levels [25]. 

38.5 STATISTICAL ASSEMBLY 

One challenge posed by regular structures, such as tight-pitch nanowire cross­
bars, is differentiation. If all the wires are the same and are fabricated at 
a pitch smaller than we can build arbitrary topologies lithographically, how 
can we selectively address a single nanowire? If we had enough control to 
produce arbitrary patterns at the nanometer scale, we could build a decoder 
(see Figure 38.8) to provide pitch-matching between this scale and the scale at 
which we could define arbitrary topologies. 

The trick is to build the decoder statistically. That is, differentiate the 
nanowires by giving each one an address, randomly select the nanowires that 
go into each array, and carefully engineer the statistics to guarantee a high 

1 r 
j l 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 877



Cl) 

� 
'3: 
Cl> 

co 
0 
Cl) 

38.5 Statistical Assembly 863 

Ohmic contact to 
voltage source 

Nanoscale wires 

FIGURE 38.8 ■ A decoder for addressing individual nanowires assembled at nanoscale pitch. 

probability that there will be a unique address associated with each nanowire 
in each nanowire array. We can use axial doping to integrate the address into 
each nanowire [26]. 

If we pick the address space sparsely enough, Law of Large Numbers statistics 
can guarantee unique addressability of the nanowires. For example, if we select 
10 nanowires out of a large pool with 106 different nanowire types, we get a 
unique set of nanowires more than 99.99 percent of the time. In general, we 
can guarantee more than 99 percent probability of uniqueness of N nanowires 
using only 100N2 addresses [26]. By allowing a few duplications, the address 
space can be much smaller [27]. 

Statistical selection of coded nanowires can also be used to assemble 
nanoscale wires for restoration [2]. As shown in Figure 38.9(a), if coded 
nanowires can be perfectly placed in an array, we can build the restoration 
circuit shown in Section 38.4.2 (Figure 38.7) and arrange them to restore 
the outputs of a wired-OR array. However, the bottom-up techniques that 
can assemble these tight-pitch feature sizes cannot order or place individ­
ual nanowires and cannot provide correlation between nanowires. As shown 
in Figure 38.9(b), statistical alignment and placement of the restoration 
nanowires can be used to construct the restoration array. Here, not every 
input will be restored, but the Law of Large Numbers guarantees that we can 
restore a reliably predictable fraction of the inputs. For further details, see 
DeHon [2, 27]. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 878



864 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

Inputs 

Inverted 
restored 
outputs 

Ground 
(a) 

FIGURE 38.9 ■ A restoration array: (a) ideal and (b) stochastic. 

38.6 NANOPLA ARCHITECTURE 

Ground 
{b) 

With these building blocks we can assemble a complete reconfigurable 
architecture. This section starts by describing the PLA-based logic block 
(Section 38.6.1), then shows how PLAs are connected together into an array of 
interconnected logic blocks (Section 38.6.2). It also notes that nanoscale mem­
ories can be integrated with this array (Section 38.6.3), reviews the defect toler­
ance approach for this architecture (Section 38.6.4), describes how designs are 
mapped to nanoPLA designs (Section 38.6.5), and highlights the density benefits 
offered by the technology (Section 38.6.6). 

38.6.1 Basic Logic Block 

The nanoPLA architecture combines the wired-OR plane, the stochastically 
assembled restoration array, and the stochastic address decoder to build a 
simple, regular PLA array (see Figure 38.10). The stochastic decoder described in 
Section 38.5 allows individual nanowires to be addressed from the lithographic 
scale for testing and programming (see Figures 38.11 and 38.12). The output 
of the programmable, wired-OR plane is restored via a restoration plane using 
field effect gating of the crossed nanowire set as described in Section 38.5 and 
shown in Figure 38.9. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 879



cc, 
a, 
U1 

v,ow2 

v,ow1 

Stochastic 
address 
decoder 

Programmable 
diode 

crosspoint 

[for configuring array] 

AO A1 A2. A3 

Ohmic contacts 
to high- and 

low-supply voltages 

FIGURE 38.10 ■ A simple nanoPLA block. 

Restoration columns 

Stochastic 
inversion 

array 

' . -
Programmable 

diode crosspoints 
(OR-planest 

- .. 1'. 

Stochastic 
buffer 
array 

/prechargeA 

J_: 

Restoration columns 

Precharge or static 
load devices 

• V 
prechargeB common 

-

-OR-term 
(N-type NWs) 

prechargeA 

Restoration 
wire 

(P-type NWs) 

Ohmic 
contact 
to power 
supply 

Lightly doped 
control region 

/ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 880



866 Chapter 38 • Reconfigurable Computing and Nanoscale Architecture 

FIGURE 38.11 ■ Addressing a single nanowire. 

FIGURE 38.12 ■ Programming a nanowire-nanowire crosspoint. 

As shown in Figure 38.11, an address is applied on the lithographic-scale 
address lines (AO ... A3). The applied address (110 0) allows conduction through 
only a single nanowire. By monitoring the voltage at the common lithographic 
node at the far end of the nanowire (Vcommon), it is possible to determine whether 
the address is present and whether the wire is functional (e.g., not broken). By 
monitoring the timing of the signal on Vcommon , we may be able to determine 
the resistance of the nanowire. 

As shown in Figure 38.12, addresses are applied to the lithographic-scale 
address lines of both the top and bottom planes to select individual nanowires 
in each plane. We use the stochastic restoration columns to tum the comer 
between the top plane and the restoration inputs to the bottom plane. Note that 
since column 3 is an inverting column, we arrange for the single, selected signal 
on the top plane to be a low value. Since the stochastic assembly resulted in two 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 881



38.6 nanoPLA Architecture 867 

restoration wires for this input, both nanowire inputs are activated. As a result, 
we place the designated voltage. across the two mQ.rked crosspoints to turn on 
the crosspoint junctions between the restored inputs and the selected nanowire 
in the bottom plane. 

The restoration planes can provide inversion such that the pair of planes serve 
as a programmable NOR. The two back-to-back NOR planes can be viewed as a 
traditional AND-OR PLA with suitable application of DeMorgan's Law. A second 
set of restoration wires provides buffered, noninverted inputs to the next wired­
OR plane; in this manner, each plane gets the true and complement version. of 
each logical signal just as is normally provided at the inputs to a VLSI PLA. 
Microscale field effect gates (e.g., /evalA and /evalB) control when nanowire 
logic can evaluate, allowing the use of a familiar 2-phase clocking discipline. 
As such, the PLA cycle shown in Figure 38.10 can directly implement an FSM. 
Programmable crosspoints can be used to personalize the array, avoid defective 
wires and crosspoints (Section 38.6.4), and implement a deterministic function 
despite fabi:ication defects and stochastic assembly. 

38.6.2 Interconnect Architecture 

To construct larger components using the previously described structures, we 
can build an array of nanoPLA blocks, where each block drives outputs that 
cross the input (wired) regions of many other blocks (Figure 38.13) [2, 28]. 
This allows the construction of modest-size PLAs (e.g., 100 Pterms), which are 
efficient for logic mapping and keep the nanowire runs short (e.g., lOµm) in 
order to increase yield and avoid the high resistance of long nanowires. The 
nanoPLA blocks provide logic units, signal switching, and signal buffering for 
long wire runs. With an appropriate overlap topology, such nanoPLAs can sup­
port Manhattan (orthogonal X-Y) routing similar to conventional, island-style 
FPGA architectures (Chapter 1). 

By stacking additional layers of nanowires, the structure can be extended 
vertically into the third dimension [29]. Programmable and gateable junctions 
between adjacent nanowire layers allow routing up and down the nanowire 
stack. This provides a path to continue scaling logic density when nanowire 
diameters can shrink no further. 

The resulting nanoPLA structure is simple and very regular. Its high-density 
features are built entirely from tight-pitched nanowire arrays. All the nanowire 
array features are defined using bottom-up techniques. The overlap topology 
between nanowires is carefu.lly arranged so that the output of a function (e.g., 
wired-OR, restoration, routing) is a segment of a nanowire that then crosses the 
active or input portion of another function. Regions (e.g., wired-OR, restora­
tion) are differentiated at a lithographic scale. Small-scale differentiation fea­
tures are built into the nanowires and statistically populated (e.g., addressing, 
restoration). 

In the nanoPLA, the wired-OR planes combine the roles of switchbox, connec­
tion box, and logic block into one unified logic and switching plane. The wired­
OR plane naturally provides the logic block in a nanoPLA block. It also serves 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 882



00 
0, 
00 

Mlcroscale Microscale 
Y route channel output input 

array array 

FIGURE 38.13 ■ nanoPLA block tiling with edge 1/0 to lithographic scale. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 883



38.6 nanoPLA Architecture 869 

to select inputs from the routing channel that participate in the logic. Signals 
that must be rebuffered or switched through a block are also routed through the 
same wired-OR plane. Since the configurable switchpoints fit within the space 
of a nanowire crossing, the wired-OR plane (hence the interconnect switching) 
can be fully populated unlike traditional FPGA switch blocks that have a very 
limited population to reduce their area requirements. 

38.6.3 Memories 

The same basic crosspoints and nanowire crossbar used for the wired-OR 
plane (Section 38.4.1) can also serve as the core of a memory bank. An 
address decoder similar to the one used for programming the wired-OR array 
(see Section 38.5 and Figure 38.8) supports read/write operations on the 
memory core [26, 30]. Unique, random addresses can be used to configure 
deterministic memory addresses, avoiding defective memory rows and columns 
[31]. A full-component architecture would interleave these memory blocks with 
the nanoPLA logic blocks similar to the way memory blocks are embedded in 
conventional FPGAs (Chapter 1). 

38.6.4 Defect Tolerance 

Nanowires in each wired-OR plane and interconnect channel are locally substi­
tutable (see the Local sparing subsection in Section 37.2.4). The full popu­
lation of the wired-OR crossbar planes guarantees this is true even for the 
interconnect channels. We provision spare nanowires based on their defect 
rate, as suggested in the Yield with sparing subsection of Section 37.2.3. 
For each array, we test for functional wires as illustrated in Section 38.6.1. 
Logical Pterms are assigned to nanowires using the matching approach 
described in the Fine-grained Pterm matching subsection of Section 37.2.5. 
For a detailed description of nanoPLA defect tolerance, see DeHon and 
Naeimi [32]. 

38.6.5 Design Mapping 
Logic-level designs can be mapped to the nanoPLA. The logic and physi­
cal mapping for the nanoPLA uses similar techniques to those introduced 
in Part III. Starting from a logic netlist, technology mapping can be per­
formed using PLAmap (see Section 13.3.4) to generate two-level clusters for 
each nanoPLA block, which can then be placed using an annealing-based 
placer (Chapter 14). Routing is performed with a PathFinder-based router 
(Chapter 17). Because of the full population of the switchboxes, the nanoPLA 
router need only perform global routing. Since nanoPLA blocks provide 
both logic and routing, the router must also account for the logic assigned 
to each nanoPLA block when determining congestion. As noted before, at 
design loadtime, logical Pterms are assigned to specific nanowires using a 
greedy matching approach (see the Fine-grained Pterm matching subsection of 
Section 37.2.5). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 884



870 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

38.6.6 Density Benefits 

Despite statistical assembly, lithographic overheads for nanowire addressing, 
and high defect rates, small feature sizes, and compact crosspoints can offer 
a significant density advantage compared to lithographic FPGAs. When map­
ping the Toronto 20 benchmark suite [33] to 10-nm full-pitch nanowires (e.g., 
5-nm-diameter nanowires with 5-nm spacing between nanowires), we typically
see two orders of magnitude greater density than with defect-free 22-nm litho­
graphic FPGAs [2]. As noted earlier, areal density can be further increased by
using additional layers of nanowires [29].

38.7 NANOSCALE DESIGN ALTERNATIVES 

Several architectures have been proposed for nanoscale logic. A large number 
are also based on regular crossbar arrays and look similar to the nanoPLA at a 
gross level (see Table 38.1). Like the nanoPLA, all these schemes employ fine­
grained configurability to tolerate defects. Within these architectures there are 
different ways to address the key challenges (Section 38.3). These architectures 
enrich the palette of available component solutions, increasing the likelihood of 
assembling a complementary set of technology and design elements to practi­
cally realize nanoscale configurable logic. 

38. 7. 1 Imprint Lithography

In the concrete technology described in Section 38.2, seeded nanowire growth 
was used to obtain small feature sizes and LB flow to assemble them into parallel 
arrays. Another emerging technique for producing regular, nanoscale structures 
(e.g., a set of parallel, tight-pitched wires) is imprint lithography. The masks for 
imprint lithography can be generated using bottom-up techniques. 

TABLE 38.1 ■ A comparison of nano-electronic programmable logic designs 

Component 
element 

Crosspoint 
technology 

Nanowire 
technology 

Logic 
implementation 

CMOS+--+Nanowire 
interface 

Restoration 

References 

HP/UCLA 
crossbar 

architecture 

Programmable 
diode 

Nano-imprint 
lithography 

Narioscale 
wired-OR 

Random 
particles 

CMOS 

[34, 35, 36] 

CMU 
nanoFabric 

Programmable 
diode 

Nanopore 
templates 

Nanoscale 
wired-OR 

RTD latch 

[37, 38] 

Hewlett-
Stony Brook Packard 

nanoPLA 'CMOL FPNI 

Programmable Programmable Programmable 
diode diode diode 

Catalyst Nano-imprint Nano-imprint 
nanowires lithography lithography 

Nanoscale Nanoscale Lithoscale 
wired-OR wired-OR (N)AND2 

Coded Crossbar Crossbar 
nanowires tilt tilt 

nanowire FET CMOS CMOS 

[28, 39] [40] [41] 

·, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 885



38. 7 Nanoscale Design Alternatives 871 

In one scheme, timed vertical growth or atomic-layer deposition on planar 
semiconductors is used to define nanometer-scale layers of differentially etchable 
materials. Cut orthogonally, the vertical cross-section can be etched to produce 
a comblik.e structure where the teeth, as well as the spacing between them, are 
single-digit nanometers wide (e.g., 8 nm). The resulting structure can serve as a 
pattern for nanoscale imprint lithography [ 42, 43] to produce a set of tight-pitched, 
parallel lines. That is, the long parallel lines resulting from the differential etch can 
be stamped into a resist mask [ 43], which is then etched to produce a pattern in a 
polymer or coated with metal to directly transfer metallic lines to a substrate [ 42]. 
These techniques can produce regularnanostructures butcannot produce arbitrary 
topologies. 

38. 7 .2 Interfacing

When nanowires are fabricated together using imprint lithography, it is not pos­
sible to uniquely construct and code nanowires as exploited for addressing in 
the nanoPLA (Section 38.5). Williams and Kuekes [36] propose the first random­
ized decoder scheme for differentiating nanoscale wires and interfacing between 
lithographic and nanoscale feature sizes. They use a physical process to ran­
domly deposit metal particles between the lithographic-scale address lines and 
the nanoscale wires. A nanowire is controllable by an address wire only if it 
has a metal particle bridging it to the address line. Unlike the nanowire-coding 
scheme where addresses are selected from a carefully chosen address space and 
grown into each nanowire (Section 38.5), in this scheme the address on each 
nanowire is randomly generated. As a result, this scheme requires 2 to 2.5 times 
as many address wires as the statistically assembled nanowire-coding scheme. 

Alternately, Strukov and Likharev [ 40, 44] observe that it should be possible 
to directly connect each long crossbar nanowire by a nanovia to lithographic­
scale circuitry that exists below the nanoscale circuits. The nanovia is a semi­
conductor pin spaced at lithographic distances and grown with a taper to a 
nanoscale tip for interfacing with individual nanowires. An array of these pins 
(e.g., Jensen [45]) can provide nanovia interfaces. 

The key idea is to pitch-match the lithographically spaced nanovia pins with 
the nanoscale pitch nanowires and guarantee that there is space in the CMOS 
below the nanoscale circuitry for the CMOS restoration and programming 
circuits. Note of the following: 

■ Nanoscale wires can be angled relative to the CMOS circuitry to match
the pitch of the CMOS nanovias to the nanoscale wires. Figure 38.14
shows this tilt interfacing to a single nanowire array layer. Nanovias that
connect to the CMOS are arranged in a square array with side 2PFcMos,
where FcMos is the half-pitch of the CMOS subsystem, and Pis a
dimensionless factor larger than 1 that depends on CMOS cell
complexity. The nanowire crossbar is turned by an angle a. = arcsin
(Fnano/ PFcMos) relative to the CMOS pin array, where Fnano is the
nanowire half-pitch.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 886



872 Chapter 38 ■ Reconfigurable Computing and Nanoscale Architecture 

---:: 2Fnano 
-
-
-

-· a 

_Iw=

FIGURE 38.14 ■ Nanoscale and CMOS pitch matching via tilt. 

■ If sufficiently long nanowires are used, the area per nanowire can be as
large as each CMOS cell (e.g., restoration buffer and programming
transistors). For example, if we use 10 µm nanowires at 10 nm pitch,
each nanowire occupies 105 nm2 ; each such nanowire could have its
own 300 nm x 300 nm CMOS cell (P=3 for FcMos = 45 nm) and keep the
CMOS area contained below the nanowire area.

For detailed development of this interface scheme, see Likharev and Strukov 
[44]. Hewlett-Packard employs a variant of the tilt scheme for their field­
programmable nanowire interconnect (FPNI) architecture [ 41]. 

38. 7 .3 Restoration

Enabled by the array-tilt scheme that allows each nanowire to be directly 
connected to CMOS circuitry, the hybrid semiconductor-molecular electronics 
(CMOL) and FPNI nanoscale array designs use lithographic-scale CMOS buffers 
to perform signal restoration and inversion. CMOS buffers with large feature 
sizes will be larger than nanowire FETs and have less variation. The FPNI 
scheme uses nanoscale configurability only to provide programmable intercon­
nect, using a nonconfigurable 2-input CMOS NANO/AND gate for logic. 

Alternatively, it may be possible to build latches that provide gain and isola­
tion from 2-terminal molecular devices [38]. Specifically, molecules that serve 
as resonant-tunneling diodes (RTDs) or negative differential resistors have been 
synthesized [46, 47]. These devices are characterized by a region of negative 
resistance in their IV-curve. The CMU nanoFabric design shows how to build 
and integrate latches based on RTD devices. The latches draw their power from 
the clock and provide restoration and isolation. 

38.8 SUMMARY 

Between highly regular structures and high defect rates, atomic-scale design 
appears to demand postfabrication configurability. This chapter shows how 

_J 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 887



38.8 Summary 873 

configurable architectures can accommodate the extreme regularity required. 
It further shows that configurable architectures can tolerate extremely 
limited control during the fabrication process by exploiting large-scale assembly 
statistics. Consequently, we obtain a path to denser logic using building blocks 
roughly 10 atoms wide, as well as a path to continued integration in the third 
dimension. 

Spatially configurable design styles become even more important when all 
substrates are configurable at their base level. We can always configure sequen­
tial processors on top of these nanoscale substrates when tasks are irregular and 
low throughput (see Chapter 36 and the Processor subsection of Section 5.2.2). 
However, when tasks can be factored into regular subtasks, direct spatial imple­
mentation on the configurable substrate will be more efficient, reducing both 
runtime and energy consumption. 

References 

[1] S. R. J. Brueck. There are no fundamental limits to optical lithography. Interna­
tional Trends in Applied Optics, SPIE Press, 2002.

[2] A. DeHon. Nanowire-based programmable architectures. ACM Journal on Emerging
Technologies in Computing Systems 1(2), 2005.

[3] Y. Tan, X. Dai, Y. Li, D. Zhu. Preparation of gold, platinum, palladium and silver
nanoparticles by the reduction of their salts with a weak reductant-potassium
bitartrate. Journal of Material Chemistry 13, 2003.

[4] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, C. M. Lieber. Controlled growth
and structures of molecular-scale silicon nanowires. Nanoletters 4(3), 2004.

[5] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber. Diameter-controlled
synthesis of single crystal silicon nanowires. Applied Physics Letters 78(15), 2001.

[6] B. Zheng, Y. Wu, P. Yang, J. Liu. Synthesis of ultra-long and highly-oriented silicon
oxide nanowires from alloy liquid. Advanced Materials 14, 2002.

[7] M. S. Gudiksen, J. Wang, C. M. Lieber. Synthetic control of the diameter and length
of semiconductor nanowires. Journal of Physical Chemistry B 105, 2001.

[8] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of
nanowire superlattice structures for nanoscale photonics and electronics. Nature
415, 2002.

[9] Y. Wu, R. Fan, P. Yang. Block-by-block growth of single-crystalline Si/SiGe super­
lattice nanowires. Nanoletters 2(2), 2002.

[10] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson,
K. Depper, L. R. Wallenberg, L. Samuelson. One-dimensional steeplechase for elec­
trons realized. Nanoletters 2(2), 2002.

[11] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber. Epitaxial core-shell and
core-multi-shell nanowire heterostructures. Nature 420, 2002.

[12] M. Law, J. Goldberger, P. Yang., Semiconductor nanowires and nanotubes. Annual
Review of Material Science 34, 2004.

[13] M. Ritala. Advanced ALE processes of amorphous and polycrystalline films. Applied
Surface Science 112, 1997.

[14] M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara, J. Keinonen.
Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources.
Science 288, 2000.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 888



874 Chapter 38 • Reconfigurable Computing and Nanoscale Architecture 

[15] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber. Single-crystal metallic nanowires
and metal/semiconductor nanowire heterostructures. Nature 430, 2004.

[16] Y. Huang, X. Duan, Q. Wei, C. M. Lieber. Directed assembly of one-dimensional
nanostructures into functional networks. Science 291, 2001.

[17] D. Whang, S. Jin, C. M. Lieber. Nanolithography using hierarchically assembled
nanowire masks. Nanoletters 3(7), 2003.

[18] D. Whang, S. Jin, Y. Wu, C. M. Lieber. Large-scale hierarchical organization of
nanowire arrays for integrated nanosystems. Nanoletters 3(9), 2003.

[19] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. 0. Jeppesen,
K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson. Nanoscale molecular­
switch devices fabricated by imprint lithography. Applied Physics Le,tters 82(10),
2003.

[20] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. 0. Jeppesen,
K. A. Nielsen, J. F. Stoddart, R. S. Williams. Nanoscale molecular-switch crossbar
circuits. Nanotechnology 14, 2003.

[21] D. R. Stewart, D. A. A. Ohlberg, P.A. Beck, Y. Chen, R. S. Williams, J. 0. Jeppesen,
K. A. Nielsen, J. F. Stoddart. Molecule-independent electrical switching in Pt/organic
monolayer/Ti devices. Nanoletters 4(1), 2004.

[22] C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo,
J. Stoddart, J. Heath. A [2]catenane-based solid state reconfigurable switch. Science
289, 2000.

[23] C. L. Brown, U. Jonas, J. A. Preece, H. Ringsdorf, M. Seitz, J. F. Stoddart. Intro­
duction of [2]catenanes into Langmuir films and Langmuir-Blodgett multilayers:
A possible strategy for molecular information storage materials. Langmuir 16(4),
2000.

[24] A. DeHon. Reconfigurable Architectures for General-Purpose Computing. AI
Technical Report 1586, MIT Artificial Intelligence Laboratory, Cambridge, MA,
1996.

[25] A. DeHon. Array-based architecture for FET-based, nanoscale electronics. IEEE
Transactions on Nanotechnology 2(1), 2003.

[26] A. DeHon, P. Lincoln, J. Savage. Stochastic assembly of sublithographic nanoscale
interfaces. IEEE Transactions on Nanotechnology 2(3), 2003.

[27] A. DeHon. Law of Large Numbers system design. In Nano, Quantum and Molecular
Computing: Implications to High Le,vel Design and Validation, Kluwer Academic,
2004.

[28] A. DeHon. Design of programmable interconnect for sublithographic pro­
grammable logic arrays. Proceedings of the International Symposium on Field­
Programmable Gate Arrays, 2005.

[29] B. Gojman, R. Rubin, C. Pilotto, T. Tanamoto, A. DeHon. 3D nanowire-based pro­
grammable logic. Proceedings of the International Conference on Nano-Networks
2006.

[30] A. DeHon, S. C. Goldstein, P. J. Kuekes, P. Lincoln. Non-photolithographic nano­
scale memory density prospects. IEEE Transactions on Nanotechnology 4(2), 2005.

[31] A. DeHon. Deterministic addressing of nanoscale devices assembled at sublitho­
graphic pitches. IEEE Transactions on Nanotechnology 4(6), 2005.

[32] A. DeHon, H. Naeimi. Seven strategies for tolerating highly defective fabrication.
IEEE Design and Test of Computers 22(4), 2005.

[33] V. Betz, J. Rose. FPGA Place-and-Route Challenge. http://www.eecg.toronto.eduJ~
vaughnlchallengelchallenge.html, 1999.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 889



38.8 Summary 875 

[34] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. A defect-tolerant computer
architecture: Opportunities for nanotechnology. Science 280(5370), 1998.

[35] Y. Luo, P. Collier, J. 0. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins,
H.-R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath. 'l\vo-dimensional molecular
electronics circuits. ChemPhysChem 3(6), 2002.

[36] S. Williams, P. Kuekes. Demultiplexer for a molecular wire crossbar network. U.S.
Patent number 6,256,767, July 3, 2001.

[37] S. C. Goldstein, M. Budiu. NanoFabrics: Spatial computing using molecular
electronics. Proceedings of the International Symposium on Computer Architecture
178-189, 2001.

[38] S. C. Goldstein, D. Rosewater. Digital logic using molecular electronics. ISSCC
Digest of Technical Papers, IEEE, 2002.

[39] A. DeHon, M. J. Wilson. Nanowire-based sublithographic programmable logic
arrays. Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 2004.

[ 40] D. B. Strukov, K. K. Likharev. CMOL FPGA: A reconfigurable architecture for
hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6), 2005.

[41] G. S. Snider, R. S. Williams. Nano/CMOS architectures using a field-programmable
nanowire interconnect. Nanotechnology 18(3), 2007.

[ 42] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff,
J. R. Heath. Ultra high-density nanowire lattices and circuits. Science 300, 2003.

[ 43] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou.
Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithogra­
phy. Applied Physics Letters 84(26), 2004.

[44] K. K. Likharev, D. B. Strukov. CMOL: Devices, circuits, and architectures. In Intro­
ducing Molecular Electronics, Springer, 2005.

[ 45] K. L. Jensen. Field emitter arrays for plasma and microwave source applications.
Physics of Plasmas 6(5), 1999.

[ 46] J. Chen, M. Reed, A. Rawlett, J. Tour. Large on-off ratios and negative differential
resistance in a molecular electronic device. Science 286, 1999.

[47] J. Chen, W. Wang, M. A. Reed, M. Rawlett, D. W. Price, J. M. Tour. Room­
temperature negative differential resistance in nanoscale molecular junctions.
Applied Physics Letters 77, 2000.

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 890



INDEX 

* (wildcards), 152, 761
0-1 knapsack problem, 553
1:1 mapping, 329-30

area/delay trade-offs, 329 
PEs, 337 
pitch matching, 330 
topology matching, 329-30 

Absorbing boundary conditions (ABC), 702 
Abstract Physical Model (APM), 322 
Abstracted hardware resources, 234-36 
Accelerated PathFinder, 418-22 

limiting search expansion, 419 
multi-terminal nets and, 420, 421 
parallelized, 215-16, 421 
routing high-fanout nets first, 419 
scaling sharing/history costs, 419 
See also PathFinder 

Accelerated simulated annealing, 415-18 
communication bandwidth and, 416-17 
distributed, 415 
hardware-assisted, 418 
parallelized, 416 
See also Simulated annealing 

Accelerating technology, 56-59 
Actel ProASIC3, 83 
Active Pages, 779-802 

activation portion, 788 
algorithmic complexity, 786-94 
array-insert, 788-90 
Central Processor, 782, 784-85, 788 
configurations, 782 
defect tolerance, 779, 799-801 
DRAM hardware design, 780 
execution with parameters, 787 
hardware interface, 780 
LCS, 791-94 
multiplexing performance, 796 
Page Processor, 781 
performance results, 781-86 
performance versus random processor 

defects, 800 
processing time, 798 
processor width performance, 796-97 
processor-memory nonoverlap, 784-85 
programming model, 781 

related work, 801-2 
speedup over conventional systems, 

782-84
Ad hoc testing, 96 
Adaptive Computing Systems (ACS), 57 
Adaptive lattice structures, 514 
Adaptive nulling, CORDIC algorithm and, 

514 
Add/subtract FUs, 531, 532 
Adder trees 

computation, 598 
creation, 598 
template-specific, 596 

Adders, 504 
floating point implementation, 675-77 
in reconfigurable dynamic ATR system, 

609 
Address indirection, 178 
Advanced Encryption Standard (AES), 459, 

775 
A* heuristic, 373-374 
AIG, 285 
Algebraic layout specification, 352-60 

calculation, 353 
case study, 357-60 

Altera SignalTap, 271 
Altera Stratix, 19-23 

block diagram, 19 
DSP block, 21 
LAB structure, 21 
logic architecture, 19-21 
logic element, 20 
MultiTrack, 21-22 
routing architecture, 21-23 

Altera Stratix-II, 68, 83, 300 
configuration information, 68 
horizontal/vertical routing, 308 

Alternative region implementations, 544, 
549 

heterogeneous, 550 
number of, 550 
obtaining, 550 
parallel program partitioning, 557 
sequential program partitioning, 549-50 
See also Hardware/software partitioning 

ALTOR, 313-14, 315 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 891



878 Index 

AMD/lntel, 55-56 
Amdahl's Law, 62, 542 

equation, 542 
in hardware/software partitioning, 542, 

543 
solution space pruning, 544 

Amtel AT40K, 70 
Analytic peak estimation, 4 79-84 

data range propagation, 482-84 
LTI system, 479-82 
See also Peak estimation 

Analytic placement, 315 
AND gates, 133 
Angle approximation error, 522-23 
Annotations 

absence of loop-carried memory 
dependence, 178-79 

pointer independence, 178 
Antifuse, 17-18 

use advantages, 18 
Application development, 435-38 

challenges, 435 
compute models, 93-107 
system architectures, 107-25 

Application-specific computation unit, 
603-4

Application-specific integrated circuits. See

ASICs 
Applications 

arithmetic implementation, 448-52 
characteristics and performance, 441-44 
computational characteristics/ 

performance, 441-43 
configure-once implementation, 445 
embedded, 476 
implementation strategies, 445-48 
implementing with FPGAs, 439-52 
RTR, 446-47 

Architectural space modeling, 816-26 
efficiency, 817-25 
raw density from architecture, 816-17 

Area flow, 280 
Area models, 485-96 

high-level, 493-96 
intersection mismatch, 823 
for multiple-wordlength adder, 495 
width mismatch, 819-21 

Area-oriented mapping, 280-82 
Arithmetic 

BFP, 450 
complexity, 442-43 
distributed, 503-11 

fixed-point, 448-49 
implementation, 448-52 
infinite-precision, 519 

Arithmetic logic units (ALUs), 5, 61, 114, 
401 

Array processors, 48, 226-30, 790, 
2191-222 

Array-insert algorithm, 788-90 
processor and Active Pages computations, 

790 
simulation results, 790 

Arrays 
block reconfigurable, 74-75 
FPTAs, 745 
local, 177 
reconfigurable (RAs), 43 
See also FPGAs 

Artificial evolution, 727-29 
ASICs 

cost, 440 
debug and verification, 440-41 
design time, 638 
development, 440 
general-purpose hardware 

implementation, 458 
power consumption, 440 
replacement, 2 
time to market, 439-40 
vendors, 754 
verification, 637, 638 

Associativity, 799-800 
Asynchronous transfer mode (ATM) 

networking, 755 
ATM adaptation layer 5 (AAL5), 758 
ATR, 591-610 

algorithms, 592-94 
dynamically reconfigurable designs, 

594-600, 604-6
FOA algorithm, 592 
with FPGAs, 591-610 
implementation methods, 604-7, 608 
implementations, 604-9 
Mojave system, 604-6 
Myrinet system, 606-7 
reconfigurable computing models, 607-9 
reconfigurable static design, 600-4 
in SAR imagery, 591 
SLD, 592-94 
statically reconfigurable system, 606-7 

Automated worm detection, 766-67 
Automatic c�mpilation, 162-75, 212-13 

dataflow graphs, building, 164-69 

-

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 892



DFG optimization, 169-73 
DFG to reconfigurable fabric, 173-75 
hyperblocks, 164 
memory node connections, 175 
operation packing, 173-74 
pipelined scheduling, 174-75 
runtime netlist, 413-14 
scheduling, 17 4 
TDF, 212 
See also C for spatial computing 

Automatic HW/SW partitioning, 175-76 
Automatic partitioning trend, 540-42 
Automatic Target Recognition. See ATR 

Back-pressure signal, 210 
Backtrack algorithm, 615-17 

conflict analysis, 625 
distributed control architecture, 620 
efficiency, 616 
FSM, 621-22 
implementing, 619-24 
implication circuit, 620 
improved, 617-18, 626-27 
improved, implementing, 624-27 
nonchronological backtracking, 618 
reconfiguraole solver, 618-27 
static variable ordering, 617 
terminating conditions, 616 
variable values, 619 

Basic blocks, 163 
Batcher bitonic sorter, 357-60 
BEE Platform Studio (BPS), 192, 193 

BEE2 platform, 191-94 
design flow, 194 
1/0, 200 

Bellman-Ford algorithm, 386 
Bernoulli's Law of Large Numbers, 835 
Bidirectional switches, 377 
Binary-level partitioning, 559 
Binding 

flexible, 236-38 
install time, 236-37 
runtime, 237-38 

Bipartitioning, 312, 646 
Bitonic sorter, 357-60 

il v combinator, 359 
layout and behavior specification, 358 
merger, 359 
recursion and layout, 360 
recursive structure, 357 

Bitops (bit operations), 808 
BLAS routines, 685 

Index 879 

Block floating point (BFP), 450 
Block reconfigurable arrays, 74-75 
BlockRAMs, 585, 708, 713, 766 

caching modules, 715 
dual-ported, 716 
latency, 713 

Bloom filters, 762 
payload scanning with, 762 
SIFT used, 766 

Boolean expressions, 464 
Boolean operators, 465 
Boolean satisfiability (SAT), 613-35 

algorithms, 615-18 
applications, 614 
backtrack algorithm, 615-17 
backtrack algorithm improvement, 

617-18
clauses, 614 
CNF, 613 
complete algorithms, 615 
formulas, mapping, 634 
formulation, 282, 613-14 
incomplete algorithms, 615 
parallel processing, 618-19 
problem, 613 
problem analysis, 618-19 
test pattern generation, 614, 615 
See also SAT solvers 

Booth technique, 495 
BORPH, 197 
Bottom-up structure synthesis, 853 
Bottom-up technology, 855-58 

crosspoints, 857-58 
nanowires, 856-57 

Bulk Synchronous Parallelism (BSP), 
118-19

Butterflies, 688 

C++ language, 541 
C compiler flow, 163 
C compiler frontend, 163-64 

CFG, 163 
live variable analysis, 163 
processing procedures, 164 

C for spatial computing, 155-80 
actual control flow, 159-60 
automatic f<>mpilation, 162-75 
automatic HW/SW partitioning, 175-76 
common path optimization, 161-62 
data connections between operations, 

157 
full pushbutton path benefits, 155-56 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 893



880 Index 

C for spatial computing (cont.) 

hyperblocks, 164 
if-then-else with multiplexers, 158-59 
memory, 157-58 
mixed operations, 157 
partitioning, 155 
programmer assistance, 176--80 

C language, 155-159, 171, 179, 541 
C-slow retiming, 390-93, 827

architectural change requirement,
395-96

benefits, 390 
FPGA effects on, 391 
interlace, 391 
latency improvement, 392 
low-power environment effect, 392 
memory blocks, 391 
microprocessor application, 395 
as multi-threading, 395-98 
results, 392 
as threaded design, 391 
throughput, 392 
See also Retiming 

Caches 
configurations, 83 
virtually addressed, 397 

CAD 

JHDL system, 255, 265-68 
Mentor Graphics, 56 
PipeRench tools, 34 
runtime, 411 
runtime processes, 238 
Teramac for, 58 
tools, 44--45, 66 

Cadence Xcite, 642 
Case studies 

Altera Stratix, 19-23 
Xilinx Vrrtex-Il Pro, 23-26 

CDFG, See Control dataflow graphs 
Cellular automata (CA), 122-23, 702-3 

folded, 123 
two-dimensional, 122 
well-known, 122 

Cellular programming evolutionary 
algorithm, 738 

Central Limit Theorem, 835 
Centralized evolution, 736-37 
Chameleon architecture, 40-41 

price/performance, 41 
Channel width, 430 
Checkpointing, 272 
Checksums, 847 

Chimaera architecture, 42-44 
high-level user design language, 44 
overview illustration, 43 
RFUOPs, 43 
VICs, 43-44 

Choice networks 
creating, 285 
mapping on, 286 

Church-Turing Thesis, 96 
Circuit combinators, 352 
Circuit emulation, 54--56, 637-68 

AMD/lntel, 55-56 
impacts, 56 
in-circuit, 650 
multi-FPGA, 641-44 
single-FPGA, 640-41 
system uses, 639-40 
Vrrtual Wires, 56 
VLE, 653-65 

Circuit graph 
bidirectional switches, 377 
de-multiplexers, 376-77 
edges, 377 
extensions, 376-77 
model, 367 
symmetric device inputs, 376 

Circuit layout 
algebraic specification, 352-60 
calculation, 353 
deterministic, 352 
explicit Cartesian specification, 351-52 
no and totally explicit, 350 
problem, 347-51 
regularity, 319 
specifying, 347-63 
verification for parameterized designs, 

360-62 
CLAP tool, benchmarks, 336 
Clause modules, 629-30 
Clearspeed SIMD array, 221 
Clock cycles 

for circuit mapping, 649 
latency, 507 
NIL, 510 
packing operations into, 173-74 
reducing number of, 506 

Clock frequency, 506 
Cloning, 54 
Clustering, 213, 227, 228, 304--6 

benefits, 304 
goals, 304 
iRAC algorithm, 306 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 894



mechanical, 423 
RASP system, 304-5 
T-VPack algorithm, 305
VPack algorithm, 305

CMOS scaling, 507 
CMX-2X, 60
Coarse-grained architectures, 32-33

PipeRench, 32-34 
Codesign ladder, 541 
Coding phase, 582, 585-86 

block diagram, 586 
See also SPIHT 

Col combinator, 354-55 
Columns, skipping, 602 
Common path, 161-62 
Common subexpression elimination (CSE), 

171 
Communicating Sequential Processes 

(CSP), 93, 106 
Communication, 243-48 

1/0, 247 
intertask, 251 
latency, 247 
method calls, 244 
point-to-point, 251 
shared memory, 243-44 
streams, 244-46 
styles, 243-46 
virtual memory, 246-47 

Compaction, 324, 337-44 
HWOP selection, 338 
optimization techniques, 338-42 
phases, 337-38 
regularity analysis, 338 

Compilation, 212-13 
accelerating classical techniques, 414-22 
architecture effect, 427-31 
automatic, 162-75, 212-13 
C, uses and variations, 175-80 
fast, 411-32 
incremental place and route, 425-27 
multiphase solutions, 422-25 
partitioning-based, 423 
PathFinder acceleration, 418-22 
runtime netlist, 411, 413-14, 432 
simulated annealing acceleration, 

415-18
slow, 411 
for spatial computing, 155-80 

Compilation flow, 150-52 
Complete evolution, 736-38 

centralized, 736-37 

Index 881 

population-oriented, 737-38 
See also Evolvable hardware (EHW) 

Complete matching, 841 
Complex programmable logic devices 

(CPLDs), 292 
Component reuse, 198-200 

signal-processing primitives, 198 
tiled subsystems, 198-200 
See also Streaming FPGA applications 

Computations 
data-centric, 110 
data-dependent, 104 
on dataflow graph, 99 
density of, 826 
deterministic, 95 
feedforward, 389 
fixed-point, 475-99 
memory-centric, 779-802 
models, 96 
nondeterministic, 96 
phased, 104 
SCORE, 205 
spatial, 157 
stream, 203-17 

Compute bound algorithms, 443 
Compute models, 92-107 

applications and, 94 
challenges, 93-97 
correctness reasoning, 95 
data parallel, 105 
data-centric, 105-6 
dataflow, 98-103 
in decomposing problems, 94-95 
diversity, 92 
functions, 97 
multi-threaded, 93, 106 
object-oriented, 98 
objects, 97-98 
parallelism existence, 95 
SCORE, 74, 203-17 
sequential control, 103-5 
taxonomy, 93 
transformation permissibility, 95 
Turing-Complete, 97 

Compute units, 319 
Computing primitives, 95 
Concurrent statements, 144, 150 
Concurrent-error detection (CED), 846 
Configurable Array Logic (CAL), 53 
Configurable bitstreams, 16, 402-6 

closed architecture, 402 
configuration, generation, 401-9 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 895



882 Index 

Configurable bitstreams (cont.) 

control bits, 405 
data generation software, 407-8 
downloading mechanisms, 406-7 
generation, 401-9 
open, 408 
sizes, 405, 406 
tool flow, 408 
underlying data structure, 402 

Configurable logic blocks (CLBs), 23, 325 
complexity, 507 
flip-flops, 508 
multiple, 509 
resource reduction, 508 
XC6200, 741 

Configuration transfer time reduction, 
80-82

architectural approaches, 81 
compression, 81-82 
data reuse, 82 

Configuration upsets, 849-50 
Configuration(s) 

architectures, 66-76 
block reconfigurable, 74-75 
cache, 83 
caching, 77 
compression, 81-82 
controller, 66, 73 
cycles, number of, 68 
data reuse, 82 
data transfer, 67 
grouping, 76 
multi-context, 68-70 
partially reconfigurable, 70-71 
pipeline reconfigurable, 73-74 
relocation and defragmentation, 71-73 
scheduling, 77-79 
security, 82-83 
single-context, 67-68 
swapping, 72 

Configure-once implementation, 445 
Configured switches, 216 
Conjunctive normal form (CNF), 291, 613 
Connection blocks, 8 

detail, 10 
island-style architecture with, 9 

Connection Machine, 221, 223 
Constant coefficient multipliers, 459, 495 
Constant folding, 169, 450-51 

automated, 473 
constant propagation, 463 
implementations with/without, 451 

in instance-specific designs, 456-57 
in logical expressions, 464-66 

Constrained 2D placement, 335-6 
Content-addressable memories (CAMs), 444 
Context switching, 80 
Context-sensitive optimization, 340-42 

superslices, 340, 341 
See also Compaction 

Control dataflow graphs (CDFGs), 319 
conversion to forest of trees, 330 
primitive operators, 332 
sequence, 334-35 

Control flow, 159-60 
implementation, 159 
subcircuits, 160 
See also C for spatial computing 

Control flow graph (CFG), 163, 164 
Control nets, 322 
Controller design, 124, 194-98 

with Matlab M language, 195-97 
with Simulink blocks, 194-95 
with Verilog, 197 
with VHDL, 197 

Controllers 
configuration, 66, 73 
delay line, 195-96 
FSM, 124 
RaPiD, 39 
sequential, 120 
vector architecture, 120 

Coordinate systems, CORDIC, 520-21 
Coprocessors 

independent, 36-40 
scalar processor with, 117 
streaming, 109-10 
vector, 121-22 

CORDIC, 437, 513-35 
adaptive lattice structures and, 514 
adaptive nulling and, 514 
alternatives, 513, 520 
angle approximation error, 522-23 
architectural design, 526-27 
computation noise, 522 
computational accuracy, 521-26 
convergence, 527-28 
coordinate systems, 520-21 
datapath rounding error, 523-26 
engine, 527, 534 
in FFT, 514 
folded architecture, 528-30 
functions computed by, 521 
implementation, 526-27 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 896



input mapping, 527 
input sample, 525 
iterations, 516, 527 
Kalman filters and, 514 
micro-rotations, 526 
parallel linear array, 530-33 
PE, 532 
processing, 522 
quantization effects, 524 
realizations, 513-14 
result vector error, 523 
rotation mode, 514-17 
scaling, 517-19 
scaling compensation, 534 
shift sequences, 522 
as shift-and-add algorithm, 513 
unified description, 520-21 
variable format, 524 
vector rotation, 518 
vectoring mode, 514, 519-20, 525 
in VLSI signal processing, 514 
y-reduction mode, 519
z-reduction mode, 517

CORDIC processors 
datapath format, 526 
datapath width, 523 
effective number of result bites, 525 
FPGA implementation, 527-34 
FPGA realizations, 523 
full-range, 527, 528 
with multiplier-based scaling 

compensation, 535 
PE, 533 

coordinate Rotation Dligital Computer. 
See CORDIC 

Cosine, 437 
Cost function, 440 

PathFinder, 368, 375 
power-aware, 284 
in simulated annealing, 306 

Coverification, 639-40, 650-51 
flow between workstation and emulator, 

665 
performance, 650 
simulation, 651 
use of, 640 
VLE interfaces for, 664-65 
See also Logic emulation systems 

CPU blocks, 15 
Cray supercomputers, 60 
Crosspoints, 857-58 

diode, 859 
nanowire-nanowire, 866 

Index 883 

Custom evolvable FPGAs, 743-45 
axes, 744 
POEtic tissue, 743-45 
See also Evolvable hardware (EHW) 

Customizable instruction processors, 121, 
461-62

Cut enumeration-based algorithm, 287 
Cut generation, 279-80 
Cvt class, 266-68 

GUI, 267 
implementation, 266-67 

D-flip-flops, 596
DA. See Distributed arithmetic
DAOmap, 282-83

area improvement, 283 
multiple cut selection passes, 283 

OAP, 221 
Data Encryption Standard (DES), 459 
Data nets, 321 
Data parallel, 119-22 

application programming, 219-30 
compute model, 105 
languages, 222-23 
SIMD, 120 
SPMD, 120 
system architecture, 119-22 

Data presence, 108-9, 110 
Data queuing, 756 
Data range propagation, 482-84 
Data-centric, 105-6, 110 
Data-dependent branching, 221 
Data-element size, 442-43 
Data-oriented specialization, 450-52 
Dataflow, 98-103 

analysis-based operator size reduction, 
172 

direction, 321 
dynamic streaming, 100-2 
dynamic streaming, with peeks, 102 
single-rate synchronous, 99 
streaming, with allocation, 102-3 
synchronous, 99-100 
techniques, 93 

Dataflow graphs (DFGs), 78, 319 
building, 164 
circuit generation, 164 
computation on, 99 
control (CDFG), 319 
DSP, 93 
edges, 165 
edges, building and ordering, 166-68 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 897



884 Index 

Dataflow graphs (DFGs) (cont.) 

implicit type conversions, 172 
live variables at exits, 168-69 
multirate, 100 
muxes, building, 167 
nodes, 165 
operations in clock cycles, 173-74 
optimization, 164 
predicates, 167 
scalar variables in memory, 169 
single-rate static, 100 
as "stepping stone," 164-65 
top-level build algorithms, 165-66 
See also DFG optimization 

Dataflow Intermediate Language (DIL), 34 
Dataflow single-rate synchronous, 99 
Datapath composition, 319-44 

device architecture impact, 324-26 
interconnect effect, 326 
interface to module generators, 326-29 
layout, 322-23 
mapping, 329-33 
regularity, 320-22 
tool flow overview, 323-24 

Datapath pruning, 524 
Datapath rounding error, 523-26 
Datapaths 

butterfly, 688 
with explicit control, 195 
FSM, 138-49 
FSM communication with, 123-24 
high-performance, 184 
HWOPs, 320, 321-22 
layout, 322-23 
sharing, 109 
SIMD, 815, 818 
word-wide, 216 

dbC language, 224 
Deadlock, 96 
Deadlock prevention, 249 
Debug circuitry synthesis, 271-72 
Debugging 

ASICs, 441 
FPGAs, 440-41 
JHDL, 270-72 

Decoders, 376-77, 862-63 
Dedicated-wire systems, 641 

channel graph, 647 
recursive bipartitioning, 646 
routing problem, 646 
See also Multiplexed-wire systems 

Deep pipelining, 706 

Defect maps 
with component-specific mapping, 836 
model, 832 

Defect tolerance, 830-43 
Active Pages and, 779, 799-801 
associativity and, 800 
concept, 830-32 
defect map model, 832 
global sparing, 836-37 
local sparing, 838-39 
with matching, 840-43 
models, 831-32 
nanoPLA, 869 
perfect component model, 831, 837-38 
with sparing, 835-39 
substitutable resources, 832 
testing, 835-36 
yield, 832-35 

Defects 
faults and, 830 
lifetime, 848-49 
rates, 829, 832 

Defragmentation, 71-73 
device support, 77 
software-based, 79-80 

Delay lines 
controlle� 195-96 
synchronous, 194 
VPR computation, 309-10 

Delay Optimal Mapping algorithm. See

DAOmap 
Delay(s) 

configurable, 187 
as cost approximation, 375 
delta, 150 

Delta delay, 150 
De-multiplexers, 376-77, 862-63 
Denial of service (DoS), 774 
Denormals, 673 
Depth-first search order, 585 
Derivative monitors, 490 
Deterministic Finite Automata, 103 
Device architecture, 3-27 
DFG. See Dataflow graphs 
DFG optimization, 169-73 

Boolean value identification, 171 
constant folding, 169 
CSE, 171 
dataflow analysis-based operator size 

reduction, 172 
dead node elimination, 170-71 
identity simplification, 170 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 898



memory access optimization, 1 72 
redundant loads removal, 172-73 
strength reduction, 170 
type-based operator size reduction, 

171-72
See also Dataflow graphs (DFGs) 

Digital signal processors (DSPs), 49, 93 
Direct memory access (DMA), 246 
Discrete cosine transform (DCT), 389, 479, 

511 
Discrete Fourier transform (DFT) 

output vector, 534 
symmetries, 687 

Discrete wavelet transform (DWT), 567 
architecture illustration, 575 
architectures, 571-75 
computational complexity, 572 
engine runtime, 574 
folded architecture, 571, 572 
generic 2D biorthogonal, 573-74 
partitioned, 572,573 
phase, 582 
two-dimensional, 571 

Distributed arithmetic (DA), 503-11 
algorithm, 504 
application on FPGA, 511 
FIR filters, 575 
implementation, 504-7 
LUT size and, 505 
performance, improving, 508-11 
reduced memory implementation, 507 
theory, 503-4 
two-bit-at-a-time reduced memory 

implementation, 509 
Division operation, 437 
Djikstra's algorithm, 371 
Dot product, 506, 683-86 

FPGA implementation, 685 
maximum sustainable floating-point rate, 

685 
multiply-accumulate, 686 
multiply-add, 686 
performance, 685-87 

Downloading mechanisms, 406-7 
DRAMs 

computational hardware, 786 
dies, 831 
hardware design, 780 
high-density, 780 

Dtb class, 270 
Dynamic FPGAs, 600 

Index 885 

Dynamic Instruction Set Computer (DISC), 
447 

Dynamic partial reconfiguration, 742-43 
Dynamic reconfiguration, 552 
Dynamic RPF, 29 
Dynamic scheduling, 240-41 

frontier, 240-41 
runtime information, 240, 241 
See also Scheduling 

Dynamic streaming dataflow, 101-2 
with peeks, 102 
primitives, 101 

Dynamic testbench, 269-70 
Dynamically linked libraries (DLLs), 235, 

773 

Dynamically reconfigurable ATR system, 
604-6

Dynamically reconfigurable designs, 
594-600

algorithm modifications, 594 
FPGAs over ASICs, 595-96 
image correlation circuit, 594-96 
implementation method, 599-600 
performance analysis, 596-97 
template partitioning, 598-99 
See also ATR 

Edge mask display, 190 
Edges 

building, 166-6 7 
circuit graph model, 377 
detection design driver, 185 
liveness, 165 
ordering, 167-68, 172, 173 

EDIF (Electronic Design Interchange 
Format), 407 

Effective area, 280 
Electric and magnetic field-updating 

algorithms, 700-1 
Embedded memory blocks (EMBs), 

mapping logic to, 291-92 
Embedded microprocessors, 197-98 
Embedded multipliers, 514 
Embedded multiply-accumulator (MACC) 

tiles, 514, 680 
EMB_Pack algorithm, 292 
Epigenesis, 726 
Epigenetic axis, 727, 744 
Error checking, 233 
Error estimation, 485-96 

fixed-point error, 486 
high-level area models, 493-96 

-

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 899



886 Index 

Error estimation (cont.) 

LTI systems, 487-89 
noise model, 487-88 
noise propagation, 488-89 
nonlinear differentiable systems, 489-93 
quantization, 711-12 
simulation, 486 
simulation-based methods, 487 

Evolution 
artificial, 727-29 
centralized, 736-37 
complete, 736-38 
extrinsic, 733 
intrinsic, 734-35 
open-ended, 738-39 
population-oriented, 737-38 

Evolutionary algorithms (EAs), cellular 
programming, 738 

Evolutionary circuit design, 731, 733 
Evolutionary computation, 727 
Evolvable hardware (EHW), 729-46 

as artificial evolution subdomain, 731 
commercial FPGAs, 741-43 
complete evolution, 736-38 
custom, 743-45 
digital platforms, 739-45 
dynamic partial reconfiguration, 742-43 
evolvable components, 739-40 
extrinsic evolution, 733 
future directions, 746 
genome encoding, 731-32 
intrinsic evolution, 734-35 
JBits for, 743 
living beings analogy, 729-30 
off-chip, 732 
on-chip, 732 
open-ended evolution, 738-39 
taxonomy, 733-39 
virtual reconfiguration, 741-42 
Xilinx XC6200 family, 740-41 

Exit nodes, 165 
Explicit layout 

Cartesian, 351-52 
no, 350 
totally, 350 
in VHDL, 351 

Explicit synchronization, 248 
Exploration 

0-1 knapsack problem, 553 
complex formulations, 555-56 
formulation with asymmetric 

communication, 553-55 

parallel program partitioning, 558 
sequential program partitioning, 552-57 
simple formulation, 552-53 
See also Hardware/software partitioning 

Extended logic, 12-16 
elements, 12-15 
fast carry chain, 13-14 
multipliers, 14-15 
processor blocks, 15 
RAM, 15 

Extreme subwavelength top-down 
lithography, 853 

Extrinsic EHW, 733 

F�PGA, 735 
Factoring, 515-16 
False alarm rate (FAR), 592 
Fast carry chain, 13-14 
Fast Fourier transform (FFI'), 21, 389, 479 

butterflies, 688 
CORDIC algorithm and, 514 
data dependencies, 692 
pPGA implementation, 689-91 
implementation factors, 692 
parallel architecture, 689, 690 
parallel-pipelined architecture, 690, 691 
performance, 691-93 
pipelined architecture, 689-91 
radix-2, 687-88 

FDTD, 697-723 
ABCs, 702 
accelerating, 702 
advantages on FPGA, 705-7 
algorithm, 701-3 
applications, 703-5 
background, 697-701 
breast cancer detection application, 703-4 
as CA, 702-3, 723 
as data and computationally intense, 702 
deep pipelining, 706 
field-updating algorithms, 700-1 
fixed-point arithmetic, 706-7 
flow diagram, 701 
ground-penetrating radar application, 703 
landmine detection application, 704 
method, 697-707 
model space, 698, 702, 712 
parallelism, 705-6 
PMLs, 702 
reconfigurable hardware implementation, 

704 
spiral antenna model, 704, 705 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 900



UPML, 702, 706 
See also Maxwell's equations 

FDTD hardware design case study, 707-23 
4 x 3 row caching model, 719 
4-slice caching design, 718
background, 707
data analysis, 709-12
dataflow and processing core

optimization, 716--18 
expansion to three dimensions, 718-19 
fixed-point quantization, 709-12 
floating-point results comparison, 710, 

711 
hardware implementation, 712-22 
managed-cache module, 717 
memory hierarchy and interface, 712-15 
memory transfer bottleneck, 715-16 
model specifications, 711 
parallelism, 720-21 
performance results, 722 
pipelining, 719-20 
quantization errors, 710 
relative error, 710, 711 
relative error for different widths, 712 
requirements, 707-8 
results, 722 
two hardware implementations, 721-22 
WildStar-II Pro PFGA board, 708-9 

Feedforward correction, 844-45 
memory, 845 
TMR, 844 

FF. See Flip-flops 
Field effect transistors (FETs), 861 
Field Programmable Port Extender (FPX) 

platform, 755, 756 
applications developed for, 756 
multiple copies, 770 
physical implementation block diagram, 

757 
RAD circuits on, 770, 772 
remote configuration on, 773 
in WUGS, 756--57 

Field-programmable gate arrays. See FPGAs 
Field-programmable interconnect chips 

(FPICs), 643 
Field-programmable transistor arrays 

(FPTAs), 745 
Field-updating algorithms, 700-1 
FIFO, 37, 585 

blocks, 586 
buffers, 759 
queues between operators, 108 

streams, 847 
token buffers, 102 

Index 887 

Fine-grained architectures, 30-32 
Finite-difference time-domain. See FDTD 
Finite-impulse response (FIR) filters, 21, 

98, 389, 479 
4-tap, 510
16-tap, 507, 508
distributed arithmetic, 575
general multipliers, 460
instance-specific multipliers, 460
mapping onto FPGA fabric, 507
SPIHT implementation and, 576
taps, 503

Finite-precision arithmetic, 519 
Finite-State Machine with Datapath 

(FSMD), 112, 124 
Finite-state machines (FSMs), 112, 620, 621 

coarse-grained, 125 
communicating with datapaths, 123-24 
controller, 124 
datapath example, 138-49 
states, 621-22 
VHDL programming, 130 

Firewalls, 754 
First-in, first-out. See FIFO 
Fixed instructions, 815 
Fixed Order SPIHT, 578-80 

basis, 579 
order, 579 
PSNR curve, 579 
SPIHT comparison, 581 
See also SPIHT 

Fixed-frequency FPGAs, 394-95 
Fixed-Plus-Variable (F + V) computer, 48 
Fixed-point computation, 475-99, 706--7 

analytic peak estimation, 4 79-84 
FDTD algorithm, 708 
peak value estimation, 478-85 
precision analysis for, 475-99 
relative error, 712 
simulation-based peak estimation, 484 

Fixed-point error, 486 
Fixed-point number system, 448-49, 475-78 

2's complement, 709 
data structure, 710 
in embedded applications, 476 
flexibility, 476 
multiple wordlength paradigm, 476--77 
reconfigurable logic, 476 

Fixed-point precision analysis, 575-78 
final variable representation, 578 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 901



888 Index 

Fixed-point precision analysis (cont.) 

magnitude calculations, 576 
variable representation, 577 
See also SPIHT 

FLAME, 327-28 
design data model, 327-28 
library specification, 328 
Manager, 327 
topology description, 328 

Flash memory, 17 
Flexible API for Module-based 

Environments. See FLAME 
Flexible binding, 236-38 

fast CAD for; 238 
install time binding, 236-37 
preemption and, 242 
runtime binding, 237-38 
See also Operating systems (OSs) 

FlexRAM, 801 
Flip-flops (FFs), 286, 597 

CLB, 508 
D, 5-6, 596 
retiming and, 286 

Floating point, 449-50, 671-79, 706 
adder block, 676 
adder implementation, 675-77 
adder layout, 676 
application case studies, 679-92 
denormals, 673 
difficulty, 671-78 
dot product, 683-86 
FFT, 686-92 
IEEE double-precision format, 672 
implementation, 692 
implementation considerations, 673-75 
matrix multiply, 679-83 
maximum sustainable rate, 685 
multiplier block, 678 
multiplier implementation and layout, 

678 
numbers, 672 
summary, 692-94 

Floating region, 303 
Flow graphs, 78, 79 
FlowMap algorithm, 279, 282 
Focus of Attention (FOA) algorithm, 592 
Folded CA, 123 
Folded CORDIC architecture, 528-30 
Follow-on SAT solver, 627-33 

characteristics, 628 
clause modules, 629--30 
compilation time reduction, 627-33 

conflict analysis, 630 
creation methodology, 632 
global topology, 628 
implementation issues, 631-32 
main control unit, 630 
optimized pipelined bus system, 

628, 629 
performance, 630-33 
shared-wire global signaling, 628 
structural regularity, 628 
system architecture, 627-30 
See also Boolean satisfiability; SAT solvers 

Forward error correction (FEC), 755 
Forward propagation, 482-84 
FPGA fabrics, 14-15, :40--41 

arbitrary-precision high-speed 
adder/subtractors support, 530 

architectures, 30-34 
dedicated paths, 511 
footprint, 527 

FPGA placement, 297-98 
alternative, 297-98 
analytic, 315 
challenge, 316 
clustering, 304-6 
designer directives, 302--4 
device legality constraints, 300-1 
difficulty, 275 
general-purpose FPGAs, 299-316 
homogeneous, 503 
importance, 299 
independence tool, 312 
inputs, 299 
legal, 300 
optimization goals, 301-2 
partition-based, 312-15 
problem, 299-304 
PROXI algorithm, 311-12 
mutability-driven algorithms, 301 
routing architecture influence, 302 
simulated annealing, 306-12 
simultaneous routing, 311-13 
timing-driven algorithms, 301 
tools, 301 
See also FPGAs 

FPGAs, 1, 47 
antifuse, 17-18 
application implementation with, 

439-52
arithmetic implementation, 448-52 
ATR systems with, 591-610 
backend phase, 151 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 902



as blank hardware, 16 
case studies, 18-23 
circuit layout specification, 347--63 
clock rates, 441 
compilation flow, 151 
computing, CORDIC architectures for, 

513-35
configuration, 16-18 
configuration data transfer to, 67 
configuration memory systems, 2 
CORDIC processor implementation, 

527-34
cost, 440 
DA application on, 511 
debug and verification, 440-41 
dedicated processors, 15 
development, 440 
dynamic, 600 
efficiency of processors and, 825 
emulation system, 55 
evolvable, 725-46 
fabric, 15 
fixed-frequency, 394-95 
flash memory, 17 
flexibility, 87 
floating point for, 6 71-94 
general-purpose hardware 

implementation, 458 
island-style, 6, 7, 314 
K-gate, 600
LUTs, 4--6, 279
low-quality ASICs use, 1
multi-context, 68-70
network data processing with, 755-56
number formats, 436
partially reconfigurable, 70-71
performance, 438
power consumption, 440
in reconfigurable computing role, 3
routing resources, 348, 367
scaling, 411, 412, 431-32
SIMD computing on, 219-21
single-context, 67--68
SRAM, 16-17
static, 600
streaming application programming,

183-202
strengths/weaknesses, 439-41 
testing after manufacture, 407 
time to market, 439-40 
volatile static-RAM (SRAM), 6 
See also FPGA placement 

FPgrep, 761 
FPsed, 761 

Index 889 

FPX. See Field Programmable Extender 
platform 

Fractional fixed-point data, 523 
Fractional guard bits, 522 
FSM. See Finite-state machines 
FSM datapath, 138-49 

adder representation, 144 
concurrent statements, 144 
control signal generation, 145-48 
control signal generation illustration, 146 
design illustration, 139 
multiplexer representation, 144 
multiplier representation, 144 
next-state decoder, 149 
registers, 144-45 
sequential statement execution, 149 
structural representation, 138-41 
time-shared datapath, 141-44 

FSMD. See Finite-state machine with 
datapath 

Full-range CORDIC processors, 527, 528 
input quadrant mapping, 528 
micro-rotation engine, 529 
See also CORDIC 

Function blocks. See Logic blocks 
Functional blocks (FBs), 741 
Functional mapping algorithms, 277 
Functional Unit model, 41-43, 115-16 
Functions, 97 

GAMA, 331,333 
Garp's nonsymmetrical RPF, 30-32, 40 

configuration bits, 31 
configurator, 32 
number of rows, 30 
partial array configuration support, 31 
See also Fine-grained architectures; RPF 

General computational array model, 807-14 
implications, 809-14 
instruction distribution, 810-13 
instruction storage, 813-14 

General-purpose FPGA placement. See

FPGA placement 
General-purpose programming languages 

(GPLs), 255, 256 
Generic 2D biorihogonal DWT, 573-74 
Genetic algorithms (GAs), 727-29 

components, 729 
crossover, 729 
decoding, 728 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 903



890 Index 

Genetic algorithms (cont.) 

fitness evaluation, 728 
genetic operators, 728-29 
initialization, 728 
mutation, 729 
steps, 728-29 
variable-length (VGA), 735 

Genome encoding, 731-32 
fitness calculation, 732 
high-level languages, 731 
low-level languages, 732 

Genomes, 728 
Given's rotations, 514 
Global RTR, 446, 447 
Global sparing, 836-37 
Globally Asynchronous, Locally 

Synchronous (GALS) model, 109 
Glue-logic, 441 
Granularity, 30-34 

coarse, 32-34, 546 
dynamically determined, 547 
fine-grained, 30-32, 546 
heterogeneous, 546 
manual partitioning, 546 
parallel program partitioning, 557 
region, 545 
sequential program partitioning, 54� 7 
See also Hardware/software partitioning 

Graph bipartitioning, 553 
GRASP, 618, 625, 632-33 
Greedy heuristics, 553-55 
Ground-penetrating radar (GPR), 703, 704, 

711 
Group migration, 554 

Hard macros, 336, 424 
Hardware-Accelerated Identification of 

Languages (HAIL), 768 
Hardware-assisted simulated annealing, 418 
Hardware description languages (HDLs), 

183, 235, 407, 541 
Hardware execution checkpoints, 272 
Hardware operators (HWOPs) 

boundary dissolution, 337 
compaction, 324 
linear stripes, 335 
mapping, 323 
module generation, 323 
multibit wide, 320 
neighboring, 338 
non-bit-sliced, 324 
pitch, 321 

pitch-matched, 322 
placement, 324 
regular structure, 320-21 
selection for compaction, 338 
swaps, 334 
See also Datapaths; HWOP placement 

Hardware protection, 250-51 
Hardware prototyping, 411, 412-13, 432 

reasons for employing, 412 
Taramac system and, 427 

Hardware/software partitioning, 539-59 
alternative region implementation, 544, 

549-50
exploration, 544, 552-57 
FPGA technology and, 539 
granularity, 544, 545-47 
implementation models, 544, 550-52 
of parallel programs, 557-58 
partition evaluation, 544, 547-48 
problem, 539-40 
of sequential programs, 542-57 
speedup following Amdahl's Law, 543 

Hash tables, 762 
HDL Coder, 183 
Heuristic search procedure, 496-97 
Heuristics, 553, 555 

greedy, 553-55 
neighborhood search, 556 
nongreedy, 553-55 
simulated annealing, 555-56 

Hierarchical annealing algorithm, 310-11 
Hierarchical composition, 125 
Hierarchical FPGAs, 313 
Hierarchical routing, 10-12 

FPGA placements, 301 
long wires, 11 

High-fanout nets, 419, 425 
High-level languages (HLLs), 44-45, 52, 401 

enabling use of, 44-45 
genome encoding, 731 

Huffman decoding, 233 
HWOP placement, 333-37 

constrained two-dimensional, 335-36 
linear, 333-35 
simultaneous tree covering and, 334 
styles, 333 
two-dimensional, 336-37 

HWSystemclass, 272 
Hyperblocks 

basic block selection for, 166 
building DFGs for, 164-69 
formation, 168 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 904



1/0, 247 
bound algorithms, 443 
performance, 443--44 

IDCT, 233 
IEEE double-precision floating-point 

format, 672 
If-then-else, 158-59 
IKOS Logic Emulator, 630-31 
IKOS VirtualLogic SLI Emulator, 623 
illinois Pular-based Optical Interconnect 

(iPOINT), 755 
Il v combinator, 359 
Image correlation circuit, 594-96 
Image-processing design driver, 185-94 

2D video filtering, 187-91 
horizontal gradient, 188, 189 
mapping video filter to BEE2 FPGA 

platform, 191-94 
RGB video conversion, 185-87 
vertical gradient, 188, 189 
See also Streaming FPGA applications 

!Map algorithm, 281-82
Implementation models

dynamic reconfiguration parameter, 552 
parallel program partitioning, 557-58 
parameters, 551-52 
real-time scheduling, 558 
sequential program partitioning, 550-52 
See also Hardware/software partitioning 

Implicit synchronization, 248--49 
Imprint lithography, 870-71 
Impulse project, 802 
In-circuit emulation, 639, 650 
Incremental mapping, 425-27 

design clock cycle, 663 
See also Mapping 

Incremental partitioning, 661 
Incremental place and route, 425-77 
Incremental rerouting, 374-75 
Incremental routing, 661 
Independence tool, 312 
Induced architectural models, 814-16 

fixed instructions, 815 
shared instructions, 815-16 

Infinite-impulse response (IIR) filters, 21, 
98, 479 

Install time binding, 236-37 
Instance-specific design, 411, 413, 432, 

455-73
approaches, 457-58 
architecture adaptation, 457 
changing at runtime, 456 

concept, 455 

Index 891 

constant coefficient multipliers, 459 
constant folding, 456-57 
customizable instruction processors, 

461-62
examples, 459-62 
function adaptation, 457 
implementation, 456 
key-specific crypto-processors, 459-60 
NIDS, 460-61 
optimizations, 456-57 
partial evaluation, 462-73 
requirements, 456 
taxonomy, 456-57 
use examples, 457 

Instruction augmentation, 115-16 
coprocessor model, 116 
Functional Unit model, 115-16 
instruction augmentation model, 116 
manifestations, 115 

Instruction distribution, 810-13 
assumptions, 811 
wiring, 811 

Instruction Set Architecture (ISA) 
processor models, 103 

Instruction-level parallelism, 796 
Instructions 

array-wide, 814 
base, 115 
controller issuance, 113 
fixed, 815 
shared, 815-16 
storage, 813-14 

Integer linear programming (ILP), 497, 553 
Integrated mapping algorithms, 284-89 

integrated retiming, 286-87 
MIS-pga, 288 
placement-driven, 287-89 
simultaneous logic synthesis, 284-86 
See also Technology mapping 

Integrated retiming, 286-87 
Interconnect 

Altera Stratix Multi'Irack, 21-22 
connection block, 8-10 
effect on datapath placement, 326 
hierarchical, 10-12 
nearest neighbor, 7-8 
optimization, 110 
programmability, 12 
segmented, 8-10 
sharing, 110 
structures, 7-12 
switch block, 8-10 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 905



892 Index 

Internet key exchange (IKE), 775 
Internet Protocol Security (IPSec), 775 
Internet worms, 760 
Interslice nets, 322 
Intertask communication, 251 
Intraslice nets, 322 
Intrinsic evolution, 734-35 
Intrusion detection, 756, 762-67 
Intrusion detection and prevention system 

(IDPS), 763 
Intrusion detection system (IDS), 762 
Intrusion prevention, 756, 762-67 
Intrusion prevention system (IPS), 754, 763 
IP processing, 758 
iRAC clustering algorithm, 305-6 
Island-style FPGAs, 6, 7 

with connect blocks, 9 
partitioning, 314 

Isolation, 251 
Iterative mapping, 288 

Java, 541 
JBits, 408, 631 

for evolving circuits, 743 
JHDL with, 271 

JHDL, 88, 89, 255-72 
advanced capabilities, 269-72 
behavior synthesis, 270 
CAD system, 255, 265-68 
checkpointing, 272 
circuit data structure, 257 
as circuit design language, 264-65 
debug circuitry synthesis, 271-72 
debugging capabilities, 270-72 
descriptions, 264 
design process illustration, 257 
dynamic testbenches, 269-70 
as embedded design language, 256 
hardware mode, 268-69 
Logic Library, 270 
module generators, 263 
motivation, 255-57 
open-source license, 272-73 
placement attributes, 263 
primitive instantiation, 257-59 
primitives library, 257 
programmatic circuit generation, 261-63 
Sea Cucumber and, 270 
simulation/hardware execution 

environment, 268 
as structural design language, 263-64 
testbenches, 265-66 

JHDL classes 
cvt, 266-68 
dtb, 270 
HWSystem, 272 
Logic, 259-61, 272 
Techmapper, 260,264,272 

Johnson's algorithm, 809 

K-input lookup tables (K-LUTs), 277
K-Means clustering algorithm, 227, 228
Kalman filters, 514
Key-specific crypto-processors, 459-60

Lagrangian multipliers and relaxation, 376 
Lambda Calculus model, 96 
Langmuir-Blodgett (LB) flow techniques, 

857 
Language identification, 767-68 
Latency 

BlockRAMs, 713 
butterfly path, 694 
C-slow retiming, 392
clock cycle, 507
communication, 247

Lattice ECP2, 83 
Lava, 352 
LCS algorithm, 791-94 

parallel execution, 791 
simulation results, 793, 794 
three-dimensional, 793-94 
two-dimensional, 791-92 

Least significant bit (LSB), 321, 510 
Leiserson's algorithm, 384-86 
LEKO, 282 
LEON benchmark, 398 
Lifetime defects, 848-49 

detection, 848-49 
repair, 849 
See also Defects; Defect tolerance 

Linear placement, 333-35 
Linear time-invariant (LTI) systems, 479-82 

analytic technique, 487-89 
error sensitivity, 489 
scaling with transfer functions, 481-82 
transfer function calculation, 4 79-80 

Linear-feedback shift registers (LFSRs), 98 
Linearization, 490 
List of insignificant pixels (LIP), 569 
List of insignificant sets (LIS), 569, 570 
List of significant pixels (LSP), 569, 570, 

586 
Lithographic scaling, 854-55 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 906



Liveness edges, 165 
Local arrays, 177 
Local minima, 554 
Local RTR, 446--47, 448 
Local sparing, 838-39 
Location update chain, 417 
Logic, 3-6 

duplication, 284 
elements, 4--6 
extended, 12-16 
fast carry chain, 13-14 
glue, 441 
mapping to EMBs, 291-92 
multivalued, 150 
optimization, 342 
programmability, 6 
in RTL, 133 
simultaneous synthesis, 284--86 
unnecessary removal, 466 
verification, 638 

Logic blocks, 5, 6, 13 
Logic class, 259-61 

methods, 260-61 
MUX example, 259-60 
subroutines, 259 

Logic emulation systems, 411, 412-13, 432, 
637-68

background, 637-39 
case study, 653-65 
complexity, 639 
configuration illustration, 639 
coverification, 639-40, 650-51 
fast FPGA mapping, 652-53 
FPGA-based, 637-39 
FPGA-based, advantages, 667 
future trends, 666-67 
in-circuit emulation, 639, 650 
issues, 650-51 
logic analysis, 651 
multi-FPGA, 641-44 
processor-based, 666 
single-FPGA, 640-41 
types, 640-50 
use of, 639-40, 651 
VirtuaLogic VLE, 639, 653-65 

Logic fabric, 3-34, 14--15, 514 
Logic gates, 278 
Logic networks, 278 
Logic processors, 666-67 
LogicGen, 332-33 
Lookup table (LUT), 4-6, 264, 409, 503 

4-input, 507

Index 893 

DA implementation and, 505 
defective, 838 
exponential growth, 504 
functionality, 403 
inputs, 404 
K-input, 277
logic block illustration, 6
as logic "islands," 404
mapping to, 289-90
as memory element, 403
memory size, 509
number per logic block, 5
outputs, 404
physical, 151
size, 5
synchronous, 510

Loops 
fission, 1 77 
fusion, 177 
interchange, 177 
memory dependencies, 178-79 
nest, 177 
reversal, 177 

Loosely coupled RPF and processor 
architecture, 41 

Lossless synthesis, 285 
Low-level languages, genome encoding, 732 
Low-temperature anneal, 311 
Low-voltage differential signaling (LVDS), 

667 
LTI. See Linear time-invariant systems 

M-tap filter, 509-10
Macrocells, mapping to, 292
Macros

hard, 336, 424 
identification, 424 
parameterizable, 493 
soft, 336, 424 

Malware, 762 
appearance, 764 
propagation, 764 

Manual partitioning, 540, 546 
Mapping, 329-33 

1:1, 329-30 
combined approach, 332-33 
component-specific, 837 
DA onto FPGAs, 507-8 
dedicated-wire, 641 
design, with multiple asynchronous 

clocks, 657-61 
incremental, 425-27, 662-63 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 907



894 Index 

Mapping (cont.) 

LUT, 471-72 

multi-FPGA emulator flow, 645 

multiplexed-wire, 642 

multiported memory, 657 

N:l, 330-32 

stages, 414 

Mapping algorithms, 277-93 

area-oriented, 280-82 

complex logic blocks, 290-91 

DAOmap, 282-83 

delay optimal, 283 

FlowMap, 279, 282 

functional, 277 

for heterogeneous resources, 289-92 

IMap, 281-82 

integrated, 278, 284-89 

iterative, 288 

LEKO, 282 

logic to EMBs, 291-92 

LUTs of different input sizes, 289-90 

macrocells, 292 

matching formulation, 841 

MIS-pga, 288 

optimal-depth, 287 

performance-driven, 282-83 

placement-driven, 287-89 

PLAmap, 292 

power-aware, 283-84 

PRAETOR, 280-81 

structural, 277, 278-84 

times, 837 

Markov Models, 78, 768 

Mask parameters, 184, 187 

MasPar, 221 

Master slices, 320, 321 

Matching 
complete, 841 

defect tolerance with, 840-43 

fine-grained Pterm, 841-42 

formulation, 841 

maximal, 841 

MATLAB, 88, 195-97, 198 

Matrix multiply, 6 79-83 

decomposition, 680 

FPGA implementation, 680-81 

implementation, 681 

MACC operations, 680 

maximum achievable performance versus 
memory bandwidth, 683 

memory accesses, 682 

performance, 679, 682-83 

performance of FPGAs and 
microprocessors, 684 

Maximal matching, 841 

Maximum magnitude phase, 582, 583-85 

block diagram, 585 

calculation, 583 

See also SPIHT 
Maxwell's equations, 697 

curl, 698 

discovery, 697 

in rectangular coordinates, 699 

as set of linear equations, 700 

solving, 697 

Memory 
access operations, 158 

access optimization, 172 

C for spatial computing, 157-58 

CAM, 444 

FDTD hardware implementation, 712-15 

FPGA elements, 444 

instruction, 814 

nodes, 175 

PE, 221 

ports, 175, 444 

retiming, 387 

scalar variables in, 169 

SDRAM, 760 

shared, 124-25, 243-44 

single pool, 104-5 

total amount of, 444 

virtual, 246-47 

Memory management unit (MMU), 246, 

247 

Memory-centric computation, 779-802 

algorithmic complexity, 786-94 

parallelism, 794-99 

performance results, 781-86 

See also Active Pages 
Message authentication code (MAC), 775 

Message passing, 124, 244 

Method calls, 244 

Microplacement, 342, 343 

Microprocessors, 439, 441 

MIS-pga algorithm, 288 

Modular robotics, 739 

Module generator interface, 326-29 

data model, 327-28 

flow, 327 

intra-module layout, 328-29 

library specification, 328 

Module generators 
FLAME-based libraries, 327 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 908



flexibility, 326 
PARAMOG library, 338 

Mojave ATR system, 594, 604-6 
machine comparison, 606 
photograph, 605 
results, 604 
used resources, 605 

Moore's Law, 637, 753 
circuit density growth, 49 
process scaling, 826 

MORPH project, 801 
Morton Scan Ordering, 584 
Most significant bit (MSB), 321, 493, 494, 

510 
Multi-context devices, 68-70 

benefits, 69 
configuration bits, 69 
drawbacks, 69-70 
physical capacity, 69 

Multidomain signal transport, 658, 659, 660 
requirement, 660 
retimed, 660 

Multi-FPGA emulation, 641-44 
as complex verification platforms, 641 
constraints, 644 
crossbar topology, 643 
dedicated-wire mapping, 641, 642 
design mapping, 644-45 
high-level flow, 644 
inter- and intra-FPGA connections, 647 
inter-partition logic communication, 641 
interconnection, 647 
mapping flow, 645 
mesh topology, 643 
multiplexed-wire mapping, 642 
partitioning approach, 645-46 
placement approach, 645-46 
routing approaches, 646-50 
topologies, 641, 643 
See also Logic emulation systems 

Multi-SIMD coarse-grained array, 228 
Multi-terminal nets, 420, 421, 425 
Multi-threaded, 106, 123-25 

FSMs with datapaths, 123-24 
message passing, 124 
model, 93 
processors with channels, 124 
shared memory, 124-25 

Multiple wordlength 
adder formats, 494 
optimization for, 478 
paradigm, 476-77 

Index 895 

Multiplexed-wire systems, 642 
circuit mapping, 649 
incremental compilation, 662 
inter- and intra-FPGA connections, 647 
partitioning for, 646 
routing, 648 
utilization of wires, 648 
See also Dedicated-wire systems 

Multiplexers, 401 
2-input, 130-32, 403
4-input, 134-35, 136-38, 404
FSM datapath, 144
if-then-else, 158-59
inputs, 403
logical equations, 133-34
primitive instantiation example, 258
pseudo, 377

Multiplexing 
factors, 796 
nonactive memory and, 798 
performance, 796 
processor width versus, 797-99 

Multiplication function, 405 
Multipliers, 14-15 

area estimation, 495 
constant coefficient, 459, 495 
embedded, 514, 712 
floating point, 677-78 
general cell, 466 
instance-specific, 460 
Lagrangian, 376 
partial evaluation of, 466-70 
shift-add, 467 

Multiply-accumulate (MACC) operations, 
680 

Multiported memory mapping, 657 
Multiprocessing environments, 799 
Multivalued logic, 150 
Multiway partitioning, 313 
Muxes, building, 167 
Myrinet ATR system, 606-7 

host, 606 
photograph, 607 
simulations, 607 

N:1 mapping, 330-32 
NanoPLA, 841 

architecture, 864-70 
basic logic block, 864-6 7 
block illustration, 865 
blocks, 867 
defect tolerance, 869 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 909



896 Index 

NanoPLA (cont.) 

density benefits, 870 
design mapping, 869 
interconnect architecture, 867-69 
memories, 869 
tiling with edge 1/0, 868 
wired-OR planes, 867 

Nanoscale architecture, 853-73 
bottom-up technology, 855-58 
challenges, 858-59 
CMOS pitch matching via tilt, 872 
design alternatives, 870-72 
imprint lithography, 870-71 
interlacing, 871-72 
lithographic scaling, 854-55 
nanoPLA, 864-70 
nanowire circuits, 859-62 
restoration, 872 
statistical assembly, 862-64 

Nanovia, 871 
Nanowire circuits, 859-62 

inverter, 862 
restoration, 860-62 
wired-OR diode logic array, 859-60 

Nanowires, 856-57 
addressing, 866 
angled, 871 
assembly, 857 
decoder for, 863 
doping profiles, 857-58 
field effect controlled, 861 
Langmuir-Blodgett alignment, 857 
statistical selection, 863 
switchable modules between, 858 

NBitAdder design, 262 
NBTI, 848 
NCHARGE API, 772 
Nearest-neighbor connectivity, 7-8 
Negotiated Analytic Placement (NAP) 

algorithm, 315 
Negotiated Congestion Avoidance 

algorithm, 369 
Negotiated congestion router, 367-72 

algorithm, 370-71 
first-order congestion, 368 
iterative, 369 
priority queue, 371 
second-order congestion, 370 

Negotiated congestion/delay router, 372-73 
NetFPGA, 776 
Network Intrusion Detection System 

(NIDS), 460-61 

Network processing 
build motivation, 753-54 
complete system, 770-75 
control and configuration, 771-72 
control channel security, 774-75 
data, with FPGAs, 755-56 
dynamic hardware plug-ins, 773 
hardware/software packet, 754-55 
intrusion detection/prevention, 762-67 
IP wrappers, 758 
layered protocol wrapper 

implementation, 759 
partial bitfile generation, 773-74 
payload processing with regular 

expression scanning, 761-62 
payload scanning with Bloom filters, 762 
payload-processing modules, 760-61 
protocol, 757-62 
rack-mount chassis form factor, 770-71 
with reconfigurable hardware, 753-57 
reconfiguration mechanisms, 772-73 
semantic, 767-70 
system modularity, 756-57 
TCP wrappers, 758-60 

Next-state decoder, 149 
Nodes 

dead, elimination, 170-71 
exit, 165 
memory, connecting, 175 
Seed, 291 

Noise injection, 490-93 
Noise model, 487-88 
Noise propagation, 488-89 
Nonchronological backtracking, 618 
Nondeterministic finite automata (NFA), 

761 
Nonlinear differentiable systems, 489-93 

derivative monitors, 490 
hybrid approach, 489-93 
linearization, 490 
noise injection, 490-93 
perturbation analysis, 489 

Nonrecurring engineering (NRE), 855 
Not a number (NAN), 449 
Number formats, 436 

Object-oriented model, 98 
Objects, 97-98 
On-demand scheduling, 239 
One-time programmable (OTP), 17 
Ontogenetic axis, 727, 744 
Ontogeny, 726 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 910



Open Systems Interconnection ( OSI) 
Reference Model, 757 

Open-ended evolution, 738-39 
Operating system (OS) 

abstracted hardware resources, 234-36 
communication, 243-48 
demands, 232 
dynamic scheduling, 240-41 
flexible binding, 236-39 
on-demand scheduling, 239 
preemption, 242 
protection, 231, 249-51 
quasi-static scheduling, 241 
real-time scheduling, 241-42 
roles, 231 
scheduling, 239-42 
security, 231 
static scheduling, 239-40 
support, 231-52 

Operations 
C for spatial computing, 157 
DFG, 173-74 
MACC, 680 
memory access, 158 
packing into clock cycles, 173-74 

Operator size reduction, 171-72 
dataflow analysis-based, 172 
type-based, 171-72 

Optimization(s) 
common path, 161-62 
compaction, 338-42 
context-sensitive, 340-42 
decidable, 97 
DFG, 164, 169-73 
FPGA placement, 301-2 
instance-specific, 456--57 
interconnect, 110 
logic, 342 
memory access, 172 
for multiple wordlength, 478 
SPIHT, 586 
undecidable, 97 
wordlength, 485-97 
word-level, 339-40 

Ordering edges, 167-68 
absence, 173 
existence, 173 
false, removing, 172 

Packet inspection applications, 761 
Packet switches, 216 
Parallel compilation, VLE system, 665 

Parallel linear array, 531 

Index 897 

based on Virtex-4 DSP48 embedded tile, 
533 

CORDIC, 530-33 
Parallel PathFinder, 377-79 
Parallel program partitioning, 557-58 

alternative region implementations, 557 
evaluation, 557 
exploration, 558 
granularity, 557 
implementation models, 557-58 

Parallel programs, 540 
data dependence, 102 
data parallel, 105 
data-centric, 105-6 
multi-threaded, 106 
sequentialization and, 104-5 
synchronization, 248-49 

Parallelism, 99, 105, 118, 248 
artificial, 105 
bulk synchronous, 118-19 
in compute models, 95 
data, 95, 234, 442 
FDTD, 705-6 
FDTD hardware design case study, 

720-21
in FFT computation, 689 
instruction-level, 95, 234, 796 
maximum possible, 236 
memory-centric computation, 794-99 
PathFinder qualities, 379 
raw spatial, 219 
task, 95 

Parameterizable macros, 493 
Parametric generation, 136-38 
PARAMOG module generator library, 338 
PARBIT tool, 773-74 
Partial evaluation, 462-73 

accomplishing, 462 
cell logic, 468-69 
constant folding in logical expressions, 

464-66
FPGA-specific concerns, 471-73 
functional specialization, 468-70 
geometric specialization, 470 
LUT mapping, 471-72 
motivation, 463 
of multipliers, 466--70 
optimized multiplication circuitry, 468 
in practice, 464-66 
process of specialization, 464 
at runtime, 470-71 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 911



898 Index 

Partial evaluation (cont.) 

static resources, 4 72 
true x value, 4 70 
unnecessary logic removal, 466 
verification of runtime specialization, 

472-73
of XOR gate, 463 

Partial evaluators, 464 
Partially reconfigurable designs, 70-71 
Partition evaluation, 544, 547 

design metric, 547 
dynamic, 548 
heterogeneous, 548 
objective function, 54 7 
parallel program partitioning, 557 
sequential program partitioning, 544, 

547-48
trade-off, 547-48 

Partition-based placement, 312-15 
bipartitions, 312 
hierarchical FPGAs, 313 
multiway partitioning, 312 
recursive partitioning, 313-14 
See also FPGA placement 

Partitioned DWT, 572, 573 
Partitioning, 155, 507 

automatic IIW/SW, 175-76 
automatic, trend, 540-42 
binary-level, 559 
hardware/software, 539-59 
incremental, 661 
for island-style FPGAs, 314 
manual, 540, 546 
multi-FPGA, 645-46

for multiplexed-wire systems, 646 
multiway, 312 
recursive, 313-14 
super-IIWOP, 340 
template, 598-99 

Partitions, 540 
PassAddOrConstant, 673,674 
PATH algorithm, 310 
PathFinder, 216, 312, 365-80 

accelerating, 418-22 
applying A* to, 373-74 
for asymmetric architectures, 373 
bidirectional switches, 377 
circuit graph extensions, 376-77 
circuit graph model, 367 
communication bandwidth, 421 
cost function, 368, 375 
de-multiplexers, 376-77 

distributed memory multiprocessor 
implementation, 378 

enhancements/extensions, 374-77 
implementation, 366 
incremental rerouting, 374-75 
in incrementally rerouting signals, 379 
Lagrangian relaxation relationship, 376 
Nair algorithm versus, 370 
negotiated congestion router, 367-72 
negotiated congestion/delay router, 

372-73
parallel, 377-78 
parallelized, 421 
QuickRoute and, 379 
resource cost, 375 
SC-PathFinder, 366 
in scheduling communication in 

computing graphs, 379 
single-processor, 421 
symmetric device inputs, 376 

Pattern matchers, 470-71 
general bit-level, 471 
instance-specific, 472 
requirements, 4 70 

Pattern matching, 470 
Payload processing, 760-62 

with Bloom filters, 762 
modules, 760-61 
with regular expression, 761-62 

PE. See Processing elements 
Peale estimation, 4 78-85 

analytic, 479-84 
simulation-based, 484 
See also Fixed-point computation 

Perfect component model, 831, 837-38 
Perfect matched layers (PMLs), 702 
Performance 

Active Pages, 781-86 
application, 441-44 
computation, 441-43 
coverification, 650 
DA, 508-11 
dot product, 685-86 
FDTD hardware design case study, 

722-23
FFT, 691-92 
FPGA, 438 
1/0, 443-44 
matrix multiply, 682-83 
multiplexing, 796 
processor width, 796 

Performance-driven mapping, 282-83 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 912



Perturbation analysis, 489 
Peutil. exe utility, 587 
Phased computations, 104 
Phased reconfiguration, 210-11 

manager, 117 
schedule, 215 

Phylogenetic axis, 727 
POEtic tissue, 744 
subdivision, 735 

Phylogeny, 726 
Physical synthesis, 316 
PIM project, 801 
Pipe and Filter, 108 
Pipeline operators, 184 
Pipeline reconfigurable architecture, 73-74 
Pipelined scheduling, 174-75 
Pipelined SIMD/vector processing, 228-29 
Pipelining, 443 

deep, 706 
FDTD hardware design case study, 

719-20
READ/CALCUATE/WRITE, 716 

PipeRench, 32-35 
CAD tools, 34 
DIL, 34 
PEs, 33 
physical stripe, 32 
pipelined configuration, 32 
virtual pipeline stages, 34 
See also Coarse-grained architectures; 

RPF 
Pipes, 99, 213 
Pitch matching, 330 
Placement directives, 302-4 

fixed region, 303 
floating region, 303 
results, 304 
See also FPGA placement 

Placement-driven algorithms, 287-89 
PLAmap algorithm, 292,869 
Plasma architecture, 427, 428 
POE model, 725-27 

axes, 727 
paradigms, 727 

POEtic tissue, 743-45 
Pointer independence, 178 
Poly-phase filter bank (PFB), 200 
Population-oriented evolution, 737-38 
Port mapping, 133 
Power cost, 284 
Power estimation, 488-89 
Power-aware mapping, 283-84 

Index 899 

Power-based ranking, 284 
PRAETOR algorithm, 280-82 

area reduction techniques, 281 
See also Mapping algorithms 

PRAM, 786 
Predicates, 167 
Preemption, 242 
Prefetching, 77 
Primary inputs (Pis), 278, 279 
Primary outputs (POs), 278, 279 
Primitive instantiation, 257-59 
Primitive instruction, 808 
PRISM, 53 
Probability of detection (PD), 592 
Processing elements (PEs), 29, 221-22, 

225-26
data exchange, 221 
index calculation, 227 
memory, 221 
resetting, 221 
SIMD, 317 

Processor width 
multiplying versus, 797-99 
performance, 796-97 

Processors 
with channels, 124 
connecting with communication 

channels, 124 
customizable instruction, 461-62 
SIMD, 219 
VLIW, 164 

Programmable Active Memories (PAM), 
49-50

Programmable chips, 2 
Programmable logic blocks (PLBs), 290-91 
Programmatic circuit generators, 261-63 
Programmer assistance (C compilation), 

176-80
address indirection, 178 
annotations, 178-79 
control structure, 177-78 
data size declaration, 178 
large block integration, 179-80 
local arrays, 177 
loop fission and fusion, 177 
loop interchange, 177 
operator-level module integration, 179 
useful code changes, 176-77 

Protection, 249-51 
hardware, 250-51 
task configuration, 251 

PROXI algorithm, 311-12 
Pterm matching, 841-42 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 913



900 Index 

QRD-RLS (recursive least squares) filtering, 
514 

Quartz system, 361 
Quasi-static scheduling, 241 
QuickRoute, 379 

Rack-mount chassis form factor, 770-71 
RAM 

dedicated, 15 
static (SRAM), 6, 15, 16-17, 767, 775 

Range propagation, 482-84 
Ranking, power-based, 284 
RaPiD, 36-40, 801 

application design, 36 
architecture block diagram, 37 
datapath overview, 38 
instruction generator, 39 
PEs, 38 
programmable controller, 39 
programming, 39-40 
stream generator, 37 
VICs, 39 

RASP system, 304-5 
RAW project, 801 
Real-time scheduling, 241-42, 558 
Reconfigurable Application Specific 

Processor (RASP), 60 
Reconfigurable arrays (RAs), 43 
Reconfigurable Communications Processor 

(RCP), 41 
Reconfigurable computing architectures, 

29-45 
fabric, 30-34 
impact on datapath composition, 324-26 
independent RPF coprocessor, 36-40 
processor + RPF, 40-44 
RPF integration, 35-44 

Reconfigurable computing systems, 47-62 
accelerating technology, 56-59 
AMD/Intel, 55-56 
CAL, 53 
circuit emulation, 54-56 
cloning, 54 
early, 47-49 
F + V. 48 
future, 62 
issues, 61-62 
non-FPGA research, 61 
PAM, 49-50 
PRISM, 53 
small-scale, 52-54 
Splash, 51-52 

supercomputing, 59-60 

Teramac, 57-59 
traditional processor/coprocessor 

arrangement, 48 
vcc, 50-51 
Virtual Wires, 56 

XC6200, 53-54 
Reconfigurable functional units (RFUs), 41 

processor pipeline with, 42 

as RAs, 43 
RFUOPs, 43 
super-scalar processor with, 116 
See also RFU and processor architecture 

Reconfigurable image correlator, 602-3 
Reconfigurable Pipelined Datapaths. See 

RaPiD 
Reconfigurable processing fabric. See RPF 

Reconfigurable static design, 600-4 
application-specific computation unit, 

603-4 
correlation task order, 601-2 
design-specific parameters, 601 
reconfigurable image correlator, 602-3 
zero mask rows, 601-2 
See also ATR 

Reconfigurable supercomputing, 59-60 
CMX-2X, 60
Cray, 60
Silicon Graphics, 60
SRC, 60

Reconfiguration 
configuration, 66-76 
overhead, 65 
phased, 210-11 
phased manager, 117 
process management, 76-80 
RTR, 65, 446-47 
virtual, 741-42 

Reconfiguration management, 65-83 
configuration caching, 77 
configuration compression, 81-82 
configuration data reuse, 82 
configuration grouping, 76 
configuration scheduling, 77-79 
configuration security, 82-83 
configuration transfer time reduction, 

80-82
context switching, 80 
software-based relocation and 

defragmentation, 78-80 
Recursive partitioning, 313-14 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 914



Recursive Pyramid Algorithm (RPA), 572 
Reflection, 269 
Register Transfer Level (RTL), 87, 129 

logic organization, 133 
VHDL description, 133-36 

Regular expression (RE), 761 
Regularity 

circuit layout, 319 
datapath composition, 320-22 
importance, 344 
inter-HWOP, 339 

Relocation, 71-73, 237 
device support, 77 
software-based, 79-80 
support problem, 80 

Rent's Rule, 642 
Repipelining, 389-90 

feedforward computations, 389 
FPGA effects on, 391 
latency cycles, 390 
retiming derivation, 389 
throughput improvement, 390 

Reprogrammable application devices 
(RADs), 756 

Resonant-tunneling diodes (RTDs), 872 
Resource cost, PathFinder, 375 
Retiming 

adoption limitation factors, 398 
area-time tradeoffs, 111 
Bellman-Ford algorithm, 386 
benefit, 388 
constraint system, 385 
correctness, 386 
covering and, 286 
design limitations, 387 
effect, 287 
FFs, 286 
on fixed-frequency FPGAs, 394-95 
FPGA effects on, 391 
global set/reset constraint, 387 
goal, 384 
implementations, 393-94 
with initial conditions, 387 
integrated, 286-87 
Leiserson's algorithm, 384-86 
memories, 387 
multiple clocks and, 387-88 
operation, 383 
problem and results, 388 
sequential control, 110 
as superlinear, 398 

Index 901 

See also C-slow retiming 
RFU and processor architecture, 41-42 

datapath, 42 
processor pipeline example, 42 

RGB data 
conversion, 185-87 
cycle alignment, 186 

RightSize, 493 
Rock's Law, 855 
Rollback, 845-48 

communications, 847-48 
detection, 846 
recovery, 84 7 
scheme, 849 
for tolerating configuration upsets, 

849-50
Rotation 

CORDIC, 515-18 
Given's, 514 
in matrix form, 515 
micro-rotations, 526 
as product of smaller rotations, 515 
signal flow graph, 518 
vector growth factor, 518 

Rotation mode, 514-17 
micro-rotation extensions, 516 
as z-reduction mode, 517 
See also CORDIC 

Routability-driven algorithms, 301 
Routing, 215-16 

congestion, 302 
FPGA resources, 348 
global, 366 
hierarchical, 10-12, 301 
horizontal, 308 
incremental, 661 
multi-FPGA emulation, 646-50 
multiplexed-wire systems, 648 
nearest-neighbor, 7-8 
negotiated congestion, 367-372 
Pathfinder-style, 422 
physical FPGA modifications for, 430 
programmable resources, 12 
SCORE, 215-16 
search wave, 419 
segmented, 8-10 
simultaneous placement and, 311-13 
solutions, 365-66 
vertical, 308 
VPR, 314, 372 

Rows 
skipping, 602 
zero mask, 601-2 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 915



902 Index 

RPF and processor architectures, 40-44 
Chimaera, 42-44 
loosely coupled, 41 
tightly coupled, 41-42 

RPFs, 29 

architectures, 30-34 
coarse-grained, 32-33 
dynamic; 29 
fine-grained, 30-32 
independent coprocessor, 36-40 
integration into traditional systems, 

35-44 
integration types, 35-36 
locations in memory hierarchy, 35 
RaPiD, 36-40 
static, 29, 901 

RTL. See Register 'Iransfer Level 
Rule tables, 738 
Runtime binding, 237-38 
Runtime netlist compilation, 213, 411, 

413-14
dynamically compiled applications and, 

414 
requirement, 432 

Runtime reconfiguration (RTR), 65, 446-47 
applications, 447 
global, 446, 447 
local, 446-47, 448 

Runtime Reconfigured Artificial Neural 
Network (RRANN), 447 

Runtime specialization, 472-73 

Sandia algorithm, 594 
SAR. See Synthetic Aperture Radar 
SAT solvers, 618-27 

algorithms, 633 
backtrack algorithm implementation, 

619-24
differences among, 633 
follow-on, 627-33 
future research, 634-35 
global topology, 621 
HW/SW organization, 633 
implementation issues, 631-33 
improved backtrack algorithm 

implementation, 624-27 
logic engine implementation, 633 
performance, 630-31 
problem analysis, 618-19 
runtime performance, 623 
simultaneous exploration of multiple 

states, 635 

system architecture, 627-30 
system-level design and synthesis 

methodologies, 634 
See also Boolean satisfiability 

Satisfiability (SAT) 
Boolean, 282, 613-35 
FPGA-based solvers, 413 
problem, 413 

Sblocks, 742 
SC-Pathfinder, 366 
Scaling 

CORDIC algorithm, 517-19 
CORDIC, compensation, 534 
FPGA, 411, 412, 431-32 
Moore's Law process, 826 
with transfer functions, 481-82 
wordlength, 477 

Scheduling 
configuration, 77-79 
dynamic, 240-41 
module-mapped DFG, 174 
on-demand, 239 
operating system, 239-42 
pipelined, 174-75 
preemption, 242 
quasi-static, 241 
real-time, 241-42, 558 
SCORE, 213-15 
static, 239-40 
window-based, 79 

SCORE, 74, 203-217 
application illustration, 204 
back-pressure signal, 210 
C++ integration and composition, 206-8 
compilation, 212-13 
compilation flow, 212 
computations, 205 
execution patterns; 208-12 
fixed-size, 211-12 
as higher-level programming model, 203 
highlights, 217 
operators, 205, 206, 207 
phased reconfiguration, 210-11 
platforms, 215 
programming, 205-8 
runtime, 203, 213-16 
scalability, 203 
scheduling, 213-15 
sequential versus parallel, 211 
standard 1/0 page, 211-12 
stream support, 209-10 
system architecture, 208-12 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 916



TDF, 205--6 
virtualization model, 213 

SCPlace algorithm, 310 
SDF, 88, 99-100, 184 
SDRAM memocy, 760, 775 
Sea Cucumber, 270 
Search 

alternative procedures, 497 
heuristic procedure, 496-97 
techniques, 496-97 

Search space, 728 
Second-Level Detection (SLD), 592-94 

as binacy silhouette matcher, 593 
shape sum, 593 
steps, 593-94 
target models, 593 
See also ATR 

Semantic processing, 767-70 
dataflow, 769 
language identification, 767-68 
of TCP data, 768-70 

Sensitivity list, 135 
Sequential control, 103-5, 110-18 

with allocation, 104 
compute task, 110 
data dependencies, 110 
data-dependent calculations, 104 
Deterministic Finite Automata, 103 
finite-state, 104 
FSMD, 112 
instruction augmentation, 115-16 
phased computations, 104 
phased reconfiguration manager, 117 
processo� 114-15 
single memocy pool, 104-5 
VLIW, 113-14 
worker farm, 117-18 

Sequential program partitioning, 540 
alternative region implementation, 544, 

549-50
Amdahl's Law and, 542, 543 
automatic, 175-76 
exploration, 544, 552-57 
granularity, 544, 545-47 
ideal speedups, 543 
implementation models, 550-52 
manual, 176 
partition evaluation, 544, 547-48 

Sequential Turing Machines, 103 
Sequentialization, 117 
Set Partitioning in Hierarchical Trees. See

SPIHT 

Index 903 

Shared instructions, 815-16 
Shared memocy, 124-25, 243-44 

abstraction, 244 
implementations, 243 
pools, 124, 125 

Shared-wire global signaling, 628 
Signal-processing primitives, 198 
Signal-to-noise ratio (SNR), 486 
Signal-to-quantization-noise ratio (SQNR), 

486 
Silicon Graphics supercomputers, 60 
SIMD (single-instruction multiple data), 

120, 219-22 
algorithm compilation, 226 
ALU control, 826 
array size, 224 
bit-processing elements, 817 
computing on FPGAs, 219-21 
datapaths, 815, 818 
dot-product machine, 220-21 
extended architecture, 227 
interprocessor communication model, 

224 
multiple engines, 226-28 
with pipelined vector units, 229 
processing architectures, 221-22 
processing array, 221, 222 
processors, 219 
width mismatches, 820 
width selections, 820 

SIMD/vector processing, 120-22 
model, 229-30 
multi-SIMD coarse-grained array, 228 
multiple SIMD engines, 226-28 
pipelined, 228-29 
reconfigurable computers for, 223-26 
SPMD model, 228 
variations, 226-28 

Simulated annealing, 306-12 
accelerating, 415-18 
annealing schedule, 307 
complexity, 556 
cost function, 306 
distributed, 415 
hardware-assisted, 418 
hierarchical algorithm, 310-11 
key feature, 556 
low-temperature anneal, 311 
meta-heuristics, 497 
move generator, 306 
parallelized, 416 
schedule, 307 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 917



904 Index 

Simulated annealing (cont.) 

simultaneous placement and routing, 
311-12

strengths, 307 
temperature schemes, 415 
VPR/related algorithms, 307-11 

Simulated annealing placer, 836 
Simulation, 486 
Simulation-based peak estimation, 484 
Simulink 

2D video filtering, 187-91 
component reuse, 198-200 
control specification, 194-98 
high-level algorithm designer, 188 
image-processing design driver, 185-94 
library browser, 196 
mapping video filter to BEE2 platform, 

191-94
Mask Editor, 198 
mask parameters, 184 
operator primitives, 183 
pipeline operators, 184 
programming streaming FPGA 

applications in, 183-202 
RGB video conversion, 185-87 
RGB-to-Y diagram, 286 
SDF, 184 
subsystems, 184 
System Generator, 184 
top-level testbench, 192-93 

Simultaneous logic synthesis, 284-86 
Sine, 437 
Single-context FPGAs, 67-68 
Single-FPGA emulation, 640-41 
Single-instruction multiple data. See SIMD 
Single memory pool, 104-5 
Single program, multiple data. See SPMD 
Single-rate synchronous dataflow, 99 
Singular value decomposition (SVD), 514 
SLD. See Second-level Detection 
Small-scale reconfigurable systems, 

52-54
SMAP algorithm, 291 
Snapshots, 847 
SNORT, 445, 775 

CPU time, 461 
database, 761 
intrusion detection, 753 
intrusion filter for TCP (SIFT), 765 
rule-based NID sensor, 763 

Sobel edge detection filter, 188, 191, 201 
Soft macros, 336, 424 

Sorter 
case study, 357-60 
with layout information removed, 362 
recursion and layout, 360-61 
recursive structure, 357 

Sparing 
defect tolerance through, 835-39 
global, 836-37 
local, 838-39 
row and column, 837 
yield with, 834-35 

Spartan-3E, 530 
Spatial computations, 157 
Spatial computing, 155-80 
Spatial orientation trees, 569, 584 
Spatial simulated annealing, 215 
SPIHT, 565-88 

architecture phases, 581-82 
bitstream, 578, 579 
coding algorithm, 570 
coding engine, 568-71 
coding phase, 582, 585-86 
design considerations/modifications, 

571-80
design overview, 581-82 
design results, 587-88 
DWT architectures, 567, 571-75 
DWT phase, 582 
engine runtimes, 588 
Fixed Order, 578-80 
fixed-point precision analysis, 575-78 
hardware implementation, 580-86 
image compression, 565-88 
image quality, 568 
LIP, 569 
LIS, 569, 570 
LSP, 569, 570, 586 
maximum magnitude phase, 582, 583-85 
Morton Scan Ordering, 584 
optimization, 586 
performance numbers, 587 
spatial orientation trees, 569, 584 
target hardware platform, 581 
wavelet coding, 569 

Spiral antenna model, 704, 705 
Splash, 51-52 
SPMD (single program, multiple data), 120 

in parallel processing clusters, 228 
SIMD versus, 228 

Springtime PCI (SPCI) card, 664 
Square-root operation, 437 
SRC supercomputers, 60 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 918



Standalone Board-level Evolvable System 
(SABLES), 745 

Static FPGAs, 600 
Static RPF, 29 
Static scheduling, 239--40 
Static-RAM (SRAM), 6, 15, 16-17, 814 

analyzer, 767 
cells, 17, 814 
drawbacks, 17 
parallel banks of, 775 

Straight-line code, 156 
Stream computations, 217 

compilation, 212-13 
execution patterns, 208-12 
organization, 203-1 7 
programming, 205-8 
runtime, 213-16 
system architecture, 107-110, 208-12 

Stream generator, 37 
Streaming dataflow, 107-10 

with allocation, 102-3 
data presence, 108-9 
datapath sharing, 109 
dynamic, 100-2 
interconnect sharing, 110 
streaming coprocessors, 109-10 

Streaming FPGA applications, 183-202 
component reuse, 198-200 
high-performance datapaths, 184 
image-processing design driver, 185-94 

Streams, 37, 99, 244-46 
abstraction, 245--46 
input, 99 
multirate, 100 
persistence, 245--46 
SCORE, 209-10 
video, 185, 202 
write, 206 

Structural mapping algorithms, 278-84 
area-oriented, 280-82 
cut generation, 279 
DAOmap, 282-83 
dynamic programming basis, 278-79 
FlowMap, 279, 282 
!Map, 281-82
LEKO, 282
performance-driven, 282-83
power-aware, 283-84
PRAETOR, 281-82
See also Technology mapping

Subsystems, 184 
with configurable delays, 187 

Index 905 

stream-based filtering, 190-91 
tiled, 198-200 

Super-HWOP, 340--41 
building, 342--43 
microplacement, 342, 343 
partitioning, 340 

Superslices, 340, 342 
Swap negotiation, 417 
Swappable logic units (SLU), 74 
SWIM project, 801 
Switch blocks 

example architecture, 10 
island-style architecture with, 9 

Switch boxes, 409 
connectivity, 429 
style and routability, 429 

Synchronization, 248--49 
deadlock prevention, 249 
explicit, 248 
implicit, 248--49 
thread-style, 248 

Synchronous Data Flow. See SDF 
Synopsys FPGA compiler, 393 
Synoptix, 493 
Synplicity Identify tool, 272 
Synthetic Aperture Radar (SAR) 

ATR in, 591 
Sandia real-time, 592 

System architectures, 107-25 
bulk synchronization pattern, 118-19 
cellular automata, 122-23 
data parallel, 119-22 
hierarchical composition, 125 
multi-threaded, 123-25 
sequential control, 110-18 
streaming dataflow, 107-10 

System Generator library, 184 
SystemC, 205, 542 
Systolic image array pipeline, 603--4 

T-VPack algorithm, 305, 306
Tail duplication, 164
Task configuration protection, 251
Task Description Format (TDF), 205--6

behavioral operator, 206 
compositional operator, 208 
operators, 208 
as portable assembly language, 207 
specification, 206, 207 

Taylor coefficients, 490 
Taylor expansion transformation, 490 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 919



906 Index 

TCP processing, 758-60 
block diagram, 760 
circuit development, 759 
semantic, 768-70 
See also Network processing 

Techmapper class, 260, 264, 272 
Technology mapping, 277-93 

algorithms, 277 
algorithms for heterogeneous resources, 

289-92
functional algorithms, 277 
integrated, 278, 284-89 
in logic synthesis flow, 278 
optimal solutions, 285 
structural algorithms, 277, 278-84 

Templates 
correlation between, 598 
grouping example, 599 
partitioning, 598-99 

Teramac, 57-59 
applications, 58-59 
features, 58 
in hardware prototyping applications, 427 

Terasys Integrated Circuit, 221 
Terminal propagation, 314, 315 
Ternary content addressable memory 

(TCAM), 764 

Test pattern generation, 614, 615 
Testbenches 

dynamic, 269-70 
JHDL, 265-66 

Theoretical underpinnings, 807-27 
Tightly coupled RPF and processor 

architecture, 41-42 
Tiled subsystems, 198-200 
Timing-driven algorithms, 301, 302 
Topology matching, 329 
1hmsaction application protocol interface 

(TAPI), 664 
Transaction-based host-emulator 

interfacing, 650-51 
Transfer functions 

for nonrecursive systems, 480 
scaling, 481-82 

Transformations, 555 
Transient faults, 830 

feedforward correction, 844-45 
rollback, 845-48 
tolerance, 843-48 

Translation lookaside buffer (TLB), 247, 
397 

1Hple modular redundancy (TMR), 844-45, 
849 

1Hple-key DES, 83 
Truth tables, 4 
Turing Machine, 96 
Turing-Complete compute models, 97, 119 
Two-dimensional placement, 336-37 

bin-based, 336 
constrained, 335-36 

Two-dimensional video filtering, 187-91 

Uniaxial PML (UPML), 702, 706, 721 
User datagram protocol (UDP), 758 

Variable fixed-rate representation, 577 
Variable-length chromosome GAs (VGAs), 

735 
Variables 

live at exits, 168-69 
scalar, in memory, 169 

Vector architectures, 120-21 
functional units, 121 
motivation, 120 
sequential controller, 120 

Vector coprocessors, 121-22 
Vector functional units, 121, 229 
Vectoring mode, 519-20 

convergence, 520 
implementations, 519 
range extension, 525 
simulation, 519 
as y-reduction mode, 519 
See also CORDIC 

Verilog, controller design with, 197 
Very High-Speed Integrated Circuit 

Hardware Description Language 
(VHDL), 87-88, 129-53 

Active Pages, 782 
concurrent statements, 144, 150 
controller design with, 197 
delta delay, 150 
design development, 130 
FSM datapath example, 138-49 
gates, 130 
hardware compilation flow and, 150-52 
hardware descriptions, 153 
hardware module description, 132-33 
limitations, 153 
multivalued logic, 150 
parametric hardware generation, 136-38 
popularity, 129 
port mapping, 133 

' 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 920



ports, 133 
programming, 130-50 
RTL description, 133-36 
sequential, comparison, 149 
signals, 133 
structural description, 130-33 
submodules, 133 
syntax, 153 

Very long instruction word (VLIW), 61, 
113-14, 795-97

computational elements, 795 
processors, 164 
of single multiply and add datapath, 113 
time-slicing, 795 
width, 797 

Virtual circuit identifier (VCI), 756 
Virtual Computer, 50-51 
Virtual instruction configurations (VICs), 29 

Chimaera architecture, 43--44 
RaPiD, 39 
speculative execution, 43 

Virtual memory, 246--4 7 
Virtual path identifier (VPI), 756 
Virtual reconfiguration, 741--42 
Virtual Wires, 56 
Virtualized I/O, 72 
Virtually addressed caches, 397 
VirtuaLogic family, 642 
VirtuaLogic VLE emulation system, 639, 

653-65
array boards, 653-55 
case study, 653-65 
design clock cycle, 656 
design partitions, 655 
emulation mapping flow, 654 
emulator system clock speed, 665 
incremental compilation of designs, 

661-64
incremental mapping, 662 
incremental partitioning, 661 
incremental path identification, 661 
incremental routing, 661 
inter-FPGA communication, 656 
interfaces for coverification, 664-65 
intra-FPGA computation, 656 
multidomain signal transport, 658, 659, 

660 
multiported memory mapping, 657 
netlist comparison, 661 
parallel FPGA compilation, 665 
partitioning, 654 
software flow, 654-57 

Index 907 

specialized mapping techniques, 657 
statically scheduled routing, 656 
structure, 653-54 
See also Logic emulation systems 

Vrrus protection, 763-64 
VLSI, CORDIC algorithm in, 514 
VPack algorithm, 305 
VPR, 307-11 

annealing schedule, 307 
delay computation, 309-10 
enhancements, 310 
move generator, 307 
range limit update, 307-8 
recomputation, 310 
router, 314, 372 

VStation family, 642 

Washington University Gigabit Switch 
(WUGS), 756 

Wavelets, 567 
coding, 569 
spatial orientation trees, 569 

Wildcards (*), 152, 761 
WildStar-II Pro PFGA board, 708-9 

block diagram, 709 
features, 708 
memory hierarchy levels, 713 
Xilinx Virtex-II Pro FPGAs on, 722 

Window-based scheduling, 79 
Wire congestion, 312 
Wired-OR diode logic array, 859-60 
Wordlength 

control over, 523 
scaling, 4 77 

Wordlength optimization, 485-97 
area models, 485-96 
error estimation, 485-96 
problem, 499 
search techniques, 496-97 
simulation-based methods, 487 

Word-level optimization, 339--40 
Word-wide datapaths, 216, 815 
Worker farms, 117-18 
Worm detection, 766-67 
Worm protection, 763-64 

Xilinx 6200 series FPGA, 53-54, 81 
cell configuration, 732 
CLBs, 741 
EHW platforms and, 740-41 
"open" bitstream, 408 
wildcard registers, 81 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 921



908 Index 

Xilinx 
ChipScope, 271 
Core Generator IP, 348 
EasyPath series, 842 
Embedded Development Kit (EDK), 197 
MicroBlaze, 194, 347 
Virtex 2000E FPGA, 581 
Virtex-4, 530, 533 
XC 4036EX FPGA, 632 
XC4VLX200 FPGA, 623 
XC4000 library, 596 

Xilinx Virtex-11 Pro, 23-26, 68, 83, 530, 721 
CLBs, 23-24 
IBM PowerPC 405-D5 CPU cores, 25 
logic architecture, 23-25 
multiplier blocks, 24 

routing architecture and resources, 25-26 
SelectRAM+, 24, 25 
on WildStar-11 Pro board, 722 
XC2VP100, 24 

XOR gates, 463, 464 

Y-reduction mode, 519
YaMoR, 739
Yield, 832-85

Law of Large Numbers impact, 835 
perfect, 833-34 
with sparing, 834-35 
See also Defect tolerance 

Z-reduction mode, 517
Zero mask rows, 601-2

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 922



RECONFIGURABLE COMPUTING: THE THEORY AND 

PRACTICE OF FPGA-BASED COMPUTATION 

N 

In the two decades since field-programmable gate arrays (FPGAs) were intro­

duced, they have radically changed the way digital logic is designed and deployed. 

By marrying the high performance of custom VLSI chips with the flexibility of 

microprocessors, FPGAs have made possible entirely new types of applications. 

From full-chip logic verification to radar and image-processing tasks, FPGA­

based solutions are often the most efficient way to perform some of today's most 

challenging tasks. 

To make the most of this unique combination of performance and flexibility, designers must 

understand hardware, software, and FPGA-based application development. This book will 

teach designers all these issues, enabling them to exploit the vast opportunities possible 

with reconfigurable logic. The book includes: 

• Introduction to FPGA chips and computing boards, including current devices,

reconfigurable computing-specific chips, and fast reconfiguration systems.

• Models and languages for coding reconfigurable computing applications.

• CAD flows for automatically mapping to reconfigurable systems.

• Application development and optimization techniques critical for achieving

high-quality FPGA-based designs.

• Nine in-depth case studies of important FPGA applications.

• Simple models for understanding the source of the FPGA benefits and the outlook

for reconfigurable systems as Moore's Law scaling continues.

This book provides a jumping on point for students and engineers from both hardware and 

software backgrounds to the challenges and opportunities associated with reconfigurable 

computing. 

NEW 

HORGAN KAUFMANN PUBLISHERS 

AN IMPRINT OF ELSEVIER 

www.mkp.com 

COMPUTING/ 

COMPUTER 

HARDWARE 

AND DESIGN 

ISBN 978-93-80931-86-9 

I 

E D y R 

ELSEVIER 

HO 

I 

THE MORGAN 
KAUFMANN SERIES 

IN SYSTEMS ON 

9 789380 931869 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 923




