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users can download either compiled JAR files of the JHDL system, or they can 
download and build JHDL from sources themselves. Documentation on the 
JHDL system is provided as well. 
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MAPPING DESIGNS TO 

RECONFIGURABLE PLATFORMS 

PART Ill 

The chapters that follow cover the key mapping steps unique to 
field-programmable gate arrays (FPGAs) and reconfigurable targets. 
These steps include technology mapping to the primitive FPGA pro
grammable gates (Chapter 13), placement of these gates (Chapters 14 
through 16), routing of the interconnect between gates (Chapter 17), 
retiming of registers in the design (Chapter 18), and bitstream genera
tion (Chapter 19). A final chapter summarizes a number of approaches to 
accelerating various stages of the mapping process (Chapter 20). 

Placement is a difficult mapping problem, but is critical to the 
performance of the resulting reconfigurable design. As a result, it can be 
very slow, limiting the rate of the edit-compile-debug loop for reconfig
urable application development, and the designs it produces may have 
longer cycle times than we would like. For these reasons, in addition 
to the general-purpose algorithms for placement covered in Chapter 14, 
algorithms that are highly optimized to exploit the regularity of data
paths are discussed in Chapter 15, and constructive approaches to lay
out are treated in Chapter 16. These more specialized approaches can 
significantly reduce placement runtime and often deliver placements that 
allow faster design operation. 

As Chapters 13 through 20 demonstrate, there is a well-developed set 
of approaches and tools for programming reconfigurable applications. 
However, the tools are always slower than we might like them to be, espe
cially as FPGA capacities continue to grow with Moore's Law. Moreover, 
the designs they produce are often too large or too slow, and the level at 
which we must program them is often lower than optimal. These defi
ciencies present ample opportunities for innovation and improvement in 
software support for reconfigurable systems. 

For the designer who works on reconfiguration issues, the follow
ing chapters provide a look under the covers at the tools used to map 
designs and at the problems they must solve. It is important to under
stand which problems the tools are and are not solving and how well 
they can be expected to work. An understanding of the mapping flow and 
algorithms often helps the designer appreciate why tools may not produce 
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276 Part III ■ Mapping Designs to Reconfigurable Platforms 

the quality of results expected and how the design could be optimized to 
obtain better results. Similarly, understanding the problems that the tools 
are solving helps the designer understand the trade-offs associated with 
higher- or lower-level designs and how to mix and match design levels to 
obtain the desired quality of results with minimal effort. 

For the tool or software developer, this part covers the key steps 
in a traditional tool flow and summarizes the key algorithms used to 
map reconfigurable designs. With this knowledge the developer can 
rapidly assimilate conventional approaches and options and thus pre
pare to explore opportunities to improve quality of results, reduce tool 
time, or increase automation and raise the configurable design's level of 
abstraction. 
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CHAPTER 13 

Technology mapping is an essential step in an field-programmable gate array 
(FPGA) design flow. It is the process of converting a network of technology
independent logic gates into a network comprising logic cells on the target FPGA 
device. 'i'echnology mapping has a significant impact on the quality of the final 
FPGA implementation. 

Technology-mapping algorithms have been proposed for optimizing area 
[29, 36, 58, 65], timing [9, 12, 13, 19, 21, 37, 58], power [2, 8, 34, 45, 52, 71], 
and routability [3, 67]. Mapping algorithms can be classified into those for gen
eral networks [ 13, 16] and those for special ones such as treelike networks 
[35, 36]. Algorithms for special networks may be applied to general ones through 
partitioning, with a possible reduction in solution quality. 

Technology-mapping algorithms can be structural or functional. A structural 
mapping algorithm does not modify the input network other than to duplicate 
logic [12, 13]. It reduces technology mapping to a covering problem in which 
the technology-independent logic gates in the input network are covered with 
logic cones such that each cone can be implemented using one logic cell-for 
example, a K-input lookup table (K-LUT)-for LUT-based FPGAs. Figure 13.1 
is an example of structural mapping. The logic gates in the original network 
(a) are covered with three logic cones, each with at most three inputs, as indi
cated (b). Note that node i is included in two cones and will be duplicated. The
corresponding mapping solution (c) comprises three 3-LUTs.

A functional mapping algorithm, on the other hand, treats technology map
ping in its general form as a problem of Boolean transformation/decomposition 
of the input network into a set of interconnected logic cells [15, 48, 58, 60]. 
It mixes Boolean optimization with covering. Functional mapping algorithms 
tend to be time consuming, which limits their use to small designs or to small 
portions of a design. 

Note: This work is partially supported by the National Science Foundation under grant number 
CCF 0530261. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 304



278 Chapter 13 • Technology Mapping 

Recent advances in technology mapping try to combine mapping with other 
steps in the design flow. Such integrated mapping algorithms have the potential 
to explore a larger solution space than is possible with just technology mapping 
and thus have the potential to arrive at mapping solutions with better quality. 
For example, algorithms have been proposed to combine logic synthesis with 
covering to overcome the limitations of pure structural mapping [11, 22, 57]. 

13.1 STRUCTURAL MAPPING ALGORITHMS 

Technology mapping is part of a logic synthesis flow, which typically consists of 
three steps. First, the initial network is optimized using technology-independent 
optimization techniques such as node extraction/substitution and don't-care 
optimization [33]. Second, the optimized network is decomposed into one con
sisting of 2-input gates plus inverters (that is, the network is 2-bounded) to 
increase flexibility in mapping [12, 36]. Third, the actual mapping takes place, 
with the goal of covering the 2-bounded network with K-LUTs while optimizing 
one or more objectives. In the remaining discussion, we assume that the input 
network is 2-bounded. 

A logic network can be represented as a graph where the nodes represent logic 
gates, primary inputs (Pis), and primary outputs (POs). The edges represent the 
interconnects or wires. A cut of a node v is a set of nodes in the input network 
such that every path from the primary inputs or sequential element outputs to 
v contains at least one node in the set. A K-cut is a cut with at most K nodes. 
For example, {a, b, z} is a 3-cut for the node yin the network in Figure 13.l(a). 
Given a K-cut for v, we can obtain a K-LUT for v by collapsing the gates in 
the logic cone between the nodes in the cut, v, including v itself. For the 3-cut 
{a, b, z} fory, the 3-LUT fory in Figure 13.l(c) is derived from the corresponding 
cone indicated for yin Figure 13.l(b). 

(a) (b) (c) 

FIGURE 13.1 ■ Structural technology mapping: (a) original network, (b) covering, and (c) mapping 
solution. 
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13.1 Structural Mapping Algorithms 279 

Most structural mapping algorithms are based on the dynamic programming 
technique. They typically consist of the following steps: 

1. Cut generation/enumeration
2. Cut ranking
3. Cut selection
4. Final mapping solution generation

Cut generation obtains one or more cuts that will be used to generate LUTs; 
it is discussed in the next section. Cut ranking evaluates the cuts obtained in 
cut generation to see how good they are based on the mapping objectives. It 
assigns a label or cost to each cut by visiting the nodes in a topological order 
from Pis to POs. Cut selection picks a cut with the best label for each node and 
is typically done in reverse topological order from POs to Pis. Cut ranking and 
selection may be carried out multiple times to refine solution quality. 

After the final cut selection, a mapping solution is generated using the selected 
cuts. In this step, the nodes are visited in the reverse topological order, starting 
from POs and going back to Pis. At each node, a cut with the best label is 
selected and the corresponding LUT is added to the solution. Next, the nodes 
that drive the LUT are visited. This process is repeated until only Pis are left. 
At that point, a complete mapping solution is obtained. 

13. 1. 1 Cut Generation

Early mapping algorithms combine cut generation and selection to determine 
one or a few "good" cuts for each node. The most successful example is the 
FlowMap algorithm, which finds a single cut with optimal mapping depth at 
each node via max-flow computation [16]. It computes the optimal mapping 
depth of each node in a topological order from Pis to POs, and at each node uses 
a max-flow formulation to test whether that node can have the same optimal 
mapping depth as the maximum depth of its input nodes. If not, the depth is 
set to one greater than the input nodes' maximum depth. It is shown that these 
are the only two possible mapping depths. The FlowMap algorithm was the first 
polynomial time algorithm to find a depth-optimal mapping solution for LUT
based FPGAs. 

In practice, K, the number of inputs of the LUTs, is a small constant typically 
ranging between 3 and 6. It becomes practical to enumerate all K-cuts for each 
node. With all cuts available, we have additional flexibility in selecting cuts to 
optimize the mapping solution. 

Cuts can be generated by a traversal of the nodes in a combinational network 
( or the combinational portion of a sequential network) from Pis to POs in a 
topological order [29, 67]. Let cl>(v) denote the set of all K-cuts for a node v.

For a PI, cl>(v) contains only the trivial cut consisting of the node itself, that is, 
cl>(v) = {{v}}. For a non-PI node v with two fanin nodes, u1 and u2, cl>(v) can be
computed by merging the sets of cuts of u1 and u2 as follows:

(13.1) <l>(v) = { {v} U {c1 Uc2lc1 E <l>(u1), c2 E <l>(u2), let Uc2I} <= .K} 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 306



280 Chapter 13 • Technology Mapping 

In other words, the set of cuts of v is obtained by the pairwise union of the 
cuts of its fanin nodes and then the elimination of those cuts with more than 
K nodes. Note that the trivial cut is added to the set. This is necessary so the 
nodes driven by v can include v in their cuts. 

13.1.2 Area-oriented Mapping 

For LUT mapping, the area of a mapping solution can be measured by the total 
number of LUTs. It has been shown that finding an area-optimal mapping solu
tion is NP-hard [35]. Therefore, it is unlikely that there is an accurate way to 
rank cuts for area. The difficulty of precise area estimation is mainly due to the 
existence of multiple fanout nodes. In fact, for treelike networks, area-optimal 
mapping solutions can be determined in polynomial time [35]. 

Cong et al. [29] proposed the concept of effective area as a way to rank 
and select cuts for area. A similar concept, area -flow, was later proposed by 
Manohararajah et al. [55]. Intuition regarding effective area is to distribute the 
area for a multi-fanout node to its fanout nodes so that logic sharing and recon
vergence can be considered during area cost propagation. Effective areas are 
computed in a topological order from Pis to POs. The effective area a(v) of a PI 
node v is set to zero. Equation 13.2 is used to compute the effective area of a cut: 

a(c) = (LuEc [a(u);[output(u)I]) +Ac (13.2) 

where Ac is the area of the LUT corresponding to the cut c. The area cost of a 
non-PI node can then be set to the minimum effective area of its cuts: a(v) = 
min{a(c)['v'u E <l>(v)}. 

It should be pointed out that effective area may not account for the situation 
where the node may be duplicated in a mapping solution. In the example shown 
in Figure 13.2, with K = 3, the LUT for w is introduced solely for the LUT for v. 
However, in effective area computation, only one-half is counted for v, and as 
a result the LUT for w is undercounted. In this example, the sum of effective 
area of the POs is 2.5 whereas the mapping solution has three LUTs. In general, 
effective area is a lower bound of the actual area. 

FIGURE 13.2 ■ Inaccuracy in effective area. 
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The PRAETOR algorithm [29] is an area-oriented mapping algorithm that 
ranks cuts using effective area. It further improves the basic mapping framework 
with a number of area reduction techniques. One such technique is to encourage 
the use of common subcuts. A cut for a fanout of a node v induces a cut for v 
(perhaps the trivial cut consisting of v itself). If two fanouts of v induce different 
cuts for v, the most likely result will be an area increase due to the need to 
duplicate v and possibly some of its predecessor nodes. To alleviate this problem, 
PRAETOR sorts and selects cuts with the same effective area in a predetermined 
order to avoid arbitrary selection. It assigns an integer ID to each node and then 
sorts all cuts with the same effective area according to the lexicographic order 
based on the IDs of the nodes in the cuts. The first cut with minimum effective 
area for each node is selected. 

Another area reduction technique introduced in PRAETOR is to carry out 
cut selection twice. The nodes with LUTs selected in the first pass are declared 
nonduplicable and can only be covered by LUTs for themselves in the second 
pass. This encourages selection of cuts Wiith less duplication. As an example, 
suppose that in the first pass of cut selection, the mapping solution shown in 
Figure 13.3(a), with four LUTs, is selected. In the second pass, the LUT con
taining v and u 1 is excluded from consideration for u 1. This exclusion will also 
encourage the selection of the cut that results in the LUT containing a for u1. 
As a result, the mapping algorithm generates, in the second pass, the mapping 
solution in Figure 13.3(b), with only three LUTs. Experimental results show that 
PRAETOR can significantly improve area over previous algorithms. 

The !Map algorithm proposed by Manohararajah et al. [55] is another map
ping algorithm targeting area optimization. It introduced two enhancements: (1) 
iteration between cut ranking and cut selection multiple times, and (2) adjust
ment of the area costs between successive iterations using history information. 
In the effective area formula (equation 13.2), the fanout count of u in the initial 
network, joutput(u)I, is used to estimate the fanout count of the LUT rooted at u 
in the mapping solution. In the !Map algorithm between iterations, the fanout 

K=3 

(a) (b) 

FIGURE 13.3 ■ Effect of excluding cuts across nonduplicable nodes: (a) initial mapping solution, 
and (b) improved solution with better area. 
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count estimation is updated by using a weighted combination of the estimated 
and the real fanout counts in previous iterations. As a result, equation 13.2 
becomes a(c) = (I:uEc [a(u)Jestimated_fc(u)]) +Ac , where estimated_fc(u) denotes 
the estimated fanout count for the current iteration. 

Ling et al. [54] proposed a mixed structural and functional area-mapping 
algorithm that starts with a mapping solution (e.g., generated by a structural 
mapping algorithm). The key idea is a Boolean satisfiability (SAT) formulation 
for the problem of mapping a small circuit with up to ten inputs into the smallest 
possible number of LUTs. The algorithm iteratively selects a small logic cone to 
remap to fewer LUTs using an SAT solver. It is shown that for some highly 
structured (albeit small) designs, area can be improved significantly. 

Most area optimization techniques are heuristic. A natural question is how 
close the mapping solutions obtained using existing mapping algorithms are 
from optimal. Cong and Minkovich [24] constructed a set of designs with known 
optimal area-mapping solutions, called LEKO (logic synthesis examples with 
known optimal bounds) examples, and tried existing academic algorithms and 
commercial tools on them. The average gap from optimal varied from 5 to 
23 percent. From LEKO examples, they further derived LEKU (logic synthe
sis examples with known upper bounds) examples that require both logic opti
mization and mapping. Existing algorithms perform poorly on LEKU examples, 
with an average optimality gap of more than 70 times. This indicates that more 
research is needed in area-oriented mapping and optimization. 

13.1.3 Performance-driven Mapping 

The FlowMap algorithm and its derivatives can find a mapping solution with 
optimal depth. Recent advances in delay mapping focus on achieving the best 
performance with minimal area. 

Exact layout information is not available during technology mapping in a 
typical FPGA design flow. Mapping algorithms usually ignore routing delays and 
try to optimize the total cell delays on the longest combinational paths in the 
mapping solution. 

Most delay optimal mapping algorithms use the labeling scheme introduced 
in the FlowMap algorithm to rank and select cuts. The label of a PI is set to 
zero, assuming that the signal arrives at the beginning of the clock edge. After 
the labels for all the nodes in the fanin cone of a node v are found, the label of 
a cut c of v is determined using the formula in equation 13.3: 

l(c) = max{l(u) + Dc l'<lu E c} (13.3) 

where De is the delay of the LUT corresponding to c. Intuitively, l(c) is the best 
arrival time at v if it is covered using the LUT generated from c. The label of v 
is then the smallest label among all of its cuts: l(v) = min{l(c)IVc E <l>(v)}. 

DAOmap [9] is a mapping algorithm that guarantees optimal delay while at 
the same time minimizing the area. It introduces three key techniques to opti
mize area without degrading timing. First, it enhances effective area computation 
to make it better avoid node duplication. Second, it applies area optimization 
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techniques on noncritical paths. Last, it uses an iterative cut selection procedure 
to explore and perturb the solution space to improve solution quality. 

DAOmap first picks cuts with the minimum label for each node. From those, it 
then picks one with minimum effective area. Furthermore, when there is positive 
slack, which is the difference between required time and arrival time at a node, 
it picks a cut with as small an area cost as possible under the condition that the 
timing increase does not exceed the slack. 

Recognizing the heuristic nature of effective area computation, DAOmap also 
employs the technique of multiple passes of cut selection. Moreover, it adjusts 
area costs based on input sharing to encourage using nodes that have already 
been contained in selected cuts. This reduces the chance that a newly picked 
cut cuts into the interior of existing LUTs. Between successive iterations of cut 
selection, DAOmap also adjusts area cost to encourage selecting cuts containing 
nodes with a large number of fanouts in previous iterations. There are a few 
other secondary techniques used in DAOmap. The interested reader is referred 
to Chen and Cong [9] for details. 

Based on the results reported, DAOmap can improve the area by about 
13 percent on a large set of academic and industrial designs while maintaining 
optimal depths. It is also many times faster than previous mapping algorithms 
based on max-flow computation, mainly because of efficient implementation of 
cut enumeration. 

A recent delay optimal mapping algorithm introduced several techniques to 
improve area while preserving performance [57]. Like DAOmap, this algorithm 
goes through several passes of cut selection, with each pass selecting cuts with 
better areas among the cuts that do not degrade timing. It is also based on 
the concept of effective area (or area flow). However, it does cut selection from 
Pis to POs instead of from POs to Pis, as in most other· algorithms. With this 
processing order, the algorithm tries to use timing slacks on nodes close to 
Pis to reduce area cost. This is based on the observation that logic is typically 
denser when close to Pis, so slack relaxation is more effective for nodes closer to 
Pis. Experimental data shows 7 percent better area over DAOmap for the same 
optimal depths. 

13.1.4 Power-aware Mapping 

Power has become a major concern for FPGAs [51, 68]. Dynamic power dissi
pation in FPGAs results from charging and discharging capacitances. It is deter
mined by the switching activities and the load capacitance of the LUT outputs 
and can be captured by equation 13.4: 

(13.4) 

where Cv is the output load capacitance of node v, fv is the switching activ
ity of node v, and V is the supply voltage. Given a fixed supply voltage, power 
consumption in a mapped netlist is determined by switching activities and load 
capacitance of the LUT outputs. 
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Because technology mapping for power is NP-hard [34], a number of heuristic 
algorithms have been proposed. Most power-aware mapping algorithms try to 
reduce switching activities by hiding nodes with high switching activities inside 
LUTs, hence leaving LUTs with small output-switching activities in the mapped 
netlist. 

Anderson and Najm [2] proposed a mapping algorithm to reduce switch
ing activities and minimize logic duplication. Logic duplication is necessary 
to optimize timing and area, but can potentially increase power consump
tion. The algorithm uses the following power-aware cost function to rank cuts: 
Cost(c) = l(c)+P·P(c) + r·R(c), where l(c) is the depth label of the cut c as given 
in equation 13.3 and P(c) and R(c) are the power and replication costs of the 
cut, respectively. The weighting factors p and y can be used to bias the three 
cost terms. Anderson and Najm suggest a very small P to get a depth-optimal 
mapping solution with minimal power. 

Power cost P(c) is defined in such a way that it encourages absorbing high
activity connections inside LUTs. The replication cost tries to discourage logic 
duplication on timing noncritical paths. Power savings of over 14 percent were 
reported over timing-oriented mapping algorithms when both targeted optimal 
depths. When the mapping depth was relaxed by one level over optimal, addi
tional power reduction of about 8 percent for 4-LUTs and 10 percent for 5-LUTs 
was reported. 

One serious limitation of the power-based ranking in Anderson and Najm 
[2] is that it cannot account for multiple fanouts and reconvergence, which
are common in most practical designs. Chen et al. [8] proposed a low-power
technology-mapping algorithm based on an improved power-aware ranking in
equation 13.5:

P(c) = (l:uec [P(u)tloutput(u)I]) + Uc (13.5) 

where Uc is a cost function that tries to capture power contributed by the 
cut c itself. Experimental results show that this algorithm outperforms previ
ous power-aware mapping algorithms. It has also been extended to handle dual 
supply voltage FPGA architectures. 

13.2 INTEGRATED MAPPING ALGORITHMS 

Technology mapping is a step in the middle of an FPGA design flow. Technology
independent optimization is carried out before mapping; placement is carried 
out after. Sequential optimization such as retiming can be carried out before or 
after mapping. A separate approach can miss the best overall solutions even if we 
can solve each individual step optimally. In the section that follows we discuss 
mapping algorithms that combine mapping with other steps in the design flow. 

13.2.1 Simultaneous Logic Synthesis, Mapping 
Technology-independent Boolean optimizations carried out prior to technol
ogy mapping can significantly impact the mapping solution. During technology
independent optimization, we have the freedom to change the network structures, 
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but accurate estimation of their impact on mapping is not available. During 
technology mapping, we can achieve optimal or close to optimal solutions using 
the algorithms discussed in Section 13.1. However, we are stuck with a fixed net
work. It is desirable to capture the interactions between logic optimization and 
mapping to arrive at a solution with better quality. 

Lossless synthesis has been proposed by Mishchenko et al. [57] as a way to con
sider technology-independent optimization during mapping. It is based on the 
concept of choice networks, which is similar to the concept of mapping graphs 
[11, 49]. A choice network contains choice nodes that encode functionally equiva
lent but structurally different alternatives. The algorithm operates on a simple yet 
powerful data structure called AIG, which is a network of AND2 and INV gates. 
A combination of SAT and simulation techniques is used to detect functionally 
equivalent points in different networks and compress them to form one choice 
network. 

Figure 13.4 illustrates the construction of a network with choices from two 
equivalent networks with different structures. The nodes x1 and x2 in the two 
networks are functionally equivalent. They are combined in an equivalence class 
in the choice network, and an arbitrary member (x1 in this case) is set as the 
class representative. Note that p does not lead to a choice because its implemen
tation is structurally the same in both networks. Similarly, o does not lead to a 
choice node. 

Rather than try to come up with one "good" optimized network before map
ping, the algorithm proposed by Mishchenko et al. [57] accumulates choices 
by combining intermediate networks seen during logic synthesis to generate 
a network with many choices. In a sense, it does not make judgments on the 
goodness of the intermediate networks but defers that decision to the mapping 
phase, when the best combination of these choices is selected. In the final map
ping solution, different sections may come from different intermediate networks. 
For example, the timing-critical sections of the final mapping solution may come 

X 

a b C d e a b c d e a b C d e 

FIGURE 13.4 ■ Combining networks to create a choice network. 
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from networks optimized for timing, while the timing noncritical sections of the 
final mapping solution may come from networks optimized for area. 

For mapping on choice networks, cut generation and cut ranking are extended 
to choice nodes. For example, the set of cuts of a choice node is simply the 
union of the sets of cuts of all of that node's fanin nodes. Similarly, the label of 
a choice node is the smallest one among the labels of its fanin nodes. The rest of 
the approach is similar to a conventional mapping algorithm. Results reported 
by Mishchenko et al. [57] show that both timing and area can be improved by 
over 7 percent on a set of benchmark designs compared to applying mapping 
to just one "optimized" network. 

13.2.2 Integrated Retiming, Mapping 

Retiming (discussed in Chapter 18) is an optimization technique that relocates 
flip-flops (FFs) in a network while preserving functionality of the network [SO]. 
Retiming can shift FF boundaries and change the timing. If retiming is applied 
after mapping, mapping may optimize the wrong paths because the critical 
paths seen during mapping may not be critical after the FFs are repositioned. 
On the other hand, if retiming is applied before mapping, it will be carried out 
using less accurate timing information because it is applied to an unmapped 
network. In either approach, the impact of retiming on cut generation cannot 
be accounted for. 

The network in FigUFe 13.S(a) is derived from the design in Figure 13.l(a) by 
retiming the FFs at the outputs of y and i to their inputs. After the retiming, 
all gates can be covered with one 3-LUT, as indicated in (a). The corresponding 
mapping solution is shown in (b). This mapping solution is obviously better 
than the one in Figure 13.l(c) in both area and timing. 

Pan and Liu [63] proposed a polynomial time-mapping algorithm that can 
find a solution with the best cycle time in the combined solution space of 

a b a b 

(a) (b) (c) 

FIGURE 13.5 ■ Retiming, mapping: (a) retiming and covering, (b) mapping solution, and 
(cl retimed solution. 
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retiming and mapping. In other words, the solution obtained is the best among 
all possible ways of retiming and mapping a network. Improved algorithms were 
later proposed that significantly reduce runtime while preserving the optimal
ity of the final mapping solution [25, 27]. These algorithms, like the FlowMap 
algorithm, are all based on max-flow computation. 

A cut enumeration-based algorithm for integrated retiming and mapping was 
proposed by Pan and Lin [61]. In it, cut generation is extended to go across FF 
boundaries to generate sequential cuts. In a network with FFs, a gate may go 
through zero or more FFs in addition to logic gates before reaching gate v. To 
capture this information, an element in a cut for a node v is represented as a 
pair consisting of the driving node u and the number of FFs d on the paths from 
u to v, denoted by ud. Note that one node may reach another node through paths
with different FF counts. In that case, the node will appear in the cut multiple
times with different values of d. For example, for the cone in Figure 13.S(a),
the corresponding cut is {z 1 , a 1 , b 1 }. Pan and Lin [61] suggested an iterative
procedure to determine the sequential cuts for all nodes.

To consider retiming effect, the concept of labels is extended using sequential 
arrival times [62, 63]. The label of a cut c is now defined as follows: 

l (c) = max{l(u)-d-cp+Dc lv'ud E c} (13.6) 

where cp is the target cycle time and De is the delay of the LUT corresponding to 
c. The combination! cut formula (equation 13.3) can be viewed as a special case
of equation 13.6 when d = 0. As in combinational mapping algorithms, the label
of a gate v is the minimum of the labels of its cuts: l(v) = min{l(c)lv'c E <l>(v)}.
The label of each PI is zero, and the label for each PO is that of its driver.

Pan and Lin's algorithm finds the labels for cuts and nodes through succes
sive approximation by going through the nodes in the initial network in passes. 
After the labels for all nodes are computed and the target cycle time is deter
mined to be achievable, the next step is to generate a mapping solution. As in 
the combinational case, a mapped network is constructed starting from POs 
and going backward. At each node v, the algorithm selects one of the cuts that 
realize the node's label and then moves on to select a cut for u if ud is in the 
cut selected for v. On the interconnection from u to v, d FFs are inserted. To 
obtain the final mapping solution with a cycle time of cp, the algorithm retimes 
the LUT for each non-PI/PO node v by fl(v)/cl>l - 1. For the initial network in 
Figure 13.l(a), the final mapping solution with optimal cycle time generated by 
the algorithm is shown in Figure 13.S(c). Experimental results show that the 
algorithm is very efficient and consistently produces mapping solutions with 
better performance than combinational depth optimal mapping followed by 
optimal retiming. 

13.2.3 Placement-driven Mapping 
One drawback of the conventional mapping flow is the lack of accurate tim
ing information on interconnects. Most algorithms use logic depth to measure 
timing. However, optimal-depth mapping solutions may not always be good 
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after placement. To overcome this problem, we need to combine mapping with 
placement so that mapping can see more accurate interconnect information. 

A number of algorithms tcy to carry out placement and mapping simultane
ously [3, 6, 53, 59, 69]. For example, the MIS-pga algorithm of Murgai et al. [59] 
performs iterative logic optimization and placement. Chen et al. [6] proposed an 
algorithm that tightly couples technology mapping and placement by mapping 
each cell and placing it at the same time. In practice, such integrated approaches 
suffer a serious limitation: Because of the complexity of the combined problem, 
simple mapping, placement techniques are employed. As a result, the benefit of 
the combined approach is diminished. 

Another approach is to iterate between mapping and placement . (or place
ment refinement). Here, the design is first mapped and placed. Then the netlist 
is back-annotated and remapped under the given placement. This process can 
be repeated until a satisfactory solution is found. Figure 13.6 outlines the major 
steps in the iterative mapping and placement algorithm proposed by Lin et al. 
[53]. The key step is placement-driven remapping. The remapping step may 
make the placement illegal-for example, it may place more than one cell at the 
same location. If this happens, the placement needs to be legalized and refined. 

Lin et al.'s algorithm [53] uses table lookup to estimate interconnect delays 
based on placement locations. Given two locations, it looks up the estimated 
delay in a prestored table for the wiring between the two locations. This is more 
accurate and realistic than the "fixed" interconnect delays used in earlier layout
based mapping algorithms [56, 72]. 

Technology-independent 
logic optimization 

• 

Initial technology mapping 
and placement 

• 

Logic decomposition into 
2-input gates

•

Placement-driven 
technology (re)-mapping 

• 

Placement legalization 
and refinement 

FIGURE 13.6 ■ Iterative mapping, placement. 

.________,I~ 
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One difficulty in placement-driven mapping is that the placement may not 
become legal because of cell overlaps. Another is that timing predicted in the 
labeling phase may be unrealizable because of congestion in the new mapping 
solution. Congestion means that many LUTs are assigned to a small region, 
which requires many cell relocations to legalize the placement, which in tum, 
perturbs the placement and eventually the timing. To overcome this problem, 
the algorithm employs an iterative process with multiple passes of cut selection. 
Each pass uses the cell congestion information gathered during previous iter
ations to guide the mapping decisions. Several techniques have been proposed 
to relieve congestion. One is a hierarchical area control scheme to evaluate the 
local congestion cost, in which the chip is divided into bins with different gran
ularities. Area increase is tallied in bins, and penalty costs are given to bins with 
area overflows. 

Once a mapping solution is generated, the algorithm invokes timing-driven 
legalization that moves overlapping cells to empty locations in their neigh
borhood based on the timing slack available to the cells. Finally, a simulated 
annealing-based placement refinement phase is carried out to improve perfor
mance. Experimental results show that the algorithm can improve timing by 
more than 12 percent, with minimal area penalty due to remapping. 

13.3 MAPPING ALGORITHMS FOR HETEROGENEOUS RESOURCES 

Up to this point, we have assumed that all logic cells are LUTs with a uniform 
input size K. In reality, commercial FPGA architectures contain heterogeneous 
resources (e.g., LUTs of different input sizes, embedded memory, and PLA-like 
logic cells). We briefly summarize mapping algorithms that target or take advan
tage of such architectural features. 

13.3.1 Mapping to LUTs of Different Input Sizes 

There are a number of commercial FPGA architectures that support LUTs with 
multiple input sizes on the same device. Mapping algorithms have been pro
posed to optimize area [29, 39, 40, 43] and timing [30, 32]. 

In the special case of tree networks, Korupolu et al. [ 43] presented a poly
nomial area optimal algorithm. For general networks, the PRAETOR algorithm 
discussed in Section 13.1.2 can be applied to these architectures by assigning 
different area costs for LUTs with different input sizes. 

For timing optimization, the algorithm proposed by Cong and Xu [30] is an 
extension of FlowMap. Like FlowMap, it is also based on flow computation and 
can be cast in the cut enumeration framework. Assume that there are two types 
of LUTs with input sizes K1 and K2 , and delays d1 and d2 , where K1 < K2 , d1 < dz. 
We can enumerate all K2-cuts. When labeling a cut, we can set its delay to d1 
or d2 depending on its size. With this simple modification, an algorithm for 
homogeneous LUT architectures can be used for architectures with different 
LUT sizes. 
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When there are resource bounds on available LUTs of different sizes, the 
mapping problem becomes NP-hard. Assuming that there can be at most r 
K2-LUTs, a heuristic algorithm was proposed that starts out by finding a map
ping solution without considering resource bounds [31]. If the current mapping 
solution meets the resource bound, it stops. If not, it increases d2 , the delay 
of K2-LUTs, and solves the unconstrained version again, which should lead to 
another mapping solution with a decreased number of K2-LUTs. This process is 
repeated until the resource bound is met. 

13.3.2 Mapping to Complex Logic Blocks 

FPGA devices typically contain additional logic that, together with LUTs, can 
form complex programmable logic blocks (PLBs). PLBs can implement complex 
logic functions. Figure 13. 7 shows two PLBs that consist of LUTs and logic gates 
and can implement functions of up to nine inputs. 

A simple approach to PLB mapping is to map the initial network to the 
constituent cells inside the PLBs. For example, for a device with the PLB in 
Figure 13.7(a), we can first map the initial network to 3-LUTs and 4-LUTs. After
wards, the LUTs are clustered to obtain a network of PLBs. Such a two-step 
approach is obviously suboptimal. 

Recent approaches try to map directly to PLBs [13, 23, 47, 65]. The cut enu
meration framework can still be used after enhancements. Because a PLB can 
have more inputs than a typical LUT, a node may have too many cuts. Intelli
gent cut pruning, using techniques such as those proposed by Chatterjee et al. 
[5] and Ling et al. [54], is necessary to avoid long runtime and memory explo
sion. Unlike in the case of LUTs, a PLB has limited functional capability in that
it cannot implement all of the functions of its inputs. For example, the PLB in
Figure 13.7(b) can implement all functions of up to five inputs, but it can only
implement some of the functions with six inputs. An essential step in PLB map
ping is Boolean matching, which, given a cut, decides if the corresponding logic
cone can be implemented by a PLB.

(a) (b) 

FIGURE 13.7 ■ Two PLB examples. 
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Algorithms for Boolean matching for PLBs can be classified into two 
categories: decomposition based [13, 23] and satisfiability (SAT) based 
[25, 54, 65]. Decomposition-based Boolean matching tries to decompose the 
input function according to the structure of the target PLB using functional 
decomposition. Cong and Hwang [23] proposed matching procedures for a wide 
variety of common PLBs. 

A drawback of decomposition-based Boolean matching is that each PLB 
needs a specialized matching procedure. Decomposition-based Boolean match
ing can also be slow and memory intensive because of extensive use of BDD 
operations. On the other hand, SAT-based Boolean matching encodes the func
tion, the target PLB, and their matching in a Boolean expression in conjunctive 
normal form (CNF). Then it leverages an efficient SAT solver (e.g., the one pro
posed by Moskewicz et al. [58]) to check whether th� PLB can be configured 
to implement the function. The size of the CNF expression can have signifi
cant impact on the runtime of an SAT-based matching algorithm. An improved 
SAT formulation with smaller expressions was proposed recently by Cong and 
Minkovich [25]. 

13.3.3 Mapping Logic to Embedded Memory Blocks 

On-chip memory has become a common feature of high-performance FPGAs. 
Dedicated embedded memory blocks·(EMBs) can be used to improve clock fre
quencies and lower costs for large designs that require memory. If a design does 
not need all the available EMBs, unused ones can be employed to implement 
logic, which essentially turns them into large multi-input multi-output LUTs. 

EMBs usually have configurable widths and depths, so they can be used to 
implement functions with different numbers of inputs/outputs. For example, a 
2K-bit memory with configurations 2048 x 1, 1024 x 2, and 512 x 4 can be used 
to implement an 11-input/1-output, 10-input/2-output, or 9-input/4-output logic 
function, respectively. 

Mapping logic to EMBs is typically done as a postprocessing step after LUT 
mapping. These algorithms start with an optimized LDT-mapping solution and 
then pack groups of LUTs into unused EMBs [26, 70]. The SMAP algorithm 
[70] maps one EMB at a time. It begins by selecting a seed node. A fanin cone
of the seed node is generated by finding a d-feasible cut that covers as many
nodes as possible, where d is the bit width of the address line of the target
EMB. Because d is considerably large, flow-based cut generation is used. After
the cone is generated, the output selection process selects signals to be the EMB
outputs. Output selection tries to select a set of signals so that the resulting EMB
can eliminate as many LUTs as possible. This is done by assigning each node a
score that reflects the number of eliminated nodes if the node is selected. The w
highest-scoring nodes are selected as the EMB outputs, where w is the number
of outputs of the target EMB.

The selection of the seed node is critical for this method. The algorithm tests 
each candidate node and selects the one that leads to the maximum number of 
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eliminated LUTs. Heuristics were introduced to consider EMBs with different 
configurations and to preserve timing. 

Another algorithm, EMB_Pack, proposed by Cong and Xu [26], takes a 
slightly different approach. It finds the logic to map to EMBs altogether instead 
of one at a time, as in SMAP, which can potentially find better mapping. 

13.3.4 Mapping to Macrocells 

Complex programmable logic devices (CPLDs) are a class of programmable logic 
devices that are more coarse grained than typical FPGAs. Each CPLD logic cell 
( called Pterm block) is essentially a programmable logic array (PLA) that con
sists of a set of product terms (Pterms) with multiple outputs. A Pterm block 
can be characterized by a 3-tuple (k,m,p) where k is the number of inputs, pis 
the number of outputs, and m is the number of Pterms for the block. The input 
size k is typically much larger than that of FPGA logic cells. 

Relatively speaking, there is much less mapping work reported for CPLDs. 
A fast heuristic partition method for PLA-based structures was presented by 
Hasan et al. [38]. The DDMap algorithm [ 42] adapts a LUT mapper for CPLD 
mapping. It uses wide cuts to form big LUTs and decomposes the big LUTs into 
Pterms allowed in the target CPLD. Packing is used to form multi-output Pterm 
cells. An area-oriented mapping algorithm was proposed for CPLDs by Anderson 
and Brown [1]. Cong et al. [20] investigated an FPGA architecture consisting of 
single-output Pterm blocks, and proposed a timing-oriented mapping algorithm. 

PLAmap is a timing-oriented mapping algorithm for CPLDs [7]. Like the LUT 
mapping algorithms discussed earlier, it has a labeling phase and a mapping 
phase. In the labeling phase, it tries to find the minimal mapping depth for each 
node using a logic cell (k, m, 1)-that is, a single-output Pterm block, assuming 
that each logic cell has one unit delay. The labeling procedure is based on Lawler 
et al.'s clustering algorithm [ 46]. Let l be the largest label of the nodes in the 
fanin cone of a node. The algorithm forms a cluster for the node by grouping 
it with all nodes in its fanin cone with the label l. If the cluster can be imple
mented by a (k, m, 1) cell, the node is assigned the label l; otherwise, the node 
gets the label l + 1 with a cluster consisting of the node itself. Note that this is 
a heuristic in that the label may not be the best because of the so-called non
monotone property [7]. The mapping phase is done in reverse topological order 
from the POs. The algorithm tries to merge the clusters generated in the labeling 
phase to form (k, m, p) cells whenever possible. Cluster merging is done in such 
a way that duplication is minimized and the labels of the POs do not exceed 
the performance target. Experimental results show that PLAmap outperforms 
commercial tools and other algorithms with no ( or a very small) area penalty. 

Pterm blocks or macrocells are suitable for implementing wide-fanin, low
density logic, such as finite-state machines. They can potentially complement 
fine-grained LUTs to improve both performance and utilization. Device archi
tectures with a mixture of LUTs and Pterm blocks or macrocells have been sug
gested to take advantage of different types of logic cells. Technology mapping 
algorithms have been proposed for such hybrid architectures [41, 42, 44]. 
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This chapter discussed technology mapping algorithms for FPGAs. Emphasis 
was placed on state-of-the-art algorithms that have been, or most likely will be, 
reduced to practice. We discussed mapping algorithms for different objectives, 
such as area, timing, and power, as well as mapping algorithms that take advan
tage of heterogeneous resources in modem FPGA devices. 

FPGA technology mapping has been and continues to be a subject of active 
research. A general trend is to integrate technology mapping with other steps 
in the FPGA design flow to improve the quality of final implementations (e.g., 
combining mapping and clustering [10]). 

As semiconductor technologies advance, new FPGA architecture features are 
being introduced to improve area utilization, performance, and power consump
tion. For example, architectures have been introduced or proposed that use large 
LUTs (much larger than traditional 4-/5-LUTs) or multiple supply voltages. New 
mapping techniques are being developed to take advantage of these architecture 
features. 
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FPGA PLACEMENT 

One thing that stands out in this book's contents: While most individual steps 
in the compilation flow are covered in a single chapter, placement is covered in 
three-Chapters 14 through 16. Placement is actually just the problem of assign
ing specific logic computations to individual logic blocks in the architecture, so 
why does it merit a longer treatment than, say, FPGA routing? There are at least 
two reasons. 

One reason is historical: Until relatively recently, the placement problem was 
small enough that structured approaches were possible. These included hand 
placement, which produced higher-quality results than automatic placement. In 
contrast, for a problem such as routing, FPGA routers were very fast and effi
cient, and thus hand-routing was almost never done. 

A second reason is that fundamentally different approaches can be taken to 
solve the placement problem. Do we view the design as an unstructured pile of 
gates to be scattered across the FPGA's surface, or is there an inherent structure 
that can be leveraged? And, if we use the computation's structure ,to drive the 
placement process, how do we handle portions of the computation, such as 
control, that likely do not have such an easily determined structure? 

These considerations have given rise to several ways of performing FPGA 
placement, which are represented by the three chapters that follow. In Chapter 
14 we consider general-purpose FPGA placement. Such systems, using complex 
optimization techniques, treat the designer's circuit as essentially an unstruc
tured collection of gates. These are packed together into logic blocks and placed 
in the array, guided almost exclusively by the design's local connectivity infor
mation. Higher-level information, such as the design hierarchy or the regularity 
in multibit operations, is largely ignored. Thus, these techniques can handle any 
possible placement problem. Moreover, they serve as a good starting point, as 
other approaches that rely on more structure in the netlist generally do not work 
for unstructured designs, and so there must always be some way for unstruc
tured netlists to be processed. 

Chapter 15 considers datapath placement. Most designs for an FPGA con
sist of a large, highly structured datapath and a small, unstructured control 
system. The datapath is built from multibit function units, such as adders 
and multipliers, where the computation is fairly similar for each bit of the 
operands. Datapath-oriented placers can automatically leverage this informa
tion to improve the resulting placement quality. 

An alternative to fully automatic placement, whether for random logic or for 
datapaths, is to provide ways for the user to guide the placement process. For 
example, the user generally knows what portions of the design should be kept 
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298 FPGA Placement 

together, where the critical paths are, and how these critical paths should be 
laid out. Chapter 16 considers such systems, in which placement is more a user
guided process than a fully automated algorithm. Whereas the size of modem 
FPGA designs, and the increasing quality of placers, is making this approach 
less attractive over time, constructive placement of critical subsystems is still a 
valid alternative. 
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CHAPTER 14 

PLACEMENT FOR GENERAL-PURPOSE 

FPGAs 

Vaughn Betz 
Altera Corporation 

Placement follows technology mapping in the CAD flow and chooses a location 
for each block in a circuit. This chapter describes "general-purpose" placement 
approaches; these techniques can be used with any circuit targeting the com
mercial field-programmable gate arrays (FPGAs) in widespread use today. After 
defining the placement problem and optimization goals, the chapter describes 
the clustering algorithms that are frequently used in conjunction with place
ment tools. Three different classes of placement algorithms are then detailed: 
simulated annealing, partition based, and analytic. The chapter concludes with 
suggestions for further reading and open challenges in FPGA placement. 

14. 1 THE FPGA PLACEMENT PROBLEM

An FPGA placement algorithm takes two basic inputs: (1) a netlist specifying the 
functional blocks to be implemented and the connections between them, and 
(2) a device map indicating which functional unit can be placed at each loca
tion. The algorithm selects a legal location for each block such that the circuit
wiring is optimized. Figure 14.1 illustrates the FPGA placement problem. Both
the legality constraints and the optimization metric (what constitutes a "good"
arrangement of functional blocks) depend on the FPGA architecture being
targeted.

A good placement is extremely important for FPGA designs-without a high
quality placement, a circuit generally cannot be successfully routed. Even if the 
circuit does route, a poor placement will still lead to a lower maximum operating 
speed and increased power consumption. At the same time, finding a good place
ment for a circuit is a challenging problem. A large commercial FPGA contains 
approximately 500,000 functional blocks, leading to approximately 500,000! pos
sible placements. Exhaustive evaluation of the placement solution space is there
fore impossible. Furthermore, placement is a computationally hard problem, so 
there are no known algorithms that produce optimal results in practical central 
processing unit (CPU) time. Consequently, the development of fast and effective 
heuristic placement algorithms is a very important research area. 
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FIGURE 14.1 ■ Placement overview: (a) inputs to the placement algorithm, and (b) placement 
algorithm output-the location of each block. 

14.1.1 Device Legality Constraints 

The fact that all resources are prefabricated in an FPGA leads to a variety of 
placement legality constraints: 

■ A legal placement must place a functional block only in a location on
the chip that can accommodate it. For example, a RAM block must be
placed in a RAM location, and a lookup table (LUT) must be placed in
a LUT location.

■ Usually there are legality constraints on groups of functional blocks. In
Altera's Stratix-II FPGAs, for example, a logic block contains 16 LUTs
and 16 registers [1]. However, there are limits on the number of clock
signals, clock enable signals, and routing inputs to the logic block.
Consequently, not every grouping of 16 LUTs and 16 registers constitutes
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FIGURE 14.2 ■ Influence of the routing architecture on wirelength for a given placement: (a) sample 
routings on a Stratix-11 FPGA (island style), and (b) sample routings on an APEX FPGA (hierarchical). 

minimize not only the total wiring required by the design but also the amount 
of routing congestion. Routing congestion occurs when the interconnect demand 
approaches or exceeds the fabricated wiring capacity in some part of the FPGA. 

In addition to optimizing for routability, timing-driven algorithms use tim
ing analysis [SJ to identify critical paths and/or connections and to optimize the 
delay of those connections. Since most delays in an FPGA are due to the pro
grammable interconnect, timing-driven placement can achieve a large improve
ment in circuit speed over routability-driven approaches. 

Some recent FPGA placement algorithms attempt to minimize power con
sumption as well. 

14.1.3 Designer Placement Directives 

Commercial FPGA placement tools allow designers to control the placement 
of some or all of the design logic at various levels of abstraction. Obeying the 
placement directives specified by a designer while still choosing good locations 

Hierarchy 
boundary 
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a legal logic block, and the placement algorithm must ensure that it does 
not produce illegal logic blocks. 

■ Some groups of functional blocks must be placed in a specific relative
orientation so that they can make use of special, dedicated routing
resources. The simplest example of this constraint is arithmetic logic
cells-in order to use the dedicated carry-chain hardware available in
an FPGA, the logic cells forming a carry chain must be placed adjacent
to each other in the sequence required by the carry structure.

■ There are other detailed legality constraints, such as a limit on the
number of global clocking resources in each area of the device, which
commercial FPGA placement algorithms must respect. 1

14.1.2 Optimization Goals 

The basic goal of an FPGA placement algorithm is to locate functional blocks 
such that the interconnect required to route the signals between them is mini
mized. As Figure 14.2 illustrates, the routing required to connect two blocks is 
a function not only of the distance between them but also of the FPGA architec
ture. Figure 14.2(a) shows the wiring required to connect two blocks in different 
relative positions in a Stratix-11 FPGA. Stratix-11 is an island-style FPGA [3] that 
contains routing segments that span 4, 16, and 24 logic blocks. Programmable 
switches allow routing segments in the same direction (horizontal or vertical) 
to be connected at their endpoints to create longer routes. Other programmable 
switches allow some horizontal routing segments to connect to vertical routing 
segments where they cross and vice versa. In an island-style FPGA, the amount 
of wiring required to connect two functional blocks is roughly proportional to 
the Manhattan distance between them. 

Figure 14.2(b) shows that the wiring required by the same placements in an 
FPGA with a hierarchical routing architecture (in this case the Altera APEX 
family [4]) is quite different. For hierarchical FPGAs, the amount of wiring 
required to connect two functional blocks is proportional to the number of levels 
of the routing hierarchy that must be traversed to connect them. Note that even 
the ranking of placement choices is different between APEX and Stratix-11-in 
Stratix-11 placements, A and C are best, while in APEX placements, A and B 
are best. Clearly FPGA placement algorithms must have a model of the routing 
architecture they target in order to achieve good results. 

FPGA placement tools can broadly be divided into routability-driven and timing
driven algorithms. Routability-driven algorithms try to create a placement that 
minimizes the total interconnect required, as this increases the probability of 
successfully routing the design. Since FPGA interconnect is prefabricated, the 
amount of interconnect in each region of a device is fixed, and a placement 
that requires more interconnect in a device region than that region contains 
cannot be routed. Consequently, some routability-driven placement algorithms 

1 Researchers wishing to target their CAD tools to industrial FPGAs can obtain a full list of the
legality constraints in Altera FPGAs from the Quartus University Interface Program [2]. 
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for the unconstrained and partially constrained blocks is a challenging problem, 
but one on which little has been published. 

Figure 14.3 illustrates the common types of placement directives. The most 
restrictive specifies the exact location of a block. Typical uses of this directive are 
to lock down the design I/Os at the locations required by the circuit board or to 
lock down the elements of a performance-critical intellectual property (IP) core. 
A less restrictive directive forces blocks to go into a specific two-dimensional 
area, or fixed region. This directive allows a designer to guide the placement tool 
to a good high-level floorplan while still allowing automatic optimization of the 
placement details. One can specify the relative location of several blocks, but let 
the placement tool choose exactly where to locate the block group. This directive 
is useful for library components where a designer knows a good placement of 
the component blocks relative to each other. A floating region specifies that some 
logic should be placed within a tight region but that the placement tool can 
choose where that region should be on the device. 

One must take care when specifying placement directives, as fixing portions 
of the placement ineffectively will reduce result quality versus a fully automatic 
placement. Modem placement tools produce high-quality results, and generally 
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304 Chapter 14 ■ Placement for General-purpose FPGAs 

it is very difficult for a designer to specify placement directives on irregular logic 
that lead to a better solution than the placement tool would find without guid
ance. Placement directives have more value for regular structures, since humans 
are better than conventional CAD tools at recognizing regular logic patterns and 
matching them to a highly optimized regular placement. For examples of the use 
of placement directives, see Chapter 16. 

14.2 CLUSTERING 

A common companion to FPGA placement algorithms is a bottom-up cluster
ing step that runs before the main placement algorithm to group-related circuit 
elements together into clusters. Clustering reduces the number of blocks to 
place, improving the runtime of the main placement algorithm. In addition, one 
normally chooses a cluster size that corresponds to a natural boundary in the 
FPGA architecture, such as a logic block. This allows the clustering algorithm to 
deal with many of the device legality constraints by ensuring that each cluster 
forms a legal logic (or RAM or DSP) block, and it simplifies legality checking 
for the main placement algorithm. 

The most common FPGA clustering formulation transforms a netlist of logic 
elements into a netlist of logic blocks. In most FPGA architectures each logic 
element consists of a LUT plus a register, and each logic block has the capacity 
to implement up to N logic elements. As well, logic blocks have a limit on the 
number of input signals that can be brought in from the programmable routing 
and on the number of different control signals, such as register clocks, that can 
be used. 

The typical clustering goals are: 

■ To achieve high density by minimizing the number of clusters (i.e.,
logic blocks) required to implement a circuit.

■ To improve circuit speed by localizing time-critical connections within
a cluster so they can be completed with fast local routing.

■ To reduce wiring demand in the FPGA by grouping related logic in
each cluster.

The RASP system [6] includes one of the first logic block clustering algorithms. It 
performs maximum weighted matching on a graph where edge weights between 
logic elements reflect the desirability of clustering them. Logic elements that 
cannot be legally clustered have no edge between them, while those connected 
by timing-critical connections or with a large number of common signals have 
edges with high weights. 

RASP has the attractive feature of simultaneously choosing all clusters of 
two logic elements to maximize the total weight of edges contained within the 
clusters. By recursively repeating the algorithm, one can create larger clusters, 
at least when the cluster capacity is a power of 2. The first matching produces a 
netlist of size-2 clusters; a matching on the size-2 cluster netlist produces size-4 
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14.2 Clustering 305 
clusters, and so on. The RASP clustering algorithm has a high computational complexity of O(n3), where n is the number of logic elements in the circuit. This prevents it from scaling to large problems. The VPack algorithm [3] takes the opposite approach to that of RASP-it creates one cluster of the desired size (e.g., seven logic elements) before moving on to create the next cluster. VPack first chooses a seed logic element for a new cluster and then greedily packs the logic element with the highest attraction to the current duster until no more can be legally added. The attraction function is the number of nets that connect to both the logic element in question and the current cluster. VPack has a computational complexity of O(kmaxn) where kmax isthe maximum fanout of any net in the design, so it scales well to large problems. Many algorithms that use the same basic procedure as VPack, but different attraction functions, have been published. The T-VPack algorithm by Marquardt et al. [3, 7] is a timing-driven enhancement of VPack where the attraction function for a logic element, L, to cluster C becomes

Attraction(L) = 0.75 • E criticality(;) +0.25 · INets�)r;:ets(C)I

jEconn(L,C) ax ets 
(14.1) 

The first term in equation 14.1 gives higher attraction to logic elements that are connected to the current cluster by timing-critical connections, while the second term is taken from VPack and favors grouping together logic elements with many common signals. To find the criticality of each connection, a timing analysis is performed with a simple delay model to determine each connection's timing slack. The slack of a connection [S] is defined as the amount of delay thatcan be added to that connection before some path through it limits the circuit speed. The criticality of a connection, j, is then given by
·t· z·t ( ") 1 slack(j)

cnica i y  J = -
D max 

(14.2) 
where Dmax is the delay of the longest path in the circuit. Connections on the critical path (i.e., with no timing slack) have a criticality of 1, while connections with a large amount of slack have a criticality near 0. Somewhat surprisingly, T-VPack improves not only circuit speed over VPack but also reduces the amount of programmable routing required between clusters. By absorbing more connections within clusters, T-VPack is able to capture more nets entirely within a cluster, which reduces wiring demand between logic blocks. The iRAC [8] clustering algorithm uses an attraction function that favors the absorption of small nets within a cluster: 

A . (L C)- � k(" L C)· 
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(14.3) 
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The attraction function (equation 14.3) weights nets more heavily with a small 
number of terminals outside the cluster, and also gives a ten-times attraction 
bonus to any net that would be immediately absorbed by adding block L to the 
cluster. By reducing the number of nets to be routed between logic blocks, iRAC 
achieves an improvement in mutability over T-VPack. 

Lamoureaux and Wilton [9] have developed a power-aware enhancement of 
T-VPack. They modify equation 14.1 by adding a power minimization term that
weights each connection from block L to cluster C by its switching activity. The
switching activity of a signal is the number of times it is expected to change
state per second. The power minimization term favors the absorption of nets
that frequently switch logic states, resulting in lower capacitance for these nets
and lower overall dynamic power.

14.3 SIMULATED ANNEALING FOR PLACEMENT 

Simulated annealing is the most widely used placement algorithm for FPGAs. 
It mimics the annealing procedure by which strong metal alloys are created
initially blocks can move fairly freely, but as the temperature drops they gradually 
freeze into a high-quality placement [10]. 

Figure 14.4 shows the basic flow of simulated annealing for placement. First 
an initial placement is generated. This initial placement is generally of low qual
ity, and is often created simply by assigning each block to the first legal location 
found. The placement is then iteratively improved by proposing and evaluating 
placement perturbations, or moves. A placement perturbation is proposed by a 
move generator, generally by moving a small number of blocks to new locations. 
A cost function is used to evaluate the impact of each proposed move. 

Moves that reduce cost are always accepted, or committed to the placement, 
while those that increase cost are accepted with probability 

!1Cost 
e--T-

where T is the current temperature. This function ensures that moves that 
increase the cost by an amount that is small compared to the current tempera
ture are likely to be accepted, while moves that increase the cost by an amount 
much larger than the current temperature are not. Accepting some moves that 
increase the cost helps escape local minima and produces a higher-quality final 
placement. At the start of the anneal, temperature is high; it gradually decreases 
according to the annealing schedule. This schedule also controls how many 

· moves are performed between temperature updates and when the placement
is considered sufficiently optimized that the anneal should end.

Two key strengths of simulated annealing that make it well suited to FPGA 
placement are: 

1. One can enforce all the legality constraints imposed by the FPGA
architecture fairly directly. The two basic techniques are to forbid the
creation of illegal placements in the move generator or to add a penalty
cost to illegal placements.
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P = InitialPlacement (); 
T = InitialTemperature (); 

14.3 Simulated Annealing for Placement 307 

while (ExitCriterion () == False) 

while (InnerLoopCriterion () == False) /* One temperature * / 

Pnew = PerturbPlacementViaMove (P); 

.6.Cost = Cost (Pnew) - Cost (P); 
r = random (0, 1); 
if (r < e-Acost/T) { 

P = Pnew ; /* Accept move */

/* End one temperature * / 
T = UpdateTemp (T); 

FIGURE 14.4 ■ Pseudo-code of a generic simulated annealing placement algorithm. 
(Source: Adapted from [13].) 

2. By creating .an appropriate cost function, one can directly model the
impact of the FPGA routing architecture on circuit delay and routing
congestion.

14.3.1 VPR and Related Annealing Algorithms 

VPR [3, 11, 12] is a popular timing-driven simulated annealing placement tool. It 
is usually used in conjunction with T-VPack, or a similar clustering algorithm, 
that preclusters the logic elements into legal logic blocks. One of VPR's main 
features is that it can automatically adapt to different FPGA architectures so 
long as they employ island-style routing. 

VPR' s annealing schedule is based on parameters computed during place
ment rather than on fixed starting and ending temperatures and a fixed cool
ing rate. This adaptive annealing schedule generates high-quality results across 
a wide range of design sizes, FPGA architectures, and cost functions, making 
it preferable to more "hardcoded" schedules. VPR sets the lnitia[Temperature to 
20 times the cost change of the average move, and the ExitCriterion is met when 
the temperature is less than 0.5 percent of the cost divided by the number of 
nets in the circuit. The fraction of moves that are accepted at each temperature, 
a, is monitored throughout the anneal. 

Lam and Delosme [14] showed that simulated annealing makes the largest 
improvements to a placement when a is near 44 percent. Consequently, VPR 
rapidly decreases the temperature when a is significantly above or below 44 
percent and slowly decreases it when a is near 44 percent in order to spend the 
majority of the annealing time in the most productive range. The move generator 
used by VPR to find placement perturbations also varies as the anneal progresses 
in order to keep a near 44 percent. When a block is picked for a move, its new 
proposed location will always be within a window with a Manhattan radius of 
range limit blocks. Initially, the range limit is the size of the entire chip, allowing 
a block to move anywhere in the device in one move. 

As the anneal progresses, the range limit shrinks so that the moves proposed 
are smaller local improvements, since these are the most likely moves to be 
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308 Chapter 14 ■ Placement for General-purpose FPGAs
accepted as the placement converges to an increasingly high-quality solution.More specifically, whenever the temperature is updated in Figure 14.4, VPR alsoupdates the range limit according to 

range_limit (new)= range_limit (old)· (1 - 0.44 - a.) (14.4)
VPR's cost function [12] also has some ability to adapt to different FPGAarchitectures: 

� . [ bbx (i) bb
y 

(i) ]
Cost=(l-11,) I... q(t) 

C C)+C (") 
iEAllNets av, x l av,y l 

+ A E Criticality ( j) • Delay ( j)
jE All Connections 

(14.5)

The first term in equation 14.5 causes the placement algorithm to optimize anestimate of the routed wirelength, normalized to the average wiring capacity ineach region of the FPGA. The wirelength needed to route each net i is estimatedas the bounding box span (bbx and bb
y
) in each direction, multiplied by a fanoutbased correction factor, q(i). As Figure 14.5(a) illustrates, the bounding box ofa net is simply the smallest rectangle that encloses all the net terminals. Figure14.5(b) shows that for higher fanout nets, the bounding box span underpredictsthe wiring needed. For the eight-terminal net shown, the sum of bbx and bb

y is 10 units, but even a best-case routing requires 11 units of wire. q(i) is 1 fortwo- and three-terminal nets and slowly increases with net terminal count tocompensate for this underprediction [16]. The corrected bounding box span is a reasonable estimate of the routedwirelength for an island-style FPGA that contains at least some short wiringsegments that span only a few logic blocks. Most recent commercial FPGAs,including the Altera Stratix and Xilinx Virtex [15] families, meet this condition.Equation 14.5 does not contain a good estimate of wirelength for other FPGAtypes, such as hierarchical FPGAs, so this cost function would not perform wellwith them. Some FPGAs have differing amounts of routing available in the vertical direction compared to the horizontal direction, or in different regions of the chip. Forexample, a Stratix-11 FPGA has 1.6 times as much horizontal as vertical routing,and some routing is not available over the large 576-kbit RAM blocks. Therefore,the routing capacity is not uniform everywhere in the device. In such cases, it isbeneficial to move wiring demand to the more routing-rich direction or regions.Accordingly, the cost function of equation 14.5 scales the estimated wiring ineach direction by the average routing capacity over the net bounding box inthat direction. Figure 14.5(a) shows an example computation. The second term in equation 14.5 optimizes timing by favoring placements inwhich timing-critical connections have the potential to be routed with low delay.To evaluate the second term quickly, VPR needs to be able to rapidly estimatethe delay of a connection. It makes use of the fact that the delay between twopoints in an island-style FPGA is primarily a function of the distance betweenthem. Before placement begins, VPR precomputes a table of best-case routing
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FIGURE 14.5 ■ An example wirelength cost computation: (a) net bounding box and average 
channel capacity; (b) best-case routing, with a wirelength of 11. 

delays for every possible distance between pairs of points. The delay table entries 
are computed by invoking a router with each possible (LlX, LlX)-the router finds 
the fastest path between the two endpoints. 

Periodically (generally once per temperature) VPR computes the delay of 
every connection given the current placement and then performs a timing 
analysis to find each connection's slack. Equation 14.2 computes the criticality 
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of each connection given its slack. Consequently, VPR's estimate of which 
connections are critical changes as placement progresses, and timing optimiza
tion can move from one part of the circuit to another. 

One of the important features of VPR's cost function is that, with appropriate 
coding, the cost change caused by the motion of a constant number of blocks 
can be computed in constant time. This enables many moves to be evaluated 
during the placement of a large circuit, which is one of the keys to obtaining 
a high-quality placement with simulated annealing. The overall computational 
complexity of VPR is O(n l.33) [3], where n is the number of functional blocks
to be placed, allowing VPR to scale well to large circuits. 

Many enhancements have been made to the original VPR algorithm. The 
PATH algorithm by Kong [17] uses a new timing criticality formulation in which 
the criticality of a connection is a function of the slacks of all the paths passing 
through it, rather than just a function of the worst (smallest) slack. This tech
nique increases the cost function weighting on connections with many critical 
or near-critical paths, which is beneficial because a move that reduces the delay 
of such a connection can improve many important timing paths simultaneously. 
On average, PATH reduces critical path delay by 15 percent compared to VPR. 

The SCPlace algorithm [18] enhances VPR so that a portion of the moves are 
fragment moves in which a single logic element is moved instead of an entire 
logic block. This allows the placement algorithm to modify the initial clustering 
to shorten connections that are now seen to be poorly localized. Fragment moves 
improve both circuit timing and wirelength. 

Sankar and Rose [ 19] explored a trade-off between reduced result quality and 
extremely low placement runtimes. Instead of simply clustering logic elements 
into logic blocks, their hierarchical annealing algorithm clusters logic blocks 
twice into larger units, as shown in Figure 14.6. The first-level clustering creates 
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FIGURE 14.6 ■ An overview of hierarchical annealing: (a) multilevel clustering, and 
(bl placement of large clusters followed by unclustering and placement refinement. 
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clusters that each contain approximately 64 logic blocks, and the second-level 
clustering groups four level-1 clusters into each level-2 cluster. Placement of 
a netlist of level-2 clusters is very fast because there are relatively few blocks 
to place. To make placement of the level-2 clusters even faster, Sankar and 
Rose [19] use a greedy (temperature= 0 anneal) iterative improvement algo
rithm, seeded with a fast constructive (instead of random) placement. Once 
placement of the level-2 clusters is complete, a level-1 initial placement is cre
ated by locating each level-1 cluster inside the boundary of the level-2 cluster 
that contained it. 

The placement of level-1 clusters is refined by a temperature-0 anneal. The 
clusters are then replaced by their constituent logic blocks and the placement of 
each logic block is fine-tuned with a low-temperature anneal. The initial temper
ature for this anneal is selected so that only moves that reduce cost or increase 
it a small amount are allowed; consequently, the initial placement solution has 
a large impact on the final placement. For very fast CPU times this algorithm 
significantly outperforms VPR in achieved wirelength, but it lags behind VPR 
for longer permissible CPU times. 

Lamoureaux and Wilton [9] modified VPR's cost function by adding a third 
term, PowerCost, to equation 14.5.

PowerCost = [, q (i) [bbx (i) + bb
y 

(i)] • Activity (i) 
iEAllNets 

(14.6) 

where Activity(i) is the average number of times net i transitions per second. This
additional cost term reduces circuit power by focusing more effort on localizing 
rapidly transitioning nets. 

14.3.2 Simultaneous Placement and Routing with Annealing 

Instead of relying on fast heuristics to estimate placement routability and 
timing, some algorithms use a router to obtain a partial or complete routing 
for each placement proposed during the anneal. These algorithms can directly 
extract wiring usage, congestion, and timing from the circuit routing, so their 
cost functions can be very detailed. Another of their advantages is that one 
can develop a placement algorithm that automatically adapts to a wider class 
of FPGA architectures, since fewer (or ideally no) assumptions about the 
device-routing architecture need to be incorporated into the cost function. The 
disadvantage of using a router in the cost function is CPU time. Evaluating 
the cost c:hange after each move is very CPU intensive, making it difficult to 
evaluate enough moves to obtain high-quality placements for large circuits in a 
reasonable time. 

PROXI [20] is a timing-driven FPGA placement algorithm that uses a router 
to compute its cost function. The PROXI cost function is a weighted sum of 
the number of unrouted nets and the delay of the circuit critical path. After 
each placement perturbation, PROXI rips up all of the nets connected to blocks 
that have moved and reroutes them via a fast, directed-search maze router [21]. 
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To improve CPU time, PROXI allows the maze router to explore only a small 
portion of the routing fabric at high temperatures-if no unblocked routing path 
is found quickly, the net is left unrouted. At lower temperatures, the placement 
is of higher quality and the router is allowed to explore a larger portion of 
the routing fabric. After each net is rerouted, the critical path is recomputed 
incrementally. PROXI produces high-quality results, but requires high CPU time. 

Independence [22] is an FPGA placement tool that can effectively target a 
wide variety of f PGA routing architectures. It is purely routability-driven, and 
its cost function monitors both the amount of wiring used by the placement and 
the routing congestion: 

Cost= L, Routing Resources (i) + ').,
iENets 

E max ( Occupancy (k) - Capacity (k), 0) 
kERoutingResources 

(14.7) 

The')., parameter in equation 14.7 is a heuristic weighting factor. Independence 
uses the Pathfinder routing algorithm [23] to find new routes for all affected 
nets after each move. Instead of leaving nets unrouted when there is no 
unblocked path, Pathfinder allows wire congestion by routing two nets on the 
same routing resource. Such a routing is not legal; however, by summing the 
overuse of all the routing resources in the fPGA, Independence can directly 
monitor the amount of routing congestion implicit in the current placement. 
The Independence cost function monitors not only routing congestion but also 
the total wirelength used by the router to create a smoother cost function that is 
easier for the annealer to optimize. Independence produces. high-quality results 
on a wide variety of fPGA architectures, including both island style and hierar
chical, but it requires very high CPU time. 

14.4 PARTITION-BASED PLACEMENT 

Another popular placement approach recursively partitions the circuit netlist 
and assigns each partition to a different physical region in the fPGA. Usually 
each partitioning step divides a previous (larger) partition into two pieces, or 
bipartitions the component, although some algorithms perform multiway parti
tioning to produce a larger number of �ircuit partitions in each step. Partitioning 
algorithms attempt to minimize the number of nets that are cut, or that cross, 
between partitions. Since each partition of the circuit will be assigned to a dif
ferent region of the fPGA, partition-based placement minimizes the number of 
nets leaving each region and hence indirectly optimizes the amount of wiring 
required by the design. Partition-based placement can leverage the availability of 
high-quality, CPU-efficient partitioning algorithms, making this approach scal
able to large problems. However, for some fPGA architectures, partition-based 
placement suffers from the disadvantage that it does not directly optimize the 
circuit timing or the amount of routing required by the placement. 
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Hierarchical FPGAs are good candidates for partition-based placement, since 
their routing architectures create natural partitioning cut lines. Hutton et al. 
[24] describe a commercial placement algorithm for the Altera Apex 20K fam
ily that recursively partitions the circuit along the cut lines formed by the
routing hierarchy, as shown in Figure 14.7. This algorithm is made timing
driven by heavily weighting connections with low slack during each partition
ing phase and by partitioning to minimize weighted cut size. This encourages
partitioning solutions in which timing-critical connections can be routed using
the fast routing available within the lower levels of the routing hierarchy. To
improve the prediction of the critical path, the delay estimate for each con
nection is a function of ( 1) the number of hierarchy boundaries the net must
traverse because of the known partition cuts at the higher levels of the routing
hierarchy, and (2) statistical estimates of how many hierarchy boundaries the
connection will cross at future partitioning steps.

Recursive partitioning has also been used for placement in island-style 
FPGAs. ALTOR [25] was originally developed for standard cell circuits, but was 
adapted to FPGAs and widely used in FPGA research. Figure 14.8 shows the 
sequence of cut lines used by ALTOR to target an island-style FPGA-note that 
the sequence is quite different from that used with a hierarchical FPGA. In an 
island-style FPGA, blocks separated by a short Manhattan distance can be con
nected with a small amount of routing. Consequently, the cut lines are designed 
to divide the FPGA into ever-shrinking squares-the fewer signals that must 
leave each square, the less interconnect required. 
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FIGURE 14.7 ■ The partitioning sequence for the APEX 20K FPGA.
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FIGURE 14.8 ■ The partitioning sequence for an island-style FPGA. 

ALTOR's first cut line divides the chip into two halves vertically. The second 
cut line divides the left half of the circuit into upper left and lower left quarters. 
The third cut line divides the right half of the circuit in the same way. When 
partitioning along the third cut line, ALTOR uses terminal propagation [26] from 
the left half of the chip, which is already partitioned into an upper and lower 
quarter, to bias the partitioning of the right half. For example, the net shown in 
Figure 14.9 has one terminal in the right half of the chip and one terminal in 
the upper left corner. During partitioning along cut line 3, this net is considered 
to have a fixed terminal in the upper partition, which will bias the partitioner to 
keep the free terminal of this net in the partition above cut line 3. Terminal 
propagation reduces final wirelength by optimizing the placement of the 
terminals of nets that have been cut in some partitioning step. 

Maidee et al. [27] developed a timing-driven placement algorithm for island
style FPGAs that employs both partitioning and annealing. Before partitioning 
begins, the VPR router is used to generate a table of net delay versus distance 
spanned by the net that takes into account the FPGA routing architecture. As 
partitioning proceeds, the algorithm records the minimum length each net can 
achieve given the current number of partitioning boundaries it crosses. The 
delay corresponding to each net's span is retrieved from the net delay versus 
span table, and a timing analysis is performed to identify critical connections. 

Timing-critical connections to terminals outside the region being partitioned 
act as anchor points during each partitioning. This forces the other end of the 
connection to be allocated to the partition that allows the critical connection to 
be short. Once partitioning has proceeded to the point that each region contains 
only a few cells, any overfilled regions are legalized with a greedy movement 

. 
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FIGURE 14.9 ■ An example of terminal propagation.

heuristic. Finally, the VPR annealing algorithm is invoked with a low starting 
temperature to "fine-tune" the placement. This fine-tuning step allows blocks to 
move anywhere in the device, so early placement decisions made by the parti
tioner, when little information about the critical paths or the final wirelength 
of each net was available, can be reversed. This algorithm achieves wirelength 
and speed results comparable to those of a full VPR anneal, with significantly 
reduced CPU time. 

14.5 ANALYTIC PLACEMENT 

Analytic algorithms are based on creating a smooth function of a placement that 
approximates routed wirelength. Efficient numerical techniques are used to find 
the global minimum of this function; if the function approximates wirelength 
well, this solution is a placement with good wirelength. However, this global 
minimum is usually an illegal placement, so constraints and heuristics must be 
applied to guide the algorithm to a legal solution. 

While analytic placement approaches are popular for ASICs, few exist for 
FPGAs, likely due to the more difficult FPGA placement legality constraints. 
The Negotiated Analytic Placement (NAP) algorithm from Chan and Schlag [28] 
targets FPGAs and has several novel features, including some that make it 
suitable for implementation on multiple processors in parallel. 

c· 
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14.6 FURTHER READING AND OPEN CHALLENGES 

While this chapter has focused on placement algorithms specifically designed 
for FPGAs, there is also a great deal of literature on placement for custom
manufactured integrated circuits, much of which is relevant to FPGAs. For 
a recent overview of general placement algorithms, see Cong et al. [29]. This 
chapter also treated placement as separate from synthesis. Recent commercial 
and academic tools incorporate physical synthesis, however, where portions of 
the circuit are resynthesized as placement proceeds and more information about 
critical paths becomes available. For an overview of FPGA physical synthesis and 
its interaction with placement, see Hutton and Betz [13]. 

The greatest challenge facing FPGA placement is the need to produce high
quality placements for ever-larger circuits. FPGA capacity doubles every two to 
three years, doubling the size of the placement problem at the same rate. In 
addition, uniprocessor speed is no longer increasing as quickly as it did in the 
past, which means that single processor speed will increase by less than two 
times in the same period. In order to maintain the fast time to market and ease 
of use historically provided by FPGAs, placement algorithms cannot be allowed 
to take ever more CPU time. There is thus a compelling need for algorithms that 
are very scalable yet still produce high-quality results. 

The roadmap for future microprocessors indicates that the number of inde
pendent processors, or cores, on a single chip will increase rapidly in the coming 
years. Consequently, most engineers will have parallel computers on their desk
tops. Part of the solution to the problem of keeping FPGA placement times rea
sonable may be to find techniques and algorithms to exploit parallel processing 
without sacrificing result quality. 
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CHAPTER 15 

As shown in Chapter 14, a wide variety of algorithms can be employed for 
placing arbitrary netlists on various reconfigurable fabrics. To achieve this gen
erality, the input netlists are treated as random collections of primitive elements 
(gates, lookup tables [LUTs], flip-flops) and interconnections. These approaches 
do not attempt to exploit any kind of structure that might be present in their 
input circuits. Many practically relevant circuits, however, do exhibit regulari
ties in their composition (e.g., by following a classical bit-sliced design). Since 
the days of manual full-custom ASIC design ("polygon pushing"), regularity in 
circuit structure has been exploited with great success to derive a corresponding 
regular circuit layout-for example, by abutment of replicated bit-slice layouts. 

This chapter describes the application of this idea to efficient layout of regular 
bit-sliced datapaths on reconfigurable fabrics. It will begin by considering how 
to characterize, extract, and preserve regularities at different abstraction levels. 
The next steps describe the datapath. composition tool flow and address issues 
such as mapping dataflow operators to hardware units and arranging these 
in an abutting regular layout. We will also cover how quality can be improved 
even further by judiciously dissolving regularity boundaries in parts of the data
path performing cross-boundary optimization, and finally reregularizing the 
optimized circuit. 

15. 1 FUNDAMENTALS 

With the increasing use of reconfigurable devices as core processing units 
in adaptive computer systems, the architecture and implementation of high
performance compute units on reconfigurable fabrics becomes ever more impor
tant. A datapath is one architectural style of realizing a given computation 
(Figure 15.l(a)) in hardware. It is often described as the number of intercon
nected operators in the form of a dataflow graph (DFG) or control dataflow graph 
(CDFG), shown in Figure 15.l(b). The execution of the operators is orchestrated 
by a supervising controller (Figure 15.l(c)). The controller is generally not con
sidered part of the datapath, but together the datapath and controller form a 
compute unit. For purposes of this discussion, we will assume that we are pro
cessing a CDFG but will concentrate on its dataflow part. 
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extern int LIMIT; 

int sum, i; 

32 

sum. clear --I--C"' 

sum.load 

for (sum= O, i= O; i < LIMIT; ++i) 

sum += i; 

(a) 

!end 

� 
sum.clear sum.load & !end 

i.clear i.load & !end 

LIMIT. load 

(C) 

FIGURE 15.1 ■ From computation to realization. 
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The datapath is created in hardware by mapping the CDFG operators to 
hardware operators, or HWOPs (see Figure 15.l(d)). Generally, HWOPs have 
multibit data inputs and outputs for the operand(s) and result(s) (e.g., ADD32 
HWOPs). Some may also have control inputs (e.g., the load and clear signals of 
the FF32 HWOPs) or outputs (e.g., for indicating certain conditions such as the 
GTEQ32 output). These control signals are generally much narrower than bused 
data signals, often only a single bit wide. In some cases, an HWOP is available 
in several different implementations, all having the same function but differing, 
for example, in their area/speed characteristics or layout shape. 

15.1.1 Regularity 

The multibit-wide HWOPs are often assembled by repeatedly instantiating and 
interconnecting narrower template circuits in an adjacent fashion until the spe
cific HWOP's desired bit width is reached (Figure 15.2). These template circuits 
will be called master slices here, while their instances are generally referred to as 
bit slices. We will further extend this terminology to call areas where the same mas
ter slice has been instantiated a number of times a zone, and a sequence of zones is 
termed a stack. Together, these concepts describe an HWOP as a regular circuit. 

Such a structure has a natural direction of dataflow (horizontally in the case 
of Figure 15.2). When processing word-wide data, the individual bits of the 
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FIGURE 15.2 ■ Regular HWOP structure.
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words are arranged orthogonally to the direction of dataflow (in the figure, 
vertically). With few exceptions (e.g., bus-wide logic gates), the position of indi
vidual bits is not arbitrary but follows an ordering from least significant (LSB) to 
most significant (MSB). For example, stacking ripple-carry full-adder bit slices 
generally has the first slice process the LSB and the last slice process the MSB. 
Ports on the master slice (e.g., a, y) do not have a bit significance of their own. 
Only after instantiating the masters as bit slices can the significance be derived 
from their iteration number (e.g., port a on the bottommost slice will have a 
significance of O; the one above that, 1, etc.). 

For describing the characteristics of elements such as HWOPs, bit slices, and 
master slices, four quantities are useful. Any of these elements may process mul
tiple bits from a single word, with the logical width being the largest number 
of such bits. Height and length refer to the bounding box of the element layout 
on the target device. They are specified in device-dependent units, such as pro
cessing elements (PEs), cells, configurable logic blocks (CLBs), and the like. The 
pitch of a master slice is the width divided by the height-essentially, the num
ber of output bits per unit height. To reduce interconnect lengths, all HWOPs in 
the datapath should have the same pitch and the LSBs of all data nets should 
be vertically aligned. 

Regularity in datapaths does not appear just in the replicated logic elements 
but also in commonly occurring interconnect patterns (Figure 15.3): 

Data nets are generally multibit buses that carry operands and results between 
HWOPs, where they are connected to data ports (e.g., opl, op2). Each 
signal in the bus has an associated bit significance and generally connects 
to the HWOP at a data port with the same significance. Shifts and permu
tations occur only rarely [23]. 
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PE column with associated vertical channel 
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FIGURE 15.3 ■ Regular interconnection patterns. 

Control nets are generally narrower, often only a single bit wide. In general, 
they connect an HWOP to a controller but not to another HWOP in the 
datapath. Control signals attach to the HWOP at control ports. In many 
cases, a control signal connects to the same control port in all bit slices 
of a zone. With our assumption of horizontal dataflow, in the following 
discussion control signals are assumed to run vertically. 

Inters/ice nets run between separate bit slices in the same HWOP, thus vertically 
crossing slice boundaries (e.g., B-Y, A-X). Most commonly, they connect 
neighboring bit slices, but these may have different master slices, particu
larly near the top and bottom of a stack. An example of an interslice net 
is the carry net running between full-adder bit slices. 

Intraslice nets connect individual logic elements within a bit slice (e.g., A-B). 
Since the internals of a bit slice are considered random logic, these nets 
do not follow specific interconnection patterns. 

An example of a unified representation for both block and interconnect regular
ity, the Abstract Physical Model (APM), is proposed by Ye and De Micheli [22]. 

15. 1.2 Datapath Layout

With these concepts in place, we can now consider the anatomy of our com
pute unit in greater detail (Figure 15.4(a)). The datapath will have a regular 
area, where pitch-matched HWOPs with a common direction of increasing 
bit significance process horizontal, LSB-aligned dataflows. Outside this area, 
HWOPs may contain irregular parts (e.g., carry initialization, overflow detec
tion, or, for complex sequential HWOPs, even local controllers). The global con
troller for the compute unit is also placed outside the regular area. Generally, 
control nets are routed vertically across the regular area. This chapter does 
not address the handling of the controller, but concentrates on the datapath 
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(a) 
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HWOPs 

(b) 

FIGURE 15.4 ■ Common datapath layouts: (a) classical linear and (b) multistripe. 

instead. The controller can be placed via techniques such as those presented in 
Chapter 14. 

Given these constraints, the best arrangement for minimizing interconnect 
lengths and delays for a small number of HWOPs will generally be linear. 
This approach has been exploited by devices like Garp [ 4], which realize such 
topologies directly in their chip architecture. However, once the number of 
HWOPs grows, the datapath generally needs to be wrapped into multiple stripes 
of HWOPs (Figure 15.4(b)). 

15.2 TOOL FLOW OVERVIEW 

Multiple steps are required to actually compose the datapath from individual 
HWOPs. These steps can be broadly grouped into the following categories: 

Module generation: The HWOPs are often realized by procedural descriptions 
in the form of module generators (see Section 15.4). Thus, at some point 
in the flow other tools will interact with the library of module gener
ators either to retrieve data about appropriately parametrized module 
instances or (later in the process) to generate the actual netlists. Often 
these netlists are already annotated with module-local relative placement 
information. 

Mapping: The operators in the computation are mapped from the CDFG to the 
HWOPs realizing them in hardware. Beyond a straight 1: 1 mapping, this 
can be performed in 1:M (if an operator requires multiple HWOPs) or N:1 
fashion (if multiple operators can be combined into the same HWOP). The 
mapping calculated here need not be final, but can be altered in later flow 
steps. In some cases, the mapping step can also choose among multiple 
different HWOP implementations for an operator. This is sometimes called 
the module selection step. 

Dataflow 
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324 Chapter 15 ■ Datapath Composition 

Placement: HWOPs are assigned to actual PEs on the target device fabric. 
Similarly to the mapping step, N: 1 and 1 :M assignments are possible here. 
In the first case, a PE is so complex that it can implement multiple HWOPs 
at the same time. In the second case, each HWOP needs to be realized 
using multiple PEs. This is usually the case when targeting fine-grained 
devices such as field-programmable gate arrays (FPGAs). 

Compaction: This is the altering of the HWOPs' structure after mapping (before 
or after placement). It generally indicates optimizing across HWOP bound
aries. For example, it might merge connected adjacent HWOPs into a more 
compact/faster, but functionally identical, hardware block. This optimized 
block is then treated as any other HWOP in the datapath. 

Not all of the flows discussed next perform all of these steps, and their execution 
order can vary. Additionally, some steps may be repeated. 

Certain combinations are also possible. For example, in some flows place
ment and the mapping of operators to HWOPs occur simultaneously. For coarse
grained targets, operators can be mapped to HWOPs that are placeable in the 
same PE. For fine-grained devices, HWOP implementations can be selected 
whose layouts fit together with minimai. area. 

15.3 THE IMPACT OF DEVICE ARCHITECTURE 

The tool flow required for creating a datapath on a reconfigurable fabric of PEs 
is highly dependent on the target device architecture. For coarse-grained target 
devices, the operators of the computation can often be mapped to PEs in a one
to-one fashion. On a fine-grained device, the operators have to be assembled from 
individual PEs. 

Bit-sliced is not the only way to realize HWOPs. They may as well be com
pletely irregular internally, or they may be monolithic (Figure 15.5). In both 
cases, many of the optimizations described in Section 15.7 that affect the inter
nal structure of HWOPs are not be applicable. However, the techniques for pro
cessing multiple HWOPs at the datapath level (Section 15.6) remain relevant. 

If the reconfigurable fabric has a linear or a two-dimensional matrix struc
ture (Figure 15.6(a-c)), this can be exploited to efficiently map the regular 

Dataln 

SBoxSelect 

(a) 

DataOut Dataln 

Addrln 

R/W 

FIGURE 15.5 ■ Non-bit-sliced HWOPs: (a) irregular and (b) monolithic. 
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FIGURE 15.6 ■ Reconfigurable fabric architectures: (a) symmetrical array, (b) row-based, 
(c) sea-of-gates, (d) hierarchical PLD, and (e) hierarchical FPGA.

datapath structure to a corresponding regular geometric layout. For other kinds 
of target devices-for example, those having fully hierarchical structures (d-e in 
Figure 15.6)-algorithms optimizing for geometric arrangement are unsuitable, 
because geometrically adjacent blocks on the device might not actually be neigh
bors in the interconnect network (Figure 15.6(e), PEs X and Y). While other 
techniques such as hierarchical partitioning and clustering [19] could be used 
instead, they no longer attempt to take advantage of the datapat4 regularity. 

15.3.1 Architecture Irregularities 
Even in seemingly regular fabrics, irregularities often occur at the detail level. 
Consider, for example, the logic block structure of the Xilinx XC4000 FPGA 
(Figure 15.7). The base architecture of this device is a symmetrical array of 
CLBs, each of which contains two 4-LUTs and registers. However, each CLB also 
provides an additional 3-LUT. While very useful (e.g., for the efficient imple
mentation of 4-input multiplexers or 5-input functions within a single CLB), 
the 3-LUT impedes the regularity in that it is no longer possible to realize two 
instances of a master slice that uses the 3-LUT within a single CLB. Also, when 
using the 3-LUT it is no longer possible to employ the registers in the CLB inde
pendently from the 4-LUTs: Only one of the registers can be directly connected 
to a CLB external port (DIN); the other one is not reachable from the outside. 

□ □ □ □ 
□ □ □ □ 
□ □ □ □ 
□ □ □ □ 
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FIGURE 15.7 ■ Regularizing an existing device architecture: (a) the real structure of the Xilinx 
XC4000 CLB and (b) the simplified regular structure. 

These irregularities can be alleviated by disregarding the 3-LUT for regular logic, 
using it solely to make the other register accessible via the Hl port. As a result, 
each CLB can now be used to implement two fully regular bit slices, with the 
registers accessible both from inside and outside the bit slice. 

Interconnect features also have an effect on datapath placement style. The 
physical direction of bit significances on the fabric is sometimes dictated by 
the running order of fast carry wires, which, on most devices is fixed. Also, 
high fanout control signals (e.g., the select signal of wide multiplexers) can be 
distributed across an entire HWOP by special long-distance interconnects. For 
example, on the Xilinx Virtex series of chips, so-called vertical long lines connect 
to all PEs on both sides of a vertical routing channel and are thus ideally suited 
for control routing. As will be shown in the following section, tool flows for 
datapaths can take advantage of all these features for efficient layout. 

15.4 THE INTERFACE TO MODULE GENERATORS 

As in many hardware design flows, individual hardware cells (in our case, the 
circuits used as HWOPs), are retrieved from a library. Instead of static cells, 
however, a more flexible approach uses procedural module generators to tailor 
these circuits to fit current requirements. For example, a multiplier might have 
eight pipeline stages in one context and only four in another, matching it to the 
latency/clock speed of the rest of the datapath. No longer a passive collection of 
cell descriptions, the library now becomes active: It accepts a set of constraints 
from another part of the flow and delivers a matching circuit. 

The very flexibility of these parametrized generators complicates their inte
gration with the rest of the tool flow: Other tools need not only the circuit 
description in the form of a (possibly preplaced) netlist but also data about

this specific instance. Different tools are interested in different aspects of the 
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15.4 The Interface to Module Generators 327 

circuit. This plethora of cell views, combined with the sheer volume of the design 
space covered by each parametrized generator, precludes a simple enumeration 
of all alternatives. Thus, the traditional static library data files, holding tables 
of delays, bounding boxes, and the like, for a set of fixed parameter values, 
become impractical. 

The Flexible API for Module-based Environments (FLAME) [11] is one 
approach to overcoming these difficulties. It consists of three major components: 
( 1) the communications interface between the generator library and the other
flow tools, (2) the design data model, and (3) the library specification.

A reference realization of a FLAME-based generator library exists in the form 
of the Generic Library for Adaptive Computing Environments (GLACE) [14]. 
This package has successfully been used in the COMRADE compiler [7], which 
compiles C into hybrid hardware/software applications for adaptive computer 

systems. GLACE uses a Java-based FLAME implementation, but could be called 
from other languages using the Java Native Interface (JNI). 

15.4.1 The Flow Interface 

The communications infrastructure and API provided by the FLAME Manager 
(Figure 15.8) replace static library files with an active function call-based inter
face. Clients in the main design flow can thus enter into a dialog with the module 
libraries and retrieve data specific to the actual parameter values of the cur
rent instance. In GLACE, the client queries accepted by the FLAME Manager 
are forwarded to the circuit generation code [6], resulting in the retrieval of 
circuit characteristics, or the creation of actual netlists. 

15.4.2 The Data Model 

The information exchanged in this manner just described is represented using 
the FLAME design data model. This model is partitioned into a number of task
specific views: A frontend compiler might request a "behavior" view to determine 
which functions are available for a given target technology. Later on, it could 

Main design flow 

Mapping 

Compaction 

Queries 
Module generator library 

� 

FLAME 
interface 

FLAME 
interface 

FIGURE 15.8 ■ FLAME system overview. 
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15.5 The Mapping 329 

The layout has the LSBs of the operand and result data busses aligned at a 
common baseline. This sequential HWOP has two irregular components, which 
are placed below and above the regular datapath region. For that reason, in 
order to preserve regularity within the stack, we had to leave extra space on the 
top and/or bottom to accommodate any irregularities (such as overflow detec
tion, sign handling, etc.). All buses are spaced with a pitch of 2 bits per CLB of 
layout height. 

15.5 THE MAPPING 

Mapping techniques can be distinguished by whether they map in N: 1 fashion 
(i.e., multiple CDFG operators into a single HWOP) or map (at least initially) in 
1 : 1 fashion. 

15.5.1 1: 1 Mapping 
Here each CDFG operator is considered individually. However, trade-off deci
sions can still occur with regard to the different HWOP alternatives for it: 

Area/delay trade-offs can be performed to allow the selection of smaller but 
slower HWOPs for operations that are not on the critical path of the 
computation. 

Topology matching can be performed to match the heights of the HWOPs across 
the datapath (Figure 15.lO(a)). This can be necessary when a few HWOPs 
in the datapath are significantly wider than the rest (e.g., 64-bit modules in 

Placement area 

Topological mismatch Matching by folding HWOPs 

(a) 

FIGURE 15.10 ■ Topology and pitch matching. 
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330 Chapter 15 ■ Datapath Composition 

a mostly 32-bit datapath). Here regularity can be traded for area efficiency 
by selecting implementations for these modules that have been folded, 
doubling the length but halving the height. 

Pitch matching occurs if modules in the library are available only with a limited 
number of pitch values. The goal here is to compose the datapath with the 
least number of pitch mismatches (Figure 15.l0(b)). 

Various techniques can be employed to solve these optimization problems. 
Since in general no single best solution exists for complex cases, it is practical to 
use an algorithm that can generate sets of good (Pareto-optimal) solutions. The 
SDI system [10] used a genetic algorithm in the floorplanning step to perform 
these calculations. 

However, this approach is only applicable if a very flexible module library 
exists that actually gives the optimization heuristics some leeway to operate. 
This was the case with the PARAMOG library used in SDI, but the effort to 
implement this degree of flexibility is significant: More current module libraries, 
such as GLACE, often provide a smaller variety of implementations (generally 
just one) for each operator, allowing the replacement of complex heuristics with 
just a few simple rules for pitch and topology matching. 

15.5.2 N:1 Mapping 

In this approach, multiple operators can be mapped to a single HWOP, often 
using a tree-covering approach. The initial CDFG is split into a forest of trees 
(Figure 15.11) using techniques that splitt at multi-fanout nodes (between Band 
D, F) and possibly partially duplicate the operator cones rooted at the multi
fanout node (duplicating A into A, A'). While this limited approach no longer 
optimally solves the graph-covering problem, it is necessary in order to avoid 
the NP-completeness of computing the latter. 

(a) (b) 

FIGURE 15.11 ■ Conversion of CDFG to a forest of trees: (a) input dataflow graph and (b) forest 
of dataflow trees. 
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(c) 

FIGURE 15.12 ■ Covering operator trees using patterns: (a) the dataflow tree, (b) the HWOP 
pattern P, and (c) HWOP equivalence class pattern C. 

GAMA [3] employs a linear time algorithm using dynamic programming 
to cover the operator trees with HWOPs (Figure 15.12). This algorithm, which 
has its origin in the code generation steps of compilers, treats the operator(s) 
realizable by each HWOP as a pattern. Patterns are described as productions 
in a grammar, from which a code gen,erator-generator creates the actual tree
covering code. 

For each operator tree, the covering proceeds from the leaf nodes toward the 
root, applying all matching patterns that can be locally rooted at the currently 
examined node (v in the example, roots pattern P). A cost function computing 
delay and area characteristics determines the desirability of using the current 
pattern at this point. It is based on the cost of the currently tried pattern plus 
the previously computed costs (dynamic programming) of the fanin nodes to 
the pattern (u, v in the example). The ''best" pattern covering each node/subtree 
is then selected using heuristics that either do a straight area minimization 
or attempt to additionally minimize delays. This best solution is then stored 
in the local root node, and the covering proceeds to the· next node. Once the 
tree's root node has been matched with a best pattern, the final covering can be 
retrieved by starting with the root pattern and then processing the current pat
tern's fanin nodes. At each of these fanin nodes, the best pattern selection stored 
there is retrieved. This phase of the algorithm thus works recursively toward 
the leaves. 

The algorithm has some limitations that must be worked around: 

■ First, tree covering in this fashion relies on the principle of optimality,
where the combination of optimal solutions to subproblems leads to an
optimal solution of the entire problem. This is indeed achievable when
optimizing for minimal area. However, when attempting to minimize
delays the timing criticality of operators can vary depending on later
covering decisions. Thus, at the time of decision the criticality of the
current node is not known.

To mitigate this issue, GAMA attempts to estimate the criticality using 
an initial purely delay-oriented covering pass. Then the final covering 
proceeds in an area-minimizing fashion until the currently accumulated 
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Hard operator Q Soft operator 

FIGURE 15. 13 ■ Subg.raph covering with flexible generator. 

Covered by 
module 
generator 

delay at a node exceeds its estimate. At this stage, the cost function is 
switched from area to delay minimization. 

■ Second, the runtime of the algorithm depends linearly on the number of
patterns in the grammar (which equal different modules in the library).
When the PEs of the target device are very flexible (e.g., LUT based), they
can implement a wide spectrum of CDFG primitive operators (e.g., AND,
OR, INV, ADD, SUB, combinations . . .  ). Without further refinement to the
approach, a straight description of this flexibility in the grammar will
lead to an explosion in the number of rules. However, in practice, many
operators are equivalent for mapping purposes. For example, all 2-input
logic operators map in exactly the same way in all patterns in which they
occur. This fact can be exploited by defining equivalence classes for all
operators (e.g., logic, additive) and then defining the grammar rules in
terms ofthese classes (C in Figure 15.13). Combined with the factoring
out of common subpatterns, this significantly reduces the complexity of
the grammar.

15.5.3 The Combined Approach 

A completely different approach maps some operators in a 1: 1 fashion and 
others in an N: 1 fashion. This combination employs powerful module generators 
that can generate regular modules covering entire subgraphs of the CDFG. As 
an example, the LogicGen tool [20] can handle arbitraiy multibit logical expres
sions, including shifts and permutations, with optional registering of the out
puts. It extracts a regular structure from the input operators and synthesizes 
logic-optimized bit slices using SIS [16], which are then preplaced in a regu
lar layout. To apply LogicGen, the CDFG is searched for the largest subgraphs 
of plain logic modules. Each of these clusters is then handed to the tool in 
its entirety, allowing it to exploit reconvergent fanouts, factorization, and the 
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like. All operators in the cluster are thus covered by a single, LogicGen-created 
HWOP. Operators that are not amenable to traditional logic optimizations, such 
as arithmetic and memories that are usually implemented on device-specific 
blocks, are ·then mapped into corresponding HWOPs in a .Ll manner by 
dedicated module generators. 

15.6 PLACEMENT 

The HWOPs resulting from mapping have to be placed on the device fabric. This 
caff happen either during mapping or in a separate step afterward. Placement 
approaches can be classified into three groups according to the nature of 
the generated placement (see Figure 15.14). Purely linear techniques create a 
one-dimensional arrangement of HWOPs in a single stripe. Others compute 
a placement consisting of multiple stripes, which is sometimes referred to as 
1.5 dimensional or constrained two dimensional. A last group of algorithms gen
erates arbitrary two dimensional arrangements, an approach closely related to 
the classical floorplanning or macro-module scenarios in ASIC tool flows. 

15.6.1 Linear Placement 

An example of linear placement, GAMA [3], performs a one-dimensional place
ment simultaneously with the mapping step (see Figure 15.15(a)). It assumes 
that the external I/Os to the datapath are located on only one side of the stripe 
(at the right in the figure). The roots of all subtrees are placed toward this 
1/0 side, with the root of the entire HWOP tree directly adjacent to the I/Os 
(op3 in the figure). Furthermore, the HWOPs within a subtree are all placed 
contiguously, which means that (at least initially) HWOPs from different sub
trees (here opl and op2) will not be intermingled in the placement. The place
ment algorithm thus consists of recursively deciding in which linear order to 
place the fanin HWOPs of a node. 

Note that the placement order does affect the routing delay between differ
ent HWOPs (Figures 15.15(b) and (c)). The timing estimates calculated in this 
fashion are used in the cost function guiding the mapping ( covering the trees 

' ,, ,, " 

(a) (b) (c) 

FIGURE 15.14 ■ Placements styles: (a) linear, (bl constrained two dimensional, and (c) full two 
dimensional. 
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(a) 

op2 op1 op3 
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._____________.I D=I+'° 
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00 � 

FIGURE 15.15 ■ Simultaneous tree covering and placement. 

with HWOP patterns). The different trees of the forest (into which the CDFG has 
already been split) are placed in the stripe using a greedy algorithm that aims to 
place critical path trees close to each other. After this purely constructive initial 
placement, a greedy clustering algorithm can move HWOPs globally, across sub
tree and tree boundaries, in a further attempt to reduce routing delays. In prac
tice, however, the quality gains achievable using this simple cleanup pass are 
negligible. 

The techniques proposed by Ababei and Bazargan [1] are an example of a sep
arate postmapping linear placement step, which employs two core algorithms 
to quickly determine linear placements in polynomial time. The first, shown in 
Figure 15.16(a), tries to heuristically compute a minimum bandwidth/minimum 
wirelength placement by transforming a matrix representation of the input 
circuit into band form and reflecting the transformation steps in HWOP swaps. 
This algorithm is applicable to general CDFGs. 

The second, faster algorithm (Figure 15.16(b)) gives even better results, but is 
limited to operating on trees (similarly to GAMA). It proceeds topdown, recur
sively placing the nodes in a linear arrangement. The root is placed in the 
middle; the left subtree of the root, to the left; and the right subtree, to the 
right. The order in which the nodes are visited depends on the summed lengths 
of all HWOPs in the subtrees rooted at each node (this is called the volume of 
a node): Nodes rooting smaller volume subtrees are visited first, placing them 
clo.ser to the root. In Figure 15.16, the length of all HWOPs is assumed to be 1. 

In a refinement, Ababei and Bazargan [ 1] then extend the techniques for par
tial reconfiguration: A sequence of CDFGs is arranged so that previously placed 
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HWOPs and their interconnect can be reused in succeeding configurations, thus 
reducing the amount of configuration data. In the (albeit limited) experiments, 
up to 74 percent of HWOPs and 36 percent of inter-HWOP connectivity could be 
reused between configurations. However, with increased reuse, the delays and 
wirelengths began to deteriorate over independent placements (without reuse). 

Other techniques that have been applied to compose linear stripes of HWOPs 
are spectral partitioning [13], genetic algorithms [10], and quadratic placement 
[22]. In the last case, it was determined that the quadratic placement needed 
to be postprocessed for by computing the optimal arrangement of HWOPs in 
a small window (less than or equal to five HWOPs long) using exact methods 
(e.g., exhaustive search, branch/bound). The process is then repeated, sliding the 
window across the stripe, until no further improvement can be realized. 

15.6.2 Constrained Two-dimensional Placement 

With the focus on linear datapath structures, published work on constrained 
two-dimensional or 1.5-dimensional datapath placement is sparse. Some limited 
results are reported by Thoms [18]: The CLAP tool first performs a clustering 
procedure similar to that in VPack [2] to determine the HWOPs to fit into each 
stripe. Then the horizontal arrangement of HWOPs inside a stripe, as well as 
the vertical and horizontal arrangements of entire stripes, is optimized using 
different moves in an adaptive simulated annealing algorithm [2], resulting 
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in the constrained layout shown in Figure 15.14. Again, only a limited set of 
benchmarks was evaluated for CLAP. However, even for a small 28-module data
path, the constrained two-dimensional approach reduced the delay by more than 
20 percent over a linear placement created using a GAMA-like technique. 

15.6.3 Two-dimensional Placement 

A full two-dimensional placement is generally not applicable to the datapath 
structures discussed previously. However, if the target device architecture does 
not impose a specific ordering of bit significances (for example, when no 
hardwired carry logic is present), two-dimensional placement can be performed 
by treating the HWOPs as conventional macro blocks. A family of such place
ment algorithms has been described for the tools TS-FP [S] and Frontier [17] 
(Figure 15.17). Both distinguish between hard macros, with fixed rectangular 
shape, and soft macros, with a malleable shape. In both cases, the algorithms 
partition the device fabric into a number of b.ins, whose size depends on the 
area of the largest hard macro present in the input circuit. Smaller macros are 
then clustered up to the bin size to avoid wasting intrabin area. 

This clustering process takes into account a number of factors: the compati
bility of the macro shapes inside a bin (shapes in bin must geometrically fit in 
the bin bounding box), the relative size of the cluster compared to the entire 
circuit, the relative size· of the blocks in the cluster, and the connectivity of 
the macros in the cluster. If, after clustering, the number of clusters exceeds 
the number of available bins, the size of the bins is increased and the cluster
ing process is repeated. The clusters are then assigned to individual bins using 
standard placement techniques. 

Intrabin placement is now performed constructively. TS-FP places hard 
macros from ·right to left by abutment, leaving the left side of the bin free for 

FIGURE 15.17 ■ Bin-based two-dimensional HWOP floorplanning. 
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soft macros. Frontier (shown in Figure 15.17) spreads the hard macros horizon
tally across the entire length of a bin, leaving the unused space between them
for the soft macros. These are then placed in the free regions. TS-FP performs a
geometrical minimax matching, reshaping the logic of each soft macro to fit into
available space while attempting to keep the macros' initial internal placement
intact. Frontier uses a simpler approach; laying a snakelike pattern across the
free space, filled by sequentially selecting from the soft macro an unassigned
PE that leads to the minimal overall wirelength. To improve mutability,
Frontier additionally employs a final low-temperature annealing pass for the PEs
in the soft macros. These are allowed to move across macro and bin bound
aries. The annealing start temperatw--e is set sufficiently high to allow pertur
bation of the layout but low enough to ensure that the basic bin structure is
kept intact.

15.7 COMPACTION 
' •  .-; 

In a 1:1 mapping of simple CDFG operators (for example, trivial logic gates)
to HWOPs, the PEs inside an HWOP are often not used to their full capacity.
This inefficiency is worse when coarse-grained PEs are being targeted, and it
accumulates across all. HWOPs implementing simple operators. Figure 15.18
shows an example of this in which the functionality of a 2-input multiplexer
described using simple logic HWOPs requires three PE�ven though it would
completely fit in a single PE. 

Compaction dissolves the boundaries of selected HWOPs and optimizes their
contents as a whole, resulting in the creation of a new super-HWOP that real
izes all of the original functions in a smaller/faster fashion. The procedure can
generally be split into four phases:

1. Select the HWOPs to merge and compact. 
2. Analyze regularity across the selected HWOPs to derive new master slices.
3. Optimize the newly discovered master slices.

[B � � -�

,.,,§8 [�l -�-
-

ff].. 
•ij:::::::J 

� -� � �
A�D2 OR2 AND2B1 MUX21 

. .

FIGURE 15.18 ■ Wasted space in the layout of_ very simple HWOPs. 
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4. Construct the super-HWOP by instantiating and placing the optimized
master slices according to the regular inter-HWOP structure discovered
previously.

15. 7 .1 Selecting HWOPs for Compaction

lwo approaches have been proposed for selecting candidate HWOPs for 
compaction. Early work, such as the Structured Design Implementation (SDI) 
approach [8-1 O], aimed to keep a precomputed one-dimensional placement intact 
and so only considered connected neighboring HWOPs to compact. However, 
more recent research [21, 23] shows that better area efficiency is achievable 
by selecting candidates purely based on their connectivity, independent of any 
placement. 

Additionally, depending on the actual optimization procedures to be per
formed on the selected candidates certain HWOPs, despite being connected and 
adjacently placed, might later be unsuitable for compaction. For commonly used 
optimization methods, this category generally includes HWOPs exploiting target 
device-specific features such as hardwired carry chains or fixed-function blocks 
(e.g., multipliers or memory blocks). Thus, their enclosing HWOPs are exempt 
from compaction. 

15. 7 .2 Regularity Analysis

Since compaction is a regularity-preserving transformation, regularity aspects 
have to be considered both in its preparation and while it is taking place. 
Although methods exist to determine regular patterns in arbitrary circuits 
[12, 15], it is much more efficient to keep track of this data from the moment of 
HWOP circuit generation. The method developed by Ye and colleagues [21,23] 
requires knowledge of the netlists at the bit slice level. SDI, supported by the 
powerful PARAMOG module generator library, goes beyond that by explicitly 
describing both regularity (in the model described in Section 15.1.1) and hier
archy (using master slice/bit slice relationships). 

Based on the detailed data, SDI can consider more complicated structures 
for regular compaction. Figure 15.19 shows how it can isolate two new master 
slices and their instances from the HWOPs ALU and LSHR under compaction, 
even though the number of bit slices between these HWOPS differs. The 
inter-HWOP regularity consists of a 2-zone stack. The top zone holds a single 
instance of a newly discovered master slice, which consists of the original mas
ter slices ALU4, TOPDWN, and DWN. The second zone has two instances of a new 
master slice, which consists of ALU4 and two instances DWN. Ye and colleagues' 
technique [23] would not attempt to merge these two HWOPs, as it can only 
compact HWOPs with the same number of bit slices. 

15. 7 .3 Optimization Techniques
The core of compaction lies in the intermodule optimizations applied to 
the super-HWOP constructed by merging the original HWOPs. Here, Ye and 
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FIGURE 15.19 ■ Extracting inter-HWOP regularity. 

colleagues' approach [23] performs two additional steps compared to SDI: 
word-wide transformations that affect entire HWOPs followed by exploiting 
the context (external signals) of the HWOPs under compaction. The main pro
cessing step of both SDI and the system of Ye et al. [23], however, consists 
of applying traditional logic synthesis and optimization algorithms at the bit 
slice level. 

Word-level optimization 
Word-level optimizations, which in Ye and colleagues' approach [23] were 
performed manually, alter the datapath from the structure described in the orig
inal CDFG. Two of the transformations are shown in Figure 15.20. The first, 
shown in Figure 15.20(a), tentatively collapses trees of multiplexers into a sin
gle wide multiplexer, modifying the select logic appropriately. If this replacement 
requires more area than the original version, the original version is retained. 
This transformation cannot be performed by optimizing at the slice level, 
because the multiplexer select logic is not part of the regular area holding the 
bit slices. 

The second transformation, shown in Figure 15.20(6), is called operation 
reordering. It attempts to reduce area by restructuring individual multiplexers. 
A subcircuit, in which a multiplexer selects a single result from multiple identi
cal operator instances, is turned into a form where multiple multiplexers select 
from a set of inputs feeding a single operator instance. Under the assumption 
that a multiplexer is smaller than the operator, this reduces area. Note, however, 
that this is not always the case: In many fine-grained architectures that com
bine LUTs and arithmetic carry logic within a logic block, both multiplexers 
and adders/subtractors may occupy the same number of logic blocks. 
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FIGURE 15.20 ■ Word-level optimizations performed by Ye et al. [23]. 

Furthe1more, the second transformation is problematical in that it loses 
parallelism between the original multiple operator instances. Consider the fol
lowing scenario: The operator instances 1 and 2 have data-dependent execution 
times t 1 and t2 , and the select input arrives at ts after the operands of the opera
tors. In the original case, both computations would be speculatively performed 
in parallel. The delay of the entire structure is then max(ts , t 1 ) if the result of 
the first operator is selected, and max(ts , t2) otherwise. In effect, the delay of the 
select input hides part of the operator delay. In the reordered form, the operator 
can begin computation only after the select input has become valid, leading to 
total delays of ts +t 1 and ts +t2 , respectively. 

The ramifications of such a transformation can be appraised to their full 
extent only when building the CDFG in the first place-for example, when 
considering instruction-level parallelism in a hardware compiler. At the same 
time, the multiplexer tree collapsing could also be performed, dispensing with 
a special optimization pass later in the design flow. Instead, the CDFG would 
contain generic multiplexer operator nodes with a varying number of inputs. Dur
ing the mapping step, the module library would determine the best realization 
for each operator, also considering global issues such as the criticality of their 
signal paths. 

Context-sensitive optimization 
The tool flow designed by Ye and colleagues [23] then performs an additional 
suite of optimizations that also considers the super-HWOP in the context of the 
surrounding datapath (Figure 15.21). To this end, it partitions the super-HWOP 
into ,n-bit-wide superslices, each of which may thus consist of multiple bit slices. 
Next, the external ports of each superslice are examined for certain connectivity 
patterns and the presence of constant values. The actual optimizations are then 
performed in this superslice-specifi.c context. 

Constant inputs are absorbed for each of the superslices (Figure 15.21(a)). 
Similarly, nets that connect slice inputs directly to outputs are also pulled into 
the slice (Figure 15.21(b)). Multiple slice inputs all sourced by the same external 

· signal are replaced by a single input that fans out to the original internal sinks
(Figure 15.21(c)).
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FIGURE 15.21 ■ Context-sensitive optimizations performed by Ye et al. [23]. 

These transformations occur only if all bit slices within a superslice have 
identical context (e.g., all bit slice input ports a within a superslice have the 
constant value O applied from the outside). Otherwise, the superslice is left 
unchanged; 

The quantity m is thus a control for the internal regularity of the super
HWOP. With m = 1, the super-HWOP is partitioned into width superslices, each 
consisting only of a single 1,-bit-wide bit slice. Each of these narrow super
slices is thus affected by only very limited context:. A sµperslice's single bit slice 
can be perfectly matched .to its context (e.g .• allowing the absorption of even 
irregular constant input patterns into each slice) in the super-HWOP. However, 
while allowing a large degree of optimization, this setting of m = 1 potentially 
introduces significant irregularity into the optimized super-HWOP (it may end 
up consisting of completely different bit slices). At the other extreme, with m = 

width, the super-HWOP is covered by a single superslice containing m 1-bit-wide 
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bit slices. Here optimization will occur only if the context affects all bit slices 
within the single superslice identically. Thus, even the optimized super-HWOP 
will be completely regular (composed only of identical bit slices). With the context 
required to be identical for more bit slices, however, fewer optimization opportu
nities arise. In Ye and colleagues' approach [23], a value of m = 4 is suggested as a 
good trade-off between widespread optimization and the preservation of a regular 
structure. 

In effect, the idea of superslices is similar to the zone concept introduced 
in Section 15.5.1, although zones, with their variable granularity, remain more 
flexible than superslices, with their fixed granularity. 

Logic optimization 
In logic optimization, the netlists of the HWOPs under compaction are merged 
into HWOP-spanning bit slices (possibly newly discovered, as discussed in 
Section 15.7.2). The resulting larger merged netlists are then passed to conven
tional logic synthesis tools that can exploit the additional optimization oppor
tunities resulting from them. 

In addition to this slice-internal optimization, the system of Ye and colleagues 
[23] can specialize the bit slices by considering the constant external inputs and
connections that were discovered in the context-sensitive analysis pass.

15. 7 .4 Building the Super-HWOP

The optimization phase of compaction changes the circuit structure. Thus, any 
regular placement created by a generator is invalidated. Ye and colleagues' tool 
flow [23], which concentrates on measuring regularity and area overheads, does 
not perform the further processing steps itself. Instead, the resulting optimized 
bit-slice netlists are passed to standard place-and-route tools for further han
dling. In contrast, Structured Design Implementation (SDI), additionally aiming 
at delay minimization, attempts to restore a regular placement for the optimized 
super-HWOP. This micro-placement step, shown in Figure 15.22, exploits regu
larity by operating at the master slice level. The results are then automatically 
replicated across the entire super-HWOP according to its zone structure. 

Microplacement operates on cells (LUT and FF blocks), and proceeds in two 
phases: 

1. The placement of cells horizontally, grouped into columns (Figure 15.22(a) ).
This is performed across all master slices, ensuring that cells sharing a control 
net are located adjacently to a vertical routing channel. Such an arrange
ment allows the efficient routing of high-fanout control nets on vertical long 
lines. Analogously, cells on interslice nets are horizontally aligned to allow 
short-distance routing. The remaining cells are placed in a timing-driven fash
ion, using estimates for the as yet unknown vertical position. This placement 
phase optimizes the super-HWOP in the geometric context of the datapath 
by constraining the master slice 1/0 ports to the appropriate sides of the 
layout. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 368



ctl 

(a) 

15.7 Compaction 343 

For each master slice 

I• 
I• 

Vertical timing-driven 
placement 

(b) 

FIGURE 15.22 ■ Horizontal and vertical microplacement to restore regularity to compacted 
super-HWOP. 

2. The placement of cells within the columns vertically (Figure 15.22(b)). This
step looks across master slice boundaries only initially when performing a tim
ing analysis on the entire super-HWOP. After annotating the timing criticalities 
calculated in this manner on the master slice ports, each master slice is placed 
independently in a purely timing-driven fashion. The timing model used here 
models the intricacies of the target device routing network and leads to measur
ably better results than simple Manhattan distances. 

Since the microplacement results are replicated according to the regular struc
ture previously determined for the super-HWOP, it is advantageous to employ 
high-quality algorithms. To this end, SDI uses a combination of well-converging 
heuristics and exact integer linear programming (ILP)-based methods. The latter 
are feasible because of the separation of the placement problem into horizon
tal and vertical phases, and the relatively small circuit size of the master slices 
(compared to the entire super-HWOP). 

15. 7 .5 Discussion

Implementing a circuit in a regular bit-sliced fashion is generally associated 
with some area overhead compared to synthesizing/optimizing the circuit in 
an irregular flat manner. The reason is that the bit-slice boundaries prevent 
the exploitation of cross-slice optimization opportunities. The system devised 
by Ye and colleagues [23], with its additional interslice optimizations, observed 
area overheads of between O percent and 7.4 percent for superslice granularity 

Align all interslice 
nets horizontally 
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values of m = 1 (fully irregular) and m = 32 (fully regular with a width of 32 bits), 
-respectively. For SDI, which lacks these optimizations, area increases of up to
17 percent were observed over the flat solution. However, by scrupulously main
taining a regular structure, SDI was able to reduce the total delay in the circuit
by up to 33 percent over the flat implementation. A combination of the inter
slice optimizations of Ye and colleagues [23] with the microplacement of SDI
appears to be promising to achieve further gains.

15.8 SUMMARY AND FUTURE WORK 

This chapter presented an overview of some of the many issues to consider when 
realizing datapaths on reconfigurable logic devices. The aspect of regularity is a 
crucial one and must be considered both at the level of the target device archi
tecture and during the operation of the EDA tools. Module generators are an 
efficient means to actually create the circuits making up the datapath. However, 
in addition they must offer sufficient metadata to the rest of the tool flow as a 
base for effective transformation and optimization steps. 

With increasing requirements on datapath performance, tool flows and 
algorithms must keep up with improvements in device architectures. All of the 
techniques described here have the potential for further refinement. Refinement 
opportunities include module generators that better support specialization, 
floorplanning with constrained two-dimensional placement, and a compaction 
technique in which the best of these refinements is combined. 
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CHAPTER 16 

Typically, the layout of a circuit implemented on a field-programmable gate array 
(FPGA) is computed automatically by vendor design tools. This computation 
often results in an acceptable mapping of logical wires in the design onto actual 
physical routing resources on the FPGA that meets the designer's performance 
requirements. Instead of relying on automated tools, however, a designer could 
try to use an FPGA by explicitly stating the configuration of individual logic 
blocks and explicitly specifying the routing between them. One almost never 
needs to program an FPGA at this basic and raw level, and often the proprietary 
nature of programming information makes it difficult or impossible to take this 
approach. Still, the FPGA design flow provides a powerful set of abstractions 
that allow a designer to think in terms of structural circuit netlists, which can be 
automatically converted into programming information for FPGAs. Structural 
netlists are abstracted further by the synthesis flow, which allows designers to 
think of circuit functions in an algorithmic or sequential manner. 

16.1 THE PROBLEM 

Although it is just about tractable for humans to explicitly specify the layout of 
some mapped circuits on an FPGA, explicitly specifying the routing is extremely 
difficult because of the complex nature of the wiring resources. A screen snap
shot of some of these resources on a Xilinx FPGA is shown in Figure 16.1. As 
one can see there are simply too many wires and interconnection options for 
a human to economically make routing decisions. However, providing layout 
hints or even explicit layout for only the logic blocks is a reasonable approach, 
because designers often have good intuition about a desirable layout but little 
intuition about how to use the underlying routing resources. By specifying some 
aspects of the layout, the tools can produce a faster circuit than is possible with 
purely automatic approaches [ 4]. The ability to specify layout helps with other 
operations like dynamic reconfiguration [3]. 

A design that contains a mixture of manually and automatically placed blocks 
is shown in Figure 16.2. The rectangular block is the core of the Xilinx Micro
Blaze soft processor, which is designed with explicit layout specification for each 
gate. The other blocks are components, such as the system bus and peripherals, 
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FIGURE 16.1 ■ FPGA routing resources. 

that are designed without explicit layout specification-the placer automatically 
decides where to put these gates. Many of Xilinx' s Core Generator IP core blocks 
are designed with explicit layout information. By giving a good layout for a 
circuit, one can indirectly control performance by influencing wiring that con
tributes to the critical path. Also, by providing user-specified placement infor
mation for small blocks that will be reused for many designs, the upfront design 
effort can be worthwhile. 

An automatic placement algorithm can often find an acceptable placement 
that meets the design requirements for speed, area, power, and so forth. How
ever, when such an algorithm cannot find a good placement-or any placement 
at all-there is often little the designer can do. In these situations it would be 
de!';irable either to allow the designer to influence the placement by adding extra 
information or to allow her to partly or completely specify the layout of her 
circuit. For circuits that need very high performance or that need to be very 
compact, often only a user-specified layout can achieve the required results. For 
example, the design shown in Figure 16.3 has been automatically placed and 
routed without any user-specified layout information. The same design can be 
augmented with user-specified layout information to produce the layout shown 
in Figure 16.4, which performs approximately 30 percent faster. 

t •., I l"I· ~I ', !'I I ,, hi' 1• -• f 1•,· _.,, ,, . ,._. 11,p I 1• h,111P h,1-l :.· t.l ,•-:1, •~:, I '"'I'' I llr'l·l•· 
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FIGURE 16.2 ■ An example of manually and automatically placed blocks. 

Providing explicit layout information can also reduce the runtime of FPGA 
implementation tools, mainly because of the reduction in work for the automatic 
router. This is particularly important for uses of reconfigurable computing that 
create custom circuit designs for each problem instance, when placement and 
routing tool runtimes are part of the system's execution time (see Chapter 5). 
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FIGURE 16.3 ■ A design with no explicit layout (automatic place and route). 

FIGURE 16.4 ■ A design with totally exp I icit layout. 
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An important reason for explicitly specifying absolute or relative layout is to 
support runtime reconfiguration, which is much easier to perform if the system 
knows the shape and location of circuits to be swapped in and out or updated 
in place. 

This chapter reviews various techniques for specifying the layout of circuits 
for FPGAs. We illustrate our examples using Xilinx's FPGA technology, which 
provides an accessible mechanism for specifying circuit layout. 

16.2 EXPLICIT CARTESIAN LAYOUT SPECIFICATION 

Explicit Cartesian layout specification involves specifying the location of some 
or all logic elements using a two-dimensional coordinate system. One form of 
explicit layout involves giving an absolute location for each gate in the mapped 
netlist. This approach is not common because it does not permit the specifi
cation of reusable layouts, which can be replicated throughout the FPGA, and 
such descriptions may be unnecessarily specific to a particular FPGA chip or 
family. A more common approach is the relative layout specification. 

Xilinx's placement tools can take user-specified layout information either as 
absolute or as relative locations. Relative locations identify the bottom left cor
ner of a block of logic. Blocks may be placed relative to each other in a hierar
chical fashion. 

The layout of a gate or block is achieved by attaching a special attribute 
called LOC for absolute layouts and RLOC for relative layouts. The VHDL code 
in Figure 16.5 illustrates the design of a 1-bit adder in which two of the gates 
have their relative layout explicitly specified. 

In the figure, the attribute mechanism of VHDL is used to attach a relative 
layout attribute to two instances: one for an xor gate and the other for an or 
gate. The RLOC attribute specifies the relative location of the CLB that will be 
used to realize a given gate. One may further specify the specific lookup table 
(LUT) within the CLB or omit this specification to allow the placer to make 
the choice. 

architecture structural of adder is 

signal xorl_out, andl_out, and2_out, orl_out std_logic; 

attribute RLOC of xorl is "X2Y5" ; 

attribute RLOC of orl is "X3Y4" ; 

begin 

xorl: xorg port map ( inl =>a, in2 => b, outl => xorl_out) ; 

xor2: xorg port map (inl => xorl_out, in2 => cin, outl => sum); 

andl: andg port map (inl => a, in2 => b, outl => andl_out); 

orl: org port map (inl => a, in2 => b, outl => orl_out); 

and2: andg port map (inl => cin, in2 => orl_out, outl => and2_out); 

or2: org port map (inl => andl_out, in2 => and2_out, outl => cout); 

end structural; 

FIGURE 16.5 ■ An example of explicit layout in VHDL. 
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Explicit layout works well for small circuits that are not parameterized and 
for VHDL and Verilog descriptions that do not make use of statements like 
for . . . generate. In parameterized circuits, layout specifications become 
quite complex, with location specifications becoming difficult to comprehend 
layout calculation expressions. Because layout specifications are string attributes, 
one has the extra complexity of performing integer index calculations and then 
converting them into their string representation. This is often too tedious to be 
practical. The difficulty of working with explicit Cartesian layout specifications 
has led to the development of various systems to specify layout at a higher level 
of abstraction. 

16.3 ALGEBRAIC LAYOUT SPECIFICATION 

Algebraic layout specification typically does not involve Cartesian coordinates. 
Instead, one specifies the geometric relationship between one circuit and ano
ther. These specifications (or constraints) are gathered together, and a determin
istic layout can then be calculated. Techniques such as this have been shown to 
work for parameterized circuits, circuits with irregular layouts, and recursively 
defined circuit layouts. Such descriptions are also slightly less tightly coupled 
to a specific FPGA architecture or family. In this section we describe how alge
braic layout specifications work in the Lava system [1]. Several other systems 
are based on similar principles. 

Lava is based on the concept of circuit combinators, which are calculations 
that take circuits as inputs and deliver a circuit as a result; essentially, they are 
procedures that compute on circuit descriptions. One important design decision 
in Lava is the coupling of the description of circuit behavior and that of circuit 
layout by using circuit combinators that compose both behavior and layout. 
This works well when the circuit layout description can use the same patterns 
as those of the circuit behavior. When this is not the case, one can directly use 
Cartesian coordinates. 

One important combinator is the serial composition combinator. This combi
nator, written as an infix operator >->, takes two circuits Rand s as arguments 
and delivers a circuit comprising R with its output connected to the input of s. 
Furthermore, R is laid out to the left of S, which matches a left-to-right dataflow. 

Figure 16.6 shows the composition of an AND2 and an INV gate. Each gate 
or circuit starts life in its own coordinate system. The basic gates each have a 
height and width of one unit. The serial composition combinator sees that the 
circuit on the left has a width of one and then translates the circuit on the right 
by one unit. These algebraic descriptions can be arbitrarily nested. When the 
system needs to produce a VHDL or EDIF netlist, the algebraic specifications 
are computed and a netlist that contains RLOCs is automatically generated. 

Notice, now that layout has been combined with behavior, that there is a 
need for several kinds of serial composition combinators. Those for right-to-left 
( <-<), bottom-to-top C), and top-to-bottom (V) layout are all supported by Lava. 
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FIGURE 16.6 ■ Layout calculation. 
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Figure 16.7 shows the layout produced by the Lava circuit expression AND2 >-> 
FD elk, which serially composes an AND2 gate with an FD component (a flip-flop). 

In the Xilinx device, a LUT-flip-flop pair is called a slice. AND2 and a flip-flop 
(FD) each have a width and height of one unit, or slice, causing the FD flip
flop to be mapped to a slice to the right of the slice containing the function gen
erator for the AND2 gate. Such a process is very inefficient. To allow circuits 
to be composed but mapped to the same location we can use the serial overlay 
operator, written as >I>, This is illustrated on the right side of Figure 16.7 and 
shows both the AND2 gate and the FD flip-flop mapped to the same location. 

The circuit tiles presented so far have only one-dimensional dataflow. Four
sided tiles allow us to specify dataflow horizontally and vertically. Rather than 
introduce a new basic tile, a 4-sided tile can be represented in terms of a 2-sided 
tile. This is done by considering the 4-sided tile as a function that maps a pair of 
input values to a pair of output values. Each element of each pair corresponds to 
a face of the tile, as shown in Figure 16.8. We can now define a below combinator, 
which places one tile below another ( r below s is shown in the middle of the 
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(a) (b) 

FIGURE 16.7 ■ The overlay combinator: (a) AND2 >-> FD elk; (b) AND2 >I> FD elk. 
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FIGURE 16.8 ■ Four-sided tiles. 

figure). The col combinator replicates a tile vertically (col 4 r is shown on the 
right of the figure). 

A concrete example of the col combinator is shown in Figure 16.9. The col 
combinator acts on a 1-bit adder circuit that takes a pair as input (the carry-in 
[cin] and another pair of values to be added) and delivers a pair as its output 

b 

a 
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FIGURE 16.9 ■ A col 4 1-bit adder. 
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(the sum and the carry-out [cout]). It will connect the carry-out of each stage to 
the carry-in of the next stage. Furthermore, it will vertically stack the 1-bit adders. 

The actual FPGA layout produced for col 8 oneBitAdder is shown in 
Figure 16.10. In this case the automatic placement tools would have produced 
the same layout because the carry chain would have constrained a vertical align
ment for the circuit. Through combinations of these regular abutment tech
niques, very complex but regular circuits can be efficiently created. 

FIGURE 16.10 ■ FPGA layout of col 8 oneBi tAdder. 
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FIGURE 16.15 ■ A bitonic merger. 
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specifies the layout of the merger circuit using algebraic layout specifications. 
This circuit is a bitonic merger that can merge its inputs as long as one half 
of the input is increasing in the opposite order from the other half, as shown 
in the figure. 

4 
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FIGURE 16.16 ■ Sorter recursion and layout for 8 inputs. 

Now that we have our merger, we can recursively unfold the pictorial 
specification in of the sorter layout to produce the design and layout in 
Figure 16.16 (for 8 inputs). This layout can be specified using the following 
combinators: 

sortB cmp 1 = cmp 

sorB cmp n 

= two (sortB cmp (n-1)) >-> 

pair >-> snD reverse >-> unpair >-> 

butterfly cmp n 

In the figure the description uses two subsorters to produce a bitonic input for 
a merger (shown on the right). 

The 8-input description can be evaluated to produce an EDIF or VHDL netlist 
containing RLOC specifications for every gate. The FPGA layout of a degree-5 
sorter (32 inputs) with 16-bit numbers is shown in Figure 16.17 on a Xilinx 
Virtex-11 device. The resulting netlist is the same but with the layout informa
tion removed. It is shown in Figure 16.18. The netlist with the layout informa
tion leads to an implementation that is approximately 50 percent faster, and a 
64-input sorter leads to a 75 percent speed improvement.

The case study just outlined shows how a complicated and recursive layout
can be described in a feasible manner using algebraic layout combinators rather 
than explicit Cartesian coordinates. 

16.4 LAYOUT VERIFICATION FOR PARAMETERIZED DESIGNS 

A common problem with parameterized layout descriptions (especially those 
based on Cartesian coordinates) is that designer errors can produce bad layouts 
that cannot be realized on the target FPGAs-for example, the layout specifica
tion may try to map too many logic gates into the same location. Such errors 
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16.3.1 Case Study: Batcher's Bitonic Sorter 

This section presents the layout specification of a high-speed parallel sorter that 
would have been difficult to lay out using explicit Cartesian coordinates. We 
show how to build complex structures incrementally by composing the layout of 
subcomponents using simple operators. The use of hierarchy achieves complex 
layout structures that would have been difficult or tedious to produce otherwise 
and impossible to produce in a compositional manner. 

The objective is to build a parallel sorter from a parallel merger, as shown in 
Figure 16.11. A parallel merger takes two sublists of numbers where each sublist 
is sorted and produces a completely sorted list of numbers as its output. All 
inputs and outputs are shifted in, in parallel rather than serially. Furthermore, 
for performance reasons the sorter should have the same floorplan as shown in 
the figure. 

This parallel sorter uses a two-sorter as its building block, which is shown 
fully placed in Figure 16.12. This circuit has left-to-right dataflow. Although the 
>=> combinator is also a serial composition combinator, it does not have any 
layout semantics because it is used to compose wiring circuits (which are not 
subject to layout directives). 

The two-sorter in Figure 16.12 has been carefully designed to have a rectangu
lar footprint because we will want to tile many of these circuits together vertically 
and horizontally to produce a compact and high-performance sorter network. 

Another important combinator we will use in our sorter design is the two
combinator, which makes two copies of a circuit r, one of which works on the 
bottom half of the input and the other on the top half of the input, as illustrated 
in Figure 16.13. Furthermore, the second copy of r should be placed vertically 
on top of the first copy. The two combinator can be defined as 

two r = halve >-> par [r, r] >-> unhalve 

which says halve the input, use two copies of r in parallel (stacked vertically) 
on the halved input, and then take the result and unhalve it. 

Sorter 

Merger 

Sorter 

FIGURE 16.11 ■ The recursive structure of a sorter. 
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FIGURE 16.12 ■ Two-sorter layout and behavior specification. 

FIGURE 16.13 ■ The two-combinator. 
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Interleave ( i l v) is another combining form that uses two copies of the same 
circuit. This combinator has the property that the bottom circuit processes the 
inputs at even positions and the top circuit processes the inputs at odd po�itions. 
It can be defined as 

ilv r = unriffle >-> two r >-> riffle 

An instance of ilv r for an 8-input bus is shown in Figure 16.14. The related 
evens combinator chops the input list into pairs and then applies copies of the 
same circuit to each input. 

Given these ingredients, we can give a recursive description of a parallel 
merger butterfly circuit: 

bfly r 1 = r 

bfly r n = ilv (bfly r (n-1)) >-> evens r 

A bitonic merger of degree 3 is shown in Figure 16.15, which not only describes 
how to compose the behavior of elements to form a merger circuit, but also 
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FIGURE 16.17 ■ The sorter FPGA layout (32 16-bit inputs). 

make the production of IP cores that rely on layout very difficult and time 
consuming. 

For a nonparameterized design, this is not much of an issue: The developer 
can check if the design maps, places, and routes. However, for a parameter
ized design it is usually impractical to check every possible combination of 
parameters to ensure that each one leads to a valid layout. A recent, interesting 
approach for layout verification involves theorem provers to statically analyze 
and formally verify that a design is free of layout errors. This is the approach 
taken by Pell [2] in his Quartz declarative block composition system, which 
uses a special hardware description notation that can be formally analyzed 
with the Isabelle theorem prover. The Quartz system works on algebraic layout 
combinators similar to those presented in the previous section. 

The Quartz system verifies layout correctness by checking for validity, con
tainment, and intersection. Validity ensures that the size function of a block 
always evaluates to a positive result. Containment ensures that for all parameter 
values all subblocks stay within the bounding box of the overall circuit. The 
intersection property checks for badly overlapping blocks. 
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FIGURE 16.18 ■ The sorter with layout information removed. 

16.5 SUMMARY 

User specification of the layout of circuits for FPGAs is sometimes necessary to 
meet performance requirements, to reduce area, or to facilitate dynamic recon
figuration. While a user-defined layout is impractical for many complete designs 
because of complexity or time-to-market constraints, optimizing the most crit
ical blocks of a circuit can have significant benefits, especially for reusable IP 
blocks and vendor libraries. 

Some vendor tools provide the ability to specify the layout of gates or 
composite blocks through either absolute or relative Cartesian coordinates. 
However, these tools are tedious to use and enor prone, particularly for param
eterized circuits. Various systems have adopted algebraic layout specifications 
that use geometric relationships between blocks instead of coordinate values. 
Such descriptions work well for irregular and recursive layouts, as demonstrated 
by the recursive parallel sorter in this chapter. However, one may still specify 
illegal layouts for parameterized circuits, and no satisfactory technique exists for 
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finding them. A promising approach is the use of theorem provers to statically 
analyze algebraic layout descriptions to ensure that they have no layout errors 
for any given permutation of parameters. 
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Routing is a crucial step in the mapping of circuits to field-programmable gate 
arrays (FPGAs). For large circuits that utilize many FPGA resources, it can 
be very difficult and time consuming to successfully route all of the signals. 
Additionally, the performance of the mapped circuit depends on routing critical 
and near-critical paths with minimum interconnect delays. One disadvantage of 
FPGAs is that they are slower than their ASIC counterparts, so it is important 
to squeeze out every possible nanosecond of delay in the routing. 

The first goal, a complete routing of all signals, is difficult to achieve in FPGAs 
because of the hard constraints on routing resources. Unlike ASICs and printed 
circuit boards (PCBs), FPGAs have a fixed amount of interconnect. The usual 
approach in placement is to minimize the wiring resources anticipated for rout
ing signals. Although this reduces the overall demand for resources, signals 
inevitably compete for the same resources during routing. The challenge is to 
find a way to allocate resources so that all signals can be routed. The second 
goal, minimizing delay, requires the use of minimum-delay routes for signals, 
which can be expensive in terms of routing resources, especially for high-fanout 
signals. Thus, the solution to the entire routing problem requires the simulta
neous solution of two interacting and often competing subproblems. 

Early solutions to the FPGA routing problem were based on the considerable 
literature on routing in the context of ASICs and gate arrays. The problem of 
routing FPGAs bears a considerable resemblance to the problem of global rout
ing for custom integrated circuit design, where signals are assigned to channels. 
However, the two problems differ in several fundamental respects. First, routing 
resources in FPGAs are discrete and scarce while they are relatively continuous 
in custom integrated circuits (ICs). For this reason FPGAs require an integrated 
approach using both global and detailed routing. A second difference is that 
global routing for custom ICs is based on an undirected graph embedded in 
Cartesian space (i.e., a two-dimensional grid). In FPGAs the switches are often 
directional, and the routing resources connect arbitrary (but fixed) locations, 
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requiring a directed graph that may not be embedded in Cartesian space. Both 
of these distinctions are important, as they prevent direct application of much 
of the previous work in routing. 

By far, the most common approach to global routing of custom ICs is a shortest
path algorithm with obstacle avoidance. By itself, this technique usually yields 
many unroutable nets that must be rerouted by hand. A plethora of rip-up and 
retry approaches have been proposed to remedy this deficiency [1-3]. The basic 
problem with rip-up and retry is that the success of a route is dependent not just 
on the choice of nets to reroute but also on the order in which rerouting is done. 
Delay is usually factored into the standard rip-up and retry approach by ordering 
the nets to be routed such that critical nets are routed most directly [ 4-6]. 

To make the FPGA routing problem tractable, nearly all of the routing 
schemes in the literature incorporate features of the underlying architecture. 
Palczewski [7] describes a maze router with rip-up and reroute targeting the 
Xilinx 4000 series. In this work the structure of the plane-parallel switchbox 
in the 4000 series is exploited in conjunction with an A* search. Brown et al. 
[ 4] employ an architecture model consisting of channels, switchboxes, connec
tion matrices, and logic blocks. A global router balances channel densities and
a detailed router generates families of explicit paths within channels to resolve
congestion. These approaches, as well as others, obtain some of their success
by exploiting the features of a particular architecture model. The problem is
that new architectures become constrained by the restrictions of such existing
routing algorithms.

17 .1 THE HISTORY OF PATHFINDER 

PathFinder was used initially in the development of the Triptych FPGA architec
ture [8-10]. In fact, Triptych, with its heavy reliance on effective placement and 
routing tools, was a catalyst for the development of the PathFinder algorithm
a perfect example of "necessity being the mother of invention." As part of an 
FPGA architecture exploration tool called Emerald [11], PathFinder w�s alsu 
employed in the development of an FPGA under development by IBM in the 
mid-1990s. This was particularly appropriate because PathFinder is inherently 
architecture independent. That experience showed that PathFinder was indeed 
an improvement over other FPGA routers available at the time. 

The PathFinder algorithm was adopted and carefully implemented by Betz and 
Rose in the very popular versatile place and route (VPR) FPGA tool suite [12, 13], 
which has been widely used for academic and industry research. The Toronto 
place-and-route challenge [14] was established as a way to compare different 
FPGA placement and routing algorithms. Since the contest was established in 
1997, the champion has been either VPR's implementation of PathFinder or SC
PathFinder, implemented at the University of California-Santa Cruz. Although 
companies are reluctant to divulge the details of their design tools, it is clear 
that some version of the PathFinder algorithm is currently used by virtually all 
commercial FPGA routers. 
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17 .2.1 The Circuit Graph Model 

17 .2 The. Pathfinder Algorithm 367 

One of the key features of PathFinder is its architecture independence, which 
derives from the use of a simple underlying graph representation of FPGA archi
tectures. This model allows Pathfinder to be adapted to virtually any architec
ture and thus used to explore new architectures with very little startup cost. 
Once an architecture has been decided on, Pathfinder can be specialized to it 
for improved results and performance. 

The routing resources in an FPGA and their connections are represented by 
the directed graph G = (V, E). The set of vertices V corresponds to the electrical 
nodes or wires in the FPGA architecture, and the edges E correspond to the 
switches that connect these nodes. An example of this graph model is shown in 
Figure 17 .1 for a version of the Triptych FPGA cell. Note that devices are repre
sented only implicitly by the wires connected to their terminals. That is, routing 
from one device terminal to another is routing between the wires connected to 
those terminals. 

Associated with each node n in the architecture is a base cost bn that repre
sents the relative cost of using that node. This cost is typically proportional to 
the length of the wire, although other measures like capacitance or number of 
fanins and fanouts are also possible. Each node also has a delay dn , which may 
or may not be the same as bn. 

Given a signal i in a circuit mapped onto the FPGA, the signal net Ni is the 
set of terminals, including the source terminal Si and sinks tii. Ni forms a subset 
of V. A solution to the routing problem for signal i is the directed routing tree 
RTi embedded in G and connecting the source Si to all of its sinks tii · 

17 .2.2 A Negotiated Congestion Router 
We assume that the reader is familiar with Djikstra's shortest-path graph algo
rithm [15-17], which is at the core of many routing algorithms. Note that in our 
formulation costs are associated with nodes, not edges. This changes the basic 

FIGURE 17.1 ■ The circuit for a Triptych FPGA cell is represented in Pathfinder by the graph 

at the right. 
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shortest-path algorithm only slightly by redefining the cost of a path from node 
ni to node ni as the sum of the node costs along the path, including the starting 
and ending nodes. 

Routing algorithms differ primarily in the cost function applied to the routing 
resources and in how individual applications of the shortest-path algorithm are 
used to successfully route all the signals of a netlist onto the graph representing 
the architecture. We ignore the issue of fanout in our initial presentation and 
assume that each signal is a simple route from source to a single sink. 

A naive routing algorithm proceeds by applying the shortest-path algorithm 
to each signal in order, with the cost of a node defined as 

(17.1) 

Resources already used by previous routes are not available to later routes. It 
is clear that the order in which signals are routed is crucial, as later routes 
have many fewer available routing resources. Some algorithms perform rip-up 
and retry when later routes cannot find a path. Selected early routes that are 
blocking are ripped up and rerouted later-in essence, adaptively changing the 
order in which signals are routed. 

The very simple example in Figure 17.2 shows how this naive algorithm can 
fail. There are three signals, 1, 2, and 3, to be routed from the sources S1, S2, 
and S3 to their respective sinks D1, D2, and D3 . The ovals represent partial paths 
through one or more nodes, annotated with the associated costs. Ignoring con
gestion, the minimum-cost path for each signal would use node B. If the naive 
obstacle avoidance routing scheme is used, the order in which the signals are 
routed becomes crucial: Routing in the order 1, 2, 3 fails, and the minimum-cost 
routing solution will be found only when starting with signal 2. 

FIGURE 17.2 ■ First-order congestion. 
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This problem can be solved by introducing negotiated congestion avoidance, 
first suggested by Nair [18] by extending the cost of using a given node n in a 
route to 

Cn =bn ·Pn (17.2) 

where bn is the base cost of using n, and Pn is a function of the number of 
other signals presently using n (pn is often called the "present-sharing" term). 
Note that in the naive router, Pn = 1 if no other signals are using n, and infinity 
otherwise. In the negotiated congestion algorithm, Pn is set initially to 1 and all 
signals are routed. This allows each signal to be routed as if no other signals 
were present. The cost of sharing is then increased, and all nets are ripped up 
and rerouted in tum. This iterative process continues, with the cost of sharing 
increasing at each iteration until all signals have been successfully routed. The 
idea is that the cost of a congested node will increase and that signals that have 
other alternatives will eventually find other paths, leaving the node to the signal 
that needs it most. Pn is a function of the iteration i and the number of signals 
sharing a node k. The definition of Pn is a key tuning parameter of PathFinder. 

The negotiated congestion avoidance algorithm solves the problem of 
Figure 17.2. During the first iteration, Pn is initialized to 1, and consequently 
no penalty is imposed for the use of n regardless of how many signals occupy 
it. Thus, in the first iteration all three signals share B. When the sharing func
tion Pn increases sufficiently, signal 1 will find that a route through node A gives 
a lower cost than a route through the congested node B. During an even later 
iteration signal 3 will find that a route through node C gives a lower cost than 
that through B. This scheme of negotiation for routing resources depends on 
a relatively gradual increase in the cost of sharing nodes. If the increase is too 
abrupt, signals may be forced to take high-cost routes that lead to other con
gestion. Just as in the standard rip-up and retry scheme, the ordering becomes 
important. 

While iterative negotiated congestion routing with the cost function of 
equation 17.2 can optimally route simple "first-order" routing problems like that 
in Figure 17.2, it fails on more complex "second-order" routing problems like 
that shown in Figure 17.3. Again we need to route three signals, one from each 
source to the corresponding sink. Let us first consider this example from the 
standpoint of obstacle avoidance with rip-up and retry. Assume that we start 
with the routing order (1, 2, 3). Signal 1 routes through node B, and signals 2 
and 3 share node C. For rip-up and retry to succeed, both signals 1 and 2 would 
have to be rerouted, with signal 2 rerouted first. Because signal 1 does not use a 
congested node, determining that it needs to be rerouted is in general difficult. 

This second-order congestion problem cannot be solved usingpn alone. Signal 
2 will never choose node B because the present sharing costs for nodes B and 
C are the same, with B used by signal 1 and C used by signal 3. Since the path 
through C is cheaper, it is always chosen. PathFinder solves this by extending 
the cost function with a "history" term, hn : 

(17.3) 
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FIGURE 17.3 ■ Second-order congestion. 

Unlike Pn , hn "remembers" the congestion that has occurred on node n during 
previous routing iterations. That is, the history term is updated after each rout
ing iteration; any node shared by multiple signals has its history term increased 
by some amount. The effect of hn is to permanently increase the cost of using 
congested nodes so that routes through other nodes are attempted. Without this 
term, as soon as signals stop sharing a node, its cost drops to the base cost and 
it again becomes attractive. This leads to oscillations where signals switch back 
and forth between nodes but never resolve the congestion problem. The addition 
of the history term is a key difference between PathFinder and Nair's routing 
algorithm [18]. 

The term hn allows the problem in Figure 17 .3 to be routed successfully. On 
each iteration that node C is shared, hn is increased slightly. When signal 2 
switches to using node B, the cost of node C remains elevated. Now the history 
cost of node B rises because it is shared by signals 1 and 2. Eventually signal 1 
will route through node A. Note that, depending on the base costs and how Pn 

and hn are defined, signal 2 may switch back and forth between nodes B and C 
several times before the history costs of both are sufficiently high to force signal 
1 onto node A.

The history term hn is updated whenever a node n has shared signals. The 
size of &z, the amount by which hn is increased, and how this depends on k, 

the number of sharing signals, are tunable parameters. If 6h is too small, many 
iterations may be required to resolve the congestion; if it is too large, some 
solutions may not be found. Additionally, the relationship between Pn and hn 

is very important. For example, it can be important to give the history term a 
chance to solve congestion before forcing the issue with Pn . 

The details of the Negotiated Congestion algorithm are given in Figure 17.4. 
The while loop at line 2 executes the routing iterations until a solution has been 
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FIGURE 17.4 ■ Negotiated Congestion algorithm. 

found. The signal router loop at line 4 iterates over all signals in the netlist, 
ripping up and rerouting the nets one at a time. The routing tree RTi is the set 
of nodes used to route signal i. To reroute a signal, the routing tree is reset to 
be just the signal's source. 

The priority queue is used to implement the breadth-first search of Djikstra's 
algorithm. At each iteration of the loop of line 9, the lowest-cost node is taken 
from the priority queue. It is generally best to order the nodes with the same 
cost according to when they were inserted into the queue, with the newest nodes 
being extracted first. The cost used when inserting a new node in the priority 
queue at line 12 is 

(17.4) 

where Pim is the cost of the current partial path from the source, and Cn is the 
cost of using node n.

A signal is routed one sink at a time using Djikstra's breadth-first algorithm. 
When the search finds a sink, the nodes on the path from the source to it are 
added to RTi. This is done by back-tracing the search path to the source. The 
search is then restarted with the priority queue being initialized with all the 
nodes already in RTi. In this way, all the nodes on routes to previously found 
sinks are used as potential sources for routes to subsequent sinks. This algorithm 
for constructing the routing tree is similar to Prim's algorithm for determining 
a minimum spanning tree over an undirected graph, and it is identical to one 

I' 
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suggested by Takahashi and Matsuyama [19] for constructing a tree embedded 
in an undirected graph. The quality of the points chosen by the algorithm is 
an open question for directed graphs; however, finding optimum (or even near
optimum) points is not essential for the router to be successful in adjusting costs 
to eliminate congestion. 

The VPR router [12] reduces the cost of reinitializing the priority queue for 
each fanout by observing that for large-fanout nets, most of the paths found in 
searching for the previous fanout remain valid, especially if the segment added 
to the routing tree is relatively small. Thus, the search continues from the previ
ous state after the new segment has been added to the routing tree. Because of 
the way Djikstra's algorithm ignores nodes after they have been visited once, this 
optimization must be implemented carefully to avoid expensive routing trees for 
high-fanout nets. Other algorithms for forming the fanout tree are possible. For 
example, there are times when routing to the most distant sink first results in a 
better routing tree. 

At the end of each iteration, the history cost of each node shared by multiple 
signals is updated. The B added to the history cost is generally a function of k, 

the number of signals sharing the node. 

17 .2.3 The Negotiated Congestion/Delay Router 

To introduce delay into the Negotiated Congestion algorithm, we redefine the 
cost of using node n when routing a signal from Si to ti; as 

Cn = Ai;dn + (1-Ai;)cn (17.5) 

where Cn is defined in equation 17.3 and Ai; is the slack ratio: 

(17.6) 

where Di; is the delay of the longest delay (register-register) path containing the 
signal segment (si , ti;), and Dmax is the maximum delay over all paths (i.e., the 
critical-path delay). Thus, 0 <Ai;::; 1. (This standard definition of slack ratio is 
easily extended to include circuit inputs and outputs with timing constraints as 
well as circuits with multiple clocks.) 

Because path delay is made up of both device and wire delay, and the router 
can only control the wire delay, a more accurate formulation for Ai; is 

(17.7) 

where Ddevi; is the path delay from node i to node j attributable to devices, 
and Di;-Ddevi; is thus the wire delay on the path from node i to node j. With 
equation 17.7, paths with the same path delay but greater wire delay pay more 
attention to delay and less to congestion. 

The first term of equation 17.5 is the delay-sensitive term; the second term 
is congestion sensitive. Equations 17.5, 17.6, and 17.7 are the keys to providing 
the appropriate mix of minimum-cost and minimum-delay trees. If a particular 
source/sink pair lies on the critical-path, then Ai; = l and the cost of node n 
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is just the delay term; hence a minimum-delay route is used and congestion 
is ignored. In practice, Aij is limited to a maximum value such as 0.9 or 0.95 
so that congestion is not completely ignored. If a source/sink pair belongs to a 
path whose delay is much smaller than the critical-path, then Aii is small and 
the congestion term dominates, resulting in a route that avoids congestion at 
the expense of extra delay. 

To accommodate delay, the basic Negotiated Congestion algorithm of 
Figure 17.4 is changed as follows. For the first iteration, all Aii are initialized to 
1 and minimum-delay routes are found for every signal. This yields the smallest 
possible critical-path delay. All Aij are recomputed after every routing iteration 
using the critical-path delay and the delays incurred by signals on that iteration. 

The sinks of each signal are now routed in decreasing Aij order. This allows the 
most timing-constrained sinks to determine the coarse structure of the routing 
tree with no interference from less constrained paths. 

The priority queue (line 8 in Figure 1 7.4) is initialized by inserting each node 
of RTi with the cost Aii Ek dk , where the nk are nodes on the path from the source 
ni to node ni. This initializes the nodes already in the partial routing tree with 
the weighted path delay from the source. 

The router completes when no more shared resources exist. Note that by 
recalculating all Aij, we have kept a tight rein on the critical-path. Over the 
course of the routing iterations, the critical-path increases only to the extent 
required to resolve congestion. This approach is fundamentally different from 
other schemes [ 4, S] that attempt to resolve congestion first and then reduce 
delay by rerouting critical nets. 

The Pathfinder algorithm is particularly powerful for asymmetric architec
tures that have a range of slow and fast wires. By making the slower wires lower 
cost, the negotiation algorithm automatically assigns critical signals to the fast 
wires as needed and noncritical signals to the slow wires. 

17 .2.4 Applying A* to Pathfinder 

Djikstra's shortest-path algorithm performs an expensive breadth-first search of 
the graph. This search has an O(n2 ) running time for two-dimensional circuit 
structures, where n is the length of the path. The A* heuristic [20] is a technique 
that uses additional information about the cost of paths in the graph to bound 
the size of the search. The cost of a partial path becomes the cost of the partial 
path plus the estimated cost from the end of the partial path to the destination. 
If this estimated cost is a lower bound on the actual cost, then the search will 
provide an optimal solution. If the estimated cost is accurate, then the search 
becomes a depth-first search with O(n) running time. 

In applying A* to PathFinder, both the cost and the delay of paths in the graph 
must be estimated. We modify equation 17.4 as follows: 

Cn = Pim +Aij (dn +Destnj) + (1 -Aij)(cn + Cestnj) (17.8) 

where Destni and Cestni are the estimated delay and cost, respectively, of the 
minimum-delay route from n to sink j. 
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To use the A* heuristic, the router must know the destination in order to 
determine the estimated cost. Instead of letting the breadth-first router find the 
closest destination when there are multiple fanouts, the path length estimates 
are used to sort the fanouts from closest to furthest and the routing is performed 
in this order. 

In many FPGAs, such as those that are standard island style, the cost and 
delay of routes can be estimated based on the locations of the source and des
tination using the geometry of the layout. A more general and accurate method 
is to use the shortest-path algorithm to create a complete "distance table" that 
contains the cost estimate of the minimum-delay route from every node to all 
potential sinks. This is only feasible, however, for relatively small architectures 
or for coarse-grained architectures that have many fewer nodes than fine-grained 
FPGAs. To reduce the table size, clustering can be used and estimates stored for 
the cost/delay between clusters [21]. If the cost/delay between two clusters is taken 
as the minimum cost/delay between any two nodes in the two clusters, it repre
sents a true lower bound. Clustering has been reported to reduce the size of the 
distance table by a factor of 100 while slowing the search only by a factor of 2 [21 ]. 

In the early iterations of PathFinder, when sharing is ignored, the full advan
tage of A* is obtained. That is, if the cost/delay estimates are accurate, a depth
first search is achieved. As the cost of sharing rises, however, the cost estimates, 
which do not include the sharing costs, become less and less accurate and the 
search becomes less efficient. 

In experiments with PathFinder and A*, Swartz et al. [22] used a multiplica
tive direction factor a to inflate the path estimate. In effect, a determines how 
aggressively the router drives toward the target sink. An a of 1.0 corresponds 
to true A* and is guaranteed to find the shortest source/sink connection. Swartz 
et al. determined that an a of 1.5 gave the best results for large circuits, with no 
measurable degradation in the quality of the resulting routing. However, note 
that the cost function had only a congestion term and no delay term. Tessier 
also experimented with accelerating routing with even more aggressive use of 
the A* search [23, 24]. 

17 .3 ENHANCEMENTS AND EXTENSIONS TO PATHFINDER 

Many research papers have discussed extensions and optimizations of the 
PathFinder algorithm. First and foremost is the work by Betz and Rose on VPR 
[12], which for the past eight years has been a widely used vehicle for academic 
and industrial research into FPGA architectures and CAD. We discuss here some 
of the more salient ideas that have been applied to PathFinder. 

17 .3.1 Incremental Rerouting 

A common optimization suggested in the original PathFinder paper [8] is to 
limit the rip-up and rerouting of signals in an iteration only to those that use 
shared resources. Intuitively, this reduces the amount of "wasted" effort that 
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goes into rerouting signals that always take the same path. The argument is 
that if a signal does not use a shared resource, it will take the same path as 
it did before, because history costs can only rise and thus no other path can 
become cheaper. This argument fails where Pn becomes smaller as sharing sig
nals reroute around a congested node. Experience shows that this optimization 
increases the number of routing iterations, but reduces the total running time 
substantially, with negligible impact on the quality of the solution found. 

17 .3.2 The Cost Function 

There are many ways to tune PathFinder for specific architectures or to achieve 
specific goals. Many variations of the cost function have been described that 
change how the three cost terms bn ,Pn, and hn are computed and combined. 
The essential feature of the cost function is that hn is a function of the history 
of the congestion of the node and that Pn is a function of the current congestion. 
The rates at which hn and Pn increase can be tuned; increasing them quickly, 
for example, decreases the number of iterations required but also decreases the 
quality of the solution. The history term may include a decay function on the 
assumption that the more recent history is more valid than the distant past. This 
is particularly important when PathFinder is used in an integrated place-and
route tool [21, 25]. 

The PathFinder cost function can also be modified to include both short-path 
and long-path delay terms [26]. For long paths, delay is minimized by using the 
PathFinder cost function. For short paths, however, the cost function is changed 
to find a path with a target delay, not the minimum delay. This changes the 
underlying shortest-path problem considerably and requires an accurate "look
ahead" function that predicts the remaining delay to the destination so that the 
router can opportunistically add the appropriate extra delay. 

17 .3.3 Resource Cost 

Determining the base cost of routing resources is harder than it appears. The 
shortest-path algorithm attempts to minimize the total cost of a solution, so 
minimizing the cost should also minimize congestion. The typical cost function 
used by routers is the length of the wire, which is a good heuristic for typical 
architectures where the number of available wires is inversely proportional to 
their individual lengths. A better heuristic is to base the cost of a wire on the 
expected routing demand for it. This can be approximated by routing a set of 
placed benchmarks onto an architecture and measuring wire by wire the rout
ing demand. Another method is to perform a large number of random routes 
using a typical Rent's wirelength distribution through the architecture and again 
measuring the overall use of each wire. In this formulation, wire costs are ini
tialized to 1, raised a la PathFinder according to wire usage, and converge to 
some constant value. 

Delay is an approximation that is often used for cost as it is typically closely 
related to wirelength and relative demand. It also simplifies the cost function 
for the integrated congestion and delay router. 
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17 .3.4 The Relationship of Pathfinder to Lagrangian Relaxation 

The PathFinder algorithm is very similar to Lagrangian relaxation for find
ing an optimal routing subject to congestion and delay constraints [27-29]. 
In Lagrangian relaxation, the constraints are relaxed by multiplying them by 
a vector of Lagrangian multipliers and adding them to the objective function 
to be minimized. The solution to a Lagrangian formulation with a specific set 
of Lagrangian multipliers provides an approximate solution to the original 
minimization problem. An iterative procedure that modifies the Lagrangian 
multipliers is used to find increasingly better solutions. A subgradient method is 
used to update the multipliers. Intuitively, the multipliers are increased or decre
ased depending on the extent to which the corresponding constraint is satisfied. 

A Lagrangian relaxation method proceeds somewhat differently from the 
PathFinder algorithm. The multipliers operate much like PathFinder's history 
term, but there is no corresponding present-sharing term Pn • While the history 
term is monotonically nondecreasing, the Lagrangian multipliers can both 
increase and decrease depending on how well the corresponding constraint 
is satisfied. The amount by which the multipliers are adjusted in Lagrangian 
relaxation is also decreased with each iteration. 

17 .3.5 Circuit Graph Extensions 

The simple circuit graph model is very general, but there are some specific 
circuit structures that require extensions. This section describes some solutions 
for these. 

Symmetric device inputs 
Lookup tables (LUTs) are the prime example of FPGA devices whose pins are 
"permutable." That is, the inputs to a LUT can be swapped arbitrarily by permut
ing the table's contents. Other devices like adders also have symmetric inputs. 
In the simple graph model, a signal is routed to a specific input terminal and 
there is no way to specify a route to one of a set of terminals. 

Symmetric inputs are easily accommodated in the graph model by adding 
"pseudo-multiplexers" on the inputs of the LUT. These are shown as dashed 
nodes at the top of Figure 17.5. Signal sinks can be arbitrarily assigned to the 
LUT inputs and routed in the usual way. After the routing solution has been 
found, the pseudo-multiplexers are removed and implemented "virtually" by per
muting the LUT table contents appropriately. In the example of Figure 17.5, the 
signals a, b, and c are routed to the LUT inputs A, B, and C, respectively, using 
the pseudo-multiplexers as shown with bold lines. This routing is then used to 
permute the LUT inputs as shown on the right by modifying the LUT contents. 

De-multiplexers 
A de-multiplexer is a device that can connect its input to at most one of several 
outputs. Each output connection is represented as an edge in the circuit graph 
shown in Figure 17 .6. Wire fanout, of course, is not constrained, and there is 
no way in the graph model to specify a constraint on the number of fanouts 
that can be used. This case is handled by a special counter that counts the 
number of the edges that are used. If more than one edge is being used, the 
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FIGURE 17.5 ■ Symmetric device inputs are handled by inserting pseudo-multiplexers. 

FIGURE 17.6 ■ De-multiplexers are handled by negotiating for the fanouts of the de-multiplexer. 

de-multiplexer is being shared in much the same way that wires can be shared 
by signals. A Pathfinder cost function can be applied with both a sharing and 
a history component so that the single fanout used is determined by means 
of negotiation. 

Bidirectional switches 

Edges in the graph model, which represent connections, are directional. This 
models multiplexer-based architectures directly. Transistors that are often used 
to construct configurable interconnects are bidirectional. These bidirectional 
switches simply translate to two directional edges in the graph. The router uses 
at most one of the edges, which induces a logical direction on the switch. That 
is, when a switch is turned on in a configuration, it is being driven by an output 
from one side to the other. 

17.4 PARALLEL PATHFINDER 

A typical large FPGA design has many thousands of signals. If separate signals 
could be routed in parallel, the degree of parallelism would be limited only by 
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the number of signals to be routed and the number of processors available. The 
difficulty, of course, is that the route taken by each signal depends on the know
ledge of other signal routes, as routing resources cannot be shared. Although para
llel implementations of global standard cell routers exist, the problem for FPGAs 
becomes much harder because the routing resources are discrete and fixed. 

Because the routing of separate signals in an FPGA is tightly coupled, it might 
appear that a parallel approach to routing FPGAs would not be possible given 
that knowledge of other signal locations is necessary to find a feasible route. 
This is the case in a typical maze router, which uses rip-up and reroute to resolve 
conflicts. In PathFinder, however, there is no restriction on the number of signals 
that can occupy a resource simultaneously during routing. Instead, the cost of 
using congested resources is the mechanism used to resolve resource conflicts. 
If the congestion costs are decentralized in a parallel environment, the concerns 
are how and when they will be updated and whether the update method will 
be acceptable in terms of the number of processors effectively utilized and the 
quality of the resulting routing. 

In Chan et al. [30] a distributed memory multiprocessor implementation of 
the PathFinder algorithm is described. Each processor has a private local mem
ory and is connected in a network. Processors communicate with each other 
by sending and receiving messages via Unix socket communication. A complete 
copy, of the routing resource graph, including first- and second-order congestion 
costs, is kept and maintained by each processor. The signals in a netlist to be 
routed are statically assigned to processors such that each processor has about 
the same number of sinks to be routed. No attempt is made to assign signals to 
processors based on locality. 

Processors route signals asynchronously and thus communicate updated con
gestion costs asynchronously. There is no guarantee of the order or the timing 
of the arrival of such congestion cost updates, resulting in a source of inde
terminism. Processors are allowed to proceed to successive iterations without 
waiting for others, although a limit of a few iterations of separation is generally 
employed. 

It is conceded that, because of latency, this parallel routing algorithm may not 
converge. Imagine a scenario in which two signals being routed by two different 
processors vie for the same resource. Message latency or merely concurrency 
may cause the two signals to oscillate between routing iterations, because each 
processor knows where the other processor's signal was in the last iteration but 
not in the current one. Such cases generally occur during the last iterations 
of a route. At that point, Chan and colleagues [30] reduce the multiprocessor 
implementation to a single-processor implementation in order to resolve the 
congestion. 

This parallel implementation was tested on a set of benchmarks ranging from 
118 to 1542 signal nets on the Xilinx 4000 architecture. Speedups ranged from 
1.6 to 2.2 times for two processors and 2.3 to 3.8 times for four processors. For 
nearly all benchmarks, no additional speedups are obtained for more than four 
processors. The performance of the benchmarks (in terms of delay or dock rate) 
was shown to vary minimally with increasing numbers of processors. 
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This initial implementation of a parallel form of PathFinder is significant in 
that it demonstrates appreciable speedups while employing a rather simple com
putational framework. Because of the inherent approximations of congestion 
cost and its gradual increase, PathFinder exhibits good qualities for parallelism 
in a framework where congestion costs are communicated asynchronously, as 
they become available. It may result (as shown by Chan et al. [30]) in an 
increased number of iterations to converge, but is able to employ more mul
tiple loosely connected processors to good advantage. 

17 .5 OTHER APPLICATIONS OF THE PATHFINDER ALGORITHM 

PathFinder has been used to incrementally reroute signals around faults in 
cluster-based FPGAs [31]. This rerouting uses the accumulated history costs 
acquired by the initial routing to quickly find a new routing solution when nodes 
and edges in the circuit graph have been removed because of faults. 

QuickRoute [32] extends PathFinder to handle pipelined routing structures. 
The key idea in QuickRoute is to change Djikstra's shortest-path algorithm to 
allow nodes to be visited more than once, by paths with different latencies. 
This causes many more overlapping paths to be explored, but the negotiated 
congestion avoidance of PathFinder still performs well. 

Several groups have applied PathFinder to the problem of scheduling the 
communication in computing graphs to coarse-grained architectures or multi
processors [33-35]. In this application of PathFinder, the routing becomes a 
space-time problem. 

17 .6 SUMMARY 

The widespread use of PathFinder by commercial FPGA routers and university 
research efforts alike is a testimonial to its robustness. 

Several key facets of the algorithm make it attractive. However, its primary 
advantage is the iterative nature of resolving congestion, using both current as 
well as historical resource use in the formulation of the cost function. By very 
gradually increasing cost due to both usages, the routing search space is thor
oughly explored. Routing with other objective functions, delay in particular, is 
easily integrated into the cost function. A primary feature implicit in PathFinder 
(that distinguishes it from previous efforts) is the allowance of nonphysically 
feasible intermediate states-for example, shared resources-while converging 
to a physically feasible final state. Finally, by being grounded in a directed graph 
representation, PathFinder is very adaptable to changing FPGA architectures as 
well as other problems that can be abstracted to a directed graph. 

In the future we see the routing problem as being an increasingly dominant 
hurdle in the use of FPGAs with millions of resources. To reduce the runtime, 
more investigation will be required to effectively parallelize PathFinder, making 
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use of additional compuUl.tional resources. Given the growing focus on other 
objectives such as power consumption, it is likely that we will see experimenta
tion with other cost function formulations as well. 
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RETIMING, REPIPELINING, 

AND C-SLOW RETIMING 
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CHAPTER 18 

Although pipelining is a huge benefit in field-programmable gate array (FPGA) 
designs, and may be required on some FPGA fabrics [5, 10, 12], it is often difficult 
for a designer to manage and balance pipeline stages and to insert the necessary 
delays to meet design requirements. 

Leiserson et al. [ 4] were the first to propose retiming, an automatic process 
to relocate pipeline stages to balance a design. Their algorithm, in O(n2 lg(n)) 
time, can rebalance a design so that the critical path is optimally pipelined. In 
addition, two modifications, repipelining and C-slow retiming, can add additional 
pipeline stages to a design to further improve the critical path. 

The key idea is simple: If the number of registers around every cycle in the 
design does not change, the end-to-end symantics do not change. Thus, retiming 
attempts to solve two primary constraints: All paths longer than the desired 
critical path are registered, and the number of registers around every cycle is 
unchanged. 

This optimization is useful for conventional FPGAs but absolutely essential 
for fixed-frequency FPGA architectures, which are devices that contain large 
numbers of registers and are designed to operate at a fixed, but very high, 
frequency, often by pipelining the interconnect as well as the computation. 

To meet the array's fixed frequency, a design must ensure that every path 
is properly registered. Repipelining or C-slow retiming enables a design to be 
transformed to meet this constraint. Without automated repipelining or C-slow 
retiming, the designer must manually ensure that all pipeline constraints are 
met by the design. 

Retiming operates by determining an optimal placement for existing regis
ters, while repipelining and C-slowing add registers before the retiming pro
cess begins. After retiming, the design should be optimally (or near-optimally) 
balanced, with no pipeline stage requiring significantly more time than any other 
stage. 

Section 18.1 describes the basic retiming operation and the retiming algo
rithm and its semantics. Then Section 18.2 discusses repipelining and C-slowing: 
two· different techniques for adding registers. Repipelining improves feedfor
ward designs by adding additional pipelining stages, while C-slowing creates 
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an interleaved design by replacing every register with a sequence of C registers. 
Both of these transformations increase throughput but also increase latency. 

Section 18.3 surveys the various implementations, beginning with Leiserson's 
original algorithm and concluding with both academic and commercial tools. 
Section 18.4 discusses implementing retiming for fixed-frequency arrays. Unlike 
general FPGAs, fixed-frequency FPGAs require retiming in order to match user 
designs with architectural constraints. Finally, Section 18.5 discusses an interest
ing side effect of C-slowing: the creation of interleaved, multi-threaded architec
tures. We conclude in Section 18.6 with a discussion of the reasons that retiming 
is not a ubiquitous optimization in FPGA tool flows. 

18.1 RETIMING: CONCEPTS, ALGORITHM, AND RESTRICTIONS 

The goal of retiming is to move the pipeline registers in a design into the optimal 
position. Figure 18.1 shows a trivial example. In this design, the nodes represent 
logic delays (a), with the inputs and outputs passing through mandatory, fixed 
registers. The critical path is 5, and the input and output registers cannot be 
moved. Figure 18.l(b) shows the same graph after retiming. The critical path is 
reduced from 5 to 4, but the 1/0 semantics have not changed, as three cycles 
are still required for a datum to proceed from input to output. 

As can be seen, the initial design has a critical path of 5 between the internal 
register and the output. If the internal register could be moved forward, the 
critical path would be shortened to 4. However, the feedback loop would then 
be incorrect. Thus, in addition to moving the register forward, another register 
would need to be added to the feedback loop, resulting in the final design. 

Additionally, even if the last node is removed, it could never have a critical 
path lower than 4 because of the feedback loop. There is no mechanism that 
can reduce the critical path of a single-cycle feedback loop by moving registers: 
Only additional registers can speed such a design. 

Retiming's objective is to automate this process: For a graph representing a 
circuit, with combinational delays as nodes and integer weights on the edges, 
find a new assignment of edge weights that meets a targeted critical path or fail 
if the critical path cannot be met. Leiserson' s retiming algorithm is guaranteed 
to find such an assignment, if it exists, that both minimizes the critical path 
and ensures that around every loop in the design the number of registers always 
remains the same. It is this second constraint, ensuring that all feedback loops 

(a) (b) 

FIGURE 18.1 ■ A small graph before retiming (a) and the same graph after retiming (b). 
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TABLE 18.1 ■ The constraint system used by the retiming procsess 

Condition normal edge from u - v Constraint r(u) - r(v) < w(e) 

Edge from u - v must be registered 

Edge from u - v can never be registered 

Critical paths must be registered 

r(u) - r(v) :<S; w(e) - 1

r(u) - r(v) :<S; 0 and r(v) - r(u) � 0 

r(u) - r(v) :<S; W(u, v) - 1 for all u, v 

such that D(u, v) > P 

are unchanged, which ensures that retiming doesn't change the semantics of the 
circuit. In Table 18.1, r(u) is the lag computed for each node (which is used to 
determine the final number of registers on each edge), w(e) is the initial number 
of registers on an edge, W(u, v) is the minimum number of registers between 
u and v, and D(u, v) is the critical path between u and v.

Leiserson's algorithm takes the graph as input and then adds an additional
node representing the external world, with appropriate edges added to account 
for all I/Os. This additional node is necessary to ensure that the circuit's global 
1/0 semantics are unchanged by retiming. 

Two matrices are then calculated, W and D, that represent the number of 
registers and critical path between every pair of nodes in the graph. These matri
ces are necessary because retiming operates by ensuring that at least one register 
exists on every path that is longer than the critical path in the design. 

Each node also has a lag value r that is calculated by the algorithm and used 
to change the number of registers that will be placed on any given edge. Con
ventional retiming does not change the design semantics: All input and output 
timings remain unchanged while minor design constraints are imposed on the 
use of FPGA features. More details and formal proofs of correctness can be 
found in Leiserson's original paper [ 4]. 

The algorithm works as follows: 

1. Start with the circuit as a directed graph. Every node represents a com
putational element, with each element having a computational delay. Each edge 
can have zero or more registers as a weight w. Add an additional dummy node 
with O delay, with an edge from every output and to every input. This additional 
node is to ensure that from every input to every output the number of registers 
is unchanged and therefore the data input to output timing is unaffected. 

2. Calculate W and D. D is the critical path for every node to every other
node, and W is the initial number of registers along this path. This requires 
solving the all-pairs shortest-path problem, of which the optimal algorithm, by 
Dijkstra, requires O(n2lg(n)) time. This dominates the asymptotic running time 
of the algorithm. 

3. Choose a target critical path and create the constraints, as summarized in
Table 18.1. Each node has a lag valuer, which will eventially specify the change
in the number of registers between each node. Initialize all nodes to have a 
lag of 0. 
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4. Since all constraints are pairwise integer inequalities, the Bellman-Ford
constraint solver is guaranteed to find a solution if one exists or to terminate if 
not. The Bellman-Ford algorithm performs N iterations (N = the number of con
straints to solve). In each iteration, every constraint is examined. If a constraint 
is already satisified, nothing happens. Otherwise, r(u) or r(v) is decremented to 
meet the particular constraint. Once an iteration occurs where no values change, 
the algorithm has found a solution. If there is no solution, after N iterations the 
algorithm terminates with a failure. 

5. If the constraint solver fails to find a solution, or a tighter critical path is
desired, choose a new critical path and return to step 3. 

6. With the final set of constraints, a new set of registers is constructed for
each edge, w'•w'(e) = w(e)-r(u) + r(v). 

A graphical example of the algorithm's results is shown in Figure 18.1. The 
initial graph has a critical path of 5, which is clearly nonoptimal. After retiming, 
the graph has a critical path of 4, but the 1/0 semantics have not changed, as any 
input will still require three cycles to affect the output. To determine whether 
a critical path P can be achieved, the retiming algorithm creates a series of 
constraints to calculate the lag on each node (Table 18.1). 

The primary constraints ensure correctness: No edge will have a negative 
number of registers, while every cycle will always contain the original num
ber of registers. All 1/0 passes through the intermediate node, ensuring that 
input and output timings do not change. These constraints can be modified so 
that a particular line will contain no registers, or a mandatory minimum num
ber of registers, to meet architectural constraints without changing the com
plexity of the equations. But it is the final constraint, that all critical paths 
above a predetermined delay P are registered, that gives this optimization its 
effectiveness. 

If the constraint system has a solution, the new lag assignments for all nodes 
will allocate registers properly to meet the critical path P. But if there is no 
solution, there cannot be an assignment of registers that meets P. Thus, the 
common usage is to find the minimum P where the constraints are all met. 

In general, multiple constraint-solving attempts are made to search for the 
minimum critical path P. The constraints for P are the final retimed design. 
There are two ways to speed up this process. First, if the Bellman-Ford algo
rithm can find a solution, it usually converges very quickly. Thus, if there is 
no solution that satisfies P, it is usually effective to abandon the Bellman-Ford 
algorithm early after O. lN iterations rather than N iterations. This seems to have 
no impact on the quality of results, yet it can greatly speed up searching for the 
minimum P that can be satisfied in the design. 

A second optimization is to use the last computed set of constraints as a start
ing point. In conventional retiming, the Bellman-Ford process is invoked multi
ple times to find the lowest satisfiable critical path. In contrast, fixed-frequency 
repipelining or C-slow retiming uses Bellman-Ford to discover the minimum 
number of additional registers needed to satisfy the constraints. In both cases, 
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keeping the last failed or successful solution in the data structure provides a 
starting point that can significantly speed up the process if a solution exists. 

Retiming in this way imposes only minimal design limitations: Because it 
applies only to synchronous circuits, there can be no asynchronous resets or 
similar elements. A synchronous global reset imposes too many constraints to 
allow effective retiming. Local synchronous resets and enables only produce 
small, self loops that have no effect on the correct operation of the algorithm. 

Most other design features can be accommodated simply by adding appropri
ate constraints. For example, an FPGA with a tristate bus cannot have registers 
placed on this bus. A constraint that says that all edges crossing the bus can 
never be registered (r(u) -r(v)::; 0 and r(v) -r(u)::; O) ensures this. Likewise, 
an embedded memory with a mandatory output flip-flop can have a constraint 
(r(u) -r(v) ::; w(e) - 1) that ensures that at least one register is placed on this 
output. 

Memories themselves can be retimed similarly to any other element in the 
design, with dual-ported memories treated as a single node for retiming pur
poses. Memories that are synthesized with a negative clock edge (to create the 
design illusion of asynchronicity) can be either unchanged or switched to oper
ate on the positive edge with constraints to mandate the placement of registers. 

Some FPGA designs have registers with predefined initial values. If retiming 
is allowed to move these registers, the proper initial values must be calculated 
such that the circuit still produces the same behavior. 

In an ASIC model, all flip-flops start in an undefined state, and the designer 
must create a small state machine in order to reset the design. FPGAs, however, 
have all flip-flops start in a known, user-defined state, and when a dedicated 
global reset is applied the flip-flops are reset to it. This has serious implications 
in retiming. 

If the decision is made to utilize the ASIC model, retiming is free to safely 
ignore initial conditions because explicit reset logic in state machines will still 
operate correctly-this is reflected in the 1/0 semantics. However, without the 
ability to violate the initial conditions with an ASIC-style model, retiming quality 
often suffers as additional logic is required or limits are placed on where flip
flops may be moved in a design. 

In practice, performing retiming with initial conditions is NP-hard. Cong and 
Wu [3] have developed an algorithm that computes initial states by restricting 
the design to forward retiming only so that it propagates the information and 
registers forward throughout the computation. This is because solving initial 
states for all registers moved forward is straightforward, but backward move
ment is NP hard as it reduces to satisfiability. 

Additionally, global set/reset imposes a huge constraint on retiming. An asyn
chronous set/reset can never be retimed (retiming cannot modify an asyn
chronous circut) while a synchronous set/reset just imposes too high a fanout. 

An important question is how to deal with multiple clocks. If the interfaces 
between the clock domains are registered by clocks from both domains, it is 
a simple process to retime the domains separately, with mandatory registers 
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TABLE 18.2 ■ The results of retiming four benchmarks 

Benchmark Unretimed Automatically retimed 

AES core 48 MHz 

Smith/Waterman 43 MHz 

Synthetic datapath 51 MHz 

LEON processor 23 MHz 

47 MHz 

40 MHz 

54 MHz 

25 MHz 

on the domain crossings-the constraints placed on the I/Os ensure correct 
and consistent timing through the interface. Yet without this design constraint, 
retiming across multiple clock domains is very hard, and there does not appear 
to be any clean automatic solution. 

Table 18.2 shows the results for a particular retiming tool [13]-the 
Xilinx Virtex family of FPGAs--cin four benchmark circuits: an AES core, a 
Smith/Waterman systolic cell, a synthetic microprocessor datapath, and the 
LEON-I synthesized SPARC core. This tool does not use a perfectly accurate 
delay model and has to place registers after retiming, so it sometimes creates 
slightly suboptimal results. 

The biggest problem with retiming is that it is of limited benefit to a well
balanced design. As mentioned earlier, if the clock cycle is defined by a single
cycle feedback loop, retiming can never improve the design, as moving the 
register around the feedback loop produces no effect. 

Thus, for example, the Smith-Waterman example in Table 18.2 does not bene
fit from retiming. The Smith-Waterman benchmark design consists of a series of 
repeated identical systolic cells that implement the Smith-Waterman sequence 
alignment algorithm. The cells each contain a single-cycle feedback loop, which 
cannot be optimized. The AES encryption algorithm also consists of a single
cycle feedback loop. In this case, the initial design used a negative-edge Block
RAM to implement the S-boxes, which the retiming tool converted to a positive 
edge memory with a "must register" constraint. 

Nevertheless, retiming can still be a benefit if the design consists of multiple 
feedback loops (such as the synthetic microprocessor datapath or the LEON 
SPARC-compatible microprocessor core) or an initially unbalanced pipeline. 
Still, for well-designed circuits, even complex ones, retiming is often only a 
slight benefit, as engineers have considerable experience designing reasonably 
optimized feedback loops. 

The key benefit to retiming occurs when more registers can be added to 
the design along the critical path. We will discuss two techniques, repipelining 
and C-slow retiming, which first add a large number of registers that general 
retiming can then move into the optimal location. 

18.2 REPIPELINING AND C-SLOW RETIMING 

The biggest limitation of retiming is that it simply cannot improve a design 
beyond the design-dependent limit produced by an optimal placement of 
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registers along the critical path. As mentioned earlier, if the critical path is 
defined by a single-cycle feedback loop, retiming will completely fail as an 
optimization. Likewise, if a design is already well balanced, changing the reg
ister placement produces no improvement. As was seen in the four reasonably 
optimized benchmarks (refer to Table 18.2), this is often the case. 

Repipelining and C-slow retiming are tranformations designed to add reg
isters in a predictible matter that a designer can account for, which retiming 
can then move to optimize the design. Repipelining adds registers to the begin
ning or end of the design, changing the pipeline latency but no other semantics. 
C-slow retiming creates an interleaved design by replacing every register with a
sequence of C registers.

18.2.1 Repipelining 

Repipelining is a minor extension to retiming that can increase the clock 
frequency for feedforward computations at the cost of additional latency 
through more pipeline registers. Unlike C-slow retiming, repipelining is only 
beneficial when a computation's critical path contains no feedback loops. 

Feedforward computations, those that contain no feedback loops, are com
monly seen in DSP kernels and other tasks. For example, the discrete cosine 
transform (DCT), the fast Fourier transform (FFT), and finite impulse response 
filters (FIRs) can all be constructed as feedforward pipelines. 

Repipelining is derived from retiming in one of two ways, both of which cre
ate semantically equivalent results. The first involves adding additional pipeline 
stages to the start of the computation and allowing retiming to rebalance the 
delays and create an absolute number of additional stages. The second involves 
decoupling the inputs and outputs to allow the retimer to add additional pipelin
ing. Although these techniques operate in slightly different ways, they both provide 
extra registers for the retimer to then move and they produce roughly equivalent 
results. 

If the designer wishes to add P pipeline stages to a design, all inputs simply 
have P delays added before retiming proceeds. Because retiming will develop an 
optimum placement for the resulting design, the new design contains P addi
tional pipeline stages that are scattered throughout the computation. If a CAD 
tool supports retiming but not repipelining, the designer can simply add the reg
isters to the input of the design manually and let the tool determine the optimum 
placement. 

Another option is to simply remove the cycle between all outputs and inputs, 
with additional constraints to ensure that all outputs share an output lag, with 
all inputs sharing a different input lag. This way, the inputs and outputs are all 
synchronized but retiming can add an arbitrary number of additional pipeline 
registers between them. To place a limit on these registers, an additional con
straint must be added to ensure that for a single 1/0 pair no more than P pipeline 
registers are added. Depending on the other constraints in the retiming process, 
this may add fewer than P additional pipeline stages, but will never add more 
than P.
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Repipelining adds additional cycles of latency to the design, but otherwise 
retains the rest of the circuit's behavoir. Thus, it produces the same results and 
the same relative timing on the outputs (e.g., if input B is supposed to be pre
sented three cycles after input A, or output C is produced two cycles after output 
D, these relative timings remain unchanged). It is only the data-in to data-out 
timing that is affected. 

Unfortunately, repipelining can only improve feedforward designs or designs 
where the feedback loop is not on the critical path. If performance is limited by 
a feedback loop, repipelining offers no benefit over normal retiming. 

Repipelining is designed to improve throughput, but will almost always make 
overall latency worse. Although the increased pipelining will boost the clock rate 
(and thus reduce some of the delay from unbalanced clocked paths), the delay 
from additional flip-flops on the input-to-output paths typically overwhelms this 
improvement and the resulting design will take longer to produce a result for 
an individual input. 

This is a fundamental trade-off in repipelining and C-slow retiming. While 
ordinary retiming improves both latency and throughput, repipelining and 
C-slow retiming generally improve throughput at the cost of additional latency
due to the additional pipeline stages required.

18.2.2 C-slow Retiming 

Unlike repipelining, C-slow retiming can enhance designs that contain feedback 
loops. C-slowing enhances retiming simply by replacing every register with a 
sequence of C separate registers before retiming occurs; the resulting design 
operates on C distinct execution tasks. Because all registers are duplicated, the 
computation proceeds in a round-robin fashion, as illustrated in Figure 18.2. 

In this example, which is 2-slow, the design interleaves between two compu
tations. On the first clock cycle, it accepts the first input for the first stream 
of execution. On the second clock cycle, it accepts the first input for the second 
stream, and on the third it accepts the second input for the first stream. Because 
of the interleaved nature of the design, the two streams of execution will never

interfere. On odd clock cycles, the first stream of execution accepts input; on 
even clock cycles, the second stream accepts input. 

(a) (b) 

FIGURE 18.2 ■ The example from Figure 18.1, converted to 2-slow operation (a). The critical 
path remains unchanged, but the design now operates on two independent streams in a 
round-robin fashion. The design retimed (b). By taking advantage of the extra flip-flops, the 
critical path has been reduced from 5 to 2. 
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The easiest way to utilize a C-slowed block is to simply multiplex and 
de-multiplex C separate datastreams. However, a more sophisticated interface 
may be desired depending on the application (as described in Section 18.S). 

One possible interface is to register all inputs and outputs of a C-slowed block. 
Because of the additional edges retiming creates to track I/Os and to ensure a 
consistent interface, every stream of execution presents all outputs at the same 
time, with all inputs registered on the next cycle. If part of the design is C-slowed, 
but all parts operate on the same clock, the result can be retimed as a complete 
whole and still preserve all other semantics. 

One way to think of C-slowing is as a threaded design, with an overall sys
tem clock and with each stream having a "stream clock" of 1/C-each stream 
is completely independent. However, C-slowing imposes some more significant 
FPGA design constraints, as summarized in Table 18.3. Register clock enables 
and resets must be expressed as logic features, since each independent thread 
must have an independent reset or enable. Thus, they can remain features in 
the design but cannot be implemented by current FPGAs using native enables 
and resets. Other specialized features, such as Xilinx SRL16s (a mode where a 
LUT is used as a 16-bit shift register), cannot be utilized in a C-slow design for 
the same reason. 

One important challenge is how to properly C-slow memory blocks. In cases 
where the C-slowed design is used to support N independent computations, one 
needs the illusion that each stream of execution is completely independent and 
unchanged. To create this illusion, the memory capacity must be increased by a 
factor of C, with additional address lines driven by a thread counter. This ensures 
that each stream of execution enjoys a completely separate memory space. 

For dual-ported memories, this potentially enables a greater freedom in retim
ing: The two ports can have different lags as long as the difference in lag is less 
than C. After retiming, the difference is added to the appropriate port's thread 
counter, which ensures that each stream of execution will read and write to both 
ports in order while enabling slightly more freedom for retiming to proceed. 

C-slowing normally guarantees that all streams view independent memories.
However, a designer may desire shared memory common to all streams. Such 

TABLE 18.3 ■ The effects of various FPGA features on retiming, repipelining, and C-slowing 

FPGA feature Effect on retiming Effect on repipelining Effect on C-slowing 

Asynchronous global set/reset Forbidden Forbidden Forbidden 
Synchronous global set/reset Effectively forbidden Effectively forbidden Forbidden 
Asynchronous local set/reset FQrbidden Forbidden Forbidden 
Synchronous local set/reset Allowed Allowed Express as logic 
Clock enables Allowed Allowed Express as logic 
Tristate buffers Allowed Allowed Allowed 
Memories Allowed Allowed Increase size 
SRL16 Allowed Allowed Express as logic 
Multiple clock domains Design restrictions Design restrictions Design restrictions 
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memories could be embedded in a design, but the designer would need to 
consider how multiple streams would affect the semantics and would need to 
notify any automatic tool to treat the memory in a special manner. Beyond this, 
there are no other semantic effects imposed by C-slow retiming. 

C-slowing significantly improves throughput, but it can only apply to tasks
where there are at least C independent threads of execution and where through
put is the primary goal. The reason is that C-slowing makes the latency substan
tially worse. This trade-off brings up a fundimental observation: Latency is a 
property of the design and computational fabric whereas throughput is a prop
erty derived from cost. Both repipelining and C-slow retiming can be applied 
only when there is sufficient task-level parallelism, in the form of either a feed
forward pipeline (repipelining) or independent tasks (C-slowing). 

Table 18.4 shows the difference that C-slowing can make in four designs. 
While the retiming tool alone was unable to improve the AES or Smith 
Waterman designs, C-slowing substantially increased throughput, improving the 
clock rate by 80-95 percent! However, latency for individual tasks was made 
worse, resulting in significantly slower clock rates for individual tasks. 

Latency can be improved only up to a given point for a design through con
ventional retiming. Once the latency limit is met, no amount of optimization, 
save a major redesign or an improvement in the FPGA fabric, has any effect. This 
often appears in cryptographic contexts, where feedback mode-based encryption 
(such as CFB) requires the complete processing of each block before the next 
can be processed. 

In contrast, throughput is actually a part of a throughput/cost metric: 
throughput/area, throughput/dollar, or throughput/joule. This is because inde
pendent task throughput can be added via replication, creating independent 
modules that perform the same function, as well as C-slowing. When sufficient 
parallelism exists, and costs are not constrained, simply throwing more resources 
at the problem is sufficient to improve the design to meet desired goals. 

One open question on C-slowing is its effect in a low-power environment. 
Higher throughput, achieved through high-speed clocking, naturally increases 
the power consumption of a design, just as replicating units for higher through
put increases power consumption. In both cases, if lower power is desired, the 
higher-throughput design can be modified to save power by reducing the clock 
rate and operating voltage. 

Unlike the replicated case, the question of whether a C-slowed design would 
offer power savings if both frequency and voltage were reduced is highly design 

TABLE 18.4 ■ The effect of C-slowing on four benchmarks 

Benchmark Initial clock C-factor C-slow clock Stream clock 

AES encryption 48 MHz 4-slow 87 MHz 21 MHz 

Smith/Waterman 43 MHz 3-slow 84 MHz 28 MHz 

Synthetic datapath 51 MHz 3-slow 91 MHz 30 MHz 

LEON processor core 23 MHz 2-slow 46 MHz 23 MHz 
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and usage dependent. Although the finer pipelining allows the frequency and the 
voltage to be scaled back to a significant degree while maintaining throughput, 
the activity factor of each signal may now be considerably higher. Because each 
of the C streams of execution is completely independent, it is safe to assume that 
every wire will probably have a significantly higher activity factor that increases 
power consumption. 

Whether the initial design before C-slowing has a comparable activity fac
tor is highly input and design dependent. If the initial design's activity factor is 
low, C-slowing will significantly increase power consumption. But if that factor 
is high, C-slowing will not increase it. Thus, although the C-slowing transfor
mation may have a minor affect on worst-case power (and can even result in 
significant savings through voltage scaling), the impact on average-case power 
may be substantial. 

18.3 IMPLEMENTATIONS OF RETIMING 

Three significant academic retiming tools have been developed for FPGAs. The 
first, by Cong and Wu [3], combines retiming with technology mapping. This 
approach enables retiming to occur before placement without adding undue 
constraints on the placer, because the retimed registers are packed with their 
associated logic. The disadvantage is a lack of precision, as delays can only 
be crudely estimated before placement. This tool is unsuitable for significant 
C-slowing, which creates significantly more registers that can pose problems
with logic packing and placement.

The second tool, developed by Singh and Brown [6], combines retiming with 
placement, operating by modifying the placement algorithm to be aware that 
retiming is occurring and then modifying the retiming portion to enable per
mutation of the placement as retiming proceeds. Singh and Brown demonstrate 
how the combination of placement and retiming performs significantly better 
than retiming either before or after placement. 

The simplified FPGA model used by Singh and Brown has a logic block where 
the flip-flop cannot be used independently of the LUT, constraining the ability 
of postplacement retiming to allocate new registers. Thus, the need to permute 
the placement to allocate registers is significantly exacerbated in their target 
architecture. 

The third tool, developed by Weaver et al. [13], performs retiming after place
ment but before routing, taking advantage of the (mostly) independent register 
operation available on Xilinx FPGAs. (It would not apply to most Altera FPGAs.) 
It too also supports C-slowing. 

Some commercial HDL synthesis tools, notably the Synopsys FPGA compiler 
[9] and Synplify [8], also support retiming. Because this retiming occurs fairly
early in the mapping and optimization processes, it suffers from a lack of precision
regarding placement and routing delays. The Amplify tool [10] can produce a
higher-quality retiming because it contains placement information. Since these
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tools attempt to maintain the FPGA model of initial conditions, both on startup 
and in the face of a global reset signal, considerable logic is added to the design. 

18.4 RETIMING ON FIXED-FREQUENCY FPGAs 

Fixed-frequency FPGAs differ from conventional FPGAs in that they have an 
intrinsic clock rate and commonly include pipelined interconnect and other 
design features to enable very high-speed operations. However, this fixed fre
quency demands a design modification to support the pipeline stages it requires. 

Retiming for fixed-frequency FPGAs, unlike that for their conventional coun
terparts, does not require the creation of a global critical path constraint, as sim
ply ensuring that all local requirements are met guarantees that the final design 
meets the architecture's required delay constraints. Instead, retiming attempts 
to solve these local constraints by ensuring that every path through the inter
connect meets the delay requirements inherent in the FPGA. Once these local 
constraints are met, the final design will operate at the FPGA's intrinsic clock 
frequency. 

Because there are no longer any global constraints, the W and D matrices 
are not created. A fixed-frequency FPGA does not require the global constraints, 
so having only to solve a set of local constraints requires linear, not quadratic, 
memory and O(n2), rather than O(n2lg(n)), execution time. This speeds the pro
cess considerably. 

Additionally, only a single invocation of the constraint solver is necessary 
to determine whether the current level of pipelining can meet the constraints 
imposed by the target architecture. Unfortunately, most designs do not possess 
sufficient pipelining to meet these constraints, instead requiring a significant 
level of repipelining or C-slow retiming to do so. The level necessary can be 
discovered in two ways. 

The first approach is simply to allow the user to specify a desired level of 
repipelining or C-slowing. The retiming system then adds the specified number 
of delays and attempts to solve the system. If a solution is discovered, it is used. 
Otherwise, the user is notified that the design must be repipelined or retimed to 
a greater degree to meet the array's clock cycle. The second approach requires 
searching to find the minimal level of repipelining or C-slowing necessary to 
meet the constraints. Although this necessitates multiple iterations of the con
straint solver, fixed-frequency retiming only requires local constraints. Without 
having to check the global constraints, this process proceeds quickly. The result
ing level of repipelining or C-slowing is then reported to the user. 

Fixed-frequency FPGAs require retiming considerably later in the tool flow. 
It is impossible to create a valid retiming until routing delays are known. Since 
the constraints required invariably depend on placement, the final retiming 
process must occur afterwards. Some arrays, such as HSRA [ 1 O], have deter
ministic routing structures that enable retiming to be performed either before or 
after routing. Other interconnect structures, such as SFRA [12], lack determin
istic routing and require that retiming be performed only after routing. 
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Finally, the fact that fixed-frequency arrays may use considerably more 
pipelining than conventional arrays makes retiming registers a significant archi
tectural feature. Because these delay chains [10], either on inputs or on outputs, 
are programmable, the array can implement longer ones. A common occurrence 
after aggressive C-slow retiming is a design with several signals requiring con
siderable delay. Therefore, dedicated resources to implement these features are 
effectively required to create a viable fixed-frequency FPGA. 

18.5 C-SLOWING AS MULTI-THREADING 

There have been numerous multi-threaded architecture designs, but all share a 
common theme: increasing system throughput by enabling multiple streams of 
execution, or threads, to operate simultaneously. These architectures generally 
fall into four classes: context switching always without bypassing (HEP [7] and 
Tera [2]), context switching on event (Intel IXP) [14], interleaved multi-threaded, 
and symmetric multi-threaded (SMT) [11]. The ideal goal of all of them is to 
increase system throughput by operating on multiple streams of execution. 

The general concept of C-slow _retiming can be applied to highly complex 
designs, including microprocessors. Unlike a simple FIR filter bank or an 
encryption algorithm, it is not a simple matter of inserting registers and balanc
ing delays. Nevertheless, the changes necessary are comparatively small and the 
benefits substantial: producing a simple, statically scheduled, higher clock rate, 
multi-threaded architecture that is semantically equivalent to an interleaved
multi-threaded architecture, alternating between a fixed number of threads in a 
round-robin fashion to create the illusion of a multiprocessor system. 

C-slowing requires three minor architectural changes: enlarging and modify
ing the register file and TLB, replacing the cache and memory interface, and 
slightly modifying the interrupt semantics. Beyond that, it is simply a matter of 
replacing every pipeline register in both the control logic and the datapath with 
C registers and then moving the registers to balance the delays, as is traditional 
in the C-slow retiming transformation and can be performed by an automatic 
tool. The resulting design, as expected, has full multi-threaded semantics and 
improved throughput because of a significantly higher clock rate. Figure 18.3 
shows how this transformation can operate. 

The biggest complications in C-slowing a microprocessor are selecting the 
implementation semantics for the various memories through the design. The 
first type keeps the traditional C-slow semantics of complete independence, 
where each thread sees a completely independent view, usually by duplication. 
This applies to the register file and most of the state registers in the system. This 
occurs automatically if C-slowing is performed by a tool, because it represents 
the normal semantics for C-slowed memory. 

The second is completely shared memory, where every thread sees the same 
memory, such as the caches and main memory of the system. Most such 
memories exist in the non-C-slowed portion and so are unaffected by an auto
matic tool. 
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(a) 
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FIGURE 18.3 ■ A traditional five-stage microprocessor pipeline, and its conversion to 3-slow 
operation. 

The third is dynamically shared, where a hardware thread ID or a software 
thread context ID is tagged to each entry, with only the valid tags used. This 
breaks the automatic C-slow semantics and is best employed for branch pre
dictors and similar caches. Such memories need to be constructed manually, 
but offer potential efficiency advantages as they do not need to increase in size. 
Because they cannot be constructed automatically they may be subject to inter
ference or synergistic effects between threads. 

The biggest architectural changes are to the register file: It needs to be 
increased by a factor of C, with a hardware thread counter to select which group 
of registers is being accessed. Now each thread will see an independent set of 
registers, with all reads and writes for the different threads going to separate 
memory locations. Apart from the thread selection and natural enlargement, 
the only piece remaining is to pipeline the register access. If necessary, the 
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C independently accessed sections can be banked so that the register file can 
operate at a higher clock frequency. 

Naturally, this linearly increases the size of the register file, but pipelining 
the new larger file is not difficult since each thread accesses a disjoint register 
set, allowing staggered access to the banks if desired. This matches the auto
matic memory transformations that C-slowing creates: increasing the size and 
ensuring that each task has an independent view of memory. 

To maintain the illusion that the different threads are running on completely 
different processors, it is important that each thread have an independent trans
lation of memory. The easiest solution is to apply the same transformations to 
the TLB that were applied to the register file: increasing the size by C, with 
each thread accessing its own set, and pipelining access. Again, this is the nat
ural result of applying the C-slow semantics from an automatic tool. 

The other option is to tag each TLB entry. The interference effect may be 
significant if the associativity or size of the TLB is low. In such a case, and 
considering the generally small size of most TLBs, increasing the size (although 
perhaps by less than a factor of C) is advisable. Software thread ID tags are 
preferable to hardware ID tags because they reduce the cost of context switch
ing if a shared TLB is used and may also provide some synergistic effects. In 
either case, a shared TLB requires interlocking between TLB writes to prevent 
synchronization bugs. 

If the caches are physically addressed, it is simply a matter of pipelining 
access to improve throughput without splitting memory. Because of the inter
locked execution of the threads and the pipelined nature of the modified caches, 
no additional coherency mechanisms are required except to interlock any exist
ing test-and-set or atomic read/write instructions between the threads to ensure 
that each instruction has time to be completed. 

Such cache modifications occur outside the C-slow semantics, suggesting that 
the cache needs to be changed manually. This means that the cache and mem
ory controller must be manually updated to support pipelined access from the 
distinct threads, and must exist outside of the C-slowed core itself. 

Unfortunately, virtually addressed caches are significantly more complicated: 
They require that each tag include thread ownership (to prevent one thread from 
viewing another's version of memory) and that a record of virtual-to-physical 
mappings be maintained to ensure coherency between threads. These compli
cations suggest that a physically addressed cache would be superior when C

slowing a microprocessor to produce a simple multi-threaded design. A virtually 
addressed cache is one of the few structures that do not have a natural C-slow 
representation or that can easily exist outside a C-slowed core. 

The rest of the machine state registers, being both loaded and read, are auto
matically separated by the C-slow transformation. This ensures that each thread 
will have a completely independent set of machine registers. Combined with 
the distinct registers and TLB tagging, each thread will see an independent 
processor. 

The only other portion that needs to be changed is the interrupt semantics. 
Just as the rest of the control logic is pipelined, with control registers duplicated, 
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the same transformations need to be applied to the interrupt logic. Thus, every 
external interrupt is interpreted by the rules corresponding to every virtual pro
cessor running in the pipeline. Yet, since the control registers are duplicated, the 
OS can enforce policies where different interrupts are handled by different exe
cution streams. Similarly, internally driven interrupts (such as traps or watchdog 
timers), when C-slowed, are independent between threads, as C-slowing ensures 
that each thread sees only its own interrupts. 

In this way, the OS can ensure that one virtual thread receives one set of 
externally sourced interrupts while another receives a different set. This also 
suggests that interrupts be presented to all threads of execution, enabling each 
thread (or even multiple threads) to service the appropriate interrupt. 

The resulting design has full multi-threaded semantics, with each of C threads 
being independent. Because C-slowing can improve the clock rate (by two times 
in the case of the LEON benchmark), this can easily and substantially improve 
the throughput of a very complex design. 

18.6 WHY ISN'T RETIMING UBIQUITOUS? 

An interesting question is why retiming is not heavily used in FPGA tool flows. 
Although some FPGA vendors [1] and CAD vendors [8] support retiming, it is 
not universally available, and even when it is, it is usually optional. 

There are three major factors that limit the general adoption of retiming: It 
interacts poorly with many critical FPGA features; it can only optimize poor 
implementations yet is not a substitute for good implementation; and it is com
putationally intensive. 

As mentioned earlier, retiming does not work well with initial conditions or 
global resets-features that FPGA designers have traditionally relied on. Like
wise, BlockRAMs, hardware clock eEnables, and other features can pin regis
ters, limiting the ability of a retiming tool to move tnem. For these reasons, 
many FPGA designs cannot be effectively retimed. 

A related observation is that retiming helps only poor designs and, moreover, 
only fixes one common deficiency of a poor design, not all of them. Additionally, 
if the designer has enough savvy to work around the limitations of retiming, he 
will probably produce a naturally well-balanced design. 

Finally, although retiming is a polynomial time algorithm, its still superlinear. 
As designs continue to grow in size, O(n2lg(n)) can still be too long for many 
uses. This is especially problematic as the Moore's Law scaling for FPGAs is 
currently greater than that for single-threaded microprocessors. 
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CHAPTER 19 

While a reconfigurable logic device shares some of the characteristics of a fixed 
hardware device and some of a programmable instruction set processor, the 
details of the underlying architecture and how it is programmed are what dis
tinguish these machines. Both a reconfigurable logic device and an instruction 
set processor are programmable by "software," but the internal organization 
and use of this software are quite different. In an instruction set processor, the 
programming is a set of binary codes that are incrementally fed into the device 
during operation. These codes actually carry out a form of reconfiguration inside 
the processor. The arithmetic and logic unit(s) (ALU) is configured to perform 
a requested function and various control multiplexers (MUXes) that control the 
internal flow of data are set. In the instruction set machine, these hardware 
components are relatively small and fixed and the system is reconfigured on a 
cycle-by-cycle basis. The processor itself changes its internal logic and routing 
on every cycle based on the input of these binary codes. 

In a processor, the binary codes-the processor's machine language-are 
fairly rigid and correspond to sequential "instructions." The sequence of these 
instructions to implement a program is often generated by some higher-level 
automatic tool such as a high-level language (HLL) compiler frbm a language 
such as Java, C, or C++. But they may, in reality, come from any source. What 
is important is that the collection of binary data fits this rigid format. The col
lection of binary data goes by many names, most typically an "executable" file 
or even more generally a "binary program." 

A reconfigurable logic device, or field-programmable gate array (FPGA), is 
based on a very different structure than that of an instruction set machine. It 
is composed of a two-dimensional array of programmable logic elements joined 
together by some programmable interconnection network. The most significant 
difference between FPGA and the instruction set architecture is that the FPGA is 
typically intended to be programmed as a complete unit, with the various inter
nal components acting together in parallel. While the structure of its binary pro
gramming ( or configuration) data is every bit as rigid as that of an instruction 
set processor, the data are used spatially rather than sequentially. 

In other words, the binary data used to program the reconfigurable logic 
device are loaded into the device's internal units before the device is placed 
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in its operating mode, and typically, no changes are made to the data while 
the device is operating. There are some significant exceptions to this rule: The 
configuration data may in fact be changed while a device is operational, but this 
is somewhat akin to "self-modifying code" in instruction set architectures. This 
is a very powerful technique, but carries with it significant challenges. 

The collection of binary data used to program the reconfigurable logic device 
is most commonly referred to as a ''bitstream," although this is somewhat mis
leading because the data are no more bit oriented than that of an instruction set 
processor and there is generally no "streaming." While in an instruction set pro
cessor the configuration data are in fact continuously streamed into the internal 
units, they are typically loaded into the reconfigurable logic device only once 
during an initial setup phase. For historical reasons, the somewhat undescrip
tive ''bitstream" has become the standard term. 

As much as the binary instruction set interface describes and defines the 
architecture and functionality of the instruction set machine, the structure of 
the reconfigurable logic configuration data bitstream defines the architecture 
and functionality of the FPGA. Its format, however, currently suffers from a 
somewhat interesting handicap. While the format of the programming data of 
instruction set architectures is freely published, this is almost never the case 
with reconfigurable logic devices. Almost all of them that are sold by major 
manufacturers are based on a "closed" bitstream architecture. 

The underlying structure of the data in the configuration bitstream is regar
ded by these companies as a trade secret for reasons that are historical and 
not entirely clear. In the early days of reconfigurable logic devices, the under
lying architecture was also a trade secret, so publishing the configuration bit
stream format would have given too many clues about it. It is presumed 
that this was to keep competitors from taking ideas about an architecture, 
or perhaps even "cloning" it and providing a hardware-compatible device. 
It also may have reassured nervous FPGA users that, if the bitstream for
mat was a secret, then presumably their logic designs would be difficult to 
reverse-engineer. 

While theft and cloning of device hardware do not appear to be a potential 
problem today, bitstream formats are still, perhaps out of habit alone, treated as 
trade secrets by the major manufacturers. This is a shame because it prohibits 
interesting experimentation with new tools and techniques by third parties. But 
this is perhaps only of interest to a very small number of people. The vast 
majority of users of commercial reconfigurable logic devices are happy to use 
the vendor-supplied tools and have little or no interest in the device's internal 
structure as long as the logic design functions as specified. However, for those 
interested in the architecture of reconfigurable logic devices, trade secrecy is an 
important subject. 

While exact examples from popular industry devices are not possible because 
of this secrecy, much is publicly known about the underlying architectures, the 
general way a bitstream is generated, and how it operates when loaded into a 
device. 
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The bitstream spatially represents the configuration data of a large collection 
of small, relatively simple hardware components. Thus, we can identify these 
components and discuss the ways in which the bitstream is used to produce a 
working digital circuit in a reconfigurable logic device. Although there is really 
no limit to the types of units possible in a reconfigurable logic device, two basic 
structures make up the microarchitecture of most modern FPGAs. These are the 
lookup table (LUT) and the switch box. 

The LUT is essentially a very small memory element, typically with 16 bits 
of bit-oriented storage. Some early FPGAs used smaller 8-bit LUTs, and other 
more exotic architectures used non-LUT structures. In general, however, the vast 
majority of commercial FPGA devices sold over the last decade use the 16-bit 
LUT as a primary logic building block. 

The functionality of LUTs is very simple. Binary data are loaded into them 
to produce some Boolean function. In the case of the 16-bit LUT, there are 
four inputs, which can produce any arbitrary 4-input Boolean logic function. 
For instance, to provide the AND function of all four inputs, each bit in the 
memory except the bit at address A ( 1, 1, 1, 1) is loaded with a binary O and 
the A ( 1, 1, 1, 1) bit is loaded with a 1. The address inputs of the LUT are used 
as the inputs to the logic function, with the output of the LUT providing the 
output of the logic function. Figure 19.1 illustrates this mapping of a 2-input 
LUT to a 2-input AND gate. 

While the LUTs provide the logic for the circuit, the switch boxes provide 
the interconnection. These switch boxes are typically made up of multiplex
ers in various regular configurations. These multiplexers are controlled by bits 
of memory that select the inputs and send them to the multiplexer's outputs. 
Figure 19.2 shows a typical configurable interconnect element constructed using 
a multiplexer. 

The multiplexer inputs in Figure 19.2 are controlled by two memory elements 
that are set during configuration. They select which input value is sent to the out
put. By connectiong large numbers of elements of this type, an interconnection 

a 

b 

out �
b 

out 

=> � 
2-input LUT AND gate 

FIGURE 19.1 ■ A 2-input LUT configured as an AND gate. 
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FIGURE 19.2 ■ A configurable 4-input multiplexer used in routing. 

network of the kind typically used to construct modern reconfigurable logic 
devices can be made. 

In various topologies, the ouputs of the multiplexers in the switch boxes feed 
the address inputs of the LUTs; the outptus of the LUTs, in turn, feed the inputs 
of the switch box multiplexers. This provides a basic reprogrammable archi
tecture capable of producing arbitrary logic functions, as well as the ability to 
interconnect these functions in a variety of ways. How complex a circuit a given 
reconfigurable logic device can implement is based on both the number of LUTs 
and the size and complexity of the interconnection fabric. 

In fact, the topology of the interconnect fabric and the implementation of the 
switch boxes is perhaps the defining characteristic of an FPGA architecture. Older 
FPGAs had a limited silicon area and few metal layers to supply wires. For this 
reason, the LUTs were typically "islands" of logic, with the interconnect wires 
running in the "channels" between them. Where these channels intersected were 
the switch boxes. How many wires to use and how to configure the switch boxes 
were the main work of the FPGA architect. Balancing the cost of more wires 
with the needs of typical digital circuit was important to making a cost-effective 
device that would be commercially successful. Covering as many potential circuit 
designs as possible at as high a speed as possible, but with the smallest silicon 
area, is still the challenge FPGA device architects must confront. 

In later silicon process generations, however, more metal layers were avail
able, which resulted in a much higher ratio of wires to logic in FPGAs. Where 
older generations of FPGAs often had a scarcity of interconnection resources, 
more modern FPGA devices seldom encounter circuits they are unable to imple
ment because of a lack of routing resources. And these wires now tend to run 
on top of the logic rather than in channels, which has led to higher circuit 
densities, a tighter integration between the switch boxes and the logic, and 
faster interconnect. 

The configuration bitstream data for the routing are essentially the multi
plexer inputs in these switch boxes. The memory for these MUX inputs tends 

cfg1 
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to be individual memory elements such as flip-flops scattered around the device 
as needed, establishing the basic bitstream for the FPGA: the LUT data plus the 
bits to control the routing multiplexers. 

While the multiplexer and switch boxes are the basic elements of modem 
FPGA devices, many other components are possible. One of the more popular 
is a configurable input/output block, or IOB. An IOB is typically connected to 
the end of one of the wires in the routing system on one side and to a physical 
device pin on the other. It is then configured to define the type of pin used by this 
device: either input or output. More complex IOBs can configure pin voltages 
and even parameters such as capacitance, and some even provide higher-level 
support for various serial communication protocols. Much like switch boxes, 
the configuration bitstream data for the IOBs are some collection of bits used 
to set flip-flops within them to select these features. 

In addition to IOBs, other, more special-purpose units have turned up in later 
generations of FPGA devices. Two prominent examples are block memory and 
multiplier units. Block memory (BlockRAM) is simply relatively large RAM units 
that are usually on the order of lK bits but can be implemented in any number 
of ways. The actual data bits may be part of the bitstream, which initializes 
the BlockRAM upon power-up. To reduce the size of the bitstream, however, 
this data may be absent and internal circuitry may be required to reset and 
initialize the BlockRAM. 

In addition to the internal data, the BlockRAM is typically interfaced to the 
switch boxes in various ways. Its location and interfacing to the interconnection 
network is a major architectural decision in modem reconfigurable logic device 
design. 

Because the multiplication function has become more popular in FPGA 
designs and because FPGAs are so inefficient at implementing such circuits, 
the addition of hardwired multiplier units into modem FPGA devices has been 
increasing. These units typically have no internal state or configuration, but are 
interfaced to the interconnection network in a manner similar to the BlockRAM 
interface. As with the BlockRAM, where to locate these resources and how many 
to include are major architectural decisions that can have a large impact on the 
size and efficiency of modem FPGAs. 

Many other features also find control bits in the FPGA bitstream. Some of 
these are global control related to configuration and reconfiguration; others are 
ID codes and error-checking information such as cyclic redundancy check codes. 
How these features are implented is very architecture dependent and can vary 
widely from device family to device family. One common feature is basic control 
for bit-level storage elements, often in the form of flip-flops on the LUT out
put. Various control bits often set circuit parameters such as the flip-flop type 
(D, JK, T) or the clock edge trigger type (rising or falling edge). The ability to 
chage the flip-flop into a transparent D-type latch is also a popular option. Each 
of these bits also contributes to the configuration data, with one set of flip-flop 
configuration settings per LUT being typical. 

Finally, while the items just discussed are the major standard units used to 
construct modem FPGA devices and define the configuration bitstream, there 
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TABLE 19.1 ■ Configuration bitstream sizes· 

Year Device Bits 

1986 XC2018 18 Kbits 

1988 XC3090 64 Kbits 

1990 XC4013 248 Kbits 

1994 XC4025 422 Kbits 

1996 XC4028 668 Kbits 

1998 XCVl000 6.1 Mbits 

2000 XCV3200 16 Mbits 

2003 XC2V8000 29 Mbits 

is no limit to the types of circuits and configurations possible. For example, an 
interest in analog FPGAs has resulted in unique architectures to perform analog 
signal processing. Also, some coarser-grained reconfigurable logic devices have 
moved up in granularity from LUTs to ALUs, and these devices have somewhat 
different bitstream structures. Other architectures have gone in the other direc
tion toward extremely fine-grained architectures. One notable device, the Xilinx 
XC6200, has a logic cell that is essentially a 2-input multiplexer. The balance of 
routing and logic in these devices has made them less attractive than coarser
grained devices, but they have not been reevaluated in the context of the denser 
routing available with newer multilayer metal processes and so may yet have 
some promise. 

As FPGA devices themselves have grown, so has the size of the configuration 
bitstreams. In fact, bitstream size can be a reasonable gauge of the size and 
complexity of the underlying device, which can be useful because it is a single 
number that is readily available. Table 19.1 gives some representative sizes of 
various bitstreams from members of the Xilinx family of FPGAs and the approx
imate dates they were introduced. 

19.2 DOWNLOADING MECHANISMS 

The FPGA configuration bitstream is typically saved externally in a nonvolatile 
memory such as an EPROM. The data are usually loaded into the device shortly 
after the initial power-up sequence, most often bit-serially. (This loading mech
anism may be the reason that many engineers perceive the configuration data 
as a "stream of bits.") The reason for serial loading is primarily one of cost and 
convenience. Since there is usually no particular hurry in loading the FPGA con
figuration data on power-up, using a single physical device pin for this data is 
the simplest, cheapest approach. Once the data are fully loaded, this pin may 
even be put into service as a standard 1/0 pin, thus preventing the configuration 
downloading mechanism from consuming valuable 1/0 resources on the device. 

A serial configuration download is the norm, but some FPGA devices have 
a parallel download mode that typically permits the use of eight 1/0 pins to 
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download configuration data in parallel. This may be helpful for designs that use 
an 8-bit memory device and for applications where reprogramming is common 
and speed is important-often the case when an FPGA is controlled by a host 
processor in a coprocessor arrangement. As with the serial approach, the pins 
may be returned to regular 1/0 duty once downloading is complete. 

One place where such high-bandwidth configuration is useful is in the device 
test in the factory. Testing FPGA devices after manufacture can be a very expen
sive task, mostly because of time spent attached to the test equipment. Thus, 
decreasing the configuration download time by a factor of eight may result in 
the FPGA manufacturer requiring substantially fewer pieces of test equipment, 
which can result in a significant cost savings during manufa�ture. Anecdotal evi
dence suggests that high-speed download is driven mostly by increased test effi
ciency and not by any customer requirements related to runtime reconfiguration. 

One type of device that is based on nonvolatile memory bears mention here. 
Rather than using RAM and flip-flops as the internal logic and control, commer
cially available devices from companies such as Actel use nonvolatile Flash-style 
internal configuration memory. These devices are programmed once and do not 
require reloading of configuration data on power-up, which can be important in 
systems that must be powered-up quickly. Such devices also tend to be more resis
tant to soft errors that can occur in volatile RAM devices. This makes them espe
cially popular in harsh environments such as space and military applications. 

19.3 SOFTWARE TO GENERATE CONFIGURATION DATA 

The software used to generate configuration bitstream data for FPGA devices is 
perhaps some of the most complex available. It usually consists of many layers 
of functionality and can run on the largest workstations for hours or even days 
to produce the output for a single design. While the details of this software are 
beyond the scope of this chapter, some of the way the software generates this 
bitstream will be briefly discussed in this section. 

The top-level input to the FPGA design software is most often a hardware 
description language (HDL) or a graphical circuit design created with a sche
matic capture package. This representation is usually then translated into a 
low-level description more closely related to the implementation technology. 
A common choice for this intermediate format is EDIF (Electronic Design Inter
change Format). This translation is fairly generic and such tools are widely 
available from a variety of software vendors. 

The EDIF description is still not suitable for directly programming the recon
figurable logic device. In the typical FPGA, the underlying circuit must be 
"mapped" onto the array of LUTs and switch boxes. While the actual implemen
tation may vary, the two basic processes for getting such abstract circuit descrip
tions into a physical representation of FPGA configuration data are placement/ 
routing and mapping. Figure 19.3 shows the basic flow of this process. 

Mapping refers to taking general logic descriptions and converting them into 
the bits used to fill in a LUT. This is sometimes referred to as "packing," because 
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Verilog/ 

VHDL 

compiler 

FIGURE 19.3 ■ The tool flow for producing the configuration bitstream. 

several small logic gates are often "packed" into a single LUT. There is also a 
notion of placement that decides which LUT should receive the data, but this 
may also be considered a part of the mapping process. 

Once the values for the LUTs have been decided, software can begin to decide 
how to interconnect the LUTs in a process called "routing." There are many 
algorithms of varying sophistication to perform routing, and factors such as 
circuit timing may be taken into account in the process. The result of the routing 
procedure is eventually used to supply the configuration data for the switch 
boxes. 

Of course, this description is highly simplified, and mapping and routing can 
take place in various interleaved phases and can be optimized in a wide variety 
of ways. Still, this is the essential process used to produce the configuration 
bitstream. Finally, data for configuring the IOBs are typically input in some 
form that is aware of the particular package being used for the FPGA device. 
Once all of this data have been defined and collected, they can be written out 
to a single file containing the configuration bitstream. 

As mentioned, FPGA configuration bitstream formats have almost always 
been proprietary. For this reason, the only tools available to perform bitstream 
generation tasks have been those supplied by the device manufacturer. The one 
notable exception is the Xilinx XC6200, which had an "open" bitstream. One 
of the XC6200's software tools was an application program interface (API) that 
permitted users to create configuration data or to even directly alter the config
uration of an XC6200 in operation mode. Some of this technology was trans
ferred to more mainstream Xilinx FPGAs and is available from Xilinx as a toolkit 
called JBits. 

JBits is a Java API into the configuration bitstream for the XC4000 and Virtex 
device families. With JBits, the actual values on LUTs and switch box settings, as 
well as all other microarchitectural components, could be directly programmed. 
While the control data could be used to produce a traditional bitstream file, 
they could also be accessed directly and changed dynamically. The JBits API 
not only permitted dynamic reconfiguration of the FPGA but also permitted 
third-party tools to be built for these devices for the first time. JBits was very 
popular with researchers and users with exotic design requirements, but it never 
achieved popular use as a mainstream tool, although many of its related toolkit 
components, including the debug tool and partial reconfiguration support, have 
found their way into more mainstream software. 

HDL 
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While the generation of bitstream data to configure an FPGA device is a very 
common activity, there has been very little information available on the details 
of either the configuration bitstream or the underlying FPGA architecture. Thus, 
the FPGA can best be viewed as a collection of microarchitecture components, 
chiefly LUTs and switch boxes. These components are configured by writing data 
to the LUT values and to control memories associated with the switch boxes. 
Setting these bits to various values results in custom digital circuits. 

A variety of tools and techniques are used to program reconfigurable logic 
devices, but all must eventually produce the relatively small configuration 
"bitstream" data the devices require. This data is in as rigid a format as any 
binary execution data for a microprocessor, but this format is typically proprie
tary and unpublished. While direct examination of actual commercial bitstream 
data is largely impossible, the general structure and the microarchitecture com
ponents configured by this data can be examined, at least in the abstract. 
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CH APTER 20 

Most users rely on sophisticated CAD tools to implement their circuits on 
field-programmable gate arrays (FPGAs). Unfortunately, since each of these tools 
must perform reasonably complex optimization, the entire process can take a 
long time. Although fairly slow compilation is fine for the majority of current 
FPGA users, there are many situations that demand more efficient techniques. 
Looking into the future, we see that faster CAD tools will become necessary for 
many different reasons. 

FPGA scaling. Modem reconfigurable devices have a much larger capacity com
pared to those from even a few years ago, and this trend is expected 
to continue. To handle the dramatic increase in problem size, while main
taining current usability and compilation times, smarter and more efficient 
techniques are required. 

Hardware prototyping and logic emulation systems. These are very large 
multi-FPGA systems used for design verification during the development 
of other complex hardware devices such as next-generation processors. 
They present a challenging CAD problem both because of the sheer number 
of FPGAs in the system and because the compilation time for the design 
is part of the user's debug cycle. That is, the CAD tool time directly affects 
the usability of the system as a whole. 

Instance-specific design. Instance-specific designs are applications where a given 
circuit can only solve one particular occurrence of a problem. Because 
of this, every individual hardware implementation must be created and 
mapped as the problems are presented. Thus, the true solution time for 
any specific example includes the netlist compilation time. 

Runtime netlist compilation. Reconfigurable computing systems are often con
structed with an FPGA or an array of FPGAs alongside a conventional pro
cessor. Multiple programs could be running in the system simultaneously, 
each potentially sharing the reconfigurable fabric. In some of the most 
aggressive systems, portions of a program are individually mapped to the 
FPGA while the instructions are in flight. This creates a need for almost 
real-time compilation techniques. 

For each of these systems, the runtime of the CAD tools is a clear concern. In 
this chapter, we consider each scenario and cover techniques to accelerate the 
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various steps in the mapping flow. These techniques range from fairly cost-neutral 
optimizations that speed the CAD flow without greatly impacting circuit quality 
to more aggressive optimizations that can significantly accelerate compilation 
time but also appreciably degrade mapping quality. 

FPGA scaling 
The mere scaling of VLSI technology itself has created part of the burden 
for conventional FPGA CAD tools. Fulfilling Moore's Law, improvements in 
lithography and manufacturing techniques have radically increased the capa-
bilities of integrated circuits over the last four decades. Of course, just as these 
advancements have increased the performance of desktop computers, they have 
increased the logic capacity of FPGAs. Correspondingly, the size of desired appli
cations has also increased. Because of this simultaneous scaling across the 
industry, reconfigurable devices and their applications become physically larger 
at approximately the same rate that general-purpose processors become faster. 

Unfortunately, this does not mean that the time required to compile a modem 
FPGA design on a modem processor stays the same. Over a particular period 
of time, desktop computers and compute servers will become twice as fast and, 
concurrently, FPGA architectures and user circuits will double in size. Since the 
complexity of many classical design compilation techniques scale super-linearly 
with problem size, however, the relative runtime for mapping contemporary 
applications using contemporary machines will naturally rise. 

To continue to provide reasonable design compilation time across multiple 
FPGA generations, changes must be made to prevent a gap between available 
computational power and netlist compilation complexity. However, although 
application engineers depend on compilation times of at most a few hours to 
meet fast production timelines, they also have expectations about the usable 
logic block density and achievable clock frequency for their applications. Thus, 
any algorithmic improvements or architectural changes made to speed up the 
mapping process cannot come at the cost of dramatically increased critical-path 
timing or reduced mapping density. 

Hardware prototyping and logic emulation systems 
The issue of nonscalable compilation is even more obvious in large prototyping 
or logic emulation systems. These devices integrate multiple FPGAs into a single 
system, harnessing tens to thousands. As Chapter 30 discusses in more detail, the 
fundamental size of typical circuits on these architectures suggests fast mapping 
techniques. However, even more critical, the compilation time of the netlists them
selves may become a limiting factor in the basic usefulness of the entire system. 

Hardware prototyping is often employed for many reasons. One of the greatest 
advantages of hardware emulation over software simulation is its extremely fast 
validation time. During the design and debug cycle of hardware development, 
hundreds of thousands of test vectors may be applied to ensure that a given 
implementation complies with design specifications. Although an FPGA-based 
prototyping system cannot be expected to achieve anywhere near the clock rate 
of the dedicated final product, the sheer volume of tests that need to be performed 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 433



Chapter 20 ■ Fast Compilation Techniques 413 

every time a change is made to the system makes software simulation too slow 
to have inside the engineering design loop. That said, software simulation code 
can easily accommodate design updates and, more important, the changes have 
a predictable compilation time of minutes to hours, not hours to days. Still, since 
reconfigurable logic emulation systems maintain such a runtime advantage over 
software simulation, prototyping designers are willing to exchange some of the 
classical FPGA metrics of implementation quality, critical-path timing, and logical 
density for faster and more predictable compilation time. 

Instance-specific design 
Similar to logic emulation systems, the netlist compilation time of instance
specific circuits can greatly affect the overall value of an FPGA-based implemen
tation. For example, although Boolean satisfiability is NP-complete, the massive 
parallelism offered by reconfigurable fabrics can often solve these problems 
extremely quickly-potentially on the order of milliseconds (see Chapter 29). 
Unfortunately, these FPGA implementations are equation-specific, so the time 
required to solve any given SAT problem is not determined by the vanishingly 
short runtime of the actual mapped circuit running on a reconfigurable device, 
but instead is dominated by the compilation time required to obtain the pro
gramming bitstream in the first place-potentially on the order of hours. 

Because of this reliance on netlist compilation, the Boolean satisfiability prob
lem differs strongly from more traditional reconfigurable computing applications 
for two reasons. 

First, if we disregard compilation time, FPGA-based SAT solvers can obtain 
two to three orders of magnitude better performance than software-based solu
tions. Thus, the critical path and, by extension, the overall quality of the mapping 
in the classical sense are virtually irrelevant. As long as compilation results in any

valid mapping, the vast majority of the performance benefit will be maintained. 
While some effort is required to reliably produce mutable circuits, we can make 
huge concessions in terms of circuit quality in the name of speeding compila
tion. Mappings that are quickly produced, but possibly slow, will still drastically 
improve the overall solution runtime. 

Second, features of the SAT problem itself suggest that application-specific 
approaches might be worthwhile. For example, because SAT solvers typically have 
very structured forms, fast SAT-specific CAD tools can be created. One possibility 
is the use of preplaced and prerouted SAT-specialized macros that simply need 
to be assembled together to create the overall system. To extend the concept of 
application-specialized tuning to its logical end, architectural changes can even be 
made to the reconfigurable fabric itself to make the device particularly amenable 
to simple, fast mapping techniques. That said, the large engineering effort this 
would involve must be weighed against the possible benefits. 

Runtime netlist compilation 
All reconfigurable computing systems have a certain amount of overhead that eats 
away at their performance benefit. Although kernel execution might be blindingly 
fast once started on the reconfigurable logic, its overall benefit is limited by the 
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need to profile operations, transfer data, and configure or reconfigure the FPGA. 
Reconfigurable computing systems that use dynamically compiled applications 
have the additional burden of runtime netlist compilation. These systems only 
map application kernels to the hardware during actual system execution, in the 
hope that runtime data, such as system loads, resource availability, and execu
tion profiles, can improve the resultant speedups provided by the hardware. Their 
almost real-time requirements demand the absolutely fastest compilation tech
niques. Thus, even more so than instance-specific designs, these systems are only 
concerned with compilation speed. 

Mapping stages 
When evaluating mapping techniques for high-speed circuit compilation, we have 
to remember that the individual tools are part of a larger system. Therefore, any 
quality degradation in an early stage may not only limit the performance of the 
final mapping, but also make subsequent compilation problems more difficult. If 
these later mapping phases are more difficult, they may require a longer runtime, 
oveiwhelming the speedups achieved in earlier steps. For example, a poor-quality 
placement obtained very quickly will likely make the routing problem harder. 
Since we are interested in reducing the runtime of the compilation phase as a 
whole, we must ensure that we do not simply trade placement runtime for routing 
runtime. We may even run the risk of increasing total compilation time, since 
a very poor placement might be impossible to route, necessitating an additional 
placement and routing attempt. 

Although logic synthesis, technology mapping, and logic block packing are 
considered absolutely necessary parts of a modern, general-use FPGA compiler 
flow, the majority of research into fast compilation has been focused on efficient 
placement and routing techniques. Not only do the placement and routing phases 
make up a large portion of the overall mapping runtime, in some cases the other 
steps can be considered either unsuitable or unnecessary to accelerate. Some
times high-level synthesis and technology mapping may be unnecessary because 
designs are assumed to be implemented in low-level languages, or it is assumed 
that they can be performed offline and thus outside the task's critical path. Fur
thermore, although logic synthesis and technology mapping can be very difficult 
problems by themselves, they are also common to all hardware CAD tools-not 
just FPGA-based technologies. On the other hand, placement and routing tools 
for reconfigurable devices have to deal with architectural restrictions not present 
in conventional standard cell tools, and thus generally must be accelerated with 
unique approaches. 

20. 1 ACCELERATING CLASSICAL TECHNIQUES 

An obvious starting point to improve the runtime of netlist compilation is to 
make minor algorithmic changes to accelerate the classical techniques already in 
use. For example, simulated annealing placement has some obvious parameters 
that can be changed to reduce overall runtime. The initial annealing temperature 
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can be lowered, the freezing point can be increased, the cooling schedule can 
be accelerated, or the number of moves per iteration can be reduced. These 
approaches all tend to speed up the annealing, but at some cost to placement 
quality. 

20.1.1 Accelerating Simulated Annealing 

Because of the adaptive nature of modem simulated annealing temperature 
schemes, any changes made to the structure of the cooling schedule itself can 
have unreliable runtime behavior. Not only have the settings of initial and final 
temperatures been carefully selected to thoroughly explore the solution space, 
changing these values may dramatically affect final placement quality while still 
not guaranteeing satisfactorily shorter runtime. 

As described in Chapter 14, VPR updates the current temperature based on 
the fraction of moves accepted out of those attempted during a given iter
ation. Thus, decreasing the initial temperature cuts off the phase in which 
sweeping changes can easily occur early in the annealing. Simply starting the 
system at a lower initial temperature may cause the annealing to compensate 
by lingering longer at moderately high temperatures. Similarly, modifying the 
cooling schedule to migrate toward freezing faster fundamentally goes against 
the basic premise of simulated annealing itself. This will have an unpredictable, 
and likely undesirable, effect on solution quality. 

It is generally accepted that the most predictable way to scale simulated 
annealing effort is by manipulating the number of moves attempted per temper
ature iteration. For example, in VPR the number of moves in a given iteration 
is always based on the size of the input netlist: O(n l .33). The annealing effort
is simply adjusted by scaling up or down the multiplicative constant portion of 
this value. In VPR, the "fast" placement option simply divides the default value 
by 10, which in testing indeed reduces the overall placement time by a factor of 
10 while affecting final circuit quality by less than 10 percent [3]. Furthermore, 
as shown by Mulpuri and Hauck [12], simply changing the number of moves per 
iteration allows a continuous and relatively predictable spectrum of placement 
effort versus placement quality results. 

Haldar and colleagues [ 11] exploited a very similar phenomenon to reduce 
mapping time by distributing the simulated annealing effort across multiple 
processors. In the strictest sense, simulated annealing is very difficult to par
allelize because it attempts sequential changes to a given placement in order to 
slowly improve the overall wirelength. To be most faithful to this process while 
attempting multiple changes simultaneously, different processors must try non
overlapping changes to the system; otherwise, multiple processors may try to 
move the same block to two different locations or two different blocks to the 
same location. Not only is this type of coordination typically very difficult to 
enforce, it also generally requires a large amount of communication between 
processors. Since all processors begin each move operating on the same place
ment, they all must communicate any changes that are made after each step. 
However, a slightly less faithful but far simpler approach can take advantage of 
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the idea that reducing the number of moves attempted per temperature iteration 
can gracefully reduce runtime. 

In this case, all of the processors agree upon a single placement to begin a 
temperature iteration. At this point, though, each processor performs simulated 
annealing independently of the others. To reduce the overall runtime, given N
processors, each only attempts 1/N of the originally intended moves per iteration. 
At the end of the iteration, the placements discovered by all of the processors are 
compared and the best one is broadcasted to the rest for use during the next 
iteration. This greatly reduces the communication overhead and produces nearly 
linear speedup for two to four processors while reducing placement quality by 
only 10 to 25 percent [11]. 

Wrighton and DeHon [19] also parallelized the simulated annealing process, 
but approached the problem in a completely different manner. In this case, 
instead of attempting to develop parallel software, they actually configure an 
FPGA to find its own placement for a netlist. They divide a large array into 
distinct processing elements that will each keep track of one node in a small 
netlist. In their testing, the logic required to trace the inputs and outputs of a 
single LUT required approximately 400 LUTs. Because every processing element 
represents the logic held at a single location in the array, a large emulation sys
tem consisting of approximately 400 FPGAs can place a netlist for one device at 
a time, or one large FPGA can place a netlist requiring approximately 1/400 of 
the array.· 

Each processing element is responsible for keeping track of both the block 
in the netlist currently mapped to that location and the position of the sinks of 
the net sourced by this block. During a given timestep, each processing element 
determines the wirelength of its output net by evaluating the location of all of its 
sinks; the entire system is then perturbed in parallel by allowing each location to 
negotiate a possible swap with its neighbors. Just as in conventional simulated 
annealing, good moves are always accepted and bad moves are accepted with a 
probability dependent on the annealing temperature and how much worse the 
move makes the system as a whole. Similarly, although swaps can only be made 
one nearest neighbor to another, any block can eventually migrate to any other 
location in the array through multiple swaps. The system avoids having two blocks 
attempt to occupy the same location by always negotiating swaps pairwise. 

As shown in Figure 20.1, a block negotiates a swap with each of its neighbors 
in tum. Phases 1 and 2 may swap blocks to the left or right, while phases 3 and 
4 may swap with a neighbor above or below. 

We should note that although very similar to the classical simulated annealing 
model, this arrangement does not necessarily calculate placement cost in the 
same way. The net bounding box calculated at each timestep cannot take into 
account the potential simultaneous movement of all the other blocks to which 
it is connected. That said, whatever inaccuracies might be introduced by this 
computation difference are relatively small. 

Of much greater importance is the problem caused by communication band
width. It is possible that in a given timestep every processing element decides to 
swap with its neighbor. If this is the case, the location of all sinks will change. 
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FIGURE 20.1 ■ Swap negotiation in hardware-assisted placement. (Source, Based on an illustration in 
Wrighton and DeHon [19]). 

FIGURE 20.2 ■ Location update chain. (Source: Based on an illustration in Wrighton and DeHon (19]). 

To keep completely consistent recordkeeping with conventional simulated 
annealing, this requires each processing element to notify its nets' sources of the 
block's new location. Of course, this creates a huge communication overhead. 
However, this can be avoided if the processing elements are allowed to calculate 
wirelength based on stale location information. 

As shown in Figure 20.2, instead of a huge broadcast each time a block is 
relocated, position information marches through the system in a linear fashion. 
As blocks are moved during the annealing process, new positions for each one 
are communicated to other blocks via a dedicated location update chain. Thus, 
if the system has N processing elements, it might take N clock cycles before 
all relevant processing elements see the new placement of that block. Since the 
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processing elements are still calculating further moves, this means up to N cycles 
of stale data. Because of these inaccuracies, compared with a fast VPR run, this 
hardware-based simulated annealing system generally requires 36 percent more 
routing tracks to implement the same circuits. However, it also is three to four 
orders of magnitude faster. 

As mentioned earlier, classical simulated annealing techniques have been very 
carefully tuned to produce high-quality placements. Most of the methodologies 
we have covered to accelerate simulated annealing rely on reducing the number 
of moves attempted. Thus, while they can produce reasonable placements quickly 
for current circuits, they do not necessarily perform well for all applications. 

Mulpuri and Hauck [12] demonstrated that, while we may be able to reduce 
· the number of moves per temperature iteration by a factor of 10 with little effect
on routability, if we continue to reduce the placement effort, the quality of the
placement drops off severely. The conclusion to be drawn is that, acceleration
approaches, although reasonable for dealing with FPGA scaling in the short term,
are not a permanent solution. Applying them on increasing netlist and device
sizes will eventually lead to worse and worse placements, and, furthermore, they
simply do not have the capability to produce useable placements quickly enough
for either runtime netlist compilation or most instance-specific circuits.

On the other hand, hardware-assisted simulated annealing seems far more 
promising. Although this technique introduces some inaccuracy in cost calcula
tion because of both simultaneously negotiated moves and stale location infor
mation, the effect of these factors is relatively predictable. The error introduced 
by simultaneous moves will always be relatively small because all swaps are per
formed between nearest neighbors. Also, the error introduced by stale location 
information scales linearly with netlist size. This means not only that such infor
mation will likely cause the placement quality to degrade gracefully but also 
that we can reduce this inaccuracy relatively easily by adding additional update 
paths, perhaps even a bidirectional communication network that quickly informs 
both forward and backward neighbors of a moved element. Since we hope that 
the majority of nets will cover a relatively small area, this should considerably 
reduce inaccurate cost calculation due to stale location information. 

These trade-offs make hardware-assisted annealing an interesting possibil
ity. Although it may impose a significant quality cost, that cost may not grow 
with increased system capacity, and it may be one of the only approaches that 
provide the drastic speedups necessary for both runtime netlist compilation 
and instance-specific circuits. This may make it of particular interest for future 
nanotechnology systems (see Chapter 38). 

20. 1.2 Accelerating Pathfinder

Just as in placement, minor alterations can be made to classical routing algo
rithms to improve their runtime. Some extremely simple modifications may 
speed routing without affecting overall quality, or they may reduce routability in 
a graceful and predictable manner. Swartz et al. [15] suggest sorting the nets to 
be routed in order of decreasing fanout instead of simply arbitrarily. Although 

-
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high fanout nets generally make up a small fraction of a circuit, they typically 
monopolize a large portion of the routing runtime. By routing these compar
atively difficult nets first in a given iteration, they may be presented with the 
lowest congestion cost and thus take the most direct and easily found paths. 
Lower fanout nets tend to be more localized, so they can deal with congestion 
more easily and their search time is comparatively smaller. This tends to speed 
overall routing, but since no changes are made to the actual search algorithm, 
it is not expected to affect mutability. 

Conversely, Swartz et al. [15] also suggest scaling present sharing and his
tory costs more quickly between routing iterations. As discussed in Chapter 17, 
PathFinder gradually increases the cost of using congested nodes to discourage 
sharing over multiple iterations. Increasing present sharing and history costs 
more aggressively emphasizes removing congestion over route exploration. This 
may potentially decrease achievable mutability, but the system may converge on 
a legal routing more quickly. 

One of the most effective changes that can be made to conventional Dijkstra
based routing approaches is limiting the expansion of the search. Ignoring con
gestion, in most island-style FPGAs it is unnecessary for a given net to use routing 
resources outside the bounding box formed by its terminals. Of course, conges
tion must be resolved to obtain a feasible mapping, but given the routing-rich 
nature of modem reconfigurable devices, and assuming that routing is performed 
on a reasonable placement, the area formed by a net's bounding box is most likely 
to be used. 

However, traditional Dijkstra's searches expand from the source of a net evenly 
in all directions. Given that the source of a 2-terminal net must lie on the edge 
of the bounding box, this is obviously wasteful since, again ignoring congestion 
costs, the search essentially progresses as concentric rings-most of which lie in 
the incorrect direction for finding the sink. As shown in Figure 20.3, it is unlikely 
that a useful route will require such a meandering path. If we would like to find 
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FIGURE 20.3 ■ A conventional routing search wave. 
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a route between blocks S and K, it is most likely that we will be able to find 
a direct route between them. Thus, we should direct the majority of our efforts 
upward and to the right before exploring downward or to the left. As described in 
Chapter 17, this is the motivation for adding A* enhancements to the PathFinder 
algorithm. However, this concept can be taken even further by formally preventing 
searches from extending very far beyond the net's bounding box. 

According to Betz et al. [3], a reasonable fixed limitation can prevent an explo
ration from visiting routing channels more than three steps outside of a net's 
bounding .box. Although this technique may degrade mutability under condi
. tions of very high congestion, such situations may not be encountered. An archi
tecture might h�ve sufficient resources so that high-stress routing situations are 
never created, particularly in scenarios where the user is willing to reduce the 
amount of logic mapped to an FPGA to improve compilation runtimes. 

Slightly more difficult to manage is the case of multi-terminal nets. Although the 
scope of a multisink search as a whole may be limited by the net's bounding box, 
this only alleviates one source of typically unnecessary exploration. PathFinder 
generally sorts the sinks of a multi-terminal net by Manhattan distance. However, 
each time a sink is discovered, the search for the next sink is restarted based 
on the entire routing tree found up to that point. As shown in Figure 20.4, this 
creates a wide search ring that is explored and reexplored each time a new sink 
is discovered, which is particularly problematic for high-fanout nets. 

If we consider the new sink and the closest portion of the existing routing 
tree to be almost a 2-terminal net by itself, we can further reduce the amount 
of extraneous exploration. Swartz et al. [15] suggest splitting the bounding box 
of multi-terminal nets into gridlik(! bins. As shown in Figure 20.5, after a sink is 
found, a new search is launched for the next furthest sink, but explorations are 
only started from the portion of the routing tree contained in the bin closest to 
the new target. In our example, after a route to Kl is found, only the portion 
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of the existing path in the topmost bin is used to launch a search for K2. The 
process of restricting the initialization of the search is repeated to firid a route 
to K3. This may result in slightly longer branches, but, again, it is not an issue 
in low-stress routing situations. 

Although potentially very effective, all of these techniques only attempt to 
improve the · time required to route a single net. As described in Chapter 17, 
however, the PathFinder algorithm is relatively amenable to parallel process
ing. Chan et al. [7] showed that we can simply split the nets of a given circuit 
among multiple processors and allow each to route its nets mostly independently 
of the others. Similarly to what happens in parallel simulated annealing, com
plete faithfulness to the original PathFinder algorithm requires a large amount 
of communication bandwidth. This is because we have no guarantees that one 
processor will not attempt to route a signal on the same wire as another proces
sor during a given iteration unless they are in constant communication with each 
other. However, because PathFinder already has a mechanism to discourage the 
overuse of routing resources between different nets over multiple iterations, such 
continuous communication is unnecessary. We can allow multiple processors to 
operate independently of one another for an entire routing iteration. 

When all processors have routed all of their nets, we can simply determine 
which nodes were accidentally shared by different processors and increase their 
present sharing and history costs appropriately. Just as it discourages sharing 
between nets in classical single-processor PathFinder, this gradually discourages 
sharing between different processors over multiple iterations. We are using the 
built-in conflict-resolution mechanism in a slightly different way, but this allows 
us to reduce the communication overhead considerably. That said, after we have 
resolved the large-scale congestion in the system, the last few routing iterations 
likely must be performed on a single processor using conventional PathFinder. 

rD 0 
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Overall, these techniques are extremely effective on modem FPGAs. Most of 
today's reconfigurable architectures include a wealth of routing resources that are 
sufficient for a wide range of applications. Because of this, all of these approaches 
to accelerating PathFinder-style routing produce good results. Ordering of nets, 
fast growth of present sharing and history costs, and limiting the scope of 
exploration to net bounding boxes are common in modem FPGA routing tools. 
Unfortunately, however, they are still not fast enough for the most demanding 
applications such as runtime netlist compilation. Even the parallel technique 
outlined here has an unavoidable serial component. Thus, while such techniques 
may be adequate to produce results for next-generation FPGAs or hardware pro
totyping systems, they must be much faster if we are to make runtime netlist 
compilation practical. 

20.2 ALTERNATIVE ALGORITHMS 

Although classical mapping techniques have proven that they can achieve high
quality results, there is a limit to their acceleration through conventional means 
if we want to maintain acceptable quality for many applications. For example, 
in the case of placement the number of moves attempted in the inner loop of 
simulated annealing can only be reduced to a certain point before solution quality 
is no longer acceptable. While the runtime on a single processor can be cut by 
a factor of 10 with relatively little change in terms of routability or critical-path 
timing, even such modest degradation may not meet the most demanding design 
constraints. Furthermore, as discussed earlier, attempting to scale this technique 
beyond the 1 Ox point generally results in markedly lower quality because the 
algorithm simply does not have sufficient time to adequately explore the solution 
space. To achieve further runtime improvements without resorting to potentially 
complex parallel implementations and without abandoning solution quality, we 
must make fundamental algorithmic changes. 

20.2.1 Multiphase Solutions 

One of the most popular ways to accelerate placement is to break the process 
into multiple phases, each handled by a different algorithm. Although many 
techniques use this method, a common thread among them all is that large
scale optimization is performed first by a fast but relatively imprecise algorithm. 
Slower, more accurate algorithms are reserved for local, small-scale refinement 
as a secondary step. A good example of this approach is shown in papers such 
as that by Xu and Kalid [20]. Here, the authors use a quadratic technique to 
obtain a rough placement and then work toward a better solution with a short 
simulated annealing phase. 

In quadratic placement, the connections between blocks in the netlist are con
verted into linear equations, any valid solution to which indicates the position 
of each block. A good placement solution is found by solving the matrix equa
tions while attempting to minimize another function: the sum of the squared 
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wirelength for each net. Unfortunately, one of the problems with this approach 
is that, in order for the equations to be solved quickly, they must be uncon
strained. Thus, the placements found directly from the quadratic solver will 
likely have many blocks that overlap. 

Xu and Kalid [20] identify these overlapping cells and, over multiple iterations, 
slowly add equations that force them to move apart. This is a comparatively fast 
process, but the additional placement legalization factors are added somewhat 
arbitrarily. Thus, although the quadratic placement might have gotten all of the 
blocks in roughly the correct area, there is still quite a bit of room for wirelength 
and timing improvements. 

In contrast, while simulated annealing produces very good results, much of 
the runtime is devoted to simply making sense of a random initial placement. 
By combining the two approaches, and starting a low-temperature annealing 
only after we obtain a reasonable initial placement from the quadratic solver 
phase, we can drastically reduce runtime and still maintain the majority of 
the solution quality. Similar approaches can substitute force-directed placement 
for large-scale optimization or completely greedy optimization for small-scale 
improvement [12]. 

Another way to quickly obtain relatively high-quality initial placements is with 
partitioning-based approaches. As mentioned in Chapter 14, although recursive 
bipartitioning can be performed very quickly, reducing the number of signals 
cut by the partitions is not necessarily the same thing as minimizing wirelength 
or critical path delay. A similar but more sophisticated method is also discussed 
in Chapter 14. In hierarchical placement, as described by Sankar and Rose [13], 
the logical resources of a reconfigurable architecture are roughly divided into 
K separate regions. Multiple clustering steps then assign the netlist blocks into 
groups of approximately the correct size for the K logical areas. At this point, 
the clusters themselves can be moved around via annealing, assuming that all 
of the blocks in a cluster are at the center of the region. 

This annealing can be performed very quickly since the number of clusters 
is relatively small compared to the number of logic blocks in the netlist. We 
can obtain a relatively good logic block-level placement by taking the cluster
level placement and decomposing it. Here, we can take each cluster in turn and 
arbitrarily place every block somewhere within the region assigned to it earlier. 
This initial placement can then be refined with a low-temperature annealing. 

Purely mechanical clustering techniques are not the only way to group related 
logic together and obtain rough placements very quickly. In fact, the initial 
design specification itself holds valuable information concerning how the cir
cuit is constructed and how it might best be laid out. Unfortunately, this knowl
edge is typically lost in the conventional tool flow. Regardless of whether they 
are using a high-level or low-level hardware description language, the orga
nizational methods of humans naturally form top-level designs by connecting 
multiple large modules together. These large modules are, in turn, also created 
from lower-level modules. However, information about the overall design orga
nization is generally not passed down through logical synthesis and technology 
mapping tools. 
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Packing, placement, and routing are typically performed on a completely 
flattened netlist of basic logic blocks. However, as suggested in works by Gehring 
and Ludwig and colleagues [10] and Callahan et al. [6], for example, for most 
applications this innate hierarchy can suggest which pieces are heavily intercon
nected and should be kept close together during the mapping process. Further
more, information about multiple instances of the same module can be used to 
speed the physical design process. 

The datapath-oriented methodology described in Chapter 15 uses a closely 
related concept to help design highly structured computations. In datapath com
position, the entire CAD toolflow, from initial algorithm specification to floor
planning to placement, is centered on building coarse-grained objects that have 
obvious, simple relationships to one another. The entire computation is built 
from regular, snap-together tiles that can be arranged in essentially the same 
order in which they appear in the input dataflow graph. Although many applica
tions simply do not fit the restrictive nature of the datapath computation model, 
applications that can be implemented in this way benefit greatly from the highly 
regular structures these tools create. 

There may not be as much regularity in most applications, but we can still use 
organizational information to accelerate both placement and routing. At the very 
least, such information provides some top-level hints to reasonable clustering 
boundaries and can be used to roughly floorplan large designs. In some sense, 
this is exactly the aim of hierarchical placement, although it attempts to accom
plish this without any a priori knowledge. Extending this idea, for very large 
systems we can use these natural boundaries to create multiple, more or less 
independent top-level placement problems. Even if we place each of the large 
system-level modules serially on a single processor, it is likely that, because of 
nonlinear growth in problem complexity, the total runtime will still be smaller 
than if we had performed one large, unified placement. 

We can also employ implicit organizational information on a smaller scale 
in a bottom-up fashion. For example, many modem FPGAs contain dedicated 
fast carry-chain logic between neighboring cells. To use these structures, how
ever, the cells must be placed in consecutive vertical logic block locations. If 
we were to begin with a random initial placement for a multibit adder, we 
would probably not find the optimal single-column placement despite the fact 
that, based on higher-level information, the best organization is obvious. Such 
very common operations can be identified and then p�placed and routed with 
known good solutions. These blocks then become hard macros. Less common or 
larger calculations can be identified and turned into soft macros. As suggested by 
projects such as Tessier's [17], using the high-level knowledge of macros within 
a hierarchical-style placement tool can improve runtime by a factor of up to 50 
without affecting solution quality. 

Still, while macro identification can significantly improve placement run
time, its effect on routing runtime is likely negligible. Soft macros still need 
to be routed because each instance may be of a different shape. Furthermore, 
although hard macros do not need to be repeatedly routed, and may be relatively 
common, their nets represent a small portion of the overall runtime because 
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they are typically short and are simple to route. Rather, to substantially improve 
routing runtime we need to address the nets that consume the largest portion of 
the computational effort-high-fanout nets. As discussed earlier, multi-terminal 
nets present a host of problems for routers such as PathFinder. In many circuits, 
the routing time for one or two extremely high-fanout nets can be a significant 
portion of the overall routing runtime. However, this effort might be unnecessary 
since, even though these nets are ripped up and rerouted in every iteration, they 
go nearly everywhere within their bounding box. This means that virtually all 
legal routing scenarios will create a relatively even distribution of traffic within 
this region and none are markedly better than any other. For this reason, we can 
easily route these high-fanout nets once at the beginning of the routing phase 
and then exclude them from following a conventional PathFinder run without 
seriously affecting overall routability. At the very least, if we do not want to put 
these nets completely outside the control of PathFinder congestion resolution, 
we can rip up and reroute them less frequently, perhaps every other or every 
third iteration. 

Regardless of how the placement and routing problem is divided into simpler 
subproblems, multiphase approaches are the most promising way to deal with 
the issues associated with FPGA technology scaling. Of course, when possible 
it is best to gather implicit hierarchical information directly from the source 
hardware description language specification. This not only allows us to create 
both hard and soft macros very easily, but gives strong hints regarding hdw 
large designs might be floorplanned. That said, we may not have information 
regarding high-level module organization. In . these cases we can fall back on 
hierarchical or partitioning placement techniques to make subsequent annealing 
problems much more manageable. All of these placement methodologies scale 
very well, and they represent algorithms that can solve the most pressing issues 
presented by growing reconfigurable devices and netlists. 

When applicable, constructive techniques, such as the datapath-oriented 
methodology described in Chapter 15, or macro-based approaches can· be 
very useful for mapping hardware prototyping systems and instance-specific 

· circuits. 11.ese methodologies naturally produce reasonable placements very
quickly. Becaui.e hardware emulation systems and instance-specific circuits do
not necessarily need optimal area or timing results, these techniques often pro
duce placements that can be used directly without the need for subsequent
refinement steps.

20.2.2 Incremental Place and Route 

Incremental placement and routing techniques attempt to reduce compilation 
time by combining and extending the same ideas exploited by multiphase com
pilation approaches: (1) begin with a known reasonable placement and (2) avoid 
ripping up and rerouting as many nets as possible. 

In many situations, multiple similar versions of a given circuit might be 
placed and routed several times. In the case of hardware emulation, for example, 
it is unlikely that large portions of the circuit will change between consecutive 
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designs. Far more likely is that small bug fixes or local modifications will be 
made to specific portions of the circuit, leaving the vast majority of the design 
completely unchanged. Incremental placement and routing methodologies iden
tify those portions of a circuit that have not changed from a previous mapping 
and attempt to integrate the changed portions in the least disruptive manner. 
This allows successive design updates to be compiled very quickly and mini
mizes the likelihood of dramatic changes to the characteristics of the resultant 
mapping. 

The key to incremental mapping techniques is to modify an existing place
ment as little as possible while still finding good locations for newly introduced 
parts. The largest hurdle to this is merely finding a legal placement for all new 
blocks. If the changes reduce the overall size of the resulting circuit, any new 
logic blocks can simply fit into the void left by the old section. However, if the 
overall design becomes larger, the mapping process is more complex. Although 
the extra blocks can simply be dropped into any available location on the chip, 
this will probably result in poor timing and mutability. Thus, incremental map
ping techniques generally use simple algorithms to slightly move blocks and 
make vacant locations migrate toward the modified sections of the circuit. 

The most basic approaches, such as those described by Choy et al. [ 4], deter
mine where the closest empty logic block locations are and then simply slide 
intervening blocks toward these vacancies to create space where it is needed. 
Singh and Brown [14] use a slightly more sophisticated approach that employs a 
stochastic hill-climbing methodology, similar to a restricted simulated annealing 
run. This algorithm takes into account where additional resources are needed, 
the estimated critical path of the circuit, and the estimated required wirelength. 
In this way, logic blqcks along noncritical paths will preferentially be moved to 
make room for the added logic. 

Incremental techniques not only speed up the placement process, but can 
accelerate routing as well. Because so much of the placement is not dis
turbed, the nets associated with those logic blocks do not necessarily have to be 
rerouted. Initially, the algorithm can attempt to route only the nets a�'lm.t.�d 
with new or moved logic blocks. If this fails, or produce� 11I1acceptable timing·· 
results, the algorithm can slowly rip up nets that t:rwel through congested or 
heavily used areas and try again. Either way, it wj}l liRely need to reroute only 
a very small portion of the overall circuit. 

Unfortunately, there are many situations in which we do not have the prior 
information necessary to use incremental mapping techniques. For example, 
the very first compilation of a netlist must be performed from scratch. Further
more, it is a good idea to periodically perform a complete placement and routing 
run, because applying multiple local piecework changes, one on top of another, 
can eventually lead to disappointing global results. However, as mentioned ear
lier, incremental compilation is ideal for hardware prototyping systems because 
they are typically updated very frequently with minor changes. This behavior 
also occurs in many other development scenarios, which is why incremental 
compilation is a common technique to accelerate the engineering/debugging 
design loop. 
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However, there are some situations in which it is very difficult to apply 
incremental approaches. For example, these techniques rely on the ability to 
determine what portions of a circuit do or do not change between design revi
sions. Not only can merely finding these similarities be a difficult problem, we 
must also be able to carefully control how high-level synthesis, technology map
ping, and logic block packing are performed. These portions of the mapping 

. process must be aware when incremental placement and routing is going to be 
attempted, and when major changes have been made to the netlist and placement 
and routing should be attempted from scratch. 

20.3 EFFECT OF ARCHITECTURE 

Although we have considered many algorithmic changes that can improve com
pilation runtime, we should also consider the underlying reasons that the FPGA 
mapping problem is so difficult. Compared to standard cell designs, FPGAs are 
much more restrictive because the logic and routing are fixed. Technology map
ping must target the lookup tables (LUTs) and small computational cores avail
able on a given device, placement must deliver a legal arrangement that coin
cides with the array of provided logic blocks, and routing must contend with a 
fixed topology of communication resources. 

For these reasons, the underlying architecture of a reconfigurable device 
strongly affects the complexity of design compilation. For example, routing on 
a device that had an infinite number of extremely fast and flexible wires in 
the communication network would be easy. Every signal could simply take its 
shortest preferred path, and routing could be performed in a single Dijkstra's 
pass. Furthermore, placement would also be obvious on such an architecture 
since even a completely arbitrary arrangement could meet design constraints. 
Granted, real-world physical limitations prevent us from developing such a per
fect device, but we can reduce the necessary CAD effort with smart architectural 
design that emphasizes ease of compilation-potentially even over logic capacity 
and clock speed. 

The Plasma architecture [2] is a good example of designing an FPGA explicitly 
for simple mapping. Plasma was developed as part of the Teramac project [1]
an extremely large reconfigurable computing system slated to contain hundreds 
or thousands of individual FPGAs. Even given that a large design would be sepa
rated into smaller pieces that could be mapped onto individual FPGAs, contem
porary commercial reconfigurable devices required tens of minutes to complete 
placement and routing for each chip. To further compound this issue, even after 
placement was completed once, there was no guarantee that all of the signals 
could be successfully routed, so the entire process might have to be repeated. 
This meant that a design that utilized thousands of conventional FPGAs could 
require days or weeks of overall compilation time. For the Teramac system to be 
useful in applications such as hardware prototyping, in which design changes 
might be made on a daily or even hourly basis, mapping had to be orders of 
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magnitude faster. Thus, the Plasma FPGA architecture was designed explicitly 
with fast mapping in mind. 

Although Plasma differed from contemporary commercial FPGAs in several 
key ways, its most important distinction was high connectivity. Plasma was built 
from 6-input, 2-output logic blocks connected hierarchically by two levels of 
crossbars. As seen in Figure 20.6, logic blocks are separated into groups of 16 
that are connected by a full crossbar that spans half the width of the chip. These 
groups are then connected to other groups by a central partial crossbar. The cen
tral vertical lines span a quarter of the height of the array, but have the capability 
to be connected together to span the entire distance. Since full crossbars would 
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FIGURE 20.6 ■ The Plasma interconnect network. 
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have been prohibitively large, the developers used empirical testing to determine 
what level of connectivity was typically used in representational benchmarks. In 
addition to high internal connectivity, Plasma also contained an unusually large 
number of off-chip 1/0 pins. 

Although this extremely dense routing fabric consumed 90 percent of the over
all area, and its reliance on very long wires reduced the maximum operating 
frequency considerably, placement and routing could reliably be performed on 
the order of seconds on existing workstations. Given Teramac's target applica
tions, the dramatic increase in compilation speed and the extremely consistent 
place and route success rate was considered to be more important than logical 
density or execution clock frequency. 

Of course, not all applications can make such an extreme trade-off between 
ease of compilation and general usability metrics. However, manipulating the 
architecture of an FPGA does not necessarily require dramatically altering the 
characteristics of the device. For example, it is possible to make small changes 
to the interconnect to make routing simpler. One possibility is using a track 
domain architecture, which restricts the structure of the switch boxes in an 
island-style FPGA. 

As shown in Figure 20.7, the connectivity of an architecture's switch boxes 
can affect routability. While each wire in both the top and bottom switch boxes 
have the same number of fanouts, the top switch box allows tracks to switch 
wire domains, eventually migrating to any track through multiple switch points. 
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This allows a signal coming in on one wire on the left of the top architecture 
to reach all four wires exiting the right. However, the symmetric switch box 
shown on the bottom does not allow tracks to switch wire domains and forces 
a signal to travel along a single class of wire. This means that a signal coming 
in from the left of the bottom architecture can only reach two of the four wires 
exiting to the right. Although this may reduce the flexibility of the routing fabric 
somewhat [18], potentially requiring more wires to achieve the same level of 
routability [8], this effect is relatively minor. 

Even though we may need to increase the channel width of our architec
ture because of the restrictive nature of track domain switch boxes, routing on 
this type of FPGA can be dramatically faster than on more flexible systems. As 
shown by Cabral et al. [S], since the routing resources on track domain FPGAs 
are split into M different classes of wire, routing becomes a parallel problem. 
First, N processors are each assigned a small number of track domains from a 
given architecture. Then the nets from a circuit placed onto the architecture are 
simply split into N groups. Because each track domain is isolated from every 
other due to the nature of the architecture, each processor can perform normal 
Pathfinder routing without fear that the paths found by one processor will inter
fere with the paths found by another. When a processor cannot route a signal on 
its allotted routing resources, it is given an additional unassigned track domain. 
Although load balancing between processors and track domains is somewhat of 
a problem, this technique has shown linear or even super-linear speedup with 
a very small penalty to routability. In this case, Cabral and colleagues [5] were 
able to solve the problems encountered by the parallel routing approaches that 
were discussed earlier by modifying the architecture itself. 

Another way to modify the physical FPGA to speed routing is by offering spe
cialized hardware to allow the device to route its own circuits. Although similar 
to the approach discussed earlier in which simulated annealing is implemented 
on a generic FPGA to accelerate the placement of its own circuits, DeHon 
et al. [9] suggest that by modifying the actual switch points internal to an FPGA, 
we can create a specialized FPGA that can assist a host processor to perform 
Pathfinder-like routing by performing its own Dijkstra searches. In this type 
of architecture, the switch points have additional hardware that gives them the 
ability to remember the inputs and outputs currently being used when the FPGA 
is put into a special compilation time-only "routing search" mode. / .� 

After the placement of a given circuit is found, we configure the FPGA to 
perform routing on itself. This begins by clearing the occupancy markers on 
all of the switch points. During the routing phase, the host processor requests 
that each net in turn drive a signal from its source, which helps discover a path 
to each of its sinks. Every time this signal encounters a switching element, the 
switch allows the signal to propagate though unallocated resources but prevents 
it from continuing along occupied segments. In this way, the device explores 
all possible paths virtually instantaneously. When a route is found between the 
source and a sink, the switch point occupancy markers along this path are 
updated to reflect the "taken" status of these resources. When a route cannot 
be found for a given net, because all of the legal paths have been occupied 
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by earlier nets, the system simply victimizes a random previously routed path 
and rips it up until the blocked net can successfully route. Nets are continuously 
routed and ripped up in this round-robin fashion until all nets have been routed. 
Although this approach does not have the same sophistication as PathFinder, 
the experiments by DeHon and colleagues [9] show that hardware-assisted 
routing can obtain extremely similar track counts (only 1 to 2 additional tracks) 
with 4 to 6 orders of magnitude speedup in terms of runtime on the largest 
benchmarks. 

Of course, modifying an FPGA architecture can involve a great deal of engi
neering effort. For example, while hardware-assisted routing is one of the only 
approaches that is fast enough to make runtime netlist compilation feasible, it 
involves completely redesigning the communication network. That said, not all 
of our architecture modifications need to be that drastic. For example, com
mercial FPGA manufacturers have already made modifications to their archi
tectures that accelerate routing. As mentioned earlier, commercial FPGAs offer 
a resource-rich, flexible routing fabric to support a wide range of applications. 
Their high bandwidth and connectivity naturally make the routing problem sim
pler and much faster to solve. Following this logic, it seems natural that FPGAs 
might switch to track domain architectures in the future. While such devices 
require only minor layout changes that slightly affect overall system mutability, 
they enable very simple parallel routing algorithms to be used. This becomes 
more and more important as reconfigurable devices scale and as multi-threaded 
and multicore processors gain popularity. 

20.4 SUMMARY 

In this chapter we explored many techniques to accelerate FPGA placement and 
routing. Ultimately, all of them have restrictions, benefits, and drawbacks. This 
means that our applications, architectures, and design constraints must dic
tate which methodologies can and should be used. Several of the approaches 
do not provide acceptable runtime given problem constraints, while some may 
not offer sufficient implementation quality. Some techniques may not scale ade
quately to address our issues, while we may not have the necessary information to 
use others. 

FPGA scaling. Although classical block-level simulated annealing techniques 
have been the cornerstone of FPGA CAD tools for decades, these method
ologies must eventually be replaced. Hierarchical and macro-based tech
niques seem to scale much more gracefully while preserving the large-scale 
characteristics of high-quality simulated annealing. On the other hand, 
routing will likely depend on PathFinder and other negotiated congestion 
techniques for quite some time. That said, for compilation time to keep 
pace given newer and larger devices, FPGA developers need to make some 
architectural changes that simplify the routing problem. lrack domain 
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systems seem to be a natural solution given that modem desktops and 
workstations offer multiple types of parallel processing resources. 

Hardware prototyping and logic emulation systems. While these systems benefit 
greatly from incremental mapping techniques, they still require fast place 
and route algorithms when compilation needs to be performed from 
scratch. Hardware-assisted placement seems an obvious choice that can 
take full advantage of the multichip arrays present in these large devices. 
Furthermore, since optimal critical-path timing is not essential and appli
cation source code is generally available to provide hierarchical informa
tion, datapath and macro-based approaches can be very effective. 

Instance-specific designs. Datapath and macro-based approaches are even more 
important to instance-specific circuits because they cannot take advantage 
of many other techniques. However, the limited scope of these problems 
and the dramatic speedup made possible by these systems also make spe
cialized architectures attractive. While the overhead imposed by architec
tures such as Plasma may not be practical for most commercial devices, 
these drawbacks are far less important to instance-specific circuits given 
the significant CAD tool benefits. 

Runtime netlist compilation. Reconfigurable computing systems that require 
runtime netlist compilation present an incredibly demanding real-time com
pilation problem. Correspondingly, these systems require the most aggres
sive architectural approaches to make this possible. Radical system-wide 
modifications that provide huge amounts of routing resources significantly 
simplify the placement problem. However, just providing more bandwidth 
does not necessarily accelerate the routing process. These systems need to 
provide communication channels that either do not need to be negotiated or, 
through hardware-assisted routing, can automatically negotiate their own 
connections. An open question is whether the advantages of runtime netlist 
compilation are worth the attendant costs and complexities they introduce. 
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PA RT IV 

APPLICATION DEVELOPMENT 

Creating an efficient FPGA-based computation is similar to creating any 
other hardware. A designer carefully optimizes his or her computation to 
the needs of the underlying technology, exploiting the parallelism avail
able while meeting resource and performance constraints. These designs 
are typically written in a hardware description language (HDL), such as 
Verilog, and CAD tools are then used to create the final implementation. 

Field-programmable gate arrays (FPGAs) do have unique constraints 
and opportunities that must be understood in order for this technology to 
be employed most effectively. The resource mix is fixed, and the devices 
are never quite fast enough or have high enough capacity for what we 
want to do. However, because the chips are reprogrammable we can 
change the system in response to bugs or functionality upgrades, or even 
change the computation as it executes. 

Because of the unique restrictions and opportunities inherent in 
FPGAs, a set of approaches to application development have proven criti
cal to exploiting these devices to the fullest. Many of them are covered in 
the chapters that follow. Although not every FPGA-based application will 
use each of the approaches, a true FPGA expert will make them all part 
of his or her repertoire. 

Some of the most challenging questions in the design process come 
at the very beginning of a new project: Are FPGAs a good match for the 
application? If so, what problems must be considered and overcome? Will 
runtime reconfiguration be part of the solution? Will fixed- or floating
point computation be used? Chapter 21 focuses on this level of design, 
covering the important issues that arise when we first consider an appli
cation and the problems that must be avoided or solved. It also offers a 
quick overview of application development. Chapters 22 through 26 delve 
into individual concerns in more detail. 

FPGAs are unique in their potential to be more efficient than even 
ASICs for some types of problems: Because the circuit design is com
pletely programmable, we can create a custom circuit not just for a 
given problem but for a specific problem instance. Imagine, for exam
ple, that we are creating an engine for solving Boolean equations (e.g., 
a SAT solver, discussed in Chapter 29 in Part V). In an ASIC design, we 
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would create a generic engine capable of handling any possible Boolean 
equation because each use of the chip would be for a different equation. 
In an FPGA-based system, the equation can be folded into the circuit 
mapping itself, creating a custom FPGA mapping optimized to solving 
that Boolean equation and no other. As long as there is a CPU available 
to dynamically create a new FPGA bitstream each time a new Boolean 
equation must be solved, a much more aggressively optimized design can 
be created. However, because this means that the time to create the new 
mapping is part of system execution, fast mapping algorithms are often 
the key (Chapter 20). This concept of instance-specific circuits is covered 
in Chapter 22. 

In most cases, the time to create a completely new mapping in response 
to a specific problem instance is too long. Indeed, if it takes longer to cre
ate the custom circuit than for a generic circuit to solve the problem, 
the generic circuit is the better choice. However, more restricted versions 
of this style of optimization are still valuable. Consider a simple FIR fil
ter, which involves multiplication of an incoming datastream with a set 
of constant coefficients. We could use a completely generic multiplier to 
handle the constant * variable computation. However, the bits of the con
stant are known in advance, so many parts of this multiplication can be 
simplified out. Multipliers, for example, generally compute a set of par
tial products-the result of multiplying one input with a single bit of the 
other input. These partial products are then added together. If the con
stant coefficient provided that single bit for a partial product, we can 
know at mapping creation time whether that partial product will be 0 or 
equal to the variable input-no hardware is necessary to create it. Also, in 
cases where the partial product is a 0, we no longer need to add it into the 
final result. In general, the use of constant inputs to a computation can 
significantly improve most metrics in FPGA mapping quality. These tech
niques, called constant propagation and partial evaluation, are covered in 
Chapter 22. 

Number formats in FPGAs are another significant concern. For 
microprocessor-based systems we are used to treating everything as a 
64-bit integer or an IEEE-format floating-point value. Because the under
lying hardware is hardcoded to efficiently support these specific number
formats, any other format is unlikely to be useful. However, in an FPGA
we custom create the datapath. Thus, using a 64-bit adder on values that
are at most 18 bits in length is wasteful because each bit position con
sumes one or more lookup tables (LUTs) in the device.

For this reason, an FPGA designer will carefully consider the required 
wordlength of the numbers in the system, hoping to shave off some bits 
of precision and thus reduce the hardware requirements of the design. 
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Fractional values, such as 1t or fractions of a second, are more 
problematic. In many cases, we can use a fixed-point format. We might 
use numbers in the range of 0 . . .  31 to represent the values from Oto �} 
in steps of ]2 by just remembering that the number is actually scaled by 
a factor of 32. Techniques for addressing each of the concerns just men
tioned are treated in Chapter 23. 

Sometimes these optimizations simply are not possible, particularly for 
signals that require a high dynamic range (i.e., they must represent both 
very large and very small values simultaneously), so we need to use a 
floating-point format. This means that each operation will consume sig
nificantly more resources than its integer or fixed-point alternatives will. 
Chapter 31 in Part V covers floating-point operations on FPGAs in detail. 

Once the number format is decided, it is important to determine how 
best to perform the actual computation. For many applications, particu
larly those from signal processing, the computation will involve a large 
number of constant coefficient multiplications and subsequent addition 
operations, such as in finite impulse response (FIR) filters. While these 
can be carried out in the normal, parallel adders and multipliers from 
standard hardware design, the LUT-based logic of an FPGA allows an 
even more efficient implementation. By converting to a bit-serial dataflow 
and storing the appropriate combination of constants into the LUTs in the 
FPGA, the multiply-accumulate operation can be compressed to a small 
table lookup and an addition. This technique, called distributed arith
metic, is covered in Chapter 24. It is capable of providing very efficient 
FPGA-based implementations of important classes of digital signal pro
cessing (DSP) and similar operations. 

Complex mathematical operations such as sine, cosine, division, and 
square root, though less common than multiply-add, are still important 
in many applications. In some cases they can be handled by table lookup, 
with a table of precomputed results stored in memories inside the FPGA 
or in attached chips. However, as the size of the operand(s) for these 
functions grows, the size of the memory explodes, limiting this tech
nique's effectiveness. A particularly efficient alternative in FPGA logic is 
the CORDIC algorithm. By the careful creation of an iterative circuit, 
FPGAs can efficiently compute many of these complex functions. The full 
details of the CORDIC algorithm, and its implementation in FPGAs, are 
covered in Chapter 25. 

A final concern is the coupling of both FPGAs and central process
ing units (CPUs). In early systems, FPGAs were often deployed together 
with microprocessors or microcontrollers, either by placing an FPGA 
card in a host PC or by placing both resources on a single circuit board. 
With modern FPGAs, which can contain complete microprocessors 

-

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 457



438 Part IV ■ Application Development 

(either by mapping their logic into LUTs or embedding a complete micro
processor into the chip's silicon layout), the coupling of CPUs and FPGAs 
is even more attractive. The key driver is the relative advantages of each 
technology. FPGAs can provide very high performance for streaming 
applications with a lot of data parallelism-if we have to apply the same 
repetitive transformation to a large amount of data, an FPGA's perfor
mance is generally very high. However, for more sequential operations 
FPGAs are a poor choice. Sometimes long sequences of operations, with 
little or no opportunity for parallelism, come up in the control of the over
all system. Also, exceptional cases do occur and must be handled-for 
example, the failure of a component, using denormal numbers in float
ing point, or interfacing to command-based peripherals. In each case a 
CPU is a much better choice for those portions of a computation. As a 
result, for many computations the best answer is to use the FPGA for the 
data-parallel kernels and a CPU for all the other operations. This process 
of segmenting a complete computation into software/CPU portions and 
hardware/FPGA portions is the focus of Chapter 26. 
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CHAPTER 21 

Developers can choose various devices when implementing electronic systems: 
field-programmable gate arrays (FPGAs), microprocessors, and other standard 
products such as ASSPs, and custom chips or application-specific integrated 
circuits (ASICs). This chapter discusses how FPGAs compare to other digital 
devices, outlines the considerations that will help designers to determine when 
FPGAs are appropriate for a specific application, and presents implementation 
strategies that exploit features specific to FPGAs. 

The chapter is divided into four major sections. Section 21.1 discusses the 
strengths and weaknesses of FPGAs, relative to other available devices. Section 21.2 
suggests when FPGA devices are suitable choices for specific applications/ 
algorithms, based upon their 1/0 and computation requirements. Section 21.3 
discusses general implementation strategies appropriate for FPGA devices. Then 
Section 21.4 discusses FPGA-specific arithmetic design techniques. 

21.1 STRENGTHS AND WEAKNESSES OF FPGAs 

Developers can choose from three general classes of devices when implement
ing an algorithm or application: microprocessor, FPGA, or ASIC (for simplicity, 
ASSPs are not considered here). This section provides a brief summary of the 
advantages and disadvantages of these devices in terms of time to market, cost, 
development time, power consumption, and debug and verification. 

21.1.1 Time to Market 

Tune to market is often touted as one of the FPGA's biggest strengths, at least 
relative to ASICs. With an ASIC, from specification to product requires (at least): 
(1) design, (2) verification, (3) fabrication, (4) packaging, and (5) device test. In
addition, software development requires access to the ASIC device (or an emu
lation of such) before it can be verified and completed. As immediately available
standard devices, FPGAs have already been fabricated, packaged, and tested by
the vendor, thereby eliminating at least four months from time to market.
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More difficult to quantify but perhaps more important are: (1) refabrications 
(respins) caused by either errors in the design or late changes to the specifica
tion, due to a change in an evolving standard, for example, and (2) software 
development schedules that depend on access to the ASIC. Both of these items 
impact product production schedules; a respin can easily consume an additional 
four months, and early access to hardware can greatly accelerate software devel
opment and debug, particularly for the embedded software that communicates 
directly with the device. 

In light of these considerations, a conservative estimate of the time-to-market 
advantage of FPGAs relative to ASICs is 6 to 12 months. Such a reduction is 
significant; in consumer electronics markets, many products have only a 
24-month lifecycle.

21.1.2 Cost 

Per device, FPGAs can be much less expensive than ASICs, especially in lower 
volumes, because the nonrecurring costs of FPGA fabrication are borne by many 
users. However, because of their reprogrammability, FPGAs require much more 
silicon area to implement equivalent functionality. Thus, at the highest volumes 
possible in consumer electronics, FPGA device cost will eventually exceed ASIC 
device cost. 

21.1.3 Development Time 

FPGA application development is most often approached as hardware design: 
applications are described in Verilog or VHDL, simulated to determine cor
rectness, and synthesized using commercial logic synthesis tools. Commercial 
tools are available that synthesize behavioral programs written in sequential 
languages such as C to FPGAs. However, in most cases, much better perfor
mance and higher densities are achieved using HDLs, because they allow the 
user to directly describe and exploit the intrinsic parallelism available in an 
application. Exploiting application parallelism is the single best way to achieve 
high FPGA performance. However, designing highly parallel implementations of 
applications in HDLs requires significantly more development effort than soft
ware development with conventional sequential programming languages such 
as Java or C++. 

21. 1.4 Power Consumption

FPGAs consume more power than ASICs simply because programmability 
requires many more transistors, relative to a customized integrated circuit (IC). 
FPGAs may consume more or less power than a microprocessor or digital signal 
processor (DSP), depending on the application. 

21.1.5 Debug and Verification 

FPGAs are developed with standard hardware design techniques and tools. 
Coded in VHDL or Verilog and synthesized, FPGA designs can be debugged 
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in simulators just as typical ASIC designs are. However, many designers verify 
their designs directly, by downloading them into an FPGA and testing them in 
a system. With this approach the application can be tested at speed (a million 
times faster than simulation) in the actual operating environment, where it is 
exposed to real-world conditions. If thorough, this testing provides a stronger 
form of functional verification than simulation. However, debugging applica
tions in an FPGA can be difficult because vendor tools provide much less observ
ability and controllability than, for example, an hardware description language 
(HDL) simulator. 

21.1.6 FPGAs and Microprocessors 

As discussed previously, FPGAs are most often contrasted with custom ASICs. 
However, if a programmable solution is dictated because of changing applica
tion requirements or other factors, it is important to study the application care
fully to determine if it is possible to meet performance requirements with a 
programmable processor-microprocessor or DSP. Code development for pro
grammable processors requires much less effort than that required for FPGAs 
or ASICs, because developing software with sequential languages such as C or 
Java is much less taxing than writing parallel descriptions with Verilog or VHDL. 
Moreover, the coding and debugging environments for programmable processors 
are far richer than their HDL counterparts. Microprocessors are also generally 
much less expensive than FPGAs. If the microprocessor can meet application 
requirements (performance, power, etc.), it is almost always the best choice. 

In general, FPGAs are well suited to applications that demand extremely high 
performance and reprogrammability, for interfacing components that communi
cate with many other devices (so-called glue-logic) and for implementing hard
ware systems at volumes that make their economies of scale feasible. They are 
less well suited to products that will be produced at the highest possible volumes 
or for systems that must run at the lowest possible power. 

21.2 APPLICATION CHARACTERISTICS AND PERFORMANCE 

Application performance is largely determined by the computational and 1/0 
requirements of the system. Computational requirements dictate how much 
hardware parallelism can be used to increase performance. 1/0 system limi
tations and requirements determine how much performance can actually be 
exploited from the parallel hardware. 

21.2.1 Computational Characteristics and Performance 

FPGAs can outperform today's processors only by exploiting massive amounts 
of parallelism. Their technology has always suffered from a significant clock-rate 
disadvantage; FPGA clock rates have always been slower than CPU clock rates 
by about a factor of 10. This remains true today, with clock rates for FPGAs 
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limited to about 300 to 350 MHz and CPUs operating at approximately 3 GHz. 
As a result, FPGAs must perform at least 10 times the computational work 
per cycle to perform on par with processors. To be a compelling alternative, 
an FPGA-based solution should exceed the performance of a processor-based 
solution by 5 to 10 times and hence must actually perform 50 to 100 times 
the computational work per clock cycle. This kind of performance is feasible 
only if the target application exhibits a corresponding amount of exploitable 
parallelism. 

The guideline of 5 to 10 times is suggested for two main reasons. First of all, 
prior to actual implementation, it is difficult or impossible to foresee the impact 
of various system and 1/0 issues on eventual performance. In our experience, 
5 times can quickly become 2 times or less as various system and algorithmic 
issues arise during implementation. Second, application development for FPGAs 
is much more difficult than conventional software development. For that rea
son, the additional development effort must be carefully weighed against the 
potential performance advantages. A guideline of 5 to 10 times provides some 
insurance that any FPGA-specific performance advantages will not completely 
vanish during the implementation phase. 

Ultimately, the intrinsic characteristics of the application place an upper 
bound on FPGA performance. They determine how much raw parallelism exists, 
how exploitable it is, and how fast the clock can operate. A review of the liter
ature [3-6, 11, 16, 19-21, 23, 26, 28] shows that the application characteristics 
that have the most impact on application performance are: data parallelism, 
amenability to pipelining, data element size and arithmetic complexity, and sim
ple control requirements. 

Data parallelism 
Large datasets with few or no data dependencies are ideal for FPGA imple
mentation for two reasons: (1) They enable high performance because many 
computations can occur concurrently, and (2) they allow operations to be exten
sively rescheduled. As previously mentioned, concurrency is extremely impor
tant because FPGA applications must be able to achieve 50 to 100 times the 
operations per clock cycle of a microprocessor to be competitive. The ability 
to reschedule computations is also important because it makes it feasible to 
tailor the circuit design to FPGA hardware and achieve higher performance. For 
example, computations can be scheduled to maximize data reuse to increase 
performance and reduce memory bandwidth requirements. Image-processing 
algorithms with their attendant data parallelism have been among the highest
performing algorithms mapped to FPGA devices. 

Data element size and arithmetic complexity 
Data element size and arithmetic complexity are important because they 
strongly influence circuit size and speed. For applications with large amounts 
of exploitable parallelism, the upper limit on this parallelism is often deter
mined by how many operations can be performed concurrently on the FPGA 
device. Larger data elements and greater arithmetic complexity lead to larger 
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and fewer computational elements and less parallelism. Moreover, larger and 
more complex circuits exhibit more delay that slows clock rate and impacts 
performance. Not surprisingly, representing data with the fewest possible bits 
and performing computation with the simplest operators generally lead to the 
highest performance. Designing high-performance applications in FPGAs almost 
always involves a precision/performance trade-off. 

Pipelining 
Pipelining is essential to achieving high performance in FPGAs. Because FPGA 
performance is limited primarily by interconnect delay, pipelining (inserting reg
isters on long circuit pathways) is an essential way to improve clock rate (and 
therefore throughput) at the cost of latency. In addition, pipelining allows com
putational operations to be overlapped in time and leads to more parallelism in 
the implementation. Generally speaking, because pipelining is used extensively 
throughout FPGA-based designs, applications must be able to tolerate some 
latency (via pipelining) to be suitable candidates for FPGA implementation. 

Simple control requirements 
FPGAs achieve the highest performance if all operations can be statically sched
uled as much as possible (this is true of many technologies). Put simply, it takes 
time to make decisions and decision-making circuitry is often on the critical 
path for many algorithms. Replacing runtime decision circuitry with static con-
trol eliminates circuitry and speeds up execution. It makes it much easier to 
construct circuit pipelines that are heavily utilized with few or no pipeline bub
bles. In addition, statically scheduled controllers require less circuitry, making 
ro9m for more datapath operators, for example. In general, datasets with few 
or no dependencies often have simple control requirements. 

21.2.2 VO and Performance 

As mentioned previously, FPGA clock rates are at least one order of magnitude 
slower than those of CPUs. Thus, significant parallelism (either data parallelism 
or pipelining) is required for an FPGA to be an attractive alternative to a CPU. 
However, 1/0 performance is just as important: Data must be transmitted at 
rates that can keep all of the parallel hardware busy. 

Algorithms can be loosely grouped into two categories: 1/0 bound and com
pute bound [17, 18]. At the simplest level, if the number of 1/0 operations is 
equal to or greater than the number of calculations in the computation, the 
computation is said to be 1/0 bound. To increase its performance requires an 
increase in memory bandwidth-doing more computation in parallel will have 
no effect. Conversely, if the number of computations is greater than the number 
of 1/0 operations, computational parallelism may provide a speedup. 

A simple example of this, provided by Kung [18], is matrix-matrix multi
plication. The total number of I/Os in the computation, for n-by-n matrices, 
is 3n2-each matrix must be read and the product written back. The total 
number of computations to be done, however, is n3

• Thus, this computation is 
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compute bound. In contrast, matrix-matrix addition requires 3n2 I/Os and 3n2 

calculations and is thus 1/0 bound. Another way to see this is to note that each 
source element read from memory in a matrix-matrix multiplication is used n 
times and each result is produced using n multiply-accumulate operations. In 
matrix-matrix addition, each element fetched from memory is used only once 
and each result is produced from only a single addition. 

Carefully coordinating data transfer, 1/0 movement, and computation order is 
crucial to achieving enough parallelism to provide effective speedup. The entire 
field of systolic array design is based on the concepts of (1) arranging the 1/0 
and computation in a compute-bound application so that each data element 
fetched from memory is reused multiple times, and (2) keeping many processing 
elements busy operating in parallel on that data. 

FPGAs offer a wide variety of memory elements that can be used to coor
dinate 1/0 and computation: flip-flops to provide single-bit storage (10,000s of 
bits); LUT-based RAM to provide many small blocks of randomly distributed 
memory (100,000s of bits); and larger RAM or ROM memories (1,000,000s of 
bits). Some vendors' FPGAs contain multiple sizes of random access memories, 
and these memories are often easily configured into special-purpose structures 
such as dynamic-length shift registers, content-addressable memories (CAMs), 
and so forth. In addition to these types of on-chip memory, most FPGA plat
forms provide off-chip memory as well. 

Increasing the 1/0 bandwidth to memory is usually critical in harnessing the 
parallelism inherent in a computation. That is, after some point, further multi
plying the number of processing elements (PEs) in a design (to increase paral
lelism) usually requires a corresponding increase in 1/0. This additional 1/0 can 
often be provided by the many on-chip memories in a typical modem FPGA. The 
work of Graham and Nelson [8] describes a series of early experiments to map 
time-delay SONAR beam forming to an FPGA platform where memory band
width was the limiting factor in design speedup. While the data to be processed 
were an infinite stream of large data blocks, many of the other data structures 
in the computation were not large (e.g., coefficients, delay values). In this com
putation, it was not the total amount of memory that limited the speedup but 
rather the number of memory ports available. Thus, the use of multiple small 
memories in parallel were able to provide the needed bandwidth. 

The availability of many small memories in today's FPGAs further supports 
the idea of trading off computation for table lookup. Conventional FPGA fabrics 
are based on a foundation of 4-input LUTs; in addition, larger on-chip memories 
can be used to support larger lookup structures. Because the memories already 
exist on chip, unlike in ASIC technology, using them adds no additional cost to 
the system. A common approach in FPGA-based design, therefore, is to evaluate 
which parts of the system's computations might lend themselves to table lookup 
and use the available RAM blocks for these lookups. 

In summary, the performance of FPGA-based applications is largely deter
mined by how much exploitable parallelism is available, and by the ability of 
the system to provide data to keep the parallel hardware operational. 
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21.3 GENERAL IMPLEMENTATION STRATEGIES 
FOR FPGA-BASED SYSTEMS 

In contrast with other programmable technologies such as microprocessors 
or DSPs, FPGAs provide an extremely rich and complex set of implementa
tion alternatives. Designers have complete control over arithmetic schemes and 
number representation and can, for example, trade precision for performance. 
In addition, reprogrammable, SRAM-based FPGAs can be configured any num
ber of times to provide additional implementation flexibility for further tailoring 
the implementation to lower cost and make better use of the device. 

There are two general configuration strategies for FPGAs: configure-once, 
where the application consists of a single configuration that is downloaded for 
the duration of the application's operation, and runtime reconfiguration (RTR), 
where the application consists of multiple configurations that are "swapped" in 
and out as the application operates [ 14]. 

21.3. 1 Configure-once 

Configure-once (during operation) is the simplest and most common way to 
implement applications with reconfigurable logic. The distinctive feature of 
configure-once applications is that they consist of a single system-wide config
uration. Prior to operation, the FPGAs comprising the reconfigurable resource 
are loaded with their respective configurations. Once operation commences, they 
remain in this configuration until the application completes. This approach is 
very similar to using an ASIC for application acceleration. From the application 
point of view, it matters little whether the hardware used to accelerate the appli
cation is an FPGA or a custom ASIC because it remains constant throughout its 
operation. 

The configure-once approach can also be applied to reconfigurable applica
tions to achieve significant acceleration. There are classes of applications, for 
example, where the input data varies but remains constant for hours, days, or 
longer. In some cases, data-specific optimizations can be applied to the applica
tion circuitry and lead to dramatic speedup. Of course, when the data changes, 
the circuit-specific optimizations need to be reapplied and the bitstream regen
erated. Applications of this sort consist of two elements: (1) the FPGA and 
system hardware, and (2) an application-specific compiler that regenerates the 
bitstream whenever the application-specific data changes. This approach has 
been used, for example, to accelerate SNORT, a popular packet filter used to 
improve network security [13]. SNORT data consists of regular expressions that 
detect malicious packets by their content. It is relatively static, and new regular 
expressions are occasionally added as new attacks are detected. The application
specific compiler translates these regular expressions into FPGA hardware that 
matches packets many times faster than software SNORT. When new regular 
expressions are added to the SNORT database, the compiler is rerun and a new 
configuration is created and downloaded to the FPGA. 
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21.3.2 Runtime Reconfiguration 

Whereas configure-once applications statically allocate logic for the duration of 
an application, RTR applications use a dynamic allocation scheme that 
re-allocates hardware at runtime. Each application consists of multiple con
figurations per FPGA, with each one implementing some fraction of it. Whereas 
a configure-once application configures the FPGA once before execution, an RTR 
application typically reconfigures it many times during the normal operation. 

There are two basic approaches that can be used to implement RTR appli
cations: global and local (sometimes referred to as partial configuration in the 
literature). Both techniques use multiple configurations for a single application, 
and both reconfigure the FPGA during application execution. The principal dif
ference between the two is the way the dynamic hardware is allocated. 

Global RTR 

Global RTR allocates all (FPGA) hardware resources in each configuration step. 
More specifically, global RTR applications are divided into distinct temporal 
phases, with each phase implemented as a single system-wide configuration that 
occupies all system FPGA resources. At runtime, the application steps through 
each phase by loading all of the system FPGAs with the appropriate configura
tion data associated with a given phase. 

Local RTR 

Local RTR takes an even more flexible approach to reconfiguration than does 
global RTR. As the name implies, these applications locally (or selectively) recon
figure subsets of the logic as they execute. Local RTR applications may configure 
any percentage of the reconfigurable resources at any time, individual FPGAs 
may be configured, or even single FPGA devices may themselves be partially 
reconfigured on demand. This flexibility allows hardware resources to be tai
lored to the runtime profile of the application with finer granularity than that 
possible with global RTR. Whereas global RTR approaches implement the execu
tion process by loading relatively large, global application partitions, local RTR 
applications need load only the necessary functionality at each point in time. 
This can reduce the amount of time spent downloading configurations and can 
lead to a more efficient runtime hardware allocation. 

The organization of local RTR applications is based more on a functional 
division of labor than the phased partitioning used by global RTR applications. 
Typically, local RTR applications are implemented by functionally partitioning 
an application into a set of fine-grained operations. These operations need not 
be temporally exclusive-many of them may be active at one time. This is in 
direct contrast to global RTR, where only one configuration (per FPGA) may 
be active at any given time. Still, with local RTR it is important to organize 
the operations such that idle circuitry is eliminated or greatly reduced. Each 
operation is implemented as a distinct circuit module, and these circuit modules 
are then downloaded to the FPGAs as necessary during operation. Note that, 
unlike global RTR, several of these operations may be loaded simultaneously, 
and each may consume any portion of the system FPGA resources. 
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RTR applications 
Runtime Reconfigured Artificial Neural Network (RRANN) is an early example 
of a global RTR application [7]. RRANN divided the back-propagation algorithm 
(used to train neural networks) into three temporally exclusive configurations 
that were loaded into the FPGA in rapid succession during operation. It demon
strated a 500 percent increase in density by eliminating idle circuitry in individ
ual algorithm phases. 

RRANN was followed up with RRANN-2 [9], an application using local RTR. 
Like RRANN, the algorithm was still divided into three distinct phases. However, 
unlike the earlier version, the phases were carefully designed so that they shared 
common circuitry, which was placed and routed into identical physical locations 
for each phase. Initially, only the first configuration was loaded; thereafter, the 
common circuitry remained resident and only circuit differences were loaded 
during operation. This reduced configuration overhead by 25 percent over the 
global RTR approach. 

The Dynamic Instruction Set Computer (DISC) [29] used local RTR to create 
a sequential control processor with a very small fixed core that remained resi
dent at all times. This resident core was augmented by circuit modules that were 
dynamically loaded as required by the application. DISC was used to implement 
an image-processing application that consisted of various filtering operations. At 
runtime, the circuit modules were loaded as necessary. Although the application 
used all of the filtering circuit modules, it did not require all of them to be loaded 
simultaneously. Thus, DISC loaded circuit modules on demand as required. Only 
a few active circuit modules were ever resident at any time, allowing the appli
cation to fit in a much smaller device than possible with global RTR. 

21.3.3 Summary of Implementation Issues 

Of the two general implementation techniques, configure-once is the simplest 
and is best supported by commercially available tool flows. This is not surpris
ing, as all FPGA CAD tools are derivations of conventional ASIC CAD flows. 
While the two RTR implementation approaches (local and global) can provide 
significant performance and capacity advantages, they are much more challeng
ing to employ, primarily because of a lack of specific tool support. 

The designer's primary task when implementing global RTR applications is 
to temporally divide the application into roughly equal-size partitions to effi
ciently use reconfigurable resources. This is largely a manual process-although 
the academic community has produced some partitioning tools, no commercial 
offerings are currently available. The main disadvantage of global RTR is the 
need for equal-size partitions. If it is not possible to evenly partition the appli
cation, inefficient use of FPGA resources will result. 

The main advantage of local RTR over global RTR is that it uses fine-grained 
functional operators that may make more efficient use of FPGA resources. 
This is important for applications that are not easily divided into equal-size 
temporally exclusive circuit partitions. However, partitioning a local RTR design 
may require an inordinate amount of designer effort. For example, unlike global 
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RTR, where circuit interfaces typically remain fixed between configurations, 
local RTR allows these interfaces to change with each configuration. When 
circuit configurations become small enough for multiple configurations to fit 
into a single device, the designer needs to ensure that all configurations will 
interface correctly one with another. Moreover, the designer may have to ensure 
not only structural compliance but physical compliance as well. That is, when 
the designer creates circuit configurations that do not occupy an entire FPGA, 
he or she will have to ensure that the physical footprint of each is compatible 
with that of others that may be loaded concurrently. 

21.4 IMPLEMENTING ARITHMETIC IN FPGAs 

Almost since their invention, FPGAs have employed dedicated circuitry to 
· accelerate arithmetic computation. In earlier devices, dedicated circuitry sped
up the propagation of carry signals for ripple-carry, full-adder blocks. Later
devices added dedicated multipliers, DSP function blocks, and more complex
fixed-function circuitry. The presence of such dedicated circuitry can dramati
cally improve arithmetic performance, but also restricts designers to a very small
subset of choices when implementing arithmetic.

Well-known approaches such as carry-look-ahead, carry-save, signed-digit,
and so on, generally do not apply to FPGAs. Though these techniques are com
monly used to create very high-performance arithmetic blocks in custom ICs,
they are not competitive when applied to FPGAs simply because they cannot
access the faster, dedicated circuitry and must be constructed using slower,
general-purpose user logic. Instead, FPGA designers accelerate aritbmetic in
one of two ways with FPGAs: ( 1) using dedicated blocks if they fit the needs of
the application, and (2) avoiding the computation entirely, if possible. Design
ers apply the second option by, for example, replacing full-blown floating-point
computation with simpler, though not equivalent, fixed-point, or block floating
point, computations. In some cases, they can eliminate multiplication entirely
with constant propagation. Of course, the feasibility of replacing slower, com
plex functions with simpler, faster ones is application dependent.

21.4.1 Fixed-point Number Representation and Arithmetic 

A fixed-point number representation is simply an integer representation with 
an implied binary point, usually in 2's complement format to enable the rep
resentation of both positive and negative values. A common way of describing 
the structure of a fixed-point number is to use a tuple: n, m, where n is the 
number of bits to the left of the binary point and m is the number of bits to 
the right. A 16.0 format would thus be a standard 16-bit integer; a 3.2 format 
fixed-point number would have a total of 5 bits with 3 to the left of the implied 
binary point and 2 to the right. A range of numbers from + 1 to - lA is common 
in digital signal-processing applications. Such a representation might be of the 
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form 1.9, where the largest number is 0.111111111 = 0.99810 and the smallest 
is 1.000000000 = -110• As can be seen, fixed-point arithmetic exactly follows 
the rules learned in grade school, where lining up the implied binary point is 
required for performing addition or subtraction. 

When designing with fixed-point values, one must keep track of the number 
format on each wire; such bookkeeping is one of the design costs associated 
with fixed-point design. At any point in a computation, either truncation or 
rounding can be used to reduce the number of bits to the right of the binary 
point, the effect being to simply reduce the precision with which the number is 
represented. 

21.4.2 Floating-point Arithmetic 

Floating-point arithmetic overcomes many of the challenges of fixed-point arith
metic but at increased circuit cost and possibly reduced precision. The most 
common format for a floating-point number is of the form seeeeeffffff, where s 
is a sign bit, eeeee is an exponent, and ffffff is the mantissa. In the IEEE stan
dard for single-precision floating point, the number of exponent bits is 8 and 
the number of mantissa bits is 23, but nonstandard sizes and formats have also 
been used in FPGA work [2, 24]. 

IEEE reserves various combinations of exponent and mantissa to represent 
special values: zero, not a number (NAN), infinity ( +8 and -8), and so on. It sup
ports denormalized numbers (no leading implied 1 in the mantissa) and flags 
them using a special exponent value. Finally, the IEEE specification describes 
four rounding modes. Because supporting all special case number represen
tations and rounding modes in hardware can be very expensive, FPGA-based 
floating-point support often omits some of them in the interest of reducing com
plexity and increasing performance. 

For a given number of bits, floating point provides extended range to a compu
tation at the expense of accuracy. An IEEE single-precision floating-point num
ber allocates 23 bits to the mantissa, giving an effective mantissa of only 24 bits 
when the implied 1 is considered. The advantage of floating point is that its 
exponent allows for the representation of numbers across a broad range (IEEE 
normalized single-precision values range from z±3 x 1038 to z± 1 x 10-38). Con
versely, while a 32-bit fixed-point representation (1.31 format) has a range of 
only -1 to ""+ 1, it can represent some values within that range much more accu
rately than a floating-point format can-for example, numbers close to + 1 such 
as 0. ll l ll ll l ll l ll ll l ll 11111111111111. However, for numbers very close to 
+0, the fixed-point representation would have many leading zeroes, and thus
would have less precision than the competing floating-point representation.

An important characteristic of floating point is its auto-scaling behavior. 
After every floating-point operation, the result is normalized and the exponent 
adjusted accordingly. No work on the part of the designer is required in this 
respect (although significant hardware resources are used). Thus, it is useful in 
cases where the range of intermediate values cannot be bounded by the designer 
and therefore where fixed point is unsuitable. 
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The use of floating point in FPGA-based design has been the topic of much 
research over the past decade. Early papers, such as Ligon and colleagues [15] 
and Shirazi et al. [24 ], focused on the cost of floating point and demonstrated that 
small floating-point formats as well as single-precision formats could be eventu
ally implemented using FPGA technology. Later work, such as that by Bellows and 
Hutchings [1] and Roesler and Nelson [22], demonstrated novel ways of leverag
ing FPGA-specific features to more efficiently implement floating-point modules. 
Finally, Underwood [27] argued that the capabilities of FPGA-based platforms for 
performing floating point would eventually surpass those of standard computing 
systems. 

All of the research just mentioned contains size and performance estimates 
for floating-point modules on FPGAs at the time they were published. Clever 
design techniques and growing FPGA densities and clock rates continually com
bine to produce smaller, faster floating-point circuits on FPGAs. At the time 
of this writing, floating-point module libraries are available from a number of 
sources, both commercial and academic. 

21.4.3 Block Floating Point 

Block floating point (BFP) is an alternative to fixed-point and floating-point 
arithmetic that allows entire blocks of data to share a single exponent. Fixed
point arithmetic is then performed on a block of data with periodic rescaling of 
its data values. A typical use of block floating point is as follows: 

1. The largest value in a block of data is located, a corresponding
exponent is chosen, and that value's fractional part is normalized to
that exponent.

2. The mantissas of all other values in the block are adjusted to use the
same exponent as that largest value.

3. The exponent is dropped and fixed-point arithmetic proceeds on the
resulting values in the data block.

4. As the computation proceeds, renormalization of the entire block of
data occurs-after every individual computation, only when a value
overflows, or after a succession of computations.

The key is that BFP allows for growth in the range of values in the data block 
while retaining the low cost of fixed-point computations. Block floating point 
has found extensive use in fast Fourier transform (FFT) computations where 
an input block (such as from an AID converter) may have a limited range of 
values, the data is processed in stages, and stage boundaries provide natural 
renormalization locations. 

21.4.4 Constant Folding and Data-oriented Specialization 

As mentioned Section 21.3.2, when the data for a computation changes, an 
FPGA can be readily reconfigured to take advantage of that change. As a simple 
example of data folding, consider the operation: a =?b, where a and b are 4-bit 
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a=?b 

(b) 

FIGURE 21.1 ■ Two comparator implementations: (a) with and (b) without constant folding. 

numbers. Figure 21.1 shows two implementations of a comparator. On the left 
(a) is a conventional comparator; on the right (b) is a comparator that may be
used when bis known (b = 1011). Implementation (a) requires three 4-LUTs to
implement while implementation (b) requires just one. Such logic-level constant
folding is usually performed by synthesis tools.

A more complex example is given by Wirthlin [30], who proposed a method 
for creating constant coefficient multipliers. When one constant to a multiplier 
was known, a custom multiplier consuming far fewer resources than a gen
eral multiplier could usually be created. Wirthlin's manipulations [30], going 
far beyond what logic optimization performed, created a custom structure for a 
given multiplier instance based on specific characteristics of the constant. 

Hemmert et al. [10] offer an even more complex example in which a pipeline 
of image morphology processing stages was created, each of which could per
form one image morphology step (e.g., one iteration in an erosion operation). 
The LUT contents in each pipeline stage controlled the stage's operation; thus, 
reconfiguring a stage required modifying only LUT programming. A compiler 
was then created to convert programs, written in a special image morphology 
language, into the data required to customize .each pipeline stage's operation. 

When a new image morphology program was compiled, a new bitstream for 
the FPGA could be created in a second or two (by directly modifying the original 
bitstream) and reconfigured onto the platform. This provided a way to create a 
custom computing solution on a per-program basis with turnarounds on the 
order of a few seconds. In each case, the original morphology program that was 
compiled provided the constant data that was folded into the design. 

Additional examples in the literature show the power of constant folding. 
However, its use typically requires specialized CAD support. Slade and Nelson 
[25] argue that a fundamentally different approach to CAD for FPGAs is the
solution to providing generalized support for such data-specific specialization.
They advocate the use of JHDL [1, 12] to provide deployment time support for
data-specific modifications to an operating FPGA-based system.

In summary, FPGAs provide architectural features that can accelerate sim
ple arithmetic operations such as fixed-point addition and multiplication. 
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Floating-point operations can be accelerated using block floating point or by 
reducing the number of bits to represent floating-point values. Finally, constants 
can be propagated into arithmetic circuits to reduce circuit area and accelerate 
arithmetic performance. 

21.5 SUMMARY 

FPGAs provide a flexible, high-performance, and reprogrammable means for 
implementing a variety of electronic applications. Because of their repro
grammability, they are well suited to applications that require some form of 
direct reprogrammability, and to situations where reprogrammability can be 
used indirectly to increase reuse and thereby reduce device cost or count. FPGAs 
achieve the highest performance when the application can be implemented as 
many parallel hardware units operating in parallel, and where the aggregate I/0 
requirements for these parallel units can be reasonably met by the overall sys
tem. Most FPGA applications are described using HDLs because HDL tools and 
synthesis software are mature and well developed, and because, for now, they 
provide the best means for describing applications in a highly parallel manner. 

Once FPGAs are determined to be a suitable choice, there are several ways 
to tailor the system design to exploit their reprogrammability by reconfiguring 
them at runtime or by compiling specific, temporary application-specific data 
into the FPGA circuitry. Performance can be further enhanced by crafting arith
metic circuitry to work around FPGA limitations and to exploit the FPGA's spe
cial arithmetic features. Finally, FPGAs provide additional debug and verification 
methods that are not available in ASICs and that enable debug and verification 
to occur in a system and at speed. 

In summary, FPGAs combine the advantages and disadvantages of micropro
cessors and ASICs. On the positive side, they can provide high performance that 
is achievable only with custom hardware, they are reprogrammable, and they 
can be purchased in volume as a fully tested, standard product. On the neg
ative side, they remain largely inaccessible to the software community; more
over, high-performance application development requires hardware design and 
the use of standard synthesis tools and Verilog or VHDL. 
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This chapter covers instance-specific design, an optimization technique involving 
effective exploitation of information specific to an instance of a generic design 
description. Here we introduce different types of instance-specific designs with 
examples. We then describe partial evaluation, a systematic method for produ
cing instance-specific designs that can be automated. Our treatment covers the 
application of partial evaluation to hardware design in general, and to field
programmable gate arrays (FPGAs) in particular. 

22.1 INSTANCE-SPECIFIC DESIGN 

FPGAs are an effective way to implement designs in computationally intensive 
datapath-orientated applications such as cryptography, digital signal processing, 
and network processing. The main alternative implementation technologies in 
these application areas are general-purpose processors, digital signal processors, 
and application-specific integrated circuits (ASICs). 

ASICs are integrated circuits designed to implement a single application 
directly in fixed hardware. Because they are specialized to a single application, 
they can be vecy efficient, with reduced resource usage and power consump
tion over processor-based software implementations. Reconfigurable logic offers 
similar advantages over general-purpose processors. However, the overhead of 
providing general-purpose logic and routing resources means that FPGA-based 
systems typically provide lower density and performance than ASICs. Still, 
reconfigurable logic can provide a level of specialization beyond what is pos
sible for an ASIC: optimizing circuits not just for a particular problem but for a 
particular instance of it. For example, an encryption application can create cus
tom FPGA mappings evecy time a new password is given, allowing any password 
to be supported yet providing vecy highly optimized circuitry. 

The basic concept of instance-specific design is to optimize a circuit for a 
particular computation. This can allow a reduction in area and/or an increase 
in processing speed by sacrificing the flexibility of the circuit. It is important 
to distinguish between the FPGA itself, which is inherently flexible and can be 
reconfigured to suit any application by loading a new bitstream, and the cur
rent configuration of the chip, which may have a certain level of flexibility in 
processing its inputs. 
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One common way of achieving instance-specific designs automatically is 
constant folding (Section 22.2.3), which involves propagating static input val
ues through a circuit to eliminate unnecessary logic. Thus, in our encryption 
example, an exclusive-or (XOR) gate with one input driven by a password bit 
can be replaced with a wire or an inverter because the value of that bit is known 
for each specific password. 

To produce an instance-specific design, one first needs a means of providing a 
particular instance for a given design. In the previous encryption example, if all 
the passwords are known at design time, an instance-specific design specialized 
for each password can be produced, say by constant propagation followed by the 
usual tools such as placement (Chapter 14), routing (Chapter 17), and bitstream 
generation (Chapter 19). 

At runtime, a processor is often used to control the configuration of the FPGA 
by the appropriate bitstream at the right moment to support a particular pass
word. However, if the passwords are known only at runtime, then the designer 
has to decide whether the benefits of having instance-specific designs outweigh 
the time to produce them, since, for instance, current place and route tools often 
take a long time to complete and their use is usually not recommended at run
time. Fortunately for some applications, differences between instances are so 
small that they can be generated realistically using runtime partial evaluation 
(Section 22.2). 

The ability to implement specialized designs, while at the same time provid
ing flexibility by allowing different specialized designs to be loaded onto a device, 
can make reconfigurable logic more effective at implementing some applications 
than what is possible with ASICs. For other applications, performance improve
ments from optimizing designs to a particular problem instance can help shift the 
·price/performance ratio away from ASICs and toward FPGAs. Specializing a Data
Encryption Standard (DES) crypto-processor, for example, can save 60 percent
in area, while replacing general multipliers with constant coefficient versions can
save area and lead to speedups of two to four times. Instance-specific designs can
also consume lower power. Bit-width optimization of digital filters, for example,
has been shown to reduce power consumption by up to 98 percent [2].

Changing an instance-specific design at runtime is generally much slower 
than changing the inputs of a general circuit, because a new ( or partial) con
figuration must be loaded. Because this may take many tens or hundreds of 
milliseconds, it is important to carefully choose how a design is specialized. 

22.1.1 Taxonomy 

'fypes of instance-specific optimizations 
We can divide the different approaches to optimizing a design for a particular 
problem instance into three main categories. Table 22.1 lists some examples of 
the different categories used. 

Constant folding Constant folding is the process of eliminating unnecessary 
logic that computes functions with some inputs that never change or that 
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TABLE 22.1 ■ Examples of the uses of instance-specific designs 

Constant 
folding 

Function 
adaptation 

Architecture 
adaptation 

Purpose Example use 

Optimize logic for static 
inputs 

Optimize for desired 
quality of result 

Achieve a specified 
performance, area, or 
power target 

Key-specific DES 

Accuracy-guaranteed bit
width optimization [4] 

Custom instruction 
processors [3] 

Impact 

60% area reduction 

26% area reduction, 
12% latency reduction 

72% decrease in 
runtime for 3% more 
area 

change only rarely. This logic can be specialized to increase performance and 
reduce area. Examples of circuits that can benefit from constant folding will be 
seen later, and a more detailed description of the technique can be found in 
Section 22.2.3. 

Function adaptation Function adaptation is the process of altering a circuit's 
function to achieve a specific quality of result. Typically this involves varying the 
number of bits used to represent data values or switching between floating-point 
and fixed-point arithmetic functions. It can also involve adding or removing 
parts of processing units that affect accuracy-for example, adding or removing 
stages from a CORDIC circuit. Word-length optimization can be treated auto
matically (Chapter 23), modifying a circuit's area to meet particular accuracy 
constraints. 

Architecture adaptation Architecture adaptation alters the way in which a cir
cuit computes a result while keeping the overall function the same. This can 
entail introducing additional parallelism to increase speed, serializing existing 
parallel processing units to save area, or refining processing capabilities to 
exploit some expected characteristics of the input data. Custom instruction 
processors (see Figure 22.4 later) are one example of the latter type of archi
tecture adaptation. 

22. 1.2 Approaches

Instance-specific circuits can be produced either by specializing a general-purpose 
circuit or by starting directly from a "template" that must be instantiated for a 
particular problem instance before use, as shown in Figure 22.1. Specialization 
has the advantage that it can often be pedormed automatically, using tech
niques such as partial evaluation (Section 22.2). The template approach probably 
requires the manual design of a template circuit substantially different from the 
general-purpose architecture, but it can possibly provide a greater level of opti
mization than what is possible through specializing a general-purpose circuit. It 
can also offer the advantage that the hardware compilation process may need to be 
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Generate 
template 

Generate 
circuit 

(a) 

Generate 
hardware 

(b) 

(c) 

Adapt to 
instance 

ASIC 

FPGA 

FPGA 

FPGA 

FIGURE 22.1 ■ General-purpose hardware (a) can be implemented using FPGAs or ASICs. Instance 
information (b) can be incorporated at hardware generation to produce a specialized circuit. 
"Template" hardware (c) can be generated and then instantiated for particular problem instances. 
The reason for the differences between (b) and (c) are that, in (b) the time-consuming process 
of hardware compilation must be executed for each instance while in (c) hardware compilation 
may only need to be run once, after which the final circuit bitstream can be amended. 

executed only once, with instance-specific information being annotated directly 
into the bitstream. 

In both cases, one or more instance-specific designs will be produced that 
can be converted into bitstreams through the FPGA design flow (see chapters 
in Part ill). The appropriate bitstream can then be used to configure an FPGA, 
usually under the control of a general-purpose processor; during the reconfigu
ration process the FPGA will usually not be able to process data, although some 
partially reconfigurable devices can support the reconfiguration of some of its 
resources, while some of its other resources stay operational. 
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22.1.3 Examples of Instance-specific Designs 

The benefits of instance-specific design can be illustrated by considering a few 
examples of its use. In this section we present three examples of specialization 
by constant folding into an existing design, and two examples of architecture 
adaptation. 

Constant coefficient multipliers 
If using standard logic cells, multipliers are relatively expensive to implement 
on FPGAs. A standard combinational multiplier ANDs each bit of input B with 
all bits of input A (to perform the multiply by 0/1); an adder is then used to 
sum together the partial products. When one coefficient of the multiplication 
is constant, however, the required area can be reduced dramatically. The AND 
functiQns are unnecessary because multiplying by a fixed O or 1 is trivial, and 
the adders can be eliminated for bits of B that are O (and thus have a partial 
product of O). Constant coefficient multiplication is a useful operation in many 
signal-processing applications. 

Finite impulse response (FIR) filters contain a set of multiply-add cells that 
multiply the value of the input signal across a number of cycles with filter coef
ficients and then sum these values. The multiplier coefficients are properties of 
the filter and do not change with the input data, but only need adjusting when 
different filter properties are required. Thus, the generic multipliers in a FIR 
filter circuit can often be replaced by smaller constant coefficient multipliers. 
(see Figure 22.2). 

Another application that requires multipliers with constant coefficients is con
version from RGB to YUV video signals. This is a matrix multiplication opera
tion where one matrix is constant, allowing specialized multipliers to be used. 

Key-specific crypto-processors 
Cryptographic algorithms are often designed for efficient implementation in 
both hardware and software. Block ciphers, such as DES and its successor 
Advanced Encryption Standard (AES), have regular algorithmic structures con
sisting of simple operations, such as XOR and bit permutation, that are effi
ciently implemented in hardware. 

The DES algorithm consists of 16 "rounds," or processing stages, that can 
be pipelined for parallel operation. Blocks of 64-bit data are input to the array 
along with a 56-bit key and processed through each round, with the same key 
required to decrypt the data at the other end of the communication channel. 
A single DES round is illustrated in Figure 22.3. 

In typical operation it is likely that a crypto-processor is used to process large 
blocks of data with the same key-for example, when transferring.data between 
a single sender and receiver in a network or encrypting a large file to be saved 
to disk. It is therefore expected that, in contrast to the data input, the key value 
will change very' slowly. 

The shaded area of Figure 22.3 is key generator circuitry that generates the 
round key from the master key and then uses it as an input to a set of 2-input 
XOR functions across the data bits. 
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Input value 

Multiplier 

Input value 

Constant 
coefficient 
multiplier 

Multiplier 

Adder 

Constant 
coefficient 
multiplier 

Adder 

Filter coefficients 

(a) 

(b) 

Multiplier 

Adder 

Constant 
coefficient 
multiplier 

Adder 

Multiplier 

Adder 

Constant 
coefficient 
multiplier 

Adder 

Result 

Result 

FIGURE 22.2 ■ FIR filters utilizing (a} general multipliers with variable filter coefficients and 
(b} instance-specific multipliers specialized to filter coefficients. 

When the key value is known, the key generation circuitry can be eliminated 
and the XOR functions replaced with either wires or inverters [S]. In fact, these 
inverters can be merged into the substitution stage, eliminating the inverter logic 
as well [11]. Key-specific crypto-processors can exhibit much higher throughput 
than general versions, even outperforming ASIC implementations. Area savings 
are also significant-a relatively simple specialization of a placed DES descrip
tion can yield area savings of 60 percent when implemented on a Xilinx Virtex 
FPGA [9]. 

Network intrusion detection 
Network Intrusion Detection Systems (NIDS) perform deep packet inspection 
on network packets to identify malicious attacks. Normally, these systems are 
implemented in software, but on high-speed networks software alone is often 
unable to process all traffic at the full data rate. 
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Register file 

Fetch 

Branch forwarding 

Custom 
execution 

units 

Memory Write back 

FIGURE 22.4 ■ A simplified architecture of a custom instruction processor. The standard 
arithmetic and logic operations are augmented by custom execution units that can accelerate 
particular applications. 

Figure 22.4 illustrates the architecture of a simple custom instruction pro
cessor that has standard arithmetic and logic functions implemented by a 
standard ALU. These functions can be supported by additional custom exe
cution units to accelerate particular applications. The automatic identifica
tion of instructions that can benefit from the custom execution units is a 
topic of active research [1]. Further information about partitioning sequential 
and parallel programs for software and hardware execution can be found in 
Chapter 26. 

22.2 PARTIAL EVALUATION 

Partial evaluation is a process that automates specialization in software or hard
ware. In both cases the motivation is the same: to produce a design that runs 
faster than the original. In software, partial evaluation can be thought of as a 
combination of constant folding, loop unrolling, function inlining, and inter
procedural analyses; in hardware, constant folding is mainly used as an opti
mization method. 

Partial evaluation is accomplished by detecting fragments of hardware that 
depend exclusively on variables with fixed values and then optimizing the hard
ware logic to reduce its area or even eliminate it totally from the design by 
precomputing the result. 
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Partial evaluation can simplify logic, and thus reduce area and increase perfor
mance. Figure 22.5 illustrates its impact on a 2-input XOR function. When both 
inputs are dynamic, the logical function must be implemented; however, when 
one input is known, a partial evaluator can simplify the circuit. If one input is 
fixed high, the XOR functions as an inverter and so can be replaced by a 1-input 
NOT gate; if the input is fixed low, the XOR serves as a wire and the logic can 
be completely eliminated. 

Constant folding propagates constants through a circuit and can substantially 
simplify logic functions. This can both reduce area (by allowing functions to 
be implemented using fewer LUTs) and increase performance (by reducing the 
number of logic levels between registers). 

In this chapter we highlight two related uses of partial evaluation for circuits. 
The first, at the beginning of Section 22.2.4, optimizes generic circuit descrip
tions for improved performance. That is, circuits are described using clear and 
easily maintainable but nonoptimal design patterns, which are then automati
cally optimized during synthesis. The second, in the middle of Section 22.2.4, 
specializes general circuits when some inputs are static, such as constant coef
ficient arithmetic. 

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

(a) 

(b) 

B C 

(c) 

FIGURE 22.5 ■ Partial evaluation of an XOR gate. (a) A 2-input XOR function can be special
ized, when input A is to become static: (b) an inverter when A is true or (c) a wire when 
A is false. 

~ u 
~v 
~ -
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22.2.2 Process of Specialization 

Consider a general circuit C producing output R, whose inputs are partitioned 
into two sets S and D. 

R=C(S,D)

This circuit can be specialized for a particular set of S inputs such that it 
computes the same result for all possible inputs D: 

A partial evaluator is an algorithm that, when supplied with values for the set 
of inputs S and the circuit C, produces a specialized circuit Cs=X· 

Cs =x = P(C,S,X) 

where S is the set of static inputs that are known at compile time, and D is the set 
of dynamic inputs. The importance of partial evaluation is that the specialized 
circuit computes precisely the same result as the original circuit, though it may 
require less hardware to do so. 

Relating this framework to the XOR gate example, R = XOR(A,B), with S = {A} 
and D = {B}, the two possible simplified functions can be described as 

for the two possible values of A. 

XORA = O = P(XOR,A,0) = NOT(B) 

XORA= l = P(XOR,A,1) =B

22.2.3 Partial Evaluation in Practice 

Constant folding in logical expressions 
Partial evaluation of logic is well understood and has been used to simplify 
circuit logic for many years. Figure 22.6 gives a simple partial evaluation 
function, P(S)[[X]], for optimizing Boolean logic expressions expressed using 
not, and, and or connectives. The function is parameterized by a set S of pairs 
mapping static variables to their values and a Boolean expression X represented 
as a tree. 

The function is defined recursively on the structure of Boolean expressions. 
Cases (1), (2), and (3) are base conditions, indicating that partial evaluation of 
the Boolean constants True and False always has no effect, and partial evaluation 
of a variable a returns either the constant value of that variable (if it is contained 
within the static inputs) or the variable name if it is not static (i.e., remains 
dynamic). 

Case (4) defines partial evaluation of a single-input not function. If the subex
pression evaluates to logical truth or falsity, this is inverted by the conditional 
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(1) P(S) [[True]]

(2) P (S) [[ False ]]

(3) P (S) [[ a ]]

(4) P(S) [[-, x]]

(5) P (S) [[ x & y ]] 

(6) P (S) [[ x+y ]]

True 

False 

22.2 Partial Evaluation 465 

if a E dom(S) then P (S) [[ S (a) ]] else a 

Let y = P ( S) [[ X ]] 

If y == True then False 

Else if y == False then True 

Else -, y 

Let x' = p (S) [[ X ]] 

Let y' = P (S) [[ y ]] 
if (x' == False 11 y' == False) then False 

Else if x' == True then y' 

Else if y' == True Then x' 

Else x' & y' 

Let x' = p (S) [[ X ]] 

Let y' = P (S) [[ y ]] 

If (x' == True 11 y' == True) then True 

Else if x' == False then y' 

Else if y' == False then x' 

Else x+y 

FIGURE 22.6 ■ A partial evaluation algorithm for simplifying Boolean logic expressions. 

check. Otherwise, the partially evaluated sube:,g,ression is returned with the not

operation. 
Cases (5) and (6) define partial evaluation of 2-input and and or functions. 

The process is the same: Simplify the subexpressions, precompute the function 
result if possible, and, if not, return the function with simplified arguments. 

As an example, consider the application of this algorithm to the simplification 
of the XOR function in Figure 22.5. XOR can be described in terms of basic 
Boolean operators as 

a xor b = (a&.b)+(,a & b) 

Partially evaluating when a is asserted, the function is executed: 

(i) P({a - True})[[(a & ,b)+(,a & b)]]

Case (6) for simplifying logical-or is used, and the two subexpressions are 
partially evaluated separately: 

(ii) P({a - True})[[a&-;b]]

(iii) P({a - True})[[,a&b]]

Both (ii) and (iii) are partially evaluated by the case for logical-and. For (ii) the 
two subexpressions are first evaluated as 

(iv) P({a - True})[[a]] = 'Ihle

(v) P({a - True})[[-,b]] = -,b
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In (iv), the variable a is within the static inputs S and thus is simplified to 
True, while ,b is unchanged because it does not contain a. The results from 
partially evaluating (iii) are similar: 

(vi) P({a---+ True})[[,a]] =P({a---+ True})[[,True]] = False

(vii) P({a---+ True})[[b]] =b

Equipped with the simplified subexpressions, the expression a & ,b is simplified 
to ,b and the expression ,a & b is simplified to False. At the top level this gives 
a logical-or: ,b + False: 

(viii) P({a---+ True})[[-,b+False]]=,b

The XOR function reduces to a single inverter; if supplied with {a---+ False} 
the partial evaluation function instead returns just b, indicating the simple wire. 
This is consistent with the truth tables in Figure 22.5. 

The partial evaluation function just given is quite simple and does not cap
ture all possible optimizations. For example, the logic function a + ,a always 
evaluates to True, regardless of the value of a; however, this expression will not 
be simplified by this function. 

Unnecessary logic removal 
Another optimization that can be carried out during partial evaluation is 
removal of dead logic_in a design, which does not affect any output and thus 
is unnecessary. This is a very important optimization because it allows generic 
hardware blocks computing many functions to be used in designs, with unused 
functions pruned during synthesis. 

As an algorithmic process, logic removal is quite simple and can be formu
lated in a number of different ways. One of the simplest is to identify each gate 
whose output is unconnected and eliminate it. By recursively applying this rule 
we can eliminate acyclic dead logic. 

22.2.4 Partial Evaluation of a Multiplier 

Optimizing a simple description 
Figure 22.7 shows a shift-add circuit designed for a Xilinx architecture to com
pute the 3-bit multiplication of two 3-bit inputs. This circuit appears semi
regular, with x and y inputs propagating horizontally and vertically through a 
triangular array of processing cells. Each processing cell has common features; 
however, it contains slightly different logic depending on its position in the array. 

Creating and maintaining a circuit description that contains and correctly 
connects the different types of cell is quite complicated. A simpler approach is 
to exploit the regularity to describe the circuit as an array of a single type of 
cell that is then partially evaluated during synthesis to produce the circuit in 
Figure 22.7. 

The general cell of the multiplier can be described as shown in Figure 22.8. 
This cell implements a multiplication operation for 1 bit of x and 1 bit of y, 
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FIGURE 22.7 ■ A shift-add multiplier circuit that takes two 3-bit inputs and produces a 3-bit 
output. 

Yin 
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' 

' 

Sum;n: 

Q'in 
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Pout 

Yout 

Mult_and 

Pin 

FIGURE 22.8 ■ This cell design can be replicated in a grid arrangement to create a multiplier. 

"-

producing sum and carry-out bits, and can be arranged in a grid to generate a 
multiplication circuit identical in function to that shown in Figure 22.8. These 
cells can b_e implemented densely on Xilinx architectures by using the special
ized mult_and, xorcy, and muxcy components in each slice. 

Y2 +----
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Partial evaluation can automatically produce the optimized multiplication 
circuitry from the initial regular description. The four components within each 
cell each have their own logical formula. In the case of mult_and, xorcy, and 
muxcy, no simplification is possible unless we can totally eliminate these ftmc
tions, because these are fixed resources on the device, compared with the LUT, 
which can flexibly implement any 4-input function. 

The logic of the standard cell can be represented as 

LUTout = (Yin & Xin)xor Qin = (-, (Yin &Xin) & Qin)+ ((Yin &Xin)&,Qin) 
ANDout = (Yin & Xm) 

Pout = (LUTout & Pm)+(,LUTout & ANDout) 
SUMout = (,LUTout & Pm)+(LUTout & , Pm) 

This logic can be simplified by two operations: removing unconnected logic 
and constant folding to optimize the logic that remains. Removal of discon
nected logic transforms the grid into the triangular array, while constant folding 
can be performed by the partial evaluation function introduced in Figure 22.6. 

For example, for the cells along the bottom in Figure 22.8, inputs Qin and Pin 
are all zero. This allows the LUT contents to be optimized by 

LUTout' = P( {Qin-+ False, SUM in -+ False, Pin-+ False}) 
[[(,(Yin & Xin) & Qin)+ ((Ym &Xin)&, Qin)J] = (Yin &Xin) 

The ftmction attempts to partially evaluate both branches of the OR expression. 
On the left branch, -, (Yin & Xin) cannot be further optimized and so is left intact; 
however, Qin is known to be false, so the entire left branch must be false and 
thus is eliminated. On the right branch, ,Qin is evaluated to true and eliminated 
from the expression, leaving (Yin & Xm) as the simplified function for the LUT 
contents. 

ANDout cannot be simplified because both Yin and Xin are unknown. Neither 
can Pout because, although it can be partially optimized (because Pin is false), 
it is a fixed component available on the FPGA that cannot be simplified. Partial 
evaluation of SUMout does succeed in eliminating logic: 

SUMout' = P({Qin-+ False, SUMm-+ False, Pm-+ False}) 
[[(,LUTout & Pin)+ (LUTout & ,Pin)J] = LUTout 

The result of this partial evaluation is that the bottom cells of the multiplier 
are optimized to remove the unnecessary xorcy component and to simplify the 
3-input LUT function into a basic 2-input AND function.

Functional specialization for constant inputs 
If some of the input values to the multiplication circuit are known statically, we 
can apply constant folding to eliminate further logic. For example, assume that 
x1 is static and always zero. Partially evaluating the cell logic under the new 
assumption that {Xin -+ False} we find that the entire cell can be eliminated and 
replaced with pure routing. The simplified cell is shown in Figure 22.9. 
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22.2 Partial Evaluation 469 

Because a single bit of the x input is shared with an. entire column of the 
multiplier, this specialized cell can be used for the full column, replacing all the 
logic with routing, as shown in Figure 22.10; this arrangement in tum allows 
optimizations to be applied to the second LUT in the final column to eliminate 
the XOR function (not shown in the figure so that the routing can be seen). 

X'out Pout 
- ---- -----------------------------------------------------------------------

Yout 

Sum;n Sumout 

L- ----- --------------------------------------------------- --------------------

Pon 

FIGURE 22.9 ■ The impact of partial evaluation on multiplier cell logic when Xm = False. 

Y1 

: Sum1 

� 

Yo ___________________________ ' 

' --------------------------

x, 0 0 

FIGURE 22.10 ■ Multiplier circuit specialized by eliminating the center column when x; is 
always zero. 

: Sum0 
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When an x value is known to be true, partial evaluation can still carry 
out some optimizations. However, it does not offer the significant advantages 
that result when x is false. The LUT can again be optimized to a 2-input 
function and the mul t_and component can be eliminated. This is not very 
significant, however-the mul t_and component is already present on the device, 
so no area is saved, and it is utilized in parallel with the (slower) LUT so there 
is also no performance gain. 

Geometric specialization 
High-performance FPGA designs often include layout information to produce 
good placements with low routing delays (see Chapter 17). Specialization of 
placed designs may lead to nonoptimal results if the placement is not updated 
to reflect eliminated logic. Automatic placement is not affected, since partial 
evaluation is usually carried out at the synthesis stage prior to placement and 
routing. However, when hand-placed designs are specialized, the effect can be to 
introduce unnecessary delays by failing to compact components. These gaps can 
also prevent effective use of freed logic because it is fragmented among other 
components. To ensure a good placement of specialized designs it is necessary to 
optimize placement information, compacting the circuit. This can be achieved 
in a framework that allows partial evaluation prior to placement position gene
ration [8] or by describing circuit layouts in a way that adapts when the circuit 
is specialized [ 12]. 

22.2.5 Partial Evaluation at Runtime 

Pattern matching is a relatively simple operation that can be performed effi
ciently in hardware. It is useful in a range of fields but is of particular interest 
in networking for inspecting the contents of data packets. 

Figure 22.11 illustrates a simple general pattern matcher made up of a repea
ting bit-level matcher cell. Each cell contains a pattern and a mask value, which 
can be loaded separately from the data to be matched. Input data is streamed 
in 1 bit per cycle; if the mask value for a particular bit position is set, the cell 
for that position checks the current data value against the bit pattern. 

The pattern matcher requires one LUT and three registers for each bit in the 
data pattern. However, it is likely that the pattern and mask values will change 
much more slowly than the data input, so it is reasonable to investigate the 
potential for partial evaluation to optimize this circuit for fixed patterns. 

When the pattern and mask are fixed, the registers storing their values can 
be eliminated and the logic in the LUTs can be optimized. Figure 22.12 shows 
how the pattern matcher can be optimized for a pattern of "lOXl" (the third 
pattern bit is a "don't care," as specified by the mask of "1101"). This circuit 
uses fewer registers and three LUTs rather than four. The significance of this 
particular way of optimizing is that the pattern matcher's structure has mostly 
been maintained and thus this specialization can be carried out at runtime. 

Changes to the mask require routing changes-complex, though far from 
impossible at runtime; however, the pattern to be matched can be changed 
merely by updating the LUT contents. 
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FIGURE 22.11 ■ A general bit-level pattern matcher, shown for 4-bit patterns. The pattern matcher circuit is 
controlled by a pattern and a mask, which can be loaded by asserting the load signal. If the mask bit is set 
for a particular position, the matcher will attempt to detect a match between the pattern bit and the data bit. 

Data 
�----<o ser o,1-----,-----1 --------<o=ot-----r-----10=01----

CLR 1:1 

2-LUT 2-LUT

FIGURE 22.12 ■ An instance-specific pattern matcher optimized for a mask of 1101 and pattern of 1ox1 

requires only three LUTs and four registers. 

22.2.6 FPGA-specific Concerns 

LUTmapping 
Recall the pattern matcher example from the previous section, where we showed 
one partial evaluation of the circuit for a particular pattern. In this case partial 
evaluation significantly simplified the contents of each tUT, from a 4-input func
tion to a much simpler 2-input function. 

It is important that, in contrast to ASICs, there is often no performance advan
tage to be gained by reducing the complexity of logic functions in an FPGA 
unless the number of LUTs required to implement those functions is reduced. 
The propagation delay of a LUT is independent of the function it implements; 
thus, there is no gain in reducing a 4-input function to a 2-input function within 
the same LUT (although it does allow routing resources to be freed for other 
uses). 

For runtime specialization, it may be desirable to maintain much of the origi
nal circuit structure. However, when partial evaluation is carried out at compile 
time it should be performed before logic is mapped to LUTs, giving more scope 
for improvements in circuit area and performance. Figure 22.13 shows that the 
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Data 

-..----�o 01--......... -----1 

Q 

4-LUT

1-----10 of-....,....--

Q Q Q 

Match 

FIGURE 22.13 ■ The instance-specific pattern matcher from Figure 22.12 can be implemented 
using a single 4-LUT rather than three 2-LUTs. 

specialized pattern matcher can indeed be implemented using one 4-LUT rather 
than three 2-LUTs, with higher performance and lower area requirements than · 
the version partially evaluated at runtime. 

In fact, the static 1-input can also be eliminated from this LUT; however, it 
has been left to indicate that this LUT structure can be used as part of a chain 
in a larger pattern matcher. 

Static resources 
As alluded to in the multiplier example, the existence of specific resources on 
an FPGA in addition to LUTs, such as carry chain logic, poses a problem for 
automatic partial evaluation algorithms. Not only can this logic not be simplified 
(for example, the xorcy gate cannot be replaced with an inverter), in some cases 
it cannot be eliminated at all because of routing constraints ( carry signals must 
propagate through muxcy multiplexers, for example, regardless of necessity). 

Furthermore, it is often important to maintain use of the dedicated carry 
chain, even though significantly simpler logic could perhaps be generated after 
partial evaluation, because the carry chain is designed to propagate carry signals 
very quickly-and much faster than the general routing fabric. 

Verification of runtime specialization 
Dynamic specialization at runtime poses additional verification problems over 
and above verification of an original design. While a circuit may have been 
verified through extensive simulation or formal methods prior to synthesis, when 
it is specialized at runtime it is possible for new errors to be introduced. 

To avoid this it is necessary to ensure that the algorithms that apply partial 
evaluation at runtime have themselves been verified. Formal proof is an appro
priate methodology for this problem, since it is necessary to check a generic 
property of the algorithm applied to all circuits rather than any particular 
specialization operation. 

□ D1J □ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 492



22.3 Summary 473 

Although formal verification has been applied to partial evaluation algorithms 
for specialization of FPGA circuits [7, 14], it remains a relatively unexplored 
area. 

22.3 SUMMARY 

This chapter described instance-specific design, which offers the opportunity to 
exploit the reconfigurable nature of FPGAs to improve performance by tailoring 
circuits to particular problem instances. It can be broadly categorized into three 
techniques: constant folding, which can be applied when some inputs are static; 
function adaptation, which alters the function of circuitry to produce a certain 
quality of result; and architecture adaptation, in which the circuit architecture 
is adapted without affecting its functional behavior. 

The level of automation that can be applied varies among these approaches. 
Constant folding can often be carried out automatically using partial evalua
tion techniques. Function adaptation can be performed by varying bit widths 
and arithmetic methods in parameterized IP cores. Tools, such as Quartz (for 
low-level design) [12] or ASC (for stream architectures) [10], can produce highly 
parameterized circuit cores where design parameters can be traded off against 
each other to achieve the desired requirements in area, speed, and power con
sumption. Architecture adaptation, such as adding additional processing units 
to instruction processors, is typically much less automated. The designer must 
create separate implementations of the different architectures, optimizing each 
of them somewhat independently. 
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Many values in a computation are naturally represented by integers, which have 
very efficient hardware implementations; basic operations are relatively cheap, 
and they map well to an FPGA's underlying hardware. However, some compu
tations naturally result in fractional values, that is, numbers where part or all 
of the value are less than 1-for example, 0.25, 3.25, and 1t-0r that are so large 
that representation as integers is too costly-for example, 10120 • Handling these 
values is a significant concern because the hardware necessary to compute on 
scaled values can be significant in speed, power consumption, and area. 

In arithmetic for reconfigurable computing designs, it is common to employ 
fixed point instead of floating point to represent scaled values. This chapter 
explores the reason for this design decision and the associated analysis that must 
be performed in order to choose an appropriate fixed-point representation for a 
particular design. Since designs for reconfigurable logic can be customized for 
particular applications, it is appropriate to fit the number system to the under
lying application properties. 

23.1 FIXED-POINT NUMBER SYSTEM 

In general-purpose computing, floating-point representations are most com
monly used for the representation of numbers containing fractional compo
nents. The floating-point representations standardized by the IEEE [22] have 
several advantages, the foremost being portability across different computational 
platforms. 

In general, we may consider a floating-point number X[t] at time t as made 
up of two components: a signed mantissa M[t] and a signed exponent E[t] (see 
equation 23.1). Within this representation, the ratio of the largest positive value 
of X to the smallest positive value of X varies exponentially with the exponent 
E[t] and hence doubly exponentially with the number of bits used to store 
the exponent. As a result, it is possible to store a wide dynamic range with 
only a few bits of exponent, while the mantissa maintains the precision of the 
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representation across that range by dividing the corresponding interval for each 
exponent into equally spaced representable values. 

X[t] = M[t] · 2E[t] (23.1) 

However, the flexibility of the floating-point number system comes at a price. 
Addition or subtraction of two floating-point numbers requires the alignment of 
radix ("decimal") points, typically resulting in a large, slow, and power-hungry 
barrel shifter. In a general-purpose computer, this is a minor concern compared 
to the need to easily support a wide range of applications. This is why proces
sors designed for general-purpose computing typically have a built-in floating
point unit. 

In embedded applications, where power consumption and silicon area are of 
significant concern, the fixed-point alternative is more often used [24]. We can 
consider fixed point as a degenerate case of floating point, where the exponent 
is fixed and cannot vary with time (i.e., E[t] = E). The fixing of the exponent 
eliminates the need for a variable alignment and thus the need for a barrel 
shifter in addition and subtraction. In fact, basic mathematical operations on 
fixed-point values are essentially identical to those on integer values. However, 
compared to floating point, the dynamic range of the representation is reduced 
because the range of representable values varies only singly exponentially with 
the number of bits used to represent the mantissa. 

When implementing arithmetic in reconfigurable logic, the fixed-point number 
system becomes even more attractive. If a low-area fixed-point implementation 
can be achieved, space on the device can be freed for other logic. Moreover, the 
absence of hardware support for barrel shifters in current-generation reconfig
urable logic devices results in an even higher area and power overhead compared 
to that in fully custom or ASIC technologies. 

23.1.1 Multiple-wordlength Paradigm 

For simplicity we will restrict ourselves to 2's complement representations, 
although the techniques presented in this chapter apply similarly to most other 
common representations. Also, we will use dataflow graphs, also known as signal 
flow graphs in the digital signal processing (DSP) community, as a simple under
lying model of computation [12]. In a dataflow graph, each atomic computation 
is represented by a vertex v E V, and dataflow between these nodes is represented 
by a set of directed edges S � V x V. To be consistent with the terminology used 
in the signal-processing community, we will refer to an element of S as a signal; 
the terms signal and variable are used interchangeably. 

The multiple-wordlength paradigm is a design approach that tries to fit 
the precision of each part of a datapath to the precision requirements of the 
algorithm [8]. It can be best introduced by comparison to more traditional fixed
point and floating-point implementations. Each 2's complement signal j ES in a 
multiple-wordlength implementation of a dataflow graph (V, S) has two param
eters ni and Pj, as illustrated in Figure 23.l(a). The parameter ni represents the 
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FIGURE 23.1 ■ The multiple-wordlength paradigm: (a) signal parameters (''s" indicates a sign bit); 
(b) fixed poi:it; (c) floating point; (d) multiple wordlength. The triangle represents a constant
coefficient multiplication, or "gain"; the rectangle represents a register, or unit sample delay.

number of bits in the representation of the signal (excluding the sign bit, by 
convention), and the parameter Pi represents the displacement of the binary 
point from the least significant bit (LSB) side of the sign bit toward the LSB. 
Note that there are no restrictions on Pi; the binary point could lie outside the 
number representation (i.e., Pi< 0 or Pi> ni). 

A simple fixed-point implementation is illustrated in Figure 23.l(b). Each 
signal j in this dataflow graph representing a recursive DSP algorithm is anno
tated with a tuple (ni, Pi) representing the wordlength scaling of the signal. In 
this implementation, all signals have the same wordlength and scaling, although 
shift operations are often incorporated in fixed-point designs in order to provide 
an element of scaling control [25]. Figure 23.l(c) shows a standard floating-point 
implementation, where the scaling of each signal is a function of time. 

A single systemwide wordlength is common to both fixed and floating point. 
This is a result of historical implementation on single, or multiple, predesigned 
arithmetic units. In FPGAs the situation is quite different. Different opera
tions are generally computed in different hardware resources, and each of these 
computations can be built to any size desired. Such freedom points to an alter
native implementation style, shown in Figure 23.l(d). This multiple-wordlength 
implementation style inherits the speed, area, and power advantages of tradi
tional fixed-point implementations, since the computation is fixed point with 
respect to each individual computational unit. However, by potentially allow
ing each signal in the original specification to be encoded by binary words 
with different scaling and wordlength, the degrees of freedom in design are 
significantly increased. 

r ··· 
(n, Pt[t]) 
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23.1.2 Optimization for Multiple Wordlength 
Now that we have established the possibility of using multiple scalings and 
wordlengths for different variables, two questions arise: How can we optimize 
the scalings and wordlengths in a design to match the computation being per
formed, and what are the potential benefits from doing so? For FPGA-based 
implementation, the benefits have been shown to be significant: Area savings of 
up to 45 percent [8] and 80 percent [15] have been reported compared to the 
use of a single wordlength across the entire circuit. The main substance of this 
chapter is to describe suitable scaling and wordlength optimization procedures 
to achieve such savings. 

Section 23.2 shows that we can determine the appropriate scaling for a 
signal from an estimation of its peak value over time. One of two main 
techniques-simulation based and analytical-is then introduced to perform this 
peak estimation. While an analytical approach provides a tight bound on the peak 
signal value, it is limited to computations exhibiting certain mathematical prop
erties. For computations outside this class, an analytical technique tends to be 
pessimistic, and so simulation-based methods are commonly used. 

Section 23.3 focuses on determining the wordlength for each signal in the 
computation. The fundamental issue is that, because of roundoff or truncation, 
the wordlength of different signals in the system can have different impacts on 
both the implementation area and the error observed at the computation output. 
Thus, any wordlength optimization system needs to perform a balancing act 
between these two factors when allocating wordlength to signals. The goal of 
the work presented in this section is to allocate wordlength so as to minimize 
the area of the resulting circuit while maintaining an acceptable computational 
accuracy at the output of the circuit. 

23.2 PEAK VALUE ESTIMATION 

The physical representation of an intermediate result in a bit-parallel implemen
tation of an algorithm consists of a finite set of bits, usually encoded using 2's 
complement representation. To make efficient use of the resources, it is essen
tial to select an appropriate scaling for each ��0nal. Such a scaling should ensure 
that the representation is not overly wasteful in catering to rare or impossibly 
large values and that overflow errors, which lead to low arithmetic quality, do 
not occur often. 

To determine an appropriate scaling, it is necessary to determine the peak 
value that each signal can reach. Given a peak value P, a power-of-two scaling 
p is selected with p = Llog2PJ + 1, since power-of-two multiplication is free in a 
hardware implementation. 

For some algorithms, it is possible to estimate the peak value that each 
signal could reach using analytic means. In the next section, such techniques 
for two different classes of system are discussed. The alternative, to use simu
lation to determine the peak signal value, is described in the following section. 
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Also discussed are some hybrid techniques that aim to combine the advantages 
of both approaches. 

23.2.1 Analytic Peak Estimation 

If the DSP algorithm under consideration is a linear time-invariant system, it 
is possible to find a tight analytic bound on the peak value reachable by every 
signal in it. This is the problem addressed in the section immediately following. 
If, on the other hand, the system is nonlinear or time varying, such an approach 
cannot be used. If the algorithm is nonrecursive-that is, the dataflow graph 
does not contain any feedback loops-data range propagation may be used to 
determine an analytic bound on the peak value of each signal. However, this 
approach, described in the next section, cannot be guaranteed to produce a 
tight bound. 

linear time-invariant systems 
A linear time-invariant (LTI) system is one that obeys the distinct properties of 
linearity and time invariance. A linear system is one that obeys superposition
that is, if its output is the sequence Y1[t] in response to input x1[t], and is yz[t] 
in response to input x2[t], then it will be a.y1[t] + J3y2[t] in response to input 
a.xi [t] + jh2[t]. A time-invariant system is one that, given the input x[t] and the 
corresponding output y[t], will provide output y[t - t0] a given input x[t - to], 
In other words, shifting the input sequence in time merely shifts the output 
sequence by the same amount. 

From a practical perspective, any computation made entirely of addition, con
stant coefficient multiplication, and delay operations is guaranteed to be LTI. 
This class of algorithms, while restricted, is extremely important; it contains all 
the fundamental building blocks of DSP, such as finite impulse response (FIR) 
and infinite impulse response (IIR) filters, together with transformations such 
as the discrete cosine transform (OCT), the fast Fourier transform (FFT), and 
many color-space conversions. 

The remainder of this section assumes a basic knowledge of digital signal 
processing, in particular the z-transform and transfer functions. For the unfamil
iar reader, Mitra [32] provides an excellent introduction. Readers unconcerned 
with the mechanics of peak estimation for LTI systems may simply take it as 
read that for such systems it is possible to obtain tight analytic bounds on peak 
signal values. 

Transfer function calculation The analytical scaling rules derived in this sec
tion rely on a knowledge of system transfer functions. A transfer function of 
a discrete-time LTI system between any given 1/0 pair is defined to be the z
transform of the sequence produced at that output, in response to a unit impulse 
at that input [32]; these transfer functions may be expressed as the ratio of two 
polynomials in z-1• The transfer function from each primacy input to each sig
nal must be calculated for signal-scaling purposes. This section considers the 
practical problem of transfer function calculation from a dataflow graph. 
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Given a dataflow graph G{V, S), let V1 � V be the set of input nodes, Vo� V

be the set of output nodes, and Vv � V be the set of unit sample delay nodes. 
For signal scaling, a matrix of transfer functions H(z) is required, with elements 
hiv(z) for i E V1 and v E V representing the transfer function from the primacy 
input i to the output of node v.

Calculation of transfer functions for nonrecursive systems is a simple task, 
leading to a matrix of polynomials in z-1; a straightforward algorithm is
presented by Constantinides et al. [12]. For recursive systems, it is neces
sary to identify a subset Ve � V of nodes whose outputs correspond to a 
system state. In this context, a state set consists of a set of nodes that, if 
removed from the dataflow graph, would break all feedback loops. Once such 
a state--set has been identified, transfer functions can easily be expressed in 
terms of the outputs of these nodes using algorithms suitable for nonrecursive 
computations. 

Let S(z) be a z-domain matrix representing the transfer function from each 
input signal to the output of each of these state nodes. The transfer functions 
from each input to each state node output may be expressed as in equation 23.2, 
where A and Bare matrices of polynomials in z-1. Each of these matrices repre
sents a z-domain relationship once the feedback has been broken at the outputs 
of state nodes. A(z) represents the transfer functions between state nodes and 
state nodes, and B(z) represents the transfer functions between primacy inputs 
and state nodes. 

S(z) = AS(z) + B(z) 

H(z) = CS(z) + D(z) 

(23.2) 

(23.3) 

The matrices C(z) and D(z) are also matrices of polynomials in z-1• C(z) rep
resents the z-domain relationship between state node outputs and the outputs 
of all nodes. D(z) represents the z-domain relationship between primacy inputs 
and the outputs of all nodes. 

It is clear that S(z) may be expressed as a matrix of rational functions (equa
tion 23.4), where I is the identity matrix of appropriate size. This allows the 
transfer function matrix H(z) to be calculated directly from equation 23.3. 

S(z) = (I-A)-1B (23.4) 

Example Consider the simple dataflow graph from Section 23.1.1, shown in 
Figure 23.1. Clearly, removal of any one of the four internal nodes (adder, gain, 
delay, or the signal branch) from it will break the feedback loop. Let us arbitrarily 
choose the adder node as a state node and choose the gain coefficient to be 0.1. 
The polynomial matrices A(z) to D(z) may then be calculated (equation 23.5). 

A(z) = o.1z-1

B(z) = 1 

C(z) = [O 1 0.1 0.1 0.1 o.1z-1f

D(z) = [1 o o o o of 

(23.5) 
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Calculation of S(z) may then proceed following equation 23.4, yielding equation23.6. Finally, the matrix H(z) can be constructed following equation 23.3, giving
equation 23.7. 

S(z) = 1/(1-0.lz- 1 ) (23.6)

H(z) = [11/(1-0.lz- 1 ) 0.l/(1-0.1z- 1 ) 0.1/(1-0.1C 1 ) 0.1/(l -0.1z- 1)
o.1z- 1 /(1-0.1z- 1 )f (23.7)

The runtime of this algorithm grows significantly with the number of state
signals !Ve I, and so selecting a small set of state signals is important. A simple
approach is to select all of the delay elements in a circuit, assuming that it has
no combinational cycles. Alternatively, techniques such as Levy and Low's [30]can be employed. 
Scaling with transfer functions To produce the smallest fixed-point implemen
tation, it is desirable to utilize as much as possible of the full dynamic range
provided by each internal signal representation. The first step of the optimiza
tion process is therefore to choose the smallest possible value of P; for eachsignal j E S in order to guarantee no overflow. 

Consider a dataflow graph G(V, S), annotated with wordlengths n and scalings
p. Recall that Vi� V denotes the set of input nodes, and let us say that each such
node reaches peak signal values of ±Mi(Mi > 0) for i E V1 . Let H(z) be the scaling
transfer function matrix defined before, with the associated impulse response
matrix h[t] related to the transfer function matrix through the component-wiseinverse z-transform. Then the worst-case peak value P; reached by any signal
j ES is given by maximizing the well-known convolution sum (equation 23.8)[32], where xi[t] is the value of the input i E V1 at time index t. 

Solving this maximization problem provides the input sequence given inequation 23.9, and allowing Ni; - (X) leads to the peak response at signal j given
in equation 23.10. Here sgn( ) is the signum function (equation 23.11). 

P; =±Em� (N

}:

1 Xi [t' -t] hi;[t]) iEV1 
x;[t ] t=O 

00 P; = E Mi E lhi; [t]I iEV1 t=O 
{ 1, x:2:0sgn (x) = -1, otherwise

(23.8)

(23.9)
(23.10)

(23.11)

This worst-case approach leads to the concept of 11 scaling, defined in thefollowing paragraphs. 

Xi [t] = Misgn (hii lNii-t-1 J) 
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The 11-nonn of a transfer function H(z) is given by equation 23.12, where 
z-1{ } denotes the inverse z-transfonn .

.. 

11 {H(z)} = Ez- 1 
{H(z)}[t] (23.12) 

t=O 

A dataflow graph G(V, S) annotated with wordlengths n and scalings p is said 
to be 11 -scaled} if equation 23.13 holds for all signals j ES. 

(23.13) 

The important point about an l 1-scaled algorithm is that the scalings used are 
optimal in the following sense. If any scaling is reduced lower than its value from 
equation 23.13, it is possible for overflow to result on that variable. If any scal
ing is increased beyond its value from equation 23.13, the area of the resulting 
implementation increases or stays the same without any matching improvement 
in arithmetic quality observable at the algorithm outputs. 

Data range propagation 
If the algorithm under consideration is not linear or time invariant, one mech
anism for estimating the peak value reached by each signal is to consider the 
propagation of data ranges tlu;-ough the computation graph. This is generally 
possible only for nonrecursive algorithms. 

Forward propagation A naive way of approaching this problem is to examine 
the binary-point position that "naturally" results from each hardware operator. 
Such an approach, illustrated here, is an option in the Xilinx System Generator 
tool [20]. 

In the dataflow graph shown in Figure 23.2, if we consider that each input 
has a range (-1, 1), then we require a binary-point location of p = 0 at each 
input. Let us consider each of the adders in tum. Adder al adds two inputs 
with p = 0 and therefore produces an output with p = max(O, O) + 1 = 1. Adder a2 
adds one input with p = 0 and one with p = 1, and therefore produces an output 
with p = max(O, 1) + 1 = 2. Similarly, the output of a3 hasp = 3, and the output 
of a4 hasp= 4. While we have successfully determined a binary-point location 
for each signal that will not lead to overflow, the disadvantage of this approach 

al a2 a3 a4 

FIGURE 23.2 ■ A dataflow graph representing a string of additions. 
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should be clear. The range of values reachable by the system output is actually 
5*(-1, 1) = (-5, 5), sop= 3 is sufficient; p = 4 is an overkill of one MSB. 

A solution to this problem that has been used in practice is to propagate data 
ranges rather than binary-point locations [ 4, 40]. To understand this approach 
in practice, let us apply the technique to the example of Figure 23.2. The output 
of adder al is a subset of (-2,2) and thus is assignedp = 1; the output of adder 
a2 is a subset of (-3, 3) and is thus assigned p = 2; the output of adder a3 is 
a subset of (-4, 4) and is thus assigned p = 3; and the output of adder a4 is a 
subset of (-5, 5) and is thus also assigned p = 3. For this simple example, the 
problem of peak value detection has been solved to optimality. 

However, such a tight solution is not always possible with data range prop
agation. Under circumstances where the dataflow graph contains one or more 
branches ( fork nodes), which later reconverge, such a '1ocal" approach to range 
propagation can be overly pessimistic. As an example, consider the computation 
graph representing a constant coefficient multiplication on complex numbers 
shown in Figure 23.3. 

In the figure, each signal has been labeled with a propagated range, assum
ing that the primary inputs have range (-0.6, 0.6). Under this approach, both 
outputs require p = 2. However, such ranges are overly pessimistic. The upper 
output in Figure 23.3 has the value Yl = 2.lx1 - l.8(x1 +x2) = 0.3x1 - l.8x2. Thus, 
its range can also be calculated as 0.3(-0.6,0.6)- 1.8(-0.6,0.6) = (-1.26, 1.26). 
A similar calculation for the lower output provides a range of (-1.2, 1.2). By 
examining the global system behavior, we can therefore see that in reality p = 1 
is sufficient for both outputs. 

Y1 [nJ 

(-0.6, 0.6) (-0.6, 0.6) (-3.42, 3.42) 

(-0.6, 0.6) 

(-2.16, 2.16) (-2.16, 2.16) 

(-0.6, 0.6) 2.16) 

�[n] 

(-0.6, 0.6) (-0.6, 0.6) (-3.12, 3.12) 

FIGURE 23.3 ■ Range propagation through a complex constant coefficient multiplier. Triangles 
represent (real) constant coefficient multiplication. 

x1 [n] 
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Note that the analytic scheme described previously for linear time-invariant 
systems would calculate the tighter bound in this case. 

In summary, range propagation techniques may provide larger bounds on 
signal values than are absolutely necessary. This problem is seen in extremis

with recursive computation graphs. In these cases, it is generally impossible to 
use range propagation to place a finite bound on signal values, even in cases 
when such a finite bound can analytically be shown to exist. Under these cir
cumstances, it is standard practice to use some form of simulation to estimate 
the peak value of signals. 

23.2.2 Simulation-based Peak Estimation 

A completely different' approach to peak estimation is to use simulation-that . 
is, to actually run the algorithm with one or more provided input datasets and 
measure the peak values reached by each signal. 

In its simplest form, the simulation approach consists of measuring the peak 
signal value P; reached by a signal j ES and then setting p = llog2kP;J + 1, where 
k > l is a user-supplied "safety factor" {typically 2 to 4). Thus, it is ensured that 
no overflow will occur so long as the signal value does not exceed kP; when 
excited by a different input sequence. Particular care must therefore be taken 
to select an appropriate test sequence. 

Kim et al. [25] extend the simulation approach by considering more complex 
forms of the safety factor. In particular, it is possible to extract information from 
the simulation relating to the class of probability density function followed by 
each signal. A histogram of the data values for each signal is built, and from it 
the distribution is classified as unimodal or multimodal, symmetric or nonsym
metric, and zero mean or nonzero mean. Different forms of safety factor are 
applied in each case. 

Simulation approaches are appropriate for nonlinear or time-varying sys
tems, for which data range propagation, described in Section 23.1.2, provides 
overly pessimistic results (such as for recursive systems). The main drawback of 
simulation-based approaches is the significant dependence on the input dataset 
used for simulation; moreover, usually no general guidelines can be given for 
how to select an appropriate input. These approaches can, of course, be com
bined with the analytical techniques of Section 23.2.1 [13]. 

There has been some recent work [34] aiming to put the derivation of safety 
factors on a sound theoretical footing by using the statistical theory of extreme 
value distributions [26]. It is known that the distribution of the sum of a large 
number of statistically independent identically distributed (i.i.d.) random vari
ables approaches the Gaussian distribution (the Central Limit Theorem). What 
is less well known is that the (scaled) maximum value of a large number of 
i.i.d. variables also approaches one of three possible distributions, no matter
the distribution of the variables themselves. These are the Gumbel, Frechet, and
Weibull distributions [26]. Using this property, and making an assumption on
the type of distribution converged to (Ozer and colleagues [34] assume Gumbel),
provides a statistically sound way of estimating the safety factor required for a
given arbitrarily small probability of overflow.
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23.2.3 Summary of Peak Estimation . 
The optimization of a bit-parallel fixed-point datapath can be split into the 
two problems of determining an appropriate scaling and determining an appro
priate wordlength for each signal. We have discussed the first of these two 
problems in detail. It has been shown that in the case of LTI systems, tight 
analytic bounds can be placed on· the scaling required. Analytic scaling is 
also possible for non-LTI systems, at the cost of tightness in the bound
disastrously so in the case of recursive systems. The alternative to the analyt
ical approach is the use of simulation on trusted input datasets; some progress 
has recently been made on the issue of statistically sound simulation-based peak 
determination. 

23.3 WORDLENGTH OPTIMIZATION 

Once a scaling has been determined, it is necessary to find an appropriate 
wordlength for each signal. While optimizing the scaling usually improves 
circuit quality without changing circuit functionality (assuming no overflows 
occur), wordlength optimization trades circuit quality (area, delay, power) for 
result accuracy. The major problem in wordlength optimization is to determine 
the error at system outputs for a given set of wordlengths and scalings of all 
internal variables. We will call this problem error estimation. Once a technique 
for error estimation has been selected, the wordlength selection problem reduces 
to utilizing the known area and error models within a constrained optimization 
setting: Find the minimum area implementation satisfying certain constraints 
on arithmetic error at each system output. 

The majority of this section is taken up with the problem of error estim�tion 
(Section 23.3.1). Following on from this discussion, the problem of area mod
eling is addressed. Optimization techniques suitable for solving the wordlength 
determination problem are introduced (Section 23.3.2), with some discussion of 
the problem's inherent computational complexity. 

23.3.1 Error Estimation and Area Models 
Traditionally, much of the research on estimating the effects of truncation 
and roundoff noise in fixed-point systems has focused on DSP uniprocessors. 
This leads to certain constraints and assumptions on quantization errors-for 
example, that the wordlength of all signals is the same, that quantization is 
performed after multiplication, and that the wordlength before quantization is 
much greater than that following it [36]. The multiple-wordlength paradigm 
allows a more general design space to be explored, free from these constraints. 

The effect of using finite register length in fixed-point systems has been 
studied for some time. Oppenheim and Weinstein [36] and Liu [29] lay down 
standard models for quantization errors and error propagation through LTI 
systems based on a linearization of signal truncation or rounding. Error sig
nals, assumed to be uniformly distributed, uncorrelated with each other and 
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with themselves over time, are added whenever a truncation occurs. This 
approximate model has served very well because quantization error power is 
dramatically affected by wordlength in a uniform wordlength structure, decreas
ing at approximately 6 dB per bit. This means that it is not necessary to have 
highly accurate models of quantization error power in order to predict the 
required signal width [35]. In a multiple-wordlength circuit, the implementation 
error power may be adjusted much more finely, and so the resulting implemen
tation tends to be more sensitive to errors in estimation. This has led to a simple 
refinement of the model, which will be discussed soon. 

The most generally applicable method for error estimation is simulation: Sim
ulate the system with a given "representative" input and measure the deviation at 
the system outputs when compared to an accurate simulation ( usually "accurate" 
means IEEE double-precision floating point [22]). Indeed, this is the approach 
taken by several systems [6, 27]. Unfortunately, simulation suffers from several 
drawbacks, some of which correspond to the equivalent simulation drawbacks 
discussed in Section 23.2, and some of which are peculiar to the error estimation 
problem. 

First, there is the problem of dependence on the chosen "representative" input 
dataset. Second, there is the problem of speed: Simulation runs can take a sig
nifi.cant amount of time, and during an optimization procedure a large number 
of simulation runs may be needed. Third, even the "accurate" simulation will 
have errors induced by finite wordlength effects that, depending on the system, 
may not be negligible. 

We will be using signal-to-noise ratio (SNR), sometimes referred to as signal
to-quantization-noise ratio (SQNR), as a generally accepted metric for measur
ing the quality of a fixed-point algorithm implementation [32] (although other 
measures, such as maximum instantaneous error, exist). Conceptually, the out
put sequence at each system output resulting from a particular finite-precision 
implementation can be subtracted from the equivalent sequence resulting from 
an infinite-precision implementation. The difference is known as the fixed-point 
error. 

The ratio of the output power (i.e., the sum of squared signal values) result
ing from an infinite precision implementation to the fixed-point error power 
of a specific implementation defines the SNR. For the purposes of this chap
ter, the signal power at each output is fixed because it is determined by 
a combination of the input signal statistics and the dataflow graph G(V, S). 
To explore different implementations of the dataflow graph, it is therefore 
sufficient to concentrate on noise estimation, which is the subject of this 
section. 

The approach taken to wordlength optimization should depend on the 
mathematical properties of the system under investigation. After briefly con
sidering simulation-based estimation, we will examine analytic or semi-analytic 
techniques that may be applied to certain classes of system. Next we will 
describe one such method, which may be used to obtain high-quality results 
for linear time-invariant algorithms. Then we will generalize this approach to 
nonlinear systems containing only differentiable nonlinear components. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 506



Simulation-based methods 

23.3 Wordlength Optimization 487 

Simulation-based methods for wordlength optimization were first established 
at Seoul National University, and some of them have been integrated into the 
Signal Processing Worksystem of Cadence. 

In Kim et al. [25] and Kum and Sung [27], the search space is reduced by 
grouping together all variables involved in a multiply-add operation and opti
mizing them as a single-wordlength "block." Within each block, the Oppenheim 
model of quantization noise is applied [35]. 

Although simulation is almost certainly the most widespread mechanism 
for estimating the impact of a given choice of wordlength, it suffers from the 
drawbacks discussed earlier. Indeed, the dependence of the result on the input 
dataset, while widely acknowledged, is rarely considered in depth. The class of 
algorithm for which simulation forms a suitable mechanism has also remained 
unclear. Recently, Alippi [1] proposed an analytical framework within which the 
question of simulation input dependence can be addressed. A mechanism for 
understanding the perturbation of Lebesgue-measurable functions, an extremely 
wide class of algorithmic behavior, has been proposed that uses the theory of 
randomized algorithms. The essential contribution of this work, for the purposes 
of fixed-point analysis, has been to demonstrate that simulation is an appropri
ate mechanism for analyzing fixed-point error. Moreover, Alippi [1] provides a 
theoretically sound guideline on the number of simulations required in order to 
be confident, to within a certain probability, that the SNR is within a given limit 
(alternative signal quality metrics are also Lebesgue measurable and hence can 
be used as well). 

An analytic technique for linear time-invariant systems 
We will first address error estimation for LTI systems. An appropriate noise 
model for truncation of LSBs is described in the subsection that follows. It is 
then shown that the noise injected through truncation can be analytically propa
gated through the system in order to measure the effect of such noise on system 
outputs. 

Noise model A common assumption in DSP design is that signal quantization 
(rounding or truncation) occurs only after a multiplication or multiply
accumulate operation. This corresponds to a uniprocessor viewpoint, where the 
result of an n-bit signal multiplied by an n-bit coefficient needs to be stored in 
an n-bit register. The result of such a multiplication is an n' = 2n-bit word, which 
must therefore be quantized down to n bits. Considering signal truncation, the 
least area-expensive method of quantization [18], the lowest value of the trun
cation error in 2's complement with p = 0, is 2-n' - 2-n = - 2-n, and the highest 
value is O (2's complement truncation error is always nonpositive). 

It has been observed that values between these values tend to be equally likely 
to occur in practice, so long as the 2n-bit signal has .sufficient dynamic range 
[29, 36]. This observation leads to the formulation of a uniform distribution 
model [36] for the noise of variance cr2 = 2-2n112 for the standard normaliza
tion of p = 0. It has also been observed that, under the same conditions, the 
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spectrum of such errors tends to be white because there is little correlation 
between low-order bits over time even if there is a correlation between high
order bits. Similarly, different truncations occurring at different points within 
the implementation structure tend to be uncorrelated. 

When considering a multiple-wordlength implementation, or truncation at 
different points within the datapath, some researchers have opted to carry the 
uniform distribution model over to the new implementation style [25]. However, 
there are associated inaccuracies involved in such an approach [7]. First, quan
tizations from n' bits to n bits, where n' = n, will suffer in accuracy because of 
the discretization of the error probability density function; for example, if p = 0, 
n' = 2, n = 1, then the only possible error values are 0 and -1/4. Second, in such 
cases the lower bound on error can no longer be simplified in the preceding 
manner because 2-n' -2-n,.. -2-n no longer holds. 

These two issues may be resolved by considering a discrete probability 
distribution for the injected error signal. For 2's complement arithmetic, the 
truncation error injection signal e[t] caused by truncation from (n',p) to (n,p)
is bounded by equation 23.14. 

(23.14) 

It is assumed that each possible value of e[t] has equal probability, as 
discussed earlier. For 2's complement truncation, there is nonzero mean E{e[t]}
(equation 23.15) and variance CJ� (equation 23.16). 

(23.15) 

(23.16) 

Note that forn1 »n2 andp=0, equation 23.16 simplifies to o�=l/ 12 2-2n, which
is the well-known predicted error variance of Oppenheim and Schafer [35] for 
a model with continuous probability density function. 

Noise propagation and power estimation If it is our aim to optimize the 
wordlengths used in a design, then it is important to be able to predict the 
arithmetic quality observable at the design outputs. Given a set of wordlengths 
and scalings, it is possible to use the truncation model described in the previous 
section to predict the variance of each injection input. For each signal j ES, a 
straightforward application of equation 23.16 may be used, with n1 equal to the 
"natur?,}" full-precision wordlength produced by the source component, n2 = nj, 
andp =Pi· 

By constructing noise sources in this manner for the entire dataflow graph, 
a set F = {(�. R

p
)} of injection input variances �. and their associated trans

fer function to each primary output R
p

(Z), can be constructed. From this set it 
is possible to predict the nature of the noise appearing at the system primary 
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23.3 Wordlength Optimization 489 
outputs, which is the quality metric of importance to the user. Since the noise sources have a white spectrum and are uncorrelated with each other, it is possible to use L2 scaling to predict the noise power at the system outputs. The L2 norm of a transfer function H(z) is defined in equation 23.17, where z-l denotes the inverse z-transform. It can be shown that the noise variance Ek at output k is given by equation 23.18. 

L2 {H(z)) = (t;,12-1 {H(z))[n]I' )
in 

Ek
= E cr2L/{Rk} 

(cr2, R)EF 

A hybrid approach for nonlinear differentiable systems 

(23.17) 
(23.18) 

With some modification, some of the results from the preceding section can be carried over to the more general class of nonlinear time-varying systems containing only differentiable nonlinearities. In this section we address one possible approach to this problem, deriving from the type of small-signal analysis typically used in analogue electronics [12, 38]. 
Perturbation analysis To make some of the analytical results on error sensitivity for LTI systems applicable to nonlinear systems, the first step is to linearize these systems. The assumption is made that the quantization errors induced by rounding or truncation are sufficiently small not to affect the system's macroscopic behavior. Under such circumstances, each system component can be locally linearized or replaced by its "small-signal equivalent" [38] in order to determine the output behavior under a given rounding scheme. We will consider one such n-input component, the differentiable function Y[t] = f(X1[t], X2[t], ... , Xn[t]), where t is a time index. If we denote by Xi[t] a small perturbation on variable Xi[t], then a first-order Taylor approximation for the induced perturbation y[t] on Y[t] is given by equation 23.19. 

y[t] ='XI [t] arl It+ ... +Xn [t] /£ It (23.19) 
Note that this approximation is linear in each Xi but that the coefficients may vary with time index t because, in general, i:}f/0X1 is a function of X1, X2, ... , Xn. Thus, by applying such an approximation, we have produced a linear timevarying small-signal model for a nonlinear time-invariant component. Such an analysis is readily extended to a time-varying component by expressing Y[t] = f(t, X1 [t], X2[t], ... , Xn[t]). The linearity of the resulting model allows us to predict the error at system outputs due to any linear scaling of a small perturbation of signal j ES analytically, given the simulation-obtained error from a single such perturbation instance at j, which can be obtained by a single simulation run. Thus, this method can be considered to be a hybrid analytic/simulation error analysis [15]. 
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b 

dc_da 

� 

a 

·········➔

dc_db 

(a) (b) 

FIGURE 23.4 ■ A local graph transformation to insert derivative monitors: (a) multiplier node; 
(b) with derivative monitors.

Derivative monitors To construct the small-signal model, we must first evaluate 
the differential coefficient� of the Taylor series model for nonlinear components. 

In general, methods must be introduced to calculate the differential of each 
nonlinear node type. This is performed by applying a graph transformation to 
the dataflow graph, introducing the necessary extra nodes and outputs to do this 
calculation. 

The general multiplier is the only nonlinear component considered explicitly 
in this section, although the approach is general; the graph transformation for 
multipliers is illustrated in Figure 23.4. Since f(X1 , X2) = X1X2 , d{l"iJX1 = X2 and 
d{l"iJX2 =X1. 

After insertion of the monitors (dc_da and dc_db, which capture the deriva
tives of c with respect to a and b, respectively), a simulation may be performed 
to write the derivatives to appropriate data files to be used by the linearization 
process, which is described next. 

Linearization Our aim is to construct a small-signal model, which can be sim
ulated to determine the sensitivity to rounding errors. Once we have obtained 
the derivative monitors, the construction of the small-signal model may proceed, 
again through graph transformation. All linear components (adder, constant 
coefficient multiplier, fork, delay, primary input, primary output) remain 
unchanged as a result of the linearization process. Each nonlinear component 
is replaced by its first-order Taylor model. Additional primary inputs are added 
to the dataflow graph to read the Taylor coefficients from the derivative monitor 
files created by the previous large-signal simulation. 

As an example, the Taylor expansion transformation for the multiplier node 
is illustrated in Figure 23.5. The inputs dc_da and dc_db are themselves 
time-varying sequences, derived from the previous step of the procedure. Note 
that the graph portion of Figure 23.S(b) still contains multiplier "nonlinear" 
components, although one input of each multiplier node is now external to the 
model. This absence of feedback ensures linearity, although not time invariance. 

Noise injection In Section 23.3.1, L2 scaling was used to analytically esti
mate the noise variance at a system output through scaling of the (analytically 
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dc/da 

de/db 

(b) 

FIGURE 23.5 ■ A local graph transformation to produce a small-signal model: (a) multiplier node;
(b) first-order Taylor model.

-----------► a 

(a) (b) 

FIGURE 23.6 ■ A local graph transformation to inject perturbations: (a) original signal; (b) with
noise injection. 

derived) noise variance injected at each point of quantization. Such a purely 
analytic technique can be used only for LTI systems. In this section we discuss 
an extension of the approach for nonlinear systems. 

Because the small-signal model is linear, if an output exhibits variance V 
when excited by an error of variance ci injected into a given signal, then the 
output will exhibit variance a.Vwhen excited by a signal of variance 002 injected 
into the same signal (a.� O). Herein lies the strength of the proposed lineariza
tion procedure: If the output response to a noise of known variance can be 
determined once only through simulation, this response can be scaled with ana
lytically derived coefficients in order to estimate the response to any rounding 
or truncation scheme. 

Thus, the next step of the procedure is to transform the graph through the 
introduction of an additional adder node, and associated signals, and then sim
ulate the graph with a known noise. In our case, to simulate truncation of 
a 2's complement signal, the noise is independent and identically distributed 
with a uniform distribution over the range [-2J3,l>], chosen to have unit vari
ance (1/12(2v'3)2 = 1), in this way making the measured output response an 
unscaled "sensitivity" measure. The graph transformation of inserting a noise 
injection is shown in Figure 23.6. One of these transformations is applied to 
a distinct copy of the linearized graph for each signal in the dataflow graph, 
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492 Chapter 23 ■ Precision Analysis for Fixed-point Computation 

after which zeros are propagated from the original primary inputs, to finalize the 
small-signal model. This is a special case of constant propagation [2] that leads 
to significantly faster simulation results for nontrivial dataflow graphs. 

The entire process is illustrated for a simple dataflow graph in Figure 23.7. 
The original graph is shown in (a). The perturbation analysis will be per
formed for the signals marked (*) and (**). After inserting derivative monitors 

X 

4

-----
-----

-----
-----
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-----

-----
--

(a) 

�---------+de/db 

y 

(b) 

Noise------, 

de/da 

X 

y 

de/db 

(d) 

y 

(f) 

(**) 
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,I. 
de/da 

X 

de/da 

X 

de/db 

(e) 

Noise-,:>--y 

(g) 

y 

(**) 

FIGURE 23.7 ■ An example of perturbation analysis: (a) original dataflow graph; (b) transformed 
dataflow graph; (c) linearized dataflow graph; (d) variant for (*) signal; (e) variant for (**) signal; 
(f) simplified graph for (*) signal; (g) simplified graph for (**) signal.

y 

X 
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for nonlinear components, the transformed DFG is shown in (b). The 
linearized DFG is shown in (c), and its two variants for the signals (*) and (**) 
are illustrated in (d) and (e), respectively. Finally, the corresponding simplified 
DFGs after zero propagation are shown in (f) and (g), respectively. 

High-level area models 
To implement a multiple-wordlength system, component libraries must be avail
able to support multiple-wordlength arithmetic. These libraries can then be 
instantiated by the synthesis system and must be modeled in terms of area con
sumption to provide the wordlength optimization procedure with a cost metric. 

Integer arithmetic libraries are available from FPGA vendors (e.g., Xilinx 
Coregen or Altera LPM macros). Parameterizable macros for standard arith
metic functions operating on integer arithmetic form the basis of the multiple
wordlength libraries synthesized to by wordlength optimization tools such as 
Right-Size [15] and Synoptix [8]. Blocks from each of these vendors may have 
slightly different cost parameters, but the general approach described in this sec
tion is applicable across all of them. Example external interlaces of multiple
wordlength library blocks for constant coefficient multipliers (gain) and adders 
(add) written in VHDL are shown in Listing 23.1 [23]. 

Listing 23. 1 ■ Constant coefficient multipliers (gain) and adders (add) written in VHDL. 

ENTITY gain IS 
GENERIC{ INWIDTH, OUTWIDTH, NULLMSBS, COEFWIDTH: INTEGER; 

COEF : std_logic_vector { COEFWIDTH downto O ) ) ; 
PORT{ data: IN std_logic_vector{ INWIDTH downto O ); 

result: OUT std_logic_vector{ OUTWIDTH downto O) ); 
END gain; 

ENTITY add IS 
GENERIC { AWIDTH, BWIDTH, BSHL, OUTWIDTH, NULLMSBS : INTEGER ) ; 
PORT { dataa : IN std_logic_vector { AWIDTH downto O ) ; 

datab : IN std_logic_vector { BWIDTH downto O ) ; 

result: OUT std_logic_vector{ OUTWIDTH downto O) ); 
END add; 

As well as an individually parameterizable wordlength for each input and 
output port, each library block has a NULLMSBS parameter that indicates how 
many most significant bits (MSBs) of the operation result are to be ignored (the 
converse of sign extension). Thus, each operation result can be considered to be 
made up of zero or more MSBs that are ignored, followed by one or more data 
bits, followed by zero or more LSBs that may be truncated depending on the 
OUTWIDTH parameter. For the adder library block, there is an additional BSHL

generic that accounts for the alignment necessary for addition operands. BSHL

represents the number of bits by which the datab input must be conceptually 
shifted left to align it with the dataa input. Note that, because this is fixed-point 
arithmetic, there is no physical shifting involved; the data is simply aligned in a 
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· skewed manner, as shown in Figure 23.8. Note, too, that dataa and datab are
permuted as necessary to ensure that BSHL is always nonnegative.

In the figure, (a) shows that the MSB of input b protrudes beyond that of 
input a and that all the output bits are drawn from the core integer addition 
of the overlap. Figure 23.S(b) shows that the MSB of input a protrudes beyond 
that of input b and that all output bits are drawn from the core integer addition 
of the overlap. Figure 23.S(c) shows that the MSB of input b protrudes beyond 
that of input a but that some of the output bits are drawn from the LSB overhang 
of input a and are thus produced "free." Figure 23.S(d) shows that the MSB 
of input a protrudes beyond that of input b but that some of the output bits 
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� nb � 

Isl -l<-5

--> 

m-1

� S k n0➔

� 
(a) 

�n.--->➔ 

�nb� 

Isl -l<-5

-> 

m-1 <E-<-- n0q --->➔ �sl 
� n,, -->

(C) 

a: 

b: +

o: 

a: 

b: +

o: 

< 

I.__ s.....__l ___.-� _s_>

<E<--- n.----➔ 

,__I s......._l ___.-I< _s_>

m-1 <E<-- n,,q---➔ �sl 
� n,,--->

(d) 

FIGURE 23.8 ■ Four multiple-wordlength adder formats arising in practice: (a) MSB of input b 
protruding beyond MSB of input a; (b) MSB of input a protruding beyond MSB of input b; 
(c) MSB of input b protruding beyond MSB of input a, with "free" output bits; (d) MSB input 
a protruding beyond MSB of input b, with "free" output bits. (s denotes the value of the BSHL 
generic; m denotes the value of the NULLMSBS generic.) 
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are drawn from the LSB overhang of input a and are thus produced "free." In 
each case, the upper result shows the "error-free" word.length n� without further 
truncation, whereas the lower result shows the word.length n0 after potential fur
ther truncation. 

Each of the library block parameters has an impact on the area resources 
consumed by the overall system implementation. It is generally assumed when 
constructing a cost model that each operator in the dataflow graph will map to 
a separate hardware resource and that the area cost of wiring is negligible [17]. 
These assumptions (relaxed by Constantinides et al. [12]) simplify the construc
tion of an area cost model. It is sufficient to estimate separately the area con
sumed by each computation node and then sum the resulting estimates. In real
ity, of course, logic synthesis, performed after word.length optimization, is likely 
to result in some logic optimization between the boundaries of two connected 
library elements. This may result in lower area than estimated, but experience 
shows that these deviations from the area model are small. 

The area model for a multiple-word.length adder is reasonably straightfor
ward. A ripple-carry architecture is used [21] since FPGAs provide good support 
for fast ripple-carry implementations. The only area-consuming component is 
the core (integer) adder constructed from the vendor library. This adder has a 
width of max(AWIDTH - BSHL, BWIDTH) - NULLMSBS + 2 bits. Depending on the 
FPGA architecture in question, each bit may not consume the same area; how
ever, because some bits are required for the result port whereas others may be 
needed only for carry propagation, their sum outputs remain unconnected and 
therefore the sum circuitry is optimized away by logic synthesis. The cost model 
thus has two parameters k 1 and k2, corresponding to the area cost of a sum-and
carry full adder and to the area cost of a carry-only full adder, respectively. The 
area of an adder is expressed in equation 23.20. 

Aadd(AWIDTH, BWIDTH, BSHL, NULLMSBS, 0UTWIDTH) 

= k 1 (0UTWIDTH + 1) +k2(max(AWIDTHBSHL, BWIDTH) 

- NULLMSBS - 0UTWIDTH + 1)

(23.20) 

Area estimation for general multipliers can proceed in a similarly straightfor
ward way. However, the equivalent problem for constant coefficient multipliers 
is significantly. more problematic. A constant coefficient multiplier is typically 
implemented as a series of additions through a recoding scheme such as the clas
sic Booth technique [3]. This implementation style causes the area consumption 
to be highly dependent on the coefficient value. In addition, the exact implemen
tation scheme used by the vendor integer arithmetic libraries is known only to 
the vendor. 

A simple area model has been proposed (equation 23.21) and the coeffi
cient values k3 and k4 have been determined through the synthesis of several 
hundred multipliers of different coefficient values and widths [12]. The model 
has then been fitted to this data using a least-squares approach. Note that the 
model does not account for NULLMSBS because, for a properly scaled coefficient, 
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NULLMSBS � 1 for a constant coefficient multiplier and therefore has little impact 
on area consumption. 

Again(INWIDTH, OUTWIDTH, COEFWIDTH) = k3 COEFWIDTH(INWIDTH + 1) 

+ k4(INWIDTH + COEFWIDTH - OUTWIDTH) (23.21) 

More detailed area models for components are discussed by Chang and 
Haue:k [14]. 

23.3.2 Search Techniques 

A heuristic search procedure 
Because the wordlength optimization problem is NP-hard [16], several heuristic 
approaches have been developed to find feasible wordlength vectors having 
small, though not necessarily optimal, area consumption. An example heuristic 
is shown in Listing 23.2. After performing binary-point estimation using the 
techniques of Section 23.2, the algorithm determines the minimum uniform 
wordlength satisfying all error constraints. The design at this stage corre
sponds to a standard uniform wordlength design with implicit power-of-two 
scaling, such as may be used for an optimized uniprocessor-based implemen
tation. Each wordlength is then scaled up by a factor k > 1, which represents 
a bound on the largest value that any wordlength in the final design may 
reach (in the Synoptix implementation of this algorithm [8], k = 2 has been 
used). 

The resulting structure forms a starting point from which one signal 
wordlength is reduced by one bit on each iteration. The signal wordlength to 
reduce is decided in each iteration by reducing each wordlength in tum until it 
violates an output noise constraint (Listing 23.2). At this point there is likely to 
have been some pay-off in reduced area, and the signal whose wordlength reduc
tion provided the largest pay-off is chosen. Each signal's wordlength is explored 
using a binary search. 

Listing 23.2 ■ Algorithm wordlength falling. 

Input: A Dataflow Graph G (V, SJ and binary-point vector p. 
Output: An optimized wordlength vector n.

begin 
Let the elements of S be denoted as S={j1, J2, .. . , JJsJ} 
Determine u, the minimum uniform wordlength satisfying error 

criteria 
Set n +- lku 
do 

currentcost +- AREA(n) 
foreach Ji ES do 

bestmin +- currentcost 
Set w to the smallest positive value where the error criteria 

are satisfied for wordlength [n1 ... ni-1 wni+1 ••. n1s1l 
Set minval +- AREA ( [n1 ••• ni-1 w ni+1 ••• n1s1 l) 
if minval < bestmin, set bestsig +- i and bestmin +- minval 

end foreach 
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if bestmin < currentcost 

nbestsig +- nbestsig - 1 
while bestmin < currentcost 

end 

Alternative search procedures 

23.3 Word.length Optimization 497 

The algorithm described in Section 23.3.1 is a heuristic; it does not guarantee to 
produce the optimum area cost for a given set of error constraints. A technique 
to discover the true optimum-word.length vectors has also been proposed [10] 
that uses integer linear programming (ILP) to model the constraint space and 
objective functions. This technique was able to demonstrate that the heuristic 
from Section 23.1.1 provides good-quality results for the small benchmark prob
lems addressed by both approaches. Like all NP-hard problems [16], however, 
finding the optimum solution becomes computationally infeasible for large 
problem sizes. The methodology of Constantinides et al. [10] is applicable only 
for very small practical problems and is thus more of a theoretical than practical 
interest. 

Several other heuristic search procedures have been proposed in the litera
ture, and we will review some of the more interesting ones (further comparisons 
are made in the brief survey by Cantin et al. [6]). 

An approach used by Kum and Sung [27] is based on the intuition that the 
error observable at a system output reduces monotonically with each word.length 
in that system. This is a plausible conjecture, but is not always the case. Indeed, 
it was shown independently by Constantinides [9] and Lehtinen and Renfors 
[31] that this conjecture may be violated in practical situations. Nevertheless,
if we accept it for the moment, a natural search procedure becomes appar
ent. We may divide the search into two phases. In the first phase, the system
is simulated with all but one variable having a very large precision (e.g., dou
ble precision floating point). In this way, we can find the point at which the
output constraints are violated because of quantization on this variable alone.
Repeating this for all variables provides, under the conjecture, a lower bound
on each element of the word.length vector. The second phas� of the algorithm
is invoked if the constraints are violated when these lower bounds are used as
the word.length vector. In this case, the precision of all variables is increased by
an equal number of bits until the constraints are satisfied. A variation on the
second phase is to exhaustively explore all possibilities above this lower bound,
until the constraints are satisfied [27].

The common meta-heuristics of simulated annealing and genetic algorithms 
have been used for this problem-for example, by Chang and Hauck [14]
(using a linear combination of area and error as an objective function [28,40]). 
While there are practical advantages to using tried-and-tested meta-heuristics 
for combinatorial problems, the smooth nature of the constraints and objec
tives, as outlined previously, means that it is likely that better results can be 
obtained within a fixed computation time budget by using application-specific 
heuristic techniques. 
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23.4 SUMMARY 

This chapter introduced the fundamental problems of designing optimized 
fixed-point arithmetic circuits in custom hardware, including FPGA devices. The 
fixed-point number system is of widespread interest in the FPGA community 
because of the highly efficient arithmetic implementations possible when com
pared to what can be achieved with floating-point arithmetic. However, much 
more than with floating point, working with fixed point requires designers to 
have a good grasp of the numerical robustness issues involved with their designs. 
Performing such design by hand is tedious and error prone, which has motivated 
the development of automatic procedures, some of which have been described 
in this chapter. 

The freedom in custom hardware to use multiple wordlengths in a design 
creates the possibility of shaping the circuit datapath to the requirements of 
the algorithm, leading to low-area, high-speed, and low-power implementa
tions. This emerging paradigm throws up a new challenge, however: wordlength 
optimization. 

This chapter demonstrated that wordlength determination can be considered 
as a constrained optimization, and suitable models were presented for FPGA
based bit-parallel implementations, together with signal-to-noise ratio of linear 
time-invariant and differentiable nonlinear time-varying systems. In each case, 
we described at least one error estimation procedure in depth and discussed 
related procedures and their advantages and disadvantages. 

We will now consider some fruitful avenues for further research in this 
field, broken down into MSB-side optimization, error modeling, and search 
procedures. 

The work discussed in Section 23.2 either avoids overflow completely (e.g., 
11-scaling) or reduces the probability of overflow to an arbitrary level (e.g.,
extreme value theory) without considering the effect of overflow on signal-to
noise ratio or other accuracy metrics. In algorithms where the worst-case vari
able range is much larger than the average-case range, it may make sense to
save area by allowing rare overflow and its consequent reduction in arithmetic
accuracy. This problem was discussed by Constantinides et al. [11] using a sim
ple model of the error induced by overflow, based on approximating all signals
by Gaussian random variables. The results achieved were weakened, however,
by an inability of the proposed method to accurately estimate the correlations
between overflow errors at different points within the algorithm. Further work
could provide much stronger bounds.

The analytical error-modeling approaches discussed in Section 23.3.1 can 
adequately deal with linear time-invariant systems or with time-varying systems 
containing only differentiable nonlinearities. This still leaves open the problem 
of adequately modeling systems containing nondifferentiable nonlinearities. 
This is a serious omission, as it includes any algorithm containing condition
ally executed statements, where the condition is a logical expression contain
ing variables generated by the algorithm itself (in the case where the variables 
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are external inputs, this can be viewed as a time-varying differentiable system). 
Further work incorporating the results from the analysis of nonlinear dynamical 
systems is likely to shed new light here. 

Both heuristic and optimal search procedures were discussed in Section 
23.3.2. One of the limitations of the optimal approach from Constantinides et 
al. [10] is that is has relied on coercing inherently nonlinear constraints into a 
linear form, resulting in a large ILP problem. Branch-and-bound, or other com
binatorial search procedures, on top of bounding procedures from the more 
general field of nonlinear mathematical programming may be able to provide 
optimal results for significantly larger problems. Further effort is also called for 
in the development of heuristic search procedures. None of the heuristics pre
sented thus far can guarantee a bounded distance to optimality, although under 
certain error metrics the wordlength optimization problem is approximatible in 
this sense. It would be useful to concentrate efforts on heuristics that do provide 
these guarantees. 

It is my belief that, apart from a practical design problem, the problem 
of wordlength optimization has much to offer in terms of understanding the 
numerical properties of algorithms. The earliest contributions to this subject 
can be traced back to two giants of computing, Alan Turing [39] and John von 
Neumann [33]. At the time, IEEE standard floating point was nonexistent, and it 
was necessary to carefully design the architecture around the algorithm. FPGA
based computing has reopened this method of design by giving an unprece
dented degree of freedom in the implementation of numerical algorithms. 
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DISTRIBUTED ARITHMETIC 

· Rajeevan Amirtharajah
Department of Electrical and Computer Engi,neering
University of California-Davis

CHAPTER 24 

Distributed arithmetic (DA) [1, 2] is a computation algorithm that performs 
multiplication using precomputed lookup tables (LUTs) instead of logic. It is 
well suited to implementation on homogeneous field-programmable gate arrays 
(FPGAs) because of its high utilization of the available LUTs. It may also have 
advantages for modem heterogeneous FPGAs that contain built-in multipliers 
because it is area efficient for implementing long digital filters. DA targets the sum
of-products ( or vector dot product) operation, and many digital signal processing 
(DSP) tasks such as filter implementation, matrix multiplication, and frequency 
transformation can be reduced to one or more sum-of-products computations. 

24.1 THEORY 

The theory behind DA is based on reorganizing the vector dot product operation 
around the binary representation of the vector elements [2]. Suppose that X is 
the vector of input samples and A is a constant vector of filter coefficients, corres
ponding to the taps of a finite impulse response (FIR) filter. Vectors X and A each 
consist of M elements Xk and Ak. The dot product y of X and A ( corresponding 
to the convolution of X with the FIR impulse response) can be written as 

(24.1) 

We can represent each element of the input sample vector X in N-bit 2's com
plement notation. Then equation 24.1 can be expressed as 

(24.2) 

where bk(N-1) is the sign bit of the input sample Xk in N-bit 2's complement 
notation, and b1cn is the nth bit of input sample Xk. The possible values of bki 
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are either 0 or 1. Equation 24.2 can be further rearranged into equation 24.3 by multiplying out the factors and changing the order of the summation: 

y = - Mt
l Akbk(N-1)2N-l + Nt

2 ['r.1 Akbkn]2n
= Zsign +Zn1 

k=O n=O k=O 

(24.3) 
Consider each term in the brackets of the second summation in equation 24.3, labeled Zno in the following: 

M-1Zno = L Akbkn (24.4) 
k=O 

where term Zno has 2M possible values because bkn is either 1 or 0. Therefore, each summation term Akbkn can have the value of either Ak or 0. Instead of using a multiplier to compute any of these 2M possible values whenever necessary, we can precompute them and store them in a LUT with depth 2M. The contents of the LUT are then addressed directly by the bit-serial input data, [b0n , bin , b2n , . . .  bMn], corresponding to the nth bits of each element Xk of input vector X. Multiplication by the factor 2n in equation 24.3 can be realized by a shifter and the addressed LUT contents shifted and accumulated to form term Zn 1 in (N - 1) cycles. The sign term Zsign can be handled in the same way with additional circuitry to implement subtraction; it takes one additional clock cycle. The final result y is formed after N cycles. Note that, if the filter length is greater than the bit width of the input data (i.e., M > N), DA computes the final result in fewer cycles than an implementation using a single multiply-accumulate functional unit. However, because the size of the LUT grows exponentially in the number of vector elements (2M), most practical implementations use multiple LUTs and adders to combine partial dot products into the final result. 

24.2 DA IMPLEMENTATION 

A simple DA implementation is shown in Figure 24.1. It requires a 16-bit shift register for the input vector, a 16-entry LUT, an adder/subtractor, and an accumulator (Result) for the output. The x2 operation is handled purely by wiring. This unit is a direct implementation of the DA algorithm described in the preceding section, and it is capable of computing the dot product of a 4-element vector X and a constant 4-element vector A.In the figure the four 4-bit-wide elements of X are fed into the address decoder in most significant bit (MSB) first order to select the appropriate LUT row contents. The selected content is added with the left-shifted version of the previous 
RESULT value to form the current RESULT value. Ts is the sign bit timing signal that controls the add/subtract operation; when Ts is high, the current LUT content is subtracted from the left-shifted version of the previous result. The final vector dot product is obtained in four cycles. Shifting in the bit vector 
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FIGURE 24.1 ■ A simple implementation of distributed arithmetic. 

least significant bit (LSB) first also produces the correct final value and has the 
advantage of eliminating long carry propagations when accumulating the inter
mediate results. 

The only modifications to Figure 24.1 required for this alternative are to 
reverse the bits of vector Xin, the shift register, and replace the left shift by 
1 bit and the right shift by 1 bit. Various other modifications to this structure 
are possible. For example, the input sample shift register can be serial in/serial 
out or parallel in/serial out depending on the application. 

LUT size can be a determining factor in the total hardware cost of a DA 
implementation. It is possible to modify the structure in Figure 24.1 to reduce 
the table size by a factor of 2. To achieve this reduction, consider a different 
representation of the input data samples Xk : 

(24.5) 

The 2's complement representation of the negative of Xk can be expressed as 

N-2 -
N 1 � --Xk = -bk(N-1) 2 - + i.J bkn 2

n + l 
n=O 

(24.6) 
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where each bit of Xk has been complemented and a 1 has been added to the 
complemented bits. Plugging equation 24.6 into equation 24.5 yields 

(24.7) 

Each difference term ( bkn -bkn) (for n = 0 to N -1) in equation 24. 7 can take 
on values of+ 1 or -1. This alternate representation for Xk is convenient because, 
in the resulting summation for the dot product, each linear combination of Ak 

has a corresponding negative linear combination. Only one of these combina
tions needs to be stored in the LUT, with the negative being applied during 
operation using the subtractor. Substituting equation 24. 7 into equation 24.1 
and rearranging terms yields the following new expression for the result of the 
dot product y: 

where 

N-1
y = .L, Q(bn)+Q(O) 

n=O 

1 M-1 _ 
Q(bn) = 

2 
.L, Ak (bkn -bkn) 2n , n =/ N-1 
k=O 
1 M-1 

Q(bN-1) = -
2 

.L, Ak (bk(N-1)-bk(N-1)) 2N-l, n = N-1
k=O 

1 M-1 
Q(O) = -- E Ak 2 k=O 

(24.8) 

(24.9a) 

(24.9b) 

(24.9c) 

Note that the expressions for Q(bn) and Q(bN_1) have 2M-l possible magni
tudes, with signs determined by the input bits, and that the computation of y
requires an additional register to hold the constant term Q(O). This leads to the 
reduced DA memory implementation shown in Figure 24.2, where the exclusive
or (XOR) gates are required to recode the addresses to access the appropriate 
LUT row and to control the timing of the sign bit into the adder/subtractor. 
The XOR gates, the initial condition register for Q(O), and a 2-input multi
plexer are the only additional hardware required to reduce the memory size by a 
factor of 2. 

The implementations in both Figures 24.1 and 24.2 require N clock cycles to 
compute the final result, although additional cycles may be needed to match the 
throughput of the DA unit to other functional units in the system for a particular 
application. In Section 24.3 we will discuss mapping these basic structures onto 
FPGA fabrics. We will address the issue of performance improvement (by reduc
ing the number of required clock cycles and increasing the clock frequency) in 
Section 24.4. 
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FIGURE 24.2 ■ Reduced DA memory implementation. 

24.3 MAPPING DA ONTO FPGAs 

Consider mapping a 16-tap FIR filter (M = 16) operating on 16-bit data (N = 16) 
onto an FPGA fabric based on 4-input LUTs. As discussed earlier, DA's primary 
drawback is that the size of the LUTs grows exponentially in the number of filter 
coefficients (or filter taps). If we want to use 16-bit data to represent the precom
puted values, we need 16 x 216 

= 1 Mbit of memory. To limit this growth, long 
filters can be partitioned into several smaller DA units whose outputs are then 
combined using a tree of 2-input adders, as shown in Figure 24.3. This partitions 
the 16 filter taps Ao to A1s among four DA units, each of which incorporates N 
1-bit-wide 4-input LUTs.

The partitioning is chosen to correspond to the LUT size of the individual
logic elements or CLBs. If the filter taps are symmetric (which they often are 
for typical signal-processing applications), the memory size can be reduced by 
a further factor of 2 by summing the appropriate elements of the input vector 
Xk using serial addition and using the bits of the resulting sum to address the 
LUTs. In addition to the serial adder hardware, this memory reduction comes 
at the expense of an additional clock cycle of latency before the final result is 
valid. 

As CMOS technology has scaled and the complexity of individual CLBs has 
increased with succeeding FPGA generations, the hardware cost of implementing 
our example filter has shrunk dramatically. Based on an early implementation 
of an 8-tap, 8-bit filter using DA on a Xilinx 3042 FPGA [3], our example 
would consume approximately 120 CLBs, including control logic, even using the 

X2: ~o ~1 ~ ~3 

X1: b10 b11 b12 b13 
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DA 
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DA 

Unit 1 

y 

DA 
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FIGURE 24.3 ■ A 16-tap FIR filter mapped onto multiple DA units. 

DA 

Unit 3 

symmetry of the filter coefficients to reduce the memory requirements. This would 
consume roughly the entire FPGA chip. Resource usage would be dominated 
by the input shift registers (60 CLBs) since this older FPGA architecture only 
allowed the local CLB flip-flops to be used in a shift configuration. 

In contrast, a recent FPGA architecture encompasses four logic "slices" in 
each CLB, where two slices each roughly correspond to an entire CLB in the 
older architecture [6]. Because LUTs in Xilinx Spartan-3E FPGAs can be con
figured as 16 x 1 shift registers, the number of CLB resources to implement 
the data memory for DA is drastically reduced. Each logic slice also contains 
carry propagation logic for efficient implementation of adder circuits, which 
can be used to increase the speed of DA computation, as will be shown later. 
Implementing the example filter on a Spartan-3E FPGA requires approximately 
113 slices, corresponding to 29 CLBs. This is under 12 percent of the total num
ber of slices available in the smallest member of the 3S100E FPGA family. 

Further enhancements to the architecture building blocks may allow for more 
efficient DA implementation in the future. For example, the potential of hetero
geneous or coarse-grained FPGAs to support DA more efficiently by incorpo
rating small adders and accumulators directly in the CLB is currently being 
explored [7]. 

24.4 IMPROVING DA PERFORMANCE 

Two approaches can be taken to improve DA performance on an FPGA platform. 
First, the design can be modified to reduce the number of cycles required to 
compute the final result. Second, the cycle time can be decreased by reducing 
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the number of logic stages in the critical path of the computation. Examples of 
both approaches will be discussed in this section. 

A simple approach to speeding up DA computation is to recognize that multi
ple bits from each input vector elementXk can be used to address multiple LUTs 
in each clock cycle (because addition is associative, we can perform the sum in 
equation 24.3 using any combination of partial sums that is convenient). This 
leads to an architecture like the one shown in Figure 24.4, which uses 2 bits of 
the input data vector elements at a time. The LUTs are identical because they 
contain the same linear combinations of filter coefficients Ak. The LUT outputs 
must be scaled by the correct exponent of 2 to maintain the significance of the 
bits added to the accumulated result (the x2 unit in Figure 24.4). Only two 
cycles are required to compute the result y for this implementation, instead of 
four cycles for the implementation in Figure 24.2. For longer bit-width input 
data, this idea can be extended to using more bits at a time. 

The modification just described provides the benefit of a linear decrease in the 
number of clock cycles at the expense of a linear increase in LUT memory size. 
In addition, the number of inputs and the bit width of the adder/subtractor must 
increase. Mapping this approach onto an FPGA involves a trade-off between the 
routing resources consumed and the speed of the computation, as the input data 
bit vectors must be divided into subwords and distributed to multiple CLBs. In 
addition, multiple LUT outputs must be accumulated at a single destination to 
form the result, which consumes further routing. 

Following a derivation similar to that presented by White [2], we can analyze 
this trade-off quantitatively. Suppose that we are implementing an M-tap filter 
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FIGURE 24.4 ■ Two-bit-at-a-time reduced memory DA implementation. 
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using an N-bit number representation and that the computation is proceeding 
L bits at a time. Further suppose that the LUT data is W bits wide. Computing 
the result requires that, in each cycle, MN bits are shifted in and WL bits are 
read out, and NIL clock cycles must pass. The number of wires Nw is therefore 

MN 
Nw = 

NIL 
+WL = (M+W)L (24.l0a) 

If we define the relative importance of minimizing routing resources to 
minimizing latency as the ratio r, then 

NIL N 
r = -- = -------c-

Nw (M+W)L2 
(24.lOb) 

and we can find the L that satisfies our design criterion of relative importance r: 

(24.l0c) 

Now suppose that an application demands low latency and that routing 
resources are not too tightly constrained; then, for r = 2, 32-bit input data 
(N = 32), a 4-tap FIR filter (M = 4), and 4-bit LUT data (W = 4); this yields L = 2. 
The desired DA implementation takes the input data 2 bits at a time to address 
the LUTs, completing a dot product computation in 16 cycles. 

In addition to exploiting parallelism to speed up the DA computation, it is 
possible to employ various levels of pipelining. As we saw in Figure 24.1, the 
critical path involves decoding the address presented by the data shift regis
ters, accessing the row from the LUT, and propagating the carry through the 
adder/subtractor while meeting the setup time constraints for the accumula
tor. If the implementation spans multiple CLBs, there is a potentially signifi
cant interconnect delay in this critical path in addition to the combinational 
logic delay. An obvious way to pipeline the simple implementation is to make 
the LUT synchronous and latch the outputs before they are fed to the adder/ 
sub tractor. 

An alternative approach is to use carry save addition to reduce the carry prop
agation chain in the critical path [8]. The key modification to Figure 24.1 is 
to use a different structure for the adder/subtractor and to perform the com
putation in LSB first order. Instead of using a carry propagate adder to accu
mulate the entire result in one clock cycle, the adder/subtractor is pipelined 
at the bit level and the sum and carry outputs are stored in flip-flops at each 
cycle. Each full adder takes one input bit from the LUT output and one from 
the sum output of the next most significant full adder, automatically account
ing for the x2 scaling required in Figure 24.1. Assuming that the accumula
tor is wider than N bits, after N clock cycles the least significant N bits of 
the final result are stored in the LSBs of the accumulator while the remain
ing MSBs require one more carry propagating addition to produce the final 
result. This operation adds one extra clock cycle to the latency of the DA 
computation. 

L= j ✓r(M~W) l 
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Most modem FPGA fabrics have dedicated paths for high-speed carry prop
agation. Given that most DA designs require accumulators with not too many 
more than N bits, the final carry propagation is typically not the critical path 
for the entire computation. The throughput is determined by the speed of the 
carry save addition in the accumulator. 

Although using carry save addition at the single-bit level results in the greatest 
speed improvement, it is also the most resource intensive in terms of logic slices 
and CLBs. A speed versus area trade-off can be achieved by partitioning the 
adder/subtractor into multiple subcircuits, each of which propagates a carry 
across p bits (p = 1 in the example just described). Speedup factors of at least 
1.5 have been observed over the traditional design shown in Figure 24.1 [8]. 

24.5 AN APPLICATION OF DA ON AN FPGA 

In addition to FIR filters, a common DA application on FPGAs is acceleration 
of frequency transformations such as the discrete cosine transform (OCT), 
which is a critical component of the MPEG video compression and JPEG 
image compression standards. The two-dimensional OCT can be implemented 
as two one-dimensional DCTs and a matrix transposition. Each DCT can be 
implemented as a matrix-vector multiplication, which is easy to implement 
on an FPGA using DA because it can be decomposed into a set of vector dot 
products. 

In one example, using DA instead of multiply-accumulate for the OCT res
ulted in a factor of 2.4 reduction in area for the FPGA implementation (on a 
Xilinx XC6200 FPGA) [9]. Using DA and pipelining of the routing to improve the 
algorithm performance, this implementation was fast enough to process VGA 
resolution images (640 x 480 pixels) at 25 frames per second-approximately 
four times faster than a full software implementation running on a microproces
sor. The entire two-dimensional OCT consumed a 64 x 78 array of logic blocks 
on the chip (about 30 percent of the total FPGA area) and the DA portions of the 
OCT consumed 3648 logic blocks, or about 70 percent of the two-dimensional 
DCT total. The average utilization of each logic block for the DA components 
was 61 percent. This high level of utilization was a result of careful floorplanning 
in addition to DA's inherent suitability to FPGA implementation. 
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CH APTER 25 

Because field-programmable gate arrays (FPGAs) are often used for realizing 
complex mathematical calculations, the FPGA designer is in need of a set of 
math libraries to support such implementations. The literature is rich with algo
rithmic options for evaluating the type of math functions (e.g., sine, cosine, sinh, 
cosh, arctangent, atan2, logarithms) that are typically found in a math library 
for general-purpose and DSP processors. The enormous flexibility of the FPGA 
coupled with the vast suite of algorithmic options for computing math functions 
can make the development of an FPGA math library a challenging task. 

Common approaches to evaluating math functions include polynomial 
approximation-based techniques [13] and Newton-style iterations [13], to name 
a couple. One of the most useful and flexible approaches available to the hard
ware designer for developing high-performance computing hardware is the 
CORDIC (COordinate Rotation Digital Computer) algorithm. 

CORDIC is unparalleled in its ability to encapsulate a diversity of math func
tions in one basic set of iterations. It can be viewed as the Swiss Army Knife, 
so to speak, of arithmetic-that is, a single hardware architecture, with very 
minimal control overhead, having the ability to compute sine, cosine, cosh, 
sinh, atan2, square root, and polar-to-rectangular and rectangular-to-polar con
versions, to name only a few functions. 

It is in coordinate transformations that the algorithm comes into its own. 
In both, multi-operand input and multi-element output vectors are involved. 
There are a plethora of alternatives for realizing, say, division in an FPGA, and 
most of the CORDIC alternatives provide good hardware efficiency. However, 
the algorithm remains unrivaled when it comes to processing multi-element 1/0 
vectors, as is the case when converting from Cartesian to polar coordinates or 
vice versa. CORDIC falls into the class of shift-and-add algorithms-it is a mul
tiplierless method dominated by additions. FPGAs are very efficient at realizing 
arbitrary precision adders, and so the CORDIC algorithm is in many ways a nat
ural fit for course-grained FPGA architectures such as the Xilinx Virtex-4 family 
of devices [41]. 

This chapter begins with a brief tutorial overview of the CORDIC algorithm. 
Because most hardware realizations of CORDIC employ fixed-point arithmetic, 
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design considerations for quantizing the datapath and selecting a suitable 
number of iterations are provided. Approaches for architecting FPGA CORDIC 
processors are then presented. Various options are discussed that highlight 
the use of FPGA features such as embedded multipliers, embedded multiply
accumulator (MACC) tiles, and logic fabric to deliver hardware realizations that 
provide various trade-offs between throughput, latency, logic fabric utilization, 
and numerical accuracy. A brief overview of the System Generator [38] design 
flow used to produce our implementations is also provided. Design considera
tions for producing very high throughput (450-500 MHz) implementations in 
Virtex-4 [41] devices are presented as well. 

25. 1 CORDIC ALGORITHM 

The CORDIC algorithm was first published by Voider [35] in 1959 as a technique 
for efficiently implementing the trigonometric functions required for real-time 
aircraft navigation. Since first being published, the method has been extensively 
analyzed and extended to the point where a very rich set of functions is acces
sible from the one basic set of equations. The algorithm is dominated by bit 
shifts and additions and so was an ideal match for early-generation compu
ting technology in which multiplication and division were expensive in terms of 
computation time and physical resources. Voider essentially presented iterative 
techniques for performing translations between Cartesian and polar coordinate 
systems (vectoring mode), and a method for realizing a plane rotation (rotation 
mode) using a series of arithmetic shifts and adds. 

Since its publication, the CORDIC algorithm has been applied to many diffe
rent applications and has been used as the cornerstone of the arithmetic engine 
in many VLSI signal-processing implementations [34]. It has been used exten
sively for computing various types of transforms, including the fast Fourier 
transform (FFT) [10, 11], the discrete cosine transform [ 4], and the discrete Hart
ley transform [3]. And it has found widespread use in realizing various classes 
of digital filters, including Kalman filters [31], adaptive lattice structures [21], 
and adaptive nulling [30]. A large body of work has been published on CORDIC
based approaches for implementing various types of linear algebra operations, 
including singular value decomposition (SVD) [1], Given's rotations [30], and 
QRD-RLS (recursive least squares) filtering [14]. 

A brief tutorial style treatment of the basic algorithm is provided here; its 
FPGA implementation will be discussed in subsequent sections. 

25.1. 1 Rotation Mode 

The CORDIC algorithm has two basic modes: vectoring and rotation. These 
can be applied in several coordinate systems, including circular, hyperbolic, and 
linear, to compute various functions such as atan2, sine, cosine, and even divi
sion. We begin our treatment by considering the problem of constructing an effi
cient method to realize a plane rotation of the vector (x5 , y5 ) through an angle 
0 to produce a vector (xr, Yr), as shown in Figure 25.1. 
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y 

(Xs, ys) 
Input vector 

X 

FIGURE 25.1 ■ Plane rotation of the vector (x., y5 ) through an angle 0. 

The rotation is formally captured in matrix form by equation 25.1.
[ Xf] = [ c?s0 - sin0 ] [ Xs ] =ROT(S) [ Xs ]Yf sm0 cos0 Ys Ys 

which can be expanded to the set of equations in equation 25.2.
Xf =XsCOS0 -y5 sin0 

Yr= Xs sine +Ys cos0 

(25.1)

(25.2)
The development of a simplified approach for producing rotation through theangle 0 begins by considering it not as one lumped operation but as the resultof a series of smaller rotations, or micro-rotations, through the set of angles <Xiwhere 

0 =l:,<Xi (25.3)
i=O 

The rotation can now be cast as a product of smaller rotations, or
ROT(0) = ITROT(<Xi) (25.4)

If these values <Xi are carefully chosen, we can provide a very efficient computation structure. Equation 25.2 can be modified to reflect a micro-rotationROT(<Xi), leading to equation 25.5. 
Xi+l = Xi COS<li -yi sin<Xi Yi+l =Xisin<Xi +YiCOS<li (25.5)

where (x0, Yo)= (x5,y5 ). Factoring permits the equations to be expressed as 

Xi+l = COS<li (Xi -yitan<Xi)Yi+l = COS<Xi(yi +Xitan<Xi) (25.6)
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which positions the iterative update as the product of two procedures: a scaling
by the cos CJ.j term and a similarity transformation, or scaled rotation.

The next significant step that leads to an algorithm that lends itself to an
efficient hardware realization is to place restrictions on the values that CJ.j can
take. If

tan-1 ( 2-i) C1.j = CJi 

where CJi E {-1, + l}, then equation 25.6 can be written as

Xi+l = COSCJ.j (xi-C5iYi2-i)
Yi+l = COSCJ.j (_yi +C5iXi2-i)

The purpose of CJi will be explained shortly.

(25.7)

(25.8)

With the exception of the scaling term, these equations can be implemented
using only additions, subtractions, and shifts. In the set of equations that are
typically presented as the CORDIC iterations, and following the lead of Volder
[35], the scaling term is usually excluded from the defining equations to produce
the modified set of equations

xi+1 = xi - CJiYi2-i
Yi+l =Yi+ CJixi2-i (25.9)

To determine the value of these CJi we introduce a new variable, z (the angle
variable). The recurrence on z is defined by equation 25.10.

t -1 (2-i)Zi+l = Zi - cri an (25.10)

If the z variable is initialized with the desired angle of rotation 0-that is,
zo-it can be driven to O by conditionally adding or subtracting terms of the
form tan-1 (2-i) from the state variable z. The conditioning is captured by the
term CJi as a test on the sign of the current state of the angle variable Zi-that is,

(25.11)

Driving z to O is actually an iterative process for decomposing 0 into a
weighted linear combination of terms of the form tan-1 (2-i). As z goes to 0,
the vector (xo, Yo) experiences a sequence of micro-rotation extensions that in
the limit n - oo converge to the coordinates (xr, Yr).

{ 
1 ifzi2:0 

cri = -1 if Zi < 0 
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25.1 CORDIC Algorithm 517
The complete algorithm is summarized in equation 25.12.

i=O 

Xo = Xs
Yo =Ys
Zo = 0

2-i Xi+l = Xi -CSiYi 

Yi+l =Yi + crixi2-i
Zi+l = Zi-critan-l (2-i)

{ 1 if Zi 2: 0cri = -1 ifzi<O 

(25.12)

which is easily realized in hardware because of the simple nature of the
arithmetic required. The only complex function is the tan-1, which can be precomputed and stored in a memory. Because of the manner in which the updates are directed, this mode of theCORDIC algorithm is sometimes referred to as the z-reduction mode. Figure 25.2shows the signal flow graph for the algorithm. Observe the butterfly-style architecture in the cross-addition update. 
25.1.2 Scaling Considerations 

Because the scaling term coseli has not been carried over into equation 25.12,the input vector (x0,y0) not only undergoes a rotation but also experiences scaling or growth by a factor 1/cos<Xi at each iteration. That is, 
1 . 1/2R- 1 = v ·R· = --R· = (1 +cr�2-21) R-

1+ L>-c,1 I COS<Xi ! I I 

= (1 + 2-2i) 112 Ri 

(25.13)

where Ri = lxi +iYi l designates the modulus of the vector at iteration i, and thesubscript c associates the scaling constant with the circular coordinate system.Figure 25.3 illustrates the growth process at each of the intermediate CORDICiterations as (xo, Yo), which is translated to its final location (xr, Yr). For an infinite number of iterations the scaling factor is 
Kc= fi ( 1 + 2-2i) 112"' 1.6468

t=O 

(25.14)
It should also be noted that, since cri E { -1, + 1}, the scaling term is a constantthat is independent of the angle of rotation. As captured by equation 25.4, the angle of rotation 0 is decomposed intoan infinite number of elemental angles <Xi, which implies that an infinite number of iterations is theoretically required. In practice, a finite number of iterations, n, is selected to make the system realizable in software or hardware.Application of n iterations translates (xo , Yo) to (xn , Yn) rather than to (xr, Yr) 
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FIGURE 25.2 ■ A signal flow graph for CORDIC vector rotation. 
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FIGURE 25.3 ■ Each iteration of a CORDIC rotation introduces vector growth by a factor of 
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25.1 CORDIC Algorithm 519
as shown in Figure 25.3. The rotation error iarg (xr+iYr) -arg(xn +iYn)I hasan upper bound of <Xn-t, which is the smallest term in the weighted linearexpansion of 0. For an infinite-precision arithmetic implementation of the system of equations, each iteration contributes one additional effective fractional bit to theresult. Most hardware implementations of the CORDIC algorithm are realized
using fixed-point arithmetic, and, as will be discussed soon, the relationshipbetween the number of effective output binary result digits is very different fromthat of a floating-point realization of the algorithm.

25.1.3 Vectoring Mode 

The CORDIC vectoring mode is most commonly used for implementing a conversion from a rectangular to a polar coordinate system. In contrast to rotation 
mode, where Z is driven to 0, in the vectoring mode the initial vector (x0, y0) is rotated until they component is driven to 0. The modification to the basicalgorithm required to accomplish this goal is to direct the iterations using the
sign of Yi· As they variable is reduced, the corresponding angle of rotation isaccumulated in the z register. The complete vectoring algorithm is captured byequation 25.15.

XO = Xs 

Yo = Ys 

zo = 0 
2-iXi+l = Xi -CJiYi 

Yi+l = Yi+ CJiXi2-i 
Zi+l = Zi -(Ji tan-1 ( 2-i)

CJ· _ { 1 if Yi < 0 
1 - -1 if Yi 2:: 0

This CORDIC mode is commonly referred to as y-reduction mode. 

(25.15)

Figure 25.4 shows the results of a CORDIC vector mode simulation forarg(xs +jy5) = 7n/8 and lxs +iYs l = 1. The top plot (a) shows the true angle of the
input vector (solid line) overlaid with arg(xi +jyi), i = 1, ... , 16. We note the oscillatory behavior of (xi, Yi) about the true value of the angle. Overdamped or underdamped behavior will be produced depending on the system initial conditior.:;.The lower plot (b) shows, for this case of initial conditions, how rapidly thealgorithm can converge toward the correct solution. In fact, for many practicalapplications, a short CORDIC (small number of iterations) produces acceptableperformance. For example, in a 16-QAM {quadrature amplitude modulation) carrier recovery circuit [29] employing a Costas Loop [23], a 5-itetation CORDIC usuallyprovides adequate performance [ 12]. 
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FIGURE 25.4 ■ Convergence of CORDIC vectoring. The top plot (a) shows the true angle of the 
input vector arg(xs + jy5 ) (solid line) overlaid with arg(x; + jy;), i = 1, ... ,16. The bottom plot 
(b) is the percentage angle error as a function of the iteration number.

25. 1.4 Multiple Coordinate Systems and a Unified DescriptionAlternative versions of tp.e CORDIC engine can be defined under the circular, hyperbolic, and linear coordinate systems [13]. These use a computation similar to that of the basic CORDIC algorithm, but can provide additional functions. It is possible to capture the vectoring and rotation modes of the CORDIC algorithm in all three coordinate systems using a single set of unified equations. To do this a new variable, m, is introduced to identify the coordinate system so that 

{ 
+

1 m= 0 
-1

circular coordinates linear coordinates hyperbolic coordinates 
The unified micro-rotation is 

2-iXi+l = Xi - mCJiYi 2-iYi+l = Yi +CJiXi 
{Zi -CJi tan-1 (2-i)Zi+l = Zi - CJitan � -l (2-i)Zi -CJi (2-1)

The scaling factor,is Km,i = (1 +m2-2i) 112 •

if m = 1 if m = -1 if m =0 

(25.16) 

(25.17) 

. . . . ' 
~ ~ 7 ~ 7 ~ ~ ~ 7 • 

I I I I I 

I I I I I I 

; 1---ff J · I · I · I · 1-1 
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25.1 CORDIC Algorithm 

TABLE 25.1 ■ Functions computed by a CORDIC processor for the circular (m = 1),
hyperbolic (m = -1), and linear (m = O) coordinate systems 

Coordinate system Rotation/vectoring Initialization Result vector 
1 

1 

0 

0 

-1 

-1

Rotation Xo = Xs 
Yo = Ys 
Zo = 9 
Xo = l/K1,n 

Yo = 0 

Zo = 9 
Vectoring Xo = Xs 

Yo = Ys 
Zo =9 

Rotation Xo = Xs 

Yo = Ys 

Zo = Zs 

Vectoring XO = Xs 

Yo = Ys 
Zo = Zs 

Rotation Xo = Xs 

Yo = Ys 

Zo = 9 
Xo = l/K-1,n 

Yo = 0 

Zo =9 
Vectoring Xo = Xs 

Yo = Ys 
Zo = 9 

Xn = K1,n · (xs cos9- Ys sin9) 
Yn = K1,n · (ys cos9 + Xs sin 9) 
Zn

= 0 

Xn = cos9 
Yn = sin9 
Zn

= 0 

Xn
= K1,n· sgn(Xo)·(✓x2+y2) 

Yn = 0 

Zn
= 9 + tan-1 (ys

/Xs)
Xn = Xs 

Yn =Ys
+XsYs 

Zn
= 0 

Xn = Xs 

Yn
= 0 

Zn = Zs + Ys/Xs 

Xn = K-1,n · (xs cosh 9 + Ys 
sinh 9) 

Yn = K-1,n · (ys 
cosh 9 + Xs sinh 9) 

Zn
= 0 

Xn = cosh9 
Yn = sinh9 
Zn

= 0 
Xn = K-1,n· sgn(xo) · ( ✓x2- ..v2)
Yn = 0 

Zn
= 9+tanh-1 (y/xs)

TABLE 25.2 ■ CORDIC shift sequences, ranges of covergence, and scale factor 
bound for circular, linear, and hyperbolic coordinate systems 

Coordinate system Shift sequence Convergence Scale factor 
m Sm,i 9MAX Km (n----+ oo} 

1 0, 1, 2, 3, 4, ... , i, ... =l.7 4 =1.64676 

0 1, 2, 3, 4, 5, ... , i+l, ... 1.0 1.0 

-1 1, 2, 3, 4, 4, 5, ... * =1.1 3 =0.83 816 

* For m=-1, the following iterations are repeated: {4,13,40,121, ... ,k,3k+l, ... }.

521 

Operating the two modes in the three coordinate systems, in combination 
with suitable initialization of the algorithm variables, generates a rich set of 
functions, shown in Table 25.1. Table 25.2 summarizes the shift sequences, 
maximum angle of convergence 9MAX (elaborated on in a later section), and 
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scaling function for the three coordinate systems. Note that each system requires 
slightly different shift sequences (the sequence of i values). 

25.1.5 Computational Accuracy 

One of the first design requirements for the fixed-point arithmetic implementa
tion of a CORDIC processor is to define the numerical precision requirements 
of the datapath. This includes defining the numeric representation for the input 
operands and the processing engine internal registers, in addition to the num
ber of micro-rotations that will be required to achieve a specified numerical 
quality of result. To guide this process it is useful to have an appreciation for 
the sources of computation noise in CORDIC arithmetic. While CORDIC pro
cessing can be realized with floating-point arithmetic [2, 7], we will restrict our 
discussion to fixed-point arithmetic implementations, as they are the most com
monly used numeric type employed in FPGA realizations. 

'Iwo primary noise sources are to be considered. One is associated with the 
weighted and finite linear combination of elemental angles that are used to rep
resent the desired angle of rotation 8; the second source is associated with the 
rounding of the datapath variables x, y, and z. These noise sources are referred 
to as the angle approximation and the rounding error, respectively. 

Angle approximation error 
In this discussion we assume that all finite-precision quantities are represented 
using fixed-point 2's complement arithmetic, so the value F of a normalized 
number u represented using m binary digits (um-tUu-2· .• uo) is 

m-2 

F = -Um-1 + [, Uj · 2-m+j+l
j=O 

(25.18) 

As will be presented next, there is a requirement in the CORDIC algorithm to 
accommodate bit growth in both the integer and fractional fields of the x and y 
variables. To accommodate this, the data format is enhanced with an additional 
G1 and Gp integer and fractional guard bits, respectively, so that a number with 
B1 + G1 and Bp + Gp bits allocated to the integer and fractional fields s and r,
respectively (sB1+c1-1sB1+c1-2 •.. sorBp+Gp-trBp+Gr2· .. ro), is expressed as

B1+G1-2 Bp+Gp
-1 

F= -rB1+G1-1 ·2B1+G1-I + [, si'ii + [, ri'2-'-(Bp+Gp)+i
i=O i=O 

(25.19) 

Figure 25.5 illustrates the extended data format. The integer guard bits are 
necessary to accommodate the vector growth experienced when operating in 
circular coordinates. The fractional guard bits are required to support the word 
growth that occurs in the fractional field of the x and y registers due to the 
successive arithmetic shift-right operations employed in the iterative updates. 
It is assumed that the input samples are represented as normalized (l · Bp) 
quantities. 
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FIGURE 25.5 ■ The fractional fixed-point data format used for internal storage in the quantized 
CORDIC algorithm. 

There are n fixed rotation angles CJ.m,i employed to approximate a desired 
angle of rotation 0. Neglecting all other error sources, the accuracy of the calcu
lation is governed by the nth and final rotation, which limits the angle approx
imation error to CJ.m,n-1• Because Cl.m,n-1 = Jntan- 1 (Jm·2-5

m,
n

-
1), the angle 

approximation error can be made arbitrarily small by increasing the number 
of micro-rotations n. Of course, the number of bits allocated to represent the 
elemental angles CJ.m,i needs to be sufficient to support the smallest angle CJ.m,n-l• 
The number representation defined iri equation 25.19 results in a least signif
icant digit weighting of 2-(Bp+Gp). Therefore, CJ.m,n-1 2: 2-(Bp+Gp) must hold in
order to represent CJ.m,n-1• Approximately n + 1 iterations are required to gene
rate Bp significant fractional bits. 

Datapath rounding error 
As discussed earlier, most FPGA realizations of CORDIC processors employ 
fixed-point arithmetic. The update of the x, y, and z state variables according 
to equation 25.12 produces a dynamic range expansion, which is ideally sup-

. ported by precisions that accommodate the worst-case bit growth. The number 
of additional guard bits beyond the original precision of the input operands 
can be very large, and carrying these additional bits in the datapath is gene
rally impractical. For example, in the circular mode of operation the number 
of additional fractional bits required to support a full-precision calculation is 
determined by the sum of the shift sequence sm,i· 

If the input operands are presented as a 16.15 value (a 16-bit field width with 
15 fractional bits) and 16 micro-rotations are performed, the bit growth for the 

15 
fractional component of the datapath is E i = 120 bits. Thus, the total number 

i=O 

of fractional bits required for a full-precision calculation is 120+ 15 = 135. While 
FPGAs certainly provide the capability to support arbitrary precision arithmetic, 
it would be highly unusual to construct a CORDIC processor with such a wide 
datapath. In fact, the error in the CORDIC result vector can be maintained to a 
desired value using far few fractional guard bits, as discussed next. 

Rather than by accommodating the bit growth implied in the algorithm, the 
dynamic range expansion is better handled by rounding the newly computed 
state variables. Control over wordlength can be achieved using unbiased 
rounding, simple truncation, or other techniques [26 ]. True rounding, while the 
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preferred approach because of the smaller error introduced when compared to 
truncation, can be the most area consuming because a second addition is poten
tially required. In some cases, the cost of rounding can be significantly reduced 
by exploiting the carry-in port of the adders used in the implementation. Trun
cation is obviously the simplest approach, requiring only the extraction of a 
bit field from the full-precision value, but it introduces an undesirable positive 
bias in the final result and an error component that is twice the magnitude of 
unbiased rounding. Nevertheless, truncation arithmetic is the option most fre
quently employed in FPGA CORDIC datapath design. 

A simple approach to understanding the quantization effects of the CORDIC 
algorithm was first presented by Walther [36]. A very complete analysis was later 
published by Hu [16], with further work reported by Park and Cho [28] and Hu 
and Bass [17]. 

For many practical applications Walther's method produces acceptable 
results, and this is the approach we will use to design the FPGA implemen
tations. A brief summary of the method is presented here. 

Analysis of the rounding error for the z variable is straightforward because 
there are no data shifts involved in the state update, as there are with the x and 
y variables. The rounding error is simply due to the quantization of the rotation 
angles. The upper bound on the error is then the accumulation of the absolute 
values of the rounding errors for the quantized angles a.n,i• 

Datapath pruning and its associated quantization effects for the x and y varia
bles is certainly a more challenging analysis than that for the angle variable 
because the scaling term involved in the cross-addition update. Nevertheless, 
several extensive treatments have been published. The effects of error propa
gation in the algorithm were reported by Hu in a Cray Research publication [5] 
and later extended by Hu and Bass [17]. Walther's treatment takes a slightly 
simplified approach and assumes that the maximum rounding error for n itera
tions is the sum of the absolute value of the maximum rounding error associated 
with each micro-rotation and the subsequent quantization that is performed to 
control word growth. 

The format for the CORDIC variables was shown in Figure 25.5. B =B; +Bp + 
Gp + G1 bits are used to for internal storage, with Bp + Gp of these bits assigned to 
the fractional component of the representation. The maximum error for one iter
ation is therefore of magnitude 2-(Bp+Gp). In the simplified analysis, the round
ing error e (n) in the final result, and after all n iterations, is simply n times this 
quantity, which is e(n) = n2-(Bp+Gp)_ If Bp accurate fractional bits are required 
in the result word, the required resolution is 2-(Br l ). If Bp is selected such that 
e(n) � 2-Bp, the datapath quantization can effectively be ignored. This implies 
.that n2-(Bp+Gp) � 2-Bp, which requires Bp � log2 (n). Therefore, Gp = flog2 (n)l 
fractional guard bits are required to produce a result that has an accuracy of Bp 

fractional bits. This simplified treatment of the computation noise is a reason
able approximation that can help guide the definition of the datapath width 
required to meet a specified numerical fidelity. 

Figure 25.6 shows the results of a simulation using different data representa
tions for the x, y, and z variables of a CORDIC vectoring algorithm in circular 
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FIGURE 25.6 ■ The effiective number of result bites for a CORDIC vector processor (circular coordinates). 
The number of fractional guard bites is Gp ':, flog2(n)l. 

coordinates. Unit modulus complex vectors with random angles were generated 
and projected onto the CORD IC input sample (xo, Yo), Each sample point in 
the plot represents the maximum absolute error of the angle estimate resulting 
from 4000 trials. We note that in all of the simulations the effective number of 
fractional output bits is matched to the number of fractional bits in the input 
operand. 

The simplified treatment of the rounding noise generated in the update equa
tions is certainly pessimistic and produces a requirement on the number of 
guard bits that is biased slightly higher than what might typically be required. 

Selecting Gp = flog2 (n)l is ce)i"tainly a safe, if not a slightly overengineered, 
choice. In the context of an FPGA realization, an additional bit of precision 
carried by the variables has almost negligible impact on the area and maximum 
operating clock frequency of the design. 

An additional observation from the plots in Figure 25.6 is that the production 
of Bp effective output digits requires more iterations than the Bp + 1 iterations 
required for a full floating-point implementation-an additional three iterations 
are, in general, necessary. The implication of this is that two additional bits must 
be allocated to represent the elemental angles to provide the angle resolution 
implied by the adjusted iteration count. 

Defining the number of guard bits G1 is very straightforward based on the 
number of integer bits B1 in the input operands, the coordinate system to be 
employed (e.g., circular, hyperbolic, or linear), and the mode (vectoring or rota
tion). For example, if the input data is in standard 2's complement format and 
bounded by ±1, then B1 = 1. This means that the 12 norm of the input (x0,y0) 
is ./2. For the CORDIC vectoring mode, the range extension introduced by the 
iterations is approximately Ki = 1.6468 for any reasonable number of iterations. 
The maximum that the final value of the x register can assume is approximately 
v2 • l.6468=2.3289, which requires that G1 = 2. 
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TABLE 25.3 ■ Number of rotations and required CORDIC processor datapath format
required to achieve a desired number of effective output bits 

Number of effective Internal storage data Internal storage data 
fractional result bits Micro-rotations: n format: x and y format: z 

8 10 (15.12) (15.14) 

12 15 (19.16) (19.18) 

16 19 (24.21) (24.23) 

24 27 (32.29) (32.31) 

Based on this approach, a reasonable procedure for selecting the number of 
CORDIC micro-rotations and a suitable quantization for the x, y, and z vari
ables, given the effective number of fractional bits required in the output, is the 
following: 

1. Define the number of iterations as n = Bp + 3.
2. Select the field width for the x and y variables as 2+Bi+Bp+log2 (n) for

the vectoring mode in circular coordinates-Bp + log2 (n) of these bits are
of course allocated to the fractional component of the register.

3. Select the fractional precision of the angle register z to be Bp + log2 (n) + 2,
while maintaining 1 bit for the integer portion of the register.

4. Apply similar reasoning to select n and G1 for the other coordinate systems
and modes.

Based on this approach, Table 25.3 shows the number of micro-rotations n
and the internal data storage format corresponding to 8, 12, 16, 24, and 32 
effective fractional result bits. The notation (p • q) indicates a bit field width of 
p bits, with q of these bits allocated to the fractional component of the value. 

25.2 ARCHITECTURAL DESIGN 

There are many hardware architecture options to evaluate when considering 
FPGA CORDIC datapath implementation. A particular choice is determined by 
the design specifications of numerical accuracy, throughput, and latency. At the 
highest level are key architectural decisions on whether a folded [27] or fully 
parallel [27] pipelined (or nonpipelined) architecture is to be used. At a lower, 
technology-specific level, FPGA features associated with a particular FPGA fam
ily are also a factor in the decision process. For example, later-generation FPGAs 
such as the Virtex-4 family [41] include an array of arithmetic units called . 
the XtremeDSP Slice [ 43] (referred to as the DSP48 in the remainder of the 
chapter). 

As discussed later, a CORDIC implementation can be realized that is mostly 
based on the DSP48 embedded tile. Thus, with this particular family of devices 
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the designer has a choice· of producing an implementation that is completely 
logic slice based [40] or biased toward the use of DSP48 elements. The process 
that guides such decisions is elaborated in the next section. 

25.3 FPGA IMPLEMENTATION OF CORDIC PROCESSORS 

One of the elegant properties of FPGA computing is the ability to construct a 
compute engine closely tailored to the problem specifications, including pro
cessing throughput, latency, and numerical accuracy. Consider, for example, the 
throughput requirement. At one end of the architecture spectrum, and when 
modest processing rates are involved, a fully folded [27] implementation, where 
the same logic is used for all iterations (folding factor= n), is one option. In this 
case, new operands are delivered, and a new result vector is produced, every n
clock cycles. This choice of implementation results in the smallest FPGA foot
print at the expense of processing rate. If a high-throughput unit is required, a 
fully parallel, or completely unfolded implementation (folding factor = 1) that 
allocates a complete hardware PE to each iteration is appropriate. This will of 
course result in the largest area, but provides the highest compute rate. 

25.3. 1 Convergence 
One of the design considerations for the CORDIC engine is the region of con
vergence that needs to be supported by the implementation, as the basic form 
of the algorithm does not converge for all input coordinates. For the rotation 
mode, the CORDIC algorithm converges provided that the absolute value of the 
rotation angle is no larger than 8MAX= 1.7433 radians, or approximately 99.88° . 

In many applications we need to support input arguments that span all four 
quadrants of the complex plane-that is, a so-called full-range CORDIC. Much 
published work addresses this requirement [8, 19,25], and many elegant exten
sions to the basic set of CORDIC iterations have been produced. Some of them 
introduce additional iterations and, while maintaining the basic shift-and-add 
property of the algorithm, result in a significant time or area penalty. 

The most straightforward approach for handling the convergence issue in 
FPGA hardware is to first note that the natural range of convergence extends 
beyond the angle 'IC/2. That is, the basic set of equations converges over the inter
val [ -7t/2, 'IC/2]. To extend the implementation to converge over [ -'IC, 7t], we can 
simply detect when the input angle extends beyond the first quadrant, map that 
angle to either the first or fourth quadrants, and make a post-micro-rotation cor
rection to account for the input angle mapping. This architecture is illustrated 
in Figure 25.7. 

The input mapping is particularly simple. Referring to Figure 25.7, if xo is 
negative, the quadrants must be changed by applying a± 1tl2 (±90°) rotation. 
Whether it is a positive or negative rotation is determined by the sign of Yo• To 
compensate for the input mapping, an angle rotation is conditionally applied to 
the micro-rotation engine result z� to produce the final output value Zn - Details 
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FIGURE 25.7 ■ A full-range CORDIC processor showing input quadrant mapping, micro-rotation 
engine, and quadrant correction. 

of the course angle rotator and matching quadrant correction circuit are shown 
in Figure 25.8. The area cost for an FPGA implementation of the circuits is 
modest [ 40]. 

25.3.2 Folded CORDIC 

The folded CORDIC architecture allocates a single PE to service all of the 
required micro-rotations. At one architectural extreme a bit-serial implemen
tation employing a single 3-2 full adder, with appropriate control circuitry and 
state storage, can address all of the required updates for x, y, and z. However, 
our treatment employs a word-oriented architecture that associates unique func
tional units (FU) with each of the x, y, and z processing engines, as shown in 
Figure 25.9. 

Multiple mapping options are available when projecting the dependency 
graph onto an FPGA architecture. In the Xilinx Virtex-4 family [41], one option 
for supporting the adder/subtractor FUs is to utilize the logic fabric and realize 
these modules at the cost of one lookup table (LUT) per result digit. So for 
example, the addition of two 16-bit operands to generate a 17-bit sum requires 
17 LUTs. An alternative is to use the 48-bit adder in the DSP48 tile. 

x'o .-----, 

I I 

z'n 
z-L11------1>1 
~ 
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FIGURE 25.8 ■ A course angle rotator preceding a micro-rotation engine for a full-range CORDIC 
processor (a). A post-micro-rotation quadrant correction circuit (b). 
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There are also several mapping options for the barrel shifter: It can be realized 
in the logic fabric, with the multiplier in the DSP48 tile, or, for that matter, using 
an embedded multiplier in any FPGA family that supports this architectural 
component (e.g., Virtex-11 Pro [39] or Spartan-3E [37]). 

Consider a fabric-only implementation of a vectoring CORDIC algorithm in 
circular coordinates. In this case all of the FUs are implemented directly in the 
logic fabric. The FPGA area, Ap, can be expressed as 

Ap = 3 · aadd + 2 · abarrel + 3 · amux + aiuT + ao + ao-1 (25.20) 

where aadd, abarre/, amux, aiuT, ao, and a0-1 correspond to the area of an 
adder, barrel shifter, input multiplexer, elementary angle LUT, quadrant input 
mapper, and output mapper circuits, respectively. The FPGA logic fabric is 
designed to efficiently support the implementation of arbitrary-precision high
speed adder/subtractors. Each configurable logic block (CLB) [41] includes ded
icated circuitry that provides fast carry resolution, with the LUT itself producing 
the half-sum. 

The component that can be costly in terms of area is the barrel shifter. The 
barrel shifter area cost can be much more significant than the aggregate cost of 
the adder/subtractors used for updating the x, y, and z variables. For example, 
in a design that supplies 16 effective result digits, the 2 barrel shifters occupy 
an aggregate area of 226 LUTs while the adders occupy 74 LUTs in total. Here; 
the barrel shifters have a footprint approximately three times that of the adders. 

The barrel shifter area can be reduced if a multiplier-based barrel shifter is 
used rather than a purely logic fabric-based implementation. FPGA families 
such as Spartan-3E [37], Virtex-11 Pro [39], and Virtex-4 [ 40] include an array 
of embedded multipliers, which are useful for realizing arithmetic shifts. The 
multiplier accepts 18-bit precision operands and produces a 36-bit result. When 
used as a barrel shifter, one port of the multiplier is supplied with the input 
operand that is to experience the arithmetic shift, while the second port accepts 
the shift value i, where i is the iteration index. In a typical hardware implemen
tation the iteration index rather than the exponentiated value is usually available 
in the control plane that coordinates the operation of the circuit. The exponenti
ation can be done via a small LUT implemented using distributed memory [ 40]. 
Multiple multiplier primitives can be combined with an adder to form a barrel 
shifter that can support a wider datapath. For the previous example, multiplier 
realization of the barrel shifter results in an FPGA footprint that is less than 
half that of an entirely fabric-based implementation. 

The folded CORDIC architecture is a recursive graph, which means that deep 
pipelining cannot be employed to reduce the critical path. The structure can 
accept a new set of operands, and produces a result every n clock cycles. 

25.3.3 Parallel Linear Array 

When throughput is the overriding design consideration, a fully parallel 
pipelined CORDIC realization is the preferred architecture. With this approach 
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FIGURE. 25.10 ■ A programmable parallel pipelined CORDIC array. In a completely unfolded implementation, 
the barrel shifters are realized as FPGA routing and so consume no resources other than interconnect. 

the CORDIC algorithm is completely unrolled and each operation is projected 
onto a unique hardware resource, as shown in Figure 25.10. 

One interesting effect of the unrolling is that the data shifts required in the 
cross-addition update can be realized as wiring between successive CORDIC 
processing elements (PEs). Unlike the folded architecture, where either LUTs or 
embedded multipliers are consumed to realize the barrel shifter, no resources 
other than interconnect are required to implement the shift in the linear array 
architecture. The only functional units required for each PE with this approach 
are three adder/subtractors and a small amount of logic to implement the 
control circuit that steers the add/subtract FUs. The micro-rotation angle for 
each PE is encoded as a constant supplied on one arm of the adder/subtractor 
that performs the angle update-no LUT resources are required for this. Note 
in Figure 25.10 that the sign bit of the y and z variables is supplied to 
the control circuit that is local to each processing engine. This permits the 
architecture to operate in the y- or z-reduction configuration under the con
trol of the Mode input control signal, and thus support vectoring or rotation, 
respectively. 

Figure 25.ll(a) shows a comparison of the area functions for the parallel 
and folded architectures. The folded implementation is entirely fabric based. 
As expected, the area of the parallel design exhibits modest exponential growth 
and, for an effective number of result digits greater than 15, occupies more than 
three times the area of the folded architecture. For the case of 24 effective result 
digits, the parallel design is larger by a factor of approximately 5. Figure 25.11 (b) 
contrasts the throughput of the two architectures. Naturally, the parallel design 
has a constant throughput of one CORDIC operation per second for a normal
ized clock rate of 1, while the throughput for the folded design falls off as the 
inverse of the number of iterations. 

afra±b 
b 
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FIGURE 25.11 ■ (a) Comparison of the FPGA resource requirements for folded and linear array CORDIC 
architectures-circular coordinates. (b) Throughput in rotations/vectoring operations per second for the two 
architectures. A normalized clock rate of 1 is assumed. 

The parallel design has a performance advantage of approximately an order 
of magnitude for the number of effective result bits great than 10. In an FPGA 
implementation the advantage is significantly more than this because of the 
higher clock frequency that can be supported by the linear array compared to 
the folded processor. With its heavy pipelining, the linear array typically achieves 
an operating frequency approximately twice that of the folded architecture, so 
for high-precision calculations-for example, on the order of 24 effective frac-

. tional bits or greater-the parallel implementation has a throughput advantage 
of approximately 50, which is delivered in a footprint that is only five times that 
of the folded design. 

The add/subtract FUs can be realized using the logic fabric or the 48-bit adder 
that is resident in each DSP48 tile in the Virtex-4 class of FPGAs. The DSP48 [ 42] 
is a dynamically configurable embedded processing block that supports over 
40 different op-codes, optimized for signal-processing tasks. The logic fabric 
approach tends to result in an implementation that operates at a lower clock 
frequency than a fully pipelined version based on the DSP48. The DSP48-based 
implementations can operate at very high clock frequencies-in the region of 
500 MHz in the fastest "-12" speed-grade parts [40]. However, for a datapath 
precision of up to 36 bits, three DSP48 tiles are required for each CORDIC 
iteration (see Figures 25.12 and 25.13). For scenarios where throughput is the 
overarching requirement, these resource requirements are acceptable. 

A potential downside to the use of the DSP48 in this application is that 
the multiplier colocated with the high-precision adder is not available for use 
by another function if the adder is used by the CORDIC PE. This is because 
the input and output ports of the block are occupied supporting the addi
tion/subtraction and there is no 1/0 available to access other functions (such 
as the multiplier) in the tile. 
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0 
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FIGURE 25.13 ■ A programmable parallel pipelined CORDIC array based almost entirely on the Virtex-4 DSP48 
embedded tile. Each DSP48 has three levels of pipeTining. Additional fabric-based registers are included to 
pipeline the routing between DSP48 tiles. 
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25.3.4 Scaling Compensation 
As highlighted earlier, the rotation mode of the CORDIC algorithm produces a 
rotation extension (i.e., it increases or decreases the distance of the point from 
the origin) rather than a pure rotation. The growth associated with circular and 
hyperbolic coordinate systems is approximately K1,n = 1.64 6 8  and K-1,n =0.8382, 
respectively. In some applications this growth can be tolerated, and there is no 
need to perform any compensation. For example, if the vectoring mode is used 
to map the output vector of a discrete Fourier transform (OFT) from Cartesian 
to polar coordinates in order to compute a magnitude spectrum, the CORDIC 
scaling may not be an issue because all terms are similarly scaled. If the CORDIC 
output is to be further processed, there might be an opportunity to absorb the 
CORDIC scale factor in the postprocessing circuit. Continuing with the OFT 
example, if the magnitude spectrum is to be compared with a threshold in order 
to make a decision about a particular spectral bin, the CORDIC scaling can be 
absorbed into the threshold value. 

If the scaling cannot be tolerated, several scaling compensation techniques are 
possible. Some approaches employ modified iterations [20, 32, 33] while others 
exploit alternatives such as online arithmetic [6 ]. Some methods merge scaling 
iterations with the basic CORDIC iterations [15 ], which result in either an area 
penalty or a time penalty if the basic CORDIC hardware is to be used for both 
the fundamental updates and the scaling iterations. It is also possible to employ 
a modified set of elemental angles [9]. 

The problem of scaling compensation has been examined by many 
researchers, and many creative and elegant results have been produced; how
ever, the most direct way to accommodate the problem in an FPGA is to 
employ its embedded multipliers. The architecture of a programmable and scale
compensated CORDIC engine is shown in Figure 25.14. The Mode control signal 
defines if a vectoring or rotation operation is to be performed. It essentially 
controls if the iteration update is guided by the sign of the y or z variable for 
vectoring or rotation, respectively. The Coordinate_System signal selects the 
coordinate system for the processor: circular, hyperbolic, or linear. This con
trol line selects the page in memory where the elemental angles are stored: 
tan-1 (2-i), i = 0, ... , n-1 for circular; tanh-1 (2-i), i = 1, ... , n for hyperbolic;
and (2-i), i = 0, ... , n-1 for linear. Coordinate_System also indexes a small 
memory located in FPGA distributed memory that stores the values 1/Km,n for 
use by the scaling compensation multiplier Ml. Naturally, the precision of these 
constants should be commensurate with the number of effective result bits. 

25.4 SUMMARY 

This chapter provided an overview of the CORDIC algorithm and its imple
mentation in current-generation FPGAs such as the Xilinx Virtex-4 family. The 
basic set of CORDIC equations was first reviewed, and the utility of this simple 
shift-and-add-type algorithm was highlighted by the many functions that can be 
accessed through it. We also highlighted the fact that, while there are many 
options for architecting math functions in hardware, the CORDIC approach 
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FIGURE 25.14 ■ A programmable CORDIC processor with multiplier-based scaling compensation. 

comes into its own when multi-element input and output vectors are involved. 
The functional requirements of the angle and cross-addition updates make it an 
excellent match for FPGAs because of the utility and efficiency with which these 
devices realize addition and subtraction. 

Most hardware realizations of the CORDIC algorithm employ fixed-point 
arithmetic, and this is certainly true of nearly all FPGA implementations. We 
showed that it is therefore important to understand the effects of quantizing 
the datapath. While this analysis can be complex [16], for most applications the 
simplified approach first described by Walther [36] is suitable for most cases 
and provides excellent results. 

The FPGA implementation of a CORDIC processor would appear to be 
straightforward. However, FPGA-embedded functions such as multipliers and 
the DSP48 provide opportunities for architectural innovation and for design 
trade-offs that satisfy design requirements. For example, embedded multipliers 
can be exchanged for logic fabric with the implementation of the barrel shifter. 
The wide 48-bit adder in the DSP48 can be used almost as the sole arithmetic 
building block of a complete fully parallel CORDIC array. 
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Hardware/Software Partitioning 

Frank Vahid, Greg Stitt 
Department of Computer Science and Engineering 
University of California-Riverside 

Field-programmable gate arrays (FPGAs) excel at implementing applications as 
highly parallel custom circuits, thus yielding fast performance. However, large 
applications implemented on a microprocessor may be more size efficient and 
require less designer effort, at the expense of slower performance. In some 
cases, mapping an entire application to a microprocessor satisfies performance 
requirements and so is preferred. In other cases, mapping an application entirely 
to custom circuits on FPGAs may be necessary to meet performance require
ments. In many cases, though, the best implementation lies somewhere between 
these two extremes. 

Hardware/software partitioning, illustrated in Figure 26.1, is the process of 
dividing an' application between a microprocessor component ("software") and 
one or more custom coprocessor components ("hardware") to achieve an 
implementation that best satisfies requirements of performance, size, designer 
effort, and other metrics. 1 A custom coprocessor is a processing circuit that is
tailor-made to execute critical application computations far faster than if those 
computations had been executed on a microprocessor. 

FPGA technology encourages hardware/software (HW/SW) partitioning by 
simplifying the job of implementing custom coprocessors, which can be done 
just by downloading bits onto an FPGA rather than by manufacturing a new 
integrated circuit or by wiring a printed-circuit board. In fact, new FPGAs even 
support integration of microprocessors within an FPGA itself, either as separate 
physical components alongside the FPGA fabric ("hard-core microprocessors") 
or as circuits mapped onto the FPGA fabric just like any other circuit ("soft-core 
microprocessors"). High-end computers have also begun integrating micropro
cessors and FPGAs on boards, allowing application designers to make use of 
both resources when implementing applications. 

Hardware/software partitioning is a hard problem in part because of the 
large number of possible partitions. In its. simplest form, hardware/software 
partitioning considers an application as comprising a set of regions and maps 

1 The terms. software, to represent microprocessor implementation, and hardware, to represent
coprocessor implementation, are common and so appear in this chapter. However, when imple
mented on FPGAs, coprocessors are actuajly just as "soft" as programs implemented on a micro
processor, with both consisting merely of a sequence of bits downloaded into a physical device, 
leading to a broader concept of "software." 
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Application 

Memory 

Microprocessor 

Custom 

processors 

FIGURE 26.1 ■ A diagram of hardware/software partitioning, which divides an application bet
ween a microprocessor component ("software") and custom processor components ("hardware"). 

each region to either software or hardware such that some cost criteria (e.g., 
performance) is optimized while some constraints (e.g., size) are satisfied. 

A partition is a complete mapping of every region to either hardware or 
software. Even in this simple formulation, the number of possible partitions can 
be enormous. If there are n regions and there are two choices (software or hard
ware) for each one, then there are 2n possible partitions. A mere 32 regions yield 
over 4 billion possibilities. Finding the optimal partition of this simple. form is 
known to be NP-hard in general. Many other factors contribute to making the 
problem even harder, as will be discussed. 

This chapter discusses issues involved in partitioning an application among 
microprocessor and coprocessor components. It considers two application 
categories: sequential programs, where an application is a program written in 
a sequential programmin,g language such as C, C++, or Java and where parti
tioning maps critical functions and/or loops to coprocessors; and parallel pro
grams, where an application is a set of concurrently executing tasks and where 
partitioning maps some of those tasks to coprocessors. 

While designers today do mostly manual partitioning, automating the process 
has been an area of active study since the early 1990s (e.g., [10, 15, 26]) and 
continues to be intensively researched and developed. For that reason, we will 
begin the chapter with a discussion of the trend toward automatic partitioning. 

26.1 THE TREND TOWARD AUTOMATIC PARTITIONING 

Traditionally, designers have manually partitioned applications between micro
processors and custom coprocessors. Manual partitioning was in part 
necessitated by radically different design flows for microprocessors versus 
coprocessors. A microprocessor design flow typically involved developing code 
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26.1 The Trend Toward Automatic Partitioning 541 

in programming languages such as C, C++, or Java. In sharp contrast, a 
coprocessor design flow may have involved developing cleverly parallelized 
and/or pipelined datapath circuits, control circuits to sequence data through 
the datapath, memory circuits to enable rapid data access by the data
path, and then mapping those circuits to a particular ASIC technology. Thus, 
manual partitioning was necessary because partitioning was done early in the 
design process, well before a machine-readable or executable description of an 
application's desired behavior existed. It resulted in specifications for both the 
software design and the hardware design teams, both of which might then have 
worked for many months developing their respective implementations. 

However, the evolution of synthesis and FPGA technologies is leading 
toward automated partitioning because the starting point of FPGA design has 
been elevated to the same level as that for microprocessors, as shown in 
Figure 26.2. 

Current technology enables coprocessors to be realized merely by down
loading bits onto an FPGA. Downloading takes just seconds and eliminates 
the months-long and expensive design step of mapping circuits to an ASIC. 
Furthermore, synthesis tools have evolved to automatically design coproces
sors from high-level descriptions in hardware description languages (HDLs), 
such as VHDL or Verilog, or even in languages traditionally used to program 
microprocessors, such as C, C++, or Java. Thus, designers may develop a single 
machine-readable high-level executable description of an application's desired 
behavior and then partition that description between microprocessor and copro
cessor parts, in a process sometimes called hardware/software codesign. New 

Compilation 

Assembling, linking 

Downloading 

Logic synthesis, physical design 
(1970s, 1980s) 

FIGURE 26.2 ■ The codesign ladder: evolution toward automated hardware/software partitioning 
due to synthesis tools and FPGA technologies enabling a similar design starting point, and 

similar implementation manner of downloading bits into a prefabricated device. 

Behavioral synthesis 
(1_9_9()~ 

RT synthesis 
(1980s, 1990s) 
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approaches, such as SystemC [14], which supports HDL concepts using C++, 
have evolved specifically to support it. With a single behavior description of an 
application, and automated tools to convert partitioned applications to copro
cessors, automating partitioning is a logical next step in tool evolution. Some 
commercial automated hardware/software partitioning products are just begin
ning to appear [4, 7,21,27]. 

In the remainder of the chapter, many of the issues discussed relate to both 
manual and automatic partitioning, while some relate to automatic partitioning 
alone. 

26.2 PARTITIONING OF SEQUENTIAL PROGRAMS 

In a sequential program, the regions comprising an application's behavior 
are defined to execute sequentially rather than concurrently. For example, the 
semantics of the C programming language are such that its functions execute 
sequentially (though parallel execution is allowed as long as the results of the 
computation stay the same). Hardware/software partitioning of a sequential pro
gram involves speeding up certain regions by moving them to faster-executing 
FPGA coprocessors, yielding overall application speedup. 

Hardware/software partitioning of sequential programs is governed to a large 
extent by the well-known Amdahl's Law [1] (described in 1967 by Gene Amdahl 
of IBM in the context of discussing the limits of parallel architectures for 
speeding up sequential programs). Informally, Amdahl's Law states that appli
cation speedup is limited by the part of the program not being parallelized. For 
example, if 75 percent of a program can be parallelized, the remaining nonparal
lelized 25 percent of the program limits the speedup to 100/25 = 4 times speedup 
(usually written as 4x) in the best possible case, even in the ideal situation of 
zero-time execution of the other 75 percent. 

Amdahl's Law has been described more formally using the equation 
max_speedup = 1/(s + pin), where p is the fraction of the program execution that 
can be parallelized; s is the fraction that remains sequential, s + p = 1; n is the num
ber of parallel processors being used to speed up the parallelizable fraction; and 
max_speedup is the ideal speedup. In the 75 percent example, assuming that n 
is very large, we obtain max_speedup= 1/(0.25 +0.75/n)= 1/(0.25 + ~0)=4x. 

Amdahl's Law applies to hardware/software partitioning by providing speedup 
limits based on the regions not mapped to hardware. For example, if a region 
accounts for 25 percent of execution but is not mapped to hardware, then the 
maximum possible speedup obtainable by partitioning is 4x. Figure 26.3 illus
trates that only when regions accounting for a large percentage of execution are 
mapped to hardware might partitioning yield substantial results. For example, to 
obtain lOx speedup, partitioning must map to hardware those regions account
ing for at least 90 percent of an application's execution time. 

Fortunately, most of the execution time for many applications comes from 
just a few regions. For example, Figure 26.4 shows the average execution time 
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544 Chapter 26 ■ Hardware/Software Partitioning
to a mere 100 percent/40 percent= 2.Sx. For this reason, hardware/softwarepartitioning of sequential programs generally must focus on obtaining very largespeedups of the highest-contributing regions. Amdahl's Law therefore greatly prunes the solution space that partitioningof sequential programs must consider-good solutions must move the biggestcontributing regions to hardware and greatly speed them up to yield good overallapplication speedups. Even with this relatively simple view, several issues make the problemof hardware/software partitioning of sequential programs quite challenging.Those issues, illustrated in Figure 26.S(a-e), include determining critical region
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26.2 Partitioning of Sequential Programs 545 

granularity (a), evaluating partitions . (b), considering multiple alternative 
implementations of a region (c), determining implementation models (d), and 
exploring the partitioning solution space (e). 

26.2.1 Granularity 

Partitioning moves some code regions from a microprocessor to coprocessors. 
A first issue in defining a partitioning approach is thus to determine the granu
larity of the regions to be considered. Granularity is a measure of the amount 
of functionality encapsulated by a region, which is illustrated in Figure 26.6. 

A key trade-off involves c<'arse versus fine region granularity [11]. Coarser 
granularity simplifies partitioning by reducing the number of possible partitions, 
enables more accurate estimates during partitioning by considering more com
putations when creating those estimates (and thus reducing inaccuracy when 
combining multiple estimates for different regions into one), and reduces inter
region communication. On the other hand, finer granularity may expose better 
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FIGURE 26.6 ■ The region granularities of an application (top): (al functions; (bl loops; 
(cl blocks; (d) heterogeneous combination. Finer granularities may expose better solutions, at 
the expense of a more complex partitioning problem and more difficult estimation challenges. 
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546 Chapter 26 ■ Hardware/Software Partitioning 

partitions that would not otherwise be possible. Early automated partitioning 
research considered fine granularities of arithmetic operations or statements, 
while more recent work typically considers coarser granularities involving basic 
blocks, loops, or entire functions. 

Coarse granularity simplifies the partitioning problem by reducing the num
ber of possible partitions. Take, for example, an application with two 1000-line 
C functions, like the one shown in Figure 26'. 6 (top), and consider partitioning 
at the granularity of functions, loops, or basic blocks. The granularity of func
tions involves only two regions, as shown in Figure 26.6(a), and the granularity 
of loops involves five regions, as shown Figure 26.6(b). However, the granularity 
of the basic block may involve many tens or hundreds of regions, as shown �n 
Figure 26.6(c). If partitioning simply cµooses between hardware and software, 
then two regions would yield 2*2 = 4 possible partitions, while just 32 regions 
would involve 2*2*2* ... *2 (32 times) possible partitions, or over four billion. 

Coarse granularity also enables more accurate early estimations of a region's 
performance, size, power, and so forth. For example, an approach using func
tion granularity could individually presynthesize the two previously mentioned 
functions to FPGAs before partitioning, gathering performance and size data. 
During partitioning, it could simply estimate that, for the case of partitioning 
both functions to the FPGA, the two functions' performances would stay the 
same and their sizes would add. This estimate is not entirely accurate because 
synthesizing both functions could involve interactions between the function's 
implementations that would impact performance and size, but it is likely reason
ably accurate. In contrast, similar presynthesis and performance/size estimates 
for basic blocks would yield grossly inaccurate values because multiple basic 
blocks would actually be synthesized into a combined circuit having extensive 
sharing among the blocks, bearing little resemblance to the individual circuits 
presynthesized for each block. 

However, finer granularity may expose better partitions that otherwise would 
not be possible. In the two-function example just described, perhaps the best 
partition would move only half of one function to hardware-an option not 
possible at the coarse granularity of functions but possible at finer granularities 
of loops or basic blocks. 

Manual partitioning often involves initially considering a "natural" granula
rity for an application. An application may consist of dozens of functions, but a 
designer may naturally categorize them into just a few key high-level functions. 
A data-processing application, for example, may naturally consist of several key 
high-level functions: acquire, decompress, transform, compress, and transmit. 
The designer may first try to partition at that natural granularity before consi
dering finer granularities. 

Granularity may be restricted to one region type, but can instead be hetero
geneous, as shown in Figure 26.6(d). For example, in the previous two-function 
example from Figure 26.6 (top), one function may be treated as a region while 
the other may be broken down so that its loops are each considered as a region. 
A particular loop may even be broken down so that its basic blocks are indivi
dually considered as regions. Thus, for a single application, regions considered 
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26.2 Partitioning of Sequential Programs 547 

for movement to hardware may include functions, loops, and basic blocks. With 
heterogeneous granularity, preanalysis of the code may select regions based on 
execution time and size, breaking down a region with very high execution time 
or large size. 

Furthermore, while granularity can be predetermined statically, it can also be 
determined dynamically during partitioning [16]. Thus, an approach might start 
with coarse-grained regions and then decompose specific regions deemed to be 
critical during partitioning. 

Granularity need not be restricted to regions defined by the language 
constructs such as functions or loops, used in the original application descrip
tion. Transformations, some being well-known compiler transformations, may 
be applied to significantly change the original description. They include func
tion inlining (replacing a function call with that function's statements), function 
"exlining" (replacing statements with a function call), function cloning (making 
multiple copies of a function for use in different places), function specializa
tion (creating versions of a function with constant parameters), loop unrolling 
(expanding a loop's body to incorporate multiple iterations), loop fusion (merging 
two loops into one), loop splitting (splitting one loop into two), code hoisting and 
sinking (moving code out of and into loops), and so on. 

26.2.2 Partition Evaluation 

The process of finding a gooc! partition is typically iterative, involving conside
ration and evaluation of certain partitions and then decisions as to which parti
tions to consider next. Evaluation determines a partition's design metric values. 
A design metric is a measure ofa partition. Common metrics include performance, 
size, and power/energy. Other metrics include implementation cost, engineering 
cost, reliability, maintainability, and so on. 

Some design metrics may need to be optimized, meaning that partitioning 
should seek the best possible value of a metric. Other design metrics may be 
constrained, meaning that partitioning must meet some threshold value for a 
metric. An objective function is one that combines multiple metric values into 
a single number, known as cost, which the partitioning may seek to minimize. 
A partitioning approach must define the metrics and constraints that can be 
considered, and define or allow a user to define an objective function. 

Evaluation can be a complex problem because it must consider several imple
mentation factors in order to obtain accurate design metric values. Among 
others, these factors include . determining the communication time between 
regions that transfer data (thus requiring knowledge of the communication 
structure), considering clock cycle lengthening caused by multiple applica
tion regions sharing hardware resources (which may introduce multiplexers or 
longer wires), and the like. 

The key trade-off in evaluation involves estimation versus implementation. 
Estimating design metric values is faster and so enables consideration of more 
possible partitions. Obtaining the values through implementation is more accu
rate and thus ensures that partitioning decisions are based on sound evaluations. 
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Estimation involves some characterization of an application's regions before 
partitioning and then, during partitioning, quickly combining the characteriza
tions into design metric values. The previous section on granularity discussed 
how two C function regions could be characterized for hardware by synthe
sizing each region individually to an FPGA, resulting in a characterization of 
each region consisting of performance and size data. Then a partition with 
multiple regions in hardware could be evaluated simply by assuming that each 
region's performance is the same as the predetermined performance and by 
adding any hardware-mapped region sizes together to obtain total hardware 
size. Estimation for software can be done similarly, using compilation rather 
than synthesis for characterization. 

Nevertheless, while estimation typically works well for software [24], the 
nature of hardware may introduce significant inaccuracy into an estimation 
approach because multiple regions may actually share hardware resources, thus 
intertwining their performance and size values [9, 18]. Alternatively, implementa
tion as a means of evaluation involves synthesizing actual hardware circuits for 
a given partition's hardware regions. Such synthesis thus accounts for hardware 
sharing and other interdependencies among the regions. However, synthesis is 
time consuming, requiring perhaps tens of seconds, minutes, or even hours, 
restricting the number of partitions that can be evaluated. 

Many approaches exist between the two extremes just described. Estimation 
can be improved with more extensive characterization, incorporating much 
more detail than just performance and size. Characterization may, for example, 
describe what hardware resources a region utilizes, such as two multipliers or 
2 Kbytes of RAM. Then estimation can use more complex algorithms to com
bine region characterizations into actual design metric values, such as that the 
regions may share resources such as multipliers (possibly introducing multi
plexers to carry out such sharing) or RAM. These algorithms yield higher accu
racy but are still much faster than synthesis. Alternatively, synthesis approaches 
can be improved by performing a "rough" rather than a complete synthesis, 
using faster heuristics rather than slower, but higher-optimizing heuristics, for 
example. 

Evaluation need not be done in a single exploration loop of partitioning, 
but can be heterogeneous. An outer exploration loop may be added to partitio
ning that is traversed less frequently, with the inner exploration loop conside
ring thousands of partitions (if automated) and using estimation for evaluation, 
while the outer exploration loop considers only tens of partitions that are 
evaluated more extensively using synthesis. The inner/outer loop concept can 
of course be extended to even more loops, with the inner loops examining 
more partitions evaluated quickly and the outer loops performing increasingly 
in-depth synthesis on fewer partitions. 

Furthermore, evaluation methods can change dynamically during partitioning. 
Early stages in the partitioning process may use fast estimation techniques to 
map out the solution space and narrow in on particular sections of it, while 
later stages may utilize more accurate synthesis techniques to fine-tune the 
solution. 
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26.2 Partitioning of Sequential Programs 549 

26.2.3 Alternative Region Implementations 

Further adding to the partitioning challenge is the fact that a given region may 
have alternative region implementations in hardware rather than just one imple
mentation, as assumed in the previous sections. For example, Figure 26.7 (top) 
·shows a particular function that performs 100 multiplications. A fast but large
hardware implementation may use 100 multipliers, as shown in Figure 26.7(a).
The much smaller but much slower hardware implementation in Figure 26.7(b)
uses only 1 multiplier. Numerous implementation alternatives exist between those
two extremes, such as having 2 multipliers as in Figure 26.7(c), 10 multipliers,
and so on. Furthermore, the function may be implemented in a pipelined or non
pipelined manner. Utilized components may be fast and large (e.g., array-style
multipliers or carry-lookahead adders) or small and slow (e.g., shift-and-add mul
tipliers or carry-ripple adders). Many other alternatives exist.

A key trade-off involves deciding how many alternative implementations to
consider during partitioning. More alternatives greatly expand the number of
possible partitions and thus may possibly lead to improved results. However,
they also expand the solution space tremendously. For example, 8 regions each
with one hardware implementation yield 28 = 256 possible partitions. If each

f() { 

for (i = O; i < 100; i++) 
c[i) = a[i]*b[i]; 
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FIGURE 26.7 ■ Alternative region implementations for an original application (top) requiring 
100 multiplications: (a) 100 multipliers; (b) 1 multiplier; (c) 2 multipliers. Alternative region 
implementations may have hugely different performances and sizes. 
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region instead has 4 possible hardware implementations, then it has 5 possible 
implementations (1 software and 4 hardware implementations), yielding 58, or 
more than 300,000, possible partitions. 

Most automated hardware/software partitioning approaches consider one 
possible hardware implementation per region. Even then, a question exists as 
to which one to consider for that region: the fastest, the smallest, or some 
alternative in the middle? Some approaches do consider multiple alternative 
implementations, perhaps selecting a small number that span the possible space, 
such as small, medium, and large [Sl 

As we saw with granularity and evaluation, the number of alternative imple
mentations considered can also be heterogeneous. Partitioning may consider only 
one alternative for particular regions and multiple alternatives for other regions 
deemed more critical. 

Furthermore, as we saw with granularity and evaluation, the number of alter
native implementations can change dynamically as well. Partitioning may start 
by considering only a few alternatives per region and then consider more for 
particular regions as partitioning narrows in on a solution. 

Sometimes obtaining alternative implementations of an application region 
may require the designer to write several versions of it, each leading to one 
or more alternatives. In fact, a designer may have to write different region ver
sions for software and hardware because a version that executes fast in software 
may execute slow in hardware, and vice versa. That difference is due to soft
ware's fundamental sequential execution model that demands clever sequential 
algorithms, while hardware's inherently parallel model demands parallelizable 
algorithms. 

26.2.4 Implementation Models 

Partitioning moves critical .microprocessor software regions to hardware copro
cessors. Different implementation models define how the coprocessors are inte
grated with the microprocessor and with one another [6], enlarging the possible 
solution space for partitioning and greatly impacting performance and size. 

One implementation model parameter is whether coprocessor execution and 
microprocessor execution overlap or are mutually exclusive. In the overlapping 
model, the microprocessor activates a coprocessor and may then continue to 
execute concurrently with it (if the data dependencies of the application allow). 
In the mutually exclusive model, the microprocessor waits idly until the copro
cessor finishes, at which time the microprocessor resumes execution. 

Figure 26.S(a) illustrates the execution of both models. Overlapping may 
improve overall performance, but mutual exclusivity simplifies -implementa
tion by eliminating issues related to memory contention, cache coherency, and 
synchronization-the coprocessor may even access cache directly. In many par
titioned implementations, the coprocessor executes for only a small fraction of 
the total application cycles, meaning that overlapping gains little performance 
improvement. When the microprocessor and coprocessor cycles are closer to 
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FIGURE 26.8 ■ Implementation models: (a) mutually exclusive and overlapping. (b) implemen
tation model parameters. 

being equal, overlapping may improve performance, up to a limit of 2 times, of 
course. Similarly, the execution of coprocessors relative to one another may be 
overlapped or mutually exclusive. 

A second implementation model parameter involves communication 
methods. The microprocessor and coprocessors may communicate through 
memory and share the same data cache, or the microprocessor may commu
nicate directly with the FPGA through memory-mapped registers, queues, fast 
serial links, or some combination of those mechanisms. 

Another implementation model parameter is whether multiple coprocessors 
are implemented separately or are fused. In a separate coprocessor model, each 
critical region is synthesized to its own controller and datapath. In a fused 
model, the critical regions are synthesized into a single controller and data
path. The fused model may reduce size because the hardware resources are 
shared, but it may result in performance overhead because of a longer critical 
path as well as the need to run at the slowest clock frequency of all the regions. 
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Certain coprocessors can be fused and others left separate. Furthermore, fusing 
need not be complete-two coprocessors can share key components, such as a 
floating-point unit, but otherwise be implemented separately. 

Yet another model parameter is whether coprocessors and the microprocessor 
are tightly or loosely coupled. Tightly coupled coprocessors may coexist on the 
microprocessor memory bus or may even have direct access to microprocessor 
registers. Loosely coupled, they may access microprocessor memory through a 
bridge, adding several cycles to data accesses. Both couplings can coexist in a 
single implementation. 

FPGAs add a particularly interesting model parameter to partitioning
dynamic reconfiguration-which replaces an FPGA circuit with another circuit 
during runtime by swapping in a new FPGA configuration bitstream [2]. In this 
way, not all of an application's coprocessors need to simultaneously coexist in 
the FPGA. Instead, one subset of the. application's required coprocessors may 
initially be loaded into the FPGA, but, as the application continues to execute, 
that subset may be replaced by another subset needed later in the application's 
execution. Reconfiguration increases the effective size of an FPGA, thus enabling 
better performance when more application regions are partitioned to it or, alter
natively, enabling use of a smaller and hence cheaper FPGA with a runtime 
overhead required to swap in new bitstreams. In some cases, this overhead may 
limit the benefits of reconfiguration and should therefore be considered during 
partition evaluation. 

Figure 26.8(b) illustrates some of the different implementation model para
meters, including communication methods, fused regions, and tightly/loosely 
coupled coprocessors. Often these parameters are fixed prior to parti_tioning, but 
can also be explored dynamically during partitioning to determine the best imple
mentation model for a given application and given constraints. 

26.2.5 Exploration 

Exploration is the searching of the partition solution space for a good partition. 
As mentioned before, it is at present mostly a manual task, but automated tech
niques are beginning to mature. This section discusses automated exploration 
techniques for various formulations of the partitioning problem. 

Simple formulation 
A simple and common form of the hardware/software partitioning problem 
consists of n regions, each having a software runtime value, a hardware 
runtime value, and a hardware size. It assumes that all values are independent 
of one another (so if two regions are mapped to hardware, their hardware run
time and size values are unchanged); it assumes that communication times are 
constant regardless of whether a region is implemented as software or hard
ware (such as when all regions use the same interface to a shared memory); 
and it seeks to minimize total application runtime subject to a hardware size 
constraint (assuming no dynamic reconfiguration). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 570



26.2 Partitioning of Sequential Programs 553 

Although this problem is known to be NP-hard, it can be solved by first 
mapping it to the well-known 0-1 knapsack problem [20]. The 0-1 knapsack prob
lem involves a knapsack with a specified weight capacity and a set of items, 
each with a weight and a profit. The goal is to select which items to place 
in the knapsack such that the total profit is maximized without violating the 
weight capacity. For hardware/software partitioning, regions correspond to items, 
the FPGA size constraint corresponds to the knapsack capacity, an implementa
tion's size corresponds to an item's weight, and the speedup obtained by imple
menting a region in hardware instead of software corresponds to an item's 
profit. 

Thus, algorithms that solve the 0-1 knapsack problem solve the simple form of 
the hardware/software partitioning problem. The 0-1 knapsack problem is NP
hard, but efficient optimal algorithms exist for relatively large problem sizes. 
One of these is a well-known dynamic programming algorithm [12] having run
time complexity of O(A *n), where A is the capacity and n is the number of items. 
Alternatively, integer linear programming (ILP) [22] may be used. ILP solvers 
perform extensive solution space pruning to reduce exploration time. 

For problems too big for either such optimal technique, heuristics may be uti
lized. A heuristic finds a good, but not necessarily the optimal, solution, while an 
algorithm finds the optimal solution. A common heuristic for the 0-1 knapsack 
problem is a greedy one. A greedy heuristic starts with an initial solution and 
then makes changes only if they seem to improve the solution. It sorts each item 
based on the ratio of profit to weight and then traverses the sorted list, placing 
an item in the knapsack if it fits and skipping it otherwise, terminating when 
reaching the knapsack capacity or when all items have been considered. This 
heuristic has O(nlgn) time complexity, allowing for fast automated partitioning 
of thousands of regions or feasible manual partitioning of tens of regions. Fur
thermore, the heuristic has been shown to commonly obtain near-optimal results 
in the situation when a few items have a high profit to weight ratio. In hard
ware/software partitioning terms, that situation corresponds to the existence of 
regions that are responsible for the majority of execution time and require little 
hardware area, which is often the case. 

Formulation with asymmetric communication 
and greedy/nongreedy automated heuristics 
A slightly more complex form of the hardware/software partitioning problem 
considers cases where communication times between regions change depending 
on the partitioning, with different required times for communication depending 
on whether the regions are both in software or both in hardware, or are sepa
rated, with one in software and one in hardware. This form of the problem can 
be mapped to the well-known graph bipartitioning problem. 

Graph bipartitioning divides a graph into two sets in order to minimize an 
objective function. Each graph node has two weights, one for each set. Edges 
may have three different weights: two weights associated with nodes connected 
in the same set ( one weight for each set) and one for nodes connected between 
sets. Typically, the objective function is to minimize the sum of all node and edge 
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weights using the appropriate weights for a given partition. Graph bipartitioning 
is NP-hard. 

ILP approaches may be used for automatically obtaining optimal solutions 
to the graph bipartitioning problem. Heuristics may be used when ILP is too 
time consuming. A simple greedy heuristic for graph bipartitioning starts with 
some initial partition, perhaps random or all software. It then determines the 
cost improvement of moving each node from its present set to the opposite set 
and then moves the node yielding the best improvement. The heuristic repeats 
these steps until no move yielding an improvement is found. Given n nodes, 
a basic form of such a heuristic has O(n2) runtime complexity. Techniques to 
update the existing cost improvement values can reduce the complexity to O(n) 
in practice [25]. 

More advanced heuristics seek to overcome what are known as ''local min
ima," accepting solution-worsening moves in the hope that they will eventually 
lead to an even better solution. For example, Figure 26.9 illustrates a heuristic 
that accepts some solution-worsening changes to escape a local minimum and 
eventually reach a better solution. A common situation causing a local mini
mum involves two items such that moving only one item worsens the solution 
but moving both improves it. 

A well-known category of nongreedy heuristic used in partitioning is known 
as group migration [11], which evolved from an initial heuristic by Kemighan
Lin. Like the previous greedy heuristic, group migration starts with an initial 
partition and determines the cost improvement of moving each node from its 
present set to the opposite set. The group migration heuristic then moves the 
node yielding the best improvement (like the greedy heuristic) or yielding the 
least worsening (including zero cost change) if no improving move exists. Accept
ing such worsening moves enables local minima to be overcome. Of course, such 
a heuristic would never terminate, so group. migration ensures termination by 
locking a node after it is moved. Group migration moves each node exactly once 
in what is referred to as an iteration, and an iteration has complexity of O(n2 ) 

(or O(n) if clever techniques are used to update cost improvements after each 

Better 
solution 

I 
Considered sequence of changes 

FIGURE 26.9 ■ Solution-worsening moves accepted by a nongreedy heuristic to escape local 
minima and find better solutions. 
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move). If an iteration ultimately leads to an improvement, then group migration 
runs another iteration. In practice, only a few iterations, typically less than five, 
can be run before no further improvement can be found. 

The previous discussions of heuristics ignore the time required by partition 
evaluation. The heuristics therefore may have even higher runtime complexity 
unless care is taken to incorporate fast incremental evaluation updates during 
exploration. 

Complex formulations and powerful automated heuristics 
Increasingly complex forms of the hardware/software partitioning problem inte
grate more parameters related to the earlier mentioned issues of exploration
granularity, evaluation, alternative region implementation, and implementation 
models. For example, the earlier mentioned dynamic granularity modifications, 
such as decomposing a given region into smaller regions, or even applying trans
formations to an application such as function inlining, can be applied during 
partitioning. The partitioning problem can consider different couplings of copro
cessors, may also consider coprocessor fusing, and can support dynamic recon
figuration. When one considers the multitude of possible parameters that can 
be integrated with partitioning, the size of the solution space is mind-boggling. 
Searching that space for the best solution becomes a tremendous combinatorial 
optimization challenge, likely requiring long-running search heuristics. 

At this point, it may be interesting to note that hardware/software partition
ing brings together two previously separate research fields: compilers and CAD 
(computer-aided design). Compilation techniques tend to emphasize a quick 
series of transformations applied to an application's description. In contrast, 
CAD techniques tend to emphasize a long-running iterative search of enormous 
solution spaces. One possible reason for these different perspectives is that 
compilers were generally expected to run quickly, in seconds or at most min
utes, because they were part of a design loop in which compilation was applied 
perhaps dozens or hundreds of times a day as programs were developed. In 
contrast, CAD optimization techniques were part of a much longer design loop. 
Running CAD optimization tools for hours or even days was perfectly acceptable 
because that time was still small compared to the weeks or months required to 
manufacture chips. Furthermore, the very nature of coprocessor design meant 
that a designer was extremely interested in high performance, so longer tool 
runtimes were acceptable if they optimized an implementation. 

Hardware/software partitioning merges compilation and synthesis into a 
single framework. In some cases, compiler-like runtimes of seconds must 
be achieved. In other cases, CAD-like runtimes of hours may be acceptable. 
Approaches to partitioning may span that range. Highly complex partitioning 
formulations will likely require moving away from the fast linear time algo
rithms and heuristics described earlier and toward longer-running powerful 
search heuristics. 

A popular powerful and general search heuristic is simulated annealing [17]. 
The simulated annealing heuristic starts with a random solution and then 
randomly makes some change to it, perhaps moving a region between software 
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and hardware, choosing an alternative implementation for a particular region, 
decomposing a particular region into finer-grained regions, performing a trans
formation on the original regions, and so forth, and evaluates the cost (as deter
mined by an objective function) of the new partition obtained from that change. 
If the change improves the cost, it is accepted (i.e., the change is made). If the 
change worsens the cost, the seemingly "bad" change is accepted with some 
probability. The key feature of simulated annealing is that the probability of 
accepting a seemingly bad move decreases as the approach proceeds, with the 
pattern of decrease determined by some parameters provided to the annealing 
process that eventually causes it to narrow in on a good solution. Simulated 
annealing typically must evaluate many thousands or millions of solutions in 
order to arrive at a good one and thus requires very fast evaluation methods. 

The complexity of simulated annealing is generally dependent on the prob
lem instance. With properly set parameters, it can achieve near-optimal solu
tions on very large problems in long but acceptable runtimes. Faster machines 
have made simulated annealing an increasingly acceptable search heuristic for 
a wider variety of problems-it can complete in just seconds for many problem 
instances. 

The simulated annealing heuristic is known as a neighborhood search 
heuristic because it makes local changes to an existing solution. Tahu search [13] 
is an effective method for improving neighborhood search. Meaning "forbid
den," Tahu maintains a list of recently seen, Tahu, solutions. When considering 
a change to an existing solution, it disregards any change that would yield a 
solution on the Tahu list. This prevents cycling among the same solutions and 
has been shown to yield improved results in less time. The Tahu list concept can 
also be applied on a broader scale, maintaining a long-term history of consid
ered solutions in order to increase solution diversity. Tahu search can improve 
neighborhood search heuristic runtimes during hardware/software partitioning 
by a factor of 20x [8]. 

Other issues 

Because implementing an application as software generally requires a smaller 
size and less designer effort, most approaches to exploration start with an all
software implementation and then explore the mapping of critical application 
regions to hardware. However, in some cases, such as when the application is 
written specifically for hardware, an approach may start with an all-hardware 
implementation and then move noncritical application regions to software to 
reduce hardware size. 

Furthermore, when an application is originally written for software imple
mentation, some of its regions may not be suitable for hardware implemen
tation. For example, application regions that utilize recursive function calls, 
pointer-based data structures, or dynamic memory allocation may not be easy to 
implement as a hardware circuit. Some research efforts are beginning to address 
these problems by developing new synthesis techniques that support a wider 
range of program constructs and behavior. Alternatively, designers sometimes 
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write (or rewrite) critical regions such that those regions are well suited for 
circuit implementation. 

26.3 PARTITIONING OF PARALLEL PROGRAMS 

In parallel programs, the regions that make up an application are defined to 
execute concurrently, as opposed to sequentially. Such regions are often called 
tasks or processes. For some applications, expressing behavior using tasks may 
result in a more parallel implementation and hence in faster application perfor
mance. For example, an MPEG2 decoder may be described as several tasks, such 
as motion compensation, dequantization, or inverse discrete cosine transform, 
that can be implemented in a pipelined manner. 

Numerous parallel programming models have been considered for hard
ware/software partitioning, among others, synchronous dataflow, dynamic data
flow, Kahn process networks, and communicating sequential processes. 

26.3.1 Differences among Parallel Programming Models 

While hardware/software partitioning of parallel programs has many similarities 
to partitioning for sequential programs, several key differences exist. 

Granularity 
Partitioning of parallel programs typically treats each task as a region, meaning 
that the granularity is quite coarse. In some cases, decomposing a task into finer 
granularity may be considered. 

Evaluation 
Parallel programs often involve multiple performance constraints, with partic
ular tasks or sets of tasks having unique performance constraints of their own. 
Furthermore, estimations of performance must consider the scheduling of tasks 
on processors, which is not an issue for sequential programs because regions in 
these programs are not concurrent. 

Alternative region implementations 
Given the coarse granularity of tasks, considering alternative implementations 
becomes even more important, as the variations among the alternatives can 
be huge. 

Implementation models 
Because tasks are inherently concurrent, partitioning of parallel programs 
typically uses parallel execution models in their implementations, meaning 
that microprocessors and coprocessors run concurrently rather than mutually 
exclusively and meaning that coprocessors may be arranged to form high
level pipelines. Partitioning of parallel programs is less likely to consider 
fusing multiple coprocessors into one because fusing eliminates concurrency. 
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Parallel program partitioning introduces a new aspect to exploration
scheduling. When mapping multiple tasks to a single microprocessor, partition
ing must cany out the additional step of scheduling to determine when each task 
will execute. Scheduling tasks to meet performance constraints is known as real
time scheduling and is a heavily studied problem [3]. 

Including partitioning during scheduling results in a more complex problem. 
Such partitioning often considers more than just one microprocessor as well and 
even different types of microprocessors. It may even consider different numbers 
and types of memories and different bus structures connecting memories to 
processors. 

Parallel partitioning must also pay more attention to the data storage require
ments between processors. Queues may be introduced between processors, the 
sizes of those queues must be determined, and their implementation (e.g., in 
shared memory or in separate hardware components) must be decided. 

Exploration 
More complex issues in the hardware/software partitioning problem-such 
as scheduling, different granularities, different evaluation methods, alterna
tive region implementations, and different numbers and connections of micro
processors/memories/buses-require more complex solution approaches. Most 
modem automatic partitioning research considers one or a few extensions to 
basic hardware/software partitioning and develops custom heuristics to solve 
the new formulations in fast compiler-like nintimes. However, as more com
plex forms of partitioning are considered, more powerful search heuristics with 
longer runtimes, such as simulated annealing or search algorithms tuned to the 
problem formulation, may be necessary. 

26.4 SUMMARY AND DIRECTIONS 

Developing an approach for hardware/software partitioning requires the 
consideration of granularity, evaluation, alternative region implementations, 
implementation models, exploration, and so forth, and each such issue involves 
numerous options. The result is a tremendously large partition solution 
space and a huge variety of approaches to finding good partitions. While 
much research into automated hardware/software partitioning has occurred 
over the past decades, most of the problem's more complex formulations 
have yet to be considered. A key future challenge will be the develop
ment of effective partitioning approaches for these increasingly complex 
formulations. 

As FPGAs continue to enter mainstream embedded, desktop, and server com
puting, incorporating automated hardware/software partitioning into standard 
software design flows becomes increasingly important. One approach to mini
mizing the disruption of standard software design flows is to incorporate par
titioning as a backend tool that operates on a final binary, allowing continued 
use of existing programming languages and compilers and supporting the use 
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of assembly and even object code. Such binary-level partitioning [23] requires 
powerlul decompilation methods to recover high-level regions such as func
tions and loops. Binary-level partitioning even opens the door for dynamic 
partitioning, wherein on-chip tools transparently move software regions to 
FPGA coprocessors, making use of new lean, just-in-time compilers for 
FPGAs [19]. 
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CASE STUDIES OF FPGA 

APPLICATIONS 

PART V 

Parts I through IV covered technologies and techniques for creating 
efficient FPGA-based solutions to important problems. Part V focuses on 
specific, important field-programmable gate array (FPGA) applications, 
presenting case studies of interesting uses of reconfigurable technology. 
While this is by no means an exhaustive survey of all applications done 
on FPGAs, these chapters do contain several very interesting representa
tive points in this space. They can be read in any order, and can even be 
interspersed with other chapters of this book. 

This introduction should help readers identify the concepts the case 
studies cover and the chapters each help to illustrate. To understand 
the case studies, a basic knowledge of FPGAs (Chapter 1), CAD tools 
(Chapters 6, 13, 14, and 17), and application development (Chapter 21) is 
required. 

Chapter 27 presents a high-performance image compression engine 
optimized for satellite imagery. This is a streaming signal-processing 
application (Chapters 5, 8, and 9), a type of computation that typically 
maps well to reconfigurable devices. In this case, the system saw speedups 
of approximately 400 times, for which the authors had to optimize the 
algorithm carefully, considering memory bandwidth (Chapter 21), con
version to fixed point (Chapter 23), and alteration of the algorithm to 
eliminate sequential dependencies. 

Chapter 28 focuses on automatic target recognition, which is the detec
tion of regions of interest in military synthetic aperture radar (SAR) 
images. Like the compression engine in Chapter 27, this represents a 
very complex, streaming signal-processing application. It also is one of 
the most influential applications of runtime-reconfiguration (Chapters 4 
and 21), where a large circuit is time-multiplexed onto a single FPGA, 
enabling it to reuse the same silicon multiple times. This was necessary 
because the possible targets to be detected were represented by individ
ual custom, instance-specific circuits (Chapter 22), the huge number of 
which was too large for the available FPGAs. 

Chapter 29 discusses Boolean satisfiability (SAT) solving-the deter
mination of whether there is an assignment of values to variables that 
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makes a given Boolean equation true (satisfied). SAT is a fairly general 
optimization technique that is useful in, for example, chip testing, 
formal verification, and even FPGA CAD flows. This work on solving 

. Boolean equations via FPGAs is an interesting application of instance
specific circuitry (Chapter 3) because each equation to be solved was com
piled directly into FPGA logic. However, this meant that the runtime of 
the CAD tools was part of the time needed to solve a given Boolean equa
tion, creating a strong push toward faster CAD algorithms for FPGAs 
(Chapter 20). 

Chapter 30 covers logic emulation-the prototyping of complex 
integrated circuits on huge boxes filled with FPGAs and programmable 
interconnect chips. This is one of the most successful applications of 
multi-FPGA systems (Chapter 3) because the translation of a single ASIC 
into FPGA logic necessitates hundreds to thousands of FPGAs to provide 
adequate logic capacity. Fast mapping tools for such systems are also 
important (Chapter 20). 

In Chapter 23 we discussed methods for eliminating ( or at least 
minimizing) the amount of floating-point computation in FPGA designs 
by converting floating-point operations to fixed point. However, there are 
situations where floating point is unavoidable. Scientific computing codes 
often depend on floating-point values, and many users require that the 
FPGA-based implementation provide exactly the same results as those 
of a processor-based solution. These situations require full floating-point 
support. In other cases, the high dynamic range of values might make 
fixed-point computations untenable. Chapter 31 considers the develop
ment of a library of floating-point units and their use in applications such 
as FFTs. 

Chapter 32 covers a complex physical simulation application-the 
finite difference time domain (FDTD) method, which is a way of modeling 
electromagnetic signals in complex situations that can be very useful 
in applications such as antenna design and breast cancer detection. 
The solution involves a large-scale cellular automata (Chapter S) repre
sentation of the space to be modeled and an iterative solver. The key 
to achieving a high-performance implementation on FPGAs, however, 
involves conversion to fixed-point arithmetic (Chapter 23), simplifica
tion of complex mathematical equations, and careful consideration of the 
memory bottlenecks in the system (Chapter 21). 

Chapter 33 discusses an alternative to traditional design flow for cre
ating FPGA mappings in which the FPGA is allowed to evolve its own 
configuration. Because the FPGA is reprogrammable, a genetic optimiza
tion system can simply load into it random configurations and see how 
well they function. Those that show promise are retained; those that do 
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not are removed. Through mutation and breeding, new configurations 
are created and evaluated in the same way, slowly evolving better and 
better computations. The hope is that such a system can support impor
tant classes of computation with circuits significantly more efficient than 
standard design flows. This design strategy exploits special features of the 
FPGA's reprogrammability and flexibility (Chapter 4). 

Some of the chapters in this section focus on streaming digital sig
nal processing (DSP) applications. Such applications often benefit from 
FPGA logic because of their amenability to pipelining and because of the 
large amount of data parallelism inherent in the computation. Network 
processing and routing is another such application domain. Chapter 34 
considers packet processing, the application of FPGA logic to network 
filtering, and related tasks. Heavy pipelining of circuits onto the reconfig
urable fabric and optimization of custom boards to network processing 
(Chapter 3) support very high-bandwidth networking. However, because 
the system retains the flexibility of FPGA logic, new computations and 
new filtering techniques can be easily accommodated within the system. 
This ability to incrementally adjust, tune, and invent new circuits pro
vides a valuable capability even in a field as rapidly evolving as network 
security. 

For many applications, memory access to a large set of state, rather 
than computational, throughput can be the bottleneck. Chapter 35 ex
plores an object-oriented, data-centric model (Chapter 5) based on adding 
programmable or reprogrammable logic into DRAM memories. The chap
ter emphasizes custom-reprogrammable chips (Chapter 2) and explores 
both FPGA and VLIW implementation for the programmable logic. Never
theless, much of the analysis and techniques employed can also be applied 
to modern FPGAs with large, on-chip memories. 
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CH A PT ER 27 

This chapter describes the process of mapping the image compression algorithm 
SPIHT onto a reconfigurable logic architecture. A discussion of why adaptive 
logic is required, as opposed to an ASIC, is provided, along with background 
material on SPIHT. Several discrete wavelet transform hardware architectures 
are analyzed and evaluated. In addition, two major modifications to the original 
image compression algorithm, which are required in order to build a reconfig
urable hardware implementation, are presented: (1) the storage elements neces
sary for each wavelet coefficient, and (2) a modification to the original SPIHT 
algorithm created to parallelize the computation. Also discussed are the effects 
these modifications have on the final compression results and the trade-offs 
involved. 

The chapter then describes how the updated SPIHT algorithm is mapped onto 
the Annapolis Microsystems WildStar reconfigurable hardware system. This sys
tem is populated with three Virtex-E field-programmable gate array (FPGA) 
parts and several memory ports. The issues of how the modified algorithm is 
divided between individual FPGA parts and how data flows through the mem
ories are discussed. Lastly, final results and speedups are presented and evalu
ated against a comparable microprocessor solution from the time the Annapolis 
Microsystems WildStar was released. 

27.1 BACKGROUND 

As NASA deploys each new generation of satellites with more sensors, captur
ing an ever-larger number of spectral bands, the volume of data being collected 
begins to outstrip a satellite's ability to transmit data back to Earth. For example, 
the Terra satellite contains five separate sensors, each collecting up to 36 indi
vidual spectral bands. The Tracking and Data Relay Satellite System (TDRSS) 
ground terminal in White Sands, New Mexico, captures data from these sensors 
at a limited rate of 150 Mbps [19]. As the number of sensors on a satellite grows 
and the transmission rates increase, this bandwidth limitation became a driving 
force for NASA to study methods of compressing images prior to downlinking. 
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FPGAs are an attractive implementation medium for such a system. Software 
solutions suffer from performance limitations and power requirements. At the 
same time, traditional hardware platforms lack the required flexibility needed for 
postlaunch modifications. After launch, such fixed hardware systems cannot be 
modified to use newer compression schemes or even to implement bug fixes. In 
the past, modification of fixed systems in satellites proved to be very expensive [ 4]. 

By implementing an image compression kernel in a reconfigurable system, 
we overcame these shortcomings. Because such a system may be reprogrammed 
after launch, it does not suffer from conventional hardware's inherit inflexibil
ity. At the same tinie, the algorithm is computing in custom hardware and can 
perform at the required processing rates while consuming less power than a 
traditional software implementation. 

This chapter describes the work performed as part of a NASA-sponsored 
investigation into the design and implementation of a space-bound FPGA-based 
hyperspectral image compression machine. For this work, the Set Partitioning 
in Hierarchical Trees (SPIHT) routine was selected as the image compression 
algorithm. First, we describe the algorithm and discuss the reasons for its selec
tion. Then we describe how the algorithm was optimized for implementation in 
a specific hardware platform and we present the results. 

27 .2 SPIHT ALGORITHM 

SPIHT is a wavelet-based image compression coder. It first converts an image 
into its wavelet transform and then transmits information about the wavelet 
coefficients. The decoder uses the received signal to reconstruct the wavelet and 
then performs an inverse transform to recover the image. SPIHT was selected 
because both it and its predecessor, the embedded zerotree wavelet coder, were 
significant breakthroughs in still-image compression. Both offered significantly 
improved quality over other image compression techniques such as vector quan
tization, JPEG, and wavelets combined with quantization, while not requiring 
training that would have been more difficult to implement in hardware. In 
short, SPIHT displays exceptional characteristics over several properties all at 
once [15]: 

■ Good image quality with a high peak-signal-to-noise ratio (PSNR).
■ Fast coding and decoding.
■ A fully progressive bitstream.
■ Can be used for lossless compression.
■ May be combined with error protection (useful in satellite transmissions).
■ Ability to code for an exact bitrate or PSNR.

In addition, since the SPIHT algorithm processes an image in two distinct 
steps-the discrete wavelet transform phase and the coding phase-it provides 
a natural point at which a hardware implementation may be divided. (The 
advantage of this property will be seen in Section 27.4.) The rest of this section 
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describes the basics of wavelets, the discrete wavelet transform, and the SPIHT 
coding engine. 

27 .2.1 Wavelets and the Discrete Wavelet Transform 

The wavelet transform is a reversible transform on spatial data. The discrete 
wavelet transform (DWT) is a form appropriate to discrete data, such as the 
individual points or pixels in an image. DWT runs a high-pass and low-pass 
filter over the signal in one dimension. This produces a low-pass ("average") 
version of the data and a high-pass (rapid changes within the average) version. 
Every other result from each pass is then sampled, yielding two subbands, each 
of which is one-half the size of the input stream. The result is a new image 
comprising of a high- and a low-pass subband. These two subbands can be used 
to fully recover the original image. In the case of a multidimensional signal such 
as an image, this procedure is repeated in each dimension (Figure 27.1). 

The vertical and horizontal transformations break up the image into four 
distinct subbands. The wavelet coefficients that correspond to the fine details 
are the LH, HL, and HH subbands. Lower frequencies are represented by the 
LL subband, which is a low-pass filtered version of the original image [17]. 

The next wavelet level is calculated by repeating the horizontal and vertical 
transformations on the LL subband from the previous level. Four new subbands 
are created from the transformations. The LH, HL, and HH subbands in the 
next level represent coarser-scale coefficients and the new LL subband is an 
even smoother version of the original image. It is possible to obtain coarser 
and coarser scales of the LH, HL, and HH subbands by iteratively repeating the 
wavelet transformation on the LL subband of each level. Figure 27.2 displays the 
subband components of an image with three scales of wavelet transformation. 

The reverse transformation uses an inverse filter on the final LL subband and 
the LH, HL, and HH subbands at the same level to recreate the LL subband 
of the previous level. By iteratively processing each level, the original image 
may be restored. Figure 27.3 displays a satellite image of San Francisco and its 
corresponding 3-level DWT. By processing either the wavelet transform or the 
inverse wavelet transform, these two images may be converted from one into 
the other and thus may be viewed as equivalent. 

LL 

L H 

HL 

(a) (b) (c) 

FIGURE 27.1 ■AI-level wavelet built by two one-dimensional passes: (a) original image, 
(b) horizontal pass, and (c) vertical pass. 

LH 

HH 
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LL3 LH3 

LH2 

HL3 HH3 

HL2 HH2 

HL1 

FIGURE 27.2 ■ A 3-level wavelet transform. 

LH1 

HH1 

FIGURE 27.3 ■ An image of San Francisco (a) and the resulting 3-level DWT (b). 

27 .2.2 SPIHT Coding Engine 

SPIHT is a method of coding and decoding the wavelet transform of an image. 
As discussed in the previous section, by coding and transmitting information 
about the wavelet coefficients, it is possible for a decoder to perform an inverse 
transformation on the wavelet and reconstruct the original image. A useful 
property of SPIHT is that the entire wavelet does not need to be transmitted 
in order to recover the image. Instead, as the decoder receives more informa
tion about the original wavelet transform, the inverse transformation yields a 
better-quality reconstruction (i.e., a higher PSNR) of the original image. SPIHT 
generates excellent image quality and performance due to three properties of 
the coding algorithm: partial ordering by coefficient value, taking advantage 
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of the redundancies between different wavelet scales, and transmitting data in 
bit-plane order [14]. 

Following a wavelet transformation, SPIHT divides the wavelet into spatial 
orientation trees (Figure 27.4). Each node in a tree corresponds to an individual 
pixel. The offspring of a pixel are the four pixels in the same spatial location of 
the same sub band at the next finer scale of the wavelet. Pixels at the finest scale of 
the wavelet are the leaves of the tree and have no children. Every pixel is part of a 
2 x 2 block with its adjacent pixels. Blocks are a natural result of the hierarchical 
trees because every pixel in a block shares the same parent pixel. Also, the upper
left pixel of each 2 x 2 block at the root of the tree has no children since there 
are only three subbands at each scale and not four. Figure 27.4 shows how the 
pyramid is defined. Arrows point to the offspring of an individual pixel and the 
grayed blocks show all of the descendents for a specific pixel at every scale. 

SPIHT codes a wavelet by transmitting information about the significance of 
a pixel. By stating whether or not a pixel is above some threshold, information 
about that pixel's value is implied. Furthermore, SPIHT transmits information 
stating whether a pixel or any of its descendents are above a threshold. If the 
statement proves false, all of the pixel's descendants are known to be below 
that threshold level and they do not need to be considered during the rest of 
the current pass. At the end of each pass, the threshold is divided by two and 
the algorithm continues. In this manner, information about the most significant 
bits of the wavelet coefficients will always precede information on lower-order 
significant bits, which is referred to as bit-plane ordering. 

Information stating whether or not a pixel is above the current threshold 
or is being processed at the current threshold is contained in three lists: the 
list of insignificant pixels (LIP), the list of insignificant sets (LIS) and the list of 
significant pixels (LSP). The LIP are pixels that are currently being processed 
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but are not yet above the threshold. The LIS are pixels that are currently being 
processed but none of their descendents are yet above the current threshold 
and so they are not being processed. Lastly, the LSP are pixels that were already 
stated to be above a previous threshold level and whose value at each bit plane 
is now transmitted. 

Figure 27.5 is the algorithm from the original SPIHT paper [14], modified to 
reflect changes (discussed later in the chapter) referring to 2 x 2 block informa
tion. Sn(i, j) represents if the pixel (i, j) is greater than the current threshold, and 
Sn(D(i, j)) states if any of the pixel's (i, j) descendents are greater than the cur
rent threshold. 

There are three important concepts to take from the SPIHT algorithm. First, 
as the encoder sequentially steps through the image, it inserts or deletes pixels 
from the three lists. All of the information required to keep track of the lists is 
output to the decoder, allowing the decoder to generate and maintain an iden
tical list order as the encoder. For the decoder to reproduce the steps taken by 
the encoder we merely need to replace the output statements in the encoder's 
algorithm with input for the decoder's algorithm. 

Second, the bitstream produced is naturally progressive. A progressive bit
stream is one that can be cut off at any point and still be valid. As the decoder 
steps through the coding algorithm, it gathers finer and finer detail about the 
original wavelet transform. The decoder can stop at any point and perform an 
inverse transform with the wavelet coefficients it has currently reconstructed. 
Progressive bitstreams can also be reduced to an arbitrary size or be cut off 
during transmission and still produce a valid image. Such a property is very 
useful in satellite transmissions. 

1. Initialization: output n = floor [log2 (max (i,J) { I ci,j I})]; clear the LSP list, 

add the root pix�ls to the LIP list and root pixels with descendants to LIS.

2 • Sorting Pass: 

2 .1 for each entry ( i, j) in the LIP: 

2.1.1 output Sn (i,j); 

2.1.2 If Sn(i,j) = 1, move (i,j) to the LSP list and output its sign 

2 .2 for each entry (i,j) in the LIS: 

2. 2 .1 If one of the pixels in (i,j)' s block is not in LIP but all are 

in LIS: 

output Sn (all descendants of the current block); 

if none are significant, skip 2.2.2. 

2.2.2 OUtput Sn(D(i,j)) 

if Sn (D (i,j)) = 1, then 

for each of (i,j) immediate children (k,1): 

output Sn (k,1); 

add (k,1) to the LIS for the current pass 

if Sn (k,1) = 1, add (k,1) to the LSP and output its sign 

else add (k,1) to the LIP 

3. Refinement Pass: for each entry (i,j) in LSP, except ones inserted in the 

current pass, output the nth most significant bit of (i,j) .

4. Quantization-step Update: decrement n by 1 and go to Step 2. 

FIGURE 27.5 ■ SPIHT coding algorithm. 
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Third, and the concept that has the largest impact on building a hardware 
platform, the SPIHT algorithm develops an individual list order to transmit 
information within each bit plane. This ordering is implicitly created from 
the threshold information discussed before-the order in which each pixel 
enters each list determines the transmission order for each image. As a result, 
each image will transmit wavelet coefficients in an entirely different order. 
Slightly better PSNRs are achieved with this dynamic ordering of the wavelet 
coefficients. 

The SPIHT algorithm in Figure 27.5, which creates the individual list order
ing, is inherently sequential. As a result, SPIHT cannot be significantly paral
lelized in hardware. This drawback greatly limits the performance of any SPIHT 
implementation in hardware. To get around this limitation and improve perfor
mance, it was necessary to parallelize the SPIHT algorithm and essentially create 
a new image compression algorithm. These changes and the trade-offs involved 
are described in Section 27.3.3. 

27 .3 DESIGN CONSIDERATIONS AND MODIFICATIONS 

To fully take advantage of the high performance a custom hardware implemen
tation of SPIHT could yield, the software specifications had to be examined and 
adjusted where they either performed poorly in hardware or did not make the 
most of the resources available. Here we review the three major factors taken 
under consideration while evaluating how to create a hardware implementation 
of the SPIHT algorithm on an adaptive computing platform. 

The first factor was to determine what discrete wavelet transform architecture 
to use. Section 27.3.1 provides a summary of the DWTs considered, showing how 
memory and communication requirements helped dictate the structure chosen. 
Section 27.3.2 describes the fixed-point precision optimization performed for 
each wavelet coefficient and the final data representation employed. Section 
27.3.3 explains how the SPIHT algorithm was altered to vastly speed up the 
hardware implementation. 

27 .3.1 Discrete Wavelet Transform Architectures 

One of the benefits of the SPIHT algorithm is its use of the discrete wavelet 
transform, which had existed for several years prior to this work. As a result, 
numerous studies on how to create a DWT hardware implementation were avail
able for review. Much of this work on DWTs involved parallel platforms to save 
both memory access and computations [S, 12, 16]. 

The most basic architecture is the basic folded architecture. The one-dimen
sional DWT entails demanding computations, which involve significant hardware 
resources. Since the horizontal and vertical passes use identical finite impulse 
response (FIR) filters, most two-dimensional DWT architectures implement fold
ing to reuse logic for each dimension [6]. Figure 27.6 illustrates how folded archi
tectures use a one-dimensional DWT to realize a two-dimensional DWT. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2137, p. 588



572 Chapter 27 ■ SPIHT Image Compression 

Row data 

1-D DWT

Column data 

FIGURE 27.6 ■ A folded architecture. 

Memory 

Although the folded architecture saves hardware resources, it suffers from 
high memory bandwidth. For an N x N image there are at least 2N

2 read-and
write cycles for the first wavelet level. Additional levels require rereading previ
ously computed coefficients, further reducing efficiency. 

To lower the memory bandwidth requirements needed to compute the DWT, 
we considered several alternative architectures. The first was the Recursive Pyra
mid Algorithm (RPA) [21]. RPA takes advantage of the fact that the various 
wavelet levels run at different clock rates. Each wavelet level requires one
quarter of the time that the previous level needed because at each level the 
size of the area under computation is reduced by one-half in both the horizontal 
and vertical dimensions. Thus, it is possible to store previously computed coeffi
cients on-chip and intermix the next level's computations with the current level's. 
A careful analysis of the runtime yields (4*N2)/3 individual memory load and 
store operations for an image. However, the algorithm has huge on-chip mem
ory requirements and demands a thorough scheduling process to interleave the 
various wavelet levels. 

Another method to reduce memory accesses is the partitioned DWT, which 
breaks the image into smaller blocks and computes several scales of the DWT at 
once for each block [13]. In addition, the algorithm made use of wavelet lifting to 
reduce the DWT's computational complexity [18]. By partitioning an image into 
smaller blocks, the amount of on-chip memory storage required was significantly 
reduced because only the coefficients in the block needed to be stored. This 
approach was similar to the RPA, except that it computed over sections of the 
image at a time instead of the entire image at once. Figure 27.7, from Ritter and 
Molitor [13], illustrates how the partitioned wavelet was constructed. 

Unfortunately, the partitioned approach suffers from blocking artifacts along 
the partition boundaries if the boundaries were treated with reflection.1 Thus,
pixels from neighboring partitions were required to smooth out these bound
aries. The number of wavelet levels determined how many pixels beyond a 
subimage's boundary were needed, since higher wavelet levels represent data 

1 An FIR filter generally computes over several pixels at once and generates a result for the middle 
pixel. To calculate pixels close to an image's edge, data points are required beyond the edge of the 
image. Reflection is a method that takes pixels toward the image's edge and copies them beyond 
the edge of the actual image for calculation purposes. 
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FIGURE 27.8 ■ A generic 2D biorthogonal DWT. 

from a larger image region. To compensate for the partition boundaries, the 
algorithm processed subimages along a single row to eliminate multiple reads 
in the horizontal direction. Overall data throughputs of up to 152 Mbytes/second 
were reported with the partitioned DWT. 

The last architecture we considered was the generic 2D biorthogonal DWT [3]. 
Unlike previous designs, the generic 2D biorthogonal DWT did not require FIR filter 
folding or on-chip memories as the Recursive Pyramid design. Nor did it involve 
partitioning an image into subimages. Instead, the architecture created separate 
structures to calculate each wavelet level as data were presented to it, as shown in 
Figure 27 .8. The design sequentially read in the image and computed the four DWT 
subbands. As the LL1 subband became available, the coefficients were passed to 
the next stage, which calculated the next coarser level subbands, and so on. 

For larger images that required several individual wavelet scales, the generic 
2D biorthogonal DWT architecture consumed a tremendous amount of on-chip 
resources. With SPIHT, a 1024 x 1024 pixel image computes seven separate 
wavelet scales. The proposed architecture would employ 21 individual high- and 
low-pass FIR filters. Since each wavelet scale processed data at different rates, 
some control complexity would be inevitable. The advantage of the architecture 
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HI.-, 

LH3 
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was much lower on-chip memory requirements and full utilization of the 
memory's bandwidth, since each pixel was read and written only once. 

To select a DWT, each of the architectures discussed before were reevaluated 
against our target hardware platform (discussed below). The parallel versions 
of the DWT saved some memocy bandwidth. However, additional resources and 
more complex scheduling algorithms became necessary. In addition, some of the 
savings were minimal since each higher wavelet level is one-quarter the size of 
the previous wavelet level. In a 7-level DWT, the highest 4 levels compute in just 
2 percent of the time it takes to compute the first level. Other factors considered 
were that the more complex DWT architectures simply required more resources 
than a single Xilinx Virtex 2000E FPGA (our target device) could accommodate, 
and that enough memory ports were available in our board to read and write 
four coefficients at a time in parallel. 

For these reasons, we did not select a more complex parallel DWT archi
tecture, but instead designed a simple folded architecture that processes one 
dimension of a single wavelet level at a time. In the architecture created, pixels 
are read in horizontally from one memory port and written directly to a second 
memory port. In addition, pixels are written to memory in columns, inverting 
the image along the 45-degree line. By utilizing the same addressing logic, pixels 
are again read in horizontally and written vertically. However, since the image 
was inverted along its diagonal, the second pass will calculate the vertical dimen
sion of the wavelet and restore the image to its original orientation. 

Each dimension of the image is reduced by half, and the process iteratively 
continues for each wavelet level. Finally, the mean of the LL sub band is calculated 
and subtracted from itself. To speed up the DWT, the design reads and writes four 
rows at a time. Figure 27.9 illustrates the architecture of the DWT phase. 

Since every pixel is read and written once and the design processes four rows 
at a time, for an N x N-size image both dimensions in the lowest wavelet level 
compute in 2*N2/4 clock cycles. Similarly, the next wavelet level processes the 
image in one-quarter the number of clock cycles as the previous level. With an 
infinite number of wavelet levels, the image processes in: 

(27.1) 

Thus, the runtime of the DWT engine is bounded by three-quarters of a clock 
cycle per pixel in the image. This was made possible because the memory ports 
in the system allowed four pixels to be read and written in a single clock cycle. 

It is very important to note that many of the parallel architectures designed 
to process multiple wavelet levels simultaneously run in more than one clock 
cycle per image. Also, because of the additional resources required by a parallel 
implementation, computing multiple rows at once becomes impractical. Given 
more resources, the parallel architectures discussed previously could process 
multiple rows at once and yield runtimes lower than three-quarters of a clock 
cycle per pixel. However, the FPGAs available in the system used, although state 
of the art at the time, did not have such extensive resources. 
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FIGURE 27.9 ■ A discrete wavelet transform architecture. 

By keeping the address and control logic simple, there were enough resources 
on the FPGA to implement 8 distributed arithmetic FIR filters [23] from the 
Xilinx Core library. The FIR filters required significant FPGA resources, approx
imately 8 percent of the Virtex 2000E FPGA for each high- and low-pass FIR 
filter. We chose the distributed arithmetic FIR filters because they calculate a 
new coefficient every clock cycle, and this contributed to the system being able 
to process an image in three-quarters of a clock cycle per pixel. 

27 .3.2 Fixed-point Precision Analysis 

The next major consideration was how to represent the wavelet coefficients in 
hardware. The discrete wavelet transform produces real numbers as the wavelet 
coefficients, which general-purpose computers realize as floating-point num
bers. Traditionally, FPGAs have not employed floating-point numbers for several 
reasons: 

■ Floating-point numbers require variable shifts based on the exponential
description, and variable shifters perform poorly in FPGAs.
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■ Floating-point numbers consume enormous hardware resources on a
limited-resource FPGA.

■ Floating point is often unnecessary for a known dataset.

At each wavelet level of the DWT, coefficients have a fixed range. Therefore, 
we opted for a fixed-point numerical representation-that is, one where the dec
imal point's position is predefined. With the decimal point locked at a specific 
location, each bit contributes a known value to the number, which eliminates the 
need for variable shifters. However, the DWT's filter bank was unbounded, mean
ing that the range of possible numbers increases with each additional wavelet 
level. 

We chose to use the FIR filter set from the original SPIHT implementation. An 
analysis of the coefficients of each filter bank showed that the two-dimensional 
low-pass FIR filter at most increases the range of possible numbers by a fac
tor of 2.9054. This number is the increase found from both the horizontal and 
the vertical directions. It represents how much larger a coefficient at the next 
wavelet level could be if the previous level's input wavelet coefficients were the 
maximum possible value and the correct sign to create the largest possible filter 
output. As a result, the coefficients at various wavelet levels require a variable 
number of bits above the decimal point to cover their possible ranges. 

Table 27.1 illustrates the various requirements placed on a numerical repre
sentation for each wavelet level. The Factor and Maximum Magnitude columns 
demonstrate how the range of possible numbers increases with each level for 
an image starting with 1 byte per pixel. The Maximum Bits column shows the 
maximum number of bits (with a sign bit) necessary to represent the numeric 
range at each wavelet level. The Maximum Bits from Data column represents the 
maximum number of bits required to encode over one hundred sample images 
obtained from NASA. These numbers were produced via software simulation on 
this sample dataset. 

In practice, the magnitude of the wavelet coefficients does not grow at the 
maximum theoretical rate. To maximize efficiency, the Maximum Bits from Data 
values were used to determine what position the most significant bit must stand 
for. Since the theoretical maximum is not used, an overflow situation may occur. 

TABLE 27.1 ■ Fixed-point magnitude calculations 

Wavelet Maximum Maximum bits 

level Factor magnitude Maximum bits from data 

Input image 1 255 8 8 

0 2.9054 741 11 11 

1 8.4412 2152 13 12 

2 24.525 6254 14 13 

3 71.253 18170 16 14 

4 207.02 52789 17 15 

5 601.46 153373 19 16 

6 1747.5 445605 20 17 
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To compensate, the system flags overflow occurrences as an error and truncates 
the data. However, after examining hundreds of sample images, no instances of 
overflow occurred, and the data scheme used provided enough space to capture 
all the required data. 

If each wavelet level used the same numerical representation, they would all 
be required to handle numbers as large as the highest wavelet level to prevent 
overflow. However, since the lowest wavelet levels never encounter numbers in 
that range, several bits at these levels would not be used and therefore wasted. 

To fully utilize all of the bits for each wavelet coefficient, we introduced 
the concept of variable fixed-point representation. With variable fixed-point we 
assigned a fixed-point numerical representation for each wavelet level optimized 
for that level's expected data size. In addition, each representation differed from 
one another, meaning that we employed a different fixed-point scheme for each 
wavelet level. Doing so allowed us to optimize both memory storage and 1/0 at 
each wavelet level to yield maximum performance. 

Once the position of the most significant bit was found for each wavelet level, 
the number of precision bits needed to accurately represent the wavelet coeffi
cients had to be determined. Our goal was to provide enough bits to fully recover 
the image and no more. Figure 27.10 displays the average PSNRs for several 
recovered images from SPIHT using a range of bit widths for each coefficient. 

An assignment of 16 bits per coefficient most accurately matched the full
precision floating-point coefficients used in software, up through perfect recon
struction. Previous wavelet designs we looked at focused on bitrates less than 
4 bits per pixel (bpp) and did not consider rounding effects on the wavelet trans
formation for bitrates greater than 4 bpp. These studies found this lower bitrate 
acceptable for lossy SPIHT compression [3]. 
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578 Chapter 27 ■ SPIHT Image Compression 

TABLE 27.2 ■ Final variable fixed-point representation 

Wavelet level Integer bits Fractional bits 

Input image 10 6 

0 11 5 

1 12 4 

2 13 3 

3 14 2 

4 15 1 

5 16 0 

6 17 -1

Instead, we chose a numerical representation that retains the equivalent 
amount of information as a full floating-point number during wavelet trans
formation. By doing, so, it was possible to perfectly reconstruct an image given 
a high enough bitrate. In other words, we allowed for a lossless implementation. 
Table 27 .2 provides the number of integer and fractional bits allocated for each 
wavelet level. The number of integer bits also includes 1 extra bit for the sign 
value. The highest wavelet level's 16 integer bits represent positions 17 to 1, with 
no bit assigned for the O position. 

27 .3.3 Fixed Order SPIHT 

The last major factor we took under consideration was how to parallelize the 
SPIHT algorithm for use in hardware. As discussed in Section 27 .2, SPIHT com
putes a dynamic ordering of the wavelet coefficients as it progresses. By always 
adding pixels to the end of the LIP, LIS, and LSP, coefficients most critical to 
constructing a valid wavelet are generally sent first, while less critical coefficients 
are placed later in the lists. Such an ordering yields better image quality for bit
streams that end in the middle of a bit plane. The drawback of this ordering 
is that every image has a unique list order determined by the image's wavelet 
coefficient values. 

By analyzing the SPIHT algorithm, we were able to conclude that the data a 
block of coefficients contributes to the final SPIHT bitstream is fully determined 
by the following set of localized information: 

■ The 2 x 2 block of coefficients
■ Their immediate children
■ The maximum magnitude of the four subtrees

As a result, we were able to show that every block of coefficients could be calcu
lated independently and in parallel of one another. We were also able to deter
mine that, if we could parallelize the computation of these coefficients, the final 
hardware implementation would operate at a niuch higher throughput. How
ever, we were not able to take advantage of this- parallelism because in SPIHT 
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the order in which a block's data is inserted into the bitstream is not known, 
since it depends on the image's unique ordering. Only once the order is deter
mined is it possible to produce a valid SPIHT bitstream from the information 
listed previously. 

Unfortunately, the algorithm employed to calculate the SPIHT ordering of 
coefficients is sequential. The computation steps over the coefficients of the 
image multiple times within each bit plane and dynamically inserts and removes 
coefficients from the LIP and LIS lists. Such an algorithm is not parallelizable 
in hardware. As a result, many of the speedups a custom hardware implemen
tation may produce would be lost. Instead, any hardware implementation we 
could develop would need to create the lists in an identical manner as the soft
ware implementation. This process would require many clock cycles per block 
of coefficients, which would significantly limit the throughput of any SPIHT 
implementation in hardware. 

To remove this limitation and design a faster system, we created a modifica
tion to the original algorithm called Fixed Order SP/HT. Fixed Order SPIHT is 
similar to the SPIHT algorithm shown in Figure 27.5, except thatt he order of 
the LIP, LIS, and LSP lists is fixed and known beforehand. Instead of inserting 
blocks of coefficients at the end of the lists, they are inserted in a predetermined 
order. For example, block A will always appear before block B, which is always 
before block C, regardless of the order in which A, B, and C were added to the 
lists. The order of Fixed Order SPIHT is based upon the Morton scan ordering 
discussed in Algazi and Estes [1]. 

Fixed Order SPIHT removed the need to calculate the ordering of coefficients 
within each bit plane and allowed us to create a fully parallel version of the 
original SPIHT algorithm. Such a modification increased the throughput of a 
hardware encoder by more than an order of magnitude at the cost of a slightly 
lower PSNR within each bit plane. Figure 27.11 outlines the new version of 
SPIHT we created. The final bitstream generated is precisely the same as the 
bitstream generated from the original SPIHT algorithm except that data will 
appear in a different order within each bit plane. 

By using the algorithm in Figure 27.11 instead of the original sequential 
algorithm in Figure 27.8, the final datastream can be computed in one pass 
through the image instead of multiple passes. In addition, each pixel block 
is coded in parallel, which yields significantly faster compression times with 
FPGAs. 

The advantage of this method is that at the end of each bit plane, the exact 
same data will have been transmitted, just in a different order. Thus, at the end 
of each bit plane the PSNR of Fixed Order SPIHT will match that of the original 
SPIHT algorithm, as shown in Figure 27.12. Since the length of each bitstream 
is fairly short within the transmitted datastream, the PSNR curve of Fixed Order 
SPIHT very closely matches that of the original algorithm. The maximum loss 
in quality between Fixed Order SPIHT and the original SPIHT algorithm found 
was 0.2 dB. This is the maximum loss any image in our sample set displayed 
over any bitrate from 0.05 to 8.00 bpp. 

For a more complete discussion on Fixed Order SPIHT, refer to Fry [8]. 
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1. Bit-plane calculation: for each 2x2 block of pixels (i, j) in a Morton 

Scan Ordering

1. 1 for each threshold level n from the highest level to the lowest

1.1.1 if {i,j) is a root and Max ( (i,j)) >= n

add all four pixels to the LIP 

1.1. 2 if (i,j) is not a root and Max ((i,j)) >= previous n 

for each pixel p in the block 

if p < previous n

add p to the LIP 

else 

add p to the LSP 

1.1. 3 if (i,j) is not a leaf and Max ( (i,j) >= n 

add all four pixel to the LIS unless (i,j) is a root, then 

just add the three with children 

1.1.4 if all four pixels are in LIS and at least one is not in the LIP 

if .. at least one pixel will be removed from the LIS at this level 

output a '0' to the LIS stream 

else 

output a '1' to the LIS stream 

1.1. 5 for each pixel p in the LIP 

if p >= n 

output a '1' and the sign of p to the LIP stream 

remove p from the LIP and add it to the LSP 

else 

output a '0' to the LIP stream 

1.1. 6 for each pixel p in the LIS 

if child max (pl >= n 

output a ' 1' to the LIS stream 

remove p from the LIS 

for each child (k,1) of p 

if (k,1) >= n 

output a '1' and the sign of (k,1) to the LIS stream 

else 

output a '0' to the LIS stream 

else 

output a '0' to the LIS stream 

1.1. 7 for each pixel p in the LSP 

output the value of p at the bit plane n to the LSP stream 

2. Grouping phase: for each threshold level n from the highest level to 

the lowest

2 .1 output the LIP stream at threshold level n to the final data stream

2. 2 output the LIS stream at threshold level n to the final data stream 

2. 3 output the LSP stream at threshold level n to the final data stream

FIGURE 27.11 ■ Fixed Order SPIHT. 

27 .4 HARDWARE IMPLEMENTATION 

In the following subsections we first describe the target hardware platform 
that the SPIHT algorithm was mapped onto. Next, we present an overview of 
the implementation and a detailed description of the three major steps of the 
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FIGURE 27.12 ■ A comparison of original SPIHT and Fixed Order SPIHT. 

computation. A thorough understanding of the target platform is required 
because it strongly influenced the SPIHT implementation created. 

27 .4.1 Target Hardware Platform 

The target platform was the WildStar FPGA processor board developed by 
Annapolis Microsystems [2]. Shown in Figure 27.13, it consists of three Xilinx 
Virtex 2000E FPGAs-PE 0, PE 1, and PE 2-and operates at rates of up to 
133 MHz. The board makes available 48 MBytes of memory through 12 indi
vidual memory ports, between 32 and 64 bits wide, yielding a throughput of up 
to 8.5 GBytes/sec. Four shared memory blocks connect the Virtex chips through 
a crossbar. By switching a crossbar, several MBytes of data are passed between 
the chips in just a few clock cycles. 

The Xilinx Virtex 2000E FPGA allows for 2 million gate designs [22]. For extra 
on-chip memory, the FPGAs contain 160 asynchronous dual-ported BlockRAMs. 
Each BlockRAM stores 4096 bits of data and is accessible in 1-, 2-, 4-, 8-, or 
16-bit-wide words. Because they are dual ported, the BlockRAMs function well
as first in, first outs (FIFOs). A PCI bus connects the board to a host computer.

27 .4.2 Design Overview 

The architecture constructed consisted of three phases: wavelet transform, 
maximum magnitude calculation, and Fixed Order SPIHT coding. Each phase 

0.. 
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FIGURE 27.13 ■ A block diagram of the Annapolis Microsystems WildStar board. 

was implemented in one of the three Virtex chips. By instantiating each phase 
on a separate chip, separate images could be operated on in parallel. Data was 
transferred from one phase by the next through the shared memories. The deci
sion on how to break up the phases came naturally from the resources available 
in each FPGA and the requirements of each section. The DWT and the SPIHT 
coding phases each required close to the full resources of a single FPGA, and 
the maximum magnitude phase needed to be completed prior to the SPIHT cod
ing phase. These characteristics of the algorithm and system naturally lead to 
placing the three phases on the three separate FPGAs. 

The architecture was also designed in this manner because once processing 
in a phase is complete, the crossbar mode could be switched and the data calcu
lated would be accessible to the next chip. By coding a different image in each 
phase simultaneously, the throughput of the system is determined by the slow
est phase, while the latency of the architecture is the sum of the three phases. 
Figure 27 .14 illustrates the architecture of the system. 

27 .4.3 Discrete Wavelet Transform Phase 

As discussed in Section 27.3.1, after implementing each algorithm in hardware 
we chose a simple folded architecture, which matched the bandwidth, memory, 
and chip capacities of the target board well. The results of this phase are stored 
into memory and passed to the maximum magnitude phase. 
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FIGURE 27.14 ■ An overview of the architecture. 

27 .4.4 Maximum Magnitude Phase 

Once the DWT is complete, the next phase prepares and organizes the image into 
a form easily readable by the parallel version of the SPIHT coder. Specifically, the 
maximum magnitude phase calculates and rearranges the following information 
for the next phase: 

■ The maximum magnitude of each of the four child trees
■ The absolute value of the 2 x 2 block of coefficients
■ A sign value for each coefficient in the block
■ The threshold level when the block is first inserted into the LIS by its

parent
■ Threshold and sign data of each of the 16 child coefficients
■ Reorder the wavelet coefficients into a Morton Scan Ordering

The SPIHT coding phase shares two 64-bit memory ports with the maximum 
magnitude phase, allowing it to read 128 bits on each clock cycle. The data just 
listed can fit into these two memory ports. By doing so on every clock cycle the 
SPIHT coding phase will be able to read and process an entire block of data. The 
data that the maximum magnitude phase calculates is shown in Figure 27.15. 

To calculate the maximum magnitude of all coefficients below a node in the 
spatial orientation trees, the image must be scanned in depth-first search order 
[7]. With a depth-first search, whenever a new coefficient is read and consid
ered, all of its children will have already been read and the maximum coeffi
cient so far is known. On every clock cycle the new coefficient is compared to 
and updates the current maximum. Because PE O (the maximum magnitude 
phase) uses 32-bit-wide memory ports, it can read half a block at a time. 

The state machine, which controls how the spatial orientation trees are tra
versed, reads one-half of a block as it descends the tree, and the other half as it 
ascends the tree. By doing so all of the data needed to compute the maximum 
magnitude for the current block is available as the state machine ascends back 
up the spatial orientation tree. In addition, the four most recent blocks of each 
level are saved onto a stack so that all 16 child coefficients are available to the 
parent block. 

Figure 27.16 demonstrates the algorithm. The current block, maximum mag
nitude for each child, and 16 child coefficients are shown on the stack. Light 
gray blocks are coefficients previously read and processed. Dark gray blocks are 
coefficients currently being read. In this example, the state machine has just 
finished reading the lowest level and has ascended to the second wavelet level. 

.______. ~-I ·I.______. 
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