
12.6 Summary 273

users can download either compiled JAR files of the JHDL system, or they can
download and build JHDL from sources themselves. Documentation on the
JHDL system is provided as well.

References

[1] P. Bellows, B. L. Hutchings. JHDL-An HDL for reconfigurable systems. Proceed
ings of IEEE Workshop on FPGAs for Custom Computing Machines, April 1998.

[2] P. Bertin, D. Roncin, J. Vuillemin. Programmable active memories: A performance
assessment. In G. Borriello, C. Ebeling (eds.). Research on Integrated Systems:
Proceedings of the 1993 Symposium, 1993.

[3] P. Bertin, H. Touati. PAM programming environments: Practice and experience. In
D. A. Buell, K. L. Pocek (eds.). Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, April 1994.

[4] D. Galloway. The transmogrifier C hardware description language and compiler for
FPGAs. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[SJ P. Graham, B. Nelson, B. Hutchings. Instrumenting bitstreams for debugging
FPGA circuits. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2001.

[6] P. S. Graham. Logical Hardware Debuggers for FPGA-Based Systems, Ph.D. thesis,
Brigham Young University, 2001.

[7] K. S. Hemmert, J. L. Tripp, B. L. Hutchings, P. A. Jackson. Source level debugger
for the Sea Cucumber synthesizing compiler. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 2003.

[8] B. L. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, M. Rytting. A
CAD suite for high-performance FPGA design. Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, April 1999.

[9] C. Iseli, E. Sanchez. A C++ compiler for FPGA custom execution units synthe
sis. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[10] W. J. Landaker, M. J. Wirthlin, B. L. Hutchings. Multitasking hardware on the
SLAAC 1-V reconfigurable computing system. Proceedings of the 12th Interna
tional Workshop on Field-Programmable Logic and Applications, Springer-Verlag,
September 2002.

[11] J. L. Tripp, P. A. Jackson, B. L. Hutchings. Sea Cucumber: A synthesizing compiler
for FPGAs. Proceedings of the 12th International Workshop on Field-Programmable
Logic and Applications, Springer-Verlag, September 2002.

[12] T. Wheeler, P. Graham, B. Nelson, B. Hutchings. Using design-level scan to improve
FPGA design observability and controllability for functional verification. Proceed
ings of the 11th International Workshop on Field-Programmable Logic and Applica
tions, Springer-Verlag, August/September 2001.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 301

MAPPING DESIGNS TO

RECONFIGURABLE PLATFORMS

PART Ill

The chapters that follow cover the key mapping steps unique to
field-programmable gate arrays (FPGAs) and reconfigurable targets.
These steps include technology mapping to the primitive FPGA pro
grammable gates (Chapter 13), placement of these gates (Chapters 14
through 16), routing of the interconnect between gates (Chapter 17),
retiming of registers in the design (Chapter 18), and bitstream genera
tion (Chapter 19). A final chapter summarizes a number of approaches to
accelerating various stages of the mapping process (Chapter 20).

Placement is a difficult mapping problem, but is critical to the
performance of the resulting reconfigurable design. As a result, it can be
very slow, limiting the rate of the edit-compile-debug loop for reconfig
urable application development, and the designs it produces may have
longer cycle times than we would like. For these reasons, in addition
to the general-purpose algorithms for placement covered in Chapter 14,
algorithms that are highly optimized to exploit the regularity of data
paths are discussed in Chapter 15, and constructive approaches to lay
out are treated in Chapter 16. These more specialized approaches can
significantly reduce placement runtime and often deliver placements that
allow faster design operation.

As Chapters 13 through 20 demonstrate, there is a well-developed set
of approaches and tools for programming reconfigurable applications.
However, the tools are always slower than we might like them to be, espe
cially as FPGA capacities continue to grow with Moore's Law. Moreover,
the designs they produce are often too large or too slow, and the level at
which we must program them is often lower than optimal. These defi
ciencies present ample opportunities for innovation and improvement in
software support for reconfigurable systems.

For the designer who works on reconfiguration issues, the follow
ing chapters provide a look under the covers at the tools used to map
designs and at the problems they must solve. It is important to under
stand which problems the tools are and are not solving and how well
they can be expected to work. An understanding of the mapping flow and
algorithms often helps the designer appreciate why tools may not produce

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 302

276 Part III ■ Mapping Designs to Reconfigurable Platforms

the quality of results expected and how the design could be optimized to
obtain better results. Similarly, understanding the problems that the tools
are solving helps the designer understand the trade-offs associated with
higher- or lower-level designs and how to mix and match design levels to
obtain the desired quality of results with minimal effort.

For the tool or software developer, this part covers the key steps
in a traditional tool flow and summarizes the key algorithms used to
map reconfigurable designs. With this knowledge the developer can
rapidly assimilate conventional approaches and options and thus pre
pare to explore opportunities to improve quality of results, reduce tool
time, or increase automation and raise the configurable design's level of
abstraction.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 303

TECHNOLOGY MAPPING

Jason Cong
Department of Computer Science
California NanoSystems Institute
University of California-Los Angeles

Peichen Pan
Magma Design Automation, Inc.

CHAPTER 13

Technology mapping is an essential step in an field-programmable gate array
(FPGA) design flow. It is the process of converting a network of technology
independent logic gates into a network comprising logic cells on the target FPGA
device. 'i'echnology mapping has a significant impact on the quality of the final
FPGA implementation.

Technology-mapping algorithms have been proposed for optimizing area
[29, 36, 58, 65], timing [9, 12, 13, 19, 21, 37, 58], power [2, 8, 34, 45, 52, 71],
and routability [3, 67]. Mapping algorithms can be classified into those for gen
eral networks [13, 16] and those for special ones such as treelike networks
[35, 36]. Algorithms for special networks may be applied to general ones through
partitioning, with a possible reduction in solution quality.

Technology-mapping algorithms can be structural or functional. A structural
mapping algorithm does not modify the input network other than to duplicate
logic [12, 13]. It reduces technology mapping to a covering problem in which
the technology-independent logic gates in the input network are covered with
logic cones such that each cone can be implemented using one logic cell-for
example, a K-input lookup table (K-LUT)-for LUT-based FPGAs. Figure 13.1
is an example of structural mapping. The logic gates in the original network
(a) are covered with three logic cones, each with at most three inputs, as indi
cated (b). Note that node i is included in two cones and will be duplicated. The
corresponding mapping solution (c) comprises three 3-LUTs.

A functional mapping algorithm, on the other hand, treats technology map
ping in its general form as a problem of Boolean transformation/decomposition
of the input network into a set of interconnected logic cells [15, 48, 58, 60].
It mixes Boolean optimization with covering. Functional mapping algorithms
tend to be time consuming, which limits their use to small designs or to small
portions of a design.

Note: This work is partially supported by the National Science Foundation under grant number
CCF 0530261.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 304

278 Chapter 13 • Technology Mapping

Recent advances in technology mapping try to combine mapping with other
steps in the design flow. Such integrated mapping algorithms have the potential
to explore a larger solution space than is possible with just technology mapping
and thus have the potential to arrive at mapping solutions with better quality.
For example, algorithms have been proposed to combine logic synthesis with
covering to overcome the limitations of pure structural mapping [11, 22, 57].

13.1 STRUCTURAL MAPPING ALGORITHMS

Technology mapping is part of a logic synthesis flow, which typically consists of
three steps. First, the initial network is optimized using technology-independent
optimization techniques such as node extraction/substitution and don't-care
optimization [33]. Second, the optimized network is decomposed into one con
sisting of 2-input gates plus inverters (that is, the network is 2-bounded) to
increase flexibility in mapping [12, 36]. Third, the actual mapping takes place,
with the goal of covering the 2-bounded network with K-LUTs while optimizing
one or more objectives. In the remaining discussion, we assume that the input
network is 2-bounded.

A logic network can be represented as a graph where the nodes represent logic
gates, primary inputs (Pis), and primary outputs (POs). The edges represent the
interconnects or wires. A cut of a node v is a set of nodes in the input network
such that every path from the primary inputs or sequential element outputs to
v contains at least one node in the set. A K-cut is a cut with at most K nodes.
For example, {a, b, z} is a 3-cut for the node yin the network in Figure 13.l(a).
Given a K-cut for v, we can obtain a K-LUT for v by collapsing the gates in
the logic cone between the nodes in the cut, v, including v itself. For the 3-cut
{a, b, z} fory, the 3-LUT fory in Figure 13.l(c) is derived from the corresponding
cone indicated for yin Figure 13.l(b).

(a) (b) (c)

FIGURE 13.1 ■ Structural technology mapping: (a) original network, (b) covering, and (c) mapping
solution.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 305

13.1 Structural Mapping Algorithms 279

Most structural mapping algorithms are based on the dynamic programming
technique. They typically consist of the following steps:

1. Cut generation/enumeration
2. Cut ranking
3. Cut selection
4. Final mapping solution generation

Cut generation obtains one or more cuts that will be used to generate LUTs;
it is discussed in the next section. Cut ranking evaluates the cuts obtained in
cut generation to see how good they are based on the mapping objectives. It
assigns a label or cost to each cut by visiting the nodes in a topological order
from Pis to POs. Cut selection picks a cut with the best label for each node and
is typically done in reverse topological order from POs to Pis. Cut ranking and
selection may be carried out multiple times to refine solution quality.

After the final cut selection, a mapping solution is generated using the selected
cuts. In this step, the nodes are visited in the reverse topological order, starting
from POs and going back to Pis. At each node, a cut with the best label is
selected and the corresponding LUT is added to the solution. Next, the nodes
that drive the LUT are visited. This process is repeated until only Pis are left.
At that point, a complete mapping solution is obtained.

13. 1. 1 Cut Generation

Early mapping algorithms combine cut generation and selection to determine
one or a few "good" cuts for each node. The most successful example is the
FlowMap algorithm, which finds a single cut with optimal mapping depth at
each node via max-flow computation [16]. It computes the optimal mapping
depth of each node in a topological order from Pis to POs, and at each node uses
a max-flow formulation to test whether that node can have the same optimal
mapping depth as the maximum depth of its input nodes. If not, the depth is
set to one greater than the input nodes' maximum depth. It is shown that these
are the only two possible mapping depths. The FlowMap algorithm was the first
polynomial time algorithm to find a depth-optimal mapping solution for LUT
based FPGAs.

In practice, K, the number of inputs of the LUTs, is a small constant typically
ranging between 3 and 6. It becomes practical to enumerate all K-cuts for each
node. With all cuts available, we have additional flexibility in selecting cuts to
optimize the mapping solution.

Cuts can be generated by a traversal of the nodes in a combinational network
(or the combinational portion of a sequential network) from Pis to POs in a
topological order [29, 67]. Let cl>(v) denote the set of all K-cuts for a node v.

For a PI, cl>(v) contains only the trivial cut consisting of the node itself, that is,
cl>(v) = {{v}}. For a non-PI node v with two fanin nodes, u1 and u2, cl>(v) can be
computed by merging the sets of cuts of u1 and u2 as follows:

(13.1) <l>(v) = { {v} U {c1 Uc2lc1 E <l>(u1), c2 E <l>(u2), let Uc2I} <= .K}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 306

280 Chapter 13 • Technology Mapping

In other words, the set of cuts of v is obtained by the pairwise union of the
cuts of its fanin nodes and then the elimination of those cuts with more than
K nodes. Note that the trivial cut is added to the set. This is necessary so the
nodes driven by v can include v in their cuts.

13.1.2 Area-oriented Mapping

For LUT mapping, the area of a mapping solution can be measured by the total
number of LUTs. It has been shown that finding an area-optimal mapping solu
tion is NP-hard [35]. Therefore, it is unlikely that there is an accurate way to
rank cuts for area. The difficulty of precise area estimation is mainly due to the
existence of multiple fanout nodes. In fact, for treelike networks, area-optimal
mapping solutions can be determined in polynomial time [35].

Cong et al. [29] proposed the concept of effective area as a way to rank
and select cuts for area. A similar concept, area -flow, was later proposed by
Manohararajah et al. [55]. Intuition regarding effective area is to distribute the
area for a multi-fanout node to its fanout nodes so that logic sharing and recon
vergence can be considered during area cost propagation. Effective areas are
computed in a topological order from Pis to POs. The effective area a(v) of a PI
node v is set to zero. Equation 13.2 is used to compute the effective area of a cut:

a(c) = (LuEc [a(u);[output(u)I]) +Ac (13.2)

where Ac is the area of the LUT corresponding to the cut c. The area cost of a
non-PI node can then be set to the minimum effective area of its cuts: a(v) =
min{a(c)['v'u E <l>(v)}.

It should be pointed out that effective area may not account for the situation
where the node may be duplicated in a mapping solution. In the example shown
in Figure 13.2, with K = 3, the LUT for w is introduced solely for the LUT for v.
However, in effective area computation, only one-half is counted for v, and as
a result the LUT for w is undercounted. In this example, the sum of effective
area of the POs is 2.5 whereas the mapping solution has three LUTs. In general,
effective area is a lower bound of the actual area.

FIGURE 13.2 ■ Inaccuracy in effective area.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 307

13.1 Structural Mapping Algorithms 281

The PRAETOR algorithm [29] is an area-oriented mapping algorithm that
ranks cuts using effective area. It further improves the basic mapping framework
with a number of area reduction techniques. One such technique is to encourage
the use of common subcuts. A cut for a fanout of a node v induces a cut for v
(perhaps the trivial cut consisting of v itself). If two fanouts of v induce different
cuts for v, the most likely result will be an area increase due to the need to
duplicate v and possibly some of its predecessor nodes. To alleviate this problem,
PRAETOR sorts and selects cuts with the same effective area in a predetermined
order to avoid arbitrary selection. It assigns an integer ID to each node and then
sorts all cuts with the same effective area according to the lexicographic order
based on the IDs of the nodes in the cuts. The first cut with minimum effective
area for each node is selected.

Another area reduction technique introduced in PRAETOR is to carry out
cut selection twice. The nodes with LUTs selected in the first pass are declared
nonduplicable and can only be covered by LUTs for themselves in the second
pass. This encourages selection of cuts Wiith less duplication. As an example,
suppose that in the first pass of cut selection, the mapping solution shown in
Figure 13.3(a), with four LUTs, is selected. In the second pass, the LUT con
taining v and u 1 is excluded from consideration for u 1. This exclusion will also
encourage the selection of the cut that results in the LUT containing a for u1.
As a result, the mapping algorithm generates, in the second pass, the mapping
solution in Figure 13.3(b), with only three LUTs. Experimental results show that
PRAETOR can significantly improve area over previous algorithms.

The !Map algorithm proposed by Manohararajah et al. [55] is another map
ping algorithm targeting area optimization. It introduced two enhancements: (1)
iteration between cut ranking and cut selection multiple times, and (2) adjust
ment of the area costs between successive iterations using history information.
In the effective area formula (equation 13.2), the fanout count of u in the initial
network, joutput(u)I, is used to estimate the fanout count of the LUT rooted at u
in the mapping solution. In the !Map algorithm between iterations, the fanout

K=3

(a) (b)

FIGURE 13.3 ■ Effect of excluding cuts across nonduplicable nodes: (a) initial mapping solution,
and (b) improved solution with better area.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 308

282 Chapter 13 ■ Technology Mapping

count estimation is updated by using a weighted combination of the estimated
and the real fanout counts in previous iterations. As a result, equation 13.2
becomes a(c) = (I:uEc [a(u)Jestimated_fc(u)]) +Ac , where estimated_fc(u) denotes
the estimated fanout count for the current iteration.

Ling et al. [54] proposed a mixed structural and functional area-mapping
algorithm that starts with a mapping solution (e.g., generated by a structural
mapping algorithm). The key idea is a Boolean satisfiability (SAT) formulation
for the problem of mapping a small circuit with up to ten inputs into the smallest
possible number of LUTs. The algorithm iteratively selects a small logic cone to
remap to fewer LUTs using an SAT solver. It is shown that for some highly
structured (albeit small) designs, area can be improved significantly.

Most area optimization techniques are heuristic. A natural question is how
close the mapping solutions obtained using existing mapping algorithms are
from optimal. Cong and Minkovich [24] constructed a set of designs with known
optimal area-mapping solutions, called LEKO (logic synthesis examples with
known optimal bounds) examples, and tried existing academic algorithms and
commercial tools on them. The average gap from optimal varied from 5 to
23 percent. From LEKO examples, they further derived LEKU (logic synthe
sis examples with known upper bounds) examples that require both logic opti
mization and mapping. Existing algorithms perform poorly on LEKU examples,
with an average optimality gap of more than 70 times. This indicates that more
research is needed in area-oriented mapping and optimization.

13.1.3 Performance-driven Mapping

The FlowMap algorithm and its derivatives can find a mapping solution with
optimal depth. Recent advances in delay mapping focus on achieving the best
performance with minimal area.

Exact layout information is not available during technology mapping in a
typical FPGA design flow. Mapping algorithms usually ignore routing delays and
try to optimize the total cell delays on the longest combinational paths in the
mapping solution.

Most delay optimal mapping algorithms use the labeling scheme introduced
in the FlowMap algorithm to rank and select cuts. The label of a PI is set to
zero, assuming that the signal arrives at the beginning of the clock edge. After
the labels for all the nodes in the fanin cone of a node v are found, the label of
a cut c of v is determined using the formula in equation 13.3:

l(c) = max{l(u) + Dc l'<lu E c} (13.3)

where De is the delay of the LUT corresponding to c. Intuitively, l(c) is the best
arrival time at v if it is covered using the LUT generated from c. The label of v
is then the smallest label among all of its cuts: l(v) = min{l(c)IVc E <l>(v)}.

DAOmap [9] is a mapping algorithm that guarantees optimal delay while at
the same time minimizing the area. It introduces three key techniques to opti
mize area without degrading timing. First, it enhances effective area computation
to make it better avoid node duplication. Second, it applies area optimization

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 309

13.1 Structural Mapping Algorithms 283

techniques on noncritical paths. Last, it uses an iterative cut selection procedure
to explore and perturb the solution space to improve solution quality.

DAOmap first picks cuts with the minimum label for each node. From those, it
then picks one with minimum effective area. Furthermore, when there is positive
slack, which is the difference between required time and arrival time at a node,
it picks a cut with as small an area cost as possible under the condition that the
timing increase does not exceed the slack.

Recognizing the heuristic nature of effective area computation, DAOmap also
employs the technique of multiple passes of cut selection. Moreover, it adjusts
area costs based on input sharing to encourage using nodes that have already
been contained in selected cuts. This reduces the chance that a newly picked
cut cuts into the interior of existing LUTs. Between successive iterations of cut
selection, DAOmap also adjusts area cost to encourage selecting cuts containing
nodes with a large number of fanouts in previous iterations. There are a few
other secondary techniques used in DAOmap. The interested reader is referred
to Chen and Cong [9] for details.

Based on the results reported, DAOmap can improve the area by about
13 percent on a large set of academic and industrial designs while maintaining
optimal depths. It is also many times faster than previous mapping algorithms
based on max-flow computation, mainly because of efficient implementation of
cut enumeration.

A recent delay optimal mapping algorithm introduced several techniques to
improve area while preserving performance [57]. Like DAOmap, this algorithm
goes through several passes of cut selection, with each pass selecting cuts with
better areas among the cuts that do not degrade timing. It is also based on
the concept of effective area (or area flow). However, it does cut selection from
Pis to POs instead of from POs to Pis, as in most other· algorithms. With this
processing order, the algorithm tries to use timing slacks on nodes close to
Pis to reduce area cost. This is based on the observation that logic is typically
denser when close to Pis, so slack relaxation is more effective for nodes closer to
Pis. Experimental data shows 7 percent better area over DAOmap for the same
optimal depths.

13.1.4 Power-aware Mapping

Power has become a major concern for FPGAs [51, 68]. Dynamic power dissi
pation in FPGAs results from charging and discharging capacitances. It is deter
mined by the switching activities and the load capacitance of the LUT outputs
and can be captured by equation 13.4:

(13.4)

where Cv is the output load capacitance of node v, fv is the switching activ
ity of node v, and V is the supply voltage. Given a fixed supply voltage, power
consumption in a mapped netlist is determined by switching activities and load
capacitance of the LUT outputs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 310

284 Chapter 13 ■ Technology Mapping

Because technology mapping for power is NP-hard [34], a number of heuristic
algorithms have been proposed. Most power-aware mapping algorithms try to
reduce switching activities by hiding nodes with high switching activities inside
LUTs, hence leaving LUTs with small output-switching activities in the mapped
netlist.

Anderson and Najm [2] proposed a mapping algorithm to reduce switch
ing activities and minimize logic duplication. Logic duplication is necessary
to optimize timing and area, but can potentially increase power consump
tion. The algorithm uses the following power-aware cost function to rank cuts:
Cost(c) = l(c)+P·P(c) + r·R(c), where l(c) is the depth label of the cut c as given
in equation 13.3 and P(c) and R(c) are the power and replication costs of the
cut, respectively. The weighting factors p and y can be used to bias the three
cost terms. Anderson and Najm suggest a very small P to get a depth-optimal
mapping solution with minimal power.

Power cost P(c) is defined in such a way that it encourages absorbing high
activity connections inside LUTs. The replication cost tries to discourage logic
duplication on timing noncritical paths. Power savings of over 14 percent were
reported over timing-oriented mapping algorithms when both targeted optimal
depths. When the mapping depth was relaxed by one level over optimal, addi
tional power reduction of about 8 percent for 4-LUTs and 10 percent for 5-LUTs
was reported.

One serious limitation of the power-based ranking in Anderson and Najm
[2] is that it cannot account for multiple fanouts and reconvergence, which
are common in most practical designs. Chen et al. [8] proposed a low-power
technology-mapping algorithm based on an improved power-aware ranking in
equation 13.5:

P(c) = (l:uec [P(u)tloutput(u)I]) + Uc (13.5)

where Uc is a cost function that tries to capture power contributed by the
cut c itself. Experimental results show that this algorithm outperforms previ
ous power-aware mapping algorithms. It has also been extended to handle dual
supply voltage FPGA architectures.

13.2 INTEGRATED MAPPING ALGORITHMS

Technology mapping is a step in the middle of an FPGA design flow. Technology
independent optimization is carried out before mapping; placement is carried
out after. Sequential optimization such as retiming can be carried out before or
after mapping. A separate approach can miss the best overall solutions even if we
can solve each individual step optimally. In the section that follows we discuss
mapping algorithms that combine mapping with other steps in the design flow.

13.2.1 Simultaneous Logic Synthesis, Mapping
Technology-independent Boolean optimizations carried out prior to technol
ogy mapping can significantly impact the mapping solution. During technology
independent optimization, we have the freedom to change the network structures,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 311

13.2 Integrated Mapping Algorithms 285

but accurate estimation of their impact on mapping is not available. During
technology mapping, we can achieve optimal or close to optimal solutions using
the algorithms discussed in Section 13.1. However, we are stuck with a fixed net
work. It is desirable to capture the interactions between logic optimization and
mapping to arrive at a solution with better quality.

Lossless synthesis has been proposed by Mishchenko et al. [57] as a way to con
sider technology-independent optimization during mapping. It is based on the
concept of choice networks, which is similar to the concept of mapping graphs
[11, 49]. A choice network contains choice nodes that encode functionally equiva
lent but structurally different alternatives. The algorithm operates on a simple yet
powerful data structure called AIG, which is a network of AND2 and INV gates.
A combination of SAT and simulation techniques is used to detect functionally
equivalent points in different networks and compress them to form one choice
network.

Figure 13.4 illustrates the construction of a network with choices from two
equivalent networks with different structures. The nodes x1 and x2 in the two
networks are functionally equivalent. They are combined in an equivalence class
in the choice network, and an arbitrary member (x1 in this case) is set as the
class representative. Note that p does not lead to a choice because its implemen
tation is structurally the same in both networks. Similarly, o does not lead to a
choice node.

Rather than try to come up with one "good" optimized network before map
ping, the algorithm proposed by Mishchenko et al. [57] accumulates choices
by combining intermediate networks seen during logic synthesis to generate
a network with many choices. In a sense, it does not make judgments on the
goodness of the intermediate networks but defers that decision to the mapping
phase, when the best combination of these choices is selected. In the final map
ping solution, different sections may come from different intermediate networks.
For example, the timing-critical sections of the final mapping solution may come

X

a b C d e a b c d e a b C d e

FIGURE 13.4 ■ Combining networks to create a choice network.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 312

286 Chapter 13 ■ Technology Mapping

from networks optimized for timing, while the timing noncritical sections of the
final mapping solution may come from networks optimized for area.

For mapping on choice networks, cut generation and cut ranking are extended
to choice nodes. For example, the set of cuts of a choice node is simply the
union of the sets of cuts of all of that node's fanin nodes. Similarly, the label of
a choice node is the smallest one among the labels of its fanin nodes. The rest of
the approach is similar to a conventional mapping algorithm. Results reported
by Mishchenko et al. [57] show that both timing and area can be improved by
over 7 percent on a set of benchmark designs compared to applying mapping
to just one "optimized" network.

13.2.2 Integrated Retiming, Mapping

Retiming (discussed in Chapter 18) is an optimization technique that relocates
flip-flops (FFs) in a network while preserving functionality of the network [SO].
Retiming can shift FF boundaries and change the timing. If retiming is applied
after mapping, mapping may optimize the wrong paths because the critical
paths seen during mapping may not be critical after the FFs are repositioned.
On the other hand, if retiming is applied before mapping, it will be carried out
using less accurate timing information because it is applied to an unmapped
network. In either approach, the impact of retiming on cut generation cannot
be accounted for.

The network in FigUFe 13.S(a) is derived from the design in Figure 13.l(a) by
retiming the FFs at the outputs of y and i to their inputs. After the retiming,
all gates can be covered with one 3-LUT, as indicated in (a). The corresponding
mapping solution is shown in (b). This mapping solution is obviously better
than the one in Figure 13.l(c) in both area and timing.

Pan and Liu [63] proposed a polynomial time-mapping algorithm that can
find a solution with the best cycle time in the combined solution space of

a b a b

(a) (b) (c)

FIGURE 13.5 ■ Retiming, mapping: (a) retiming and covering, (b) mapping solution, and
(cl retimed solution.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 313

13.2 Integrated Mapping Algorithms 287

retiming and mapping. In other words, the solution obtained is the best among
all possible ways of retiming and mapping a network. Improved algorithms were
later proposed that significantly reduce runtime while preserving the optimal
ity of the final mapping solution [25, 27]. These algorithms, like the FlowMap
algorithm, are all based on max-flow computation.

A cut enumeration-based algorithm for integrated retiming and mapping was
proposed by Pan and Lin [61]. In it, cut generation is extended to go across FF
boundaries to generate sequential cuts. In a network with FFs, a gate may go
through zero or more FFs in addition to logic gates before reaching gate v. To
capture this information, an element in a cut for a node v is represented as a
pair consisting of the driving node u and the number of FFs d on the paths from
u to v, denoted by ud. Note that one node may reach another node through paths
with different FF counts. In that case, the node will appear in the cut multiple
times with different values of d. For example, for the cone in Figure 13.S(a),
the corresponding cut is {z 1 , a 1 , b 1 }. Pan and Lin [61] suggested an iterative
procedure to determine the sequential cuts for all nodes.

To consider retiming effect, the concept of labels is extended using sequential
arrival times [62, 63]. The label of a cut c is now defined as follows:

l (c) = max{l(u)-d-cp+Dc lv'ud E c} (13.6)

where cp is the target cycle time and De is the delay of the LUT corresponding to
c. The combination! cut formula (equation 13.3) can be viewed as a special case
of equation 13.6 when d = 0. As in combinational mapping algorithms, the label
of a gate v is the minimum of the labels of its cuts: l(v) = min{l(c)lv'c E <l>(v)}.
The label of each PI is zero, and the label for each PO is that of its driver.

Pan and Lin's algorithm finds the labels for cuts and nodes through succes
sive approximation by going through the nodes in the initial network in passes.
After the labels for all nodes are computed and the target cycle time is deter
mined to be achievable, the next step is to generate a mapping solution. As in
the combinational case, a mapped network is constructed starting from POs
and going backward. At each node v, the algorithm selects one of the cuts that
realize the node's label and then moves on to select a cut for u if ud is in the
cut selected for v. On the interconnection from u to v, d FFs are inserted. To
obtain the final mapping solution with a cycle time of cp, the algorithm retimes
the LUT for each non-PI/PO node v by fl(v)/cl>l - 1. For the initial network in
Figure 13.l(a), the final mapping solution with optimal cycle time generated by
the algorithm is shown in Figure 13.S(c). Experimental results show that the
algorithm is very efficient and consistently produces mapping solutions with
better performance than combinational depth optimal mapping followed by
optimal retiming.

13.2.3 Placement-driven Mapping
One drawback of the conventional mapping flow is the lack of accurate tim
ing information on interconnects. Most algorithms use logic depth to measure
timing. However, optimal-depth mapping solutions may not always be good

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 314

288 Chapter 13 ■ Technology Mapping

after placement. To overcome this problem, we need to combine mapping with
placement so that mapping can see more accurate interconnect information.

A number of algorithms tcy to carry out placement and mapping simultane
ously [3, 6, 53, 59, 69]. For example, the MIS-pga algorithm of Murgai et al. [59]
performs iterative logic optimization and placement. Chen et al. [6] proposed an
algorithm that tightly couples technology mapping and placement by mapping
each cell and placing it at the same time. In practice, such integrated approaches
suffer a serious limitation: Because of the complexity of the combined problem,
simple mapping, placement techniques are employed. As a result, the benefit of
the combined approach is diminished.

Another approach is to iterate between mapping and placement . (or place
ment refinement). Here, the design is first mapped and placed. Then the netlist
is back-annotated and remapped under the given placement. This process can
be repeated until a satisfactory solution is found. Figure 13.6 outlines the major
steps in the iterative mapping and placement algorithm proposed by Lin et al.
[53]. The key step is placement-driven remapping. The remapping step may
make the placement illegal-for example, it may place more than one cell at the
same location. If this happens, the placement needs to be legalized and refined.

Lin et al.'s algorithm [53] uses table lookup to estimate interconnect delays
based on placement locations. Given two locations, it looks up the estimated
delay in a prestored table for the wiring between the two locations. This is more
accurate and realistic than the "fixed" interconnect delays used in earlier layout
based mapping algorithms [56, 72].

Technology-independent
logic optimization

•

Initial technology mapping
and placement

•

Logic decomposition into
2-input gates

•

Placement-driven
technology (re)-mapping

•

Placement legalization
and refinement

FIGURE 13.6 ■ Iterative mapping, placement.

.________,I~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 315

13.3 Mapping Algorithms for Heterogeneous Resources 289

One difficulty in placement-driven mapping is that the placement may not
become legal because of cell overlaps. Another is that timing predicted in the
labeling phase may be unrealizable because of congestion in the new mapping
solution. Congestion means that many LUTs are assigned to a small region,
which requires many cell relocations to legalize the placement, which in tum,
perturbs the placement and eventually the timing. To overcome this problem,
the algorithm employs an iterative process with multiple passes of cut selection.
Each pass uses the cell congestion information gathered during previous iter
ations to guide the mapping decisions. Several techniques have been proposed
to relieve congestion. One is a hierarchical area control scheme to evaluate the
local congestion cost, in which the chip is divided into bins with different gran
ularities. Area increase is tallied in bins, and penalty costs are given to bins with
area overflows.

Once a mapping solution is generated, the algorithm invokes timing-driven
legalization that moves overlapping cells to empty locations in their neigh
borhood based on the timing slack available to the cells. Finally, a simulated
annealing-based placement refinement phase is carried out to improve perfor
mance. Experimental results show that the algorithm can improve timing by
more than 12 percent, with minimal area penalty due to remapping.

13.3 MAPPING ALGORITHMS FOR HETEROGENEOUS RESOURCES

Up to this point, we have assumed that all logic cells are LUTs with a uniform
input size K. In reality, commercial FPGA architectures contain heterogeneous
resources (e.g., LUTs of different input sizes, embedded memory, and PLA-like
logic cells). We briefly summarize mapping algorithms that target or take advan
tage of such architectural features.

13.3.1 Mapping to LUTs of Different Input Sizes

There are a number of commercial FPGA architectures that support LUTs with
multiple input sizes on the same device. Mapping algorithms have been pro
posed to optimize area [29, 39, 40, 43] and timing [30, 32].

In the special case of tree networks, Korupolu et al. [43] presented a poly
nomial area optimal algorithm. For general networks, the PRAETOR algorithm
discussed in Section 13.1.2 can be applied to these architectures by assigning
different area costs for LUTs with different input sizes.

For timing optimization, the algorithm proposed by Cong and Xu [30] is an
extension of FlowMap. Like FlowMap, it is also based on flow computation and
can be cast in the cut enumeration framework. Assume that there are two types
of LUTs with input sizes K1 and K2 , and delays d1 and d2 , where K1 < K2 , d1 < dz.
We can enumerate all K2-cuts. When labeling a cut, we can set its delay to d1
or d2 depending on its size. With this simple modification, an algorithm for
homogeneous LUT architectures can be used for architectures with different
LUT sizes.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 316

290 Chapter 13 ■ Technology Mapping

When there are resource bounds on available LUTs of different sizes, the
mapping problem becomes NP-hard. Assuming that there can be at most r
K2-LUTs, a heuristic algorithm was proposed that starts out by finding a map
ping solution without considering resource bounds [31]. If the current mapping
solution meets the resource bound, it stops. If not, it increases d2 , the delay
of K2-LUTs, and solves the unconstrained version again, which should lead to
another mapping solution with a decreased number of K2-LUTs. This process is
repeated until the resource bound is met.

13.3.2 Mapping to Complex Logic Blocks

FPGA devices typically contain additional logic that, together with LUTs, can
form complex programmable logic blocks (PLBs). PLBs can implement complex
logic functions. Figure 13. 7 shows two PLBs that consist of LUTs and logic gates
and can implement functions of up to nine inputs.

A simple approach to PLB mapping is to map the initial network to the
constituent cells inside the PLBs. For example, for a device with the PLB in
Figure 13.7(a), we can first map the initial network to 3-LUTs and 4-LUTs. After
wards, the LUTs are clustered to obtain a network of PLBs. Such a two-step
approach is obviously suboptimal.

Recent approaches try to map directly to PLBs [13, 23, 47, 65]. The cut enu
meration framework can still be used after enhancements. Because a PLB can
have more inputs than a typical LUT, a node may have too many cuts. Intelli
gent cut pruning, using techniques such as those proposed by Chatterjee et al.
[5] and Ling et al. [54], is necessary to avoid long runtime and memory explo
sion. Unlike in the case of LUTs, a PLB has limited functional capability in that
it cannot implement all of the functions of its inputs. For example, the PLB in
Figure 13.7(b) can implement all functions of up to five inputs, but it can only
implement some of the functions with six inputs. An essential step in PLB map
ping is Boolean matching, which, given a cut, decides if the corresponding logic
cone can be implemented by a PLB.

(a) (b)

FIGURE 13.7 ■ Two PLB examples.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 317

13.3 Mapping Algorithms for Heterogeneous Resources 291

Algorithms for Boolean matching for PLBs can be classified into two
categories: decomposition based [13, 23] and satisfiability (SAT) based
[25, 54, 65]. Decomposition-based Boolean matching tries to decompose the
input function according to the structure of the target PLB using functional
decomposition. Cong and Hwang [23] proposed matching procedures for a wide
variety of common PLBs.

A drawback of decomposition-based Boolean matching is that each PLB
needs a specialized matching procedure. Decomposition-based Boolean match
ing can also be slow and memory intensive because of extensive use of BDD
operations. On the other hand, SAT-based Boolean matching encodes the func
tion, the target PLB, and their matching in a Boolean expression in conjunctive
normal form (CNF). Then it leverages an efficient SAT solver (e.g., the one pro
posed by Moskewicz et al. [58]) to check whether th� PLB can be configured
to implement the function. The size of the CNF expression can have signifi
cant impact on the runtime of an SAT-based matching algorithm. An improved
SAT formulation with smaller expressions was proposed recently by Cong and
Minkovich [25].

13.3.3 Mapping Logic to Embedded Memory Blocks

On-chip memory has become a common feature of high-performance FPGAs.
Dedicated embedded memory blocks·(EMBs) can be used to improve clock fre
quencies and lower costs for large designs that require memory. If a design does
not need all the available EMBs, unused ones can be employed to implement
logic, which essentially turns them into large multi-input multi-output LUTs.

EMBs usually have configurable widths and depths, so they can be used to
implement functions with different numbers of inputs/outputs. For example, a
2K-bit memory with configurations 2048 x 1, 1024 x 2, and 512 x 4 can be used
to implement an 11-input/1-output, 10-input/2-output, or 9-input/4-output logic
function, respectively.

Mapping logic to EMBs is typically done as a postprocessing step after LUT
mapping. These algorithms start with an optimized LDT-mapping solution and
then pack groups of LUTs into unused EMBs [26, 70]. The SMAP algorithm
[70] maps one EMB at a time. It begins by selecting a seed node. A fanin cone
of the seed node is generated by finding a d-feasible cut that covers as many
nodes as possible, where d is the bit width of the address line of the target
EMB. Because d is considerably large, flow-based cut generation is used. After
the cone is generated, the output selection process selects signals to be the EMB
outputs. Output selection tries to select a set of signals so that the resulting EMB
can eliminate as many LUTs as possible. This is done by assigning each node a
score that reflects the number of eliminated nodes if the node is selected. The w
highest-scoring nodes are selected as the EMB outputs, where w is the number
of outputs of the target EMB.

The selection of the seed node is critical for this method. The algorithm tests
each candidate node and selects the one that leads to the maximum number of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 318

292 Chapter J 3 ■ Technology Mapping

eliminated LUTs. Heuristics were introduced to consider EMBs with different
configurations and to preserve timing.

Another algorithm, EMB_Pack, proposed by Cong and Xu [26], takes a
slightly different approach. It finds the logic to map to EMBs altogether instead
of one at a time, as in SMAP, which can potentially find better mapping.

13.3.4 Mapping to Macrocells

Complex programmable logic devices (CPLDs) are a class of programmable logic
devices that are more coarse grained than typical FPGAs. Each CPLD logic cell
(called Pterm block) is essentially a programmable logic array (PLA) that con
sists of a set of product terms (Pterms) with multiple outputs. A Pterm block
can be characterized by a 3-tuple (k,m,p) where k is the number of inputs, pis
the number of outputs, and m is the number of Pterms for the block. The input
size k is typically much larger than that of FPGA logic cells.

Relatively speaking, there is much less mapping work reported for CPLDs.
A fast heuristic partition method for PLA-based structures was presented by
Hasan et al. [38]. The DDMap algorithm [42] adapts a LUT mapper for CPLD
mapping. It uses wide cuts to form big LUTs and decomposes the big LUTs into
Pterms allowed in the target CPLD. Packing is used to form multi-output Pterm
cells. An area-oriented mapping algorithm was proposed for CPLDs by Anderson
and Brown [1]. Cong et al. [20] investigated an FPGA architecture consisting of
single-output Pterm blocks, and proposed a timing-oriented mapping algorithm.

PLAmap is a timing-oriented mapping algorithm for CPLDs [7]. Like the LUT
mapping algorithms discussed earlier, it has a labeling phase and a mapping
phase. In the labeling phase, it tries to find the minimal mapping depth for each
node using a logic cell (k, m, 1)-that is, a single-output Pterm block, assuming
that each logic cell has one unit delay. The labeling procedure is based on Lawler
et al.'s clustering algorithm [46]. Let l be the largest label of the nodes in the
fanin cone of a node. The algorithm forms a cluster for the node by grouping
it with all nodes in its fanin cone with the label l. If the cluster can be imple
mented by a (k, m, 1) cell, the node is assigned the label l; otherwise, the node
gets the label l + 1 with a cluster consisting of the node itself. Note that this is
a heuristic in that the label may not be the best because of the so-called non
monotone property [7]. The mapping phase is done in reverse topological order
from the POs. The algorithm tries to merge the clusters generated in the labeling
phase to form (k, m, p) cells whenever possible. Cluster merging is done in such
a way that duplication is minimized and the labels of the POs do not exceed
the performance target. Experimental results show that PLAmap outperforms
commercial tools and other algorithms with no (or a very small) area penalty.

Pterm blocks or macrocells are suitable for implementing wide-fanin, low
density logic, such as finite-state machines. They can potentially complement
fine-grained LUTs to improve both performance and utilization. Device archi
tectures with a mixture of LUTs and Pterm blocks or macrocells have been sug
gested to take advantage of different types of logic cells. Technology mapping
algorithms have been proposed for such hybrid architectures [41, 42, 44].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 319

13.4 SUMMARY

13.4 Summary 293

This chapter discussed technology mapping algorithms for FPGAs. Emphasis
was placed on state-of-the-art algorithms that have been, or most likely will be,
reduced to practice. We discussed mapping algorithms for different objectives,
such as area, timing, and power, as well as mapping algorithms that take advan
tage of heterogeneous resources in modem FPGA devices.

FPGA technology mapping has been and continues to be a subject of active
research. A general trend is to integrate technology mapping with other steps
in the FPGA design flow to improve the quality of final implementations (e.g.,
combining mapping and clustering [10]).

As semiconductor technologies advance, new FPGA architecture features are
being introduced to improve area utilization, performance, and power consump
tion. For example, architectures have been introduced or proposed that use large
LUTs (much larger than traditional 4-/5-LUTs) or multiple supply voltages. New
mapping techniques are being developed to take advantage of these architecture
features.

References

[1] J. H. Anderson, S. D. Brown. Technology mapping for large complex PLDs.
ACWIEEE Design Automation Conference, 1998.

[2] J. H. Anderson, F. N. Najm. Power-aware technology mapping for LUT-based
FPGAs. IEEE International Conference on Field-Programmable Technology, 2002.

[3] N. Bhat, D. D. Hill. Routable technology mapping for LUT FPGAs. IEEE Interna
tional Conference on Computer Design, 1992.

[4] S. C. Chang, M. Marek-Sodowska, T. Hwang. Technology mapping for LUT
FPGA based on decomposition of binary decision diagrams. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 15(10), October 1996.

[S] S. Chatterjee, A. Mishchenko, R. Brayton. Factor cuts. International Conference on
Computer-Aided Design, 2006

[6] C. Chen, Y. Tsay, Y. Hwang, T. Wu, Y. Lin. Combining technology mapping,
placement for delay-optimization in FPGA designs. International Conference on
Computer-Aided Design, 1993.

[7] D. Chen, J. Cong, M. Ercegovac, Z. Huang. Performance-driven mapping for CPLD
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 22(10), October 2003.

[8] D. Chen, J. Cong, F. Li, L. He. Low-power technology mapping for FPGA architec
tures with dual supply voltages. International Symposium on Field-Programmable
Gate Arrays, February 2004.

[9] D. Chen., J. Cong. DAOmap: A depth-optimal area optimization mapping algorithm
for FPGA designs. International Conference on Computer-Aided Design, 2004.

[10] D. Chen, J. Cong, J. Lin. Optimal simultaneous mapping, clustering for FPGA delay
optimization. ACWIEEE Design Automation Conference, 2006.

[11] G. Chen, J. Cong. Simultaneous logic decomposition with technology mapping in
FPGA designs. International Symposium on Field-Programmable Gate Arrays, 2001.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 320

294 Chapter 13 ■ Technology Mapping

[12) K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, P. Trajmar. DAGmap: Graph-based FPGA
technology mapping for delay optimization. IEEE Design and Test of Computers
9(3), September 1992.

[13) M. Chikodikar, S. Laddha, A. Sirasao. A technology mapper for Xilinx FPGAs. Tenth
International Conference on VLSI Design, January 1997.

[14) J. Cong, Y. Ding. An optimal technology-mapping algorithm for delay optimization
in lookup table-based FPGA designs. International Conference on Computer-Aided
Design, November 1992.

[15) J. Cong, Y. Ding. Beyond the combinatorial limit in depth minimization for LUT
based FPGA designs. International Conference on Computer-Aided Design, 1993.

[16) J. Cong, Y. Ding. FlowMap: An Optimal technology-mapping algorithm for delay
optimization in lookup table-based FPGA designs. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems 13(1), January 1994.

[17) J. Cong, Y. Ding. On area/depth trade-off in LUT-based FPGA technology mapping.
IEEE Transactions on VLSI Systems 2(2), 1994.

[18) J. Cong, Y. Ding. Combinational logic synthesis for LUT-based field-programmable
gate arrays. ACM Transactions on Design Automation of Electronic Systems 1(2),
April 1996.

[19) J. Cong, Y. Ding. T. Gao, K. C. Chen. LUT-base, FPGA technology mapping under
arbitrary net-delay model. Computers and Graphics 18(4), 1994.

[20) J. Cong, H. Huang, X. Yuan. Technology mapping and architecture evaluation for
k/m-macrocell-based FPGAs. ACM Transactions on Design Automation of Electronic
Systems, January 2005.

[21) J. Cong, Y. Hwang. Simultaneous depth and area minimization in LUT-based
FPGA mapping. International Symposium on Field-Programmable Gate Arrays,
February 1995.

[22) J. Cong, Y. Hwang. Structural gate decomposition for depth-optimal technology
mapping in LUT-based FPGA design. Design Automation Conference, 1996.

[23) J. Cong, Y. Hwang. Boolean matching for LUT-based logic blocks with applica
tions to architecture evaluation and technology mapping. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 20(9), 2001.

[24) J. Cong, K. Minkovich. Optimality study of logic synthesis for LUT-based FPGAs.
International Symposium on Field-Programmable Gate Arrays, February 2006.

[25) J. Cong, K. Minkovich. Improved SAT-based Boolean matching using implicants for
LUT-based FPGAs. International Symposium on Field-Programmable Gate Arrays,
February 2007.

[26) J. Cong, S. Xu. Technology mapping for FPGAs with embedded memory blocks.
International Symposium on Field-Programmable Gate Arrays, 1998.

[27) J. Cong, C Wu. FPGA Synthesis with retiming and pipelining for clock period
minimization of sequential circuits, Design Automation Conference, 1997.

[28) J. Cong, C Wu. Optimal FPGA mapping, retiming with efficient initial state com
putation. Design Automation Conference, 1998.

[29) J. Cong, C. Wu, Y. Ding. Cut ranking and pruning: Enabling a general, efficient
FPGA mapping solution. International Symposium on Field-Programmable Gate
Arrays, February 1999.

[30) J. Cong, S. Xu. Delay-optimal technology mapping for FPGAs with heterogeneous
LUTs. Design Automation Conference, 1998.

[31) J. Cong, S. Xu. Delay-oriented technology mapping for heterogeneous FPGAs with
bounded resources. International Conference on Computer-Aided Design, 1998.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 321

13.4 Summary 295

[32] J. Cong, S. Xu. Perlormance-driven technology mapping for heterogeneous FPGAs.
IEEE 'lransactions on Computer-Aided Design of Integrated Circuits and Systems
19(11), November 2000.

[33] G. De Micheli. Synthesis: Optimization of Digital Circuits, McGraw-Hill, 1994.
[34] A.H. Farrahi, M. Sarrafzadeh. FPGA technology mapping for power minimization.

International Workshop on Field-Programmable Logic and Applications, 1994.
[35] A. Farrahi, M. Sarrafzadeh. Complexity of the lookup-table minimization problem

for FPGA technology mapping. IEEE 'lransactions on Computer-Aided Design of
Integrated Circuits and Systems 13(11), November 1994.

[36] R. J. Francis et al. Chortle-CRF: Fast technology mapping for lookup table-based
FPGAs. Design Automation Conference, 1991.

[37] R. J. Francis, J. Rose, Z. Vranesic. Technology mapping for lookup table-based
FPGAs for perlormance. International Conference on Computer-Aided Design,
November 1991.

[38] Z. Hasan, D. Harrison, M. Ciesielski. A fast partition method for PLA-based FPGAs.
IEEE Design and Test of Computers, December 1992.

[39] J. He, J. Rose. Technology mapping for heterogeneous FPGAs. International
Symposium on Field-Programmable Gate Arrays, 1994.

[40] M. Inuani, J. Saul. Resynthesis in technology mapping for heterogeneous FPGAs.
International Conference on Computer-Aided Design, 1998.

[41] A. Kaviani, S. Brown. Technology-mapping issues for an FPGA with lookup tables,
PLA-like blocks. International Symposium on Field-Programmable Gate Arrays, 2000.

[42] J. L. Kouloheris. Empirical Study of the Effect of Cell Granularity on FPGA Density,
Performance, Ph.D. thesis, Stanford University, 1993.

[43] M. R. Korupolu, K. K. Lee, D. F. Wong. Exact tree-based FPGA technology mapping
for logic blocks with independent LUTs. Design Automation Conference, 1998.

[44] S. Krishnamoorthy, R. Tessier. Technology-mapping algorithms for Hybrid FPGAs
containing lookup tables, PLAs. IEEE 'lransactions on Computer-Aided Design of
Integrated Circuits and Systems 22(5), May 2003.

[45] J. Lamoureux, S. J. E. Wilton. On the interaction between power-aware FPGA CA D
algorithms. IEEE International Conference on Computer-Aided Design, November
2003.

[46] E. L. Lawler, K. N. Levitt, J. Turner. Module clustering to minimize delay in digital
networks. 'lransactions on Computers 18(1), 1969.

[47] K. Lee, D. Wong. An exact tree-based, structural technology-mapping algorithm
for configurable logic blocks in FPGAs. International Conference on Computer-Aided
Design, 1999.

[48] C. Legl, B. Wurth, K. Eckl. A Boolean approach to perlormance-directed
technology mapping for LUT-based FPGA designs. Design Automation Conference,
June 1996.

[49] E. Lehman, Y. Watanabe, J. Grodstein, H. Harkness. Logic decomposition during
technology mapping. IEEE 'Jransactions on Computer-Aided Design of Integrated
Circuits and Systems 16(8), 1997.

[SO] C. E. Leiserson, J.B. Saxe. Retiming synchronous circuitry. Algorithmica 6, 1991.
[51] F. Li, D. Chen, L. He, J. Cong. Architecture evaluation for power-efficient FPGAs.

International Symposium on Field-Programmable Gate Arrays, February 2003.
[52] H. Li, S. Katkoori, W. K. Male. Power minimization algorithms for LUT-based FPGA

technology mapping. ACM 'Jransactions on Design Automation of Electronic Systems
9(1), January 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 322

296 Chapter 13 ■ Technology Mapping

[53] J. Lin, A. Jagannathan, J. Cong. Placement-driven technology mapping for
LUT-based FPGAs. International Symposium on Field-Programmable Gate Arrays,
February 2003.

[54] A. Ling, D. Singh, S. Brown. FPGA technology mapping: A study of optimality.
Design Automation Conference, 2005.

[55] V. Manohararajah, S. D. Brown, Z. G. Vranesic. Heuristics for area minimization
in LUT-based FPGA technology mapping. International Workshop on Logic
Synthesis, 2004.

[56] A. Mathur, C. L. Liu. Performance-driven technology mapping for lookup table
based FPGAs using the general delay model. International Workshop on Field
Programmable Gate Arrays, February 1994.

[57] A. Mishchenko, S. Chatterjee, R. Brayton. Improvements to technology map
ping for LUT-based FPGAs. International Symposium on Field-Programmable Gate
Arrays, 2006.

[58] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an
efficient SAT solver. Design Automation Conference, 2001.

[59] R. Murgai et al. Improved logic synthesis algorithms for table lookup architectures.
International Conference on Computer-Aided Design, November 1991.

[60] R. Murgai et al. Performance directed synthesis for table lookup programmable
gate arrays. International Conference on Computer-Aided Design, November 1991.

[61] P. Pan, C. C. Lin. A new retiming-based technology-mapping algorithm for LUT
based FPGAs. International Symposium on Field-Programmable Gate Arrays, 1998.

[62] P. Pan, C. L. Liu. Technology mapping of sequential circuits for LUT-based FPGAs
for performance. International Symposium on Field-Programmable Gate Arrays,
1996.

[63] P. Pan, C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. Design Automation Conference, June 1996.

[64] P. Pan, C. L. Liu. Optimal clock period FPGA technology mapping for sequential
circuits. ACM Transactions on Design Automation of Electronic Systems 3(3), 1998.

[65] S. Safarpour, A. Veneris, G. Baeckler, R. Yuan. Efficient SAT-based Boolean match
ing for FPGA technology mapping. Design Automation Conference, July 2006.

[66] P. Sawkar, D. Thomas. Technology mapping for table lookup-based field
programmable gate arrays. ACMISIGDA Workshop on Field-Programmable Gate
Arrays, February 1992.

[67] M. Schlag, J. Kong, P. K. Chan. Routability-driven technology mapping for lookup
table-based FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Cir
cuits and Systems 13(1), 1994.

[68] L. Shang, A. Kaviani, K. Bathala. Dynamic power consumption in Virtex-11 FPGA
family. International Symposium on Field-Programmable Gate Arrays, February
2002.

[69] N. Togawa, M. Sato, T. Ohtsuki. Maple: A simultaneous technology mapping, place
ment, and global routing algorithm for field-programmable gate arrays. Interna
tional Conference on Computer-Aided Design, 1994.

[70] S. Wilton. SMAP: Heterogeneous technology mapping for area reduction in FPGAs
with embedded memory arrays. International Symposium on Field-Programmable
Gate Arrays, 1998.

[71] Z. H. Wang, E. C. Liu, J. Lai, T. C. Wang. Power minimization in LUT-based FPGA
technology mapping. Asia South Pacific Design Automation Conference, 2001.

[72] H. Yang, D. F. Wong. Edge-map: Optimal performance-driven technology mapping
for iterative LUT-based FPGA designs. International Conference on Computer-Aided
Design, November 1994.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 323

FPGA PLACEMENT

One thing that stands out in this book's contents: While most individual steps
in the compilation flow are covered in a single chapter, placement is covered in
three-Chapters 14 through 16. Placement is actually just the problem of assign
ing specific logic computations to individual logic blocks in the architecture, so
why does it merit a longer treatment than, say, FPGA routing? There are at least
two reasons.

One reason is historical: Until relatively recently, the placement problem was
small enough that structured approaches were possible. These included hand
placement, which produced higher-quality results than automatic placement. In
contrast, for a problem such as routing, FPGA routers were very fast and effi
cient, and thus hand-routing was almost never done.

A second reason is that fundamentally different approaches can be taken to
solve the placement problem. Do we view the design as an unstructured pile of
gates to be scattered across the FPGA's surface, or is there an inherent structure
that can be leveraged? And, if we use the computation's structure ,to drive the
placement process, how do we handle portions of the computation, such as
control, that likely do not have such an easily determined structure?

These considerations have given rise to several ways of performing FPGA
placement, which are represented by the three chapters that follow. In Chapter
14 we consider general-purpose FPGA placement. Such systems, using complex
optimization techniques, treat the designer's circuit as essentially an unstruc
tured collection of gates. These are packed together into logic blocks and placed
in the array, guided almost exclusively by the design's local connectivity infor
mation. Higher-level information, such as the design hierarchy or the regularity
in multibit operations, is largely ignored. Thus, these techniques can handle any
possible placement problem. Moreover, they serve as a good starting point, as
other approaches that rely on more structure in the netlist generally do not work
for unstructured designs, and so there must always be some way for unstruc
tured netlists to be processed.

Chapter 15 considers datapath placement. Most designs for an FPGA con
sist of a large, highly structured datapath and a small, unstructured control
system. The datapath is built from multibit function units, such as adders
and multipliers, where the computation is fairly similar for each bit of the
operands. Datapath-oriented placers can automatically leverage this informa
tion to improve the resulting placement quality.

An alternative to fully automatic placement, whether for random logic or for
datapaths, is to provide ways for the user to guide the placement process. For
example, the user generally knows what portions of the design should be kept

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 324

298 FPGA Placement

together, where the critical paths are, and how these critical paths should be
laid out. Chapter 16 considers such systems, in which placement is more a user
guided process than a fully automated algorithm. Whereas the size of modem
FPGA designs, and the increasing quality of placers, is making this approach
less attractive over time, constructive placement of critical subsystems is still a
valid alternative.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 325

CHAPTER 14

PLACEMENT FOR GENERAL-PURPOSE

FPGAs

Vaughn Betz
Altera Corporation

Placement follows technology mapping in the CAD flow and chooses a location
for each block in a circuit. This chapter describes "general-purpose" placement
approaches; these techniques can be used with any circuit targeting the com
mercial field-programmable gate arrays (FPGAs) in widespread use today. After
defining the placement problem and optimization goals, the chapter describes
the clustering algorithms that are frequently used in conjunction with place
ment tools. Three different classes of placement algorithms are then detailed:
simulated annealing, partition based, and analytic. The chapter concludes with
suggestions for further reading and open challenges in FPGA placement.

14. 1 THE FPGA PLACEMENT PROBLEM

An FPGA placement algorithm takes two basic inputs: (1) a netlist specifying the
functional blocks to be implemented and the connections between them, and
(2) a device map indicating which functional unit can be placed at each loca
tion. The algorithm selects a legal location for each block such that the circuit
wiring is optimized. Figure 14.1 illustrates the FPGA placement problem. Both
the legality constraints and the optimization metric (what constitutes a "good"
arrangement of functional blocks) depend on the FPGA architecture being
targeted.

A good placement is extremely important for FPGA designs-without a high
quality placement, a circuit generally cannot be successfully routed. Even if the
circuit does route, a poor placement will still lead to a lower maximum operating
speed and increased power consumption. At the same time, finding a good place
ment for a circuit is a challenging problem. A large commercial FPGA contains
approximately 500,000 functional blocks, leading to approximately 500,000! pos
sible placements. Exhaustive evaluation of the placement solution space is there
fore impossible. Furthermore, placement is a computationally hard problem, so
there are no known algorithms that produce optimal results in practical central
processing unit (CPU) time. Consequently, the development of fast and effective
heuristic placement algorithms is a very important research area.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 326

300 Chapter 14 • Placement for General-purpose FPGAs

Technology-mapped
netlist

Logic
block

FPGA location map, legality constraints,
and routing architecture

.,--... , , , , ____ ,

·----------
! .-----. ,--.

11 I I I
I t ____ _J �

-
_I

: ,-----, ,-- ,
I I I I I

:1 ____ _1_�-_I

·-----------
' .-

----, 1--1 I
I I I I 11
I 1 ____ _1 �

--
' I

' '
I .-----1 ,--1 I
I I I I I I

: !:. :. :. :. :. -�= :' �

®>

®>

®>

®>

®>

®>

@@@
ILUTI D
�□

ILUTI D
�□

(a)

�---------------1

I I

I I

I I

I I

I I

I I

•---------------
I

I I

I I

I I

I I

I I

I I

I I

I _______________
I

(b)

DSP
block

FIGURE 14.1 ■ Placement overview: (a) inputs to the placement algorithm, and (b) placement
algorithm output-the location of each block.

14.1.1 Device Legality Constraints

The fact that all resources are prefabricated in an FPGA leads to a variety of
placement legality constraints:

■ A legal placement must place a functional block only in a location on
the chip that can accommodate it. For example, a RAM block must be
placed in a RAM location, and a lookup table (LUT) must be placed in
a LUT location.

■ Usually there are legality constraints on groups of functional blocks. In
Altera's Stratix-II FPGAs, for example, a logic block contains 16 LUTs
and 16 registers [1]. However, there are limits on the number of clock
signals, clock enable signals, and routing inputs to the logic block.
Consequently, not every grouping of 16 LUTs and 16 registers constitutes

,----,, '.. ,
. .
' : : -----~

('1 (\
'·1.._/ \)

.---.-----,
I I
• I
I I
I I

I :
' ' ' I I I
I I
I I
o I
I I

' ' 0 I

' ' ' I I I
' I

' ' ' ' I I
I I
I I

~ -----·-J

ee

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 327

302

□
□

Chapter 14 ■ Placement for General-purpose FPGAs

1 wire; wirelength: 4 blocks

�0 □ □ 0 □□□
�- 2 wires; wirelength: 8 blocks

li □ □ □ □ i □

□□□□□□
(a)

1 wire; wirelength: 12 blocks

- Wire - Programmable switch

(b)

FIGURE 14.2 ■ Influence of the routing architecture on wirelength for a given placement: (a) sample
routings on a Stratix-11 FPGA (island style), and (b) sample routings on an APEX FPGA (hierarchical).

minimize not only the total wiring required by the design but also the amount
of routing congestion. Routing congestion occurs when the interconnect demand
approaches or exceeds the fabricated wiring capacity in some part of the FPGA.

In addition to optimizing for routability, timing-driven algorithms use tim
ing analysis [SJ to identify critical paths and/or connections and to optimize the
delay of those connections. Since most delays in an FPGA are due to the pro
grammable interconnect, timing-driven placement can achieve a large improve
ment in circuit speed over routability-driven approaches.

Some recent FPGA placement algorithms attempt to minimize power con
sumption as well.

14.1.3 Designer Placement Directives

Commercial FPGA placement tools allow designers to control the placement
of some or all of the design logic at various levels of abstraction. Obeying the
placement directives specified by a designer while still choosing good locations

Hierarchy
boundary

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 328

14.1 The FPGA Placement Problem 301

a legal logic block, and the placement algorithm must ensure that it does
not produce illegal logic blocks.

■ Some groups of functional blocks must be placed in a specific relative
orientation so that they can make use of special, dedicated routing
resources. The simplest example of this constraint is arithmetic logic
cells-in order to use the dedicated carry-chain hardware available in
an FPGA, the logic cells forming a carry chain must be placed adjacent
to each other in the sequence required by the carry structure.

■ There are other detailed legality constraints, such as a limit on the
number of global clocking resources in each area of the device, which
commercial FPGA placement algorithms must respect. 1

14.1.2 Optimization Goals

The basic goal of an FPGA placement algorithm is to locate functional blocks
such that the interconnect required to route the signals between them is mini
mized. As Figure 14.2 illustrates, the routing required to connect two blocks is
a function not only of the distance between them but also of the FPGA architec
ture. Figure 14.2(a) shows the wiring required to connect two blocks in different
relative positions in a Stratix-11 FPGA. Stratix-11 is an island-style FPGA [3] that
contains routing segments that span 4, 16, and 24 logic blocks. Programmable
switches allow routing segments in the same direction (horizontal or vertical)
to be connected at their endpoints to create longer routes. Other programmable
switches allow some horizontal routing segments to connect to vertical routing
segments where they cross and vice versa. In an island-style FPGA, the amount
of wiring required to connect two functional blocks is roughly proportional to
the Manhattan distance between them.

Figure 14.2(b) shows that the wiring required by the same placements in an
FPGA with a hierarchical routing architecture (in this case the Altera APEX
family [4]) is quite different. For hierarchical FPGAs, the amount of wiring
required to connect two functional blocks is proportional to the number of levels
of the routing hierarchy that must be traversed to connect them. Note that even
the ranking of placement choices is different between APEX and Stratix-11-in
Stratix-11 placements, A and C are best, while in APEX placements, A and B
are best. Clearly FPGA placement algorithms must have a model of the routing
architecture they target in order to achieve good results.

FPGA placement tools can broadly be divided into routability-driven and timing
driven algorithms. Routability-driven algorithms try to create a placement that
minimizes the total interconnect required, as this increases the probability of
successfully routing the design. Since FPGA interconnect is prefabricated, the
amount of interconnect in each region of a device is fixed, and a placement
that requires more interconnect in a device region than that region contains
cannot be routed. Consequently, some routability-driven placement algorithms

1 Researchers wishing to target their CAD tools to industrial FPGAs can obtain a full list of the
legality constraints in Altera FPGAs from the Quartus University Interface Program [2].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 329

14.1 The FPGA Placement Problem 303

for the unconstrained and partially constrained blocks is a challenging problem,
but one on which little has been published.

Figure 14.3 illustrates the common types of placement directives. The most
restrictive specifies the exact location of a block. Typical uses of this directive are
to lock down the design I/Os at the locations required by the circuit board or to
lock down the elements of a performance-critical intellectual property (IP) core.
A less restrictive directive forces blocks to go into a specific two-dimensional
area, or fixed region. This directive allows a designer to guide the placement tool
to a good high-level floorplan while still allowing automatic optimization of the
placement details. One can specify the relative location of several blocks, but let
the placement tool choose exactly where to locate the block group. This directive
is useful for library components where a designer knows a good placement of
the component blocks relative to each other. A floating region specifies that some
logic should be placed within a tight region but that the placement tool can
choose where that region should be on the device.

One must take care when specifying placement directives, as fixing portions
of the placement ineffectively will reduce result quality versus a fully automatic
placement. Modem placement tools produce high-quality results, and generally

(a)
Exact

location

{b)
Fixed
region

(c)
Relative
location

@> ILUTI D

@> � □

,,...,._ ,-@-------1
'-.Al/

------li.i• I
I I
I I
I I

l;�_j

{d)
Floating
region

@@®®···

G

G

G

FIGURE 14.3 ■ Placement directives, ordered from most to least restrictive: (a) exact location,
(bl fixed region, (cl relative location, and (d) floating region.

EJ

n

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 330

304 Chapter 14 ■ Placement for General-purpose FPGAs

it is very difficult for a designer to specify placement directives on irregular logic
that lead to a better solution than the placement tool would find without guid
ance. Placement directives have more value for regular structures, since humans
are better than conventional CAD tools at recognizing regular logic patterns and
matching them to a highly optimized regular placement. For examples of the use
of placement directives, see Chapter 16.

14.2 CLUSTERING

A common companion to FPGA placement algorithms is a bottom-up cluster
ing step that runs before the main placement algorithm to group-related circuit
elements together into clusters. Clustering reduces the number of blocks to
place, improving the runtime of the main placement algorithm. In addition, one
normally chooses a cluster size that corresponds to a natural boundary in the
FPGA architecture, such as a logic block. This allows the clustering algorithm to
deal with many of the device legality constraints by ensuring that each cluster
forms a legal logic (or RAM or DSP) block, and it simplifies legality checking
for the main placement algorithm.

The most common FPGA clustering formulation transforms a netlist of logic
elements into a netlist of logic blocks. In most FPGA architectures each logic
element consists of a LUT plus a register, and each logic block has the capacity
to implement up to N logic elements. As well, logic blocks have a limit on the
number of input signals that can be brought in from the programmable routing
and on the number of different control signals, such as register clocks, that can
be used.

The typical clustering goals are:

■ To achieve high density by minimizing the number of clusters (i.e.,
logic blocks) required to implement a circuit.

■ To improve circuit speed by localizing time-critical connections within
a cluster so they can be completed with fast local routing.

■ To reduce wiring demand in the FPGA by grouping related logic in
each cluster.

The RASP system [6] includes one of the first logic block clustering algorithms. It
performs maximum weighted matching on a graph where edge weights between
logic elements reflect the desirability of clustering them. Logic elements that
cannot be legally clustered have no edge between them, while those connected
by timing-critical connections or with a large number of common signals have
edges with high weights.

RASP has the attractive feature of simultaneously choosing all clusters of
two logic elements to maximize the total weight of edges contained within the
clusters. By recursively repeating the algorithm, one can create larger clusters,
at least when the cluster capacity is a power of 2. The first matching produces a
netlist of size-2 clusters; a matching on the size-2 cluster netlist produces size-4

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 331

14.2 Clustering 305
clusters, and so on. The RASP clustering algorithm has a high computational complexity of O(n3), where n is the number of logic elements in the circuit. This prevents it from scaling to large problems. The VPack algorithm [3] takes the opposite approach to that of RASP-it creates one cluster of the desired size (e.g., seven logic elements) before moving on to create the next cluster. VPack first chooses a seed logic element for a new cluster and then greedily packs the logic element with the highest attraction to the current duster until no more can be legally added. The attraction function is the number of nets that connect to both the logic element in question and the current cluster. VPack has a computational complexity of O(kmaxn) where kmax isthe maximum fanout of any net in the design, so it scales well to large problems. Many algorithms that use the same basic procedure as VPack, but different attraction functions, have been published. The T-VPack algorithm by Marquardt et al. [3, 7] is a timing-driven enhancement of VPack where the attraction function for a logic element, L, to cluster C becomes

Attraction(L) = 0.75 • E criticality(;) +0.25 · INets�)r;:ets(C)I

jEconn(L,C) ax ets
(14.1)

The first term in equation 14.1 gives higher attraction to logic elements that are connected to the current cluster by timing-critical connections, while the second term is taken from VPack and favors grouping together logic elements with many common signals. To find the criticality of each connection, a timing analysis is performed with a simple delay model to determine each connection's timing slack. The slack of a connection [S] is defined as the amount of delay thatcan be added to that connection before some path through it limits the circuit speed. The criticality of a connection, j, is then given by
·t· z·t (") 1 slack(j)

cnica i y J = -
D max

(14.2)
where Dmax is the delay of the longest path in the circuit. Connections on the critical path (i.e., with no timing slack) have a criticality of 1, while connections with a large amount of slack have a criticality near 0. Somewhat surprisingly, T-VPack improves not only circuit speed over VPack but also reduces the amount of programmable routing required between clusters. By absorbing more connections within clusters, T-VPack is able to capture more nets entirely within a cluster, which reduces wiring demand between logic blocks. The iRAC [8] clustering algorithm uses an attraction function that favors the absorption of small nets within a cluster:

A . (L C)- � k(" L C)·
[1 +pins_in_cluster(i, C)]

ttraction , - L, i, , 1., • (")I iENets(L)nNets(C) !¥ins l

. [10, if adding L to C would a�sorb net i within C
k(i, L, C) = 1, otherwise

(14.3)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 332

306 Chapter 14 • Placement for General-purpose FPGAs

The attraction function (equation 14.3) weights nets more heavily with a small
number of terminals outside the cluster, and also gives a ten-times attraction
bonus to any net that would be immediately absorbed by adding block L to the
cluster. By reducing the number of nets to be routed between logic blocks, iRAC
achieves an improvement in mutability over T-VPack.

Lamoureaux and Wilton [9] have developed a power-aware enhancement of
T-VPack. They modify equation 14.1 by adding a power minimization term that
weights each connection from block L to cluster C by its switching activity. The
switching activity of a signal is the number of times it is expected to change
state per second. The power minimization term favors the absorption of nets
that frequently switch logic states, resulting in lower capacitance for these nets
and lower overall dynamic power.

14.3 SIMULATED ANNEALING FOR PLACEMENT

Simulated annealing is the most widely used placement algorithm for FPGAs.
It mimics the annealing procedure by which strong metal alloys are created
initially blocks can move fairly freely, but as the temperature drops they gradually
freeze into a high-quality placement [10].

Figure 14.4 shows the basic flow of simulated annealing for placement. First
an initial placement is generated. This initial placement is generally of low qual
ity, and is often created simply by assigning each block to the first legal location
found. The placement is then iteratively improved by proposing and evaluating
placement perturbations, or moves. A placement perturbation is proposed by a
move generator, generally by moving a small number of blocks to new locations.
A cost function is used to evaluate the impact of each proposed move.

Moves that reduce cost are always accepted, or committed to the placement,
while those that increase cost are accepted with probability

!1Cost
e--T-

where T is the current temperature. This function ensures that moves that
increase the cost by an amount that is small compared to the current tempera
ture are likely to be accepted, while moves that increase the cost by an amount
much larger than the current temperature are not. Accepting some moves that
increase the cost helps escape local minima and produces a higher-quality final
placement. At the start of the anneal, temperature is high; it gradually decreases
according to the annealing schedule. This schedule also controls how many

· moves are performed between temperature updates and when the placement
is considered sufficiently optimized that the anneal should end.

Two key strengths of simulated annealing that make it well suited to FPGA
placement are:

1. One can enforce all the legality constraints imposed by the FPGA
architecture fairly directly. The two basic techniques are to forbid the
creation of illegal placements in the move generator or to add a penalty
cost to illegal placements.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 333

P = InitialPlacement ();
T = InitialTemperature ();

14.3 Simulated Annealing for Placement 307

while (ExitCriterion () == False)

while (InnerLoopCriterion () == False) /* One temperature * /

Pnew = PerturbPlacementViaMove (P);

.6.Cost = Cost (Pnew) - Cost (P);
r = random (0, 1);
if (r < e-Acost/T) {

P = Pnew ; /* Accept move */

/* End one temperature * /
T = UpdateTemp (T);

FIGURE 14.4 ■ Pseudo-code of a generic simulated annealing placement algorithm.
(Source: Adapted from [13].)

2. By creating .an appropriate cost function, one can directly model the
impact of the FPGA routing architecture on circuit delay and routing
congestion.

14.3.1 VPR and Related Annealing Algorithms

VPR [3, 11, 12] is a popular timing-driven simulated annealing placement tool. It
is usually used in conjunction with T-VPack, or a similar clustering algorithm,
that preclusters the logic elements into legal logic blocks. One of VPR's main
features is that it can automatically adapt to different FPGA architectures so
long as they employ island-style routing.

VPR' s annealing schedule is based on parameters computed during place
ment rather than on fixed starting and ending temperatures and a fixed cool
ing rate. This adaptive annealing schedule generates high-quality results across
a wide range of design sizes, FPGA architectures, and cost functions, making
it preferable to more "hardcoded" schedules. VPR sets the lnitia[Temperature to
20 times the cost change of the average move, and the ExitCriterion is met when
the temperature is less than 0.5 percent of the cost divided by the number of
nets in the circuit. The fraction of moves that are accepted at each temperature,
a, is monitored throughout the anneal.

Lam and Delosme [14] showed that simulated annealing makes the largest
improvements to a placement when a is near 44 percent. Consequently, VPR
rapidly decreases the temperature when a is significantly above or below 44
percent and slowly decreases it when a is near 44 percent in order to spend the
majority of the annealing time in the most productive range. The move generator
used by VPR to find placement perturbations also varies as the anneal progresses
in order to keep a near 44 percent. When a block is picked for a move, its new
proposed location will always be within a window with a Manhattan radius of
range limit blocks. Initially, the range limit is the size of the entire chip, allowing
a block to move anywhere in the device in one move.

As the anneal progresses, the range limit shrinks so that the moves proposed
are smaller local improvements, since these are the most likely moves to be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 334

308 Chapter 14 ■ Placement for General-purpose FPGAs
accepted as the placement converges to an increasingly high-quality solution.More specifically, whenever the temperature is updated in Figure 14.4, VPR alsoupdates the range limit according to

range_limit (new)= range_limit (old)· (1 - 0.44 - a.) (14.4)
VPR's cost function [12] also has some ability to adapt to different FPGAarchitectures:

� . [bbx (i) bb
y

(i)]
Cost=(l-11,) I... q(t)

C C)+C (")
iEAllNets av, x l av,y l

+ A E Criticality (j) • Delay (j)
jE All Connections

(14.5)

The first term in equation 14.5 causes the placement algorithm to optimize anestimate of the routed wirelength, normalized to the average wiring capacity ineach region of the FPGA. The wirelength needed to route each net i is estimatedas the bounding box span (bbx and bb
y
) in each direction, multiplied by a fanoutbased correction factor, q(i). As Figure 14.5(a) illustrates, the bounding box ofa net is simply the smallest rectangle that encloses all the net terminals. Figure14.5(b) shows that for higher fanout nets, the bounding box span underpredictsthe wiring needed. For the eight-terminal net shown, the sum of bbx and bb

y is 10 units, but even a best-case routing requires 11 units of wire. q(i) is 1 fortwo- and three-terminal nets and slowly increases with net terminal count tocompensate for this underprediction [16]. The corrected bounding box span is a reasonable estimate of the routedwirelength for an island-style FPGA that contains at least some short wiringsegments that span only a few logic blocks. Most recent commercial FPGAs,including the Altera Stratix and Xilinx Virtex [15] families, meet this condition.Equation 14.5 does not contain a good estimate of wirelength for other FPGAtypes, such as hierarchical FPGAs, so this cost function would not perform wellwith them. Some FPGAs have differing amounts of routing available in the vertical direction compared to the horizontal direction, or in different regions of the chip. Forexample, a Stratix-11 FPGA has 1.6 times as much horizontal as vertical routing,and some routing is not available over the large 576-kbit RAM blocks. Therefore,the routing capacity is not uniform everywhere in the device. In such cases, it isbeneficial to move wiring demand to the more routing-rich direction or regions.Accordingly, the cost function of equation 14.5 scales the estimated wiring ineach direction by the average routing capacity over the net bounding box inthat direction. Figure 14.5(a) shows an example computation. The second term in equation 14.5 optimizes timing by favoring placements inwhich timing-critical connections have the potential to be routed with low delay.To evaluate the second term quickly, VPR needs to be able to rapidly estimatethe delay of a connection. It makes use of the fact that the delay between twopoints in an island-style FPGA is primarily a function of the distance betweenthem. Before placement begins, VPR precomputes a table of best-case routing

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 335

14.3 Simulated Annealing for Placement 309

Net source

□□

□

□□

bb..(i) = 6
Cav,x<i) = 160

□□□□

□

□□□

- Routing wire - Programmable switch

(b)

bby(i) = 4
C av,y(i) = 100

FIGURE 14.5 ■ An example wirelength cost computation: (a) net bounding box and average
channel capacity; (b) best-case routing, with a wirelength of 11.

delays for every possible distance between pairs of points. The delay table entries
are computed by invoking a router with each possible (LlX, LlX)-the router finds
the fastest path between the two endpoints.

Periodically (generally once per temperature) VPR computes the delay of
every connection given the current placement and then performs a timing
analysis to find each connection's slack. Equation 14.2 computes the criticality

□ !□ --□--- □--- [;] i
. I

Horizontal {□
channel width:

160wires

0 !□ □ 1
□ I □ l : --:

□ □□□□□
Vertical channel width:100 wires

(a)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 336

310 Chapter 14 • Placement for General-purpose FPGAs

of each connection given its slack. Consequently, VPR's estimate of which
connections are critical changes as placement progresses, and timing optimiza
tion can move from one part of the circuit to another.

One of the important features of VPR's cost function is that, with appropriate
coding, the cost change caused by the motion of a constant number of blocks
can be computed in constant time. This enables many moves to be evaluated
during the placement of a large circuit, which is one of the keys to obtaining
a high-quality placement with simulated annealing. The overall computational
complexity of VPR is O(n l.33) [3], where n is the number of functional blocks
to be placed, allowing VPR to scale well to large circuits.

Many enhancements have been made to the original VPR algorithm. The
PATH algorithm by Kong [17] uses a new timing criticality formulation in which
the criticality of a connection is a function of the slacks of all the paths passing
through it, rather than just a function of the worst (smallest) slack. This tech
nique increases the cost function weighting on connections with many critical
or near-critical paths, which is beneficial because a move that reduces the delay
of such a connection can improve many important timing paths simultaneously.
On average, PATH reduces critical path delay by 15 percent compared to VPR.

The SCPlace algorithm [18] enhances VPR so that a portion of the moves are
fragment moves in which a single logic element is moved instead of an entire
logic block. This allows the placement algorithm to modify the initial clustering
to shorten connections that are now seen to be poorly localized. Fragment moves
improve both circuit timing and wirelength.

Sankar and Rose [19] explored a trade-off between reduced result quality and
extremely low placement runtimes. Instead of simply clustering logic elements
into logic blocks, their hierarchical annealing algorithm clusters logic blocks
twice into larger units, as shown in Figure 14.6. The first-level clustering creates

Logic
blocks Level-1

r7.._ clusters
LJ� - - - Level-2
�----

�

s

D---....---�
�----'

D----..... ---'
�----�
D----..---�
�----'

(a)

Logic Level-1 Level-2
block cluster cluster

6�
��

(b)

g...-I,opad

C)

C)

C)

C)

C)

C)

FIGURE 14.6 ■ An overview of hierarchical annealing: (a) multilevel clustering, and
(bl placement of large clusters followed by unclustering and placement refinement.

n9 Hi
•

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 337

14.3 Simulated Annealing for Placement 311

clusters that each contain approximately 64 logic blocks, and the second-level
clustering groups four level-1 clusters into each level-2 cluster. Placement of
a netlist of level-2 clusters is very fast because there are relatively few blocks
to place. To make placement of the level-2 clusters even faster, Sankar and
Rose [19] use a greedy (temperature= 0 anneal) iterative improvement algo
rithm, seeded with a fast constructive (instead of random) placement. Once
placement of the level-2 clusters is complete, a level-1 initial placement is cre
ated by locating each level-1 cluster inside the boundary of the level-2 cluster
that contained it.

The placement of level-1 clusters is refined by a temperature-0 anneal. The
clusters are then replaced by their constituent logic blocks and the placement of
each logic block is fine-tuned with a low-temperature anneal. The initial temper
ature for this anneal is selected so that only moves that reduce cost or increase
it a small amount are allowed; consequently, the initial placement solution has
a large impact on the final placement. For very fast CPU times this algorithm
significantly outperforms VPR in achieved wirelength, but it lags behind VPR
for longer permissible CPU times.

Lamoureaux and Wilton [9] modified VPR's cost function by adding a third
term, PowerCost, to equation 14.5.

PowerCost = [, q (i) [bbx (i) + bb
y

(i)] • Activity (i)
iEAllNets

(14.6)

where Activity(i) is the average number of times net i transitions per second. This
additional cost term reduces circuit power by focusing more effort on localizing
rapidly transitioning nets.

14.3.2 Simultaneous Placement and Routing with Annealing

Instead of relying on fast heuristics to estimate placement routability and
timing, some algorithms use a router to obtain a partial or complete routing
for each placement proposed during the anneal. These algorithms can directly
extract wiring usage, congestion, and timing from the circuit routing, so their
cost functions can be very detailed. Another of their advantages is that one
can develop a placement algorithm that automatically adapts to a wider class
of FPGA architectures, since fewer (or ideally no) assumptions about the
device-routing architecture need to be incorporated into the cost function. The
disadvantage of using a router in the cost function is CPU time. Evaluating
the cost c:hange after each move is very CPU intensive, making it difficult to
evaluate enough moves to obtain high-quality placements for large circuits in a
reasonable time.

PROXI [20] is a timing-driven FPGA placement algorithm that uses a router
to compute its cost function. The PROXI cost function is a weighted sum of
the number of unrouted nets and the delay of the circuit critical path. After
each placement perturbation, PROXI rips up all of the nets connected to blocks
that have moved and reroutes them via a fast, directed-search maze router [21].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 338

312 Chapter 14 ■ Placement for General-purpose FPGAs

To improve CPU time, PROXI allows the maze router to explore only a small
portion of the routing fabric at high temperatures-if no unblocked routing path
is found quickly, the net is left unrouted. At lower temperatures, the placement
is of higher quality and the router is allowed to explore a larger portion of
the routing fabric. After each net is rerouted, the critical path is recomputed
incrementally. PROXI produces high-quality results, but requires high CPU time.

Independence [22] is an FPGA placement tool that can effectively target a
wide variety of f PGA routing architectures. It is purely routability-driven, and
its cost function monitors both the amount of wiring used by the placement and
the routing congestion:

Cost= L, Routing Resources (i) + ').,
iENets

E max (Occupancy (k) - Capacity (k), 0)
kERoutingResources

(14.7)

The')., parameter in equation 14.7 is a heuristic weighting factor. Independence
uses the Pathfinder routing algorithm [23] to find new routes for all affected
nets after each move. Instead of leaving nets unrouted when there is no
unblocked path, Pathfinder allows wire congestion by routing two nets on the
same routing resource. Such a routing is not legal; however, by summing the
overuse of all the routing resources in the fPGA, Independence can directly
monitor the amount of routing congestion implicit in the current placement.
The Independence cost function monitors not only routing congestion but also
the total wirelength used by the router to create a smoother cost function that is
easier for the annealer to optimize. Independence produces. high-quality results
on a wide variety of fPGA architectures, including both island style and hierar
chical, but it requires very high CPU time.

14.4 PARTITION-BASED PLACEMENT

Another popular placement approach recursively partitions the circuit netlist
and assigns each partition to a different physical region in the fPGA. Usually
each partitioning step divides a previous (larger) partition into two pieces, or
bipartitions the component, although some algorithms perform multiway parti
tioning to produce a larger number of �ircuit partitions in each step. Partitioning
algorithms attempt to minimize the number of nets that are cut, or that cross,
between partitions. Since each partition of the circuit will be assigned to a dif
ferent region of the fPGA, partition-based placement minimizes the number of
nets leaving each region and hence indirectly optimizes the amount of wiring
required by the design. Partition-based placement can leverage the availability of
high-quality, CPU-efficient partitioning algorithms, making this approach scal
able to large problems. However, for some fPGA architectures, partition-based
placement suffers from the disadvantage that it does not directly optimize the
circuit timing or the amount of routing required by the placement.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 339

14.4 Partition-based Placement 313

Hierarchical FPGAs are good candidates for partition-based placement, since
their routing architectures create natural partitioning cut lines. Hutton et al.
[24] describe a commercial placement algorithm for the Altera Apex 20K fam
ily that recursively partitions the circuit along the cut lines formed by the
routing hierarchy, as shown in Figure 14.7. This algorithm is made timing
driven by heavily weighting connections with low slack during each partition
ing phase and by partitioning to minimize weighted cut size. This encourages
partitioning solutions in which timing-critical connections can be routed using
the fast routing available within the lower levels of the routing hierarchy. To
improve the prediction of the critical path, the delay estimate for each con
nection is a function of (1) the number of hierarchy boundaries the net must
traverse because of the known partition cuts at the higher levels of the routing
hierarchy, and (2) statistical estimates of how many hierarchy boundaries the
connection will cross at future partitioning steps.

Recursive partitioning has also been used for placement in island-style
FPGAs. ALTOR [25] was originally developed for standard cell circuits, but was
adapted to FPGAs and widely used in FPGA research. Figure 14.8 shows the
sequence of cut lines used by ALTOR to target an island-style FPGA-note that
the sequence is quite different from that used with a hierarchical FPGA. In an
island-style FPGA, blocks separated by a short Manhattan distance can be con
nected with a small amount of routing. Consequently, the cut lines are designed
to divide the FPGA into ever-shrinking squares-the fewer signals that must
leave each square, the less interconnect required.

,C) C) ,C)
:s. s :s.
:s= :r :s=
,CD CD ,CD

:� -"' :�
:� c6 :f
:'fil ::lo :'fil
:> i :s;:
,a, i dJJ

:a f :a
,c ,c

,3 ,3
·� ·�

_ Cut line 4: Octants _l__________ _ ____________ J ___________
�Ci , & ' ,> I

t_':/<: �:--_: _-";::. ,,-,-\·,,_': _</,-·,-_:::. ::L,"'______ I
I

\::�,::·&Jt,ek-Me�\:- -_L ________________ - -----------------___ J __ --------------
"4-;. < ,-,_:·,: :

, , __ - __ _ ___ " __ I I

-,-�::�om:s:1�88>-_;-,,; -: ______________________________________ :--_______________
__ -_, __ -�\q. . ·- . ,,< - :_·;. __ , : :
.;.:'.-2-:!��--���M,o�fhl:·'.·.·_ ,:� ___________ __ ___ _ _ ___________________ �--______________ _

' ,', ._-,. I I

; J�S:;M� .. �-----------------------------------___ j__ ___ ------------
'
' '

FIGURE 14.7 ■ The partitioning sequence for the APEX 20K FPGA.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 340

314 Chapter 14 • Placement for General-purpose FPGAs

. .

'0 :0
:s, �
� �
:• :.._,.

_ Q_l!,lJLl'l'l.lL! _ .Q\ltUOf_ij ___ C.\l!Jl.!l_l!.�- -� _ QytlJIJ�.�-

.

.

.

.

Cut line 2

0
5.

i
....

,

.

.

.

.

.

Cut line 3

FIGURE 14.8 ■ The partitioning sequence for an island-style FPGA.

ALTOR's first cut line divides the chip into two halves vertically. The second
cut line divides the left half of the circuit into upper left and lower left quarters.
The third cut line divides the right half of the circuit in the same way. When
partitioning along the third cut line, ALTOR uses terminal propagation [26] from
the left half of the chip, which is already partitioned into an upper and lower
quarter, to bias the partitioning of the right half. For example, the net shown in
Figure 14.9 has one terminal in the right half of the chip and one terminal in
the upper left corner. During partitioning along cut line 3, this net is considered
to have a fixed terminal in the upper partition, which will bias the partitioner to
keep the free terminal of this net in the partition above cut line 3. Terminal
propagation reduces final wirelength by optimizing the placement of the
terminals of nets that have been cut in some partitioning step.

Maidee et al. [27] developed a timing-driven placement algorithm for island
style FPGAs that employs both partitioning and annealing. Before partitioning
begins, the VPR router is used to generate a table of net delay versus distance
spanned by the net that takes into account the FPGA routing architecture. As
partitioning proceeds, the algorithm records the minimum length each net can
achieve given the current number of partitioning boundaries it crosses. The
delay corresponding to each net's span is retrieved from the net delay versus
span table, and a timing analysis is performed to identify critical connections.

Timing-critical connections to terminals outside the region being partitioned
act as anchor points during each partitioning. This forces the other end of the
connection to be allocated to the partition that allows the critical connection to
be short. Once partitioning has proceeded to the point that each region contains
only a few cells, any overfilled regions are legalized with a greedy movement

.
'
' ' ' ~-- ···

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 341

Terminal A:
Placed in
upper left
partition

14.5 Analytic Placement 315

Consider tennlnal A
---r� X locked in upper right

partition to bias
current partitioning

Terminal B

�---------�------------------

Cut line 2 Current partitioning cut line

FIGURE 14.9 ■ An example of terminal propagation.

heuristic. Finally, the VPR annealing algorithm is invoked with a low starting
temperature to "fine-tune" the placement. This fine-tuning step allows blocks to
move anywhere in the device, so early placement decisions made by the parti
tioner, when little information about the critical paths or the final wirelength
of each net was available, can be reversed. This algorithm achieves wirelength
and speed results comparable to those of a full VPR anneal, with significantly
reduced CPU time.

14.5 ANALYTIC PLACEMENT

Analytic algorithms are based on creating a smooth function of a placement that
approximates routed wirelength. Efficient numerical techniques are used to find
the global minimum of this function; if the function approximates wirelength
well, this solution is a placement with good wirelength. However, this global
minimum is usually an illegal placement, so constraints and heuristics must be
applied to guide the algorithm to a legal solution.

While analytic placement approaches are popular for ASICs, few exist for
FPGAs, likely due to the more difficult FPGA placement legality constraints.
The Negotiated Analytic Placement (NAP) algorithm from Chan and Schlag [28]
targets FPGAs and has several novel features, including some that make it
suitable for implementation on multiple processors in parallel.

c·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 342

316 Chapter 14 • Placement for General-purpose FPGAs

14.6 FURTHER READING AND OPEN CHALLENGES

While this chapter has focused on placement algorithms specifically designed
for FPGAs, there is also a great deal of literature on placement for custom
manufactured integrated circuits, much of which is relevant to FPGAs. For
a recent overview of general placement algorithms, see Cong et al. [29]. This
chapter also treated placement as separate from synthesis. Recent commercial
and academic tools incorporate physical synthesis, however, where portions of
the circuit are resynthesized as placement proceeds and more information about
critical paths becomes available. For an overview of FPGA physical synthesis and
its interaction with placement, see Hutton and Betz [13].

The greatest challenge facing FPGA placement is the need to produce high
quality placements for ever-larger circuits. FPGA capacity doubles every two to
three years, doubling the size of the placement problem at the same rate. In
addition, uniprocessor speed is no longer increasing as quickly as it did in the
past, which means that single processor speed will increase by less than two
times in the same period. In order to maintain the fast time to market and ease
of use historically provided by FPGAs, placement algorithms cannot be allowed
to take ever more CPU time. There is thus a compelling need for algorithms that
are very scalable yet still produce high-quality results.

The roadmap for future microprocessors indicates that the number of inde
pendent processors, or cores, on a single chip will increase rapidly in the coming
years. Consequently, most engineers will have parallel computers on their desk
tops. Part of the solution to the problem of keeping FPGA placement times rea
sonable may be to find techniques and algorithms to exploit parallel processing
without sacrificing result quality.

References

[1] D. Lewis, E. Ahmed, G. Baeckler. The Stratix-II routing and logic architecture.
Proceedings of the 13th ACM International Symposium on Field-Programmable Gate
An-ays, 2005.

[2] The Quartus University Interface Program (www.altera.com/educationJunivlresearchJ
unv-quip.html).

[3] V. Betz., J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,
Kluwer, February 1999.

[4] R. Cliff, et al. A next generation architecture optimized for high density system
level integration. Proceedings of the 21st IEEE Custom Integrated Circuits Conf
erence, 1999.

[S] R. Hitchcock, G. Smith, D. Cheng. Timing analysis of computer hardware. IBM
Journal of Research and Development, January 1983.

[6] J. Cong, J. Peck, Y. Ding. RASP: A general logic synthesis system for SRAM-based
FPGAs. Proceedings of the Fifth International Symposium on Field-Programmable
Gate An-ays, 1996.

[7] A. Marquardt, V. Betz, J. Rose. Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density. Proceedings of the Seventh Interna
tional Symposium on Field-Programmable Gate An-ays, 1999.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 343

14.6 Further Reading and Open Challenges 317

[8] A. Singh, M. Marek-Sadowska. Efficient circuit clustering for area and power reduction
in FPGAs. Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 2002.

[9] J. Lamoureaux, S. Wilton. On the interaction between power-aware FPGA CAD
algorithms. Proceedings of the International Symposium on Computer-Aided
Design, 2003.

[10] S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science
2(20), May 1983.

[11] V. Betz, J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. Proceedings of the Seventh International Conference on Field-Programmable
Logic and Applications, 1997.

[12] A. Marquardt, V. Betz, J. Rose. Timing-driven placement for FPGAs. Proceedings of
the International Symposium on Field-Programmable Gate Arrays, 2000.

[13] M. Hutton, V. Betz. Electronic Design Automation for Integrated Circuits Handbook,
Taylor and Francis, eds. (Chapter 13), CRC Press, 2006.

[14] J. Lam, J. Delosme. Performance of a new annealing schedule. Design Automation
Conference, 1988.

[15] Virtex Family Datasheet (www.xilinx.com).
[16] C. Cheng. RISA: Accurate and efficient placement routability modeling. Proceedings

of the International Conference on Computer-Aided Design, 1994.
[17] T. Kong. A novel net weighting algorithm for timing-driven placement. Proceedings

of the International Conference on Computer-Aided Design, 2002.
[18] G. Chen, J. Cong. Simultaneous timing driven clustering and placement for FPGAs.

Proceedings of the International Conference on Field-Programmable Logic and Appli
cations, 2004.

[19] Y. Sankar, J. Rose. Trading quality for compile time: Ultra-fast placement for FPGAs.
Proceedings of the International Symposium on Field-Programmable Gate Arrays,
1999.

[20] S. K. Nag, R. A. Rutenbar. Performance-driven simultaneous placement and routing
for FPGAs. IEEE Transactions on Computer-Aided Design, June 1998.

[21] Y. C. Lee. An algorithm for path connections and applications. IRE Transactions
on Electronic Computing, September 1961.

[22] A. Sharma, C. Ebeling, S. Hauck. Architecture-adaptive routability-driven placement
for FPGAs. Proceedings of the International Symposium on Field-Programmable Logic
and Applications, 2005.

[23] L. McMurchie, C. Ebeling. PathFinder: A negotiation-based performance-driven
router for FPGAs. Proceedings of the Fifth International Symposium on Field
Programmable Gate Arrays, 1995.

[24] M. Hutton, K. Adibsamii, A. Leaver. Adaptive delay estimation for partitioning
driven PLD placement. IEEE Transactions on VLSI 11(1), February 2003.

[25] J. Rose, W. Snelgrove, Z. Vranesic. ALTOR: An automatic standard cell layout pro
gram. Proceedings of the Canadian Conference on VLSI, January 1985.

[26] A. Dunlop, B. Kernighan. A procedure for placement of standard-cell VLSI circuits.
IEEE Transactions on Computer-Aided Design, January 1985.

[27] M. Maidee, C. Ababei, K. Bazargan. Fast timing-driven partitioning-based placement
for island style field-programmable gate arrays. Design Automation Conference, 2003.

[28] P. Chan, M. Schlag. Parallel placement for field-programmable gate arrays. Proceed
ings of the 11th International Symposium on Field-Programmable Gate Arrays, 2003.

[29] J. Cong, J. Shinned, M. Xie, T. Kong, X. Yuan. Large-scale circuit placement. ACM
Transactions on Design Automation of Electronic Systems, April 2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 344

DATAPATH COMPOSITION

Andreas Koch
Department of Computer Science
Embedded Systems and Applications Group
Technische Universitat of Darmstadt, Germany

CHAPTER 15

As shown in Chapter 14, a wide variety of algorithms can be employed for
placing arbitrary netlists on various reconfigurable fabrics. To achieve this gen
erality, the input netlists are treated as random collections of primitive elements
(gates, lookup tables [LUTs], flip-flops) and interconnections. These approaches
do not attempt to exploit any kind of structure that might be present in their
input circuits. Many practically relevant circuits, however, do exhibit regulari
ties in their composition (e.g., by following a classical bit-sliced design). Since
the days of manual full-custom ASIC design ("polygon pushing"), regularity in
circuit structure has been exploited with great success to derive a corresponding
regular circuit layout-for example, by abutment of replicated bit-slice layouts.

This chapter describes the application of this idea to efficient layout of regular
bit-sliced datapaths on reconfigurable fabrics. It will begin by considering how
to characterize, extract, and preserve regularities at different abstraction levels.
The next steps describe the datapath. composition tool flow and address issues
such as mapping dataflow operators to hardware units and arranging these
in an abutting regular layout. We will also cover how quality can be improved
even further by judiciously dissolving regularity boundaries in parts of the data
path performing cross-boundary optimization, and finally reregularizing the
optimized circuit.

15. 1 FUNDAMENTALS

With the increasing use of reconfigurable devices as core processing units
in adaptive computer systems, the architecture and implementation of high
performance compute units on reconfigurable fabrics becomes ever more impor
tant. A datapath is one architectural style of realizing a given computation
(Figure 15.l(a)) in hardware. It is often described as the number of intercon
nected operators in the form of a dataflow graph (DFG) or control dataflow graph
(CDFG), shown in Figure 15.l(b). The execution of the operators is orchestrated
by a supervising controller (Figure 15.l(c)). The controller is generally not con
sidered part of the datapath, but together the datapath and controller form a
compute unit. For purposes of this discussion, we will assume that we are pro
cessing a CDFG but will concentrate on its dataflow part.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 345

320 Chapter 15 ■ Datapath Composition

extern int LIMIT;

int sum, i;

32

sum. clear --I--C"'

sum.load

for (sum= O, i= O; i < LIMIT; ++i)

sum += i;

(a)

!end

�
sum.clear sum.load & !end

i.clear i.load & !end

LIMIT. load

(C)

FIGURE 15.1 ■ From computation to realization.

(b)

cir

(d)

In

...,.._ Data

- Control

The datapath is created in hardware by mapping the CDFG operators to
hardware operators, or HWOPs (see Figure 15.l(d)). Generally, HWOPs have
multibit data inputs and outputs for the operand(s) and result(s) (e.g., ADD32
HWOPs). Some may also have control inputs (e.g., the load and clear signals of
the FF32 HWOPs) or outputs (e.g., for indicating certain conditions such as the
GTEQ32 output). These control signals are generally much narrower than bused
data signals, often only a single bit wide. In some cases, an HWOP is available
in several different implementations, all having the same function but differing,
for example, in their area/speed characteristics or layout shape.

15.1.1 Regularity

The multibit-wide HWOPs are often assembled by repeatedly instantiating and
interconnecting narrower template circuits in an adjacent fashion until the spe
cific HWOP's desired bit width is reached (Figure 15.2). These template circuits
will be called master slices here, while their instances are generally referred to as
bit slices. We will further extend this terminology to call areas where the same mas
ter slice has been instantiated a number of times a zone, and a sequence of zones is
termed a stack. Together, these concepts describe an HWOP as a regular circuit.

Such a structure has a natural direction of dataflow (horizontally in the case
of Figure 15.2). When processing word-wide data, the individual bits of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 346

HWOP

Zone 2 {

Stack Zone 1

Zone O {

ell Control! flow
------ Dataflow

FIGURE 15.2 ■ Regular HWOP structure.

15.1 Fundamentals 321

Master slice C
□□□□

□□□□

OPE
ell

ell

Master slice A

ctl

t Height 2 PE
y Width 1b
a Pitch 0.5b/PE

words are arranged orthogonally to the direction of dataflow (in the figure,
vertically). With few exceptions (e.g., bus-wide logic gates), the position of indi
vidual bits is not arbitrary but follows an ordering from least significant (LSB) to
most significant (MSB). For example, stacking ripple-carry full-adder bit slices
generally has the first slice process the LSB and the last slice process the MSB.
Ports on the master slice (e.g., a, y) do not have a bit significance of their own.
Only after instantiating the masters as bit slices can the significance be derived
from their iteration number (e.g., port a on the bottommost slice will have a
significance of O; the one above that, 1, etc.).

For describing the characteristics of elements such as HWOPs, bit slices, and
master slices, four quantities are useful. Any of these elements may process mul
tiple bits from a single word, with the logical width being the largest number
of such bits. Height and length refer to the bounding box of the element layout
on the target device. They are specified in device-dependent units, such as pro
cessing elements (PEs), cells, configurable logic blocks (CLBs), and the like. The
pitch of a master slice is the width divided by the height-essentially, the num
ber of output bits per unit height. To reduce interconnect lengths, all HWOPs in
the datapath should have the same pitch and the LSBs of all data nets should
be vertically aligned.

Regularity in datapaths does not appear just in the replicated logic elements
but also in commonly occurring interconnect patterns (Figure 15.3):

Data nets are generally multibit buses that carry operands and results between
HWOPs, where they are connected to data ports (e.g., opl, op2). Each
signal in the bus has an associated bit significance and generally connects
to the HWOP at a data port with the same significance. Shifts and permu
tations occur only rarely [23].

-~ "' w
.c a.
"' "'
£ .c
" "' -3' ·;;;

-"' a. a. 0 0 ;;; ;;;
I I

HWOP length 7 PEs
Iteration

l t Height 1 PE
Wid1h 1b

a Pitch 1 b/PE

t Height 1 PE
a Wid1h 1b

Pitch 1b/PE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 347

322 Chapter 15 ■ Datapath Composition

PE column with associated vertical channel
0 1 2 3 4

op2 [2J ----1>--

opl [2J ----1>---
::lC:.I---'--"=

op2 [1 J ----I>--- rm1+-1-a1-+--a---p----
Bit slice 1

op1 [1J ----l>---rrm1+-1-m1-+-ar--P.---
···· ······

op2 [OJ ----1>--- Ill --�---
Bit slice O

opl [OJ ----1>--- II --p----

a b c d

� HWOP data port Ill PE a, b, c, d-Control signals

I lnterslice I lntraslice I Control : Data

FIGURE 15.3 ■ Regular interconnection patterns.

Control nets are generally narrower, often only a single bit wide. In general,
they connect an HWOP to a controller but not to another HWOP in the
datapath. Control signals attach to the HWOP at control ports. In many
cases, a control signal connects to the same control port in all bit slices
of a zone. With our assumption of horizontal dataflow, in the following
discussion control signals are assumed to run vertically.

Inters/ice nets run between separate bit slices in the same HWOP, thus vertically
crossing slice boundaries (e.g., B-Y, A-X). Most commonly, they connect
neighboring bit slices, but these may have different master slices, particu
larly near the top and bottom of a stack. An example of an interslice net
is the carry net running between full-adder bit slices.

Intraslice nets connect individual logic elements within a bit slice (e.g., A-B).
Since the internals of a bit slice are considered random logic, these nets
do not follow specific interconnection patterns.

An example of a unified representation for both block and interconnect regular
ity, the Abstract Physical Model (APM), is proposed by Ye and De Micheli [22].

15. 1.2 Datapath Layout

With these concepts in place, we can now consider the anatomy of our com
pute unit in greater detail (Figure 15.4(a)). The datapath will have a regular
area, where pitch-matched HWOPs with a common direction of increasing
bit significance process horizontal, LSB-aligned dataflows. Outside this area,
HWOPs may contain irregular parts (e.g., carry initialization, overflow detec
tion, or, for complex sequential HWOPs, even local controllers). The global con
troller for the compute unit is also placed outside the regular area. Generally,
control nets are routed vertically across the regular area. This chapter does
not address the handling of the controller, but concentrates on the datapath

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 348

HWOPs

Control flow

(a)

15.2 Tool Flow Overview 323

HWOPs

(b)

FIGURE 15.4 ■ Common datapath layouts: (a) classical linear and (b) multistripe.

instead. The controller can be placed via techniques such as those presented in
Chapter 14.

Given these constraints, the best arrangement for minimizing interconnect
lengths and delays for a small number of HWOPs will generally be linear.
This approach has been exploited by devices like Garp [4], which realize such
topologies directly in their chip architecture. However, once the number of
HWOPs grows, the datapath generally needs to be wrapped into multiple stripes
of HWOPs (Figure 15.4(b)).

15.2 TOOL FLOW OVERVIEW

Multiple steps are required to actually compose the datapath from individual
HWOPs. These steps can be broadly grouped into the following categories:

Module generation: The HWOPs are often realized by procedural descriptions
in the form of module generators (see Section 15.4). Thus, at some point
in the flow other tools will interact with the library of module gener
ators either to retrieve data about appropriately parametrized module
instances or (later in the process) to generate the actual netlists. Often
these netlists are already annotated with module-local relative placement
information.

Mapping: The operators in the computation are mapped from the CDFG to the
HWOPs realizing them in hardware. Beyond a straight 1: 1 mapping, this
can be performed in 1:M (if an operator requires multiple HWOPs) or N:1
fashion (if multiple operators can be combined into the same HWOP). The
mapping calculated here need not be final, but can be altered in later flow
steps. In some cases, the mapping step can also choose among multiple
different HWOP implementations for an operator. This is sometimes called
the module selection step.

Dataflow

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 349

324 Chapter 15 ■ Datapath Composition

Placement: HWOPs are assigned to actual PEs on the target device fabric.
Similarly to the mapping step, N: 1 and 1 :M assignments are possible here.
In the first case, a PE is so complex that it can implement multiple HWOPs
at the same time. In the second case, each HWOP needs to be realized
using multiple PEs. This is usually the case when targeting fine-grained
devices such as field-programmable gate arrays (FPGAs).

Compaction: This is the altering of the HWOPs' structure after mapping (before
or after placement). It generally indicates optimizing across HWOP bound
aries. For example, it might merge connected adjacent HWOPs into a more
compact/faster, but functionally identical, hardware block. This optimized
block is then treated as any other HWOP in the datapath.

Not all of the flows discussed next perform all of these steps, and their execution
order can vary. Additionally, some steps may be repeated.

Certain combinations are also possible. For example, in some flows place
ment and the mapping of operators to HWOPs occur simultaneously. For coarse
grained targets, operators can be mapped to HWOPs that are placeable in the
same PE. For fine-grained devices, HWOP implementations can be selected
whose layouts fit together with minimai. area.

15.3 THE IMPACT OF DEVICE ARCHITECTURE

The tool flow required for creating a datapath on a reconfigurable fabric of PEs
is highly dependent on the target device architecture. For coarse-grained target
devices, the operators of the computation can often be mapped to PEs in a one
to-one fashion. On a fine-grained device, the operators have to be assembled from
individual PEs.

Bit-sliced is not the only way to realize HWOPs. They may as well be com
pletely irregular internally, or they may be monolithic (Figure 15.5). In both
cases, many of the optimizations described in Section 15.7 that affect the inter
nal structure of HWOPs are not be applicable. However, the techniques for pro
cessing multiple HWOPs at the datapath level (Section 15.6) remain relevant.

If the reconfigurable fabric has a linear or a two-dimensional matrix struc
ture (Figure 15.6(a-c)), this can be exploited to efficiently map the regular

Dataln

SBoxSelect

(a)

DataOut Dataln

Addrln

R/W

FIGURE 15.5 ■ Non-bit-sliced HWOPs: (a) irregular and (b) monolithic.

DataOut

(b)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 350

I

I

I

(a)

X y

15.3 The Impact of Device Architecture 325

11

'

I !

(b)

(e)

I:

11

I

(c) (d)

D Processing element

0 Crossbar

11 \ i Interconnect
' I ' ove�aid on blocks

1111 Interconnect
between blocks

FIGURE 15.6 ■ Reconfigurable fabric architectures: (a) symmetrical array, (b) row-based,
(c) sea-of-gates, (d) hierarchical PLD, and (e) hierarchical FPGA.

datapath structure to a corresponding regular geometric layout. For other kinds
of target devices-for example, those having fully hierarchical structures (d-e in
Figure 15.6)-algorithms optimizing for geometric arrangement are unsuitable,
because geometrically adjacent blocks on the device might not actually be neigh
bors in the interconnect network (Figure 15.6(e), PEs X and Y). While other
techniques such as hierarchical partitioning and clustering [19] could be used
instead, they no longer attempt to take advantage of the datapat4 regularity.

15.3.1 Architecture Irregularities
Even in seemingly regular fabrics, irregularities often occur at the detail level.
Consider, for example, the logic block structure of the Xilinx XC4000 FPGA
(Figure 15.7). The base architecture of this device is a symmetrical array of
CLBs, each of which contains two 4-LUTs and registers. However, each CLB also
provides an additional 3-LUT. While very useful (e.g., for the efficient imple
mentation of 4-input multiplexers or 5-input functions within a single CLB),
the 3-LUT impedes the regularity in that it is no longer possible to realize two
instances of a master slice that uses the 3-LUT within a single CLB. Also, when
using the 3-LUT it is no longer possible to employ the registers in the CLB inde
pendently from the 4-LUTs: Only one of the registers can be directly connected
to a CLB external port (DIN); the other one is not reachable from the outside.

□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 351

326 Chapter 15 ■ Datapath Composition

G1
G2
G3
G4

H1

DIN

F1
F2
F3
F4

(a)

Controlled by
configuration
bitstream

XO

X

(o,� Cel"
IG2 5 f-T----+- I

' "' , � ' '

I G4 Cl I

: H1--- � vo:
'-------------------✓

fm• fB::,o':
:F1� : F2 � 1 :F3 -.' 1----'---

--+-X 1
1F4 u. Celli
'-------------------✓

(b)

FIGURE 15.7 ■ Regularizing an existing device architecture: (a) the real structure of the Xilinx
XC4000 CLB and (b) the simplified regular structure.

These irregularities can be alleviated by disregarding the 3-LUT for regular logic,
using it solely to make the other register accessible via the Hl port. As a result,
each CLB can now be used to implement two fully regular bit slices, with the
registers accessible both from inside and outside the bit slice.

Interconnect features also have an effect on datapath placement style. The
physical direction of bit significances on the fabric is sometimes dictated by
the running order of fast carry wires, which, on most devices is fixed. Also,
high fanout control signals (e.g., the select signal of wide multiplexers) can be
distributed across an entire HWOP by special long-distance interconnects. For
example, on the Xilinx Virtex series of chips, so-called vertical long lines connect
to all PEs on both sides of a vertical routing channel and are thus ideally suited
for control routing. As will be shown in the following section, tool flows for
datapaths can take advantage of all these features for efficient layout.

15.4 THE INTERFACE TO MODULE GENERATORS

As in many hardware design flows, individual hardware cells (in our case, the
circuits used as HWOPs), are retrieved from a library. Instead of static cells,
however, a more flexible approach uses procedural module generators to tailor
these circuits to fit current requirements. For example, a multiplier might have
eight pipeline stages in one context and only four in another, matching it to the
latency/clock speed of the rest of the datapath. No longer a passive collection of
cell descriptions, the library now becomes active: It accepts a set of constraints
from another part of the flow and delivers a matching circuit.

The very flexibility of these parametrized generators complicates their inte
gration with the rest of the tool flow: Other tools need not only the circuit
description in the form of a (possibly preplaced) netlist but also data about

this specific instance. Different tools are interested in different aspects of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 352

15.4 The Interface to Module Generators 327

circuit. This plethora of cell views, combined with the sheer volume of the design
space covered by each parametrized generator, precludes a simple enumeration
of all alternatives. Thus, the traditional static library data files, holding tables
of delays, bounding boxes, and the like, for a set of fixed parameter values,
become impractical.

The Flexible API for Module-based Environments (FLAME) [11] is one
approach to overcoming these difficulties. It consists of three major components:
(1) the communications interface between the generator library and the other
flow tools, (2) the design data model, and (3) the library specification.

A reference realization of a FLAME-based generator library exists in the form
of the Generic Library for Adaptive Computing Environments (GLACE) [14].
This package has successfully been used in the COMRADE compiler [7], which
compiles C into hybrid hardware/software applications for adaptive computer

systems. GLACE uses a Java-based FLAME implementation, but could be called
from other languages using the Java Native Interface (JNI).

15.4.1 The Flow Interface

The communications infrastructure and API provided by the FLAME Manager
(Figure 15.8) replace static library files with an active function call-based inter
face. Clients in the main design flow can thus enter into a dialog with the module
libraries and retrieve data specific to the actual parameter values of the cur
rent instance. In GLACE, the client queries accepted by the FLAME Manager
are forwarded to the circuit generation code [6], resulting in the retrieval of
circuit characteristics, or the creation of actual netlists.

15.4.2 The Data Model

The information exchanged in this manner just described is represented using
the FLAME design data model. This model is partitioned into a number of task
specific views: A frontend compiler might request a "behavior" view to determine
which functions are available for a given target technology. Later on, it could

Main design flow

Mapping

Compaction

Queries
Module generator library

�

FLAME
interface

FLAME
interface

FIGURE 15.8 ■ FLAME system overview.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 353

328
C

h
a
p

ter 15

■

D
a
ta

p
a
th

 C
o
m

p
o
sitio

n

q
u

ery
 fo

r a
 "syn

th
esis" view

 to

retrieve

a
rea

 a
n

d

tim

in
g
 ch

a
ra

cteristics fo
r a

sp

ecifi
c m

o
d

u
le in

sta
n

ce. A
d

d
itio

n
a
l view

s in
clu

d
e "to

p
o

lo
g
y" fo

r la
yo

u
t sh

a
p

es
a
n

d
 p

o
rt p

itch
, a

n
d

 "n
etlist," "p

la
ced

," a
n

d
 "m

a
p

p
ed

" view
s d

escrib
in

g
 th

e circu
it

itself. F
o

r th
e la

tter, sta
n

d
a
rd

 fo
rm

a
ts su

ch
 a

s E
D

IF
 a

re en
ca

p
su

la
ted

 in
sid

e th
e

F
L

A
M

E
 m

essa
g
es.

15
.4

.3

T
he

 Lib
ra

ry S
p
e

c
ific

a
tio

n

T
h

e F
L

A
M

E
 lib

ra
ry

 sp
ecifi

ca
tio

n
 d

escrib
es a

 set o
f b

eh
a
vio

rs a
n

d
 in

terf
a
ces.

O
n

e o
r m

o
re o

f th
ese ca

n
 b

e a
tta

ch
ed

 to
 a

 h
a
rd

w
a
re cell to

 p
recisely d

efi
n

e its
fu

n
ctio

n
 fo

r a
u

to
m

a
tic u

se b
y a

n
o

th
er to

o
l. F

o
r ex

a
m

p
le, th

e cell o
f a

 ru
n

tim
e

co
n

tro
lla

b
le

a
d

d
er/su

b
tra

cto
r

m
ig

h
t

h
av

e
b

o
th

th

e
a
d

d
itio

n

a
n

d

su
b

tra
ctio

n

b
eh

a
vio

rs a
tta

ch
ed

. T
h

e in
terfa

ce ca
refu

lly d
istin

g
u

ish
es b

etw
een

 th
e lo

g
ica

l (e.g
.,

th
e o

p
era

n
d

s o
f th

e a
d

d
er) a

n
d

 th
e p

h
y
sica

l p
ersp

ective (e.g
., clo

ck
 p

o
rts a

n
d

 clo
ck

en

a
b

le sig
n

a
ls). F

u
rth

erm
o

re, a
 F

L
A

M
E

 in
terfa

ce ex
ten

d
s b

ey
o

n
d

 p
o

rt
 sp

ecifi
ca

tio

n
s su

ch
 a

s w
id

th
 a

n
d

 d
a
ta

 typ
e to

 th
e co

n
tro

l ch
a
ra

cteristics o
f th

e cell. T
h

is
ca

n
 co

ver "sta
rt" a

n
d

 "d
o

n
e" sig

n
a
ls a

s w
ell as m

o
d

e sw
itch

es (e.g
., a

ltern
a
tin

g

b
etw

een
 a

d
d

itio
n

 a
n

d
 su

b
tra

ctio
n

). B
y co

n
sid

erin
g
 a

ll o
f th

ese a
sp

ects, a
n

o
th

er
to

o
l ca

n
 ch

o
o

se th
e cell m

o
st a

p
p

lica
b

le to
 a

 g
iven

 ta
sk

 a
n

d
 a

u
to

m
a
tica

lly d
rive

it co
rr

ectl
y fr

o
m

 th
e cen

tra
l d

a
ta

p
a
th

 co
n

tro
ller.

15
.4

.4

T
he

 In
tra

-m
o
d
u
le

 La
yo

u
t

F
o

r effi
cien

cy, m
o

st m
o

d
u

le g
en

era
to

rs crea
te circu

its w
h

o
se in

tern
a
l P

E
s h

a
ve

a
lrea

d
y b

een
 p

rep
la

ced
. In

 th
is ca

se, th
e m

o
d

u
le g

en
era

to
rs a

n
d

 th
e d

a
ta

p
a
th

p

la
cem

en
t to

o
ls m

u
st a

g
ree o

n
 a

 set o
f co

m
m

o
n

 la
yo

u
t co

n
ven

tio
n

s. O
th

erw
ise,

th
e reg

u
la

r ta
rg

et la
y
o

u
t d

escrib
ed

 in
 S

ectio
n

 1
5
.1

.1
 w

ill n
o

t b
e a

ch
ieva

b
le.

F
ig

u
re 1

5
.9

 sh
o

w
s su

ch
 a

 reg
u

la
r la

y
o

u
t, a

lo
n

g
 w

ith
 th

e F
L

A
M

E
 d

escrip
tio

n

o
f its to

p
o

lo
g
y, u

sin
g
 an

 u
n

sig
n

ed
 8-b

it m
u

ltip
lier fr

o
m

 G
L

A
C

E
 a

s a
n

 ex
a
m

p
le.

O
v

e
rf

lo
w

 d
e

te
ctio

n

-

D

a
ta

p
a

th

b
a

s
e

lin
e

(T
E

C
HN

O
L

O
G

Y

"
X

i
l

i
nx

1
1

1
1V

i
r

t
e

x
"

"

X
C

V
S

O
P

Q
2

4
0

I
"

"

-
4

"

(S
T

A
T

U
S

Q

U
E

R
Y

O
K

1
1t

e
c

hn
o

l
o

gy

o
k

.
a

r
e

a

u
n

i
t

i

s

'
C

L
B

'
s

 ..
.

 "
)

(MA
TRIX

] Ta

rg
et devi

ce ha
s m

a
trix a

rch
itecture

) (SHA
PE

] La
yo

ut is a
 sing

le
 4x6

 C
LB

 re
cta

n
gle

("CLB"
(RE CT 4

6
1 l l

e
xt

en
din

g 1 u n
it b

elow
 b

a
selin

e
) (PORTLOC

) (PORTS

) (
("

a
"

7

0
)

(
11b

11
7

O
)

("
s

t
a

r
t

"

0

0
)

("
o

u
t

"

7

0
)

("
d

o
n

e
"

O

O

)
)

(PIT
CH

2

1
)

] P
ort

 p
itch

 for b
uss

es is
 2

 b
its

 p
er C

LB

(COORD
O

0

)

(FOLDIN
G LIN

EAR)
l La

yo
ut is not fo

lde
d

FIG
U

R
E

15
.9

 ■

M
o

d
u

le
 to

p
o

lo
g

y a
n

d

F
L

A
M

E
 re

p
ly.

Regular datapath area

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 354

15.5 The Mapping 329

The layout has the LSBs of the operand and result data busses aligned at a
common baseline. This sequential HWOP has two irregular components, which
are placed below and above the regular datapath region. For that reason, in
order to preserve regularity within the stack, we had to leave extra space on the
top and/or bottom to accommodate any irregularities (such as overflow detec
tion, sign handling, etc.). All buses are spaced with a pitch of 2 bits per CLB of
layout height.

15.5 THE MAPPING

Mapping techniques can be distinguished by whether they map in N: 1 fashion
(i.e., multiple CDFG operators into a single HWOP) or map (at least initially) in
1 : 1 fashion.

15.5.1 1: 1 Mapping
Here each CDFG operator is considered individually. However, trade-off deci
sions can still occur with regard to the different HWOP alternatives for it:

Area/delay trade-offs can be performed to allow the selection of smaller but
slower HWOPs for operations that are not on the critical path of the
computation.

Topology matching can be performed to match the heights of the HWOPs across
the datapath (Figure 15.lO(a)). This can be necessary when a few HWOPs
in the datapath are significantly wider than the rest (e.g., 64-bit modules in

Placement area

Topological mismatch Matching by folding HWOPs

(a)

FIGURE 15.10 ■ Topology and pitch matching.

3

Slice Slice

Slice Slice

Pitch[--- -Sli�--
- - - 0

Matched sllce pitch

Slice

Slice

Slice

Slice

Slice

Mismatched slice pitch

(b)

M~:------- ___ /rn~~1
LSB m~ °' ;::::::::::::::

lrr- ~:~~11 ~ ~ ~ .WWlH
:E L.--------------'

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 355

330 Chapter 15 ■ Datapath Composition

a mostly 32-bit datapath). Here regularity can be traded for area efficiency
by selecting implementations for these modules that have been folded,
doubling the length but halving the height.

Pitch matching occurs if modules in the library are available only with a limited
number of pitch values. The goal here is to compose the datapath with the
least number of pitch mismatches (Figure 15.l0(b)).

Various techniques can be employed to solve these optimization problems.
Since in general no single best solution exists for complex cases, it is practical to
use an algorithm that can generate sets of good (Pareto-optimal) solutions. The
SDI system [10] used a genetic algorithm in the floorplanning step to perform
these calculations.

However, this approach is only applicable if a very flexible module library
exists that actually gives the optimization heuristics some leeway to operate.
This was the case with the PARAMOG library used in SDI, but the effort to
implement this degree of flexibility is significant: More current module libraries,
such as GLACE, often provide a smaller variety of implementations (generally
just one) for each operator, allowing the replacement of complex heuristics with
just a few simple rules for pitch and topology matching.

15.5.2 N:1 Mapping

In this approach, multiple operators can be mapped to a single HWOP, often
using a tree-covering approach. The initial CDFG is split into a forest of trees
(Figure 15.11) using techniques that splitt at multi-fanout nodes (between Band
D, F) and possibly partially duplicate the operator cones rooted at the multi
fanout node (duplicating A into A, A'). While this limited approach no longer
optimally solves the graph-covering problem, it is necessary in order to avoid
the NP-completeness of computing the latter.

(a) (b)

FIGURE 15.11 ■ Conversion of CDFG to a forest of trees: (a) input dataflow graph and (b) forest
of dataflow trees.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 356

,

---�-------------

__
,,, Rooted at

,,

(a) (b)

15.5 The Mapping 331

(c)

FIGURE 15.12 ■ Covering operator trees using patterns: (a) the dataflow tree, (b) the HWOP
pattern P, and (c) HWOP equivalence class pattern C.

GAMA [3] employs a linear time algorithm using dynamic programming
to cover the operator trees with HWOPs (Figure 15.12). This algorithm, which
has its origin in the code generation steps of compilers, treats the operator(s)
realizable by each HWOP as a pattern. Patterns are described as productions
in a grammar, from which a code gen,erator-generator creates the actual tree
covering code.

For each operator tree, the covering proceeds from the leaf nodes toward the
root, applying all matching patterns that can be locally rooted at the currently
examined node (v in the example, roots pattern P). A cost function computing
delay and area characteristics determines the desirability of using the current
pattern at this point. It is based on the cost of the currently tried pattern plus
the previously computed costs (dynamic programming) of the fanin nodes to
the pattern (u, v in the example). The ''best" pattern covering each node/subtree
is then selected using heuristics that either do a straight area minimization
or attempt to additionally minimize delays. This best solution is then stored
in the local root node, and the covering proceeds to the· next node. Once the
tree's root node has been matched with a best pattern, the final covering can be
retrieved by starting with the root pattern and then processing the current pat
tern's fanin nodes. At each of these fanin nodes, the best pattern selection stored
there is retrieved. This phase of the algorithm thus works recursively toward
the leaves.

The algorithm has some limitations that must be worked around:

■ First, tree covering in this fashion relies on the principle of optimality,
where the combination of optimal solutions to subproblems leads to an
optimal solution of the entire problem. This is indeed achievable when
optimizing for minimal area. However, when attempting to minimize
delays the timing criticality of operators can vary depending on later
covering decisions. Thus, at the time of decision the criticality of the
current node is not known.

To mitigate this issue, GAMA attempts to estimate the criticality using
an initial purely delay-oriented covering pass. Then the final covering
proceeds in an area-minimizing fashion until the currently accumulated

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 357

332 Chapter 15 • Datapath Composition

Hard operator Q Soft operator

FIGURE 15. 13 ■ Subg.raph covering with flexible generator.

Covered by
module
generator

delay at a node exceeds its estimate. At this stage, the cost function is
switched from area to delay minimization.

■ Second, the runtime of the algorithm depends linearly on the number of
patterns in the grammar (which equal different modules in the library).
When the PEs of the target device are very flexible (e.g., LUT based), they
can implement a wide spectrum of CDFG primitive operators (e.g., AND,
OR, INV, ADD, SUB, combinations . . .). Without further refinement to the
approach, a straight description of this flexibility in the grammar will
lead to an explosion in the number of rules. However, in practice, many
operators are equivalent for mapping purposes. For example, all 2-input
logic operators map in exactly the same way in all patterns in which they
occur. This fact can be exploited by defining equivalence classes for all
operators (e.g., logic, additive) and then defining the grammar rules in
terms ofthese classes (C in Figure 15.13). Combined with the factoring
out of common subpatterns, this significantly reduces the complexity of
the grammar.

15.5.3 The Combined Approach

A completely different approach maps some operators in a 1: 1 fashion and
others in an N: 1 fashion. This combination employs powerful module generators
that can generate regular modules covering entire subgraphs of the CDFG. As
an example, the LogicGen tool [20] can handle arbitraiy multibit logical expres
sions, including shifts and permutations, with optional registering of the out
puts. It extracts a regular structure from the input operators and synthesizes
logic-optimized bit slices using SIS [16], which are then preplaced in a regu
lar layout. To apply LogicGen, the CDFG is searched for the largest subgraphs
of plain logic modules. Each of these clusters is then handed to the tool in
its entirety, allowing it to exploit reconvergent fanouts, factorization, and the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 358

� -15.6 Placement 333

like. All operators in the cluster are thus covered by a single, LogicGen-created
HWOP. Operators that are not amenable to traditional logic optimizations, such
as arithmetic and memories that are usually implemented on device-specific
blocks, are ·then mapped into corresponding HWOPs in a .Ll manner by
dedicated module generators.

15.6 PLACEMENT

The HWOPs resulting from mapping have to be placed on the device fabric. This
caff happen either during mapping or in a separate step afterward. Placement
approaches can be classified into three groups according to the nature of
the generated placement (see Figure 15.14). Purely linear techniques create a
one-dimensional arrangement of HWOPs in a single stripe. Others compute
a placement consisting of multiple stripes, which is sometimes referred to as
1.5 dimensional or constrained two dimensional. A last group of algorithms gen
erates arbitrary two dimensional arrangements, an approach closely related to
the classical floorplanning or macro-module scenarios in ASIC tool flows.

15.6.1 Linear Placement

An example of linear placement, GAMA [3], performs a one-dimensional place
ment simultaneously with the mapping step (see Figure 15.15(a)). It assumes
that the external I/Os to the datapath are located on only one side of the stripe
(at the right in the figure). The roots of all subtrees are placed toward this
1/0 side, with the root of the entire HWOP tree directly adjacent to the I/Os
(op3 in the figure). Furthermore, the HWOPs within a subtree are all placed
contiguously, which means that (at least initially) HWOPs from different sub
trees (here opl and op2) will not be intermingled in the placement. The place
ment algorithm thus consists of recursively deciding in which linear order to
place the fanin HWOPs of a node.

Note that the placement order does affect the routing delay between differ
ent HWOPs (Figures 15.15(b) and (c)). The timing estimates calculated in this
fashion are used in the cost function guiding the mapping (covering the trees

' ,, ,, "

(a) (b) (c)

FIGURE 15.14 ■ Placements styles: (a) linear, (bl constrained two dimensional, and (c) full two
dimensional.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 359

334 Chapter 15 ■ Datapath Composition

(a)

op2 op1 op3

D-Q:1-1110

t--t--+--+--t--+-+--f---i Routing delay

D: Total delay d{op): Delay for operator op

op1 op2 op3

._____________.I D=I+'°
f---i--+--+---+--+-+-+---t Routing delay

D = d(op3) + max(d(op1) ,+- 1, d{op2) + 6) + 1 D = d(op3) + max(d(op1) + 3, d(op2) + 1) + 1

00 �

FIGURE 15.15 ■ Simultaneous tree covering and placement.

with HWOP patterns). The different trees of the forest (into which the CDFG has
already been split) are placed in the stripe using a greedy algorithm that aims to
place critical path trees close to each other. After this purely constructive initial
placement, a greedy clustering algorithm can move HWOPs globally, across sub
tree and tree boundaries, in a further attempt to reduce routing delays. In prac
tice, however, the quality gains achievable using this simple cleanup pass are
negligible.

The techniques proposed by Ababei and Bazargan [1] are an example of a sep
arate postmapping linear placement step, which employs two core algorithms
to quickly determine linear placements in polynomial time. The first, shown in
Figure 15.16(a), tries to heuristically compute a minimum bandwidth/minimum
wirelength placement by transforming a matrix representation of the input
circuit into band form and reflecting the transformation steps in HWOP swaps.
This algorithm is applicable to general CDFGs.

The second, faster algorithm (Figure 15.16(b)) gives even better results, but is
limited to operating on trees (similarly to GAMA). It proceeds topdown, recur
sively placing the nodes in a linear arrangement. The root is placed in the
middle; the left subtree of the root, to the left; and the right subtree, to the
right. The order in which the nodes are visited depends on the summed lengths
of all HWOPs in the subtrees rooted at each node (this is called the volume of
a node): Nodes rooting smaller volume subtrees are visited first, placing them
clo.ser to the root. In Figure 15.16, the length of all HWOPs is assumed to be 1.

In a refinement, Ababei and Bazargan [1] then extend the techniques for par
tial reconfiguration: A sequence of CDFGs is arranged so that previously placed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 360

A0R

00

A
2 3 2 1 3

A 1 0

B O 1

f--+--+-j

�
Wirelength = 4

Max cut= 2

(a)

Volume = 2
(b)

A , 1 1 ,0 ' ' '
B d,1 1 \

Wirelength = 2

Max cut= 1

FIGURE 15.16 ■ Postmapping linear placement.

15.6 Placement 335

HWOPs and their interconnect can be reused in succeeding configurations, thus
reducing the amount of configuration data. In the (albeit limited) experiments,
up to 74 percent of HWOPs and 36 percent of inter-HWOP connectivity could be
reused between configurations. However, with increased reuse, the delays and
wirelengths began to deteriorate over independent placements (without reuse).

Other techniques that have been applied to compose linear stripes of HWOPs
are spectral partitioning [13], genetic algorithms [10], and quadratic placement
[22]. In the last case, it was determined that the quadratic placement needed
to be postprocessed for by computing the optimal arrangement of HWOPs in
a small window (less than or equal to five HWOPs long) using exact methods
(e.g., exhaustive search, branch/bound). The process is then repeated, sliding the
window across the stripe, until no further improvement can be realized.

15.6.2 Constrained Two-dimensional Placement

With the focus on linear datapath structures, published work on constrained
two-dimensional or 1.5-dimensional datapath placement is sparse. Some limited
results are reported by Thoms [18]: The CLAP tool first performs a clustering
procedure similar to that in VPack [2] to determine the HWOPs to fit into each
stripe. Then the horizontal arrangement of HWOPs inside a stripe, as well as
the vertical and horizontal arrangements of entire stripes, is optimized using
different moves in an adaptive simulated annealing algorithm [2], resulting

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 361

336 Chapter 15 • Datapath Composition

in the constrained layout shown in Figure 15.14. Again, only a limited set of
benchmarks was evaluated for CLAP. However, even for a small 28-module data
path, the constrained two-dimensional approach reduced the delay by more than
20 percent over a linear placement created using a GAMA-like technique.

15.6.3 Two-dimensional Placement

A full two-dimensional placement is generally not applicable to the datapath
structures discussed previously. However, if the target device architecture does
not impose a specific ordering of bit significances (for example, when no
hardwired carry logic is present), two-dimensional placement can be performed
by treating the HWOPs as conventional macro blocks. A family of such place
ment algorithms has been described for the tools TS-FP [S] and Frontier [17]
(Figure 15.17). Both distinguish between hard macros, with fixed rectangular
shape, and soft macros, with a malleable shape. In both cases, the algorithms
partition the device fabric into a number of b.ins, whose size depends on the
area of the largest hard macro present in the input circuit. Smaller macros are
then clustered up to the bin size to avoid wasting intrabin area.

This clustering process takes into account a number of factors: the compati
bility of the macro shapes inside a bin (shapes in bin must geometrically fit in
the bin bounding box), the relative size of the cluster compared to the entire
circuit, the relative size· of the blocks in the cluster, and the connectivity of
the macros in the cluster. If, after clustering, the number of clusters exceeds
the number of available bins, the size of the bins is increased and the cluster
ing process is repeated. The clusters are then assigned to individual bins using
standard placement techniques.

Intrabin placement is now performed constructively. TS-FP places hard
macros from ·right to left by abutment, leaving the left side of the bin free for

FIGURE 15.17 ■ Bin-based two-dimensional HWOP floorplanning.

■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■ •
• • • • ■ ■ ■ II

■ • ■ ■ • • • ■ ■ II

• • ■ ■ • • ■ ■ ■ e
■ ■ ■

■ ■ ■ ■

■ ■ ■ ■ ■ ■ ■ ..
■ • ■ ■ • ■ ■ • ■ a
■ ■ ■ ■ ■ ■ ■ ■ • •

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 362

15.7 Compaction 33;"1

soft macros. Frontier (shown in Figure 15.17) spreads the hard macros horizon
tally across the entire length of a bin, leaving the unused space between them
for the soft macros. These are then placed in the free regions. TS-FP performs a
geometrical minimax matching, reshaping the logic of each soft macro to fit into
available space while attempting to keep the macros' initial internal placement
intact. Frontier uses a simpler approach; laying a snakelike pattern across the
free space, filled by sequentially selecting from the soft macro an unassigned
PE that leads to the minimal overall wirelength. To improve mutability,
Frontier additionally employs a final low-temperature annealing pass for the PEs
in the soft macros. These are allowed to move across macro and bin bound
aries. The annealing start temperatw--e is set sufficiently high to allow pertur
bation of the layout but low enough to ensure that the basic bin structure is
kept intact.

15.7 COMPACTION
' • .-;

In a 1:1 mapping of simple CDFG operators (for example, trivial logic gates)
to HWOPs, the PEs inside an HWOP are often not used to their full capacity.
This inefficiency is worse when coarse-grained PEs are being targeted, and it
accumulates across all. HWOPs implementing simple operators. Figure 15.18
shows an example of this in which the functionality of a 2-input multiplexer
described using simple logic HWOPs requires three PE�ven though it would
completely fit in a single PE.

Compaction dissolves the boundaries of selected HWOPs and optimizes their
contents as a whole, resulting in the creation of a new super-HWOP that real
izes all of the original functions in a smaller/faster fashion. The procedure can
generally be split into four phases:

1. Select the HWOPs to merge and compact.
2. Analyze regularity across the selected HWOPs to derive new master slices.
3. Optimize the newly discovered master slices.

[B � � -�

,.,,§8 [�l -�-
-

ff]..
•ij:::::::J

� -� � �
A�D2 OR2 AND2B1 MUX21

. .

FIGURE 15.18 ■ Wasted space in the layout of_ very simple HWOPs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 363

338 Chapter 15 • Datapath Composition

4. Construct the super-HWOP by instantiating and placing the optimized
master slices according to the regular inter-HWOP structure discovered
previously.

15. 7 .1 Selecting HWOPs for Compaction

lwo approaches have been proposed for selecting candidate HWOPs for
compaction. Early work, such as the Structured Design Implementation (SDI)
approach [8-1 O], aimed to keep a precomputed one-dimensional placement intact
and so only considered connected neighboring HWOPs to compact. However,
more recent research [21, 23] shows that better area efficiency is achievable
by selecting candidates purely based on their connectivity, independent of any
placement.

Additionally, depending on the actual optimization procedures to be per
formed on the selected candidates certain HWOPs, despite being connected and
adjacently placed, might later be unsuitable for compaction. For commonly used
optimization methods, this category generally includes HWOPs exploiting target
device-specific features such as hardwired carry chains or fixed-function blocks
(e.g., multipliers or memory blocks). Thus, their enclosing HWOPs are exempt
from compaction.

15. 7 .2 Regularity Analysis

Since compaction is a regularity-preserving transformation, regularity aspects
have to be considered both in its preparation and while it is taking place.
Although methods exist to determine regular patterns in arbitrary circuits
[12, 15], it is much more efficient to keep track of this data from the moment of
HWOP circuit generation. The method developed by Ye and colleagues [21,23]
requires knowledge of the netlists at the bit slice level. SDI, supported by the
powerful PARAMOG module generator library, goes beyond that by explicitly
describing both regularity (in the model described in Section 15.1.1) and hier
archy (using master slice/bit slice relationships).

Based on the detailed data, SDI can consider more complicated structures
for regular compaction. Figure 15.19 shows how it can isolate two new master
slices and their instances from the HWOPs ALU and LSHR under compaction,
even though the number of bit slices between these HWOPS differs. The
inter-HWOP regularity consists of a 2-zone stack. The top zone holds a single
instance of a newly discovered master slice, which consists of the original mas
ter slices ALU4, TOPDWN, and DWN. The second zone has two instances of a new
master slice, which consists of ALU4 and two instances DWN. Ye and colleagues'
technique [23] would not attempt to merge these two HWOPs, as it can only
compact HWOPs with the same number of bit slices.

15. 7 .3 Optimization Techniques
The core of compaction lies in the intermodule optimizations applied to
the super-HWOP constructed by merging the original HWOPs. Here, Ye and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 364

ALU[11:0]

• ••

ALU4/2 ' • •

• ••

• ••

••

■■ ■■

ALU4/1
■■ ■■

ALU4/0

15.7 Compaction 339

LSHR[11:0]

TOPDWN/0

DWN/4

DWN/3

DWN/2

DWN/1

DWN/0

Control signals S3 S2 S1 SO SHIFT

FIGURE 15.19 ■ Extracting inter-HWOP regularity.

colleagues' approach [23] performs two additional steps compared to SDI:
word-wide transformations that affect entire HWOPs followed by exploiting
the context (external signals) of the HWOPs under compaction. The main pro
cessing step of both SDI and the system of Ye et al. [23], however, consists
of applying traditional logic synthesis and optimization algorithms at the bit
slice level.

Word-level optimization
Word-level optimizations, which in Ye and colleagues' approach [23] were
performed manually, alter the datapath from the structure described in the orig
inal CDFG. Two of the transformations are shown in Figure 15.20. The first,
shown in Figure 15.20(a), tentatively collapses trees of multiplexers into a sin
gle wide multiplexer, modifying the select logic appropriately. If this replacement
requires more area than the original version, the original version is retained.
This transformation cannot be performed by optimizing at the slice level,
because the multiplexer select logic is not part of the regular area holding the
bit slices.

The second transformation, shown in Figure 15.20(6), is called operation
reordering. It attempts to reduce area by restructuring individual multiplexers.
A subcircuit, in which a multiplexer selects a single result from multiple identi
cal operator instances, is turned into a form where multiple multiplexers select
from a set of inputs feeding a single operator instance. Under the assumption
that a multiplexer is smaller than the operator, this reduces area. Note, however,
that this is not always the case: In many fine-grained architectures that com
bine LUTs and arithmetic carry logic within a logic block, both multiplexers
and adders/subtractors may occupy the same number of logic blocks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 365

340 Chapter 15 • Da,tapath Composition

·'+
a a

b C

♦
C b

so s1
d d

so s1 s

(a) (b)

FIGURE 15.20 ■ Word-level optimizations performed by Ye et al. [23].

Furthe1more, the second transformation is problematical in that it loses
parallelism between the original multiple operator instances. Consider the fol
lowing scenario: The operator instances 1 and 2 have data-dependent execution
times t 1 and t2 , and the select input arrives at ts after the operands of the opera
tors. In the original case, both computations would be speculatively performed
in parallel. The delay of the entire structure is then max(ts , t 1) if the result of
the first operator is selected, and max(ts , t2) otherwise. In effect, the delay of the
select input hides part of the operator delay. In the reordered form, the operator
can begin computation only after the select input has become valid, leading to
total delays of ts +t 1 and ts +t2 , respectively.

The ramifications of such a transformation can be appraised to their full
extent only when building the CDFG in the first place-for example, when
considering instruction-level parallelism in a hardware compiler. At the same
time, the multiplexer tree collapsing could also be performed, dispensing with
a special optimization pass later in the design flow. Instead, the CDFG would
contain generic multiplexer operator nodes with a varying number of inputs. Dur
ing the mapping step, the module library would determine the best realization
for each operator, also considering global issues such as the criticality of their
signal paths.

Context-sensitive optimization
The tool flow designed by Ye and colleagues [23] then performs an additional
suite of optimizations that also considers the super-HWOP in the context of the
surrounding datapath (Figure 15.21). To this end, it partitions the super-HWOP
into ,n-bit-wide superslices, each of which may thus consist of multiple bit slices.
Next, the external ports of each superslice are examined for certain connectivity
patterns and the presence of constant values. The actual optimizations are then
performed in this superslice-specifi.c context.

Constant inputs are absorbed for each of the superslices (Figure 15.21(a)).
Similarly, nets that connect slice inputs directly to outputs are also pulled into
the slice (Figure 15.21(b)). Multiple slice inputs all sourced by the same external

· signal are replaced by a single input that fans out to the original internal sinks
(Figure 15.21(c)).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 366

"1"

"O'

�---·--�-----ri
i ·•

I

I

---.- -- --- .J
L----------"T

,�

HWOP

' (a)

15.7 Compaction 34t

r----

i I � �
--

+

T

<--

I

--------�---------J
HWOP

r---------------

1r---------=-=:..:.:� 1

� n----ldJ
..

1

r.---EHJ-- - 1 !

L---------- . ---------.J

HWOP

�---------------J---------�.----

---------------- .-----

HWOP

r:::::: ! Subcomponent □ Bit slice port □ PE

(b)

,. ..

(c)

HWOP

,.,r•- - , - •• - - - - -
I

I

I

I

I

-------- ,-------�

HWOP

FIGURE 15.21 ■ Context-sensitive optimizations performed by Ye et al. [23].

These transformations occur only if all bit slices within a superslice have
identical context (e.g., all bit slice input ports a within a superslice have the
constant value O applied from the outside). Otherwise, the superslice is left
unchanged;

The quantity m is thus a control for the internal regularity of the super
HWOP. With m = 1, the super-HWOP is partitioned into width superslices, each
consisting only of a single 1,-bit-wide bit slice. Each of these narrow super
slices is thus affected by only very limited context:. A sµperslice's single bit slice
can be perfectly matched .to its context (e.g .• allowing the absorption of even
irregular constant input patterns into each slice) in the super-HWOP. However,
while allowing a large degree of optimization, this setting of m = 1 potentially
introduces significant irregularity into the optimized super-HWOP (it may end
up consisting of completely different bit slices). At the other extreme, with m =

width, the super-HWOP is covered by a single superslice containing m 1-bit-wide

!: ~~: 1_ :~ 1
. - : : ~----1 I L-:1 L:..J i

! -:- l ·-----------i---------"

- ! : ______ ___] +Ka '. ----TI

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 367

342 Chapter 15 ■ Datapath Composition

bit slices. Here optimization will occur only if the context affects all bit slices
within the single superslice identically. Thus, even the optimized super-HWOP
will be completely regular (composed only of identical bit slices). With the context
required to be identical for more bit slices, however, fewer optimization opportu
nities arise. In Ye and colleagues' approach [23], a value of m = 4 is suggested as a
good trade-off between widespread optimization and the preservation of a regular
structure.

In effect, the idea of superslices is similar to the zone concept introduced
in Section 15.5.1, although zones, with their variable granularity, remain more
flexible than superslices, with their fixed granularity.

Logic optimization
In logic optimization, the netlists of the HWOPs under compaction are merged
into HWOP-spanning bit slices (possibly newly discovered, as discussed in
Section 15.7.2). The resulting larger merged netlists are then passed to conven
tional logic synthesis tools that can exploit the additional optimization oppor
tunities resulting from them.

In addition to this slice-internal optimization, the system of Ye and colleagues
[23] can specialize the bit slices by considering the constant external inputs and
connections that were discovered in the context-sensitive analysis pass.

15. 7 .4 Building the Super-HWOP

The optimization phase of compaction changes the circuit structure. Thus, any
regular placement created by a generator is invalidated. Ye and colleagues' tool
flow [23], which concentrates on measuring regularity and area overheads, does
not perform the further processing steps itself. Instead, the resulting optimized
bit-slice netlists are passed to standard place-and-route tools for further han
dling. In contrast, Structured Design Implementation (SDI), additionally aiming
at delay minimization, attempts to restore a regular placement for the optimized
super-HWOP. This micro-placement step, shown in Figure 15.22, exploits regu
larity by operating at the master slice level. The results are then automatically
replicated across the entire super-HWOP according to its zone structure.

Microplacement operates on cells (LUT and FF blocks), and proceeds in two
phases:

1. The placement of cells horizontally, grouped into columns (Figure 15.22(a)).
This is performed across all master slices, ensuring that cells sharing a control
net are located adjacently to a vertical routing channel. Such an arrange
ment allows the efficient routing of high-fanout control nets on vertical long
lines. Analogously, cells on interslice nets are horizontally aligned to allow
short-distance routing. The remaining cells are placed in a timing-driven fash
ion, using estimates for the as yet unknown vertical position. This placement
phase optimizes the super-HWOP in the geometric context of the datapath
by constraining the master slice 1/0 ports to the appropriate sides of the
layout.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 368

ctl

(a)

15.7 Compaction 343

For each master slice

I•
I•

Vertical timing-driven
placement

(b)

FIGURE 15.22 ■ Horizontal and vertical microplacement to restore regularity to compacted
super-HWOP.

2. The placement of cells within the columns vertically (Figure 15.22(b)). This
step looks across master slice boundaries only initially when performing a tim
ing analysis on the entire super-HWOP. After annotating the timing criticalities
calculated in this manner on the master slice ports, each master slice is placed
independently in a purely timing-driven fashion. The timing model used here
models the intricacies of the target device routing network and leads to measur
ably better results than simple Manhattan distances.

Since the microplacement results are replicated according to the regular struc
ture previously determined for the super-HWOP, it is advantageous to employ
high-quality algorithms. To this end, SDI uses a combination of well-converging
heuristics and exact integer linear programming (ILP)-based methods. The latter
are feasible because of the separation of the placement problem into horizon
tal and vertical phases, and the relatively small circuit size of the master slices
(compared to the entire super-HWOP).

15. 7 .5 Discussion

Implementing a circuit in a regular bit-sliced fashion is generally associated
with some area overhead compared to synthesizing/optimizing the circuit in
an irregular flat manner. The reason is that the bit-slice boundaries prevent
the exploitation of cross-slice optimization opportunities. The system devised
by Ye and colleagues [23], with its additional interslice optimizations, observed
area overheads of between O percent and 7.4 percent for superslice granularity

Align all interslice
nets horizontally

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 369

344 Chapter 15 ■ Datapath Composition

values of m = 1 (fully irregular) and m = 32 (fully regular with a width of 32 bits),
-respectively. For SDI, which lacks these optimizations, area increases of up to
17 percent were observed over the flat solution. However, by scrupulously main
taining a regular structure, SDI was able to reduce the total delay in the circuit
by up to 33 percent over the flat implementation. A combination of the inter
slice optimizations of Ye and colleagues [23] with the microplacement of SDI
appears to be promising to achieve further gains.

15.8 SUMMARY AND FUTURE WORK

This chapter presented an overview of some of the many issues to consider when
realizing datapaths on reconfigurable logic devices. The aspect of regularity is a
crucial one and must be considered both at the level of the target device archi
tecture and during the operation of the EDA tools. Module generators are an
efficient means to actually create the circuits making up the datapath. However,
in addition they must offer sufficient metadata to the rest of the tool flow as a
base for effective transformation and optimization steps.

With increasing requirements on datapath performance, tool flows and
algorithms must keep up with improvements in device architectures. All of the
techniques described here have the potential for further refinement. Refinement
opportunities include module generators that better support specialization,
floorplanning with constrained two-dimensional placement, and a compaction
technique in which the best of these refinements is combined.

References

[1] C. Ababei, K. Bazargan. Non-contiguous linear placement for reconfigurable
fabrics. Proceedings of the of the Reconfigurable Architectures Workshop, 2004.

[2] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,
Kluwer, 1999.

[3] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek. Fast module mapping and place
ment for datapaths in FPGAs. Proceedings of the of the International Symposium
on Field-Programmable Gate Arrays, 1998.

[4] T. Callahan, R. Hauser, J. Wawrzynek. The GARP architecture and C compiler.
IEEE Computer 33(4), 2000.

[S] J. M. Emmert, D. Bhati. A methodology for fast FPGA floorplanning. Proceedings
of the International Symposium on Field-Programmable Gate Arrays, 1999.

[6] B. Hutchings, P. Bellows. J. Hawkins, S. Hemmert. A CAD suite for high
performance FPGA design. Proceedings of the of the IEEE Symposium on Field
Programmable Custom Computing Machines, 1999.

[7] N. Kasprzyk, A. Koch. High-level-language compilation for reconfigurable comput
ers. Proceedings of the International Conference on Reconfigurable Communication
centric SoCs, 2005.

[8] A. Koch. Module compaction in FPGA-based regular datapaths. Proceedings of the
Design Automation Conference, 1996.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 370

15.8 Summary and Future:Work 3'45

[9] A. Koch. Structured design implementation-A �trategy for implementing regular
datapaths on FPGAs. Proceedings of the International Symposium on Field
Programmable Gate Arrays, 1996.

[10] A. Koch. Regular Datapaths on Field-Programmable Gate Arrays. CS doctoral thesis,
technical, University of Braunschweig, 1997.

[11] A. Koch. On tool integration in high-performance FPGA design flows. Proceedings
of the International Conference on Field-Programmable Logic and Applications, 1999.

[12] T. Kutzschebauch, L. Stok. Regularity-driven logic synthesis. Proceedings of the
International Conference on Computer-Aided Design, 2000

[13] J. Li, J. Lillis, L. T. Liu, C. K. Cheng. New spectral linear placement and clustering
approach. Proceedings of the Design Automation Conference, 1996.

[14] T. Neumann, A. Koch. A generic library for adaptive computing environments.
Proceedings of the International Conference on Field-Programmable Logic and Appli
cations, 2001.

[15] R. Nijssen, J. Jess. Two-dimensional datapath regularity extraction. Proceedings of
the ACM SIGDA Physical Design Workshop, 1996.

[16] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, et al. SIS: A system for
sequential circuit synthesis. EECS Memorandum No. UCB/ERL M92/41, University
of California, Berkeley, 1992.

[17] R. Tessier. Frontier: A fast placement system for FPGAs. Proceedings of the Inter
national Conference on VLSI, 1999.

[18] F. Thoms. CLAP-Clustering and placement. Diploma thesis, Technical University
of Braunschweig, 2003.

[19] C. C. Vi, D. Lewis. Area-speed trade-offs for hierarchical field-programmable gate
arrays. Proceedings of the International Symposium on Field-Programmabl.e Gate
Arrays, 1996.

[20] C. Wewetzer. A Universal Generator for Logic Circuits on FPGAs. Diploma thesis,
Technical University of Braunschweig, 2005.

[21] A.G. Ye. Field-Programmable Gate Array Architectures and Algorithms Optimized for
Implementing Datapath Circuits. Doctoral thesis, University of Toronto, 2004.

[22] T. T. Ye, G. De Micheli. Data path placement with regularity. Proceedings of the
International Conference on Computer-Aided Design, 2000.

[23] A. G. Ye, J. Rose, D. Lewis. Synthesizing datapath circuits for FPGAs with empha
sis on area minimization. Proceedings of the International Conference on Field
Programmable Technology, 2002.

[24] A. G. Ye, J. Rose. Measuring and utilizing the correlation between signal connectiv
ity and signal positioning for FPGAs containing multibit building blocks. Proceed
ings of the International Conference on Field-Programmable Logic and Applications,
2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 371

SPECIFYING CIRCUIT LAYOUT

ONFPGAs

Satnam Singh
Programming Principles and Tools Group
Microsoft Research Cambridge

CHAPTER 16

Typically, the layout of a circuit implemented on a field-programmable gate array
(FPGA) is computed automatically by vendor design tools. This computation
often results in an acceptable mapping of logical wires in the design onto actual
physical routing resources on the FPGA that meets the designer's performance
requirements. Instead of relying on automated tools, however, a designer could
try to use an FPGA by explicitly stating the configuration of individual logic
blocks and explicitly specifying the routing between them. One almost never
needs to program an FPGA at this basic and raw level, and often the proprietary
nature of programming information makes it difficult or impossible to take this
approach. Still, the FPGA design flow provides a powerful set of abstractions
that allow a designer to think in terms of structural circuit netlists, which can be
automatically converted into programming information for FPGAs. Structural
netlists are abstracted further by the synthesis flow, which allows designers to
think of circuit functions in an algorithmic or sequential manner.

16.1 THE PROBLEM

Although it is just about tractable for humans to explicitly specify the layout of
some mapped circuits on an FPGA, explicitly specifying the routing is extremely
difficult because of the complex nature of the wiring resources. A screen snap
shot of some of these resources on a Xilinx FPGA is shown in Figure 16.1. As
one can see there are simply too many wires and interconnection options for
a human to economically make routing decisions. However, providing layout
hints or even explicit layout for only the logic blocks is a reasonable approach,
because designers often have good intuition about a desirable layout but little
intuition about how to use the underlying routing resources. By specifying some
aspects of the layout, the tools can produce a faster circuit than is possible with
purely automatic approaches [4]. The ability to specify layout helps with other
operations like dynamic reconfiguration [3].

A design that contains a mixture of manually and automatically placed blocks
is shown in Figure 16.2. The rectangular block is the core of the Xilinx Micro
Blaze soft processor, which is designed with explicit layout specification for each
gate. The other blocks are components, such as the system bus and peripherals,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 372

348 Chapter 16 ■ Specifying Circuit Layout on FPGAs

Scrtpt plaij)ack co,ipletecl.
Inlti�llzation C011Pleted.
C0P.Ti"1t (c) 1995-1998 Xilinx, Inc. All rt� reserved.
EPIC m.,5,19 - re� for 1npUtJ

FIGURE 16.1 ■ FPGA routing resources.

that are designed without explicit layout specification-the placer automatically
decides where to put these gates. Many of Xilinx' s Core Generator IP core blocks
are designed with explicit layout information. By giving a good layout for a
circuit, one can indirectly control performance by influencing wiring that con
tributes to the critical path. Also, by providing user-specified placement infor
mation for small blocks that will be reused for many designs, the upfront design
effort can be worthwhile.

An automatic placement algorithm can often find an acceptable placement
that meets the design requirements for speed, area, power, and so forth. How
ever, when such an algorithm cannot find a good placement-or any placement
at all-there is often little the designer can do. In these situations it would be
de!';irable either to allow the designer to influence the placement by adding extra
information or to allow her to partly or completely specify the layout of her
circuit. For circuits that need very high performance or that need to be very
compact, often only a user-specified layout can achieve the required results. For
example, the design shown in Figure 16.3 has been automatically placed and
routed without any user-specified layout information. The same design can be
augmented with user-specified layout information to produce the layout shown
in Figure 16.4, which performs approximately 30 percent faster.

t •., I l"I· ~I ', !'I I ,, hi' 1• -• f 1•,· _.,, ,, . ,._. 11,p I 1• h,111P h,1-l :.· t.l ,•-:1, •~:, I '"'I'' I llr'l·l•·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 373

16.1 The Problem 349

FIGURE 16.2 ■ An example of manually and automatically placed blocks.

Providing explicit layout information can also reduce the runtime of FPGA
implementation tools, mainly because of the reduction in work for the automatic
router. This is particularly important for uses of reconfigurable computing that
create custom circuit designs for each problem instance, when placement and
routing tool runtimes are part of the system's execution time (see Chapter 5).

■

• • ~- 1· •••
• :. ~ ll\ ."'

,, • r, ,r. .. .,,, ~B. ,~
I I I ,

•···

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 374

350 Chapter 16 ■ Specifying Circuit Layout on FPGAs

FIGURE 16.3 ■ A design with no explicit layout (automatic place and route).

FIGURE 16.4 ■ A design with totally exp I icit layout.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 375

16.2 Explicit Cartesian Layout Specification 351

An important reason for explicitly specifying absolute or relative layout is to
support runtime reconfiguration, which is much easier to perform if the system
knows the shape and location of circuits to be swapped in and out or updated
in place.

This chapter reviews various techniques for specifying the layout of circuits
for FPGAs. We illustrate our examples using Xilinx's FPGA technology, which
provides an accessible mechanism for specifying circuit layout.

16.2 EXPLICIT CARTESIAN LAYOUT SPECIFICATION

Explicit Cartesian layout specification involves specifying the location of some
or all logic elements using a two-dimensional coordinate system. One form of
explicit layout involves giving an absolute location for each gate in the mapped
netlist. This approach is not common because it does not permit the specifi
cation of reusable layouts, which can be replicated throughout the FPGA, and
such descriptions may be unnecessarily specific to a particular FPGA chip or
family. A more common approach is the relative layout specification.

Xilinx's placement tools can take user-specified layout information either as
absolute or as relative locations. Relative locations identify the bottom left cor
ner of a block of logic. Blocks may be placed relative to each other in a hierar
chical fashion.

The layout of a gate or block is achieved by attaching a special attribute
called LOC for absolute layouts and RLOC for relative layouts. The VHDL code
in Figure 16.5 illustrates the design of a 1-bit adder in which two of the gates
have their relative layout explicitly specified.

In the figure, the attribute mechanism of VHDL is used to attach a relative
layout attribute to two instances: one for an xor gate and the other for an or
gate. The RLOC attribute specifies the relative location of the CLB that will be
used to realize a given gate. One may further specify the specific lookup table
(LUT) within the CLB or omit this specification to allow the placer to make
the choice.

architecture structural of adder is

signal xorl_out, andl_out, and2_out, orl_out std_logic;

attribute RLOC of xorl is "X2Y5" ;

attribute RLOC of orl is "X3Y4" ;

begin

xorl: xorg port map (inl =>a, in2 => b, outl => xorl_out) ;

xor2: xorg port map (inl => xorl_out, in2 => cin, outl => sum);

andl: andg port map (inl => a, in2 => b, outl => andl_out);

orl: org port map (inl => a, in2 => b, outl => orl_out);

and2: andg port map (inl => cin, in2 => orl_out, outl => and2_out);

or2: org port map (inl => andl_out, in2 => and2_out, outl => cout);

end structural;

FIGURE 16.5 ■ An example of explicit layout in VHDL.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 376

352 Chapter 16 • Specifying Circuit Layout on FPGAs

Explicit layout works well for small circuits that are not parameterized and
for VHDL and Verilog descriptions that do not make use of statements like
for . . . generate. In parameterized circuits, layout specifications become
quite complex, with location specifications becoming difficult to comprehend
layout calculation expressions. Because layout specifications are string attributes,
one has the extra complexity of performing integer index calculations and then
converting them into their string representation. This is often too tedious to be
practical. The difficulty of working with explicit Cartesian layout specifications
has led to the development of various systems to specify layout at a higher level
of abstraction.

16.3 ALGEBRAIC LAYOUT SPECIFICATION

Algebraic layout specification typically does not involve Cartesian coordinates.
Instead, one specifies the geometric relationship between one circuit and ano
ther. These specifications (or constraints) are gathered together, and a determin
istic layout can then be calculated. Techniques such as this have been shown to
work for parameterized circuits, circuits with irregular layouts, and recursively
defined circuit layouts. Such descriptions are also slightly less tightly coupled
to a specific FPGA architecture or family. In this section we describe how alge
braic layout specifications work in the Lava system [1]. Several other systems
are based on similar principles.

Lava is based on the concept of circuit combinators, which are calculations
that take circuits as inputs and deliver a circuit as a result; essentially, they are
procedures that compute on circuit descriptions. One important design decision
in Lava is the coupling of the description of circuit behavior and that of circuit
layout by using circuit combinators that compose both behavior and layout.
This works well when the circuit layout description can use the same patterns
as those of the circuit behavior. When this is not the case, one can directly use
Cartesian coordinates.

One important combinator is the serial composition combinator. This combi
nator, written as an infix operator >->, takes two circuits Rand s as arguments
and delivers a circuit comprising R with its output connected to the input of s.
Furthermore, R is laid out to the left of S, which matches a left-to-right dataflow.

Figure 16.6 shows the composition of an AND2 and an INV gate. Each gate
or circuit starts life in its own coordinate system. The basic gates each have a
height and width of one unit. The serial composition combinator sees that the
circuit on the left has a width of one and then translates the circuit on the right
by one unit. These algebraic descriptions can be arbitrarily nested. When the
system needs to produce a VHDL or EDIF netlist, the algebraic specifications
are computed and a netlist that contains RLOCs is automatically generated.

Notice, now that layout has been combined with behavior, that there is a
need for several kinds of serial composition combinators. Those for right-to-left
(<-<), bottom-to-top C), and top-to-bottom (V) layout are all supported by Lava.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 377

3

2

0 :::[)-

0 1 2

AND2

3

2

0 =0--

0

FIGURE 16.6 ■ Layout calculation.

16.3 Algebraic Layout Specification 353

3

2

0 --{>o-

3 0

H>-
2

AND2 >-> INV

2 3

INV

3

Figure 16.7 shows the layout produced by the Lava circuit expression AND2 >->
FD elk, which serially composes an AND2 gate with an FD component (a flip-flop).

In the Xilinx device, a LUT-flip-flop pair is called a slice. AND2 and a flip-flop
(FD) each have a width and height of one unit, or slice, causing the FD flip
flop to be mapped to a slice to the right of the slice containing the function gen
erator for the AND2 gate. Such a process is very inefficient. To allow circuits
to be composed but mapped to the same location we can use the serial overlay
operator, written as >I>, This is illustrated on the right side of Figure 16.7 and
shows both the AND2 gate and the FD flip-flop mapped to the same location.

The circuit tiles presented so far have only one-dimensional dataflow. Four
sided tiles allow us to specify dataflow horizontally and vertically. Rather than
introduce a new basic tile, a 4-sided tile can be represented in terms of a 2-sided
tile. This is done by considering the 4-sided tile as a function that maps a pair of
input values to a pair of output values. Each element of each pair corresponds to
a face of the tile, as shown in Figure 16.8. We can now define a below combinator,
which places one tile below another (r below s is shown in the middle of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 378

354 Chapter 16 • Specifying Circuit Layout on FPGAs

(a) (b)

FIGURE 16.7 ■ The overlay combinator: (a) AND2 >-> FD elk; (b) AND2 >I> FD elk.

g

d
e s

b C

C

(a, b) -> (c, d) e col 4r

FIGURE 16.8 ■ Four-sided tiles.

figure). The col combinator replicates a tile vertically (col 4 r is shown on the
right of the figure).

A concrete example of the col combinator is shown in Figure 16.9. The col
combinator acts on a 1-bit adder circuit that takes a pair as input (the carry-in
[cin] and another pair of values to be added) and delivers a pair as its output

b

a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 379

16.3 Algebraic Layout Specification 355

LUT

cout

MUXCY
0 1

a3 ----l>---+----------'

LUT

MUXCY
0 1

a2 --I> -------�

LUT

MUXCY
0 1

a1 ----l>---+----------'

LUT

MUXCY
0 1

ao --I> -------�

cin

FIGURE 16.9 ■ A col 4 1-bit adder.

�sum3

� sum2

�sum1

�sumo

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 380

356 Chapter 16 • Specifying Circuit Layout on FPGAs

(the sum and the carry-out [cout]). It will connect the carry-out of each stage to
the carry-in of the next stage. Furthermore, it will vertically stack the 1-bit adders.

The actual FPGA layout produced for col 8 oneBitAdder is shown in
Figure 16.10. In this case the automatic placement tools would have produced
the same layout because the carry chain would have constrained a vertical align
ment for the circuit. Through combinations of these regular abutment tech
niques, very complex but regular circuits can be efficiently created.

FIGURE 16.10 ■ FPGA layout of col 8 oneBi tAdder.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 381

unriffle

FIGURE 16.14 ■ The ilv combinator.

5

2S

6

7

8

4

3

2

2S

FIGURE 16.15 ■ A bitonic merger.

16.3 Algebraic Layout Specification 359

two r riffle

5 7 8

2S 2S

7

6

2S 2S

5

2S 2S

3

8 3 2

2S 2S

specifies the layout of the merger circuit using algebraic layout specifications.
This circuit is a bitonic merger that can merge its inputs as long as one half
of the input is increasing in the opposite order from the other half, as shown
in the figure.

4

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 382

360 Chapter 16 ■ Specifying Circuit Layout on FPGAs

FIGURE 16.16 ■ Sorter recursion and layout for 8 inputs.

Now that we have our merger, we can recursively unfold the pictorial
specification in of the sorter layout to produce the design and layout in
Figure 16.16 (for 8 inputs). This layout can be specified using the following
combinators:

sortB cmp 1 = cmp

sorB cmp n

= two (sortB cmp (n-1)) >->

pair >-> snD reverse >-> unpair >->

butterfly cmp n

In the figure the description uses two subsorters to produce a bitonic input for
a merger (shown on the right).

The 8-input description can be evaluated to produce an EDIF or VHDL netlist
containing RLOC specifications for every gate. The FPGA layout of a degree-5
sorter (32 inputs) with 16-bit numbers is shown in Figure 16.17 on a Xilinx
Virtex-11 device. The resulting netlist is the same but with the layout informa
tion removed. It is shown in Figure 16.18. The netlist with the layout informa
tion leads to an implementation that is approximately 50 percent faster, and a
64-input sorter leads to a 75 percent speed improvement.

The case study just outlined shows how a complicated and recursive layout
can be described in a feasible manner using algebraic layout combinators rather
than explicit Cartesian coordinates.

16.4 LAYOUT VERIFICATION FOR PARAMETERIZED DESIGNS

A common problem with parameterized layout descriptions (especially those
based on Cartesian coordinates) is that designer errors can produce bad layouts
that cannot be realized on the target FPGAs-for example, the layout specifica
tion may try to map too many logic gates into the same location. Such errors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 383

16.3 Algebraic Layout Specification 357

16.3.1 Case Study: Batcher's Bitonic Sorter

This section presents the layout specification of a high-speed parallel sorter that
would have been difficult to lay out using explicit Cartesian coordinates. We
show how to build complex structures incrementally by composing the layout of
subcomponents using simple operators. The use of hierarchy achieves complex
layout structures that would have been difficult or tedious to produce otherwise
and impossible to produce in a compositional manner.

The objective is to build a parallel sorter from a parallel merger, as shown in
Figure 16.11. A parallel merger takes two sublists of numbers where each sublist
is sorted and produces a completely sorted list of numbers as its output. All
inputs and outputs are shifted in, in parallel rather than serially. Furthermore,
for performance reasons the sorter should have the same floorplan as shown in
the figure.

This parallel sorter uses a two-sorter as its building block, which is shown
fully placed in Figure 16.12. This circuit has left-to-right dataflow. Although the
>=> combinator is also a serial composition combinator, it does not have any
layout semantics because it is used to compose wiring circuits (which are not
subject to layout directives).

The two-sorter in Figure 16.12 has been carefully designed to have a rectangu
lar footprint because we will want to tile many of these circuits together vertically
and horizontally to produce a compact and high-performance sorter network.

Another important combinator we will use in our sorter design is the two
combinator, which makes two copies of a circuit r, one of which works on the
bottom half of the input and the other on the top half of the input, as illustrated
in Figure 16.13. Furthermore, the second copy of r should be placed vertically
on top of the first copy. The two combinator can be defined as

two r = halve >-> par [r, r] >-> unhalve

which says halve the input, use two copies of r in parallel (stacked vertically)
on the halved input, and then take the result and unhalve it.

Sorter

Merger

Sorter

FIGURE 16.11 ■ The recursive structure of a sorter.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 384

358 Chapter 16 ■ Specifying Circuit Layout on FPGAs

m
u
X

b

a

a>b

V m
r u
e X

X

g

clk---11---------1---------+-----'---------�

twoSorter elk = fork2 >·> fsT comparator >-> condSwap elk

FIGURE 16.12 ■ Two-sorter layout and behavior specification.

FIGURE 16.13 ■ The two-combinator.

D

D
two r

V

r

e

g y

Interleave (i l v) is another combining form that uses two copies of the same
circuit. This combinator has the property that the bottom circuit processes the
inputs at even positions and the top circuit processes the inputs at odd po�itions.
It can be defined as

ilv r = unriffle >-> two r >-> riffle

An instance of ilv r for an 8-input bus is shown in Figure 16.14. The related
evens combinator chops the input list into pairs and then applies copies of the
same circuit to each input.

Given these ingredients, we can give a recursive description of a parallel
merger butterfly circuit:

bfly r 1 = r

bfly r n = ilv (bfly r (n-1)) >-> evens r

A bitonic merger of degree 3 is shown in Figure 16.15, which not only describes
how to compose the behavior of elements to form a merger circuit, but also

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 385

16.4 Layout Verification for Parameterized Designs 361

FIGURE 16.17 ■ The sorter FPGA layout (32 16-bit inputs).

make the production of IP cores that rely on layout very difficult and time
consuming.

For a nonparameterized design, this is not much of an issue: The developer
can check if the design maps, places, and routes. However, for a parameter
ized design it is usually impractical to check every possible combination of
parameters to ensure that each one leads to a valid layout. A recent, interesting
approach for layout verification involves theorem provers to statically analyze
and formally verify that a design is free of layout errors. This is the approach
taken by Pell [2] in his Quartz declarative block composition system, which
uses a special hardware description notation that can be formally analyzed
with the Isabelle theorem prover. The Quartz system works on algebraic layout
combinators similar to those presented in the previous section.

The Quartz system verifies layout correctness by checking for validity, con
tainment, and intersection. Validity ensures that the size function of a block
always evaluates to a positive result. Containment ensures that for all parameter
values all subblocks stay within the bounding box of the overall circuit. The
intersection property checks for badly overlapping blocks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 386

362 Chapter 16 ■ Specifying Circuit Layout on FPGAs

FIGURE 16.18 ■ The sorter with layout information removed.

16.5 SUMMARY

User specification of the layout of circuits for FPGAs is sometimes necessary to
meet performance requirements, to reduce area, or to facilitate dynamic recon
figuration. While a user-defined layout is impractical for many complete designs
because of complexity or time-to-market constraints, optimizing the most crit
ical blocks of a circuit can have significant benefits, especially for reusable IP
blocks and vendor libraries.

Some vendor tools provide the ability to specify the layout of gates or
composite blocks through either absolute or relative Cartesian coordinates.
However, these tools are tedious to use and enor prone, particularly for param
eterized circuits. Various systems have adopted algebraic layout specifications
that use geometric relationships between blocks instead of coordinate values.
Such descriptions work well for irregular and recursive layouts, as demonstrated
by the recursive parallel sorter in this chapter. However, one may still specify
illegal layouts for parameterized circuits, and no satisfactory technique exists for

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 387

16.5 Summary 363

finding them. A promising approach is the use of theorem provers to statically
analyze algebraic layout descriptions to ensure that they have no layout errors
for any given permutation of parameters.

References

[1] P. Bjesse, K. Claessen, M. Sheeran, S. Singh. Lava: Hardware design in Haskell.
International Conference on Functional Programming (ICFP), Springer-Verlag, 1998.

[2] 0. Pell. Verification of FPGA layout generators in higher order logic. Journal of
Automated Reasoning 37(1-2), August 2006.

[3] P. J. Roxby, S. Singh. Rapid construction of partial configuration datastreams from
high level constructs using JBits. Field Programmable Logic (FPL), Springer-Verlag,
2001.

[4] S. Singh. Death of the RLOC. Field-Programmable Custom Computing Machines
(FCCM), April 2000.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 388

CHAPTER 17

PATHFINDER: A NEGOTIATION-BASED,

PERFORMANCE-DRIVEN ROUTER

FORFPGAs

Larry McMurchie
Synplicity Corporation

Carl Ebeling
Department of Computer Science and Engineering
University of Washington

Routing is a crucial step in the mapping of circuits to field-programmable gate
arrays (FPGAs). For large circuits that utilize many FPGA resources, it can
be very difficult and time consuming to successfully route all of the signals.
Additionally, the performance of the mapped circuit depends on routing critical
and near-critical paths with minimum interconnect delays. One disadvantage of
FPGAs is that they are slower than their ASIC counterparts, so it is important
to squeeze out every possible nanosecond of delay in the routing.

The first goal, a complete routing of all signals, is difficult to achieve in FPGAs
because of the hard constraints on routing resources. Unlike ASICs and printed
circuit boards (PCBs), FPGAs have a fixed amount of interconnect. The usual
approach in placement is to minimize the wiring resources anticipated for rout
ing signals. Although this reduces the overall demand for resources, signals
inevitably compete for the same resources during routing. The challenge is to
find a way to allocate resources so that all signals can be routed. The second
goal, minimizing delay, requires the use of minimum-delay routes for signals,
which can be expensive in terms of routing resources, especially for high-fanout
signals. Thus, the solution to the entire routing problem requires the simulta
neous solution of two interacting and often competing subproblems.

Early solutions to the FPGA routing problem were based on the considerable
literature on routing in the context of ASICs and gate arrays. The problem of
routing FPGAs bears a considerable resemblance to the problem of global rout
ing for custom integrated circuit design, where signals are assigned to channels.
However, the two problems differ in several fundamental respects. First, routing
resources in FPGAs are discrete and scarce while they are relatively continuous
in custom integrated circuits (ICs). For this reason FPGAs require an integrated
approach using both global and detailed routing. A second difference is that
global routing for custom ICs is based on an undirected graph embedded in
Cartesian space (i.e., a two-dimensional grid). In FPGAs the switches are often
directional, and the routing resources connect arbitrary (but fixed) locations,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 389

366 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

requiring a directed graph that may not be embedded in Cartesian space. Both
of these distinctions are important, as they prevent direct application of much
of the previous work in routing.

By far, the most common approach to global routing of custom ICs is a shortest
path algorithm with obstacle avoidance. By itself, this technique usually yields
many unroutable nets that must be rerouted by hand. A plethora of rip-up and
retry approaches have been proposed to remedy this deficiency [1-3]. The basic
problem with rip-up and retry is that the success of a route is dependent not just
on the choice of nets to reroute but also on the order in which rerouting is done.
Delay is usually factored into the standard rip-up and retry approach by ordering
the nets to be routed such that critical nets are routed most directly [4-6].

To make the FPGA routing problem tractable, nearly all of the routing
schemes in the literature incorporate features of the underlying architecture.
Palczewski [7] describes a maze router with rip-up and reroute targeting the
Xilinx 4000 series. In this work the structure of the plane-parallel switchbox
in the 4000 series is exploited in conjunction with an A* search. Brown et al.
[4] employ an architecture model consisting of channels, switchboxes, connec
tion matrices, and logic blocks. A global router balances channel densities and
a detailed router generates families of explicit paths within channels to resolve
congestion. These approaches, as well as others, obtain some of their success
by exploiting the features of a particular architecture model. The problem is
that new architectures become constrained by the restrictions of such existing
routing algorithms.

17 .1 THE HISTORY OF PATHFINDER

PathFinder was used initially in the development of the Triptych FPGA architec
ture [8-10]. In fact, Triptych, with its heavy reliance on effective placement and
routing tools, was a catalyst for the development of the PathFinder algorithm
a perfect example of "necessity being the mother of invention." As part of an
FPGA architecture exploration tool called Emerald [11], PathFinder w�s alsu
employed in the development of an FPGA under development by IBM in the
mid-1990s. This was particularly appropriate because PathFinder is inherently
architecture independent. That experience showed that PathFinder was indeed
an improvement over other FPGA routers available at the time.

The PathFinder algorithm was adopted and carefully implemented by Betz and
Rose in the very popular versatile place and route (VPR) FPGA tool suite [12, 13],
which has been widely used for academic and industry research. The Toronto
place-and-route challenge [14] was established as a way to compare different
FPGA placement and routing algorithms. Since the contest was established in
1997, the champion has been either VPR's implementation of PathFinder or SC
PathFinder, implemented at the University of California-Santa Cruz. Although
companies are reluctant to divulge the details of their design tools, it is clear
that some version of the PathFinder algorithm is currently used by virtually all
commercial FPGA routers.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 390

17 .2 THE PATHFINDER ALGORITHM

17 .2.1 The Circuit Graph Model

17 .2 The. Pathfinder Algorithm 367

One of the key features of PathFinder is its architecture independence, which
derives from the use of a simple underlying graph representation of FPGA archi
tectures. This model allows Pathfinder to be adapted to virtually any architec
ture and thus used to explore new architectures with very little startup cost.
Once an architecture has been decided on, Pathfinder can be specialized to it
for improved results and performance.

The routing resources in an FPGA and their connections are represented by
the directed graph G = (V, E). The set of vertices V corresponds to the electrical
nodes or wires in the FPGA architecture, and the edges E correspond to the
switches that connect these nodes. An example of this graph model is shown in
Figure 17 .1 for a version of the Triptych FPGA cell. Note that devices are repre
sented only implicitly by the wires connected to their terminals. That is, routing
from one device terminal to another is routing between the wires connected to
those terminals.

Associated with each node n in the architecture is a base cost bn that repre
sents the relative cost of using that node. This cost is typically proportional to
the length of the wire, although other measures like capacitance or number of
fanins and fanouts are also possible. Each node also has a delay dn , which may
or may not be the same as bn.

Given a signal i in a circuit mapped onto the FPGA, the signal net Ni is the
set of terminals, including the source terminal Si and sinks tii. Ni forms a subset
of V. A solution to the routing problem for signal i is the directed routing tree
RTi embedded in G and connecting the source Si to all of its sinks tii ·

17 .2.2 A Negotiated Congestion Router
We assume that the reader is familiar with Djikstra's shortest-path graph algo
rithm [15-17], which is at the core of many routing algorithms. Note that in our
formulation costs are associated with nodes, not edges. This changes the basic

FIGURE 17.1 ■ The circuit for a Triptych FPGA cell is represented in Pathfinder by the graph

at the right.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 391

368 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

shortest-path algorithm only slightly by redefining the cost of a path from node
ni to node ni as the sum of the node costs along the path, including the starting
and ending nodes.

Routing algorithms differ primarily in the cost function applied to the routing
resources and in how individual applications of the shortest-path algorithm are
used to successfully route all the signals of a netlist onto the graph representing
the architecture. We ignore the issue of fanout in our initial presentation and
assume that each signal is a simple route from source to a single sink.

A naive routing algorithm proceeds by applying the shortest-path algorithm
to each signal in order, with the cost of a node defined as

(17.1)

Resources already used by previous routes are not available to later routes. It
is clear that the order in which signals are routed is crucial, as later routes
have many fewer available routing resources. Some algorithms perform rip-up
and retry when later routes cannot find a path. Selected early routes that are
blocking are ripped up and rerouted later-in essence, adaptively changing the
order in which signals are routed.

The very simple example in Figure 17.2 shows how this naive algorithm can
fail. There are three signals, 1, 2, and 3, to be routed from the sources S1, S2,
and S3 to their respective sinks D1, D2, and D3 . The ovals represent partial paths
through one or more nodes, annotated with the associated costs. Ignoring con
gestion, the minimum-cost path for each signal would use node B. If the naive
obstacle avoidance routing scheme is used, the order in which the signals are
routed becomes crucial: Routing in the order 1, 2, 3 fails, and the minimum-cost
routing solution will be found only when starting with signal 2.

FIGURE 17.2 ■ First-order congestion.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 392

17 .2 The Pathfinder Algorithm 369

This problem can be solved by introducing negotiated congestion avoidance,
first suggested by Nair [18] by extending the cost of using a given node n in a
route to

Cn =bn ·Pn (17.2)

where bn is the base cost of using n, and Pn is a function of the number of
other signals presently using n (pn is often called the "present-sharing" term).
Note that in the naive router, Pn = 1 if no other signals are using n, and infinity
otherwise. In the negotiated congestion algorithm, Pn is set initially to 1 and all
signals are routed. This allows each signal to be routed as if no other signals
were present. The cost of sharing is then increased, and all nets are ripped up
and rerouted in tum. This iterative process continues, with the cost of sharing
increasing at each iteration until all signals have been successfully routed. The
idea is that the cost of a congested node will increase and that signals that have
other alternatives will eventually find other paths, leaving the node to the signal
that needs it most. Pn is a function of the iteration i and the number of signals
sharing a node k. The definition of Pn is a key tuning parameter of PathFinder.

The negotiated congestion avoidance algorithm solves the problem of
Figure 17.2. During the first iteration, Pn is initialized to 1, and consequently
no penalty is imposed for the use of n regardless of how many signals occupy
it. Thus, in the first iteration all three signals share B. When the sharing func
tion Pn increases sufficiently, signal 1 will find that a route through node A gives
a lower cost than a route through the congested node B. During an even later
iteration signal 3 will find that a route through node C gives a lower cost than
that through B. This scheme of negotiation for routing resources depends on
a relatively gradual increase in the cost of sharing nodes. If the increase is too
abrupt, signals may be forced to take high-cost routes that lead to other con
gestion. Just as in the standard rip-up and retry scheme, the ordering becomes
important.

While iterative negotiated congestion routing with the cost function of
equation 17.2 can optimally route simple "first-order" routing problems like that
in Figure 17.2, it fails on more complex "second-order" routing problems like
that shown in Figure 17.3. Again we need to route three signals, one from each
source to the corresponding sink. Let us first consider this example from the
standpoint of obstacle avoidance with rip-up and retry. Assume that we start
with the routing order (1, 2, 3). Signal 1 routes through node B, and signals 2
and 3 share node C. For rip-up and retry to succeed, both signals 1 and 2 would
have to be rerouted, with signal 2 rerouted first. Because signal 1 does not use a
congested node, determining that it needs to be rerouted is in general difficult.

This second-order congestion problem cannot be solved usingpn alone. Signal
2 will never choose node B because the present sharing costs for nodes B and
C are the same, with B used by signal 1 and C used by signal 3. Since the path
through C is cheaper, it is always chosen. PathFinder solves this by extending
the cost function with a "history" term, hn :

(17.3)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 393

370 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

FIGURE 17.3 ■ Second-order congestion.

Unlike Pn , hn "remembers" the congestion that has occurred on node n during
previous routing iterations. That is, the history term is updated after each rout
ing iteration; any node shared by multiple signals has its history term increased
by some amount. The effect of hn is to permanently increase the cost of using
congested nodes so that routes through other nodes are attempted. Without this
term, as soon as signals stop sharing a node, its cost drops to the base cost and
it again becomes attractive. This leads to oscillations where signals switch back
and forth between nodes but never resolve the congestion problem. The addition
of the history term is a key difference between PathFinder and Nair's routing
algorithm [18].

The term hn allows the problem in Figure 17 .3 to be routed successfully. On
each iteration that node C is shared, hn is increased slightly. When signal 2
switches to using node B, the cost of node C remains elevated. Now the history
cost of node B rises because it is shared by signals 1 and 2. Eventually signal 1
will route through node A. Note that, depending on the base costs and how Pn

and hn are defined, signal 2 may switch back and forth between nodes B and C
several times before the history costs of both are sufficiently high to force signal
1 onto node A.

The history term hn is updated whenever a node n has shared signals. The
size of &z, the amount by which hn is increased, and how this depends on k,

the number of sharing signals, are tunable parameters. If 6h is too small, many
iterations may be required to resolve the congestion; if it is too large, some
solutions may not be found. Additionally, the relationship between Pn and hn

is very important. For example, it can be important to give the history term a
chance to solve congestion before forcing the issue with Pn .

The details of the Negotiated Congestion algorithm are given in Figure 17.4.
The while loop at line 2 executes the routing iterations until a solution has been

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 394

iteration-o

17 .2 The PathFinder Algorithm 371

While shared resources exist 2
Iteration -iteration + 1 3
Loop over all signals i (signal router) 4

Rip up routing tree RT; 5
�-� 6
Loop until all sinks t

q
have been found 7

Initialize priority queue PQ to RT; at cost O a

Loop until new t
q

is found g
Remove lowest cost node m from PQ 10
Loop over fanouts n of node m 11

Add n to PQ at cost P;m + en 12
end loop 13

end loop 14
Loop over nodes n in path t

q
to s; (backtrace) 15

Update Cn 16
Add n to RT; 17

end loop 18
end loop 19

end loop 20
Loop over all nodes n; shared by multiple signals 21

h; - h;+ o(k) 22
end loop 23

end while 24

FIGURE 17.4 ■ Negotiated Congestion algorithm.

found. The signal router loop at line 4 iterates over all signals in the netlist,
ripping up and rerouting the nets one at a time. The routing tree RTi is the set
of nodes used to route signal i. To reroute a signal, the routing tree is reset to
be just the signal's source.

The priority queue is used to implement the breadth-first search of Djikstra's
algorithm. At each iteration of the loop of line 9, the lowest-cost node is taken
from the priority queue. It is generally best to order the nodes with the same
cost according to when they were inserted into the queue, with the newest nodes
being extracted first. The cost used when inserting a new node in the priority
queue at line 12 is

(17.4)

where Pim is the cost of the current partial path from the source, and Cn is the
cost of using node n.

A signal is routed one sink at a time using Djikstra's breadth-first algorithm.
When the search finds a sink, the nodes on the path from the source to it are
added to RTi. This is done by back-tracing the search path to the source. The
search is then restarted with the priority queue being initialized with all the
nodes already in RTi. In this way, all the nodes on routes to previously found
sinks are used as potential sources for routes to subsequent sinks. This algorithm
for constructing the routing tree is similar to Prim's algorithm for determining
a minimum spanning tree over an undirected graph, and it is identical to one

I'

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 395

372 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

suggested by Takahashi and Matsuyama [19] for constructing a tree embedded
in an undirected graph. The quality of the points chosen by the algorithm is
an open question for directed graphs; however, finding optimum (or even near
optimum) points is not essential for the router to be successful in adjusting costs
to eliminate congestion.

The VPR router [12] reduces the cost of reinitializing the priority queue for
each fanout by observing that for large-fanout nets, most of the paths found in
searching for the previous fanout remain valid, especially if the segment added
to the routing tree is relatively small. Thus, the search continues from the previ
ous state after the new segment has been added to the routing tree. Because of
the way Djikstra's algorithm ignores nodes after they have been visited once, this
optimization must be implemented carefully to avoid expensive routing trees for
high-fanout nets. Other algorithms for forming the fanout tree are possible. For
example, there are times when routing to the most distant sink first results in a
better routing tree.

At the end of each iteration, the history cost of each node shared by multiple
signals is updated. The B added to the history cost is generally a function of k,

the number of signals sharing the node.

17 .2.3 The Negotiated Congestion/Delay Router

To introduce delay into the Negotiated Congestion algorithm, we redefine the
cost of using node n when routing a signal from Si to ti; as

Cn = Ai;dn + (1-Ai;)cn (17.5)

where Cn is defined in equation 17.3 and Ai; is the slack ratio:

(17.6)

where Di; is the delay of the longest delay (register-register) path containing the
signal segment (si , ti;), and Dmax is the maximum delay over all paths (i.e., the
critical-path delay). Thus, 0 <Ai;::; 1. (This standard definition of slack ratio is
easily extended to include circuit inputs and outputs with timing constraints as
well as circuits with multiple clocks.)

Because path delay is made up of both device and wire delay, and the router
can only control the wire delay, a more accurate formulation for Ai; is

(17.7)

where Ddevi; is the path delay from node i to node j attributable to devices,
and Di;-Ddevi; is thus the wire delay on the path from node i to node j. With
equation 17.7, paths with the same path delay but greater wire delay pay more
attention to delay and less to congestion.

The first term of equation 17.5 is the delay-sensitive term; the second term
is congestion sensitive. Equations 17.5, 17.6, and 17.7 are the keys to providing
the appropriate mix of minimum-cost and minimum-delay trees. If a particular
source/sink pair lies on the critical-path, then Ai; = l and the cost of node n

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 396

17 .2 The Pathfinder Algorithm 373

is just the delay term; hence a minimum-delay route is used and congestion
is ignored. In practice, Aij is limited to a maximum value such as 0.9 or 0.95
so that congestion is not completely ignored. If a source/sink pair belongs to a
path whose delay is much smaller than the critical-path, then Aii is small and
the congestion term dominates, resulting in a route that avoids congestion at
the expense of extra delay.

To accommodate delay, the basic Negotiated Congestion algorithm of
Figure 17.4 is changed as follows. For the first iteration, all Aii are initialized to
1 and minimum-delay routes are found for every signal. This yields the smallest
possible critical-path delay. All Aij are recomputed after every routing iteration
using the critical-path delay and the delays incurred by signals on that iteration.

The sinks of each signal are now routed in decreasing Aij order. This allows the
most timing-constrained sinks to determine the coarse structure of the routing
tree with no interference from less constrained paths.

The priority queue (line 8 in Figure 1 7.4) is initialized by inserting each node
of RTi with the cost Aii Ek dk , where the nk are nodes on the path from the source
ni to node ni. This initializes the nodes already in the partial routing tree with
the weighted path delay from the source.

The router completes when no more shared resources exist. Note that by
recalculating all Aij, we have kept a tight rein on the critical-path. Over the
course of the routing iterations, the critical-path increases only to the extent
required to resolve congestion. This approach is fundamentally different from
other schemes [4, S] that attempt to resolve congestion first and then reduce
delay by rerouting critical nets.

The Pathfinder algorithm is particularly powerful for asymmetric architec
tures that have a range of slow and fast wires. By making the slower wires lower
cost, the negotiation algorithm automatically assigns critical signals to the fast
wires as needed and noncritical signals to the slow wires.

17 .2.4 Applying A* to Pathfinder

Djikstra's shortest-path algorithm performs an expensive breadth-first search of
the graph. This search has an O(n2) running time for two-dimensional circuit
structures, where n is the length of the path. The A* heuristic [20] is a technique
that uses additional information about the cost of paths in the graph to bound
the size of the search. The cost of a partial path becomes the cost of the partial
path plus the estimated cost from the end of the partial path to the destination.
If this estimated cost is a lower bound on the actual cost, then the search will
provide an optimal solution. If the estimated cost is accurate, then the search
becomes a depth-first search with O(n) running time.

In applying A* to PathFinder, both the cost and the delay of paths in the graph
must be estimated. We modify equation 17.4 as follows:

Cn = Pim +Aij (dn +Destnj) + (1 -Aij)(cn + Cestnj) (17.8)

where Destni and Cestni are the estimated delay and cost, respectively, of the
minimum-delay route from n to sink j.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 397

374 Chapter 17 • Pathfinder: A Negotiation-based, Performance-driven Router

To use the A* heuristic, the router must know the destination in order to
determine the estimated cost. Instead of letting the breadth-first router find the
closest destination when there are multiple fanouts, the path length estimates
are used to sort the fanouts from closest to furthest and the routing is performed
in this order.

In many FPGAs, such as those that are standard island style, the cost and
delay of routes can be estimated based on the locations of the source and des
tination using the geometry of the layout. A more general and accurate method
is to use the shortest-path algorithm to create a complete "distance table" that
contains the cost estimate of the minimum-delay route from every node to all
potential sinks. This is only feasible, however, for relatively small architectures
or for coarse-grained architectures that have many fewer nodes than fine-grained
FPGAs. To reduce the table size, clustering can be used and estimates stored for
the cost/delay between clusters [21]. If the cost/delay between two clusters is taken
as the minimum cost/delay between any two nodes in the two clusters, it repre
sents a true lower bound. Clustering has been reported to reduce the size of the
distance table by a factor of 100 while slowing the search only by a factor of 2 [21].

In the early iterations of PathFinder, when sharing is ignored, the full advan
tage of A* is obtained. That is, if the cost/delay estimates are accurate, a depth
first search is achieved. As the cost of sharing rises, however, the cost estimates,
which do not include the sharing costs, become less and less accurate and the
search becomes less efficient.

In experiments with PathFinder and A*, Swartz et al. [22] used a multiplica
tive direction factor a to inflate the path estimate. In effect, a determines how
aggressively the router drives toward the target sink. An a of 1.0 corresponds
to true A* and is guaranteed to find the shortest source/sink connection. Swartz
et al. determined that an a of 1.5 gave the best results for large circuits, with no
measurable degradation in the quality of the resulting routing. However, note
that the cost function had only a congestion term and no delay term. Tessier
also experimented with accelerating routing with even more aggressive use of
the A* search [23, 24].

17 .3 ENHANCEMENTS AND EXTENSIONS TO PATHFINDER

Many research papers have discussed extensions and optimizations of the
PathFinder algorithm. First and foremost is the work by Betz and Rose on VPR
[12], which for the past eight years has been a widely used vehicle for academic
and industrial research into FPGA architectures and CAD. We discuss here some
of the more salient ideas that have been applied to PathFinder.

17 .3.1 Incremental Rerouting

A common optimization suggested in the original PathFinder paper [8] is to
limit the rip-up and rerouting of signals in an iteration only to those that use
shared resources. Intuitively, this reduces the amount of "wasted" effort that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 398

17 .3 Enhancements and Extensions to PathFinder 375

goes into rerouting signals that always take the same path. The argument is
that if a signal does not use a shared resource, it will take the same path as
it did before, because history costs can only rise and thus no other path can
become cheaper. This argument fails where Pn becomes smaller as sharing sig
nals reroute around a congested node. Experience shows that this optimization
increases the number of routing iterations, but reduces the total running time
substantially, with negligible impact on the quality of the solution found.

17 .3.2 The Cost Function

There are many ways to tune PathFinder for specific architectures or to achieve
specific goals. Many variations of the cost function have been described that
change how the three cost terms bn ,Pn, and hn are computed and combined.
The essential feature of the cost function is that hn is a function of the history
of the congestion of the node and that Pn is a function of the current congestion.
The rates at which hn and Pn increase can be tuned; increasing them quickly,
for example, decreases the number of iterations required but also decreases the
quality of the solution. The history term may include a decay function on the
assumption that the more recent history is more valid than the distant past. This
is particularly important when PathFinder is used in an integrated place-and
route tool [21, 25].

The PathFinder cost function can also be modified to include both short-path
and long-path delay terms [26]. For long paths, delay is minimized by using the
PathFinder cost function. For short paths, however, the cost function is changed
to find a path with a target delay, not the minimum delay. This changes the
underlying shortest-path problem considerably and requires an accurate "look
ahead" function that predicts the remaining delay to the destination so that the
router can opportunistically add the appropriate extra delay.

17 .3.3 Resource Cost

Determining the base cost of routing resources is harder than it appears. The
shortest-path algorithm attempts to minimize the total cost of a solution, so
minimizing the cost should also minimize congestion. The typical cost function
used by routers is the length of the wire, which is a good heuristic for typical
architectures where the number of available wires is inversely proportional to
their individual lengths. A better heuristic is to base the cost of a wire on the
expected routing demand for it. This can be approximated by routing a set of
placed benchmarks onto an architecture and measuring wire by wire the rout
ing demand. Another method is to perform a large number of random routes
using a typical Rent's wirelength distribution through the architecture and again
measuring the overall use of each wire. In this formulation, wire costs are ini
tialized to 1, raised a la PathFinder according to wire usage, and converge to
some constant value.

Delay is an approximation that is often used for cost as it is typically closely
related to wirelength and relative demand. It also simplifies the cost function
for the integrated congestion and delay router.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 399

376 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

17 .3.4 The Relationship of Pathfinder to Lagrangian Relaxation

The PathFinder algorithm is very similar to Lagrangian relaxation for find
ing an optimal routing subject to congestion and delay constraints [27-29].
In Lagrangian relaxation, the constraints are relaxed by multiplying them by
a vector of Lagrangian multipliers and adding them to the objective function
to be minimized. The solution to a Lagrangian formulation with a specific set
of Lagrangian multipliers provides an approximate solution to the original
minimization problem. An iterative procedure that modifies the Lagrangian
multipliers is used to find increasingly better solutions. A subgradient method is
used to update the multipliers. Intuitively, the multipliers are increased or decre
ased depending on the extent to which the corresponding constraint is satisfied.

A Lagrangian relaxation method proceeds somewhat differently from the
PathFinder algorithm. The multipliers operate much like PathFinder's history
term, but there is no corresponding present-sharing term Pn • While the history
term is monotonically nondecreasing, the Lagrangian multipliers can both
increase and decrease depending on how well the corresponding constraint
is satisfied. The amount by which the multipliers are adjusted in Lagrangian
relaxation is also decreased with each iteration.

17 .3.5 Circuit Graph Extensions

The simple circuit graph model is very general, but there are some specific
circuit structures that require extensions. This section describes some solutions
for these.

Symmetric device inputs
Lookup tables (LUTs) are the prime example of FPGA devices whose pins are
"permutable." That is, the inputs to a LUT can be swapped arbitrarily by permut
ing the table's contents. Other devices like adders also have symmetric inputs.
In the simple graph model, a signal is routed to a specific input terminal and
there is no way to specify a route to one of a set of terminals.

Symmetric inputs are easily accommodated in the graph model by adding
"pseudo-multiplexers" on the inputs of the LUT. These are shown as dashed
nodes at the top of Figure 17.5. Signal sinks can be arbitrarily assigned to the
LUT inputs and routed in the usual way. After the routing solution has been
found, the pseudo-multiplexers are removed and implemented "virtually" by per
muting the LUT table contents appropriately. In the example of Figure 17.5, the
signals a, b, and c are routed to the LUT inputs A, B, and C, respectively, using
the pseudo-multiplexers as shown with bold lines. This routing is then used to
permute the LUT inputs as shown on the right by modifying the LUT contents.

De-multiplexers
A de-multiplexer is a device that can connect its input to at most one of several
outputs. Each output connection is represented as an edge in the circuit graph
shown in Figure 17 .6. Wire fanout, of course, is not constrained, and there is
no way in the graph model to specify a constraint on the number of fanouts
that can be used. This case is handled by a special counter that counts the
number of the edges that are used. If more than one edge is being used, the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 400

17.4 Parallel Pathfinder 377

@--- A

i--
A

©--- B 3-LUT B 3-LUT .. .J- - -

©--- C J- - - -

I'
A @-- B.J·.

) .. B 3-LUT ©-- C 3-LUT

;___ C ©---

FIGURE 17.5 ■ Symmetric device inputs are handled by inserting pseudo-multiplexers.

FIGURE 17.6 ■ De-multiplexers are handled by negotiating for the fanouts of the de-multiplexer.

de-multiplexer is being shared in much the same way that wires can be shared
by signals. A Pathfinder cost function can be applied with both a sharing and
a history component so that the single fanout used is determined by means
of negotiation.

Bidirectional switches

Edges in the graph model, which represent connections, are directional. This
models multiplexer-based architectures directly. Transistors that are often used
to construct configurable interconnects are bidirectional. These bidirectional
switches simply translate to two directional edges in the graph. The router uses
at most one of the edges, which induces a logical direction on the switch. That
is, when a switch is turned on in a configuration, it is being driven by an output
from one side to the other.

17.4 PARALLEL PATHFINDER

A typical large FPGA design has many thousands of signals. If separate signals
could be routed in parallel, the degree of parallelism would be limited only by

0 · □
_:[] []

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 401

378 Chapter 17 • PathFinder: A Negotiation-based, Performance-driven Router

the number of signals to be routed and the number of processors available. The
difficulty, of course, is that the route taken by each signal depends on the know
ledge of other signal routes, as routing resources cannot be shared. Although para
llel implementations of global standard cell routers exist, the problem for FPGAs
becomes much harder because the routing resources are discrete and fixed.

Because the routing of separate signals in an FPGA is tightly coupled, it might
appear that a parallel approach to routing FPGAs would not be possible given
that knowledge of other signal locations is necessary to find a feasible route.
This is the case in a typical maze router, which uses rip-up and reroute to resolve
conflicts. In PathFinder, however, there is no restriction on the number of signals
that can occupy a resource simultaneously during routing. Instead, the cost of
using congested resources is the mechanism used to resolve resource conflicts.
If the congestion costs are decentralized in a parallel environment, the concerns
are how and when they will be updated and whether the update method will
be acceptable in terms of the number of processors effectively utilized and the
quality of the resulting routing.

In Chan et al. [30] a distributed memory multiprocessor implementation of
the PathFinder algorithm is described. Each processor has a private local mem
ory and is connected in a network. Processors communicate with each other
by sending and receiving messages via Unix socket communication. A complete
copy, of the routing resource graph, including first- and second-order congestion
costs, is kept and maintained by each processor. The signals in a netlist to be
routed are statically assigned to processors such that each processor has about
the same number of sinks to be routed. No attempt is made to assign signals to
processors based on locality.

Processors route signals asynchronously and thus communicate updated con
gestion costs asynchronously. There is no guarantee of the order or the timing
of the arrival of such congestion cost updates, resulting in a source of inde
terminism. Processors are allowed to proceed to successive iterations without
waiting for others, although a limit of a few iterations of separation is generally
employed.

It is conceded that, because of latency, this parallel routing algorithm may not
converge. Imagine a scenario in which two signals being routed by two different
processors vie for the same resource. Message latency or merely concurrency
may cause the two signals to oscillate between routing iterations, because each
processor knows where the other processor's signal was in the last iteration but
not in the current one. Such cases generally occur during the last iterations
of a route. At that point, Chan and colleagues [30] reduce the multiprocessor
implementation to a single-processor implementation in order to resolve the
congestion.

This parallel implementation was tested on a set of benchmarks ranging from
118 to 1542 signal nets on the Xilinx 4000 architecture. Speedups ranged from
1.6 to 2.2 times for two processors and 2.3 to 3.8 times for four processors. For
nearly all benchmarks, no additional speedups are obtained for more than four
processors. The performance of the benchmarks (in terms of delay or dock rate)
was shown to vary minimally with increasing numbers of processors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 402

17 .6 Summary 379

This initial implementation of a parallel form of PathFinder is significant in
that it demonstrates appreciable speedups while employing a rather simple com
putational framework. Because of the inherent approximations of congestion
cost and its gradual increase, PathFinder exhibits good qualities for parallelism
in a framework where congestion costs are communicated asynchronously, as
they become available. It may result (as shown by Chan et al. [30]) in an
increased number of iterations to converge, but is able to employ more mul
tiple loosely connected processors to good advantage.

17 .5 OTHER APPLICATIONS OF THE PATHFINDER ALGORITHM

PathFinder has been used to incrementally reroute signals around faults in
cluster-based FPGAs [31]. This rerouting uses the accumulated history costs
acquired by the initial routing to quickly find a new routing solution when nodes
and edges in the circuit graph have been removed because of faults.

QuickRoute [32] extends PathFinder to handle pipelined routing structures.
The key idea in QuickRoute is to change Djikstra's shortest-path algorithm to
allow nodes to be visited more than once, by paths with different latencies.
This causes many more overlapping paths to be explored, but the negotiated
congestion avoidance of PathFinder still performs well.

Several groups have applied PathFinder to the problem of scheduling the
communication in computing graphs to coarse-grained architectures or multi
processors [33-35]. In this application of PathFinder, the routing becomes a
space-time problem.

17 .6 SUMMARY

The widespread use of PathFinder by commercial FPGA routers and university
research efforts alike is a testimonial to its robustness.

Several key facets of the algorithm make it attractive. However, its primary
advantage is the iterative nature of resolving congestion, using both current as
well as historical resource use in the formulation of the cost function. By very
gradually increasing cost due to both usages, the routing search space is thor
oughly explored. Routing with other objective functions, delay in particular, is
easily integrated into the cost function. A primary feature implicit in PathFinder
(that distinguishes it from previous efforts) is the allowance of nonphysically
feasible intermediate states-for example, shared resources-while converging
to a physically feasible final state. Finally, by being grounded in a directed graph
representation, PathFinder is very adaptable to changing FPGA architectures as
well as other problems that can be abstracted to a directed graph.

In the future we see the routing problem as being an increasingly dominant
hurdle in the use of FPGAs with millions of resources. To reduce the runtime,
more investigation will be required to effectively parallelize PathFinder, making

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 403

380 Chapter 17 ■ PathFinder: A Negotiation-based, Performance-driven Router

use of additional compuUl.tional resources. Given the growing focus on other
objectives such as power consumption, it is likely that we will see experimenta
tion with other cost function formulations as well.

Acknowledgments We wish to thank Gaetano Borriello for initial discussions
about routing when PathFinder was being applied to the Triptych architec
ture, and Steven Yee for his help in constructing detailed descriptions of the
Xilinx architectures. We also thank Pak Chan and Martine Schlag for sharing
the results on parallel PathFinder.

References

[1] W. A. Dees, R. J. Smith. Performance of interconnection rip-up and reroute strate
gies. Design Automation Conference, 1981.

[2] R. Linsker. An iterative-improvement penalty-function-driven wire routing system.
IBM I. Res. Development 28(5), 1984.

[3] J. Cohn, D. Garrod, R. Rutenbar, L. Carley. Kaan/anagram II: New tools for
device-level analog placement and routing. IEEE Journal of Solid-State Circuits
26(3), 1991.

[4] S. Brown, J. Rose, Z. Vranesic. A detailed router for field-programmable gate
arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 11(5), 1992.

[5] J. Frankie. Iterative and adaptive slack allocation for performance-driven layout
and FPGA routing. Design Automation Conference, 1992.

[6] M. J. Alexander, J.P. Cohoon, J. L. Ganley, G. Robins. An architecture-independent
approach to FPGA routing based on multi-weighted graphs. Proceedings of the Con
ference on European Design Automation, 1994.

[7] M. Palczewski. Plane parallel a maze router and its application to FPGAs. Design
Automation Conference, 1992.

[8] L. McMurchie, C. Ebeling. A negotiation-based performance-driven router for
FPGAs. Proceedings of the 1995 ACM Third International Symposium on Field
Programmable Gate Arrays Aided Design, 1995.

[9] G. Borriello, C. Ebeling, S. Hauck, S. Burns. The triptych FPGA architecture. IEEE
'Jransactions on Very Large Scale Integration (VLSI) Systems 3(4), 1995.

[10] C. Ebeling, L. McMurchie, S. Hauck, S. Burns. Placement and routing tools for the
triptych FPGA. IEEE 'Jransactions on Very Large Scale Integration (VLSI) Systems
3(4), 1995.

[11] D. C. Cronquist, L. McMurchie. Emerald: An--architecture-driven tool compiler
for FPGAs. Proceedings of the Fourth ACM International Symposium on Field
Programmable Gate Arrays, 1996.

[12] V. Betz, J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. Proceedings of the Seventh International Workshop on Field-Programmable
Logic and Applications. Springer-Verlag, 1997.

[13] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for deep-submicron FPGAs.
Kluwer Academic, 1999.

[14] V. Betz. The FPGA place-and-route challenge (www.eecg.toronto.edu/vaughnl
challenge/challenge.html).

[15] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), December 1959.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 404

17.6 Summary 381

[16] E. Moore. The shortest path through a maze. International Symposium on the
Theory of Switching, April 1959.

[17] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions
on Electronic Computers 10, September 1961.

[18] R. Nair. A simple yet effective technique for global wiring. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 6(2), 1987.

[19] H. Takahashi, A. Matsuyama. An approximate solution for the Steiner problem in
graphs. Math. Japonica 24(6), 1980.

[20] P. Hart, N. Nilsson, B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 1968.

[21] A. Sharma. Place and Route Techniques for FPGA Architecture Advancement, Ph.D.
thesis, University of Washington, 2005.

[22] J. S. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. Proceedings
of the ACMISIGDA Ssixth International Symposium on Field-Programmable Gate
Arrays, 1998.

[23] R. G. Tessier. Negotiated A* routing for FPGAs. Fifth Canadian Workshop on Field
Programmable Logic, 1998.

[24] R. G. Tessier. Fast Place and Route Approaches for FPGAs, Ph.D. thesis, MIT, 1999.
[25] A. Sharma, S. Hauck, C. Ebeling. Architecture-adaptive routability-driven place

ment for FPGAs. International Conference on Field-Programmable Logic and Appli
cations, 2005.

[26] R. Fung, V. Betz, W. Chow. Simultaneous short-path and long-path timing optimi
zation for FPGAs. IEEE/ACM International Conference on Computer Aided Design,
2004.

[27] S. Lee, Y. Cheon, M. D. F. Wong. A min-cost flow based detailed router for FPGAs.
International Conference on Computer-Aided Design, 2003.

[28] S. Lee, M. Wong. Timing-driven routing for FPGAs based on Lagrangian relaxation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
22(4), 2003.

[29] M. M. Ozdal, M. D. F. Wong. Simultaneous escape routing and layer assignment
for dense PCBs. Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design, 2004.

[30] P. K. Chan, M. D. F. Schlag, C. Ebeling, L. McMurchie. Distributed-memory parallel
routing for field-programmable gate arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 19(8), August 2000.

[31] V. Lakamraju, R. Tessier. Tolerating operational faults in cluster-based FPGAs.
Proceedings of the 2000 ACMJSIGDA Eighth International Symposium on Field
Programmable Gate Arrays, 2000.

[32] S. Li, C. Ebeling. QuickRoute: A fast routing algorithm for pipelined architectures.
IEEE International Conference on Field-Programmable Technology, 2004.

[33] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins. Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo schedul
ing. Design, Automation and Test in Europe, 2003.

[34] J. Cook, L. Baugh, D. Gottlieb, N. Carter. Mapping computation kernels to clustered
programmable reconfigurable processors. IEEE International Conference on Field
Programmable Technology, 2003.

[35] L.-Y. Lin, C.-Y. Wang, P.-J. Huang, C.-C. Chou, J.-Y. Jou. Communication-driven
task binding for multiprocessor with latency insensitive network-on-chip. Proceed
ings of the 2005 Conference on Asia South Pacific Design Automation, 2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 405

RETIMING, REPIPELINING,

AND C-SLOW RETIMING

Nicholas Weaver
International Computer Science Institute

CHAPTER 18

Although pipelining is a huge benefit in field-programmable gate array (FPGA)
designs, and may be required on some FPGA fabrics [5, 10, 12], it is often difficult
for a designer to manage and balance pipeline stages and to insert the necessary
delays to meet design requirements.

Leiserson et al. [4] were the first to propose retiming, an automatic process
to relocate pipeline stages to balance a design. Their algorithm, in O(n2 lg(n))
time, can rebalance a design so that the critical path is optimally pipelined. In
addition, two modifications, repipelining and C-slow retiming, can add additional
pipeline stages to a design to further improve the critical path.

The key idea is simple: If the number of registers around every cycle in the
design does not change, the end-to-end symantics do not change. Thus, retiming
attempts to solve two primary constraints: All paths longer than the desired
critical path are registered, and the number of registers around every cycle is
unchanged.

This optimization is useful for conventional FPGAs but absolutely essential
for fixed-frequency FPGA architectures, which are devices that contain large
numbers of registers and are designed to operate at a fixed, but very high,
frequency, often by pipelining the interconnect as well as the computation.

To meet the array's fixed frequency, a design must ensure that every path
is properly registered. Repipelining or C-slow retiming enables a design to be
transformed to meet this constraint. Without automated repipelining or C-slow
retiming, the designer must manually ensure that all pipeline constraints are
met by the design.

Retiming operates by determining an optimal placement for existing regis
ters, while repipelining and C-slowing add registers before the retiming pro
cess begins. After retiming, the design should be optimally (or near-optimally)
balanced, with no pipeline stage requiring significantly more time than any other
stage.

Section 18.1 describes the basic retiming operation and the retiming algo
rithm and its semantics. Then Section 18.2 discusses repipelining and C-slowing:
two· different techniques for adding registers. Repipelining improves feedfor
ward designs by adding additional pipelining stages, while C-slowing creates

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 406

384 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

an interleaved design by replacing every register with a sequence of C registers.
Both of these transformations increase throughput but also increase latency.

Section 18.3 surveys the various implementations, beginning with Leiserson's
original algorithm and concluding with both academic and commercial tools.
Section 18.4 discusses implementing retiming for fixed-frequency arrays. Unlike
general FPGAs, fixed-frequency FPGAs require retiming in order to match user
designs with architectural constraints. Finally, Section 18.5 discusses an interest
ing side effect of C-slowing: the creation of interleaved, multi-threaded architec
tures. We conclude in Section 18.6 with a discussion of the reasons that retiming
is not a ubiquitous optimization in FPGA tool flows.

18.1 RETIMING: CONCEPTS, ALGORITHM, AND RESTRICTIONS

The goal of retiming is to move the pipeline registers in a design into the optimal
position. Figure 18.1 shows a trivial example. In this design, the nodes represent
logic delays (a), with the inputs and outputs passing through mandatory, fixed
registers. The critical path is 5, and the input and output registers cannot be
moved. Figure 18.l(b) shows the same graph after retiming. The critical path is
reduced from 5 to 4, but the 1/0 semantics have not changed, as three cycles
are still required for a datum to proceed from input to output.

As can be seen, the initial design has a critical path of 5 between the internal
register and the output. If the internal register could be moved forward, the
critical path would be shortened to 4. However, the feedback loop would then
be incorrect. Thus, in addition to moving the register forward, another register
would need to be added to the feedback loop, resulting in the final design.

Additionally, even if the last node is removed, it could never have a critical
path lower than 4 because of the feedback loop. There is no mechanism that
can reduce the critical path of a single-cycle feedback loop by moving registers:
Only additional registers can speed such a design.

Retiming's objective is to automate this process: For a graph representing a
circuit, with combinational delays as nodes and integer weights on the edges,
find a new assignment of edge weights that meets a targeted critical path or fail
if the critical path cannot be met. Leiserson' s retiming algorithm is guaranteed
to find such an assignment, if it exists, that both minimizes the critical path
and ensures that around every loop in the design the number of registers always
remains the same. It is this second constraint, ensuring that all feedback loops

(a) (b)

FIGURE 18.1 ■ A small graph before retiming (a) and the same graph after retiming (b).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 407

18.1 Retiming: Concepts, Algorithm, and Restrictions 385

TABLE 18.1 ■ The constraint system used by the retiming procsess

Condition normal edge from u - v Constraint r(u) - r(v) < w(e)

Edge from u - v must be registered

Edge from u - v can never be registered

Critical paths must be registered

r(u) - r(v) :<S; w(e) - 1

r(u) - r(v) :<S; 0 and r(v) - r(u) � 0

r(u) - r(v) :<S; W(u, v) - 1 for all u, v

such that D(u, v) > P

are unchanged, which ensures that retiming doesn't change the semantics of the
circuit. In Table 18.1, r(u) is the lag computed for each node (which is used to
determine the final number of registers on each edge), w(e) is the initial number
of registers on an edge, W(u, v) is the minimum number of registers between
u and v, and D(u, v) is the critical path between u and v.

Leiserson's algorithm takes the graph as input and then adds an additional
node representing the external world, with appropriate edges added to account
for all I/Os. This additional node is necessary to ensure that the circuit's global
1/0 semantics are unchanged by retiming.

Two matrices are then calculated, W and D, that represent the number of
registers and critical path between every pair of nodes in the graph. These matri
ces are necessary because retiming operates by ensuring that at least one register
exists on every path that is longer than the critical path in the design.

Each node also has a lag value r that is calculated by the algorithm and used
to change the number of registers that will be placed on any given edge. Con
ventional retiming does not change the design semantics: All input and output
timings remain unchanged while minor design constraints are imposed on the
use of FPGA features. More details and formal proofs of correctness can be
found in Leiserson's original paper [4].

The algorithm works as follows:

1. Start with the circuit as a directed graph. Every node represents a com
putational element, with each element having a computational delay. Each edge
can have zero or more registers as a weight w. Add an additional dummy node
with O delay, with an edge from every output and to every input. This additional
node is to ensure that from every input to every output the number of registers
is unchanged and therefore the data input to output timing is unaffected.

2. Calculate W and D. D is the critical path for every node to every other
node, and W is the initial number of registers along this path. This requires
solving the all-pairs shortest-path problem, of which the optimal algorithm, by
Dijkstra, requires O(n2lg(n)) time. This dominates the asymptotic running time
of the algorithm.

3. Choose a target critical path and create the constraints, as summarized in
Table 18.1. Each node has a lag valuer, which will eventially specify the change
in the number of registers between each node. Initialize all nodes to have a
lag of 0.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 408

386 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

4. Since all constraints are pairwise integer inequalities, the Bellman-Ford
constraint solver is guaranteed to find a solution if one exists or to terminate if
not. The Bellman-Ford algorithm performs N iterations (N = the number of con
straints to solve). In each iteration, every constraint is examined. If a constraint
is already satisified, nothing happens. Otherwise, r(u) or r(v) is decremented to
meet the particular constraint. Once an iteration occurs where no values change,
the algorithm has found a solution. If there is no solution, after N iterations the
algorithm terminates with a failure.

5. If the constraint solver fails to find a solution, or a tighter critical path is
desired, choose a new critical path and return to step 3.

6. With the final set of constraints, a new set of registers is constructed for
each edge, w'•w'(e) = w(e)-r(u) + r(v).

A graphical example of the algorithm's results is shown in Figure 18.1. The
initial graph has a critical path of 5, which is clearly nonoptimal. After retiming,
the graph has a critical path of 4, but the 1/0 semantics have not changed, as any
input will still require three cycles to affect the output. To determine whether
a critical path P can be achieved, the retiming algorithm creates a series of
constraints to calculate the lag on each node (Table 18.1).

The primary constraints ensure correctness: No edge will have a negative
number of registers, while every cycle will always contain the original num
ber of registers. All 1/0 passes through the intermediate node, ensuring that
input and output timings do not change. These constraints can be modified so
that a particular line will contain no registers, or a mandatory minimum num
ber of registers, to meet architectural constraints without changing the com
plexity of the equations. But it is the final constraint, that all critical paths
above a predetermined delay P are registered, that gives this optimization its
effectiveness.

If the constraint system has a solution, the new lag assignments for all nodes
will allocate registers properly to meet the critical path P. But if there is no
solution, there cannot be an assignment of registers that meets P. Thus, the
common usage is to find the minimum P where the constraints are all met.

In general, multiple constraint-solving attempts are made to search for the
minimum critical path P. The constraints for P are the final retimed design.
There are two ways to speed up this process. First, if the Bellman-Ford algo
rithm can find a solution, it usually converges very quickly. Thus, if there is
no solution that satisfies P, it is usually effective to abandon the Bellman-Ford
algorithm early after O. lN iterations rather than N iterations. This seems to have
no impact on the quality of results, yet it can greatly speed up searching for the
minimum P that can be satisfied in the design.

A second optimization is to use the last computed set of constraints as a start
ing point. In conventional retiming, the Bellman-Ford process is invoked multi
ple times to find the lowest satisfiable critical path. In contrast, fixed-frequency
repipelining or C-slow retiming uses Bellman-Ford to discover the minimum
number of additional registers needed to satisfy the constraints. In both cases,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 409

18.1 Retiming: Concepts, Algorithm, and Restrictions 387

keeping the last failed or successful solution in the data structure provides a
starting point that can significantly speed up the process if a solution exists.

Retiming in this way imposes only minimal design limitations: Because it
applies only to synchronous circuits, there can be no asynchronous resets or
similar elements. A synchronous global reset imposes too many constraints to
allow effective retiming. Local synchronous resets and enables only produce
small, self loops that have no effect on the correct operation of the algorithm.

Most other design features can be accommodated simply by adding appropri
ate constraints. For example, an FPGA with a tristate bus cannot have registers
placed on this bus. A constraint that says that all edges crossing the bus can
never be registered (r(u) -r(v)::; 0 and r(v) -r(u)::; O) ensures this. Likewise,
an embedded memory with a mandatory output flip-flop can have a constraint
(r(u) -r(v) ::; w(e) - 1) that ensures that at least one register is placed on this
output.

Memories themselves can be retimed similarly to any other element in the
design, with dual-ported memories treated as a single node for retiming pur
poses. Memories that are synthesized with a negative clock edge (to create the
design illusion of asynchronicity) can be either unchanged or switched to oper
ate on the positive edge with constraints to mandate the placement of registers.

Some FPGA designs have registers with predefined initial values. If retiming
is allowed to move these registers, the proper initial values must be calculated
such that the circuit still produces the same behavior.

In an ASIC model, all flip-flops start in an undefined state, and the designer
must create a small state machine in order to reset the design. FPGAs, however,
have all flip-flops start in a known, user-defined state, and when a dedicated
global reset is applied the flip-flops are reset to it. This has serious implications
in retiming.

If the decision is made to utilize the ASIC model, retiming is free to safely
ignore initial conditions because explicit reset logic in state machines will still
operate correctly-this is reflected in the 1/0 semantics. However, without the
ability to violate the initial conditions with an ASIC-style model, retiming quality
often suffers as additional logic is required or limits are placed on where flip
flops may be moved in a design.

In practice, performing retiming with initial conditions is NP-hard. Cong and
Wu [3] have developed an algorithm that computes initial states by restricting
the design to forward retiming only so that it propagates the information and
registers forward throughout the computation. This is because solving initial
states for all registers moved forward is straightforward, but backward move
ment is NP hard as it reduces to satisfiability.

Additionally, global set/reset imposes a huge constraint on retiming. An asyn
chronous set/reset can never be retimed (retiming cannot modify an asyn
chronous circut) while a synchronous set/reset just imposes too high a fanout.

An important question is how to deal with multiple clocks. If the interfaces
between the clock domains are registered by clocks from both domains, it is
a simple process to retime the domains separately, with mandatory registers

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 410

388 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

TABLE 18.2 ■ The results of retiming four benchmarks

Benchmark Unretimed Automatically retimed

AES core 48 MHz

Smith/Waterman 43 MHz

Synthetic datapath 51 MHz

LEON processor 23 MHz

47 MHz

40 MHz

54 MHz

25 MHz

on the domain crossings-the constraints placed on the I/Os ensure correct
and consistent timing through the interface. Yet without this design constraint,
retiming across multiple clock domains is very hard, and there does not appear
to be any clean automatic solution.

Table 18.2 shows the results for a particular retiming tool [13]-the
Xilinx Virtex family of FPGAs--cin four benchmark circuits: an AES core, a
Smith/Waterman systolic cell, a synthetic microprocessor datapath, and the
LEON-I synthesized SPARC core. This tool does not use a perfectly accurate
delay model and has to place registers after retiming, so it sometimes creates
slightly suboptimal results.

The biggest problem with retiming is that it is of limited benefit to a well
balanced design. As mentioned earlier, if the clock cycle is defined by a single
cycle feedback loop, retiming can never improve the design, as moving the
register around the feedback loop produces no effect.

Thus, for example, the Smith-Waterman example in Table 18.2 does not bene
fit from retiming. The Smith-Waterman benchmark design consists of a series of
repeated identical systolic cells that implement the Smith-Waterman sequence
alignment algorithm. The cells each contain a single-cycle feedback loop, which
cannot be optimized. The AES encryption algorithm also consists of a single
cycle feedback loop. In this case, the initial design used a negative-edge Block
RAM to implement the S-boxes, which the retiming tool converted to a positive
edge memory with a "must register" constraint.

Nevertheless, retiming can still be a benefit if the design consists of multiple
feedback loops (such as the synthetic microprocessor datapath or the LEON
SPARC-compatible microprocessor core) or an initially unbalanced pipeline.
Still, for well-designed circuits, even complex ones, retiming is often only a
slight benefit, as engineers have considerable experience designing reasonably
optimized feedback loops.

The key benefit to retiming occurs when more registers can be added to
the design along the critical path. We will discuss two techniques, repipelining
and C-slow retiming, which first add a large number of registers that general
retiming can then move into the optimal location.

18.2 REPIPELINING AND C-SLOW RETIMING

The biggest limitation of retiming is that it simply cannot improve a design
beyond the design-dependent limit produced by an optimal placement of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 411

18.2 Repipelining and C-slow Retiming 389

registers along the critical path. As mentioned earlier, if the critical path is
defined by a single-cycle feedback loop, retiming will completely fail as an
optimization. Likewise, if a design is already well balanced, changing the reg
ister placement produces no improvement. As was seen in the four reasonably
optimized benchmarks (refer to Table 18.2), this is often the case.

Repipelining and C-slow retiming are tranformations designed to add reg
isters in a predictible matter that a designer can account for, which retiming
can then move to optimize the design. Repipelining adds registers to the begin
ning or end of the design, changing the pipeline latency but no other semantics.
C-slow retiming creates an interleaved design by replacing every register with a
sequence of C registers.

18.2.1 Repipelining

Repipelining is a minor extension to retiming that can increase the clock
frequency for feedforward computations at the cost of additional latency
through more pipeline registers. Unlike C-slow retiming, repipelining is only
beneficial when a computation's critical path contains no feedback loops.

Feedforward computations, those that contain no feedback loops, are com
monly seen in DSP kernels and other tasks. For example, the discrete cosine
transform (DCT), the fast Fourier transform (FFT), and finite impulse response
filters (FIRs) can all be constructed as feedforward pipelines.

Repipelining is derived from retiming in one of two ways, both of which cre
ate semantically equivalent results. The first involves adding additional pipeline
stages to the start of the computation and allowing retiming to rebalance the
delays and create an absolute number of additional stages. The second involves
decoupling the inputs and outputs to allow the retimer to add additional pipelin
ing. Although these techniques operate in slightly different ways, they both provide
extra registers for the retimer to then move and they produce roughly equivalent
results.

If the designer wishes to add P pipeline stages to a design, all inputs simply
have P delays added before retiming proceeds. Because retiming will develop an
optimum placement for the resulting design, the new design contains P addi
tional pipeline stages that are scattered throughout the computation. If a CAD
tool supports retiming but not repipelining, the designer can simply add the reg
isters to the input of the design manually and let the tool determine the optimum
placement.

Another option is to simply remove the cycle between all outputs and inputs,
with additional constraints to ensure that all outputs share an output lag, with
all inputs sharing a different input lag. This way, the inputs and outputs are all
synchronized but retiming can add an arbitrary number of additional pipeline
registers between them. To place a limit on these registers, an additional con
straint must be added to ensure that for a single 1/0 pair no more than P pipeline
registers are added. Depending on the other constraints in the retiming process,
this may add fewer than P additional pipeline stages, but will never add more
than P.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 412

390 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

Repipelining adds additional cycles of latency to the design, but otherwise
retains the rest of the circuit's behavoir. Thus, it produces the same results and
the same relative timing on the outputs (e.g., if input B is supposed to be pre
sented three cycles after input A, or output C is produced two cycles after output
D, these relative timings remain unchanged). It is only the data-in to data-out
timing that is affected.

Unfortunately, repipelining can only improve feedforward designs or designs
where the feedback loop is not on the critical path. If performance is limited by
a feedback loop, repipelining offers no benefit over normal retiming.

Repipelining is designed to improve throughput, but will almost always make
overall latency worse. Although the increased pipelining will boost the clock rate
(and thus reduce some of the delay from unbalanced clocked paths), the delay
from additional flip-flops on the input-to-output paths typically overwhelms this
improvement and the resulting design will take longer to produce a result for
an individual input.

This is a fundamental trade-off in repipelining and C-slow retiming. While
ordinary retiming improves both latency and throughput, repipelining and
C-slow retiming generally improve throughput at the cost of additional latency
due to the additional pipeline stages required.

18.2.2 C-slow Retiming

Unlike repipelining, C-slow retiming can enhance designs that contain feedback
loops. C-slowing enhances retiming simply by replacing every register with a
sequence of C separate registers before retiming occurs; the resulting design
operates on C distinct execution tasks. Because all registers are duplicated, the
computation proceeds in a round-robin fashion, as illustrated in Figure 18.2.

In this example, which is 2-slow, the design interleaves between two compu
tations. On the first clock cycle, it accepts the first input for the first stream
of execution. On the second clock cycle, it accepts the first input for the second
stream, and on the third it accepts the second input for the first stream. Because
of the interleaved nature of the design, the two streams of execution will never

interfere. On odd clock cycles, the first stream of execution accepts input; on
even clock cycles, the second stream accepts input.

(a) (b)

FIGURE 18.2 ■ The example from Figure 18.1, converted to 2-slow operation (a). The critical
path remains unchanged, but the design now operates on two independent streams in a
round-robin fashion. The design retimed (b). By taking advantage of the extra flip-flops, the
critical path has been reduced from 5 to 2.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 413

18.2 Repipelining and C-slow Retiming 391

The easiest way to utilize a C-slowed block is to simply multiplex and
de-multiplex C separate datastreams. However, a more sophisticated interface
may be desired depending on the application (as described in Section 18.S).

One possible interface is to register all inputs and outputs of a C-slowed block.
Because of the additional edges retiming creates to track I/Os and to ensure a
consistent interface, every stream of execution presents all outputs at the same
time, with all inputs registered on the next cycle. If part of the design is C-slowed,
but all parts operate on the same clock, the result can be retimed as a complete
whole and still preserve all other semantics.

One way to think of C-slowing is as a threaded design, with an overall sys
tem clock and with each stream having a "stream clock" of 1/C-each stream
is completely independent. However, C-slowing imposes some more significant
FPGA design constraints, as summarized in Table 18.3. Register clock enables
and resets must be expressed as logic features, since each independent thread
must have an independent reset or enable. Thus, they can remain features in
the design but cannot be implemented by current FPGAs using native enables
and resets. Other specialized features, such as Xilinx SRL16s (a mode where a
LUT is used as a 16-bit shift register), cannot be utilized in a C-slow design for
the same reason.

One important challenge is how to properly C-slow memory blocks. In cases
where the C-slowed design is used to support N independent computations, one
needs the illusion that each stream of execution is completely independent and
unchanged. To create this illusion, the memory capacity must be increased by a
factor of C, with additional address lines driven by a thread counter. This ensures
that each stream of execution enjoys a completely separate memory space.

For dual-ported memories, this potentially enables a greater freedom in retim
ing: The two ports can have different lags as long as the difference in lag is less
than C. After retiming, the difference is added to the appropriate port's thread
counter, which ensures that each stream of execution will read and write to both
ports in order while enabling slightly more freedom for retiming to proceed.

C-slowing normally guarantees that all streams view independent memories.
However, a designer may desire shared memory common to all streams. Such

TABLE 18.3 ■ The effects of various FPGA features on retiming, repipelining, and C-slowing

FPGA feature Effect on retiming Effect on repipelining Effect on C-slowing

Asynchronous global set/reset Forbidden Forbidden Forbidden
Synchronous global set/reset Effectively forbidden Effectively forbidden Forbidden
Asynchronous local set/reset FQrbidden Forbidden Forbidden
Synchronous local set/reset Allowed Allowed Express as logic
Clock enables Allowed Allowed Express as logic
Tristate buffers Allowed Allowed Allowed
Memories Allowed Allowed Increase size
SRL16 Allowed Allowed Express as logic
Multiple clock domains Design restrictions Design restrictions Design restrictions

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 414

392 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

memories could be embedded in a design, but the designer would need to
consider how multiple streams would affect the semantics and would need to
notify any automatic tool to treat the memory in a special manner. Beyond this,
there are no other semantic effects imposed by C-slow retiming.

C-slowing significantly improves throughput, but it can only apply to tasks
where there are at least C independent threads of execution and where through
put is the primary goal. The reason is that C-slowing makes the latency substan
tially worse. This trade-off brings up a fundimental observation: Latency is a
property of the design and computational fabric whereas throughput is a prop
erty derived from cost. Both repipelining and C-slow retiming can be applied
only when there is sufficient task-level parallelism, in the form of either a feed
forward pipeline (repipelining) or independent tasks (C-slowing).

Table 18.4 shows the difference that C-slowing can make in four designs.
While the retiming tool alone was unable to improve the AES or Smith
Waterman designs, C-slowing substantially increased throughput, improving the
clock rate by 80-95 percent! However, latency for individual tasks was made
worse, resulting in significantly slower clock rates for individual tasks.

Latency can be improved only up to a given point for a design through con
ventional retiming. Once the latency limit is met, no amount of optimization,
save a major redesign or an improvement in the FPGA fabric, has any effect. This
often appears in cryptographic contexts, where feedback mode-based encryption
(such as CFB) requires the complete processing of each block before the next
can be processed.

In contrast, throughput is actually a part of a throughput/cost metric:
throughput/area, throughput/dollar, or throughput/joule. This is because inde
pendent task throughput can be added via replication, creating independent
modules that perform the same function, as well as C-slowing. When sufficient
parallelism exists, and costs are not constrained, simply throwing more resources
at the problem is sufficient to improve the design to meet desired goals.

One open question on C-slowing is its effect in a low-power environment.
Higher throughput, achieved through high-speed clocking, naturally increases
the power consumption of a design, just as replicating units for higher through
put increases power consumption. In both cases, if lower power is desired, the
higher-throughput design can be modified to save power by reducing the clock
rate and operating voltage.

Unlike the replicated case, the question of whether a C-slowed design would
offer power savings if both frequency and voltage were reduced is highly design

TABLE 18.4 ■ The effect of C-slowing on four benchmarks

Benchmark Initial clock C-factor C-slow clock Stream clock

AES encryption 48 MHz 4-slow 87 MHz 21 MHz

Smith/Waterman 43 MHz 3-slow 84 MHz 28 MHz

Synthetic datapath 51 MHz 3-slow 91 MHz 30 MHz

LEON processor core 23 MHz 2-slow 46 MHz 23 MHz

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 415

18.3 Implementations of Retiming 393

and usage dependent. Although the finer pipelining allows the frequency and the
voltage to be scaled back to a significant degree while maintaining throughput,
the activity factor of each signal may now be considerably higher. Because each
of the C streams of execution is completely independent, it is safe to assume that
every wire will probably have a significantly higher activity factor that increases
power consumption.

Whether the initial design before C-slowing has a comparable activity fac
tor is highly input and design dependent. If the initial design's activity factor is
low, C-slowing will significantly increase power consumption. But if that factor
is high, C-slowing will not increase it. Thus, although the C-slowing transfor
mation may have a minor affect on worst-case power (and can even result in
significant savings through voltage scaling), the impact on average-case power
may be substantial.

18.3 IMPLEMENTATIONS OF RETIMING

Three significant academic retiming tools have been developed for FPGAs. The
first, by Cong and Wu [3], combines retiming with technology mapping. This
approach enables retiming to occur before placement without adding undue
constraints on the placer, because the retimed registers are packed with their
associated logic. The disadvantage is a lack of precision, as delays can only
be crudely estimated before placement. This tool is unsuitable for significant
C-slowing, which creates significantly more registers that can pose problems
with logic packing and placement.

The second tool, developed by Singh and Brown [6], combines retiming with
placement, operating by modifying the placement algorithm to be aware that
retiming is occurring and then modifying the retiming portion to enable per
mutation of the placement as retiming proceeds. Singh and Brown demonstrate
how the combination of placement and retiming performs significantly better
than retiming either before or after placement.

The simplified FPGA model used by Singh and Brown has a logic block where
the flip-flop cannot be used independently of the LUT, constraining the ability
of postplacement retiming to allocate new registers. Thus, the need to permute
the placement to allocate registers is significantly exacerbated in their target
architecture.

The third tool, developed by Weaver et al. [13], performs retiming after place
ment but before routing, taking advantage of the (mostly) independent register
operation available on Xilinx FPGAs. (It would not apply to most Altera FPGAs.)
It too also supports C-slowing.

Some commercial HDL synthesis tools, notably the Synopsys FPGA compiler
[9] and Synplify [8], also support retiming. Because this retiming occurs fairly
early in the mapping and optimization processes, it suffers from a lack of precision
regarding placement and routing delays. The Amplify tool [10] can produce a
higher-quality retiming because it contains placement information. Since these

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 416

394 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

tools attempt to maintain the FPGA model of initial conditions, both on startup
and in the face of a global reset signal, considerable logic is added to the design.

18.4 RETIMING ON FIXED-FREQUENCY FPGAs

Fixed-frequency FPGAs differ from conventional FPGAs in that they have an
intrinsic clock rate and commonly include pipelined interconnect and other
design features to enable very high-speed operations. However, this fixed fre
quency demands a design modification to support the pipeline stages it requires.

Retiming for fixed-frequency FPGAs, unlike that for their conventional coun
terparts, does not require the creation of a global critical path constraint, as sim
ply ensuring that all local requirements are met guarantees that the final design
meets the architecture's required delay constraints. Instead, retiming attempts
to solve these local constraints by ensuring that every path through the inter
connect meets the delay requirements inherent in the FPGA. Once these local
constraints are met, the final design will operate at the FPGA's intrinsic clock
frequency.

Because there are no longer any global constraints, the W and D matrices
are not created. A fixed-frequency FPGA does not require the global constraints,
so having only to solve a set of local constraints requires linear, not quadratic,
memory and O(n2), rather than O(n2lg(n)), execution time. This speeds the pro
cess considerably.

Additionally, only a single invocation of the constraint solver is necessary
to determine whether the current level of pipelining can meet the constraints
imposed by the target architecture. Unfortunately, most designs do not possess
sufficient pipelining to meet these constraints, instead requiring a significant
level of repipelining or C-slow retiming to do so. The level necessary can be
discovered in two ways.

The first approach is simply to allow the user to specify a desired level of
repipelining or C-slowing. The retiming system then adds the specified number
of delays and attempts to solve the system. If a solution is discovered, it is used.
Otherwise, the user is notified that the design must be repipelined or retimed to
a greater degree to meet the array's clock cycle. The second approach requires
searching to find the minimal level of repipelining or C-slowing necessary to
meet the constraints. Although this necessitates multiple iterations of the con
straint solver, fixed-frequency retiming only requires local constraints. Without
having to check the global constraints, this process proceeds quickly. The result
ing level of repipelining or C-slowing is then reported to the user.

Fixed-frequency FPGAs require retiming considerably later in the tool flow.
It is impossible to create a valid retiming until routing delays are known. Since
the constraints required invariably depend on placement, the final retiming
process must occur afterwards. Some arrays, such as HSRA [1 O], have deter
ministic routing structures that enable retiming to be performed either before or
after routing. Other interconnect structures, such as SFRA [12], lack determin
istic routing and require that retiming be performed only after routing.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 417

18.5 C-slowing as Multi-threading 395

Finally, the fact that fixed-frequency arrays may use considerably more
pipelining than conventional arrays makes retiming registers a significant archi
tectural feature. Because these delay chains [10], either on inputs or on outputs,
are programmable, the array can implement longer ones. A common occurrence
after aggressive C-slow retiming is a design with several signals requiring con
siderable delay. Therefore, dedicated resources to implement these features are
effectively required to create a viable fixed-frequency FPGA.

18.5 C-SLOWING AS MULTI-THREADING

There have been numerous multi-threaded architecture designs, but all share a
common theme: increasing system throughput by enabling multiple streams of
execution, or threads, to operate simultaneously. These architectures generally
fall into four classes: context switching always without bypassing (HEP [7] and
Tera [2]), context switching on event (Intel IXP) [14], interleaved multi-threaded,
and symmetric multi-threaded (SMT) [11]. The ideal goal of all of them is to
increase system throughput by operating on multiple streams of execution.

The general concept of C-slow _retiming can be applied to highly complex
designs, including microprocessors. Unlike a simple FIR filter bank or an
encryption algorithm, it is not a simple matter of inserting registers and balanc
ing delays. Nevertheless, the changes necessary are comparatively small and the
benefits substantial: producing a simple, statically scheduled, higher clock rate,
multi-threaded architecture that is semantically equivalent to an interleaved
multi-threaded architecture, alternating between a fixed number of threads in a
round-robin fashion to create the illusion of a multiprocessor system.

C-slowing requires three minor architectural changes: enlarging and modify
ing the register file and TLB, replacing the cache and memory interface, and
slightly modifying the interrupt semantics. Beyond that, it is simply a matter of
replacing every pipeline register in both the control logic and the datapath with
C registers and then moving the registers to balance the delays, as is traditional
in the C-slow retiming transformation and can be performed by an automatic
tool. The resulting design, as expected, has full multi-threaded semantics and
improved throughput because of a significantly higher clock rate. Figure 18.3
shows how this transformation can operate.

The biggest complications in C-slowing a microprocessor are selecting the
implementation semantics for the various memories through the design. The
first type keeps the traditional C-slow semantics of complete independence,
where each thread sees a completely independent view, usually by duplication.
This applies to the register file and most of the state registers in the system. This
occurs automatically if C-slowing is performed by a tool, because it represents
the normal semantics for C-slowed memory.

The second is completely shared memory, where every thread sees the same
memory, such as the caches and main memory of the system. Most such
memories exist in the non-C-slowed portion and so are unaffected by an auto
matic tool.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 418

396 Chapter 18 • Retiming, Repipelining, and C-slow Retiming

(a)

Reglster-11---.-i-i--1

file

cache

IMM

RD

(b)

FIGURE 18.3 ■ A traditional five-stage microprocessor pipeline, and its conversion to 3-slow
operation.

The third is dynamically shared, where a hardware thread ID or a software
thread context ID is tagged to each entry, with only the valid tags used. This
breaks the automatic C-slow semantics and is best employed for branch pre
dictors and similar caches. Such memories need to be constructed manually,
but offer potential efficiency advantages as they do not need to increase in size.
Because they cannot be constructed automatically they may be subject to inter
ference or synergistic effects between threads.

The biggest architectural changes are to the register file: It needs to be
increased by a factor of C, with a hardware thread counter to select which group
of registers is being accessed. Now each thread will see an independent set of
registers, with all reads and writes for the different threads going to separate
memory locations. Apart from the thread selection and natural enlargement,
the only piece remaining is to pipeline the register access. If necessary, the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 419

18.5 C-slowing as Multi-threading 397

C independently accessed sections can be banked so that the register file can
operate at a higher clock frequency.

Naturally, this linearly increases the size of the register file, but pipelining
the new larger file is not difficult since each thread accesses a disjoint register
set, allowing staggered access to the banks if desired. This matches the auto
matic memory transformations that C-slowing creates: increasing the size and
ensuring that each task has an independent view of memory.

To maintain the illusion that the different threads are running on completely
different processors, it is important that each thread have an independent trans
lation of memory. The easiest solution is to apply the same transformations to
the TLB that were applied to the register file: increasing the size by C, with
each thread accessing its own set, and pipelining access. Again, this is the nat
ural result of applying the C-slow semantics from an automatic tool.

The other option is to tag each TLB entry. The interference effect may be
significant if the associativity or size of the TLB is low. In such a case, and
considering the generally small size of most TLBs, increasing the size (although
perhaps by less than a factor of C) is advisable. Software thread ID tags are
preferable to hardware ID tags because they reduce the cost of context switch
ing if a shared TLB is used and may also provide some synergistic effects. In
either case, a shared TLB requires interlocking between TLB writes to prevent
synchronization bugs.

If the caches are physically addressed, it is simply a matter of pipelining
access to improve throughput without splitting memory. Because of the inter
locked execution of the threads and the pipelined nature of the modified caches,
no additional coherency mechanisms are required except to interlock any exist
ing test-and-set or atomic read/write instructions between the threads to ensure
that each instruction has time to be completed.

Such cache modifications occur outside the C-slow semantics, suggesting that
the cache needs to be changed manually. This means that the cache and mem
ory controller must be manually updated to support pipelined access from the
distinct threads, and must exist outside of the C-slowed core itself.

Unfortunately, virtually addressed caches are significantly more complicated:
They require that each tag include thread ownership (to prevent one thread from
viewing another's version of memory) and that a record of virtual-to-physical
mappings be maintained to ensure coherency between threads. These compli
cations suggest that a physically addressed cache would be superior when C

slowing a microprocessor to produce a simple multi-threaded design. A virtually
addressed cache is one of the few structures that do not have a natural C-slow
representation or that can easily exist outside a C-slowed core.

The rest of the machine state registers, being both loaded and read, are auto
matically separated by the C-slow transformation. This ensures that each thread
will have a completely independent set of machine registers. Combined with
the distinct registers and TLB tagging, each thread will see an independent
processor.

The only other portion that needs to be changed is the interrupt semantics.
Just as the rest of the control logic is pipelined, with control registers duplicated,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 420

398 Chapter 18 ■ Retiming, Repipelining, and C-slow Retiming

the same transformations need to be applied to the interrupt logic. Thus, every
external interrupt is interpreted by the rules corresponding to every virtual pro
cessor running in the pipeline. Yet, since the control registers are duplicated, the
OS can enforce policies where different interrupts are handled by different exe
cution streams. Similarly, internally driven interrupts (such as traps or watchdog
timers), when C-slowed, are independent between threads, as C-slowing ensures
that each thread sees only its own interrupts.

In this way, the OS can ensure that one virtual thread receives one set of
externally sourced interrupts while another receives a different set. This also
suggests that interrupts be presented to all threads of execution, enabling each
thread (or even multiple threads) to service the appropriate interrupt.

The resulting design has full multi-threaded semantics, with each of C threads
being independent. Because C-slowing can improve the clock rate (by two times
in the case of the LEON benchmark), this can easily and substantially improve
the throughput of a very complex design.

18.6 WHY ISN'T RETIMING UBIQUITOUS?

An interesting question is why retiming is not heavily used in FPGA tool flows.
Although some FPGA vendors [1] and CAD vendors [8] support retiming, it is
not universally available, and even when it is, it is usually optional.

There are three major factors that limit the general adoption of retiming: It
interacts poorly with many critical FPGA features; it can only optimize poor
implementations yet is not a substitute for good implementation; and it is com
putationally intensive.

As mentioned earlier, retiming does not work well with initial conditions or
global resets-features that FPGA designers have traditionally relied on. Like
wise, BlockRAMs, hardware clock eEnables, and other features can pin regis
ters, limiting the ability of a retiming tool to move tnem. For these reasons,
many FPGA designs cannot be effectively retimed.

A related observation is that retiming helps only poor designs and, moreover,
only fixes one common deficiency of a poor design, not all of them. Additionally,
if the designer has enough savvy to work around the limitations of retiming, he
will probably produce a naturally well-balanced design.

Finally, although retiming is a polynomial time algorithm, its still superlinear.
As designs continue to grow in size, O(n2lg(n)) can still be too long for many
uses. This is especially problematic as the Moore's Law scaling for FPGAs is
currently greater than that for single-threaded microprocessors.

References

[1] Altera Quartus II eda (http://www.altera.com/).
[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, B. Smith. The

Tera computer system. Proceedings of the 1990 International Conference on Super
computing, 1990.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 421

-

18.6 Why Isn't Retiming Ubiquitous? 399

[3] J. Cong, C. Wu. Optimal FPGA mapping and retiming with efficient initial state
computation. Design Automation Conference, 1998.

[4] C. Leiserson, F. Rose, J. Saxe. Optimizing synchronous circuitry by retiming. Third
Caltech Conference On VLSI, March 1993.

[5] H. Schmit. Incremental reconfiguration for pipelined applications. Proceedings of
the IEEE Symposium on Field-Programmable Gate Arrays for Custom Computing
Machines, April 1997.

[6] D. P. Singh, S. D. Brown. Integrated retiming and placement for field-programmable
gate arrays. Tenth ACM International Symposium on Field-Programmable Gate
Arrays, 2002.

[7] B. J. Smith. Architecture and applications of the HEP multiprocessor computer
system. Advances in laser scanning technology. SPIE Proceedings 298, Society for
Photo-Optical Instrumentation Engineers, 1981.

[8] Synplify pro (http:llwww.synplicity.com//products//synplifypro//index.html).
[9] Synopsys, Inc. Synopsis FPGA Compiler II (http://www.synopsys.com).

[10] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, 0. Rowhani, V. George,
J. Wawrzynek, A. DeHon. HSRA: High-speed, hierarchical synchronous reconfig
urable array. Proceedings of the International Symposium on Field-Programmable
Gate Arrays, February 1999.

[11] D. M. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous multi-threading: Maxi
mizing on-chip parallelism. Proceedings 22nd Annual International Symposium on
Computer Architecture, June 1995.

[12] N. Weaver, J. Hauser, J. Wawrzynek. The SFRA: A comer-tum FPGA architecture.
Twelfth International Symposium on Field-Programmable Gate Arrays, 2004.

[13] N. Weaver, Y. Markovskiy, Y. Patel, J. Wawrzynek. Postplacement C-slow retim
ing for the Xilinx-Virtex FPGA. Eleventh ACM International Symposium on Field
Programmable Gate Arrays, 2003.

[14] Intel Corporation. The Intel IXP network processor. Intel Technology Journal 6(3),
August 2002.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 422

CONFIGURATION BITSTREAM

GENERATION

Steven A. Guccione

Cmpware, Inc.

CHAPTER 19

While a reconfigurable logic device shares some of the characteristics of a fixed
hardware device and some of a programmable instruction set processor, the
details of the underlying architecture and how it is programmed are what dis
tinguish these machines. Both a reconfigurable logic device and an instruction
set processor are programmable by "software," but the internal organization
and use of this software are quite different. In an instruction set processor, the
programming is a set of binary codes that are incrementally fed into the device
during operation. These codes actually carry out a form of reconfiguration inside
the processor. The arithmetic and logic unit(s) (ALU) is configured to perform
a requested function and various control multiplexers (MUXes) that control the
internal flow of data are set. In the instruction set machine, these hardware
components are relatively small and fixed and the system is reconfigured on a
cycle-by-cycle basis. The processor itself changes its internal logic and routing
on every cycle based on the input of these binary codes.

In a processor, the binary codes-the processor's machine language-are
fairly rigid and correspond to sequential "instructions." The sequence of these
instructions to implement a program is often generated by some higher-level
automatic tool such as a high-level language (HLL) compiler frbm a language
such as Java, C, or C++. But they may, in reality, come from any source. What
is important is that the collection of binary data fits this rigid format. The col
lection of binary data goes by many names, most typically an "executable" file
or even more generally a "binary program."

A reconfigurable logic device, or field-programmable gate array (FPGA), is
based on a very different structure than that of an instruction set machine. It
is composed of a two-dimensional array of programmable logic elements joined
together by some programmable interconnection network. The most significant
difference between FPGA and the instruction set architecture is that the FPGA is
typically intended to be programmed as a complete unit, with the various inter
nal components acting together in parallel. While the structure of its binary pro
gramming (or configuration) data is every bit as rigid as that of an instruction
set processor, the data are used spatially rather than sequentially.

In other words, the binary data used to program the reconfigurable logic
device are loaded into the device's internal units before the device is placed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 423

402 Chapter 19 ■ Configuration Bitstream Generation

in its operating mode, and typically, no changes are made to the data while
the device is operating. There are some significant exceptions to this rule: The
configuration data may in fact be changed while a device is operational, but this
is somewhat akin to "self-modifying code" in instruction set architectures. This
is a very powerful technique, but carries with it significant challenges.

The collection of binary data used to program the reconfigurable logic device
is most commonly referred to as a ''bitstream," although this is somewhat mis
leading because the data are no more bit oriented than that of an instruction set
processor and there is generally no "streaming." While in an instruction set pro
cessor the configuration data are in fact continuously streamed into the internal
units, they are typically loaded into the reconfigurable logic device only once
during an initial setup phase. For historical reasons, the somewhat undescrip
tive ''bitstream" has become the standard term.

As much as the binary instruction set interface describes and defines the
architecture and functionality of the instruction set machine, the structure of
the reconfigurable logic configuration data bitstream defines the architecture
and functionality of the FPGA. Its format, however, currently suffers from a
somewhat interesting handicap. While the format of the programming data of
instruction set architectures is freely published, this is almost never the case
with reconfigurable logic devices. Almost all of them that are sold by major
manufacturers are based on a "closed" bitstream architecture.

The underlying structure of the data in the configuration bitstream is regar
ded by these companies as a trade secret for reasons that are historical and
not entirely clear. In the early days of reconfigurable logic devices, the under
lying architecture was also a trade secret, so publishing the configuration bit
stream format would have given too many clues about it. It is presumed
that this was to keep competitors from taking ideas about an architecture,
or perhaps even "cloning" it and providing a hardware-compatible device.
It also may have reassured nervous FPGA users that, if the bitstream for
mat was a secret, then presumably their logic designs would be difficult to
reverse-engineer.

While theft and cloning of device hardware do not appear to be a potential
problem today, bitstream formats are still, perhaps out of habit alone, treated as
trade secrets by the major manufacturers. This is a shame because it prohibits
interesting experimentation with new tools and techniques by third parties. But
this is perhaps only of interest to a very small number of people. The vast
majority of users of commercial reconfigurable logic devices are happy to use
the vendor-supplied tools and have little or no interest in the device's internal
structure as long as the logic design functions as specified. However, for those
interested in the architecture of reconfigurable logic devices, trade secrecy is an
important subject.

While exact examples from popular industry devices are not possible because
of this secrecy, much is publicly known about the underlying architectures, the
general way a bitstream is generated, and how it operates when loaded into a
device.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 424

19.1 THE BITSTREAM

19.1 The Bitstream 403

The bitstream spatially represents the configuration data of a large collection
of small, relatively simple hardware components. Thus, we can identify these
components and discuss the ways in which the bitstream is used to produce a
working digital circuit in a reconfigurable logic device. Although there is really
no limit to the types of units possible in a reconfigurable logic device, two basic
structures make up the microarchitecture of most modern FPGAs. These are the
lookup table (LUT) and the switch box.

The LUT is essentially a very small memory element, typically with 16 bits
of bit-oriented storage. Some early FPGAs used smaller 8-bit LUTs, and other
more exotic architectures used non-LUT structures. In general, however, the vast
majority of commercial FPGA devices sold over the last decade use the 16-bit
LUT as a primary logic building block.

The functionality of LUTs is very simple. Binary data are loaded into them
to produce some Boolean function. In the case of the 16-bit LUT, there are
four inputs, which can produce any arbitrary 4-input Boolean logic function.
For instance, to provide the AND function of all four inputs, each bit in the
memory except the bit at address A (1, 1, 1, 1) is loaded with a binary O and
the A (1, 1, 1, 1) bit is loaded with a 1. The address inputs of the LUT are used
as the inputs to the logic function, with the output of the LUT providing the
output of the logic function. Figure 19.1 illustrates this mapping of a 2-input
LUT to a 2-input AND gate.

While the LUTs provide the logic for the circuit, the switch boxes provide
the interconnection. These switch boxes are typically made up of multiplex
ers in various regular configurations. These multiplexers are controlled by bits
of memory that select the inputs and send them to the multiplexer's outputs.
Figure 19.2 shows a typical configurable interconnect element constructed using
a multiplexer.

The multiplexer inputs in Figure 19.2 are controlled by two memory elements
that are set during configuration. They select which input value is sent to the out
put. By connectiong large numbers of elements of this type, an interconnection

a

b

out �
b

out

=> �
2-input LUT AND gate

FIGURE 19.1 ■ A 2-input LUT configured as an AND gate.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 425

404 Chapter 19 ■ Configuration Bitstream Generation

in3

in2

in1

inO

cfgin1

cfginO cfgO

FIGURE 19.2 ■ A configurable 4-input multiplexer used in routing.

network of the kind typically used to construct modern reconfigurable logic
devices can be made.

In various topologies, the ouputs of the multiplexers in the switch boxes feed
the address inputs of the LUTs; the outptus of the LUTs, in turn, feed the inputs
of the switch box multiplexers. This provides a basic reprogrammable archi
tecture capable of producing arbitrary logic functions, as well as the ability to
interconnect these functions in a variety of ways. How complex a circuit a given
reconfigurable logic device can implement is based on both the number of LUTs
and the size and complexity of the interconnection fabric.

In fact, the topology of the interconnect fabric and the implementation of the
switch boxes is perhaps the defining characteristic of an FPGA architecture. Older
FPGAs had a limited silicon area and few metal layers to supply wires. For this
reason, the LUTs were typically "islands" of logic, with the interconnect wires
running in the "channels" between them. Where these channels intersected were
the switch boxes. How many wires to use and how to configure the switch boxes
were the main work of the FPGA architect. Balancing the cost of more wires
with the needs of typical digital circuit was important to making a cost-effective
device that would be commercially successful. Covering as many potential circuit
designs as possible at as high a speed as possible, but with the smallest silicon
area, is still the challenge FPGA device architects must confront.

In later silicon process generations, however, more metal layers were avail
able, which resulted in a much higher ratio of wires to logic in FPGAs. Where
older generations of FPGAs often had a scarcity of interconnection resources,
more modern FPGA devices seldom encounter circuits they are unable to imple
ment because of a lack of routing resources. And these wires now tend to run
on top of the logic rather than in channels, which has led to higher circuit
densities, a tighter integration between the switch boxes and the logic, and
faster interconnect.

The configuration bitstream data for the routing are essentially the multi
plexer inputs in these switch boxes. The memory for these MUX inputs tends

cfg1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 426

19.1 The Bitstream 405

to be individual memory elements such as flip-flops scattered around the device
as needed, establishing the basic bitstream for the FPGA: the LUT data plus the
bits to control the routing multiplexers.

While the multiplexer and switch boxes are the basic elements of modem
FPGA devices, many other components are possible. One of the more popular
is a configurable input/output block, or IOB. An IOB is typically connected to
the end of one of the wires in the routing system on one side and to a physical
device pin on the other. It is then configured to define the type of pin used by this
device: either input or output. More complex IOBs can configure pin voltages
and even parameters such as capacitance, and some even provide higher-level
support for various serial communication protocols. Much like switch boxes,
the configuration bitstream data for the IOBs are some collection of bits used
to set flip-flops within them to select these features.

In addition to IOBs, other, more special-purpose units have turned up in later
generations of FPGA devices. Two prominent examples are block memory and
multiplier units. Block memory (BlockRAM) is simply relatively large RAM units
that are usually on the order of lK bits but can be implemented in any number
of ways. The actual data bits may be part of the bitstream, which initializes
the BlockRAM upon power-up. To reduce the size of the bitstream, however,
this data may be absent and internal circuitry may be required to reset and
initialize the BlockRAM.

In addition to the internal data, the BlockRAM is typically interfaced to the
switch boxes in various ways. Its location and interfacing to the interconnection
network is a major architectural decision in modem reconfigurable logic device
design.

Because the multiplication function has become more popular in FPGA
designs and because FPGAs are so inefficient at implementing such circuits,
the addition of hardwired multiplier units into modem FPGA devices has been
increasing. These units typically have no internal state or configuration, but are
interfaced to the interconnection network in a manner similar to the BlockRAM
interface. As with the BlockRAM, where to locate these resources and how many
to include are major architectural decisions that can have a large impact on the
size and efficiency of modem FPGAs.

Many other features also find control bits in the FPGA bitstream. Some of
these are global control related to configuration and reconfiguration; others are
ID codes and error-checking information such as cyclic redundancy check codes.
How these features are implented is very architecture dependent and can vary
widely from device family to device family. One common feature is basic control
for bit-level storage elements, often in the form of flip-flops on the LUT out
put. Various control bits often set circuit parameters such as the flip-flop type
(D, JK, T) or the clock edge trigger type (rising or falling edge). The ability to
chage the flip-flop into a transparent D-type latch is also a popular option. Each
of these bits also contributes to the configuration data, with one set of flip-flop
configuration settings per LUT being typical.

Finally, while the items just discussed are the major standard units used to
construct modem FPGA devices and define the configuration bitstream, there

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 427

406 Chapter 19 • Configuration Bitstream Generation

TABLE 19.1 ■ Configuration bitstream sizes·

Year Device Bits

1986 XC2018 18 Kbits

1988 XC3090 64 Kbits

1990 XC4013 248 Kbits

1994 XC4025 422 Kbits

1996 XC4028 668 Kbits

1998 XCVl000 6.1 Mbits

2000 XCV3200 16 Mbits

2003 XC2V8000 29 Mbits

is no limit to the types of circuits and configurations possible. For example, an
interest in analog FPGAs has resulted in unique architectures to perform analog
signal processing. Also, some coarser-grained reconfigurable logic devices have
moved up in granularity from LUTs to ALUs, and these devices have somewhat
different bitstream structures. Other architectures have gone in the other direc
tion toward extremely fine-grained architectures. One notable device, the Xilinx
XC6200, has a logic cell that is essentially a 2-input multiplexer. The balance of
routing and logic in these devices has made them less attractive than coarser
grained devices, but they have not been reevaluated in the context of the denser
routing available with newer multilayer metal processes and so may yet have
some promise.

As FPGA devices themselves have grown, so has the size of the configuration
bitstreams. In fact, bitstream size can be a reasonable gauge of the size and
complexity of the underlying device, which can be useful because it is a single
number that is readily available. Table 19.1 gives some representative sizes of
various bitstreams from members of the Xilinx family of FPGAs and the approx
imate dates they were introduced.

19.2 DOWNLOADING MECHANISMS

The FPGA configuration bitstream is typically saved externally in a nonvolatile
memory such as an EPROM. The data are usually loaded into the device shortly
after the initial power-up sequence, most often bit-serially. (This loading mech
anism may be the reason that many engineers perceive the configuration data
as a "stream of bits.") The reason for serial loading is primarily one of cost and
convenience. Since there is usually no particular hurry in loading the FPGA con
figuration data on power-up, using a single physical device pin for this data is
the simplest, cheapest approach. Once the data are fully loaded, this pin may
even be put into service as a standard 1/0 pin, thus preventing the configuration
downloading mechanism from consuming valuable 1/0 resources on the device.

A serial configuration download is the norm, but some FPGA devices have
a parallel download mode that typically permits the use of eight 1/0 pins to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 428

19.3 Software to Generate Configuration Data 407

download configuration data in parallel. This may be helpful for designs that use
an 8-bit memory device and for applications where reprogramming is common
and speed is important-often the case when an FPGA is controlled by a host
processor in a coprocessor arrangement. As with the serial approach, the pins
may be returned to regular 1/0 duty once downloading is complete.

One place where such high-bandwidth configuration is useful is in the device
test in the factory. Testing FPGA devices after manufacture can be a very expen
sive task, mostly because of time spent attached to the test equipment. Thus,
decreasing the configuration download time by a factor of eight may result in
the FPGA manufacturer requiring substantially fewer pieces of test equipment,
which can result in a significant cost savings during manufa�ture. Anecdotal evi
dence suggests that high-speed download is driven mostly by increased test effi
ciency and not by any customer requirements related to runtime reconfiguration.

One type of device that is based on nonvolatile memory bears mention here.
Rather than using RAM and flip-flops as the internal logic and control, commer
cially available devices from companies such as Actel use nonvolatile Flash-style
internal configuration memory. These devices are programmed once and do not
require reloading of configuration data on power-up, which can be important in
systems that must be powered-up quickly. Such devices also tend to be more resis
tant to soft errors that can occur in volatile RAM devices. This makes them espe
cially popular in harsh environments such as space and military applications.

19.3 SOFTWARE TO GENERATE CONFIGURATION DATA

The software used to generate configuration bitstream data for FPGA devices is
perhaps some of the most complex available. It usually consists of many layers
of functionality and can run on the largest workstations for hours or even days
to produce the output for a single design. While the details of this software are
beyond the scope of this chapter, some of the way the software generates this
bitstream will be briefly discussed in this section.

The top-level input to the FPGA design software is most often a hardware
description language (HDL) or a graphical circuit design created with a sche
matic capture package. This representation is usually then translated into a
low-level description more closely related to the implementation technology.
A common choice for this intermediate format is EDIF (Electronic Design Inter
change Format). This translation is fairly generic and such tools are widely
available from a variety of software vendors.

The EDIF description is still not suitable for directly programming the recon
figurable logic device. In the typical FPGA, the underlying circuit must be
"mapped" onto the array of LUTs and switch boxes. While the actual implemen
tation may vary, the two basic processes for getting such abstract circuit descrip
tions into a physical representation of FPGA configuration data are placement/
routing and mapping. Figure 19.3 shows the basic flow of this process.

Mapping refers to taking general logic descriptions and converting them into
the bits used to fill in a LUT. This is sometimes referred to as "packing," because

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 429

408 Chapter 19 ■ Configuration Bitstream Generation

Verilog/

VHDL

compiler

FIGURE 19.3 ■ The tool flow for producing the configuration bitstream.

several small logic gates are often "packed" into a single LUT. There is also a
notion of placement that decides which LUT should receive the data, but this
may also be considered a part of the mapping process.

Once the values for the LUTs have been decided, software can begin to decide
how to interconnect the LUTs in a process called "routing." There are many
algorithms of varying sophistication to perform routing, and factors such as
circuit timing may be taken into account in the process. The result of the routing
procedure is eventually used to supply the configuration data for the switch
boxes.

Of course, this description is highly simplified, and mapping and routing can
take place in various interleaved phases and can be optimized in a wide variety
of ways. Still, this is the essential process used to produce the configuration
bitstream. Finally, data for configuring the IOBs are typically input in some
form that is aware of the particular package being used for the FPGA device.
Once all of this data have been defined and collected, they can be written out
to a single file containing the configuration bitstream.

As mentioned, FPGA configuration bitstream formats have almost always
been proprietary. For this reason, the only tools available to perform bitstream
generation tasks have been those supplied by the device manufacturer. The one
notable exception is the Xilinx XC6200, which had an "open" bitstream. One
of the XC6200's software tools was an application program interface (API) that
permitted users to create configuration data or to even directly alter the config
uration of an XC6200 in operation mode. Some of this technology was trans
ferred to more mainstream Xilinx FPGAs and is available from Xilinx as a toolkit
called JBits.

JBits is a Java API into the configuration bitstream for the XC4000 and Virtex
device families. With JBits, the actual values on LUTs and switch box settings, as
well as all other microarchitectural components, could be directly programmed.
While the control data could be used to produce a traditional bitstream file,
they could also be accessed directly and changed dynamically. The JBits API
not only permitted dynamic reconfiguration of the FPGA but also permitted
third-party tools to be built for these devices for the first time. JBits was very
popular with researchers and users with exotic design requirements, but it never
achieved popular use as a mainstream tool, although many of its related toolkit
components, including the debug tool and partial reconfiguration support, have
found their way into more mainstream software.

HDL

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 430

19.4 SUMMARY

19 .4 Summary 409

While the generation of bitstream data to configure an FPGA device is a very
common activity, there has been very little information available on the details
of either the configuration bitstream or the underlying FPGA architecture. Thus,
the FPGA can best be viewed as a collection of microarchitecture components,
chiefly LUTs and switch boxes. These components are configured by writing data
to the LUT values and to control memories associated with the switch boxes.
Setting these bits to various values results in custom digital circuits.

A variety of tools and techniques are used to program reconfigurable logic
devices, but all must eventually produce the relatively small configuration
"bitstream" data the devices require. This data is in as rigid a format as any
binary execution data for a microprocessor, but this format is typically proprie
tary and unpublished. While direct examination of actual commercial bitstream
data is largely impossible, the general structure and the microarchitecture com
ponents configured by this data can be examined, at least in the abstract.

References

[1] Xilinx, Inc. Virtex Data Sheet, Xilinx, Inc., 1998.
[2] S. A. Guccione, D. Levi, P. Sundararajan. JBits: A Java-based interface for recon

figurable computing. Second Annual Military and Aerospace Applications of Pro
grammable Devices and Technologies Conference (MAPLD), Laurel, MD, September
1999.

[3] E. Lechner, S. A. Guccione. The Java environment for reconfigurable computing.
Proceedings of the Seventh International Workshop on Field-Programmable Logic and
Applications, September 1997.

[4] Xilinx, Inc. XAPP 151: Virtex Series Configuration Architecture User Guide (version 1. 7),
(http://direct.xilinx.com/bvdocslappnotes/xapp 151.pd-f), October 20, 2004.

[S] P. Alfke. FPGA Configuration Guidelines (version 1.1) (http://direct.xilinx.com/bvdocsl
appnotes/xapp090.pdf), November 24, 1997.

[6] Xilinx, Inc. XC6200 Field-Programmable Gate Arrays, Xilinx, Inc., 1997.
[7] V. Betz, J. Rose. VPR: A new packing, placement, and routing tool for FPGA

research. Proceedings of the Seventh International Workshop on Field-Programmable
Logic and Applications, September 1997.

[8] Xilinx, Inc.]Bits 2.8 SDK for Virtex, Xilinx Inc., 1999.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 431

FAST COMPILATION TECHNIQUES

Ken Eguro, Scott Hauck
Department of Electrical Engineering
University of Washington

CH APTER 20

Most users rely on sophisticated CAD tools to implement their circuits on
field-programmable gate arrays (FPGAs). Unfortunately, since each of these tools
must perform reasonably complex optimization, the entire process can take a
long time. Although fairly slow compilation is fine for the majority of current
FPGA users, there are many situations that demand more efficient techniques.
Looking into the future, we see that faster CAD tools will become necessary for
many different reasons.

FPGA scaling. Modem reconfigurable devices have a much larger capacity com
pared to those from even a few years ago, and this trend is expected
to continue. To handle the dramatic increase in problem size, while main
taining current usability and compilation times, smarter and more efficient
techniques are required.

Hardware prototyping and logic emulation systems. These are very large
multi-FPGA systems used for design verification during the development
of other complex hardware devices such as next-generation processors.
They present a challenging CAD problem both because of the sheer number
of FPGAs in the system and because the compilation time for the design
is part of the user's debug cycle. That is, the CAD tool time directly affects
the usability of the system as a whole.

Instance-specific design. Instance-specific designs are applications where a given
circuit can only solve one particular occurrence of a problem. Because
of this, every individual hardware implementation must be created and
mapped as the problems are presented. Thus, the true solution time for
any specific example includes the netlist compilation time.

Runtime netlist compilation. Reconfigurable computing systems are often con
structed with an FPGA or an array of FPGAs alongside a conventional pro
cessor. Multiple programs could be running in the system simultaneously,
each potentially sharing the reconfigurable fabric. In some of the most
aggressive systems, portions of a program are individually mapped to the
FPGA while the instructions are in flight. This creates a need for almost
real-time compilation techniques.

For each of these systems, the runtime of the CAD tools is a clear concern. In
this chapter, we consider each scenario and cover techniques to accelerate the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 432

412 Chapter 20 ■ Fast Compilation Techniques

various steps in the mapping flow. These techniques range from fairly cost-neutral
optimizations that speed the CAD flow without greatly impacting circuit quality
to more aggressive optimizations that can significantly accelerate compilation
time but also appreciably degrade mapping quality.

FPGA scaling
The mere scaling of VLSI technology itself has created part of the burden
for conventional FPGA CAD tools. Fulfilling Moore's Law, improvements in
lithography and manufacturing techniques have radically increased the capa-
bilities of integrated circuits over the last four decades. Of course, just as these
advancements have increased the performance of desktop computers, they have
increased the logic capacity of FPGAs. Correspondingly, the size of desired appli
cations has also increased. Because of this simultaneous scaling across the
industry, reconfigurable devices and their applications become physically larger
at approximately the same rate that general-purpose processors become faster.

Unfortunately, this does not mean that the time required to compile a modem
FPGA design on a modem processor stays the same. Over a particular period
of time, desktop computers and compute servers will become twice as fast and,
concurrently, FPGA architectures and user circuits will double in size. Since the
complexity of many classical design compilation techniques scale super-linearly
with problem size, however, the relative runtime for mapping contemporary
applications using contemporary machines will naturally rise.

To continue to provide reasonable design compilation time across multiple
FPGA generations, changes must be made to prevent a gap between available
computational power and netlist compilation complexity. However, although
application engineers depend on compilation times of at most a few hours to
meet fast production timelines, they also have expectations about the usable
logic block density and achievable clock frequency for their applications. Thus,
any algorithmic improvements or architectural changes made to speed up the
mapping process cannot come at the cost of dramatically increased critical-path
timing or reduced mapping density.

Hardware prototyping and logic emulation systems
The issue of nonscalable compilation is even more obvious in large prototyping
or logic emulation systems. These devices integrate multiple FPGAs into a single
system, harnessing tens to thousands. As Chapter 30 discusses in more detail, the
fundamental size of typical circuits on these architectures suggests fast mapping
techniques. However, even more critical, the compilation time of the netlists them
selves may become a limiting factor in the basic usefulness of the entire system.

Hardware prototyping is often employed for many reasons. One of the greatest
advantages of hardware emulation over software simulation is its extremely fast
validation time. During the design and debug cycle of hardware development,
hundreds of thousands of test vectors may be applied to ensure that a given
implementation complies with design specifications. Although an FPGA-based
prototyping system cannot be expected to achieve anywhere near the clock rate
of the dedicated final product, the sheer volume of tests that need to be performed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 433

Chapter 20 ■ Fast Compilation Techniques 413

every time a change is made to the system makes software simulation too slow
to have inside the engineering design loop. That said, software simulation code
can easily accommodate design updates and, more important, the changes have
a predictable compilation time of minutes to hours, not hours to days. Still, since
reconfigurable logic emulation systems maintain such a runtime advantage over
software simulation, prototyping designers are willing to exchange some of the
classical FPGA metrics of implementation quality, critical-path timing, and logical
density for faster and more predictable compilation time.

Instance-specific design
Similar to logic emulation systems, the netlist compilation time of instance
specific circuits can greatly affect the overall value of an FPGA-based implemen
tation. For example, although Boolean satisfiability is NP-complete, the massive
parallelism offered by reconfigurable fabrics can often solve these problems
extremely quickly-potentially on the order of milliseconds (see Chapter 29).
Unfortunately, these FPGA implementations are equation-specific, so the time
required to solve any given SAT problem is not determined by the vanishingly
short runtime of the actual mapped circuit running on a reconfigurable device,
but instead is dominated by the compilation time required to obtain the pro
gramming bitstream in the first place-potentially on the order of hours.

Because of this reliance on netlist compilation, the Boolean satisfiability prob
lem differs strongly from more traditional reconfigurable computing applications
for two reasons.

First, if we disregard compilation time, FPGA-based SAT solvers can obtain
two to three orders of magnitude better performance than software-based solu
tions. Thus, the critical path and, by extension, the overall quality of the mapping
in the classical sense are virtually irrelevant. As long as compilation results in any

valid mapping, the vast majority of the performance benefit will be maintained.
While some effort is required to reliably produce mutable circuits, we can make
huge concessions in terms of circuit quality in the name of speeding compila
tion. Mappings that are quickly produced, but possibly slow, will still drastically
improve the overall solution runtime.

Second, features of the SAT problem itself suggest that application-specific
approaches might be worthwhile. For example, because SAT solvers typically have
very structured forms, fast SAT-specific CAD tools can be created. One possibility
is the use of preplaced and prerouted SAT-specialized macros that simply need
to be assembled together to create the overall system. To extend the concept of
application-specialized tuning to its logical end, architectural changes can even be
made to the reconfigurable fabric itself to make the device particularly amenable
to simple, fast mapping techniques. That said, the large engineering effort this
would involve must be weighed against the possible benefits.

Runtime netlist compilation
All reconfigurable computing systems have a certain amount of overhead that eats
away at their performance benefit. Although kernel execution might be blindingly
fast once started on the reconfigurable logic, its overall benefit is limited by the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 434

414 Chapter 20 ■ Fast Compilation Techniques

need to profile operations, transfer data, and configure or reconfigure the FPGA.
Reconfigurable computing systems that use dynamically compiled applications
have the additional burden of runtime netlist compilation. These systems only
map application kernels to the hardware during actual system execution, in the
hope that runtime data, such as system loads, resource availability, and execu
tion profiles, can improve the resultant speedups provided by the hardware. Their
almost real-time requirements demand the absolutely fastest compilation tech
niques. Thus, even more so than instance-specific designs, these systems are only
concerned with compilation speed.

Mapping stages
When evaluating mapping techniques for high-speed circuit compilation, we have
to remember that the individual tools are part of a larger system. Therefore, any
quality degradation in an early stage may not only limit the performance of the
final mapping, but also make subsequent compilation problems more difficult. If
these later mapping phases are more difficult, they may require a longer runtime,
oveiwhelming the speedups achieved in earlier steps. For example, a poor-quality
placement obtained very quickly will likely make the routing problem harder.
Since we are interested in reducing the runtime of the compilation phase as a
whole, we must ensure that we do not simply trade placement runtime for routing
runtime. We may even run the risk of increasing total compilation time, since
a very poor placement might be impossible to route, necessitating an additional
placement and routing attempt.

Although logic synthesis, technology mapping, and logic block packing are
considered absolutely necessary parts of a modern, general-use FPGA compiler
flow, the majority of research into fast compilation has been focused on efficient
placement and routing techniques. Not only do the placement and routing phases
make up a large portion of the overall mapping runtime, in some cases the other
steps can be considered either unsuitable or unnecessary to accelerate. Some
times high-level synthesis and technology mapping may be unnecessary because
designs are assumed to be implemented in low-level languages, or it is assumed
that they can be performed offline and thus outside the task's critical path. Fur
thermore, although logic synthesis and technology mapping can be very difficult
problems by themselves, they are also common to all hardware CAD tools-not
just FPGA-based technologies. On the other hand, placement and routing tools
for reconfigurable devices have to deal with architectural restrictions not present
in conventional standard cell tools, and thus generally must be accelerated with
unique approaches.

20. 1 ACCELERATING CLASSICAL TECHNIQUES

An obvious starting point to improve the runtime of netlist compilation is to
make minor algorithmic changes to accelerate the classical techniques already in
use. For example, simulated annealing placement has some obvious parameters
that can be changed to reduce overall runtime. The initial annealing temperature

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 435

20.1 Accelerating Classical Techniques 415

can be lowered, the freezing point can be increased, the cooling schedule can
be accelerated, or the number of moves per iteration can be reduced. These
approaches all tend to speed up the annealing, but at some cost to placement
quality.

20.1.1 Accelerating Simulated Annealing

Because of the adaptive nature of modem simulated annealing temperature
schemes, any changes made to the structure of the cooling schedule itself can
have unreliable runtime behavior. Not only have the settings of initial and final
temperatures been carefully selected to thoroughly explore the solution space,
changing these values may dramatically affect final placement quality while still
not guaranteeing satisfactorily shorter runtime.

As described in Chapter 14, VPR updates the current temperature based on
the fraction of moves accepted out of those attempted during a given iter
ation. Thus, decreasing the initial temperature cuts off the phase in which
sweeping changes can easily occur early in the annealing. Simply starting the
system at a lower initial temperature may cause the annealing to compensate
by lingering longer at moderately high temperatures. Similarly, modifying the
cooling schedule to migrate toward freezing faster fundamentally goes against
the basic premise of simulated annealing itself. This will have an unpredictable,
and likely undesirable, effect on solution quality.

It is generally accepted that the most predictable way to scale simulated
annealing effort is by manipulating the number of moves attempted per temper
ature iteration. For example, in VPR the number of moves in a given iteration
is always based on the size of the input netlist: O(n l .33). The annealing effort
is simply adjusted by scaling up or down the multiplicative constant portion of
this value. In VPR, the "fast" placement option simply divides the default value
by 10, which in testing indeed reduces the overall placement time by a factor of
10 while affecting final circuit quality by less than 10 percent [3]. Furthermore,
as shown by Mulpuri and Hauck [12], simply changing the number of moves per
iteration allows a continuous and relatively predictable spectrum of placement
effort versus placement quality results.

Haldar and colleagues [11] exploited a very similar phenomenon to reduce
mapping time by distributing the simulated annealing effort across multiple
processors. In the strictest sense, simulated annealing is very difficult to par
allelize because it attempts sequential changes to a given placement in order to
slowly improve the overall wirelength. To be most faithful to this process while
attempting multiple changes simultaneously, different processors must try non
overlapping changes to the system; otherwise, multiple processors may try to
move the same block to two different locations or two different blocks to the
same location. Not only is this type of coordination typically very difficult to
enforce, it also generally requires a large amount of communication between
processors. Since all processors begin each move operating on the same place
ment, they all must communicate any changes that are made after each step.
However, a slightly less faithful but far simpler approach can take advantage of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 436

416 Chapter 20 • Fast Compilation Techniques

the idea that reducing the number of moves attempted per temperature iteration
can gracefully reduce runtime.

In this case, all of the processors agree upon a single placement to begin a
temperature iteration. At this point, though, each processor performs simulated
annealing independently of the others. To reduce the overall runtime, given N
processors, each only attempts 1/N of the originally intended moves per iteration.
At the end of the iteration, the placements discovered by all of the processors are
compared and the best one is broadcasted to the rest for use during the next
iteration. This greatly reduces the communication overhead and produces nearly
linear speedup for two to four processors while reducing placement quality by
only 10 to 25 percent [11].

Wrighton and DeHon [19] also parallelized the simulated annealing process,
but approached the problem in a completely different manner. In this case,
instead of attempting to develop parallel software, they actually configure an
FPGA to find its own placement for a netlist. They divide a large array into
distinct processing elements that will each keep track of one node in a small
netlist. In their testing, the logic required to trace the inputs and outputs of a
single LUT required approximately 400 LUTs. Because every processing element
represents the logic held at a single location in the array, a large emulation sys
tem consisting of approximately 400 FPGAs can place a netlist for one device at
a time, or one large FPGA can place a netlist requiring approximately 1/400 of
the array.·

Each processing element is responsible for keeping track of both the block
in the netlist currently mapped to that location and the position of the sinks of
the net sourced by this block. During a given timestep, each processing element
determines the wirelength of its output net by evaluating the location of all of its
sinks; the entire system is then perturbed in parallel by allowing each location to
negotiate a possible swap with its neighbors. Just as in conventional simulated
annealing, good moves are always accepted and bad moves are accepted with a
probability dependent on the annealing temperature and how much worse the
move makes the system as a whole. Similarly, although swaps can only be made
one nearest neighbor to another, any block can eventually migrate to any other
location in the array through multiple swaps. The system avoids having two blocks
attempt to occupy the same location by always negotiating swaps pairwise.

As shown in Figure 20.1, a block negotiates a swap with each of its neighbors
in tum. Phases 1 and 2 may swap blocks to the left or right, while phases 3 and
4 may swap with a neighbor above or below.

We should note that although very similar to the classical simulated annealing
model, this arrangement does not necessarily calculate placement cost in the
same way. The net bounding box calculated at each timestep cannot take into
account the potential simultaneous movement of all the other blocks to which
it is connected. That said, whatever inaccuracies might be introduced by this
computation difference are relatively small.

Of much greater importance is the problem caused by communication band
width. It is possible that in a given timestep every processing element decides to
swap with its neighbor. If this is the case, the location of all sinks will change.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 437

20.1 Accelerating Classical Techniques 417

FIGURE 20.1 ■ Swap negotiation in hardware-assisted placement. (Source, Based on an illustration in
Wrighton and DeHon [19]).

FIGURE 20.2 ■ Location update chain. (Source: Based on an illustration in Wrighton and DeHon (19]).

To keep completely consistent recordkeeping with conventional simulated
annealing, this requires each processing element to notify its nets' sources of the
block's new location. Of course, this creates a huge communication overhead.
However, this can be avoided if the processing elements are allowed to calculate
wirelength based on stale location information.

As shown in Figure 20.2, instead of a huge broadcast each time a block is
relocated, position information marches through the system in a linear fashion.
As blocks are moved during the annealing process, new positions for each one
are communicated to other blocks via a dedicated location update chain. Thus,
if the system has N processing elements, it might take N clock cycles before
all relevant processing elements see the new placement of that block. Since the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 438

418 Chapter 20 ■ Fast Compilation Techniques

processing elements are still calculating further moves, this means up to N cycles
of stale data. Because of these inaccuracies, compared with a fast VPR run, this
hardware-based simulated annealing system generally requires 36 percent more
routing tracks to implement the same circuits. However, it also is three to four
orders of magnitude faster.

As mentioned earlier, classical simulated annealing techniques have been very
carefully tuned to produce high-quality placements. Most of the methodologies
we have covered to accelerate simulated annealing rely on reducing the number
of moves attempted. Thus, while they can produce reasonable placements quickly
for current circuits, they do not necessarily perform well for all applications.

Mulpuri and Hauck [12] demonstrated that, while we may be able to reduce
· the number of moves per temperature iteration by a factor of 10 with little effect
on routability, if we continue to reduce the placement effort, the quality of the
placement drops off severely. The conclusion to be drawn is that, acceleration
approaches, although reasonable for dealing with FPGA scaling in the short term,
are not a permanent solution. Applying them on increasing netlist and device
sizes will eventually lead to worse and worse placements, and, furthermore, they
simply do not have the capability to produce useable placements quickly enough
for either runtime netlist compilation or most instance-specific circuits.

On the other hand, hardware-assisted simulated annealing seems far more
promising. Although this technique introduces some inaccuracy in cost calcula
tion because of both simultaneously negotiated moves and stale location infor
mation, the effect of these factors is relatively predictable. The error introduced
by simultaneous moves will always be relatively small because all swaps are per
formed between nearest neighbors. Also, the error introduced by stale location
information scales linearly with netlist size. This means not only that such infor
mation will likely cause the placement quality to degrade gracefully but also
that we can reduce this inaccuracy relatively easily by adding additional update
paths, perhaps even a bidirectional communication network that quickly informs
both forward and backward neighbors of a moved element. Since we hope that
the majority of nets will cover a relatively small area, this should considerably
reduce inaccurate cost calculation due to stale location information.

These trade-offs make hardware-assisted annealing an interesting possibil
ity. Although it may impose a significant quality cost, that cost may not grow
with increased system capacity, and it may be one of the only approaches that
provide the drastic speedups necessary for both runtime netlist compilation
and instance-specific circuits. This may make it of particular interest for future
nanotechnology systems (see Chapter 38).

20. 1.2 Accelerating Pathfinder

Just as in placement, minor alterations can be made to classical routing algo
rithms to improve their runtime. Some extremely simple modifications may
speed routing without affecting overall quality, or they may reduce routability in
a graceful and predictable manner. Swartz et al. [15] suggest sorting the nets to
be routed in order of decreasing fanout instead of simply arbitrarily. Although

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 439

20.1 Accelerating Classical Techniques 419

high fanout nets generally make up a small fraction of a circuit, they typically
monopolize a large portion of the routing runtime. By routing these compar
atively difficult nets first in a given iteration, they may be presented with the
lowest congestion cost and thus take the most direct and easily found paths.
Lower fanout nets tend to be more localized, so they can deal with congestion
more easily and their search time is comparatively smaller. This tends to speed
overall routing, but since no changes are made to the actual search algorithm,
it is not expected to affect mutability.

Conversely, Swartz et al. [15] also suggest scaling present sharing and his
tory costs more quickly between routing iterations. As discussed in Chapter 17,
PathFinder gradually increases the cost of using congested nodes to discourage
sharing over multiple iterations. Increasing present sharing and history costs
more aggressively emphasizes removing congestion over route exploration. This
may potentially decrease achievable mutability, but the system may converge on
a legal routing more quickly.

One of the most effective changes that can be made to conventional Dijkstra
based routing approaches is limiting the expansion of the search. Ignoring con
gestion, in most island-style FPGAs it is unnecessary for a given net to use routing
resources outside the bounding box formed by its terminals. Of course, conges
tion must be resolved to obtain a feasible mapping, but given the routing-rich
nature of modem reconfigurable devices, and assuming that routing is performed
on a reasonable placement, the area formed by a net's bounding box is most likely
to be used.

However, traditional Dijkstra's searches expand from the source of a net evenly
in all directions. Given that the source of a 2-terminal net must lie on the edge
of the bounding box, this is obviously wasteful since, again ignoring congestion
costs, the search essentially progresses as concentric rings-most of which lie in
the incorrect direction for finding the sink. As shown in Figure 20.3, it is unlikely
that a useful route will require such a meandering path. If we would like to find

[Z] JZ] Q Q Q 0
□/ ,0/ □ '-,,□ ',\,,J ----□
□/ Q

/ 0 ----
□---,Q]

',,,

[J

□----□ '-,t:::(,,0/ 0/0
Q----□----□/ ,0/IZJ/ □' ' , ,

' ' , , □ --□ --□,, cz(□ □
FIGURE 20.3 ■ A conventional routing search wave.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 440

420 Chapter 20 ■ Fast Compilation Techniques

a route between blocks S and K, it is most likely that we will be able to find
a direct route between them. Thus, we should direct the majority of our efforts
upward and to the right before exploring downward or to the left. As described in
Chapter 17, this is the motivation for adding A* enhancements to the PathFinder
algorithm. However, this concept can be taken even further by formally preventing
searches from extending very far beyond the net's bounding box.

According to Betz et al. [3], a reasonable fixed limitation can prevent an explo
ration from visiting routing channels more than three steps outside of a net's
bounding .box. Although this technique may degrade mutability under condi
. tions of very high congestion, such situations may not be encountered. An archi
tecture might h�ve sufficient resources so that high-stress routing situations are
never created, particularly in scenarios where the user is willing to reduce the
amount of logic mapped to an FPGA to improve compilation runtimes.

Slightly more difficult to manage is the case of multi-terminal nets. Although the
scope of a multisink search as a whole may be limited by the net's bounding box,
this only alleviates one source of typically unnecessary exploration. PathFinder
generally sorts the sinks of a multi-terminal net by Manhattan distance. However,
each time a sink is discovered, the search for the next sink is restarted based
on the entire routing tree found up to that point. As shown in Figure 20.4, this
creates a wide search ring that is explored and reexplored each time a new sink
is discovered, which is particularly problematic for high-fanout nets.

If we consider the new sink and the closest portion of the existing routing
tree to be almost a 2-terminal net by itself, we can further reduce the amount
of extraneous exploration. Swartz et al. [15] suggest splitting the bounding box
of multi-terminal nets into gridlik(! bins. As shown in Figure 20.5, after a sink is
found, a new search is launched for the next furthest sink, but explorations are
only started from the portion of the routing tree contained in the bin closest to
the new target. In our example, after a route to Kl is found, only the portion

rn □---□--o rn □
6 m Kt m 6 §]

6 o o---□ � □
o--6 m [µ---EJ □
QJsCJDJDD

' '
'

0--o--EJ DJ □ �

□ Q---□---EJ □---□
' ' '

.□ DJ K1 □---□ K2

'

'

' □ [I] □---□---□---□
' '

' '

' '

Q---EJ [I] □ □ □
' '

IT] s ciJ □ □ □
'

□---□---[] □ □ �
FIGURE 20.4 ■ PathFinder exploration and multi-terminal nets.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 441

20.1 Accelerating Classical Techniques 421

□ D:D □ □ □
'

'

□□jKt □:□ §]
' '

- - - - - - - - - - - - - -. - - - - - - - - - - - - -,- - - - - - - - - - - - - -

□□:□ □ □□
'

'

□ Dj□ Dj□□
' '

- - - - - - ------ - -. - - - - ---- - - - - -.- - - - ---- - - - - - -

□ :□ □:□□

□□ □ Dj□ §1
'

□□ □ □:□ □
'

'

□□ K1 □:□ K2

'

-------------� ------------�--------------

□ Di□□□□
' '

' '

□ Di□ Di □□ ' '

' '

-------------- -------------, -------------

□ □□□□

□ D:D □·□ §1
'

FIGURE 20.5 ■ Multi-terminal nets and region segmentation.

of the existing path in the topmost bin is used to launch a search for K2. The
process of restricting the initialization of the search is repeated to firid a route
to K3. This may result in slightly longer branches, but, again, it is not an issue
in low-stress routing situations.

Although potentially very effective, all of these techniques only attempt to
improve the · time required to route a single net. As described in Chapter 17,
however, the PathFinder algorithm is relatively amenable to parallel process
ing. Chan et al. [7] showed that we can simply split the nets of a given circuit
among multiple processors and allow each to route its nets mostly independently
of the others. Similarly to what happens in parallel simulated annealing, com
plete faithfulness to the original PathFinder algorithm requires a large amount
of communication bandwidth. This is because we have no guarantees that one
processor will not attempt to route a signal on the same wire as another proces
sor during a given iteration unless they are in constant communication with each
other. However, because PathFinder already has a mechanism to discourage the
overuse of routing resources between different nets over multiple iterations, such
continuous communication is unnecessary. We can allow multiple processors to
operate independently of one another for an entire routing iteration.

When all processors have routed all of their nets, we can simply determine
which nodes were accidentally shared by different processors and increase their
present sharing and history costs appropriately. Just as it discourages sharing
between nets in classical single-processor PathFinder, this gradually discourages
sharing between different processors over multiple iterations. We are using the
built-in conflict-resolution mechanism in a slightly different way, but this allows
us to reduce the communication overhead considerably. That said, after we have
resolved the large-scale congestion in the system, the last few routing iterations
likely must be performed on a single processor using conventional PathFinder.

rD 0

s :

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 442

422 Chapter 20 ■ Fast Compilation Techniques

Overall, these techniques are extremely effective on modem FPGAs. Most of
today's reconfigurable architectures include a wealth of routing resources that are
sufficient for a wide range of applications. Because of this, all of these approaches
to accelerating PathFinder-style routing produce good results. Ordering of nets,
fast growth of present sharing and history costs, and limiting the scope of
exploration to net bounding boxes are common in modem FPGA routing tools.
Unfortunately, however, they are still not fast enough for the most demanding
applications such as runtime netlist compilation. Even the parallel technique
outlined here has an unavoidable serial component. Thus, while such techniques
may be adequate to produce results for next-generation FPGAs or hardware pro
totyping systems, they must be much faster if we are to make runtime netlist
compilation practical.

20.2 ALTERNATIVE ALGORITHMS

Although classical mapping techniques have proven that they can achieve high
quality results, there is a limit to their acceleration through conventional means
if we want to maintain acceptable quality for many applications. For example,
in the case of placement the number of moves attempted in the inner loop of
simulated annealing can only be reduced to a certain point before solution quality
is no longer acceptable. While the runtime on a single processor can be cut by
a factor of 10 with relatively little change in terms of routability or critical-path
timing, even such modest degradation may not meet the most demanding design
constraints. Furthermore, as discussed earlier, attempting to scale this technique
beyond the 1 Ox point generally results in markedly lower quality because the
algorithm simply does not have sufficient time to adequately explore the solution
space. To achieve further runtime improvements without resorting to potentially
complex parallel implementations and without abandoning solution quality, we
must make fundamental algorithmic changes.

20.2.1 Multiphase Solutions

One of the most popular ways to accelerate placement is to break the process
into multiple phases, each handled by a different algorithm. Although many
techniques use this method, a common thread among them all is that large
scale optimization is performed first by a fast but relatively imprecise algorithm.
Slower, more accurate algorithms are reserved for local, small-scale refinement
as a secondary step. A good example of this approach is shown in papers such
as that by Xu and Kalid [20]. Here, the authors use a quadratic technique to
obtain a rough placement and then work toward a better solution with a short
simulated annealing phase.

In quadratic placement, the connections between blocks in the netlist are con
verted into linear equations, any valid solution to which indicates the position
of each block. A good placement solution is found by solving the matrix equa
tions while attempting to minimize another function: the sum of the squared

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 443

20.2 Alternative Algorithms 423

wirelength for each net. Unfortunately, one of the problems with this approach
is that, in order for the equations to be solved quickly, they must be uncon
strained. Thus, the placements found directly from the quadratic solver will
likely have many blocks that overlap.

Xu and Kalid [20] identify these overlapping cells and, over multiple iterations,
slowly add equations that force them to move apart. This is a comparatively fast
process, but the additional placement legalization factors are added somewhat
arbitrarily. Thus, although the quadratic placement might have gotten all of the
blocks in roughly the correct area, there is still quite a bit of room for wirelength
and timing improvements.

In contrast, while simulated annealing produces very good results, much of
the runtime is devoted to simply making sense of a random initial placement.
By combining the two approaches, and starting a low-temperature annealing
only after we obtain a reasonable initial placement from the quadratic solver
phase, we can drastically reduce runtime and still maintain the majority of
the solution quality. Similar approaches can substitute force-directed placement
for large-scale optimization or completely greedy optimization for small-scale
improvement [12].

Another way to quickly obtain relatively high-quality initial placements is with
partitioning-based approaches. As mentioned in Chapter 14, although recursive
bipartitioning can be performed very quickly, reducing the number of signals
cut by the partitions is not necessarily the same thing as minimizing wirelength
or critical path delay. A similar but more sophisticated method is also discussed
in Chapter 14. In hierarchical placement, as described by Sankar and Rose [13],
the logical resources of a reconfigurable architecture are roughly divided into
K separate regions. Multiple clustering steps then assign the netlist blocks into
groups of approximately the correct size for the K logical areas. At this point,
the clusters themselves can be moved around via annealing, assuming that all
of the blocks in a cluster are at the center of the region.

This annealing can be performed very quickly since the number of clusters
is relatively small compared to the number of logic blocks in the netlist. We
can obtain a relatively good logic block-level placement by taking the cluster
level placement and decomposing it. Here, we can take each cluster in turn and
arbitrarily place every block somewhere within the region assigned to it earlier.
This initial placement can then be refined with a low-temperature annealing.

Purely mechanical clustering techniques are not the only way to group related
logic together and obtain rough placements very quickly. In fact, the initial
design specification itself holds valuable information concerning how the cir
cuit is constructed and how it might best be laid out. Unfortunately, this knowl
edge is typically lost in the conventional tool flow. Regardless of whether they
are using a high-level or low-level hardware description language, the orga
nizational methods of humans naturally form top-level designs by connecting
multiple large modules together. These large modules are, in turn, also created
from lower-level modules. However, information about the overall design orga
nization is generally not passed down through logical synthesis and technology
mapping tools.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 444

424 Chapter 20 ■ Fast Compilation Techniques

Packing, placement, and routing are typically performed on a completely
flattened netlist of basic logic blocks. However, as suggested in works by Gehring
and Ludwig and colleagues [10] and Callahan et al. [6], for example, for most
applications this innate hierarchy can suggest which pieces are heavily intercon
nected and should be kept close together during the mapping process. Further
more, information about multiple instances of the same module can be used to
speed the physical design process.

The datapath-oriented methodology described in Chapter 15 uses a closely
related concept to help design highly structured computations. In datapath com
position, the entire CAD toolflow, from initial algorithm specification to floor
planning to placement, is centered on building coarse-grained objects that have
obvious, simple relationships to one another. The entire computation is built
from regular, snap-together tiles that can be arranged in essentially the same
order in which they appear in the input dataflow graph. Although many applica
tions simply do not fit the restrictive nature of the datapath computation model,
applications that can be implemented in this way benefit greatly from the highly
regular structures these tools create.

There may not be as much regularity in most applications, but we can still use
organizational information to accelerate both placement and routing. At the very
least, such information provides some top-level hints to reasonable clustering
boundaries and can be used to roughly floorplan large designs. In some sense,
this is exactly the aim of hierarchical placement, although it attempts to accom
plish this without any a priori knowledge. Extending this idea, for very large
systems we can use these natural boundaries to create multiple, more or less
independent top-level placement problems. Even if we place each of the large
system-level modules serially on a single processor, it is likely that, because of
nonlinear growth in problem complexity, the total runtime will still be smaller
than if we had performed one large, unified placement.

We can also employ implicit organizational information on a smaller scale
in a bottom-up fashion. For example, many modem FPGAs contain dedicated
fast carry-chain logic between neighboring cells. To use these structures, how
ever, the cells must be placed in consecutive vertical logic block locations. If
we were to begin with a random initial placement for a multibit adder, we
would probably not find the optimal single-column placement despite the fact
that, based on higher-level information, the best organization is obvious. Such
very common operations can be identified and then p�placed and routed with
known good solutions. These blocks then become hard macros. Less common or
larger calculations can be identified and turned into soft macros. As suggested by
projects such as Tessier's [17], using the high-level knowledge of macros within
a hierarchical-style placement tool can improve runtime by a factor of up to 50
without affecting solution quality.

Still, while macro identification can significantly improve placement run
time, its effect on routing runtime is likely negligible. Soft macros still need
to be routed because each instance may be of a different shape. Furthermore,
although hard macros do not need to be repeatedly routed, and may be relatively
common, their nets represent a small portion of the overall runtime because

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 445

20.2 Alternative Algorithms 425

they are typically short and are simple to route. Rather, to substantially improve
routing runtime we need to address the nets that consume the largest portion of
the computational effort-high-fanout nets. As discussed earlier, multi-terminal
nets present a host of problems for routers such as PathFinder. In many circuits,
the routing time for one or two extremely high-fanout nets can be a significant
portion of the overall routing runtime. However, this effort might be unnecessary
since, even though these nets are ripped up and rerouted in every iteration, they
go nearly everywhere within their bounding box. This means that virtually all
legal routing scenarios will create a relatively even distribution of traffic within
this region and none are markedly better than any other. For this reason, we can
easily route these high-fanout nets once at the beginning of the routing phase
and then exclude them from following a conventional PathFinder run without
seriously affecting overall routability. At the very least, if we do not want to put
these nets completely outside the control of PathFinder congestion resolution,
we can rip up and reroute them less frequently, perhaps every other or every
third iteration.

Regardless of how the placement and routing problem is divided into simpler
subproblems, multiphase approaches are the most promising way to deal with
the issues associated with FPGA technology scaling. Of course, when possible
it is best to gather implicit hierarchical information directly from the source
hardware description language specification. This not only allows us to create
both hard and soft macros very easily, but gives strong hints regarding hdw
large designs might be floorplanned. That said, we may not have information
regarding high-level module organization. In . these cases we can fall back on
hierarchical or partitioning placement techniques to make subsequent annealing
problems much more manageable. All of these placement methodologies scale
very well, and they represent algorithms that can solve the most pressing issues
presented by growing reconfigurable devices and netlists.

When applicable, constructive techniques, such as the datapath-oriented
methodology described in Chapter 15, or macro-based approaches can· be
very useful for mapping hardware prototyping systems and instance-specific

· circuits. 11.ese methodologies naturally produce reasonable placements very
quickly. Becaui.e hardware emulation systems and instance-specific circuits do
not necessarily need optimal area or timing results, these techniques often pro
duce placements that can be used directly without the need for subsequent
refinement steps.

20.2.2 Incremental Place and Route

Incremental placement and routing techniques attempt to reduce compilation
time by combining and extending the same ideas exploited by multiphase com
pilation approaches: (1) begin with a known reasonable placement and (2) avoid
ripping up and rerouting as many nets as possible.

In many situations, multiple similar versions of a given circuit might be
placed and routed several times. In the case of hardware emulation, for example,
it is unlikely that large portions of the circuit will change between consecutive

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 446

426 Chapter 20 ■ Fast Compilation Techniques

designs. Far more likely is that small bug fixes or local modifications will be
made to specific portions of the circuit, leaving the vast majority of the design
completely unchanged. Incremental placement and routing methodologies iden
tify those portions of a circuit that have not changed from a previous mapping
and attempt to integrate the changed portions in the least disruptive manner.
This allows successive design updates to be compiled very quickly and mini
mizes the likelihood of dramatic changes to the characteristics of the resultant
mapping.

The key to incremental mapping techniques is to modify an existing place
ment as little as possible while still finding good locations for newly introduced
parts. The largest hurdle to this is merely finding a legal placement for all new
blocks. If the changes reduce the overall size of the resulting circuit, any new
logic blocks can simply fit into the void left by the old section. However, if the
overall design becomes larger, the mapping process is more complex. Although
the extra blocks can simply be dropped into any available location on the chip,
this will probably result in poor timing and mutability. Thus, incremental map
ping techniques generally use simple algorithms to slightly move blocks and
make vacant locations migrate toward the modified sections of the circuit.

The most basic approaches, such as those described by Choy et al. [4], deter
mine where the closest empty logic block locations are and then simply slide
intervening blocks toward these vacancies to create space where it is needed.
Singh and Brown [14] use a slightly more sophisticated approach that employs a
stochastic hill-climbing methodology, similar to a restricted simulated annealing
run. This algorithm takes into account where additional resources are needed,
the estimated critical path of the circuit, and the estimated required wirelength.
In this way, logic blqcks along noncritical paths will preferentially be moved to
make room for the added logic.

Incremental techniques not only speed up the placement process, but can
accelerate routing as well. Because so much of the placement is not dis
turbed, the nets associated with those logic blocks do not necessarily have to be
rerouted. Initially, the algorithm can attempt to route only the nets a�'lm.t.�d
with new or moved logic blocks. If this fails, or produce� 11I1acceptable timing··
results, the algorithm can slowly rip up nets that t:rwel through congested or
heavily used areas and try again. Either way, it wj}l liRely need to reroute only
a very small portion of the overall circuit.

Unfortunately, there are many situations in which we do not have the prior
information necessary to use incremental mapping techniques. For example,
the very first compilation of a netlist must be performed from scratch. Further
more, it is a good idea to periodically perform a complete placement and routing
run, because applying multiple local piecework changes, one on top of another,
can eventually lead to disappointing global results. However, as mentioned ear
lier, incremental compilation is ideal for hardware prototyping systems because
they are typically updated very frequently with minor changes. This behavior
also occurs in many other development scenarios, which is why incremental
compilation is a common technique to accelerate the engineering/debugging
design loop.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 447

20.3 Effect of Architecture 427

However, there are some situations in which it is very difficult to apply
incremental approaches. For example, these techniques rely on the ability to
determine what portions of a circuit do or do not change between design revi
sions. Not only can merely finding these similarities be a difficult problem, we
must also be able to carefully control how high-level synthesis, technology map
ping, and logic block packing are performed. These portions of the mapping

. process must be aware when incremental placement and routing is going to be
attempted, and when major changes have been made to the netlist and placement
and routing should be attempted from scratch.

20.3 EFFECT OF ARCHITECTURE

Although we have considered many algorithmic changes that can improve com
pilation runtime, we should also consider the underlying reasons that the FPGA
mapping problem is so difficult. Compared to standard cell designs, FPGAs are
much more restrictive because the logic and routing are fixed. Technology map
ping must target the lookup tables (LUTs) and small computational cores avail
able on a given device, placement must deliver a legal arrangement that coin
cides with the array of provided logic blocks, and routing must contend with a
fixed topology of communication resources.

For these reasons, the underlying architecture of a reconfigurable device
strongly affects the complexity of design compilation. For example, routing on
a device that had an infinite number of extremely fast and flexible wires in
the communication network would be easy. Every signal could simply take its
shortest preferred path, and routing could be performed in a single Dijkstra's
pass. Furthermore, placement would also be obvious on such an architecture
since even a completely arbitrary arrangement could meet design constraints.
Granted, real-world physical limitations prevent us from developing such a per
fect device, but we can reduce the necessary CAD effort with smart architectural
design that emphasizes ease of compilation-potentially even over logic capacity
and clock speed.

The Plasma architecture [2] is a good example of designing an FPGA explicitly
for simple mapping. Plasma was developed as part of the Teramac project [1]
an extremely large reconfigurable computing system slated to contain hundreds
or thousands of individual FPGAs. Even given that a large design would be sepa
rated into smaller pieces that could be mapped onto individual FPGAs, contem
porary commercial reconfigurable devices required tens of minutes to complete
placement and routing for each chip. To further compound this issue, even after
placement was completed once, there was no guarantee that all of the signals
could be successfully routed, so the entire process might have to be repeated.
This meant that a design that utilized thousands of conventional FPGAs could
require days or weeks of overall compilation time. For the Teramac system to be
useful in applications such as hardware prototyping, in which design changes
might be made on a daily or even hourly basis, mapping had to be orders of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 448

428 Chapter 20 ■ Fast Compilation Techniques

magnitude faster. Thus, the Plasma FPGA architecture was designed explicitly
with fast mapping in mind.

Although Plasma differed from contemporary commercial FPGAs in several
key ways, its most important distinction was high connectivity. Plasma was built
from 6-input, 2-output logic blocks connected hierarchically by two levels of
crossbars. As seen in Figure 20.6, logic blocks are separated into groups of 16
that are connected by a full crossbar that spans half the width of the chip. These
groups are then connected to other groups by a central partial crossbar. The cen
tral vertical lines span a quarter of the height of the array, but have the capability
to be connected together to span the entire distance. Since full crossbars would

□□□□□□□□
I Crossbar 1
□□□□□□□□

□□□□□□□□
I Crossbar J
□□□□□□□□
□□□□□□□□
I Crossbar I
□□□□□□□□

□□□□□□□□
I Crossbar I
□□□□□□□□
□□□□□□□□
1 Crossbar I
□□□□□□□□

□□□□□□□□
I Crossbar I
□□□□□□□□
□□□□□□□□
I Croesb.er I
□□□□□□□□

□□□□□□□□
I Crose&,ar I
□□□□□□□□

FIGURE 20.6 ■ The Plasma interconnect network.

□□□□□□□□
I Crossbar I
□□□□□□□□

□□□□□□□□
I Crossbar I
□□□□□□□□
□□□□□□□□
I crwar I
□□□□□□□□

□□□□□□□□
I Crossbar I
□□□□□□□□
□□□□□□□□
I Crossbar I
□□□□□□□□

□□□□□□□□
I Crossbar I
□□□□□□□□
□□□□□□□□
I Cm8sbar I
□□□□□□□□

□□□□□□□□
I � I
□□□□□□□□

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 449

20.3 Effect of Architecture 429

have been prohibitively large, the developers used empirical testing to determine
what level of connectivity was typically used in representational benchmarks. In
addition to high internal connectivity, Plasma also contained an unusually large
number of off-chip 1/0 pins.

Although this extremely dense routing fabric consumed 90 percent of the over
all area, and its reliance on very long wires reduced the maximum operating
frequency considerably, placement and routing could reliably be performed on
the order of seconds on existing workstations. Given Teramac's target applica
tions, the dramatic increase in compilation speed and the extremely consistent
place and route success rate was considered to be more important than logical
density or execution clock frequency.

Of course, not all applications can make such an extreme trade-off between
ease of compilation and general usability metrics. However, manipulating the
architecture of an FPGA does not necessarily require dramatically altering the
characteristics of the device. For example, it is possible to make small changes
to the interconnect to make routing simpler. One possibility is using a track
domain architecture, which restricts the structure of the switch boxes in an
island-style FPGA.

As shown in Figure 20.7, the connectivity of an architecture's switch boxes
can affect routability. While each wire in both the top and bottom switch boxes
have the same number of fanouts, the top switch box allows tracks to switch
wire domains, eventually migrating to any track through multiple switch points.

2

I
.. ..,_ ,.

,.

\
I I ,.*, I\ .,,,- \.

, '" 1 I I , -,--,-----,-"\ ..
\ I I I \,

',' : : ,'\
,' \ : ,�' \
.:!,·,---;,-,---;

2 ';-� ... ,, : ,' 2
II,"",., I,'

2

2

I I "".,.
"'

, \

1 ,,' : /' .. �:
'-, I , I ,..,..,

\ ---,,_;•---�-,,-,
\ 't I ,'\
\ ,' I I , \

'" : ,r \
::t()· .. :;,.. �·-:;

2 \ ,- .., , I # 2
,. ,-.. , ,,

2

�

r--""""'�-+----t-T-t--- �

--�---+--+-�.+---++--+--- �

1---+---+--- �

FIGURE 20.7 ■ Switch box style and routability.

If I
L---J

.. ~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 450

430 Chapter 20 ■ Fast Compilation Techniques

This allows a signal coming in on one wire on the left of the top architecture
to reach all four wires exiting the right. However, the symmetric switch box
shown on the bottom does not allow tracks to switch wire domains and forces
a signal to travel along a single class of wire. This means that a signal coming
in from the left of the bottom architecture can only reach two of the four wires
exiting to the right. Although this may reduce the flexibility of the routing fabric
somewhat [18], potentially requiring more wires to achieve the same level of
routability [8], this effect is relatively minor.

Even though we may need to increase the channel width of our architec
ture because of the restrictive nature of track domain switch boxes, routing on
this type of FPGA can be dramatically faster than on more flexible systems. As
shown by Cabral et al. [S], since the routing resources on track domain FPGAs
are split into M different classes of wire, routing becomes a parallel problem.
First, N processors are each assigned a small number of track domains from a
given architecture. Then the nets from a circuit placed onto the architecture are
simply split into N groups. Because each track domain is isolated from every
other due to the nature of the architecture, each processor can perform normal
Pathfinder routing without fear that the paths found by one processor will inter
fere with the paths found by another. When a processor cannot route a signal on
its allotted routing resources, it is given an additional unassigned track domain.
Although load balancing between processors and track domains is somewhat of
a problem, this technique has shown linear or even super-linear speedup with
a very small penalty to routability. In this case, Cabral and colleagues [5] were
able to solve the problems encountered by the parallel routing approaches that
were discussed earlier by modifying the architecture itself.

Another way to modify the physical FPGA to speed routing is by offering spe
cialized hardware to allow the device to route its own circuits. Although similar
to the approach discussed earlier in which simulated annealing is implemented
on a generic FPGA to accelerate the placement of its own circuits, DeHon
et al. [9] suggest that by modifying the actual switch points internal to an FPGA,
we can create a specialized FPGA that can assist a host processor to perform
Pathfinder-like routing by performing its own Dijkstra searches. In this type
of architecture, the switch points have additional hardware that gives them the
ability to remember the inputs and outputs currently being used when the FPGA
is put into a special compilation time-only "routing search" mode. / .�

After the placement of a given circuit is found, we configure the FPGA to
perform routing on itself. This begins by clearing the occupancy markers on
all of the switch points. During the routing phase, the host processor requests
that each net in turn drive a signal from its source, which helps discover a path
to each of its sinks. Every time this signal encounters a switching element, the
switch allows the signal to propagate though unallocated resources but prevents
it from continuing along occupied segments. In this way, the device explores
all possible paths virtually instantaneously. When a route is found between the
source and a sink, the switch point occupancy markers along this path are
updated to reflect the "taken" status of these resources. When a route cannot
be found for a given net, because all of the legal paths have been occupied

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 451

20.4 Summary 431

by earlier nets, the system simply victimizes a random previously routed path
and rips it up until the blocked net can successfully route. Nets are continuously
routed and ripped up in this round-robin fashion until all nets have been routed.
Although this approach does not have the same sophistication as PathFinder,
the experiments by DeHon and colleagues [9] show that hardware-assisted
routing can obtain extremely similar track counts (only 1 to 2 additional tracks)
with 4 to 6 orders of magnitude speedup in terms of runtime on the largest
benchmarks.

Of course, modifying an FPGA architecture can involve a great deal of engi
neering effort. For example, while hardware-assisted routing is one of the only
approaches that is fast enough to make runtime netlist compilation feasible, it
involves completely redesigning the communication network. That said, not all
of our architecture modifications need to be that drastic. For example, com
mercial FPGA manufacturers have already made modifications to their archi
tectures that accelerate routing. As mentioned earlier, commercial FPGAs offer
a resource-rich, flexible routing fabric to support a wide range of applications.
Their high bandwidth and connectivity naturally make the routing problem sim
pler and much faster to solve. Following this logic, it seems natural that FPGAs
might switch to track domain architectures in the future. While such devices
require only minor layout changes that slightly affect overall system mutability,
they enable very simple parallel routing algorithms to be used. This becomes
more and more important as reconfigurable devices scale and as multi-threaded
and multicore processors gain popularity.

20.4 SUMMARY

In this chapter we explored many techniques to accelerate FPGA placement and
routing. Ultimately, all of them have restrictions, benefits, and drawbacks. This
means that our applications, architectures, and design constraints must dic
tate which methodologies can and should be used. Several of the approaches
do not provide acceptable runtime given problem constraints, while some may
not offer sufficient implementation quality. Some techniques may not scale ade
quately to address our issues, while we may not have the necessary information to
use others.

FPGA scaling. Although classical block-level simulated annealing techniques
have been the cornerstone of FPGA CAD tools for decades, these method
ologies must eventually be replaced. Hierarchical and macro-based tech
niques seem to scale much more gracefully while preserving the large-scale
characteristics of high-quality simulated annealing. On the other hand,
routing will likely depend on PathFinder and other negotiated congestion
techniques for quite some time. That said, for compilation time to keep
pace given newer and larger devices, FPGA developers need to make some
architectural changes that simplify the routing problem. lrack domain

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 452

432 Chapter 20 ■ Fast Compilation Techniques

systems seem to be a natural solution given that modem desktops and
workstations offer multiple types of parallel processing resources.

Hardware prototyping and logic emulation systems. While these systems benefit
greatly from incremental mapping techniques, they still require fast place
and route algorithms when compilation needs to be performed from
scratch. Hardware-assisted placement seems an obvious choice that can
take full advantage of the multichip arrays present in these large devices.
Furthermore, since optimal critical-path timing is not essential and appli
cation source code is generally available to provide hierarchical informa
tion, datapath and macro-based approaches can be very effective.

Instance-specific designs. Datapath and macro-based approaches are even more
important to instance-specific circuits because they cannot take advantage
of many other techniques. However, the limited scope of these problems
and the dramatic speedup made possible by these systems also make spe
cialized architectures attractive. While the overhead imposed by architec
tures such as Plasma may not be practical for most commercial devices,
these drawbacks are far less important to instance-specific circuits given
the significant CAD tool benefits.

Runtime netlist compilation. Reconfigurable computing systems that require
runtime netlist compilation present an incredibly demanding real-time com
pilation problem. Correspondingly, these systems require the most aggres
sive architectural approaches to make this possible. Radical system-wide
modifications that provide huge amounts of routing resources significantly
simplify the placement problem. However, just providing more bandwidth
does not necessarily accelerate the routing process. These systems need to
provide communication channels that either do not need to be negotiated or,
through hardware-assisted routing, can automatically negotiate their own
connections. An open question is whether the advantages of runtime netlist
compilation are worth the attendant costs and complexities they introduce.

References

[1] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Teramac---configurable
custom computing. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, 1995.

[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, L. Albertson. Plasma:
An FPGA for million gate systems. Proceedings of ACM Symposium on Field
Programmable Gate Arrays, 1996.

[3] V. Betz, J. Rose, A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic, 1999.

[4] C. Choy, T. Cheung, K. Wong. Incremental layout placement modification algo
rithm. IEEE Transactions on Computer-Aided Design 15(4), April 1996.

[5] L. Cabral, J. Aude, N. Maculan. TDR: A distributed-memory parallel routing algo
rithm for FPGAs. Proceedings of International Conference on Field-Programmable
Logic and Applications, 2002.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 453

20.4 Summary 433

[6] T. Callahan, P. Chong, A. Dehan, J. Wawrynek. Fast module mapping and
placement for datapaths in FPGAs. Proceedings of ACM Symposium on Field
Programmable Gate A"ays, 1998.

[7] P. Chan, M.D.F. Schlag, C. Ebeling. Distributed-memory parallel routing for field
programmable gate arrays. IEEE Transactions on Computer-Aided Design 19(8),
August 2000.

[8] Y. Chang, D. F. Wong, C. K. Wong. Universal switch modules for FPGA design.
ACM Transactions on Design Automation of Electronic Systems 1(1), January 1996.

[9] A. DeHon, R. Huang, J. Wawrzynek. Hardware-assisted fast routing. Proceedings of
the IEEE Symposium on FPGAs for Custom Computing Machines, 2002.

[10] S. Gehring, S. Ludwig. Fast integrated tools for circuit design with FPGAs.
Proceedings of ACM Symposium on Field-Programmable Gate A"ays, 1998.

[11] M. Haldar, M. A. Nayak, A. Choudhary, P. Banerjee. Parallel algorithms for FPGA
placement. Proceedings of the Great Lakes Symposium on VLSI, 2000.

[12] C. Mulpuri, S. Hauck. Runtime and quality trade-offs in FPGA placement and
routing. Proceedings of ACM Symposium on Field-Programmable Gate A"ays, 2001.

[13] Y. Sankar, J. Rose. Trading quality for compile time: Ultra-fast placement for
FPGAs. Proceedings of ACM Symposium on Field-Programmable Gate A"ays, 1999.

[14] D. Singh, S. Brown. Incremental placement for layout-driven optimizations on
FPGAs. Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 2002.

[15] J. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. Proceedings
of the ACM Symposium on Field-Programmable Gate A"ays, 1998.

[16] R. Tessier. Negotiated A* routing for FPGAs. Proceedings of the Canadian Workshop
on Field-Programmable Devices, 1998.

[17] R. Tessier. Fast placement approaches for FPGAs. Transactions on Design Automa- ·
tion of Electronic Systems 7(2), April 2002.

[18] S. Wilton. Architecture and Algorithms for Field-Programmable Gate A"ays with
Embedded Memory, Ph.D. thesis, University of Toronto, 1997.

[19] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with applica
tion for fast FPGA placement. Proceedings of the ACM Symposium on Field
Programmable Gate A"ays, 2003.

[20] Y. Xu, M.A.S. Kalid. QPF: Efficient quadratic placement for FPGAs. Proceedings of
the International Conference on Field-Programmable Logic and Applications, 2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 454

PA RT IV

APPLICATION DEVELOPMENT

Creating an efficient FPGA-based computation is similar to creating any
other hardware. A designer carefully optimizes his or her computation to
the needs of the underlying technology, exploiting the parallelism avail
able while meeting resource and performance constraints. These designs
are typically written in a hardware description language (HDL), such as
Verilog, and CAD tools are then used to create the final implementation.

Field-programmable gate arrays (FPGAs) do have unique constraints
and opportunities that must be understood in order for this technology to
be employed most effectively. The resource mix is fixed, and the devices
are never quite fast enough or have high enough capacity for what we
want to do. However, because the chips are reprogrammable we can
change the system in response to bugs or functionality upgrades, or even
change the computation as it executes.

Because of the unique restrictions and opportunities inherent in
FPGAs, a set of approaches to application development have proven criti
cal to exploiting these devices to the fullest. Many of them are covered in
the chapters that follow. Although not every FPGA-based application will
use each of the approaches, a true FPGA expert will make them all part
of his or her repertoire.

Some of the most challenging questions in the design process come
at the very beginning of a new project: Are FPGAs a good match for the
application? If so, what problems must be considered and overcome? Will
runtime reconfiguration be part of the solution? Will fixed- or floating
point computation be used? Chapter 21 focuses on this level of design,
covering the important issues that arise when we first consider an appli
cation and the problems that must be avoided or solved. It also offers a
quick overview of application development. Chapters 22 through 26 delve
into individual concerns in more detail.

FPGAs are unique in their potential to be more efficient than even
ASICs for some types of problems: Because the circuit design is com
pletely programmable, we can create a custom circuit not just for a
given problem but for a specific problem instance. Imagine, for exam
ple, that we are creating an engine for solving Boolean equations (e.g.,
a SAT solver, discussed in Chapter 29 in Part V). In an ASIC design, we

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 455

436 Part IV • Application Development

would create a generic engine capable of handling any possible Boolean
equation because each use of the chip would be for a different equation.
In an FPGA-based system, the equation can be folded into the circuit
mapping itself, creating a custom FPGA mapping optimized to solving
that Boolean equation and no other. As long as there is a CPU available
to dynamically create a new FPGA bitstream each time a new Boolean
equation must be solved, a much more aggressively optimized design can
be created. However, because this means that the time to create the new
mapping is part of system execution, fast mapping algorithms are often
the key (Chapter 20). This concept of instance-specific circuits is covered
in Chapter 22.

In most cases, the time to create a completely new mapping in response
to a specific problem instance is too long. Indeed, if it takes longer to cre
ate the custom circuit than for a generic circuit to solve the problem,
the generic circuit is the better choice. However, more restricted versions
of this style of optimization are still valuable. Consider a simple FIR fil
ter, which involves multiplication of an incoming datastream with a set
of constant coefficients. We could use a completely generic multiplier to
handle the constant * variable computation. However, the bits of the con
stant are known in advance, so many parts of this multiplication can be
simplified out. Multipliers, for example, generally compute a set of par
tial products-the result of multiplying one input with a single bit of the
other input. These partial products are then added together. If the con
stant coefficient provided that single bit for a partial product, we can
know at mapping creation time whether that partial product will be 0 or
equal to the variable input-no hardware is necessary to create it. Also, in
cases where the partial product is a 0, we no longer need to add it into the
final result. In general, the use of constant inputs to a computation can
significantly improve most metrics in FPGA mapping quality. These tech
niques, called constant propagation and partial evaluation, are covered in
Chapter 22.

Number formats in FPGAs are another significant concern. For
microprocessor-based systems we are used to treating everything as a
64-bit integer or an IEEE-format floating-point value. Because the under
lying hardware is hardcoded to efficiently support these specific number
formats, any other format is unlikely to be useful. However, in an FPGA
we custom create the datapath. Thus, using a 64-bit adder on values that
are at most 18 bits in length is wasteful because each bit position con
sumes one or more lookup tables (LUTs) in the device.

For this reason, an FPGA designer will carefully consider the required
wordlength of the numbers in the system, hoping to shave off some bits
of precision and thus reduce the hardware requirements of the design.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 456

Application Development 437

Fractional values, such as 1t or fractions of a second, are more
problematic. In many cases, we can use a fixed-point format. We might
use numbers in the range of 0 . . . 31 to represent the values from Oto �}
in steps of]2 by just remembering that the number is actually scaled by
a factor of 32. Techniques for addressing each of the concerns just men
tioned are treated in Chapter 23.

Sometimes these optimizations simply are not possible, particularly for
signals that require a high dynamic range (i.e., they must represent both
very large and very small values simultaneously), so we need to use a
floating-point format. This means that each operation will consume sig
nificantly more resources than its integer or fixed-point alternatives will.
Chapter 31 in Part V covers floating-point operations on FPGAs in detail.

Once the number format is decided, it is important to determine how
best to perform the actual computation. For many applications, particu
larly those from signal processing, the computation will involve a large
number of constant coefficient multiplications and subsequent addition
operations, such as in finite impulse response (FIR) filters. While these
can be carried out in the normal, parallel adders and multipliers from
standard hardware design, the LUT-based logic of an FPGA allows an
even more efficient implementation. By converting to a bit-serial dataflow
and storing the appropriate combination of constants into the LUTs in the
FPGA, the multiply-accumulate operation can be compressed to a small
table lookup and an addition. This technique, called distributed arith
metic, is covered in Chapter 24. It is capable of providing very efficient
FPGA-based implementations of important classes of digital signal pro
cessing (DSP) and similar operations.

Complex mathematical operations such as sine, cosine, division, and
square root, though less common than multiply-add, are still important
in many applications. In some cases they can be handled by table lookup,
with a table of precomputed results stored in memories inside the FPGA
or in attached chips. However, as the size of the operand(s) for these
functions grows, the size of the memory explodes, limiting this tech
nique's effectiveness. A particularly efficient alternative in FPGA logic is
the CORDIC algorithm. By the careful creation of an iterative circuit,
FPGAs can efficiently compute many of these complex functions. The full
details of the CORDIC algorithm, and its implementation in FPGAs, are
covered in Chapter 25.

A final concern is the coupling of both FPGAs and central process
ing units (CPUs). In early systems, FPGAs were often deployed together
with microprocessors or microcontrollers, either by placing an FPGA
card in a host PC or by placing both resources on a single circuit board.
With modern FPGAs, which can contain complete microprocessors

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 457

438 Part IV ■ Application Development

(either by mapping their logic into LUTs or embedding a complete micro
processor into the chip's silicon layout), the coupling of CPUs and FPGAs
is even more attractive. The key driver is the relative advantages of each
technology. FPGAs can provide very high performance for streaming
applications with a lot of data parallelism-if we have to apply the same
repetitive transformation to a large amount of data, an FPGA's perfor
mance is generally very high. However, for more sequential operations
FPGAs are a poor choice. Sometimes long sequences of operations, with
little or no opportunity for parallelism, come up in the control of the over
all system. Also, exceptional cases do occur and must be handled-for
example, the failure of a component, using denormal numbers in float
ing point, or interfacing to command-based peripherals. In each case a
CPU is a much better choice for those portions of a computation. As a
result, for many computations the best answer is to use the FPGA for the
data-parallel kernels and a CPU for all the other operations. This process
of segmenting a complete computation into software/CPU portions and
hardware/FPGA portions is the focus of Chapter 26.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 458

IMPLEMENTING APPLICATIONS

WITHFPGAs

Brad L. Hutchings, Brent E. Nelson
Department of Electrical and Computer Engineering
Brigham Young University

CHAPTER 21

Developers can choose various devices when implementing electronic systems:
field-programmable gate arrays (FPGAs), microprocessors, and other standard
products such as ASSPs, and custom chips or application-specific integrated
circuits (ASICs). This chapter discusses how FPGAs compare to other digital
devices, outlines the considerations that will help designers to determine when
FPGAs are appropriate for a specific application, and presents implementation
strategies that exploit features specific to FPGAs.

The chapter is divided into four major sections. Section 21.1 discusses the
strengths and weaknesses of FPGAs, relative to other available devices. Section 21.2
suggests when FPGA devices are suitable choices for specific applications/
algorithms, based upon their 1/0 and computation requirements. Section 21.3
discusses general implementation strategies appropriate for FPGA devices. Then
Section 21.4 discusses FPGA-specific arithmetic design techniques.

21.1 STRENGTHS AND WEAKNESSES OF FPGAs

Developers can choose from three general classes of devices when implement
ing an algorithm or application: microprocessor, FPGA, or ASIC (for simplicity,
ASSPs are not considered here). This section provides a brief summary of the
advantages and disadvantages of these devices in terms of time to market, cost,
development time, power consumption, and debug and verification.

21.1.1 Time to Market

Tune to market is often touted as one of the FPGA's biggest strengths, at least
relative to ASICs. With an ASIC, from specification to product requires (at least):
(1) design, (2) verification, (3) fabrication, (4) packaging, and (5) device test. In
addition, software development requires access to the ASIC device (or an emu
lation of such) before it can be verified and completed. As immediately available
standard devices, FPGAs have already been fabricated, packaged, and tested by
the vendor, thereby eliminating at least four months from time to market.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 459

440 Chapter 21 ■ Implementing Applications with FPGAs

More difficult to quantify but perhaps more important are: (1) refabrications
(respins) caused by either errors in the design or late changes to the specifica
tion, due to a change in an evolving standard, for example, and (2) software
development schedules that depend on access to the ASIC. Both of these items
impact product production schedules; a respin can easily consume an additional
four months, and early access to hardware can greatly accelerate software devel
opment and debug, particularly for the embedded software that communicates
directly with the device.

In light of these considerations, a conservative estimate of the time-to-market
advantage of FPGAs relative to ASICs is 6 to 12 months. Such a reduction is
significant; in consumer electronics markets, many products have only a
24-month lifecycle.

21.1.2 Cost

Per device, FPGAs can be much less expensive than ASICs, especially in lower
volumes, because the nonrecurring costs of FPGA fabrication are borne by many
users. However, because of their reprogrammability, FPGAs require much more
silicon area to implement equivalent functionality. Thus, at the highest volumes
possible in consumer electronics, FPGA device cost will eventually exceed ASIC
device cost.

21.1.3 Development Time

FPGA application development is most often approached as hardware design:
applications are described in Verilog or VHDL, simulated to determine cor
rectness, and synthesized using commercial logic synthesis tools. Commercial
tools are available that synthesize behavioral programs written in sequential
languages such as C to FPGAs. However, in most cases, much better perfor
mance and higher densities are achieved using HDLs, because they allow the
user to directly describe and exploit the intrinsic parallelism available in an
application. Exploiting application parallelism is the single best way to achieve
high FPGA performance. However, designing highly parallel implementations of
applications in HDLs requires significantly more development effort than soft
ware development with conventional sequential programming languages such
as Java or C++.

21. 1.4 Power Consumption

FPGAs consume more power than ASICs simply because programmability
requires many more transistors, relative to a customized integrated circuit (IC).
FPGAs may consume more or less power than a microprocessor or digital signal
processor (DSP), depending on the application.

21.1.5 Debug and Verification

FPGAs are developed with standard hardware design techniques and tools.
Coded in VHDL or Verilog and synthesized, FPGA designs can be debugged

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 460

21.2 Application Characteristics and Performance 441

in simulators just as typical ASIC designs are. However, many designers verify
their designs directly, by downloading them into an FPGA and testing them in
a system. With this approach the application can be tested at speed (a million
times faster than simulation) in the actual operating environment, where it is
exposed to real-world conditions. If thorough, this testing provides a stronger
form of functional verification than simulation. However, debugging applica
tions in an FPGA can be difficult because vendor tools provide much less observ
ability and controllability than, for example, an hardware description language
(HDL) simulator.

21.1.6 FPGAs and Microprocessors

As discussed previously, FPGAs are most often contrasted with custom ASICs.
However, if a programmable solution is dictated because of changing applica
tion requirements or other factors, it is important to study the application care
fully to determine if it is possible to meet performance requirements with a
programmable processor-microprocessor or DSP. Code development for pro
grammable processors requires much less effort than that required for FPGAs
or ASICs, because developing software with sequential languages such as C or
Java is much less taxing than writing parallel descriptions with Verilog or VHDL.
Moreover, the coding and debugging environments for programmable processors
are far richer than their HDL counterparts. Microprocessors are also generally
much less expensive than FPGAs. If the microprocessor can meet application
requirements (performance, power, etc.), it is almost always the best choice.

In general, FPGAs are well suited to applications that demand extremely high
performance and reprogrammability, for interfacing components that communi
cate with many other devices (so-called glue-logic) and for implementing hard
ware systems at volumes that make their economies of scale feasible. They are
less well suited to products that will be produced at the highest possible volumes
or for systems that must run at the lowest possible power.

21.2 APPLICATION CHARACTERISTICS AND PERFORMANCE

Application performance is largely determined by the computational and 1/0
requirements of the system. Computational requirements dictate how much
hardware parallelism can be used to increase performance. 1/0 system limi
tations and requirements determine how much performance can actually be
exploited from the parallel hardware.

21.2.1 Computational Characteristics and Performance

FPGAs can outperform today's processors only by exploiting massive amounts
of parallelism. Their technology has always suffered from a significant clock-rate
disadvantage; FPGA clock rates have always been slower than CPU clock rates
by about a factor of 10. This remains true today, with clock rates for FPGAs

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 461

442 Chapter 21 • Implementing Applications with FPGAs

limited to about 300 to 350 MHz and CPUs operating at approximately 3 GHz.
As a result, FPGAs must perform at least 10 times the computational work
per cycle to perform on par with processors. To be a compelling alternative,
an FPGA-based solution should exceed the performance of a processor-based
solution by 5 to 10 times and hence must actually perform 50 to 100 times
the computational work per clock cycle. This kind of performance is feasible
only if the target application exhibits a corresponding amount of exploitable
parallelism.

The guideline of 5 to 10 times is suggested for two main reasons. First of all,
prior to actual implementation, it is difficult or impossible to foresee the impact
of various system and 1/0 issues on eventual performance. In our experience,
5 times can quickly become 2 times or less as various system and algorithmic
issues arise during implementation. Second, application development for FPGAs
is much more difficult than conventional software development. For that rea
son, the additional development effort must be carefully weighed against the
potential performance advantages. A guideline of 5 to 10 times provides some
insurance that any FPGA-specific performance advantages will not completely
vanish during the implementation phase.

Ultimately, the intrinsic characteristics of the application place an upper
bound on FPGA performance. They determine how much raw parallelism exists,
how exploitable it is, and how fast the clock can operate. A review of the liter
ature [3-6, 11, 16, 19-21, 23, 26, 28] shows that the application characteristics
that have the most impact on application performance are: data parallelism,
amenability to pipelining, data element size and arithmetic complexity, and sim
ple control requirements.

Data parallelism
Large datasets with few or no data dependencies are ideal for FPGA imple
mentation for two reasons: (1) They enable high performance because many
computations can occur concurrently, and (2) they allow operations to be exten
sively rescheduled. As previously mentioned, concurrency is extremely impor
tant because FPGA applications must be able to achieve 50 to 100 times the
operations per clock cycle of a microprocessor to be competitive. The ability
to reschedule computations is also important because it makes it feasible to
tailor the circuit design to FPGA hardware and achieve higher performance. For
example, computations can be scheduled to maximize data reuse to increase
performance and reduce memory bandwidth requirements. Image-processing
algorithms with their attendant data parallelism have been among the highest
performing algorithms mapped to FPGA devices.

Data element size and arithmetic complexity
Data element size and arithmetic complexity are important because they
strongly influence circuit size and speed. For applications with large amounts
of exploitable parallelism, the upper limit on this parallelism is often deter
mined by how many operations can be performed concurrently on the FPGA
device. Larger data elements and greater arithmetic complexity lead to larger

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 462

21.2 Application Characteristics and Performance 443

and fewer computational elements and less parallelism. Moreover, larger and
more complex circuits exhibit more delay that slows clock rate and impacts
performance. Not surprisingly, representing data with the fewest possible bits
and performing computation with the simplest operators generally lead to the
highest performance. Designing high-performance applications in FPGAs almost
always involves a precision/performance trade-off.

Pipelining
Pipelining is essential to achieving high performance in FPGAs. Because FPGA
performance is limited primarily by interconnect delay, pipelining (inserting reg
isters on long circuit pathways) is an essential way to improve clock rate (and
therefore throughput) at the cost of latency. In addition, pipelining allows com
putational operations to be overlapped in time and leads to more parallelism in
the implementation. Generally speaking, because pipelining is used extensively
throughout FPGA-based designs, applications must be able to tolerate some
latency (via pipelining) to be suitable candidates for FPGA implementation.

Simple control requirements
FPGAs achieve the highest performance if all operations can be statically sched
uled as much as possible (this is true of many technologies). Put simply, it takes
time to make decisions and decision-making circuitry is often on the critical
path for many algorithms. Replacing runtime decision circuitry with static con-
trol eliminates circuitry and speeds up execution. It makes it much easier to
construct circuit pipelines that are heavily utilized with few or no pipeline bub
bles. In addition, statically scheduled controllers require less circuitry, making
ro9m for more datapath operators, for example. In general, datasets with few
or no dependencies often have simple control requirements.

21.2.2 VO and Performance

As mentioned previously, FPGA clock rates are at least one order of magnitude
slower than those of CPUs. Thus, significant parallelism (either data parallelism
or pipelining) is required for an FPGA to be an attractive alternative to a CPU.
However, 1/0 performance is just as important: Data must be transmitted at
rates that can keep all of the parallel hardware busy.

Algorithms can be loosely grouped into two categories: 1/0 bound and com
pute bound [17, 18]. At the simplest level, if the number of 1/0 operations is
equal to or greater than the number of calculations in the computation, the
computation is said to be 1/0 bound. To increase its performance requires an
increase in memory bandwidth-doing more computation in parallel will have
no effect. Conversely, if the number of computations is greater than the number
of 1/0 operations, computational parallelism may provide a speedup.

A simple example of this, provided by Kung [18], is matrix-matrix multi
plication. The total number of I/Os in the computation, for n-by-n matrices,
is 3n2-each matrix must be read and the product written back. The total
number of computations to be done, however, is n3

• Thus, this computation is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 463

444 Chapter 21 • Implementing Applications with FPGAs

compute bound. In contrast, matrix-matrix addition requires 3n2 I/Os and 3n2

calculations and is thus 1/0 bound. Another way to see this is to note that each
source element read from memory in a matrix-matrix multiplication is used n
times and each result is produced using n multiply-accumulate operations. In
matrix-matrix addition, each element fetched from memory is used only once
and each result is produced from only a single addition.

Carefully coordinating data transfer, 1/0 movement, and computation order is
crucial to achieving enough parallelism to provide effective speedup. The entire
field of systolic array design is based on the concepts of (1) arranging the 1/0
and computation in a compute-bound application so that each data element
fetched from memory is reused multiple times, and (2) keeping many processing
elements busy operating in parallel on that data.

FPGAs offer a wide variety of memory elements that can be used to coor
dinate 1/0 and computation: flip-flops to provide single-bit storage (10,000s of
bits); LUT-based RAM to provide many small blocks of randomly distributed
memory (100,000s of bits); and larger RAM or ROM memories (1,000,000s of
bits). Some vendors' FPGAs contain multiple sizes of random access memories,
and these memories are often easily configured into special-purpose structures
such as dynamic-length shift registers, content-addressable memories (CAMs),
and so forth. In addition to these types of on-chip memory, most FPGA plat
forms provide off-chip memory as well.

Increasing the 1/0 bandwidth to memory is usually critical in harnessing the
parallelism inherent in a computation. That is, after some point, further multi
plying the number of processing elements (PEs) in a design (to increase paral
lelism) usually requires a corresponding increase in 1/0. This additional 1/0 can
often be provided by the many on-chip memories in a typical modem FPGA. The
work of Graham and Nelson [8] describes a series of early experiments to map
time-delay SONAR beam forming to an FPGA platform where memory band
width was the limiting factor in design speedup. While the data to be processed
were an infinite stream of large data blocks, many of the other data structures
in the computation were not large (e.g., coefficients, delay values). In this com
putation, it was not the total amount of memory that limited the speedup but
rather the number of memory ports available. Thus, the use of multiple small
memories in parallel were able to provide the needed bandwidth.

The availability of many small memories in today's FPGAs further supports
the idea of trading off computation for table lookup. Conventional FPGA fabrics
are based on a foundation of 4-input LUTs; in addition, larger on-chip memories
can be used to support larger lookup structures. Because the memories already
exist on chip, unlike in ASIC technology, using them adds no additional cost to
the system. A common approach in FPGA-based design, therefore, is to evaluate
which parts of the system's computations might lend themselves to table lookup
and use the available RAM blocks for these lookups.

In summary, the performance of FPGA-based applications is largely deter
mined by how much exploitable parallelism is available, and by the ability of
the system to provide data to keep the parallel hardware operational.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 464

21.3 General Implementation Strategies for FPGA-based Systems 445

21.3 GENERAL IMPLEMENTATION STRATEGIES
FOR FPGA-BASED SYSTEMS

In contrast with other programmable technologies such as microprocessors
or DSPs, FPGAs provide an extremely rich and complex set of implementa
tion alternatives. Designers have complete control over arithmetic schemes and
number representation and can, for example, trade precision for performance.
In addition, reprogrammable, SRAM-based FPGAs can be configured any num
ber of times to provide additional implementation flexibility for further tailoring
the implementation to lower cost and make better use of the device.

There are two general configuration strategies for FPGAs: configure-once,
where the application consists of a single configuration that is downloaded for
the duration of the application's operation, and runtime reconfiguration (RTR),
where the application consists of multiple configurations that are "swapped" in
and out as the application operates [14].

21.3. 1 Configure-once

Configure-once (during operation) is the simplest and most common way to
implement applications with reconfigurable logic. The distinctive feature of
configure-once applications is that they consist of a single system-wide config
uration. Prior to operation, the FPGAs comprising the reconfigurable resource
are loaded with their respective configurations. Once operation commences, they
remain in this configuration until the application completes. This approach is
very similar to using an ASIC for application acceleration. From the application
point of view, it matters little whether the hardware used to accelerate the appli
cation is an FPGA or a custom ASIC because it remains constant throughout its
operation.

The configure-once approach can also be applied to reconfigurable applica
tions to achieve significant acceleration. There are classes of applications, for
example, where the input data varies but remains constant for hours, days, or
longer. In some cases, data-specific optimizations can be applied to the applica
tion circuitry and lead to dramatic speedup. Of course, when the data changes,
the circuit-specific optimizations need to be reapplied and the bitstream regen
erated. Applications of this sort consist of two elements: (1) the FPGA and
system hardware, and (2) an application-specific compiler that regenerates the
bitstream whenever the application-specific data changes. This approach has
been used, for example, to accelerate SNORT, a popular packet filter used to
improve network security [13]. SNORT data consists of regular expressions that
detect malicious packets by their content. It is relatively static, and new regular
expressions are occasionally added as new attacks are detected. The application
specific compiler translates these regular expressions into FPGA hardware that
matches packets many times faster than software SNORT. When new regular
expressions are added to the SNORT database, the compiler is rerun and a new
configuration is created and downloaded to the FPGA.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 465

446 Chapter 21 • Implementing Applications with FPGAs

21.3.2 Runtime Reconfiguration

Whereas configure-once applications statically allocate logic for the duration of
an application, RTR applications use a dynamic allocation scheme that
re-allocates hardware at runtime. Each application consists of multiple con
figurations per FPGA, with each one implementing some fraction of it. Whereas
a configure-once application configures the FPGA once before execution, an RTR
application typically reconfigures it many times during the normal operation.

There are two basic approaches that can be used to implement RTR appli
cations: global and local (sometimes referred to as partial configuration in the
literature). Both techniques use multiple configurations for a single application,
and both reconfigure the FPGA during application execution. The principal dif
ference between the two is the way the dynamic hardware is allocated.

Global RTR

Global RTR allocates all (FPGA) hardware resources in each configuration step.
More specifically, global RTR applications are divided into distinct temporal
phases, with each phase implemented as a single system-wide configuration that
occupies all system FPGA resources. At runtime, the application steps through
each phase by loading all of the system FPGAs with the appropriate configura
tion data associated with a given phase.

Local RTR

Local RTR takes an even more flexible approach to reconfiguration than does
global RTR. As the name implies, these applications locally (or selectively) recon
figure subsets of the logic as they execute. Local RTR applications may configure
any percentage of the reconfigurable resources at any time, individual FPGAs
may be configured, or even single FPGA devices may themselves be partially
reconfigured on demand. This flexibility allows hardware resources to be tai
lored to the runtime profile of the application with finer granularity than that
possible with global RTR. Whereas global RTR approaches implement the execu
tion process by loading relatively large, global application partitions, local RTR
applications need load only the necessary functionality at each point in time.
This can reduce the amount of time spent downloading configurations and can
lead to a more efficient runtime hardware allocation.

The organization of local RTR applications is based more on a functional
division of labor than the phased partitioning used by global RTR applications.
Typically, local RTR applications are implemented by functionally partitioning
an application into a set of fine-grained operations. These operations need not
be temporally exclusive-many of them may be active at one time. This is in
direct contrast to global RTR, where only one configuration (per FPGA) may
be active at any given time. Still, with local RTR it is important to organize
the operations such that idle circuitry is eliminated or greatly reduced. Each
operation is implemented as a distinct circuit module, and these circuit modules
are then downloaded to the FPGAs as necessary during operation. Note that,
unlike global RTR, several of these operations may be loaded simultaneously,
and each may consume any portion of the system FPGA resources.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 466

21.3 General Implementation Strategies for FPGA-based Systems 447

RTR applications
Runtime Reconfigured Artificial Neural Network (RRANN) is an early example
of a global RTR application [7]. RRANN divided the back-propagation algorithm
(used to train neural networks) into three temporally exclusive configurations
that were loaded into the FPGA in rapid succession during operation. It demon
strated a 500 percent increase in density by eliminating idle circuitry in individ
ual algorithm phases.

RRANN was followed up with RRANN-2 [9], an application using local RTR.
Like RRANN, the algorithm was still divided into three distinct phases. However,
unlike the earlier version, the phases were carefully designed so that they shared
common circuitry, which was placed and routed into identical physical locations
for each phase. Initially, only the first configuration was loaded; thereafter, the
common circuitry remained resident and only circuit differences were loaded
during operation. This reduced configuration overhead by 25 percent over the
global RTR approach.

The Dynamic Instruction Set Computer (DISC) [29] used local RTR to create
a sequential control processor with a very small fixed core that remained resi
dent at all times. This resident core was augmented by circuit modules that were
dynamically loaded as required by the application. DISC was used to implement
an image-processing application that consisted of various filtering operations. At
runtime, the circuit modules were loaded as necessary. Although the application
used all of the filtering circuit modules, it did not require all of them to be loaded
simultaneously. Thus, DISC loaded circuit modules on demand as required. Only
a few active circuit modules were ever resident at any time, allowing the appli
cation to fit in a much smaller device than possible with global RTR.

21.3.3 Summary of Implementation Issues

Of the two general implementation techniques, configure-once is the simplest
and is best supported by commercially available tool flows. This is not surpris
ing, as all FPGA CAD tools are derivations of conventional ASIC CAD flows.
While the two RTR implementation approaches (local and global) can provide
significant performance and capacity advantages, they are much more challeng
ing to employ, primarily because of a lack of specific tool support.

The designer's primary task when implementing global RTR applications is
to temporally divide the application into roughly equal-size partitions to effi
ciently use reconfigurable resources. This is largely a manual process-although
the academic community has produced some partitioning tools, no commercial
offerings are currently available. The main disadvantage of global RTR is the
need for equal-size partitions. If it is not possible to evenly partition the appli
cation, inefficient use of FPGA resources will result.

The main advantage of local RTR over global RTR is that it uses fine-grained
functional operators that may make more efficient use of FPGA resources.
This is important for applications that are not easily divided into equal-size
temporally exclusive circuit partitions. However, partitioning a local RTR design
may require an inordinate amount of designer effort. For example, unlike global

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 467

448 Chapter 21 • Implementing Applications with FPGAs

RTR, where circuit interfaces typically remain fixed between configurations,
local RTR allows these interfaces to change with each configuration. When
circuit configurations become small enough for multiple configurations to fit
into a single device, the designer needs to ensure that all configurations will
interface correctly one with another. Moreover, the designer may have to ensure
not only structural compliance but physical compliance as well. That is, when
the designer creates circuit configurations that do not occupy an entire FPGA,
he or she will have to ensure that the physical footprint of each is compatible
with that of others that may be loaded concurrently.

21.4 IMPLEMENTING ARITHMETIC IN FPGAs

Almost since their invention, FPGAs have employed dedicated circuitry to
· accelerate arithmetic computation. In earlier devices, dedicated circuitry sped
up the propagation of carry signals for ripple-carry, full-adder blocks. Later
devices added dedicated multipliers, DSP function blocks, and more complex
fixed-function circuitry. The presence of such dedicated circuitry can dramati
cally improve arithmetic performance, but also restricts designers to a very small
subset of choices when implementing arithmetic.

Well-known approaches such as carry-look-ahead, carry-save, signed-digit,
and so on, generally do not apply to FPGAs. Though these techniques are com
monly used to create very high-performance arithmetic blocks in custom ICs,
they are not competitive when applied to FPGAs simply because they cannot
access the faster, dedicated circuitry and must be constructed using slower,
general-purpose user logic. Instead, FPGA designers accelerate aritbmetic in
one of two ways with FPGAs: (1) using dedicated blocks if they fit the needs of
the application, and (2) avoiding the computation entirely, if possible. Design
ers apply the second option by, for example, replacing full-blown floating-point
computation with simpler, though not equivalent, fixed-point, or block floating
point, computations. In some cases, they can eliminate multiplication entirely
with constant propagation. Of course, the feasibility of replacing slower, com
plex functions with simpler, faster ones is application dependent.

21.4.1 Fixed-point Number Representation and Arithmetic

A fixed-point number representation is simply an integer representation with
an implied binary point, usually in 2's complement format to enable the rep
resentation of both positive and negative values. A common way of describing
the structure of a fixed-point number is to use a tuple: n, m, where n is the
number of bits to the left of the binary point and m is the number of bits to
the right. A 16.0 format would thus be a standard 16-bit integer; a 3.2 format
fixed-point number would have a total of 5 bits with 3 to the left of the implied
binary point and 2 to the right. A range of numbers from + 1 to - lA is common
in digital signal-processing applications. Such a representation might be of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 468

21.4 Implementing Arithmetic in FPGAs 449

form 1.9, where the largest number is 0.111111111 = 0.99810 and the smallest
is 1.000000000 = -110• As can be seen, fixed-point arithmetic exactly follows
the rules learned in grade school, where lining up the implied binary point is
required for performing addition or subtraction.

When designing with fixed-point values, one must keep track of the number
format on each wire; such bookkeeping is one of the design costs associated
with fixed-point design. At any point in a computation, either truncation or
rounding can be used to reduce the number of bits to the right of the binary
point, the effect being to simply reduce the precision with which the number is
represented.

21.4.2 Floating-point Arithmetic

Floating-point arithmetic overcomes many of the challenges of fixed-point arith
metic but at increased circuit cost and possibly reduced precision. The most
common format for a floating-point number is of the form seeeeeffffff, where s
is a sign bit, eeeee is an exponent, and ffffff is the mantissa. In the IEEE stan
dard for single-precision floating point, the number of exponent bits is 8 and
the number of mantissa bits is 23, but nonstandard sizes and formats have also
been used in FPGA work [2, 24].

IEEE reserves various combinations of exponent and mantissa to represent
special values: zero, not a number (NAN), infinity (+8 and -8), and so on. It sup
ports denormalized numbers (no leading implied 1 in the mantissa) and flags
them using a special exponent value. Finally, the IEEE specification describes
four rounding modes. Because supporting all special case number represen
tations and rounding modes in hardware can be very expensive, FPGA-based
floating-point support often omits some of them in the interest of reducing com
plexity and increasing performance.

For a given number of bits, floating point provides extended range to a compu
tation at the expense of accuracy. An IEEE single-precision floating-point num
ber allocates 23 bits to the mantissa, giving an effective mantissa of only 24 bits
when the implied 1 is considered. The advantage of floating point is that its
exponent allows for the representation of numbers across a broad range (IEEE
normalized single-precision values range from z±3 x 1038 to z± 1 x 10-38). Con
versely, while a 32-bit fixed-point representation (1.31 format) has a range of
only -1 to ""+ 1, it can represent some values within that range much more accu
rately than a floating-point format can-for example, numbers close to + 1 such
as 0. ll l ll ll l ll l ll ll l ll 11111111111111. However, for numbers very close to
+0, the fixed-point representation would have many leading zeroes, and thus
would have less precision than the competing floating-point representation.

An important characteristic of floating point is its auto-scaling behavior.
After every floating-point operation, the result is normalized and the exponent
adjusted accordingly. No work on the part of the designer is required in this
respect (although significant hardware resources are used). Thus, it is useful in
cases where the range of intermediate values cannot be bounded by the designer
and therefore where fixed point is unsuitable.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 469

450 Chapter 21 • Implementing Applications with FPGAs

The use of floating point in FPGA-based design has been the topic of much
research over the past decade. Early papers, such as Ligon and colleagues [15]
and Shirazi et al. [24], focused on the cost of floating point and demonstrated that
small floating-point formats as well as single-precision formats could be eventu
ally implemented using FPGA technology. Later work, such as that by Bellows and
Hutchings [1] and Roesler and Nelson [22], demonstrated novel ways of leverag
ing FPGA-specific features to more efficiently implement floating-point modules.
Finally, Underwood [27] argued that the capabilities of FPGA-based platforms for
performing floating point would eventually surpass those of standard computing
systems.

All of the research just mentioned contains size and performance estimates
for floating-point modules on FPGAs at the time they were published. Clever
design techniques and growing FPGA densities and clock rates continually com
bine to produce smaller, faster floating-point circuits on FPGAs. At the time
of this writing, floating-point module libraries are available from a number of
sources, both commercial and academic.

21.4.3 Block Floating Point

Block floating point (BFP) is an alternative to fixed-point and floating-point
arithmetic that allows entire blocks of data to share a single exponent. Fixed
point arithmetic is then performed on a block of data with periodic rescaling of
its data values. A typical use of block floating point is as follows:

1. The largest value in a block of data is located, a corresponding
exponent is chosen, and that value's fractional part is normalized to
that exponent.

2. The mantissas of all other values in the block are adjusted to use the
same exponent as that largest value.

3. The exponent is dropped and fixed-point arithmetic proceeds on the
resulting values in the data block.

4. As the computation proceeds, renormalization of the entire block of
data occurs-after every individual computation, only when a value
overflows, or after a succession of computations.

The key is that BFP allows for growth in the range of values in the data block
while retaining the low cost of fixed-point computations. Block floating point
has found extensive use in fast Fourier transform (FFT) computations where
an input block (such as from an AID converter) may have a limited range of
values, the data is processed in stages, and stage boundaries provide natural
renormalization locations.

21.4.4 Constant Folding and Data-oriented Specialization

As mentioned Section 21.3.2, when the data for a computation changes, an
FPGA can be readily reconfigured to take advantage of that change. As a simple
example of data folding, consider the operation: a =?b, where a and b are 4-bit

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 470

(a)

21.4 Implementing Arithmetic in FPGAs 451

a=?b

(b)

FIGURE 21.1 ■ Two comparator implementations: (a) with and (b) without constant folding.

numbers. Figure 21.1 shows two implementations of a comparator. On the left
(a) is a conventional comparator; on the right (b) is a comparator that may be
used when bis known (b = 1011). Implementation (a) requires three 4-LUTs to
implement while implementation (b) requires just one. Such logic-level constant
folding is usually performed by synthesis tools.

A more complex example is given by Wirthlin [30], who proposed a method
for creating constant coefficient multipliers. When one constant to a multiplier
was known, a custom multiplier consuming far fewer resources than a gen
eral multiplier could usually be created. Wirthlin's manipulations [30], going
far beyond what logic optimization performed, created a custom structure for a
given multiplier instance based on specific characteristics of the constant.

Hemmert et al. [10] offer an even more complex example in which a pipeline
of image morphology processing stages was created, each of which could per
form one image morphology step (e.g., one iteration in an erosion operation).
The LUT contents in each pipeline stage controlled the stage's operation; thus,
reconfiguring a stage required modifying only LUT programming. A compiler
was then created to convert programs, written in a special image morphology
language, into the data required to customize .each pipeline stage's operation.

When a new image morphology program was compiled, a new bitstream for
the FPGA could be created in a second or two (by directly modifying the original
bitstream) and reconfigured onto the platform. This provided a way to create a
custom computing solution on a per-program basis with turnarounds on the
order of a few seconds. In each case, the original morphology program that was
compiled provided the constant data that was folded into the design.

Additional examples in the literature show the power of constant folding.
However, its use typically requires specialized CAD support. Slade and Nelson
[25] argue that a fundamentally different approach to CAD for FPGAs is the
solution to providing generalized support for such data-specific specialization.
They advocate the use of JHDL [1, 12] to provide deployment time support for
data-specific modifications to an operating FPGA-based system.

In summary, FPGAs provide architectural features that can accelerate sim
ple arithmetic operations such as fixed-point addition and multiplication.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 471

452 Chapter 21 • Implementing Applications with FPGAs

Floating-point operations can be accelerated using block floating point or by
reducing the number of bits to represent floating-point values. Finally, constants
can be propagated into arithmetic circuits to reduce circuit area and accelerate
arithmetic performance.

21.5 SUMMARY

FPGAs provide a flexible, high-performance, and reprogrammable means for
implementing a variety of electronic applications. Because of their repro
grammability, they are well suited to applications that require some form of
direct reprogrammability, and to situations where reprogrammability can be
used indirectly to increase reuse and thereby reduce device cost or count. FPGAs
achieve the highest performance when the application can be implemented as
many parallel hardware units operating in parallel, and where the aggregate I/0
requirements for these parallel units can be reasonably met by the overall sys
tem. Most FPGA applications are described using HDLs because HDL tools and
synthesis software are mature and well developed, and because, for now, they
provide the best means for describing applications in a highly parallel manner.

Once FPGAs are determined to be a suitable choice, there are several ways
to tailor the system design to exploit their reprogrammability by reconfiguring
them at runtime or by compiling specific, temporary application-specific data
into the FPGA circuitry. Performance can be further enhanced by crafting arith
metic circuitry to work around FPGA limitations and to exploit the FPGA's spe
cial arithmetic features. Finally, FPGAs provide additional debug and verification
methods that are not available in ASICs and that enable debug and verification
to occur in a system and at speed.

In summary, FPGAs combine the advantages and disadvantages of micropro
cessors and ASICs. On the positive side, they can provide high performance that
is achievable only with custom hardware, they are reprogrammable, and they
can be purchased in volume as a fully tested, standard product. On the neg
ative side, they remain largely inaccessible to the software community; more
over, high-performance application development requires hardware design and
the use of standard synthesis tools and Verilog or VHDL.

References

[1] P. Bellows, B. L. Hutchings. JHDL-An HDL for reconfigurable systems. Proceed
ings of IEEE Workshop on FPGAs for Custom Computing Machines, April 1998.

[2] B. Catanzaro, B. Nelson. Higher radix floating-point representations for FPGA
based arithmetic. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, April 2005.

[3] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider. Exploring architectures
for volume visualization on the Teramac custom computer. Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, April 1996.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 472

21.5 Summary 453

[4] A. Dandalis, V. K. Prasanna. Fast parallel implementation of DFT using config
urable devices: Field-programmable logic: Smart applications, new paradigms, and
compilers. Proceedings 6th International Workshop on Field-Programmable Logic and
Applications, Springer-Verlag, 1997.

[5] C. H. Dick, F. Harris. FIR filtering with FPGAs using quadrature sigma-delta mod
ulation encoding. Field-programmable logic: Smart applications, new paradigms,
and compilers. Proceedings 6th International Workshop on Field-Programmable Logic
and Applications, Springer-Verlag 1996.

[6] C. Dick. Computing the discrete Fourier transform on FPGA-based systolic arrays.
ACMISIGDA International Symposium on Field-Programmable Gate Arrays, February
1996.

[7] J. G. Eldredge, B. L. Hutchings. Density enhancement of a neural network using
FPGAs and .runtime reconfiguration. Proceedings of the IEEE Workshop on FPGAs
for Custom Computing Machines, April 1994.

[8] P. Graham, B. Nelson. FPGA-based sonar processing. ACMISIGDA International
Symposium on Field-Program�le Gate Arrays, February 1998.

[9] J. D. Hadley, B. L. Hutchings. Design methodologies for partially reconfigured
systems. Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines, April 1995.

[10] S. Hemmert, B. Hutchings, A. Malvi. An application-specific compiler for high
speed binary image morpliology. Proceedings of the the 9th Annual IEEE Sympo
sium on Field-Programmable Custom Computing Machines, 2001.

[11] R. Hudson, D. Lehn, P. Athanas. A runtime reconfigurable engine for image inter
polation. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, IEEE, April 1998.

[12] B. L. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, M. Rytting.
A CAD suite for high-performance FPGA design. Proceedings of the IEEE Work
shop on FPGAs for Custom Computing Machines, April 1999.

[13] B. L. Hutchings, R. Franklin, D. Carver. Assisting network intrusion detection with
reconfigurable hardware. Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, IEEE, April 2002.

[14] B. L. Hutchings, M. J. Wirthlin. Implementation approaches for reconfigurable
logic applications. Field-Programmable Logic and Applications, August 1995.

[15] W. B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, K. D. Underwood.
I A re-evaluation of the practicality of floating-point operations on FPGAs. Proc-

eedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1998.
[16] W. E. King, T. H. Drayer, R. W. Conners, P. Araman. Using MORPH in an industrial

machine vision system. Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1996.

[17] H. T. Kung. Why Systolic Architectures? IEEE Computer 15(1), 1982.
[18] S. Y. Kung. VLSI Array Processors, Prentice-Hall, 1988.
[19] T. Moeller, D. R. Martinez. Field-programmable gate array based radar front-end

digital signal processing. Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1999.

[20] G. Panneerselvam, P. J. W. Graumann, L. E. Turner. Implementation of fast Fourier
transforms and discrete cosine transforms in FPGAs. Fifth International Workshop
on Field-Programmable Logic and Applications, September 1995.

[21] R. J. Petersen. An Assessment of the Suitability of Reconfigurable Systems for Digital
Signal Processing, Master's thesis, Brigham Young University, 1995.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 473

454 Chapter 21 • Implementing Applications with FPGAs

[22] E. Roesler, B. Nelson. Novel optimizations for hardware floating-point units in
a modem FPGA architecture. Proceedings of the 12th International Workshop on
Field-Programmable Logic and Applications, August 2002.

[23] N. Shirazi, P. M. Athanas, A. L. Abbott. Implementation of a 2D fast Fourier
transform on an FPGA-based custom computing machine. Fifth International
Workshop on Field-Programmable Logic and Applications, September 1995.

[24] N. Shirazi, A. Walters, P. Athanas. Quantitative analysis of floating point arithmetic
on FPGA-based custom computing machines. Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, April 1995.

[25] A. Slade, B. Nelson. Reconfigurable computing application frameworks. Proceed
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
April 2003.

[26] L. E. Tomer, P. J. W. Graumann, S. G. Gibb. Bit-serial FIR filters with CSD coef-
6.,::ients for FPGAs. Fifth International Workshop on Field-Programmable Logic and
Applications, September 1995.

[27] K. Underwood. FPGAs vs. CPUs: Trends in peak floating-point pedormance. Proceed
ings of the ACM/SIGDA 12th International Symposium on Field-Programmable Gate
Arrays, 2004.

[28] J. E. Vuillemin. On computing power. Programming languages and system archi
tectures. ucture Notes in Computer Science, vol. 781, Springer-Verlag, 1994.

[29] M. J. Wirthlin, B. L. Hutchings (eds). A dynamic instruction set computer.
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,
April 1995.

[30] M. J. Wirthlin. Constant coefficient multiplication using look-up tables. Journal of
VLSI Signal Processing 36, 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 474

INSTANCE-SPECIFIC DESIGN

Oliver Pell, Wayne Luk
Department of Computing
Imperial College, London

CH A PT ER 22

This chapter covers instance-specific design, an optimization technique involving
effective exploitation of information specific to an instance of a generic design
description. Here we introduce different types of instance-specific designs with
examples. We then describe partial evaluation, a systematic method for produ
cing instance-specific designs that can be automated. Our treatment covers the
application of partial evaluation to hardware design in general, and to field
programmable gate arrays (FPGAs) in particular.

22.1 INSTANCE-SPECIFIC DESIGN

FPGAs are an effective way to implement designs in computationally intensive
datapath-orientated applications such as cryptography, digital signal processing,
and network processing. The main alternative implementation technologies in
these application areas are general-purpose processors, digital signal processors,
and application-specific integrated circuits (ASICs).

ASICs are integrated circuits designed to implement a single application
directly in fixed hardware. Because they are specialized to a single application,
they can be vecy efficient, with reduced resource usage and power consump
tion over processor-based software implementations. Reconfigurable logic offers
similar advantages over general-purpose processors. However, the overhead of
providing general-purpose logic and routing resources means that FPGA-based
systems typically provide lower density and performance than ASICs. Still,
reconfigurable logic can provide a level of specialization beyond what is pos
sible for an ASIC: optimizing circuits not just for a particular problem but for a
particular instance of it. For example, an encryption application can create cus
tom FPGA mappings evecy time a new password is given, allowing any password
to be supported yet providing vecy highly optimized circuitry.

The basic concept of instance-specific design is to optimize a circuit for a
particular computation. This can allow a reduction in area and/or an increase
in processing speed by sacrificing the flexibility of the circuit. It is important
to distinguish between the FPGA itself, which is inherently flexible and can be
reconfigured to suit any application by loading a new bitstream, and the cur
rent configuration of the chip, which may have a certain level of flexibility in
processing its inputs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 475

456 Chapter 22 ■ Instance-specific Design

One common way of achieving instance-specific designs automatically is
constant folding (Section 22.2.3), which involves propagating static input val
ues through a circuit to eliminate unnecessary logic. Thus, in our encryption
example, an exclusive-or (XOR) gate with one input driven by a password bit
can be replaced with a wire or an inverter because the value of that bit is known
for each specific password.

To produce an instance-specific design, one first needs a means of providing a
particular instance for a given design. In the previous encryption example, if all
the passwords are known at design time, an instance-specific design specialized
for each password can be produced, say by constant propagation followed by the
usual tools such as placement (Chapter 14), routing (Chapter 17), and bitstream
generation (Chapter 19).

At runtime, a processor is often used to control the configuration of the FPGA
by the appropriate bitstream at the right moment to support a particular pass
word. However, if the passwords are known only at runtime, then the designer
has to decide whether the benefits of having instance-specific designs outweigh
the time to produce them, since, for instance, current place and route tools often
take a long time to complete and their use is usually not recommended at run
time. Fortunately for some applications, differences between instances are so
small that they can be generated realistically using runtime partial evaluation
(Section 22.2).

The ability to implement specialized designs, while at the same time provid
ing flexibility by allowing different specialized designs to be loaded onto a device,
can make reconfigurable logic more effective at implementing some applications
than what is possible with ASICs. For other applications, performance improve
ments from optimizing designs to a particular problem instance can help shift the
·price/performance ratio away from ASICs and toward FPGAs. Specializing a Data
Encryption Standard (DES) crypto-processor, for example, can save 60 percent
in area, while replacing general multipliers with constant coefficient versions can
save area and lead to speedups of two to four times. Instance-specific designs can
also consume lower power. Bit-width optimization of digital filters, for example,
has been shown to reduce power consumption by up to 98 percent [2].

Changing an instance-specific design at runtime is generally much slower
than changing the inputs of a general circuit, because a new (or partial) con
figuration must be loaded. Because this may take many tens or hundreds of
milliseconds, it is important to carefully choose how a design is specialized.

22.1.1 Taxonomy

'fypes of instance-specific optimizations
We can divide the different approaches to optimizing a design for a particular
problem instance into three main categories. Table 22.1 lists some examples of
the different categories used.

Constant folding Constant folding is the process of eliminating unnecessary
logic that computes functions with some inputs that never change or that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 476

22.1 Instance-specific Design 457

TABLE 22.1 ■ Examples of the uses of instance-specific designs

Constant
folding

Function
adaptation

Architecture
adaptation

Purpose Example use

Optimize logic for static
inputs

Optimize for desired
quality of result

Achieve a specified
performance, area, or
power target

Key-specific DES

Accuracy-guaranteed bit
width optimization [4]

Custom instruction
processors [3]

Impact

60% area reduction

26% area reduction,
12% latency reduction

72% decrease in
runtime for 3% more
area

change only rarely. This logic can be specialized to increase performance and
reduce area. Examples of circuits that can benefit from constant folding will be
seen later, and a more detailed description of the technique can be found in
Section 22.2.3.

Function adaptation Function adaptation is the process of altering a circuit's
function to achieve a specific quality of result. Typically this involves varying the
number of bits used to represent data values or switching between floating-point
and fixed-point arithmetic functions. It can also involve adding or removing
parts of processing units that affect accuracy-for example, adding or removing
stages from a CORDIC circuit. Word-length optimization can be treated auto
matically (Chapter 23), modifying a circuit's area to meet particular accuracy
constraints.

Architecture adaptation Architecture adaptation alters the way in which a cir
cuit computes a result while keeping the overall function the same. This can
entail introducing additional parallelism to increase speed, serializing existing
parallel processing units to save area, or refining processing capabilities to
exploit some expected characteristics of the input data. Custom instruction
processors (see Figure 22.4 later) are one example of the latter type of archi
tecture adaptation.

22. 1.2 Approaches

Instance-specific circuits can be produced either by specializing a general-purpose
circuit or by starting directly from a "template" that must be instantiated for a
particular problem instance before use, as shown in Figure 22.1. Specialization
has the advantage that it can often be pedormed automatically, using tech
niques such as partial evaluation (Section 22.2). The template approach probably
requires the manual design of a template circuit substantially different from the
general-purpose architecture, but it can possibly provide a greater level of opti
mization than what is possible through specializing a general-purpose circuit. It
can also offer the advantage that the hardware compilation process may need to be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 477

458 Chapter 22 ■ Instance-specific Design

Generate
template

Generate
circuit

(a)

Generate
hardware

(b)

(c)

Adapt to
instance

ASIC

FPGA

FPGA

FPGA

FIGURE 22.1 ■ General-purpose hardware (a) can be implemented using FPGAs or ASICs. Instance
information (b) can be incorporated at hardware generation to produce a specialized circuit.
"Template" hardware (c) can be generated and then instantiated for particular problem instances.
The reason for the differences between (b) and (c) are that, in (b) the time-consuming process
of hardware compilation must be executed for each instance while in (c) hardware compilation
may only need to be run once, after which the final circuit bitstream can be amended.

executed only once, with instance-specific information being annotated directly
into the bitstream.

In both cases, one or more instance-specific designs will be produced that
can be converted into bitstreams through the FPGA design flow (see chapters
in Part ill). The appropriate bitstream can then be used to configure an FPGA,
usually under the control of a general-purpose processor; during the reconfigu
ration process the FPGA will usually not be able to process data, although some
partially reconfigurable devices can support the reconfiguration of some of its
resources, while some of its other resources stay operational.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 478

22.1 Instance-specific Design 459

22.1.3 Examples of Instance-specific Designs

The benefits of instance-specific design can be illustrated by considering a few
examples of its use. In this section we present three examples of specialization
by constant folding into an existing design, and two examples of architecture
adaptation.

Constant coefficient multipliers
If using standard logic cells, multipliers are relatively expensive to implement
on FPGAs. A standard combinational multiplier ANDs each bit of input B with
all bits of input A (to perform the multiply by 0/1); an adder is then used to
sum together the partial products. When one coefficient of the multiplication
is constant, however, the required area can be reduced dramatically. The AND
functiQns are unnecessary because multiplying by a fixed O or 1 is trivial, and
the adders can be eliminated for bits of B that are O (and thus have a partial
product of O). Constant coefficient multiplication is a useful operation in many
signal-processing applications.

Finite impulse response (FIR) filters contain a set of multiply-add cells that
multiply the value of the input signal across a number of cycles with filter coef
ficients and then sum these values. The multiplier coefficients are properties of
the filter and do not change with the input data, but only need adjusting when
different filter properties are required. Thus, the generic multipliers in a FIR
filter circuit can often be replaced by smaller constant coefficient multipliers.
(see Figure 22.2).

Another application that requires multipliers with constant coefficients is con
version from RGB to YUV video signals. This is a matrix multiplication opera
tion where one matrix is constant, allowing specialized multipliers to be used.

Key-specific crypto-processors
Cryptographic algorithms are often designed for efficient implementation in
both hardware and software. Block ciphers, such as DES and its successor
Advanced Encryption Standard (AES), have regular algorithmic structures con
sisting of simple operations, such as XOR and bit permutation, that are effi
ciently implemented in hardware.

The DES algorithm consists of 16 "rounds," or processing stages, that can
be pipelined for parallel operation. Blocks of 64-bit data are input to the array
along with a 56-bit key and processed through each round, with the same key
required to decrypt the data at the other end of the communication channel.
A single DES round is illustrated in Figure 22.3.

In typical operation it is likely that a crypto-processor is used to process large
blocks of data with the same key-for example, when transferring.data between
a single sender and receiver in a network or encrypting a large file to be saved
to disk. It is therefore expected that, in contrast to the data input, the key value
will change very' slowly.

The shaded area of Figure 22.3 is key generator circuitry that generates the
round key from the master key and then uses it as an input to a set of 2-input
XOR functions across the data bits.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 479

460 Chapter 22 • Instance-specific Design

Input value

Multiplier

Input value

Constant
coefficient
multiplier

Multiplier

Adder

Constant
coefficient
multiplier

Adder

Filter coefficients

(a)

(b)

Multiplier

Adder

Constant
coefficient
multiplier

Adder

Multiplier

Adder

Constant
coefficient
multiplier

Adder

Result

Result

FIGURE 22.2 ■ FIR filters utilizing (a} general multipliers with variable filter coefficients and
(b} instance-specific multipliers specialized to filter coefficients.

When the key value is known, the key generation circuitry can be eliminated
and the XOR functions replaced with either wires or inverters [S]. In fact, these
inverters can be merged into the substitution stage, eliminating the inverter logic
as well [11]. Key-specific crypto-processors can exhibit much higher throughput
than general versions, even outperforming ASIC implementations. Area savings
are also significant-a relatively simple specialization of a placed DES descrip
tion can yield area savings of 60 percent when implemented on a Xilinx Virtex
FPGA [9].

Network intrusion detection
Network Intrusion Detection Systems (NIDS) perform deep packet inspection
on network packets to identify malicious attacks. Normally, these systems are
implemented in software, but on high-speed networks software alone is often
unable to process all traffic at the full data rate.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 480

. ·. ·.·. ·.·. ·.
!I:

�

22.1
In

stan
ce-sp

ecific D
esign

46

1

. .
 . .

.
. .

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 .

C:

.
.

.
.

.

0

. !(
�Y

!"�tJ!s
:.:.:.:.:.:.:.:.:.

i I
·: .: .: . :

K
�}'. o�IJ?

U�
: .

D
a

ta
 in

p
u

ts

C:

0

::I

en

e

rf.

D
a

ta
 o

u
tp

u
ts

F
IG

U
R

E

2

2
.3

 ■
 A

 sin
gle rou

n
d

 o
f a D

E
S

 c
ircu

it. T
h

e
 sh

ad
ed

 area con
tain

s key exp
an

sion
 circu

itry
th

at ca
n

 be elim
in

ated
 in

 a key-sp
ecific D

E
S

 circu
it, allow

in
g th

e X
O

R
 fu

n
ction

 to be op
tim

ized
.

T
h

e S
N

O
R

T
 o

p
en

 so
u

rce N
D

IS
 (see http

://www
.snort.o rg

) u
ses a ru

le-b
ased

lan
gu

age to
 d

etect ab
n

o
rm

al n
etw

o
rk

 activities. It co
n

tain
s th

o
u

san
d

s o
f ru

les,
m

o
re th

an
 80

 p
ercen

t o
f w

h
ich

 co
n

tain
 sign

atu
res th

at m
u

st b
e m

atch
ed

 again
st

p
ack

et co
n

ten
ts. E

igh
ty p

ercen
t o

f th
e C

P
U

 tim
e fo

r S
N

O
R

T
 is co

n
su

m
ed

 b
y th

is
strin

g-m
atch

in
g task

 [6]. S
trin

g m
atch

in
g can

 b
e d

o
n

e effi
cien

tly in
 h

ard
w

are an
d

in

 p
articu

lar can
 b

e easily o
p

tim
ized

 fo
r p

art
icu

lar search
 strin

gs. W
h

ile n
etw

o
rk

d

ata m
igh

t b
e exp

ected
 to

 arr
ive at h

igh
 sp

eed
, th

e ru
le set ch

an
ges m

u
ch

 m
o

re
slo

w
ly, so

 strin
g-m

atch
in

g circu
itry

 o
n

 F
P

G
A

s can
 b

e cu
sto

m
ized

 to m
atch

 p
arti

cu
lar sign

atu
res. S

ectio
n

 22.2.5 illu
strates in

 m
o

re d
etail h

o
w

 an
 in

stan
ce-sp

ecifi
c

p
attern

 m
atch

er can
 b

e co
n

stru
cted

. F
u

rth
er in

fo
rm

atio
n

 ab
o

u
t in

stan
ce-sp

ecifi
c

d
esign

s fo
r S

A
T

 so
lvin

g ap
p

licatio
n

s can
 b

e fo
u

n
d

 in
 C

h
ap

ter 29
.

C
u

sto
miza

b
le

 in
stru

c
tio

n
 p

ro
c

e
sso

rs
G

en
eral-p

u
rp

o
se in

stru
ctio

n
 p

ro
cesso

rs are very
 fl

exib
le co

m
p

u
tatio

n
al d

evices.
A

p
p

licatio
n

-sp
ecifi

c in
stru

ctio
n

 p
ro

cesso
rs, in

 co
n

trast, h
ave b

een
 cu

sto
m

ized

to
 p

erfo
rm

 p
articu

larly w
ell in

 a p
articu

lar ap
p

licatio
n

 area. T
h

is is a fo
rm

 o
f

arch
itectu

re ad
ap

tatio
n

 th
at can

 im
p

ro
ve p

erfo
rm

an
ce fo

r p
articu

lar p
ro

b
lem

in

stan
ces w

h
ile m

ain
tain

in
g th

e fl
exib

ility o
f th

e o
verall system

.

Permutation

bslituti

utation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 481

462 Chapter 22 ■ Instance-specific Design

Register file

Fetch

Branch forwarding

Custom
execution

units

Memory Write back

FIGURE 22.4 ■ A simplified architecture of a custom instruction processor. The standard
arithmetic and logic operations are augmented by custom execution units that can accelerate
particular applications.

Figure 22.4 illustrates the architecture of a simple custom instruction pro
cessor that has standard arithmetic and logic functions implemented by a
standard ALU. These functions can be supported by additional custom exe
cution units to accelerate particular applications. The automatic identifica
tion of instructions that can benefit from the custom execution units is a
topic of active research [1]. Further information about partitioning sequential
and parallel programs for software and hardware execution can be found in
Chapter 26.

22.2 PARTIAL EVALUATION

Partial evaluation is a process that automates specialization in software or hard
ware. In both cases the motivation is the same: to produce a design that runs
faster than the original. In software, partial evaluation can be thought of as a
combination of constant folding, loop unrolling, function inlining, and inter
procedural analyses; in hardware, constant folding is mainly used as an opti
mization method.

Partial evaluation is accomplished by detecting fragments of hardware that
depend exclusively on variables with fixed values and then optimizing the hard
ware logic to reduce its area or even eliminate it totally from the design by
precomputing the result.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 482

22.2.1 Motivation

22.2 Partial Evaluation 463

Partial evaluation can simplify logic, and thus reduce area and increase perfor
mance. Figure 22.5 illustrates its impact on a 2-input XOR function. When both
inputs are dynamic, the logical function must be implemented; however, when
one input is known, a partial evaluator can simplify the circuit. If one input is
fixed high, the XOR functions as an inverter and so can be replaced by a 1-input
NOT gate; if the input is fixed low, the XOR serves as a wire and the logic can
be completely eliminated.

Constant folding propagates constants through a circuit and can substantially
simplify logic functions. This can both reduce area (by allowing functions to
be implemented using fewer LUTs) and increase performance (by reducing the
number of logic levels between registers).

In this chapter we highlight two related uses of partial evaluation for circuits.
The first, at the beginning of Section 22.2.4, optimizes generic circuit descrip
tions for improved performance. That is, circuits are described using clear and
easily maintainable but nonoptimal design patterns, which are then automati
cally optimized during synthesis. The second, in the middle of Section 22.2.4,
specializes general circuits when some inputs are static, such as constant coef
ficient arithmetic.

A B C

0 0 0

0 1 1

1 0 1

1 1 0

(a)

(b)

B C

(c)

FIGURE 22.5 ■ Partial evaluation of an XOR gate. (a) A 2-input XOR function can be special
ized, when input A is to become static: (b) an inverter when A is true or (c) a wire when
A is false.

~ u
~v
~ -

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 483

464 Chapter 22 ■ Instance-specific Design

22.2.2 Process of Specialization

Consider a general circuit C producing output R, whose inputs are partitioned
into two sets S and D.

R=C(S,D)

This circuit can be specialized for a particular set of S inputs such that it
computes the same result for all possible inputs D:

A partial evaluator is an algorithm that, when supplied with values for the set
of inputs S and the circuit C, produces a specialized circuit Cs=X·

Cs =x = P(C,S,X)

where S is the set of static inputs that are known at compile time, and D is the set
of dynamic inputs. The importance of partial evaluation is that the specialized
circuit computes precisely the same result as the original circuit, though it may
require less hardware to do so.

Relating this framework to the XOR gate example, R = XOR(A,B), with S = {A}
and D = {B}, the two possible simplified functions can be described as

for the two possible values of A.

XORA = O = P(XOR,A,0) = NOT(B)

XORA= l = P(XOR,A,1) =B

22.2.3 Partial Evaluation in Practice

Constant folding in logical expressions
Partial evaluation of logic is well understood and has been used to simplify
circuit logic for many years. Figure 22.6 gives a simple partial evaluation
function, P(S)[[X]], for optimizing Boolean logic expressions expressed using
not, and, and or connectives. The function is parameterized by a set S of pairs
mapping static variables to their values and a Boolean expression X represented
as a tree.

The function is defined recursively on the structure of Boolean expressions.
Cases (1), (2), and (3) are base conditions, indicating that partial evaluation of
the Boolean constants True and False always has no effect, and partial evaluation
of a variable a returns either the constant value of that variable (if it is contained
within the static inputs) or the variable name if it is not static (i.e., remains
dynamic).

Case (4) defines partial evaluation of a single-input not function. If the subex
pression evaluates to logical truth or falsity, this is inverted by the conditional

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 484

(1) P(S) [[True]]

(2) P (S) [[False]]

(3) P (S) [[a]]

(4) P(S) [[-, x]]

(5) P (S) [[x & y]]

(6) P (S) [[x+y]]

True

False

22.2 Partial Evaluation 465

if a E dom(S) then P (S) [[S (a)]] else a

Let y = P (S) [[X]]

If y == True then False

Else if y == False then True

Else -, y

Let x' = p (S) [[X]]

Let y' = P (S) [[y]]
if (x' == False 11 y' == False) then False

Else if x' == True then y'

Else if y' == True Then x'

Else x' & y'

Let x' = p (S) [[X]]

Let y' = P (S) [[y]]

If (x' == True 11 y' == True) then True

Else if x' == False then y'

Else if y' == False then x'

Else x+y

FIGURE 22.6 ■ A partial evaluation algorithm for simplifying Boolean logic expressions.

check. Otherwise, the partially evaluated sube:,g,ression is returned with the not

operation.
Cases (5) and (6) define partial evaluation of 2-input and and or functions.

The process is the same: Simplify the subexpressions, precompute the function
result if possible, and, if not, return the function with simplified arguments.

As an example, consider the application of this algorithm to the simplification
of the XOR function in Figure 22.5. XOR can be described in terms of basic
Boolean operators as

a xor b = (a&.b)+(,a & b)

Partially evaluating when a is asserted, the function is executed:

(i) P({a - True})[[(a & ,b)+(,a & b)]]

Case (6) for simplifying logical-or is used, and the two subexpressions are
partially evaluated separately:

(ii) P({a - True})[[a&-;b]]

(iii) P({a - True})[[,a&b]]

Both (ii) and (iii) are partially evaluated by the case for logical-and. For (ii) the
two subexpressions are first evaluated as

(iv) P({a - True})[[a]] = 'Ihle

(v) P({a - True})[[-,b]] = -,b

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 485

466 Chapter 22 ■ Instance-specific Design

In (iv), the variable a is within the static inputs S and thus is simplified to
True, while ,b is unchanged because it does not contain a. The results from
partially evaluating (iii) are similar:

(vi) P({a---+ True})[[,a]] =P({a---+ True})[[,True]] = False

(vii) P({a---+ True})[[b]] =b

Equipped with the simplified subexpressions, the expression a & ,b is simplified
to ,b and the expression ,a & b is simplified to False. At the top level this gives
a logical-or: ,b + False:

(viii) P({a---+ True})[[-,b+False]]=,b

The XOR function reduces to a single inverter; if supplied with {a---+ False}
the partial evaluation function instead returns just b, indicating the simple wire.
This is consistent with the truth tables in Figure 22.5.

The partial evaluation function just given is quite simple and does not cap
ture all possible optimizations. For example, the logic function a + ,a always
evaluates to True, regardless of the value of a; however, this expression will not
be simplified by this function.

Unnecessary logic removal
Another optimization that can be carried out during partial evaluation is
removal of dead logic_in a design, which does not affect any output and thus
is unnecessary. This is a very important optimization because it allows generic
hardware blocks computing many functions to be used in designs, with unused
functions pruned during synthesis.

As an algorithmic process, logic removal is quite simple and can be formu
lated in a number of different ways. One of the simplest is to identify each gate
whose output is unconnected and eliminate it. By recursively applying this rule
we can eliminate acyclic dead logic.

22.2.4 Partial Evaluation of a Multiplier

Optimizing a simple description
Figure 22.7 shows a shift-add circuit designed for a Xilinx architecture to com
pute the 3-bit multiplication of two 3-bit inputs. This circuit appears semi
regular, with x and y inputs propagating horizontally and vertically through a
triangular array of processing cells. Each processing cell has common features;
however, it contains slightly different logic depending on its position in the array.

Creating and maintaining a circuit description that contains and correctly
connects the different types of cell is quite complicated. A simpler approach is
to exploit the regularity to describe the circuit as an array of a single type of
cell that is then partially evaluated during synthesis to produce the circuit in
Figure 22.7.

The general cell of the multiplier can be described as shown in Figure 22.8.
This cell implements a multiplication operation for 1 bit of x and 1 bit of y,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 486

22.2 Partial Evaluation 467

- - - - - - - - - - - - - - - - - - � �-r-- -- -- -- ------ -- -- -- --,--- -_-_-_,�

Yo - - - - - - - - - - - - - - - - - - - '

_ _ _ ,. ,. ., .., ,. ,. ,. ,. .., .., ,. ,. ,. .. L ,. .,, .., ,.L

0 0

'Sum
' 0

FIGURE 22.7 ■ A shift-add multiplier circuit that takes two 3-bit inputs and produces a 3-bit
output.

Yin

'

'

'

Sum;n:

Q'in

"out

"in

Pout

Yout

Mult_and

Pin

FIGURE 22.8 ■ This cell design can be replicated in a grid arrangement to create a multiplier.

"-

producing sum and carry-out bits, and can be arranged in a grid to generate a
multiplication circuit identical in function to that shown in Figure 22.8. These
cells can b_e implemented densely on Xilinx architectures by using the special
ized mult_and, xorcy, and muxcy components in each slice.

Y2 +----

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 487

468 Chapter 22 ■ Instance-specific Design

Partial evaluation can automatically produce the optimized multiplication
circuitry from the initial regular description. The four components within each
cell each have their own logical formula. In the case of mult_and, xorcy, and
muxcy, no simplification is possible unless we can totally eliminate these ftmc
tions, because these are fixed resources on the device, compared with the LUT,
which can flexibly implement any 4-input function.

The logic of the standard cell can be represented as

LUTout = (Yin & Xin)xor Qin = (-, (Yin &Xin) & Qin)+ ((Yin &Xin)&,Qin)
ANDout = (Yin & Xm)

Pout = (LUTout & Pm)+(,LUTout & ANDout)
SUMout = (,LUTout & Pm)+(LUTout & , Pm)

This logic can be simplified by two operations: removing unconnected logic
and constant folding to optimize the logic that remains. Removal of discon
nected logic transforms the grid into the triangular array, while constant folding
can be performed by the partial evaluation function introduced in Figure 22.6.

For example, for the cells along the bottom in Figure 22.8, inputs Qin and Pin
are all zero. This allows the LUT contents to be optimized by

LUTout' = P({Qin-+ False, SUM in -+ False, Pin-+ False})
[[(,(Yin & Xin) & Qin)+ ((Ym &Xin)&, Qin)J] = (Yin &Xin)

The ftmction attempts to partially evaluate both branches of the OR expression.
On the left branch, -, (Yin & Xin) cannot be further optimized and so is left intact;
however, Qin is known to be false, so the entire left branch must be false and
thus is eliminated. On the right branch, ,Qin is evaluated to true and eliminated
from the expression, leaving (Yin & Xm) as the simplified function for the LUT
contents.

ANDout cannot be simplified because both Yin and Xin are unknown. Neither
can Pout because, although it can be partially optimized (because Pin is false),
it is a fixed component available on the FPGA that cannot be simplified. Partial
evaluation of SUMout does succeed in eliminating logic:

SUMout' = P({Qin-+ False, SUMm-+ False, Pm-+ False})
[[(,LUTout & Pin)+ (LUTout & ,Pin)J] = LUTout

The result of this partial evaluation is that the bottom cells of the multiplier
are optimized to remove the unnecessary xorcy component and to simplify the
3-input LUT function into a basic 2-input AND function.

Functional specialization for constant inputs
If some of the input values to the multiplication circuit are known statically, we
can apply constant folding to eliminate further logic. For example, assume that
x1 is static and always zero. Partially evaluating the cell logic under the new
assumption that {Xin -+ False} we find that the entire cell can be eliminated and
replaced with pure routing. The simplified cell is shown in Figure 22.9.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 488

22.2 Partial Evaluation 469

Because a single bit of the x input is shared with an. entire column of the
multiplier, this specialized cell can be used for the full column, replacing all the
logic with routing, as shown in Figure 22.10; this arrangement in tum allows
optimizations to be applied to the second LUT in the final column to eliminate
the XOR function (not shown in the figure so that the routing can be seen).

X'out Pout
- ---- ---

Yout

Sum;n Sumout

L- ----- --- --------------------

Pon

FIGURE 22.9 ■ The impact of partial evaluation on multiplier cell logic when Xm = False.

Y1

: Sum1

�

Yo ___________________________ '

' --------------------------

x, 0 0

FIGURE 22.10 ■ Multiplier circuit specialized by eliminating the center column when x; is
always zero.

: Sum0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 489

470 Chapter 22 • Instance-specific Design

When an x value is known to be true, partial evaluation can still carry
out some optimizations. However, it does not offer the significant advantages
that result when x is false. The LUT can again be optimized to a 2-input
function and the mul t_and component can be eliminated. This is not very
significant, however-the mul t_and component is already present on the device,
so no area is saved, and it is utilized in parallel with the (slower) LUT so there
is also no performance gain.

Geometric specialization
High-performance FPGA designs often include layout information to produce
good placements with low routing delays (see Chapter 17). Specialization of
placed designs may lead to nonoptimal results if the placement is not updated
to reflect eliminated logic. Automatic placement is not affected, since partial
evaluation is usually carried out at the synthesis stage prior to placement and
routing. However, when hand-placed designs are specialized, the effect can be to
introduce unnecessary delays by failing to compact components. These gaps can
also prevent effective use of freed logic because it is fragmented among other
components. To ensure a good placement of specialized designs it is necessary to
optimize placement information, compacting the circuit. This can be achieved
in a framework that allows partial evaluation prior to placement position gene
ration [8] or by describing circuit layouts in a way that adapts when the circuit
is specialized [12].

22.2.5 Partial Evaluation at Runtime

Pattern matching is a relatively simple operation that can be performed effi
ciently in hardware. It is useful in a range of fields but is of particular interest
in networking for inspecting the contents of data packets.

Figure 22.11 illustrates a simple general pattern matcher made up of a repea
ting bit-level matcher cell. Each cell contains a pattern and a mask value, which
can be loaded separately from the data to be matched. Input data is streamed
in 1 bit per cycle; if the mask value for a particular bit position is set, the cell
for that position checks the current data value against the bit pattern.

The pattern matcher requires one LUT and three registers for each bit in the
data pattern. However, it is likely that the pattern and mask values will change
much more slowly than the data input, so it is reasonable to investigate the
potential for partial evaluation to optimize this circuit for fixed patterns.

When the pattern and mask are fixed, the registers storing their values can
be eliminated and the logic in the LUTs can be optimized. Figure 22.12 shows
how the pattern matcher can be optimized for a pattern of "lOXl" (the third
pattern bit is a "don't care," as specified by the mask of "1101"). This circuit
uses fewer registers and three LUTs rather than four. The significance of this
particular way of optimizing is that the pattern matcher's structure has mostly
been maintained and thus this specialization can be carried out at runtime.

Changes to the mask require routing changes-complex, though far from
impossible at runtime; however, the pattern to be matched can be changed
merely by updating the LUT contents.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 490

22.2 Partial Evaluation 471

FIGURE 22.11 ■ A general bit-level pattern matcher, shown for 4-bit patterns. The pattern matcher circuit is
controlled by a pattern and a mask, which can be loaded by asserting the load signal. If the mask bit is set
for a particular position, the matcher will attempt to detect a match between the pattern bit and the data bit.

Data
�----<o ser o,1-----,-----1 --------<o=ot-----r-----10=01----

CLR 1:1

2-LUT 2-LUT

FIGURE 22.12 ■ An instance-specific pattern matcher optimized for a mask of 1101 and pattern of 1ox1

requires only three LUTs and four registers.

22.2.6 FPGA-specific Concerns

LUTmapping
Recall the pattern matcher example from the previous section, where we showed
one partial evaluation of the circuit for a particular pattern. In this case partial
evaluation significantly simplified the contents of each tUT, from a 4-input func
tion to a much simpler 2-input function.

It is important that, in contrast to ASICs, there is often no performance advan
tage to be gained by reducing the complexity of logic functions in an FPGA
unless the number of LUTs required to implement those functions is reduced.
The propagation delay of a LUT is independent of the function it implements;
thus, there is no gain in reducing a 4-input function to a 2-input function within
the same LUT (although it does allow routing resources to be freed for other
uses).

For runtime specialization, it may be desirable to maintain much of the origi
nal circuit structure. However, when partial evaluation is carried out at compile
time it should be performed before logic is mapped to LUTs, giving more scope
for improvements in circuit area and performance. Figure 22.13 shows that the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 491

472 Chapter 22 • Instance-specific Design

Data

-..----�o 01--......... -----1

Q

4-LUT

1-----10 of-....,....--

Q Q Q

Match

FIGURE 22.13 ■ The instance-specific pattern matcher from Figure 22.12 can be implemented
using a single 4-LUT rather than three 2-LUTs.

specialized pattern matcher can indeed be implemented using one 4-LUT rather
than three 2-LUTs, with higher performance and lower area requirements than ·
the version partially evaluated at runtime.

In fact, the static 1-input can also be eliminated from this LUT; however, it
has been left to indicate that this LUT structure can be used as part of a chain
in a larger pattern matcher.

Static resources
As alluded to in the multiplier example, the existence of specific resources on
an FPGA in addition to LUTs, such as carry chain logic, poses a problem for
automatic partial evaluation algorithms. Not only can this logic not be simplified
(for example, the xorcy gate cannot be replaced with an inverter), in some cases
it cannot be eliminated at all because of routing constraints (carry signals must
propagate through muxcy multiplexers, for example, regardless of necessity).

Furthermore, it is often important to maintain use of the dedicated carry
chain, even though significantly simpler logic could perhaps be generated after
partial evaluation, because the carry chain is designed to propagate carry signals
very quickly-and much faster than the general routing fabric.

Verification of runtime specialization
Dynamic specialization at runtime poses additional verification problems over
and above verification of an original design. While a circuit may have been
verified through extensive simulation or formal methods prior to synthesis, when
it is specialized at runtime it is possible for new errors to be introduced.

To avoid this it is necessary to ensure that the algorithms that apply partial
evaluation at runtime have themselves been verified. Formal proof is an appro
priate methodology for this problem, since it is necessary to check a generic
property of the algorithm applied to all circuits rather than any particular
specialization operation.

□ D1J □

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 492

22.3 Summary 473

Although formal verification has been applied to partial evaluation algorithms
for specialization of FPGA circuits [7, 14], it remains a relatively unexplored
area.

22.3 SUMMARY

This chapter described instance-specific design, which offers the opportunity to
exploit the reconfigurable nature of FPGAs to improve performance by tailoring
circuits to particular problem instances. It can be broadly categorized into three
techniques: constant folding, which can be applied when some inputs are static;
function adaptation, which alters the function of circuitry to produce a certain
quality of result; and architecture adaptation, in which the circuit architecture
is adapted without affecting its functional behavior.

The level of automation that can be applied varies among these approaches.
Constant folding can often be carried out automatically using partial evalua
tion techniques. Function adaptation can be performed by varying bit widths
and arithmetic methods in parameterized IP cores. Tools, such as Quartz (for
low-level design) [12] or ASC (for stream architectures) [10], can produce highly
parameterized circuit cores where design parameters can be traded off against
each other to achieve the desired requirements in area, speed, and power con
sumption. Architecture adaptation, such as adding additional processing units
to instruction processors, is typically much less automated. The designer must
create separate implementations of the different architectures, optimizing each
of them somewhat independently.

References

[1] K. Atasu, R. Dimond, 0. Mencer, W. Luk, C. Ozturan, G. Diindar. Optimizing
instruction-set extensible processors under data bandwidth constraints. Proceed
ings of Design, Automation and Test in Europe Conference, 2007.

[2] G. A. Constantinides. Perturbation analysis for word-length optimization. Procee
dings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2003.

[3] R. Dimond, 0. Mencer, W. Luk. Application-specific customisation of multi
threaded soft processors. IEE Proceedings on Computers and Digital Techniques,
May 2006.

[4] D. Lee, A. Abdul Gaffar, R.C.C. Cheung, 0. Mencer, W. Luk, G. A. Constantinides.
Accuracy guaranteed bit-width optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, October 2006.

[S] J. Leonard, W. Magione-Smith. A case study of partially evaluated hardware
circuits: Key-specific DES. Proceedings of the International Workshop on Field
Programmable Logic and Applications, 1997.

[6] E. P. Markatos, S. Antonatos, M. Polychronakis, K. G. Anagnostakis. Exclusion
based signature matching for intrusion detection. Proceedings of IASTED Interna
tional Conference on Communication and Computer Networks, 2002.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 493

474 Chapter 22 • Instance-specific Design

[7] S. McKeever, W. Luk. Provably-correct hardware compilation tools based on pass
separation techniques. Formal Aspects of Computing, June 2006.

[8] S. McKeever, W. Luk, A. Derbyshire. Towards verifying parametrised hardware
libraries with relative placement information. Proceedings of the 36th IEEE Hawaii
International Conference on System Sciences, 2003.

[9] S. McKeever, W. Luk, A. Derbyshire. Compiling hardware descriptions with rela
tive placement information for parameterised libraries. Proceedings of International
Conference on Formal Methods in Computer-Aided Design, LNCS 2517, 2002.

[10] 0. Mencer. ASC: A stream compiler for computing with FPGAs. IEEE Transactions
on Computer-Aided Design, August 2006.

[11] C. Patterson. High performance DES encryption in Vrrtex FPGAs using JBits.
Proceedings of the IEEE Symposium· on Field-Programmable Custom Computing
Machines, 2000.

[12] 0. Pell, W. Luk. Compiling higher-order polymorphic hardware descriptions into
parametrised VHDL libraries with flexible placement information. Proceedings of
the International Workshop on Field-Programmable Logic and Applications, 2006.

[13] 0. Pell, W. Luk. Quartz: A framework for correct and efficient reconfigurable
design. Proceedings of the International Conference on Reconfigurable Computing
and FPGAs, 2005.

[14] K. W. Susanto, T. Melham. Formally analyzed dynamic synthesis of hardware.
Journal of Supercomputing 19(1), 2001.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 494

CH A PT ER 23

PRECISION ANALYSIS FOR FIXED-POINT

COMPUTATION

George A. Constantinides
Department of Electrical and Electronic Engineering
Imperial College, London

Many values in a computation are naturally represented by integers, which have
very efficient hardware implementations; basic operations are relatively cheap,
and they map well to an FPGA's underlying hardware. However, some compu
tations naturally result in fractional values, that is, numbers where part or all
of the value are less than 1-for example, 0.25, 3.25, and 1t-0r that are so large
that representation as integers is too costly-for example, 10120 • Handling these
values is a significant concern because the hardware necessary to compute on
scaled values can be significant in speed, power consumption, and area.

In arithmetic for reconfigurable computing designs, it is common to employ
fixed point instead of floating point to represent scaled values. This chapter
explores the reason for this design decision and the associated analysis that must
be performed in order to choose an appropriate fixed-point representation for a
particular design. Since designs for reconfigurable logic can be customized for
particular applications, it is appropriate to fit the number system to the under
lying application properties.

23.1 FIXED-POINT NUMBER SYSTEM

In general-purpose computing, floating-point representations are most com
monly used for the representation of numbers containing fractional compo
nents. The floating-point representations standardized by the IEEE [22] have
several advantages, the foremost being portability across different computational
platforms.

In general, we may consider a floating-point number X[t] at time t as made
up of two components: a signed mantissa M[t] and a signed exponent E[t] (see
equation 23.1). Within this representation, the ratio of the largest positive value
of X to the smallest positive value of X varies exponentially with the exponent
E[t] and hence doubly exponentially with the number of bits used to store
the exponent. As a result, it is possible to store a wide dynamic range with
only a few bits of exponent, while the mantissa maintains the precision of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 495

476 Chapter 23 ■ Precision Analysis for Fixed-point Computation

representation across that range by dividing the corresponding interval for each
exponent into equally spaced representable values.

X[t] = M[t] · 2E[t] (23.1)

However, the flexibility of the floating-point number system comes at a price.
Addition or subtraction of two floating-point numbers requires the alignment of
radix ("decimal") points, typically resulting in a large, slow, and power-hungry
barrel shifter. In a general-purpose computer, this is a minor concern compared
to the need to easily support a wide range of applications. This is why proces
sors designed for general-purpose computing typically have a built-in floating
point unit.

In embedded applications, where power consumption and silicon area are of
significant concern, the fixed-point alternative is more often used [24]. We can
consider fixed point as a degenerate case of floating point, where the exponent
is fixed and cannot vary with time (i.e., E[t] = E). The fixing of the exponent
eliminates the need for a variable alignment and thus the need for a barrel
shifter in addition and subtraction. In fact, basic mathematical operations on
fixed-point values are essentially identical to those on integer values. However,
compared to floating point, the dynamic range of the representation is reduced
because the range of representable values varies only singly exponentially with
the number of bits used to represent the mantissa.

When implementing arithmetic in reconfigurable logic, the fixed-point number
system becomes even more attractive. If a low-area fixed-point implementation
can be achieved, space on the device can be freed for other logic. Moreover, the
absence of hardware support for barrel shifters in current-generation reconfig
urable logic devices results in an even higher area and power overhead compared
to that in fully custom or ASIC technologies.

23.1.1 Multiple-wordlength Paradigm

For simplicity we will restrict ourselves to 2's complement representations,
although the techniques presented in this chapter apply similarly to most other
common representations. Also, we will use dataflow graphs, also known as signal
flow graphs in the digital signal processing (DSP) community, as a simple under
lying model of computation [12]. In a dataflow graph, each atomic computation
is represented by a vertex v E V, and dataflow between these nodes is represented
by a set of directed edges S � V x V. To be consistent with the terminology used
in the signal-processing community, we will refer to an element of S as a signal;
the terms signal and variable are used interchangeably.

The multiple-wordlength paradigm is a design approach that tries to fit
the precision of each part of a datapath to the precision requirements of the
algorithm [8]. It can be best introduced by comparison to more traditional fixed
point and floating-point implementations. Each 2's complement signal j ES in a
multiple-wordlength implementation of a dataflow graph (V, S) has two param
eters ni and Pj, as illustrated in Figure 23.l(a). The parameter ni represents the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 496

p

s

n

(a)

(n, Ps[t])

(c)

23.1 Fixed-point Number System 477

(n, 0) (n, 0)

(n, 0) (n, 0)

(b)

(ns , Ps)

(d)

FIGURE 23.1 ■ The multiple-wordlength paradigm: (a) signal parameters (''s" indicates a sign bit);
(b) fixed poi:it; (c) floating point; (d) multiple wordlength. The triangle represents a constant
coefficient multiplication, or "gain"; the rectangle represents a register, or unit sample delay.

number of bits in the representation of the signal (excluding the sign bit, by
convention), and the parameter Pi represents the displacement of the binary
point from the least significant bit (LSB) side of the sign bit toward the LSB.
Note that there are no restrictions on Pi; the binary point could lie outside the
number representation (i.e., Pi< 0 or Pi> ni).

A simple fixed-point implementation is illustrated in Figure 23.l(b). Each
signal j in this dataflow graph representing a recursive DSP algorithm is anno
tated with a tuple (ni, Pi) representing the wordlength scaling of the signal. In
this implementation, all signals have the same wordlength and scaling, although
shift operations are often incorporated in fixed-point designs in order to provide
an element of scaling control [25]. Figure 23.l(c) shows a standard floating-point
implementation, where the scaling of each signal is a function of time.

A single systemwide wordlength is common to both fixed and floating point.
This is a result of historical implementation on single, or multiple, predesigned
arithmetic units. In FPGAs the situation is quite different. Different opera
tions are generally computed in different hardware resources, and each of these
computations can be built to any size desired. Such freedom points to an alter
native implementation style, shown in Figure 23.l(d). This multiple-wordlength
implementation style inherits the speed, area, and power advantages of tradi
tional fixed-point implementations, since the computation is fixed point with
respect to each individual computational unit. However, by potentially allow
ing each signal in the original specification to be encoded by binary words
with different scaling and wordlength, the degrees of freedom in design are
significantly increased.

r ···
(n, Pt[t])

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 497

478 Chapter 23 ■ Precision Analysis for Fixed-point Computation

23.1.2 Optimization for Multiple Wordlength
Now that we have established the possibility of using multiple scalings and
wordlengths for different variables, two questions arise: How can we optimize
the scalings and wordlengths in a design to match the computation being per
formed, and what are the potential benefits from doing so? For FPGA-based
implementation, the benefits have been shown to be significant: Area savings of
up to 45 percent [8] and 80 percent [15] have been reported compared to the
use of a single wordlength across the entire circuit. The main substance of this
chapter is to describe suitable scaling and wordlength optimization procedures
to achieve such savings.

Section 23.2 shows that we can determine the appropriate scaling for a
signal from an estimation of its peak value over time. One of two main
techniques-simulation based and analytical-is then introduced to perform this
peak estimation. While an analytical approach provides a tight bound on the peak
signal value, it is limited to computations exhibiting certain mathematical prop
erties. For computations outside this class, an analytical technique tends to be
pessimistic, and so simulation-based methods are commonly used.

Section 23.3 focuses on determining the wordlength for each signal in the
computation. The fundamental issue is that, because of roundoff or truncation,
the wordlength of different signals in the system can have different impacts on
both the implementation area and the error observed at the computation output.
Thus, any wordlength optimization system needs to perform a balancing act
between these two factors when allocating wordlength to signals. The goal of
the work presented in this section is to allocate wordlength so as to minimize
the area of the resulting circuit while maintaining an acceptable computational
accuracy at the output of the circuit.

23.2 PEAK VALUE ESTIMATION

The physical representation of an intermediate result in a bit-parallel implemen
tation of an algorithm consists of a finite set of bits, usually encoded using 2's
complement representation. To make efficient use of the resources, it is essen
tial to select an appropriate scaling for each ��0nal. Such a scaling should ensure
that the representation is not overly wasteful in catering to rare or impossibly
large values and that overflow errors, which lead to low arithmetic quality, do
not occur often.

To determine an appropriate scaling, it is necessary to determine the peak
value that each signal can reach. Given a peak value P, a power-of-two scaling
p is selected with p = Llog2PJ + 1, since power-of-two multiplication is free in a
hardware implementation.

For some algorithms, it is possible to estimate the peak value that each
signal could reach using analytic means. In the next section, such techniques
for two different classes of system are discussed. The alternative, to use simu
lation to determine the peak signal value, is described in the following section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 498

23.2 Peak Value Estimation 479

Also discussed are some hybrid techniques that aim to combine the advantages
of both approaches.

23.2.1 Analytic Peak Estimation

If the DSP algorithm under consideration is a linear time-invariant system, it
is possible to find a tight analytic bound on the peak value reachable by every
signal in it. This is the problem addressed in the section immediately following.
If, on the other hand, the system is nonlinear or time varying, such an approach
cannot be used. If the algorithm is nonrecursive-that is, the dataflow graph
does not contain any feedback loops-data range propagation may be used to
determine an analytic bound on the peak value of each signal. However, this
approach, described in the next section, cannot be guaranteed to produce a
tight bound.

linear time-invariant systems
A linear time-invariant (LTI) system is one that obeys the distinct properties of
linearity and time invariance. A linear system is one that obeys superposition
that is, if its output is the sequence Y1[t] in response to input x1[t], and is yz[t]
in response to input x2[t], then it will be a.y1[t] + J3y2[t] in response to input
a.xi [t] + jh2[t]. A time-invariant system is one that, given the input x[t] and the
corresponding output y[t], will provide output y[t - t0] a given input x[t - to],
In other words, shifting the input sequence in time merely shifts the output
sequence by the same amount.

From a practical perspective, any computation made entirely of addition, con
stant coefficient multiplication, and delay operations is guaranteed to be LTI.
This class of algorithms, while restricted, is extremely important; it contains all
the fundamental building blocks of DSP, such as finite impulse response (FIR)
and infinite impulse response (IIR) filters, together with transformations such
as the discrete cosine transform (OCT), the fast Fourier transform (FFT), and
many color-space conversions.

The remainder of this section assumes a basic knowledge of digital signal
processing, in particular the z-transform and transfer functions. For the unfamil
iar reader, Mitra [32] provides an excellent introduction. Readers unconcerned
with the mechanics of peak estimation for LTI systems may simply take it as
read that for such systems it is possible to obtain tight analytic bounds on peak
signal values.

Transfer function calculation The analytical scaling rules derived in this sec
tion rely on a knowledge of system transfer functions. A transfer function of
a discrete-time LTI system between any given 1/0 pair is defined to be the z
transform of the sequence produced at that output, in response to a unit impulse
at that input [32]; these transfer functions may be expressed as the ratio of two
polynomials in z-1• The transfer function from each primacy input to each sig
nal must be calculated for signal-scaling purposes. This section considers the
practical problem of transfer function calculation from a dataflow graph.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 499

480 Chapter 23 • Precision Analysis for Fixed-point Computation

Given a dataflow graph G{V, S), let V1 � V be the set of input nodes, Vo� V

be the set of output nodes, and Vv � V be the set of unit sample delay nodes.
For signal scaling, a matrix of transfer functions H(z) is required, with elements
hiv(z) for i E V1 and v E V representing the transfer function from the primacy
input i to the output of node v.

Calculation of transfer functions for nonrecursive systems is a simple task,
leading to a matrix of polynomials in z-1; a straightforward algorithm is
presented by Constantinides et al. [12]. For recursive systems, it is neces
sary to identify a subset Ve � V of nodes whose outputs correspond to a
system state. In this context, a state set consists of a set of nodes that, if
removed from the dataflow graph, would break all feedback loops. Once such
a state--set has been identified, transfer functions can easily be expressed in
terms of the outputs of these nodes using algorithms suitable for nonrecursive
computations.

Let S(z) be a z-domain matrix representing the transfer function from each
input signal to the output of each of these state nodes. The transfer functions
from each input to each state node output may be expressed as in equation 23.2,
where A and Bare matrices of polynomials in z-1. Each of these matrices repre
sents a z-domain relationship once the feedback has been broken at the outputs
of state nodes. A(z) represents the transfer functions between state nodes and
state nodes, and B(z) represents the transfer functions between primacy inputs
and state nodes.

S(z) = AS(z) + B(z)

H(z) = CS(z) + D(z)

(23.2)

(23.3)

The matrices C(z) and D(z) are also matrices of polynomials in z-1• C(z) rep
resents the z-domain relationship between state node outputs and the outputs
of all nodes. D(z) represents the z-domain relationship between primacy inputs
and the outputs of all nodes.

It is clear that S(z) may be expressed as a matrix of rational functions (equa
tion 23.4), where I is the identity matrix of appropriate size. This allows the
transfer function matrix H(z) to be calculated directly from equation 23.3.

S(z) = (I-A)-1B (23.4)

Example Consider the simple dataflow graph from Section 23.1.1, shown in
Figure 23.1. Clearly, removal of any one of the four internal nodes (adder, gain,
delay, or the signal branch) from it will break the feedback loop. Let us arbitrarily
choose the adder node as a state node and choose the gain coefficient to be 0.1.
The polynomial matrices A(z) to D(z) may then be calculated (equation 23.5).

A(z) = o.1z-1

B(z) = 1

C(z) = [O 1 0.1 0.1 0.1 o.1z-1f

D(z) = [1 o o o o of

(23.5)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 500

23.2 Peak Value Estimation 481

Calculation of S(z) may then proceed following equation 23.4, yielding equation23.6. Finally, the matrix H(z) can be constructed following equation 23.3, giving
equation 23.7.

S(z) = 1/(1-0.lz- 1) (23.6)

H(z) = [11/(1-0.lz- 1) 0.l/(1-0.1z- 1) 0.1/(1-0.1C 1) 0.1/(l -0.1z- 1)
o.1z- 1 /(1-0.1z- 1)f (23.7)

The runtime of this algorithm grows significantly with the number of state
signals !Ve I, and so selecting a small set of state signals is important. A simple
approach is to select all of the delay elements in a circuit, assuming that it has
no combinational cycles. Alternatively, techniques such as Levy and Low's [30]can be employed.
Scaling with transfer functions To produce the smallest fixed-point implemen
tation, it is desirable to utilize as much as possible of the full dynamic range
provided by each internal signal representation. The first step of the optimiza
tion process is therefore to choose the smallest possible value of P; for eachsignal j E S in order to guarantee no overflow.

Consider a dataflow graph G(V, S), annotated with wordlengths n and scalings
p. Recall that Vi� V denotes the set of input nodes, and let us say that each such
node reaches peak signal values of ±Mi(Mi > 0) for i E V1 . Let H(z) be the scaling
transfer function matrix defined before, with the associated impulse response
matrix h[t] related to the transfer function matrix through the component-wiseinverse z-transform. Then the worst-case peak value P; reached by any signal
j ES is given by maximizing the well-known convolution sum (equation 23.8)[32], where xi[t] is the value of the input i E V1 at time index t.

Solving this maximization problem provides the input sequence given inequation 23.9, and allowing Ni; - (X) leads to the peak response at signal j given
in equation 23.10. Here sgn() is the signum function (equation 23.11).

P; =±Em� (N

}:

1 Xi [t' -t] hi;[t]) iEV1
x;[t] t=O

00 P; = E Mi E lhi; [t]I iEV1 t=O
{ 1, x:2:0sgn (x) = -1, otherwise

(23.8)

(23.9)
(23.10)

(23.11)

This worst-case approach leads to the concept of 11 scaling, defined in thefollowing paragraphs.

Xi [t] = Misgn (hii lNii-t-1 J)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 501

482 Chapter 23 ■ Precision Analysis for Fixed-point Computation

The 11-nonn of a transfer function H(z) is given by equation 23.12, where
z-1{ } denotes the inverse z-transfonn .

..

11 {H(z)} = Ez- 1
{H(z)}[t] (23.12)

t=O

A dataflow graph G(V, S) annotated with wordlengths n and scalings p is said
to be 11 -scaled} if equation 23.13 holds for all signals j ES.

(23.13)

The important point about an l 1-scaled algorithm is that the scalings used are
optimal in the following sense. If any scaling is reduced lower than its value from
equation 23.13, it is possible for overflow to result on that variable. If any scal
ing is increased beyond its value from equation 23.13, the area of the resulting
implementation increases or stays the same without any matching improvement
in arithmetic quality observable at the algorithm outputs.

Data range propagation
If the algorithm under consideration is not linear or time invariant, one mech
anism for estimating the peak value reached by each signal is to consider the
propagation of data ranges tlu;-ough the computation graph. This is generally
possible only for nonrecursive algorithms.

Forward propagation A naive way of approaching this problem is to examine
the binary-point position that "naturally" results from each hardware operator.
Such an approach, illustrated here, is an option in the Xilinx System Generator
tool [20].

In the dataflow graph shown in Figure 23.2, if we consider that each input
has a range (-1, 1), then we require a binary-point location of p = 0 at each
input. Let us consider each of the adders in tum. Adder al adds two inputs
with p = 0 and therefore produces an output with p = max(O, O) + 1 = 1. Adder a2
adds one input with p = 0 and one with p = 1, and therefore produces an output
with p = max(O, 1) + 1 = 2. Similarly, the output of a3 hasp = 3, and the output
of a4 hasp= 4. While we have successfully determined a binary-point location
for each signal that will not lead to overflow, the disadvantage of this approach

al a2 a3 a4

FIGURE 23.2 ■ A dataflow graph representing a string of additions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 502

23.2 Peak Value Estimation 483

should be clear. The range of values reachable by the system output is actually
5*(-1, 1) = (-5, 5), sop= 3 is sufficient; p = 4 is an overkill of one MSB.

A solution to this problem that has been used in practice is to propagate data
ranges rather than binary-point locations [4, 40]. To understand this approach
in practice, let us apply the technique to the example of Figure 23.2. The output
of adder al is a subset of (-2,2) and thus is assignedp = 1; the output of adder
a2 is a subset of (-3, 3) and is thus assigned p = 2; the output of adder a3 is
a subset of (-4, 4) and is thus assigned p = 3; and the output of adder a4 is a
subset of (-5, 5) and is thus also assigned p = 3. For this simple example, the
problem of peak value detection has been solved to optimality.

However, such a tight solution is not always possible with data range prop
agation. Under circumstances where the dataflow graph contains one or more
branches (fork nodes), which later reconverge, such a '1ocal" approach to range
propagation can be overly pessimistic. As an example, consider the computation
graph representing a constant coefficient multiplication on complex numbers
shown in Figure 23.3.

In the figure, each signal has been labeled with a propagated range, assum
ing that the primary inputs have range (-0.6, 0.6). Under this approach, both
outputs require p = 2. However, such ranges are overly pessimistic. The upper
output in Figure 23.3 has the value Yl = 2.lx1 - l.8(x1 +x2) = 0.3x1 - l.8x2. Thus,
its range can also be calculated as 0.3(-0.6,0.6)- 1.8(-0.6,0.6) = (-1.26, 1.26).
A similar calculation for the lower output provides a range of (-1.2, 1.2). By
examining the global system behavior, we can therefore see that in reality p = 1
is sufficient for both outputs.

Y1 [nJ

(-0.6, 0.6) (-0.6, 0.6) (-3.42, 3.42)

(-0.6, 0.6)

(-2.16, 2.16) (-2.16, 2.16)

(-0.6, 0.6) 2.16)

�[n]

(-0.6, 0.6) (-0.6, 0.6) (-3.12, 3.12)

FIGURE 23.3 ■ Range propagation through a complex constant coefficient multiplier. Triangles
represent (real) constant coefficient multiplication.

x1 [n]

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 503

484 Chapter 23 ■ Precision Analysis for Fixed-point Computation

Note that the analytic scheme described previously for linear time-invariant
systems would calculate the tighter bound in this case.

In summary, range propagation techniques may provide larger bounds on
signal values than are absolutely necessary. This problem is seen in extremis

with recursive computation graphs. In these cases, it is generally impossible to
use range propagation to place a finite bound on signal values, even in cases
when such a finite bound can analytically be shown to exist. Under these cir
cumstances, it is standard practice to use some form of simulation to estimate
the peak value of signals.

23.2.2 Simulation-based Peak Estimation

A completely different' approach to peak estimation is to use simulation-that .
is, to actually run the algorithm with one or more provided input datasets and
measure the peak values reached by each signal.

In its simplest form, the simulation approach consists of measuring the peak
signal value P; reached by a signal j ES and then setting p = llog2kP;J + 1, where
k > l is a user-supplied "safety factor" {typically 2 to 4). Thus, it is ensured that
no overflow will occur so long as the signal value does not exceed kP; when
excited by a different input sequence. Particular care must therefore be taken
to select an appropriate test sequence.

Kim et al. [25] extend the simulation approach by considering more complex
forms of the safety factor. In particular, it is possible to extract information from
the simulation relating to the class of probability density function followed by
each signal. A histogram of the data values for each signal is built, and from it
the distribution is classified as unimodal or multimodal, symmetric or nonsym
metric, and zero mean or nonzero mean. Different forms of safety factor are
applied in each case.

Simulation approaches are appropriate for nonlinear or time-varying sys
tems, for which data range propagation, described in Section 23.1.2, provides
overly pessimistic results (such as for recursive systems). The main drawback of
simulation-based approaches is the significant dependence on the input dataset
used for simulation; moreover, usually no general guidelines can be given for
how to select an appropriate input. These approaches can, of course, be com
bined with the analytical techniques of Section 23.2.1 [13].

There has been some recent work [34] aiming to put the derivation of safety
factors on a sound theoretical footing by using the statistical theory of extreme
value distributions [26]. It is known that the distribution of the sum of a large
number of statistically independent identically distributed (i.i.d.) random vari
ables approaches the Gaussian distribution (the Central Limit Theorem). What
is less well known is that the (scaled) maximum value of a large number of
i.i.d. variables also approaches one of three possible distributions, no matter
the distribution of the variables themselves. These are the Gumbel, Frechet, and
Weibull distributions [26]. Using this property, and making an assumption on
the type of distribution converged to (Ozer and colleagues [34] assume Gumbel),
provides a statistically sound way of estimating the safety factor required for a
given arbitrarily small probability of overflow.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 504

23.3 Wordlength Optimization 485

23.2.3 Summary of Peak Estimation .
The optimization of a bit-parallel fixed-point datapath can be split into the
two problems of determining an appropriate scaling and determining an appro
priate wordlength for each signal. We have discussed the first of these two
problems in detail. It has been shown that in the case of LTI systems, tight
analytic bounds can be placed on· the scaling required. Analytic scaling is
also possible for non-LTI systems, at the cost of tightness in the bound
disastrously so in the case of recursive systems. The alternative to the analyt
ical approach is the use of simulation on trusted input datasets; some progress
has recently been made on the issue of statistically sound simulation-based peak
determination.

23.3 WORDLENGTH OPTIMIZATION

Once a scaling has been determined, it is necessary to find an appropriate
wordlength for each signal. While optimizing the scaling usually improves
circuit quality without changing circuit functionality (assuming no overflows
occur), wordlength optimization trades circuit quality (area, delay, power) for
result accuracy. The major problem in wordlength optimization is to determine
the error at system outputs for a given set of wordlengths and scalings of all
internal variables. We will call this problem error estimation. Once a technique
for error estimation has been selected, the wordlength selection problem reduces
to utilizing the known area and error models within a constrained optimization
setting: Find the minimum area implementation satisfying certain constraints
on arithmetic error at each system output.

The majority of this section is taken up with the problem of error estim�tion
(Section 23.3.1). Following on from this discussion, the problem of area mod
eling is addressed. Optimization techniques suitable for solving the wordlength
determination problem are introduced (Section 23.3.2), with some discussion of
the problem's inherent computational complexity.

23.3.1 Error Estimation and Area Models
Traditionally, much of the research on estimating the effects of truncation
and roundoff noise in fixed-point systems has focused on DSP uniprocessors.
This leads to certain constraints and assumptions on quantization errors-for
example, that the wordlength of all signals is the same, that quantization is
performed after multiplication, and that the wordlength before quantization is
much greater than that following it [36]. The multiple-wordlength paradigm
allows a more general design space to be explored, free from these constraints.

The effect of using finite register length in fixed-point systems has been
studied for some time. Oppenheim and Weinstein [36] and Liu [29] lay down
standard models for quantization errors and error propagation through LTI
systems based on a linearization of signal truncation or rounding. Error sig
nals, assumed to be uniformly distributed, uncorrelated with each other and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 505

486 Chapter 23 ■ Precision Analysis for Fixed-point Computation

with themselves over time, are added whenever a truncation occurs. This
approximate model has served very well because quantization error power is
dramatically affected by wordlength in a uniform wordlength structure, decreas
ing at approximately 6 dB per bit. This means that it is not necessary to have
highly accurate models of quantization error power in order to predict the
required signal width [35]. In a multiple-wordlength circuit, the implementation
error power may be adjusted much more finely, and so the resulting implemen
tation tends to be more sensitive to errors in estimation. This has led to a simple
refinement of the model, which will be discussed soon.

The most generally applicable method for error estimation is simulation: Sim
ulate the system with a given "representative" input and measure the deviation at
the system outputs when compared to an accurate simulation (usually "accurate"
means IEEE double-precision floating point [22]). Indeed, this is the approach
taken by several systems [6, 27]. Unfortunately, simulation suffers from several
drawbacks, some of which correspond to the equivalent simulation drawbacks
discussed in Section 23.2, and some of which are peculiar to the error estimation
problem.

First, there is the problem of dependence on the chosen "representative" input
dataset. Second, there is the problem of speed: Simulation runs can take a sig
nifi.cant amount of time, and during an optimization procedure a large number
of simulation runs may be needed. Third, even the "accurate" simulation will
have errors induced by finite wordlength effects that, depending on the system,
may not be negligible.

We will be using signal-to-noise ratio (SNR), sometimes referred to as signal
to-quantization-noise ratio (SQNR), as a generally accepted metric for measur
ing the quality of a fixed-point algorithm implementation [32] (although other
measures, such as maximum instantaneous error, exist). Conceptually, the out
put sequence at each system output resulting from a particular finite-precision
implementation can be subtracted from the equivalent sequence resulting from
an infinite-precision implementation. The difference is known as the fixed-point
error.

The ratio of the output power (i.e., the sum of squared signal values) result
ing from an infinite precision implementation to the fixed-point error power
of a specific implementation defines the SNR. For the purposes of this chap
ter, the signal power at each output is fixed because it is determined by
a combination of the input signal statistics and the dataflow graph G(V, S).
To explore different implementations of the dataflow graph, it is therefore
sufficient to concentrate on noise estimation, which is the subject of this
section.

The approach taken to wordlength optimization should depend on the
mathematical properties of the system under investigation. After briefly con
sidering simulation-based estimation, we will examine analytic or semi-analytic
techniques that may be applied to certain classes of system. Next we will
describe one such method, which may be used to obtain high-quality results
for linear time-invariant algorithms. Then we will generalize this approach to
nonlinear systems containing only differentiable nonlinear components.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 506

Simulation-based methods

23.3 Wordlength Optimization 487

Simulation-based methods for wordlength optimization were first established
at Seoul National University, and some of them have been integrated into the
Signal Processing Worksystem of Cadence.

In Kim et al. [25] and Kum and Sung [27], the search space is reduced by
grouping together all variables involved in a multiply-add operation and opti
mizing them as a single-wordlength "block." Within each block, the Oppenheim
model of quantization noise is applied [35].

Although simulation is almost certainly the most widespread mechanism
for estimating the impact of a given choice of wordlength, it suffers from the
drawbacks discussed earlier. Indeed, the dependence of the result on the input
dataset, while widely acknowledged, is rarely considered in depth. The class of
algorithm for which simulation forms a suitable mechanism has also remained
unclear. Recently, Alippi [1] proposed an analytical framework within which the
question of simulation input dependence can be addressed. A mechanism for
understanding the perturbation of Lebesgue-measurable functions, an extremely
wide class of algorithmic behavior, has been proposed that uses the theory of
randomized algorithms. The essential contribution of this work, for the purposes
of fixed-point analysis, has been to demonstrate that simulation is an appropri
ate mechanism for analyzing fixed-point error. Moreover, Alippi [1] provides a
theoretically sound guideline on the number of simulations required in order to
be confident, to within a certain probability, that the SNR is within a given limit
(alternative signal quality metrics are also Lebesgue measurable and hence can
be used as well).

An analytic technique for linear time-invariant systems
We will first address error estimation for LTI systems. An appropriate noise
model for truncation of LSBs is described in the subsection that follows. It is
then shown that the noise injected through truncation can be analytically propa
gated through the system in order to measure the effect of such noise on system
outputs.

Noise model A common assumption in DSP design is that signal quantization
(rounding or truncation) occurs only after a multiplication or multiply
accumulate operation. This corresponds to a uniprocessor viewpoint, where the
result of an n-bit signal multiplied by an n-bit coefficient needs to be stored in
an n-bit register. The result of such a multiplication is an n' = 2n-bit word, which
must therefore be quantized down to n bits. Considering signal truncation, the
least area-expensive method of quantization [18], the lowest value of the trun
cation error in 2's complement with p = 0, is 2-n' - 2-n = - 2-n, and the highest
value is O (2's complement truncation error is always nonpositive).

It has been observed that values between these values tend to be equally likely
to occur in practice, so long as the 2n-bit signal has .sufficient dynamic range
[29, 36]. This observation leads to the formulation of a uniform distribution
model [36] for the noise of variance cr2 = 2-2n112 for the standard normaliza
tion of p = 0. It has also been observed that, under the same conditions, the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 507

488 Chapter 23 ■ Precision Analysis for Fixed-point Computation

spectrum of such errors tends to be white because there is little correlation
between low-order bits over time even if there is a correlation between high
order bits. Similarly, different truncations occurring at different points within
the implementation structure tend to be uncorrelated.

When considering a multiple-wordlength implementation, or truncation at
different points within the datapath, some researchers have opted to carry the
uniform distribution model over to the new implementation style [25]. However,
there are associated inaccuracies involved in such an approach [7]. First, quan
tizations from n' bits to n bits, where n' = n, will suffer in accuracy because of
the discretization of the error probability density function; for example, if p = 0,
n' = 2, n = 1, then the only possible error values are 0 and -1/4. Second, in such
cases the lower bound on error can no longer be simplified in the preceding
manner because 2-n' -2-n,.. -2-n no longer holds.

These two issues may be resolved by considering a discrete probability
distribution for the injected error signal. For 2's complement arithmetic, the
truncation error injection signal e[t] caused by truncation from (n',p) to (n,p)
is bounded by equation 23.14.

(23.14)

It is assumed that each possible value of e[t] has equal probability, as
discussed earlier. For 2's complement truncation, there is nonzero mean E{e[t]}
(equation 23.15) and variance CJ� (equation 23.16).

(23.15)

(23.16)

Note that forn1 »n2 andp=0, equation 23.16 simplifies to o�=l/ 12 2-2n, which
is the well-known predicted error variance of Oppenheim and Schafer [35] for
a model with continuous probability density function.

Noise propagation and power estimation If it is our aim to optimize the
wordlengths used in a design, then it is important to be able to predict the
arithmetic quality observable at the design outputs. Given a set of wordlengths
and scalings, it is possible to use the truncation model described in the previous
section to predict the variance of each injection input. For each signal j ES, a
straightforward application of equation 23.16 may be used, with n1 equal to the
"natur?,}" full-precision wordlength produced by the source component, n2 = nj,
andp =Pi·

By constructing noise sources in this manner for the entire dataflow graph,
a set F = {(�. R

p
)} of injection input variances �. and their associated trans

fer function to each primary output R
p

(Z), can be constructed. From this set it
is possible to predict the nature of the noise appearing at the system primary

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 508

23.3 Wordlength Optimization 489
outputs, which is the quality metric of importance to the user. Since the noise sources have a white spectrum and are uncorrelated with each other, it is possible to use L2 scaling to predict the noise power at the system outputs. The L2 norm of a transfer function H(z) is defined in equation 23.17, where z-l denotes the inverse z-transform. It can be shown that the noise variance Ek at output k is given by equation 23.18.

L2 {H(z)) = (t;,12-1 {H(z))[n]I')
in

Ek
= E cr2L/{Rk}

(cr2, R)EF

A hybrid approach for nonlinear differentiable systems

(23.17)
(23.18)

With some modification, some of the results from the preceding section can be carried over to the more general class of nonlinear time-varying systems containing only differentiable nonlinearities. In this section we address one possible approach to this problem, deriving from the type of small-signal analysis typically used in analogue electronics [12, 38].
Perturbation analysis To make some of the analytical results on error sensitivity for LTI systems applicable to nonlinear systems, the first step is to linearize these systems. The assumption is made that the quantization errors induced by rounding or truncation are sufficiently small not to affect the system's macroscopic behavior. Under such circumstances, each system component can be locally linearized or replaced by its "small-signal equivalent" [38] in order to determine the output behavior under a given rounding scheme. We will consider one such n-input component, the differentiable function Y[t] = f(X1[t], X2[t], ... , Xn[t]), where t is a time index. If we denote by Xi[t] a small perturbation on variable Xi[t], then a first-order Taylor approximation for the induced perturbation y[t] on Y[t] is given by equation 23.19.

y[t] ='XI [t] arl It+ ... +Xn [t] /£ It (23.19)
Note that this approximation is linear in each Xi but that the coefficients may vary with time index t because, in general, i:}f/0X1 is a function of X1, X2, ... , Xn. Thus, by applying such an approximation, we have produced a linear timevarying small-signal model for a nonlinear time-invariant component. Such an analysis is readily extended to a time-varying component by expressing Y[t] = f(t, X1 [t], X2[t], ... , Xn[t]). The linearity of the resulting model allows us to predict the error at system outputs due to any linear scaling of a small perturbation of signal j ES analytically, given the simulation-obtained error from a single such perturbation instance at j, which can be obtained by a single simulation run. Thus, this method can be considered to be a hybrid analytic/simulation error analysis [15].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 509

490 Chapter 23 ■ Precision Analysis for Fixed-point Computation

b

dc_da

�

a

·········➔

dc_db

(a) (b)

FIGURE 23.4 ■ A local graph transformation to insert derivative monitors: (a) multiplier node;
(b) with derivative monitors.

Derivative monitors To construct the small-signal model, we must first evaluate
the differential coefficient� of the Taylor series model for nonlinear components.

In general, methods must be introduced to calculate the differential of each
nonlinear node type. This is performed by applying a graph transformation to
the dataflow graph, introducing the necessary extra nodes and outputs to do this
calculation.

The general multiplier is the only nonlinear component considered explicitly
in this section, although the approach is general; the graph transformation for
multipliers is illustrated in Figure 23.4. Since f(X1 , X2) = X1X2 , d{l"iJX1 = X2 and
d{l"iJX2 =X1.

After insertion of the monitors (dc_da and dc_db, which capture the deriva
tives of c with respect to a and b, respectively), a simulation may be performed
to write the derivatives to appropriate data files to be used by the linearization
process, which is described next.

Linearization Our aim is to construct a small-signal model, which can be sim
ulated to determine the sensitivity to rounding errors. Once we have obtained
the derivative monitors, the construction of the small-signal model may proceed,
again through graph transformation. All linear components (adder, constant
coefficient multiplier, fork, delay, primary input, primary output) remain
unchanged as a result of the linearization process. Each nonlinear component
is replaced by its first-order Taylor model. Additional primary inputs are added
to the dataflow graph to read the Taylor coefficients from the derivative monitor
files created by the previous large-signal simulation.

As an example, the Taylor expansion transformation for the multiplier node
is illustrated in Figure 23.5. The inputs dc_da and dc_db are themselves
time-varying sequences, derived from the previous step of the procedure. Note
that the graph portion of Figure 23.S(b) still contains multiplier "nonlinear"
components, although one input of each multiplier node is now external to the
model. This absence of feedback ensures linearity, although not time invariance.

Noise injection In Section 23.3.1, L2 scaling was used to analytically esti
mate the noise variance at a system output through scaling of the (analytically

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 510

(a)

23.3 Wordlength Optimization 491

dc/da

de/db

(b)

FIGURE 23.5 ■ A local graph transformation to produce a small-signal model: (a) multiplier node;
(b) first-order Taylor model.

-----------► a

(a) (b)

FIGURE 23.6 ■ A local graph transformation to inject perturbations: (a) original signal; (b) with
noise injection.

derived) noise variance injected at each point of quantization. Such a purely
analytic technique can be used only for LTI systems. In this section we discuss
an extension of the approach for nonlinear systems.

Because the small-signal model is linear, if an output exhibits variance V
when excited by an error of variance ci injected into a given signal, then the
output will exhibit variance a.Vwhen excited by a signal of variance 002 injected
into the same signal (a.� O). Herein lies the strength of the proposed lineariza
tion procedure: If the output response to a noise of known variance can be
determined once only through simulation, this response can be scaled with ana
lytically derived coefficients in order to estimate the response to any rounding
or truncation scheme.

Thus, the next step of the procedure is to transform the graph through the
introduction of an additional adder node, and associated signals, and then sim
ulate the graph with a known noise. In our case, to simulate truncation of
a 2's complement signal, the noise is independent and identically distributed
with a uniform distribution over the range [-2J3,l>], chosen to have unit vari
ance (1/12(2v'3)2 = 1), in this way making the measured output response an
unscaled "sensitivity" measure. The graph transformation of inserting a noise
injection is shown in Figure 23.6. One of these transformations is applied to
a distinct copy of the linearized graph for each signal in the dataflow graph,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 511

492 Chapter 23 ■ Precision Analysis for Fixed-point Computation

after which zeros are propagated from the original primary inputs, to finalize the
small-signal model. This is a special case of constant propagation [2] that leads
to significantly faster simulation results for nontrivial dataflow graphs.

The entire process is illustrated for a simple dataflow graph in Figure 23.7.
The original graph is shown in (a). The perturbation analysis will be per
formed for the signals marked (*) and (**). After inserting derivative monitors

X

4

--

--

(a)

�---------+de/db

y

(b)

Noise------,

de/da

X

y

de/db

(d)

y

(f)

(**)
y

····

• •••••
•
••••••••••••••

,I.
de/da

X

de/da

X

de/db

(e)

Noise-,:>--y

(g)

y

(**)

FIGURE 23.7 ■ An example of perturbation analysis: (a) original dataflow graph; (b) transformed
dataflow graph; (c) linearized dataflow graph; (d) variant for (*) signal; (e) variant for (**) signal;
(f) simplified graph for (*) signal; (g) simplified graph for (**) signal.

y

X

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 512

23.3 Wordlength Optimization 493

for nonlinear components, the transformed DFG is shown in (b). The
linearized DFG is shown in (c), and its two variants for the signals (*) and (**)
are illustrated in (d) and (e), respectively. Finally, the corresponding simplified
DFGs after zero propagation are shown in (f) and (g), respectively.

High-level area models
To implement a multiple-wordlength system, component libraries must be avail
able to support multiple-wordlength arithmetic. These libraries can then be
instantiated by the synthesis system and must be modeled in terms of area con
sumption to provide the wordlength optimization procedure with a cost metric.

Integer arithmetic libraries are available from FPGA vendors (e.g., Xilinx
Coregen or Altera LPM macros). Parameterizable macros for standard arith
metic functions operating on integer arithmetic form the basis of the multiple
wordlength libraries synthesized to by wordlength optimization tools such as
Right-Size [15] and Synoptix [8]. Blocks from each of these vendors may have
slightly different cost parameters, but the general approach described in this sec
tion is applicable across all of them. Example external interlaces of multiple
wordlength library blocks for constant coefficient multipliers (gain) and adders
(add) written in VHDL are shown in Listing 23.1 [23].

Listing 23. 1 ■ Constant coefficient multipliers (gain) and adders (add) written in VHDL.

ENTITY gain IS
GENERIC{ INWIDTH, OUTWIDTH, NULLMSBS, COEFWIDTH: INTEGER;

COEF : std_logic_vector { COEFWIDTH downto O)) ;
PORT{ data: IN std_logic_vector{ INWIDTH downto O);

result: OUT std_logic_vector{ OUTWIDTH downto O));
END gain;

ENTITY add IS
GENERIC { AWIDTH, BWIDTH, BSHL, OUTWIDTH, NULLMSBS : INTEGER) ;
PORT { dataa : IN std_logic_vector { AWIDTH downto O) ;

datab : IN std_logic_vector { BWIDTH downto O) ;

result: OUT std_logic_vector{ OUTWIDTH downto O));
END add;

As well as an individually parameterizable wordlength for each input and
output port, each library block has a NULLMSBS parameter that indicates how
many most significant bits (MSBs) of the operation result are to be ignored (the
converse of sign extension). Thus, each operation result can be considered to be
made up of zero or more MSBs that are ignored, followed by one or more data
bits, followed by zero or more LSBs that may be truncated depending on the
OUTWIDTH parameter. For the adder library block, there is an additional BSHL

generic that accounts for the alignment necessary for addition operands. BSHL

represents the number of bits by which the datab input must be conceptually
shifted left to align it with the dataa input. Note that, because this is fixed-point
arithmetic, there is no physical shifting involved; the data is simply aligned in a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 513

494 Chapter 23 ■ Precision Analysis for Fixed-point Computation

· skewed manner, as shown in Figure 23.8. Note, too, that dataa and datab are
permuted as necessary to ensure that BSHL is always nonnegative.

In the figure, (a) shows that the MSB of input b protrudes beyond that of
input a and that all the output bits are drawn from the core integer addition
of the overlap. Figure 23.S(b) shows that the MSB of input a protrudes beyond
that of input b and that all output bits are drawn from the core integer addition
of the overlap. Figure 23.S(c) shows that the MSB of input b protrudes beyond
that of input a but that some of the output bits are drawn from the LSB overhang
of input a and are thus produced "free." Figure 23.S(d) shows that the MSB
of input a protrudes beyond that of input b but that some of the output bits

a:

b: +

o:

a:

b: +

o:

�n.--->➔

� nb �

Isl -l<-5

-->

m-1

� S k n0➔

�
(a)

�n.--->➔

�nb�

Isl -l<-5

->

m-1 <E-<-- n0q --->➔ �sl
� n,, -->

(C)

a:

b: +

o:

a:

b: +

o:

<

I.__ s.....__l ___.-� _s_>

<E<--- n.----➔

,__I s......._l ___.-I< _s_>

m-1 <E<-- n,,q---➔ �sl
� n,,--->

(d)

FIGURE 23.8 ■ Four multiple-wordlength adder formats arising in practice: (a) MSB of input b
protruding beyond MSB of input a; (b) MSB of input a protruding beyond MSB of input b;
(c) MSB of input b protruding beyond MSB of input a, with "free" output bits; (d) MSB input
a protruding beyond MSB of input b, with "free" output bits. (s denotes the value of the BSHL
generic; m denotes the value of the NULLMSBS generic.)

·--n.

~ Is I
~nb➔ ---

~noq m-1 ~n.q

~sk
n. ➔

~
(b)

--
~ Is I

~ nb ➔ ---

--

~sl ~sl

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 514

23.3 Word.length Optimization 495

are drawn from the LSB overhang of input a and are thus produced "free." In
each case, the upper result shows the "error-free" word.length n� without further
truncation, whereas the lower result shows the word.length n0 after potential fur
ther truncation.

Each of the library block parameters has an impact on the area resources
consumed by the overall system implementation. It is generally assumed when
constructing a cost model that each operator in the dataflow graph will map to
a separate hardware resource and that the area cost of wiring is negligible [17].
These assumptions (relaxed by Constantinides et al. [12]) simplify the construc
tion of an area cost model. It is sufficient to estimate separately the area con
sumed by each computation node and then sum the resulting estimates. In real
ity, of course, logic synthesis, performed after word.length optimization, is likely
to result in some logic optimization between the boundaries of two connected
library elements. This may result in lower area than estimated, but experience
shows that these deviations from the area model are small.

The area model for a multiple-word.length adder is reasonably straightfor
ward. A ripple-carry architecture is used [21] since FPGAs provide good support
for fast ripple-carry implementations. The only area-consuming component is
the core (integer) adder constructed from the vendor library. This adder has a
width of max(AWIDTH - BSHL, BWIDTH) - NULLMSBS + 2 bits. Depending on the
FPGA architecture in question, each bit may not consume the same area; how
ever, because some bits are required for the result port whereas others may be
needed only for carry propagation, their sum outputs remain unconnected and
therefore the sum circuitry is optimized away by logic synthesis. The cost model
thus has two parameters k 1 and k2, corresponding to the area cost of a sum-and
carry full adder and to the area cost of a carry-only full adder, respectively. The
area of an adder is expressed in equation 23.20.

Aadd(AWIDTH, BWIDTH, BSHL, NULLMSBS, 0UTWIDTH)

= k 1 (0UTWIDTH + 1) +k2(max(AWIDTHBSHL, BWIDTH)

- NULLMSBS - 0UTWIDTH + 1)

(23.20)

Area estimation for general multipliers can proceed in a similarly straightfor
ward way. However, the equivalent problem for constant coefficient multipliers
is significantly. more problematic. A constant coefficient multiplier is typically
implemented as a series of additions through a recoding scheme such as the clas
sic Booth technique [3]. This implementation style causes the area consumption
to be highly dependent on the coefficient value. In addition, the exact implemen
tation scheme used by the vendor integer arithmetic libraries is known only to
the vendor.

A simple area model has been proposed (equation 23.21) and the coeffi
cient values k3 and k4 have been determined through the synthesis of several
hundred multipliers of different coefficient values and widths [12]. The model
has then been fitted to this data using a least-squares approach. Note that the
model does not account for NULLMSBS because, for a properly scaled coefficient,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 515

496 Chapter 23 • Precision Analysis for Fixed-point Computation

NULLMSBS � 1 for a constant coefficient multiplier and therefore has little impact
on area consumption.

Again(INWIDTH, OUTWIDTH, COEFWIDTH) = k3 COEFWIDTH(INWIDTH + 1)

+ k4(INWIDTH + COEFWIDTH - OUTWIDTH) (23.21)

More detailed area models for components are discussed by Chang and
Haue:k [14].

23.3.2 Search Techniques

A heuristic search procedure
Because the wordlength optimization problem is NP-hard [16], several heuristic
approaches have been developed to find feasible wordlength vectors having
small, though not necessarily optimal, area consumption. An example heuristic
is shown in Listing 23.2. After performing binary-point estimation using the
techniques of Section 23.2, the algorithm determines the minimum uniform
wordlength satisfying all error constraints. The design at this stage corre
sponds to a standard uniform wordlength design with implicit power-of-two
scaling, such as may be used for an optimized uniprocessor-based implemen
tation. Each wordlength is then scaled up by a factor k > 1, which represents
a bound on the largest value that any wordlength in the final design may
reach (in the Synoptix implementation of this algorithm [8], k = 2 has been
used).

The resulting structure forms a starting point from which one signal
wordlength is reduced by one bit on each iteration. The signal wordlength to
reduce is decided in each iteration by reducing each wordlength in tum until it
violates an output noise constraint (Listing 23.2). At this point there is likely to
have been some pay-off in reduced area, and the signal whose wordlength reduc
tion provided the largest pay-off is chosen. Each signal's wordlength is explored
using a binary search.

Listing 23.2 ■ Algorithm wordlength falling.

Input: A Dataflow Graph G (V, SJ and binary-point vector p.
Output: An optimized wordlength vector n.

begin
Let the elements of S be denoted as S={j1, J2, .. . , JJsJ}
Determine u, the minimum uniform wordlength satisfying error

criteria
Set n +- lku
do

currentcost +- AREA(n)
foreach Ji ES do

bestmin +- currentcost
Set w to the smallest positive value where the error criteria

are satisfied for wordlength [n1 ... ni-1 wni+1 ••. n1s1l
Set minval +- AREA ([n1 ••• ni-1 w ni+1 ••• n1s1 l)
if minval < bestmin, set bestsig +- i and bestmin +- minval

end foreach

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 516

if bestmin < currentcost

nbestsig +- nbestsig - 1
while bestmin < currentcost

end

Alternative search procedures

23.3 Word.length Optimization 497

The algorithm described in Section 23.3.1 is a heuristic; it does not guarantee to
produce the optimum area cost for a given set of error constraints. A technique
to discover the true optimum-word.length vectors has also been proposed [10]
that uses integer linear programming (ILP) to model the constraint space and
objective functions. This technique was able to demonstrate that the heuristic
from Section 23.1.1 provides good-quality results for the small benchmark prob
lems addressed by both approaches. Like all NP-hard problems [16], however,
finding the optimum solution becomes computationally infeasible for large
problem sizes. The methodology of Constantinides et al. [10] is applicable only
for very small practical problems and is thus more of a theoretical than practical
interest.

Several other heuristic search procedures have been proposed in the litera
ture, and we will review some of the more interesting ones (further comparisons
are made in the brief survey by Cantin et al. [6]).

An approach used by Kum and Sung [27] is based on the intuition that the
error observable at a system output reduces monotonically with each word.length
in that system. This is a plausible conjecture, but is not always the case. Indeed,
it was shown independently by Constantinides [9] and Lehtinen and Renfors
[31] that this conjecture may be violated in practical situations. Nevertheless,
if we accept it for the moment, a natural search procedure becomes appar
ent. We may divide the search into two phases. In the first phase, the system
is simulated with all but one variable having a very large precision (e.g., dou
ble precision floating point). In this way, we can find the point at which the
output constraints are violated because of quantization on this variable alone.
Repeating this for all variables provides, under the conjecture, a lower bound
on each element of the word.length vector. The second phas� of the algorithm
is invoked if the constraints are violated when these lower bounds are used as
the word.length vector. In this case, the precision of all variables is increased by
an equal number of bits until the constraints are satisfied. A variation on the
second phase is to exhaustively explore all possibilities above this lower bound,
until the constraints are satisfied [27].

The common meta-heuristics of simulated annealing and genetic algorithms
have been used for this problem-for example, by Chang and Hauck [14]
(using a linear combination of area and error as an objective function [28,40]).
While there are practical advantages to using tried-and-tested meta-heuristics
for combinatorial problems, the smooth nature of the constraints and objec
tives, as outlined previously, means that it is likely that better results can be
obtained within a fixed computation time budget by using application-specific
heuristic techniques.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 517

498 Chapter 23 ■ Precision Analysis for Fixed-point Computation

23.4 SUMMARY

This chapter introduced the fundamental problems of designing optimized
fixed-point arithmetic circuits in custom hardware, including FPGA devices. The
fixed-point number system is of widespread interest in the FPGA community
because of the highly efficient arithmetic implementations possible when com
pared to what can be achieved with floating-point arithmetic. However, much
more than with floating point, working with fixed point requires designers to
have a good grasp of the numerical robustness issues involved with their designs.
Performing such design by hand is tedious and error prone, which has motivated
the development of automatic procedures, some of which have been described
in this chapter.

The freedom in custom hardware to use multiple wordlengths in a design
creates the possibility of shaping the circuit datapath to the requirements of
the algorithm, leading to low-area, high-speed, and low-power implementa
tions. This emerging paradigm throws up a new challenge, however: wordlength
optimization.

This chapter demonstrated that wordlength determination can be considered
as a constrained optimization, and suitable models were presented for FPGA
based bit-parallel implementations, together with signal-to-noise ratio of linear
time-invariant and differentiable nonlinear time-varying systems. In each case,
we described at least one error estimation procedure in depth and discussed
related procedures and their advantages and disadvantages.

We will now consider some fruitful avenues for further research in this
field, broken down into MSB-side optimization, error modeling, and search
procedures.

The work discussed in Section 23.2 either avoids overflow completely (e.g.,
11-scaling) or reduces the probability of overflow to an arbitrary level (e.g.,
extreme value theory) without considering the effect of overflow on signal-to
noise ratio or other accuracy metrics. In algorithms where the worst-case vari
able range is much larger than the average-case range, it may make sense to
save area by allowing rare overflow and its consequent reduction in arithmetic
accuracy. This problem was discussed by Constantinides et al. [11] using a sim
ple model of the error induced by overflow, based on approximating all signals
by Gaussian random variables. The results achieved were weakened, however,
by an inability of the proposed method to accurately estimate the correlations
between overflow errors at different points within the algorithm. Further work
could provide much stronger bounds.

The analytical error-modeling approaches discussed in Section 23.3.1 can
adequately deal with linear time-invariant systems or with time-varying systems
containing only differentiable nonlinearities. This still leaves open the problem
of adequately modeling systems containing nondifferentiable nonlinearities.
This is a serious omission, as it includes any algorithm containing condition
ally executed statements, where the condition is a logical expression contain
ing variables generated by the algorithm itself (in the case where the variables

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 518

23.4 Summary 499

are external inputs, this can be viewed as a time-varying differentiable system).
Further work incorporating the results from the analysis of nonlinear dynamical
systems is likely to shed new light here.

Both heuristic and optimal search procedures were discussed in Section
23.3.2. One of the limitations of the optimal approach from Constantinides et
al. [10] is that is has relied on coercing inherently nonlinear constraints into a
linear form, resulting in a large ILP problem. Branch-and-bound, or other com
binatorial search procedures, on top of bounding procedures from the more
general field of nonlinear mathematical programming may be able to provide
optimal results for significantly larger problems. Further effort is also called for
in the development of heuristic search procedures. None of the heuristics pre
sented thus far can guarantee a bounded distance to optimality, although under
certain error metrics the wordlength optimization problem is approximatible in
this sense. It would be useful to concentrate efforts on heuristics that do provide
these guarantees.

It is my belief that, apart from a practical design problem, the problem
of wordlength optimization has much to offer in terms of understanding the
numerical properties of algorithms. The earliest contributions to this subject
can be traced back to two giants of computing, Alan Turing [39] and John von
Neumann [33]. At the time, IEEE standard floating point was nonexistent, and it
was necessary to carefully design the architecture around the algorithm. FPGA
based computing has reopened this method of design by giving an unprece
dented degree of freedom in the implementation of numerical algorithms.

References

[1] C. Alippi. Randomized algorithms: A system-level poly-time analysis of robust com
putation. IEEE Transactions on Computers 51(7), 2002.

[2] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1986.

[3] A. D. Booth. A signed binary multiplication technique. Quarterly Journal Mechanical
Applications of Mathematics 4(2), 1951.

[4] A. Benedetti, P. Perona. Bit-width optimization for configurable DSPs by multi
interval analysis. Proceedings of the 34th Asilomar Conference on Signals, Systems
and Computers, 2000.

[5] M.-A. Cantin, Y. Savaria, P. Lavoie. An automatic word length determina
tion method. Proceedings of the IEEE International Symposium on Circuits and
Systems, 2001.

[6] M.-A. Cantin, Y. Savaria, P. Lavoie. A comparison of automatic word length opti
mization procedures. Proceedings of the IEEE International Symposium on Circuits
and Systems, 2002.

[7] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Truncation noise in fixed-point
SFGs. IEE El.ectronics Letters 35(23), November 1999.

[8] G. A. Constantinides, P. Y. K. Cheung, W. Luk. The multiple wordlength paradigm.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April-May 2001.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 519

500 Chapter 23 • Precision Analysis for Fixed-point Computation

[9] G. A. Constantinides. High-level Synthesis and Wordlength Optimization for Digital
Signal Processing Systems, Ph.D. thesis, University of London, 2001.

[10] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Optimum wordlength allocation.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2002.

[11] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Synthesis of saturation arith
metic architectures. ACM Transactions on Design Automation of Electronic Systems
8(3), 2003.

[12] G. A. Constantinides, P. Y. K. Cheung, W. Luk. Synthesis and Optimization of DSP
Algorithms, Kluwer Academic, 2004.

[13] M. Chang, S. Hauck. Precis: A design-time precision analysis tool. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, 2002.

[14] M. Chang, S. Hauck. Automated least-significant bit datapath optimization for
FPGAs. Proceedings of the IEEE Symposium on Field-Programmable Custom Com
puting Machines, 2004.

[15] G. A. Constantinides. word.length optimization for differentiable nonlinear sys
tems. ACM lransactions on Design Automation for Electronic Systems, January 2006.

[16] G. A. Constantinides, G. J. Woeginger. The complexity of multiple word.length
assignment. Applied Mathematics utters 15, 2002.

[17] G. DeMicheli. Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
[18] P. D. Fiore. Lazy rounding. Proceedings of the IEEE Workshop on Signal Processing

Systems, 1998.
[19] C. Fang, T. Chen, R. Rutenbar. Floating-point error analysis based on affine arith

metic. Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003.

[20] J. Hwang, B. Milne, N. Shirazi, J. Stroomer. System level tools for DSP in FPGAs.
In R. Woods and G. Brebner, eds., Processing Field Programmable Logic, Springer
Verlag, 2001.

[21] K. Hwang. Computer Arithmetic: Principles, Architecture and Design, Wiley, 1979.
[22] IEEE Standard for Binary Floating-point Arithmetic (ANSI/IEEE Standard 991),

1986.
[23] IEEE Standard for VHDL Register 'Jransfer Level (RTL) Synthesis (IEEE Standard

1076.6), 1999.
[24] C. Inacio, D. Ombres. The DSP decision: Fixed point or floating? IEEE Spectrum

33(9), September 1996.
[25] S. Kim, K. Kum, W. Sung. Fixed-point optimization utility for C and C++ based

digital signal processing programs. IEEE 'Jransactions on Circuits and Systems II
45(11), November 1998.

[26] S. Kotz, S. Nadarajah. Extreme Value Distributions: Theory and Applications, Impe
rial College Press, 2000.

[27] K.-I. Kum, W. Sung. Combined wordlength optimization and high-level synthesis
of digital signal processing systems. IEEE 'Jransactions on Computer-Aided Design
20(8), August 2001.

[28] D.-U. Lee, A. Gaffar, R. Cheung, 0. Mencer, W. Luk, G. A. Constantinides. Accuracy
guaranteed bit-width optimization. IEEE 'Jransactions on Computer-Aided Design of
Integrated Circuits and Systems, 2006.

[29] B. Liu. Effect of finite word length on the accuracy of digital filters-A review.
IEEE 'Jransactions on Circuit Theory 18(6), 1971.

[30] H. Levy, D. W. Low. A contraction algorithm for finding small cycle cutsets. Journal
of Algorithms 9, 1988.

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 520

23.4 Summary 501

[31] V. Lehtinen, M. Renfors. Truncation noise analysis of noise shaping DSP systems
with application to CIC decimators. Proceedings of the European Signal Processing
Conference, 2002.

[32] S. K. Mitra. Digital Signal Processing, McGraw-Hill, 1998.
[33] J. von Neumann, H. H. Goldstine. Numerical inverting of matrices of high order.

Bulletin of the American Mathematics Society 53, 1947.
[34] E. Ozer, A. Nisbet, D. Gregg. Stochastic bit-width approximation using extreme

value theory for customizable processors. Proceedings of the International Confer
ence on Compiler Construction, 2004.

[35] A. V. Oppenheim, R. W. Schafer. Digital Signal Processing, Prentice-Hall, 1975.
[36] A. V. Oppenheim, C. J. Weinstein. Effects of finite register length in digital filtering

and the fast fourier transform. IEEE Proceedings 60(8), 1972.
[37] W. Sung, K. Kum. Simulation-based wordlength optimization method for fixed

point digital signal processing systems. IEEE Transactions on Signal Processing
43(12), December 1995.

[38] A. S. Sedra, K. C. Smith. Microelectronic Circuits, Saunders, 1991.
[39] A. Turing. Rounding-off errors in matrix processes. Quarterly Journal of Mechan

ics 1, 1948.
[40] S. A. Wadekar, A. C. Parker. Accuracy sensitive wordlength selection for algorithm

optimization. Proceedings of the International Conference on Computer Design, Octo
ber 1998.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 521

DISTRIBUTED ARITHMETIC

· Rajeevan Amirtharajah
Department of Electrical and Computer Engi,neering
University of California-Davis

CHAPTER 24

Distributed arithmetic (DA) [1, 2] is a computation algorithm that performs
multiplication using precomputed lookup tables (LUTs) instead of logic. It is
well suited to implementation on homogeneous field-programmable gate arrays
(FPGAs) because of its high utilization of the available LUTs. It may also have
advantages for modem heterogeneous FPGAs that contain built-in multipliers
because it is area efficient for implementing long digital filters. DA targets the sum
of-products (or vector dot product) operation, and many digital signal processing
(DSP) tasks such as filter implementation, matrix multiplication, and frequency
transformation can be reduced to one or more sum-of-products computations.

24.1 THEORY

The theory behind DA is based on reorganizing the vector dot product operation
around the binary representation of the vector elements [2]. Suppose that X is
the vector of input samples and A is a constant vector of filter coefficients, corres
ponding to the taps of a finite impulse response (FIR) filter. Vectors X and A each
consist of M elements Xk and Ak. The dot product y of X and A (corresponding
to the convolution of X with the FIR impulse response) can be written as

(24.1)

We can represent each element of the input sample vector X in N-bit 2's com
plement notation. Then equation 24.1 can be expressed as

(24.2)

where bk(N-1) is the sign bit of the input sample Xk in N-bit 2's complement
notation, and b1cn is the nth bit of input sample Xk. The possible values of bki

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 522

504 Chapter 24 • Distributed Arithmetic
are either 0 or 1. Equation 24.2 can be further rearranged into equation 24.3 by multiplying out the factors and changing the order of the summation:

y = - Mt
l Akbk(N-1)2N-l + Nt

2 ['r.1 Akbkn]2n
= Zsign +Zn1

k=O n=O k=O

(24.3)
Consider each term in the brackets of the second summation in equation 24.3, labeled Zno in the following:

M-1Zno = L Akbkn (24.4)
k=O

where term Zno has 2M possible values because bkn is either 1 or 0. Therefore, each summation term Akbkn can have the value of either Ak or 0. Instead of using a multiplier to compute any of these 2M possible values whenever necessary, we can precompute them and store them in a LUT with depth 2M. The contents of the LUT are then addressed directly by the bit-serial input data, [b0n , bin , b2n , . . . bMn], corresponding to the nth bits of each element Xk of input vector X. Multiplication by the factor 2n in equation 24.3 can be realized by a shifter and the addressed LUT contents shifted and accumulated to form term Zn 1 in (N - 1) cycles. The sign term Zsign can be handled in the same way with additional circuitry to implement subtraction; it takes one additional clock cycle. The final result y is formed after N cycles. Note that, if the filter length is greater than the bit width of the input data (i.e., M > N), DA computes the final result in fewer cycles than an implementation using a single multiply-accumulate functional unit. However, because the size of the LUT grows exponentially in the number of vector elements (2M), most practical implementations use multiple LUTs and adders to combine partial dot products into the final result.

24.2 DA IMPLEMENTATION

A simple DA implementation is shown in Figure 24.1. It requires a 16-bit shift register for the input vector, a 16-entry LUT, an adder/subtractor, and an accumulator (Result) for the output. The x2 operation is handled purely by wiring. This unit is a direct implementation of the DA algorithm described in the preceding section, and it is capable of computing the dot product of a 4-element vector X and a constant 4-element vector A.In the figure the four 4-bit-wide elements of X are fed into the address decoder in most significant bit (MSB) first order to select the appropriate LUT row contents. The selected content is added with the left-shifted version of the previous
RESULT value to form the current RESULT value. Ts is the sign bit timing signal that controls the add/subtract operation; when Ts is high, the current LUT content is subtracted from the left-shifted version of the previous result. The final vector dot product is obtained in four cycles. Shifting in the bit vector

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 523

24.2 DA Implementation 505

0

AO

A1

� "31 "32 "33
AO+A1

X3: A2

A2+AO

X2: �o �1 �2 �3 A2+A1

A2+A1+AO

b10 b11 b12 b13
A3

X1: A3+AO

A3+A1

Xo: boo bo1 bo2 bc,3 A3+A1+AO

A3+A2

A3+A2.+AO

A3+A2.+A1

A3+A2+A1+AO

+!-

Result

y

FIGURE 24.1 ■ A simple implementation of distributed arithmetic.

least significant bit (LSB) first also produces the correct final value and has the
advantage of eliminating long carry propagations when accumulating the inter
mediate results.

The only modifications to Figure 24.1 required for this alternative are to
reverse the bits of vector Xin, the shift register, and replace the left shift by
1 bit and the right shift by 1 bit. Various other modifications to this structure
are possible. For example, the input sample shift register can be serial in/serial
out or parallel in/serial out depending on the application.

LUT size can be a determining factor in the total hardware cost of a DA
implementation. It is possible to modify the structure in Figure 24.1 to reduce
the table size by a factor of 2. To achieve this reduction, consider a different
representation of the input data samples Xk :

(24.5)

The 2's complement representation of the negative of Xk can be expressed as

N-2 -
N 1 � --Xk = -bk(N-1) 2 - + i.J bkn 2

n + l
n=O

(24.6)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 524

506 Chapter 24 ■ Distributed Arithmetic

where each bit of Xk has been complemented and a 1 has been added to the
complemented bits. Plugging equation 24.6 into equation 24.5 yields

(24.7)

Each difference term (bkn -bkn) (for n = 0 to N -1) in equation 24. 7 can take
on values of+ 1 or -1. This alternate representation for Xk is convenient because,
in the resulting summation for the dot product, each linear combination of Ak

has a corresponding negative linear combination. Only one of these combina
tions needs to be stored in the LUT, with the negative being applied during
operation using the subtractor. Substituting equation 24. 7 into equation 24.1
and rearranging terms yields the following new expression for the result of the
dot product y:

where

N-1
y = .L, Q(bn)+Q(O)

n=O

1 M-1 _
Q(bn) =

2
.L, Ak (bkn -bkn) 2n , n =/ N-1
k=O
1 M-1

Q(bN-1) = -
2

.L, Ak (bk(N-1)-bk(N-1)) 2N-l, n = N-1
k=O

1 M-1
Q(O) = -- E Ak 2 k=O

(24.8)

(24.9a)

(24.9b)

(24.9c)

Note that the expressions for Q(bn) and Q(bN_1) have 2M-l possible magni
tudes, with signs determined by the input bits, and that the computation of y
requires an additional register to hold the constant term Q(O). This leads to the
reduced DA memory implementation shown in Figure 24.2, where the exclusive
or (XOR) gates are required to recode the addresses to access the appropriate
LUT row and to control the timing of the sign bit into the adder/subtractor.
The XOR gates, the initial condition register for Q(O), and a 2-input multi
plexer are the only additional hardware required to reduce the memory size by a
factor of 2.

The implementations in both Figures 24.1 and 24.2 require N clock cycles to
compute the final result, although additional cycles may be needed to match the
throughput of the DA unit to other functional units in the system for a particular
application. In Section 24.3 we will discuss mapping these basic structures onto
FPGA fabrics. We will address the issue of performance improvement (by reduc
ing the number of required clock cycles and increasing the clock frequency) in
Section 24.4.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 525

24.3 Mapping DA onto FPGAs 507

-1/2(A0+A1+A2+A3)

-1/2(A0+A1 +A2-A3)

-1/2(A0+A1-A2+A3)

-1/2(A0+A1 -A2-A3)

-1/2(A0-A1 +A2+A3)

-1/2(A0-A1 +A2-A3)

-1/2(A0-A1-A2+A3)

y

Initial
condition
register

QO

FIGURE 24.2 ■ Reduced DA memory implementation.

24.3 MAPPING DA ONTO FPGAs

Consider mapping a 16-tap FIR filter (M = 16) operating on 16-bit data (N = 16)
onto an FPGA fabric based on 4-input LUTs. As discussed earlier, DA's primary
drawback is that the size of the LUTs grows exponentially in the number of filter
coefficients (or filter taps). If we want to use 16-bit data to represent the precom
puted values, we need 16 x 216

= 1 Mbit of memory. To limit this growth, long
filters can be partitioned into several smaller DA units whose outputs are then
combined using a tree of 2-input adders, as shown in Figure 24.3. This partitions
the 16 filter taps Ao to A1s among four DA units, each of which incorporates N
1-bit-wide 4-input LUTs.

The partitioning is chosen to correspond to the LUT size of the individual
logic elements or CLBs. If the filter taps are symmetric (which they often are
for typical signal-processing applications), the memory size can be reduced by
a further factor of 2 by summing the appropriate elements of the input vector
Xk using serial addition and using the bits of the resulting sum to address the
LUTs. In addition to the serial adder hardware, this memory reduction comes
at the expense of an additional clock cycle of latency before the final result is
valid.

As CMOS technology has scaled and the complexity of individual CLBs has
increased with succeeding FPGA generations, the hardware cost of implementing
our example filter has shrunk dramatically. Based on an early implementation
of an 8-tap, 8-bit filter using DA on a Xilinx 3042 FPGA [3], our example
would consume approximately 120 CLBs, including control logic, even using the

X2: ~o ~1 ~ ~3

X1: b10 b11 b12 b13

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 526

508 Chapter 24 ■ Distributed Arithmetic

DA

UnitO

DA

Unit 1

y

DA

Unit2

FIGURE 24.3 ■ A 16-tap FIR filter mapped onto multiple DA units.

DA

Unit 3

symmetry of the filter coefficients to reduce the memory requirements. This would
consume roughly the entire FPGA chip. Resource usage would be dominated
by the input shift registers (60 CLBs) since this older FPGA architecture only
allowed the local CLB flip-flops to be used in a shift configuration.

In contrast, a recent FPGA architecture encompasses four logic "slices" in
each CLB, where two slices each roughly correspond to an entire CLB in the
older architecture [6]. Because LUTs in Xilinx Spartan-3E FPGAs can be con
figured as 16 x 1 shift registers, the number of CLB resources to implement
the data memory for DA is drastically reduced. Each logic slice also contains
carry propagation logic for efficient implementation of adder circuits, which
can be used to increase the speed of DA computation, as will be shown later.
Implementing the example filter on a Spartan-3E FPGA requires approximately
113 slices, corresponding to 29 CLBs. This is under 12 percent of the total num
ber of slices available in the smallest member of the 3S100E FPGA family.

Further enhancements to the architecture building blocks may allow for more
efficient DA implementation in the future. For example, the potential of hetero
geneous or coarse-grained FPGAs to support DA more efficiently by incorpo
rating small adders and accumulators directly in the CLB is currently being
explored [7].

24.4 IMPROVING DA PERFORMANCE

Two approaches can be taken to improve DA performance on an FPGA platform.
First, the design can be modified to reduce the number of cycles required to
compute the final result. Second, the cycle time can be decreased by reducing

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 527

Xa:

X2:

X1:

Xo: bo1

24.4 Improving DA Performance 509

the number of logic stages in the critical path of the computation. Examples of
both approaches will be discussed in this section.

A simple approach to speeding up DA computation is to recognize that multi
ple bits from each input vector elementXk can be used to address multiple LUTs
in each clock cycle (because addition is associative, we can perform the sum in
equation 24.3 using any combination of partial sums that is convenient). This
leads to an architecture like the one shown in Figure 24.4, which uses 2 bits of
the input data vector elements at a time. The LUTs are identical because they
contain the same linear combinations of filter coefficients Ak. The LUT outputs
must be scaled by the correct exponent of 2 to maintain the significance of the
bits added to the accumulated result (the x2 unit in Figure 24.4). Only two
cycles are required to compute the result y for this implementation, instead of
four cycles for the implementation in Figure 24.2. For longer bit-width input
data, this idea can be extended to using more bits at a time.

The modification just described provides the benefit of a linear decrease in the
number of clock cycles at the expense of a linear increase in LUT memory size.
In addition, the number of inputs and the bit width of the adder/subtractor must
increase. Mapping this approach onto an FPGA involves a trade-off between the
routing resources consumed and the speed of the computation, as the input data
bit vectors must be divided into subwords and distributed to multiple CLBs. In
addition, multiple LUT outputs must be accumulated at a single destination to
form the result, which consumes further routing.

Following a derivation similar to that presented by White [2], we can analyze
this trade-off quantitatively. Suppose that we are implementing an M-tap filter

-1/2(A0+A1 +A2+A3) -1/2(A0+A1+A2+A3)

-1/2(A0+A1+A2-A3)
Xa: bao b:32 lii -1/2(A0+A1 +A2-A3)

"O

-1/2(A0+A1-A2+A3) 8
Q)

-1/2(A0+A1-A2+A3) Initial

X2: �o �2
"O condition -1/2(A0+A1-A2-A3) "' -1/2(A0+A1-A2-A3)

-1/2(A0-A1 +A2+A3) � -1/2(A0-A1 +A2+A3)
register

"O

X1: b10 b12 -g
-1/2(A0-A1+A2-A3) -1/2(A0-A1 +A2-A3) QO

i -1/2(A0-A1-A2+A3) -1/2(A0-A1-A2+A3)

Xo: boo bo2
-1/2(A0-A1-A2-A3)

boa

y

FIGURE 24.4 ■ Two-bit-at-a-time reduced memory DA implementation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 528

510 Chapter 24 ■ Distributed Arithmetic

using an N-bit number representation and that the computation is proceeding
L bits at a time. Further suppose that the LUT data is W bits wide. Computing
the result requires that, in each cycle, MN bits are shifted in and WL bits are
read out, and NIL clock cycles must pass. The number of wires Nw is therefore

MN
Nw =

NIL
+WL = (M+W)L (24.l0a)

If we define the relative importance of minimizing routing resources to
minimizing latency as the ratio r, then

NIL N
r = -- = -------c-

Nw (M+W)L2
(24.lOb)

and we can find the L that satisfies our design criterion of relative importance r:

(24.l0c)

Now suppose that an application demands low latency and that routing
resources are not too tightly constrained; then, for r = 2, 32-bit input data
(N = 32), a 4-tap FIR filter (M = 4), and 4-bit LUT data (W = 4); this yields L = 2.
The desired DA implementation takes the input data 2 bits at a time to address
the LUTs, completing a dot product computation in 16 cycles.

In addition to exploiting parallelism to speed up the DA computation, it is
possible to employ various levels of pipelining. As we saw in Figure 24.1, the
critical path involves decoding the address presented by the data shift regis
ters, accessing the row from the LUT, and propagating the carry through the
adder/subtractor while meeting the setup time constraints for the accumula
tor. If the implementation spans multiple CLBs, there is a potentially signifi
cant interconnect delay in this critical path in addition to the combinational
logic delay. An obvious way to pipeline the simple implementation is to make
the LUT synchronous and latch the outputs before they are fed to the adder/
sub tractor.

An alternative approach is to use carry save addition to reduce the carry prop
agation chain in the critical path [8]. The key modification to Figure 24.1 is
to use a different structure for the adder/subtractor and to perform the com
putation in LSB first order. Instead of using a carry propagate adder to accu
mulate the entire result in one clock cycle, the adder/subtractor is pipelined
at the bit level and the sum and carry outputs are stored in flip-flops at each
cycle. Each full adder takes one input bit from the LUT output and one from
the sum output of the next most significant full adder, automatically account
ing for the x2 scaling required in Figure 24.1. Assuming that the accumula
tor is wider than N bits, after N clock cycles the least significant N bits of
the final result are stored in the LSBs of the accumulator while the remain
ing MSBs require one more carry propagating addition to produce the final
result. This operation adds one extra clock cycle to the latency of the DA
computation.

L= j ✓r(M~W) l

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 529

24.5 An Application of DA on an FPGA 511

Most modem FPGA fabrics have dedicated paths for high-speed carry prop
agation. Given that most DA designs require accumulators with not too many
more than N bits, the final carry propagation is typically not the critical path
for the entire computation. The throughput is determined by the speed of the
carry save addition in the accumulator.

Although using carry save addition at the single-bit level results in the greatest
speed improvement, it is also the most resource intensive in terms of logic slices
and CLBs. A speed versus area trade-off can be achieved by partitioning the
adder/subtractor into multiple subcircuits, each of which propagates a carry
across p bits (p = 1 in the example just described). Speedup factors of at least
1.5 have been observed over the traditional design shown in Figure 24.1 [8].

24.5 AN APPLICATION OF DA ON AN FPGA

In addition to FIR filters, a common DA application on FPGAs is acceleration
of frequency transformations such as the discrete cosine transform (OCT),
which is a critical component of the MPEG video compression and JPEG
image compression standards. The two-dimensional OCT can be implemented
as two one-dimensional DCTs and a matrix transposition. Each DCT can be
implemented as a matrix-vector multiplication, which is easy to implement
on an FPGA using DA because it can be decomposed into a set of vector dot
products.

In one example, using DA instead of multiply-accumulate for the OCT res
ulted in a factor of 2.4 reduction in area for the FPGA implementation (on a
Xilinx XC6200 FPGA) [9]. Using DA and pipelining of the routing to improve the
algorithm performance, this implementation was fast enough to process VGA
resolution images (640 x 480 pixels) at 25 frames per second-approximately
four times faster than a full software implementation running on a microproces
sor. The entire two-dimensional OCT consumed a 64 x 78 array of logic blocks
on the chip (about 30 percent of the total FPGA area) and the DA portions of the
OCT consumed 3648 logic blocks, or about 70 percent of the two-dimensional
DCT total. The average utilization of each logic block for the DA components
was 61 percent. This high level of utilization was a result of careful floorplanning
in addition to DA's inherent suitability to FPGA implementation.

References

[1] Xilinx, Inc. The Role of Distributed Arithmetic in FPGA-based Signal Processing,
Xilinx, Inc. (http://www.xilinx.com/appnotes!theoryl.pdf), January 2006.

[2] S. A. White. Applications of distributed arithmetic to digital signal processing:
A tutorial review. IEEE ASSP Magazine 6(3), July 1989.

[3] L. Mintzer. FIR filters with field-programmable gate arrays. Journal of VLSI Signal
Processing 6, 1993.

[4] G. Roslin. A guide to using field-programmable gate arrays (FPGAs) for application
specific digital signal processing performance. Xilinx white paper, 1995.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 530

512 Chapter 24 ■ Distributed Arithmetic

[SJ W. Wolf. FPGA-based System Design (Modem Semiconductor Design Series),
Prentice-Hall, 2004.

[6] Xilinx, Inc. Spartan-3E FPGA Family: Complete Data Sheet, DS312 (v2.0) (http://
www.xilinx.com), November 2005.

[7] B. Calhoun, F. Honore, A. Chandrakasan. A leakage reduction methodology for
distributed MTCMOS. IEEE Journal of Solid-State Circuits 39(5), May 2004.

[8] R. Grover, W. Shang, Q. Li. A faster distributed arithmetic architecture for FPGAs.
Proceedings of the 10th ACM International Symposium on Field-Programmable Gate
Arrays, February 2002.

[9] R. Woods, D. Trainor, J.-P. Heron. Applying an XC6200 to real-time image
processing. IEEE Design & Test of Computers 15(1), January/March 1998.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 531

CORDIC ARCHITECTURES

FOR FPGA COMPUTING

Chris Dick

Advanced Systems Technology Group
DSP Division of Xilin.x, Inc.

CH APTER 25

Because field-programmable gate arrays (FPGAs) are often used for realizing
complex mathematical calculations, the FPGA designer is in need of a set of
math libraries to support such implementations. The literature is rich with algo
rithmic options for evaluating the type of math functions (e.g., sine, cosine, sinh,
cosh, arctangent, atan2, logarithms) that are typically found in a math library
for general-purpose and DSP processors. The enormous flexibility of the FPGA
coupled with the vast suite of algorithmic options for computing math functions
can make the development of an FPGA math library a challenging task.

Common approaches to evaluating math functions include polynomial
approximation-based techniques [13] and Newton-style iterations [13], to name
a couple. One of the most useful and flexible approaches available to the hard
ware designer for developing high-performance computing hardware is the
CORDIC (COordinate Rotation Digital Computer) algorithm.

CORDIC is unparalleled in its ability to encapsulate a diversity of math func
tions in one basic set of iterations. It can be viewed as the Swiss Army Knife,
so to speak, of arithmetic-that is, a single hardware architecture, with very
minimal control overhead, having the ability to compute sine, cosine, cosh,
sinh, atan2, square root, and polar-to-rectangular and rectangular-to-polar con
versions, to name only a few functions.

It is in coordinate transformations that the algorithm comes into its own.
In both, multi-operand input and multi-element output vectors are involved.
There are a plethora of alternatives for realizing, say, division in an FPGA, and
most of the CORDIC alternatives provide good hardware efficiency. However,
the algorithm remains unrivaled when it comes to processing multi-element 1/0
vectors, as is the case when converting from Cartesian to polar coordinates or
vice versa. CORDIC falls into the class of shift-and-add algorithms-it is a mul
tiplierless method dominated by additions. FPGAs are very efficient at realizing
arbitrary precision adders, and so the CORDIC algorithm is in many ways a nat
ural fit for course-grained FPGA architectures such as the Xilinx Virtex-4 family
of devices [41].

This chapter begins with a brief tutorial overview of the CORDIC algorithm.
Because most hardware realizations of CORDIC employ fixed-point arithmetic,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 532

514 Chapter 25 ■ CORDIC Architectures for FPGA Computing

design considerations for quantizing the datapath and selecting a suitable
number of iterations are provided. Approaches for architecting FPGA CORDIC
processors are then presented. Various options are discussed that highlight
the use of FPGA features such as embedded multipliers, embedded multiply
accumulator (MACC) tiles, and logic fabric to deliver hardware realizations that
provide various trade-offs between throughput, latency, logic fabric utilization,
and numerical accuracy. A brief overview of the System Generator [38] design
flow used to produce our implementations is also provided. Design considera
tions for producing very high throughput (450-500 MHz) implementations in
Virtex-4 [41] devices are presented as well.

25. 1 CORDIC ALGORITHM

The CORDIC algorithm was first published by Voider [35] in 1959 as a technique
for efficiently implementing the trigonometric functions required for real-time
aircraft navigation. Since first being published, the method has been extensively
analyzed and extended to the point where a very rich set of functions is acces
sible from the one basic set of equations. The algorithm is dominated by bit
shifts and additions and so was an ideal match for early-generation compu
ting technology in which multiplication and division were expensive in terms of
computation time and physical resources. Voider essentially presented iterative
techniques for performing translations between Cartesian and polar coordinate
systems (vectoring mode), and a method for realizing a plane rotation (rotation
mode) using a series of arithmetic shifts and adds.

Since its publication, the CORDIC algorithm has been applied to many diffe
rent applications and has been used as the cornerstone of the arithmetic engine
in many VLSI signal-processing implementations [34]. It has been used exten
sively for computing various types of transforms, including the fast Fourier
transform (FFT) [10, 11], the discrete cosine transform [4], and the discrete Hart
ley transform [3]. And it has found widespread use in realizing various classes
of digital filters, including Kalman filters [31], adaptive lattice structures [21],
and adaptive nulling [30]. A large body of work has been published on CORDIC
based approaches for implementing various types of linear algebra operations,
including singular value decomposition (SVD) [1], Given's rotations [30], and
QRD-RLS (recursive least squares) filtering [14].

A brief tutorial style treatment of the basic algorithm is provided here; its
FPGA implementation will be discussed in subsequent sections.

25.1. 1 Rotation Mode

The CORDIC algorithm has two basic modes: vectoring and rotation. These
can be applied in several coordinate systems, including circular, hyperbolic, and
linear, to compute various functions such as atan2, sine, cosine, and even divi
sion. We begin our treatment by considering the problem of constructing an effi
cient method to realize a plane rotation of the vector (x5 , y5) through an angle
0 to produce a vector (xr, Yr), as shown in Figure 25.1.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 533

25.1 CORDIC Algorithm 515
y

(Xs, ys)
Input vector

X

FIGURE 25.1 ■ Plane rotation of the vector (x., y5) through an angle 0.

The rotation is formally captured in matrix form by equation 25.1.
[Xf] = [c?s0 - sin0] [Xs] =ROT(S) [Xs]Yf sm0 cos0 Ys Ys

which can be expanded to the set of equations in equation 25.2.
Xf =XsCOS0 -y5 sin0

Yr= Xs sine +Ys cos0

(25.1)

(25.2)
The development of a simplified approach for producing rotation through theangle 0 begins by considering it not as one lumped operation but as the resultof a series of smaller rotations, or micro-rotations, through the set of angles <Xiwhere

0 =l:,<Xi (25.3)
i=O

The rotation can now be cast as a product of smaller rotations, or
ROT(0) = ITROT(<Xi) (25.4)

If these values <Xi are carefully chosen, we can provide a very efficient computation structure. Equation 25.2 can be modified to reflect a micro-rotationROT(<Xi), leading to equation 25.5.
Xi+l = Xi COS<li -yi sin<Xi Yi+l =Xisin<Xi +YiCOS<li (25.5)

where (x0, Yo)= (x5,y5). Factoring permits the equations to be expressed as

Xi+l = COS<li (Xi -yitan<Xi)Yi+l = COS<Xi(yi +Xitan<Xi) (25.6)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 534

516 Chapter 25 ■ CORDIC Architectures for FPGA Computing

which positions the iterative update as the product of two procedures: a scaling
by the cos CJ.j term and a similarity transformation, or scaled rotation.

The next significant step that leads to an algorithm that lends itself to an
efficient hardware realization is to place restrictions on the values that CJ.j can
take. If

tan-1 (2-i) C1.j = CJi

where CJi E {-1, + l}, then equation 25.6 can be written as

Xi+l = COSCJ.j (xi-C5iYi2-i)
Yi+l = COSCJ.j (_yi +C5iXi2-i)

The purpose of CJi will be explained shortly.

(25.7)

(25.8)

With the exception of the scaling term, these equations can be implemented
using only additions, subtractions, and shifts. In the set of equations that are
typically presented as the CORDIC iterations, and following the lead of Volder
[35], the scaling term is usually excluded from the defining equations to produce
the modified set of equations

xi+1 = xi - CJiYi2-i
Yi+l =Yi+ CJixi2-i (25.9)

To determine the value of these CJi we introduce a new variable, z (the angle
variable). The recurrence on z is defined by equation 25.10.

t -1 (2-i)Zi+l = Zi - cri an (25.10)

If the z variable is initialized with the desired angle of rotation 0-that is,
zo-it can be driven to O by conditionally adding or subtracting terms of the
form tan-1 (2-i) from the state variable z. The conditioning is captured by the
term CJi as a test on the sign of the current state of the angle variable Zi-that is,

(25.11)

Driving z to O is actually an iterative process for decomposing 0 into a
weighted linear combination of terms of the form tan-1 (2-i). As z goes to 0,
the vector (xo, Yo) experiences a sequence of micro-rotation extensions that in
the limit n - oo converge to the coordinates (xr, Yr).

{
1 ifzi2:0

cri = -1 if Zi < 0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 535

25.1 CORDIC Algorithm 517
The complete algorithm is summarized in equation 25.12.

i=O

Xo = Xs
Yo =Ys
Zo = 0

2-i Xi+l = Xi -CSiYi

Yi+l =Yi + crixi2-i
Zi+l = Zi-critan-l (2-i)

{ 1 if Zi 2: 0cri = -1 ifzi<O

(25.12)

which is easily realized in hardware because of the simple nature of the
arithmetic required. The only complex function is the tan-1, which can be precomputed and stored in a memory. Because of the manner in which the updates are directed, this mode of theCORDIC algorithm is sometimes referred to as the z-reduction mode. Figure 25.2shows the signal flow graph for the algorithm. Observe the butterfly-style architecture in the cross-addition update.
25.1.2 Scaling Considerations

Because the scaling term coseli has not been carried over into equation 25.12,the input vector (x0,y0) not only undergoes a rotation but also experiences scaling or growth by a factor 1/cos<Xi at each iteration. That is,
1 . 1/2R- 1 = v ·R· = --R· = (1 +cr�2-21) R-

1+ L>-c,1 I COS<Xi ! I I

= (1 + 2-2i) 112 Ri

(25.13)

where Ri = lxi +iYi l designates the modulus of the vector at iteration i, and thesubscript c associates the scaling constant with the circular coordinate system.Figure 25.3 illustrates the growth process at each of the intermediate CORDICiterations as (xo, Yo), which is translated to its final location (xr, Yr). For an infinite number of iterations the scaling factor is
Kc= fi (1 + 2-2i) 112"' 1.6468

t=O

(25.14)
It should also be noted that, since cri E { -1, + 1}, the scaling term is a constantthat is independent of the angle of rotation. As captured by equation 25.4, the angle of rotation 0 is decomposed intoan infinite number of elemental angles <Xi, which implies that an infinite number of iterations is theoretically required. In practice, a finite number of iterations, n, is selected to make the system realizable in software or hardware.Application of n iterations translates (xo , Yo) to (xn , Yn) rather than to (xr, Yr)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 536

518 Chapter 25 ■ CORDIC Architectures for FPGA Computing

Micro-rotation angle
storage

�

,,,' 2-1

Barrel shifter <,,,

Yo

Unit delay
(register)

',, 2-i

Multiply Adder

Initial
condition 8

SGN

FIGURE 25.2 ■ A signal flow graph for CORDIC vector rotation.

y

Final rotation after
infinite number of
iterations

' (x,, Yr)

' (x
n
, Y

n
) Final rotation after

n iterations

X

FIGURE 25.3 ■ Each iteration of a CORDIC rotation introduces vector growth by a factor of
1 = (1 +c:r?2-2;)1/2.
cos a;

'

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 537

25.1 CORDIC Algorithm 519
as shown in Figure 25.3. The rotation error iarg (xr+iYr) -arg(xn +iYn)I hasan upper bound of <Xn-t, which is the smallest term in the weighted linearexpansion of 0. For an infinite-precision arithmetic implementation of the system of equations, each iteration contributes one additional effective fractional bit to theresult. Most hardware implementations of the CORDIC algorithm are realized
using fixed-point arithmetic, and, as will be discussed soon, the relationshipbetween the number of effective output binary result digits is very different fromthat of a floating-point realization of the algorithm.

25.1.3 Vectoring Mode

The CORDIC vectoring mode is most commonly used for implementing a conversion from a rectangular to a polar coordinate system. In contrast to rotation
mode, where Z is driven to 0, in the vectoring mode the initial vector (x0, y0) is rotated until they component is driven to 0. The modification to the basicalgorithm required to accomplish this goal is to direct the iterations using the
sign of Yi· As they variable is reduced, the corresponding angle of rotation isaccumulated in the z register. The complete vectoring algorithm is captured byequation 25.15.

XO = Xs

Yo = Ys

zo = 0
2-iXi+l = Xi -CJiYi

Yi+l = Yi+ CJiXi2-i
Zi+l = Zi -(Ji tan-1 (2-i)

CJ· _ { 1 if Yi < 0
1 - -1 if Yi 2:: 0

This CORDIC mode is commonly referred to as y-reduction mode.

(25.15)

Figure 25.4 shows the results of a CORDIC vector mode simulation forarg(xs +jy5) = 7n/8 and lxs +iYs l = 1. The top plot (a) shows the true angle of the
input vector (solid line) overlaid with arg(xi +jyi), i = 1, ... , 16. We note the oscillatory behavior of (xi, Yi) about the true value of the angle. Overdamped or underdamped behavior will be produced depending on the system initial conditior.:;.The lower plot (b) shows, for this case of initial conditions, how rapidly thealgorithm can converge toward the correct solution. In fact, for many practicalapplications, a short CORDIC (small number of iterations) produces acceptableperformance. For example, in a 16-QAM {quadrature amplitude modulation) carrier recovery circuit [29] employing a Costas Loop [23], a 5-itetation CORDIC usuallyprovides adequate performance [12].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 538

520 Chapter 25 • CORDIC Architectures for FPGA Computing
I I I I I I

en" 2.8 I
- - - - - - - - � - - - - - - - -:- - - - - - - - -'- - - - - - - - .L - • - -• - - .I...•••••• .J. -• • • • •

i
..!:::::.o 2.6 - ---� ---- - ---:--- - - --- �-------- � ------- -� ------- �-- - - - --
Q)

I I I I I I
_ I I I I I I
C) I I I I I
C I I I I I I I < 2.4 - -- � -- -- ---- � ---- --- -:- - - --- -- � --- ----- � - - - - --- -� - --- --- �- --- -- -

I I I I I I I

2 4 6 8 10 12 14

Iteration number

(a)

0.2

Cl)

Cl)
0

-£. 0

0.2

0 2 4 6 8 10 12 14

Iteration number

(b)

16

16

FIGURE 25.4 ■ Convergence of CORDIC vectoring. The top plot (a) shows the true angle of the
input vector arg(xs + jy5) (solid line) overlaid with arg(x; + jy;), i = 1, ... ,16. The bottom plot
(b) is the percentage angle error as a function of the iteration number.

25. 1.4 Multiple Coordinate Systems and a Unified DescriptionAlternative versions of tp.e CORDIC engine can be defined under the circular, hyperbolic, and linear coordinate systems [13]. These use a computation similar to that of the basic CORDIC algorithm, but can provide additional functions. It is possible to capture the vectoring and rotation modes of the CORDIC algorithm in all three coordinate systems using a single set of unified equations. To do this a new variable, m, is introduced to identify the coordinate system so that

{
+

1 m= 0
-1

circular coordinates linear coordinates hyperbolic coordinates
The unified micro-rotation is

2-iXi+l = Xi - mCJiYi 2-iYi+l = Yi +CJiXi
{Zi -CJi tan-1 (2-i)Zi+l = Zi - CJitan � -l (2-i)Zi -CJi (2-1)

The scaling factor,is Km,i = (1 +m2-2i) 112 •

if m = 1 if m = -1 if m =0

(25.16)

(25.17)

. . . . '
~ ~ 7 ~ 7 ~ ~ ~ 7 •

I I I I I

I I I I I I

; 1---ff J · I · I · I · 1-1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 539

25.1 CORDIC Algorithm

TABLE 25.1 ■ Functions computed by a CORDIC processor for the circular (m = 1),
hyperbolic (m = -1), and linear (m = O) coordinate systems

Coordinate system Rotation/vectoring Initialization Result vector
1

1

0

0

-1

-1

Rotation Xo = Xs
Yo = Ys
Zo = 9
Xo = l/K1,n

Yo = 0

Zo = 9
Vectoring Xo = Xs

Yo = Ys
Zo =9

Rotation Xo = Xs

Yo = Ys

Zo = Zs

Vectoring XO = Xs

Yo = Ys
Zo = Zs

Rotation Xo = Xs

Yo = Ys

Zo = 9
Xo = l/K-1,n

Yo = 0

Zo =9
Vectoring Xo = Xs

Yo = Ys
Zo = 9

Xn = K1,n · (xs cos9- Ys sin9)
Yn = K1,n · (ys cos9 + Xs sin 9)
Zn

= 0

Xn = cos9
Yn = sin9
Zn

= 0

Xn
= K1,n· sgn(Xo)·(✓x2+y2)

Yn = 0

Zn
= 9 + tan-1 (ys

/Xs)
Xn = Xs

Yn =Ys
+XsYs

Zn
= 0

Xn = Xs

Yn
= 0

Zn = Zs + Ys/Xs

Xn = K-1,n · (xs cosh 9 + Ys
sinh 9)

Yn = K-1,n · (ys
cosh 9 + Xs sinh 9)

Zn
= 0

Xn = cosh9
Yn = sinh9
Zn

= 0
Xn = K-1,n· sgn(xo) · (✓x2- ..v2)
Yn = 0

Zn
= 9+tanh-1 (y/xs)

TABLE 25.2 ■ CORDIC shift sequences, ranges of covergence, and scale factor
bound for circular, linear, and hyperbolic coordinate systems

Coordinate system Shift sequence Convergence Scale factor
m Sm,i 9MAX Km (n----+ oo}

1 0, 1, 2, 3, 4, ... , i, ... =l.7 4 =1.64676

0 1, 2, 3, 4, 5, ... , i+l, ... 1.0 1.0

-1 1, 2, 3, 4, 4, 5, ... * =1.1 3 =0.83 816

* For m=-1, the following iterations are repeated: {4,13,40,121, ... ,k,3k+l, ... }.

521

Operating the two modes in the three coordinate systems, in combination
with suitable initialization of the algorithm variables, generates a rich set of
functions, shown in Table 25.1. Table 25.2 summarizes the shift sequences,
maximum angle of convergence 9MAX (elaborated on in a later section), and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 540

522 Chapter 25 ■ CORDIC Architectures for FPGA Computing

scaling function for the three coordinate systems. Note that each system requires
slightly different shift sequences (the sequence of i values).

25.1.5 Computational Accuracy

One of the first design requirements for the fixed-point arithmetic implementa
tion of a CORDIC processor is to define the numerical precision requirements
of the datapath. This includes defining the numeric representation for the input
operands and the processing engine internal registers, in addition to the num
ber of micro-rotations that will be required to achieve a specified numerical
quality of result. To guide this process it is useful to have an appreciation for
the sources of computation noise in CORDIC arithmetic. While CORDIC pro
cessing can be realized with floating-point arithmetic [2, 7], we will restrict our
discussion to fixed-point arithmetic implementations, as they are the most com
monly used numeric type employed in FPGA realizations.

'Iwo primary noise sources are to be considered. One is associated with the
weighted and finite linear combination of elemental angles that are used to rep
resent the desired angle of rotation 8; the second source is associated with the
rounding of the datapath variables x, y, and z. These noise sources are referred
to as the angle approximation and the rounding error, respectively.

Angle approximation error
In this discussion we assume that all finite-precision quantities are represented
using fixed-point 2's complement arithmetic, so the value F of a normalized
number u represented using m binary digits (um-tUu-2· .• uo) is

m-2

F = -Um-1 + [, Uj · 2-m+j+l
j=O

(25.18)

As will be presented next, there is a requirement in the CORDIC algorithm to
accommodate bit growth in both the integer and fractional fields of the x and y
variables. To accommodate this, the data format is enhanced with an additional
G1 and Gp integer and fractional guard bits, respectively, so that a number with
B1 + G1 and Bp + Gp bits allocated to the integer and fractional fields s and r,
respectively (sB1+c1-1sB1+c1-2 •.. sorBp+Gp-trBp+Gr2· .. ro), is expressed as

B1+G1-2 Bp+Gp
-1

F= -rB1+G1-1 ·2B1+G1-I + [, si'ii + [, ri'2-'-(Bp+Gp)+i
i=O i=O

(25.19)

Figure 25.5 illustrates the extended data format. The integer guard bits are
necessary to accommodate the vector growth experienced when operating in
circular coordinates. The fractional guard bits are required to support the word
growth that occurs in the fractional field of the x and y registers due to the
successive arithmetic shift-right operations employed in the iterative updates.
It is assumed that the input samples are represented as normalized (l · Bp)
quantities.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 541

MSBs
guard bits

G,

25.1 CORDIC Algorithm 523

Fractional
guard bits

GF

FIGURE 25.5 ■ The fractional fixed-point data format used for internal storage in the quantized
CORDIC algorithm.

There are n fixed rotation angles CJ.m,i employed to approximate a desired
angle of rotation 0. Neglecting all other error sources, the accuracy of the calcu
lation is governed by the nth and final rotation, which limits the angle approx
imation error to CJ.m,n-1• Because Cl.m,n-1 = Jntan- 1 (Jm·2-5

m,
n

-
1), the angle

approximation error can be made arbitrarily small by increasing the number
of micro-rotations n. Of course, the number of bits allocated to represent the
elemental angles CJ.m,i needs to be sufficient to support the smallest angle CJ.m,n-l•
The number representation defined iri equation 25.19 results in a least signif
icant digit weighting of 2-(Bp+Gp). Therefore, CJ.m,n-1 2: 2-(Bp+Gp) must hold in
order to represent CJ.m,n-1• Approximately n + 1 iterations are required to gene
rate Bp significant fractional bits.

Datapath rounding error
As discussed earlier, most FPGA realizations of CORDIC processors employ
fixed-point arithmetic. The update of the x, y, and z state variables according
to equation 25.12 produces a dynamic range expansion, which is ideally sup-

. ported by precisions that accommodate the worst-case bit growth. The number
of additional guard bits beyond the original precision of the input operands
can be very large, and carrying these additional bits in the datapath is gene
rally impractical. For example, in the circular mode of operation the number
of additional fractional bits required to support a full-precision calculation is
determined by the sum of the shift sequence sm,i·

If the input operands are presented as a 16.15 value (a 16-bit field width with
15 fractional bits) and 16 micro-rotations are performed, the bit growth for the

15
fractional component of the datapath is E i = 120 bits. Thus, the total number

i=O

of fractional bits required for a full-precision calculation is 120+ 15 = 135. While
FPGAs certainly provide the capability to support arbitrary precision arithmetic,
it would be highly unusual to construct a CORDIC processor with such a wide
datapath. In fact, the error in the CORDIC result vector can be maintained to a
desired value using far few fractional guard bits, as discussed next.

Rather than by accommodating the bit growth implied in the algorithm, the
dynamic range expansion is better handled by rounding the newly computed
state variables. Control over wordlength can be achieved using unbiased
rounding, simple truncation, or other techniques [26]. True rounding, while the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 542

524 Chapter 25 ■ CORDIC Architectures for FPGA Computing

preferred approach because of the smaller error introduced when compared to
truncation, can be the most area consuming because a second addition is poten
tially required. In some cases, the cost of rounding can be significantly reduced
by exploiting the carry-in port of the adders used in the implementation. Trun
cation is obviously the simplest approach, requiring only the extraction of a
bit field from the full-precision value, but it introduces an undesirable positive
bias in the final result and an error component that is twice the magnitude of
unbiased rounding. Nevertheless, truncation arithmetic is the option most fre
quently employed in FPGA CORDIC datapath design.

A simple approach to understanding the quantization effects of the CORDIC
algorithm was first presented by Walther [36]. A very complete analysis was later
published by Hu [16], with further work reported by Park and Cho [28] and Hu
and Bass [17].

For many practical applications Walther's method produces acceptable
results, and this is the approach we will use to design the FPGA implemen
tations. A brief summary of the method is presented here.

Analysis of the rounding error for the z variable is straightforward because
there are no data shifts involved in the state update, as there are with the x and
y variables. The rounding error is simply due to the quantization of the rotation
angles. The upper bound on the error is then the accumulation of the absolute
values of the rounding errors for the quantized angles a.n,i•

Datapath pruning and its associated quantization effects for the x and y varia
bles is certainly a more challenging analysis than that for the angle variable
because the scaling term involved in the cross-addition update. Nevertheless,
several extensive treatments have been published. The effects of error propa
gation in the algorithm were reported by Hu in a Cray Research publication [5]
and later extended by Hu and Bass [17]. Walther's treatment takes a slightly
simplified approach and assumes that the maximum rounding error for n itera
tions is the sum of the absolute value of the maximum rounding error associated
with each micro-rotation and the subsequent quantization that is performed to
control word growth.

The format for the CORDIC variables was shown in Figure 25.5. B =B; +Bp +
Gp + G1 bits are used to for internal storage, with Bp + Gp of these bits assigned to
the fractional component of the representation. The maximum error for one iter
ation is therefore of magnitude 2-(Bp+Gp). In the simplified analysis, the round
ing error e (n) in the final result, and after all n iterations, is simply n times this
quantity, which is e(n) = n2-(Bp+Gp)_ If Bp accurate fractional bits are required
in the result word, the required resolution is 2-(Br l). If Bp is selected such that
e(n) � 2-Bp, the datapath quantization can effectively be ignored. This implies
.that n2-(Bp+Gp) � 2-Bp, which requires Bp � log2 (n). Therefore, Gp = flog2 (n)l
fractional guard bits are required to produce a result that has an accuracy of Bp

fractional bits. This simplified treatment of the computation noise is a reason
able approximation that can help guide the definition of the datapath width
required to meet a specified numerical fidelity.

Figure 25.6 shows the results of a simulation using different data representa
tions for the x, y, and z variables of a CORDIC vectoring algorithm in circular

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 543

12
11

'=;' 10
� 9 .c

'3 8

6
g
rri 5

4
3

log2 (n) fractional guard bits

,
I-�

/�
.....

�
j �
- . .

L?
�

J
V

� . . .

.., ,-

r
4 6 8 10 12 14

Number of iterations

• BF= 3
■ BF= 4

♦ BF= 5
• BF= 6

◄ BF= 7
► BF= 8

• BF= 9
* BF= 10

• BF= 10

25.1 CORDIC Algorithm 525

log2(n) fractional guard bits
I I i i i

' 20 --- -:- - - - � ---- � - - - -:- ---•· -
: * I

11

/_g 18
iO

� 16

-�
o 14

12 •-

12 14 16 18 20 22 24
Number of iterations

• BF= 12

■ BF= 13

♦ BF= 14
A BF

= 15

◄ BF= 16

► BF= 17

• BF= 18

* BF= 19

* BF= 20

FIGURE 25.6 ■ The effiective number of result bites for a CORDIC vector processor (circular coordinates).
The number of fractional guard bites is Gp ':, flog2(n)l.

coordinates. Unit modulus complex vectors with random angles were generated
and projected onto the CORD IC input sample (xo, Yo), Each sample point in
the plot represents the maximum absolute error of the angle estimate resulting
from 4000 trials. We note that in all of the simulations the effective number of
fractional output bits is matched to the number of fractional bits in the input
operand.

The simplified treatment of the rounding noise generated in the update equa
tions is certainly pessimistic and produces a requirement on the number of
guard bits that is biased slightly higher than what might typically be required.

Selecting Gp = flog2 (n)l is ce)i"tainly a safe, if not a slightly overengineered,
choice. In the context of an FPGA realization, an additional bit of precision
carried by the variables has almost negligible impact on the area and maximum
operating clock frequency of the design.

An additional observation from the plots in Figure 25.6 is that the production
of Bp effective output digits requires more iterations than the Bp + 1 iterations
required for a full floating-point implementation-an additional three iterations
are, in general, necessary. The implication of this is that two additional bits must
be allocated to represent the elemental angles to provide the angle resolution
implied by the adjusted iteration count.

Defining the number of guard bits G1 is very straightforward based on the
number of integer bits B1 in the input operands, the coordinate system to be
employed (e.g., circular, hyperbolic, or linear), and the mode (vectoring or rota
tion). For example, if the input data is in standard 2's complement format and
bounded by ±1, then B1 = 1. This means that the 12 norm of the input (x0,y0)
is ./2. For the CORDIC vectoring mode, the range extension introduced by the
iterations is approximately Ki = 1.6468 for any reasonable number of iterations.
The maximum that the final value of the x register can assume is approximately
v2 • l.6468=2.3289, which requires that G1 = 2.

,;c,

s
U)

~
Q) Q)
>

Q)

= w

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 544

526 Chapter 25 ■ CORDIC Architectures for FPGA Computing

TABLE 25.3 ■ Number of rotations and required CORDIC processor datapath format
required to achieve a desired number of effective output bits

Number of effective Internal storage data Internal storage data
fractional result bits Micro-rotations: n format: x and y format: z

8 10 (15.12) (15.14)

12 15 (19.16) (19.18)

16 19 (24.21) (24.23)

24 27 (32.29) (32.31)

Based on this approach, a reasonable procedure for selecting the number of
CORDIC micro-rotations and a suitable quantization for the x, y, and z vari
ables, given the effective number of fractional bits required in the output, is the
following:

1. Define the number of iterations as n = Bp + 3.
2. Select the field width for the x and y variables as 2+Bi+Bp+log2 (n) for

the vectoring mode in circular coordinates-Bp + log2 (n) of these bits are
of course allocated to the fractional component of the register.

3. Select the fractional precision of the angle register z to be Bp + log2 (n) + 2,
while maintaining 1 bit for the integer portion of the register.

4. Apply similar reasoning to select n and G1 for the other coordinate systems
and modes.

Based on this approach, Table 25.3 shows the number of micro-rotations n
and the internal data storage format corresponding to 8, 12, 16, 24, and 32
effective fractional result bits. The notation (p • q) indicates a bit field width of
p bits, with q of these bits allocated to the fractional component of the value.

25.2 ARCHITECTURAL DESIGN

There are many hardware architecture options to evaluate when considering
FPGA CORDIC datapath implementation. A particular choice is determined by
the design specifications of numerical accuracy, throughput, and latency. At the
highest level are key architectural decisions on whether a folded [27] or fully
parallel [27] pipelined (or nonpipelined) architecture is to be used. At a lower,
technology-specific level, FPGA features associated with a particular FPGA fam
ily are also a factor in the decision process. For example, later-generation FPGAs
such as the Virtex-4 family [41] include an array of arithmetic units called .
the XtremeDSP Slice [43] (referred to as the DSP48 in the remainder of the
chapter).

As discussed later, a CORDIC implementation can be realized that is mostly
based on the DSP48 embedded tile. Thus, with this particular family of devices

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 545

25.3 FPGA Implementation of CORDIC Processors 527

the designer has a choice· of producing an implementation that is completely
logic slice based [40] or biased toward the use of DSP48 elements. The process
that guides such decisions is elaborated in the next section.

25.3 FPGA IMPLEMENTATION OF CORDIC PROCESSORS

One of the elegant properties of FPGA computing is the ability to construct a
compute engine closely tailored to the problem specifications, including pro
cessing throughput, latency, and numerical accuracy. Consider, for example, the
throughput requirement. At one end of the architecture spectrum, and when
modest processing rates are involved, a fully folded [27] implementation, where
the same logic is used for all iterations (folding factor= n), is one option. In this
case, new operands are delivered, and a new result vector is produced, every n
clock cycles. This choice of implementation results in the smallest FPGA foot
print at the expense of processing rate. If a high-throughput unit is required, a
fully parallel, or completely unfolded implementation (folding factor = 1) that
allocates a complete hardware PE to each iteration is appropriate. This will of
course result in the largest area, but provides the highest compute rate.

25.3. 1 Convergence
One of the design considerations for the CORDIC engine is the region of con
vergence that needs to be supported by the implementation, as the basic form
of the algorithm does not converge for all input coordinates. For the rotation
mode, the CORDIC algorithm converges provided that the absolute value of the
rotation angle is no larger than 8MAX= 1.7433 radians, or approximately 99.88° .

In many applications we need to support input arguments that span all four
quadrants of the complex plane-that is, a so-called full-range CORDIC. Much
published work addresses this requirement [8, 19,25], and many elegant exten
sions to the basic set of CORDIC iterations have been produced. Some of them
introduce additional iterations and, while maintaining the basic shift-and-add
property of the algorithm, result in a significant time or area penalty.

The most straightforward approach for handling the convergence issue in
FPGA hardware is to first note that the natural range of convergence extends
beyond the angle 'IC/2. That is, the basic set of equations converges over the inter
val [-7t/2, 'IC/2]. To extend the implementation to converge over [-'IC, 7t], we can
simply detect when the input angle extends beyond the first quadrant, map that
angle to either the first or fourth quadrants, and make a post-micro-rotation cor
rection to account for the input angle mapping. This architecture is illustrated
in Figure 25.7.

The input mapping is particularly simple. Referring to Figure 25.7, if xo is
negative, the quadrants must be changed by applying a± 1tl2 (±90°) rotation.
Whether it is a positive or negative rotation is determined by the sign of Yo• To
compensate for the input mapping, an angle rotation is conditionally applied to
the micro-rotation engine result z� to produce the final output value Zn - Details

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 546

528 Chapter 25 ■ CORDIC Architectures for FPGA Computing

Quadrant
mapping Yo

Micro
rotation
engine

f-------+----1> Xn

f-------+----1> Yn
Yo

Zo------i>I

Input quadrant mapping

y (Xc:J,r'o)=(Xo,Yo) (Xo,Yo)Y

y y

---=--t---►X -----+=--•X
(Xo, Yo)

Quadrant
demapping

(x' o, Yo) = (Xo, Yo)

(x' o, Yo)= (-Yo, Xo)
Quadrant
mapping.........,__
operator '

FIGURE 25.7 ■ A full-range CORDIC processor showing input quadrant mapping, micro-rotation
engine, and quadrant correction.

of the course angle rotator and matching quadrant correction circuit are shown
in Figure 25.8. The area cost for an FPGA implementation of the circuits is
modest [40].

25.3.2 Folded CORDIC

The folded CORDIC architecture allocates a single PE to service all of the
required micro-rotations. At one architectural extreme a bit-serial implemen
tation employing a single 3-2 full adder, with appropriate control circuitry and
state storage, can address all of the required updates for x, y, and z. However,
our treatment employs a word-oriented architecture that associates unique func
tional units (FU) with each of the x, y, and z processing engines, as shown in
Figure 25.9.

Multiple mapping options are available when projecting the dependency
graph onto an FPGA architecture. In the Xilinx Virtex-4 family [41], one option
for supporting the adder/subtractor FUs is to utilize the logic fabric and realize
these modules at the cost of one lookup table (LUT) per result digit. So for
example, the addition of two 16-bit operands to generate a 17-bit sum requires
17 LUTs. An alternative is to use the 48-bit adder in the DSP48 tile.

x'o .-----,

I I

z'n
z-L11------1>1
~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 547

25.3 FPGA Implementation of CORDIC Processors 529

Data

Address 1

Xo
R1 R7

Yo
R2 N

Xo

8

Yo sgn(Xo)

N R3
Xo Yo z�

•-�
sgn(y0)

Register

(a) (b)

FIGURE 25.8 ■ A course angle rotator preceding a micro-rotation engine for a full-range CORDIC
processor (a). A post-micro-rotation quadrant correction circuit (b).

X;

Y;

Z;

Adder/subtractor control

afra±b
b

Directed
adder/subtractor

Finite-state machine
to generate direction
for adder/subtractor

-<>I- Register � Multiplexer

a.::,....... 8'2-i

I

Wire-based
barrel shifter

N
Zn

FIGURE 25.9 ■ A folded CORDIC architecture with separate functional units for each of the x, y, and z
updates. Only the micro-rotation engine is shown.

+

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 548

530 Chapter 25 ■ CORDIC Architectures for FPGA Computing

There are also several mapping options for the barrel shifter: It can be realized
in the logic fabric, with the multiplier in the DSP48 tile, or, for that matter, using
an embedded multiplier in any FPGA family that supports this architectural
component (e.g., Virtex-11 Pro [39] or Spartan-3E [37]).

Consider a fabric-only implementation of a vectoring CORDIC algorithm in
circular coordinates. In this case all of the FUs are implemented directly in the
logic fabric. The FPGA area, Ap, can be expressed as

Ap = 3 · aadd + 2 · abarrel + 3 · amux + aiuT + ao + ao-1 (25.20)

where aadd, abarre/, amux, aiuT, ao, and a0-1 correspond to the area of an
adder, barrel shifter, input multiplexer, elementary angle LUT, quadrant input
mapper, and output mapper circuits, respectively. The FPGA logic fabric is
designed to efficiently support the implementation of arbitrary-precision high
speed adder/subtractors. Each configurable logic block (CLB) [41] includes ded
icated circuitry that provides fast carry resolution, with the LUT itself producing
the half-sum.

The component that can be costly in terms of area is the barrel shifter. The
barrel shifter area cost can be much more significant than the aggregate cost of
the adder/subtractors used for updating the x, y, and z variables. For example,
in a design that supplies 16 effective result digits, the 2 barrel shifters occupy
an aggregate area of 226 LUTs while the adders occupy 74 LUTs in total. Here;
the barrel shifters have a footprint approximately three times that of the adders.

The barrel shifter area can be reduced if a multiplier-based barrel shifter is
used rather than a purely logic fabric-based implementation. FPGA families
such as Spartan-3E [37], Virtex-11 Pro [39], and Virtex-4 [40] include an array
of embedded multipliers, which are useful for realizing arithmetic shifts. The
multiplier accepts 18-bit precision operands and produces a 36-bit result. When
used as a barrel shifter, one port of the multiplier is supplied with the input
operand that is to experience the arithmetic shift, while the second port accepts
the shift value i, where i is the iteration index. In a typical hardware implemen
tation the iteration index rather than the exponentiated value is usually available
in the control plane that coordinates the operation of the circuit. The exponenti
ation can be done via a small LUT implemented using distributed memory [40].
Multiple multiplier primitives can be combined with an adder to form a barrel
shifter that can support a wider datapath. For the previous example, multiplier
realization of the barrel shifter results in an FPGA footprint that is less than
half that of an entirely fabric-based implementation.

The folded CORDIC architecture is a recursive graph, which means that deep
pipelining cannot be employed to reduce the critical path. The structure can
accept a new set of operands, and produces a result every n clock cycles.

25.3.3 Parallel Linear Array

When throughput is the overriding design consideration, a fully parallel
pipelined CORDIC realization is the preferred architecture. With this approach

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 549

25.3 FPGA Implementation of CORDIC Processors 531

Yo Yn

Mode <>-_._-----------------'----------1

Mode control: vectoring/rotation

Adder/subtractor control

Directed adder/ Finite-state machine
subtractor to generate direction

for adder/subtractor

a_)--a2-i -+

, Register
Wire-based
barrel shifter

FIGURE. 25.10 ■ A programmable parallel pipelined CORDIC array. In a completely unfolded implementation,
the barrel shifters are realized as FPGA routing and so consume no resources other than interconnect.

the CORDIC algorithm is completely unrolled and each operation is projected
onto a unique hardware resource, as shown in Figure 25.10.

One interesting effect of the unrolling is that the data shifts required in the
cross-addition update can be realized as wiring between successive CORDIC
processing elements (PEs). Unlike the folded architecture, where either LUTs or
embedded multipliers are consumed to realize the barrel shifter, no resources
other than interconnect are required to implement the shift in the linear array
architecture. The only functional units required for each PE with this approach
are three adder/subtractors and a small amount of logic to implement the
control circuit that steers the add/subtract FUs. The micro-rotation angle for
each PE is encoded as a constant supplied on one arm of the adder/subtractor
that performs the angle update-no LUT resources are required for this. Note
in Figure 25.10 that the sign bit of the y and z variables is supplied to
the control circuit that is local to each processing engine. This permits the
architecture to operate in the y- or z-reduction configuration under the con
trol of the Mode input control signal, and thus support vectoring or rotation,
respectively.

Figure 25.ll(a) shows a comparison of the area functions for the parallel
and folded architectures. The folded implementation is entirely fabric based.
As expected, the area of the parallel design exhibits modest exponential growth
and, for an effective number of result digits greater than 15, occupies more than
three times the area of the folded architecture. For the case of 24 effective result
digits, the parallel design is larger by a factor of approximately 5. Figure 25.11 (b)
contrasts the throughput of the two architectures. Naturally, the parallel design
has a constant throughput of one CORDIC operation per second for a normal
ized clock rate of 1, while the throughput for the folded design falls off as the
inverse of the number of iterations.

afra±b
b

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 550

532

2500

2000

1500

1000

500

0

Chapter 25 ■ CORDIC Architectures for FPGA Computing

----�-----------�------------�------

. ' '

---Folded :
-+- Parallel , :

----�-----------�----------- --------

' '

.

10 15 20

Number of bits in datapath

(a)

1.2 �---,,----..--------r------,

� 1----------------------

I o.a

i 0.6

� 0.4

0.2

'

'

'

'
---- ,. ------------1------------ -,------- - --

'

'

'

' ' '

---- L-- • -- • --- • - •'• ---• • • • • - • - �- • • • • -----
. ' '

' '

' '

. '

' ' '
---- r-- - ---------

.
------------ -,,----------

'

: ---Folded
-+- linear array

- - - - I" - - - - - - - - - - - -1- - - - - - - - - - - - .,. - - - - - - - - -

' ' '

10

' '

15 20

Effective number of result bits

(b)

FIGURE 25.11 ■ (a) Comparison of the FPGA resource requirements for folded and linear array CORDIC
architectures-circular coordinates. (b) Throughput in rotations/vectoring operations per second for the two
architectures. A normalized clock rate of 1 is assumed.

The parallel design has a performance advantage of approximately an order
of magnitude for the number of effective result bits great than 10. In an FPGA
implementation the advantage is significantly more than this because of the
higher clock frequency that can be supported by the linear array compared to
the folded processor. With its heavy pipelining, the linear array typically achieves
an operating frequency approximately twice that of the folded architecture, so
for high-precision calculations-for example, on the order of 24 effective frac-

. tional bits or greater-the parallel implementation has a throughput advantage
of approximately 50, which is delivered in a footprint that is only five times that
of the folded design.

The add/subtract FUs can be realized using the logic fabric or the 48-bit adder
that is resident in each DSP48 tile in the Virtex-4 class of FPGAs. The DSP48 [42]
is a dynamically configurable embedded processing block that supports over
40 different op-codes, optimized for signal-processing tasks. The logic fabric
approach tends to result in an implementation that operates at a lower clock
frequency than a fully pipelined version based on the DSP48. The DSP48-based
implementations can operate at very high clock frequencies-in the region of
500 MHz in the fastest "-12" speed-grade parts [40]. However, for a datapath
precision of up to 36 bits, three DSP48 tiles are required for each CORDIC
iteration (see Figures 25.12 and 25.13). For scenarios where throughput is the
overarching requirement, these resource requirements are acceptable.

A potential downside to the use of the DSP48 in this application is that
the multiplier colocated with the high-precision adder is not available for use
by another function if the adder is used by the CORDIC PE. This is because
the input and output ports of the block are occupied supporting the addi
tion/subtraction and there is no 1/0 available to access other functions (such
as the multiplier) in the tile.

8
C ,g

a:
8

0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 551

25.3 FPGA Implementation of CORDIC Processors

B

Z; <>-J------1

Mode control: vectoring/rotation

Add/subtract control

a-,ir-a±b

b

Pipelined DSP48
adder/subtractor Finite-state machine

to generate direction
for adder/subtractor

CORDICPE/

Rotation mode

{
1 if Z;a<O

CJ;=
-1 if z1<0

Vectoring mode

<J· -{
1 if Y;<O

,-

-1 if Y;"' O

.

► a'2-i

Wire-based
barrel shifter

++
Fabric- DSP48
based internal
register register

FIGURE 25.12 ■ Processing element i of a Virtex-4 DSP48-based CORDIC processor.

533

FIGURE 25.13 ■ A programmable parallel pipelined CORDIC array based almost entirely on the Virtex-4 DSP48
embedded tile. Each DSP48 has three levels of pipeTining. Additional fabric-based registers are included to
pipeline the routing between DSP48 tiles.

•

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 552

534 Chapter 25 ■ CORDIC Architectures for FPGA Computing

25.3.4 Scaling Compensation
As highlighted earlier, the rotation mode of the CORDIC algorithm produces a
rotation extension (i.e., it increases or decreases the distance of the point from
the origin) rather than a pure rotation. The growth associated with circular and
hyperbolic coordinate systems is approximately K1,n = 1.64 6 8 and K-1,n =0.8382,
respectively. In some applications this growth can be tolerated, and there is no
need to perform any compensation. For example, if the vectoring mode is used
to map the output vector of a discrete Fourier transform (OFT) from Cartesian
to polar coordinates in order to compute a magnitude spectrum, the CORDIC
scaling may not be an issue because all terms are similarly scaled. If the CORDIC
output is to be further processed, there might be an opportunity to absorb the
CORDIC scale factor in the postprocessing circuit. Continuing with the OFT
example, if the magnitude spectrum is to be compared with a threshold in order
to make a decision about a particular spectral bin, the CORDIC scaling can be
absorbed into the threshold value.

If the scaling cannot be tolerated, several scaling compensation techniques are
possible. Some approaches employ modified iterations [20, 32, 33] while others
exploit alternatives such as online arithmetic [6]. Some methods merge scaling
iterations with the basic CORDIC iterations [15], which result in either an area
penalty or a time penalty if the basic CORDIC hardware is to be used for both
the fundamental updates and the scaling iterations. It is also possible to employ
a modified set of elemental angles [9].

The problem of scaling compensation has been examined by many
researchers, and many creative and elegant results have been produced; how
ever, the most direct way to accommodate the problem in an FPGA is to
employ its embedded multipliers. The architecture of a programmable and scale
compensated CORDIC engine is shown in Figure 25.14. The Mode control signal
defines if a vectoring or rotation operation is to be performed. It essentially
controls if the iteration update is guided by the sign of the y or z variable for
vectoring or rotation, respectively. The Coordinate_System signal selects the
coordinate system for the processor: circular, hyperbolic, or linear. This con
trol line selects the page in memory where the elemental angles are stored:
tan-1 (2-i), i = 0, ... , n-1 for circular; tanh-1 (2-i), i = 1, ... , n for hyperbolic;
and (2-i), i = 0, ... , n-1 for linear. Coordinate_System also indexes a small
memory located in FPGA distributed memory that stores the values 1/Km,n for
use by the scaling compensation multiplier Ml. Naturally, the precision of these
constants should be commensurate with the number of effective result bits.

25.4 SUMMARY

This chapter provided an overview of the CORDIC algorithm and its imple
mentation in current-generation FPGAs such as the Xilinx Virtex-4 family. The
basic set of CORDIC equations was first reviewed, and the utility of this simple
shift-and-add-type algorithm was highlighted by the many functions that can be
accessed through it. We also highlighted the fact that, while there are many
options for architecting math functions in hardware, the CORDIC approach

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 553

z-l2

Quadrant Xo
Xo mapping

Yo
X;

Zo z-L1

Y;

a,,1 Z;

ao,;

a-1,;

Folded or parallel
CORDICarray

X;+1

z'n

Y;+1

Z;+1

25.4 Summary 535

Quadrant
demapping

Ko,n
Scaling factor
memory

Coordinate system <>------+---------1-----------�

Mode<>----------'

(vectoring/rotation)

FIGURE 25.14 ■ A programmable CORDIC processor with multiplier-based scaling compensation.

comes into its own when multi-element input and output vectors are involved.
The functional requirements of the angle and cross-addition updates make it an
excellent match for FPGAs because of the utility and efficiency with which these
devices realize addition and subtraction.

Most hardware realizations of the CORDIC algorithm employ fixed-point
arithmetic, and this is certainly true of nearly all FPGA implementations. We
showed that it is therefore important to understand the effects of quantizing
the datapath. While this analysis can be complex [16], for most applications the
simplified approach first described by Walther [36] is suitable for most cases
and provides excellent results.

The FPGA implementation of a CORDIC processor would appear to be
straightforward. However, FPGA-embedded functions such as multipliers and
the DSP48 provide opportunities for architectural innovation and for design
trade-offs that satisfy design requirements. For example, embedded multipliers
can be exchanged for logic fabric with the implementation of the barrel shifter.
The wide 48-bit adder in the DSP48 can be used almost as the sole arithmetic
building block of a complete fully parallel CORDIC array.

References

[1] J. R. Cavallaro, F. T. Luk. CORDIC arithmetic for an SVD processor. Journal of
Parallel and Distributed Computing 5, 1988.

[2] J. R. Cavallaro, F. T. Luk. Floating-point CORDIC for matrix computations. Proceed
ings of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors, October 1988.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 554

536 Chapter 25 ■ CORDIC Architectures for FPGA Computing

[3] L. W. Chang, S. W. Lee. Systolic arrays for the discrete Hartley transform. IEEE
Transactions on Signal Processing 29(11), November 1991.

[4] W. H. Chen, C. H. Smith, S. C. Fralick. A fast computational algorithm for
the discrete cosine Transform. IEEE Transactions on Communications C-25,
September 1977.

[5] Cray Research. Cray XDJ Supercomputer, http://www.cray.com/products/xdl!
index.html.

[6] H. Dawid, H. Meyer. The differential CORDIC algorithm: Constant scale factor
redundant implementation without correcting iterations. IEEE Transactions on
Computers 45(3), March 1996.

[7] A. A. J. de Lange, A. J. van der Hoeven, E. F. Deprettere, J. Bu. An optimal floating
point pipeline CMOS CORDIC processor. IEEE Symposium on Circuits and Sys
tems, June 1988.

[8] J. M. Delsme. VLSI implementation of rotations in pseudo-Euclidean spaces.
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing 2, 1983.

[9] E. Deprettere, P. Dewilde, R. Udo. Pipelined CORDIC architectures for fast VLSI
filtering and array processing. Proceedings of the ICASSP' 84, 1984.

[10] A. M. Despain. Very fast Fourier transform algorithms for hardware implementa
tion. IEEE Transactions on Computers C-28, May 1979.

[11] A. M. Despain. Fourier transform computers using CORDIC iterations. IEEE Trans
actions on Computers 23, October 1974.

[12] C. Dick, F. Harris, M. Rice. FPGA implementation of carrier phase synchronization
for QAM demodulators. Journal of VLSI Signal Processing, Special Issue on Field
Programmable Logic (R. Woods, R. Tessier, eds.), Kluwer Academic, January 2004.

[13] D. Ercegovac, T. Lang. Digital Arithmetic, Morgan Kaufmann, 2004.
[14] B. Haller, J. Gotze, J. Cavallaro. Efficient implementation of rotation operations for

high-performance QRD-RLS filtering. Proceedings of the International Conference on
Application-Specific Systems/ Arthictectures and Processors, July 1997.

[15] G. H. Haviland, A. A. Tuszinsky. A CORDIC arithmetic processor chip. IEEE Trans
actions on Computers c-29(2), February 1980.

[16] Y. H. Hu. The quantization effects of the CORDIC algorithm. IEEE Transactions
on Signal Processing 40, July 1992.

[17] X. Hu, S. C. Bass. A neglected error source in the CORDIC algorithm. IEEE Inter
national Symposium on Circuits and Systems 1, May 1993.

[18] X. Hu, S. C. Bass. A neglected error source in the CORDIC algorithm. Proceedings
of the IEEE ISCAS, 1993.

[19] X. Hu, R. G. Garber, S. C. Bass. Expanding the range of convergence of the
CORDIC algorithm. IEEE Transactions on Computers 40(1), January 1991.

[20] J. Lee. Constant-factor redundant CORDIC for angle calculation and rotation. IEEE
Transactions on Computers 41(8), August 1992.

[21] Y. H. Liao, H. E. Liao. CALF: A CORDIC adaptive lattice filter. IEEE Transactions
on Signal Processing 40(4), April 1992.

[22] Mathworks, The, http://www.mathworks.com/.
[23] U. Mengali, A. N. D'Andrea. Synchronization Techniques for Digital Receivers,

Plenum Press, 1997.
[24] J. Mia, K. K. Parhi, E. F. Deprettere. Pipelined implementation of CORDIC-based

QRD-MVDR adaptive beamforming. IEEE Fourth International Conference on
Signal Processing, October 1998.

[25] J. M. Muller. Discrete basis and computation of elementary functions. IEEE Trans
actions on Computers C-34(9), September 1985.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 555

25.4 Summary 537

[26] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs, Oxford
University Press, 2000.

[27] K. K. Parhi. VLSI Digital Signal Processing Systems Design and Implementation,
John Wiley, 1999.

[28] S. Y. Park, N. I. Cho. Fixed-point error analysis of CORDIC processor based on the
Variance Propagation Formula. IEEE Transactions on Circuits and Systems 51(3),
March 2004.

[29] J. G. Proakis, M. Salehi. Communication Systems Engineering, Prentice-Hall, 1994.
[30] C. M. Rader. VLSI systolic arrays for adaptive nulling. IEEE Signal Processing

Magazine 13(4), July 1996.
[31] T. Y. Sung, Y. H. Hu. Parallel VLSI implementation of Kalman filter. IEEE Trans

actions on Aerospace and Electronic Systems AES 23(2), March 1987.
[32] N. Takagi. Redundant CORDIC methods with a constant scale factor for sine and

cosine computation. IEEE Transactions on Computers 40(9), September 1991.
[33] D. H. Timmerman, B. J. Hosticka, B. Rix. A new addition scheme and fast scaling

factor compensation methods for CORDIC algorithms. Integration, the VLSI Journal
(11), 1991.

[34] D. H. Timmerman, B. J. Hosticka, G. Schmidt. A programmable CORDIC chip for
digital signal processing applications. IEEE Journal of Solid-State Circuits 26(9),
September 1991.

[35] J. E: Volder. The CORDIC trigonometric computing technique. IRE Transactions
on Electronic Computers 3, September 1959.

[36] J. S. Walther. A unified algorithm for the elementary functions. AF/PS Spring Joint
Computer Conference 38, 1971.

[37] Xilinx Inc. Spartan-3E Datasheet, http://www.xilinx.com/xlnxlxweb/xil_publi
cations_display.jsp?iLanguageID=l &category= /Data+Sheets/FPGA+Device+Familiesl
Spartan-3E.

[38] Xilinx Inc. System Generator for DSP, http:llwww.xilinx.com/ise/optional_prodl
system_generator.htm.

[39] Xilinx Inc. Virtex-11 Pro Datasheet, http://www.xilinx.com/xlnxlxweblxil_
publications _display.jsp ?category=Publications/FPGA + Device+ Families/Virtex-
II +Pro&iLanguagelD=l.

[40] Xilinx Inc. Virtex-4 Datasheet, http://www.xilinx.com/xlnxlxweb/xil_publications_
display.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=-1210771 &iLanguage
ID=l.

[41] Xilinx Inc. Virtex-4 Multi-Platform FPGA, http://www.xilinx.com/products/silicon_
solutionslfpgas/virtexlvirtex4/index.htm.

[42] Xilinx Inc. XtremeDSP Design Considerations Guide, http://www.xilinx.com/
productslsilicon_solutionslfpgas/virtexlvirtex4/capabilitieslxtremedsp.htm.

[43] Xilinx Inc. XtremeDSP Slice, http://www.xilinx.com/products/silicon_solutions/
fpgaslvirtexlvirtex4/capabilities/xtremedsp.htm.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 556

CH A PT ER 26

Hardware/Software Partitioning

Frank Vahid, Greg Stitt
Department of Computer Science and Engineering
University of California-Riverside

Field-programmable gate arrays (FPGAs) excel at implementing applications as
highly parallel custom circuits, thus yielding fast performance. However, large
applications implemented on a microprocessor may be more size efficient and
require less designer effort, at the expense of slower performance. In some
cases, mapping an entire application to a microprocessor satisfies performance
requirements and so is preferred. In other cases, mapping an application entirely
to custom circuits on FPGAs may be necessary to meet performance require
ments. In many cases, though, the best implementation lies somewhere between
these two extremes.

Hardware/software partitioning, illustrated in Figure 26.1, is the process of
dividing an' application between a microprocessor component ("software") and
one or more custom coprocessor components ("hardware") to achieve an
implementation that best satisfies requirements of performance, size, designer
effort, and other metrics. 1 A custom coprocessor is a processing circuit that is
tailor-made to execute critical application computations far faster than if those
computations had been executed on a microprocessor.

FPGA technology encourages hardware/software (HW/SW) partitioning by
simplifying the job of implementing custom coprocessors, which can be done
just by downloading bits onto an FPGA rather than by manufacturing a new
integrated circuit or by wiring a printed-circuit board. In fact, new FPGAs even
support integration of microprocessors within an FPGA itself, either as separate
physical components alongside the FPGA fabric ("hard-core microprocessors")
or as circuits mapped onto the FPGA fabric just like any other circuit ("soft-core
microprocessors"). High-end computers have also begun integrating micropro
cessors and FPGAs on boards, allowing application designers to make use of
both resources when implementing applications.

Hardware/software partitioning is a hard problem in part because of the
large number of possible partitions. In its. simplest form, hardware/software
partitioning considers an application as comprising a set of regions and maps

1 The terms. software, to represent microprocessor implementation, and hardware, to represent
coprocessor implementation, are common and so appear in this chapter. However, when imple
mented on FPGAs, coprocessors are actuajly just as "soft" as programs implemented on a micro
processor, with both consisting merely of a sequence of bits downloaded into a physical device,
leading to a broader concept of "software."

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 557

540 Chapter 26 • Hardware/Software Partitioning

Application

Memory

Microprocessor

Custom

processors

FIGURE 26.1 ■ A diagram of hardware/software partitioning, which divides an application bet
ween a microprocessor component ("software") and custom processor components ("hardware").

each region to either software or hardware such that some cost criteria (e.g.,
performance) is optimized while some constraints (e.g., size) are satisfied.

A partition is a complete mapping of every region to either hardware or
software. Even in this simple formulation, the number of possible partitions can
be enormous. If there are n regions and there are two choices (software or hard
ware) for each one, then there are 2n possible partitions. A mere 32 regions yield
over 4 billion possibilities. Finding the optimal partition of this simple. form is
known to be NP-hard in general. Many other factors contribute to making the
problem even harder, as will be discussed.

This chapter discusses issues involved in partitioning an application among
microprocessor and coprocessor components. It considers two application
categories: sequential programs, where an application is a program written in
a sequential programmin,g language such as C, C++, or Java and where parti
tioning maps critical functions and/or loops to coprocessors; and parallel pro
grams, where an application is a set of concurrently executing tasks and where
partitioning maps some of those tasks to coprocessors.

While designers today do mostly manual partitioning, automating the process
has been an area of active study since the early 1990s (e.g., [10, 15, 26]) and
continues to be intensively researched and developed. For that reason, we will
begin the chapter with a discussion of the trend toward automatic partitioning.

26.1 THE TREND TOWARD AUTOMATIC PARTITIONING

Traditionally, designers have manually partitioned applications between micro
processors and custom coprocessors. Manual partitioning was in part
necessitated by radically different design flows for microprocessors versus
coprocessors. A microprocessor design flow typically involved developing code

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 558

26.1 The Trend Toward Automatic Partitioning 541

in programming languages such as C, C++, or Java. In sharp contrast, a
coprocessor design flow may have involved developing cleverly parallelized
and/or pipelined datapath circuits, control circuits to sequence data through
the datapath, memory circuits to enable rapid data access by the data
path, and then mapping those circuits to a particular ASIC technology. Thus,
manual partitioning was necessary because partitioning was done early in the
design process, well before a machine-readable or executable description of an
application's desired behavior existed. It resulted in specifications for both the
software design and the hardware design teams, both of which might then have
worked for many months developing their respective implementations.

However, the evolution of synthesis and FPGA technologies is leading
toward automated partitioning because the starting point of FPGA design has
been elevated to the same level as that for microprocessors, as shown in
Figure 26.2.

Current technology enables coprocessors to be realized merely by down
loading bits onto an FPGA. Downloading takes just seconds and eliminates
the months-long and expensive design step of mapping circuits to an ASIC.
Furthermore, synthesis tools have evolved to automatically design coproces
sors from high-level descriptions in hardware description languages (HDLs),
such as VHDL or Verilog, or even in languages traditionally used to program
microprocessors, such as C, C++, or Java. Thus, designers may develop a single
machine-readable high-level executable description of an application's desired
behavior and then partition that description between microprocessor and copro
cessor parts, in a process sometimes called hardware/software codesign. New

Compilation

Assembling, linking

Downloading

Logic synthesis, physical design
(1970s, 1980s)

FIGURE 26.2 ■ The codesign ladder: evolution toward automated hardware/software partitioning
due to synthesis tools and FPGA technologies enabling a similar design starting point, and

similar implementation manner of downloading bits into a prefabricated device.

Behavioral synthesis
(1_9_9()~

RT synthesis
(1980s, 1990s)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 559

542 Chapter 26 • Hardware/Software Partitioning

approaches, such as SystemC [14], which supports HDL concepts using C++,
have evolved specifically to support it. With a single behavior description of an
application, and automated tools to convert partitioned applications to copro
cessors, automating partitioning is a logical next step in tool evolution. Some
commercial automated hardware/software partitioning products are just begin
ning to appear [4, 7,21,27].

In the remainder of the chapter, many of the issues discussed relate to both
manual and automatic partitioning, while some relate to automatic partitioning
alone.

26.2 PARTITIONING OF SEQUENTIAL PROGRAMS

In a sequential program, the regions comprising an application's behavior
are defined to execute sequentially rather than concurrently. For example, the
semantics of the C programming language are such that its functions execute
sequentially (though parallel execution is allowed as long as the results of the
computation stay the same). Hardware/software partitioning of a sequential pro
gram involves speeding up certain regions by moving them to faster-executing
FPGA coprocessors, yielding overall application speedup.

Hardware/software partitioning of sequential programs is governed to a large
extent by the well-known Amdahl's Law [1] (described in 1967 by Gene Amdahl
of IBM in the context of discussing the limits of parallel architectures for
speeding up sequential programs). Informally, Amdahl's Law states that appli
cation speedup is limited by the part of the program not being parallelized. For
example, if 75 percent of a program can be parallelized, the remaining nonparal
lelized 25 percent of the program limits the speedup to 100/25 = 4 times speedup
(usually written as 4x) in the best possible case, even in the ideal situation of
zero-time execution of the other 75 percent.

Amdahl's Law has been described more formally using the equation
max_speedup = 1/(s + pin), where p is the fraction of the program execution that
can be parallelized; s is the fraction that remains sequential, s + p = 1; n is the num
ber of parallel processors being used to speed up the parallelizable fraction; and
max_speedup is the ideal speedup. In the 75 percent example, assuming that n
is very large, we obtain max_speedup= 1/(0.25 +0.75/n)= 1/(0.25 + ~0)=4x.

Amdahl's Law applies to hardware/software partitioning by providing speedup
limits based on the regions not mapped to hardware. For example, if a region
accounts for 25 percent of execution but is not mapped to hardware, then the
maximum possible speedup obtainable by partitioning is 4x. Figure 26.3 illus
trates that only when regions accounting for a large percentage of execution are
mapped to hardware might partitioning yield substantial results. For example, to
obtain lOx speedup, partitioning must map to hardware those regions account
ing for at least 90 percent of an application's execution time.

Fortunately, most of the execution time for many applications comes from
just a few regions. For example, Figure 26.4 shows the average execution time

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 560

a.

::,

Q)

Q)

a.

al

Q)

32

1
0

9

8

7

6

5

4

3

2

1

0

-

I

0

0

2
6
.2

P

a
rt

itio
n
in

g
 o

f S
eq

u
en

tia
l P

ro
g
ra

m
s

543

I

0

C\I

.
.
.

I

..
___.:,r

m

I
I

I

.1

r

�

I
I

0

0

r-..

CX)

E
x

ecu
tion

 m
a

p
p

ed to h
a

rdw
a

re
(%

)

-T

I

I

I

I
I

g

F
IG

U
R

E

2
6

.3
 ■

H

a
rd

w
a

re/softw
a

re p
a

rtition
in

g sp
eed

u
p

 follow
in

g A
m

d
a

h
l's La

w
.

C:

1
0

0

�
-

8
0

g

?fl.

a.
�

6

0

a.

C:

Ill

O

Q)
:.;:::.

>

::,

4

0

iii
 al

-

><

e
Q)

2

0

::,

(.)

0

I
I

'
I

I
'

2

3

4

5

6

7

8

9

1
0

M
o

st freq
u

en
t reg

ion
s

F
IG

U
R

E

2
6

.4
 ■

Id

ea
l sp

eed
u

p
s a

ch
ieva

b
le b

y m
ovin

g region
s (loop

s) to h
a

rd
w

a
re, a

vera
ged

 for
a

 va
riety of em

b
ed

d
ed

 system
 b

en
ch

m
a

rk su
ites (M

ed
ia

B
en

ch
,

P
ow

erston
e, an

d

N
etb

en
ch

).

co
n

trib
u

tio
n

 fo
r th

e fi
rst n

 reg
io

n
s (in

 th
is ca

se lo
o

p
s) fo

r severa
l d

o
zen

 sta
n

d
a
rd

em

b
ed

d
ed

 sy
stem

 a
p

p
lica

tio
n

 b
en

ch
m

a
rk

s, a
ll seq

u
en

tia
l p

ro
g
ra

m
s. N

o
te th

a
t

th
e fi

rst fe
w

 reg
io

n
s a

cco
u

n
t fo

r 7
5

to
 8

0
 p

ercen
t o

f th
e ex

ecu
tio

n
 tim

e. T
h

e
reg

io
n

s a
re ro

u
g
h

ly
 eq

u
a
l in

 siz
e fo

llo
w

in
g
 th

e w
ell-kn

o
w

n
 in

fo
rm

a
l

"9
0

-
1
0

"

ru
le, w

h
ich

 sta
tes th

a
t th

a
t

9
0

 p
ercen

t o
f a

 p
ro

g
ra

m
's ex

ecu
tio

n
 tim

e is sp
en

t
in

1
0

 p
ercen

t o
f its co

d
e.

T
h

u
s,

h
a
rd

w
a
re/so

ftw
a
re p

a
rtitio

n
in

g
 o

f seq
u

en
tia

l
p

ro
g
ra

m
s g

en
era

lly
 m

u
st so

rt reg
io

n
s b

y
 th

eir ex
ecu

tio
n

 p
ercen

ta
g
e a

n
d

 th
en

co

n
sid

er m
o

vin
g
 th

e h
ig

h
est co

n
trib

u
tin

g
 reg

io
n

s to
 h

a
rd

w
a
re.

A
 co

ro
lla

ry
 to

 A
m

d
a
h

l's L
a
w

 is th
a
t if a

 reg
io

n
 is m

o
v
ed

 to
 h

a
rd

w
a
re,

its
a
ctu

a
l sp

eed
u

p
 lim

its th
e rem

a
in

in
g
 p

o
ssib

le sp
eed

u
p

. F
o

r ex
a
m

p
le, co

n
sid

er a

reg
io

n
 a

cco
u

n
tin

g
 fo

r 8
0
 p

ercen
t o

f ex
ecu

tio
n

 tim
e th

a
t, w

h
en

 m
o

ved
 to

 h
a
rd

w

a
re, ru

n
s o

n
ly

 2
x

fa

ster th
a
n

 in
 so

ftw
a
re.

S
u

ch
 a

 situ
a
tio

n
 is eq

u
iv

a
len

t to

4
0
 p

ercen
t o

f th
e reg

io
n

 b
ein

g
 sp

ed
 u

p
 id

ea
lly

 a
n

d
 th

e o
th

er 4
0

p

ercen
t n

o
t

b
ein

g
 sp

ed
 u

p
 a

t a
ll. W

ith
 4

0
 p

ercen
t n

o
t sp

ed
 u

p
, th

e id
ea

l sp
eed

u
p

 o
b

ta
in

a
b

le b
y
 p

a
rtitio

n
in

g
 o

f th
e rem

a
in

in
g
 reg

io
n

s (th
e o

th
er 2

0
 p

ercen
t) is lim

ited

r

s d

0

90

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 561

544 Chapter 26 ■ Hardware/Software Partitioning
to a mere 100 percent/40 percent= 2.Sx. For this reason, hardware/softwarepartitioning of sequential programs generally must focus on obtaining very largespeedups of the highest-contributing regions. Amdahl's Law therefore greatly prunes the solution space that partitioningof sequential programs must consider-good solutions must move the biggestcontributing regions to hardware and greatly speed them up to yield good overallapplication speedups. Even with this relatively simple view, several issues make the problemof hardware/software partitioning of sequential programs quite challenging.Those issues, illustrated in Figure 26.S(a-e), include determining critical region

Functions
Loops

� Blocks
--

--

(a)

(c)

SW HW

�®�
�:
"-o/:

®

Performance: 28.5s
Area: O gates

Application

lm�ornemati�imatio,

HWtime: 12.3s HWtime: 13.1s
HW area: 11523 gates HW area: 13122 gates
SW time: 78.7s SW time: 85.1 s
Runtime: 5 minutes Runtime: .02s

(b)

Cache Memory

Microprocessor

SW HW

� ®

®
Performance: 28.5s
Area: 1452 gates

(e)

(d)

SW HW

� ®
®

Performance: 16.2s
Area: 3418 gates

SW: HW

:�
®

i®

OMA

Performance: 11.1 s
Area: 12380 gates

FIGURE 26.5 ■ Hardware/software partitioning: (a) granularity; (b) partition evaluation;
(c) alternative region implementations; (d) implementation models; (e) exploration.

A
++ ++++ G ,1 ,1 V

+ + +\ /
+

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 562

26.2 Partitioning of Sequential Programs 545

granularity (a), evaluating partitions . (b), considering multiple alternative
implementations of a region (c), determining implementation models (d), and
exploring the partitioning solution space (e).

26.2.1 Granularity

Partitioning moves some code regions from a microprocessor to coprocessors.
A first issue in defining a partitioning approach is thus to determine the granu
larity of the regions to be considered. Granularity is a measure of the amount
of functionality encapsulated by a region, which is illustrated in Figure 26.6.

A key trade-off involves c<'arse versus fine region granularity [11]. Coarser
granularity simplifies partitioning by reducing the number of possible partitions,
enables more accurate estimates during partitioning by considering more com
putations when creating those estimates (and thus reducing inaccuracy when
combining multiple estimates for different regions into one), and reduces inter
region communication. On the other hand, finer granularity may expose better

f1 ()

Loop1

Block1

Loop2

Block2

Block20

00
(a)

f2()

Loop3

Loop4

Block21

Block4O

Loop5

8·8
(b)

(d)

FIGURE 26.6 ■ The region granularities of an application (top): (al functions; (bl loops;
(cl blocks; (d) heterogeneous combination. Finer granularities may expose better solutions, at
the expense of a more complex partitioning problem and more difficult estimation challenges.

88oop3

>80 p4v

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 563

546 Chapter 26 ■ Hardware/Software Partitioning

partitions that would not otherwise be possible. Early automated partitioning
research considered fine granularities of arithmetic operations or statements,
while more recent work typically considers coarser granularities involving basic
blocks, loops, or entire functions.

Coarse granularity simplifies the partitioning problem by reducing the num
ber of possible partitions. Take, for example, an application with two 1000-line
C functions, like the one shown in Figure 26'. 6 (top), and consider partitioning
at the granularity of functions, loops, or basic blocks. The granularity of func
tions involves only two regions, as shown in Figure 26.6(a), and the granularity
of loops involves five regions, as shown Figure 26.6(b). However, the granularity
of the basic block may involve many tens or hundreds of regions, as shown �n
Figure 26.6(c). If partitioning simply cµooses between hardware and software,
then two regions would yield 2*2 = 4 possible partitions, while just 32 regions
would involve 2*2*2* ... *2 (32 times) possible partitions, or over four billion.

Coarse granularity also enables more accurate early estimations of a region's
performance, size, power, and so forth. For example, an approach using func
tion granularity could individually presynthesize the two previously mentioned
functions to FPGAs before partitioning, gathering performance and size data.
During partitioning, it could simply estimate that, for the case of partitioning
both functions to the FPGA, the two functions' performances would stay the
same and their sizes would add. This estimate is not entirely accurate because
synthesizing both functions could involve interactions between the function's
implementations that would impact performance and size, but it is likely reason
ably accurate. In contrast, similar presynthesis and performance/size estimates
for basic blocks would yield grossly inaccurate values because multiple basic
blocks would actually be synthesized into a combined circuit having extensive
sharing among the blocks, bearing little resemblance to the individual circuits
presynthesized for each block.

However, finer granularity may expose better partitions that otherwise would
not be possible. In the two-function example just described, perhaps the best
partition would move only half of one function to hardware-an option not
possible at the coarse granularity of functions but possible at finer granularities
of loops or basic blocks.

Manual partitioning often involves initially considering a "natural" granula
rity for an application. An application may consist of dozens of functions, but a
designer may naturally categorize them into just a few key high-level functions.
A data-processing application, for example, may naturally consist of several key
high-level functions: acquire, decompress, transform, compress, and transmit.
The designer may first try to partition at that natural granularity before consi
dering finer granularities.

Granularity may be restricted to one region type, but can instead be hetero
geneous, as shown in Figure 26.6(d). For example, in the previous two-function
example from Figure 26.6 (top), one function may be treated as a region while
the other may be broken down so that its loops are each considered as a region.
A particular loop may even be broken down so that its basic blocks are indivi
dually considered as regions. Thus, for a single application, regions considered

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 564

26.2 Partitioning of Sequential Programs 547

for movement to hardware may include functions, loops, and basic blocks. With
heterogeneous granularity, preanalysis of the code may select regions based on
execution time and size, breaking down a region with very high execution time
or large size.

Furthermore, while granularity can be predetermined statically, it can also be
determined dynamically during partitioning [16]. Thus, an approach might start
with coarse-grained regions and then decompose specific regions deemed to be
critical during partitioning.

Granularity need not be restricted to regions defined by the language
constructs such as functions or loops, used in the original application descrip
tion. Transformations, some being well-known compiler transformations, may
be applied to significantly change the original description. They include func
tion inlining (replacing a function call with that function's statements), function
"exlining" (replacing statements with a function call), function cloning (making
multiple copies of a function for use in different places), function specializa
tion (creating versions of a function with constant parameters), loop unrolling
(expanding a loop's body to incorporate multiple iterations), loop fusion (merging
two loops into one), loop splitting (splitting one loop into two), code hoisting and
sinking (moving code out of and into loops), and so on.

26.2.2 Partition Evaluation

The process of finding a gooc! partition is typically iterative, involving conside
ration and evaluation of certain partitions and then decisions as to which parti
tions to consider next. Evaluation determines a partition's design metric values.
A design metric is a measure ofa partition. Common metrics include performance,
size, and power/energy. Other metrics include implementation cost, engineering
cost, reliability, maintainability, and so on.

Some design metrics may need to be optimized, meaning that partitioning
should seek the best possible value of a metric. Other design metrics may be
constrained, meaning that partitioning must meet some threshold value for a
metric. An objective function is one that combines multiple metric values into
a single number, known as cost, which the partitioning may seek to minimize.
A partitioning approach must define the metrics and constraints that can be
considered, and define or allow a user to define an objective function.

Evaluation can be a complex problem because it must consider several imple
mentation factors in order to obtain accurate design metric values. Among
others, these factors include . determining the communication time between
regions that transfer data (thus requiring knowledge of the communication
structure), considering clock cycle lengthening caused by multiple applica
tion regions sharing hardware resources (which may introduce multiplexers or
longer wires), and the like.

The key trade-off in evaluation involves estimation versus implementation.
Estimating design metric values is faster and so enables consideration of more
possible partitions. Obtaining the values through implementation is more accu
rate and thus ensures that partitioning decisions are based on sound evaluations.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 565

548 Chapter 26 ■ Hardware/Software Partitioning

Estimation involves some characterization of an application's regions before
partitioning and then, during partitioning, quickly combining the characteriza
tions into design metric values. The previous section on granularity discussed
how two C function regions could be characterized for hardware by synthe
sizing each region individually to an FPGA, resulting in a characterization of
each region consisting of performance and size data. Then a partition with
multiple regions in hardware could be evaluated simply by assuming that each
region's performance is the same as the predetermined performance and by
adding any hardware-mapped region sizes together to obtain total hardware
size. Estimation for software can be done similarly, using compilation rather
than synthesis for characterization.

Nevertheless, while estimation typically works well for software [24], the
nature of hardware may introduce significant inaccuracy into an estimation
approach because multiple regions may actually share hardware resources, thus
intertwining their performance and size values [9, 18]. Alternatively, implementa
tion as a means of evaluation involves synthesizing actual hardware circuits for
a given partition's hardware regions. Such synthesis thus accounts for hardware
sharing and other interdependencies among the regions. However, synthesis is
time consuming, requiring perhaps tens of seconds, minutes, or even hours,
restricting the number of partitions that can be evaluated.

Many approaches exist between the two extremes just described. Estimation
can be improved with more extensive characterization, incorporating much
more detail than just performance and size. Characterization may, for example,
describe what hardware resources a region utilizes, such as two multipliers or
2 Kbytes of RAM. Then estimation can use more complex algorithms to com
bine region characterizations into actual design metric values, such as that the
regions may share resources such as multipliers (possibly introducing multi
plexers to carry out such sharing) or RAM. These algorithms yield higher accu
racy but are still much faster than synthesis. Alternatively, synthesis approaches
can be improved by performing a "rough" rather than a complete synthesis,
using faster heuristics rather than slower, but higher-optimizing heuristics, for
example.

Evaluation need not be done in a single exploration loop of partitioning,
but can be heterogeneous. An outer exploration loop may be added to partitio
ning that is traversed less frequently, with the inner exploration loop conside
ring thousands of partitions (if automated) and using estimation for evaluation,
while the outer exploration loop considers only tens of partitions that are
evaluated more extensively using synthesis. The inner/outer loop concept can
of course be extended to even more loops, with the inner loops examining
more partitions evaluated quickly and the outer loops performing increasingly
in-depth synthesis on fewer partitions.

Furthermore, evaluation methods can change dynamically during partitioning.
Early stages in the partitioning process may use fast estimation techniques to
map out the solution space and narrow in on particular sections of it, while
later stages may utilize more accurate synthesis techniques to fine-tune the
solution.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 566

26.2 Partitioning of Sequential Programs 549

26.2.3 Alternative Region Implementations

Further adding to the partitioning challenge is the fact that a given region may
have alternative region implementations in hardware rather than just one imple
mentation, as assumed in the previous sections. For example, Figure 26.7 (top)
·shows a particular function that performs 100 multiplications. A fast but large
hardware implementation may use 100 multipliers, as shown in Figure 26.7(a).
The much smaller but much slower hardware implementation in Figure 26.7(b)
uses only 1 multiplier. Numerous implementation alternatives exist between those
two extremes, such as having 2 multipliers as in Figure 26.7(c), 10 multipliers,
and so on. Furthermore, the function may be implemented in a pipelined or non
pipelined manner. Utilized components may be fast and large (e.g., array-style
multipliers or carry-lookahead adders) or small and slow (e.g., shift-and-add mul
tipliers or carry-ripple adders). Many other alternatives exist.

A key trade-off involves deciding how many alternative implementations to
consider during partitioning. More alternatives greatly expand the number of
possible partitions and thus may possibly lead to improved results. However,
they also expand the solution space tremendously. For example, 8 regions each
with one hardware implementation yield 28 = 256 possible partitions. If each

f() {

for (i = O; i < 100; i++)
c[i) = a[i]*b[i];

□□□□
\ I \ I

* *

I I

□ □

(b)

(a)

□□□□
\/ \ I

* *

I I

□ □

·§···§···§
"' /

*

I

�------§
(c)

FIGURE 26.7 ■ Alternative region implementations for an original application (top) requiring
100 multiplications: (a) 100 multipliers; (b) 1 multiplier; (c) 2 multipliers. Alternative region
implementations may have hugely different performances and sizes.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 567

550 Chapter 26 ■ Hardware/Software Partitioning

region instead has 4 possible hardware implementations, then it has 5 possible
implementations (1 software and 4 hardware implementations), yielding 58, or
more than 300,000, possible partitions.

Most automated hardware/software partitioning approaches consider one
possible hardware implementation per region. Even then, a question exists as
to which one to consider for that region: the fastest, the smallest, or some
alternative in the middle? Some approaches do consider multiple alternative
implementations, perhaps selecting a small number that span the possible space,
such as small, medium, and large [Sl

As we saw with granularity and evaluation, the number of alternative imple
mentations considered can also be heterogeneous. Partitioning may consider only
one alternative for particular regions and multiple alternatives for other regions
deemed more critical.

Furthermore, as we saw with granularity and evaluation, the number of alter
native implementations can change dynamically as well. Partitioning may start
by considering only a few alternatives per region and then consider more for
particular regions as partitioning narrows in on a solution.

Sometimes obtaining alternative implementations of an application region
may require the designer to write several versions of it, each leading to one
or more alternatives. In fact, a designer may have to write different region ver
sions for software and hardware because a version that executes fast in software
may execute slow in hardware, and vice versa. That difference is due to soft
ware's fundamental sequential execution model that demands clever sequential
algorithms, while hardware's inherently parallel model demands parallelizable
algorithms.

26.2.4 Implementation Models

Partitioning moves critical .microprocessor software regions to hardware copro
cessors. Different implementation models define how the coprocessors are inte
grated with the microprocessor and with one another [6], enlarging the possible
solution space for partitioning and greatly impacting performance and size.

One implementation model parameter is whether coprocessor execution and
microprocessor execution overlap or are mutually exclusive. In the overlapping
model, the microprocessor activates a coprocessor and may then continue to
execute concurrently with it (if the data dependencies of the application allow).
In the mutually exclusive model, the microprocessor waits idly until the copro
cessor finishes, at which time the microprocessor resumes execution.

Figure 26.S(a) illustrates the execution of both models. Overlapping may
improve overall performance, but mutual exclusivity simplifies -implementa
tion by eliminating issues related to memory contention, cache coherency, and
synchronization-the coprocessor may even access cache directly. In many par
titioned implementations, the coprocessor executes for only a small fraction of
the total application cycles, meaning that overlapping gains little performance
improvement. When the microprocessor and coprocessor cycles are closer to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 568

26.2 Partitioning of Sequential Programs 551

Mutually exclusive Overlapping
Microprocessor Microprocessor

D D DD D
t ;

FPGA FPGA

■ ■- ■■-
Time Time

Direct/
communication

(a)

Cache

-
Tightly coupled ---
Loosely coupled .__ __,

(b)

Fused

DMA

FIGURE 26.8 ■ Implementation models: (a) mutually exclusive and overlapping. (b) implemen
tation model parameters.

being equal, overlapping may improve performance, up to a limit of 2 times, of
course. Similarly, the execution of coprocessors relative to one another may be
overlapped or mutually exclusive.

A second implementation model parameter involves communication
methods. The microprocessor and coprocessors may communicate through
memory and share the same data cache, or the microprocessor may commu
nicate directly with the FPGA through memory-mapped registers, queues, fast
serial links, or some combination of those mechanisms.

Another implementation model parameter is whether multiple coprocessors
are implemented separately or are fused. In a separate coprocessor model, each
critical region is synthesized to its own controller and datapath. In a fused
model, the critical regions are synthesized into a single controller and data
path. The fused model may reduce size because the hardware resources are
shared, but it may result in performance overhead because of a longer critical
path as well as the need to run at the slowest clock frequency of all the regions.

lo Iii,. r .1 I I

I • I J I :1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 569

552 Chapter 26 • Hardware/Software Partitioning

Certain coprocessors can be fused and others left separate. Furthermore, fusing
need not be complete-two coprocessors can share key components, such as a
floating-point unit, but otherwise be implemented separately.

Yet another model parameter is whether coprocessors and the microprocessor
are tightly or loosely coupled. Tightly coupled coprocessors may coexist on the
microprocessor memory bus or may even have direct access to microprocessor
registers. Loosely coupled, they may access microprocessor memory through a
bridge, adding several cycles to data accesses. Both couplings can coexist in a
single implementation.

FPGAs add a particularly interesting model parameter to partitioning
dynamic reconfiguration-which replaces an FPGA circuit with another circuit
during runtime by swapping in a new FPGA configuration bitstream [2]. In this
way, not all of an application's coprocessors need to simultaneously coexist in
the FPGA. Instead, one subset of the. application's required coprocessors may
initially be loaded into the FPGA, but, as the application continues to execute,
that subset may be replaced by another subset needed later in the application's
execution. Reconfiguration increases the effective size of an FPGA, thus enabling
better performance when more application regions are partitioned to it or, alter
natively, enabling use of a smaller and hence cheaper FPGA with a runtime
overhead required to swap in new bitstreams. In some cases, this overhead may
limit the benefits of reconfiguration and should therefore be considered during
partition evaluation.

Figure 26.8(b) illustrates some of the different implementation model para
meters, including communication methods, fused regions, and tightly/loosely
coupled coprocessors. Often these parameters are fixed prior to parti_tioning, but
can also be explored dynamically during partitioning to determine the best imple
mentation model for a given application and given constraints.

26.2.5 Exploration

Exploration is the searching of the partition solution space for a good partition.
As mentioned before, it is at present mostly a manual task, but automated tech
niques are beginning to mature. This section discusses automated exploration
techniques for various formulations of the partitioning problem.

Simple formulation
A simple and common form of the hardware/software partitioning problem
consists of n regions, each having a software runtime value, a hardware
runtime value, and a hardware size. It assumes that all values are independent
of one another (so if two regions are mapped to hardware, their hardware run
time and size values are unchanged); it assumes that communication times are
constant regardless of whether a region is implemented as software or hard
ware (such as when all regions use the same interface to a shared memory);
and it seeks to minimize total application runtime subject to a hardware size
constraint (assuming no dynamic reconfiguration).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 570

26.2 Partitioning of Sequential Programs 553

Although this problem is known to be NP-hard, it can be solved by first
mapping it to the well-known 0-1 knapsack problem [20]. The 0-1 knapsack prob
lem involves a knapsack with a specified weight capacity and a set of items,
each with a weight and a profit. The goal is to select which items to place
in the knapsack such that the total profit is maximized without violating the
weight capacity. For hardware/software partitioning, regions correspond to items,
the FPGA size constraint corresponds to the knapsack capacity, an implementa
tion's size corresponds to an item's weight, and the speedup obtained by imple
menting a region in hardware instead of software corresponds to an item's
profit.

Thus, algorithms that solve the 0-1 knapsack problem solve the simple form of
the hardware/software partitioning problem. The 0-1 knapsack problem is NP
hard, but efficient optimal algorithms exist for relatively large problem sizes.
One of these is a well-known dynamic programming algorithm [12] having run
time complexity of O(A *n), where A is the capacity and n is the number of items.
Alternatively, integer linear programming (ILP) [22] may be used. ILP solvers
perform extensive solution space pruning to reduce exploration time.

For problems too big for either such optimal technique, heuristics may be uti
lized. A heuristic finds a good, but not necessarily the optimal, solution, while an
algorithm finds the optimal solution. A common heuristic for the 0-1 knapsack
problem is a greedy one. A greedy heuristic starts with an initial solution and
then makes changes only if they seem to improve the solution. It sorts each item
based on the ratio of profit to weight and then traverses the sorted list, placing
an item in the knapsack if it fits and skipping it otherwise, terminating when
reaching the knapsack capacity or when all items have been considered. This
heuristic has O(nlgn) time complexity, allowing for fast automated partitioning
of thousands of regions or feasible manual partitioning of tens of regions. Fur
thermore, the heuristic has been shown to commonly obtain near-optimal results
in the situation when a few items have a high profit to weight ratio. In hard
ware/software partitioning terms, that situation corresponds to the existence of
regions that are responsible for the majority of execution time and require little
hardware area, which is often the case.

Formulation with asymmetric communication
and greedy/nongreedy automated heuristics
A slightly more complex form of the hardware/software partitioning problem
considers cases where communication times between regions change depending
on the partitioning, with different required times for communication depending
on whether the regions are both in software or both in hardware, or are sepa
rated, with one in software and one in hardware. This form of the problem can
be mapped to the well-known graph bipartitioning problem.

Graph bipartitioning divides a graph into two sets in order to minimize an
objective function. Each graph node has two weights, one for each set. Edges
may have three different weights: two weights associated with nodes connected
in the same set (one weight for each set) and one for nodes connected between
sets. Typically, the objective function is to minimize the sum of all node and edge

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 571

554 Chapter 26 ■ Hardware/Software Partitioning

weights using the appropriate weights for a given partition. Graph bipartitioning
is NP-hard.

ILP approaches may be used for automatically obtaining optimal solutions
to the graph bipartitioning problem. Heuristics may be used when ILP is too
time consuming. A simple greedy heuristic for graph bipartitioning starts with
some initial partition, perhaps random or all software. It then determines the
cost improvement of moving each node from its present set to the opposite set
and then moves the node yielding the best improvement. The heuristic repeats
these steps until no move yielding an improvement is found. Given n nodes,
a basic form of such a heuristic has O(n2) runtime complexity. Techniques to
update the existing cost improvement values can reduce the complexity to O(n)
in practice [25].

More advanced heuristics seek to overcome what are known as ''local min
ima," accepting solution-worsening moves in the hope that they will eventually
lead to an even better solution. For example, Figure 26.9 illustrates a heuristic
that accepts some solution-worsening changes to escape a local minimum and
eventually reach a better solution. A common situation causing a local mini
mum involves two items such that moving only one item worsens the solution
but moving both improves it.

A well-known category of nongreedy heuristic used in partitioning is known
as group migration [11], which evolved from an initial heuristic by Kemighan
Lin. Like the previous greedy heuristic, group migration starts with an initial
partition and determines the cost improvement of moving each node from its
present set to the opposite set. The group migration heuristic then moves the
node yielding the best improvement (like the greedy heuristic) or yielding the
least worsening (including zero cost change) if no improving move exists. Accept
ing such worsening moves enables local minima to be overcome. Of course, such
a heuristic would never terminate, so group. migration ensures termination by
locking a node after it is moved. Group migration moves each node exactly once
in what is referred to as an iteration, and an iteration has complexity of O(n2)

(or O(n) if clever techniques are used to update cost improvements after each

Better
solution

I
Considered sequence of changes

FIGURE 26.9 ■ Solution-worsening moves accepted by a nongreedy heuristic to escape local
minima and find better solutions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 572

26.2 Partitioning of Sequential Programs 555

move). If an iteration ultimately leads to an improvement, then group migration
runs another iteration. In practice, only a few iterations, typically less than five,
can be run before no further improvement can be found.

The previous discussions of heuristics ignore the time required by partition
evaluation. The heuristics therefore may have even higher runtime complexity
unless care is taken to incorporate fast incremental evaluation updates during
exploration.

Complex formulations and powerful automated heuristics
Increasingly complex forms of the hardware/software partitioning problem inte
grate more parameters related to the earlier mentioned issues of exploration
granularity, evaluation, alternative region implementation, and implementation
models. For example, the earlier mentioned dynamic granularity modifications,
such as decomposing a given region into smaller regions, or even applying trans
formations to an application such as function inlining, can be applied during
partitioning. The partitioning problem can consider different couplings of copro
cessors, may also consider coprocessor fusing, and can support dynamic recon
figuration. When one considers the multitude of possible parameters that can
be integrated with partitioning, the size of the solution space is mind-boggling.
Searching that space for the best solution becomes a tremendous combinatorial
optimization challenge, likely requiring long-running search heuristics.

At this point, it may be interesting to note that hardware/software partition
ing brings together two previously separate research fields: compilers and CAD
(computer-aided design). Compilation techniques tend to emphasize a quick
series of transformations applied to an application's description. In contrast,
CAD techniques tend to emphasize a long-running iterative search of enormous
solution spaces. One possible reason for these different perspectives is that
compilers were generally expected to run quickly, in seconds or at most min
utes, because they were part of a design loop in which compilation was applied
perhaps dozens or hundreds of times a day as programs were developed. In
contrast, CAD optimization techniques were part of a much longer design loop.
Running CAD optimization tools for hours or even days was perfectly acceptable
because that time was still small compared to the weeks or months required to
manufacture chips. Furthermore, the very nature of coprocessor design meant
that a designer was extremely interested in high performance, so longer tool
runtimes were acceptable if they optimized an implementation.

Hardware/software partitioning merges compilation and synthesis into a
single framework. In some cases, compiler-like runtimes of seconds must
be achieved. In other cases, CAD-like runtimes of hours may be acceptable.
Approaches to partitioning may span that range. Highly complex partitioning
formulations will likely require moving away from the fast linear time algo
rithms and heuristics described earlier and toward longer-running powerful
search heuristics.

A popular powerful and general search heuristic is simulated annealing [17].
The simulated annealing heuristic starts with a random solution and then
randomly makes some change to it, perhaps moving a region between software

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 573

5_56 Chapter 26 ■ Hardware/Software Partitioning

and hardware, choosing an alternative implementation for a particular region,
decomposing a particular region into finer-grained regions, performing a trans
formation on the original regions, and so forth, and evaluates the cost (as deter
mined by an objective function) of the new partition obtained from that change.
If the change improves the cost, it is accepted (i.e., the change is made). If the
change worsens the cost, the seemingly "bad" change is accepted with some
probability. The key feature of simulated annealing is that the probability of
accepting a seemingly bad move decreases as the approach proceeds, with the
pattern of decrease determined by some parameters provided to the annealing
process that eventually causes it to narrow in on a good solution. Simulated
annealing typically must evaluate many thousands or millions of solutions in
order to arrive at a good one and thus requires very fast evaluation methods.

The complexity of simulated annealing is generally dependent on the prob
lem instance. With properly set parameters, it can achieve near-optimal solu
tions on very large problems in long but acceptable runtimes. Faster machines
have made simulated annealing an increasingly acceptable search heuristic for
a wider variety of problems-it can complete in just seconds for many problem
instances.

The simulated annealing heuristic is known as a neighborhood search
heuristic because it makes local changes to an existing solution. Tahu search [13]
is an effective method for improving neighborhood search. Meaning "forbid
den," Tahu maintains a list of recently seen, Tahu, solutions. When considering
a change to an existing solution, it disregards any change that would yield a
solution on the Tahu list. This prevents cycling among the same solutions and
has been shown to yield improved results in less time. The Tahu list concept can
also be applied on a broader scale, maintaining a long-term history of consid
ered solutions in order to increase solution diversity. Tahu search can improve
neighborhood search heuristic runtimes during hardware/software partitioning
by a factor of 20x [8].

Other issues

Because implementing an application as software generally requires a smaller
size and less designer effort, most approaches to exploration start with an all
software implementation and then explore the mapping of critical application
regions to hardware. However, in some cases, such as when the application is
written specifically for hardware, an approach may start with an all-hardware
implementation and then move noncritical application regions to software to
reduce hardware size.

Furthermore, when an application is originally written for software imple
mentation, some of its regions may not be suitable for hardware implemen
tation. For example, application regions that utilize recursive function calls,
pointer-based data structures, or dynamic memory allocation may not be easy to
implement as a hardware circuit. Some research efforts are beginning to address
these problems by developing new synthesis techniques that support a wider
range of program constructs and behavior. Alternatively, designers sometimes

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 574

26.3 Partitioning of Parallel Programs 557

write (or rewrite) critical regions such that those regions are well suited for
circuit implementation.

26.3 PARTITIONING OF PARALLEL PROGRAMS

In parallel programs, the regions that make up an application are defined to
execute concurrently, as opposed to sequentially. Such regions are often called
tasks or processes. For some applications, expressing behavior using tasks may
result in a more parallel implementation and hence in faster application perfor
mance. For example, an MPEG2 decoder may be described as several tasks, such
as motion compensation, dequantization, or inverse discrete cosine transform,
that can be implemented in a pipelined manner.

Numerous parallel programming models have been considered for hard
ware/software partitioning, among others, synchronous dataflow, dynamic data
flow, Kahn process networks, and communicating sequential processes.

26.3.1 Differences among Parallel Programming Models

While hardware/software partitioning of parallel programs has many similarities
to partitioning for sequential programs, several key differences exist.

Granularity
Partitioning of parallel programs typically treats each task as a region, meaning
that the granularity is quite coarse. In some cases, decomposing a task into finer
granularity may be considered.

Evaluation
Parallel programs often involve multiple performance constraints, with partic
ular tasks or sets of tasks having unique performance constraints of their own.
Furthermore, estimations of performance must consider the scheduling of tasks
on processors, which is not an issue for sequential programs because regions in
these programs are not concurrent.

Alternative region implementations
Given the coarse granularity of tasks, considering alternative implementations
becomes even more important, as the variations among the alternatives can
be huge.

Implementation models
Because tasks are inherently concurrent, partitioning of parallel programs
typically uses parallel execution models in their implementations, meaning
that microprocessors and coprocessors run concurrently rather than mutually
exclusively and meaning that coprocessors may be arranged to form high
level pipelines. Partitioning of parallel programs is less likely to consider
fusing multiple coprocessors into one because fusing eliminates concurrency.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 575

558 Chapter 26 ■ Hardware/Software Partitioning

Parallel program partitioning introduces a new aspect to exploration
scheduling. When mapping multiple tasks to a single microprocessor, partition
ing must cany out the additional step of scheduling to determine when each task
will execute. Scheduling tasks to meet performance constraints is known as real
time scheduling and is a heavily studied problem [3].

Including partitioning during scheduling results in a more complex problem.
Such partitioning often considers more than just one microprocessor as well and
even different types of microprocessors. It may even consider different numbers
and types of memories and different bus structures connecting memories to
processors.

Parallel partitioning must also pay more attention to the data storage require
ments between processors. Queues may be introduced between processors, the
sizes of those queues must be determined, and their implementation (e.g., in
shared memory or in separate hardware components) must be decided.

Exploration
More complex issues in the hardware/software partitioning problem-such
as scheduling, different granularities, different evaluation methods, alterna
tive region implementations, and different numbers and connections of micro
processors/memories/buses-require more complex solution approaches. Most
modem automatic partitioning research considers one or a few extensions to
basic hardware/software partitioning and develops custom heuristics to solve
the new formulations in fast compiler-like nintimes. However, as more com
plex forms of partitioning are considered, more powerful search heuristics with
longer runtimes, such as simulated annealing or search algorithms tuned to the
problem formulation, may be necessary.

26.4 SUMMARY AND DIRECTIONS

Developing an approach for hardware/software partitioning requires the
consideration of granularity, evaluation, alternative region implementations,
implementation models, exploration, and so forth, and each such issue involves
numerous options. The result is a tremendously large partition solution
space and a huge variety of approaches to finding good partitions. While
much research into automated hardware/software partitioning has occurred
over the past decades, most of the problem's more complex formulations
have yet to be considered. A key future challenge will be the develop
ment of effective partitioning approaches for these increasingly complex
formulations.

As FPGAs continue to enter mainstream embedded, desktop, and server com
puting, incorporating automated hardware/software partitioning into standard
software design flows becomes increasingly important. One approach to mini
mizing the disruption of standard software design flows is to incorporate par
titioning as a backend tool that operates on a final binary, allowing continued
use of existing programming languages and compilers and supporting the use

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 576

26.4 Summary and Directions 559

of assembly and even object code. Such binary-level partitioning [23] requires
powerlul decompilation methods to recover high-level regions such as func
tions and loops. Binary-level partitioning even opens the door for dynamic
partitioning, wherein on-chip tools transparently move software regions to
FPGA coprocessors, making use of new lean, just-in-time compilers for
FPGAs [19].

References

[1] G. Amdahl. Validity of the single processor approach to achieving large-scale com
puting capabilities. Proceedings of the AF/PS Spring Joint Computer Conference,
1967.

[2] J. Burns, A. Donlin, J. Hogg, S. Singh, M. De Wit. A dynamic reconfiguration run
time system. Proceedings of the Symposium on FPGA-Based Custom Computing
Machines, 1997.

[3] G. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms
and Applications, Kluwer Academic, 1997.

[4] S. Chappell, C. Sullivan. Handel-C for co-processing and co-design of field pro
grammable system on chip. Proceedings of Workshop on Reconfigurable Computing
and Applications, 2002.

[5] K. Chatha, R. Vemuri. An iterative algorithm for partitioning, hardware design
space exploration and scheduling of hardware-software systems. Design Automa
tion for Embedded Systems 5(3-4), 2000.

[6] K. Compton, S. Hauck. Reconfigurable computing: A survey of systems and soft
ware. ACM Computing Surveys 34(2), 2002.

[7] CriticalBlue. http://www.criticalblue.com.
[8] P. Eles, Z. Peng, K. Kuchchinski, A. Doboli. System level hardware/software par

titioning based on simulated annealing and tabu search. Design Automation for
Embedded Systems 2(1), 1997.

[9] R. Enzler, T. Jeger, D. Cottet, G. Traster. High-level area and performance estima
tion of hardware building blocks on FPGAs. Lecture Notes in Computer Science
1896, 2000.

[10] R. Ernst, J. Henkel. Hardware-software codesign of embedded controllers
based on hardware extraction. Proceedings of the International Workshop on Hard
ware/Software Codesign, 1992.

[11] D. Gajski, F. Vahid, S. Narayan, J. Gong. Specification and Design of Embedded
Systems, Prentice-Hall, 1994.

[12] P. C Gilmore, R. E Gomory. The theory and computation of knapsack functions.
Operations Research 14, 1966.

[13] F. Glover. Tahu search, part I. Operations Research Society of America Journal on
Computing 1, 1989.

[14] T. Grotker, S. Liao, G. Martin, S. Swan. System Design with System C. Springer
Verlag, 2002.

[15] R. Gupta, G. De Micheli. System-level synthesis using re-programmable compo
nents. Proceedings of the European Design Automation Conference, 1992.

[16] J. Henkel, R. Ernst. A hardware/software partitioner using a dynamically deter
mined granularity. Design Automation Conference, 1997.

[17] S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science
220(4598), May 1983.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 577

560 Chapter 26 ■ Hardware/Software Partitioning

[18] Y. Li, J. Henkel. A framework for estimation and minimizing energy dissipation of
embedded IIW/SW systems. Design Automation Conference, 1998.

[19] R. Lysecky, G. Stitt, F. Vahid. Warp processors. Transactions on Design Automation
of Electronic Systems 11(3), 2006.

[20] S. Martello, P. Toth. Knapsack Problems: Algorithms and Computer Implementations,
Wiley, 1990.

[21] Poseidon Design Systems, Inc. http://www.poseidon-systems.com/index.htm.
[22] A. Schrijver. Theory of Linear and Integer Programming, Wiley, 1998.
[23] G. Stitt, F. Vahid. New decompilation techniques for binary-level co-processor

generation. Proceedings of the International Conference on Computer-Aided Design,
2005.

[24] K. Suzuki, A. Sangiovanni-Vincentelli. Efficient software performance estimation
methods for hardware/software codesign. Design Automation Conference, 1996.

[25] F. Vahid, D. Gajski. Incremental hardware estimation during hardware/software
functional partitioning. IEEE Transactions on VLSI Systems 3(3), 1995.

[26] F. Vahid, D. Gajski. Specification partitioning for system design. Design Automation
Conference, 1992.

[27] XPRES Compiler. http://www.tensilica.com/products/xpres.htm.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 578

CASE STUDIES OF FPGA

APPLICATIONS

PART V

Parts I through IV covered technologies and techniques for creating
efficient FPGA-based solutions to important problems. Part V focuses on
specific, important field-programmable gate array (FPGA) applications,
presenting case studies of interesting uses of reconfigurable technology.
While this is by no means an exhaustive survey of all applications done
on FPGAs, these chapters do contain several very interesting representa
tive points in this space. They can be read in any order, and can even be
interspersed with other chapters of this book.

This introduction should help readers identify the concepts the case
studies cover and the chapters each help to illustrate. To understand
the case studies, a basic knowledge of FPGAs (Chapter 1), CAD tools
(Chapters 6, 13, 14, and 17), and application development (Chapter 21) is
required.

Chapter 27 presents a high-performance image compression engine
optimized for satellite imagery. This is a streaming signal-processing
application (Chapters 5, 8, and 9), a type of computation that typically
maps well to reconfigurable devices. In this case, the system saw speedups
of approximately 400 times, for which the authors had to optimize the
algorithm carefully, considering memory bandwidth (Chapter 21), con
version to fixed point (Chapter 23), and alteration of the algorithm to
eliminate sequential dependencies.

Chapter 28 focuses on automatic target recognition, which is the detec
tion of regions of interest in military synthetic aperture radar (SAR)
images. Like the compression engine in Chapter 27, this represents a
very complex, streaming signal-processing application. It also is one of
the most influential applications of runtime-reconfiguration (Chapters 4
and 21), where a large circuit is time-multiplexed onto a single FPGA,
enabling it to reuse the same silicon multiple times. This was necessary
because the possible targets to be detected were represented by individ
ual custom, instance-specific circuits (Chapter 22), the huge number of
which was too large for the available FPGAs.

Chapter 29 discusses Boolean satisfiability (SAT) solving-the deter
mination of whether there is an assignment of values to variables that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 579

562 Part V ■ Case Studies of FPGA Applications

makes a given Boolean equation true (satisfied). SAT is a fairly general
optimization technique that is useful in, for example, chip testing,
formal verification, and even FPGA CAD flows. This work on solving

. Boolean equations via FPGAs is an interesting application of instance
specific circuitry (Chapter 3) because each equation to be solved was com
piled directly into FPGA logic. However, this meant that the runtime of
the CAD tools was part of the time needed to solve a given Boolean equa
tion, creating a strong push toward faster CAD algorithms for FPGAs
(Chapter 20).

Chapter 30 covers logic emulation-the prototyping of complex
integrated circuits on huge boxes filled with FPGAs and programmable
interconnect chips. This is one of the most successful applications of
multi-FPGA systems (Chapter 3) because the translation of a single ASIC
into FPGA logic necessitates hundreds to thousands of FPGAs to provide
adequate logic capacity. Fast mapping tools for such systems are also
important (Chapter 20).

In Chapter 23 we discussed methods for eliminating (or at least
minimizing) the amount of floating-point computation in FPGA designs
by converting floating-point operations to fixed point. However, there are
situations where floating point is unavoidable. Scientific computing codes
often depend on floating-point values, and many users require that the
FPGA-based implementation provide exactly the same results as those
of a processor-based solution. These situations require full floating-point
support. In other cases, the high dynamic range of values might make
fixed-point computations untenable. Chapter 31 considers the develop
ment of a library of floating-point units and their use in applications such
as FFTs.

Chapter 32 covers a complex physical simulation application-the
finite difference time domain (FDTD) method, which is a way of modeling
electromagnetic signals in complex situations that can be very useful
in applications such as antenna design and breast cancer detection.
The solution involves a large-scale cellular automata (Chapter S) repre
sentation of the space to be modeled and an iterative solver. The key
to achieving a high-performance implementation on FPGAs, however,
involves conversion to fixed-point arithmetic (Chapter 23), simplifica
tion of complex mathematical equations, and careful consideration of the
memory bottlenecks in the system (Chapter 21).

Chapter 33 discusses an alternative to traditional design flow for cre
ating FPGA mappings in which the FPGA is allowed to evolve its own
configuration. Because the FPGA is reprogrammable, a genetic optimiza
tion system can simply load into it random configurations and see how
well they function. Those that show promise are retained; those that do

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 580

Case Studies of FPGA Applications 563

not are removed. Through mutation and breeding, new configurations
are created and evaluated in the same way, slowly evolving better and
better computations. The hope is that such a system can support impor
tant classes of computation with circuits significantly more efficient than
standard design flows. This design strategy exploits special features of the
FPGA's reprogrammability and flexibility (Chapter 4).

Some of the chapters in this section focus on streaming digital sig
nal processing (DSP) applications. Such applications often benefit from
FPGA logic because of their amenability to pipelining and because of the
large amount of data parallelism inherent in the computation. Network
processing and routing is another such application domain. Chapter 34
considers packet processing, the application of FPGA logic to network
filtering, and related tasks. Heavy pipelining of circuits onto the reconfig
urable fabric and optimization of custom boards to network processing
(Chapter 3) support very high-bandwidth networking. However, because
the system retains the flexibility of FPGA logic, new computations and
new filtering techniques can be easily accommodated within the system.
This ability to incrementally adjust, tune, and invent new circuits pro
vides a valuable capability even in a field as rapidly evolving as network
security.

For many applications, memory access to a large set of state, rather
than computational, throughput can be the bottleneck. Chapter 35 ex
plores an object-oriented, data-centric model (Chapter 5) based on adding
programmable or reprogrammable logic into DRAM memories. The chap
ter emphasizes custom-reprogrammable chips (Chapter 2) and explores
both FPGA and VLIW implementation for the programmable logic. Never
theless, much of the analysis and techniques employed can also be applied
to modern FPGAs with large, on-chip memories.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 581

SPIHT IMAGE COMPRESSION

Thomas W. Fry
Samsung, Global Strategy Group

Scott Hauck
Department of Electrical Engineering
University of Washington

CH A PT ER 27

This chapter describes the process of mapping the image compression algorithm
SPIHT onto a reconfigurable logic architecture. A discussion of why adaptive
logic is required, as opposed to an ASIC, is provided, along with background
material on SPIHT. Several discrete wavelet transform hardware architectures
are analyzed and evaluated. In addition, two major modifications to the original
image compression algorithm, which are required in order to build a reconfig
urable hardware implementation, are presented: (1) the storage elements neces
sary for each wavelet coefficient, and (2) a modification to the original SPIHT
algorithm created to parallelize the computation. Also discussed are the effects
these modifications have on the final compression results and the trade-offs
involved.

The chapter then describes how the updated SPIHT algorithm is mapped onto
the Annapolis Microsystems WildStar reconfigurable hardware system. This sys
tem is populated with three Virtex-E field-programmable gate array (FPGA)
parts and several memory ports. The issues of how the modified algorithm is
divided between individual FPGA parts and how data flows through the mem
ories are discussed. Lastly, final results and speedups are presented and evalu
ated against a comparable microprocessor solution from the time the Annapolis
Microsystems WildStar was released.

27.1 BACKGROUND

As NASA deploys each new generation of satellites with more sensors, captur
ing an ever-larger number of spectral bands, the volume of data being collected
begins to outstrip a satellite's ability to transmit data back to Earth. For example,
the Terra satellite contains five separate sensors, each collecting up to 36 indi
vidual spectral bands. The Tracking and Data Relay Satellite System (TDRSS)
ground terminal in White Sands, New Mexico, captures data from these sensors
at a limited rate of 150 Mbps [19]. As the number of sensors on a satellite grows
and the transmission rates increase, this bandwidth limitation became a driving
force for NASA to study methods of compressing images prior to downlinking.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 582

566 Chapter 27 ■ SPIHT Image Compression

FPGAs are an attractive implementation medium for such a system. Software
solutions suffer from performance limitations and power requirements. At the
same time, traditional hardware platforms lack the required flexibility needed for
postlaunch modifications. After launch, such fixed hardware systems cannot be
modified to use newer compression schemes or even to implement bug fixes. In
the past, modification of fixed systems in satellites proved to be very expensive [4].

By implementing an image compression kernel in a reconfigurable system,
we overcame these shortcomings. Because such a system may be reprogrammed
after launch, it does not suffer from conventional hardware's inherit inflexibil
ity. At the same tinie, the algorithm is computing in custom hardware and can
perform at the required processing rates while consuming less power than a
traditional software implementation.

This chapter describes the work performed as part of a NASA-sponsored
investigation into the design and implementation of a space-bound FPGA-based
hyperspectral image compression machine. For this work, the Set Partitioning
in Hierarchical Trees (SPIHT) routine was selected as the image compression
algorithm. First, we describe the algorithm and discuss the reasons for its selec
tion. Then we describe how the algorithm was optimized for implementation in
a specific hardware platform and we present the results.

27 .2 SPIHT ALGORITHM

SPIHT is a wavelet-based image compression coder. It first converts an image
into its wavelet transform and then transmits information about the wavelet
coefficients. The decoder uses the received signal to reconstruct the wavelet and
then performs an inverse transform to recover the image. SPIHT was selected
because both it and its predecessor, the embedded zerotree wavelet coder, were
significant breakthroughs in still-image compression. Both offered significantly
improved quality over other image compression techniques such as vector quan
tization, JPEG, and wavelets combined with quantization, while not requiring
training that would have been more difficult to implement in hardware. In
short, SPIHT displays exceptional characteristics over several properties all at
once [15]:

■ Good image quality with a high peak-signal-to-noise ratio (PSNR).
■ Fast coding and decoding.
■ A fully progressive bitstream.
■ Can be used for lossless compression.
■ May be combined with error protection (useful in satellite transmissions).
■ Ability to code for an exact bitrate or PSNR.

In addition, since the SPIHT algorithm processes an image in two distinct
steps-the discrete wavelet transform phase and the coding phase-it provides
a natural point at which a hardware implementation may be divided. (The
advantage of this property will be seen in Section 27.4.) The rest of this section

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 583

27 .2 SPIHT Algorithm 567

describes the basics of wavelets, the discrete wavelet transform, and the SPIHT
coding engine.

27 .2.1 Wavelets and the Discrete Wavelet Transform

The wavelet transform is a reversible transform on spatial data. The discrete
wavelet transform (DWT) is a form appropriate to discrete data, such as the
individual points or pixels in an image. DWT runs a high-pass and low-pass
filter over the signal in one dimension. This produces a low-pass ("average")
version of the data and a high-pass (rapid changes within the average) version.
Every other result from each pass is then sampled, yielding two subbands, each
of which is one-half the size of the input stream. The result is a new image
comprising of a high- and a low-pass subband. These two subbands can be used
to fully recover the original image. In the case of a multidimensional signal such
as an image, this procedure is repeated in each dimension (Figure 27.1).

The vertical and horizontal transformations break up the image into four
distinct subbands. The wavelet coefficients that correspond to the fine details
are the LH, HL, and HH subbands. Lower frequencies are represented by the
LL subband, which is a low-pass filtered version of the original image [17].

The next wavelet level is calculated by repeating the horizontal and vertical
transformations on the LL subband from the previous level. Four new subbands
are created from the transformations. The LH, HL, and HH subbands in the
next level represent coarser-scale coefficients and the new LL subband is an
even smoother version of the original image. It is possible to obtain coarser
and coarser scales of the LH, HL, and HH subbands by iteratively repeating the
wavelet transformation on the LL subband of each level. Figure 27.2 displays the
subband components of an image with three scales of wavelet transformation.

The reverse transformation uses an inverse filter on the final LL subband and
the LH, HL, and HH subbands at the same level to recreate the LL subband
of the previous level. By iteratively processing each level, the original image
may be restored. Figure 27.3 displays a satellite image of San Francisco and its
corresponding 3-level DWT. By processing either the wavelet transform or the
inverse wavelet transform, these two images may be converted from one into
the other and thus may be viewed as equivalent.

LL

L H

HL

(a) (b) (c)

FIGURE 27.1 ■AI-level wavelet built by two one-dimensional passes: (a) original image,
(b) horizontal pass, and (c) vertical pass.

LH

HH

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 584

568 Chapter 27 • SPIHT Image Compression

LL3 LH3

LH2

HL3 HH3

HL2 HH2

HL1

FIGURE 27.2 ■ A 3-level wavelet transform.

LH1

HH1

FIGURE 27.3 ■ An image of San Francisco (a) and the resulting 3-level DWT (b).

27 .2.2 SPIHT Coding Engine

SPIHT is a method of coding and decoding the wavelet transform of an image.
As discussed in the previous section, by coding and transmitting information
about the wavelet coefficients, it is possible for a decoder to perform an inverse
transformation on the wavelet and reconstruct the original image. A useful
property of SPIHT is that the entire wavelet does not need to be transmitted
in order to recover the image. Instead, as the decoder receives more informa
tion about the original wavelet transform, the inverse transformation yields a
better-quality reconstruction (i.e., a higher PSNR) of the original image. SPIHT
generates excellent image quality and performance due to three properties of
the coding algorithm: partial ordering by coefficient value, taking advantage

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 585

FIGURE 27 .4 ■ Spatial orientation trees.

27.2 SPIHT Algorithm 569

of the redundancies between different wavelet scales, and transmitting data in
bit-plane order [14].

Following a wavelet transformation, SPIHT divides the wavelet into spatial
orientation trees (Figure 27.4). Each node in a tree corresponds to an individual
pixel. The offspring of a pixel are the four pixels in the same spatial location of
the same sub band at the next finer scale of the wavelet. Pixels at the finest scale of
the wavelet are the leaves of the tree and have no children. Every pixel is part of a
2 x 2 block with its adjacent pixels. Blocks are a natural result of the hierarchical
trees because every pixel in a block shares the same parent pixel. Also, the upper
left pixel of each 2 x 2 block at the root of the tree has no children since there
are only three subbands at each scale and not four. Figure 27.4 shows how the
pyramid is defined. Arrows point to the offspring of an individual pixel and the
grayed blocks show all of the descendents for a specific pixel at every scale.

SPIHT codes a wavelet by transmitting information about the significance of
a pixel. By stating whether or not a pixel is above some threshold, information
about that pixel's value is implied. Furthermore, SPIHT transmits information
stating whether a pixel or any of its descendents are above a threshold. If the
statement proves false, all of the pixel's descendants are known to be below
that threshold level and they do not need to be considered during the rest of
the current pass. At the end of each pass, the threshold is divided by two and
the algorithm continues. In this manner, information about the most significant
bits of the wavelet coefficients will always precede information on lower-order
significant bits, which is referred to as bit-plane ordering.

Information stating whether or not a pixel is above the current threshold
or is being processed at the current threshold is contained in three lists: the
list of insignificant pixels (LIP), the list of insignificant sets (LIS) and the list of
significant pixels (LSP). The LIP are pixels that are currently being processed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 586

570 Chapter 27 • SPIHT Image Compression

but are not yet above the threshold. The LIS are pixels that are currently being
processed but none of their descendents are yet above the current threshold
and so they are not being processed. Lastly, the LSP are pixels that were already
stated to be above a previous threshold level and whose value at each bit plane
is now transmitted.

Figure 27.5 is the algorithm from the original SPIHT paper [14], modified to
reflect changes (discussed later in the chapter) referring to 2 x 2 block informa
tion. Sn(i, j) represents if the pixel (i, j) is greater than the current threshold, and
Sn(D(i, j)) states if any of the pixel's (i, j) descendents are greater than the cur
rent threshold.

There are three important concepts to take from the SPIHT algorithm. First,
as the encoder sequentially steps through the image, it inserts or deletes pixels
from the three lists. All of the information required to keep track of the lists is
output to the decoder, allowing the decoder to generate and maintain an iden
tical list order as the encoder. For the decoder to reproduce the steps taken by
the encoder we merely need to replace the output statements in the encoder's
algorithm with input for the decoder's algorithm.

Second, the bitstream produced is naturally progressive. A progressive bit
stream is one that can be cut off at any point and still be valid. As the decoder
steps through the coding algorithm, it gathers finer and finer detail about the
original wavelet transform. The decoder can stop at any point and perform an
inverse transform with the wavelet coefficients it has currently reconstructed.
Progressive bitstreams can also be reduced to an arbitrary size or be cut off
during transmission and still produce a valid image. Such a property is very
useful in satellite transmissions.

1. Initialization: output n = floor [log2 (max (i,J) { I ci,j I})]; clear the LSP list,

add the root pix�ls to the LIP list and root pixels with descendants to LIS.

2 • Sorting Pass:

2 .1 for each entry (i, j) in the LIP:

2.1.1 output Sn (i,j);

2.1.2 If Sn(i,j) = 1, move (i,j) to the LSP list and output its sign

2 .2 for each entry (i,j) in the LIS:

2. 2 .1 If one of the pixels in (i,j)' s block is not in LIP but all are

in LIS:

output Sn (all descendants of the current block);

if none are significant, skip 2.2.2.

2.2.2 OUtput Sn(D(i,j))

if Sn (D (i,j)) = 1, then

for each of (i,j) immediate children (k,1):

output Sn (k,1);

add (k,1) to the LIS for the current pass

if Sn (k,1) = 1, add (k,1) to the LSP and output its sign

else add (k,1) to the LIP

3. Refinement Pass: for each entry (i,j) in LSP, except ones inserted in the

current pass, output the nth most significant bit of (i,j) .

4. Quantization-step Update: decrement n by 1 and go to Step 2.

FIGURE 27.5 ■ SPIHT coding algorithm.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 587

27.3 Design Considerations and Modifications 571

Third, and the concept that has the largest impact on building a hardware
platform, the SPIHT algorithm develops an individual list order to transmit
information within each bit plane. This ordering is implicitly created from
the threshold information discussed before-the order in which each pixel
enters each list determines the transmission order for each image. As a result,
each image will transmit wavelet coefficients in an entirely different order.
Slightly better PSNRs are achieved with this dynamic ordering of the wavelet
coefficients.

The SPIHT algorithm in Figure 27.5, which creates the individual list order
ing, is inherently sequential. As a result, SPIHT cannot be significantly paral
lelized in hardware. This drawback greatly limits the performance of any SPIHT
implementation in hardware. To get around this limitation and improve perfor
mance, it was necessary to parallelize the SPIHT algorithm and essentially create
a new image compression algorithm. These changes and the trade-offs involved
are described in Section 27.3.3.

27 .3 DESIGN CONSIDERATIONS AND MODIFICATIONS

To fully take advantage of the high performance a custom hardware implemen
tation of SPIHT could yield, the software specifications had to be examined and
adjusted where they either performed poorly in hardware or did not make the
most of the resources available. Here we review the three major factors taken
under consideration while evaluating how to create a hardware implementation
of the SPIHT algorithm on an adaptive computing platform.

The first factor was to determine what discrete wavelet transform architecture
to use. Section 27.3.1 provides a summary of the DWTs considered, showing how
memory and communication requirements helped dictate the structure chosen.
Section 27.3.2 describes the fixed-point precision optimization performed for
each wavelet coefficient and the final data representation employed. Section
27.3.3 explains how the SPIHT algorithm was altered to vastly speed up the
hardware implementation.

27 .3.1 Discrete Wavelet Transform Architectures

One of the benefits of the SPIHT algorithm is its use of the discrete wavelet
transform, which had existed for several years prior to this work. As a result,
numerous studies on how to create a DWT hardware implementation were avail
able for review. Much of this work on DWTs involved parallel platforms to save
both memory access and computations [S, 12, 16].

The most basic architecture is the basic folded architecture. The one-dimen
sional DWT entails demanding computations, which involve significant hardware
resources. Since the horizontal and vertical passes use identical finite impulse
response (FIR) filters, most two-dimensional DWT architectures implement fold
ing to reuse logic for each dimension [6]. Figure 27.6 illustrates how folded archi
tectures use a one-dimensional DWT to realize a two-dimensional DWT.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 588

572 Chapter 27 ■ SPIHT Image Compression

Row data

1-D DWT

Column data

FIGURE 27.6 ■ A folded architecture.

Memory

Although the folded architecture saves hardware resources, it suffers from
high memory bandwidth. For an N x N image there are at least 2N

2 read-and
write cycles for the first wavelet level. Additional levels require rereading previ
ously computed coefficients, further reducing efficiency.

To lower the memory bandwidth requirements needed to compute the DWT,
we considered several alternative architectures. The first was the Recursive Pyra
mid Algorithm (RPA) [21]. RPA takes advantage of the fact that the various
wavelet levels run at different clock rates. Each wavelet level requires one
quarter of the time that the previous level needed because at each level the
size of the area under computation is reduced by one-half in both the horizontal
and vertical dimensions. Thus, it is possible to store previously computed coeffi
cients on-chip and intermix the next level's computations with the current level's.
A careful analysis of the runtime yields (4*N2)/3 individual memory load and
store operations for an image. However, the algorithm has huge on-chip mem
ory requirements and demands a thorough scheduling process to interleave the
various wavelet levels.

Another method to reduce memory accesses is the partitioned DWT, which
breaks the image into smaller blocks and computes several scales of the DWT at
once for each block [13]. In addition, the algorithm made use of wavelet lifting to
reduce the DWT's computational complexity [18]. By partitioning an image into
smaller blocks, the amount of on-chip memory storage required was significantly
reduced because only the coefficients in the block needed to be stored. This
approach was similar to the RPA, except that it computed over sections of the
image at a time instead of the entire image at once. Figure 27.7, from Ritter and
Molitor [13], illustrates how the partitioned wavelet was constructed.

Unfortunately, the partitioned approach suffers from blocking artifacts along
the partition boundaries if the boundaries were treated with reflection.1 Thus,
pixels from neighboring partitions were required to smooth out these bound
aries. The number of wavelet levels determined how many pixels beyond a
subimage's boundary were needed, since higher wavelet levels represent data

1 An FIR filter generally computes over several pixels at once and generates a result for the middle
pixel. To calculate pixels close to an image's edge, data points are required beyond the edge of the
image. Reflection is a method that takes pixels toward the image's edge and copies them beyond
the edge of the actual image for calculation purposes.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 589

··+·-!
l

FIGURE 27.7 ■ The partitioned DWT.

27.3 Design Considerations and Modifications 573

.... j ... -l
i

i

···+··l

..... J :i
i

.... J i
i

i

FIGURE 27.8 ■ A generic 2D biorthogonal DWT.

from a larger image region. To compensate for the partition boundaries, the
algorithm processed subimages along a single row to eliminate multiple reads
in the horizontal direction. Overall data throughputs of up to 152 Mbytes/second
were reported with the partitioned DWT.

The last architecture we considered was the generic 2D biorthogonal DWT [3].
Unlike previous designs, the generic 2D biorthogonal DWT did not require FIR filter
folding or on-chip memories as the Recursive Pyramid design. Nor did it involve
partitioning an image into subimages. Instead, the architecture created separate
structures to calculate each wavelet level as data were presented to it, as shown in
Figure 27 .8. The design sequentially read in the image and computed the four DWT
subbands. As the LL1 subband became available, the coefficients were passed to
the next stage, which calculated the next coarser level subbands, and so on.

For larger images that required several individual wavelet scales, the generic
2D biorthogonal DWT architecture consumed a tremendous amount of on-chip
resources. With SPIHT, a 1024 x 1024 pixel image computes seven separate
wavelet scales. The proposed architecture would employ 21 individual high- and
low-pass FIR filters. Since each wavelet scale processed data at different rates,
some control complexity would be inevitable. The advantage of the architecture

HH3

HI.-,

LH3

LL,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 590

574 Chapter 27 • SPIHT Image Compression

was much lower on-chip memory requirements and full utilization of the
memory's bandwidth, since each pixel was read and written only once.

To select a DWT, each of the architectures discussed before were reevaluated
against our target hardware platform (discussed below). The parallel versions
of the DWT saved some memocy bandwidth. However, additional resources and
more complex scheduling algorithms became necessary. In addition, some of the
savings were minimal since each higher wavelet level is one-quarter the size of
the previous wavelet level. In a 7-level DWT, the highest 4 levels compute in just
2 percent of the time it takes to compute the first level. Other factors considered
were that the more complex DWT architectures simply required more resources
than a single Xilinx Virtex 2000E FPGA (our target device) could accommodate,
and that enough memory ports were available in our board to read and write
four coefficients at a time in parallel.

For these reasons, we did not select a more complex parallel DWT archi
tecture, but instead designed a simple folded architecture that processes one
dimension of a single wavelet level at a time. In the architecture created, pixels
are read in horizontally from one memory port and written directly to a second
memory port. In addition, pixels are written to memory in columns, inverting
the image along the 45-degree line. By utilizing the same addressing logic, pixels
are again read in horizontally and written vertically. However, since the image
was inverted along its diagonal, the second pass will calculate the vertical dimen
sion of the wavelet and restore the image to its original orientation.

Each dimension of the image is reduced by half, and the process iteratively
continues for each wavelet level. Finally, the mean of the LL sub band is calculated
and subtracted from itself. To speed up the DWT, the design reads and writes four
rows at a time. Figure 27.9 illustrates the architecture of the DWT phase.

Since every pixel is read and written once and the design processes four rows
at a time, for an N x N-size image both dimensions in the lowest wavelet level
compute in 2*N2/4 clock cycles. Similarly, the next wavelet level processes the
image in one-quarter the number of clock cycles as the previous level. With an
infinite number of wavelet levels, the image processes in:

(27.1)

Thus, the runtime of the DWT engine is bounded by three-quarters of a clock
cycle per pixel in the image. This was made possible because the memory ports
in the system allowed four pixels to be read and written in a single clock cycle.

It is very important to note that many of the parallel architectures designed
to process multiple wavelet levels simultaneously run in more than one clock
cycle per image. Also, because of the additional resources required by a parallel
implementation, computing multiple rows at once becomes impractical. Given
more resources, the parallel architectures discussed previously could process
multiple rows at once and yield runtimes lower than three-quarters of a clock
cycle per pixel. However, the FPGAs available in the system used, although state
of the art at the time, did not have such extensive resources.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 591

Read
address logic

DWT-level
calculation

and
control logic

Row1

Row2

Row3

Row4

27.3 Design Considerations and Modifications 575

Read
memory port

Write
memory port

Read-write 'crossbar

Row boundary
reflection

Row boundary
reflection

Row boundary
reflection

Row boundary
reflection

LL subband mean
calculation and subtraction

Variable fixed
point scaling

Variable fixed
point scaling

Variable fixed
point scaling

Variable fixed
point scaling

Data selection
and write

address logic

FIGURE 27.9 ■ A discrete wavelet transform architecture.

By keeping the address and control logic simple, there were enough resources
on the FPGA to implement 8 distributed arithmetic FIR filters [23] from the
Xilinx Core library. The FIR filters required significant FPGA resources, approx
imately 8 percent of the Virtex 2000E FPGA for each high- and low-pass FIR
filter. We chose the distributed arithmetic FIR filters because they calculate a
new coefficient every clock cycle, and this contributed to the system being able
to process an image in three-quarters of a clock cycle per pixel.

27 .3.2 Fixed-point Precision Analysis

The next major consideration was how to represent the wavelet coefficients in
hardware. The discrete wavelet transform produces real numbers as the wavelet
coefficients, which general-purpose computers realize as floating-point num
bers. Traditionally, FPGAs have not employed floating-point numbers for several
reasons:

■ Floating-point numbers require variable shifts based on the exponential
description, and variable shifters perform poorly in FPGAs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 592

576 Chapter 27 • SPIHT Image Compression

■ Floating-point numbers consume enormous hardware resources on a
limited-resource FPGA.

■ Floating point is often unnecessary for a known dataset.

At each wavelet level of the DWT, coefficients have a fixed range. Therefore,
we opted for a fixed-point numerical representation-that is, one where the dec
imal point's position is predefined. With the decimal point locked at a specific
location, each bit contributes a known value to the number, which eliminates the
need for variable shifters. However, the DWT's filter bank was unbounded, mean
ing that the range of possible numbers increases with each additional wavelet
level.

We chose to use the FIR filter set from the original SPIHT implementation. An
analysis of the coefficients of each filter bank showed that the two-dimensional
low-pass FIR filter at most increases the range of possible numbers by a fac
tor of 2.9054. This number is the increase found from both the horizontal and
the vertical directions. It represents how much larger a coefficient at the next
wavelet level could be if the previous level's input wavelet coefficients were the
maximum possible value and the correct sign to create the largest possible filter
output. As a result, the coefficients at various wavelet levels require a variable
number of bits above the decimal point to cover their possible ranges.

Table 27.1 illustrates the various requirements placed on a numerical repre
sentation for each wavelet level. The Factor and Maximum Magnitude columns
demonstrate how the range of possible numbers increases with each level for
an image starting with 1 byte per pixel. The Maximum Bits column shows the
maximum number of bits (with a sign bit) necessary to represent the numeric
range at each wavelet level. The Maximum Bits from Data column represents the
maximum number of bits required to encode over one hundred sample images
obtained from NASA. These numbers were produced via software simulation on
this sample dataset.

In practice, the magnitude of the wavelet coefficients does not grow at the
maximum theoretical rate. To maximize efficiency, the Maximum Bits from Data
values were used to determine what position the most significant bit must stand
for. Since the theoretical maximum is not used, an overflow situation may occur.

TABLE 27.1 ■ Fixed-point magnitude calculations

Wavelet Maximum Maximum bits

level Factor magnitude Maximum bits from data

Input image 1 255 8 8

0 2.9054 741 11 11

1 8.4412 2152 13 12

2 24.525 6254 14 13

3 71.253 18170 16 14

4 207.02 52789 17 15

5 601.46 153373 19 16

6 1747.5 445605 20 17

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 593

27.3 Design Considerations and Modifications 577

To compensate, the system flags overflow occurrences as an error and truncates
the data. However, after examining hundreds of sample images, no instances of
overflow occurred, and the data scheme used provided enough space to capture
all the required data.

If each wavelet level used the same numerical representation, they would all
be required to handle numbers as large as the highest wavelet level to prevent
overflow. However, since the lowest wavelet levels never encounter numbers in
that range, several bits at these levels would not be used and therefore wasted.

To fully utilize all of the bits for each wavelet coefficient, we introduced
the concept of variable fixed-point representation. With variable fixed-point we
assigned a fixed-point numerical representation for each wavelet level optimized
for that level's expected data size. In addition, each representation differed from
one another, meaning that we employed a different fixed-point scheme for each
wavelet level. Doing so allowed us to optimize both memory storage and 1/0 at
each wavelet level to yield maximum performance.

Once the position of the most significant bit was found for each wavelet level,
the number of precision bits needed to accurately represent the wavelet coeffi
cients had to be determined. Our goal was to provide enough bits to fully recover
the image and no more. Figure 27.10 displays the average PSNRs for several
recovered images from SPIHT using a range of bit widths for each coefficient.

An assignment of 16 bits per coefficient most accurately matched the full
precision floating-point coefficients used in software, up through perfect recon
struction. Previous wavelet designs we looked at focused on bitrates less than
4 bits per pixel (bpp) and did not consider rounding effects on the wavelet trans
formation for bitrates greater than 4 bpp. These studies found this lower bitrate
acceptable for lossy SPIHT compression [3].

a:
� 60 +------------�:,,,-"o:::;..---------l

0

LO "': LO LO "l LO LO LO "' LO O> LO "' LO "' LO "' LO ... LO "': LO
0

0
... � "': c\i "l .,; LO .,; "' ..; O> .,; "' "' <D 0

...
...

c:i c:i c\i "' .,; ..; ..; .,; <D ,-..: ,-..:

Bit rate

-Real -16bits -14bits 12 bits -10 bits

FIGURE 27.10 ■ PSNR versus bitrate for various coefficient sizes.

:::1 ~

~ :: E ... ~ .. I
. - -

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 594

578 Chapter 27 ■ SPIHT Image Compression

TABLE 27.2 ■ Final variable fixed-point representation

Wavelet level Integer bits Fractional bits

Input image 10 6

0 11 5

1 12 4

2 13 3

3 14 2

4 15 1

5 16 0

6 17 -1

Instead, we chose a numerical representation that retains the equivalent
amount of information as a full floating-point number during wavelet trans
formation. By doing, so, it was possible to perfectly reconstruct an image given
a high enough bitrate. In other words, we allowed for a lossless implementation.
Table 27 .2 provides the number of integer and fractional bits allocated for each
wavelet level. The number of integer bits also includes 1 extra bit for the sign
value. The highest wavelet level's 16 integer bits represent positions 17 to 1, with
no bit assigned for the O position.

27 .3.3 Fixed Order SPIHT

The last major factor we took under consideration was how to parallelize the
SPIHT algorithm for use in hardware. As discussed in Section 27 .2, SPIHT com
putes a dynamic ordering of the wavelet coefficients as it progresses. By always
adding pixels to the end of the LIP, LIS, and LSP, coefficients most critical to
constructing a valid wavelet are generally sent first, while less critical coefficients
are placed later in the lists. Such an ordering yields better image quality for bit
streams that end in the middle of a bit plane. The drawback of this ordering
is that every image has a unique list order determined by the image's wavelet
coefficient values.

By analyzing the SPIHT algorithm, we were able to conclude that the data a
block of coefficients contributes to the final SPIHT bitstream is fully determined
by the following set of localized information:

■ The 2 x 2 block of coefficients
■ Their immediate children
■ The maximum magnitude of the four subtrees

As a result, we were able to show that every block of coefficients could be calcu
lated independently and in parallel of one another. We were also able to deter
mine that, if we could parallelize the computation of these coefficients, the final
hardware implementation would operate at a niuch higher throughput. How
ever, we were not able to take advantage of this- parallelism because in SPIHT

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 595

27.3 Design Considerations and Modifications 579

the order in which a block's data is inserted into the bitstream is not known,
since it depends on the image's unique ordering. Only once the order is deter
mined is it possible to produce a valid SPIHT bitstream from the information
listed previously.

Unfortunately, the algorithm employed to calculate the SPIHT ordering of
coefficients is sequential. The computation steps over the coefficients of the
image multiple times within each bit plane and dynamically inserts and removes
coefficients from the LIP and LIS lists. Such an algorithm is not parallelizable
in hardware. As a result, many of the speedups a custom hardware implemen
tation may produce would be lost. Instead, any hardware implementation we
could develop would need to create the lists in an identical manner as the soft
ware implementation. This process would require many clock cycles per block
of coefficients, which would significantly limit the throughput of any SPIHT
implementation in hardware.

To remove this limitation and design a faster system, we created a modifica
tion to the original algorithm called Fixed Order SP/HT. Fixed Order SPIHT is
similar to the SPIHT algorithm shown in Figure 27.5, except thatt he order of
the LIP, LIS, and LSP lists is fixed and known beforehand. Instead of inserting
blocks of coefficients at the end of the lists, they are inserted in a predetermined
order. For example, block A will always appear before block B, which is always
before block C, regardless of the order in which A, B, and C were added to the
lists. The order of Fixed Order SPIHT is based upon the Morton scan ordering
discussed in Algazi and Estes [1].

Fixed Order SPIHT removed the need to calculate the ordering of coefficients
within each bit plane and allowed us to create a fully parallel version of the
original SPIHT algorithm. Such a modification increased the throughput of a
hardware encoder by more than an order of magnitude at the cost of a slightly
lower PSNR within each bit plane. Figure 27.11 outlines the new version of
SPIHT we created. The final bitstream generated is precisely the same as the
bitstream generated from the original SPIHT algorithm except that data will
appear in a different order within each bit plane.

By using the algorithm in Figure 27.11 instead of the original sequential
algorithm in Figure 27.8, the final datastream can be computed in one pass
through the image instead of multiple passes. In addition, each pixel block
is coded in parallel, which yields significantly faster compression times with
FPGAs.

The advantage of this method is that at the end of each bit plane, the exact
same data will have been transmitted, just in a different order. Thus, at the end
of each bit plane the PSNR of Fixed Order SPIHT will match that of the original
SPIHT algorithm, as shown in Figure 27.12. Since the length of each bitstream
is fairly short within the transmitted datastream, the PSNR curve of Fixed Order
SPIHT very closely matches that of the original algorithm. The maximum loss
in quality between Fixed Order SPIHT and the original SPIHT algorithm found
was 0.2 dB. This is the maximum loss any image in our sample set displayed
over any bitrate from 0.05 to 8.00 bpp.

For a more complete discussion on Fixed Order SPIHT, refer to Fry [8].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 596

580 Chapter 27 ■ SPIHT Image Compression

1. Bit-plane calculation: for each 2x2 block of pixels (i, j) in a Morton

Scan Ordering

1. 1 for each threshold level n from the highest level to the lowest

1.1.1 if {i,j) is a root and Max ((i,j)) >= n

add all four pixels to the LIP

1.1. 2 if (i,j) is not a root and Max ((i,j)) >= previous n

for each pixel p in the block

if p < previous n

add p to the LIP

else

add p to the LSP

1.1. 3 if (i,j) is not a leaf and Max ((i,j) >= n

add all four pixel to the LIS unless (i,j) is a root, then

just add the three with children

1.1.4 if all four pixels are in LIS and at least one is not in the LIP

if .. at least one pixel will be removed from the LIS at this level

output a '0' to the LIS stream

else

output a '1' to the LIS stream

1.1. 5 for each pixel p in the LIP

if p >= n

output a '1' and the sign of p to the LIP stream

remove p from the LIP and add it to the LSP

else

output a '0' to the LIP stream

1.1. 6 for each pixel p in the LIS

if child max (pl >= n

output a ' 1' to the LIS stream

remove p from the LIS

for each child (k,1) of p

if (k,1) >= n

output a '1' and the sign of (k,1) to the LIS stream

else

output a '0' to the LIS stream

else

output a '0' to the LIS stream

1.1. 7 for each pixel p in the LSP

output the value of p at the bit plane n to the LSP stream

2. Grouping phase: for each threshold level n from the highest level to

the lowest

2 .1 output the LIP stream at threshold level n to the final data stream

2. 2 output the LIS stream at threshold level n to the final data stream

2. 3 output the LSP stream at threshold level n to the final data stream

FIGURE 27.11 ■ Fixed Order SPIHT.

27 .4 HARDWARE IMPLEMENTATION

In the following subsections we first describe the target hardware platform
that the SPIHT algorithm was mapped onto. Next, we present an overview of
the implementation and a detailed description of the three major steps of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 597

27.4 Hardware Implementation 581

50

40

cc

� 30

20

10

0
LO C') LO co LO � LO � :g C') LO co LO C') LO co
0 ci LO ci C! � � � C\i LO C\i 0 C"i LO C"i
ci ci � � C\i C\i C"i C"i

Bit rate

-- Original - - - - - - · Fixed order

FIGURE 27.12 ■ A comparison of original SPIHT and Fixed Order SPIHT.

computation. A thorough understanding of the target platform is required
because it strongly influenced the SPIHT implementation created.

27 .4.1 Target Hardware Platform

The target platform was the WildStar FPGA processor board developed by
Annapolis Microsystems [2]. Shown in Figure 27.13, it consists of three Xilinx
Virtex 2000E FPGAs-PE 0, PE 1, and PE 2-and operates at rates of up to
133 MHz. The board makes available 48 MBytes of memory through 12 indi
vidual memory ports, between 32 and 64 bits wide, yielding a throughput of up
to 8.5 GBytes/sec. Four shared memory blocks connect the Virtex chips through
a crossbar. By switching a crossbar, several MBytes of data are passed between
the chips in just a few clock cycles.

The Xilinx Virtex 2000E FPGA allows for 2 million gate designs [22]. For extra
on-chip memory, the FPGAs contain 160 asynchronous dual-ported BlockRAMs.
Each BlockRAM stores 4096 bits of data and is accessible in 1-, 2-, 4-, 8-, or
16-bit-wide words. Because they are dual ported, the BlockRAMs function well
as first in, first outs (FIFOs). A PCI bus connects the board to a host computer.

27 .4.2 Design Overview

The architecture constructed consisted of three phases: wavelet transform,
maximum magnitude calculation, and Fixed Order SPIHT coding. Each phase

0..

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 598

582 Chapter 27 • SPIHT Image Compression

SRAM SRAM SRAM SRAM

SRAM SRAM

32 bits 32 bits

PE1 PEO PE2

32 bits 32 bits

SRAM SRAM

SRAM SRAM SRAM SRAM

FIGURE 27.13 ■ A block diagram of the Annapolis Microsystems WildStar board.

was implemented in one of the three Virtex chips. By instantiating each phase
on a separate chip, separate images could be operated on in parallel. Data was
transferred from one phase by the next through the shared memories. The deci
sion on how to break up the phases came naturally from the resources available
in each FPGA and the requirements of each section. The DWT and the SPIHT
coding phases each required close to the full resources of a single FPGA, and
the maximum magnitude phase needed to be completed prior to the SPIHT cod
ing phase. These characteristics of the algorithm and system naturally lead to
placing the three phases on the three separate FPGAs.

The architecture was also designed in this manner because once processing
in a phase is complete, the crossbar mode could be switched and the data calcu
lated would be accessible to the next chip. By coding a different image in each
phase simultaneously, the throughput of the system is determined by the slow
est phase, while the latency of the architecture is the sum of the three phases.
Figure 27 .14 illustrates the architecture of the system.

27 .4.3 Discrete Wavelet Transform Phase

As discussed in Section 27.3.1, after implementing each algorithm in hardware
we chose a simple folded architecture, which matched the bandwidth, memory,
and chip capacities of the target board well. The results of this phase are stored
into memory and passed to the maximum magnitude phase.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 599

27.4 Hardware Implementation 583

Wavelet Wavelet

PE1 coefficients PEO coefficients PE2
wavelet magnitude Magnitude SPIHT

information

FIGURE 27.14 ■ An overview of the architecture.

27 .4.4 Maximum Magnitude Phase

Once the DWT is complete, the next phase prepares and organizes the image into
a form easily readable by the parallel version of the SPIHT coder. Specifically, the
maximum magnitude phase calculates and rearranges the following information
for the next phase:

■ The maximum magnitude of each of the four child trees
■ The absolute value of the 2 x 2 block of coefficients
■ A sign value for each coefficient in the block
■ The threshold level when the block is first inserted into the LIS by its

parent
■ Threshold and sign data of each of the 16 child coefficients
■ Reorder the wavelet coefficients into a Morton Scan Ordering

The SPIHT coding phase shares two 64-bit memory ports with the maximum
magnitude phase, allowing it to read 128 bits on each clock cycle. The data just
listed can fit into these two memory ports. By doing so on every clock cycle the
SPIHT coding phase will be able to read and process an entire block of data. The
data that the maximum magnitude phase calculates is shown in Figure 27.15.

To calculate the maximum magnitude of all coefficients below a node in the
spatial orientation trees, the image must be scanned in depth-first search order
[7]. With a depth-first search, whenever a new coefficient is read and consid
ered, all of its children will have already been read and the maximum coeffi
cient so far is known. On every clock cycle the new coefficient is compared to
and updates the current maximum. Because PE O (the maximum magnitude
phase) uses 32-bit-wide memory ports, it can read half a block at a time.

The state machine, which controls how the spatial orientation trees are tra
versed, reads one-half of a block as it descends the tree, and the other half as it
ascends the tree. By doing so all of the data needed to compute the maximum
magnitude for the current block is available as the state machine ascends back
up the spatial orientation tree. In addition, the four most recent blocks of each
level are saved onto a stack so that all 16 child coefficients are available to the
parent block.

Figure 27.16 demonstrates the algorithm. The current block, maximum mag
nitude for each child, and 16 child coefficients are shown on the stack. Light
gray blocks are coefficients previously read and processed. Dark gray blocks are
coefficients currently being read. In this example, the state machine has just
finished reading the lowest level and has ascended to the second wavelet level.

.______. ~-I ·I.______.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 600

