
Homayoun

Reference 25

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 1

THE THEORY AND

PRACTICE OF

FPGA-BASED

COMPUTATION

RECONFIGURABLE

COMPUTING

SYSTEMS

ON

SILICON

••

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 2

RECONFIGURABLE

COMPUTING

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 3

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer's Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer's Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Temg Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and Andre DeHon

Coming Soon . . .

System-on-Chip Test Architectures
Edited by Laung-Temg Wang, Charles Stroud, and Nur Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 4

RECONFIGURABLE

COMPUTING

THE THEORY AND PRACTICE
OFFPGA-BASED COMPUTATION

Edited by

Scott Hauck and Andre DeHon

ELSEVIER

AMSTERDAM. BOSTON. HEIDELBERG. LONDON M � ◄
NEW DELHI • NEW YORK• OXFORD • PARIS • SAN DIEGO -.,

SAN FRANCISCO • SINGAPORE• SYDNEY• TOKYO M O R G A N

Morgan Kaufmann Publishers is an imprint of Elsevier KAUFMANN

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 5

Reconfigurable Computing
Hauck and DeHon

MORGAN KAUFMANN PUBLISHERS
An imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803-4255

Copyright © 2008 by Elsevier Inc.

I Original ISBN: 978-0-12-370522-8 I

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or
by any means-electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system-without permission in writing
from the publisher.

First Printed in India 2011

Indian Reprint ISBN: 978-93-80931-86-9

This edition has been authorized by Elsevier for sale in the following countries:
India, Pakistan, Nepal, Sri Lanka and Bangladesh. Sale and purchase of this book
outside these countries is not authorized and is illegal.

Published by Elsevier, a division of Reed Elsevier India Private Limited.

Registered Office: 622, Indraprakash Building, 21 Barakhamba Road,
New Delhi-110 001.
Corporate Office: 14th floor, Building No. l0B, DLF Cyber City Phase-II, Gurgaon-
122 002, Haryana, India.

Printed and bound in India by Sanat Printers, Kundli-131 028

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 6

List of Contributors xxi

Thomas W. Fry, Samsung, Global Strategy Group, Seoul, South Korea
(Chapter 27)

Maya B. Gokhale, Lawrence Livermore National Laboratory, Livermore,
California (Chapter 10)

Steven A. Guccione, Cmpware, Inc., Austin, Texas (Chapters 3 and 19)

Scott Hauck, Department of Electrical Engineering, University of Washington,
Seattle, Washington (Chapters 20 and 27)

K. Scott Hemmert, Computation, Computers, Information and Mathematics
Center, Sandia National Laboratories, Albuquerque, New Mexico
(Chapter 31)

Randy Huang, Tabula, Inc., Santa Clara, California (Chapter 9)

Brad L. Hutchings, Department of Electrical and Computer Engineering,
Brigham Young University, Provo, Utah (Chapters 12 and 21)

Nachiket Kapre, Department of Computer Science, California Institute of
Technology, Pasadena, California (Chapter 6)

Andreas Koch, Department of Computer Science, Embedded Systems and
Applications Group, Technische Universitat of Darmstadt, Darmstadt,
Germany (Chapter 15)

Miriam Leeser, Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts (Chapter 32)

John W. Lockwood, Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, Missouri; and Department
of Electrical Engineering, Stanford University, Stanford, California
(Chapter 34)

Wayne Luk, Department of Computing, Imperial College, London,
United Kingdom (Chapter 22)

Sharad Malik, Department of Electrical Engineering, Princeton University,
Princeton, New Jersey (Chapter 29)

Yury Markovskiy, Department of Electrical Engineering and Computer
Sciences, University of California-Berkeley, Berkeley, California (Chapter 9)

Margaret Martonosi, Department of Electrical Engineering, Princeton
University, Princeton, New Jersey (Chapter 29)

Larry McMurchie, Synplicity Corporation, Sunnyvale, California (Chapter 17)

Brent E. Nelson, Department of Electrical and Computer Engineering,
Brigham Young University, Provo, Utah (Chapters 12 and 21)

Peichen Pan, Magma Design Automation, Inc., San Jose, California
(Chapter 13)

Oliver Pell, Department of Computing, Imperial College, London, United
Kingdom (Chapter 22)

Stylianos Perissakis, Department of Electrical Engineering and Computer
Sciences, University of California-Berkeley, Berkeley, California (Chapter 9)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 7

xxii List of Contributors

Laura Pozzi, Faculty of Informatics, University of Lugano, Lugano,
Switzerland (Chapter 9)

Brian C. Richards, Department of Electrical Engineering and Computer
Sciences, University of California-Berkeley, Berkeley, California (Chapter 8)

Eduardo Sanchez, School of Computer and Communication Sciences, Ecole
Polytechnique Federale de Lausanne; and Reconfigurable and Embedded
Digital Systems Institute, Haute Ecole d'Ingenierie et de Gestion du Canton
de Vaud, Lausanne, Switzerland (Chapter 33)

Lesley Shannon, School of Engineering Science, Simon Fraser University,
Burnaby, BC, Canada (Chapter 2)

Satnam Singh, Programming Principles and Tools Group, Microsoft Research,
Cambridge, United Kingdom (Chapter 16)

Greg Stitt, Department of Computer Science and Engineering, University of
California-Riverside, Riverside, California (Chapter 26)

Russell Tessier, Department of Computer and Electrical Engineering,
University of Massachusetts, Amherst, Massachusetts (Chapter 30)

Keith D. Undeiwood, Computation, Computers, Information and
Mathematics Center, Sandia National Laboratories, Albuquerque, New
Mexico (Chapter 31)

Andres Upegui, Logic Systems Laboratory, School of Computer and
Communication Sciences, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland (Chapter 33)

Frank Vahid, Department of Computer Science and Engineering, University of
California-Riverside, Riverside, California (Chapter 26)

John Wawrzynek, Department of Electrical Engineering and Computer
Sciences, University of California-Berkeley, Berkeley, California (Chapters 8
and 9)

Nicholas Weaver, International Computer Science Institute, Berkeley,
California (Chapter 18)

Joseph Yeh, Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Massachusetts (Chapter 9)

Peixin Zhong, Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, Michigan (Chapter 29)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 8

PREFACE

In the two decades since field-programmable gate arrays (FPGAs) were
introduced, they have radically changed the way digital logic is designed and
deployed. By marrying the high performance of application-specific integrated
circuits (ASICs) and the flexibility of microprocessors, FPGAs have made pos­
sible entirely new types of applications. This has helped FPGAs supplant both
ASICs and digital signal processors (DSPs) in some traditional roles.

To make the most of this unique combination of performance and flexibility,
designers need to be aware of both hardware and software issues. Thus, an
FPGA user must think not only about the gates needed to perform a computation
but also about the software flow that supports the design process. The goal of
this book is to help designers become comfortable with these issues, and thus
be able to exploit the vast opportunities possible with reconfigurable logic.

We have written Reconfigurable Computing as a tutorial and as a reference
on the wide range of concepts that designers must understand to make the best
use of FPGAs and related reconfigurable chips-including FPGA architectures,
FPGA logic applications, and FPGA CAD tools-and the skills they must have
for optimizing a computation. It is targeted particularly toward those who view
FPGAs not just as cheap, slow ASIC gates or as a means of prototyping before
the "real" hardware is created, but are interested in evaluating or embracing the
substantial advantages reprogrammable devices offer over other technologies.
However, readers who focus primarily on ASIC- or CPU-based implementations
will learn how FPGAs can be a useful addition to their normal skill set. For
some traditional designers this book may even serve as an entry point into a
completely new way of handling their design problems.

Because we focus on both hardware and software systems, we expect readers
to have a certain level of familiarity with each technology. On the hardware side,
we assume that readers have a basic knowledge of digital logic design, includ­
ing understanding concepts such as gates (including multiplexers, flip-flops,
and RAM), binary number systems, and simple logic optimization. Knowledge
of hardware description languages, such as Verilog or VHDL, is also helpful.
We also assume that readers have basic knowledge of computer programming,
including simple data structures and algorithms. In sum, this book is appro­
priate for most readers with a background in electrical engineering, computer
science, or computer engineering. It can also be used as a text in an upper-level
undergraduate or introductory graduate course within any of these disciplines.

No one book can hope to cover every possible aspect of FPGAs exhaustively.
Entire books could be (and have been) written about each of the concepts that
are discussed in the individual chapters here. Our goal is to pr,pvjde a good

'

working knowledge of these concepts, as well as abundant references for those
who wish to dig deeper.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 9

xxiv Preface

Reconfigurable Computing: The Theory and Practice of FPGA-Based Compu­
tation is divided into six major parts-hardware, programming, compilation/
mapping, application development, case studies, and future trends. Once the
introduction has been read, the parts can be covered in any order. Alternatively,
readers can pick and choose which parts they wish to cover. For example, a
reader who wants to focus on CAD for FPGAs might skip hardware and appli­
cation development, while a reader who is interested mostly in the use of FPGAs
might focus primarily on application development.

Part V is made up of self-contained overviews of specific, important appli­
cations, which can be covered in any order or can be sprinkled throughout a
course syllabus. The part introduction lists the chapters and concepts relevant
to each case study and so can be used as a guide for the reader or instructor in
selecting relevant examples.

One final consideration is an explanation of how this book was written.
Some books are created by a single author or a set of coauthors who must
stretch to cover all aspects of a given topic. Alternatively, an edited text can
bring together contributors from each of the topic areas, typically by bundling
together standalone research papers. Our book is a bit of a hybrid. It was con­
structed from an overall outline developed by the primary authors, Scott Hauck
and Andre DeHon. The chapters on the chosen topics were then written by noted
experts in these areas, and were carefully edited to ensure their integration into
a cohesive whole. Our hope is that this brings the benefits of both styles of tra­
ditional texts, with the reader learning from the main experts on each topic, yet
still delivering a well-integrated text.

Acknowledgments

While Scott and Andre handled the technical editing, this book also benefited
from the careful help from the team at Elsevier/Morgan Kaufmann. Wayne Wolf
first proposed the concept of this book to us. Chuck Glaser, ably assisted by
Michele Cronin and Matthew Cater, was instrumental in resurrecting the project
after it had languished in the concept stage for several years and in pushing it
through to completion. Just as important were the efforts of the production
group at Elsevier/Morgan Kaufmann who did an excellent job of copyediting,
proofreading, integrating text and graphics, laying out, and all the hundreds
of little details crucial to bringing a book together into a polished whole. This
was especially true for a book like this, with such a large list of contributors.
Specifically, Marilyn E. Rash helped drive the whole production process and
was supported by Dianne Wood, Jodie Allen, and Steve Rath. Without their help
there is no way this monumental task ever would have been finished. A big thank
you to all.

Scott Hauck
Andre Dellon

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 10

INTRODUCTION

In the computer and electronics world, we are used to two different ways of
performing computation: hardware and software. Computer hardware, such
as application-specific integrated circuits (ASICs), provides highly optimized
resources for quickly performing critical tasks, but it is permanently configured
to only one application via a multimillion-dollar design and fabrication effort.
Computer software provides the flexibility to change applications and perform
a huge number of different tasks, but is orders of magnitude worse than ASIC
implementations in terms of performance, silicon area efficiency, and power
usage.

Field-programmable gate arrays (FPGAs) are truly revolutionary devices that
blend the benefits of both hardware and software. They implement circuits
just like hardware, providing huge power, area, and performance benefits over
software, yet can be reprogrammed cheaply and easily to implement a wide
range of tasks. Just like computer hardware, FPGAs implement computations
spatially, simultaneously computing millions of operations in resources dis­
tributed across a silicon chip. Such systems can be hundreds of times faster
than microprocessor-based designs. However, unlike in ASICs, these computa­
tions are programmed into the chip, not permanently frozen by the manufac­
turing process. This means that an FPGA-based system can be programmed and
reprogrammed many times.

Sometimes reprogramming is merely a bug fix to correct faulty behavior, or
it is used to add a new feature. Other times, it may be carried out to reconfigure
a generic computation engine for a new task, or even to reconfigure a device
during operation to allow a single piece of silicon to simultaneously do the work
of numerous special-purpose chips.

However, merging the benefits of both hardware and software does come at a
price. FPGAs provide nearly all of the benefits of software flexibility and devel­
opment models, and nearly all of the benefits of hardware efficiency-but not
quite. Compared to a microprocessor, these devices are typically several orders
of magnitude faster and more power efficient, but creating efficient programs for
them is more complex. Typically, FPGAs are useful only for operations that pro­
cess large streams of data, such as signal processing, networking, and the like.
Compared to ASICs, they may be 5 to 25 times worse in terms of area delay,
and performance. However, while an ASIC design may take months to years to
develop and have a multimillion-dollar price tag, an FPGA design might only
take days to create and cost tens to hundreds of dollars. For systems that do
not require the absolute highest achievable performance or power efficiency, an
FPGA's development simplicity and the ability to easily fix bugs and upgrade
functionality make them a compelling design alternative. For many tasks, and
particularly for beginning electronics designers, FPGAs are the ideal choice.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 11

xxvi Introduction

FIGURE 1.1 ■ An abstract view of an FPGA; logic cells are embedded in a general routing
structure.

Figure 1.1 illustrates the internal workings of a field-programmable gate array,
which is made up of logic blocks embedded in a general routing structure. This
array of logic gates is the G and A in FPGA. The logic blocks contain process­
ing elements for performing simple combinational logic, as well as flip-flops
for implementing sequential logic. Because the logic units are often just sim­
ple memories, any Boolean combinational function of perhaps five or six inputs
can be implemented in each logic block. The general routing structure allows
arbitrary wiring, so the logical elements can be connected in the desired manner.

Because of this generality and flexibility, an FPGA can implement very com­
plex circuits. Current devices can compute functions on the order of millions
of basic gates, running at speeds in the hundreds of Megahertz. To boost speed
and capacity, additional, special elements can be embedded into the array, such
as large memories, multipliers, fast-carry logic for arithmetic and logic func­
tions, and even complete microprocessors. With these predefined, fixed-logic
units, which are fabricated into the silicon, FPGAs are capable of implementing
complete systems in a single programmable device.

The logic and routing elements in an FPGA are controlled by programming
points, which may be based on antifuse, Flash, or SRAM technology. For recon­
figurable computing, SRAM-based FPGAs are the preferred option, and in fact
are the primary style of FPGA devices in the electronics industry as a whole.
In these devices, every routing choice and every logic function is controlled by
a simple memory bit. With all of its memory bits programmed, by way of a
configuration file or bitstream, an FPGA can be configured to implement the
user's desired function. Thus, the configuration can be carried out quickly and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 12

xxviii Introduction

-

Source Code

Logic Synthesis

Technology Mapping

Placement

Routing

Bitstream Generation

00101011001010
01001011101010 l 0
11011100100110 O

1
1

O
00010001111001

1 o O
O

01001110001010 O o O
O

00110110010101 1
O 1

1
11001010000000 l O 1

O
11001010001010 O

1 l
1

00110100100110 1 1 l O
11000101010101

1
0 0

'-rT"T"TT....-,...,..,.."'""rrr,1 O 0
._ff':c ._

'f:.

�

;,

'7'1� �

'::;

�� 'T� TT� "r!.

":,,

""',£�r!l �O. �

Bitstream

FIGURE 1.2 ■ A typical FPGA mapping flow.

··-··· ··-··· ··-····
t''=i! �•7:'i! �=·,�i
... .JiJiJ'!

r · 1! ; • 1! r · 1ii
.... ..JiJiJ�!

; ·.1!;" 1! :-: 1,i
�:-!! i.£=-'1 �:-!:l

" . . .
i::, I I
I,

'::!: :: ::.I= =·'= =. •
. I (I , I ,.,

• I I ~ --.. I I ,
I •• ,.. • \

, I I ~

11 ■ 1!1 ■ 1!1 ■

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 13

Introduction xxvii

without permanent fabrication steps, allowing customization at the user's elec­
tronics bench, or even in the final end product. This is why FPGAs are field
programmable, and why they differ from mask-programmable devices, which
have their functionality fixed by masks during fabrication.

Because customizing an FPGA merely involves storing values to memory loca­
tions, similarly to compiling and then loading a program onto a computer, the
creation of an FPGA-based circuit is a simple process of creating a bitstream to
load into the device (see Figure I.2). Although there are tools to do this from soft­
ware languages, schematics, and other formats, FPGA designers typically start
with an application written in a hardware description language (HDL) such as
Verilog or VHDL. This abstract design is optimized to fit into the FPGA's avail­
able logic through a series of steps: Logic synthesis converts high-level logic con­
structs and behavioral code into logic gates, followed by technology mapping to
separate the gates into groupings that best match the FPGA's logic resources.
Next, placement assigns the logic groupings to specific logic blocks and routing
determines the interconnect resources that will carry the user's signals. Finally,
bitstream generation creates a binary file that sets all of the FPGA's program­
ming points to configure the logic blocks and routing resources appropriately.

After a design has been compiled, we can program the FPGA to perform a
specified computation simply by loading the bitstream into it. Typically either a
host microprocessor/microcontroller downloads the bitstream to the device, or
an EPROM programmed with the bitstream is connected to the FPGA's configu­
ration port. Either way, the appropriate bitstream must be loaded every time the
FPGA is powered up, as well as any time the user wants to change the circuitry
when it is running. Once the FPGA is configured, it operates as a custom piece
of digital logic.

Because of the FPGA's dual nature-combining the flexibility of software with
the performance of hardware-an FPGA designer must think differently from
designers who use other devices. Software developers typically write sequen­
tial programs that exploit a microprocessor's ability to rapidly step through a
series of instructions. In contrast, a high-quality FPGA design requires think­
ing about spatial parallelism-that is, simultaneously using multiple resources
spread across a chip to yield a huge amount of computation.

Hardware designers have an advantage because they already think in terms
of hardware implementations; even so, the flexibility of FPGAs gives them new
opportunities generally not available in ASICs and other fixed devices. Field­
programmable gate array designs can be rapidly developed and deployed, and
even reprogrammed in the field with new functionality. Thus, they do not
demand the huge design teams and validation efforts required for ASICs. Also,
the ability to change the configuration, even when the device is running, yields
new opportunities, such as computations that optimize themselves to specific
demands on a second-by-second basis, or even time multiplexing a very large
design onto a much smaller FPGA. However, because FPGAs are noticeably
slower and have lower capacity than ASICs, designers must carefully optimize
their design to the target device.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 14

Introduction xxix

FPGAs are a very flexible medium, with unique opportunities and challenges.
The goal of Reconfigurable Computing: The Theory and Practice of FPGA-Based
Computation is to introduce all facets of FPGA-based systems-both positive
and problematic. It is organized into six major parts:

■ Part I introduces the hardware devices, covering both generic FPGAs
and those specifically optimized for reconfigurable computing (Chapters 1
through 4).

■ Part II focuses on programming reconfigurable computing systems,
considering both their programming languages and programming models
(Chapters 5 through 12).

■ Part III focuses on the software mapping flow for FPGAs, including each
of the basic CAD steps of Figure 1.2 (Chapters 13 through 20).

■ Part IV is devoted to application design, covering ways to make the most
efficient use of FPGA logic (Chapters 21 through 26). This part can be
viewed as a finishing school for FPGA designers because it highlights
ways in which application development on an FPGA is different from
both software programming and ASIC design.

■ Part V is a set of case studies that show complete applications of
reconfigurable logic (Chapters 27 through 35).

■ Part VI contains more advanced topics, such as theoretical models and
metric for reconfigurable computing, as well as defect and fault tolerance
and the possible synergies between reconfigurable computing and
nanotechnology (Chapters 36 through 38).

As the 38 chapters that follow will show, the challenges that FPGAs present
are significant. However, the effort entailed in surmounting them is far out­
weighed by the unique opportunities these devices offer to the field of computing
technology.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 15

CONTENTS

List of Contributors xx

Preface :xxiii

Introduction :xxv

Part I: Reconfigurable Computing Hardware 1

1 Device Architecture 3

1.1 Logic-The Computational Fabric . 3
1. 1. 1 Logic Elements . 4
1.1.2 Programmability . 6

1.2 The Array and Interconnect . 6
1.2.1 Interconnect Structures . 7
1.2.2 Programmability . 1 2
1.2.3 Summary . 12

1.3 Extending Logic . 1 2
1.3.1 Extended Logic Elements . 1 2
1.3.2 Summary . 16

1.4 Configuration . 16
1.4.1 SRAM. 16
1.4.2 Flash Memory . 17
1.4.3 Antifuse . 17
1.4.4 Summary . 18

1.5 Case Studies . 18
1.5.1 Altera Stratix : 19
1.5.2 Xilinx Vrrtex-II Pro . 2 3

1.6 Summary . 26
References . 27

2 Reconfigurable Computing Architectures 29

2.1 Reconfigurable Processing Fabric Architectures 30
2.1.1 Fine-grained . 30
2.1.2 Coarse-grained . 3 2

2.2 RPF Integration into Traditional Computing Systems 3 5
2.2.1 Independent Reconfigurable Coprocessor Architectures . . 36
2.2.2 Processor + RPF Architectures 40

2.3 Summary and Future Work . 4 4
References . 4 5

3 Reconfigurable Computing Systems 47

3.1 Early Systems. 47
3.2 PAM, VCC, and Splash . 49

3.2.1 PAM . 49
3.2.2 Virtual Computer . 50
3.2.3 Splash . 5 1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 16

vi Contents

3.3 Small-scale Reconfigurable Systems . 52
3.3.1 PRISM . 53
3.3.2 CAL and XC6200 . 53
3.3.3 Cloning . 54

3.4 Circuit Emulation . 54
3.4.1 AMD/Intel . 55
3.4.2 Virtual Wires . 56

3.5 Accelerating Technology . 56
3.5.1 Teramac . 57

3.6 Reconfigurable Supercomputing . 59
3.6.1 Cray, SRC, and Silicon Graphics 60
3.6.2 The CMX-2 X . 60

3.7 Non-FPGA Research. 61
3.8 Other System Issues. 61
3.9 The Future of Reconfigurable Systems 62

References . 63

4 Reconfiguration Management 65

4.1 Reconfiguration . 66
4.2 Configuration Architectures . 66

4.2.1 Single-context . 67
4.2.2 Multi-context . 68
4.2.3 Partially Reconfigurable . 70
4.2.4 Relocation and Defragmentation 71
4.2.5 Pipeline Reconfigurable . 73
4.2.6 Block Reconfigurable . 74
4.2.7 Summary . 75

4.3 Managing the Reconfiguration Process 76
4.3.1 Configuration Grouping. 76
4.3.2 Configuration Caching . 77
4.3.3 Configuration Scheduling . 77
4.3.4 Software-based Relocation and Defragmentation 79
4.3.5 Context Switching . 80

4.4 Reducing Configuration Transfer Time 80
4.4.1 Architectural Approaches. 81
4.4.2 Configuration Compression 81
4.4.3 Configuration Data Reuse . 82

4.5 Configuration Security . 82
4.6 Summary . 83

References . 84

Part II: Programming Reconfigurable Systems

5 Compute Models and System Architectures

87

91

5.1 Compute Models . 93
5.1.1 Challenges . 93
5.1.2 Common Primitives . 97
5.1.3 Dataflow . 98
5.1.4 Sequential Control . 103

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 17

Contents vii

5.1.5

5.1.6

5.1.7

5.1.8

Data Parallel .

Data-centric .

Multi-threaded

Other Compute Models .

105

105

106

106

5.2 System Architectures . 107

5.2.1 Streaming Dataflow . 107

5.2.2 Sequential Control . 1 10

5.2.3 Bulk Synchronous Parallelism 1 18

5.2.4 Data Parallel . 1 19

5.2.5

5.2.6

5.2.7

Cellular Automata .

Multi-threaded .

Hierarchical Composition .

1 2 2

1 23

1 25

References . 1 25

6 Programming FPGA Applications in VHDL 129

6.1 VHDL Programming . 130

6.1.1 Structural Description . 130

6.1.2 RTL Description . 133

6.1.3 Parametric Hardware Generation 136

6.1.4 Finite-state Machine Datapath Example 138

6.1.5 Advanced Topics . 150

6.2 Hardware Compilation Flow . 150

6.2.1 Constraints . 15 2

6.3 Limitations of VHDL . 153

References . 153

7 Compiling C for Spatial Computing 155

7.1 Overview of How C Code Runs on Spatial Hardware 156

7.1.1 Data Connections between Operations 157

7.1.2 Memory . 157

7.1.3 If-then-else Using Multiplexers 158

7.1.4 Actual Control Flow . 159

7.1.5

7.1.6

Optimizing the Common Path

Summary and Challenges .

16 1

16 2

7 .2 Automatic Compilation . 16 2

7.2.1 Hyperblocks . 16 4

7.2.2 Building a Dataflow Graph for a Hyperblock 16 4

7.2.3

7.2.4

DFG Optimization .

From DFG to Reconfigurable Fabric
169

173

7.3 Uses and Variations of C Compilation to Hardware 175

7.3.1 Automatic HW/SW Partitioning. 175

7.3.2 Programmer Assistance . 176

7.4 Summary . 180

References . 180

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 18

viii Contents

8 Programming Streaming FPGA Applications
Using Block Diagrams in Simulink 183

8.1 Designing High-performance Datapaths Using Stream-based
Operators . 184

8.2 An Image-processing Design Driver . 185
8.2.1 Converting RGB Video to Grayscale 185
8.2.2 Two-dimensional Video Filtering • 187
8.2.3 Mapping the Video Filter to the BEE2 FPGA Platform . . 191

8.3 Specifying Control in Simulink . 194
8.3.1 Explicit Controller Design with Simulink Blocks 194
8.3.2 Controller Design Using the Matlab M Language 195
8.3.3 Controller Design Using VHDL or Verilog 197
8.3.4 Controller Design Using Embedded Microprocessors . . . 197

8.4 Component Reuse: Libraries of Simple and Complex Subsystems . 198
8.4.1 Signal-processing Primitives 198
8.4.2 Tiled Subsystems . 198

8.5 Summary . 201
References . 202

9 Stream Computations Organized for
Reconfigurable Execution 203

9.1 Programming . 205
9.1.1 Task Description Format . 205
9.1.2 C++ Integration and Composition 206

9.2 System Architecture and Execution Patterns 208
9.2.1 Stream Support . 209
9.2.2 Phased Reconfiguration. 210
9.2.3 Sequential versus Parallel . 211
9.2.4 Fixed-size and Standard 1/0 Page 211

9.3 Compilation . 212
9.4 Runtime . 213

9.4.1 Scheduling. 213
9.4.2 Placement . 215
9.4.3 Routing. 215

9.5 Highlights . 217
References . 217

10 ·Programming Data Parallel FPGA Applications
Using the SIMD/Vector Model 219

10.1 SIMD Computing on FPGAs: An Example 219
10.2 SIMD Processing Architectures . 221
10.3 Data Parallel Languages . 222
10.4 Reconfigurable Computers for SIMD/Vector Processing 223
10.5 Variations of SIMD/Vector Computing 226

10.5.1 Multiple SIMD Engines . 226
10.5.2 A Multi-SIMD Coarse-grained Array 228
10.5.3 SPMD Model . 228

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 19

Contents ix

10.6 Pipelined SIMD/Vector Processing. 2 28
10.7 Summary . 2 29

References . 2 30

11 Operating System Support for Reconfigurable
Computing 231

11.1 History : .. :. 2 3 2
11.2 Abstracted Hardware Resources . 2 34

11.2.1 Programming Model. 2 34
11.3 Flexible Binding . : . 2 3 6

11.3.1 Install 'lime Binding . 2 3 6
11.3.2 Runtime Binding ; 2 37
11.3.3 Fast CAD for Flexible Binding 2 38

11.4 Scheduling . 2 39
11.4.1 On-demand Scheduling . 2 39
11.4.2 Static Scheduling . 2 39
11.4.3 Dynamic Scheduling . 240
11.4.4 Quasi-static Scheduling . 241
11.4.5 Real-time Scheduling . 241
11.4.6 Preemption . 24 2

11.5 Communication . 24 3
11.5.1 Communication Styles . 24 3
11.5.2 Virtual Memory. 24 6
11.5.3 1/0 . 247
11.5.4 Uncertain Communication Latency 247

11.6 Synchronization . 248
11.6.1 Explicit Synchronization . 248
11.6.2 Implicit Synchronization . 248
11.6.3 Deadlock Prevention . 249

11. 7 Protection . 249
11. 7 .1 Hardware Protection . 250
11. 7 .2 Intertask Communication . 251
11. 7 .3 Task Configuration Protection , 251

11.8 Summary . 25 2
References . 25 2

12 The JHDL Design and Debug System 255

1 2.1 JHDL Background and Motivation. 255
1 2.2 The JHDL Design Language . 257

1 2.2.1 Level-1 Design: Primitive Instantiation 257
1 2.2.2 Level-2 Design: Using the Logic Class and Its

Provided Methods . 259
1 2.2.3 Level-3 Design: Programmatic Circuit Generation

(Module Generators) . 2 61
1 2.2.4 JHDL Is a Structural Design Language 2 6 3
1 2.2.5 JHDL Is a Programmatic Circuit Design Language 2 64

1 2.3 The JHDL CAD System . 2 65
1 2.3.1 Testbenches in JHDL . 2 65
1 2.3.2 The cvt Class . 2 6 6

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 20

x Contents

12.4 JHDL's Hardware Mode

12.5 Advanced JHDL Capabilities

12.5.1 Dynamic Testbenches

12.5.2 Behavioral Synthesis

12.5.3 Advanced Debugging Capabilities

12.6 Summary

References .

Part m: Mapping Designs to Reconfigurable Platforms

13 Technology Mapping

13.1 Structural Mapping Algorithms

13.1.1 Cut Generation

13.1.2 Area-oriented Mapping

13.1.3 Performance-driven Mapping

13.1.4 Power-aware Mapping

13.2 Integrated Mapping Algorithms .

13.2.1 Simultaneous Logic Synthesis, Mapping

13.2.2 Integrated Retiming, Mapping

13.2.3 Placement-driven Mapping .

13.3 Mapping Algorithms for Heterogeneous Resources

13.3.1 Mapping to LUTs of Different Input Sizes

13.3.2 Mapping to Complex Logic Blocks

13.3.3 Mapping Logic to Embedded Memory Blocks

13.3.4 Mapping to Macrocells

13.4 Summary

References .

FPGA Placement

14 Placement for General-purpose FPGAs

2 68

2 69

2 69

270

270

27 2

27 3

275

277

278

279

280

282

283

284

284

286

287

289

289

290

291

292

293

293

297

299

14.1 The FPGA Placement Problem . 299

14.1.1 Device Legality Constraints 300

14.1.2 Optimization Goals . 301

14.1.3 Designer Placement Directives 302

14.2 Clustering . 304

14.3 Simulated Annealing for Placement . 306

14.3.1 VPR and Related Annealing Algorithms 307

14.3.2 Simultaneous Placement and Routing
with Annealing . 3 11

14.4 Partition-based Placement . 3 12

14.5 Analytic Placement . 3 15

14.6 Further Reading and Open Challenges 3 16

References . 3 16

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 21

15 Datapath Composition

Contents xi

319

15.1 Fundamentals. 319
15.1.1 Regularity . 320
15.1.2 Datapath Layout . 322

15.2 Tool Flow Overview . 323
15.3 The Impact of Device Architecture. 324

15.3.1 Architecture Irregularities . 325
15.4 The Interface to Module Generators. 326

15.4.1 The Flow Interface. 327
15.4.2 The Data Model . 327
15.4.3 The Library Specification . 328
15.4.4 The Intra-module Layout. 328

15.5 The Mapping . 329
15.5.1 1:1 Mapping . 329
15.5.2 N:1 Mapping . 330
15.5.3 The Combined Approach . 332

15.6 Placement . 333
15.6.1 Linear Placement. 333
15.6.2 Constrained Two-dimensional Placement 335
15.6.3 Two-dimensional Placement 336

15.7 Compaction . 337
15.7.1 Selecting HWOPs for Compaction 338
15.7.2 Regularity Analysis . 338
15.7.3 Optimization Techniques . 338
15.7.4 Building the Super-HWOP . 342
15.7.5 Discussion . 343

15.8 Summary and Future Work . 344
References . 344

16 Specifying Circuit Layout on FPGAs 347

16.1 The Problem . 347
16.2 Explicit Cartesian Layout Specification 35 1
16.3 Algebraic Layout Specification . 35 2

16.3.1 Case Study : Hatcher's Bitonic Sorter 35 7
16.4 Layout Verification for Parameterized Designs 36 0
16.5 Summary . 36 2

References . 36 3

17 PathFinder: A Negotiation-based, Performance-driven
Router for FPGAs 365

17.1 The History of PathFinder. 36 6
17.2 The PathFinder Algorithm . 36 7

17.2.1 The Circuit Graph Model..................... 36 7
17.2.2 A Negotiated Congestion Router 36 7
17.2.3 The Negotiated Congestion/Delay Router. 37 2
17.2.4 Applying A* to PathFinder. 37 3

17.3 Enhancements and Extensions to PathFinder 37 4
17.3 .1 Incremental Rerouting . 3 7 4

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 22

xii Contents

17.4
17.5
17.6

17.3.2
17.3.3
17.3.4

The Cost Function .
Resource Cost .
The Relationship of PathFinder to Lagrangian
Relaxation .

17.3.5 Circuit Graph Extensions
Parallel PathFinder .
Other Applications of the PathFinder Algorithm
Summary
References .

37 5
37 5

37 6
37 6
377
379
379
38 0

18 Retlming, Repipelining, and C-slow Retiming 383

18.1 Retiming: Concepts, Algorithm, and Restrictions 38 4
18.2 Repipelining and C-slow Retiming . 388

18.2.1 Repipelining . 389
18.2.2 C-slow Retiming . 39 0

18.3 Implementations of Retiming . 39 3
18.4 Retiming on Fixed-frequency FPGAs 39 4
18.5 C-slowing as Multi-threading . 39 5
18.6 Why Isn't Retiming Ubiquitous? . 398

References . 398

19 Configuration Bitstream Generation 401

19.1 The Bitstream . 40 3
19 .2 Downloading Mechanisms . 40 6
19.3 Software to Generate Configuration Data 407
19.4 Summary . 409

References . 409

20 Fast Compilation Techniques 411

20.1 Accelerating Classical Techniques . 41 4
20.1.1 Accelerating Simulated Annealing 41 5
20.1.2 Accelerating PathFinder . 418

20.2 Alternative Algorithms . 422
20.2.1 Multiphase Solutions . 422
20.2.2 Incremental Place and Route 425

20.3 Effect of Architecture . 427
20.4 Summary . 431

References . 432

Part IV: Application Development

21 Implementing Applications with FPGAs

435

439

21.1 Strengths and Weaknesses of FPGAs 439
21.1.1 Time to Market . 439
21.1.2 Cost . 440
21.1.3 Development Time . 440
21.1.4 Power Consumption . 440
21.1.5 Debug and Verification . 440
21.1.6 FPGAs and Microprocessors. 441

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 23

Contents xiii

21.2 Application Characteristics and Performance 441
21.2.1 Computational Characteristics and Performance 441
21.2.2 1/0 and Performance . 443

21.3 General Implementation Strategies for FPGA-based Systems 445
21.3.1 Configure-once . 445
21.3.2 Runtime Reconfiguration. 446
21.3.3 Summary of Implementation Issues 447

21.4 Implementing Arithmetic in FPGAs . 448
21.4.1 Fixed-point Number Representation and Arithmetic 448
21.4.2 Floating-point Arithmetic . 449
21.4.3 Block Floating Point. 450
21.4.4 Constant Folding and Data-oriented Specialization 450

21.5 Summary . 452
References . 452

22 Instance-specific Design 455

22.1 Instance-specific Design . 455
22.1.1 Taxonomy . 456
22.1.2 Approaches . 457
22.1.3 Examples of Instance-specific Designs 459

22.2 Partial Evaluation . 462
22.2.1 Motivation . 463
22.2.2 Process of Specialization . 464
22.2.3 Partial Evaluation in Practice 464
22.2.4 Partial Evaluation of a Multiplier 466
22.2.5 Partial Evaluation at Runtime 470
22.2.6 FPGA-specific Concerns. 471

22.3 Summary . 473
References . 473

23 Precision Analysis for Fixed-point Computation 475

23.1 Fixed-point Number System. 475
23.1.1 Multiple-wordlength Paradigm 476
23.1.2 Optimization for Multiple Wordlength 478

23.2 Peak Value Estimation . 478
23.2.1 Analytic Peak Estimation. 479
23.2.2 Simulation-based Peak Estimation 484
23.2.3 Summary of Peak Estimation 485

23.3 Wordlength Optimization . 485
23.3.1 Error Estimation and Area Models 485
23.3.2 Search Techniques . 496

23.4 Summary . 498
References . 499

24 Distributed Arithmetic 503

24.1 Theory . 503
24.2 DA Implementation . 504
24.3 Mapping DA onto FPGAs . 507
24.4 Improving DA Performance . 508

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 24

xiv Contents

24.5 An Application of DA on an FPGA . 511
References . 511

25 CORDIC Architectures for FPGA Computing 513

25.1 CORDIC Algorithm . 514
25.1.1 Rotation Mode . 514
25.1.2 Scaling Considerations . 517
25.1.3 Vectoring Mode. 519
25.1.4 Multiple Coordinate Systems and a Unified

Description . 520
25.1.5 Computational Accuracy . 522

25.2 Architectural Design . 526
25.3 FPGA Implementation of CORDIC Processors 527

25.3.1 Convergence. 527
25.3.2 Folded CORDIC . 528
25.3.3 Parallel Linear Array . 530
25.3.4 Scaling Compensation . 534

25.4 Summary . 534
References . 535

26 Hardware/Software Partitioning 539

26.1 The Trend Toward Automatic Partitioning 540
26.2 Partitioning of Sequential Programs . 542

26.2.1 Granularity . 545
26.2.2 Partition Evaluation . 547
26.2.3 Alternative Region Implementations 549
26.2.4 Implementation Models . 550
26.2.5 Exploration . 552

26.3 Partitioning of Parallel Programs . 557
26.3.1 Differences among Parallel Programming Models 557

26.4 Summary and Directions . 558
References . 559

Part V: Case Studies of FPGA Applications

27 SPIHT Image Compression

561

565

27.1 Background . 565
27.2 SPIHT Algorithm . 566

27.2.1 Wavelets and the Discrete Wavelet Transform 567
27 .2.2 SPIHT Coding Engine . 568

27.3 Design Considerations and Modifications 571
27.3.1 Discrete Wavelet Transform Architectures 571
27.3.2 Fixed-point Precision Analysis 575
27.3.3 Fixed Order SPIHT . 578

27.4 Hardware Implementation. 580
27.4.1 Target Hardware Platform . 581
27.4.2 Design Overview . 581
27.4.3 Discrete Wavelet Transform Phase 582
27.4.4 Maximum Magnitude Phase 583
27.4.5 The SPIHT Coding Phase . 585

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 25

Contents xv

27.5 Design Results . 587
27.6 Summary and Future Work . 588

References . 589

28 Automatic Target Recognition Systems
on Reconfigurable Devices 591

28.1 Automatic Target Recognition Algorithms 592
28.1.1 Focus of Attention . 592
28.1.2 Second-level Detection . 592

28.2 Dynamically Reconfigurable Designs 594
28.2.1 Algorithm Modifications . 594
28.2.2 Image Correlation Circuit . 594
28.2.3 Performance Analysis . 596
28.2.4 Template Partitioning . 598
28.2.5 Implementation Method . 599

28.3 Reconfigurable Static Design . 600
28.3.1 Design-specific Parameters . 601
28.3.2 Order of Correlation Tasks. 601
28.3.3 Reconfigurable Image Correlator 602
28.3.4 Application-specific Computation Unit 603

28.4 ATR Implementations . 604
28.4.1 A Dynamically Reconfigurable System 604
28.4.2 A Statically Reconfigurable System 606
28.4.3 Reconfigurable Computing Models 607

28.5 Summary . 609
References . 610

29 Boolean Satisfiability: Creating Solvers Optimized
for Specific Problem Instances 613

29.1 Boolean Satisfiability Basics. 613
29.1.1 Problem Formulation . 613
29.1.2 SAT Applications . 614

29.2 SAT-solving Algorithms . 615
29.2.1 Basic Backtrack Algorithm. 615
29.2.2 Improving the Backtrack Algorithm 617

29.3 A Reconfigurable SAT Solver Generated According to an
SAT Instance . 618

29.3.1 Problem Analysis . 618
29.3.2 Implementing a Basic Backtrack Algorithm with

Reconfigurable Hardware . 619
29.3.3 Implementing an Improved Backtrack Algorithm

with Reconfigurable Hardware 624
29.4 A Different Approach to Reduce Compilation Time and

Improve Algorithm Efficiency. 627
29.4.1 System Architecture . 627
29.4.2 Performance. 630
29.4.3 Implementation Issues . 631

29.5 Discussion . 633
References . 635

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 26

xvi Contents

30 Multi-FPGA Systems: Logic Emulation 637

30.1 Background . 637
30.2 Uses of Logic Emulation Systems . 639
30.3 'fypes of Logic Emulation Systems . 640

30.3.1 Single-FPGA Emulation. 640
30.3.2 Multi-FPGA Emulation . 641
30.3.3 Design-mapping Overview . 644
30.3.4 Multi-FPGA Partitioning and Placement Approaches . . . 645
30.3.5 Multi-FPGA Routing Approaches 646

30.4 Issues Related to Contemporary Logic Emulation 650
30.4.1 In-circuit Emulation . 650
30.4.2 Coverification . 650
30.4.3 Logic Analysis . 651

30.5 The Need for Fast FPGA Mapping . 652
30.6 Case Study: The VirtuaLogic VLE Emulation System 653

30.6.1 The VirtuaLogic VLE Emulation System Structure 653
30.6.2 The VirtuaLogic Emulation Software Flow 654
30.6.3 Multiported Memory Mapping 657
30.6.4 Design Mapping with Multiple Asynchronous Clocks . . . 657
30.6.5 Incremental Compilation of Designs. 661
30.6.6 VLE Interfaces for Coverification 664
30.6.7 Parallel FPGA Compilation for the VLE System 665

30. 7 Future Trends . 666
30.8 Summary . 667

References . 668

31 The Implications of Floating Point for FPGAs 671

31.1 Why Is Floating Point Difficult? . 671
31.1.1 General Implementation Considerations 673
31.1.2 Adder Implementation . 675
31.1.3 Multiplier Implementation . 677

31.2 Floating-point Application Case Studies 679
31.2.1 Matrix Multiply. 679
31.2.2 Dot Product . 683
31.2.3 Fast Fourier Transform . 686

31.3 Summary . 692
References . 694

32 Finite Difference Tune Domain: A Case Study
UsingFPGAs 697

32.1 The FDTD Method. 697
32.1.1 Background . 697
32.1.2 The FDTD Algorithm . 701
32.1.3 FDTD Applications. 703
32.1.4 The Advantages of FDTD on an FPGA 705

32.2 FDTD Hardware Design Case Study. 707
32.2.1 The WildStar-11 Pro FPGA Computing Board 708
32.2.2 Data Analysis and Fixed-point Quantization 709

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 27

3 2.2.3
3 2.2.4

Contents

Hardware Implementation .
Performance Results -.

3 2.3 Summary
References .

33 Evolvable FPGAs

xvii

7 1 2
7 2 2
7 23
7 23

725

33.1 The POE Model of Bioinspired Design Methodologies 7 2 5
33.2 Artificial Evolution . 7 27

33.2.1 Genetic Algorithms . 7 27
33.3 Evolvable Hardware . 7 29

33.3.1 Genome Encoding . 73 1
33.4 Evolvable Hardware: A Taxonomy . 733

33.4.1 Extrinsic Evolution . 733
33.4.2 Intrinsic Evolution. 734
33.4.3 Complete Evolution . 736
33.4.4 Open-ended Evolution . 738

33.5 Evolvable Hardware Digital Platforms 739
33.5.1 Xilinx XC6200 Family. 740
33.5.2 Evolution on Commercial FPGAs 74 1
33.5.3 Custom Evolvable FPGAs . 743

33.6 Conclusions and Future Directions . 74 5
References . 74 7

34 Network Packet Processing in Reconfigurable
Hardware 753

34.1 Networking with Reconfigurable Hardware 7 53
34.1.1 The Motivation for Building Networks with

Reconfigurable Hardware . 7 53
34.1.2 Hardware and Software for Packet Processing 7 54
34.1.3 Network Data Processing with FPGAs. 7 5 5
34.1.4 Network Processing System Modularj.ty. . • 7 56

34.2 Network Protocol Processing . 7 57
34.2.1 Internet Protocol Wrappers '. 7 58
34.2.2 TCP Wrappers . 7 58
34.2.3 Payload-processing Modules 760
34.2.4 Payload Processing with Regular Expression Scanning . . 761
34.2.5 Payload Scanning with Bloom Filters 762

34.3 Intrusion Detection and Prevention . 762
34.3.1 Worm and Virus Protection 763
34.3.2 An Integrated Header, Payload, and Queuing System . . . 7 64
34.3.3 Automated Worm Detection 766

34.4 Semantic Processing . 767
34.4.1 Language Identification. 767
34.4.2 Semantic Processing of TCP Data 768

34.5 Complete Networking System Issues 770
34.5.1 The Rack-mount Chassis Form Factor 770
34.5.2 Network Control and Configuration 77 1
34.5.3 A Reconfiguration Mechanism 77 2
34.5.4 Dynamic Hardware Plug-ins 773

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 28

xviii Contents

34.5.5 Partial Bitfile Generation . 773
34.5.6 Control Channel Security. 774

34.6 Summary . : . 775
References . 776

35 Active Pages: Memory-centric Computation 779

35.1 Active Pages. 779
35.1.1 DRAM Hardware Design . 780
35.1.2 Hardware Interface . 780
35.1.3 Programming Model. 781

35.2 Performance Results . 781
35.2.1 Speedup over Conventional Systems. 782
35.2.2 Processor-Memory Nonoverlap 784
35.2.3 Summary . 786

35.3 Algorithmic Complexity . 786
35.3.1 Algorithms . 787
35.3.2 Array-Insert . 788
35.3.3 LCS (Two-dimensional Dynamic Programming). 791
35.3.4 Summary . 794

35.4 Exploring Parallelism . 794
35.4.1 Speedup over Conventional 795
35.4.2 Multiplexing Performance . 796
35.4.3 Processor Width Performance. 796
35.4.4 Processor Width versus Multiplexing 797
35.4.5 Summary . 799

35.5 Defect Tolerance . 799
35.6 Related Work . 801
35. 7 Summary . 802

References . 802

Part VI: Theoretical Underpinnings and Future Directions 805

36 Theoretical Underpinnings 807

36.1 General Computational Array Model 807
36.2 Implications of the General Model . 809

36.2.1 Instruction Distribution. 810
36.2.2 Instruction Storage . 813

36.3 Induced Architectural Models. 814
36.3.1 Fixed Instructions (FPGA) . 815
36.3.2 Shared Instructions (SIMD Processors) 815

36.4 Modeling Architectural Space . 816
36.4.1 Raw Density from Architecture 816
36.4.2 Efficiency . 817
36.4.3 Caveats . 825

36.5 Implications . 826
36.5.1 Density of Computation versus Description 826
36.5.2 Historical Appropriateness . 826
36.5.3 Reconfigurable Applications 827
References . 828

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 29

37 Defect and Fault Tolerance

Contents xix

829

37.1 Defects and Faults. 830
37.2 Defect Tolerance . 830

37.2.1 Basic Idea . 830
37.2.2 Substitutable Resources . 832
37.2.3 Yield . 832
37.2.4 Defect Tolerance through Sparing 835
37.2.5 Defect Tolerance with Matching 840

37.3 n-ansient Fault Tolerance . 843
37.3.1 Feedforward Correction . 844
37.3.2 Rollback Error Recovery . 845

37.4 Lifetime Defects . 848
37.4.1 Detection. 848
37.4.2 Repair . 849

37.5 Configuration Upsets . 849
37.6 Outlook . 850

References . 850

38 Reconfigurable Computing and Nanoscale
Architecture 853

38.1 Trends in Lithographic Scaling . 854
38.2 Bottom-up Technology . 855

38.2.1 Nanowires . 856
38.2.2 Nanowire Assembly . 857
38.2.3 Crosspoints . 857

38.3 Challenges . 858
38.4 Nanowire Circuits . 859

38.4.1 Wired-OR Diode Logic Array 859
38.4.2 Restoration . 860

38.5 Statistical Assembly . 862
38.6 nanoPLA Architecture . 864

38.6.1 Basic Logic Block . 864
38.6.2 Interconnect Architecture . 867
38.6.3 Memories . 869
38.6.4 Defect Tolerance . 869
38.6.5 Design Mapping . 869
38.6;6 Density Benefits . 870

38.7 Nanoscale Design Alternatives . 870
38.7.1 Imprint Lithography. 870
38.7.2 Interfacing . 871
38.7.3 Restoration . 872

38.8 Summary . 872
References . 873

Index 877

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 30

LIST OF CONTRIBUTORS

Rajeevan Amirtharajah, Department of Electrical and Computer Engineering,
University of California-Davis, Davis, California (Chapter 24)

Vaughn Betz, Altera Corporation, San Jose, California (Chapter 14)

Robert W. Brodersen, Department of Electrical Engineering and Computer
Science, University of California-Berkeley, Berkeley, California (Chapter 8)

lbnothy J. Callahan, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania (Chapter 7)

Eylon Caspi, Tabula, Inc., Santa Clara, California (Chapter 9)

Chen Chang, Department of Mathematics and Department of Electrical
Engineering and Computer Sciences, University of California-Berkeley,
Berkeley, California (Chapter 8)

Mark L. Chang, Electrical and Computer Engineering, Franklin W. Olin
College of Engineering, Needham, Massachusetts (Chapter 1)

Wang Chen, Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts (Chapter 32)

Young H. Cho, Open Acceleration Systems Research, Chatsworth, California
(Chapter 28)

Michael Chu, DRC Computer, Sunnyvale, California (Chapter 9)

Katherine Compton, Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, Madison, Wisconsin (Chapters 4 and 11)

Jason Cong, Department of Computer Science, California NanoSystems
Institute, University of California-Los Angeles, Los Angeles, California
(Chapter 13)

George A. Constantinides, Department of Electrical and Electronic
Engineering, Imperial College, London, United Kingdom (Chapter 23)

Andre DeHon, Department of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania (Chapters 5, 6, 7, 9, 11, 36, 37,
and 38)

Chris Dick, Advanced Systems Technology Group, DSP Division of Xilinx,
Inc., San Jose, California (Chapter 25)

Carl Ebeling, Department of Computer Science and Engineering, University of
Washington, Seattle, Washington (Chapter 17)

Ken Eguro, Department of Electrical Engineering, University of Washington,
Seattle, Washington (Chapter 20)

Diana Franklin, Computer Science Department, California Polytechnic State
University, San Luis Obispo, California (Chapter 35)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 31

RECONFIGURABLE COMPUTING

HARDWARE

PART I

At a fundamental level, reconfigurable computing is the process of best
exploiting the potential of reconfigurable hardware. Although a complete
system must include compilation software and high-performance appli­
cations, the best place to begin to understand reconfigurable computing
is at the chip level, as it is the abilities and limitations of chips that cru­
cially influence all of a system's steps. However, the reverse is true as
well-reconfigurable devices are designed primarily as a target for the
applications that will be developed, and a chip that does not efficiently
support important applications, or that cannot be effectively targeted by
automatic design mapping flows, will not be successful.

Reconfigurable computing has been driven largely by the development
of commodity field-programmable gate arrays (FPGAs). Standard FPGAs
are somewhat of a mixed blessing for this field. On the one hand, they rep­
resent a source of commodity parts, offering cheap and fast programmable
silicon on some of the most advanced fabrication processes available
anywhere. On the other hand, they are not optimized for reconfigurable
computing for the simple reason that the vast majority of FPGA cus­
tomers use them as cheap, low-quality application-specific integrated cir­
cuits (ASICs) with rapid time to market. Thus, these devices are never
quite what the reconfigurable computing user might want, but they are
close enough. Chapter 1 covers commercial FPGA architectures in depth,
providing an overview of the underlying technology for virtually all gen­
erally available reconfigurable computing systems.

Because FPGAs are not optimized toward reconfigurable computing,
there have been many attempts to build better silicon devices for this
community. Chapter 2 details many of them. The focus of the new archi­
tectures might be the inclusion of larger functional blocks to speed up
important computations, tight connectivity to a host processor to set up
a coprocessing model, fast reconfiguration features to reduce the time to
change configurations, or other concepts. However, as of now, no such
system is commercially viable, largely because

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 32

2 Part I ■ Reconfigurable Computing Hardware

■ The demand for reconfigurable computing chips is much
smaller than that for the FPGA community as a whole, reducing
economies of scale.

■ FPGA manufacturers have access to cutting-edge fabrication
processes, while reconfigurable computing chips typically are
one to two process generations behind.

For these reasons, a reconfigurable computing chip is at a significant
cost, performance, and electrical power-consumption disadvantage com­
pared to a commodity FPGA. Thus, the architectural advantages of a
reconfigurable computing-specific device must be huge to make up for
the problems of less economies of scale and fabrication process lag. It
seems likely that eventually a company with a reconfigurable computing­
specific chip will be successful; however, so far there appears to have been
only failures.

Although programmable chips are important, most reconfigurable com­
puting users need more. A real system generally requires large memories,
input/output (1/0) ports to hook to various data streams, microprocessors
or microprocessor interfaces to coordinate operation, and mechanisms for
configuring and reconfiguring the device. Chapter 3 considers such com­
plete systems, chronicling the development of reconfigurable computing
boards.

Chapters 1 through 3 present a good overview of most reconfigurable
systems hardware, but one topic requires special consideration: the
reconfiguration subsystems within devices. In the first FPGAs, configura­
tion data was loaded slowly and sequentially, configuring the entire chip
for a given computation. For glue logic and ASIC replacement, this was
sufficient because FPGAs needed to be configured only once, at power-up;
however, in many situations the device may need to be reconfigured more
often. In the extreme, a single computation might be broken into multi­
ple configurations, with the FPGA loading new configurations during the
normal execution of that circuit. In this case, the speed of reconfiguration
is important. Chapter 4 focuses on the configuration memory subsystems
within an FPGA, considering the challenges of fast reconfiguration and
showing some ways to greatly improve reconfiguration speed.

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 33

DEVICE ARCHITECTURE

Mark L. Chang
Electrical and Computer Engineering
Franklin W. Olin College of Engineering

CHAPTER 1

The best race car drivers understand how their cars work. The best architects
know how carpenters, bricklayers, and electricians do their jobs. And the best
programmers know how the hardware they are programming does computation.
Knowing how your device works, "down to the metal," is essential for efficient
utilization of available resources.

In this chapter, we take a look inside the package to discover the basic hard­
ware elements that make up a typical field-programmable gate array (FPGA).
We11 talk about how computation happens in an FPGA-from the blocks that do
the computation to the interconnect that shuttles data from one place to another.
We'll talk about how these building blocks fit together in terms of FPGA archi­
tecture. And, of course, because programmability (as well as reprogrammability)
is part of what makes an FPGA so useful, we'll spend some time on that, too.
Finally, we'll take an in-depth look at the architectures of some commercially
available FPGAs in Section 1.5, Case Studies.

We won't be covering many of the research architectures from universities
and industry-we'll save that for later. We also won't be talking much about
how you successfully program these things to make them useful parts of a com­
putational platform. that, too, is later in the book.

What you will learn is what's "under the hood" of a typical commercial FPGA
so that you will become more comfortable using it as a platform for solving
problems and performing computations. The first step in our journey starts with
how computation in an FPGA is done.

1.1 LOGIC-THE COMPUTATIONAL FABRIC

Think of your typical desktop computer. Inside the case, among other things, are
storage and communication devices (hard drives and network cards), memory,
and, of course, the central processing unit, or CPU, where most of the compu­
tation happens. The FPGA plays. a similar role in a reconfigurable computing
platform, but we're going to break it down.

In very general terms, there are only two types of resources in an FPGA: logic
and interconnect. Logic is where we do things like arithmetic, 1+1=2, and logical
functions, if (ready) x= l else x= O. Interconnect is how we get data (like the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 34

4 Chapter 1 ■ Device Architecture

results of the previous computations) from one node of computation to another.
Let's focus on logic first.

1.1.1 Logic Elements

From your digital logic and computer architecture background, you know that
any computation can be represented as a Boolean equation (and in some cases
as a Boolean equation where inputs are dependent on past results-don't worry,
FPGAs can hold state, too). In tum, any Boolean equation can be expressed as a
truth table. From these humble beginnings, we can build complex structures that
can do arithmetic, such as adders and multipliers, as well as decision-making
structures that can evaluate conditional statements, such as the classic if-then­
else. Combining these, we can describe elaborate algorithms simply by using
truth tables.

From this basic observation of digital logic, we see the truth table as the
computational heart of the FPGA. More specifically, one hardware element that
can easily implement a truth table is the lookup table, or LUT. From a circuit
implementation perspective, a LUT can be formed simply from an N: 1 (N-to­
one) multiplexer and an N-bit memory. From the perspective of our previous
discussion, a LUT simply enumerates a truth table. Therefore, using LUTs gives
an FPGA the generality to implement arbitrary digital logic. Figure 1.1 shows
a typical N-input lookup table that we might find in today's FPGAs. In fact,
almost all commercial FPGAs have settled on the LUT as their basic building
block.

The LUT can compute any function of N inputs by simply programming the
lookup table with the truth table of the function we want to implement. As
shown in the figure, if we wanted to implement a 3-input exclusive-or (XOR)
function with our 3-input LUT (often referred to as a 3-LUT), we would assign
values to the lookup table memory such that the pattern of select bits chooses
the correct row's "answer." Thus, every "row"·would yield a result of O except in
the four cases where the XOR of the three select lines yields 1.

0

0

0

0

FIGURE 1.1 ■ A 3-LUT schematic (a) and the corresponding 3-LUT symbol and truth table
(b) for a logical XOR.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 35

1. 1 Logic-The Computational Fabric 5

Of course, more complicated functions, and functions of a larger number of
inputs, can be implemented by aggregating several lookup tables together. For
example, one can organize a single 3-LUT into an 8 x 1 ROM, and if the values
of the lookup table are reprogrammable, an 8 x 1 RAM. But the basic building
block, the lookup table, remains the same.

Although the LUT has more or less been chosen as the smallest computational
unit in commercially available FPGAs, the size of the lookup table in each logic
block has been widely investigated [1]. On the one hand, larger lookup tables
would allow for more complex logic to be performed per logic block, thus reduc­
ing the wiring delay between blocks as fewer blocks would be needed. However,
the penalty paid would be slower LUTs, because of the requirement of larger
multiplexers, and an increased chance of waste if not all of the functionality of
the larger LUTs were to be used. On the other hand, smaller lookup tables may
require a design to consume a larger number of logic blocks, thus increasing
wiring delay between blocks while reducing per-logic block delay.

Current empirical studies have shown that the 4-LUT structure makes the
best trade-off between area and delay for a wide range of benchmark circuits.
Of course, as FPGA computing evolves into wider arenas, this result may need
to be revisited. In fact, as of this writing, Xilinx has released the Virtex-5 SRAM­
based FPGA with a 6-LUT architecture.

The question of the number of LUTs per logic block has also been inves­
tigated [2], with empirical evidence suggesting that grouping more than one
4-LUT into a single logic block may improve area and delay. Many current
commercial FPGAs incorporate a number of 4-LUTs into each logic block to
take advantage of this observation.

Investigations into both LUT size and number of LUTs per block begin
to address the larger question of computational granularity in an FPGA. On
one end of the spectrum, the rather simple structure of a small lookup table
(e.g., 2-LUT) represents fine-grained computational capability. Toward the other
end, coarse-grained, one can envision larger computational blocks, such as full
8-bit arithmetic logic units (ALUs), more typical of CPUs. As in the case of lookup
table sizing, finer-grained blocks may be more adept at bit-level manipulations
and arithmetic, but require combining several to implement larger pieces of
logic. Contrast that with coarser-grained blocks, which may be more optimal
for datapath-oriented computations that work with standard "word" sizes (8/16/
32 bits) but are wasteful when implementing very simple logical operations. Cur­
rent industry practice has been to strike a balance in granularity by using rather
fine-grained 4-LUT architectures and augmenting them with coarser-grained
heterogeneous elements, such as multipliers, as described in the Extended Logic
Elements section later in this chapter.

Now that we have chosen the logic block, we must ask ourselves if this is
sufficient to implement all of the functionality we want in our FPGA. Indeed, it is
not. With just LUTs, there is no way for an FPGA to maintain any sense of state,
and therefore we are prohibited from implementing any form of sequential, or
state-holding, logic. To remedy this situation, we will add a simple single-bit
storage element in our base logic block in the form of a D flip-flop.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 36

6 Chapter 1 • Device Architecture

4LUT-...... --------t

CLK

FIGURE 1.2 ■ A simple lookup table logic block.

Now our logic block looks something like Figure 1.2. The output multiplexer
selects a result either from the function generated by the lookup table or from
the stored bit in the D flip-flop. In reality, this logic block bears a very close
resemblance to those in some commercial FPGAs.

1 . 1.2 Programmability
Looking at our logic block in Figure 1.2, it is a simple task to identify all the
programmable points. These include the contents of the 4-LUT, the select signal
for the output multiplexer, and the initial state of the D flip-flop. Most current
commercial FPGAs use volatile static-RAM (SRAM) bits connected to configu­
ration points to configure the FPGA. Thus, simply writing a value to each con­
figuration bit sets the configuration of the entire FPGA.

In our logic block, the 4-LUT would be made up of 16 SRAM bits, one per out­
put; the multiplexer would use a single SRAM bit; and the D flip-flop initialization
value could also be held in a single SRAM bit. How these SRAM bits are initialized
in the context of the rest of the FPGA will be the subject of later sections.

1.2 THE ARRAY AND INTERCONNECT

With the LUT and D flip-flop, we begin to define what is commonly known as the
logic block, or function block, of an FPGA. Now that we have an understanding
of how computation is performed in an FPGA at the single logic block level,
we turn our focus to how these computation blocks can be tiled and connected
together to form the fabric that is our FPGA.

Current popular FPGAs implement what is often called island-style archi­
tecture. As shown in Figure 1.3, this design has logic blocks tiled in a two­
dimensional array and interconnected in some fashion. The logic blocks form
the islands and "float" in a sea of interconnect.

With this array architecture, computations are performed spatially in the
fabric of the FPGA. Large computations are broken into 4-LUT-sized pieces and
mapped into physical logic blocks in the array. The interconnect is configured
to route signals between logic blocks appropriately. With enough logic blocks,
we can make our FPGAs perform any kind of computation we desire.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 37

□ □

□ □
'

□ □

□ □

□

□

□

□

1.2 The Array and Interconnect 7

□ ---- Logic block

□
------ Interconnect

□

□
FIGURE 1.3 ■ The island-style FPGA architecture. The interconnect shown here is not
representative of structures actually used.

1.2. 1 lnte'rconnect Structures

Figure 1.3 does not tell the whole story. The interconnect structure shown is not
representative of any structures used in actual FPGAs, but is more of a cartoon
placeholder. This section introduces the interconnect structures present in many
of today's FPGAs, first by considering a small area of interconnection and then
expanding out to understand the need for different styles of interconnect. We
start with the simplest case of nearest-neighbor communication.

Nearest neighbor
Nearest-neighbor communication is as simple as it sounds. Looking at a 2 x 2
array of logic blocks in Figure 1.4, one can see that the only needs in this neigh­
borhood are input and output connections in each direction: north, south, east,
and west. This allows each logic block to communicate directly with each of its
immediate neighbors.

Figure 1.4 is an example of one of the simplest routing architectures possible.
While it may seem nearly degenerate, it has been used in some (now obsolete)
commercial FPGAs. Of course, although this is a simple solution, this structure
suffers from severe delay and connectivity issues. Imagine, instead of a 2 x 2
array, a 1024 x 1024 array. With only nearest-neighbor connectivity, the delay
scales linearly with distance because the signal must go through many cells
(and many switches) to reach its final destination.

From a connectivity standpoint, without the ability to bypass logic blocks in
the routing structure, all routes that are more than a single hop away require

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 38

8 Chapter 1 • Device Architecture

FIGURE 1.4 ■ Nearest-neighbor connectivity.

traversing a logic block. With only one bidirectional pair in each direction, this
limits the number of logic block signals that may cross. Signals that are passing
through must not ove�fap signals that are being actively consumed and produced.

Because of these limitations, the nearest-neighbor structure is rarely used
exclusively, but it is almost always available in current FPGAs, often augmented
with some of the techniques that follow.

Segmented
As we add complexity, we begin to move away from the pure logic block archi­
tecture that we've developed thus far. Most current FPGA architectures look less
like Figure 1.3 and more like Figure 1.5.

In Figure 1.5 we introduce the connection block and the switch box. Here the
routing structure is more generic and meshlike. The logic block accesses nearby
communication resources through the connection block, which connects logic
block input and output terminals to routing resources through programmable
switches, or multiplexers. The connection block (detailed in Figure 1.6) allows
logic block inputs and outputs to be assigned to arbitrary hcrizontal and vertical
tracks, increasing routing flexibility.

The switch block appears where horizontal and vertical routing tracks con­
verge as shown in Figure 1.7. In the most general sense, it is simply a matrix
of programmable switches that allow a signal on a track to connect to another
track. Depending on the design of the switch block, this connection could be,
for example, to turn the corner in either direction or to continue straight. The
design of switch blocks is an entire area of research by itself and has prc,duced
many varied designs that exhibit varying degrees of connectivity and efficiency
[3-5]. A detailed discussion of this research is beyond the scope of this book.

With this slightly modified architecture, the concept of a segmented intercon­
nect becomes more clear. Nearest-neighbor routing can still be accomplished,
albeit through a pair of connect blocks and a switch block. However, for

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 39

1.2 The Array and Interconnect 9

FIGURE 1.5 ■ An island-style architecture with connect blocks and switch boxes to support
more complex routing structures. (The difference in relative sizes of the blocks is for visual
differentiation.)

signals that need to travel longer distances, individual segments can be switched
together in a switch block to connect distant logic blocks together. Think of it as
a way to emulate long signal paths that can span arbitrary distances. The result
is a long wire that actually comprises shorter "segments."

This interconnect architecture alone does not radically improve on the delay
characteristics of the nearest-neighbor interconnect structure. However, the
introduction of connection blocks and switch boxes separates the intercon­
nect from the logic, allowing long-distance routing to be accomplished without
consuming logic block resources.

To improve on our structure, we introduce longer-length wires. For instance,
consider a wire that spans one logic block as being of length-1 (Ll). In
some segmented routing architectures, longer wires may be present to allow
signals to travel greater distances more efficiently. These segments may be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 40

10 Chapter 1 ■ Device Architecture

Logic
block

Programmable
connection

I
H������'I

_____ _.
0

� Connection
block

FIGURE 1.6 ■ Detai I of a connection block.

FIGURE 1.7 ■ An example of a common switch block architecture.

length-4 (L4), length-8 (LS), and so on. The switch blocks (and erhaps more
embedded switches) become points where signals can switch from shorter to
longer segments. This feature allows signal delay to be less than O(N) when cover­
ing a distance of N logic blocks by reducing the number of intermediate switches
in the signal path.

Figure 1.8 illustrates augmenting the single-segment interconnect with two
additional lengths: direct-connect between logic blocks and length-2 (L2) lines.
The direct-connect lines leave general routing resources free for other uses, and
L2 lines allow signals to travel longer distances for roughly the same amount of
switch delay. This interconnect architecture closely matches that of the Xilinx
XC4000 series of commercial FPGAs.

Hierarchical

A slightly different approach to reducing the delay of long wires uses a hier­
archical approach. Consider the structure in Figure 1.9. At the lowest level of
hierarchy, 2 x 2 arrays of logic blocks are grouped together as a single cluster.

.......-----, j" ·- _, ~- - • - - -

i .· •·•··. •.: I • I
I , I
! •.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 41

�-

1.2 The Array and Interconnect 11

FIGURE 1.8 ■ Local (direct) connections and L2 connections augmenting a switched
interconnect.

2X2 (16)

11------ -----------1

1X1(4)t:I I I
11 I I
1: I I 1

1 I I ILi--- -- I

4X4 (32)

I

I
I

FIGURE 1.9 ■ Hierarchical routing used by long wires to connect clusters of logic blocks.

Within this block, local, nearest-neighbor routing is all that is available. In tum,
a 2 x 2 cluster of these clusters is formed that encompasses 16 logic blocks. At
this level of hierarchy, longer wires at the boundary of the smaller, 2 x 2 clusters,
connect each cluster of four logic blocks to the other clusters in the higher-level
grouping. This is·repeated in higher levels of hierarchy, with larger clusters and
longer wires.

The pattern of interconnect just described exploits the assumption that a well­
designed (and well-placed) circuit has mostly local connections and only a lim­
ited number of connections that need to travel long distances. By providing
fewer resources at the higher levels of hierarchy, this interconn.ect architecture
remains area-efficient while preserving some long-length wires to minimize the
delay of signals that need to cross large distances.

As in the segmented architecture, the connection points that connect one level of
routing hierarchy to another can be anywhere in the interconnect structure. New
points in the existing switch blocks may be created, or completely independent

I
I
I
I
I
I

L~

I
I
I
I
I
I
I
I

ii

I
I

I

I
I I L _____________________ I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 42

12 Chapter 1 ■ Device Architecture

switching sites elsewhere in the interconnect can be created specifically for the
purpose of moving between hierarchy levels. -

1.2.2 Programmability
As with the logic blocks in a typical commercial FPGA, each switch point in
the interconnect structure is programmable. Within the connection block, pro­
grammable multiplexers select which routing track each logic block's input and
output terminals map to; in the switch block, the junction between vertical
and horizontal routing tracks is switched through a programmable switch; and,
finally, switching between routing tracks of different segment lengths or hierar­
chy levels is accomplished, again through programmable switches.

For all of these programmable points, as in the logic block, modem FPGAs
use SRAM bits to hold the user-defined configuration values. More discussion
of these configuration bits comes later in this chapter.

1.2.3 Summary

Programmable routing resources are the natural counterpart to the logic resour­
ces in an FPGA. Where the logic performs the arithmetic and logical computations,
the interconnection fabric takes the results output from logic blocks and routes
them as inputs to other logic blocks. By tiling logic blocks together and connec­
ting them through a series of programmable interconnects as described here, an
FPGA can implement complex digital circuits. The true nature of spatial comput­
ing is realized by spreading the computation across the physical area of an FPGA.

Today's commercial FPGAs typically use bits of each of these interconnect
architectures to provide a smooth and flexible set of routing resources. In actual
implementation, segmentation and hierarchy may not always exhibit the log­
arithmic scaling seen in our examples. In modem FPGAs, the silicon area con­
sumed by interconnect greatly dominates the area dedicated to logic. Anecdotally,
90 percent of the available silicon is interconnect whereas only 10 percent is
logic. With this imbalance, it is clear that interconnect architecture is increas­
ingly important, especially from a delay perspective.

1.3 EXTENDING LOGIC

With a logic block like the one shown in Figure 1.2, tiled in a two-dimensional
array with a supporting interconnect structure, we can implement any combina­
tional and sequential logic. Our only constraint is area in terms of the number
of available logic blocks. While this is comprehensive, it is far from optimal. In
this section, we investigate how FPGA architects have augmented this simple
design to increase performance.

1.3. 1 Extended Logic Elements

Modem FPGA interconnect architectures have matured to include much more
than simple nearest-neighbor connectivity to give increased performance for

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 43

''
.{

1.3 Extending Logic 13

common applications. Likewise, the basic logic elements have been augmented
to increase perlormance for common operations such as arithmetic functions
and data storage.

Fast carry chain
One fundamental operation that the FPGA is likely to perlorm is an addition.
From the basic logic block, it is apparent that we can implement a full-adder
structure with two logic blocks given at least a 3-LUT. One logic block is config­
ured to compute the sum, and one is configured to compute the carry. Cascading
N pairs of logic blocks together will yield a simple N-bit full adder.

As you may already know from digital arithmetic, the critical path of this
type of addition comes not from the computation of the sum bits but rather
from the rippling of the carry signal from lower-order bits to higher-order bits
(see Figure 1.10). This path starts with the low-order primary inputs, goes
through the logic block, out into the interconnect, into the adjacent logic block,
and so on. Delay is accumulated at every switch point along the way.

One clever way to increase speed is to shortcut the carry chain between adja­
cent logic blocks. We can accomplish this by providing a dedicated, minimally
switched path from the output of the logic block computing the carry signal to
the adjacent higher-order logic block pair. This carry chain will not need to be
routed on the general interconnect network. By adding a minimal amount of
overhead (wires), we dramatically speed up the addition operation.

This feature does force some constraints on the spatial layout of a multibit
addition. If, for instance, the dedicated fast carry chain only goes vertically, along
columns of logic blocks, all additions must be oriented along the carry chain to
take advantage of this dedicated resource. Additionally, to save switching area,
the dedicated carry chain may not be a bidirectional path, which fi#ther restricts
the physical layout to be oriented vertically and dictates the o:rffer of the bits
relative to one another. The fast carry-chain of the Xilinx XC4000E is shown in
Figure 1.11. Note that the bidirectional fast carry-chain wires are arranged along
the columns while the horizontal lines are unidirectional. This allows large adder
structures to be placed in a zig-zag pattern in the array and still make use of the
dedicated carry-chain interconnect.

A3 B3 A2. B2 A1 B1 AO BO

cin

Carry chain

FIGURE 1.10 ■ A simple 4-bit full adder.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 44

14 Chapter 1 ■ Device Architecture

Logic Logic
block block

Logic Logic
block block

Logic Logic
block block

Logic Logic
block block

Logic Logic
block block

Logic Logic

block block

Logic Logic
block block

Logic Logic
block block

FIGURE 1.11 ■ The Xilinx XC4000E fast carry chain. (Source: Adapted from [61, Figure 11,
p. 6-18.)

The fast cany-chain logic is now commonplace in commercial FPGAs, with
the physical design constraints at this point completely abstracted away by the
tools provided by manufacturers. The success of this optimization relies on the
toolset's ability to identify additions in the designer's circuit description and then
use the dedicated logic. With today's tools, this kind of optimization is nearly
transparent to the end user.

Multipliers
If addition is commonplace in algorithms, multiplication is certainly not rare.
Several implementations are available if we wish to use general logic block reso­
urces to build our multipliers. From the area-efficient iterative shift-accumulate
method to the area-consumptive array multiplier, we can use logic blocks to either
compute additions or store intermediate values. While we can certainly implement
a multiplication, we can do so only with a large delay penalty, or a large logic block
footprint, depending on our implementation. In essence, our logic blocks aren't
very effi.cient at performing a multiplication.

Instead of doing it with logic blocks, why not build real multipliers outside, but
still connected to, the general FPGA fabric? Then, instead of inefficiently using
simple LUTs to implement a multiply, we can route the values that need to be
multiplied to actual multipliers implemented in silicon. How does this save space
and time? Recall that FPGAs trade speed and power for configurability when
compared to their ASIC (application-specific integrated circuit) counterparts. If
you asked a VLSI designer to implement a fast multiplier out of transistors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 45

1.3 Extending Logic 15

any way she wanted, it would take up far less silicon area, be much faster, and
consume less power than we could ever manage using LUTs.

The result is that, for a small price in silicon area, we can offload the other­
wise area-prohibitive multiplication onto dedicated hardware that does it much
better. Of course, just like fast carry chains, multipliers impose important design
considerations and physical constraints, but we add one more option for com­
putation to our palette of operations. It is now just a matter of good design and
good tools to make an efficient design. Like fast carry chains, multipliers are
commonplace in modem FPGAs.

RAM

Another area that has seen some customization beyond the general FPGA fab­
ric is in the area of on-chip data storage. While logic blocks can individually
provide a few bits of storage via the lookup table structure-and, in aggregate,
many bits-they are far from an efficient use of FPGA resources. Like the fast
carry chain and the "hard" multiplier, FPGA architectures have given their users
generous amounts of on-chip RAM that can be accessed from the general FPGA
fabric.

Static RAM cells are extremely small and, when physically distributed through­
out the FPGA, can be very useful for many algorithms. By grouping many static
RAM cells into banks of memory, designers can implement large ROMs for
extremely fast lookup table computations and constant-coefficient operations,
and large RAMs for buffering, queuing, and basic scratch use-all with the con­
venience of a simple clocking strategy and the speed gained by avoiding off-chip
communication to an external memory. Today's FPGAs provide anywhere from
kilobits to megabits of dedicated RAM.

Processor blocks

Tying all these blocks together, most commercial FPGAs now offer entire dedi­
cated processors in the FPGA, sometimes even more than one. In a general sense,
FPGAs are extremely efficient at implementing raw computational pipelines,
exploiting nonstandard bit widths, and providing data and functional parallelism.
The inclusion of dedicated CPUs recognizes the fact that algorithm flows that are
very procedural and contain a high degree of branching do not lend themselves
readily to acceleration using FPGAs.

Entire CPU blocks can now be found in high-end FPGA devices. At the time of
this writing, these CPUs are on the scale of 300 MHz PowerPC devices, complete,
without floating-point units. They are capable of running an entire embedded
operating system, and some are even able to reprogram the FPGA fabric around
them.

The CPU cores are not nearly as easily exploited as the carry chains, mul­
tipliers, and on-chip RAMs, but they represent a distinct shift toward making
FPGAs more "platform" -oriented. With a traditional CPU on board (and perhaps
up to four), a single FPGA can serve nearly as an entire "system-on-a-chip"-the
holy grail of system integrators and embedded device manufacturers. With stan­
dard programming languages and toolchains available to developers, an entire
project might indeed be implemented with a single-chip solution, dramatically
reducing cost and time to market.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 46

16 Chapter 1 ■ Device Architecture

1.3.2 Summary

In the end, modern commercially available FPGAs provide a rich variety of basic,
and not so basic, computational building blocks. With much more than simple
lookup tables, the task for the FPGA architect is to decide in what proportion to
provide these resources and how they should be connected. The task of the hard­
ware designer is then to fully understand the capabilities of the target FPGAs to
create designs that exploit their potential.

The common thread among these extended logical elements is that they pro­
vide critical functionality that cannot be implemented very efficiently in the
general FPGA fabric. As much as the technology drives FPGA architectures,
applications provide a much needed, push. If multiplies were rare, it wouldn't
make sense to waste silicon space on a "hard" multiplier. As FPGAs become
more heterogeneous in nature, and become useful computational platforms in
new application domains, we can expect to see even more varied blocks in the
next generation of devices.

1.4 CONFIGURATION

One of the defining features of an FPGA is its ability to act as "blank hardware"
for the end user. Providing more performance than pure software implementa­
tions on general-purpose processors, and more flexibility than a fixed-function
ASIC solution, relies on the FPGA being a reconfigurable device. In this sec­
tion, we will discuss the different approaches and technologies used to provide
programmability in an FPGA.

Each configurable element in an FPGA requires 1 bit of storage to maintain a
user-defined configuration. For a simple LUT-based FPGA, these programmable
locations generally include the contents of the logic block and the connectivity
of the routing fabric. Configuration of the FPGA is accomplished through pro­
gramming the storage bits connected to these programmable locations accord­
ing to user definitions. For the lookup tables, this translates into filling it with
ls and Os. For the routing fabric, programming enables and disables switches
along wiring paths.

The configuration can be thought of as a flat binary file whose contents map, bit
for bit, to the programmable bits in the FPGA. This bitstream is generated by the
vendor-specific tools after a hardware design is finalized. While its exact format
is generally not publicly known, the larger the FPGA, the larger the bitstream
becomes.

Of course, there are many known methods for storing a single bit of binary
information. We discuss the most popular methods used for FPGAs next.

1.4.1 SRAM

As discussed in previous sections, the most widely used method for storing con­
figuration information in commercially available FPGAs is volatile static RAM,
or SRAM. This method has been made popular because it provides fast and
infinite reconfiguration in a well-known technology.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 47

1.4 Configuration 17

Drawbacks to SRAM come in the form of power consumption and data
volatility. Compared to the other technologies described in this section, the
SRAM cell is large (6-12 transistors) and dissipates significant static power
because of leakage current. Another significant drawback is that SRAM does
not maintain its contents without power, which means that at power-up the
FPGA is not configured and must be programmed using off-chip logic and
storage. This can be accomplished with a nonvolatile memory store to hold the
configuration and a micro-controller to perform the programming procedure.
While this may seem to be a trivial task, it adds to the component count and
complexity of a design and prevents the SRAM-based FPGA from being a truly
single-chip solution.

1.4.2 Flash Memory

Although less popular than SRAM, several families of devices use Flash memory

to hold configuration information. Flash memory is different from SRAM in that
it is nonvolatile and�can only be written a finite number of times.

The nonvolatility of Fla,sh memory means that the data written to it remains
when power is removed. In contrast with SRAM-based FPGAs, the FPGA remains
configured with user-defined logic even through power cycles and does not require
extra storage or hardware to program at boot-up. In essence, a Flash-based FPGA
can be ready immediately.

A Flash memory cell can also be made with fewer transistors compared to an
SRAM cell. This design can yield lower static power consumption as there are
fewer transistors to contribute to leakage current.

Drawbacks to using Flash memory to store FPGA configuration information
stem from the techniques necessary to write to it. As mentioned, Flash memory

has a limited write cycle lifetime and often has slower write speeds than SRAM.
The number of write cycles varies by technology, but is typically hundreds of
thousands to millions. Additionally, most Flash write techniques require higher
voltages compared to normal circuits; they require additional off-chip circuitry
or structures such as charge pumps on-chip to be able to perform a Flash write.

1.4.3 Antifuse
A third approach to achieving programmability is antifuse technology. Antifuse,
as its name suggests, is a metal-based link that behaves the opposite of a fuse.
The antifuse link is normally open (i.e., unconnected). A programming proce­
dure that involves either a high-current programmer or a laser melts the link. i.o
form an electrical connection across it-in essence, creating a wire or a short­
circuit between the antifuse endpoints.

Antifuse has several advantages and one clear disadvantage, which is that it is
not reprogrammable. Once a link is fused, it has undergone a physical transfor­
mation that cannot be reversed. FPGAs based on this technology are generally
considered one-time programmable (OTP). This severely limits their flexibility
in terms of reconfigurable computing and nearly eliminates this technology for
use in prototyping environments.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 48

18 Chapter 1 • Device Architecture

However, there are some distinct advantages to using antifuse in an FPGA
platform. First, the antifuse link can be made very small, compared to the large
multi-transistor SRAM cell, and does not require any transistors. This results
in very low propagation delays across links and zero static power consump­
tion, as there is no longer any transistor leakage current. Antifuse links are also
not susceptible to high-energy radiation particles that induce errors known as
single-event upsets, making them more likely candidates for space and military
applications.

1.4.4 Summary

There are several well-known methods for storing user-defined configuration
data in an FPGA. We have reviewed the three most . common in this section.
Each has its strengths and weaknesses, and all can be found in current com­
mercial FPGA products.

Regardless of the technology used to store or convey configuration data,
the idea remains the same. From vendor-specific tools, a device-specific pro­
gramming bitstream is created and used either to program an SRAM or Flash
memory, or to describe the pattern of antifuse links to be used. In the end, the
user-defined configuration is reflected in the FPGA, bringing to reality part of
the vision of reconfigurable computing.

1.5 CASE STUDIES

If you've read everything thus far, the FPGA should no longer seem like a magical
computational black box. In fact, you should have a good grasp of the compo­
nents that make up modern commercial FPGAs and how they are put together.
In this section, we

11 take it one step further and solidify the abstractions by
taking a look at two real commercial architectures-the Altera Stratix and the
Xilinx Virtex-11 Pro-and linking the ideas introduced earlier in this chapter with
concrete industry implementations.

Although these devices represent near-current technologies, having been
introduced in 2002, they are not the latest generation of devices from their
respective manufacturers. The reason for choosing them over more cutting-edge
examples is in part due to the level of documentation available at the time of
this writing. As is often the case, detailed architecture information is not avail­
able as soon as a product is released and may never be available depending on
the manufacturer.

Finally, the devices discussed here are much more complex than we have
space to describe. The myriad ways modern devices can be used to perform
computation and the countless hardware and software features that allow you
to create powerful and efficient designs are all part of a larger, more advanced
dialog. So if something seems particularly interesting, we encourage you to grab
a copy of the device handbook(s) and dig a little deeper.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 49

•

•

•

M512 RAM
blocks

!

•

•

•

•

•

•

DSP
blocks

!

•

•

•

•

•

•

M4K RAM
blocks

!

•

•

•

•

•

•

1.5 Case Studies 19

M-RAM block

•

•

•

•••

•••

•••

FIGURE 1.12 ■ Altera Stratix block diagram. (Source: Adapted from [71, Chapter 2, p. 2-2.)

1.5. 1 Altera Stratix

We begin by taking a look at the Altera Stratix FPGA. Much of the information
presented here is adapted from the July 2005 edition of the Altera Stratix, Device
Handbook (available online at http://www.altera.com).

The Stratix is an SRAM-based island-style FPGA containing many heteroge­
neous computational elements. The basic logical tile is the logic array block
(LAB), which consists of 10 logic elements (LEs). The LABs are tiled across the
device in rows and columns with a multilevel interconnect bringing together
logic, memory, and other resources. Memory is provided through TriMatrix
memory structures, which consist of three memory block sizes-M512, M4K,
and M-RAM-each with its own unique properties. Additional computational
resources are provided in DSP blocks, which can efficiently perform multiplica­
tion and accumulation. These resources are shown in a high-level block diagram
in Figure 1.12.

Logic architecture
The smallest logical block in the array is the LE, shown in Figure 1.13. The
general arehitectun of ,uie LE is very similar to the structure that we introduced
earlier-a single 4-LUT function generator and a programmable register as a
state-holding element. In the Altera LE, you can see additional components to
facilitate driving the interconnect (right side of Figure 1.12), setting and clearing
the programmable register, choosing from several programmable clocks, and
propagating the carry chain.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 50

20 Chapter 1 ■

Data
inputs

Clock
inputs

Device Architecture

cin

Lookup Carry Load and
table clear
(LUT)

logic logic

Clock 1----+--+-+------------'
enable
logic

cout

To routing
fabric

To routing
a fabric

FIGURE 1.13 ■ Simplified Altera Stratix logic element. (Source: Adapted from [7], Chapter 2,
p. 2-5.)

Because the LEs are simple structures that may appear tens of thousands
of times in a single device, Altera groups them into LABs. The LAB is then the
basic structure that is tiled into an array and connected via the routing structure.
Each LAB consists of 10 LEs, all LE carry chains, LAB-wide control signals,
and several local interconnection lines. In the largest device, the EP1S80, there
are 101 LAB rows and 91 LAB columns, yielding a total of 79,040 LEs. This is
fewer than would be expected given the number of rows and columns because of
the presence of the TriMatrix memory structures and DSP blocks embedded in
the array.

As shown in Figure 1.14, the LAB structure is dominated, at least conceptually,
by interconnect. The local interconnect allows LEs in the same LAB to send
signals to one another without using the general interconnect. Neighboring LABs,
RAM blocks, and DSP blocks can also drive the local interconnect through direct
links. Finally, the general interconnect (both horizontal and vertical channels)
can drive the local interconnect. This high degree of connectivity is the lowest
level of a rich, multilevel routing fabric.

The Stratix has three types of memory blocks-M512, M4K, and M-RAM­
collectively dubbed TriMatrix memory. The largest distinction between these
blocks is their size and number in a given device. Generally speaking, they can
be configured in a number of ways, including single-port RAM, dual-port RAM,
shift-register, FIFO, and ROM table. These memories can optionally include
parity bits and have registered inputs and outputs.

The MS12 RAM block is nominally organized as a 32 x 18-bit memory; the
M4K RAM as a 128 x 36-bit memory; and the M-RAM as a 4Kx 144-bit memory.
Additionally, each block can be configured for a variety of widths depending on
the needs of the user. The different-sized memories throughout the array provide

;.-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 51

To column
interconnects

From
adjacent LAB

To row To row
interconnects interconnects

Local interconnect LAB

1.5 Case Studies 21

FIGURE 1.14 ■ Simplified Altera Stratix LAB structure. (Source: Adapted from [8], Chapter 2,
p. 2-4.)

an efficient mapping of variable-sized memory designs to the device. In total, on
the EP1S80 there are over 7 million memory bits available for use, divided into
767 M512 blocks, 364 M4K blocks, and 9 M-RAM blocks.

The final element of logic present in the Altera Stratix is the DSP block. Each
device has two columns of DSP blocks that are designed to help implement
DSP-type functions, such as finite-impulse response (FIR) and infinite-impulse
response (IIR) filters and fast Fourier transforms (FFT), without using the
general logic resources of the LEs. The common computational function
required in these operations is often a multiplication and an accumulation. Each
DSP block can be configured by the user to support a single 36 x 36-bit multi­
plication, four 18 x 18-bit multiplications, or eight 9 x 9-bit multiplications, in
addition to an optional accumulation phase. In the EP1S80, there are 22 total
DSP blocks.

Routing architecture
The Altera Stratix provides an interconnect system dubbed MultiTrack that
connects all the elements just discussed using routing lines of varying fixed
lengths. Along the row (horizontal) dimension, the routing resources include
direct connections left and right between blocks (LABs, RAMs, and DSP) and
interconnects of lengths 4, 8, and 24 that traverse either 4, 8, or 24 blocks left
and right, respectively. A detailed depiction of an R4 interconnect at a single

To column
interconnects

To adjacent local
interconnect

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 52

22 Chapter 1 ■ Device Architecture

• • •

R4 interconnect
driving left

I

Neighbor
LAB

C4, CB, and C16
column interconnects

Primary
LAB

Neighbor
LAB

FIGURE 1.15 ■ Simplified Altera Stratix MultiTrack interconnect. (Source: Adapted from [7],
Chapter 2, p. 2-14.)

LAB is shown in Figure 1.15. The R4 interconnect shown spans 4 blocks, left
to right. The relative sizing of blocks in the Stratix allows the R4 interconnect
to span four LABs; three LABs and one M512 RAM; two LABs and one M4K
RAM; or two LABs and one DSP block, in either direction.

This structure is repeated for every LAB in the row (i.e., every LAB has its
own set of dedicated R4 interconnects driving left and right). R4 interconnects
can drive C4 and C 16 interconnects to propagate signals vertically to different
rows. They can also drive R24 interconnects to efficiently travel long distances.

The R8 interconnects are identical to the R4 interconnects except that they
span 8 blocks instead of 4 and only connect to R8 and C8 interconnects. By
design, the R8 interconnect is faster than two R4 interconnects joined together.
The R24 interconnect provides the fastest long-distance interconnection. It is
similar to the R4 and R8 interconnects, but does not connect directly to the LAB
local interconnects. Instead, it is connected to row and column interconnects at
every fourth LAB and only communicates to LAB local interconnects through
R4 and C4 routes. R24 interconnections connect with all interconnection routes
except L8s.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 53

1.5 Case Studies 23

In the column (vertical) dimension, the resources are very similar. They
include LUT chain and register chain direct connections and interconnects of
lengths 4, 8, and 16 that traverse 4, 8, or 16 blocks up and down, respec­
tively. The LAB local interconnects found in row routing resources are mirrored
through LUT chain and register chain interconnects. The LUT chain connects
the combinatorial output of one LE to the fast input of the LE directly below it
without consuming general routing resources. The register chain connects the
register output of one LE to the register input of another LE to implement fast
shift registers.

Finally, although this discussion was LAB-centric, all blocks connect to the
MultiTrack row and column interconnect using a direct connection similar to
the LAB local connection interfaces. These direct connection blocks also support
fast direct communication to neighboring LABs.

1.5.2 Xilinx Virtex-11 Pro

Launched and shipped right behind the Altera Stratix, the Xilinx Virtex-11
Pro FPGA was the flagship product of Xilinx, Inc. for much of 2002 and
2003. A good deal of the information that is presented here is adapted from
"Module 2 (Functional Description)" of the October 2005 edition of Xilinx Virtex­
II Pro

™

and Virtex-II Pro x™ Platform FPGA Handbook (available at http://
www.xilinx.com).

The Virtex-11 Pro is an SRAM-based island-style FPGA with several hetero­
geneous computational elements interconnected through a complex routing
matrix. The basic logic tile is the configurable logic block (CLB), consisting
of four slices and two 3-state buffers. These CLBs are tiled across the device
in rows and columns with a segmented, hierarchical interconnect tying all the
resources together. Dedicated memory blocks, SelectRAM+, are spread through­
out the device. Additional computational resources are provided in dedicated
18 x 18-bit multiplier blocks.

Logic architecture
The smallest piece of logic from the perspective of the interconnect structure is
the CLB. Shown in Figure 1.16, it consists of four equivalent slices organized
into two columns of two slices each with independent carry chains and a com­
mon shift chain. Each slice connects to the general routing fabric through a
configurable switch matrix and to each other in the CLB through a fast local
interconnect.

Each slice comprises primarily two 4-LUT function generators, two pro­
grammable registers for state holding, and fast carry logic. The slice also contains
extra multiplexers (MUXFx and MUXFS) to allow a single slice to be configured
for wide logic functions of up to eight inputs. A handful of other gates provide
extra functionality in the slice, including an XOR gate to complete a 2-bit full
adder in a single slice, an AND gate to improve multiplier implementations in
the logic fabric, and an OR gate to facilitate implementation of sum-of-products
chains.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 54

24 Chapter 1 ■ Device Architecture

cout
Switch Shift ♦

matrix t I

-
Slice
XOY1

-
Slice
XOYO

l
cin

cout

t
'

Slice
X1Y1

Slice
X1YO

I

l
cin

-

Fast
connects
to neighbors

FIGURE 1.16 ■ Xilinx Virtex-II Pro configurable CLB. (Source: Adapted from [81, Figure 32,
p. 35.)

In the largest Virtex-II Pro device, the XC2VP100, there are 120 rows and
94 columns of CLBs. This translates into 44,096 individual slices and 88,192
4-LUTs-comparable to the largest Stratix device. In addition to these general
configurable logic resources, the Virtex-II Pro provides dedicated RAM in the
form of block SelectRAM+. Organized into multiple columns throughout the
device, each block SelectRAM+ provides 18 Kb of independently clocked, true
dual-port synchronous RAM. It supports a variety of configurations, including
single- and dual-port access in various aspect ratios. In the largest device there
are 444 blocks of block SelectRAM+ organized into 16 columns, yielding a total
of 8,183,808 bits of memory.

Complementing the general logic resources are a number of 18 x 18-bit 2's
complement signed multiplier blocks. Like the DSP blocks in the Altera Stratix,
these multiplier structures are designed for DSP-type operations, including FIR,
IIR, FFT, and others, which often require multiply-accumulate structures. As
shown in Figure 1.17, each 18 x 18 multiplier block is closely associated with an
18Kb block SelectRAM+. The use of the multiplier/block SelectRAM+ memory,
with an accumulator implemented in LUTs, allows the implementation of effi­
cient multiply-accumulate structures. Again, in the largest device, just as with
block SelectRAM+, there are 16 columns yielding a total of 444 18 x 18-bit mul­
tiplier blocks.

Finally, the Virtex-II Pro has one unique feature that has been carried into
newer products and can also be found in competing Altera products. Embedded

-
..

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 55

Switch
matrix

--

Switch
matrix

--

Switch
matrix

--

Switch
matrix

--

18 Kbit block
selectRAM+

1.5 Case Studies 25

18X18

multiplier

FIGURE 1.17 ■ Virtex-11 Pro multiplier/block SelectRAM+ organization. (Source: Adapted
from [81, Figure 53, p. 48.)

in the silicon of the FPGA, much like the multiplier and block SelectRAM+
structures, are up to four IBM PowerPC 405-D5 CPU cores. These cores can
operate up to 300+ MHz and communicate with surrounding CLB fabric, block
SelectRAM+, and general interconnect through dedicated interface logic. On­
chip memory (OCM) controllers allow the PowerPC core to use block Select­
RAM+ as small instruction and data memories if no off-chip memories are
available.

The presence of a complete, standard microprocessor that has the ability
to interface at a very low level with general FPGA resources allows unique,
system-on-a-chip designs to be implemented with only a single FPGA device.
For example, the CPU core can execute housekeeping tasks that are neither
time-critical nor well suited to implementation in LUTs.

Routing architecture
The Xilinx Virtex-11 Pro provides a segmented, hierarchical routing structure
that connects to the heterogeneous fabric of elements through a switch matrix
block. The routing resources (dubbed Active Interconnect) are physically located
in horizontal and vertical routing channels between each switch matrix and look
quite different from the Altera Stratix interconnect structures.

The routing resources available between any two adjacent switch matrix rows
or columns are shown in Figure 1.18, with the switch matrix block shown in
black. These resources include, from top to bottom, the following:

■ 24 long lines that span the full height and width of the device.
■ 120 hex lines that route to every third or sixth block away in

all four directions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 56

26 Chapter 1 • Device Architecture

□□ □□

FIGURE 1.18 ■ Xilinx Virtex-11 Pro routing resources. (Source: Adapted from [7], Figure 54,
p. 45.)

■ 40 double lines that route to every first or second block away in
all four directions.

■ 16 direct connect routes that route to all immediate neighbors.
■ 8 fast-connect lines in each CLB that connect LUT inputs and outputs.

1.6 SUMMARY

This chapter presented the basic inner workings of FPGAs. We introduced the
basic idea of lookup table computation, explained the need for dedicated compu­
tational blocks, and described common interconnection strategies. We learned
how these devices maintain generality and programmability while providing per­
formance through dedicated hardware blocks. We investigated a number of ways
to program and maintain user-defined configuration information. Finally, we
tied it all together with brief overviews of two popular commercial architec­
tures, the Altera Stratix and the Xilinx Virtex-II Pro.

Now that we have introduced the basic technology that serves as the founda­
tion of reconfigurable computing, we will begin to build on the FPGA to create

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 57

1.6 Summary 27

reconfigurable devices and systems. The following chapters will discuss how to
efficiently conceptualize computations spatially rather than procedurally, and
the algorithms necessary to go from a user-specified design to configuration
data. Finally, we'll look into some application domains that have successfully
exploited the power of reconfigurable computing.

References

[1] J. Rose, A. E. Gamal, A Sangiovanni-Vincentelli. Architecture of field-programmable
gate arrays. Proceedings of the IEEE 81(7), July 1993.

[2] P. Chow, et al. The design of an SRAM-based field-programmable gate array-Part 1:
Architecture. IEEE Transactions on VLSI Systems 7(2), June 1999.

[3] H. Fan, J. Liu, Y. L. Wu, C. C. Cheung. On optimum switch box designs for 2-D
FPGAs. Proceedings of the 38th ACM/SIGDA Design Automation Conference (DAC),
June 2001.

[4] ---. On optimal hyperuniversal and rearrangeable switch box designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(12),
December 2003.

[5] H. Schmidt, V. Chandra. FPGA switch block layout and evaluation. IEEE Interna­
tional Symposium on Field-Programmable Gate Arrays, February 2002.

[6] Xilinx, Inc. Xilinx XC4000E and XC4000X Series Field-Programmable Gate Arrays,
Product Specification (Version 1.6), May 1999.

[7] Altera Corp. Altera Stratix
™

Device Handbook, July 2005.
[8] Xilinx, Inc. Xilinx Virtex-Il Pro

™

and Virtex-Il Pro
™

Platform FPGA Handbook, October
2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 58

RECONFIGURABLE COMPUTING

ARCHITECTURES

Lesley Shannon
School of Engineering Science
Simon Fraser University

CHAPTER 2

There has been considerable research into possible reconfigurable computing
architectures. Alternatives range from systems constructed using standard
off-the-shelf field-programmable gate arrays (FPGAs) to systems constructed
using custom-designed chips. Standard FPGAs benefit from the economies of
scale; however, custom chips promise a higher speed and density for custom­
computing tasks. This chapter explores different design choices made for recon­
figurable computing architectures and how these choices affect both operation
and performance. Questions we will discuss include:

■ Should the reconfigurable fabric be instantiated as a separate
coprocessor or integrated as a functional unit (see Instruction
augmentation subsection of Section 5.2.2)

■ What is the appropriate granularity (Chapter 36) for the
reconfigurable fabric?

Computing applications generally consist of both control flow and dataflow.
General-purpose processors have been designed with a control plane and a data
plane to support these two requirements. All reconfigurable computers have a
reconfigurable fabric component that is used to implement at least a portion of
the dataflow component of an application.

In this discussion, the reconfigurable fabric in its entirety will be referred
to as the reconfigurable processing fabric, or RPF. The RPF may be statically
or dynamically reconfigurable, where a static RPF is only configured between
application runs and a dynamic RPF may be updated during an application's
execution.

In general, the reconfigurable fabric is relatively symmetrical and can be
broken down into similar tiles or cells that have the same functionality. These
blocks will be referred to as processing elements, or PEs. Ideally, the RPF is
used to implement computationally intensive kernels in an application that will
achieve significant performance improvement from the pipelining and paral­
lelism available in the RPF. The kernels are called virtual instruction configura­
tions, or VI Cs, and we will discuss possible RPF architectures for implementing
them in the following section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 59

30 Chapter 2 ■ Reconfigurable Computing Architectures

2.1 RECONFIGURABLE PROCESSING FABRIC ARCHITECTURES

One of the defining characteristics of a reconfigurable computing architecture is
the type of reconfigurable fabric used in the RPF. Different systems have quite
different granularities. They range from fine-grained fabrics that manipulate
data at the bit level similarly to commercial FPGA fabrics, to coarse-grained
fabrics that manipulate groups of bits via complex functional units such as
ALUs (arithmetic logic units) and multipliers. The remainder of this section
will provide examples of these architectures, highlighting their advantages and
disadvantages.

2.1.1 Fine-grained

Fine-grained architectures offer the benefit of allowing designers to implement
bit manipulation tasks without wasting reconfigurable resources. However, for
large and complex calculations, numerous fine-grained PEs are required to
implement a basic computation. This results in much slower clock rates than
are possible if the calculations could be mapped to fewer, coarse-grained PEs.
Fine-grained architectures may also limit the number of VICs that can be con­
currently stored in the RPF because of capacity limits.

Garp's nonsymmetrical RPF
The BRASS Research Group designed the Garp reconfigurable processor as -an
MIPS processor and on-chip cache combined with an RPF [14]. The RPF is com­
posed of an array of PEs, as shown in Figure 2.1. Unlike most RPF architectures,
not all of the PEs (drawn as rounded squares in the array) are the same. There
is one control PE in each row (illustrated as the dark gray square in the leftmost
column) that provides communication between the RPF and external resources.
For example, the control block can be used to generate an interrupt for the main
processor or to initiate memory transactions. The remaining PEs (illustrated as
light gray squares) in the array are used for data processing and modeled after
the configurable logic blocks (CLBs) in the Xilinx 4000 series [13]. The number
of columns of PEs is fixed at 24, with the middle 16 PEs dedicated to providing
memory access for the RPF. The 3 extra PEs on the left and the 4 extra PEs on
the right in Figure 2.1 are used for operations such as overflow, error checking,
status checking, and wider data sizes.

The number of rows in the RPF is not fixed by the architecture, but is typically
at least 32 [13]. A wire network is provided between rows and columns, but the
only way to switch wires is through logic blocks, as there are no connections
from one wire to another. Each PE operates at the bit level on two

1

bits of data,
performing the same operation on both bits based on the assumption that a
large fraction of most configurations will be used for multibit operations. By
creating identical configurations for both bits, the configuration size and time
can be reduced but only at the expense of flexibility [13].

The loading of configurations into an RPF with a fine-grained fabric is
extremely costly relative to coarse-grained architectures. For example, each PE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 60

2.1 Reconfigurable Processing Fabric Architectures

1 control PE
per row

\ 3 extra logic PEs

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

23 logic PEs per row

I
16 logic PEs (32 bits)

I aligned with processor data word
1

msb lsb
1

• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •

32-bit word alignment
on memory bus

FIGURE 2.1 ■ Garp's RPF architecture. (Source: Adapted from [13].)

4 extra logic PEs

• • •
• • •
• • •
• • •

• • •
• • •
• • •

31

•
•
•
•

•
•
•

in Garp's RPF requires 64 configuration bits (8 bytes) to specify the sources of
inputs, the PE's function, and any wires to be driven by the PE [13]. So, if there
are only 32 rows in the RPF, 6144 bytes are required to load the configuration.
While this may not seem significant given that the configuration bitstream of a
commercial FPGA is on the order of megabytes (MB), it is considerable relative
to a traditional CPU's context switch. For example, if the bit path to external
memory from the Garp is assumed to be 128 bits, loading the full configuration
takes 384 sequential memory accesses.

Garp's RPF architecture supports partial array configuration and is dynami­
cally reconfigurable during application execution (i.e., a dynamic RPF). Garp's
RPF architecture allows only one VIC to be stored on the RPF at a time. How­
ever, up to four different full RPF VIC configurations can be stored in the on-chip
cache [13]. The VICs can then be swapped in and out of the RPF as they are
needed for the application.

The loading and execution of configurations on the reconfigurable array is
always under the control of a program running on the main (MIPS) processor.
When the main processor initiates a computation on the RPF, an iteration
counter in the RPF is set to a predetermined value. The configuration executes
until the iteration counter reaches zero, at which point the RPF stalls. The
MIPS-II instruction set has been extended to provide the necessary support to
the RPF [13].

,. .1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 61

32 Chapter 2 ■ Reconfigurable Computing Architectures

Originally, the user was required to write configurations in a textual language
that is similar to an assembler. The user had to explicitly assign data and opera­
tions to rows and columns. This source code was fed through a program called
the configurator to generate a representation for the configuration as a collec­
tion of bits in a text file. The rest of the user's source code could then be written
in C, where the configuration was referenced using a character array initializer.
This required some further assembly language programming to invoke the Garp
instructions that interfaced with the reconfigurable array. Since then, consid­
erable compiler work has been done on this architecture, and the user is now
able to program the entire application in a high-level language (HLL) [14] (see
Chapter 7).

2.1.2 Coarse-grained

For the purpose of this discussion, we describe coarse-grained architectures as
those that use a bus interconnect and PEs that perform more than just bit­
wise operations, such as ALUs and multipliers. Examples include PipeRench
and RaPiD (which is discussed later in this chapter).

PipeRench
The PipeRench RPF architecture [6], as shown in Figure 2.2, is an ALU-based
system with a specialized reconfiguration strategy (Chapter 4). It is used as a
coprocessor to a host microprocessor for most applications, although applica­
tions such as PGP and JPEG can be run on PipeRench in their entirety [8]. The
architecture was designed in response to concerns that standard FPGAs do not
provide reasonable forward compatibility, compilation time, or sufficient hard­
ware to implement large kernels in a scalable and portable-manner [6].

The PipeRench RPF uses pipelined configuration, first described by Goldstein
et al. [6], where the reconfigurable fabric is divided into physical pipeline stages
that can be reconfigured individually. Thus, the·-resulting RPF architecture is
both partially and dynamically reconfigurable. PipeRench's compiler is able to
compile the static design into a set of "virtual" stages such that each virtual stage
can be mapped to any physical pipeline stage in the RPF. The complete set of
virtual stages can then be mapped onto the actual number of physical stages
available in the pipeline. Figure 2.3 illustrates how the virtual pipeline stages of
an application can be mapped onto a PipeRench architecture with three physical
pipeline stages.

A pipeline stage can be loaded during each cycle, but all cyclic dependencies
must fit within a single stage. This limits the types of computations the array can
support, because many computations contain cycles \\ith multiple operations.
Furthermore, since configuration of a pipeline stage can occur concurrent to
execution of another pipeline stage, there is no performance degradation due to
reconfiguration.

A row of PEs is used to create a physical stage of the pipeline, also called a
physical stripe, as shown in Figure 2.2. The configuration word, or VIC, used to
configure a physical stripe is also known as a virtual stripe. Before a physical

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 62

G
I
0
b
a
I

b
u
s

�
I Register file I

PEO

�
I Register file I

PEO

2.1 Reconfigurable Processing Fabric Architectures 33

I Register file I
PE 1

I Register file I

PE 1

�
I Register file I

PEN-1

�
I Register file I

PEN-1

G
I
0
b
a
I

s Stripe

b
u
s
s
e
s

e n +1
s Stripe

n+2

I Register file I I Register file I I Register file I
PEO PE 1 PEN-1

FIGURE 2.2 ■ PipeRench architecture: PEs and interconnect. (Source: Adapted from [6).)

stripe is configured with a new virtual stripe, the state of the present virtual stripe,
if any, must be stored outside the fabric so it can be restored when the virtual
stripe is returned to the fabric. The physical stripes are all identical so that any
virtual stripe can be placed onto any physical stripe in the pipeline. The intercon­
nect between adjacent stripes is a full crossbar, which enables the output of any
PE in one stage to be used as the input of any PE in the adjacent stage [6].

The PEs for PipeRench are composed of an ALU and a pass register file. The
pass register file is required as there can be no unregistered data transmitted
over the interconnect network between stripes, creating pipelined interstripe
connections. One register in the pass register file is specifically dedicated to
intrastripe feedback. An 8-bit PE granularity was chosen to optimize the perfor­
mance of a suite of kernels [6].

It has been suggested that reconfigurable fabric is well suited to stream-based
functions (see Chapter 5, Section 5.1.2) and custom instructions [6]. Although

~ I-+-~
' I \ ...

I I I fi;:n-t _____ i ______ ------ ------t--------------t------t----
. .

+ + + + +
I-+- I-+-~

_, \ ...

I I I _____ t _____ i _____ ------ -----i---------------t------t----
' .

+ + j + j ~ + +
f-. ~ f-. ~ ~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 63

34 Chapter 2 ■ Reconfigurable Computing Architectures

Cycle: 1 2 3 4 5 6

StageO (D••ooCD
Stage1 OCQDDOO
Stage2 000••0
Stage3 0000••
Stage4 OOOOCQD

(a)

Cycle: 1 2 3 4 5 6

StageO 0aa0••
Stage1 OCQDDCQD
Stage2 OO(D--(D

(b)

FIGURE 2.3 ■ The virtual pipeline stages of an application (a). The light gray blocks represent the
configuration of a pipeline stage; the dark gray blocks represent its execution. The mapping of
virtual pipeline stages to three physical pipeline stages (b). The physical pipeline stages are
labeled each cycle with the virtual pipeline stage being executed. (Source: Adapted from [6].)

the first version of PipeRench was implemented as an attached processor, the
next was designed as a coprocessor so that it would be more tightly coupled
with the host processor [6]. However, the developers of PipeRench argue against
making the RPF a functional unit on the host processor. They state that this
could "restrict the applicability of the reconfigurable unit by disallowing state to
be stored in the fabric and in some cases by disallowing direct access to memory,
essentially eliminating their usefulness for stream-based processing" [6].

PipeRench uses a set of CAD tools to synthesize a stripe based on the para­
meters N, B, and P, where N is the number of PEs in the stripe, Bis the width in
bits of each PE, and Pis the number of registers in a PE's pass register file. By
adjusting these parameters, PipeRench's creators were able to choose a set of
values that provides the best performance according to a set of benchmarks [6].
Their CAD tools are able to achieve an acceptable placement of the stripes on
the architecture, but fail to achieve a reasonable interconnect routing, which
has to be optimized by hand.

The user also has to describe the kernels to be executed on the PipeRench archi­
tecture using the Datafiow Intermediate Language (DIL), a single-assignment
C-like language created for the architecture. DIL is intended for use by pro­
grammers and as an intermediate language for any high-level language compiler

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 64

2.2 RPF Integration into Traditional Computing Systems 35

that targets PipeRench architectures [6]. Obviously, applications have to be
recompiled, and probably even redesigned, to run on PipeRench.

2.2 RPF INTEGRATION INTO TRADITIONAL COMPUTING SYSTEMS

Whereas the RPF in a reconfigurable computing device dictates the program­
mable logic resources, a full reconfigurable computing system typically also has
a microprocessor, memory, and possibly other structures. One defining character­
istic of reconfigurable computing chips is the integration, or lack of integration,
of the RPF with a host CPU.

As shown in Figure 2.4, there are multiple ways to integrate an RPF into
a computing system's memory hierarchy. The different memory components
of the system are drawn as shaded rectangles, where the darker shading indi­
cates a tighter coupling of the memory component to the processor. The types
of RPF integration for these computing systems are illustrated as rounded

Memory
bus

1/0
bus

CPU

L1 cache

I

L2cache

Main memory
RPF

coprocessor

Reconfigurable
processing

fabric

FIGURE 2.4 ■ Possible locations for the RPF in the memory hierarchy. (Source: Adapted
from [6].)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 65

36 Chapter 2 ■ Reconfigurable Computing Architectures

rectangles, where the darker shading indicates a tighter coupling of the RPF
to the processor. Some systems have the RPF as a separate processor [2-7];
however, most applications require a microprocessor somewhere to handle com­
plex control. In fact, some separate reconfigurable computing platforms are
actually defined to include a host processor that interfaces with the RPF [l].
Unfortunately, when the RPF is integrated into the computing system as an inde­
pendent coprocessor, the limited bandwidth between CPU and reconfigurable
logic can be a significant performance bottleneck.

Other systems include an RPF as an extra functional unit coupled with a more
traditional processor core on one chip [8-24]. How tightly the RPF is coupled
with the processor's control plane varies.

2.2.1 Independent Reconfigurable Coprocessor Architectures

. Figure 2.5 illustrates a reconfigurable computing architecture with an indepen­
dent RPF [1-7]. In these systems, the RPF has no direct data transfer links to the
processor. Instead, all data communication takes place through main memory.
The host processor, or a separate configuration controller, loads a configuration
into the RPF and places operands for the VIC into the main memory. The RPF
can then perform the computation and return the results back to main memory.

Since independent coprocessor RPFs are separate from the traditional pro­
cessor, the integration of the RPF into existing computer systems is simplified.
Unfortunately, this also limits the bandwidth and increases the latency of trans­
missions between the RPF and traditional processing systems. For this reason,
independent coprocessor RPFs are well suited only to applications where the
RPF can act independently from the processor. Examples include data-streaming
applications with significant digital signal processing, such as multimedia appli­
cations like image compression and decompression, and encryption.

RaPiD

One example of an RPF coprocessor is the Reconfigurable Pipelined Datapaths [4],
or RaPiD, class of architectures. RaPiD's RPF can be used as an independent

Configuration
controller
(VICs)

Host
PC

Memory
interface

Memory

FIGURE 2.5 ■ A reconfigurable computing system with an independent reconfigurable
coprocessor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 66

Input
stream

FIFO

2.2 RPF Integration into Traditional Computing Systems 37

coprocessor or integrated with a traditional computing system as shown in
Figure 2.5. RaPiD is designed for applications that have very repetitive pipelined
computations that are typically represented as nested loops [5]. The underlying
architecture is comparable to a super-scalar processor with numerous PEs and
instruction generation decoupled from external memory but with no cache, no
centralized register file, and no crossbar interconnect, as shown in Figure 2.6.

Memory access is controlled by the stream generator, which uses first-in-first­
out (FIFOs), or streams (Chapter 5, Sections 5.1.2 and 5.2.1), to obtain and trans­
fer data from external memory via the memory interface, as shown in Figure 2. 7.
Each stream has an associated address generator, and the individual address pat­
terns are generated statically at compile time [5]. The actual reads and writes

Instruction
generator

VICs

• • •

External memory

• • •

• • •

FIGURE 2.6 ■ A block diagram of the RaPiD architecture (Source: Adapted from [5].)

Address
generator

Input
stream

FIFO

Memory Interface

Address
generator

Address
generator

Output
stream

FIFO

Address
generator

To

datapath
To

datapath
From

datapath
From

datapath

FIGURE 2.7 ■ RaPiD's stream generator. (Source: Adapted from [5].)

Repeater Repeater
Output
stream

FIFO

Repeater

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 67

38 Chapter 2 ■ Reconfigurable Computing Architectures

from the FIFOs are triggered by instruction bits at runtime. If the datapath's
required input data is not available (i.e., the input FIFO is empty) or if the output
data cannot be stored (i.e., the output FIFO is full), then the datapath will stall.
Fast access to memory is therefore important to limit the number of stalls that
occur. Using a fast static RAM (SRAM), combined with techniques, such as inter­
leaving and out-of-order memory accesses, reduces the probability of having to
stall the datapath [S].

The actual architecture of RaPiD's datapath is determined at fabrication time
and is dictated by the class of applications that will be using the RaPiD RPF.
This is done by varying the PE structure and the data width, and by choosing
between fixed-point or floating-point data for numerical operations. The ability
to change the PE's structure is fundamental to RaPiD architectures, with the
complexity of the PE ranging from a simple general-purpose register to a multi­
output booth-encoded multiplier with a configurable shifter [S].

The RaPiD datapath consists of numerous PEs, as shown in Figure 2.8. The
creators of RaPiD chose to benchmark an architecture with a rather complex
PE consisting of ALUs, RAMs, general-purpose registers, and a multiplier to
provide reasonable performance [S]. The coarse-grained architecture was chosen
because it theoretically allows simpler programming and better density [SJ.
Furthermore, the datapath can be dynamically reconfigured (i.e., a dynamic
RPF) during the application's execution.

Instead of using a crossbar interconnect, the PEs are connected by a more
area-efficient linear-segmented bus structure and bus connectors, as shown in
Figure 2.8. The linear bus structure significantly reduces the control overhead­
from the 95 to 98 percent required by FPGAs to 67 percent [S]. Since

�u
a, Cl)

E c:
E §
l!! e
Cl CD

Oc
it·-

Bus segments

� + ------..
------- ----

--@Q]---------l��-------

-------1rnQJ1-------1rnQJ1-------

Bus connectors

FIGURE 2.8 ■ An overview of RaPiD's datapath. (Source: Adapted from [5].)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 68

2.2 RPF Integration into Traditional Computing Systems 39

the processor performance was benchmarked for a rather complex PE, the
datapath was composed of only 16 PEs [SJ.

Each operation performed in the datapath is determined by a set of con­
trol bits, and the outputs are a data word plus status bits. These status bits
enable data-dependent control. There are both hard control bits and soft con­
trol bits. As the hard control bits are for static configuration and are field pro­
grammable via SRAM bits, they are time consuming to set. They are normally
initialized at the beginning of an application and include the tristate drivers and
the programmable routing bus connectors, which can also be programmed to
include pipelined delays for the datapath. The soft control bits can be dynam­
ically configured because they are generated efficiently and affect multiplexers
and ALU operations. Approximately 25 percent of the control bits are soft [5].

The instruction generator generates soft control bits in the form of VICs for
the configurable control plane, as shown in Figure 2.9. The RaPiD system is built
around the assumption that there is regularity in the computations. In other
words, most of its processing time is spent within nested loops, as opposed to
initialization, boundary processing, or completion [SJ, so the soft control bits
are generated by a small programmable controller as a short instruction word
(i.e., a VIC).

The programmable controller is optimized to execute nested loop structures.
For each nested loop, the user's original code is statically compiled to remove
all conditionals on loop variables and expanded to generate static instructions
for loops [SJ. The innermost loop can then often be packed into a single VIC
with a count indicating how many times the VIC should be issued. One VIC
can also be used to control more than one operation in more than one pipeline
stage [SJ. Figure 2. lO(a) shows a snippet of code that includes conditional state­
ments (if and for). This same functionality is shown in terms of static instruc­
tions in Figure 2.lO(b).

As there are often parallel loop nests in applications, the instruction generator
has multiple programmable controllers running in parallel (see Figure 2.9)
[SJ. Although this causes synchronization concerns, the appropriate status bits
exist to provide the necessary handshaking. The VICs from each controller are

------------------------------,

Instruction generator :
Programmable

controller

Programmable
controller

Programmable
controller

s

y
n
C

M
e

g
e

I

R :
e I
p I
e
a
t

- - - Status bit - Soft control bit -&+- VIC

Configurable control plane

FIGURE 2.9 ■ RaPiD's instruction generator. (Source: Adapted from [51.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I : __________ _

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 69

40 Chapter 2 ■ Reconfigurable Computing Architectures

for (i=O; i<lO; i++)

for (j=O; j<16; j++)

{
if (j==O)

load data;

else if(j < 8)

X = X + y;

else
z = y * z;

(a)

Execute 10 times

Execute once:

load data;

Execute six times:

X = X + y;

Execute eight times:

z = y * z;

(b)

I I j==O case

I I O<j<8 case

// 7<j<16 case

FIGURE 2.10 ■ Original code (a) and pseudo-code (bl for static instruction implementation of
the original code.

synchronized to ensure proper coordination between the parallel loops and then
merged to generate the configurable control plane for the entire datapath [5].

There are obvious benefits to RaPiD, but it is not easily programmed: The
programmer must use a specialized language and compiler designed specifically
for RaPiD. This allows the designer to specify the application in such a way as to
obtain better hardware utilization [5]. However, this class of architecture is not
well suited to highly irregular computations with complex addressing patterns,
little reuse of data, or an absence of fine-grained parallelism, which do not map
well to RaPiD's datapath [5].

It is interesting to note that while RaPiD was implemented as a stand-alone
processor, its creators suggest that it would be better to combine RaPiD with
an RISC engine on the same chip so that it would have a larger application
space [5]. The RISC processor could control the overall computation flow, and
RaPiD could speed up the compute-intensive kernels found in the application.
The developers also suggest that better performance could be achieved if RaPiD
were a special functional unit as opposed to a coprocessor, because it would be
more closely bound to the general-purpose processor [5]. These are the types of
architecture we will be discussing in the following section.

2.2.2 Processor + RPF Architectures

As opposed to the independent coprocessor model, other systems more tightly
couple the RPF with the host processor on the same chip; in some cases, the
RPF is loosely coupled with the processor as an independent functional unit.
Such architectures typically allow direct access to the RPF from the processor
as well as independent access to memory, as do the Garp architecture [13] and
the Chameleon system [20] (to be discussed in the following section). Alterna­
tively, we can couple the RPF more tightly with the processor. For example, in
architectures, such as Chimaera [18] (to be discussed later in this chapter), the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 70

2.2 RPF Integration into Traditional Computing Systems 41

subsystem

g
Datastream

g
Reconfigurable pR)Ce8Slng fabric

Programmable 1/0

Embedded
processor
system

Datastream

FIGURE 2.11 ■ Chameleon's RCP architecture. (Source: Adapted from a· figure obtained off of
Chameleon System's home page, which is no longer available.)

RPF is incorporated as a reconfigurable functional unit (RFU) (see Instruction
augmentation subsection in Section 5.2.2) within the processor itself.

Loosely coupled RPF and processor architecture
The commercial Reconfigurable Communications Processor (RCP) was created
by Chameleon Systems Inc. [20]. It combined an embedded processor sub­
system with an RPF via a proprietary shared bus architecture, known as the
RoadRunner bus (Figure 2.11). The RPF had direct access to the processor as
well as direct memory access (DMA). The reconfigurable fabric also had a pro­
grammable I/0 interface so that users could process off-chip I/0 independent of
the rest of the embedded on-chip processing system. This provided more flexi­
bility for the RPF than in typical reconfigurable computing architectures, where
the RPF generally had access only to the processor and memory.

The Chameleon architecture was able to provide improved price/performance
relative to the highest-performing DSPs of its time, but its RCP consumed more
power because of the RPF. After 2002, there was little mention of Chameleon or
its RCP. Conceptually, the product was an interesting idea, but it failed to comer
a product niche during the electronics market downturn.

Tightly coupled RPF and processor
Figure 2.12 illustrates a traditional processor's datapath architecture with the
RPF integrated as an RFU. Such systems tightly couple the RFU to the central
processing unit's (CPU) datapath similarly to the technology of traditional CPU
functional units (FUs), such as the ALU, the multiplier, and the FPU. In some
ca::.c:s, these architectures only provide RFU access to input data from the
register file in the same way as the traditional CPU FUs (Chimaera [18], PRISC

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 71

42 Chapter 2 • Reconfigurable Computing Architectures

Memory J-----------------,

interface

Register
file

CPU CPU

FU FU

FIGURE 2.12 ■ The datapath of the processo, + RFU architecture.

Instruction
fetch

Instruction
decode

Execute 1---t--+1 Memory 1---t--+1 Writeback access

FIGURE 2.13 ■ An example of a pipeline of a processor with an RFU. (Source: Adapted
from (16).)

[11], etc.). Other architectures allow the RFU to access data stored in the local
cache/memory directly (e.g., OneChip [16]). Many of them can have multiple
VICs instantiated in the RFU at once, enabling designers to accelerate multiple
software instructions at the same time.

For reconfigurable computing architectures in which the RFU is tightly cou­
pled with the processing core, the processor pipeline must be updated as shown
in Figure 2.13. VICs in the RFU typically run during the execute stage (and
possibly the memory stage) of the pipeline. Some of these processors are capable
of running VICs in parallel with instructions that use more traditional proces­
sor resources, such as the ALU or FPU, and even support out-of-order execution
(OneChip [16], Chimaera [18]).

Chimaera

The Chimaera architecture [18], shown in Figure 2.14, was developed at North­
western University. Its developers created a C compiler that could create

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 72

Host
processor

2.2 RPF Integration into Traditional Computing Systems 43

Instruction
register

Result bus

Instruction
decode CAM

and output
muxes

Memory bus

Shadow register file

Caching/
prefetch control
(partial runtime
reconfiguration)

FIGURE 2.14 ■ Overview of the Chimaera architecture. (Source: Adapted from [18].)

specialized instructions for their RFU, known as RFUOPs (VICs for the purpose
of our discussion) [19]. These custom instructions are created on a per appli­
cation basis and have direct access to the processor's register file. Furthermore,
commonly used VICs can be cached for easy reloading so that the processor
does not have to stall while the RFU is configured [19].

The RFU is structured as a reconfigurable array (RA) of PEs, where any VIC
occupies an integer number of rows. Influenced by the Triptych FPGA [18],
the Altera Flex 8000 series, and the PRISC architecture [11], the array struc­
ture is FPGA-like to support computationally intensive kernels. Each PE in a
row operates on 1 bit, with each row containing the same number of PEs
as the size of the processor's memory word. The RFU can be partially con­
figured so that multiple VICs can be cached in it at any given time. When
an instruction is to be written to the RFU and there are no empty rows, the
VIC that is overwritten is chosen such that configurations of the RFU will be
minimized [19].

Another benefit of the Chimaera architecture is that it allows for speculative
execution of VI Cs. Any VIC that is loaded in the RFU speculatively executes each
cycle. If one of them is actually executed, the resulting value is stored at the
writeback stage; otherwise, it is ignored and discarded. The RFU also supports
multi-input operations, so that any VIC occupying one row will execute in a
single clock cycle and with the appropriate data dependencies. Assuming that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 73

44 Chapter 2 • Reconfigurable Computing Architectures

data dependencies are not an issue, multi-cycle operations can execute without
pipelining stalls [19].

When a VIC is detected at the decode stage of the pipeline, a check is made of
the RFU to determine if it is already loaded. If it is not loaded, a check is made
of the VIC cache. If the VIC instruction is not in either of these locations, it
must be loaded from memory to reconfigure the necessary rows of the RFU.
In that case the microprocessor will stall. This is time consuming because,
although the precise configuration timing requirements are not specified, the
objective is to minimize the number of configurations of the RFU performed from
memory [19].

Chimaera has the benefit of a high-level design language for the user. It also
has the same style interface as that of a normal stand-alone processor, which
means that the architecture is able to provide extra functionality to improve
performance, without complicating the design process. The idea is to treat the
RFU as a cache for instructions as opposed to logic and then to assume that
the majority of the functionality required for the algorithm will be supplied by
the microprocessor [18]. In this way, the RFU can be used to accelerate the
program's computationally intensive kernels. Integrating the RPF as an RFU
within the processor has increased the bandwidth for communication between
the two [18]. However, because the RFU cannot access memory directly, it is
overly dependent on the host processor to fetch and store operands.

2.3 SUMMARY AND FUTURE WORK

In this chapter, we discussed key characteristics of reconfigurable computing
architectures and their tradeoffs; specifically: (1) how the RPF should be coupled
into the system, and (2) what the nature of the RPF should be. Fine-grained
fabrics allow users to perform bitwise operations without wasting reconfigurable
resources, whereas basic multibit computations can be mapped to fewer coarse­
grained modules and run at a faster clock rate.

The coupling of the RPF with a traditional processor affects both its ability
to do independent computation and the rate at which data can be transferred
from the processor itself. Independent reconfigurable coprocessors are easily
added to a traditional processing system and can operate independently from
the processor. However, this loose coupling increases the latency and decreases
the communication bandwidth between the processor and the RPF. In contrast,
tightly coupling the RPF to the processor facilitates communication and data
transfers, but limits the RFP's independence. In tightly coupled architectures,
the RPF is often part of the processor's pipeline, potentially stalling execution
until the VIC is completed. Loosely coupled RPFs try to offer the best of both
worlds: sufficient independence from the main processor to prevent pipeline stalls
combined with reasonable bandwidth for inter-processor/RPF communications.

One important challenge in developing reconfigurable computing architec­
tures is to create CAD tools and programming environments that enable design­
ers to use HLLS. This would allow designers to abstract the low-level hardware

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 74

2.3. Summary and Future Work 45

of the RPF and to simplify programming the architecture, while still achieving
speedup over a traditional processor. Another significant challenge is how to eval­
uate reconfigurable computing architectures. There is no equivalent to the Spec
Benchmark [25] set for such evaluation. Furthermore, as these architectures may
have different programming models or limited compiler support, designers are
not easily able to run the same benchmark on multiple architectures for a stan­
dard comparison.

That Chameleon, and many other reconfigurable computing startup compa­
nies in similar market niches, was forced to close its doors during the electronic
market downturn in the early 2000s illustrates an interesting aspect of recon­
figurable computing as a whole. Even though, theoretically, special-purpose
reconfigurable computing chips are a compelling technology, to date they have
failed to achieve commercial success and there have been numerous failures.
Many popular arguments have been used to justify this failure-they are too
power-hungry; an effective high-level programming environment has not been
developed; no one has identified a ''killer" application to justify the design cost of
using them-but no definitive answer exists. As it becomes increasingly difficult
to improve the performance of traditional processor architectures, the possibi­
lity that reconfigurable computing architectures may yet find their place in the
world of commercial success increases.

Despite the lack of significant market success to date, reconfigurable com­
puting is still an area of significant ongoing research and commercial interest.
For example, Rapport Inc.'s Kilocore design is a commercial derivative of the
PipeRench architecture. As of 2007, Rapport was offering 256 PE components
organized as 16 stripes, each composed of 16 8-bit PEs, and it has plans to
expand its offerings to components containing thousands of PEs.

References

[1] J. M. Arnold. The Splash 2 software environment. Proceedings of the IEEE Sympo­
sium on Field-Programmable Custom Computing Machines, April 1993.

[2] M. Wazlowski, L. Agruwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman,
S. Ghosh. PRISM-II compiler and architecture. Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, April 1993.

[3] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines,
April 1995.

[4] C. Ebeling, D. C. Cronquist, P. Franklin. RaPiD: Reconfigurable Pipelined Datapath.
Proceedings of the Sixth International Workshop on Field-Programmable Logic and
Applications, Springer-Verlag, September 1996.

[5] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling. Architecture design of
reconfigurable pipelined datapaths. Proceedings of the 20th Anniversary Conference
on Advanced Research in VLSI, March 1999.

[6] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, R. Laufer.
PipeRench: A coprocessor for streaming multimedia acceleration. Proceedings of
the 26th International Symposium on Computer Architecture, May 1999.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 75

46 Chapter 2 ■ Reconfigurable Computing Architectures

[7] H. Schmit. Incremental reconfiguration for pipelined applications. Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, April 1997.

[8] Y. Chou, P. Pillai, H. Schmit, J. Shen. PipeRench implementation of the instruction
path coprocessor. Proceedings of the 33rd International Symposium on Microarchi­
tecture, December 2000.

[9] M. J. Wirthlin, B. L. Hutchings, K. L. Gilson. The nano processor: A low
resource reconfigurable processor. Proceedings of the IEEE Symposium on Field­
Programmable Custom Computing Machines, April 1994.

[10] M. Budiu. Application-specific hardware: Computing without CPUs. Fourth CMU
Symposium on Computer Systems, October 2001.

[11] R. Razdan, M. Smith. A high-performance microarchitecture with hardware­
programmable functional units. Proceedings of the 27th Annual IEEE/ACM Interna­
tional Symposium on Microarchitecture, November 1994.

[12] B. Kastrup, A. Bink, J. Hoogerbrugge. ConCISe: A compiler-driven CPLD-based
instruction set accelerator. Proceedings of the IEEE Symposium on Field­
Programmable Custom Computing Machines, April 1999.

[13] J. Hauser, J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. Proceedings of the IEEE Symposium on Field-Programmable Custom_
Computing Machines, April 1997.

[14] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp architecture and C compiler.
Computer, April 2000.

[15] R. D. Wittig, P. Chow. OneChip: An FPGA processor with reconfigurable logic.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, March 1996.

[16] J. E. Carrillo, E. P. Chow. The effect of reconfigurable units in superscalar proces­
sors. Proceedings of the Ninth ACM International Symposium on Field-Programmable
Gate A"ays, February 2001.

[17] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. A. Arnold,
M. Gokhale. The NAPA adaptive processing architecture. Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines, April 1998.

[18] S. Hauck, T. W. Fry, M. Hosier, J. P. Kao. The Chimaera reconfigurable functional
unit. Proceedings of the IEEE Symposium on Field-Programmable Custom Comput­
ing Machines, April 1997.

[19] Z. A. Ye, A. Moshovos, S. Hauck, P. Banerjee. CHIMAERA: A high-performance
architecture with a tightly coupled reconfigurable functional unit. Proceedings of
the 27th International Symposium on Computer Architecture, June 2000.

[20] D. Wilson. Chameleon takes on FPGAs, ASICs. Electronic Business Asia, EDN
Online Magazine (http://www.edn.com/article/CASOSSJ .html?partner=enews), Octo­
ber 2000.

[21] P. Graham, B. Nelson. Reconfigurable processors for high-performance, embedded
digital signal processing. Proceedings of the Ninth International Workshop on Field­
Programmable Logic and Applications, August 1999.

[22] B. Salefski, L. Caglar. Reconfigurable computing in wireless. Proceedings of the
Design Automation Conference, June 2001.

[23] T. Bijlsma, P. T. Wolkotte, G. J. M. Smit. An optimal architecture for a DDC. Proceed­
ings of the 20th IEEE International Parallel and Distributed Processing Symposium
(IPDPS'06)-12th Reconfigurable Architecture Workshop (RAW 2006), April 2006.

[24] A. A. Chien, J. H. Byun. Safe and protected execution for the Morph/AMRM recon­
figurable processor. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 1999.

[25] Standard Performance Evaluation Corp. Spec Benchmarks (http://www.spec.org).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 76

RECONFIGURABLE COMPUTING

SYSTEMS

Steven A. Guccione

Cmpware, Inc.

CHAPTER 3

Like most technologies, reconfigurable computing systems are built on a variety
of existing technologies and techniques. It is always difficult to pinpoint the
exact moment a new area of technology comes into existence or even to pin­
point which is the first system in a new class of machines. Popular scientific
history often gives simple accounts of individuals and projects that represent a
turning point for a particular technology, but in reality the story is usually more
complicated. A number of individuals may arrive at similar conclusions, at very
nearly the same time, and the details of their research are nearly always differ­
ent. It is in the investigation of these details that a better understanding of the
technology, and its development, can be reached.

While it is satisfying to say that Thomas Edison invented the lightbulb in
1879, the real story is much more complex and much more interesting. Such
is the case with reconfigurable computing hardware systems, as it is with most
technologies. In the short time that these systems have been in existence, a rel­
atively large number of them, developed by many highly trained and talented
individuals from diverse fields, have evolved very quickly. In approximately a
decade the number of implemented reconfigurable systems went from a small
handful to hundreds.

The large number of exotic high-performance systems designed and built over a
very short time makes this area particularly difficult to document, but there is also
a problem specific to them. Much of the work was done inside various government
agencies, particularly in the United States, and was never published. In these
cases, all that can be relied on is currently available records and publications.

3.1 EARLY SYSTEMS

The generally agreed on criterion for a reconfigurable computing system is
that it be built from reconfigurable computing devices such as field-program­
mable gate arrays (FPGAs) or FPGA-like devices. In general, these devices
must be reprogrammable and permit hardwarelike levels of performance, if
not hardwarelike structures. Moreover, they should permit orders of magnitude
speedup over traditional microprocessors for similar clock speeds, silicon

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 77

48 Chapter 3 ■ Reconfigurable Computing Systems

Ho8t

CPU

FIGURE 3.1 ■ The traditional processor/coprocessor arrangement for reconfigurable computing
hardware.

area, and technology. Most significantly, however, the system must be repro­
grammable and able to perform with a variety of applications. Systems that use
a fixed hardware design, even if they use reconfigurable computing elements,
are viewed more as using this design in place of traditional hardware for cost
savings or convenience. It is in the ability to use reconfigurable devices for more
general-purpose computing that makes them "reconfigurable."

Reconfigurable systems are likewise distinguished from other cellular multi­
processor systems. Array processors, in particular Single Instruction Multiple
Data Processors (SIMDs), are considered architecturally distinct from reconfig­
urable machines, in spite of many similarities. This distinction arises primar­
ily from the programming techniques. Array processors tend to have either a
shared or dedicated instruction sequencer and take standard instruction-style
programming code. Reconfigurable machines tend to be programmed spatially,
with different physical regions of the device being configured at different times.
This necessarily means that they will be slower to reprogram than cellular mul­
tiprocessor systems but should be more flexible and achieve higher performance
for a given silicon area.

One of the earliest acknowledged reconfigurable computing machines,
although it is frequently referenced under "distributed computing," is the
Fixed-Plus-Variable (F+V) computer developed by Estrin and his colleagues
at the University of California at Los Angeles in the mid-1960s [17-20]. The
F+V consisted of a standard processor unit that controlled many other "vari­
able" units. It had several limitations, including the need to manually change
wiring as part of the reconfiguration process, but it did offer relatively mature
software tools for its time. Generally because of its use of reconfigurable
computing concepts, the F+V system is acknowledged to be the forerunner of
modern reconfigurable computing architectures.

After the F+V, there was a gap of nearly two decades before more modern
reconfigurable computing systems began to be explored. The rise of the mod­
ern era began in the mid-1980s, when commercially available FPGA devices
from companies such as Xilinx and Altera as well as several smaller companies
became widely available.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 78

3.2 PAM, VCC, and Splash 49

These devices were generally based around small lookup tables (LUTs) and
a programmable interconnection network. The LUTs were typically 8- or 16-bit
memories configured to implement arbitrary logic functions, taking their inputs
from and sending their outputs to a programmable interconnection network.
While this network could not provide arbitrary interconnections, software tools
were usually able to produce operational digital circuits for a wide range of
popular designs.

Even by 1990, however, the largest FPGA devices supported designs on the
order of 1 OK logic gates. This is a very small number and barely suitable for
a parallel multiplier circuit. Even worse, the FPGAs were in competition with
modem microprocessors, which were doubling in performance every 18 months
and providing a simpler programming model, more mature tools, and a larger
base of experienced users. For these reasons, the early work in reconfigurable
systems necessarily concentrated on two areas, often simultaneously:

■ The systems would have to use relatively large numbers of FPGAs,
sometimes hundreds, to achieve sufficient computing power to be of
use when compared to microprocessor-based systems.

■ They would attack problems that were naturally ill suited to modem
microprocessors, including bit-oriented algorithms that did not map
efficiently to word-oriented microprocessors and highly structured and
repetitive algorithms such as graphics that mapped well to the
hardwarelike structures of reconfigurable systems.

The 1990s also marked the beginning of an explosive growth in circuit density
following Moore's Law, with a doubling in FPGA density approximately every
18 months. As the density increased, the typical application went from simple
interface or "glue" logic circuits to more complex designs, eventually support­
ing large custom coprocessors, typically for digital signal processing (DSP) or
other data-intensive applications. With large, high-quality, commercially avail­
able FPGA devices now in use, and with the ongoing rapid increase in den­
sity, FPGA-based reconfigurable computing machines quickly became widely
available.

3.2 PAM, VCC, AND SPLASH

In the late 1980s, PAM, VCC, and Splash-three significant general-purpose sys­
tems using multiple FPGAs-were designed and built. They were similar in i.l1at
they used multiple FPGAs, communicated to a host computer across a standard
system bus, and were aimed squarely at reconfigurable computing.

3.2.1 PAM

The Programmable Active Memories (PAM) project at Digital Equipment Cor­
poration (DEC) initially used four Xilinx XC3000-series FPGAs as shown in
Figure 3.2 [8]. The original Perle-0 board contained 25 Xilinx XC3090 devices

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 79

50 Chapter 3 ■ Reconfigurable Computing Systems

FIGURE 3.2 ■ Digital Equipment Corporation's PAM Perle-0.

in a 5 x 5 array, attached to which were four independent banks of fast static
RAM (SRAM), arranged as 64K x 64 bits, which were controlled by an addi­
tional two XC3090 FPGA devices. This wide and fast memory provided the FPGA
array with high bandwidth. The Perle-0 was quickly upgraded to the more recent
XC4000 series. As the size of the available XC4000-series devices grew, the PAM
family used a smaller array of FPGA devices, eventually settling on 2 x 2.

Based at the DEC research lab, the PAM project ran for over a decade and
continued in spite of the acquisition of DEC by Compaq and then the later
acquisition of Compaq by Hewlett-Packard. PAM, in its various versions, plugged
into the standard PCI bus in a PC or workstation and was marked by a relatively
large number of interesting applications as well as some groundbreaking work
in software tools. It was made available commercially and became a popular
research platform.

3.2.2 Virtual Computer

The Virtual Computer from the Virtual Computer Corporation (VCC) was perhaps
the first commercially available reconfigurable computing platform. Its original
version was an array of Xilinx XC4010 devices and I-Cube programmable inter­
connect devices in a checkerboard pattern, with the I-Cube devices essentiallYt
serving as a crossbar switch as shown in Figure 3.3 [11]. The topology of th�
interconnection for these large FPGA arrays was an important issue at this time:\
With a logic density of approximately l0K gates and input/output (I/0) pins on
the order of 200, a major concern was communication across FPGAs. The I-Cube

XC3090 I xC3090 I xC3090

- - -
xC3090 I xC3090 I xC3090

- - -
XC3090 I XC3090 I XC3090

xC3090 I XC3090 I XC3090

XC3090 I XC3090 I XC3090

I xC3090

-
I xC3090

-
I XC3090

I xC3090

I xC3090

I xC3090

-
I xC3090

I XC3090

I XC3090

I XC3090

I

I

E]

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 80

FIGURE 3.3 ■ VCC's Virtual Computer.

3.2 PAM, VCC, and Splash 51

devices were perceived as providing more flexibility, although each switch had
to be programmed, which increased the design complexity.

The first Virtual Computer used an 8 x 8 array of alternating FPGA and I-Cube
devices. The exception was on the left and right sides of the array, which exclu­
sively used FPGAs, which consumed 40 Xilinx XC4010 FPGAs and 24 I-Cubes.
Along the left and right sides were 16 banks of independent 16 x 8K dual-ported
SRAM, and attached to the top row were 4 more banks of standard single-ported
256K x 32 bits SRAM controlled by an additional 12 Xilinx XC4010 FPGAs.
While this system was large and relatively expensive, and had limited software
support, VCC went on to offer several families of reconfigurable systems over
the next decade and a half.

3.2.3 Splash

The Splash system, from the Supercomputer Research Center (SRC) at the Insti­
tute for Defense Analysis, was perhaps the largest and most heavily used of these
early systems [22, 23, 27]. Splash was a linear array consisting of XC3000-series
Xilinx devices interfacing to a host system via a PCI bus. Multiple boards could
be hosted in a single system, and multiple systems could be connected together.
Although the Splash system was primarily built and used by the Department of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 81

52 Chapter 3 ■ Reconfigurable Computing Systems

FIGURE 3.4 ■ SRC's Splash 2.

Defense, a large amount of information on it was made available. A Splash 2
system quickly followed and was made commercially available from Annapolis
Microsystems [30].

The Splash 2 board consisted of two rows of eight Xilinx XC4010 devices,
each with a small local memory attached as shown in Figure 3.4. These 16
FPGA/m�mory pairs were connected to a crossbar switch, with another dedi­
cated FPGA/memory pair used as a controller for the rest of the system. Much
of the work using Splash concentrated on defense applications such as cryptog­
raphy and pattern matching, but the associated tools effort was also notable,
particularly some of the earliest high-level language (HLL) to hardware descrip­
tion language (HDL) translation software targeting reconfigurable machines [4].
Specifically, the data parallel C compiler and its debug tools and libraries pro­
vided reconfigurable systems with a new level of software support.

PAM, VCC, and Splash represent the early large-scale reconfigurable computing
systems that emerged in the late 1980s. They each had a relatively long lifetime
and were upgraded with new FPGAs as denser versions became available. Also of
interest is the origin of each system. One was primarily a military effort (Splash),
another emerged from a corporate research lab (PAM), and the third was from
a small commercial company (Virtual Computer). It was this sort of widespread
appeal that was to characterize the rapid expansion of reconfigurable computing
systems during the 1990s.

3.3 SMALL-SCALE RECONFIGURABLE SYSTEMS

PAM, VCC, and Splash were large and relatively expensive machines. Because a
single high-density FPGA device could cost several thousand dollars, their circuit
boards were perhaps some of the most expensive built at that time. Around
1990, a cost of approximately $1 per reconfigurable logic gate in a reconfigurable•

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 82

3.3 Small-scale Reconfigurable Systems 53

system was not unusual. Of course, this cost dropped rapidly as FPGAs of higher
densities and lower prices became available.

Because of their cost, the use of FPGAs was somewhat limited, and none of
these systems achieved widespread success as consumer products. While work
on them was ongoing, smaller-scale FPGAs were beginning to appear that would
have a major impact on the direction of the field, especially because their rapidly
increasing density meant that the large multichip systems of yesterday would
very soon fit within a single device.

3.3.1 PRISM

One of the smaller-scale experiments with reconfigurable computing was PRISM,
developed at Brown University [5]. This was an unusual project in that it used
a single small FPGA as a coprocessor in a larger distributed system. This dis­
tributed processor/coprocessor arrangement was unique for its time and would
reappear many years later in more mainstream reconfigurable supercomputers.
It permitted small but often complex calculations to be offloaded from the central
processing unit (CPU) to the reconfigurable coprocessor. The circuits imple­
mented in the coprocessor may not have been large, but the tighter coupling to
the processor gave this architecture an advantage in places where larger and more
expensive arrays would not have been appropriate.

Also of note are PRISM's software development tools. Its compiler technol­
ogy used was advanced for its era and was one of the earlier experiments in
high-level language programming of reconfigurable systems. In particular, it
addressed a more fine-grained form of coprocessing where the host CPU and
the reconfigurable coprocessor shared the workload. Larger systems tended to
have vastly more powerful reconfigurable units and often used the host only for
simple control, input/output, and display. The workload was seldom shared with
the host CPU in any meaningful way in these larger systems.

3.3.2 CAL and XC6200

Perhaps the most interesting project of this era came from Algotronix, a small
Scottish company with connections to the University of Edinburgh [28], which
created its own FPGA exclusively targeted at reconfigurable computing [1]. The
Configurable Array Logic (CAL) featured very simple logic cells compared to other
commercial FPGAs. What was unique about CAL was that each cell could be
individually addressed and reconfigured dynamically-something that no other
FPGA device at the time could manage. CAL also featured a fairly standard bus
interface that permitted it to be easily used with a microprocessor in a coproces­
sor arrangement. Algotronix also offered some fairly traditional graphical tools
to program CAL, as well as a small board containing multiple CAL devices.

While CAL was unique and influential, it was not until the acquisition of
Algotronix by Xilinx in the early 1990s that its ideas would become more wide­
spread. Xilinx began development of a second-generation CAL device it called
the XC6200 [12]. Many of its features were the same as those of the earlier CAL

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 83

54 Chapter 3 • Reconfigurable Computing Systems

devices, but the backing of Xilinx gave the XC6200 a high level of acceptance, at
least in the research community.

Perhaps the most groundbreaking aspect of CAL, and later the XC6200
family, was largely nontechnical. Because these devices supported fine-grained
and dynamic reconfiguration, they required that the configuration bitstream be
openly documented. Thus, all of the internal details of the logic circuitry and
the configuration process were fully documented and made publicly available.
Unlike other programmable hardware, the internal programming codes for most
FPGAs have never been published, largely for historical and practical reasons.

3.3.3 Cloning

Early in the history of FPGAs, there was some concern that lower-cost "cloned"
FPGA devices could be made by third parties. For instance, a company could
produce a device that was functionally identical to a Xilinx XC4000 and sell
it to Xilinx customers. This was common practice for older and smaller sili­
con devices and was sometimes encouraged by manufacturers. However, the
large investment FPGA vendors had in software tools and silicon intellectual
property made them resistant to releasing any more information than necessary
about their silicon architectures. Also, as long as the high-level design tools were
available for a reasonable price and worked well, most users did not have any
particular need to examine an FPGA device's internal workings.

Today it is unlikely that a device as complex as an FPGA could be "cloned."
Even if the technical challenges could be overcome, legal barriers to using such
intellectual property probably could not be successfully challenged.

Another concern of some customers was that knowledge of the internal work­
ings of FPGA devices could permit their designs to be compromised. While
most people familiar with the issues tended to dismiss the idea of reverse­
engineering, especially as FPGAs have increased in size, it was still a concern to
some customers.

For these reasons, FPGA bitstreams have traditionally been, and still remain,
a tightly held trade secret. The XC6200 broke ranks by publicizing its con­
figuration data and permitting a new level of experimentation with tools and
applications that could make use of these powerful new modes of operation.
Commercial success for the XC6200 would be elusive in the fiercely competitive
and rapidly changing FPGA market of the 1990s, but it remained a favorite of
researchers even long after its cancellation by Xilinx.

3.4 CIRCUIT EMULATION

One of the early large-scale uses of reconfigurable logic was for circuit emula­
tion. Because FPGAs can, in theory, implement any arbitrary digital logic circuit,
some people realized that they could be used as a form of simulation accelera­
tor. At the time, digital circuit simulation had become a bottleneck in the design
process. As integrated circuit designs became larger and more complex, the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 84

3.4 Circuit Emulation 55

time necessary to simulate them also grew. Without accurate simulation, design
errors inevitably crept into the final design, often requiring another expensive
and time-consuming redesign cycle. In spite of the high cost of FPGA devices,
the ability to quickly and accurately evaluate the function of large and complex
digital circuits became very valuable. Also, for chip designs that included pro­
grammable processors (or that were the processors themselves), an FPGA-based
prototype provided a development platform for testing the software that would
eventually run on the production device.

Interestingly, the larger and more complex the circuit, the more difficult and
time consuming simulation became and the more valuable FPGA-based emu­
lation would be to designers. For this reason, some of the largest and most
expensive FPGA-based machines have traditionally been digital circuit emu­
lators. Some purists may point out that such machines were highly applica­
tion specific and did not necessarily constitute reconfigurable computing. While
these machines did often simulate only a single design in their lifetimes, they
were usually reconfigured as much as several times per day to perform different
functions. Also, in some cases users would go on to realize that the emulation
platforms could be employed for more general-purpose computing.

Emulation using reconfigurable logic quickly became popular, with very large­
scale systems becoming commercially available in rapid succession. PiE and
QuickTurn in the United States announced their machines, as did the smaller
InCA in Europe. The machines were very similar, all attempting to put as many
high-density FPGAs as possible into a single system. Because they were highly
scalable, and their densities and prices were changing rapidly, it is difficult to
gauge what a typical large FPGA emulation system would be. However, a system
on the order of 1 million programmable logic gates built from devices with
approximately a lOK-gate capacity would be representative of a large, but early
FPGA emulation. While large and expensive, these systems were very valuable
to integrated circuit designers, who knew the high cost of designs with bugs.
One place in particular where they had a large impact was in the design of
microprocessors.

3.4.1 AMO/Intel

Because microprocessors were very complex and had strict deadlines to meet,
emulation became very important at places such as Advanced Micro Devices
(AMD) and Intel. And because the new microprocessor parts often had to be
compatible with older models, emulation was a very good way to guarantee
that systems would be compatible across generations. One event in the 1990s
would help further drive emulator popularity. AMD and Intel began a decades­
long competition to produce the latest high-performance device compatible with
a x86 instruction set for the desktop PC market.

Initially, AMD was in the "follower" position and was attempting to create
functionally identical versions of Intel devices. This was no small challenge, and
with new products being released almost yearly, the value to AMD of getting a
functionally correct Intel work-alike device as soon as possible was very high.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 85

56 Chapter 3 ■ Reconfigurable Computing Systems

Emulators played a very large role in verifying the functional correctness of the
AMD designs against the Intel device. While the emulated designs would run at
perhaps a few hundred kilohertz as compared to the tens of megahertz of the
final silicon devices, being able to run test vectors at this rate, and even eventu­
ally booting entire operating systems, was crucial in proving the compatibility
of these microprocessor designs.

Emulation is still widely used in digital design, but the increasing size and
decreasing cost of FPGA devices has led to a smaller market for very large emu­
lation machines such as the ones offered by QuickTum and PiE. In fact, Quick­
Tum and PiE merged in 1993 after a short legal battle. The merged company
was acquired in 1998 by Cadence, a CAD software vendor.

3.4.2 Virtual Wires

Although emulation was largely a commercial endeavor, one research project in
this area warrants special mention-the Virtual Wires Project (see Chapter 30,
Logic Emulation on Multi-FPGA Systems) at M.I.T., which produced an emu­
lator that helped overcome one of the most serious limitations of emulators
of the time [6]. Whereas the logic density of FPGAs grew rapidly, chip-to-chip
interconnect soon became the limiting factor in large, multi-FPGA designs such
as emulation. In fact, many emulated designs used only a fraction of the logic
in the FPGAs while consuming all of the input/output resources. Then along
came Virtual Wires with a pin multiplexing scheme to share 1/0 pins on FPGA
devices transparently, permitting their higher utilization. This technology would
be licensed to another logic emulation company, Ikos, which would eventually
be bought by another of the large CAD software vendors, Mentor Graphics.

Emulation had perhaps two major impacts on reconfigurable computing. First,
it was an early large-scale user of reconfigurable logic that was commercially
successful. This helped drive similar work in the field. Perhaps just as important,
many of the researchers involved in the emulation work saw the value of more
general-purpose computing using reconfigurable logic and would go on to lead
advancements in other areas of reconfigurable systems.

3.5 ACCELERATING TECHNOLOGY

After the success of digital circuit emulators and the research results of the early
systems, reconfigurable computing was poised to expand. Three factors helped
drive this expansion. First, the ever-increasing density of FPGA devices was mak­
ing larger and larger amounts of reconfigurable logic available at an increasingly
lower price. In just a few short years, the million-gate systems that took several
large boards could be built with a single device. This in itself led to widespread
experimentation with reconfigurable computing as dozens of research projects
at universities and research labs across the globe sprang up.

The second factor is one that has become more obvious in retrospect. By the
mid-1990s the decades-long increase in microprocessor computing power was

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 86

3.5 Accelerating Technology 57

beginning to ebb. Late in the decade, it was clear that manufacturing technology
constraints, power consumption issues, and architectural limitations such as
memory performance were bringing an end to the long era of microprocessor
dominance. In the past, new solutions to high-performance computing had had
to contend with the yearly appearance of a new microprocessor with double
the performance of the previous generation and a consumer-friendly price. This
made it difficult for custom high-performance systems to be competitive. With
the end of the steep growth in microprocessor performance in sight, however,
other solutions to high performance were beginning to look more attractive.
Reconfigurable computing technology happened to be emerging just at this crit­
ical juncture and would be considered by many as a top contender for the future
of high-performance computing.

The third factor was the Department of Defense's new funding program,
named Adaptive Computing Systems (ACS), which invested more than
$100 million in reconfigurable computing research during the mid- to late 1990s.
It is always difficult to judge the effect of such a program, but it is clear
that ACS not only led to an increased level of research in this field but also
provided a useful forum for researchers, both academically and commercially.
While the program funded exclusively U.S. researchers, it also appears to have
spurred reconfigurable computing research in other places, particularly the
United Kingdom and Japan [31,32].

The era of expansion in reconfigurable computing technology was marked
by a rapid growth in the number of systems being constructed. An accurate
count of projects in this area is difficult, but certainly dozens and perhaps hun­
dreds of reconfigurable systems were constructed at this time [25]. However,
the increased density of FPGA devices led to a shift away from large, expensive
systems like those of the first generation and toward smaller systems, often con­
taining a single FPGA device on a standard board to be plugged into a personal
computer or workstation.

The new systems tended to be primarily for research and were more often
than not hobbled by two problems. First, the tools to program a reconfigurable
computing platform were not standardized and often amounted to two com­
pletely decoupled design flows. Hardware design tools provided by the FPGA
vendor were used to construct a circuit in the FPGA coprocessor, while stan­
dard software development tools were used to program the host PC or worksta­
tion. This hardware/software codesign style was inefficient and inflexible, and
required highly skilled engineers. For those reasons, although there were a few
notable software and tools projects at this time, they were more the exception
than the rule. None achieved widespread popularity.

3.5.1 Teramac

Among the projects to come out of this era, Teramac [3, 14], a product of the
Hewlett-Packard research laboratories, bears special mention, for three reasons.
First, it went against the trend by creating a large multi-FPGA machine. Second,
it straddled different markets by being aimed at both circuit emulation and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 87

58 Chapter 3 ■ Reconfigurable Computing Systems

reconfigurable computing. Lastly, it was constructed of custom-integrated circuits
instead of commercially available FPGA devices.

Teramac was originally designed to perform emulation for a large micropro­
cessor design that was being developed jointly by Hewlett-Packard and Intel.
It was to be the first 64-bit Intel processor and at the time went by the name
"Merced." The joint Intel/HP project was announced in 1994 and was expected
to produce its first silicon device by 1999.

All of this was taldng place just as large circuit emulators from vendors such
as QuickTum were emerging as the new tools for large microprocessor devel­
opment. The HP/Intel venture decided to also produce its own emulator, which
would not use commercial FPGAs but rather an HP custom-designed reconfig­
urable logic device [2]. This was not as unusual an idea as it may seem. Intel
and HP certainly had the resources to produce such a machine, and the current
FPGA-based offerings were far from perfect.

The three biggest problems associated with emulators at this time were cost,
low circuit density, and tools. In fact, the tools problem was perhaps the most
severe of the three. Large designs needed massive computing resources on their
own to be converted into configuration bitstreams for the many FPGA devices. If
we assume that the emulator hardware consisted of hundreds of FPGA devices,
each taking several hours of time on a standard personal computer or workstl:t­
tion to produce a configuration bitstream, it is clear that a large computational
resource was required just to produce the data used by the emulator.

This part of design and test was often the bottleneck, and there appeared to
be little that could be done to accelerate the process. Additionally, commercial
FPGA devices were aimed at a more general-purpose logic design market and
were not explicitly aimed at emulation. A special-purpose device more tailored to
the needs of circuit emulation could provide the higher density and performance
required by emulation users.

Teramac was announced in 1995 and had some unique features. First, it su,c­
cessfully overcame many of the limitations of the commercial FPGA devices of
that era. Its custom FPGA (called Plasma) focused on fast compilation times via
very flexible crossbar-based interconnects. This was in contrast to commercial
FPGA's focus on logic density and performance, and it meant that the placement
and routing of a design for a single Plasma device took seconds, not minutes
to hours. Perhaps more interesting, Plasma made good use of defect tolerance.
Boards and devices that would otherwise have been thrown away could be used
in the Teramac; an analysis phase would test the system to log defects and permit
the faulty portions of the system to be bypassed. While regular array archi­
tectures such as FPGAs lend themselves naturally to such defect and fault t�l­
erance, it had not traditionally been used in commercial reconfigurable log�c
devices.

In addition to its emulation duties, Teramac was used for applications such ij'
image processing, bioinformatics, search, and CAD, making it a true reconfi -
urable computing platform. However, while Teramac was successful, the chi
it was built to emulate, the IA-64 family, was somewhat less so. The IA-6
devices were late to market, but they did eventually ship and found their wa

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 88

3.6 Reconfigurable Supercomputing 59

FIGURE 3.5 ■ A Hewlett-Packard Laboratories Teramac board.

into commercial products-just not enough to justify the massive investment
by HP and Intel, which would not jointly produce other architectures. Thus,
Teramac became an early casualty of the HP/Intel microprocessor design part­
nership. Figure 3.5 shows a picture of one of the boards from a Teramac
system.

3.6 RECONFIGURABLE SUPERCOMPUTING

While the number of small reconfigurable coprocessing boards would continue
to proliferate as commercial FPGA devices became denser and cheaper, other
new hardware architectures were produced to address the needs of large-scale
supercomputer users. Unlike the earlier generation of boards and systems that
sought to put as much reconfigurable logic as possible into a single unified sys­
tem, these machines took a different approach. In general, they were traditional
multiprocessor systems, bt:t each processing node in them .;onsisted of a very
powerful commercial desktop microprocessor combined with a large commer­
cial FPGA device. Another factor that made these systems unique is that they
were all offered by mainstream commercial vendors. By 2005 the three largest

■ II ' •

. . [·---··-

....
.. I

-1lf . ' . .. \'
';. . ' -
' · -t ' ------

}~! l

I ~ --

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 89

60 Chapter 3 ■ Reconfigurable Computing Systems

makers of traditional supercomputer systems-Cray Research, SRC, and Silicon
Graphics-were all producing systems of this type.

3.6. 1 Cray, SRC, and Silicon Graphics

The first reconfigurable supercomputing machine from Cray, the XD 1, is based
on a chassis of 12 processing nodes, -with each node consisting of an AMD
Opteron processor. Up to 6 reconfigurable computing processing nodes, based
on the Xilinx Virtex-4 devices, can also be configured in each chassis, and up to
12 chassis can be combined in a single cabinet, with multiple cabinets making
larger systems. Hundreds of processing nodes can be easily configured with this
approach.

SRC, a company with historic connections to Cray, takes a more aggressive
approach to reconfigurable computing [34]. Both of their multiprocessor sys­
tems feature traditional processor and reconfigurable processing units that share
a common buslike structure and may be mixed in various configurations [21].
Like the Cray system, the SRC machines also use large Xilinx Virtex-series
FPGAs and x86-family desktop processors. SRC also offers smaller personal
workstation systems for development.

Finally, Silicon Graphics offers its Reconfigurable Application-Specific Pro­
cessor (RASP) family of systems [36], which also use high-density Xilinx Virtex
FPGAs as its reconfigurable computing elements, but in dual-device configu­
rations on a "blade" -style module. These are very small boards that can be
plugged into large racks, often with the system still operating. They interface
to the more traditional Silicon Graphics workstation and multiprocessor sys­
tems, which also use high-performance desktop microprocessors but are based
on the MIPS architecture.

The Cray, SRC, and Silicon Graphics machines point to a clear direction for
large-scale reconfigurable computing systems. They combine a more distributed
array of FPGA elements with an emphasis on floating-point arithmetic. As FPGA
densities continue to increase, the ability to perform large floating-point cal­
culations, even multiple floating-point calculations, in a single device becomes
significant. Also, as the performance of commodity microprocessors remains
plateaued, it is likely that acceleration techniques such as those used in these
reconfigurable machines will continue to be used.

3.6.2 The CMX-2X

A discussion of distributed, floating-point FPGA-based supercomputing would
not be complete without a mention of the CM-2X [13]. This machine predates
the current crop of reconfigurable supercomputers by over a decade and consists
of a Connection Machine 2 from Thinking Machines supplemented with FPGA
coprocessors instead of the standard floating-point devices typically used. The
CM-2X was a defense-related project, and little information is available on it.
However, along with the PRISM system, it is clearly the forerunner of this family
of distributed multiprocessor reconfigurable supercomputers.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 90

3.7 NON-FPGA RESEARCH

3.8 Other System Issues 61

Although the vast majority of reconfigurable computing systems were based
on commercially available FPGA devices, there are some notable exceptions.
A small number of projects designed and built custom-reconfigurable silicon
devices as the basis of their designs [7, 15, 16,24,26,33,35]. The general trend
was to replace the smaller-grained LUTs in the FPGA architecture with coarser­
grained structures more amenable to computing. Typically this meant arith­
metic logic units (ALUs) that mapped more closely to traditional programming
languages.

Such a coarser-grained approach raises the issue of categorizing non-FPGA
devices. Large numbers of ALU-like structures quickly begin to resemble multi­
processors or very long instruction word (VLIW) machines more than they do
FPGAs. The way routing is performed may further differentiate non-FPGA from
FPGA devices. In general, non-FPGAs are computation, not circuit, oriented.
They can easily produce the larger and more complex circuits used by typical
arithmetic-based computations, but may not be able to efficiently implement
arbitrary digital logic functions.

These systems may have broken new and interesting ground, but the prob­
lem with them may ultimately be a practical one. Because commercial FPGAs
are very popular, they tend to use the latest silicon processes and are very effi­
ciently designed. The software support for such devices is also decidedly non­
trivial. To produce a custom reconfigurable computing device that can compete
with both the dense, efficient circuitry and the large body of available soft­
ware tools of modem FPGAs is a daunting prospect. Given these barriers, no
serious contenders to commercial FPGAs as the basis for reconfigurable com­
puting machines have arisen. While the ideas behind these novel architectures
are sound and the advantages tangible, it has proved difficult to offer them as a
viable alternative to FPGA-based reconfigurable systems.

3.8 OTHER SYSTEM ISSUES

In spite of nearly two decades of intensive research and commercial activity, and
the potential to provide orders of magnitude pe1formance, reconfigurable logic­
based computing systems have not yet begun to displace conventional systems
in any significant way. There are perhaps many factors in this lack of acceptance,
but technical details at the hardware level certainly appear to be one of the most
serious.

One unavoidable architectural problem involves the necessary use of reconfig­
urable logic in a processor/coprocessor arrangement, which ties an inherently
serial host system to the high-performance and highly parallel reconfigurable
processing unit. This connection is necessarily made across a system bus of
some sort, which is guaranteed to serialize access to the coprocessor. Thus, the
reconfigurable coprocessor can only be "fed" data at a relatively low and fixed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 91

62 Chapter 3 • Reconfigurable Computing Systems

rate. Such a drawback resembles the "von Neumann bottleneck" in conventional
uniprocessor systems, where access to memory over a similar bus restricts
performance. In the case of reconfigurable systems, the bus interface is the
same but the processor is connected to the reconfigurable unit instead of to
a memory unit.

By a similar analogy, Amdahl's Law states that an algorithm's parallel perfor­
mance is eventually dominated by its serial portions. If, for instance, an algo­
rithm is 90 percent parallelizable, the limit on speedup is 10. This implies that
even if the parallel portion of the algorithm can be executed in zero time, the
serial portion will still take the same fixed amount of time to execute. Similarly,
no matter how much work can be offloaded to the reconfigurable coprocessors,
the portions that cannot will tend to dominate the computation time.

In this sense, the same problems that limit the ability to parallelize
algorithms also limit the ability to use reconfigurable computing. While there are
other issues that limit acceptance of reconfigurable systems, including the lack
of mature software development tools and competition from other, more con­
ventional architectures, the basic inability to exploit the parallelism in general­
purpose reconfigurable computing will always be a serious concern.

The conventional desktop or server approaches to reconfigurable systems
have their difficulties, but reconfigurable computing may still find an agreeable
environment in embedded systems, which tend to have streaming data inputs
and outputs and may not be at the mercy of the bandwidth of existing system
buses. In addition, there may be other attractive features of reconfigurable logic
in such embedded systems, including lower overall power consumption and the
ability to dynamically adapt to external conditions.

3.9 THE FUTURE OF RECONFIGURABLE SYSTEMS

There appear to be some clear trends in the relatively brief, but active,
history of reconfigurable computing. Commercial FPGA devices have contin­
ued to be dominant in such systems, but FPGA architectures are also evolving,
beginning to incorporate coarser-grained resources. Block memory units and
multiplier units have become standard, and even multiple microprocessor cores
have found their way onto FPGA devices. Morover, this trend has been mir­
rored in the coarser-grained research efforts in more recent reconfigurable logic
devices. Clearly there is a trend toward coarser-grained elements, as well as a
heterogeneous variety of elements.

Perhaps in a related way, large-scale high-performance computing, or super­
computing, has clearly embraced reconfigurable logic. Reconfigurable comput­
ing appears to be the path to the higher levels of performance desired by
these architectures, particularly as traditional microprocessor architectures have
reached a performance plateau. Still, while the manufacturers of supercomput�
ing equipment have clearly embraced reconfigurable computing, it remains tol
be seen if end users will do so as well.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 92

References

3.9 The Future of Reconfigurable Systems 63

[1] Algotronix, Ltd. CAL1024 Datasheet, 1990.
[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Plasma: An FPGA for

million gate systems. Proceedings of the ACM/SIGDA Fourth International Sympo­
sium on Field-Programmable Gate Arrays, February 1996.

[3] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider. Teramac-configurable
custom computing. IEEE Symposium on FPGAs for Custom Computing Machines,
April 1995.

[4] J. M. Arnold. The Splash 2 software environment. Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, April 1993.

[5] P. M. Athanas, H. F. Silverman. Processor reconfiguration through instruction-set
metamorphosis. IEEE Computer 26(3), March 1993.

[6] J. A. Babb, R. Tessier, A. Agarwal. Virtual wires: Overcoming pin limitations in
FPGA-based logic emulators. Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, April 1993.

[7] V. Baumgarten, F. May, A. Nuckel, M. Vorbach, M. Weinhardt. PACT XPP-A self­
reconfigurable data processing architecture. First International Conference on Engi­
neering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, June 25-28, 2001.

[8] P. Bertin, D. Roncin, J. Vuillemin. Introduction to programmable active memories.
Technical Report 3, DEC Paris Research Laboratory, 1989.

[9] D. H. Brown Assoc. Cray XDl brings high-bandwidth supercomputing to
the mid-market (http://www.cray.com/downloads!dhbrown_crayxdl _oct2004.pdf),
October 2004.

[10] D. A. Buell, K. L. Pocek, eds. Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, IEEE Computer Society Press, 1993.

[11] S. Casselman. Virtual computing and the virtual computer. IEEE Workshop on
FPGAs for Custom Computing Machines, April 1993.

[12] S. Churcher, T. Kean, B. Wilkie. XC6200 FASTMAP™ processor interface. Proceed­
ings of the Fifth International Workshop on Field-Programmable Logic and Applica­
tions, FPL 1995, August/September 1995.

[13] S. A. Cuccaro, C. F. Reese. The CM-2X: A hybrid CM-2/Xilinx prototype. IEEE
Workshop of FPGAs for Custom Computing, April 1993.

[14] W. B. Culbertson, R. Amerson, R. J. Carter, P. J. Kuekes, G. Snider. Teramac con­
figurable custom computer. Field-Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing, Proceedings of International Society of
Optical Engineering, October 1995.

[15] C. Ebeling, D. C. Cronquist, P. Franklin. RaPiD-Reconfigurable pipelined
datapath. Field-Programmable Logic: Smart Applications, New Paradigms and Com­
pilers, R. W. Hartenstein, M. Glesner, eds., Springer-Verlag, September 1996.

[16] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, S. G. Berg. Mapping applica­
tions to the rapid configurable architecture. IEEE Symposium on FPGAs for Custom
Computing Machines, April 1997.

[17] G. Estrin. Organization of computer systems-The fixed plus variable structure
computer. Proceedings of the Western Joint Computer Conference, May 1960.

[18] G. Estrin, B. Bussell, R. Tum, J. Bibb. Parallel processing in a restructurable com­
puter system. IEEE Transactions on Electronic Computers 12(5), December 1963.

[19] G. Estrin, R. Tum. Automatic assignment of computations in a variable struc­
ture computer system. IEEE Transactions on Electronic Computers 12(5), December
1963.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 93

64 Chapter 3 • Reconfigurable Computing Systems

[20] G. Estrin, C. R. Viswanathan. Organization of a "fixed-plus-variable" structure
computer for eigenvalues and eigenvectors of real symmetric matrices. Journal
of the ACM 9(1), January 1962.

[21] 0. D. Fidanci, D. Poznanovic, K. Gaj, T. El-Ghazawi, N. Alexandritis. Performance
overhead in a hybrid reconfigurable computer. Reconfigurable Architecture Work­
shop, April 2003.

[22] M. Gokhale, W. Holmes, A. Kosper, D. Kunze, D. Lopresti, S. Lucas, R. Minnich,
P. Olsen. SPLASH: A reconfigurable linear logic array. International Conference on
Parallel Processing, 1990.

[23] M. Gokhale, A. Kosper, S. Lucas, R. Minnich. The logic description generator.
Proceedings of the International Conference on Application Specific Array Processing,
1990.

[24] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor. PipeRench:
A reconfigurable architecture and compiler. IEEE Computer 33(4), April 2000.

[25] S. A. Guccione. List of FPGA-based computing machines (http://www.io.com/~guc­
cionelHW _list.html), 1994.

[26] R. W. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger. Using the KressArray for
configurable computing. Proceedings of the International Society of Optical Engineer­
ing Conference on Configurable Computing: Technology and Applications, November
1998.

[27] M. W. Holmes, A. Kosper, S. Lucas, R. Minnich, D. Sweely. Building and using a
highly parallel programmable logic array. IEEE Computer 24(1), January 1991.

[28] T. A. Kean. Configurable I.ogic: A Dynamically Programmable Cellular Architecture
and Its VLSI Implementation, Ph.D. thesis, University of Edinburgh, January 1989.

[29] T. A. Kean. Deja vu, all over again. IEEE Design and Test of Computers 22(2),
March/April 2005.

[30] J. T. McHenry, R. L. Donaldson. WILDFIRE custom configurable computer. Field
Programmable Gate Arrays (FPGAs) for Fast Board Development and Reconfigurable
Computing, Proceedings of the International Society of Optical Engineering, October
1995.

[31] T. Miyazaki, T. Murooka, M. Katayama, A. Takahara. Transmutable telecom system
and its application. IEEE Symposium on FPGAs for Custom Computing Machines,
April 1999.

[32] T. Miyazaki, K. Shirakawa, M. Katayama, T. Murooka, A. Takahara. A transmutable
telecom system. Field-Programmable I.ogic: From FPGAs to Computing Paradigms,
Springer-Verlag, August/September 1998.

[33] M. Moe, H. Schmit, S. Copen Goldstein. Characterization and parameterization of
a pipeline reconfigurable FPGA. IEEE Symposium on FPGAs for Custom Computing
Machines, April 1998.

[34] D. S. Poznanovic. Application development on the SRC Computers, Inc. systems.
Proceedings of the 19th IEEE International Parallel and Distributed Processing Sym­
posium, 2005.

[35] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R. Reed Taylor. PipeRench: A
virtualized programmable datapath in 0.18 micron technology. Proceedings of the
IEEE Custom Integrated Circuits Conference, 2002.

[36] Silicon Graphics, Inc. Extraordinary acceleration of workflows with reconfigurable
application-specific computing from SGI (http:flwww.sgi.com/pdfs/3721.pdf). 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 94

RECONFIGURATION MANAGEMENT

Katherine Compton
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

CHAPTER 4

The flexibility of reconfigurable devices allows them to be customized to a wide
variety of applications. Even individual applications can benefit from reconfig­
urability by using the hardware to perform different tasks at different times.
If not all of an application's configurations fit on the hardware simultaneously,
they can be swapped in and out as needed. In some cases, the circuitry imple­
mented on reconfigurable hardware can also be optimized based on specific
runtime conditions, further improving system efficiency. The process of recon­
figuring the hardware at runtime, whether to accelerate different applications
or different parts of an individual application, is (unsurprisingly) called runtime
reconfiguration (RTR).

Unfortunately, although RTR can increase hardware utilization, it can also
introduce significant reconfiguration overhead. Reconfiguring the hardware,
depending on its capacity and design, can be very time consuming. Modem
high-end FPGAs can have tens of millions of configuration points, and writ­
ing this information can require on the order of hundreds of milliseconds
[3, 54]. In a reconfigurable computing system, where the compute-intensive
portions of applications are implemented on reconfigurable hardware, compu­
tation and reconfiguration are mutually exclusive operations. Thus, time spent
reconfiguring is time lost in terms of application acceleration. Studies estimate
that, in some cases, reconfiguration time alone occupies approximately 25 to
98 percent of the total execution time of a reconfigurable computing application
[36, 42, SO, 51]. Therefore, management and minimization of reconfiguration
overhead to maximize the performance of reconfigurable computing systems is
essential.

We first discuss the process of reconfiguration in Section 4.1 and then present
different configuration architectures, including those designed specifically to
help reduce reconfiguration overhead, in Section 4.2. Section 4.3 discusses the
different issues in and approaches to managing the reconfiguration process
to minimize reconfiguration overhead and maximize the benefit of hardware
acceleration. Section 4.4 focuses on techniques that specifically reduce the con­
figuration transfer time when a reconfiguration is required. Finally, Section 4.5
discusses configuration encryption to maintain intellectual property security in
reconfigurable computing systems.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 95

66 Chapter 4 ■ Reconfiguration Management

4.1 RECONFIGURATION

In reconfigurable devices, such as field-programmable gate arrays (FPGAs), logic
and routing resources are controlled by reprogrammable memory locations,
such as SRAM or Flash RAM. Boolean values held in these memory bits control
whether certain wires are connected and what functionality is implemented by
a particular piece of logic. The process of loading the Boolean values into these
memory locations is called reconfiguration. A specific sequence of ls and Os for
particular memory locations in hardware defines a specific circuit and is called
a configuration for a given hardware task. Runtime reconfiguration therefore
involves reconfiguring the device (loading a new set of ls and Os) with a dif­
ferent configuration (a specific sequence of ls and Os) from the one previously
loaded in the reconfigurable hardware (RH). The configurations themselves are
created by CAD software based on both the circuit design to be implemented
and the architecture of the implementing RH. The architectural information is
required for the design tools to know which configuration bits control which
resources and what effect a 1 has versus a O in each of the configuration bit
locations.

Once generated by the CAD tools, configurations are generally stored in a
memory structure external to the RH. In some cases, configurations are stored
in main memory and a CPU acts as the go-between, transferring them from
memory to the RH as needed. In other cases, configurations are stored in a pro­
grammable ROM and a configuration controller loads the data directly from the
ROM in the RH, potentially at the request of a central processing unit (CPU).

The configuration controller and the ROM may be incorporated into the same
device, such as the specialized configuration controllers marketed by various
FPGA companies [3, 55], or they may be part of a user-designed custom device.
Figure 4.1 shows a block diagram of a system using a configuration controller
triggered by a CPU to reconfigure the RH (in this case, an FPGA). The configura­
tion controller essentially implements a finite-state machine (FSM) that, based
on the configuration requested by the CPU, generates the sequence of addresses
needed to read the appropriate data sequence for that configuration out of
the ROM.

4.2 CONFIGURATION ARCHITECTURES

A configuration architecture is the underlying physical circuitry that loads con­
figuration data during reconfiguration, and holds it at the correct locations.
Configuration architectures can range from simple serial shift chains, as dis­
cussed in the next section, to addressable structures that can manipulate config�
uration information after it is loaded. Some researchers have developed methods
to emulate more complex configuration architectures on existing commercial',
designs, using a combination of hardware and software to provide advanced con-

1

1

figuration functionalities. These approaches are discussed in Section 4.3.4.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 96

CPU

Configuration
request

'

U)

U)

FSM � !!!
"O
"O

- <(

Configuration
controller

ROM

4.2 Configuration Architectures 67

Configuration
Ill data
1ii
Cl

FPGA

Configuration
control

FIGURE 4.1 ■ Configuration data can be transferred to an FPGA by a specialized configuration
controller containing nonvolatile ROM memory; the reconfiguration process can be triggered
by a CPU.

4.2.1 Single-context

The single-context FPGA has been the most common choice in commercial
designs, though there are exceptions. In this type of FPGA, configuration infor­
mation is loaded into the programmable array through a serial shift chain, as
shown in Figure 4.2.

Internally, the configuration architecture may actually be addressable, simi­
lar to a standard RAM device or the partially reconfigurable designs discussed
in Section 4.2.3, but this would be an implementation detail hidden from the
FPGA user. Addressable configuration architectures generally require fewer tran­
sistors per SRAM cell than serially programmed architectures, reducing the area
required for configuration memory. In this case, an internal-state machine would
control writing serially received data to locations in the array.

The Xilinx Virtex family of FPGAs have addressable configuration locations,
but have a single-context configuration mode [54]. In these FPGAs, configura­
tion data is divided up into addressable blocks called "frames," each of which
corresponds to part of a column of reconfigurable resources. During recon­
figuration, the configuration data is shifted into the frame data input register
(FDRI) and from there written to a configuration memory location specified by
the frame address register (FAR). For single-context configuration mode, this
address starts at O and is automatically incremented each time a new frame is
loaded. This allows the device to appear externally as a single-context device
despite the addressability of the configuration information.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 97

68 Chapter 4 ■ Reconfiguration Management

To configurable logic and routing

Configuration
clock

Configuration
data

Configuration
enable

- IN

T

CLK

OUT IN

EN

1

-

T T

CLK CLK

OUT IN OUT

EN EN

1 1

T
CLK

IN OUT ---i ._

EN

1

fii;URE 4.2 ■ Serially programmed FPGAs shift in configuration data. Each cell shown contains one SRAM bit
of programming data. The clock controls shifting during configuration.

The benefit of serially programmed devices is that they require few pins for
configuration, potentially simplifying board-level design. However, the entire
chip must be reprogrammed for any change to the configuration data because
the data cannot be selectively "reused" on the chip. For example, a large part of
the structure of an encryption application may be independent of the chosen key,
with only a relatively small portion optimized on a per-key basis. Ideally, only
the key-dependent parts are reconfigured and the key-independent parts remain
untouched when the key changes. However, a single-context design requires all
configuration data to be rewritten during configuration, even if it is with the
same values. A relatively minor change to the configuration data becomes a full
reconfiguration process, replete with the associated delays.

The number of configuration cycles can be somewhat reduced in single­
context devices by widening the configuration path. The Altera Stratix-11 [3]
and the Xilinx Virtex-11 [54] receive either a single bit or a byte of configuration
information per configuration clock cycle. The designer then chooses between
the two modes by weighing the board-level design impact against the perfor­
mance impact. As the larger Stratix II devices currently require more than 4MB
of configuration data, with a maximum configuration clock speed of 100 MHz,
the ability to configure in eight times fewer cycles can be significant. Newer
Xilinx devices, such as the Virtex-5, allow a configuration data bus up to 32 bits
wide [55].

4.2.2 Multi-context

For RTR systems, the overhead of serial programming may be prohibitive. An
attractive alternative may be to provide storage in the device for multiple config­
urations simultaneously, facilitating configuration prefetching and fast reconfig­
uration. A multi-context device (sometimes called "time-multiplexed") contains
multiple planes (contexts) of configuration data. Each configuration point of
the device is controlled by a multiplexer that chooses between the context
planes. Two configuration points for a 4-context device are shown in Figure 4.3.
Several time-multiplexed FPGA architectures have been proposed, including
Time-Multiplexed [47], DPGA [17], Dharma [11], and Morphosys [45].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 98

4.2 Configuration Architectures 69

To configurable logic and routing
Configuration ---------<---+----------tt----+-­clock

CLK

D Q

EN

CLK

D Q

EN

Context O ---+---------+------<.._--­
enable

Context 1
enable

-
--;

-
-

-
-

-;-------<-

--
-

Context 2
enable

-
--+

---------+------<.._-
--

Context 3 ----1----------1-------<.__ __ _
enable

Configuration _ _J
enable 7

Configuration
data

L Configuration
1 enable

Configuration
data

FIGURE 4.3 ■ Two multi-contexted configuration bits of a 4-context device.

Multi-context devices have two main benefits over single-context devices.
First, they permit background loading of configuration data during circuit
operation, overlapping computation with reconfiguration. Second, they can
switch between stored configurations quickly-some in a single clock cycle­
dramatically reducing reconfiguration overhead if the next configuration is
present in one of the alternate contexts. However, if the next needed configu­
ration is not present, there is still a significant penalty while the data is loaded.
For that reason, either all needed contexts must fit in the available hardware
or some control must determine when contexts should be loaded in order to
minimize the number of wasted cycles stalling while reconfiguration completes.
This type of control is discussed in Section 4.3.2.

One of the drawbacks of multi-contexted architectures is that the additional
configuration data and required multiplexing occupies valuable area that could
otherwise be used for logic or routing. Therefore, although multi-contexting can
facilitate the use of an FPGA as virtual hardware, the physical capacity of a
multi-contexted FPGA device is less than that of a single-context device of the
same area. For example, a 4-context device has only 80 percent of the "active
area" (simultaneously usable logidrouting resources) that a single-context device
occupying the same fixed silicon area has [17]. A multi-context device limited
to one active and one inactive context (a single SRAM plus a flip-flop) would
have the advantages of background loading and fast context switching coupled
with a lower area overhead, but it may not be appropriate if several different
contexts are frequently reused.

- ♦

g Context
•-h ;

~
tv-0
~

C

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 99

70 Chapter 4 • Reconfiguration Management

Another drawback of multi-contexted devices is a direct consequence of it:
ability to perform a reconfiguration of the full device in a single cycle: spikes iI
dynamic power consumption. All configuration points are loaded from contex
memory simultaneously, and potentially the majority of configuration location:
may be changed from 0 to 1 or vice versa. Switching many locations in a single
cycle results in a significant momentary increase in dynamic power, which ma:
violate system power constraints.

Finally, if any state-storing component of the FPGA is not connected tc
the configuration information, as may be true for flip-flops, its state will no
be restored when switching back to the previous context. However, this issu
can also be seen as a feature because it facilitates communication betwee:
configurations in other contexts by leaving partial results in place acros
configurations [27].

4.2.3 Partially Reconfigurable

Because not all configurations require the entire chip area, we might reduc
reconfiguration time if we reloaded data only to those areas that actually mu
change. In partially reconfigurable devices, the configuration memory is addres
able, similar to traditional RAM structures. If configurations are smaller than tl
full device, partial reconfiguration can decrease reconfiguration time by limitir
reconfiguration to the resources used by a given configuration and, therefor
the amount of configuration data to transfer. Partial reconfiguration can al:
allow multiple independent configurations to be swapped in and out of har
ware independently, as one configuration can be selectively replaced on the ch
while another is left intact. Furthermore, we can leverage the addressability
modify only part of a configuration already located on the chip if some of i
structure matches a new configuration that we wish to load. For example, in �
encryption circuit the bulk of the configuration may remain the same when ti
key is changed, and only a few resources may need to change based on the m
key value. Partial reconfiguration can allow the system to reconfigure only tho
changed resources instead of the full circuit.

The Xilinx 6200 FPGA [53] was an early partially reconfigurable device whe
each logic block could be programmed individually. It therefore became a pl,
form for a great deal of study of configuration architectures and RTR. Curre
partially reconfigurable commercial FPGAs include the Atmel AT40K [5] and t
Xilinx Virtex FPGA family [54, 55]. The Virtex series is more coarsely reconf
urable than the 6200. Instead of addressing each logic block independently,
reconfigures logic blocks in groups called frames. In the Virtex-II, a frame con
sponds to part of a full column of resources and the size of the frame increas
with the number of logic block rows in the device. In the Virtex 5, frames are
fixed size of 41 32-bit words (regardless of device size) that represent a parti,
column of resources.

Although partially reconfigurable designs provide a great deal more flexibilit
for RTR systems, they can still stuffer from potential problems. First, if configura
tions occupy large areas of the device, the time saved transmitting configuratio1
data may be outweighed by the time spent transmitting configuration addresse�

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 100

4.2 Configuration Architectures 71

In this case, a serially programmed FPGA may be more appropriate. Second,
and more critical to RTR systems, partial configurations are generally fixed to
specific locations on the device. If two independent configurations are imple­
mented in overlapping hardware locations, they cannot operate simultaneously.
One method of mitigating this issue is to view configuration placement as a
three-dimensional floorplanning problem, with the third dimension representing
time [6]. Configurations then occupy some three-dimensional volume of space
based on physical location and time of use, allowing the floorplanner to determine
the best two-dimensional placement to avoid time-related (three-dimensional)
conflicts. Unfortunately, this technique cannot guarantee nonoverlapping con­
figurations if the full configuration sequence is not known at compile time-a
major problem in multitasking systems. The next section discusses advanced
configuration architectures that eliminate configuration placement conflicts.

4.2.4 Relocation and Defragmentation

As previously discussed, conflicts between configuration locations can limit the
effectiveness of partially reconfigurable architectures. To remove these conflicts,
configurations should not be associated with fixed device locations. Relocation
is a technique permitting configurations to be moved to different compatible
device locations within the array, based where free area is available. Figure 4.4(a)'
shows a device loaded with configurations A, B, and C in sequence, each assig­
ned to a free area. Figure 4.4(b) shows configurations A and B removed, and
configuration D relocated and programmed onto the array.

The composition of the reconfigurable hardware can complicate this process
in three critical ways. First, if the device's logic or routing is heterogeneous, relo­
cation becomes less flexible, or even impossible, as a configuration may require
resources located in only one or a few array locations. For example, in devices
with hierarchical routing, different routing connections are available at different
locations in the array. However, if heterogeneity is restricted to a repeating pat­
tern, configurations can be relocated distances corresponding to some multiple
of the distance of the repeat. To the relocated configuration, resources will be
located in the same relative position as in the original placement.

A
D D

B

C C
C

A

(a) (b) (c)

FIGURE 4.4 ■ Three configurations have been programmed on the hardware (a). In (b), A
and B have been removed, and D has been relocated/configured to an available area, causing
fragmentation. Defragmentation relocates configuration C to make room for configuration A
when it is again needed, this time to a new location in the array (c).

I

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 101

72 Chapter 4 ■ Reconfiguration Management
Second, the external pin connections to the reconfigurable hardware fabric are fixed either at fabrication (reconfigurable hardware cores in a system-on-a­chip) or at board-level design (discrete FPGA components). If a configuration is relocated, its connections to the required 1/0 pins must be rerouted to maintain the proper connections. One solution to this problem is to use a communication network that itself has fixed pin connections but provides internal interfaces at multiple array locations to allow configurations to have the same commu­nication connections regardless of position [14, 50]. This type of structure is known as virtualized 1/0 and can in some cases be emulated by using reconfig­urable resources to implement a static communication structure and including the communication interfaces in individual dynamic configurations [7]. How­ever, configurations must still be relocated such that they can still connect to the communication bus. Third, a two-dimensional architecture can exacerbate the previous two prob­lems, but particularly complicating virtualized 1/0. If a configuration can be relocated both horizontally and vertically, the virtualized 1/0 must potentially distribute signals to all locations in the array. Furthermore, a two-dimensional architecture increases the possibilities for relocation, as we can consider not only configuration shifting but also rotation, which requires manipulating configura­tion information related to routing [14]. More relocation possibilities leads to a more complex relocation process and possibly increased configuration overhead. A partially reconfigurable architecture designed specifically with relocation support should therefore require a homogeneous logic architecture, a bus-based communication structure, and a one-dimensional organization to simplify the relocation process [31, 50]. The one-dimensional architecture means that a con­figuration must use complete rows, even if it only needs a portion of a row. As device sizes increase, using rows as atomic reconfiguration units may become inefficient. Instead, the fabric can be split into multiple one-dimensional fabrics to retain the relocation benefits while preserving a reasonably sized atomic unit. The Virtex-5 device uses this approach [55]. One of the architectures designed for relocation [14] uses a "staging area" equivalent in size to one row of configuration data, which is similar in approach to the column-wise frame-based configuration method of the Xilinx Virtex fafill­ily introduced in Section 4.2.1 and discussed in Section 4.2.3 [54]. The stagtng area is filled one configuration word at a time; then the entire row of da� is simultaneously written to the architecture at a location computed with a b�se address of the top row of the configuration combined with an offset indicatj.ng the position of the current row relative to the top configuration row. The choke of the base location can be made by a special circuit that monitors empty lofa­tions on the hardware, or by software. When combined with the proper softw¥e as described in Section 4.3.2, this configuration architecture has been shown \to reduce reconfiguration overhead by 85 percent over a single-context device [3.]. Even if an architecture allows relocation, fragmentation of the usab�e resources can decrease its effectiveness. Like memory fragmentation, swapp�· g configurations in and out of different places in the hardware can result in a s · uation where various locations in the array may be unused, but there may n t

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 102

4.2 Configuration Architectures 73

be enough contiguous space available to load a configuration. In this case, if
the configurations can be defragmented, the new configuration can be loaded
into the array without having to remove any of the configurations already on
the device. Figure 4.4(b) shows an example of an array that has become frag­
mented, and Figure 4.4(c) shows how defragmentation can allow a configuration
to be configured without having to remove an existing one. A simple approach
to this problem is to remove all configurations, then reconfigure the array with
the removed ones, this time relocating them to contiguous locations to eliminate
fragmentation. However, this process involves significant communication over­
head between fabric and configuration memory. Alternately, the reconfigurable
hardware can move configurations internally, avoiding the need to communicate
with configuration memory. The RID FPGA [14, 31] provides both relocation and
defragmentation ability, which together provide a 90 percent reduction in recon­
figuration overhead compared to a single-context FPGA.

A configuration controller for one-dimensional hardware, such as the RID
FPGA, that specifically supports relocation and defragmentation may simply
need to keep track of occupied and unoccupied locations, or request this infor­
mation as needed from the hardware itself. The controller can determine loca­
tions for incoming configurations using a first-fit or best-fit method, similar to
general memory allocation [7, 14]. Defragmentation, which is easy for the one­
dimensional case, can be triggered when sufficient free area is available but is
broken up into fragments too small to fit an incoming configuration. If there
is insufficient free area, one or more configurations can be removed to make
room, as described in Section 4.3.2.

4.2.5 Pipeline Reconfigurable

Pipeline reconfigurable arrays use a series of physical pipeline stages to imple­
ment the virtual pipeline stages of configurations. A virtual pipeline stage can
be relocated to any physical pipeline stage, and the number of virtual stages
is generally not constrained by the number of physical stages. The most well­
known pipeline reconfigurable architecture is PipeRench [19], which is designed
to implement deeply pipelined configurations, subdivided into a set of virtual
pipeline stages. At runtime, the virtual pipeline stages are assigned to physical
pipeline stage computation units. These units are arranged in a unidirectional
ring, as shown in Figure 4.S(a). Although pipeline stages may be implemented
in different physical locations over time, the virtual pipeline appears fixed to its
own pipeline stages, with each stage receiving input from its predecessor and
generating output to its successor. PipeRench permits pipeline stages to be con­
figured in a single cycle to speed execution.

Pipeline reconfiguration eliminates many of the difficulties of using recon­
figurable hardware as virtual hardware, but places restrictions on the circuits
that can be implemented as information can only propagate forward through
the pipeline stages, and any feedback connections must be completely contained
within a single stage. Figure 4.S(b) shows a 4-stage virtual pipeline implemented
on a 3-stage physical architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 103

74 Chapter 4 • Reconfiguration Management

Pipeline stage

Pipeline stage

Pipeline stage

(a)

Physical
stage 2

Cycle

3 4 5

(b)

FIGURE 4.5 ■ A pipeline reconfigurable architecture with three physical stages (a). A 3-stage
physical pipeline implementing a 4-stage virtual pipeline (b). Numbers within physical pipeline
stages indicate the implemented virtual pipeline stage. Shaded stages are reconfiguring for the
given cycle.

4.2.6 Block Reconfigurable

Block reconfigurable arrays can share characteristics with any of the previously
described configuration architectures. However, rather than providing one large
reconfigurable fabric, they are made up of multiple discrete blocks that can
be used independently. For these purposes, "block" should not be confused with
"logic block" in an FPGA. In this case each independent block can contain many
logic resources. An individual configuration may occupy one or more blocks,
but blocks may not be subdivided between configurations. Blocks are connected
either through a crossbar structure [39] or a bus/network [10], as shown in
Figure 4.6. Although this would seem to describe any architecture formed from
multiple connected FPGAs or FPGA cores, block reconfigurable devices have the
ability to relocate configurations to different blocks at runtime. For this reason,
the blocks of reconfigurable logic in this style of architecture have also been
referred to as "swappable logic units" (SLU) [55]. In the SLU architecture, a
block reconfigurable design is implemented as an abstraction layer on top of a
partially reconfigurable architecture to facilitate runtime relocation.

The SCORE reconfigurable architecture model [10] is a block reconfigurable
design where the reconfigurable blocks are referred to as "pages" to evoke a vir­
tual memory view of the reconfigurable hardware. Any virtual page can be imple­
mented on any physical page, and computation pages are loaded as needed.
Once configured, pages communicate with one another using datastream:5 over
a scalable hierarchical network.

A heterogeneous multiprocessor may fit the block reconfigurable model,
provided multiple blocks of reconfigurable hardware are present and configu­
rations can be relocated between the blocks for computational flexibility. These
architectures may contain a single communication network used by the config­
urable blocks and other resources such as microprocessors and custom circuitry.
Although the Pleiades reconfigurable architecture [1] has some of these feat­
ures (a heterogeneous multiprocessor with multiple reconfigurable blocks),

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 104

4.2 Configuration Architectures 75

Reconfiguration Reconfiguration Reconfiguration Reconfiguration
logic logic logic logic

-

I I I I To/from

I I I I � CPU and
.E

memory

-

Reconfiguration Reconfiguration Reconfiguration Reconfiguration
logic logic logic logic

FIGURE 4.6 ■ In a block reconfigurable device, configurations can be relocated to any of the
interconnected and equivalent blocks of reconfigurable logic.

computations are preassigned to specific resources, violating one of the require­
ments of the block reconfigurable category.

4.2.7 Summary

This section presented a variety of configuration architectures, each optimized
for a different type of reconfiguration. The single-context device is the simplest
in terms of configuration process and interface, and it is the most popular for
current commercial devices. Partial reconfiguration, which allows reconfigura­
tion of parts of the device (leaving the rest untouched), can reduce the amount
of configuration data that must be transferred but is hampered by configuration
placement conflicts. Partially reconfigurable designs augmented with relocation
and defragmentation, as well as block reconfigurable designs, avoid this issue by
allowing configurations to be placed at different locations from the ones origi­
nally assigned. Likewise, pipeline reconfigurable devices allow pipeline stages
to be relocated but prohibit interstage feedback connections. Finally, multi­
contexted devices provide a method for single-cycle device reconfiguration but
at the cost of decreased computation resources for a given area and a dramatic
increase in power consumption during context changes.

The more advanced reconfiguration architectures, such as relocation, defrag­
mentation, and multi-contexting, have been popular for some time in the
research community as tools essential for effective reconfigurable computing
systems. However, such devices have not yet gained a significant market foothold
because of the limited demand for fast reconfiguration capabilities. Instead,
most FPGAs are currently used as drop-in ASIC replacements or as infre­
quently reconfigured hardware modified only for firmware updates. To provide
devices at a competitive cost, most FPGA vendors forgo the more innovated
configuration architectures in favor of a simpler single-context design. Although
Xilinx, one of the most prominent FPGA vendors, offers partial reconfigura­
tion in its Virtex families, design support is still somewhat limited, relocation

□□□□ .

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 105

76 Chapter 4 ■ Reconfiguration Management

and defragmentation are not supported, and a single-context interface is still
provided to cater to users who do not require partial reconfiguration. Even so,
as reconfigurable computing becomes a more common practice, spurred per�
haps by the difficulty of continued clock speed increases for general-purpose!
processors, demand for innovative configuration architectures will increase in
order to maximize the benefits of reconfigurable computing.

4.3 MANAGING THE RECONFIGURATION PROCESS

Reconfigurable computing systems swap configurations in and out of hardware
at runtime, a process controlled by software, hardware, or a combination of
both. Although a system can simply load a configuration whenever it is needed,
and unload it when hardware execution is complete, this can cause a signifi­
cant reconfiguration overhead: while the configuration is loading, the control­
ling application or thread cannot compute. Also, if the hardware is currently
in use by another thread or process, the requesting application or thread must
wait until the hardware is idle or until enough area is free to even begin the
reconfiguration process, leading to further stalling. Ideally, configurations are
loaded in advance of when they are needed and those likely to be reused in the
near future should be cached on the hardware.

The following sections discuss several aspects of reconfiguration control,
including choosing the configurations to load, and when and where on the hard­
ware to load them.

4.3.1 Configuration Grouping

Single-context and multi-context FPGAs may have more resources available at
once than are usable by a single configuration. Reconfiguration overhead can be
reduced by grouping configurations that are likely to be used one after another
into a single larger configuration. Algorithms proposed to perform this grouping
include simulated annealing and a clustering approach [31]. They examine the
overall application control flow to predict configurations that should be grouped
together. The loading of a grouped configuration involves not only the currently
needed configuration but also those most likely to be used after. Therefore, if
the next configuration requested is already present on the device, no recon­
figuration is necessary, reducing reconfiguration overhead. With configuration
grouping, a configuration will appear in at least one group, and possibly several,
depending on application behavior and the configuration's relationship to other
configurations.

This approach is primarily appropriate for single-application systems, as con­
figuration grouping is a compile-time operation. However, it could also be used
in a multitasking system with a multi-context device. In this case, the con­
figuration grouping would still be performed at compile time for individual
applications, and the choice of which configuration groups to load and when
would be a runtime operation, as described in the next section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 106

4.3 Managing the Reconfiguration Process 77

4.3.2 Configuration Caching

In a single-context device, the loading of one configuration overwrites all
configuration data in the FPGA. Thus, context grouping implicitly decides what
operations will coexist within the device at any point. In a multi-context or par­
tially reconfigurable architecture, reconfiguration only overwrites a portion of
the configuration data, allowing other configurations to be retained elsewhere.
With configuration caching, the goal is to keep configurations on the hard­
ware if they are likely to be reused in the near future. If there is enough free
area on the device to fit a requested configuration, it is simply loaded, but if
there is insufficient space, the confignration controller must select one or more
"victim" configurations to remove from the hardware to free the required area.
This process is simplified from the point of view of the controller if the device
does not support relocation, as the victim configurations are simply any that
overlap with the incoming one. However, this will generally result in a high
reconfiguration overhead, as the removed configurations could be needed again
in the near future, requiring another reconfiguration.

If the device supports relocation and defragmentation, or multiple contexts,
the controller may have a variety of potential victims to choose from that will
free the needed area. In some cases, general caching approaches may be used.
These approaches assume a fixed-sized data block. However, in a partially recon­
figurable device the size of the block to load can vary because configurations can
each use differing amounts of resources. The caching algorithm must therefore
consider the impact of variable-sized blocks.

One algorithm uses a penalty-based approach that considers both the config­
uration's size and how recently it was used [31]. When a configuration is first
loaded, its "credit" is set to its size. When one or more configurations must be
removed to make room for an incoming one, the configuration with the low­
est credit is chosen, and the credit values of the remaining configurations are
lowered by the credit value of the removed one. For the RID FPGA design [14],
penalty-based caching consistently results in a lower reconfiguration overhead
than a simple least recently used (LRU) approach and 90 percent less overhead
than a single-context configuration architecture. A configuration controller for a
multi-context device must select which context to overwrite when a new context
not already in the device is requested [14]. Because each context is the same
size, general caching techniques, such as LRU, have been used.

4.3.3 Configuration Scheduling

Configurations can be loaded simply as they are requested, but this may result
in significant overhead if the software stalls while waiting for reconfiguration
to complete [SO]. If instead the system can request configurations in advance of
when they are needed, a process called prefetching, reconfiguration may proceed
concurrent with software execution until the hardware is actually required. The
challenge, however, is to ensure that prefetched configurations will not be ejected
from the hardware by other prefetching operations before they can be used.
For example, Figure 4.7 shows a flow graph for an application containing both

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 107

78 Chapter 4 ■ Reconfiguration Management

FIGURE 4.7 ■ An example reconfigurable computing application flow graph, containing both
hardware and software components.

hardware and software components. Configuration A can safely begin loading
at the beginning of the flow graph, provided that the application represented by
the flow graph is the only one using the reconfigurable hardware. On the other
hand, after the first branch rejoins at software block 4, it is unclear whether
configuration B or configuration C will be needed next. If both potential branches
have equal probability, the next configuration should not be loaded until after
program flow determines the correct branch.

For static scheduling, prefetching commands may be inserted by the compiler
based on static analysis of the application flow graph [23], and have been shown
to reduce reconfiguration overhead up to a factor of 2. A more dynamic approach
uses a Markov model to predict the next configuration that will be needed for a
partially reconfigurable architecture with relocation and defragmentation [33].
Combining this approach with configuration caching results in a reconfiguration
overhead reduction of a factor of 2 over configuration caching alone. Adding
compiler "hints" to dynamic prediction achieves still better results.

Some dynamic approaches use the dataflow graph to determine when a given
configuration is valid for execution [37, 39]. In these cases, nodes of the flow
graph may be scheduled only if their ancestors have completed execution. This

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 108

4.3 Managing the Reconfiguration Process 79

approach works even if multiple applications are executing concurrently in the
system and also works in systems implementing hardware tasks as independent
"hardware threads" [4, 43].

Other approaches do not consider the actual flow graphs of applications, but
instead use system status and current resource demand to allocate reconfig­
urable hardware to different configurations over time. Window-based schedul­
ing periodically chooses the configurations to be implemented in hardware for
the next "window" of time. This approach treats scheduling as a series of static
problems yet still accommodates dynamic system behavior. One window-based
scheduler uses a multi-constraint knapsack approach to choose configurations
providing the best benefit (speedup) to the system as a whole based on configu­
ration requests in the past window period. This technique was shown to increase
overall system throughput by at least 20 percent relative to a processor without
reconfigurable hardware [57].

In true multitasking systems load may not be consistent, with demand for
the reconfigurable resources varying over time. This has led to more complex
scheduling techniques that also consider modifying configurations based on
available resources to take advantage of numerous resources when possible or
to fit in limited resources when necessary [37, 40, 41, 57]. Another possibility is
to permit a software alternative for configurations to avoid stalls if the hardware
resources are in high demand [16, 34, 41, 57]. This approach allows dynamic
binding of computations to hardware or software, where only the most bene­
ficial configurations are actually implemented in hardware. Real-time systems
similarly must choose tasks at runtime for hardware implementation based on
real-time requirements (task priority, arrival and execution time, and deadlines),
rejecting remaining tasks to software or possibly dropping them entirely [46].

4.3.4 Software-based Relocation and Defragmentation
Systems that do not support relocation and defragmentation at the configuration
architecture level may support it at the software level to gain some of the associ­
ated benefits. However, this can be computationally intense for two-dimensional
architectures. Finding a possible location for an arbitrarily shaped configuration
can require an exhaustive search, which may incur a greater overhead penalty
than the configuration penalty it seeks to avoid. Restricting configurations to
rectangular shapes simplifies the process somewhat, though it is still a two­
dimensional bin-packing problem. One approach to solving this problem is to
maintain a list of empty spaces in the device and search it whenever a new
configuration is to be loaded [6, 21, 48]. In either case, when the controller
removes a configuration from the hardware, it can update the list based on the
freed area. The "best" empty location to implement the incoming configuration
can be chosen based on algorithms similar to one-dimensional packing, such as
first-fit or best-fit.

When there are no empty locations that can fit the incoming configuration,
the configuration controller can defragment the hardware to consolidate empty

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 109

80 Chapter 4 ■ Reconfiguration Management

space, or remove an existing configuration. Like two-dimensional relocatio ,
two-dimensional defragmentation is very complex. It can be implemented b
removing all configurations from the hardware and then successively reloadin
each one using one of the two-dimensional relocation techniques described pr -
viously. Alternately, a reconfiguration controller can use a technique specificall�
designed for two-dimensional defragmentation that rearranges only a subset of
configurations, and dynamically schedules their movements in an effort to mirl­
imize disruption of those in execution [18].

A critical problem in supporting relocation, whether for the one-dimensional
or the two-dimensional case, is rerouting the connections between a relocated
configuration and the (nonrelocated) 1/0 pins. As discussed in Section 4.2.4, a
virtualized 1/0 structure simplifies this problem, though virtualized 1/0 for two­
dimensional architectures may be infeasibly large. However, if the architecture
does not have virtualized 1/0, either these signals must be rerouted at runtime
[49] or the configurations must be modified to emulate virtualized 1/0 by having
a specific movable interface to a nonrelocatable communications structure [7].

4.3.5 Context Switching

Unfortunately, some of the same terminology in the reconfigurable computing
area is used to refer to different concepts. In this section, "context switch"
does not refer to switching between planes of configuration data in a multi­
context device. Instead, it refers to the suspend/resume behavior of processors
(and potentially their associated reconfigurable logic) when multitasking. A few
studies have discussed supporting suspend/resume of hardware operations as a
way to support hardware multitasking [24, 44]. In these systems, long-running
configurations may be interrupted to allow other configurations to proceed, and
later be resumed to complete computation. Although the configuration state can
be resumed by reloading the required configuration, the flip-flop values and the
values stored in embedded RAM blocks are not necessarily part of the configu­
ration, and therefore may require additional steps to save their state.

Reconfigurable hardware context switches may mirror processor context
switches to facilitate hardware control by ensuring that the "owning" process
is active and ready to receive results. The host processor may stall or wait while
the reconfigurable hardware is active [43], or it may continue with parallel oper­
ations that are not dependent on the hardware's results [l, 24, 43].

4.4 REDUCING CONFIGURATION TRANSFER TIME

The various techniques described previously can reduce the number of times
we have to reconfigure the hardware, or attempt to hide the configuration
latency, but the actual time required to transfer a given configuration can also be
reduced. One hardware-based technique already discussed in Section 4.2.3, par­
tial reconfiguration, permits configuring only those parts of the hardware that are
needed. The remainder of the chip does not need to be configured, and therefore

I

}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 110

4.4 Reducing Configuration Transfer Time 81

configuration data for these other areas does not need to be transferred. The next
few sections present a number of other methods used to reduce the configuration
transfer time, in most cases by reducing the amount of data transferred.

4.4.1 Architectural Approaches

The design of the reconfigurable architecture itself can affect the time required
to configure it. For example, a coarse-grained architecture containing primar­
ily fixed functional units will generally require fewer configuration bits for the
same functionality than does a fine-grained LUT-based architecture [25]. Another
architectural design feature that can impact reconfiguration times is the width of
the configuration path. Section 4.2.1 discussed how a serially programmed FPGA
can be programmed 8 x faster if configuration data is loaded a byte per cycle
instead of a bit per cycle. In cases where the reconfigurable hardware is located
on the same chip as the configuration memory, a very wide path between them
may be possible, drastically reducing reconfiguration time. For example, the RID

architecture [14] can have a wide enough path to an on-chip configuration cache
to allow the entire staging area to be loaded in a single cycle.

4.4.2 Configuration Compression

Compression is a widely used method in general-purpose computing and
networking to reduce data transfer times by reducing the number of bits
transferred. Compression can also reduce the amount of configuration data
transmitted to reconfigurable hardware, leading to a corresponding decrease
in reconfiguration time. The first proposed configuration compression tech­
nique [22] targeted the Xilinx 6200-series FPGA [53], which, as discussed in
Section 4.2.3, is partially reconfigurable at a very fine-grained level, addressing
individual logic cells by their row and column. The 6200 includes two "wild­
card registers," equal in bit width to the row and column addresses, which act
as masks on the configuration addresses. This allows one piece of configuration
data to be written to more than one location. Essentially, Os in the wildcard
register retain the configuration address bits for those locations, whereas ls
indicate that all possible combinations of values in those specific · locations
should be addressed. By treating wildcard register value generation as a logic
minimization problem, configuration data is compressed by an average factor
of four for the Xilinx 6200 [22].

An expansion of these efforts exploits the fact that not all configuration bits
in a logic cell are used by all configurations [30]. In many cases, a number
of bits in a logic cell configuration can be considered "don't-care" values and
can be programmed either with a 1 or a O without affecting the configuration's
functionality. This allows configuration data to be manipulated to increase the
achievable compression rates by about a factor of 2. Although the wildcarding
and don't-care approaches are effective, they are specific to a discontinued archi­
tecture. More recent studies [15, 32] examine the use of a variety of standard
compression techniques that achieve up to a compression factor of 4 on more
modem architectures.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 111

82 Chapter 4 • Reconfiguration Management

Configuration compression is not merely an academic pursuit. Both Altera'J
and Xilinx's design tools can generate compressed configurations [3, 55]. Th�
compressed configurations are stored in a separate configuration controller that
decompresses them as they are sent to the FPGA. However, this form of com ..
pression only reduces configuration storage requirements and does not decrease
the size of configuration data sent to the FPGA. Compressed configurations can,
however, be loaded directly onto Stratix-II devices in some configuration modes,
and decompressed on the FPGA itself.

4.4.3 Configuration Data Reuse

At times, only a portion of a configuration must be updated, such as the
key-specific hardware in an encryption configuration. Rather than resend the
full configuration information, a partially reconfigurable device allows just
the changed portions to be sent. Circuits can be designed specifically to use
partial reconfiguration to customize them based on constant values not known
until runtime [58]. However, even less directly related configurations may also
have configuration data in common. Certain computation or communication
patterns may be common to several configurations, such as the use of adder
structures, emphasis on near-neighbor routing instead of long-distance routing,
and the like [20]. Similarly, there may be "default" values for configuration bits
for unused resources, and two configurations may have used as well as unused
resources in common. These commonalities can decrease the amount of "new"
configuration data required to implement the next configuration, particularly
if configuration data reuse is a factor in the design of the configurations. The
degree of similarity is increased with a decrease in the granularity of reconfig­
uration (there are fewer ways for small sets of bits to differ than for large sets
to differ) and can result in a decrease in configuration data by approximately
35 to 40 percent [35].

4.5 CONFIGURATION SECURITY

In most of this book, we view the programmability of an FPGA as an inherent
advantage that provides a circuit implementation platform or a multi-purpose
acceleration engine. However, this flexibility also increases the potential for
intellectual property theft compared to custom ASIC hardware. SRAM-based
FPGAs (the focus of this chapter), have volatile configuration memory; to retain
configuration data, a battery must provide a constant power supply to the con­
figuration bits. This configuration data is stored in memory (RAM or a PROM)
external to the FPGA, and is loaded into the FPGA at power-up. Someone mon­
itoring the wires between these structures could capture the configuration data
flowing from memory to the reconfigurable device. They could then duplicate
the circuit simply by loading that data onto a new chip. Design firms that create
FPGA-based hardware want to protect their work (which may have required
significant design time) and prevent reverse-engineering of their designs.

_,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 112

4.6 Summary 83

To discourage their unauthorized copying, FPGA configurations can be water­
marked with a special signature based on the circuit designer and the purchasing
customer [28]. Of course, the design can still be copied and reverse-engineered,
but the watermark can help identify the source of the unauthorized copies.

Design security can also be provided by encrypting configuration data to
obscure the employed design techniques and/or functionality [26]. Many FPGA
vendors now support configuration encryption with special on-chip decryp­
tion hardware. The Xilinx Virtex-11, for example, uses triple-key DES [54], and
Altera's Stratix-11 [3], Actel's ProASIC3 [2], and Lattice's ECP2 [29] all support
128-bit AES configuration encryption. In all cases, the keys are stored in the
FPGA, and encrypted configurations may only be load�d if they were encrypted
with the same key as that stored in the device. For a Virtex-11 device, a battery
must be attached to the proper pins to retain the key when the device is not
powered. In contrast, the Stratix-11, ECP2, and ProASIC3 devices use nonvolatile
memory for key storage, eliminating the need for a separate battery.

For systems that do not require runtime reconfiguration, the opportunity to
copy a design can be reduced in end-products by not transmitting the configu­
ration data on probeable wires. Antifuse and Flash FPGAs, based on nonvolatile
configuration memory structures, inherently retain configuration data on-chip
once configured, avoiding the need to transfer the information for systems not
using runtime reconfiguration.

4.6 SUMMARY

The difficulty of clock speed increases and power consumption concerns moti­
vate reconfigurable computing as an important technique to advance digital
design, implementing compute-intensive application tasks in reconfigurable
hardware. However, the performance and power penalty of reconfiguration has
the real potential to overwhelm its benefits. This chapter discussed a variety of
methods proposed and used to reduce and in some cases remove reconfigura­
tion overhead, including various configuration architecture designs, scheduling
and caching techniques, and ways to reduce the configuration data size.

In many cases, several approaches can be combined to further reduce
the overhead. For example, relocation and defragmentation architectural
features facilitate advanced configuration scheduling mechanisms that load
configurations in advance of their use to minimize processor stall time during
reconfiguration. Likewise, a configuration cache can be combined with a
relocation- and defragmentation-enabled design that uses a staging area, provid­
ing a wide path to configuration memory to decrease transfer time. This in tum
can be combined with wildcarding to allow multiple identical rows or columns
to be configured simultaneously. Such combined methods allow reconfigurable
computing system designers to effectively minimize reconfiguration overhead
and to provide the full benefit of reconfigurable computing in future computing
systems.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 113

84 Chapter 4 ■ Reconfiguration Management

References

[1] A. Abnous, H. Zhang, M. Wan, G. Varghese, V. Prabhu, J. Rabaey. The Pleiades
architecture. Application of Programmable DSPs in Mobile Communications,
A. Gatherer, A. Auslander, eds., Wiley, 2002.

[2] Actel Corp. ProASIC3 Flash Family FPGAs. Actel Corp., Mountain View, CA, 2006.
[3] Altera, Inc. Stratix-II™ Device Handbook, Volumes 1 and 2, Altera, Inc., San Jose,

2005.
[4] D. Andrews, D. Niehaus, R. Jidin. Implementing the thread programming model on

hybrid FPGA/CPU computational components. Workshop on Embedded Processor
Architectures of the International Symposium on Computer Architecture, 2004.

[5] Atmel Corp. AT40K Series FPGA Interactive Architecture Guide. Atmel Corp.,
San Jose, 1999.

[6] K. Bazargan, R. Kastner, M. Sarrafzadeh. Fast template placement for reconfig­
urable computing systems. IEEE Design and Test, Special Issue on Reconfigurable
Computing 17(1), 2000.

[7] G. Brebner, 0. Diessel. Chip-based reconfigurable task management. International
Conference on Field Programmable Logic and Applications, 2001.

[8] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit. A dynamic reconfiguration run­
time system. IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[9] J. M. P. Cardoso, M. Weinhardt. From C programs to the Configure-Execute model.
Design, Automation, and Test in Europe, 2003.

[10] E. Caspi, A. DeHon, J. Wawrzynek. A streaming multithreaded model. Third Work­
shop on Media and Stream Processors, 2001.

[11] D. Chang, M. Marek-Sadowska. Partitioning sequential circuits on dynamically
reconfigurable FPGAs. IEEE Transactions on Computers 48(6), 1999.

[12] M. C.-T. Chao, G.-M. Wu, 1.-H.-R. Jiang, Y.-W. Chang. A clustering- and probability­
based approach for time-multiplexed FPGA partitioning. IEEE/ACM International
Conference on Computer-Aided Design, 1999.

[13] M. M. Chu. Dynamic Runtime Scheduler Support for SCORE, Master's thesis,
University of California, Berkeley, 2000.

[14] K. Compton, Z. Li, J. Cooley, S. Knol, S. Hauck. Configuration relocation and
defragmentation for runtime reconfigurable systems. IEEE Transactions on VLSI
10(3), June 2002.

[15] A. Dandalis, V. K. Prasanna. Configuration compression for FPGA-based embedded
systems. Proceedings of the ACMISIGDA International Symposium on Field­
Programmable Gate Arrays, 2001.

[16] M. Dales. Managing a reconfigurable processor in a general purpose workstation
environment. Conference on Design, Automation, and Test in Europe, 2003.

[17] A. DeHon. DPGA utilization and application. Proceedings of the ACM/SIG DA Inter­
national Symposium on Field Programmable Gate Arrays, 1996.

[18] 0. Diessel, H. E. Gindy, M. Middendorf, H. Schmeck, B. Schmidt. Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proceedings-Computers
and Digital Techniques, Special Issue on Reconfigurable Systems 147(3), 2000.

[19] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R. Taylor.
PipeRench: A reconfigurable architecture and compiler. IEEE Computer 33(4), April
2000.

[20] J. D. Hadley, B. L. Hutchings. Design methodologies for partially reconfigured
systems. IEEE Symposium on FPGAs for Custom Computing Machines, 1995.

l

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 114

\

4.6 Summary 85

[21] M. Randa, R. Vemuri. An efficient algorithm for finding empty space for online
FPGA placement. Design Automation Conference, 2004.

[22] S. Hauck, Z. Li, E. J. Schwabe. Configuration compression for the Xilinx XC6200
FPGA. IEEE Symposium on FPGAs for Custom Computing Machines, 1998.

[23] S. Hauck. Configuration prefetch for single context reconfigurable coprocessors.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1998.

[24] J. R. Hauser. Augmenting a Microprocessor with Reconfigurable Hardware, Ph.D.
thesis, University of California, Berkeley, 2000.

[25] Z. Huang, S. Malik. Managing dynamic reconfiguration overhead in systems­
on-a-chip design using reconfigurable datapaths and optimized interconnection
networks. Design, Automation, and Test in Europe, 2001.

[26] T. Kean. Cryptographic rights management of FPGA intellectual property cores.
International Symposium on Field-Programmable Gate Arrays, 2002.

[27] A. Khan, N. Miyamoto, T. Ohkawa, A. Jamak, S. Kita, K. Kotani, T. Ohmi. An
approach to realize time-sharing of flip-flops in time-multiplexed FPGAs. IEEE
International Conference on Field-Programmable Technology, 2004.

[28] J. Lach, W. H. Mangione-Smith, M. Potkonjak. Fingerprinting techniques for field­
programmable gate array intellectual property protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 20(10), 2001.

[29] Lattice Semiconductor Corp. LatticeECP2 Family Data Sheet, Lattice Semiconduc­
tor Corp., Hillsboro, OR, 2006.

[30] Z. Li, S. Hauck. Don't care discovery for FPGA configuration compression.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1999.

[31] Z. Li, K. Compton, S. Hauck. Configuration caching for FPGAs. IEEE Symposium
on FPGAs for Custom Computing Machines, 2000.

[32] Z. Li, S. Hauck. Configuration compression for Virtex FPGAs. IEEE Symposium
on FPGAs for Custom Computing Machines, 2001.

[33] Z. Li, S. Hauck. Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation. ACMISIGDA International Sym­
posium on Field-Programmable Gate Arrays, 2002.

[34] R. Lysecky, F. Valid. A configurable logic architecture for dynamic hardware/
software partitioning. Design, Automation, and Test in Europe, 2004.

[35] U. Malik, 0. Diessel. On the placement and granularity of FPGA configurations.
IEEE International Conference on Field-Programmable Technology, 2004.

[36] W. H. Mangione-Smith. ATR from UCLA. Personal communication, 1999.
[37] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Anal­

ysis of quasi-static scheduling techniques in a virtualized reconfigurable machine.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2002.

[38] J. Noguera, R. M. Badia. HW/SW codesign techniques for dynamically reconfigurable
architectures. IEEE Transactions on VLSI Systems 10(4), 2002.

[39] J. Noguera, R. M. Badia. Multitasking on reconfigurable architectures: Microarchi­
tecture support and dynamic scheduling. ACM Transactions on Embedded Comput­
ing Systems 3(2), May 2004.

[40] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable SoC. Reconfigurable Architecture Work­
shop, 2003.

[41] H. Quinn, L. S. King, M. Leeser, W. Meleis. Runtime assignment of reconfigurable
hardware components for image processing pipelines. IEEE Symposium on Field­
Programmable Custom Computing Machines, 2003.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 115

86 Chapter 4 ■ Reconfiguration Management
(42] J. Resano, D. Mozos, F. Catthoor. A hybrid prefetch scheduling heuristic tl minimize at runtime the reconfiguration overhead of dynamically reconfigurabl hardware. Design, Automation, and Test in Europe, 2005. (43] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold M. Gokhale. The NAPA adaptive processing architecture. IEEE Symposium o

FPGAs for Custom Computing Machines, 1998.[44] H. Simmler, L. Levinson, R. Manner. Multitasking on FPGA coprocessors. Interna
tional Conference on Field-Programmable Logic and Applications, 2000.[45] H. Singh, G. Lu, M.-H. Lee, F. Kurdahi, N. Bagherzadeh, E. Filho, R. MasMorphoSys: Case study of a reconfigurable computing system targeting multimediapplications. Design Automation Conference, 2000.(46] C. Steiger, H. Walder, M. Platzner. Operating systems for reconfigurable embedde� platforms: Online scheduling of real-time tasks. IEEE Transactions on Computers53(11), 2004, [47] S. llimberger, D. Carberry, A. Johnson, J. Wong. A time-multiplexed FPGA. IEEE
Symposium on FPGAs for Custom Computing Machines, 1997.[48] H. Walder, M. Platzner. Non-preemptive multitasking on FPGAs: Task placementand footprint transform. International Conference on Engineering of Reconfigurable
Systems and Architectures, 2002.[49] G. Wigley, D. Kearney. The first real operating system for reconfigurable computing.
Australasian Computer Systems Architecture Conference, 2001.[SO] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. IEEE Sym­
posium on FPGAs for Custom Computing Machines, 1995. (51] M. J. Wrrthlin, B. L. Hutchings. Sequencing run-time reconfigured hardware with software. ACMISIGDA International Symposium on Field-Programmable Gate Arrays,1996. (52] G.-M. Wu, J.-M. Lin, Y.-W. Chang. Generic !LP-based approaches for time­multiplexed FPGA partitioning. IEEE 'lransactions on Computer-Aided Design of
Integrated Circuits and Systems 20(10), 2001. (53] Xilinx, Inc. XC6200 Field Programmable Gate Arrays Product Description, Xilinx, Inc., San Jose, 1997. (54] Xilinx, Inc. Virtex-II Platform FPGAs: Complete Data Sheet, Xilinx, Inc., San Jose, 2004. (55] Xilinx, Inc. Virtex-5 FPGA Configuration User Guide, Xilinx, Inc., San Jose, 2006. (56] G. Brebner. The swappable logic unit: A paradigm for virtual hardware, IEEE
Symposium on FPGAs for Custom Computing Machines, 1997. (57] W. Fu, K. Compton. An execution environment for reconfigurable computing. IEEE
Symposium on Field-Programmable Custom Computing Machines, 2005. (58] M. Wirthlin, B. Hutchings. Improving functional density through run-time con­stant propagation. ACMISIGDA International Symposium on Field-Programmable
Gate Arrays, 86-92, 1997.

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 116

PROGRAMMING RECONFIGURABLE

SYSTEMS

PART II

As suggested in the Introduction, field-programmable gate arrays (FPGAs)
and reconfigurable architectures have both the postfabrication pro­
grammability of software and the spatial parallelism of hardware. To fully
exploit them, we need models and programming approaches that support
the software's programmability, including infrastructure and runtime sup­
port to allow the configuration to change over time. In addition to temporal
reprogrammability, the reconfigurable programming systems must simul­
taneously deal with spatial issues normally associated only with hardware
(e.g., physical placement of computations and timing of functional units).

To illustrate how we can program reconfigurable systems, the chapters
in this part of the book describe the current state of the art in appro­
aching and capturing designs for FPGAs and reconfigurable architec­
tures. Chapter 5 reviews compute models and organizations suitable
for reconfigurable applications, Chapters 6 through 10 and Chapter 12
explore different design entry points for reconfigurable applications, and
Chapters 11 and 12 examine infrastructural support issues, including
operating and runtime systems and debuggers.

The flexibility of FPGAs and reconfigurable architectures, as well as
their dual hardware/software nature, means that the old computational
models we are familiar with for hardware or software may not be the
most effective for reasoning about reconfigurable designs. Furthermore,
the design space for reconfigurable solutions is much larger than those
most of us are used to navigating. Chapter 5 explores some useful mod­
els for capturing and conceptualizing reconfigurable applications and a
variety of system architectures for providing efficient implementations.
A clear conceptual model of the parallelism in the application, how to
expose it, and how to exploit it make up an invaluable starting point for
describing the application in a concrete programming language.

Chapter 6 provides an introduction to VHDL as an example of a
Register transfer level (RTL) hardware description language. A software
designer might think of VHDL as a semi-portable assembly language
for reconfigurable designs; it provides fine control of hardware and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 117

88 Part II ■ Programming Reconfigurable Systems

parallelism, but it demands that the designer manage quite a number of low-level details. Many of the higher-level programming approaches still use VHDL as an intermediate mapping stage on the way to a reconfig-
1 urable configuration. Chapter 7 turns to more software-friendly approaches and shows howlprograms written in C can automatically be translated into reconfigurablei1hardware designs. Today, we cannot expect to obtain good performanc�: from arbitrary C code with no concern for the capabilities of the reconfig urable architecture and compiler. However, with an appreciation for wha reconfigurable architectures can do, an appropriate system architectureJ and an understanding of the capabilities of the C compiler, it is possibl� to effectively develop and optimize reconfigurable applications in C. Chapters 8 and 9 discuss two examples of programming systems that support streaming dataflow compute models (Section 5.1.3). These mod­els, too, provide a higher-level approach to reconfigurable design than VHDL, offering greater opportunities for automated design scalability. Chapter 8 describes how we can apply the SDF (Synchronous Dataflow) model (Section 5.1.3) using Simulink, illustrating how methodology and suitable libraries can raise the abstraction for design construction. These techniques can readily be adopted by today's system designers. At the same time, the Simulink integration example shows how reconfigurable design can leverage popular system analysis tools such as MATLAB. Chapter 9 describes a more custom and automated experimental design flow that supports application scalability for dynamic streaming dataflow applications (Section 5.1.3). It illustrates how many system architectures (Section 5.2) come together to support efficient and automated mapping of designs to reconfigurable computing platforms, and it offers a vision of how integrated programming systems for reconfigurable platforms might evolve. Many efficient reconfigurable applications are naturally data parallel (Section 5.1.5) and are efficiently implemented with a Single Instruction Multiple Data (SIMD) or vector organization. Chapter 10 describes data parallel programming approaches customized for reconfigurable compi­lation. In Chapter 12 we see an example of a rich generator language, JHDL, which provides even lower-level control of structure than VHDL, but does so with the full programming power of a conventional software language, Java. Thus, it provides a high-level platform from which to develop highly tuned designs. It also provides rich support for the construction of custom tools for reconfigurable design optimization.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 118

Programming Reconfigurable Systems 89

As reconfigurable computers emerge as platforms for creating and
delivering software, we must develop software support normally associ­
ated only with general�purpose processors, including operating systems,
runtime support, and interactive debuggers. Chapter 11 describes the
growing demands for reconfigurable operating systems, highlighting some
of the early work along this path and pointing out important directions
for the future. JHDL (Chapter 12) is notable for its support for interac­
tive debugging and the extensible programming environment it provides,
including hooks for software modules that interact with reconfigurable
designs.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 119

COMPUTE MODELS AND SYSTEM

ARCHITECTURES

Andre DeHon

Department of Electrical and Systems Engineering
University of Pennsylvania

CHAPTER 5

Field-programmable gate array (FPGA) and reconfigurable architectures provide
enormous raw computing power and tremendous flexibility. How do we best
exploit this opportunity and bring it to bear on particular computing tasks?
When we do take advantage of the flexibility, and how do we ensure correct­
ness? How do we preserve and reuse our designs as technology continues to
advance? The raw size and flexibility of today's devices and systems make these
questions daunting to consider and intractable to approach in an undisciplined
manner. In this chapter, we review models and organizational styles for large­
scale, highly parallel computing resources and emphasize how they can be used
in the organization of reconfigurable computers.

A modem FPGA has hundreds of thousands of independently configured bit­
processing units and hundreds of memories. Today's multi-FPGA systems and
future single-chip FPGAs raise these numbers to millions of bit-processing units
and thousands or tens of thousands of memories. Furthermore, configurable
interconnect allows us to arrange these resources in almost any manner. This
gives us the power to adapt the computation to a particular task. Now that we
have that power; what do we do with it?

Developing large software applications is a known hard problem, and manag­
ing resources and computations in highly parallel systems is, notoriously, even
harder. Without care, our parallel computations may behave differently on each
execution, producing nondeterministic results, some of which may be erroneous,
and some executions may lead to deadlock. Unconstrained, the additional flexi­
bility that comes with parallelism increases the complexity of application devel­
opment and verification.

Considering both the limits of the human mind and the desire to achieve
reasonably low time-to-solution periods, we cannot afford to custom-tailor each
4-LUT and each memory. With industry producing new devices according to
Moore's Law, we cannot afford to design for 100,000 4-LUTs one year, discard
the design, and then redesign for 200,000 4-LUTs three years later when the
next part becomes available. Nor can we afford to reason about the interaction
of every individual 4-LUT with every other-a number of interactions that grows
quadratically with resource count.

Copyright © 2008 by Andre DeHon. Published by Elsevier Inc.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 120

92 Chapter 5 ■ Compute Models and System Architectures

The good news is that, while there is almost unbounded freedom in how we
might solve problems, there are a small number of high-level organizational
strategies that suffice to describe and efficiently implement most computing
tasks. To bridge the semantic gap between applications and FPGA resources,
we should think about two abstractions:

■ Compute models-high-level models of the flow of computation in an
application, useful for capturing parallelism and reasoning about
correctness of implementations.

■ System architectures-high-level strategies for organizing resources,
managing the parallelism in the implementation, and facilitating
optimization and design scaling.

Within each system architecture, there remains considerable flexibility to
tailor the computing resources to the particular task, exploiting the flexibility
of the architecture's reconfigurability. The compute model provides high-level
constraints and guidance for conceptualizing the problem, reasoning about its
correctness, and supporting manual and automated optimization. Chosen prop­
erly, the compute model naturally captures the parallelism of the application,
making it easier to reason about its description and mapping.

A diversity of compute models and system ar�hitectures is needed to capture
the diversity of natural organizations and implementations of tasks. Nonethe­
less, evidence to date suggests that there are only a modest number, perhaps
tens of each, necessary to do this. Mismatches between the compute model and
the task increase the complexity and awkwardness of the design and limit scala­
bility. However, a good designers will be aware of the variety of compute models
and system architectures and judiciously select the ones that naturally match her
problem.

For decades, software engineers have faced the problem of managing com­
plexity in large, highly concurrent software systems. Software architectures [1]
were developed as one of the organizational tools to manage the complexity
and to guide the design of these systems. The system architectures identi­
fied here are a deliberate expansion and adaptation of software architec­
ture for reconfigurable computing, and many of the challenges are identical.
However, the additional flexibility of reconfigurable architectures opens up
design options and tradeoffs not typically present in the conventional mul­
tiprocessor systems for which software architectures have been traditionally
targeted.

The two main sections in this chapter introduce, respectively, compute models
and system architectures relevant to reconfigurable computing. For the reader
approaching these topics for the first time, it may make sense to read the
introductory sections, giving the detailed sections only a cursory review, for
a high-level understanding of why we need a variety of models and architec­
tures. As one delves further into reconfigurable designs or has a particular
application in mind to solve, the in-depth sections can serve as a reference
guide and provide deeper consideration of the merits and suitability of each
approach.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 121

5.1 COMPUTE MODELS

5.1 Compute Models 93

Figure 5.1 provides a taxonomy of the major compute models discussed and
refined in this chapter. The leftmost branch is a set of models organized around
the flow of data between operators; in these we think about the computation as
a graph of computational operators and we reason about the correctness and
assembly of operation in terms of data arrival at the operators, the function per­
formed on the data, and the result produced and forwarded to other operators.
The rightmost branch is a set of models organized around synchronous steps
for the entire machine; here we think about the computation as a sequence of,
perhaps parallel, operations performing transformation to global state.

At the top of the figure is a generic multi-threaded model or, formally, a model
such as Hoare's Communicating Sequential Processes (CSP) [2]. All of the models
below can be seen as refinements and stylizations on it. The multi-threaded model
gives little guidance to the programmer on how to organize and design programs.
Consequently, each of the refinements takes a stronger stand on how computation
and parallelism are organized and how we manage synchronization. In many
cases the refined models come with greater opportunities for optimization and

stronger verification guarantees.
As we will see, system architectures are typically built on some of the same

distinctions identified here in compute models (e.g., sequential control versus
dataflow). However, there is not necessarily a one-to-one matching between the
compute model used for capturing and reasoning about the application and
the system architecture used for implementation. For example, modern super­
scalar microprocessors efficiently execute sequential instructions streams using
dataflow techniques (e.g., Tomasulo [3]), and digital signal processors (DSPs)
execute synchronous dataflow graphs as a sequence of instructions.

5.1.1 Challenges

When approaching a problem, we want to know how to implement the desired
computation correctly, with the least effort, while exploiting the available

Multi-thread/CSP

Dataflow

Dynamic OF with peek
I

Dynamic streaming OF
I

Synchronous dataflow
I

Single-rate SDF

FIGURE 5.1 ■ Overview of compute models.

Sequential control

�
Sequential
control with
allocation

I
Finite

automata

Data parallel
"

Data-centric

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 122

94 Chapter 5 • Compute Models and System Architectures

hardware capabilities on current and future machines. We can decompose
this into specific challenges in selecting a compute model and developing the
implementation:

■ How do we think about composing the application?
■ How does the compute model naturally lead to efficient, spatial solutions?
■ How does the compute model support design (de)composition?
■ How do we conceptualize parallelism?
■ How do we trade area for time in the compute model?
■ How do we reason about correctness?
■ How do we deal with technology effects and adapt to technology

changes?
■ How does the compute model provide or guarantee determinacy?
■ How do we avoid deadlock?
■ What can we compute?
■ How complex is it to optimize or validate properties of the

application?

The first thing the compute model gives us is a way to think about the appli­
cation. For example: Should we think of the application as a sequence of oper­
ations that need to be performed (sequential control)? As applying an operation
to a set of independent data items (data parallel)? As a set of transformations
on a data sequence (streaming dataflow)? To the extent these questions provide
a natural way to describe the application, they make it easier to compose the
application, identify the natural parallelism, and reason about correctness and
transformations. Ideally, the compute model acts as part of the bridge between
the application and the reconfigurable platform, providing a modest semantic
gap between the application and the system architecture. The system architec­
ture then brings to bear a large set of knowledge, accumulated across many
applications, about how to efficiently bridge the gap between the compute model
and the reconfigurable platform.

Reconfigurable platforms are most efficient when we can arrange for each
resource to do the same thing over and over, and keep most of the resources
active doing exactly the work needed for the computation. The compute model
should allow us to capture computations that can exploit this; further, it should
encourage the developer to express applications in a manner amenable to this
kind of computation. The restrictions and stylizations in some compute models
may limit the freedom in expressing an algorithm. However, limiting expressive
freedom that would lead to poor reconfigurable solutions is one of the ways
that a good compute model provides assistance and guidance. If the limitations
make a solution hard to express, that can be good guidance that the solution
approach is not well suited to a reconfigurable platform or that the compute
model is not the natural choice for the task.

A good compute model helps us decompose a problem into components that
can be designed and validated independently. This helps avoid the quadratic
explosion in complexity arising from potentially interacting resources, and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 123

5.1 Compute Models 95

even avoid the linear cost necessary if we had to program each resource
independently. Sequential control models may focus on sequences of subrou­
tines; dataflow models, on composition of functions; and streaming dataflow
models, on hierarchical operator graphs.

Important to identify early is where the parallelism exists in an applica­
tion. Is it between data items (data parallelism), between coarse-grained tasks
(task parallelism), between operators in a task (instruction-level parallelism), or
within low-level arithmetic and binary operations (bit-level parallelism)? Iden­
tifying and exposing these opportunities assists area-time tradeoffs: On small,
economical platforms, we can tune a task for the modest area at the expense
of longer runtime, while on larger platforms we might exploit the additional
area to reduce compute time. Parallelism shows up implicitly or explicitly in
each compute model, and a good match in parallelism will facilitate successful
application scaling.

One of the most important tools provided by each compute model is a way to
reason about correctness, which ultimately facilitates scaling, implementation
adaptation, and optimization because it defines what transfom.ations are pos­
sible without impacting correctness. In a sequential control model we identify
the visible state on each step and reason about the changes in it; in a stream­
ing dataflow model we reason about the output sequence of a computational
graph.

With rapidly advancing technology, the size, speed, and energy of computing
primitives (e.g., gates, wires, memories) are changing continually as they move
from platform to platform. Sometimes they move together, with compute, inter­
connect, and memory speeds all growing uniformly smaller. Often, however, they
change at different rates. As vendors have optimized memory for density and
logic for speed, relative speeds have diverged, and, as we reach into the deep
submicron regime, interconnect scales more slowly than compute. As a result,
simply moving an old design to a new platform is unlikely to optimally exploit
it. With increasing interconnect delays, perhaps the design needs more pipelin­
ing to distant locations; with slower memories, perhaps it needs more parallel
memory blocks servicing a compute block. The compute model helps us under­
stand the transformations permissible for the design, which may point to tech­
niques the system architecture can employ for tolerating changes in constituent
delays. Stall signals, for example, allow sequential control to slow down only
when uncommon operations run at slower speeds than the scaled speed of the
rest of the logic; data presence (see Data presence subsection of Section 5.2.1)
allows streaming dataflow computations to tolerate variable delays within and
between operators.

Given the same set of inputs, we might want our computation to produce
the same outputs. That is, we often want our computation to be deterministic.

Certainly, if the result of the computation differs each time it is performed, it
becomes harder to debug our application or demonstrate its correctness. This can
be a mild problem with sequential applications, where dependence on dynamic
effects (e.g., dynamically allocated addresses) may change the program behavior;
it becomes acute in concurrent systems. If there is variability in the relative

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 124

96 Chapter 5 ■ Compute Models and System Architectures

timing of operations, the order of events can change, and without care this may
result in different visible application behavior.

Further, as we scale to different hardware capacities, we may exploit different
amounts of concurrency and deliberately change the order of primitive events.
Nonetheless, we might want to guarantee that the application remains deter­
ministic, providing the same results for any legal parallelism. Some compute
models with limited constraints may not be able to guarantee such determinacy
but place this burden on the individual programmer. Most, however, come with
disciplines that the developer can use to provide determinism, and some come
with a sufficient set of model restrictions to automatically guarantee it.

Still, sometimes we want or need nondeterminism to deal with variations in
the outside world (e.g., waiting for human input) or with deliberate variations
to avoid bad behavior (e.g., randomized algorithms). Sometimes, too, there are
multiple "correct" results and it is efficient to allow the system to select any
of them, perhaps in a way that looks nondeterministic to the application as a
whole. The point here is that nondeterminism always adds complexity to con­
struction and validation, so it should be used sparingly and with care [4]

When dealing with shared or limited resources or variable operations in con­
current systems, we must also watch out for deadlock; in other words, we must
watch for cases where the system may enter a state that prevents it from making
forward progress. Often deadlock occurs when we attempt to give exclusive
access to resources in an application. If a set of tasks end up waiting for each
other-that is, the task set has a dependent cycle waiting for resources-the
tasks can become deadlocked and the application will never complete. This can
happen in purely deterministic computations, but should be at least identified
by reasonably testing if the paths through the code are largely data indepen­
dent. However, if the paths are largely data dependent, and deadlock only occurs
for certain data values, identifying it with ad hoc testing can be difficult. When
resource allocation and sequencing are nondeterministic, avoiding deadlock can
be even more tricky. For these reasons, it is necessary to carefully guarantee that
none of the legal, nondeterministic choices leads to a deadlock situation.

Computational theory gives us a well-developed set of models for computa­
tion. The Church-Turing Thesis [5-7] suggests that there is a very robust class of
computing models that are all equivalent to the Turing Machine or the Lambda
Calculus model. In fact, most of the models discussed here are Turing Complete.
However, some refinements, such as synchronous dataflow (see Synchronous
dataflow subsection of Section 5.1.3) or finite-state sequential control (see Finite
state subsection of Section 5.1.4) models, are specifically less powerful. As will
be noted, these restricted models give up expressive power in order to gain more
powerful optimization and analysis.

We want to be able to say that an application always has certain properties.
Ideally, we can verify that our expression of the application is correct, or, more
specifically, that our captured algorithm is deterministic or that it can never
deadlock. Further, to facilitate automated optimization and area-time scaling,
we must guarantee that any changes made to the implementation preserve deter­
minism and freedom from deadlock. Thus, we are ultimately concerned with the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 125

5.1 Compute Models 97

computational tractability of verification and optimization. In Turing-Complete
compute models, where anything is allowed, verification and general optimiza­
tion can be undecidable; that is, without solving the halting problem it is not
possible to analyze the design and say whether or not it is correct, determinate,
or deadlock free. In more restricted models, verification or optimization may be
decidable but NP-hard, meaning that we know of no polynomial time solutions
to perform the optimization. And in even more restricted models, verification
and optimization may be polynomial time. Consequently, we have a trade-off
between the expressiveness and the strength of automation we can bring to bear
on the problem, which suggests that the designer carefully select compute mod­
els that are expressive enough for her problem but not unnecessarily so.

5. 1.2 Common Primitives

Two common primitives useful for defining and reasoning about compute mod­
els are functions and objects.

Function
A function is simply a deterministic, mathematical function that maps each finite
input to a finite output:

y = [yo, Yt, ... , Yn] = f(X = [xo, xi, ... , Xm])

A function depends on no hidden state but only the input arguments to it, and it
modifies no state values. Examples include addition, square root, and discrete­
cosine transform (OCT). Functions can be composed, and the result is another
function. For example:

y = (f o g)(x) = f(g(x))

Functions are interesting as a building block for several reasons:

■ Functions are a useful formal primitive for defining computational
models.

■ Functional operations can be a tool or clue to parallelism-since
functions do not modify state, they may be evaluated in parallel;
evaluation of functions on different data can often be heavily pipelined.

■ Functions can be a tool or guide to recurrent computations-those that
show up regularly in the description of a computation are candidates for
computational blocks that can be profitably implemented in spatial
reconfigurable logic.

'Iransfonn or object
We can associate state with a function in order to create a common building
block we can think of as a transform, or a primitive version of an object. In
signal processing, we might think of a general transform as taking a sequence

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 126

98 Chapter 5 ■ Compute Models and System Architectures

of inputs and computing outputs based on them as well as on some finite state
from the previous output:

Yi =f{:Xi,Yi-1)

In an object-oriented model, we might think of the object, 0, being the
combination of state, O.s, and a function, O.f, with each invocation evaluat­
ing the function on the input and the state and returning an output and a new
state value:

Y,O.si = O.f(X,O.si-1)

Examples of transforms include accumulators, finite-impulse response filters
(FIRs), infinite impulse response filters (IIRs), and linear-feedback shift regis­
ters (LFSRs).

This primitive object or transform is more powerful than a pure function, but
the inclusion of state may restrict its freedom of usage and implementation. As
described, the state is finite, and each object can be viewed as a finite automata.
The model says that the sequential invocations of an object see the state from
the previous invocation; this demands that we complete the function's evaluation
before starting the next invocation-or, at least, that we provide an implemen­
tation that produces the same net output sequence and state updates as though
we had done so. For simple functions (e.g., LFSRs) or those where the state can
be maintained without computation (e.g., FIRs), we can still pipeline the opera­
tion heavily. However, for complex functions (e.g., IIRs) the state feedback may
limit our ability to heavily pipeline the object.

Nonetheless, object state is owned by the object, so evaluation of an object
affects no others. Consequently, distinct objects with a complete set of inputs
can evaluate in parallel; they impact each other only by communicating values
between them. Further, objects with the same function may be able to share the
same hardware to create commonality. This is useful both for enabling area-time
trade-offs and for keeping a spatial datapath active in repeatedly performing the
same operations. If sequential dependencies within an operator limit pipelining
and we have many objects of the same type, it may be possible to C-slow the
function evaluation (Chapter 18) to use the same hardware to service multiple
objects.

In rich object-oriented models, we may associate additional capabilities with
objects. We will introduce some of these as we explore more powerful compute
models in the following sections.

5. 1.3 Dataflow

We begin our detailed discussion of compute models with the left branch in
Figure 5.1. In these models, we reason about the computation based on the flow
of data. Computations are performed by operators, which can be either functions
or objects as defined previously. We connect the operators into a graph, linking
the output data from one to the input data of another. When its inputs arrive,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 127

(a) (b)

5.1 Compute Models 99

(C)

FIGURE 5.2 ■ Computation on a dataflow graph: (a) graph without inputs, (b) graph with partial
inputs, and (c) arrival of matched input on left x-operator allows it to evaluate and compute
its output.

an operator can evaluate, produce its outputs, and send them to any operators
connected to it (see Figure 5.2).

The dataflow graph exposes considerable parallelism and freedom in evalua­
tion permitted to an implementation. The links capture the communication and
dependence structure of the computation explicitly.

There is a large hierarchy of dataflow models with different flexibilities and
challenges. For example, the simple models can be easily mapped to spatial,
reconfigurable computation. The more flexible and powerful models are more
complicated to implement efficiently, and make it difficult to guarantee correct­
ness. However, for some applications, these more powerful models may be essen­
tial to efficiently describing and executing an application.

Single-rate synchronous dataflow
One of the most primitive dataflow models is that of a static graph of operators.
The graph is created once, before the applicatio11 executes, and persists unchanged
throughout execution. In contrast, in the Streaming dataflow with allocation
subsection (see page 102), we will consider models that allow the dataflow graph to
change as part of the computation. We call the persistent edges between operators
streams or pipes, as they deliver a sequence of values from a single producer to a
single consumer, and we identify each value carried over these streams as a token.

Such a graph of operators can itself be viewed as an operator, so this provides a
model for composition of more powerful operators from more primitive functions
and objects (see Figure 5.3). Computationally, this still provides the power of a
finite automata, but the dataflow view is often a more natural way to describe,
compose, and reason about the computation.

Synchronous dataflow
In single-rate synchronous dataflow, we assume that each transform operator
takes in a single set of input tokens and produces a single set of output tokens.
It is a simple generalization to allow the model to take in multiple tokens on a
single stream link or to produce multiple tokens on an output stream link for one
logical evaluation of the function. For example, a down-sample operator might
read two inputs and only output one value, discarding every other input token.
The number of inputs received from each input stream, or outputs produced on
each output stream, can be different; for example, an operator might read two
A tokens for every B token. However, as long as there are a constant number of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 128

100 Chapter 5 ■ Compute Models and System Architectures

FIGURE 5.3 ■ A single-rate static dataflow graph.

FIGURE 5.4 ■ A multirate dataflow graph.

tokens consumed from each input stream and tokens produced on each output
stream on each such evaluation, the model retains the same power as before, but it
now allows us to efficiently express multirate streaming applications; that is, some
loops in the dataflow graph can operate at much lower frequency than others.

An inner loop might execute on every input to the graph, while an outer loop
might perform updates only once every 10 inputs as shown in Figure 5.4. The
numbers on the operator I/Os in Figure 5.4 indicate the rate of I/0 consumption
or production. The update module produces a single output every 10 tokens;
the F function consumes a single input from update every tenth data input and
output token; and the copy and subtract units each produce a single set of output
tokens for each set of input tokens.

This is the Synchronous Dataflow (SDF) model [8], and it retains the same
computational power of a finite automata. However, it allows multirate designs to
be expressed more efficiently, explicitly identifying the relative operating rates of
each of the computational functions in the graph. An implementation can use this
information when provisioning operators and scheduling the sharing of physical
resources. The computation is completely deterministic, and it is possible to
automatically identify when operator rates are mismatched, leading to deadlock,
and to automatically identify any buffering necessary during execution [9].

Dynamic streaming dataflow
Synchronous dataflow retains analysis simplicity because there is no data depen­
dence in the consumption or production of tokens. Every evaluation of an object
consumes and produces the same number of tokens regardless of the data.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 129

5.1 Compute Models 101

in inO in1

¥-·
outO out1 out

(a) (b)

FIGURE 5.5 ■ The dynamic dataflow primitives-switch (a) and select (b).

in

s

select
_

fun

s

out

FIGURE 5.6 ■ Data-driven function selection in the dataflow model.

A more general model allows the production of input and output tokens to
depend on the object state or the values of the inputs. We can fully capture this
additional power by adding the switch and select operators, shown in Figure 5.5,
to a persistent object graph.

In the figure, these two operators are data dependent, producing data on only
one output, or consuming the inputs selectively, based on an input value. Equiv­
alently, this can be captured by generalizing the notion of an object to allow its
state to determine the token consumption and production actually performed
on each evaluation. This allows us to efficiently deal with data-dependent cases,
such as the following:

■ Performing different operations based on the data (Figure 5.6).
■ Varying the rate of the output relative to the input, such as in a

compressor or decompresser (e.g., Huffman encoder).
■ Iterating a computation a variable number of times to yield convergence

(e.g., Newton-Raphson method for finding roots of equations).

In some cases these operations can be data independent, but only at the expense
of more work (e.g., evaluating both functions in Figure 5.6 and then discarding

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 130

102 Chapter 5 ■ Compute Models and System Architectures

one result). However, if no constant bound can be placed on the iterations
(e.g., the number of cycles required for convergence), data dependence is a
necessity, not just an efficiency optimization.

The addition of data-dependent operators changes the power of the streaming
dataflow, making it more difficult to analyze statically. The computation remains
deterministic, but data-dependent production and consumption rates on oper­
ators necessitate reasoning about the streams as first-in-first-out (FIFO) token
buffers. The addition of unbounded buffers between operators is sufficient to
make the model Turing Complete, and it is no longer always possible to deter­
mine the FIFO buffers' required capacity. If the implementation buffer capacity
is too small, the application may artificially deadlock. This demands either that
the developer identify the necessary buffer size to avoid deadlock for each appli­
cation or that the implementation provide dynamic support to allow arbitrary
buffer expansion at runtime [10].

Dynamic Streaming Dataflow with Peeks
So far, we have demanded that the object evaluate based on a valid set of input
tokens. In the data-dependent case, we allowed the value of the present tokens to
determine which other tokens were consumed. We can further allow the opera­
tor to perform an action or modify state based on the absence of a token; that
is, we can allow it to peek to see if an input is present. For example, a merge
unit might have two inputs and forward either token to its output whenever
there is some input present. As the merge unit example suggests, this creates
new freedom for efficient evaluation but also introduces nondeterminism. The
operator can now behave differently based on the arrival timing of its inputs.
The data-dependent streaming dataflow model discussed earlier only introduced
concern about deadlock but remained deterministic. The Dynamic Streaming
Dataflow with Peeks model forces the developer to manage determinacy.

Streaming dataflow with allocation
The parallelism in the application is, ip. general, data dependent. Consequently, it
can be useful for the operator dataflow graph to evolve on the basis of the data in
a computation. In a telecommunications application, the number and type (e.g.,
voice, data) of connections change over time. Each channel has its own noise
characteristics, perhaps requiring filter complexity (e.g., number of taps, length
of echo cancellation) different from the others'. To accommodate these changes
in the computational demand of an application over time, we must change the
dataflow operator graph. We could force the graph construction to a different
compute model and stay with graph evaluation as one of the models reviewed
earlier. Alternately, we must expand the compute model with the ability to create
new operators and link them into the graph.

The key addition now is for our operators to be able to perform instanti­
ation (e.g., new) of operators and streams and to be able to connect them.
Even if operators remain finite state, instantiation provides the ability to
create unbounded state by growing the object graph to unbounded size, with
arbitrary data structures implemented as subgraphs. This provides a more

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 131

5.1 Compute Models 103

efficient path to achieving Turing Completeness than the unbounded buffers in
dynamic streaming dataflow.

While powerful, dynamic allocation means that the logical graph is changing
during execution, and with dynamically changing computational graphs, it is no
longer possible to optimize, schedule, place, and route them before execution.
As a result, dynamic allocation gives us a model for the application to change
during execution that can exploit the capabilities of a reconfigurable computing
platform. However, it can also force a need for reconfiguration during execu­
tion, so allocation should be used with care. If it is infrequent, and allocated
objects are long-lived, the cost of runtime management and reconfiguration can
be amortized out over long usage periods.

General dataflow

Once we add allocation of operators, the model becomes powerful enough to
be used as general dataflow computation. Some dataflow models do not treat
operators or links as persistent (e.g., Arvind and Nikhil [11] and Culler et al.
[12]). Rather, the dataflow is instantiated during a function or object call, used
once, and then it is disposed. This does not change the model, but it does change
the relative rate of allocation versus dataflow usage in a significant way. On
typical reconfigurable platforms, dataflow construction is expensive, making it
more difficult to efficiently map models that dispose of and reconstruct dataflow.
For efficient execution on a reconfigurable platform, the compiler must discover
opportunities to create dataflow operator graphs and reuse them across many
invocations.

5.1.4 Sequential Control

The most widely used models for capturing and reasoning about algorithms are
based on some form of sequential operation, including popular programming
languages (e.g., C, Java, Fortran), control structures for hardware (finite-state
machines), and formal models of computation (Deterministic Finite Automata,
Sequential Turing Machines). The basic idea behind these models is that com­
putations are defined as a sequence of primitive operations performed on some
data state. The primitive operations define how state is transformed, including
the state that determines which primitive operation(s) to execute next. Simple,
concrete embodiments of this include sequential Instruction Set Architecture
(ISA) processor models [13], but the state transforms can be much larger,
may be coarse grained, and may include substantial parallelism on each
sequential step.

Sequential control allows us to decompose a problem into simple, primitive
operations. One thing happens at a time, making it relatively easy to reason
about what each operation can do to the state.

Execution where only one primitive operation occurs at a time does not
take full advantage of spatial reconfigurable architectures, leaving almost all
the hardware idle as operations are sequentialized. Coarse-grained sequential
operations that perform complex functions on large amounts of data may

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 132

104 Chapter 5 • Compute Models and System Architectures

provide sufficient parallelism to match the reconfigurable hardware. While strict
sequentialization of operations defines the intended results in the model, careful
analysis can often reconstruct a data dependence graph (Chapter 7), essentially
the dataflow graph (see Section 5.1.3), to allow several operations to proceed
in parallel and at the same time maintaining the sequential model semantics.
Still, care must be taken in the sequential expression to avoid introducing false
dependencies that inhibit parallelism. In general, the sequential expression can
be a poor match for the parallel capabilities, and sequential models tend to lead
the designer away from good reconfigurable implementations. There are, how­
ever, characteristics of our computations that sequential control may capture
well at a high level.

■ Data-dependent calculations are naturally captured with branching.
Sequential control here allows us to express the selection of the
computation we need to perform on the data.

■ Phased computations where the algorithm does widely different things at
different times may also be captured well with sequential control. If each
phase requires widely different computation, spatially supporting them
all at once may leave much of the reconfigurable hardware idle during
the calculation. Transitions between phases gives us a way of expressing
and identifying points in the program where it may be useful to
reconfigure the hardware for the different portions of the task,
instantiating only the relevant hardware for each phase.

Finite state
The simplest models of sequential control operate with a finite amount of state
and are computationally equivalent to finite automata. Given this, verification
of optimized computations can be performed in polynomial time with state
reachability [14].

Sequential control with allocation
In more powerful models of sequential computation, we allow operations that
allocate additional memory (e.g., malloc, new). Coupled with data-dependent
branching, this allows the computation to allocate an unbounded amount of
state, making the model Turing Complete, which in tum means that we cannot
generally prove a bound on the amount of memory the application may require
to run to completion.

Single memory pool
As noted earlier (see Section 5.1.2), because of an object's internal state we must
carefully sequence the operations on it. We can think of each logical memory
pool in a sequential model as an object with state so every operation on a sin­
gle memory can be dependent on every other. If static analysis cannot prove
that two users of the memory operator modify disjoint state in the memory, the
operations must be sequentialized to preserve sequential correctness. In single­
memory compute models, such as the C programming language or a traditional
ISA execution environment, all memory operations must be sequentialized. This

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 133

5.1 Compute Models 105

sequentialization significantly limits the parallelism a compiler can extract from
a single-thread, single-memory compute model. Consequently, large C programs
that have not been carefully written to avoid these dependencies can be difficult
or impossible to parallelize. Nonetheless, aggressive compilers can sometimes
succeed in decomposing the monolithic memory into disjoint memory pools
(e.g., Babb et al. [15]).

5.1.5 Data Parallel

Some applications are naturally captured as performing identical transforma­
tions on a set of independent data items. For example, we may need to perform
the same color-space conversion to every pixel in an image, or perform the same
match test to every data item in a database. Even though we could express such
a task as a sequential loop over all the data items, it is often difficult for a com­
piler to prove the independence of each data item transform, and it can be tricky
for the developer to identify which loop operations allow independent compu­
tation. Therefore, it is often useful to have an explicitly data parallel model that
allows us to reason about and express algorithms as a sequence of transforma­
tions on aggregate datasets.

Once the desired computation is captured as a sequence of independent,
identical, potentially parallelizable operations, we have considerable freedom
in implementation for area-time tradeoffs. The computation can be rendered
spatially and kept active as a heavily pipelined vector unit (see Vector coproces­
sors subsection of Section 5.2.4). Additional, parallel units can be allocated as
the dataset demands and the platform permits.

The model typically remains sequential at the core and can suffer from arti­
ficial parallelism limits based on the provided sequential model. In particular, it
may be hard to determine cases where multiple, independent data parallel oper­
ations can occur simultaneously. Although the parallelism on a single operation
is limited by the size of the aggregate data item, the data parallel model does
give general high-level guidance to the developer that often trends in the right
direction for efficient spatial realizations.

5.1.6 Data-centric

In the streaming dataflow model, the designer thinks of the application as a
transformation graph with data generally flowing through operators with fixed
state. For some applications, such as physical simulations, it makes sense to
tum that around and think about the operators and their state as the primarv
data structure, and reason about the computation as transformations on the
operator state. For a network flow problem, we might construct the graph for the
network; each operator maintains state to represent the flow through its links
and the accumulating overflow at the node, and each operator sends tokens
over the edges between operators to reroute flow. At each sequential step we
may allow each operator to process a set of inputs and send a set of outputs.
At a high level the operation is data parallel, with each operator performing its
node update operation; however, locally the computation may be data and state

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 134

106 Chapter 5 • Compute Models and System Architectures

dependent. High-level data parallel instructions to the operators can sequence
phases of the computation (e.g., preflow and push phases in network flow).

Applications that regularly visit many nodes on large graphs of data are a
natural source of parallelism. Even if the nodes are not identical, there are
usually only a small number of different node types, providing an opportunity
for sharing of spatial operators. Without strict dataflow communication order­
ing, additional disciplines may be necessary to maintain determinacy. Efficient
execution may require load balancing and sharing if graph nodes have low or
widely varying activity factors.

5. 1. 7 Multi-threaded

A widely used model for parallelism is multi-threading or some form of CSP [2].
Basically the model is a collection of sequential control processes with commu­
nication links between them, either as direct communication edges or as shared
memory. Multi-threading is a very general model and, in fact, any of the models
presented so far could be seen as subsets of it.

The problem with multi-threading is that it is too general and powerful to
provide guidance for application development and correct implementation. It
permits the expression of solutions that are difficult to reason about, and it pro­
vides little guidance on good solutions and guaranteeing determinism [4]. How
should the application be divided into threads? How do the threads synchronize
with each other? How do we guarantee determinism and avoid deadlock? In our
streaming dataflow model, we think of each thread, the operators, as transforms
on the data flowing through them, and we synchronize based on token flow; in
our data parallel model, we think of each thread as a separate data item and
update each in lockstep; in our data-centric model, we think of each thread
as an active object in the graph, performing updates on barrier-synchronized
steps.

When faced with applications that demand more power than is available in
a more restricted model, we should think about the power actually necessary
for our application and the extent to which we can define a restricted discipline
for using the multi-threaded model that answers the questions the model does
not answer for us. What do our threads and operators represent? What is the
synchronization discipline? What is our basis for reasoning about determinacy,
deadlock, and correctness?

5.1.8 Other Compute Models

The compute models reviewed here are by no means exhaustive. From the start,
we want to emphasize the need to consider multiple models and choose the one
most natural for the application. The set just described are useful in reason­
ing about the architectures and applications developed in this book and may
be most helpful for reasoning about reconfigurable applications. Nonetheless,
as we master these models and encounter applications that match poorly with
them, we should look for others that further ease the conceptualization of an

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 135

5.2 System Architectures 107

application. (For other summaries of compute models see Lee and Sangiovanni­
Vincentelli [16] and Lee and Neuendorffer [17].)

5.2 SYSTEM ARCHITECTURES

Whereas the compute model helped us understand the natural composition and
parallelism in the application, the system architecture deals primarily with how
we organize the implementation. As noted (introduction to Section 5.1), applica­
tions in a compute model may be mapped to any of several system architectures.
The choice of architecture will depend on technology costs and resource avail­
ability compared to the application resource and performance requirements. For
example, a platform that is very small compared to the size of the task drives
serialization in the implementation, which may favor sequential control. Even
here, though, we have important decisions to make about the level at which the
sequential control is exercised (e.g., coarse-grained phasing) (see Phased recon­
figuration manager subsection of Section 5.2.2) versus cycle-by-cycle sequencing
(see FSMD, VLIW datapath control, and Processor subsections of Section 5.2.2).

Figure 5. 7 is an overview of the system architectures, and their variants, cov­
ered in this section. To help the designer easily identify those that may be rel­
evant to his or her specific problem, we open the description of each one by
identifying the major problem or challenge it addresses.

5.2.1 Streaming Dataflow
We best exploit a reconfigurable platform when we can spatially arrange spe­
cialized computational pipelines and keep them each actively working on useful
computation at a high cycle rate. How do we organize computations that can
exploit this efficient use and arrange for data to feed the pipelines?

In the simplest case, we can use one of the streaming dataflow compute
models (Section 5.1.3) directly as a guide for system implementation; that is,

Streaming
dataflow

Streaming
coprocessor

FSMD

Multi-threaded

BSP Data
parallel

.,,...,,,,...

✓

�

VLIW Processor Instruction Phased Worker CA SPMD SIMD Vector
augmentation reconfiguration farm

�
manager

RFU Coprocessor--------------- Vector
coprocessor

FIGURE 5.7 ■ Overview of system architectures.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 136

108 Chapter 5 ■ Compute Models and System Architectures

we can map each operator to its own physical datapath and interconnect them
all via configured interconnect. The efficiency of spatial pipelines on FPGAs and
reconfigurable architectures makes this attractive. Further, the streaming model
shows where in the detailed, cycle-by-cycle behavior of operations we have the
implementation freedom to adapt to target platform delays. This architecture is
known as Pipe and Filter in the literature [1]. Chapters 8 and 9 describe appli­
cations and programming that use it.

In the remainder of this section, we highlight four detailed techniques that
are often useful in implementing streaming dataflow architectures.

Data presence

Direct connections of pipelined datapaths may pose challenges to guaranteeing
the proper streaming dataflow semantics, offering efficient implementations, or
allowing composition. These challenges include:

■ Configured interconnect paths between operator datapaths may be long
and can vary on the basis of platform, implementation technology, and
operator placement. Long interconnect paths may limit the speed of
operation.

■ Different implementations of an operator may operate at different rates,
and we want to be able to interchange these implementations without
redesigning the implementations for all of the operators that interact
with this operator.

■ In dynamic dataflow models, an operator may not be able to consume an
input, or produce an output, on every cycle of operation.

To promote easy and efficient operator composition, we can associate a "data
present" signal with each data item. We design the physical functional units
so that they can stall while waiting for the required inputs to be present. This
decouples the clock cycle for interconnect and compute from the logical align­
ment of data, allowing us to pipeline the datapaths and the interconnect paths
between them without changing the meaning of our computation ln many
cases, we need to treat the interconnect paths as FIFO queues between oper­
ators; further, we can use back-pressure to indicate when a stream link between
operators is full and so the upstream operator must wait before producing addi­
tional results.

The discipline makes the implementation of an operator independent of the
implementation of others with which it communicates, allowing each to run at
its desired clock rate even as all of them are composed together to build a larger
system. This permits a variety of composite implementations:

■ Operators and interconnect can all be designed to a single target clock
frequency.

• Operators may run on separate clocks that are based on a common base
frequency.

■ Operators and interconnect may run fully asynchronously, handshaking
locally.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 137

5.2 System Architectures 109

■ Operators may use a Globally Asynchronous, Locally Synchronous
(GALS) model, with local operator clocks and asynchronous handshaking
between operators.

It is still necessary to pay attention to the length of logical cycles in the orig­
inal streaming dataflow graph; a loop in the graph may force sequential evalu­
ation of all the graph's operators. Even though we can physically pipeline the
operators and the links, the logical alignment of data may force the operators to
effectively operate at lower rates, leaving the datapaths and interconnect inactive
on most cycles. Such dependencies may motivate sequential sharing of opera­
tors or the resources inside them.

Datapatb sharing
Ultimately, we must fit our entire dataflow graph onto our physical platform.
For efficiency, we hope all of the hardware allocated to the dataflow graph is
put to productive use on each cycle. Following are specific scenarios we may
need to address:

■ The substrate may not be large enough to hold the entire dataflow graph
spatially.

■ Multirate dataflow graphs may leave some operators idle while others are
busy.

■ Cyclic dependencies in the dataflow graph may make it impossible to
keep all the operators active simultaneously.

To use the datapath hardware efficiently in cases such as these, it is often
useful to share a physical datapath among multiple operators. In the simplest
case, we share identical operators so that the datapath remains the same, only
adding the unique state associated with each of the operators. In more compli­
cated cases, we might generalize the datapath so that it can implement two or
more types of operators.

When we share operators, we need to identify which data inputs are associ­
ated with which logical operator. This can be simply orchestrated by scheduling
and pipelining for static-rate operators, but for dynamic operators and variable
implementation delays, it may be necessary to further tag the data with infor­
mation that identifies the logical operator for which it is destined.

Streaming coprocessors
With extreme variation in operator frequencies, large numbers of operators, and
very small platforms, operator sharing may not be sufficient to provide an effi­
cient solution. Here, even allocating a single datapath for a particular hardware
type may leave the datapath highly underutilized or it may still demand more
area than the platform provides.

In these more extreme cases, it is often useful to schedule the low-rate
operators onto an embedded or attached processor (see Processor subsection
of Section 5.2.2). By augmenting the processor with streaming instruc­
tions, processor-mapped operators can communicate efficiently with streaming

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 138

110 Chapter 5 ■ Compute Models and System Architectures

dataflow. Data destined for active operators can be forwarded spatially, while
data intended for inactive operators can be queued in memory. Data presence
allows the processor tasks to operate without knowing the size of the reconfig­
urable platform or the residency of operators. Data presence on stream reads by
the processor can be used like a memory stall, tolerating varying implementa­
tion delay on the reconfigurable platform or triggering an operator swap, similar
to a thread swap on an I/O or virtual memory page miss.

Interconnect sharing
In spatial computations, interconnect often consumes a substantial portion of
the hardware area and can often be a performance bottleneck. Consequently, we
should always be concerned about using the interconnect efficiently. A direct,
configured connection between a source and a sink can be inefficient when

■ The link between operators is used infrequently because of a slow
datapath or a low-rate operator relative to the rest of the computation.

■];Jecause of dynamic data dependence, the communication rate on many
links is highly variable.

To optimize interconnect in these cases it may be possible to reduce the inter­
connect requirements on these interconnect links by sharing them. Links can be
shared in a variety of ways, including shared bus, pipelined ring, and network­
on-a-chip. These can be statically scheduled in data-independent cases and
in data-dependent cases with low communication variability, or dynamically
managed when the data-dependence produces high variability.

5.2.2 Sequential Control

While sequential control is familiar and heavily used for highly sequential
machines and algorithms, it is most interesting to us as a way to organize syn­
chronization and control of a large set of spatially parallel operators, particularly
when

■ The compute task is too large to fit spatially onto the available computing
resources, so we must share the resources in time.

■ Data dependencies result in low utilization of the datapath, so we can
share resources to produce a smaller design with little or no impact on
compute time.

Even when we start with a dataflow or data-centric computation, it may be
useful to control the implementation, or parts of it, in sequential manner; this
is especially true when we share spatial operators in time to economize on space.

A common idiom is to

1. Start with the computation data dependence graph (e.g., Figure 5.8 (a) or
Figure 5.2) based on the description in the compute model.

2. Identify a base set of datapath elements that can implement all the
operators in the computation graph.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 139

A X B C

(a)

5.2 System Architectures 111

C BA X

(b)

FIGURE 5.8 ■ A dataflow graph for y = Ax2+ Bx+ C with three multiplies and two adds (a); a

shared datapath (b) with a single multiplier and adder with state registers and multiplexors.

3. Schedule the operators in the compute graph onto the datapath elements.
4. Add data storage and interconnect to hold intermediate operator state and

forward data between the locations where producing and consuming oper­
ations are performed.

In the simplest case, we might allocate a single datapath element for every oper­
ator in the compute graph. While there is no sharing in this case, it may still
be necessary to control when the elements should sample their inputs and pro­
duce outputs. This can be done in a purely dataflow manner as suggested in
the Data presence subsection of Section 5.2.1; however, for modest blocks in
a single clocking domain with predictable datapath timing, it can be more effi­
cient to centrally control the operators, sending control signals to each datapath
element from a central control unit.

In the more general case, we have fewer datapath elements than operators and
must orchestrate the sharing of those elements and interconnect. Intermediate
values in the original computational graph that are not consumed in the cycle
immediately following production, or immediately after being routed from the
source to the destination, are stored temporarily in memories (see Figure 5.8).
Object state that persists through the computation must be stored in memory or
registers and routed to the associated datapath when the operator has its turn
to use the datapath.

Within this paradigm, the key piece of freedom is the selection of the
base datapath elements and the assignment of operators to them. This selec­
tion is where we can exploit area-time tradeoffs, allocating more spatial
datapath elements as we have more area available and want to reduce the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 140

112 Chapter 5 ■ Compute Models and System Architectures

time for computation; it is also where we have opportunities to instantiate
highly specialized operators that are matched to the needs of a particular task
(e.g., Chapter 22).

The design community has identified a number of stylized forms for sequential
control over the years. In the remainder of this section, we highlight a number
of organizations and note when they may be useful for managing reconfig­
urable resources.

FSMD

Once we have selected the operators, assigned them to datapath elements, and
scheduled the operations, we still need some way to implement the central con­
trol that manages resource sharing and orchestrates the routing of intermediate
data among datapath elements.

One common way to support this control is to build a finite-state machine
(FSM) that controls the operation of the datapath; this is called a Finite-State
Machine with Datapath (FSMD) [18]. The FSM controller can assert the various
controls (e.g., multiplexer selections, load or read/write enables, datapath opera­
tion selection) on each cycle and provide cycle-by-cycle sequencing of them (see
Figure 5.9). Further, the FSM can take inputs from the datapath and, based on
their data, branch to different control sequences.

A data-dependent operator might be internally implemented as an FSMD,
with the state transitions in the FSM controlling the input consumption and
output production (see Dynamic streaming dataflow subsection of Section 5.1.3,
or Section 5.1.6).

Start C BA X

FIGURE 5.9 ■ FSMD for a single multiply and add datapath for quadratic equation evaluation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 141

VLIW datapath control

5.2 System Architectures 113

While we can build a custom FSMD for each application, the FSMD form does
not, itself, provide disciplined organizations for state storage and data routing,
nor does it suggest any organizing principles for managing the control of each
datapath. As a result:

■ With heavy sharing there is a proliferation of intermediate state that
needs to be managed.

■ With many datapath operators, state memories, and switched
interconnect, there is a proliferation of control signals that must be
distributed to these compute, memory, and interconnect elements.

■ For generality, robustness to change, and the opportunity to deploy the
datapath for multiple tasks, it may be useful to be able to change the
control sequencing without rebuilding the entire controller.

One stylization for sequential control is the Very Long Instruction Word
(VLIW) model, which in its most primitive form is closely related to Horizontal
Microcode [19]. In VLIW we start with the collection of datapath elements as
before. These can be homogeneous or heterogeneous and provisioned accord­
ing to the needs of the task. We then add one or more memory banks to hold
inputs to each datapath element, and we add switched interconnect between
the datapath elements and the memories. The controls to the memories, dat­
apath elements, and interconnect become the long instruction word, to which
we allocate a wide memory, perhaps distributing it with the memory cells and
memory outputs local to the compute, interconnect, and memory elements they
control (see Figure 5.10). To issue an "instruction" (see Chapter 36), the con­
troller sends a single instruction address to the wide memory, and the memory
output tells every datapath element, memory, and interconnect switch how it

Program
counter

FIGURE 5.10 ■ VLIW-style control of a single multiply and add datapath.

Long instruction
word memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 142

114 Chapter 5 • Compute Models and System Architectures

should be configured on that cycle of operation. Typically, the datapath is con­
figured to send one or a few bits back to the controller that can be used to select
the next instruction address to allow data-dependent branching.

When VLIW was first introduced for general-purpose processing (e.g., Ellis
[20]), the datapath elements used were generic (e.g., ALUs, FPUs, load/store
units), of modest size, and fairly homogeneous. With FPGAs and reconfigurable
architectures, we have the opportunity to select the datapath elements based on
the task, make them highly specialized, and potentially even make them fairly
coarse grained (e.g., a OCT step, motion estimation step, or AES encryption
step).

Processor

The FSMD and, to some extent, VLIW control both assume that there are com­
mon datapaths that can be shared, and both allow multiple, concurrent opera­
tions to exploit the spatial parallelism available on an FPGA or reconfigurable
device. However, for some computations our premium may be space saving
rather than operation performance. That is, overall system performance may
depend on this operator fitting onto the platform and being performed infre­
quently, but the time the operator takes may have little impact on it.

A conventional, sequential processor or microcontroller with a single arith­
metic logic unit (ALU) is the extreme end of sharing, where we

1. Allocate a single, universal datapath element.
2. Decompose all operators into sequences of operations on this primitive

datapath element.
3. Provide state storage for all intermediates between the cycle of production

and the cycle of consumption, including storage for all object state.
4. Define a narrow instruction to control the datapath element and state

storage.
5. Provide a sequencer and branch unit to sequence the instructions on the

datapath in a potentially data-dependent manner.

Because this allocates minimal area to computation and interconnect, the total
area for the computation can be very compact; however, compactness comes
at the expense of most of the resources going to control, instruction, and state
management. As a result, only a tiny fraction of the consumed computational
resources go directly to implementing the application (see Chapter 36) .

. If heavy serialization to economize area is what we need for an entire task,
a dedicated processor is certainly more efficient than a processor configured on
top of an FPGA. Nonetheless, there are a few scenarios where a processor con­
figured on top of an FPGA might be reasonable. Such scenarios would typically
exploit the flexibility of either building a particularly specialized and lightweight
processor for a specific task and/or embedding one in a flexible and highly inte­
grated manner alongside a much larger computation implemented using a more
spatial implementation architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 143

5.2 System Architectures 115

When we have multirate computations (e.g., Synchronous Dataflow model
subsection of Section 5.1.3), some operators may execute at much lower rates
than others. To balance the system and achieve maximum application perfor­
mance in a limited area, we typically allocate space to operators in proportion
to the fraction of the total computation they perform. As a result, we may end
up with some very infrequent operators that are needed to complete the task
but can afford to operate very slowly. If there is a dedicated, attached proces­
sor, perhaps these operators can be run there; if not, or if the flexibility to
place the processor datapath for this operator local to other computations is
important, it may be worthwhile to implement the operator as a configured
processor.

Instruction augmentation
For resource sharing, a sequential controller is often necessary to direct the use
of specialized datapaths. Sometimes this takes the form of a mix of irregular,
low-throughput tasks that do not need to be executed quickly along with some
very regular computations that are critical to performance. Manifestations of
this need include:

■ We need to sequence a modest amount of FPGA or reconfigurable logic.
■ The computation contains a few operations that account for most of the

time, embedded in a large amount of irregular tasks necessary to
define the complete computation.

A processor is an efficient, programmable, and well-understood sequential
controller. Consequently, it is often useful as the base design for a sequential
controller. This is common enough that many platforms provide a dedicated
processor attached to an FPGA or reconfigurable array (Chapter 2). It is also
useful enough that this may be one of the motivations to employ a custom,
configured processor.

One way to provide the coupling between the processor and the FPGA array
is to treat the functions provided by the FPGA as additional instructions that
augment the processor's base instructions. The processor's execution model of
issuing instructions and expecting them to be performed in sequence remains
intact, but the set of instructions it can issue are enlarged by the configured
array. The FPGA instructions can potentially be very powerful, performing the
equivalent of hundreds of base processor instructions in a single invocation.
This can be particularly effective when a few such powerful instructions can
cover the bulk of the execution time in the task. The processor serves as the
application glue, sequencing these dominant operations and orchestrating the
movement of data to connect them.

Functional Unit model One way to implement instruction augmentation is to
provide a reconfigurable functional unit (RFU) (e.g., Razdan and Smith [21], Hauck
et al. [22], and the Tightly coupled RPF and processor subsection of Section 2.2.2);
that is, we treat the reconfigurable array just like any other functional unit

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 144

116 Chapter 5 ■ Compute Models and System Architectures

L1 D-cache

L 1 I-cache

Issue ,__ __ _,
queue 1-----1

FIGURE 5.11 ■ A super-scalar processor with an RFU.

Register
file

in the processor (see Figures 2.12 and 5.11). The processor issues instructions
to it, feeding it data from the register file, and the array returns the result to a
register. Normal processor issue and scoreboarding mechanisms can be used to
accommodate variable delay in the array operation. The Functional Unit model
may be particularly useful in specializing a configured processor to a particu­
lar application, where the custom functional units each perform a single func­
tion. It can also be used for coupling a custom processor to a reconfigurable
array. One variant is to allocate a set of opcodes in the instruction for the
reconfigurable function unit so that the processor instruction can call out
different array operations.

The Functional Unit model is easily integrated into a conventional processor
pipeline. However, it provides limited 1/0 between the processor and the array
and demands that the reconfigurable operation be a function, preserving no
internal state. This potentially limits the use of the array, by preventing the allo­
cation of large, coarse-grained operations on it.

Coprocessor model Another way to implement instruction augmentation is to
treat the reconfigurable array as a coprocessor (e.g., Callahan et al. [23]-see
Figure 5.12), with the processor performing explicit data moves to and from it
and directing it to perform specific operations. The coprocessor model allows
the array to hold its state and places data close to it. This makes it possible
to push larger portions of the computation onto the array, only communicating
data back to the processor at large operation boundaries. The 1/0 to a single
operation can be sequenced over several cycles, which allows greater flexibility
in operator granularity.

~ ~ lt--------+------+------+--------1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 145

L 1 I-cache

PC

Register
file

I I
11 I

L1 0-cache + +

,7
LO/ST

5.2 System Architectures 117

I
Instruction I

I
Result J

I
I

Inputs J

I
I
I

�I
g I
en

� I �
� I {g
OJ!!?
(.) C

I
·-

Reconfigurable
coprocessor

DODD □□□□
DODD □□□□
00 □□□□□□
□□□□□□□□
□□□□□□ DD

□□□□□□□□
DODD □□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□
□□□□□□□□

FIGURE 5.12 ■ A scalar processor with a reconfigurable coprocessor.

Phased reconfiguration manager
In the preceding sections, we shared the FPGA or the reconfigurable array
resources in time in a fine-grained manner by scheduling operators on a cycle­
by-cycle basis onto the datapath elements. This works when we have common
operator types that permit sharing, or when we can generalize the datapath ele­
ment to support many operators. In order to realize this we added additional
circuitry to the design to flexibly route data between the datapath elements and
to sequence the sharing. These additional resources did not contribute compu­
tation to the original task and so were pure overhead. However, since our hard­
ware is reconfigurable, in some cases it is possible to reconfigure it and perform
this sharing at a coarser granularity with less overhead. Since reconfiguration is
often slow, this is viable only when we can arrange for the array to be used for
a long period of time in a single configuration, such as when tasks operate in
phases, performing distinct computations for long times. For this to be useful
the "long time" in a configuration should be long compared to the time required
to perform the reconfiguration (see Section 4.2 and Chapter 9).

In these cases, sequentialization is very coarse grained. We can nonethe­
less still think of the sequencing as a sequential control application, with
each state potentially representing a different configuration of the array. The
sequential controller monitors the execution to detect the end of the phase,
implements configuration, and may even perform state-dependent branching.
Sequential control can be realized with many of the architectures previously
discussed (e.g., FSM, processor, instruction augmentation).

Worker farm
Sometimes we may have a set of dependent operations where each one runs for
a large and variable amount of time. For example, Unix/Linux make rules specify

~ '"J n • .-1
I

i-,__ I .I ,)
" ~]: ~ - -I I ,.I§ □ ,.., -

E= ~~ :r- -~· - '-"-,,,
IJ~El:r[-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 146

118 Chapter 5 ■ Compute Models and System Architectures

Configurable Master Configurable
- worker task worker

unit queue unit

I
Shared Configurable

Master
Configurable

task - worker - - worker
unit

controller
unit memory

Configurable Configurable
- worker worker

unit unit

FIGURE 5.13 ■ A worker farm.

-

Shared
- task

memory

-

a coarse-grained, dependent task set, and clustered multiprocessors exploit this
parallelism with parallel make utilities such as pmake [24]. The variable runtime
means that predetermined assignments of operations to hardware resources can
be very inefficient.

We can exploit the reconfigurable hardware in these cases by organizing
resources as a set of workers, which actually process jobs, and a central manager,
which is responsible for assigning operations to them, potentially coordinating
data movement and reconfiguration (see Figure 5.13). Here, the manager might

1. Maintain a queue of ready tasks.
2. Issue the first ready task to execute on a free worker.
3. Continue issuing tasks to workers until there are no free workers.
4. Wait for one or more workers to signal completion.
5. As tasks complete, put any tasks they enable on the ready queue.
6. Loop back to step 2.

Operations are enabled in dataflow form as they are completed. If the tasks
are largely homogeneous or taken from a small set of types, the workers may be
identical or taken from a small set of datapath configurations. If they are long
running and highly heterogeneous, it may make sense to reconfigure them to
each task; when the reconfigurable array supports it, this might include partial
reconfiguration (see Section 4.2.3) of the array to customize each worker for its
next task.

5.2.3 Bulk Synchronous Parallelism

In our sequential control architectures, we had a central controller telling every
datapath element what to do. This guaranteed that the datapath elements moved
forward in a synchronized manner. However, if the work required by each datapath
is highly data dependent, a centralized locus of control may become inefficient.
Consequently, we often allow the local datapathsto have independent control but

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 147

5.2 System Architectures 119

still want to guarantee that they remain synchronized at some coarser granularity.
In particular, we might want to ensure that one set of tasks completes before
another begins.

Bulk Synchronous Parallelism (BSP) [25] can be seen as a variant that keeps
the synchronization centralized but distributes the datapath sequencing. In
BSP, independent units of computation progress independently, with the local
computations punctuated by periodic barrier synchronization events. Each local
computation announces when it reaches the barrier and waits for a global
acknowledgment that all local tasks have reached it before proceeding.

The barrier is an efficient technique for supporting data-dependent, time­
variable operations in each task while still providing strong synchronization
guarantees. An alternate would be to statically determine the length of each
epoch and have local tasks that complete their epoch early wait until the static
epoch duration completes. If the runtime of each task varies widely based on
data or potential resource contention, the static bound necessary to guarantee
correctness may be excessively long compared to the common case local task
completion time.

Further, if the local tasks are Turing Complete, it may not be possible to
even identify such a static upper bound on the timing between barriers. The
expense of the barrier is that it requires O.(log(N)) time to perform the syn­
chronization in the ideal case, where wire delays are negligible, and O(./N)
or O(ifii) time in realistic 2-space or 3-space physical implementations for the
barrier to complete. This suggests efficient operation only when the computa­
tional work between barriers is at least as large as this barrier synchronization
time.

A BSP architecture can be appropriate for implementing data-centric com­
putations (Section 5.1.6). Often objects communicate over their connected
graph links. For many applications it is useful to guarantee that each
object processes one round of method invocations before starting the next
round. Barriers between rounds allow the operator to know when it has
received all the invocations associated with a single round and can safely
advance [26].

5.2.4 Data Parallel

As the Data Parallel Compute model suggests, sometimes computation can be
organized as a set of computations applied, mostly independently, to a large
set of data (see Section 5.1.5). This gives us both parallelism and regularity
that a reconfigurable implementation can exploit. We want to be able to use
this parallelism in a scalable manner, allocating more or less hardware as the
platform permits.

A number of stylized architectures support data parallel computations and
can be tuned for varying amounts of parallelism. The remainder of this section
highlights three architectures and one technique for interfacing and controlling
data parallel computation with more general computation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 148

120 Chapter 5 ■ Compute Models and System Architectures

Single program, multiple data
Although it is sometimes useful to apply the same basic operations to each
component piece of data, these operations can be highly data dependent and can
benefit from independent, local control. However, even though they are locally
independent, it may be useful to guarantee that a set of operations on the data
completes before continuing with the next operation set.

SPMD (single program, multiple data) is an organizational structure that fol­
lows the high-level Data Parallel model with minimum stylization within each
data parallel task. Essentially, we have a collection of independent threads or
control units that happen to be performing the same operation on different
datasets. Individual independent threads can, themselves, be implemented as
one of the system architectures described here. They are typically synchronized
periodically in BSP fashion (Section 5.2.3).

Single-instruction multiple data
Control and instructions for a datapath can become expensive. Thus, if the data
dependence for data parallel operations can be kept low, it is beneficiaj. to share
instructions and control across a large set of datapaths.

SIMD (single-instruction multiple data) architectures control the hardware
operations on a cycle-by-cycle basis similarly to our sequential control archi­
tectures (Section 5.2.2). However, instead of a heterogeneous set of datapath
elements, each potentially receiving unique operations, a single, common instruc­
tion is delivered to all of them. Each element has its own data and performs
the sequence of instructions on it. Communication between datapath elements
is also supported with common instructions to orchestrate data movement.

SIMD architectures can be more compact per processing element than VLIW
architectures, because they do not need to store separate instructions for each
compute, memory, or interconnect block. However, since SIMD architectures
force all datapath elements to perform the same operation simultaneously, the
SIMD datapath elements are efficiently utilized only on much more stylized and
limited computations (see Chapter 36).

Chapter 10 describes a particular SIMD system in more detail, including an
approach to SIMD compilation for FPGAs.

Vector
The motivation for vector architectures is similar to that for SIMD: When
operations are sufficiently regular and data independent, they admit implemen­
tations that economize on resources by sharing instructions and associated
control. Vector architectures particularly exploit the fact that datapath opera­
tions often have long latencies and can be pipelined so that calculations on
many, independent data items can reuse the datapath at high throughput.

In a vector organization, a sequential controller issues data parallel instruc­
tions across a logical dataset. Here, we think of supplying vectors of component
data, rather than individual words, as our inputs and outputs of instructions.
The instructions perform operations similarly to a sequential processor on the
pairwise components of vector inputs. Rather than the data living with the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 149

5.2 System Architectures 121

datapath elements, as is typical in SIMD, the vector data is normally kept in
central memory banks and vector register files and is routed to the datapath
elements. The vector instructions then specify where to find vector inputs and
where to return vector results. The data parallel operation on these vectors
can be performed in sequence on a highly pipelined vector functional unit, in
parallel on a set of parallel functional units, or as a sequentialized set of parallel
batches based on the area allocated.

On reconfigurable platforms, we can construct highly specialized vector
functional units for each task. Thus, a vector control unit can be augmented
with specialized vector pipelines just as a processor can be augmented with
configurable instructions in an Instruction Augmentation architecture (see
Instruction augmentation subsection of Section 5.2.2). Here we are operating
on vectors of data rather than on individual scalar data elements. As with other
models, we can identify the coarse-grained, data parallel operations required
in the task and allocate a suitable set of functional units for them. The vector
control unit then issues instructions to perform the data routing and sequen­
cing to connect the operations running on the vector functional units (see
Figure 5.14).

Vector coprocessors
As noted earlier, we often have a mix of irregular computations and more regular
stylized computations (see Instruction augmentation subsection of Section 5.2.2).
This is certainly true when exploiting highly stylized, data parallel computations
using vector or SIMD architectures.

The Coprocessor model (see Coprocessor model subsection of Section 5.2.2)
provides one stylized way to add configurable vector units to a base processor
architecture (e.g., Wawrzynek et al. [27] and Jacob and Chow [28]). Here, the
vector operations become coprocessor instructions. The processor can remain
scalar, with normal instructions and register files, with the configurable vector
unit maintaining all the vector states local to the configurable array. The vector

L1 I-cache

L1 D-cache

Register
file

FIGURE 5.14 ■ A super-scalar processor with vector functional units.

Vector register file

PC

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 150

122 Chapter 5 ■ Compute Models and System Architectures

coprocessor can keep multiple vector operations in flight, using scoreboarding on
memory or vector registers to enforce sequential semantics on the sequentially
issued vector operations.

5.2.5 Cellular Automata

Although spatial computation organizations offer great parallelism, they also
demand that the spatially distributed datapaths communicate with each other.
For large computations, the physical latency between distant operations can
be large; further, the worst-case, cross-chip latencies actually grow relative to
cycle rates as technology scales. Considerable, nonlocal traffic can slow the
computation both because ofround-trip latencies and because oflimited available
cross-chip bandwidth.

Cellular automata (CA) suggest a pattern for organizing computations as a
line (one dimension), mesh (two dimensions), or cube (three dimensions) of
regular operators with nearest-neighbor communication (see Figure 5.15). The
operators run logically in lockstep, sampling the state of adjacent operators and
updating their own. The regularity of identical operators makes it easy to scale to
larger spatial designs. Moreover, nearest-neighbor communication eases layout
and guarantees that communication does not limit overall design performance.
A CA can be seen as a very stylized data-centric (see Section 5.1.6) computation
in which the parallel operators have a restricted, regular communication pattern.

The restriction for nearest-neighbor communication may seem extreme, but it
naturally shows up in many physical world simulations. Because physical inter­
actions are also primarily nearest neighbor, the topology of the physical problem
often maps directly to that of a regular CA. Examples of physical simulations
include discrete-time solutions to wave, diffusion, Navier-Stokes, or Maxwell's
equations (see Chapter 32). Perhaps the simplest and most well-known CA is
Conway's game of "Life" [29]. It is even possible to implement CAD optimizations,

FIGURE 5.15 ■ Two-dimensional cellular automata.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 151

5.2 System Architectures 123

such as placement, using CAs (e.g., Wrighton and DeHon [30]; also mentioned
briefly in Chapters 9 and 20).

Folded CA
CAs can be highly efficient, but the size of the fully spatial design depends on
the size of the problem. Thus, for large problem sizes the fully spatial CA can
be too large for an affordable reconfigurable platform.

Since the CA is based on an array of identical operators and regular
communication, it can be efficiently folded onto smaller physical platforms (e.g.,
Margolus [31] and Kobori et al. [32]). At one virtualization extreme we can
build a single, physical CA cell processor and stream through the state of the
virtual cells in series, using the single physical cell to implement all cells. The
access pattern for the data is regular and predetermined, allowing efficient use of
memory bandwidth. Plus, all the data communications are local, which means
that we can readily program data buffering so that all data is available at the
cell as needed on a single pass through the memory. We can also implement
a single row (or column) of the CA and scan through one row (or column)
at a time. In fact, we can choose just about any number of physical cells to
implement-up to half the number in the logical array-and achieve a linear
speedup of the computation. Chapter 32 describes a particular, folded mapping
for a finite-difference, time-domain solution of Maxwell's equations.

5.2.6 Multi-threaded

The architectures discussed previously all place restrictions and stylizations
on the computation to allow efficient implementation. Nonetheless, particular
restrictions may not match with the needs of some applications and, consequently,
may not provide the most efficient implementation support.

As suggested with compute models, multi-threading can be seen as the most
general organization (Section 5.1. 7). It provides great expressiveness, but at the
cost of little guidance to the designer in how to exploit that expressiveness and
guarantee correctness of implementation. This expressiveness can also make it
expensive to support the full generality of the model on reconfigurable hardware.

In the remainder of this section, we review some common multi-threaded
organizations and the benefits and caveats they entail.

Communicating FSMs with datapaths
Earlier we noted that an FSMD is a stylized way to control the operation of
a datapath (see FSMD subsection of Section 5.2.2). For very large designs,
a central controller may become a performance bottleneck for the following
reasons:

■ Central control may lead to unnecessary state explosion in a central
controller.

■ Sending control signals across a large system to a central controller and
distributing control back from it may result in long latencies and slow
operating rates.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 152

124 Chapter 5 • Compute Models and System Architectures

One alternative to a single controller is decomposing the system into a
number of independent FSMDs that communicate with each other. In this way,
in addition to its own datapath controls, the FSM controller for each FSMD now
contains inputs and outputs to one or more of the other FSMDs through which
it coordinates synchronization. Thus, each FSM controller can be simpler and
faster than the single, monolithic controller, and each can branch independently.
However, the designer must be careful to manage the coordination of the FSMs
so that they do not deadlock or otherwise transition into inconsistent states.

Technically, a composition of finite automata is still a finite automata, and
it is possible to compute the composite automata in order to prove properties
of the composite system. The state space of the composed automata can be as
large as the product set of the state space of the individual automata. In some
cases this state explosion can become intractably large for practical verification.

Processors with channels
In the Processor subsection of Section 5.2.2, we saw the motivation for an
operator or several operators to run on a processor or, more likely, a processor
controller with a specialized datapath. For similar reasons that motivate the
communicating finite-state machines with datapaths (CFSMD) described in the
previous section, it may not make sense to centrally control this collection of
processors.

Here, too, we decompose the computation into a collection of augmented
processor datapaths that coordinate with each other through direct links. Special
instructions allow the processor to poll information from input channels and
place information on output channels.

Message passing
When we connect processors or FSMs with communication channels, we often
find it inefficient to commit dedicated, point-to-point links.

■ The data rate on point-to-point channels between processors, operators,
or FSMDs can often be too low to merit a dedicated channel.

■ Dedicating point-to-point channels between processors, operators, or
FSMDs can be too expensive for an implementation.

■ Individual units of control may only need to communicate infrequently.

Rather than keep a channel open at all times, operators can share a common
communication infrastructure (e.g., bus, pipelined ring, network-on-a-chip) and
send their coordination information tagged with the identity or location of the
recipient-in other words, send messages.

Shared memory
Multiple operators cooperating on a task may need infrequent access to a large
set of shared state. When we exploit parallelism, these operators may be running
on different parts of a physical platform yet need to access shared data pools.

When possible, it is best to give ownership of state to a single operator and let it
provide coordinated access to it. This approach avoids a host of synchronization

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 153

5.2 System Architectures 125

problems that can make parallel execution particularly troublesome. If the state
is small and infrequently changed, and when several operators need regular
access to it, it can make sense to allow each to have its own copy and allow
coordination operations to change the data across them. However, when the
state is large and infrequently accessed, such as with a large database, it is
sometimes efficient to allow multiple physical processing elements to access
a single, shared memory pool to avoid replicating the data and to allow data
communication to be deferred until it is needed. This can allow each processing
element to extract just the information it needs without burdening the others
with knowing which information will be needed by which processing element.

In the general case, we may share memory pools between small sets of
physical processing elements. Unlike with homogeneous multiprocessors, there
is generally little reason to have a single, large, shared memory pool across
all the processing elements in a reconfigurable computer. The configurability
of our reconfigurable designs allows us to limit sharing based on the shape of
communications in the application.

5.2. 7 Hierarchical Composition

In this chapter we described most system architectures as homogeneous entities.
However, in general we can consider them each as levels in a hierarchy. For
example, it may make sense to use FSMD (see FSMD subsection of Section 5.2.2)
or vector coprocessor (see Vector coprocessors subsection of Section 5.2.4) nodes
to implement the dataflow operators in a streaming dataflow system architecture
(Section 5.2.1). Further, to model and coordinate changes in the composition
of the dataflow network over time, it may make sense to model each of the
dataflow configurations as a state in a very coarse-grained FSM (see Phased
reconfiguration manager subsection of Section 5.2.2). With a variety of system
architectures, rich implementation options within each, and their hierarchical
compositions, we have a broad and powerful set of techniques to exploit the
flexibility in reconfigurable computing platforms.

References

[1] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall, 1996.

[2] C. A. R. Hoare. Communicating Sequential Processes, International Series in
Computer Science, Prentice-Hall, 1985.

[3] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 1967.

[4] E. A. Lee. The problem with threads. IEEE Computer 36(5), May 2006.
[5] S. Kleene. Recursive predicates and quantifiers. Transactions of the American

Mathematical Society 53(1), 1943.
[6] A. M. Turing. On computable numbers, with an application to the entscheidungs

problem. Proceedings of the London Mathematical Society 42(2), 1937.
[7] A. Church. An unsolvable problem of elementary number theory. American Journal

of Mathematics 58, 1936.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 154

126 Chapter 5 ■ Compute Models and System Architectures

[8] E. A. Lee, D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE
75(9), September 1987.

[9] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee. Software Synthesis from Dataflow
Graphs (Synchronous Dataflow chapter), Kluwer Academic, 1996.

[10] T. M. Parks. Bounded Scheduling of Process Networks, UCB/ERLl95-105, University
of California at Berkeley, 1995.

[11] Arvind, R. S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Transactions on Computers 39(3), March 1990.

[12] D. E. Culler, S. C. Goldstein, K. E. Schauser, T. von Eicken. TAM-a compiler­
controlled threaded abstract machine. Journal of Parallel and Distributed Computing,
June 1993.

[13] J. Hennessy, D. Patterson. Computer Architecture: A Quantitative Approach, 3rd ed.,
Morgan Kaufmann, 2002.

[14] S. Devadas, Hi-K. T. Ma, R. Newton. On the verification of sequential machines
at differing levels of abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 7(6), June 1988.

[15] J. Babb, M. Rinard, C. A. Moriz, W. Lee, M. Frank, R. Barua, S. Amarasinghe.
Parallelizing applications into silicon. Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 1999.

[16] E. Lee, A. Sangiovanni-Vincentelli. A framework for comparing models of com­
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 17(12), December 1998.

[17] E. Lee, S. Neuendorffer. Concurrent models of computation for embedded software.
IEEE Proceedings-Computers and Digital Techniques 152(2), March 2005.

[18] D. Gajski, L. Ramachandran. Introduction to high-level synthesis. IEEE Design
and Test of Computers 11(4), 1994.

[19] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers 30(7), 1981.

[20] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures, MIT Press, 1986.
[21] R. Razdan, M. D. Smith. A high-performance microarchitecture with hardware­

programmable functional units. Proceedings of the 27th Annual International
Symposium on Microarchitecture, November 1994.

[22] S. Hauck, T. Fry, M. Hosler, J. Kao. The chimaera reconfigurable functional unit.
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
April 1997.

[23] T. Callahan, J. Hauser, J. Wawrzynek. The Garp architecture and C compiler. IEEE
Computer 33(4), April 2000.

[24] E. H. Baalbergen. Design and implementation of parallel make. Computing Systems
1(2), 1988.

[25] L. G. Valliant. A bridging model for parallel computation. Communications of the
ACM 33(8), August 1990.

[26] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E. Uribe,
T. F. Knight, Jr., A. DeHon. GraphStep: A system architecture for sparse-graph
algorithms. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, 2006.

[27] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. Johnson, N. Morgan. Spert-11:
A vector microprocessor system. IEEE Computer, March 1996.

[28] J. A. Jacob, P. Chow. Memory interfacing and instruction specification for recon­
figurable processors. Proceedings of the ACMJSIGDA International Symposium on
Field-Programmable Gate Arrays, February 1999.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 155

5.2 System Architectures 127

[29] M. Gardner. The fantastic combinations of John Conway's new solitaire game
"Life." Scientific American 223, October 1970.

[30] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with application
for fast FPGA placement. Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, February 2003.

[31] N. Margolus. An FPGA architecture for DRAM-based systolic computations.
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
1997.

[32] T. Kobori, T. Maruyama, T. Hoshino. A cellular automata system with FPGA.
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 156

CHAPTER 6

PROGRAMMING FPGA APPLICATIONS

INVHDL

Nachiket Kapre
Department of Computer Science
California Institute of Technology

AndreDeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Modem field-programmable gate arrays (FPGAs) contain hundreds of thousands
of lookup tables (LUTs), hundreds of embedded memories, and hundreds of mul­
tipliers connected through a programmable interconnect fabric. Obviously it is
intractable to program the FPGA at the granularity of these individual elements.
However, with modem synthesis and layout tools, it is possible to describe a
design simply by writing logical expressions, a level higher than gates, and let­
ting the tools do the rest. Register transfer level (RTL) design is a popular disci­
pline for describing these logical expressions. It allows the designer to express
the design by describing the logic between each pair of register stages. This
allows her to carefully control register-to-register logic depth while freeing her
from selecting the actual gates and their mapping to the FPGA. Very High-Speed
Integrated Circuit Hardware Description Language (VHDL) is one popular pro­
gramming language that supports RTL hardware descriptions.

VHDL enjoys widespread poptilarity among designers in the industry, along
with its close cousin, Verilog. Indeed, almost all modem CAD tools that per­
form simulation, synthesis, and layout support both. Verilog differs from VHDL
primarily in the syntax it uses (VHDL is derived from Ada; Verilog, from C),
but both languages are IEEE standards and are periodically reviewed to reflect
changing industry realities and expectations.

VHDL is a strongly typed, Ada-based programming language that includes
special constructs and semantics for describing concurrency at the hardware
level. These concurrency constructs are new for most programmers and can
be a source of confusion for beginners. In the following sections, we provide
a tutorial overview of how to express and compose synchronous designs
in VHDL. Through examples, we highlight the control one can exercise in
VHDL to direct proper synthesis of hardware. We first look at how VHDL
can be used to describe a design structurally as a composition of sub­
circuits. We then show how to express hardware in RTL form. Next we
illustrate how hardware can be generated parametrically in a programmable

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 157

130 Chapter 6 ■ Programming FPGA Applications in VHDL

manner. Finally we outline the basic tool and workflow for developing VHDL
designs.

This chapter is by no means a complete discussion of all VHDL language
features. For a more comprehensive treatment of language syntax and coding
style the reader is referred to the work of Ashenden [1,2] and the appropriate
vendor manuals (e.g., Xilinx, Inc. [3]).

6.1 VHDL PROGRAMMING

Programming in VHDL is quite different from programming in C because of
its concurrent semantics. However, it does have several similarities with object­
oriented languages like C++ and Java (e.g., encapsulation and interfaces). These
common principles should help beginners understand the basic structure of
the language and help them relate to hardware-specific VHDL constructs. In
this section, we describe a few simple design elements in VHDL to outline key
language features and illustrate important programming concepts.

We first show how to program a 2-input multiplexer using a structural
abstraction. We then program a 4-input multiplexer using RTL semantics. Next
we illustrate the use of parametric hardware generation by creating a 16-bit
wide, 4-input multiplexer using a 1-bit, 4-input multiplexer from the previous
example. Then we combine structural and RTL styles in a finite-state machine
(FSM) datapath example to show how to use them in the same design. This final
example introduces the programming of FSMs in VHDL.

6.1.1 Structural Description

To describe a multiplexer structurally, we first decompose it into primitive gates
derived from its Boolean equations. Each gate is instantiated individually and
then connected to others. We can think of a structural decomposition as a textual
representation of a schematic or as subroutines in a conventional program­
ming language such as C. As with schematic capture, a structural decomposi­
tion permits code for a recurring design element to be shared. This means that
we can design an element once and instantiate it as many times as required.
Unlike schematic capture, a textual structural description can be modified and
updated easily with a text editor. Moreover, a hierarchical decomposition allows
the designer to manage the complexity of a large hardware design by breaking
it up into individual, manageable pieces. Listing 6.1 and Figure 6.1 illustrate the
following important concepts.

Listing 6.1 ■ A structural 2-input multiplexer.

1 library ieee;
2 use ieee. std_logic_ll 64. all;
3
4 - this is the entity declaration for the 2-input mu.x
S - it is a list of ports into the module.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 158

mux sel

FIGURE 6.1 ■ A structural 2-input multiplexer.

6 entity mux2 is
7 port (

8

9

10

11

12) ;

a : in std_logic;

b : in std_logic;

mux_sel : in std_logic;

c : out std_logic

13 end;

14

6.1 VHDL Programming

mux sel

15 - this is where the structure of the multiplexer is defined
16 architecture struct of mux2 is
17

18 - all components that will be used in the structure
19 - need to be declared before use.
20 component notgate is

21 port (

22 a in std_logic;

23 b : out std_logic

24);

25 end component;

26

27 component andgate is

28 port (

29 a
30 b

31 C

32);

in std_logic;
in std_logic;

out std_logic

33 end component;
34

35 component orgate is
36 port (

37

38

39

40);

a

b

C

in std_logic;

in std_logic;

out std_logic

41 end compcnent;
42

43 - internal signals/wires used to connect the components
44 - also need to be declared here.

131

C

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 159

132 Chapter 6 • Programming FPGA Applications in VHDL

45 signal muxsel_inverted_sig : std_logic;
46

47 signal sela_sig : std_logic;
48 signal selb_sig : std_logic;
49
50 - this signifies the start of the structural code
51 begin
52
53 - instantiation of the inverter
54 inverter_inst_O : notgate
55 port map (

56 a => mux_sel,
57 b => muxsel_inverted_sig
58);
59
60 - instantiation of the and gate
61 and_inst_a : andgate
62 port map (

63 a => a,
64 b => muxsel_inverted_sig,
65 c => sela_sig
66);
67
68 - another instantiation of the and gate
69 and_inst_b : andgate
70 port map (

71 a => b,
72 b => mux_sel,
73 c => selb_sig
74 l;
75
76 or_inst : orgate
77 port map (

78 a => sela_sig,
79 b => selb_sig,
80 C => C
81 l;
82
83 end;

1. VHDL files typically start by including the IEEE library and certain impor­
tant packages like std_logic_1164 (Listing 6.1, lines 1-2) that permit the
use of type std_logic and Boolean operations on it. Additional packages
such as std_logic_arith and std_logic_unsigned are often included for
supporting arithmetic operations.

2. The VHDL description of a hardware module requires an entity

declaration (Listing 6.1, lines 6-13) that specifies the interface of the module
with the outside world. It is an enumeration of the interface ports. The
declaration also provides additional information about the ports such as their
direction (in/out), data type, bit width, and endianness. An entity declaration

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 160

6.1 VHDL Programming 133

in VHDL is analogous to an interface definition in Java or a function header
declaration in C.

3. Almost all VHDL signals and ports use the data type std_logic and
std_logic_vector. These data types define how VHDL models electrical
behavior of signals, which we discuss in the Multivalued logic subsection of
Section 6.1.5. The vector std_logic_vector allows declaration of buses that
are bundled together. We will see its use in a subsequent example.

4. While an entity specifies the interface of a hardware module, its inter­
nal structure and function are enclosed within the architecture definition
(Listing 6.1, lines 16-83).

S. In a structural description of a module, the constituent submodules are
declared, instantiated, and connected to each other. Each submodule needs to
be first declared in the component declaration (Listing 6.1, lines 20-25). This is
merely a copy of the entity declaration where only the submodule's interface is
specified. Once the components are declared, they can then be instantiated (List­
ing 6.1, lines 54-58). Each instance of the component is unique, and a component
can have multiple instances (Listing 6.1, lines 61 and 69). The instantiated com­
ponents are connected to each other via internal signals by a process called port

mapping (Listing 6.1, lines 55-58). Port mapping is performed on a signal-by­
signal basis using the => symbol. It is analogous to assembling a set of integrated
circuits (ICs) on a breadboard and wiring up the connections between the IC pins
using jumper wires. Observe the similarity between the schematic representation
of the multiplexer and the structural VHDL in the example.

6. Notice in the example that the component for the AND gate is reused for
each AND gate in the design (Listing 6.1, lines 61-66 and 69-74). This is one of
the benefits of a structural representation-it permits reuse of existing code for
recurring design elements and helps reduce total code size.

7. The submodules used in Listing 6.1 are primitives supported in the vendor
library. In a larger design that is a collection of several multiplexers, the differ­
ent multiplexers can be declared, instantiated, and connected to each other as
required. A design can have several such levels of structural hierarchy. Hierarchy
is a fairly common technique for design composition.

6.1.2 RTL Description

The multiplexer's RTL description can be specified much more succinctly
than its corresponding structural representation. In RTL, logic is organized as
transformations on data bits between register stages. By selecting the num­
ber of pipeline stages wisely, the designer can create a high-performance,
high-speed hardware implementation, and by carefully deciding the degree of
resource sharing, the size of the mapped design can be controlled as well. RTL
provides the designer with sufficient low-level control to allow her to create an
implementation that meets her specifications.

For the VHDL description, we still need the logical equations that define
the multiplexer, but these can now be represented directly as equations, from

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 161

134 Chapter 6 ■ Programming FPGA Applications in VHDL

which a synthesis tool infers the actual gates. The tool tries to choose the
gates on the basis of user-specified design criteria such as high speed or small
area.

Listing 6.2 shows how to write a 4-input multiplexer with registered outputs
(Listing 6.1 simply showed a 2-input multiplexer without a register).

1. As before, we start with the package and entity declarations (Listing 6.2,
lines 6-18).

2. The RTL description of the VHDL entity is enclosed in the architecture
block (Listing 6.2, lines 20-52). The logic equations and registers that are part of
the RTL description are written here. Earlier, we used the architecture block
to write the structural port-mapping statements.

Listing 6.2 ■ RTL for a 4-input multiplexer.

1
2
3
4

5
6

7

8
9

10

11

12
13

14
15
16

- library and package includes
library ieee;
use ieee.std_logic_1164.all;

- entity declaration for the 4-input multiplexer
entity mux4 is
port (

elk : in std_logic;
reset : in std_logic;
a in std_logic;
b : in std_logic;
c : in std_logic;
d : in std_logic;
- notice the use of the type vector.
mux_sel : in std_logic_vector (1 downto 0);
e : out std_logic

17 l;
18 end;
19
20 - RTL description of the multiplexer is defined here
21 architecture rtl of mux4 is
22
23 - internal signals used in the multiplexer are
24 - declared here before use
25 signal e_c : std_logic;
26
27 - indicates start of the actual RTL code
28 begin
29

30 - concurrent signal assignment
31 - the multiplexer functionality is described
32 - at a level above gates
33 e_c <= a when mux_sel="OO" else
34 b when mux_sel="Ol" else
35 c when mux_sel="lO" else
36 d;

37

38 - sequential signal assignment

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 162

39 process (elk, reset)
40 begin

41
42 - action under reset
43 if (reset = '1') then
44 e <= IQ I i

45 - action under rising clock edge
46 els if (elk' EVENT and elk=' 1 ') then

47 e <= e_e;
48 end if;
49

50 end process;
51
52 end;

6.1 VHDL Programming 135

3. In the structural example, we saw how signals were used as wires for con­
necting component ports. In VHDL, signals are also used for representing logic.
A signal can be defined as a function of one or more signals. The assignment
operation is represented by the symbol <=, which is analogous to the = oper­
ation in C; however, the manner in which signals are assigned values is quite
different from C.

4. As before, a signal needs to be declared before the begin statement (Listing
6.2, line 25). Each signal is defined using a signal assignment statement that
describes the logic that drives it. A signal assignment statement can be either
concurrent or sequential.

5. A concurrent signal assignment is used to describe the logic equation for
the multiplexer (Listing 6.2, lines 33-36). Concurrent statements are written
inside the begin-end statements of the architecture block but outside any
process blocks (Listing 6.2, lines 39-50). For simulation purposes, a concurrent
statement can be thought of as being evaluated in parallel with other concurrent
statements.

6. In the listing, a sequential assignment describes a register (Listing 6.2, lines
39-50). The behavior of the register under reset and a rising edge of the clock
is defined between the begin-end statements of the process block, which is
itself enclosed within the begin-end statements of the architecture block
(Listing 6.2, lines 21-52). A process block is executed only when any signal on
its sensitivity list (e.g., elk and reset signals in Listing 6.2, line 39) changes
value.

As their name suggests, sequential assignment statements enclosed within a
process block are executed sequentially. A process is suspended when it fin­
ishes evaluating all of the statements it can inside the block, and signals are
assigned values only at that time. Additionally, during evaluation of a process
block, a signal retains the same logical value it had when the process began
execution. This can be a potential source of confusion for new programmers.
In Listing 6.6, we show how to write combinational logic using sequential
statements.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 163

136 Chapter 6 ■ Programming FPGA Applications in VHDL

7. Notice the compactness with which the multiplexer was described in
Listing 6.2 (52 lines of RTL code versus 83 for structural). This is one of the
key benefits of RTL over purely structural descriptions.

6. 1.3 Parametric Hardware Generation

VHDL allows the designer to generate hardware as a function of some change­
able parameter. This is a useful technique for code reuse when we need several
variants of an element in the same design (e.g., an 8-bit and 16-bit adder in
the same design). Certain design parameters are often not known until late in
the design cycle, and some can change as the design specification evolves to
meet customer requirements. It might also be necessary to perform a paramet­
ric design space exploration based on certain variables before deciding on the
final architecture. These issues can be resolved with VHDL generics.

The generics are specified at the start of the entity declaration. In the simplest
form, VHDL allows the designer to write signals as vectors of parametric width.
More advanced uses of parametric hardware generation employ generate state­
ments, and generate loops can be used to create multiple copies of a repeating
logic block.

In Listing 6.3 and Figure 6.2, we illustrate the use of parametric hardware
generation using a multibit 4-input multiplexer. The width of the multiplexer
is defined by a generic DATA_WIDTH (Listing 6.3, lines 8-13), which sets the
range of the vectors in the interface and is later used as the termination value
in the generate loop (Listing 6.3, lines 47-61). DATA_WIDTH copies of the
4-input multiplexer described in Listing 6.2 are instantiated and connected to
the interface ports appropriately (Listing 6.3, lines 54-59).

Listing 6.3 ■ Parametric generation of a multibit 4-input multiplexer.

1
2

3
4

5
6

7

8
9

10

11

12

- library and package includes
library ieee;
use ieee.std_logic_1164.all;

- entity declaration of the multiplexer array
entity mux4_array is

- definition of the generic for this entity
generic (

- here 16 is the default value
- it can be redefined during
- instantiation, or during synthesis
DATA_WIDTH : integer : = 16

13) ;
14 port (

15 elk : in std_logic;
16 reset : in std_logic;
1 7 - notice the use of generic for constraining the vector length
18 a in std_logic_vector (DATA_WIDTH-1 downto 0);
19 b : in std_logic_vector (DATA_WIDTH-1 downto 0);
20 c : in std_logic_vector (DATA_WIDTH-1 downto 0);
21 d: in std_logic_vector(DATA_WIDTH-1 downto 0);

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 164

DATA_WIDTII

I

mux_sel

6.1 VHDL Programming 137

-e

FIGURE 6.2 ■ Parametric generation of a multibit 4-input multiplexer.

22
23

mux_sel : in std_logic_vector (1 downto 0);
e : out std_logic_vector (DATA_WIDTH-1 downto 0)

24);
25 end;
26
27 - the parametric code is enclosed within the architecture block
28 architecture parametric of mux4_array is
29
30 - like structural VHDL, the component being used needs to be declared here
31 component mux4 is
32 port (
33 elk : in std_logic;
34 reset : in std_logic;
35 a in std_logic;
36 b in std_logic;
37 c in std_logic;
38 d in std_logic;
39 mux_sel : in std_logic_vector (1 downto O) ;
40 e : out std_logic
41) ;
42 end component;
43
44 begin
45
46 - loop for generating a programmable number of mux4 instances
47 bitslices_gen : for i in O to DATA_WIDTH-1 generate
48 inst_mux : mux4
49 port map (
50 elk => elk,
51 reset=> reset,
52 - notice the use of loop variable i for indexing
53 - into the array
54 a = > a (i),
55 b => b (i),
56 C => C (i),
57 d => d(i),
58 mux_sel => mux_sel,

a

b

C

d

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 165

138 Chapter 6 ■ Programming FPGA Applications in VHDL

59 e => e (i)
60) ;
61 end generate bitslices_gen;
62
63 end;

6.1.4 Finite-state Machine Datapath Example

In Listing 6.4, we design a time-shared datapath that computes Ax2
+Bx+C using

only one multiplier and one adder. The design is naturally separated into state
machine controller and datapath components. The controller and the datapath
are designed using RTL and composed together structurally. The multiplier, the
adder, and the associated multiplexers and registers are part of the datapath,
whereas the control signals for the datapath multiplexers (Listing 6.4, lines
80-82) and registers (Listing 6.4, lines 84-86) are generated by the controller.
Figure 6.3 shows the structural decomposition and the associated VHDL code.
We can see that the control signals are connected from the controller to the
datapath in the structural VHDL representation.

Listing 6.4 ■ A structural representation of the FSM datapath design.

1 - library and package includes
2 library ieee;
3 use ieee.std_logic_l164.all;
4 use ieee.std_logic_unsigned.all;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

- entity declaration of the state-machine controller
entity fsm_datapath is
port (

- system signals
elk : in std_logic;
reset : in std_logic;

- input interface
start : in std_logic;
A : in std_logic_vector (3 downto 0);
B in std_logic_vector (3 downto 0);
C in std_logic_vector (3 downto 0) ;
x in std_logic_vector (3 downto 0);

20 - output interface
21 output_valid : out std_logic;
22 result : out std_logic_vector(l2 downto 0)
23) ;
24 end;
25
26
27

28
29
30

architecture struct of fsm_datapath is

component fsm is
port (

- system signals

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 166

6.1 VHDL Programming

elk reset
start

output_valid

mult_inputl_muxsel_sig

mult_input2_muxsel_sig

add_inputl_muxsel_sig

xsquared_reg_enable_sig

bxpluse_reg_enable_sig

output_reg_enable_sig

elk reset
A B C x

result

FIGURE 6.3 ■ A structural representation of the FSM datapath design.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

elk : in std_logie;
reset : in std_logie;

- start the computation
start : in std_logie;

- datapath multiplexer select
mult_inputl_muxsel: out std_logie_veetor(l downto 0);
mult_input2_muxsel : out std_logie;
add_inputl_muxsel : out std_logie;

- register enables
xsquared_reg_enable : out std_logie;
bxpluse_reg_enable: out std_logie;
output_reg_enable : out std_logie;

- indicate output is valid
output_valid : out std_logie

49) ;

50 end component;

51

52

53

54

55

56

57

58

59

60

61

62

63

component datapath is
port (

- system signals
elk : in std_logie;
reset : in std_logie;

- input operands
A in std_logie_veetor (3 downto 0);
B in std_:logie_veetor (3 downto 0);
C in std_logie_veetor (3 downto 0);
x in std_logie_veetor (3 downto 0);

139

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 167

140 Chapter 6 ■ Programming FPGA Applications in VHDL

64

65

66

67

68

69

70

71

72

73

74

75

- datapath multiplexer select
mult_inputl_muxsel : in std_logie_veetor (1 downto 0);

mult_input2_muxsel : in std_logie;

add_inputl_muxsel : in std_logie;

- register enables
xsquared_reg_enable : in std_logie;

bxpluse_reg_enable : in std_logie;

output_reg_enable : in std_logie;

- output data
result : out std_logie_veetor (12 downto 0)

76) ;

77 end component;

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

- internal wires for connecting the components
signal mult_inputl_muxsel_sig : std_logie_veetor (1 downto 0);

signal mult_input2_muxsel_sig: std_logie;

signal add_inputl_muxsel_sig: std_logie;

signal xsquared_reg_enable_sig: std_logie;

signal bxpluse_reg_enable_sig: std_logie;

signal output_reg_enable_sig: std_logie;

- start component instantion and wiring
begin

datapath_inst

port map (

datapath

- system signals
elk => elk,

reset => reset,

- input operands
A=> A,

B => B,

C => C,

X => X,

- datapath multiplexer select
mult_inputl_muxsel => mult_inputl_muxsel_sig,

mult_input2_muxsel => mult_input2_muxsel_sig,

add_inputl_muxsel => add_inputl_muxsel_sig,

- register enables
xsquared_reg_enable => xsquared_reg_enable_sig,

bxpluse_reg_enable => bxpluse_reg_enable_sig,

output_reg_enable => output_reg_enable_sig,

- output data
result=> result

) ;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 168

fsm_inst : fsm

port map (
- system signals
elk=> elk,

reset => reset,

- start the computation
start => start,

- datapath multiplexer select

6.1 VHDL Programming 141

118
119
120
121

122
123
124
125

126
127

128

129

130
131
132

133
134

135
136
137
138
139) ;
140

141

mult_inputl_muxsel => mult_inputl_muxsel_sig,

mult_input2_muxsel => mult_input2_muxsel_sig,

add_inputl_muxsel => add_inputl_muxsel_sig,

- register enables
xsquared_reg_enable => xsquared_reg_enable_sig,

bxpluse_reg_enable => bxpluse_reg_enable_sig,
output_reg_enable => output_reg_enable_sig,

- indicate output is valid
output_valid => output_valid

end;

We use the RTL form to describe the datapath, and we use a combination
of concurrent and sequential statements for this purpose. The structure of the
datapath is shown in Listing 6.5 and Figure 6.4.

Listing 6.5 ■ A time-shared datapath for computing Ax2 +Bx+ C.

1 - include the unsigned package to support arithmetic operations.
2 library ieee;

3 use ieee. std_logie_l 164. all;

4 use ieee. std_logie_unsigned. all;

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

- describes the interface to the datapath,
- with its operands and control signals listed.
entity datapath is

port (
- system signals
elk : in std_logie;
reset : in std_logic;

- input operands
A in std_logie_vector (3 downto 0);
B : in std_logie_vector (3 downto 0);
C : in std_logie_vector (3 downto 0);
x : in std_logie_vector (3 downto 0);

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 169

142 Chapter 6 • Programming FPGA Applications in VHDL

C A B x

xsquared_reg_enable---------,..----,.---,.----,..�
bxplusc_reg_enable----+---=�

add_inputl_muxsel -------jf-�=:'.::7 ,.__j ,-,,,__../

mult_inputl_muxsel ---t--------11--�

mult_input2_muxsel---t--------1t---�

bxplusc_r

output r

FIGURE 6.4 ■ A time-shared datapath for computing Ax2 +Bx + C.

- datapath multiplexer select

xsquared_r

20

21

22

23

24

25

26

27

28

29

30

31

mult_inputl_muxsel : in std_logic_vector (1 downto 0);

mult_input2_muxsel : in std_logic;

add_inputl_muxsel : in std_logic;

- register enables
xsquared_reg_enable : in std_logic;

bxplusc_reg_enable : in std_logic;

output_reg_enable : in std_logic;

- output data
result : out std_logic_vector (1-2 downto 0)

32 l;

33 end;

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so

51

architecture rtl of datapath is

- notice the different bitwidths on each signal
- these precisions have been carefully selected
- based on the multiply/add operations and input
- bitwidths
signal mux_0_c : std_logic_vector(3 downto 0);

signal mux_l_c : std_logic_vector(7 downto 0);

- mux_l _c needs 8 bits of precision due to
- x-squared at the input
signal mux_2_c : std_logic_vector (8 downto 0);

- mux_2_c needs 9 bits of precision due to
- precision of Bx+C

signal mult_c : std_logic_vector (11 downto 0);

- product of 8-bit and 4-bit inputs is 12-bit

I

~I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 170

6.1 VHDL Programming

52 signal add_e : std_logie_veetor (12 downto 0);
53 --,- sum of 12-bit and 9-bit inputs is 13-bits with overflow
54
55 signal mult_r : std_logie_veetor (11 downto 0);
56 signal output_r : std_logie_veetor(12 downto 0);
57 signal bxpluse_r : std_logie_veetor(8 downto 0);
58 signal xsquared_r : std_logie_veetor (7 downto O) ;
59
60

61 begin
62
63 - concurrent statements to describe the multiplexers
64 mux_O_e <= A when mult_inputl_muxsel = "00" else
65 B when mult_inputl_muxsel = "01" else
66 x;
67
68 mux_l_e <= "OOOO"&x when mult_input2_muxsel = 'O' else
69 xsquared_r;
70
71 mux_2_e <= "00000"&C when add_inputl_muxsel = 'O' else
72 bxpluse_r;
73
7 4 - multiplier
75 mult_e <= mux_O_e * mux_l_e;
76

77 - adder
78 - the extra Os at the MSB of the inputs are
79 - to capture overflow bit in the result
80 add_e <= ("0000"&mux_2_e) + ('O'&mult_r);
81

82 - define all registers
83 all_registers : process(elk, reset)
84 begin
85

86 if (reset= '1') then
87
88 mult_r <= (others=>'0');
89 xsquared_r <= (others=>'0');
90 bxpluse_r <= (others=>' 0');
91 output_r <= (others=>' 0') ;
92

93 elsif (elk' EVENT and elk=' 1 ') then
94

95 - infer simple register
96 mul t_r <= mul t_e;
97
98 - notice that we are not specifying
99 - the else condition. the synthesis tool will

100 - infer a latch for this case. if enable is
101 - low, previous value will be retained.
102 if (xsquared_reg_enable=' 1') then
103 xsquared_r <= mult_e (7 downto O) ;
104 end if;
105

143

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 171

144 Chapter 6 ■ Programming FPGA Applications in VHDL

106 if (bxplusc_reg_enable='l') then
107 bxplusc_r <= add_c (8 downto 0);
108 end if;

109
110 if (output_reg_enable=' l') then
111 output_r <= add_c;
112 end if;
113

114 end if;

115 end process;
116
117 - drive the output with a simple wire from the register
118 result <= output_r;
119

120 end;

Included in this datapath design is the special package std_logic_unsigned

(Listing 6.5, line 4), which allows us to express arithmetic operations using high­
level symbols(+ and*) on signals of type std_logic_vector. These functions
are defined in the package. The package also helps us infer the right kind of
arithmetic units (e.g., signed or unsigned). VHDL supports the signed data type
for arithmetic operations.

Notice that we must carefully specify the precision required for all internal
signals (Listing 6.5, lines 37-58). We must also pad extra Os when the input
signal precision is smaller than that of the operator (Listing 6.5, lines 68-69).
The concatenation operator & in VHDL further allows us to combine the right
mix of signals to enter the datapath as required by the design. This low-level
control makes VHDL suitable for designers seeking to customize their designs
to the problem.

We represent the multiplexers, multipliers, and adders using concurrent state­
ments (Listing 6.5, lines 63-80), which are evaluated in parallel and inferred
as combinational logic blocks. Note that all three multiplexers evaluate their
inputs simultaneously. Concurrent statements allow the designer to capture
this hardware-level concurrency in VHDL. Also note, however, that there is
a dataflow dependency between the multiplexers and the multiplier (as well
as the multiplexer and the adder). These dependencies are converted into
wires that connect the appropriate logic blocks together, but each logic block
continues to evaluate its inputs in parallel. The dataflow dependency only means
that signal changes are propagated to the downstream multiplier input after
a suitable delay for the multiplexer evaluation (see Delta delay subsection of
Section 6.1.5 for more information on this delay).

We express the registers in the design using sequential statements inside
the process block (Listing 6.5, lines 83-115). Most registers have a condi­
tional signal assignment (Listing 6.5, lines 102-104). Notice the absence of
an else statement or a default value on the rising clock edge. This implies
that the signal retains its previous value if the condition for assignment is not

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 172

6.1 VHDL Programming 145

satisfied. VHDL automatically infers feedback from the output to the multiplexer
at the register input. If the else is present or if a default value is specified,
no feedback will be inferred. This can be seen in Listing 6.6 (signals in the
next-state decoder process have default values, avoiding inference of feedback
paths).

To design the state machine controller, we first create a time sequence of
operations that must be performed to obtain the final result. This gives us a
cycle-by-cycle schedule for how the datapath elements are shared between the
different operations. Each of these cycles is represented by a state, which is then
decoded into multiplexer select and register enable signals for the datapath. The
VHDL for this state machine is written in an RTL form specialized for state
machines. It is shown in Listing 6.6 and illustrated in Figure 6.5.

Listing 6.6 ■ A state machine for generating control signals for the time-shared datapath.

1 - library and package includes
2 library ieee;
3 use ieee. std_logic_ll 64. all;

4

5

6
7

8
9

10

11

12

13
14

15

16
17

18

19

20
21
22

23
24

25

26
27
28
29

30
31
32
33
34
35

- entity declaration of the state-machine controller
entity fsrn is

port (

- system signals
elk : in std_logic;
reset : in std_logic;

- start the computation
start : in std_logic;

- datapath multiplexer select
rnult_inputl_rnuxsel : out std_logic_vector (1 downto 0);
rnult_input2_rnuxsel : out std_logic;
add_inputl_rnuxsel : out std_logic;

- register enables
xsquared_reg_enable : out std_logic;
bxplusc_reg_enable : out std_logic;
output_reg_enable : out std_logic;

- indicate output is valid
output_valid : out std_logic

) ;
end;

- state-machine code is enclosed is defined inside this architecture block
architecture behav of fsrn is

- define an enumerated type for state
type state_type is (IDLE, COMPUTE_BX, COMPUTE_BXPLUSC_AND_XSQR,

COMPUTE_AXSQR, COMPUTE_ASQRPLUSBXPLUSC, ASSERT_OUTPUT);

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 173

146 Chapter 6 • Programming FPGA Applications in VHDL

(a)

C AB x C AB x C AB x C AB x

x
2

COMPUTE Bx
COMPUTE

BxplusC_AND_xsqr COMPUTE_Axsqr

(d)

COMPUTE
AsqrplusBxplusc

(b) (c) (e)

FIGURE 6.5 ■ A state machine for generating control signals for the time-shared datapath. Labels on wires
show dataflow steps in calculation ..

36 signal state_c state_type;
37 signal state_r state_type;
38
39 - internal signals
40 signal mult_inputl_::muxsel_c : std_logic_vector (1 downto 0);
41 signal mult_input2_muxsel_c : std_logic;
42 signal add_inputl_muxsel_c: std_logic;
43 signal xsquared_reg_enable_c: std_logic;
44 signal bxplusc_reg_enable_c: std_logic;
45 signal output_reg_enable_c : std_logic;
46 signal output_valid_c : std_logic;
47

48 - start the signal assignments
49 begin
50

51 - logic to compute the next state of the state machine
52 - also generate the control signals [only combinational, right now]
53 next_state_decoder : process(state_r, start)
54 begin
55
56 - given initial values for all signals
57 mult_inputl_muxsel_c <= "00";
58 mult_input2_muxsel_c <= '0';

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 174

59 add_inputl_muxsel_c <= '0';
60 xsquared_reg_enable_c <= '0';
61 bxplusc_reg_enable_c <= '0';
62 output_reg_enable_c <= '0';
63 output_valid_c <= '0';
64 state_c <= IDLE;
65
66 - specify state transistions
67 - update state variable
68 - update the control signals
69 case state_r is
70 when IDLE =>
71

72
- conditional state transition

73 if (start=' 1') then
74

75 state_c <= COMPUTE_BX;
76

6.1 VHDL Programming

77 mult_inputl_muxsel_c <= "01"; - select B
78 mult_input2_muxsel_c <= '0'; - select x
79

80 end if;
81

82 when COMPUTE_BX =>
83

84 - unconditional state transition
85 state_c <= COMPUTE_BXPLUSC_AND_XSQR;
86

87 mult_inputl_muxsel_c <= "10"; -selectx
88 mult_input2_muxsel_c <= '0'; - select x
89 xsquared_reg_enable_c <= ' 1' ; - save x*x
90 bxplusc_reg_enable_c <= '1'; - save Bx+C
91 add_inputl_muxsel_c <= '1'; - select C
92

93 when COMPUTE_BXPLUSC_AND_XSQR =>
94

95 state_c <= COMPUTE_AXSQR;
96

97 mult_inputl_muxsel_c <= "00"; - select A
98 mult_input2_muxsel_c <= '1'; - select xsqr
99

100 when COMPUTE_AXSQR =>
101

102 state_c <= COMPUTE_ASQRPLUSBXPLUSC;
103

104 add_inputl_muxsel_c <= 'l'; - select Bx+C
105 output_reg_enable_c <= 'l';
106

107 when COMPUTE_ASQRPLUSBXPLUSC =>
108

109 state_c <= ASSERT_OUTPUT;
110 output_valid_c <= '1';
111

112 when ASSERT_OUTPUT =>
113

147

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 175

148 Chapter 6 ■ Programming FPGA Applications in VHDL

114 state_e <= IDLE;

115

116 end case;

117
118 end process;

119

120 - describe the registers that hold the state bits
121 - the actual bits will be inferred by the
122 - synthesis tool from the symbolic states
123 state_register : process (elk, reset)
124 begin

125

126 if (reset = 'l') then

127 state_r <= IDLE;
128 elsif (elk ' EVENT and elk=' 1 ') then

129 state_r <= state_e;
130 end if;
131

132 end process;

133

134 - register the control signals generated during state transitions
135 output_logie : process (elk, reset)

136 begin

137

138 if (reset = 'l') then

139
140 mult_inputl_muxsel <= "00";
141 mult_input2_muxsel <= '0';
142 add_inputl_muxsel <= '0';
143 xsquared_reg_enable <= '0';

144 bxpluse_reg_enable <= '0';

145 output_reg_enable <= '0';
146 output_valid <= '0';
147

148 el,sif (elk EVENT and elk=' l') then

149

150 mult_inputl_muxsel <= mult_inputl_muxsel_e;
151 mult_input2_muxsel <= mult_input2_muxsel_e;
152 add_inputl_muxsel <= add_inputl_muxsel_e;
153 xsquared_reg_enable <= xsquared_reg_enable_e;
154 bxplusc_reg_enable <= bxpluse_reg_enable_e;
155 output_reg_enable <= output_reg_enable_c;
156 output_valid <= output_valid_e;
157
158 end if;
159
160 end process;
161
_l.62---enci;

By encoding the state of the controller with an enumerated data type
(Listing 6.6, lines 34-36), we can defer the actual encoding of the state bits
until the synthesis stage. The synthesis tool then assigns a bit encoding to
optimize logic. It is easier to verify the operation of the state machine using

_ __ .,.,,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 176

6.1 VHDL Programming 149

symbolic states. It is also easier to update and modify symbolic state machine
code.

In the next-state decoder (Listing 6.6, lines 53-118), we enumerate all pos­
sible states of the state machine and define state transitions from each of
them. These transitions are expressed as conditions under which the state
changes.

We use the process block for describing purely combinational logic in the
next-state decoder of the state machine (Listing 6.6, lines 53-118). Previously,
we used process for describing only registers (Listing 6.2, lines 39-50). This
shows how we can write combinational logic here as well. In this listing, notice
that the same signal is assigned values multiple times in the process block
(signal mult_inputl_muxsel_c in Listing 6.6, lines 57, 77, 87, and 97). As the
statements are evaluated sequentially, the last signal assignment statement to
be evaluated is considered valid, superseding all previous assignments. During
execution of sequential statements in a process, for purposes of determining
new signal values all signals are considered to have the same value they had at
the start of the process. Signals that are assigned values inside the process will
acquire those values only when process execution is complete-that is, process
suspends. It is in this aspect that the VHDL sequential semantics are different
from those of a conventional programming language (e.g., C). Figure 6.6 shows
similar code written in C and VHDL to illustrate how the different execution
semantics lead to different answers.

In Listing 6.6, all signals are assigned a value at the beginning of the process.
By design, only one when subblock of the case statement will be evaluated,
which means that only those signals that have assignments inside the valid when
subblock will get new values (Listing 6.6, line 77, 87, or 97 will execute; line 57
will execute in all cases). According to the VHDL sequential signal assignment
rule, these new assignments will hold when the process suspends. Other signals
will simply carry the default values they were assigned at the start. This avoids
the inference of feedback that we saw earlier (refer to Listing 6.2).

1 process (elk)
2 begin

3
4 if (elk 'EVENT' and elk=' 1 ') then

5 counter <= counter + 1;
6 if(counter= lO)
7 counter <= 0;
8 end if;
9 end if;

10
11 end process;

12
13 - if counter=9 at start of process,
14 - when process suspends, counter=lO.

(a)

1 int updatecounter(int counter) {
2 counter++;
3
4 if(counter==lO)
5 counter = 0;
6

7 return counter;
8)

9

10 // updatecounter(9) returns 0

(b)

FIGURE 6.6 ■ Comparison of sequential VHDL (a) and C (b) assignment semantics.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 177

150 Chapter 6 ■ Programming FPGA Applications in VHDL

6.1.5 Advanced Topics

Delta delay
VHDL uses an event-driven simulation model. A signal is evaluated only when
an event-that is, a signal transition associated with the input signals-has
occurred. Once a statement is evaluated, its associated signal needs to be
assigned the newly generated value. However, this is not done right away so
as to keep the evaluations of other statements from using this new value imme­
diately, potentially leading to inconsistent results.

Remember that in VHDL all concurrent statements are evaluated in parallel.
Hence, to keep the simulation consistent VHDL uses delta delay, in which the
newly generated value is scheduled as an event at the following delta. (A delta
is simply a logical delay used in the simulator and not a physical delay of the
circuit.) The simulator will generate as many deltas as required depending on
the logical depth of the circuit and its input transitions. Once all events for a
given delta are exhausted, the simulator proceeds to the earliest delta at which
the next event exists. Physical time in the simulator is advanced only when no
more events are left to be processed at the last delta at the current physical
time. Sometimes the simulator is unable to advance its physical time because
of asynchronous, combinational feedback loops that continue generating new
events at incremental deltas. Such loops should be avoided when programming
VHDL, and modem synchronous simulation and synthesis tools usually warn
the designer if such a loop is detected.

Multivalued logic
Another electrical behavior is modeled in VHDL using the multivalued logic
type std_logic. It allows a signal to hav� different kinds of electrical states,
apart from a Boolean O or 1, which are required for modeling tristate drivers,
multiple simultaneous drivers (usually a design error), uninitialized signals, and
weak drivers.

6.2 HARDWARE COMPILATION FLOW

To fully understand how VHDL fits into the design process, we expand the FPGA
compilation process shown in Figure 1.2. Our flow is shown in Figure 6.7.

1. The hardware designer begins the design-engineering process with a prob­
lem specification-that is, a functional description of the problem along with
additional performance and area constraints that the. implementation must
meet.

2. Based on this specification and the inherent problem structure, the
designer identifies an appropriate system architecture to use for the implemen­
tation. We saw different kinds of system architectures in Chapter 5.

3. The designer writes VHDL code to describe this design using structural
and RTL styles that we saw earlier in this chapter.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 178

6.2 Hardware Compilation Flow 151

Design specification

!
System architecture selection

!
Hierarchical VHDL and RTL VHDL

!
Functional simulation

!
Logic synthesis

!
�-- Placement and routin g

!
.__ __ Timing analysis

l
�--- Timing simulation

l
Bitstream generation

FIGURE 6.7 ■ FPGA compilation flow.

4. Once the VHDL is written, the designer needs to first check if her VHDL
meets functional specifications, using a suitable testbench that can be written
in VHDL itself. The testbench and the design are run in a logic-level simulator.
The testbench generates appropriate test vectors for the design and verifies the
result. This is typically an iterative process, and the designer continues to refine
the VHDL design until the functional specification is met.

5. After verifying correctness, the designer then proceeds to the FPGA
back-end phase, a multistage (and iterative) process. It starts with synthesis,
where the synthesis tool converts the VHDL description of the design (exclud­
ing the testbench) into a logic-level FPGA netlist. This netlist is generated
by first infening hardware from VHDL code and then optimizing it through
several state-of-the-art algorithms-for example, logic minimization, retiming
(Chapter 18), covering (Chapter 13), and sharing to meet timing and area con­
straints. Constraints can be specified as a separate input to the tool by the
user.

6. The designer uses backend tools to perform placement (Chapter 14) and
routing (Chapter 17) o:ri the synthesized logic elements to map them to an
actual physical device (logic elements are assigned physical LUTs while the

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 179

152 Chapter 6 ■ Programming FPGA Applications in VHDL

wires between them are mapped to the interconnect fabric). This is typically the
most time-consuming step of the backend process. The designer can help direct
these tools using additional constraints (see Section 6.2.1) either to improve the
quality of the final mapped design or to reduce the compilation time needed.

7. Once the design is placed and routed, the designer can perform static tim­
ing analysis to ensure that the timing constraints are met. FPGA tools can also
write out a post place and route timing annotated VHDL netlist for a timing
simulation that models logic and interconnect delays accurately. Specific tim­
ing requirements not covered in the simple static timing analysis can then be
simulated and checked.

8. If the designer is satisfied with the performance of her implemented hard­
ware, the tools generate a programming file for the FPGA device (Chapter 19).

6.2.1 Constraints

Constraints are an indispensable tool directive that a designer can use to help
her designs meet required specifications. They can be used to direct the synthesis
tools in optimizing the design for either high-speed operation or low-area
implementation (these are usually conflicting goals). For example, the designer
can specify a frequency target that Synplify Pro (a synthesis tool) must meet
using the following timing constraint.

set option -frequency 300.000

This sets the target frequency for the compilation to be 300 MHz. Similarly,
designers can provide timing constraints for the placement and routing phases
as well.

TIMESPEC "clock signal name"=3.3ns;

More important, a designer can give physical floorplanning constraints to
direct the placement and routing algorithms to use a specified region on the
chip.

INST "*" AREA GROUP= "dummy name";

AREA GROUP "dummy_name" RANGE = SLICE X0Y0: SLICE Xl00Yl00;

Here we create a group dummy_name containing all hardware elements in
the design using wildcards (*). Then we specify a rectangular box from 0,0 to
100,100 on the FPGA. The units are measured in SLICEs; a SLICE is a cluster of
a few, usually four, Xilinx FPGA LUTs. The proper selection of these constraint
values is typically based on intuition and can be refined with designer experi­
ence. Placement constraints, such as the one in the previous code snippet, are
vendor and device specific, but each vendor typically has analogous constraints
for each device.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 180

6.3 LIMITATIONS OF VHDL

6.3 Limitations of VHDL 153

Although VHDL currently enjoys a healthy market share, there are several
limitations and drawbacks in the language:

■ VHDL syntax is verbose, extremely cumbersome, and requires several
lines of code to describe even simple logic elements (e.g., a register
typically requires four to ten lines of code).

■ Hardware needs to be described at a very low level of abstraction (i.e.,
RTL). The programmer is responsible for specifying the logic that goes
between each register stage, which can become a significant
programming challenge for large irregular designs with thousands of
registers and unique logic between register stages.

■ As technology and FPGA architectures evolve, the optimal amount of
pipelining required to meet the desired cycle time changes. Because RTL
is written for a specific number of registers in the logic path, it needs to
be rewritten when the number of register stages changes. In other words,
the amount of logic between register stages must be modified accordingly.

■ Low-level descriptions also make it hard for synthesis tools to optimize
and schedule logic. Programmer bias disallows optimizations that might
have otherwise been possible in a more flexible description.

■ Hardware described in VHDL suffers from the additional drawback of
significantly long verification times. It is known that equivalent
simulation-specific, cycle-accurate models written in C, C++, Java, or
other higher-level language can be simulated 10 to 100 times faster than
in VHDL. Verification is a significant portion of the design cycle, and
there is demand to contain the time spent on it.

In subsequent chapters, we will see other high-level languages that address
many of these limitations (e.g., Chapters 7, 9, and 10). In many cases, however,
these languages use VHDL as an intermediate target in their mapping flow.

References

[1] P. Ashenden. The Designer's Guide to VHDL, 2nd ed., Morgan Kaufmann, 2002.
[2] P. Ashenden. The Student's Guide to VHDL, Morgan Kaufmann, 1998.
[3] Development System Reference Guide, Xilinx, Inc.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 181

CHAPTER 7

COMPILING C FOR SPATIAL COMPUTING

Timothy J. Callahan
School of Computer Science
Carnegie Mellon University

AndreDeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

This chapter describes techniques for compiling from C or similar languages
to reconfigurable architectures. We will first briefly describe the benefits of this
approach and the contexts where it is most useful. Then we will describe in
detail the algorithms and their technical limitations and challenges.

For the discussion in this chapter, we assume the presence of a micropro­
cessor coupled with the reconfigurable fabric (RF). This eases adaptation in
several ways and is particularly useful when supporting a mix of irregular
control tasks (best suited to the microprocessor) and compute-intensive, high­
throughput tasks (best suited to the RF), as described in the Processor subsec­
tion of Section 5.2.2.

The original C code can be partitioned between the central processing unit
(CPU) and the RF at several granularities, including procedures, compound
loops, inner loops, and blocks. The algorithms described in this chapter apply
to any of these cases. The appropriate granularity for a particular system will

depend on the hardware available and the particular costs involved in commu­
nication between the CPU and the RF and will not be treated in this chapter.

For most of this section we will assume that the source code, both before and
after the designer's target-specific efforts to improve performance via hints in
comments or pragmas, will be legal C code as defined by the ISO standard [9].
However, at the end we will overview some methods for integrating blocks designed
via HDL or schematic capture into a C program.

The benefits to having a full, pushbutton path that starts from C and that can
put at least some of the application on the reconfigurable hardware follow.

■ There are many more C programmers than hardware designers, and
writing an algorithm in C is typically faster than in an HDL.

■ There is a large existing code base even for embedded applications, with
at least the reference version written in C.

■ Working with a single description of the entire program makes it easy for
the designer or compiler to quickly explore the tradeoffs of different
hardware/software partitionings. Also, it allows both hardware (HW) and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 182

156 Chapter 7 ■ Compiling C for Spatial Computing

software (SW) versions to be created so that the operating system can
choose at runtime which is better (see Chapter 11).

■ Designers can start with automatic compilation, and then focus their
efforts on improving a few loops while benefiting from the compiler's
speedup on the remainder. Furthermore, with the compiler's support the
designer's required effort is reduced in many cases to simply restruc­
turing the code or embedding simple compiler directives in the form of
comments or #pragma syntax.

■ The code can be easily tested on a conventional microprocessor for
correctness.

This chapter will be of direct value to those interested in compilation for
spatial computing from a sequential language. More generally, it will give an
application writer an understanding of the power and limitations of the state
of the art of such compilers-and thereby how to write high-performance code
quickly.

7 .1 OVERVIEW OF HOW C CODE RUNS ON SPATIAL HARDWARE

This section provides a quick overview of how C code can be implemented on a
reconfigurable fabric. It assumes basic familiarity with C. The approaches used
are simple and far from optimal, but easy to understand. The detailed algorithms
of how a compiler does this construction will follow.

In the figures that follow (e.g., Figure 7.1), the gray rectangles represent reg­
isters. For simplicity, the global clock is not shown. An arrow from the side
toward the register indicates a load enable signal. The hardware appears at the
operator level, not at the gate/CLB level.

a = X * y;

b = a+ 1;

a = X - y;

C = a/ 9;

(etc.)

FIGURE 7.1 ■ Straight-line code.

start x

(etc.) b

y

C

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 183

7 .1 Overview of How C Code Runs on Spatial Hardware 157

7 .1. 1 Data Connections between Operations

The simplest components of C code to start with are sequences of straight-line
arithmetic and logical statements. A sequence effectively tells us the set of prim­
itive operations that make up the computation and how those operations are
linked together-that is, they tell us how the outputs of one operation become
inputs to other operations.

In a C program, the statements execute in order. A statement can define a
variable, and subsequent statements using that variable get its last defined value.
This is how value definitions are connected to their use(s)-the most recent
assignment to a variable is the one that is used by a subsequent statement.

With spatial computation, each operation is implemented as a function unit
(or module) and a producer is connected to its consumer(s) by a direct physi­
cal connection. Even if two different C statements assign to the same program
variable, they are treated as different variables internally. In the example in
Figure 7.1, the two definitions of variable a, while sequential in the C program,
are actually independent and can be performed in parallel spatially. This is one
step in the direction of exploiting the unlimited parallelism of spatial hardware,
where •ve wish to reduce unnecessary ordering of operations as much as possi­
ble and keep only the necessary ordering.

Because we are implementing the computation spatially and in parallel, the
actual compute datapaths are always instantiated, ready to perform their oper­
ations. It is sometimes necessary to inform the modules when their inputs are
available and when they should actually perform their actions. The chain of reg­
isters on the left of Figure 7 .1 acts as a very simple sequencer. In this particular
example, the registers simply count off how many cycles are required to com­
pute all of the results. A '1' bit is fed from the start signal, kicking off the
sequencer and latching values into the input modules. The input modules hold
the input values constant during execution of this unit of computation. When a
1 bit appears at finish, the final values are ready to pass on.

Mixed operations of different complexity (e.g., adders and multipliers) may
take different amounts of time to complete. For efficient operation, rather than
slowing all operators down to the latency of the slowest one, it is often worth­
while to decompose slower operators into multiple cycles, potentially pipelining
them internally. In this example, multiply and divide are split into two stages
requiring two cycles, while add and subtract require just one cycle each.

Throughout this section, we employ a timing discipline where values are held
constant until the end of their block schedule. If a module's output register is
shown at level P in the schedule, and the overall schedule length is SL, then
the output of that module is guaranteed to be correct and stable from cycles P
through SL of that specific block execution (where cycle O is when the start

signal is raised).

7. 1.2 Memory
Memory loads and stores pose additional complications beyond simple arith­
metic and logical operations, in that their effects are not just local. In particular,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 184

158 Chapter 7 • Compiling C for Spatial Computing

*q = *p + 1;
(etc.)

(etc.)

FIGURE 7.2 ■ Implementation of memory accesses.

To/from memory

system

memory can be used to perform dynamic interconnect between operations, and
we must be careful to preserve the original communication semantics of the
C program. A "memory" function unit has local input and output connections
to other function units as normal, but also has connections to global shared
address, data, and control buses. These connect each memory node to the same
shared memory system.

Memory access operations must be scheduled on a particular cycle both to
allow sharing among memory operations and to preserve sequential C seman­
tics. Without scheduled coordination, two modules can attempt to drive the
address or data bus simultaneously. The simple controller triggers each memory
access at the correct time so that no clashes arise on either the address or the
data buses. Memory access must be scheduled after its input values are ready.
The compiler is also responsible for scheduling memory accesses in a way that
ensures that each pair that might access the same memory location is performed
in the correct relative program order.

The example in Figure 7.2 shows how a load node is split into a load_a,

which sends the address and load request, and a load_d (or load continuation),

which grabs the data when it comes back. The example assumes a load latency
of just one cycle. If the memory system takes extra time to return the load data,
as in the case of a cache miss, there must also be a stall signal factored into
the sequencer to freeze execution of the subcircuit; this is not shown in the
figure.

7 .1.3 If-then-else Using Multiplexers

Simple if-then-else statements can be merged into a single subcircuit by per­
forming the operations along both branches and then using multiplexers to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 185

7 .1 Overview of How C Code Runs on Spatial Hardware 159

if (a>lO)
a++;
else {
a--;

}

*q = a;

x = a * a;

start

(etc.)

1

*

a X

Ul

Ul

Ill fl:

Ill Ql Ql
M M

To/from memory
system

FIGURE 7.3 ■ If-conversion: Combining if-then-else using predicates and multiplexers.

select the correct version of each variable for use in subsequent computation.
This removes the branch; instead, the comparison result is used as a predicate
to choose the correct variable for later use, as with variable a in the example in
Figure 7.3. In the figure the predicates are the result of the comparison a > 10
and its inverse, which say whether the then or the else branch is taken. In
general, a predicate is always a Boolean value-the result of a comparison, or
a Boolean function of multiple comparisons, as occurs when nested if-then-else
statements are reduced. switch statements and even forward goto statements
can be implemented using similar techniques.

If the then or else contains a side-effect-causing operation, such as the
store in Figure 7.3, that operation's cycle trigger mustbeANDed with the pred­
icate under which it should execute.

7. 1.4 Actual Control Flow

To map C code containing more than just simple if-then-else control flow to the
reconfigurable fabric, some real control flow is needed. Control flow means that
there may be multiple subcircuits on the RF; only one is active at a time; and
the transition from one to another subcircuit is guided by the values that are

· computed by the ongoing computation. This is spatial computation's implemen­
tation of a conditional branch.

The control flow is implemented with the control bit: When it reaches the end
of a subcircuit, it is directed to the start of the next subcircuit to execute. When
a subcircuit has multiple successors, a predicate controls which one receives
the control bit. In Figure 7.4, we see the explicit branch either to a subcircuit
performing the then computation or to the one performing the else computa­
tion. Subcircuit SCl computes the condition a > 10, and the result determines

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 186

160 Chapter 7 ■ Compiling C for Spatial Computing

if (a>lO)

a++;

else {

a--;

X = a " 7;

(etc.) SC2

FIGURE 7.4 ■ Actual control flow.

SC1

start a

'

'

'

7 L
' ',
I '

,,,
,,,

cO dO cldl

lillllili!IIIRIIIIII
----�--�

' '-------- ----·

(etc.) a x

whether the control bit goes to SC2 or SC3; then one or the other gets the
control bit and executes. Control flow paths then merge at SC4, where a con­
trol bit from either SC2 or SC3 starts SC4's execution. Note that the source
of the control bit entering SC4 also controls whether SC2's or SC3's final ver­
sion of a is latched at the start of SC4 (note in Figure 7.4 the expansion of
input a).

Subcircuits as small as those shown in Figure 7.4 would not typically be cre­
ated by the compiler; instead, they would likely be merged as shown earlier.
However, if SC2 and SC3 had very different execution lengths, it would be worth­
while to keep them separate like this. If, for example, one had 1-cycle latency
and the other 13-cycle, we would only experience the 13-cycle latency when that
path was taken. In contrast, when uneven paths are combined into one subcir­
cuit, we pay the worst-case latency every execution.

A subcircuit that has a single predecessor actually does not require input
modules, assuming in our implementation that the predecessor subcircuit holds
its outputs constant until it is activated again. This simplification is shown in
SC2 and SC3 of Figure 7.4.

A loop is implemented simply by control branching back to the top of itself
or to some other, earlier subcircuit.

---s-----DE¥7
__ _j

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 187

7.1 Overview of How C Code Runs on Spatial Hardware 161

7. 1.5 Optimizing the Common Path

We have seen two extremes: (1) combining all the computation in an if-then-else
nest and (2) doing no combining and keeping all branches. But the key to get­
ting the best performance from limited spatial hardware is selectively merging
the computation on the common path(s) (to remove the subcircuit-to-subcircuit
latency and to expose operation parallelism) while excluding computation on
the rarely taken paths (so that it doesn't get in the way of the common case).

In Figure 7.5 we see the same code as in Figure 7.4, but we have merged
the computation along the path with the increment. However, we have excluded
the path with the decrement. The compiler chose to merge the computation
along the path with the increment (SCI --+ SC2 --+ SC4 from Figure 7.4) into
one subcircuit because a test run (or the programmer) told it that that path was
more commonly executed. Because reentering the merged increment path is not
allowed, we needed to copy the XOR computation for the decrement path.

Merging the common path allowed the compiler to schedule the comparison
and the addition in parallel, reducing computation time to three cycles. The
schedule for the common case is also better than that for the case where all
blocks were merged, as in that case we needed a multiplexer to merge the results
from the decrement path, and that would add an extra step between the addition
and the XOR. In the general case, the benefit of excluding a rare path could be
even greater: Consider if the decrement were instead a multiplication, or even a

if (a>lO)
a++;

} else {

a--;

x = a "' 7;

(etc.)

start

(etc.)

FIGURE 7.5 ■ Optimizing the common path.

a

(etc.) a x

a X

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 188

162 Chapter 7 • Compiling C for Spatial Computing

long chain of operations. In that case, if that rare path were included, it would
force a much longer schedule.

In this case, when the execution flow exits the common path and continues
to the excluded path, the total time will be five cycles, longer than the four
cycles that would have resulted if decrement had been included. Many 3-cycle
executions with a few 5-cycle executions are better than all 4-cycle executions­
again, optimizing the common path.

A system might also choose to implement rarely taken paths as normal soft­
ware on the CPU. This would ease the demand for resources on the reconfig­
urable fabric and allow implementation of a loop or procedure that otherwise
would not fit. This approach is also beneficial when the excluded path includes
an operation, such as a library call, that cannot be implemented directly on
the RF. However, the cost of transferring control to the CPU for a rare path,
when it does happen, must be considered.

7 .1.6 Summary and Challenges
In this section we sketched how C can be implemented spatially and began to
illustrate optimizations for parallelism that are the key to extracting high perfor­
mance from spatial hardware, even when the spatial hardware runs at a slower
clock rate than the CPU. We also illustrated context�specific optimization, which
allows us to highly specialize the computation to the common case execution
of the application, further increasing parallelism and reducing the computation
required. Nonetheless, these simple techniques leave us with spatial designs that
can be inefficient and that underutilize our reconfigurable fabric. These ineffi­
ciencies include:

■ Not pipelining: Sequential paths prevent us from reusing our spatial
hardware at its full capacity; spatial operators sit idle for most of the
cycles in a block. To fully use the capabilities of the reconfigurable
hardware, datapaths should be pipelined for rapid reuse.

■ Memory: Sequential dependencies among memory access operations limit
available parallelism.

■ Operator size and specialization: The reconfigurable fabric can provide
hardware tailored to the compute needs (e.g., just the right datapath
width, specialized around compile time constants), but specific
information about operator size is often not immediately apparent in the
original C program.

The following sections show how we can address many of the simple trans­
lation scheme's limitations.

7 .2 AUTOMATIC COMPILATION

A particular compiler flow is largely determined by the system architec­
ture. Here we will assume that fairly large pieces of code will be migrated

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 189

(a)

7 .2 Automatic Compilation 163

to the reconfigurable fabric-a loop or perhaps even a complete procedure.
There is little difference in the algorithms between granularities at this
level.

We assume a standard C compiler frontend that parses the source files (see
Figure 7.6(a)) and performs further processing until the intermediate repre­
sentation consists of a control -flow graph (CFG) for each procedure. A CFG
consists of basic blocks, each containing an ordered list of simple instructions
and connected by control edges indicating a possible branch· from the end of
one basic block to the start of another, as shown in Figure 7.6(1?). By defini­
tion, entry to a basic block occurs only at the beginning, exits occur only at
the end, and all instructions inside the basic block execute once the block is
entered.

Within each basic block, complex expressions are broken up by introduc­
ing compiler temporary variables so that each simple instruction contains just
one operation. This list of simple instructions in each basic block resembles
assembly code to some degree, but is of a higher level: variables (including com­
piler temporaries) are used instead of explicit registers, and all type information
is still available. Many optimizations are performed on this representation to
reduce the number of instructions by, for example, constant propagation, con­
stant folding, and common subexpression elimination. (See Aho et al. [1] or
Muchnick [13] for related background.)

The frontend also provides some standard analyses. Of particular interest here
is live variable analysis, which indicates whether or not the current contents of
a variable need to be preserved for a possible future use.

(b) (c) (d) (e)

FIGURE 7.6 ■ Overall compiler flow: (a) original C source code, (b) CFG basic blocks,
(c) clustering of basic blocks into hyperblocks, (d) construction of the DFG, and (e) circuit generation from
the DFG.

... ;.
:~::::/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 190

164 Chapter 7 ■ Compiling C for Spatial Computing

After frontend processing produces an optimized CFG for each procedure,
we start compilation steps specific to reconfigurable computing:

■ HW/SW partitioning: This is very system dependent, and its discussion is
deferred until section 7 .3.1.

■ HW/HW clustering of the CFG basic blocks into hyperl:Jlocks: illustrated in
Figure 7.6(c) and discussed in section 7.2.1.

■ Building the dataflow graph (DFG) for each hyperblock: illustrated in
Figure 7.6(d) and discussed in section 7.2.2.

■ DFG optimization: discussed in section 7.2.3.
■ Generating the circuit from the DFGs: This involves module mapping

(packing one or more DFG nodes into a single-cycle macro function
unit), scheduling, connecting hyperblock subcircuits, and other related
tasks; illustrated in Figure 7.6(e), which leaves out data connections, and
discussed in section 7 .2.4.

After we go over these steps, we will describe some uses and variations in
Section 7.3.

7 .2.1 Hyperblocks

Because basic blocks are limited to straight-line control flow between branches,
they are often quite small and limit our opportunities for parallelism. As we saw
in the previous section, we can often convert if-then-else constructs into dataflow
using multiplexers. These composite blocks, or hyperblocks, have a single entry
point at the top and one or more exits. All branches within the hyperblock are
eliminated by using predicates and multiplexers. Each hyperblock becomes a
subcircuit, as shown earlier.

To fonii hyperblocks, the compiler starts with the basic block CFG. It then
combines blocks along commonly taken paths-for example, the right group
in Figure 7.6(c), excluding rarely taken paths. A single basic block can always
be a hyperblock. To respect the single top-entry requirement, tail duplication is
required to eliminate an edge that otherwise would reenter the hyperblock; that
edge is redirected to a copy of its original target. For example, the bottom basic
block in Figure 7.6(b) is duplicated in Figure 7.6(c).

The hyperblock was originally constructed by Mahlke and colleagues [12] for
compiling to VLIW (very long instruction word) processors (see VLIW data­
path control subsection of Section 5.2.2), although the clustering heuristics they
developed are not necessarily effective here. In particular, VLIW processors have
a fixed instruction issue width; once this is saturated, adding additional parallel
paths may extend the schedule and hurt the performance of the common case.
With spatial computing, we have no limit on per-cycle operation parallelism,
so it is often beneficial to make "fatter" hyperblocks by including more parallel
paths from the CFG.

7 .2.2 Building a Dataflow Graph for a Hyperblock

Here we focus on constructing a DFG (dataflow graph) from the set of basic
blocks in a hyperblock. The DFG is a "stepping stone" between the original

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 191

7.2 Automatic Compilation 165

software specification and the final spatial hardware implementation. The
compiler performs-many important tasks in building it:

■ Controld�_pendence within the-hyperblock is converted to data
dependeiice: Internal conditional branches are eliminated through the
introduction of predicates (Boolean values indicating the "taken" path
through the computation). The only remaining conditional branches are
exits out of the hyperblock.

■ Data producer-consumer relationships are made explicit via data edges in
the graph; also, because a new DFG node is created for each definition,
variable renaming is effectively performed, which eliminates false
dependencies.

■ Any remaining ordering constraints between individual operations,
particularly memory operations, are also made explicit through ordering
edges.

These actions convert the sequential ordering of instructions to a partial order
. of DFG nodes, exposing parallelism. In addition, maximal control speculation is
employed so that all safe operations execute every iteration, removing dependen­
cies between predicate calculations and those operations, breaking critical paths,
and further increasing operation parallelism. Finally, the DFG is an ideal repre­
sentation with which to perform many additional optimizations, described next.

The DFG is composed of nodes and edges:

■ Nodes: These include constants, inputs to the hyperblock, simple
computational operations having no side effects (such as addition),
memory accesses, and exit nodes. Exit nodes are associated with an
outgoing control edge from one hyperblock to another; when an exit
node's predicate input is true, it causes a control transfer to the target
hyperblock recorded on the node. The exit node also defines which live
data values should be transferred to the successor hyperblock, as
indicated by liveness edges.

■ Edges: These are directed edges between the nodes and are of three types:
data edges, indicating producer-consumer relationships; ordering edges,
indicating an ordering constraint between two nodes such as memory
operations; and liveness edges. Liveness edges go only to exit nodes. They
indicate the set of values that are live-out at that hyperblock exit and thus
must be copied out-that is, transferred to the successor hyperblock or
back to the CPU. Each liveness edge is annotated with the name of the
variable because, in general, the variable cannot be deduced from the
source DFG node (a single node may be the source for different variables
at different exits). These edges are necessary because the set of live
variables to be transferred typically differs at each exit. Also, the source
DFG node for a given variable can be different at different exits.

Top-level build algorithms
We build the DFG from the basic block CFG for each hyperblock. The algo­
rithm for building the DFG performs a single forward pass, visiting each basic

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 192

166 Chapter 7 • Compiling C for Spatial Computing

block in the hyperblock in an order such that each basic block is visited only
after all its predecessors have been visited. Then, when visiting each basic block,
the simple instructions are visited in sequence. This forward pass builds all of
the DFG nodes, including nodes directly translated from instructions as well
as predicate calculation nodes and mux (multiplexer) nodes inserted to imple­
ment predicated execution. The forward pass also builds all data and ordering
edges.

Building data edges
When a node is constructed, the compiler creates data edges to its inputs using
the lastDefs data structure. Throughout the forward.pass, this table is kept up
to date regarding which node produced the last definition of each variable; there
is at most one such definition at any point. We show an example in Figure 7. 7.

At the start of processing a hyperblock's entry basic block, the lastDefs list
is initialized with an input node associated with each live variable, as.with y: nl
in the example.

Whenever an instruction assigns to a variable, lastDefs is updated. In our
example, y++ in BBl uses the current value of y, nl as the source for the-incom­
ing edge to the new add node, n4; then the lastDefs list is updated so that the
new value of y is available from n4.

A copy-an assignment from one variable to another-requires no action
other than updating the lastDefs list (see for example x=y in BBl in
Figure 7.7). A new entry for x is made in the lastDe.fs list, x: nl, just using
the current entry for y. Similar for z=y, although at that point the entry for y is
different so a different source node is given to z. This has the effect of performing

n2

___ predicate: n6

x and z are live

(a)
(b)

FIGURE 7.7 ■ Basic blocks selection for the hyperblock: (a) the state of the lastDefs list at
various points in the process; (b) the resulting DFG.

z ,,-
'!' ,,,"'

(1)___ >--<n11 n10'-.:...,I~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 193

7.2 Automatic Compilation 167

copy propagation and constant propagation for free while building the DFG. At
the end of processing each basic block, the final lastDefs list is recorded.

For a nonentry basic block B with a single predecessor in the hyperblock,
the predecessor's final lastDefs list is used as the starting lastDefs list for
processing B. This occurs from the end of BBl to the start of BB2.

, ..

Building muxes
At a basic block with N > 1 incoming CFG edges, a given variable may have
differing definitions arriving via the edges as indicated by the predecessors'
respective final lastDefs lists. In such cases, an unencoded mux is constructed
in the DFG to route the appropriate definition to subsequent consumers. An
unencoded mux has N data inputs and N Boolean select inputs-only one of
the select inputs can be true-and the corresponding data input is routed to the
output. The N data inputs to the mux are from the data source nodes from the
arriving lastDefs lists; the select input corresponding to each of the N data
inputs is the predicate for that arriving edge. The data output of the mux struc­
ture becomes the definition of the variable entered in the lastDefs list for the
start of processing that basic block. This occurs for y entering BB3, where the
compiler inserts mux n 8 to select between sources n 4 and n 7, and then makes
n8 the new entry for y. Because the entries for x and z are the same, however,
no mux is built for either of them.

Predicates
At the beginning of processing each basic block, a node calculating that block's
predicate is built if necessary and the predicate source is recorded to be used as
input for nodes that cannot be executed speculatively (e.g., stores). The predicate
for the hyperblock entry block is TRUE. For each other basic block, the predicate
is built as the OR of the predicate sources of all incoming edges. When there
is just one incoming edge, the calculation degenerates to just using that edge's
predicate.

At the end of processing a basic block, a predicate is built if necessary ,and
recorded for each outgoing edge. For a basic block ending in a conditional
branch, an edge's predicate is built as its source block's predicate, ANDed with
the branch condition under which that edge is taken. For a basic block end­
ing in an ·unconditional branch, the edge predicate on the single outgoing edge
is just the same as the block's predicate. After forming predicates for a nested
if-then-else, it may be possible to simplify them; for example, a block may be
(pl AND p2) OR (pl AND not p2), which can be reduced to just (pl) by rules
of Boolean logic.

Ordering edges
To help build ordering edges, the compiler maintains lists of all loads and stores
seen along any path from the entry of the hyperblock to the current point.
At the start of processing the hyperblock, the lists are initialized as empty.
At the end of processing each basic block, the state of the lists at that point
is recorded. At the start of any nonentry basic block, the starting lists are

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 194

168 Chapter 7 • Compiling C for Spatial Computing

simply calculated: For a basic block wiih_a single predecessor, the predecessor's
lists are copied; when there are multiple predecessors, the respective lists are
unioned.

When building a new load, construct an ordering edge from each upstream
store to the new load, and then the load is added to the seen_loads list. When
a new store is built, an ordering edge is constructed from each node on both
the seen_loads and seen_stores lists to t_he new store and the store is added
to the seen_stores list. This step is very conservative; for example, it adds an
ordering edge from a store to each subsequent load even if the load is from
a different array. Later phases use dependency information to remove ordering
edges that are not necessary-that is, when it is guaranteed that the two accesses
cannot refer to the same memory location.

Live variables at exits

This phase determines, for each exit, which values must be copied out to the next
hyperblock or CPU when that exit is taken. For each such variable, a liveness
edge is constructed from the node responsible for the last definition, as found
in the lastDefs list, to the DFG exit node.

If the variable is live at that exit, there will be an entry for it in lastDefs at
the point of exit. The indicated DFG node is the one providing the value for the
variable, so the edge is constructed from that node to the exit DFG node.

Figure 7 .8 shows an example of a swap. There are two exits from the first
hyperblock, at one of which a and b are swapped-this results purely from

if (a<b) {
tmp = a;

a =b;
b = tmp;

diff = a - b;

a:n2 b:nl,

b:n2

diff = a-b;

FIGURE 7.8 ■ Code, hyperblock formation, and resulting DFGs.

: I \ f

' .. - .. - - -,- .. - - .. ,. .. "', - _, .. - - ..

--·······'··J. '
.

..... --- - - .., - -- - - , '

,• '

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 195

7 .2 Automatic Compilation 169

lastDefs list processing. The figure shows the differing contents of the
lastDefs lists at the different exits. In one case, a's source is nl (input a); in the
other, its source is n2 (input b). Later, when the compiler translates the DFGs to
subcircuit implementations, it will also form connections from the appropriate
liveness edge sources in the first hyperbock to the input nodes in the second
hyperblock.

Scalar variables in memory
If the address of a scalar variable is taken at some point by the C language &
operator, it may be written or read through a pointer access. In this case,
in general the variable must reside in memory. When direct accesses to the
variable are interspersed with pointer accesses, we can't be sure when the
pointer access might be accessing that variable without further analysis. Thus,
we must keep the memory version of the variable up to date. When this sit­
uation occurs, each use of the variable requires an explicit load from mem­
ory, and eac,:h definition requires a store. Going to memory for each variable
access is obviously detrimental to performance, especially on a reconfigurable
fabric, so later optimizations attempt to eliminate or reduce the number of such
accesses.

7 .2.3 DFG Optimization

Optimizations have been performed by the compiler frontend before DFG con­
struction even starts. More optimizations are performed during construction,
some of them coming automatically in the construction process, such as con­
stant and copy propagation. Finally, after the DFG is completed, the com­
piler performs many optimizations, often performing the same ones multiple
times, and sometimes iterating a set of different optimizations until no further
improvement occurs. We will review a few of these optimizations in the follow­
ing subsections. (More detail can be found in other references; see the work of
Budiu [4] and Callahan [S].) These optimizations consider the scope of the DFG
(i.e., each hyperblock), which is larger than each basic block but smaller than
the entire procedure.

Constant folding
Constant folding is simply the reduction of expressions of compile time con­
stants to the equivalent constants. Its most obvious benefit is that it removes
operations from the DFG and ultimately reduces area and latency in the subcir­
cuit. A second benefit is that constant folding can enable operator specialization
for other operations. (See Chapter 22.)

Figure 7.9 shows a simple example of constant folding. The important part
of this example is observing how this opportunity for optimization occurs only
after hyperblock formation, because the definition of x in B3 no longer interferes
with constant propagation and constant folding in B1-B2-B4. This effect is not
limited to constant folding, but has the potential to improve all optimizations
described here.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 196

170 Chapter 7 • Compiling C for Spatial Computing

(a) (b)

FIGURE 7.9 ■ The commonly taken path in the loop is 81-82-84 (a). Hyperblock formation
(b)-tail duplication occurs with basic block 84. This enables constant propagation and then
constant folding for the expressions x*x, although this is actually done after conversion to
the DFG.

Identity simplification
This can be considered a special case of constant folding, that is, finding cases
where the operator can be eliminated because one of the inputs is a specific
constant. Integer operations that add or subtract zero, shift by zero, or multiply
by one are eliminated. Similar optimizations exist for Boolean predicate opera­
tions: If either an OR or an AND has a constant input, it can be eliminated by
replacing it either with a constant or with a pass-through from the other input.

Strength reduction
This replaces one operator with another operator (or operators) having less
overall latency/area. For example, replace x*2 with x+x or x<<l. Again, this is
often based on having a specific constant input. Sometimes, equivalent imple­
mentations occur whether we do operator-level strength reduction or bit-level
specialization, but it does not hurt to have multiple attacks. Multiplication by
a constant is an important example because it occurs so often and because a
general multiplication function unit can be expensive on a reconfigurable fab­
ric! The expression x*7 can be expressed as (x<<2) + (x<<l) +x, but even better
as (x<<3) -x.

Dead node elimination
A cleanup pass eliminates nodes that are "dead"-that is, those that are not
"live." A node is live when it is required for proper execution if (1) it has side
effects (i.e., it is a store or an exit), or (2) its data output is used by another
"live" node, including the case where the node supplies a live-out value to an
exit node. The algorithm starts by marking as live all nodes with side effects:
stores and exits. Then it marks as live any node whose data output is used by any
other "live" node, and so on. Only data and liveness edges need to be traversed.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 197

7 .2 Automatic Compilation 171

Once no more nodes can be marked as live, any remaining nodes not marked
as such are known to be dead and can be safely removed.

Common subexpression elimination
Common subexpression elimination (CSE) is a well-known optimization for
identifying and removing redundant computation-that is, the same operation
is performed on the same operands. When a node has the same operands as
another, it is immediately obvious from the structure of the graph. All simple
operator nodes are subject to elimination, as are all nodes introduced to sup­
port predicated execution (Boolean calculations and muxes). Store and exit node
types are not considered for elimination. Loads can be considered if additional
analysis is done (see Memory access optimization subsection later).

Boolean value identification
The C language defines signed and unsigned integer data types of various sizes,
but ISO C does not contain a Boolean data type [9]. Although the result of a
comparison is defined to be either O or 1, the type of the result is a signed
integer-typically 32 bits. However, no information is lost if only a single bit
is used to carry the result. This can be exploited to advantage in hardware.
Therefore, it is useful to identify as "Boolean" those operations guaranteed to
produce only O or 1. When necessary for non-Boolean uses, Boolean values can
be converted back to standard C type by zero-padding.

The algorithm identifies ''base case" Boolean-producing nodes: comparisons,
constant 0, and constant 1. Then it forward-propagates the Boolean property to
nodes that have an opcode that preserves the Boolean property and that also
have all inputs already flagged as Boolean. Opcodes that preserve the Boolean
property include bitwise AND, OR, and XOR, as well as muxes. Opcodes that do
not preserve the Boolean property include bitwise NOT and addition. However,
all predicate calculations are marked as Boolean when they are constructed,
including NOT operators.

For a compilation fl.ow that eventually goes through commercial logic synthe­
sis tools, many of the excess bits being trimmed would be trimmed eventually
anyway. However, if the compiler needs to make decisions based on hardware
area estimates-for example, for hardware/software partitioning-it is useful to
have more accurate information about required bus and function unit width
earlier in the compiler fl.ow. This is also a motivation for the next two analyses.

Type-based operator size reduction
ISO C semantics [9] dictate that arithmetic and logical operations involving type
char and/or short operands must be performed at the precision of type int.

Figure 7 .10 shows the implicit type conversions.
Dming initial DFG construction, all three casts are faithfully translated to

DFG nodes. But since the destination's representation size of short (say 16 bits)
is less than that of int (say 32 bits), the upper bits of the addition are discarded.
Thus, a 16-bit adder will give the same result as a 32-bit adder in all cases,
so in the intermediate representation we can signify that just a 16-bit adder

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 198

172 Chapter 7 ■ Compiling C for Spatial Computing

short a, b, c;

a = b + c;

Implicit
conversions

FIGURE 7.10 ■ Implicit type conversions.

short a, b, c;

a = (short) ((int)b + (int) c);

is required. This in tum means that the addition uses just the lower 16 bits
of each operand; thus, reducing the size of one operator may enable the size
reduction of others. There also may be type conversions on the operands that
can be eliminated, as shown in the figure. Besides the obvious savings in area
and operator size for the addition, there are additional savings in this example:
eliminating the two sign-extending type conversions on b and c.

Dataflow analysis-based operator size reduction
More detailed dataflow analyses can be performed to find the number of bits
actually required by variables and operators. They may be based on range-for
example, i within the loop for (i = O; i < 1 O O; i ++) . They may also be bit
level: propagating forward information about bits fixed at O or 1 and propagating
backward information about bits not used (e.g., Budiu et al. [3]).

Memory access optimization
The handling of memory access ordering occurs in three phases:

1. The compiler conservatively adds ordering edges between pairs of memory
accesses during DFG construction.

2. After DFG construction, the compiler tries to find and remove false order­
ing edges. Considering each pair of memory accesses connected by an
ordering edge, it applies a series of tests. If · any test can prove that the
two operations can never access the same location during the same itera­
tion, that ordering edge is removed. These various tests are based on array
index analysis, pointer analysis, and simple testing of fixed locations (e.g.,
&a and &b).

3. Although removing false ordering edges is useful in itself because it exposes
more parallelism and typically results in a shorter schedule, there are also
many optimizations based on ordering edges that will see improved results.

Space does not allow the description of all memory optimizations that have
been developed (see Callahan [5] or Budiu and Goldstein [2] for more examples),
so just one will be presented here as an example.

Removing redundant loads
· Consider this simple C code snippet:

a= *p;
*

q = b;

C = *p;

Originally, there will be ordering edges from the first load to the store and from
the store to the second load. But if subsequent pointer analysis can guarantee

.. 1_ --

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 199

7 .2 Automatic Compilation 173

that p and q can never point to the same location, those ordering edges will be
removed.

The existence or absence of ordering edges is then used in the following opti­
mization. Two loads can be reduced to one if (1) they definitely access the same
location, and (2) there is no intervening store that might modify that location.
Both of these requirements can be determined directly from the DFG.

To check (1), the compiler checks if the addresses of the two loads come from
the same node (this assumes that common subexpression elimination has been
run, which would ensure that equivalent addresses come from the same node).
To check (2), we need to check for an intervening store. If there is a path from
one of the loads to any store, and from that store to the other load, via ordering
edges, then that store is intervening and represents a possible modification of
that memory location. If both requirements hold-(1) same location and (2) no
intervening store-then one of the loads can be eliminated, and its consumers
can use the output of the other load. In this example, the store to *q was origi­
nally intervening, but is no longer after removal of the ordering edges.

7 .2.4 From DFG to Reconfigurable Fabric

At this point we have an optimized DFG for each hyperblock. The final trans­
lation involves mapping DFG nodes to modules, scheduling each module to a
specific timestep, and creating the simple sequencer, resulting in an actual sub­
circuit (RTL HDL description) for each hyperblock. Then, finally, connections
are made among the sequencers and modules from different hyperblock subcir­
cuits to complete the overall circuit.

Packing operations into clock cycles
A CPU cannot exploit the fact that a simple logical AND requires much less
latency to complete than an integer addition; both take one cycle. But with
spatial computing, we can pack multiple low-latency operations into a clock
period (i.e., between registers) [6]. A typical example is predicate calculation,
which consists of 1-bit Boolean calculations-a large subgraph of these can be
performed in the time it takes to do one 32-bit addition. Another case is two
successive ripple-carry adders because the latencies of their carry chains largely
overlap. Additional opportunities arise from the context-specific optimization
of each operation allowed by spatial computing (Chapter 22), which can greatly
reduce the latency of a specific operation. On the other hand, long latency opera­
tions, such as multiplication, are typically split into stages across multiple cycles,
and these stages are not considered for combining as noted before.

For simplicity it is useful to assume a target clock period from the start to get
an even "packing," even if the reconfigurable platform supports a variable clock
period. For systems with a fixed clock period, the upper bound is a hard limit.
If the final circuit has a combinational path with latency exceeding the clock
period, then some portion of the design flow must be rerun, either with more
conservative decisions (for example, with operation packing) or with higher pri­
ority given to the failing paths. With a variable clock period, mistakes can be
accommodated.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 200

174 Chapter 7 • Compiling C for Spatial Computing

After this grouping, rather than a graph of operator nodes, we have a graph
of modules, each of which implements one or more original DFG nodes (or a
stage of a multi-cycle operation). Each module has a register at its output.

Scheduling
Scheduling a module-mapped DFG is straightforward using list scheduling. The
output of list scheduling is, for each module m, an assigned slot a(m) when it
starts computing. A module m's outputs are available to other modules starting
at a(m)+lat(m), where lat(m) is the latency (in clock cycles) of m (a multi-cycle
operation is scheduled as a unit). In most cases this latency is one clock.

List scheduling maintains three lists of modules, and each module is a mem­
ber of exactly one list. The three lists are:

■ scheduled: modules that have already been assigned a slot. This is
initialized to the input modules, all scheduled at slot 0.

■ ready: modules whose sources have all been scheduled.
■ notready: modules that have one or more sources not yet scheduled.

Then the list-scheduling algorithm iterates as follows until all modules have been
scheduled:

1. Choose a module m from the ready list based on some priority heuristic.
2. Set S to the earliest cycle on which m can be scheduled, considering only

when m's inputs are first all available.
3. If m has a resource conflict at slot S with any already scheduled module,

increment S and go to step 3.
4. Schedule m in slot S and put it on scheduled.

5. Check m's successors and move them as appropriate from notready to
ready.

6. If any nodes remain on ready, go to step 1.

Only memory operations can encounter a resource conflict in step 3, aris­
ing from the use of shared address and/or memory data buses. In contrast, any
simple (nonmemory) module is scheduled as soon as all its inputs are avail­
able. Note that most such simple modules are not "actively" scheduled.:...._they
don't have an activation input from the sequencer. These passive modules sim­
ply compute a result each cycle whether or not their inputs are valid. After
scheduling, the total schedule length is known, so the sequencer can be built
to count off the cycles and trigger those modules that need it. The output of
the final sequencer stage is ANDed with the predicate values for each exit node
to create the appropriate outgoing control bit. Also, the source of each liveness
edge to each exit node is translated to the appropriate connection to the input
module in the destination subcircuit.

Pipelined scheduling
Here we will briefly give an idea of how pipelined scheduling works. Only
hyperblocks branching to themselves to form a self-loop are considered. In the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 201

7.3 Uses and Variations of C Compilation to Hardware 175

final implementation, the key difference is that with pipelined scheduling the
calculation of the control bit that is fed back to the top of the sequencer is
produced not at the end of the schedule but somewhere in the middle. The
result is that there are multiple '1' control bits shifting through the sequencer
simultaneously, corresponding to the fact that multiple iterations of the loop
are executing in an overlapped fashion. The compiler must now watch out for
resource conflicts between successive iterations when scheduling the loop. The
spacing between successive iterations is limited by either loop-carried data or
memory dependencies, or by resource requirements. Further details are avail­
able in works by Callahan [S, 8].

Connecting memory nodes to the memory ports
Recall that each load node is split into a load_a, for sending the request and
address, and a load_d, for receiving the data. Our circuit diagrams have implied
that shared access to the memory port uses buses driven by tristate buffers,
which some FPGAs have. But this approach could run out of tristate buffers
or could restrict placement options. An alternative is to use an unencoded mux
to drive each input to the shared port. For example, a mux might replace the
address bus; when a memory module asserts a request to its control line of the
mux, its address is routed to the mux output and to the memory port. The load
data bus returning data from memory does not need any active routing; it is
driven only by the memory port and fans out to all of the load_d modules, one
of which will latch the result. However, additional buffering may be required to
avoid timing problems when fanout is large.

What next?
Although we have shown the implementations as schematics, what we actually
have at this point is a structural (RTL) description in an HDL such as Verilog or
VHDL (Chapter 6). In a system with a commercial FPGA as its reconfigurable
fabric, there is likely a fixed wrapper circuit that handles the details of connec­
tions between the compiler-generated circuit and the FPGA pins connected to
the CPU and external memory. The wrapper and compiled circuit together are
fed through commercial tools to perform the gate-level optimizing, mapping,
placing, and routing.

7.3 USES AND VARIATIONS OF C COMPILATION TO HARDWARE

Now that we have covered the technical aspects of compiling C to hardware, we
will return to higher-level programming and system-level design.

7 .3.1 Automatic HW/SW Partitioning
Once we have a common source language, here C, and compilation tools that
can compile a program, or parts of it, to either the CPU or the reconfig­
urable fabric, the remaining problem is to partition the program between the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 202

176 Chapter 7 ■ Compiling C for Spatial Computing

two resources. This partitioning can be performed manually, with the user
adding annotations about where to run blocks of code (e.g., loops, procedures),
automatically, with the compiler making all the decisions, or some combination
of the two.

Even when partitioning is manual, the use of a common source language
allows rapid exploration of the design space of different IIW/SW mappings. The
program can be written and debugged entirely on the CPU and the programmer
need only modify the allocation directives to move code onto the hardware or
to change which code is allocated to it. Profiling can help the user converge on
a good split.

Nonetheless, in the purely manual case the program developed ends up tuned
to a specific machine, with a specific amount of hardware, specific relative speeds
for the RF and the CPU, and communication between the two. Ideally, we have a
single source program to run on multiple hardware platforms with varying hard­
ware and performance. An intermediate solution is for the directives to suggest
which software blocks might be most profitable on the RF, then to allow the com­
piler, perhaps with runtime feedback, to decide which of the suggested set to actu­
ally run on the hardware based on performance benefits and capacity.

Ultimately, the compiler and runtime system should take full responsibility
for determining the right code and granularity to move to the reconfigurable
fabric. This is an active area of research and development. Chapter 26 discusses
issues and techniques for hardware/software partitioning in more detail.

The Garp C compiler [5, 7] provides an example of automatic partitioning. It
starts by marking all loops as candidates for the reconfigurable fabric. Then, for
each loop, it removes any paths from this candidate that include operations not
supported on the array (removed paths are executed in software on the CPU).
The compiler further trims the less taken paths in the loop until the remaining
loop paths fit on the fabric capacity. Finally, it trims paths to improve perfor­
mance. At this point, if any paths remain in the candidate loop, the compiler
evaluates lIW versus SW performance for the loop, considering the overhead
c9sts for paths switching between lIW and SW. If a loop is faster on the CPU,
it is given a completely SW implementation. The Garp hardware supports fast
configuration loads, and it caches configurations in the array, so there is a hard
bound to the size of each loop but no limit on the number of accelerated loops.

For conventional FPGAs that do not support fast configuration swaps, it may
be necessary to allocate all hardware logic at startup and keep them resident
throughout operation. In these cases, the bound is on the total capacity of all
hardware allocated to the RF, not just a single loop. The compiler may start with
all feasible candidates, as in the Garp C compiler case, but then must select a
subset that fits in the available capacity and maximizes performance.

7 .3.2 Programmer Assistance

Useful code changes
As Section 7 .2.4 shows, the compiler does many things to try to expose par­
allelism and optimize the implementation. However, discovering many of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 203

7.3 Uses and Variations of C Compilation to Hardware 177

optimization opportunities requires very sophisticated analysis by the compiler,
and sometimes it simply cannot prove that a particular optimization is always
safe. Consequently, there are many ways a programmer might restructure or
modify the application code to assist the compiler and achieve better perfor­
mance on the target system. Some of these transformations have been studied
to some degree in a research setting, but have not yet been fully automated in
production compilers.

Loop interchange, reversal, and other transforms A loop nest can be altered
in ways that still obey all required scalar and memory dependencies but that
improve performance. For example, a compiler may automatically exploit mem=­
ory accesses that are unit stride (A[O], A[l], A[2], ...) by streaming or prefetch­
ing. Even without explicit stream fetch support, unit stride accesses will improve
cache locality, so the programmer should strive for them within the innermost
loops. From one iteration to the next, loop interchange typically affects the
loop-carried dependencies of the innermost loop; this impacts how effectively
the block can be pipelined. If the programmer can structure the loop nest so
that the innermost loop has no loop-carried dependencies, pipelining will be
very effective. When the unit of HW implementation is an inner loop, another
consideration is the overhead of switching between SW and HW execution. To
reduce the relative cost of the overhead, it is best if possible to interchange the
loops so that the innermost loops have high loop counts-as long as this does
not adversely affect other aspects such as cache performance, unit stride, or
loop-carried dependencies.

Loop fusion and fission Loop fusion is the combining of successive loops with
identical bounds. This can remove memory accesses if the second loop loads
values written by the first loop; instead, the value can be passed directly within
the fused loop. The reverse, loop fission (splitting one loop into two), can also
be useful when the original loop cannot fit in its entirety on the reconfigurable
resources. Afterward, the two halves can each fit, but not at the same time, so
temporary arrays may need to be introduced to store data produced in the first
half and used in the second.

Local arrays When an array is local to a procedure and of fixed size, it is rel­
atively easy for the compiler to do the "smart thing" and implement it using a
memory block on the FPGA fabric. But if the program instead uses malloc'd
or global arrays as temporaries, it is very challenging to safely convert them
to local arrays. Thus, changing the code to use local arrays wherever possible
can be very useful because on-FPGA memory blocks have-much lower latency
to/from the computation unit and can be accessed in parallel with each other.

Control structure Most compliers keep the loop, procedure, and block struc­
ture in the original code. As noted previously, common heuristics for hard­
ware/software partitioning select loop bodies or procedures as candidates for
hardware implementation. If the loop is too large, it may not be feasible on

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 204

178 Chapter 7 ■ Compiling C for Spatial Computing

the array. If the loop is too small, it might not make good use of the. array's
parallelism. The programmer can often assist the compiler by sizing and orga­
nizing loops, procedures, and blocks that make good candidates for hardware
allocation.

Address indirection As noted in Section 7.2.3, whenever the address of a vari­
able is taken, the compiler must make conservative assumptions about when the
value will be updated, forcing additional sequentialization and increasing mem­
ory traffic. Consequently, address indirection and pass-by-reference should be
used judiciously with the realization that it can inhibit compiler optimizations.
Note that this unfortunate effect can also occur when a global scalar variable
is visible beyond the file in which it is declared; with separate compilation, the
compiler must assume that code in some other file takes the address of the vari­
able and passes it back as a pointer. Therefore, declaring file-global variables as
static helps as well.

Declaration of data sizes On CPUs there is often little advantage to using a nar­
row data word. Except for low-cost embedded systems, all processors have at
least 32-bit words, with high-performance processors trending to 64 bit; even
DSPs and embedded processors can typically assume CPUs with at least 16-bit
words. Consequently, there is little incentive to software programmers to pay
much attention to the actual range of data used. However, in fine-grained recon­
figurable fabrics, such as field-programmable gate arrays (FPGAs), narrow data
words can be implemented with less area and, sometimes, with less delay. As
noted in Section 7.2.3, the compiler can make use of narrower type declarations
(e.g., short, char) to reduce operator size.

Useful annotations

A programmer annotation gives the compiler a guarantee about a certain
property of the program, which typically allows the compiler to make more
aggressive optimizations; however, if the programmer is in error and the guar­
antee does not hold in all cases, incorrect program behavior may result. Some
annotations can be expressed as assertions. If the assertion fails, the program
will terminate, signaling the user (hopefully, the programmer) that the asser­
tion was violated. The compiler knows that when execution continues past the
assertion, certain properties must hold.

Annotations and assertions can be used as ways to communicate information
to the compiler that it is not capable of inferring itself. In this way they may be
an alternative to very advanced compiler analysis, or a complement when the
analysis is simply intractable. Following are two examples of useful annotations:

■ Pointer independence: declaring that a pair of pointers will never point
to the same location, so that an ordering edge between accesses using
those pointers can always be removed safely.

■ Absence of loop-carried memory dependences: declaring that the memory
operations in different iterations of the loop are always independent (to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 205

7.3 Uses and Variations of C Compilation to Hardware 179

different locations), which typically allows much greater overlap and
greater performance when using pipelined scheduling.

Integrating operator-level modules
Even when writing C code for CPUs, the compiler does not always generate opti­
mal machine code, and it is occasionally necessary to write assembly code for
key routines. Similarly, when the C compiler does not provide the tight imple­
mentations of which the RF is capable, it may be necessary to provide a direct
hardware implementation. Here, the "assembly" may be a VHDL (Chapter 6)
implementation of a function or a piece of dataflow. As in the assembly language
case, the developer can start with a pure C program profile, the code, and
then judiciously spend his customization effort on the code's most performance­
critical regions.

It is fairly easy to integrate a custom operation into the flow we have
described. The designer simply needs to create the module via HDL or schematic
capture, and tell the compiler the latency, in cycles, of the design. The operation
can be accessed from C source code using function call syntax, instantiated,
and scheduled in parallel with other "native" C operations in the hyperblock.
For example, in this code snippet:

x = bitreverse (a);

y = a " b;

Z = X + Yi

the bitreverse module would have one cycle latency and could be scheduled
in parallel with the XOR (") module.

The power of this approach is greatly increased with a module generator. In
this case, the HDL module is not just copied from a library; instead, it is dynam­
ically generated by the compiler. This allows constant arguments to the module
instantiation to specialize it, for example,

X = bit_reverse_range(a,8,15);

which will generate a module that will reverse the bits of a from bit 8 to bit 15
to produce x. A detailed interface between compiler and dynamic module gen­
erator is described in work by Koch [10] (see also Chapter 15).

It is useful to always have a functionally equivalent software implementation
of each custom operation in order to enable testing of the overall application
in a pure software environment. This is required, for example, when adding
hand-designed HDL modules in the SRC Computers compiler [14].

Integrating large blocks
Another method for integrating a hand-designed circuit with an otherwise
C-compiled program is to treat it as its own hyperblock subcircuit within the
compiler, allowing it to manage its own sequencing. The HDL implementation of
the custom block in this case receives a start control bit, like any other hyper­
block, and must send a finish control bit when done. This allows the designer to
incorporate custom blocks that have variable latency (e.g., an iterative divider or

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 206

180 Chapter 7 • Compiling C for Spatial Computing

a greatest-common-divisor computation). The programmer could use function
call syntax to instantiate this larger block as well, but, the compiler would pre­
vent the function from being merged with other blocks into a larger hyperblock.

7.4 SUMMARY

After a decade of research, C compilation for reconfigurable computers is now
commercially available in many forms (e.g., SRC Computers [14] and Lau and
colleagues [11]). While today's commercial compilers cannot generally compile
arbitrary ISO C code or take arbitrary C code and expect to fully extract the
performance of the reconfigurable fabric, they have closed the gap so that non­
trivial code acceleration is possible with minor programmer effort. A developer
can use the C compiler to rapidly get applications running on a suitable recon­
figurable platform. C code developed or tuned with an understanding of the
reconfigurable platform and the capabilities of the compiler can achieve higher
performance. Although today's C compilers do not free the reconfigurable devel­
oper from understanding good application and system architectures, they can
allow her to focus her efforts.

C compilation and optimization remain an active area of research, and we
expect to see continuing improvements over time. Many opportunities exist for
innovative research on aggressive optimization techniques and development of
more automated optimizing complier flows.

References

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers, Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[2] M. Budiu, S. Copen Goldstein. Optimizing memory accesses for spatial computa­
tion. International ACM/IEEE Symposium on Code Generation and Optimization,
March 2003.

[3] M. Budiu, M. Sakr, K. Walker, S. Copen Goldstein. Bit value inference: Detecting
and exploiting narrow bit-width computations. European Conference on Parallel
Processing, Springer-Verlag, 2000.

[4] M. Budiu. Spatial Computation, Ph.D. thesis, Carnegie-Mellon University, December
2003 (technical report CMU-CS-03-217).

[SJ T. J. Callahan. Automatic Compilation of C for Hybrid Reconfigurable Architectures,
Ph.D. thesis, University of California, Berkeley, December 2002.

[6] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek. Rapid module mapping and
placement for FPGAs. Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1998.

[7] T. Callahan, J. Hauser, J. Wawrzynek. The Garp architecture and C compiler. IEEE
Computer 33(4), April 2000.

[8] T. Callahan, J. Wawrzynek. Adapting software pipelining for reconfigurable com­
puting. Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2000.

[9] P. Harbison, G. L. Steele. C, A Reference Manual, 4th ed. Prentice-Hall, 1995.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 207

7.4 Summary 181

[10] A. Koch. Compilation for adaptive computing systems using complex parameter­
ized hardware objects. Journal of Supercomputing 21(2), 2002.

[11] D. Lau, 0 Pritchard, P. Molson. Automated generation of hardware accelerators
with direct memory access from ANSI/ISO standard C functions. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, April
2006.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. Proceedings of the
25th Annual International Symposium on Microarchitecture, 1992.

[13] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[14] SRC Computers. SRC Carte C Programming Environment v2.2 Guide, Colorado
Springs, 2007.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 208

PROGRAMMING STREAMING FPGA

APPLICATIONS USING BLOCK

DIAGRAMS IN SIMULINK

CHAPTER 8

Brian C. Richards, Chen Chang, John Wawrzynek,
Robert W. Brodersen
Department of Electrical Engineering and Computer Science
University of California-Berkeley

Although a system designer can use hardware description languages, such as
VHDL (Chapter 6) and Verilog to program field-programmable gate arrays
(FPGAs), the algorithm developer typically uses higher-level descriptions to
refine an algorithm. As a result, an algorithm described in a language such
as Matlab or C is frequently reentered by hand by the system designer, after
which the two descriptions must be verified and refined manually. This can be
time consuming.

To avoid reentering a design when translating from a high-level simulation
language to HDL, the algorithm developer can describe a system from the
beginning using block diagrams in Matlab Simulink [1]. Other block diagram
environments can be used in a similar way, but the tight integration of Simulink
with the widely used Matlab simulation environment allows developers to use
familiar data analysis tools to study the resulting designs. With Simulink, a sin­
gle design description can be prepared by the algorithm developer and refined
jointly with the system architect using a common design environment.

The single design entry is enabled by a library of Simulink operator primitives
that have a direct mapping to HDL, using matching Simulink and HDL models
that are cycle accurate and bit accurate between both domains. Examples and
compilation environments include System Generator from Xilinx [2], Synplify
DSP from Synplicity [3], and the HDL Coder from The Mathworks [1]. Using
such a library, nearly any synchronous multirate system can be described, with
high confidence that the result can be mapped to an FPGA given adequate
resources.

In _this chapter, a high-performance image-processing system is described
using Simulink and mapped to an FPGA-based platform using a design flow built
around the Xilinx System Generator tools. The system implements edge detec­
tion in real time on a digitized video stream and produces a corresponding video
stream labeling the edges. The edges can then be viewed on a high-resolution
monitor. This design demonstrates how to describe a high-performance parallel

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 209

184 Chapter 8 ■ Programming Streaming FPGA Applications

datapath, implement control subsystems, and interface to external devices,
including embedded processors.

8.1 DESIGNING HIGH-PERFORMANCE DATAPATHS USING

STREAM-BASED OPERATORS

Within Simulink we employ a Synchronous Dataflow computational model
(SDF), described in the Synchronous dataflow subsection of Section 5.1.3. Each
operator is executed once per clock cycle, consuming input values and producing
new output values once per clock tick. This discipline is well suited for stream­
based design, encouraging both the algorithm designer and the system architect
to describe efficient datapaths with minimal idle operations.

Clock signals and corresponding clock enable signals do not appear in the
Simulink block diagrams using the System Generator libraries, but are automati­
cally generated when an FPGA design is compiled. To support multirate systems,
the System Generator library includes up-sample and down-sample blocks to
mark the boundaries of different clock domains. When compiled to an FPGA,
clock enable signals for each clock domain are automatically generated.

All System Generator components offer compile time parameters, allowing
the designer to control data types and refine the behavior of the block. Hier­
archical blocks, or subsystems in Simulink, can also have user-defined parame­
ters, called mask parameters. These can be included in block property expres­
sions within that subsystem to provide a means of generating a variety of
behaviors from a single Simulink description. Typical mask parameters include
data type and precision specification and block latency to control pipeline
stage insertion. For more advanced library development efforts, the mask
parameters can be used by a Matlab program to create a custom schematic at
compile time.

The System Generator library supports fixed-point or Boolean data types for
mapping to FPGAs. Fixed-point data types include signed and unsigned values,
with bit width and decimal point location as parameters. In most cases, the
output data types are inferred automatically at compile time, although many
blocks offer parameters to define them explicitly.

Pipeline operators are explicitly placed into a design either by inserting delay
blocks or by defining a delay parameter in selected functional blocks. Although
the designer is responsible for balancing pipeline operators, libraries of high­
level components have been developed and reused to hide pipeline-balancing
details from the algorithm developer.

The Simulink approach allows us to describe highly concurrent SDF systems
where many operators-perhaps the entire dataflow path-can operate simulta­
neously. With modem FPGAs, it is possible to implement these systems with
thousands of simultaneous operators running at the system clock rate with
little or no control logic, allowing complex, high-performance algorithms to be
implemented.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 210

8.2 An Image-processing Design Driver 185

8.2 AN IMAGE-PROCESSING DESIGN DRIVER
�

The goal of the edge detection design driver is to generate a binary bit mask from
a video source operating at up to a 200 MHz pixel rate, identifying where likely
edges are in an image. The raw color video is read from a neighboring FPGA
over a parallel link, and the image intensity is then calculated, after which two
3 x 3 convolutional Sobel operator filters identify horizontal-and vertical edges;
the sum of their absolute values indicates the relative strength of a feature edge
in an image. A runtime programmable gain (variable multiplier) followed by an
adjustable threshold maps the resulting pixel stream to binary levels to indicate
if a given pixel is labeled as an edge of a visible feature. The resulting video
mask is then optionally mixed with the original color image and displayed on
a monitor.

Before designing the datapaths in the edge detection system, the data and
control specification for the video stream sources and sinks must be defined.
By convention, stream-based architectures are implemented by pairing data
samples with corresponding control tags and maintaining this pairing through
the architecture. For this example, the video datastreams may have varying data
types as the signals are processed whereas the control tags are synchronization
signals that track the pipeline delays in the video stream. The input video stream
and output display stream represent color pixel data using 16 bits-5 bits for
red, 6 bits for green, and 5 bits for blue unsigned pixel intensity values. Inter­
mediate values might represent video data as 8-bit grayscale intensity values or
as 1-bit threshold detection mask values.

As the datastreams flow through the signal-processing datapath, the operators
execute at a constant 100 MHz sample rate, with varying pipeline delays through
the system. The data, however, may arrive at less than 100 MHz, requiring a
corresponding enable signal (see the discussion in Data presence subsection of
Section 5.2.1) to tag valid data. Additionally, hsync, vsync, and msync signals
are defined to be true for the first pixel of each row, frame, and movie sequence,
respectively, allowing a large variety of video stream formats to be supported by
the same design.

Once a streaming format has been specified, library components can be
developed that forward a video stream through a variety of operators to create
higher-level functions while maintaining valid, pipeline-delayed synchronization
signals. For blocks with a pipeline latency that is determined by mask param­
eters, the synchronization signals must also be delayed based on the mask
parameters so that the resulting synchronization signals match the processed
datastream.

8.2.1 Converting RGB Video to Grayscale
The first step in this example is to generate a grayscale video stream from the
RGB input data. The data is converted to intensity using the NTSC RGB-to-Y
matrix:

Y = 0.3 x red+0.59 x green+0.11 x blue

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 211

186 Chapter 8 ■ Programming Streaming FPGA Applications

i- sobel_beel_vl/s/rgb_to_y
1
-_ n�_I"�,

Ready

4

sync_in

r_scale

b_soale

1100"1'0

add2

Delay1

sync_out

Delay

!flxedstepoiscrete

FIGURE 8.1 ■ An RGB-to-Y (intensity) Si mu link diagram.

This formula is implemented explicitly as a block diagram, shown in Figure 8.1,
using constant gain blocks followed by adders. The constant multiplication
values are defined as floating-point values and are converted to fixed point
according to mask parameters in the gain model. This allows the precision of
the multiplication to be defined separately from the gain, leaving the synthesis
tools to choose an implementation. The scaled results are then summed with an
explicit adder tree.

Note that if the first adder introduces a latency of adder_delay clock cycles,
the b input to the second adder, add2, must also be delayed by adder_delay
cycles to maintain the cycle alignment of the RGB data. Both the Delayl block
and the addl block have a subsystem mask parameter defining the delay that
the block will introduce, provided by the mask parameter dialog as shown in
Figure 8.2. Similarly, the synchronization signals must be delayed by three cycles
corresponding to one cycle for the gain blocks, one cycle for the first adder,

E.'9 ~ ~ ~ Fwmat Ioals ~

c:q ~ ~ {ii I l ' ~ e ::-.i ~ I ► ■ r INo,rnal Itl .~Ht;;i @'.I~ ;;J l .. Iii Ii

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 212

8.2 An Image-processing Design Driver 187

Function Block Parameters: rgb_to_y / X J
Subsystem (mask)

Parameters

Scale Delay

D

Scale factor bit Vl'idth

10

Adder Delay

Output bit width

10

_, _
.Q
_

K _1[bancel][Help

FIGURE 8.2 ■ A dialog describing mask parameters for the rgb_to_y block.

and one cycle for the second adder. By designing subsystems with configurable
delays and data precision parameters, library components can be developed to
encourage reuse of design elements.

8.2.2 Two-dimensional Video Filtering

The next major block following the RGB-to-grayscale conversion is the edge
detection filter itself (Figure 8.3), consisting of two pixel row delay lines, two
3 x 3 kernels, and a simplified magnitude detector. The delay lines store the two
rows of pixels preceding the current row of video data, providing three streams
of vertically aligned pixels that are connected to the two 3 x 3 filters-the first
one detecting horizontal edges and the second detecting vertical edges. These
filters produce two signed fixed-point streams of pixel values, approximating
the edge _gradients in the source video image.

On every clock cycle, two 3 x 3 convolution kernels must be calculated,
requiring several parallel operators. The operators implement the following
convolution kernels:

-1 0 +1 +1 +2 +1

Sobel X Gradient: -2 0 +2 Sobel Y Gradient: 0 0 0

-1 0 +1 -1 -2 -1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 213

188 Chapter 8 ■ Programming Streaming FPGA Applications

I solicl hcc / v //5/�ol>cl • 1_;_ It: IX

y_in

yjn
y_out UFI• 8

syncjn

row_dtl•y1
sobel_y

sobel_x

Ola
Fix 12_8

gain threshold

2 UF _4_0

syno_in

�U.;..:;Fix.;..4'-'0=------+< 2
sync_out

Delay

Ready �--

FIGURE 8.3 ■ The Sobel edge detection filter, processing an 8-bit video datastream to produce a stream of
Boolean values indicating edges in the image.

To support arbitrary kernels, the designer can choose to implement the Sobel
operators using constant multiplier or gain blocks followed by _a tree of adders.
For this example, the subcircuits for the x- and y-gradient operators are hand­
optimized so that the nonzero multipliers for both convolution kernels are
implemented with a single hardwired shift operation using a power-of-2 scale
block. The results are then summed explicitly, using a tree of add or subtract
operators, as shown in Figures 8.4 and 8.5.

Note that the interconnect in Figures 8.4 and 8.5 is shown with the data
types displayed. For the most part, these are assigned automatically, with the
input data types propagated and the output data types and bit widths inferred
to avoid overflow or underflow of signed and unsigned data types. The bit widths
can be coerced to different data types and widths using casting or reinter­
pret blocks, and by selecting saturation, truncation, and wraparound options
available to· several of the operator blocks. The designer must exercise care
to verify that such adjustments to a design do not change the behavior of the
algorithm.

Through these Simulink features a high-level algorithm designer can directly
explore the impact of such data type manipulation on a particular algorithm.

Once the horizontal and vertical intensity gradients are calculated for the
neighborhood around a given pixel, the likelihood that the pixel is near the
boundary of a feature can be calculated. To label a pixel as a likely edg� of
a feature in the image, the magnitude of the gradients is approximated and the

\

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 214

8.2 An Image-processing Design Driver 189

f7 sol,el bee/ vll /sobel/sohel y • _ 11 □
1 X

Ready !t00%

FIGURE 8.4 ■ The sobel_y block for estimating the horizontal gradient in the source image.

•dd2

''"'

FIGURE 8.5 ■ The sobel_x block for estimating the vertical gradient in the source image.

resulting nonnegative value is scaled and compared to a given threshold. The
magnitude is approximated by summing the absolute values of the horizontal
and vertical edge gradients, which, although simpler than the exact magnitude
calculation, gives a result adequate for our applications.

- ... - C
flle~-p..~-l"'-'"tto

□ ~liil•1.w~ ■ l!:2PI ► -r1N- .:l1iJJtit~• • 1•

....

r;..;;.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 215

190 Chapter 8 ■ Programming Streaming FPGA Applications

A multiplier and a comparator follow the magnitude function to adjust the
sensitivity to image noise and lighting changes, respectively, resulting in a 1-bit
mask that is nonzero if the input pixel is determined to be near the edge of a
feature. To allow the user to adjust the gain and threshold values interactively,
the values are connected to gain and threshold input ports on the filter (see
Figure 8.6).

To display the resulting edge mask, an overlay datapath follows the edge mask
stream, allowing the mask to be recombined with the input RGB (red, green,
blue) signal in a variety of ways to demonstrate the functionality of the system
in real time. The overlay input is read as a 2-bit value, where the LSB O bit
selects whether the background of the image is black or the original RGB, and
the LSB 1 bit selects whether or not the mask is displayed as a white over­
lay on the background. Three of these mixer subsystems are used in the main
video-filtering subsystem, one for each of the red, green, and blue video source
components.

The three stream-based filtering subsystems are _combined into a single subsys­
tem, with color video in and color video out, as shown in Figure 8. 7. Note that the
color data fed straight through to the red, green, and blue mixers is delayed. The
delay, 13 clock cycles in this case, corresponds to the pipeline delay through both

D I (jjjj,: Ill cl l Ji. � 8 I !.2 0- I ► ■ i;;- jNormal

Ready !100%

Constant4 Mux Constant1 Mux1

Output video �tree.m.:
overlay LSB O:

O => Black background
l •> Video background

Overlay LSB l:
O •> Show background video streaia
l => Show white edge mask+ video

. jFlxedStepOisaete

FIGURE 8.6 ■ One of three video mixers for choosing displays of the filtered results.

)

- - --- - - -- -- - --

["". sobel_bee2_v2/s/r _mixer 1-:- 1 r -F,Z

.!

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 216

8.2 An Image-processing Design Driver 191

l�ohel heel v//5 1- Ir x

y_oUl

del_g

del_b syno_out

del_hqnc rgb_to_y

5

overl,y Oel,y

'
0ol,y1

Ool.ry2

y_tn

sync_ln
y_o,Jt

•hold

J'.obel

100%

b_out

b_mixu

L..---f-+------l� 4
sync_out

FIGURE 8.7 ■ The main fil_tering sufiystem, with RGB-to-Y, Sobel, and mixer blocks.

/

the rgb_to_y block a& the Sobel edge detection filter itself. This is to ensure
that the background orig�� image data is aligned with the corresponding pixel
results from the filter. T -"'i�als are also delayed, but this is propagated
through the filtering blocks and does non:quire additional delays.

8.2.3 Mapping the Video Filter to the lE�2 f PGA Platform
Our design, up to this point, is platform it-lependent-any Xilinx component
supported by the System Generator comm.rcial design flow can be targeted.
The next step is to map the design to theBEE2 platform-a multiple-FPGA
design, developed at UC Berkeley [4], that.:ontains memory to store a stream
of video data and an HDMI interface to ottput that data to a high-resolution
monitor.

For the Sobel edge detection design, some port'� are for video datastreams
and others are for control over runtime parameters. 'ihe three user-controllable
inputs to the filtering subsystem, threshold, gain, and overlay are connected
to external input ports, for connection to the top-level n_stbench. The filter,

8'~~~fgnW;l•tM:>

Oi~"• i e ::i

,-----.iovorlly

1---+-1-----R , P"'-----'_J

vldoo

.................. __ ovny

mnk _.

Yicloo

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 217

192 Chapter 8 ■ Programming Streaming FPGA Applications

included as a subsystem of this testbench design, is shown in Figures8.8 arul.8.9.
So far, the library primitives used in the filter are independent of both the type
of FPGA that will be used and the target testing platform containing the FPGA.

To support targeting the filter to the BEE2 FPGA platform for real-time test­
ing, a set of libraries and utilities from the BEE Platform Studio, also developed
at Berkeley, is used [5]. Several types of library blocks are available to assist with
platform mapping, including simple UO, high-performance UO, and micropro­
cessor register and memory interfaces.

The strategy for usihg the Simulink blocks to map a design to an FPGA
assumes that a clear boundary is defined to determine which operators.
are mapped to the FPGA hardware and which are for simulation only. The
commercial tools and design flows for generating FPGA bit files assume that
there are input and output library blocks that appear to Simulink as, respec­
tively, double-precision to fixed-point conversion and fixed-point to dolJble type
conversion blocks. For simulation purposes, these blocks allow the hardware

{
-.

sobul heel vi .. I r-fX,

fllot .. l!W'--!odstto<>

o lli: liill91 x �c-1::2 C! -► • � !Ncmwi1 3 gi� � �.e±i 1-.§.111 '.l' •

Cont.:col Reqisuu
• Th!:eshold: 8-bit unaign.e:d. ottatt thruholt!
• Gain: 12 bit, fixed-point unsigned :ault1plier valul!, 6 bit traction
• Ow1:l-,:

1.3B O: 0 -> Black bactqz.:ound, l -> Video bact;rOUlld
LSB l: 0 -> Hide edge usk, 1 -> Sbov edge auk

Video I■o;e P:r:oces:sinq Te:iitl::lench
• :ced: 5 bit unsig;ned
• oum: 6 bit unsiQnl!d
1 blue: 5 bit unsigned
• m: High tor each valid video RGB pixel value
• ■sync: High for l cycle (Vitl:L en) !oi:: hut pixel : a ■OVie
• v:,ync: High tor 1 cycle (with m) toe tirxt pixel t • !cue • hsync1 Hiotl tor l cycle (with en) tor Urn pixel � • l:O't'

� E]ComboM

.,._ XS$ COIi �nfle

--

..... _. m.,110

.., ..

--·

'"''"

......

......

.. _ ..

......

�-1-+-t-+l•Jo

,_ ..

�-+-+-+-+Iv_.,

._ ..

blut_R
._ ..

..,,._ ..

111_R

- '----"v�---------�------------------

F I GU RE 8.8 ■ The top-lfvel video testbench, with input, microprocessor register, and configuration blocks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 218

....

8.2 An Image-processing Design Driver 193

o,t-.youn

Ceno,11

syno_NI---------'

Supt

·--

·--

lWJI

·-­

·--

·-- .. _ .. ._ ..

9plo

FIGURE 8.9 ■ The output section of the top-level testbench, with a lOG XAUI interface block.

description to be simulated with a software testbench to verify basic function­
ality before mapping the design to hardware. They also allow the designer to
assign the FPGA pin locations for the final configuration files.

The BEE Platform Studio (BPS) [S] provides additional 1/0 blocks that allow
the designer to select pin locations symbolically, choosing pins that are hardwired
to other FPGAs, LEDs, and external connections on the platform. The designer
is only required to select a platform by setting BPS block parameters, and does
not need to keep track of 1/0 pin locations. This feature allows the designer to
experiment with architectural tradeoffs without becoming a hardware expert.

In addition to the basic 1/0 abstractions, the BPS allows high-performance
or analog 1/0 devices to be designed into a system using high-level abstractions.
For the video-testing example, a 10 Gbit XAUI 1/0 block is used to output the
color video stream to platform-specific external interfaces. The designer selects
the port to be used on the actual platform from a pulldown menu of available
names, hiding most implementation details.

a111111 •

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 219

194 Chapter 8 ■ Programming Streaming FPGA Applications

A third category of platform-specific 1/0 enables communication with embed­
ded microprocessors, such as the Xilinx MicroBlaze soft processor core or the
embedded PowerPC available on several FPGAs. Rather than describe the details
of the microprocessor subsystem, the designer simply selects which processor
on a given platform will be used and a preconfigured platform-specific micro­
processor subsystem is then generated and included in the FPGA configuration
files. For the video filter example, three microprocessor registers are assigned and
connected to the threshold, gain, and overlap inputs to the filter using general­
purpose 1/0 (GPIO) blocks. When the BPS design flow is run, these CPU register
blocks are mapped to GPIO registers on the selected platform, and C header files
are created to define the memory addresses for the registers:

8.3 SPECIFYING CONTROL IN SIMULINK

On the one hand, Simulink is well suited to describing highly pipelined stream­
based systems with minimal control overhead, such as the video with synchro­
nization signals described in the earlier video filter example. These designs
assume that each dataflow operator is essentially running in parallel, at the full
clock rate. On the other hand, control tasks, such as state machines, tend to
be inherently sequential and can be more challenging to describe efficiently in
Simulink. Approaches to describing control include:

■ Counters, registers, and logic to describe controllers
■ Matlab M-code descriptions of control blocks
■ VHDL or Verilog hand-coded or compiled descriptions
■ Embedded microprocessors

To explore the design of control along with a stream-based datapath, consider
the implementation of a synchronous delay line based on a single-port memory.
The approach described here is to alternate between writing two data samples
and reading two data samples on consecutive clock cycles. A simpler design could
be implemented using dual-port memory on an FPGA, but the one we are using
allows custom SOC designs to use higher-density single-port memory blocks.

8.3.1 Explicit Controller Design with Simulink Blocks

The complete synchronous delay line is shown in Figure 8.10. The control in
this case is designed around a counter block, where the least significant bit
selects between the two words read or written from the memory on a given
cycle and the upper counter bits determine the memory address. In addition to
the counter, control-related blocks include slice blocks to select bit fields and
Boolean logic blocks. For this design, the block diagram is effective for describ­
ing control, but minor changes to the controller can require substantial redesign.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 220

8.3 Specifying Control in Simulink

Fie _Ec:lt _Ylow s..Jabon - Tods Help

DI�". I ��Ii!! l !2 �� I ► • � IN01mal 31 gJ �@)�I::! i .. Iii IE it�

out_en

FIGURE 8.10 ■ A simple datapath with associated explicit control.

8.3.2 Controller Design Using the Matlab M Language

195

For a more symbolic description of the synchronous delay line controller, the
designer can use the Matlab "M" language to define the behavior of a block, with
the same controller described previously written as a Matlab function. Consider
the code in Listing 8.1 that is saved in the file sram_delay_cntl .m.

Listing 8.1 ■ The delay line controller described with the Matlab function sram_delay _cnt 1. m.

function [addr, we, sell= sram_delay_cntl(rst, en, counter_bits, counter_max)
% sram_delay_cntl -- MCode implementation block.
% Author: Brian Richards, 11/16/2005, U. C. Berkeley
%
% The following Function Parameter Bindings should be declared in
% the MCode block Parameters (sample integer values are given):
% { 'counter_bits', 9, 'counter_max', 5}

% Define all registers as persistent variables.
persistent count,

count= xl_state(0, {xlUnsigned, counter_bits, 0});
persistent addr_reg,

addr_reg = xl_state(0, {xlUnsigned, counter_bits-1, 0});
persistent we_reg, we_reg = xl_state(0, {xlBoolean));
persistent sel_reg_l, sel_reg_l = xl_state(0, {xlBoolean});
persistent sel_reg_2, sel_reg_2 = xl_state(0, {xlBoolean});

% Delay the counter output, and split the lsb from
% the upper bi ts.

~ u,un_delay/s_delcay .. r X

......

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 221

196 Chapter 8 • Programming Streaming FPGA Applications

addr = addr_reg;
addr_reg = xl_slice(count, counter_bits-1, l);
count_lsb = xfix({xlBoolean), xl_slice(count, 0, O));

% Write-enable logic
we = we_reg;
we_reg = count_lsb & en;

% MSB-LSB select logic
sel = sel_reg_2;
sel_reg_2 = sel_reg_l;
sel_reg_l = ~count_lsb & en;

% Update the address counter:
if (rst I (en & (count == counter_max)))

count = O;
elseif (en)

count = count+ 1;
else

count = count;
end

To add the preceding controller to a design, the Xilinx M-code block can be
dragged from the Simulink library browser and added to the subsystem. A dia­
log box then asks the designer to select the file containing the M source code,
and the block sram_delay_cntl is automatically created and added to the
system (see Figure 8.11).

P. Sfdnl dclay/s dclrty1 • 'c Ix
Elie �cit :tlew :ii)!- f!!'mot Iool!; t!O\?

D � Iii IIH ,!(, ·!,) ft :::1 C! I ► ■ !so. jNCll!Mi .:.JI� !:!:i � e) lt:J I .. la JJa '\}'@

MCod•

out_en

FIGURE 8.11 ■ A simple datapath using a controller described in Matlab code.

,ioo,,,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 222

8.3 Specifying Control in Simulink 197

There are several advantages to using the M-code description compared to its
explicit block diagram equivalent. First, large, complex state machines can be
described and documented efficiently using the sequential M language. Second,
the resulting design will typically run faster in Simulink because many fine­
grained blocks are replaced by a single block. Third, the design is mapped to an
FPGA by generating an equivalent VHDL RTL description and synthesizing the
resulting controller; the synthesis tools can produce different results depending
on power, area, and speed constraints, and can optimize for different FPGA
families.

8.3.3 Controller Design Using VHDL or Verilog

As in the M language approach just described, a controller can also be described
with a black box containing VHDL or Verilog source code. This approach can be
used for both control and datapath subsystems and has the benefit of allowing
IP to be included in a Simulink design.

The VHDL or Verilog subsystems must be written according to design con­
ventions to ensure that the subsystem can be mapped to hardware. Clocks and
enables, for example, do not appear on the generated Simulink block, but must
be defined in pairs (e.g., clk_sg, ce_sg) for each implied data rate in the
system. Simulink designs that use these VHDL or Verilog subsystems can be
verified by cosimulation between Simulink and an external HDL simulator, such
as Modelsim [6]. Ultimately, the same description can be mapped to hardware,
assuming that the hardware description is synthesizable.

8.3.4 Controller Design Using Embedded Microprocessors

The most elaborate controller for an FPGA is the embedded microprocessor. In
this case, control can be defined by running compiled or interpreted programs
on the microprocessor. On the BEE2 platform, a tiny shell can be used interac­
tively to control datapath settings, or a custom C-based program can be built
using automatically generated header files to symbolically reference hardware
devices.

A controller implemented using an embedded microprocessor is often much
slower than the associated datapath hardware, perhaps taking several clock
cycles to change control parameters. This is useful for adjusting parameters that
do not change frequently, such as threshold, gain, and overlay in the Sobel filter.
The BEE Platform Studio design flow uses the Xilinx Embedded Development
Kit (EDK) to generate a controller running a command line shell, which allows
the user to read and modify configuration registers and memory blocks within
the FPGA design. Depending on the platform, this controller can be accessed
via a serial port, a network connection, or another interface port.

The same embedded controller can also serve as a source or sink for low­
bandwidth datastreams. An example of a user-friendly interface to such a source
or sink is a set of Linux 4.2 kernel extensions developed as part of the BEE
operating system, BORPH [7]. BORPH defines the notion of a hardware pro­
cess, where a bit file and associated interface information is encapsulated in an

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 223

198 Chapter 8 ■ Programming Streaming FPGA Applications

executable . bof file. When launched from the Linux command line, a software
process is started that programs and then communicates with the embedded
processor on a selected FPGA. To the end user, hardware sources and sinks in
Simulink are mapped to Linux files or pipes, including standard input and stan­
dard output. These file interfaces can then be accessed as software streams to
read from or write to a stream-based FPGA design for debugging purposes or
for applications with low-bandwidth continuous datastreams.

8.4 COMPONENT REUSE: LIBRARIES OF SIMPLE AND COMPLEX

SUBSYSTEMS

In the previous sections, low-level primitives were described for implementing
simple datapath and control subsystems and mapping them to FPGAs. To make
this methodology attractive to the algorithm developer and system architect, all
of these capabilities are combined to create reusable library components, which
can be parameterized for a variety of applications; many of them have been
tested in a variety of applications.

8.4.1 Signal-processing Primitives

One example of a rich library developed for the BPS is the Astronomy library,
which was codeveloped by UC Berkeley and the Space Sciences Laboratory [8,9]
for use in a variety of high-performance radio astronomy applications. In its sim­
plest form, this library comprises a variety of complex-valued operators based on
Xilinx System Generator real-valued primitives. These blocks are implemented
as Simulink subsystems with optional parameters defining latency or data type
constraints.

8.4.2 Tiled Subsystems

To enable the development of more sophisticated library components, Simulink
supports the use of Matlab M language programs to create or modify the
schematic within a subsystem based on parameters passed to the block. With
the Simulink Mask Editor, initialization code can be added to a subsystem to
place other Simulink blocks and to add interconnect to define a broad range of
implementations for a single library component.

Figure 8.12 illustrates an example of a tiled cell, the biplex_core FFT block,
which accepts several implementation parameters. The first parameters define
the size and precision of the FFT operator, followed by the quantization behavior
(truncation or rounding) and the overflow behavior of adders (saturation or
wrapping). The pipeline latencies of addition and multiplication operators are
also user selectable within the subsystem.

Automatically tiled library components can conditionally use different sub­
systems, and can have multiple tiling dimensions. An alternative to the stream­
based biplex_core block shown in Figure 8.13, a parallel FFT implementation,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 224

8.4 Component Reuse: Libraries of Simple and Complex Subsystems 199

! - unld Id. - r 'x

Cit Cdt !low � l'IJ1!l,llt toalt tl!oo\>
D �liil-1Jllaft1!2"'.!I ►

□ _

r--

(a)

• •1, 1,f1, t1un lflor k ',•r,trttC �r.,_ t1 pl�,: 1 ore ')(

p­
S.QIFFl':\Z)li"MI
:r

18

�8 T­
°""""'911w,p�IW..�-----------�
Mli...,,
,1--

c:: __________ :::J

(b)

FIGURE 8.12 ■ The biplex_core dual-channel FFT block (a), with the parameter dialog box (b).

11111 � JIM � f1Jlllll I/111111 -
0 Qi Iii • I ½ • !.. . ..: ► • jio:o !Hllilllll 3 ts i.ti IJI • .. " II Ill -J'

11111 �- � � f1Jlllll I/111111 -
o �Iii• " " � .! ► • po:o ,H...... 3-m - m • _,. "r1 ■ -:l'

FIGURE 8.13 ■ Two versions of the model schematic for the biplex_core library component, with the size

of the FFT set to 6 (26) and 4 (24). The schematic changes dynamically as the parameter is adjusted.

--
..

-

P un11Hcd/bspknc _r.e>rC' • - -)<

- -

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 225

200 Chapter 8 ■ Programming Streaming FPGA Applications

is also available, where the number of I/0 ports changes with the FFT size
parameter. An 8-input, 8-output version is illustrated in Figure 8.14. The paral­
lel FFT tiles butterfly subsystems in two dimensions and includes parameterized
pipeline registers so that the designer can explore speed versus pipeline latency
tradeoffs.

In addition to the FFT, other commonly used high-level components include
a poly-phase filter bank (PFB), data delay and reordering blocks, adder_: trees,
correlator functions, and FIR filter implementations. Combining these platform­
independent subsystems with the BPS 1/0 and processor interface library
described in Section 8.2.3, an algorithm designer can take an active roll in the
architectural development of high-performance stream-based signal-processing
applications.

P J 11lc porlu:- SflCl -�.)Lli •. n1r/ m· "..:nlFft d,rr•, • f ... ,_ "-x

..,,

FIGURE 8.14 ■ An automatically generated 8-channel parallel FFT from the fft_direct library component.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 226

8.5 SUMMARY

8.5 Summary 201

This chapter described the use of Simulink as a common design framework
for both algorithm and architecture development, with an automated path to
program FPGA platforms. This capability, combined with a rich library of high­
performance parameterized stream-based DSP components, allows new appli­
cations to be developed and tested quickly.

The real-time Sobel video edge detection described in this chapter runs on
the BEE2 platform, shown in Figure 8.15, which has a dedicated LCD monitor

(a)

(b) (c)

FIGURE 8.15 ■ (a) The Sobel edge detection filter running on the BEE2, showing the BEE2 console and

video output on two LCD displays, with (b, c) two examples of edge detection results based on interactive

user configuration from the console.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 227

202 Chapter 8 ■ Programming Streaming FPGA Applications

connected to it. Two filtered video samples are shown, with edges displayed with
and without the original source color video image.

For more information on the BPS and related software, visit http://bee2.
eecs.berkeley.edu, and for examples of high-performance stream-based library
components, see the Casper Project [9].

Acknowledgments This work was funded in part by C2S2, the MARCO Focus
Center for Circuit and System Solutions, under MARCO contract 2003-CT-
888, and by Berkeley Wireless Research Center (BWRC) member companies
(bwrc.eecs.berkeley.edu). The BEE Platform Studio development was done jointly
with the Casper group at the Space Sciences Laboratory (ssl.berkeley.edulcasper).

References

[1] http://www.mathworks.com.
[2] http://www.xilinx.com.
[3] http://www.synplicity.com.
[4] C. Chang, J. Wawrzynek, R. W. Brodersen. BEE2: A high-end reconfigurable com­

puting system. IEEE Design and Test of Computers 22(2), March/April 2005.
[5] C. Chang. Design and Applications of a Reconfigurable Computing System for High

Performance Digital Signal Processing, Ph.D. thesis, University of California, Berkeley,
2005.

[6] http://www.mentor.com.
[7] K. Camera, H. K.-H. So, R. W. Brodersen. An integrated debugging environment

for reprogrammble hardware systems. Sixth International Symposium on Automated
and Analysis-Driven Debugging, September, 2005.

[8] A. Parsons et al. PetaOp/Second FPGA signal processing for SETI and radio astron­
omy. Asilomar Conference on Signals, Systems, and Computers, November 2006.

[9] http://casper. berkeley.edulpapers/asilomar -2006.pdf.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 228

CHAPTER 9

STREAM COMPUTATIONS ORGANIZED

FOR RECONFIGURABLE EXECUTION

Andre DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

Yury Markovskiy, Eylon Caspi, Michael Chu,
Randy Huang, Stylianos Perissakis, Laura Pozzi,
Joseph Yeh, John Wawrzynek
Department of Electrical Engineering and Computer Sciences
University of California-Berkeley

SCORE is a programming model for reconfigurable computing designed for
application longevity and scalability, based on a streaming dataflow compute
model (Section 5.1.3) and employing several system architectures (Section 5.2)
to support scalability. The compute model allows us to abstract away hardware
details such as platform capacity (e.g., number of lookup tables [LUTs]) and the
detailed cycle-by-cycle timing of hardware implementation. This allows a single
application description to automatically run faster on larger hardware or to fit
onto smaller hardware. The abstraction of platform size and clock cycle timing
makes SCORE a higher-level programming model than RTL-level descriptions
such as VHDL (Chapter 6). The streaming dataflow model allows high concur­
rency and natural task descriptions for a large class of streaming applications,
including signal and image processing.

Figure 9.1 shows one of the key scaling forms enabled. We capture the
computation as a streaming dataflow graph of persistent operators (Section 5 .1.2)
abstracted from a particular platform (Figure 9.l(a)). On small hardware
platforms, we use a phased reconfiguration manager (Phased reconfiguration
manager subsection of Section 5.2.2) to implement the task as a sequence of
configurations on the available hardware (Figure 9.l(b)). For larger platforms,
more operators can be placed spatially, exploiting greater concurrency to reduce
runtime (Figure 9.l(c)).

To achieve scalability, Stream Computations Organized for Reconfigurable
Execution (SCORE) allows and encourages the programmer to ignore the hard­
ware capacity of a particular platform and focus on capturing the fully spatial,
streaming dataflow graph. A combination of the compiler and the runtime system
must decompose and schedule the application onto a variety of hardware capaci­
ties. To support late-bound, runtime adaptation to various hardware platforms,
the SCORE runtime employs a paged reconfiguration discipline (Section 9.2.4).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 229

204 Chapter 9 ■ Stream Computations Organized for Reconfigurable Execution

Motion

estimation
Transfonn

(a)

(b)

(c)

Quantize Code

FIGURE 9.1 ■ Score application and sequential versus fully spatial execution: {a) a video
compression task, (b) a capacity-limited sequential implementation, and (c) a fully spatial
implementation on SCORE hardware.

In implementing this model, we must

■ Provide concrete programming language instantiations for describing
SCORE applications (Section 9.1).

■ Select and employ suitable system architectures to implement the
application and support area-time trade-offs for scalability (Section 9.2).

■ Compile between the programming language description of the
application and the runtime system architectures (Section 9.3).

■ Provide runtime support for the tasks that must be performed during
execution (Section 9.4).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 230

9 .1 Programming 205

The SCORE programming model demonstrates how compute model and
system architectures come together to efficiently support a class of streaming
applications.

9.1 PROGRAMMING

The specific compute model SCORE supports is Dynamic Streaming Dataflow
with Allocation but without peeks (Dynamic streaming dataflow and Streaming
dataflow with allocation subsections of Section 5.1.3), making it fully determin­
istic. Programs are composed by linking together operators (functions or objects,
Section 5.1.2) and memory segments with first-in-first-out (FIFO) stream links
(Section 5.1.3). Operators themselves can be described by their behavior or com­
posed structurally as a graph.

Any number of languages that obey s!reaming dataflow semantics can be
defined to program SCORE computations. The key requirements are to capture
operators with appropriate dataflow input/output (1/0) interfaces and to allow
operator compositions.

SCORE can be programmed with conventional programming languages
(e.g., C++, Java) by defining stylized language subsets and library support to
describe and compose SCORE operators. In Section 9.1.2, we show.how to use
C++ for dynamic composition.

In a multi-threaded language, such as Java or C++, with an appropriate thread
package, a SCORE operator would be an independent thread that communi­
cates with the rest of the program only through single-reader, single-writer
1/0 streams. Specifically, SCORE does not have a global, shared memory abstrac­
tion among operators (Single Memory Pool, Section 5.1.4). An operator may own

a chunk of the address space (a memory segment) during operation and return
it after it has completed, but no two operators may own a piece of memory
simultaneously.

Alternately, SCORE programming could use a modem system-level design lan­
guage, such as System C [1], as long as the communication library provides suit­
able dataflow communication semantics. To focus on the necessary semantics
during SCORE development, we define an intermediate register transfer
level (RTL) language to describe SCORE operators and their composition
(Section 9 .1.1). We view this intermediate language, TDF, as a device-independent,
assembly language target on the way to platform-specific executable operators.

9.1.1 Task Description Format
Task Description Format (TDF) is basically an RTL-level operator description
with special syntax for handling input and output datastreams from the operator
[7, 22]. Common datapath operators can be described using a C-like syntax.
For example, Figure 9.2 shows how an FIR computation might be implemented
in TDF. Operators may have parameters whose values are bound at operator
instantiation time; parameters are identified with the keyword param. In the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 231

206 Chapter 9 ■ Stream Computations Organized for Reconfigurable Execution

fir4(param signed[SJ wO, param signed[SJ wl,
param signed[S] w2, param signed[S] w3,
I I param' s bound at instantiation time
input unsigned[S] x,
output unsigned[20] y)

state only (x): // "fire" when x present
{

I I assignment to output y denotes a stream write
y = wO*x + wl*x@l + w2*x@2 + w3*x@3;
I I x@n notation picks out nth previous value for
// x on input stream.
// (this notation is patterned after Silage [2])
goto only; / / loop in this state

FIGURE 9.2 ■ A TDF specification of 4-TAP FIR (a static rate operator).

FIR example, the coefficient weights are parameters; these are specified when
the operator is created, and the values persist as long as the operator is used.
The FIR reads from a single input stream (x) and produces a single output
stream (y) ; the assignment to y denotes the stream write. The behavior of the
state is gated on the arrival of the next x input value, producing a new y output
for each such input.

To allow dynamic-rate dataflow (Dynamic streaming dataflow subsection of
Section 5.1.3), the basic form of a behavioral TDF operator is that of a finite­
state machine (FSM) (Finite State, Section 5.1.4), in which each state specifies
the inputs that must be present before it can fire. Once the inputs arrive, the
operator consumes them, and the FSM may choose to change states based on
the input data consumed. A simple merge operator is shown in Figure 9.3 to
demonstrate how the state machine can also be used to allow data-dependent
consumption of input values. (Note: This version has been simplified for illus­
tration; it does not properly handle the end-of-stream condition.) Output value
production can be conditioned as illustrated in the uniq example shown in
Figure 9.4. Together, data-dependent input consumption and output production
allow the user to specify arbitrary, deterministic, dynamic-rate operators.

Of course, the FSM gives the user the semantic power to describe heavily
sequential and complex, control-oriented operators. Nonetheless, the program­
mer should avoid sequentialization and complex control when possible, as
operators with many states are less likely to use spatial computing resources effi­
ciently. Larger operators can be composed structurally from smaller operators in
a straightforward manner, as shown in Figure 9.5.

9.1.2 C++ Integration and Composition

With a suitable stream implementation and interface code, SCORE operators can
be instantiated by and used with a conventional, multi-threaded programming

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 232

signed[w] merge(param unsigned(6] w,

9 .1 Programming 207

I I can use parameters to define data width
input signed[w] a,
input signed[w] b)

signed [w] tmpA; I I define local state inside the operator
signed [w] tmpB;
I I states used here to show dynamic data consumption
state start (a, b) : I I requires inputs on both a and b to be

I I available in order to evaluate

I I assignments to local variables have C-like semantics

tmpA=a; tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA;
else { merge=tmpB;

goto replaceB; }
I I note: assignment to function name signifies a write to the
II output stream which is returned from operator instantiation

state replaceA (a) : I I requires availability of only input a
{

tmpA=a;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA;
else { merge=tmpB;goto replaceB;

state replaceB (b) : I I requires availability of only input b
{

tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA;
else { merge=tmpB; goto replaceB;

FIGURE 9.3 ■ A TDF specification of merge operator (a dynamic input rate operator).

language. Figure 9.6 shows an example C++ program that uses the merge and
uniq operators defined in Figures 9.3 and 9.4. Note that SCORE operator ins­
tantiation and composition can be performed in C++ code. Once created, the oper­
ators behave as independently running threads, operating in parallel with the
main C++ execution thread. In general, a SCORE operator will run until its input
streams are closed or its output streams are released (i.e., the stream is deallocated
with a free-like operation).

After primitive behavioral (or leaf) operators have been defined (e.g., in TDF
or some other suitable form) and compiled into their hardware-level implemen­
tation, large programs can be composed entirely in a conventional programming
language as just described and illustrated in Figure 9.6. If one thinks of TDF as a
portable assembly language for critical computational building blocks, then this
language binding allows a high-level language to compose these building blocks

I
I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 233

208 Chapter 9 ■ Stream Computations Organized for Reconfigurable Execution

/ / uniq behaves like the unix command of the same name;
// it filters an input stream, removing any adjacent, duplicate
/ / entries before passing them on to the output stream.
signed[w] uniq(param unsigned[6] �,

input signed[w] x)

signed[w] lastx;
state start (x) :

{ lastx=x; uniq=x; goto loop;)
state loop (x) :

{

)

if (x= !lastx)
{ lastx=x; uniq=x;

goto loop;

FIGURE 9.4 ■ A TDF specification of uniq operator (a dynamic output rate operator).

merge3uniq(param unsigned[6] n,
input signed[n] a,
input signed[n] b,
input signed[n] c,
output signed[n] o)

signed [n] t;
t=merge(n,merge(n,a,b),c);
o=uniq(n,t);

� �
�

mer
_
ge �

._______, c--------�--
-

merge

FIGURE 9.5 ■ The TDF compositional operator.

t
•

....
I __ u_n_i_q

_ _.
� o

in much the same way that assembly language kernels are composed using high­
level languages in order to efficiently program early DSPs and supercomputers.
The instantiation parameters for TDF operators allow the definition of generic
operators that can be highly customized to the needs of the application.

9.2 SYSTEM ARCHITECTURE AND EXECUTION PATTERNS

To support the SCORE programming model efficiently, implementations are
based on several system architectures and execution design patterns (e.g.,
DeHon et al. [3]). In this section, we highlight how these architectures are used
and introduce additional execution patterns.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 234

9.2 System Architecture and Execution Patterns

��=1�mer
_

ge �-�

i2 --------�---_____::ge
t2

·I L _
uniq lo

#include "Score.h"
#include "merge.h"
#include "uniq.h"
int main()
{

char data0 []
char datal [l

3,5,7,7,9);
2, 2, 6, 8, 10);

char data2 [] 4, 7, 7, 10, 11);
// declare streams
SIGNED_SCORE_STREAM i0,il,i2,tl,t2,o;
// create 8-bit wide input streams
i0=NEW_SIGN�D_SCORE_STREAM(8);
il=NEW_SIGNED_SCORE_STREAM(8);
i2=NEW_SIGNED_SCORE_STREAM(8);
// instantiate operators
/ / note: instantiation passes parameters and streams to the operators
tl=merge(8,i0,il);
t2=merge(8,tl,i2);
o=uniq(8,t2);
// alternately, we could use: new merge3uniq (8,i0,il,i2,o);
/ / write data into streams
// (for demonstration purposes;
/ / real streams would be much longer and not come from main)
for (int i = 0; i < 5; i++) i

STREAM_WRITE(i0, data0[i]);
STREAM_WRITE(il, datal[i]);
STREAM_WRITE(i2, data2[i]);

STREAM_CLOSE(i0); // close input streams
STREAM_CLOSE(il);
STREAM_CLOSE(i2);
// output results (for demonstration purposes only)
for (int cnt=0; !STREAM_EOS(o); cnt++) {

cout << "result["<< cnt << "]=" <<
STREAM_READ (o) << endl;

STREAM_FREE(o);
return(0);

FIGURE 9.6 ■ An example of instantiation and usage in C++.

9.2.1 Stream Support

209

SCORE heavily leverages the stream abstraction (Chapter 5, Section 5.1.3) for
communication between operators. The streamed data can be assigned to a
buffer if the producer and consumer are not coresident (see Figure 9.l(b));

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 235

210 Chapter 9 ■ Stream Computations Organized for Reconfigurable Execution

if they are coresident, the data can be assigned to physical networking (see
Figure 9.l(c)). Further, any number of mechanisms (e.g., shared bus, packet­
switched network, time-multiplexed network, configured links) can implement
the stream based on data rate, predictability, and platform capabilities. Once
data communication is organized as a stream, the platform knows which data
to prefetch and how to package it to or from memory.

When a SCORE implementation physically implements streams as wires
between dynamic-rate operators, data presence (Data presence subsection of
Section 5.2.1) tags allow us to abstract out dynamic data rates or delays. While
data presence allows producers to signal consumers that data are not ready, it is
often useful to signal the opposite direction as well; consequently, we also imple­
ment a back-pressure signal, which allows the consumer to inform the producer
that it is not ready to consume additional inputs. We can further place queues
between the producer and the consumer to decouple their cycle-by-cycle firing.

When the consumer is not ready, produced values accumulate in the queue,
allowing the producer to continue operation; if there are stored values in the
queue, the consumer can continue to operate while the producer is stalled as
well. Queues are of finite size, so a full queue also uses back-pressure to stall
an attached producer. In dynamic data rate operations where queue size can­
not be bounded (Dynamic streaming dataflow subsection of Section 5.1.3), the
hardware signals the OS when queues fill, and the OS may need to allocate
additional queue capacity at runtime to prevent deadlock [4].

9.2.2 Phased Reconfiguration

When the operator graph is too large for the platform, it is necessary to share the
physical hardware in time (see Figures 9.l(b) and 9.7). For a reconfigurable plat­
form, this can be done by changing the configuration overtime, to implement the

FIGURE 9.7 ■ Partitioning of a JPEG image encoder to match platform capacity.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 236

9.2 System Architecture and Execution Patterns 211

graph in pieces (Phased reconfiguration manager subsection of Section 5.2.2).
Reconfiguration, however, can be an expensive operation requiring many cycles.
To minimize its overhead cost, we want to run each operator for many cycles
between reconfigurations. In particular, if we can ensure that each operation
runs for a large number of cycles compared to the reconfiguration time, then
we can make the overhead for reconfiguration small (Trun-before-reconfig >>
Tconfig). Streaming data with large queues helps us achieve this. We can queue
up a large number of data items that will keep the operator busy. We then recon­
figure the operator, compute on the queued data, and, if the consumer is not
coresident, queue up the results (Figure 9.l(b)). When the input queue is empty
or the output queue is full, we reconfigure to the next set of operators.

9.2.3 Sequential versus Parallel

When the platform contains both processors and reconfigurable logic, it is pos­
sible to assign some operators to the processor(s) (Processor subsection of
Section 5.2.2) and some to the reconfigurable fabric. We can compile SCORE
operators either to processor instructions or to reconfigurable configurations,
and we can even save both implementations as part of the program executable.
At load time or runtime, low-throughput operators can be assigned to the
sequential processor(s), while high-throughput logic can be assigned to the
reconfigurable fabric. As the size of the reconfigurable fabric grows, more oper­
ators can be implemented spatially on it.

Phased reconfiguration can be ineffective when mutually dependent cycles
are large compared to the size of the platform. Processors are designed to time­
multiplex their hardware at a fine granularity; thus, one way to fit large operator
cycles onto the platform is to push lower throughput operators onto the proces­
sor until the cycle is contained.

We interface the processor to the reconfigurable array using a streaming copro­
cessor arrangement (Streaming Coprocessors, Section 5.2.1). The processor can
write data into stream FIFOs to go to the reconfigurable array coprocessor, and
it reads data back from them. This decouples the cycle-by-cycle operation of
the reconfigurable array from the processor, abstracting the relative timing of
the two units. In the case where the reconfigurable array can be occupied (e.g.,
allocated to another operator or task), this reduces coresidence requirements
between operators on the array and processor. As a result, the options for the
array size to vary among platform implementations increase.

9.2.4 Fixed-size and Standard VO Page

To allow the platform size to vary with the implementation platform, it is nec­
essary to perform placement at load time or runtime based on the amount of
physical hardware and the time-multiplexed schedule. If we had to place every­
thing at the LUT level, we would have a very large placement problem. Further,
if we allowed partial reconfiguration in order to efficiently support the fact that
different operators may need to be resident for different amounts of time, we

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 237

212 Chapter 9 ■ Stream Computations Organized for Reconfigurable Execution

would have a fragmentation and bin-packing problem [SJ, as different operators
take up different space and have different footprints. We can simplify the run­
time problem by using a discipline of fixed-size pages that have a standard
1/0 interface.

First, we decide on a particular page size (e.g., 512 4-LUTs) for the archi­
tecture. At compile time, we organize operators into standard page-size blocks
so that we can perform the intrapage placement and routing offline at compile
time. At runtime, we simply place pages and perform interpage routing. The run­
time placement problem is simplified because all pages are identically sized and
interchangeable. Furthermore, because pages are typically 100 to 1000 4-LUTs,
the runtime placement problem is two to three orders of magnitude smaller than
LUT-level placement. Unfortunately, fixed-size pages may incur internal frag­
mentation, leaving some resources in each page unused. Brebner's SLU is an
early example of this pattern [6].

Note that this is the same basic approach used in virtual memory, where we
do not manage every bit or even every word independently, but instead gather a
fixed number of words into a page and manage (e.g., map and swap) them as a
group. In both cases, this reduces the overhead associated with page mapping
considerably.

9.3 COMPILATION

We have developed a complete compilation flow from TDF to conventional
FPGAs using Verilog (an HDL similar to VHDL-see Chapter 6) as an inter­
mediate form (Figure 9.8) [7]. The TDF compiler, tdfc, automatically generates
RTL Verilog to efficiently implement the streaming constructs of the TDF lan­
guage, including flow control checking, stream buffering in queues, and stream
pipelining. The TDF compiler also maps between abstract operators of arbitrary
size and the fixed-size pages supported at runtime by the system architecture.

Application

TDF ---•

Verilog ---·

EDIF
(Unplaced LUTs)

Device
configuration

Synplify

Bits

{

• Source-level optimizations
• Page partitioning
• Queue sizing
• Stream pipelining
• Generate flow control, streams, queues

{ • Behavioral synthesis
• Retiming

{ • Slice packing
• Place and route

FIGURE 9.8 ■ TDF compilation flow targeting an FPGA.

XilinxlSE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 238

9.4 Runtime 213

The compiler then emits a netlist of pages for compilation by a commercial
backend FPGA synthesis, place, and route flow.

Because SCORE streams abstract the number of clock cycles between opera­
tors, we can pipeline both the interconnect between operators and the operator
datapaths. To pipeline operators, the compiler adds registers to the input and
output streams and employs retiming (Chapter 18) to redistribute the registers
into the operator logic.

To accommodate the wide range of operator sizes that the programmer may
produce, the compiler must perform operator packing and splitting in order to
target any particular, fixed-size page. Our previous experience suggests that most
user-written leaf operators require fewer than 512 4-LUTs, which means that
page packing will be adequate to reshape most applications. Many large oper­
ators are feedforward pipelines (e.g., DCT, IDCT), which can be easily decom­
posed using directional cuts in.the dataflow. For the general case, it is necessary
to decompose large state machines to fit them onto small pages. This could be
done by starting with individual states and clustering state logic and datapaths,
obeying the page area and 1/0 bound. To minimize delay, the goal is to group
states that typically execute together so as to minimize the frequency of state
transitions that cross the page boundary. Clustering techniques such as those
described by Li et al. [8] can be employed for this general clustering case.

9.4 RUNTIME

To support the late-bound task and platform mapping integral to SCORE's
power and scalability, we must perform scheduling, placement, and routing no
earlier than load time. In this section, we highlight how these tasks can all be
performed quickly at load time or runtime.

9.4.1 Scheduling

We support SCORE's virtualization model in the presence of late-bound plat­
form mapping with a load-time and runtime scheduler. We do not know the
capacity of the platform until load time; consequently, we cannot partition the
graph into sets of pages that fit on the platform before then. Further, because
operators have dynamic execution times and dynamic consumption and produc­
tion rates, the relative execution time of each operator cannot be known with
certainty until execution. To support SCORE efficiently, we must be able to:

■ Quickly partition the page graph into platform-feasible components
(within milliseconds).

■ Produce a high-quality schedule-that is, one that minimizes the time to
run the task (minimizes the make span).

■ Minimize the sequential handling required for managing reconfiguration
and advancing the schedule.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 239

214 Chapter 9 • Stream Computations Organized for Reconfigurable Execution

-

In the simplest cases, we partition the graph once, at load time, when the
program starts and never again. In this way, we amortize the cost of partition­
ing across the entire application runtime (Figure 9.9). If the application will
run for seconds, we can afford tens of milliseconds for this scheduling opera­
tion while keeping the overhead small. If we can decrease the scheduling time,
then it will be possible to run even shorter jobs efficiently. In more advanced
cases, the graph may change during execution, or the execution rates of oper­
ators may change in a data-dependent way. In such cases, it might be useful
to repartition and reschedule the graph during execution. The shorter we can
make the partitioning time, the more frequently we can afford to invoke the
partitioner without paying a large overhead.

We have developed a series of schedulers to address these issues [9-12]. Our
highest-quality scheduler (shown in Figure 9.10) is quasi-static and load-time
based [10], and operates in two phases: (1) load-time partitioning and (2) run­
time schedule advancement. At application load-time, the scheduler partitions
the page-level dataflow graph into platform-feasible subgraphs. This partition
can use feedback information on operator and stream activity rates based on
previous program runs. The load-time partitioning heuristic requires only a few
hundred thousand processor cycles (e.g., submillisecond time on gigahertz pro­
cessors) for graphs with up to one hundred operators [12].

Application
load time

Page execution

Run A

Runtime
scheduling

Run B RunC

Time

Reconfiguration

FIGURE 9.9 ■ An application execution timeline.

14

0012
Q)

� 10

Q) 8

E
.,

6

4
u
Q)
)(

2 UJ

"

•
'

3 4 5 6 7 8 9 10 11 12 13 14 15

Array size (pages)

-+- Dynamic, Static -■ · Qstatic

FIGURE 9.10 ■ JPEG decoder scaling: Total execution time is compared among fully dynamic, fully static,
and quasi-static schedulers.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 240

9.4 Runtime 215

The result is a schedule for the phased reconfiguration. During execution, the
runtime system advances the computed schedule by reconfiguring the array at
regular intervals (Phased reconfiguration manager subsection of Section 5.2.2).
The schedule computed at load time specifies a nominal period for each sched­
ule timeslice. Additionally, the system monitors execution to determine when
the current configuration can no longer make forward progress (e.g., all input
buffers are empty or all output buffers are full) and dynamically triggers early
phase termination and schedule advancement.

9.4.2 Placement

Using the fixed-size and standard 1/0 pages discipline (Section 9.2.4) we
immediately reduce the size of the placement task by two to three orders of
magnitude. Nonetheless, the placement task may still take too long when run
using conventional single-processor-based placers at reconfiguration time or even
load time. Fortunately, once we have a spatially parallel reconfigurable comput­
ing platform, we can use the platform itself to perform placement substantially
faster. In Wrighton and DeHon [13] and Wrighton [14], we show how to perform
simulated annealing spatially with reconfigurable logic; we can place a graph
with 1000 movable elements in roughly 1 million cycles. Even if we only ran the
placement engine at 100 MHz, this would mean that we could perform place­
ment in 10 ms. If each page held 512 4-LUTs, this would correspond to platforms
with half a million 4-LUTs.

The key idea for spatial simulated annealing is to build a placement engine
on top of the reconfigurable platform. If we make each page large enough,
then it can act as a cellular placement cell. As a placement cell, it holds a
candidate, logical page and negotiates exchanges with its nearest neighbors (i.e.,
cellular automata system architecture Section 5.2.5). A pair of adjacent pages
will swap logical pages if they estimate that the swap will produce a superior
placement (e.g., shorter wire lengths) or if the randomness in the simulated
annealing process suggests attempting the swap anyway. All pages can be paired
up and can negotiate swaps in parallel, allowing many moves per swap epoch.

By pairing up only neighbors, we can guarantee minimizing the intercon­
nect for this placement engine and keep the cycle times short. Because there
is one cellular placement cell for every page site on the device, the hardware
and parallelism in the placement engine scales exactly to the size of the place­
ment problem that needs to be solved. Wrighton and DeHon [13] estimate that
400 4-LUTs are adequate to implement a 100 MHz cellular placement cell on
Xilinx Virtex-11-generation hardware [15]; this suggests that SCORE platforms
with 512 LUT pages will be able to perform their own placement.

9.4.3 Routing

Once the pages have been placed, we must perform interpage routing. Again,
we can exploit the fact that we have a spatially parallel computing platform
to route tasks in 100,000 to 1 million cycles [16]. Here, we augment the inter­
page network with additional logic to allow it to identify all free paths between

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 241

216 Chapter 9 • Stream Computations Organized for Reconfigurable Execution

a source node and a sink node in parallel. This permits a flooding search
(e.g., Figure 9.11) to find a free path in the time it takes to propagate a sig­
nal across the network rather than the time it takes to perform a sequential
search on a large graph structure in memory. Consequently, each new path can
be added in tens of cycles rather than the tens of thousands of cycles required
by the best software routers.

Using randomization, rip-up, and multiple restarts, this approach can even
perform congestion negotiation and achieve comparable quality to PathFinder
[17] (Chapter 17), the state-of-the-art software-routing algorithm for FPGAs
[18, 19]. With word-wide (e.g., 16-bit) datapaths for the interpage network, the -
additional area overhead for this augmented network is less than 30 percent
when network routing channels are switch-area limited; the augmented network
adds only control wires, so it has almost no area overhead when network-routing
channels are wire dominated.

An alternate approach is to employ a packet-switched network for interpage
routing (see Marescaux et al. [20] and Kapre et al. [21]) to avoid the need to
compute and configure the network. Packet switches are generally much larger
and have higher latency than configured switches, but they may be able to han­
dle multirate and dynamic traffic more efficiently.

Figure 9 .11 shows the result of a path search for a route from node 4 to
node 2. Light thick lines show preexisting routes; dark thick lines show the free
paths explored between source and sink. At the crossover switchbox (labeled
"XXX"), only a single switch is found by both source- and sink-initiated searches.

XXX

FIGURE 9.11 ■ A spatially parallel path search.

0
5. S"

•

I
01X 11X - -.

m m tr:o~ m ~

oxx II s~~ 1XX

-

' . . .
o:toll~ oox ~ ~

-
10X ~

~ 1 4 5
~ -- ~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 242

9.5 HIGHLIGHTS

9.5 Highlights 217

SCORE compilation has automatically mapped image-processing applications
(e.g., wavelet, JPEG, MPEG) to streamed implementations that exceed 100 MHz
sample throughput on a Virtex-11 Pro XC2VP70-7 [12]. In comparable technol­
ogy, a 4-page SCORE design outperforms a Pentium-3 (500 MHz) by 10 times on
JPEG compression. Mapped design performance scales to deliver larger speedup
with additional pages (see Figure 9.10).

For further details on SCORE, see DeHon et al. [12] and Caspi et al. [22].

References

[1] Open System C Initiative. System C 2.1 Language Reference Manual, May 2005
(http://www.systemc.org).

[2] D. Genin, J. Rabaey, P. Hilfinger, C. Scheers, H. DeMan. DSP specification using
the SILAGE language. Proceedings of the IEEE ICASSP Conference, April 1990.

[3] A. DeHon, J. Adams, M. deLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier,
M. Wrighton. Design patterns for reconfigurable computing. Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, April 2004.

[4] T. M. Parks. Bounded Scheduling of Process Networks, UCB/ERL95-105, University
of California, Berkeley, 1995.

[5] K. Bazargan, R. Kastner, M. Sarrafzadeh. Fast template placement for reconfig­
urable computing systems. IEEE Design and Test of Computers 17(1), January­
March 2000.

[6] G. Brebner. The swapable logic unit: A paradigm for virtual hardware. Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines, April 1997.

[7] E. Caspi. Design Automation for Streaming Systems, Ph.D. thesis, University of
California, Berkeley, 2005.

[8] Z. Li, K. Compton, S. Hauck. Configuration caching techniques for FPGAs. Proceed­
ings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2000.

[9] M. Chu. Dynamic Runtime Scheduler Support for SCORE, Master's thesis, University
of California, Berkeley, December 2000.

[10] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Anal­
ysis of quasi-static scheduling techniques in a virtualized reconfigurable machine.
Proceedings of the International Symposium on Field-Programmable Gate Arrays,
February 2002.

[11] Y. Markovskiy. Quasi-Static Scheduling for SCORE, Master's thesis, University of
California, Berkeley, December 2004.

[12] A. DeHon, Y. Markovskiy, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi,
J. Yeh, J. Wawrzynek. Stream computations organized for reconfigurable execution.
Journal of Microprocessors and Microsystems 30(6), September 2006.

[13] M. Wrighton, A. DeHon. Hardware-assisted simulated annealing with application
for fast FPGA placement. Proceedings of the International Symposium on Field­
Programmable Gate Arrays, February 2003.

[14] M. Wrighton. A Spatial Approach to FPGA Cell Placement by Simulated Annealing,
Master's thesis, California Institute of Technology, June 2003.

[15] Xilinx, Inc. Xilinx Virtex-ll l.SV Platform FPGAs Data Sheet, San Jose, July 2002.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 243

218 Chapter 9 • Stream Computations Organized for Reconfigurable Execution

[16] A. DeHon, R. Huang, J. Wawrzynek. Hardware-assisted fast routing. Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, April
2002.

-

[17] L. McMurchie, C. Ebeling. Pathfinder: A negotiation-based performance-driven
router for FPGAs. Proceedings of the International Symposium on Field-Programmable
Gate A"ays, February 1995.

[18] R. Huang, J. Wawrzynek, A. DeHon. Stochastic, spatial routing for hypergraphs,
trees, and meshes. Proceedings of the International Symposium on Field-Programmable
Gate A"ays, February 2003.

[19] A. DeHon, R. Huang, J. Wawrzynek. Stochastic spatial routing for reconfigurable
networks. Journal of Microprocessors and Microsystems 30(6), September 2006.

[20] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. Bartie, W. Moffat, P. Avasare, P. Coene,
D. Verkest, S. Vernalde, R. Lauwereins. Run-time support for heterogeneous multi­
tasking on reconfigurable SOCs. INTEGRATION, The VLSI Journal 38(1), October
2004.

[21] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, A. DeHon. Packet-switched vs. time-multiplexed FPGA overlay net­
works. Proceedings of the IEEE Symposium on Field-Programmable Custom Com­
puting Machines, April 2006.

[22] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, A. DeHon. Stream
Computations Organized for Reconfigurable Execution (SCORE): Introduction and
tutorial (http://www.cs.berkeley.edu/projectslbrass/documents/score_tutorial.html); a
short version appears in FPL '2000 (Lecture Notes in Computer Science, 1896),
2000.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 244

PROGRAMMING DATA PARALLEL

FPGA APPLICATIONS USING

THE SIMDNECTOR MODEL

Maya B. Gokhale
Lawrence Livermore National Laboratory

CHAPTER 10

In the Single Instruction Multiple Data (SIMD) model, aggregate operations on
arrays and vectors can be mapped to arrays of function units. A single instruction
stream is dispatched from a control unit to the function units, which operate in
lockstep on the data sequences. Reconfigurable hardware is well suited to perform
SIMD (also called vector or data parallel) computation (see Section 5.1.5). Groups
of lookup tables (LUTs) can be configured as function units, and the data local to
each unit can be stored in distributed memories. This chapter explores parallel
processing on reconfigurable computers using the SIMD/vector model.

Reconfigurable computers can exploit parallelism at many different levels of
granularity, from coarse-grained parallel tasks to fine-grained instruction-level
parallelism. The massive amount of parallelism available in the reconfigurable
computer more than compensates for its slow clock rate-one-tenth the clock
rate of modem microprocessors. Raw spatial parallelism is plentiful in reconfig­
urable processors, especially those based on FPGAs. The challenge is to partition
and map the application onto the inherently parallel fabric of lookup tables,
DSP blocks, and memories. Parallel activities can be explicitly described and
scheduled by the programmer or hardware designer, or can be inferred through
analysis of the source code. SIMD/vector parallelism is very well suited to the
spatial parallelism of FPGAs and other coarse-grained arithmetic logic units
(ALU) arrays. In this programming model, aggregate data such as vectors and
matrices are processed in parallel on arrays of function units.

10.1 SIMD COMPUTING ON FPGAS: AN EXAMPLE

As an introduction to SIMD computing on FPGAs, Figure 10.1 shows an SIMD
array customized to perform two vector operations. A vector A is scaled by
a constant factor, and then the dot product A • B = r.ai x bi of vectors A and
B is performed. In this example, the number of SIMD processors is equal to
the size of the vectors. Each processor holds one element of A and one of B.

There is an additional storage location in each processor to hold the result of
the x operation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 245

220 Chapter 10 ■ Programming Data Parallel FPGA Applications

Processor Array

a a a a
b b b b

res res res res
•••

Multiply Multiply Multiply Multiply

Instruction
decode

•

Instruction
decode

•' ' ' '' '' '' ' ' '

Instruction Instruction
decode decode

• ' .

' '
, : , Instructions

1 1
1

1----------,-L----------,-J ______________________ T_,
' '

, , , , Reduction Network '
t ____________ t ____________ t,�---------------------�

FIGURE 10.1 ■ An SIMD dot-product machine.

i7r
: �

C
Instructions:

L!:.J�
1. a = c*a

Control unit
A = cA

r = A.B

2. res = a•b
3. r = reduce_add (res)

The control unit generates the instruction stream. An instruction can be
executed on the control unit itself, on each processor of the processor array,
or cooperatively on both. In this example, the control unit sends the constant c

as part of the first multiply instruction. The constant appears as an immediate
operand in the instruction to each processor. Next the control unit sends the
second multiply instruction to the processor array, and all processors perform
the operation res=a *b. The final instruction performs a reduction, a global com­
bining operation, in which each processor sends its instance of res into the
reduction network. Because the operation is a global sum, all the res instances
are summed and the result is stored in the control unit variable r. While the
example shows the control unit sending three separate instructions to the pro­
cessor array, on an FPGA it is very possible that the controller will send a single
instruction that results in a multi-cycle sequence of multiply operations followed
by the global sum.

In this idealized example, the number of processors exactly matches the size
of the vectors. In real applications, there are many different vectors of different
sizes. The vectors must be distributed to the processors in blocks, and each pro­
cessor must multiply subvectors of elements. If the number of processors doesn't
evenly divide the vector size, some processors must remain inactive when the
tail ends of the vectors are multiplied. Each processor must keep a subaccu­
mulation, and, when the entire vector has been processed, the global sum is
performed over the partial sums. When the processor array is on an FPGA, the
compiler must synthesize state machines (FSMD subsection of Section 5.2.2) to

' '
' :

[J

' ' ' ' ' ' ' ' ' ' ' '

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 246

10.2 SIMD Processing Architectures 221

control the sequence of operations and iterate over the blocks of data. Designing
algorithms for reconfigurable computers in the SIMD model in the face of these
real-world complicating factors will be addressed in Section 10.4.

10.2 SIMD PROCESSING ARCHITECTURES

SIMD/vector machines were among the first parallel processors to be designed.
From the days of the Iliac rv, with 64 processing elements (PEs) receiving
instructions from a control processor, this parallel-processing architecture has
gone through myriad incarnations. Notable among SIMD arrays are the Con­
nection Machine, which had thousands of simple PEs operating in synchrony
[1], as well as DAP and MasPar (late 1980s [2]). The Terasys Integrated Circuit
[3] and the Clearspeed SIMD array [4] both included an SIMD processing array
on a single integrated circuit.

Historically, supercomputers with dedicated floating-point function units used
for processing arrays and vectors were called vector supercomputers, while mas­
sively parallel, highly interconnected arrays of function units were referred to
as SIMD, or data parallel. More recently, as small arrays of function units have
been incorporated into the architecture of scalar processors, the terms SIMD,
vector, and data parallel have become interchangeable. This is especially apropos
to reconfigurable computers, in which arbitrary numbers and types of function
units may be used with many different kinds of interconnect patterns.

An SIMD processing array, illustrated in Figure 10.2, consists of a collec­
tion of identical processing elements operating in lockstep. The PEs all execute
exactly the same instruction, which is broadcast to them from a control unit, or
"sequencer," as indicated by the dotted lines in the figure. Each PE has a local
memory from which to fetch data operands and store results. On an SIMD array,
control flow instructions, such as branching, conditional branch, and subroutine
call, are executed on the control unit.

Data-dependent branching represents a particular challenge when different
instances of the data are resident in each PE's memory. -rrepending on the data
value, some PEs might evaluate the branch predicate to true and others to false.
Because they all must execute the same instruction at the same time, each PE
has a predicate mask flag (the Min the comer of each ALU) indicating whether
the PE should execute or ignore the current instruction.

The PE sets the predicate mask to the result of evaluating the predicate on
its data items, and then either executes subsequent instructions or is inactive.
The control unit can reset PEs to the active mode by issuing "unconditional"
instructions to them, directing them to ignore the predicate mask. The notion
of predicated instructions, which is essential to SIMD processing, is also used
in some microprocessor instruction sets [SJ, particularly in wide-word explicitly
parallel architectures.

In SIMD processing, PEs exchange data synchronously. The PE interconnec­
tion network may be arranged as a linear array, as in Figure 10.2, or as a
two-dimensional (or even three-dimensional) mesh or torus. In addition to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 247

222 Chapter 10 ■ Programming Data Parallel FPGA Applications

Interconnection Network

- II >-- ■ - ■ - II
I ALU !MI I ALU !MI I ALU !MI

� I Decode I I Decode I I Decode I e

: 1 : ! Instruction stream! : !
I •••••••••••••••••••••·•••••-t-·•·····••••••••·,•····••···•••••••••t••••···········••·••u•••

: Data items : j : Data items
-------------------� : r------------------

Control unit -
sequencer

FIGURE 10.2 ■ An SIMD processing array.

,-

nearest-neighbor communication (illustrated with solid lines in the figure), data
parallel arrays usually include global combining networks for global reduction
(sum, product, min, max, and logical) operations. The control unit can retrieve
data from the memory of individual PEs and can also receive the result of the
global combining operations (dashed lines in the figure).

A global combining network is illustrated in Figure 10.3, which shows a net­
work organized as a binary tree with a combining operator at each interior tree
node. Global combining networks can be used for any associative operation.
With parallel tree operations, an o (n) operation is reduced too (log (n)).

10.3 DATA PARALLEL LANGUAGES

High-level data parallel languages for SIMD machines were popularized in the
late 1980s with the emergence of the Connection Machines CM-1, CM-2, and
CM-5, and were adopted by other vendors. In the CM approach, a base language
such as Fortran or C was extended with new keywords, syntax, and seman­
tics. In the C* language, a data parallel extension to ANSI C, new data type
modifiers mono and poly were introduced. A mono variable resides in the con­
trol unit memory, while a poly variable occupies memory local to each PE,

[~~~□]
_,

CJ

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 248

10.4 Reconfigurable Computers for SIMD/Vector Processing 223

FIGURE 10.3 ■ A global sum network.

implicitly defining a vector or higher-dimension array. Operation on a mono

variable is performed on the control unit, while a poly expression is evaluated
independently on each PE.

Also in the 1980s, new syntax and intrinsic functions were introduced to
express global combining operations, inter-PE communication, and uncondi­
tional execution.

Declaration of poly variables in most data parallel languages implicitly
defines an aggregate object whose length is the number of PEs in the physi­
cal array. Unfortunately, most datasets do not conform in size or shape to the
physical PE array, and therefore the programmer must arrange the data arrays
in blocks distributed among the PEs' memories, and then loop over the blocks
on each PE. The Connection Machines, however, supported "virtual" processors
in microcode. The programmer could define an array of processing elements
larger than the size of the physical PE array that better matched the size of the
datasets, and microcode in each PE looped over the block of data in its memory.

10.4 RECONFIGURABLE COMPUTERS FOR SIMD/VECTOR PROCESSING

In contrast to specific physical implementations of SIMD arrays in silicon,
a large variety of data parallel machines may be mapped onto FPGA-based
reconfigurable computers. The data parallel model maps naturally to the
physical structure of FPGAs, with dedicated hardware blocks of arithmetic
units and memories tiled regularly in a two-dimensional array, as well as a
flexible interconnect. In addition, there are many degrees of freedom in an FPGA
implementation. The data parallel engine can be customized to the datasets
being processed in terms of geometry (one versus multidimensional arrays),
interconnect (linear, mesh, torus), and even PE instruction set.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 249

224 Chapter 10 ■ Programming Data Parallel FPGA Applications

An early experiment in data parallel computing on FPGAs was the dbC
project [6] in which a data parallel language was compiled onto the Splash 2
reconfigurable logic array [7]. dbC was modeled on the Connection Machines'
C* language. Like C*, dbC included the mono and poly data type modifiers to
denote data on the control unit and SIMD array, respectively.

The size of the SIMD array could be specified at the language level by setting
a predefined variable to the number of PEs. The linear array thus defined was
automatically partitioned among the 16 FPGAs of the Splash system.

Instructions were broadcast to the FPGAs from the Sun workstation host,
which served as the control unit. Unlike conventional SIMD arrays, the PE
instruction set was not fixed. Rather, the compiler created a unique instru­
ction set for each dbC program, generating a behavioral VHDL module (see
Chapter 6) that was synthesized through the normal CAD tool flow. An instruc­
tion, rather than being a simple arithmetic or load/store operation, was synthe­
sized as a predicated block. This could be a simple basic block-a straight-line
sequence of code with a single entry and a single exit. If the C code contained if

statements, the compiler transformed control dependence into data dependence
[8], creating sequential predicated blocks that contained first the true branch
and then the false branch of the if. Thus, a single instruction dispatched from
the control unit to the SIMD array could result in a multi-clock-cycle block of
logic executing a predicated hyperblock.

To exploit the flexibility of FPGAs to perform arithmetic on arbitrary bit­
length operands, dbC allowed poly variables to be of user-specified bit length.
dbC extended C integer data types by permitting C bit field syntax to be used
to define the bit length of signed and unsigned integer variables. This ability
was particularly valuable on early FPGAs with limited logic and interconnect.
The arithmetic units synthesized within the SIMD PE were customized to the
precision required, and the programmer specified that precision by the choice
of data types.

In keeping with the SIMD interprocessor communication model, a runtime
hardware library was built to implement global communications instructions
such as min/max and a small set of logic operations, which were performed
bit-serially by the Splash 2 control FPGA.

The dbC language and compiler thus combined a parallel language, tradi­
tional compiler transformations, and a simple form of hardware synthesis to
generate a control program and FPGA bitstream for the Splash system.

To illustrate the dbC data parallel language and its mapping onto FPGAs,
Figure 10.4 expands on the vector multiply example in Section 10.2. Line 3
illustrates the use of bit field syntax to define a new data type, a 24-bit integer,
my_int. DBC_net_shape (line 6) is a predefined variable used to set the number
of processors and their shape. (On Splash, the shape was limited to a linear
array.) The vector multiply is divided into two sections. First there is a loop over
the blocks of vectors resident on each PE (lines 31-34). The control unit handles
the loop control and iteratively issues instructions in the loop body to the SIMD
array. The += operation on line 33 is executed by each PE and accumulates the
partial product into the poly variable res.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 250

10.4 Reconfigurable Computers for SIMD/Vector Processing 225

1 #define ISIZE 24
2

3 typedef poly int my_int: ISIZE;
4
5 /* specify 64 processors in a linear array * /
6 unsigned in DBc_neLshape [l] = {64};
7

8 /* Each PE can hold up to 500 elements of the vector,
9 so maximum vector size is 500*64 */

10

11 #define VEC...MAX 500
12 void main () {
13

14 /* vectors A, B, res are on each PE * /
15 poly my_int A [VEC...MAX];
16 poly my_int B [VEC...MAX];
17 poly my_int res [VEC...MAX];
18
19 /* r, c, and vec_size are on the control unit */
20 mono unsigned long long int r;
21 mono int c;
22 mono int vec_size;
23 int i;
24

25 /* first initialize vec_size, vectors A and B, constant c * /
26

27 /* next, compute vector multiply on the vector elements up to
28 the index that evenly divide the total number of PEs. * /
29

30 res = 0;
31 for (i=0; i<vec_size/DBc_nproc; i++) {
32 A[i] = A[i] * c;
33 res += A [i l * B [i l;
34 l
35
36_ /* now multiply the remaining elements of the vectors * /
37

38 if (DBc_iproc < vec_size % DBc_nproc)
39 A[i] = A[i] * c;
40 res += A[i] *B[i];
41

42

43 r += res;
44
45 /* continue computation */
46

47

FIGURE 10.4 ■ A vector multiply program in dbC.

The second section of code finishes the multiplication of final residue, poten­
tially on a smaller number of PEs (lines 38--41). The if statement on line 38 sets
the predicate mask bit to true in each PE whose processor number is less than
the number of remaining elements of the vectors, and to false in all the other

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 251

226 Chapter 10 ■ Programming Data Parallel FPGA Applications

PEs. The comparison of vec_size to DBC_nproc involves only mono variables
and so is performed on the control unit and sent to the PE array as a constant
in the instruction. Line 43 is a global accumulation of intermediate results from
each PE into the control unit variable r.

There are some unique aspects to compiling SIMD algorithms to FPGA-based
reconfigurable computers. For one, the compiler can synthesize an instruction
set customized to the application. In our example, there need be only three
instructions:

■ A[i] = A[i] * c; res+= A[i] * b[i];

■ mask bit+- DBC iproc < vec size % DBC nproc

■ r += res;

For another, the ALU can be customized to the operations used in the code. In
this example, only a 24-bit multiplier, adder, and comparator are required. If dif­
ferent precision is needed, the PE can be resynthesized. In fact, if floating-point
data types are necessary, floating-point, rather than integer arithmetic units can
be instantiated. Finally, the PE array can be easily resynthesized to hold more
or fewer PEs.

10.5 VARIATIONS OF SIMD/VECTOR COMPUTING

The SIMD programming model is attractive in its simplicity of :parallel oper­
ation. There is a single instruction stream; inter-PE communication is global
and synchronous; and the global reduction operations allow operations across
the entire PE array. However, SIMD also has some deficiencies. Often there are
cases in which some PEs perform slightly different operations than others, par­
ticularly with boundary conditions. The SIMD model requires that all PEs par­
ticipate in all alternatives. This can result in poor performance in the presence
of deeply nested if statements, as the instruction stream follows all possible
control flows. For this reason, SIMD processing is often used in conjunction
with other programming models on reconfigurable computers.

10.5.1 Multiple SIMD Engines

It is possible to map multiple SIMD engines onto an FPGA, with a controller
for each engine synthesized in the reconfigurable logic. Such a system is illus­
trated in Figure 10.5. This capability was offered by the Fabric-based System [9],
and demonstrated on a system-on-a-chip using the Altera Excalibur FPGA. In
this framework, the on-chip microprocessor controls a flexible, runtime -recon­
figurable computing fabric of mesh-connected processing cells. Each cell has a
separate local data memory and a small program memory that holds DSP-like
microcode instructions. In SIMD mode, a group of cells all contain the same
program and are sequenced through it by a customized control unit that is also
in the reconfigurable logic.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 252

� J
r:!
.��

10.5 Variations of SIMD/Vector Computing 227

distances

!✓·•.. c i
' '

' '

' '

' '

' '

ic i
' '

' '

' '

' '

:
�

:
i C o:
: (.)]

FIGURE 10.5 ■ An extended SIMD architecture.

The fabric illustrated in Figure 10.5 shows a multi-SIMD implementation of a
compute-intensive kernel of the K-Means clustering algorithm. In this iterative
data-mining algorithm, the dataset is partitioned into a predetermined number
of classes. Initially, elements of the dataset are randomly assigned to classes, and
a center Ci (where i ranges over the number of classes) of each class is computed.
Then, for each element Bi (j ranges over the number of data elements) and each
class Ci , the distance between Ej and Ci is computed. Ej is moved to the class
closest to it in the distance metric, and the process repeats either for a fixed
number of iterations or until there is no change from the previous iteration. In
the example, the distance metric is IEi-Cil (i.e., the absolute value [10] is used).

This design (Figure 10.5) implements the distance calculation, in which the
distance between Bi and Ci is computed, and finds the class closest to each
element Bi. There are five cell types-send, distance calculation, two for index
calculation, and receive-each with its own control unit (labeled "C" in the
figure). The "Dist" SIMD engine controls the distance calculation PEs; the
"Index" SIMD engine, the index calculation PEs. The last index calculation has
its own controller because its interconnect is slightly different from the oth­
ers. Similarly, the send and receive cells have unique datapaths, so each has a
dedicated controller.

In the figure, the computation is parallelized across classes, with one
distance/index pair per class. A microprocessor controls the outer K-Means loop
and updates class centers by loading new values into the Send_O cell's local
memory. Send_O reads from one of two memories and sends the data element

,---i···:
!~]

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 253

228 Chapter 10 ■ Programming Data Parallel FPGA Applications

out its communication channel. This allows the microprocessor to load one
memory while the fabric is computing with the other. The distance calculation
cells compute the distance between the pixel and the class centers. Their data­
path is shown in the upper right box. The index calculation cells calculate the
index of the class having the minimum distance to the pixel (the middle -and
right boxes at the bottom). The receive cell (Res_O) stores the class index cor­
responding to the minimum distance. It accepts data from two channels and
writes into two memories.

Thus, an efficient parallel architecture for the K-Means clustering algorithm
combines two SIMD arrays with three additional specialized processing units
and a control microprocessor.

10.5.2 A Multi-SIMD Coarse-grained Array

In addition to FPGA-based data parallel systems, the Morphosys system [11]
was designed as a coarse-grained SIMD array. Morphosys was an 8 x 8 array
of reconfigurable logic cells controlled by a small RISC processor. Each row or
column of the array operated in SIMD mode, executing the same instruction
on different data instances. The RISC processor could dynamically load con­
figurations into the array on a row/column granularity. This versatility in data
parallelism and dynamic reconfiguration made it possible to map a combination
of data parallel and control parallel algorithms onto Morphosys.

10.5.3 SPMD Model

A popular generalization of SIMD is the Single Program Multiple Data (SPMD)
model (see Single program multiple data subsection of Section 5.2.4 and [12])
in which all processes independently execute the same program and can take
different paths through it. SPMD differs from SIMD in that, rather than execute
a global, synchronized communication step, programs use send/receive message
passing to communicate with each other, and may employ other synchronization
primitives such as barrier synchronization, in which each process w�its at the
barrier until all processes have reached it in their control flow.

SPMD is most common in parallel processing clusters. However, elements of
it have also been adapted to FPGA computing. For example, in the Streams-C
language, a CSP-like [13] parallel programming language for FPGAs [14], the
programmer can define a parallel processor composed of an "array of processes,"
with each having the same hardware logic and control program, operating inde­
pendently from the others, and using unidirectional channels to communicate.

10.6 PIPELINED SIMD/VECTOR PROCESSING

Pipeline processing can often be incorporated into SIMD/vector reconfigurable
computing. This technique in essence synthesizes customized vector units that
are replicated on the FPGA. Pipelined SIMD processing is especially beneficial on

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 254

Level 1

Level 1

I
I

I
I

Level 2 :Level a; Level 4 Level 5 1 Level 6

o+-o-+-D ••=

I

I

Level 2 Level a; Level 4 : Levet-5 ' Level 6

10.7 Summary 229

I I '

�
d:>

1¼
<2) M c::>r :

I I
I

I
I I I

Level 7 1 Level 8 Level 9 : Level 1 O : Level 11 :

Level 7 Level 8

I I c±>l: :
I I

f:�: I • I

c±) : :
I I

Level 9

I
I

I I
Level 10 : Level 11 : ' '

I

c±:>r i
ci=:[) I

I

c±:>, :
I I

I I : ==�,-::.=.=:::.
'--'

_l_CJ
I
I
I I

Level 1 Level 2 :Level 3! Level 4 : Level 5 : Level 6
'

FIGURE 10.6 ■ SIMD with pipelined vector units.

Level 7 Level 8 Level 9 : Level 10 : Level 11 1
I ' 0

FPGAs when complex arithmetic operations such as floating-point calculations
must be performed.

Figure 10.6 shows an SIMD pipelined processing system in reconfigurable
logic [15] having three PEs. Three pipelines are instantiated, with each receiving
input parameters from a local memory and returning results to another memory.
Each pipeline has 11 stages of floating-point operations, and each floating-point
operation is, in tum, pipelined, resulting in a 43-stage pipeline. This pipeline
implements the inner loop of a Monte Carlo simulation of radiative heat transfer
in a two-dimensional chamber. In this case, three single-precision floating-point
pipelines could be accommodated on a Xilinx Virtex-11 Pro 100.

10. 7 SUMMARY

In the SIMD/vector model, a tightly coupled ensemble of processors execute a
single instruction stream issued by a control unit. The model can be synthesized
onto an FPGA fabric. Having programmable hardware makes it possible to syn­
thesize an instruction set tailored to the specific computations in the application.
Customized data widths are naturally accommodated, as there is no fixed-width

1
:-~
I I
I I

: (2) :

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 255

230 Chapter 10 ■ Programming Data Parallel FPGA Applications

ALU. Global combining operations utilizing parallel prefix networks can also be
synthesized.

On FPGAs, the SIMD/vector model can be flexibly extended. Collections of
SIMD subunits can be assembled and interconnected. This permits portions
of the application that map naturally to the SIMD programming model to use
it while still allowing other more irregular, control flow-dominated code to be
synthesized on the same device. Pipeline processing can also be incorporated
into the SIMD/vector processor, increasing the spatial parallelism available to
the application.

Acknowledgments The contributions of Christophe Wolinski to Section 10.5
and of Jan Frigo to Section 10.6 are gratefully acknowledged.

References

[1] W. D. Hillis. The Connection Machine, MIT Press, 1989.

[2] R. M. Hord. Parallel Supercomputing in SIMD Architectures, CRC Press, 1990.

[3] M. Gokhale, B. Holmes, K. Iobst. Processing in memory: The Terasys massively
parallel PIM array. IEEE Computer 23-31, 1995.

[4] Clearspeed. http://www.clearspeed.com/.
[5] D. I. August, et al. Integrated predicated and speculative execution in the IMPACT

EPIC architecture. International Symposium on Computer Architecture, 1998.

[6] M. Gokhale, B. Schott. Data parallel C on a reconfigurable logic array. Journal of
Supercomputing 9(3), 1995.

[7] D. A. Buell, J. M. Arnold, W. J. Kleinfelder (eds.). Splash 2: FPGAs in a Custom
Computing Machine, Wiley-IEEE Computer Society Press, 1996.

[8] J. R. Allen, K. Kennedy, C. Porterfield, J. Warren. Conversion of control dependence
to data dependence. Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 1983.

[9] C. Wolinski, M. Gokhale, K. McCabe. Polymorphous Fabric-based Systems: Model,
Tools, Applications, Elsevier Science, 2003.

[10] M. Leeser, P. Belanovic, M. Estlick, M. Gokhale, J. Szymanski, J. Theiler. Applying
reconfigurable hardware to the analysis of multispectral and hyperspectral imagery.
Proceedings SPIE 4480, 2001.

[11] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E. M. C. Filho. Morphosys:
An integrated reconfigurable system for data-parallel and computation-intensive
applications. IEEE Transactions on Computers 49(5), 2000.

[12] T. G. Mattson, B. A. Sanders, B. Massingill. Patterns for Parallel Programming,
Addison-Wesley, 2004.

[13] C. A. R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985.

[14] M. B. Gokhale, J. M. Stone, J. Arnold, M. Kalinowski. Stream-oriented FPGA com­
puting in the Streams-C high level language. IEEE International Symposium on
FPGAs for Custom Computing Machines, April 2000.

[15] M. Gokhale, J. Frigo, C. Ahrens, J. L. Tripp, R. Minnich. Monte Carlo radiative
heat transfer simulation on a reconfigurable computer: An evaluation. Proceedings
Field-Programmable Logic and Applications (FPL), 2004.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 256

RECONFIGURABLE

COMPUTING

THE THEORY AND PRACTICE
OFFPGA-BASED COMPUTATION

Edited by

Scott Hauck and Andre DeHon

ELSEVIER

AMSTERDAM. BOSTON. HEIDELBERG. LONDON M � ◄
NEW DELHI • NEW YORK• OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY• TOKYO M O R G A N

Morgan Kaufmann Publishers is an imprint of Elsevier KAUFMANN

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 257

Reconfigurable Computing
Hauck and DeHon

MORGAN KAUFMANN PUBLISHERS
An imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803-4255

Copyright © 2008 by Elsevier Inc.

I Original ISBN: 978-0-12-370522-8 I

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or
by any means-electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system-without permission in writing
from the publisher.

First Printed in India 2011

Indian Reprint ISBN: 978-93-80931-86-9

This edition has been authorized by Elsevier for sale in the following countries:
India, Pakistan, Nepal, Sri Lanka and Bangladesh. Sale and purchase of this book
outside these countries is not authorized and is illegal.

Published by Elsevier, a division of Reed Elsevier India Private Limited.

Registered Office: 622, Indraprakash Building, 21 Barakhamba Road,
New Delhi-110 001.
Corporate Office: 14th floor, Building No. l0B, DLF Cyber City Phase-II, Gurgaon-
122 002, Haryana, India.

Printed and bound in India by Sanat Printers, Kundli-131 028

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 258

OPERATING SYSTEM SUPPORT

FOR RECONFIGURABLE

COMPUTING

Katherine Compton
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Andre DeHon
Department of Electrical and Systems Engineering
University of Pennsylvania

CHAPTER 11

As part of the evolution of the field of reconfigurable computing, researchers are
increasingly focusing their attention on the issues of integrating reconfigurable
computing into multipurpose or general-purpose compute environments. Oper­
ating systems (OSs) fill two key roles in computing: simplifying the programming
interface through an abstracted programming model and managing shared
resources [40]. Both are critical to reconfigurable computing systems, which
have in the past suffered from the stigma of programming difficulty as well as
from a general focus on single-application systems and nonscalable, nonport­
able designs.

An operating system, coupled with the proper compilation environment, can
simplify the programming of reconfigurable computing systems by providing a
well-defined, well-documented compute model that abstracts the structure and
capacity of the underlying hardware. This model may explicitly provide con­
structs for defining hardware tasks (the parts of the application implemented
in reconfigurable logic). Alternately, it may be agnostic to the implementation
medium. Like the compute fabric, the communication structures between tasks
can be abstracted by the compute model to simplify the design process.

Reconfigurable hardware in a reconfigurable computing system is explicitly
intended to be a shared resource. Even in a single-application system, hard­
ware may be shared within the application to accelerate different tasks at dif­
ferent times. In a multitasking system, different threads of computation may vie
for the hardware resources. The operating system arbitrates hardware use both
within and across applications. Furthermore, the OS also provides protection
and security to prevent a maliciously or poorly programmed application from
compromising the system. Through isolation, the operating system also provides
a safe environment where applications can be debugged and inspected without
concern that buggy code will affect system stability.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 259

232 Chapter 11 ■ Operating System Support for Reconfigurable Computing

The demands on an operating system for reconfigurable computing include

■ Abstraction of the capacity and composition of reconfigurable hardware
resources.

■ Scheduling use of shared resources across processes.
■ Methods for communication and synchronization among hardware

tasks and software.
■ Protection of the tasks of one process (hardware and software) from

those of another.

This chapter discusses the above concepts in terms of both key roles of an oper­
ating system: the programmer's view and the management of shared resources.

11.1 HISTORY

Although the concept of operating system support for reconfigurable computing
has existed since at least 1996 [6], the idea languished for a time, not quite gaining
popular momentum. A significant barrier to operating system development for
reconfigurable computing has been the lack of a standard reconfigurable computing
hardware platform as a focus for commercial and academic development.

With much of reconfigurable computing research focused on specialized
scientific computers or embedded systems, researchers were willing to forgo
the abstraction/virtualization benefits provided by an operating system. Instead,
application designers (who frequently were the hardware/system designers)
would include hardware management operations in their application, explicitly
deciding when and where to load particular operations. Manual management
leveraged the designer's understanding of the application to provide poten­
tially better performance than an OS layer, discouraging many researchers from
dedicating valuable research time to finding a more generic (but possibly less
optimized) solution. Yet these systems too would benefit from operating system
support to attract a broader group of application designers uninterested in every
hardware detail or in micromanaging its use. Even those with suitable hardware
backgrounds could then focus their efforts on application (instead of hardware)
details.

The increase in demand for operating system support is mirrored, in part,
by the increase in complexity of embedded systems and applications. Many
single-function devices of the past have evolved into multifunction devices.
Cell phones, for example, not only provide basic voice communication, but
also capture pictures and video, replay video and audio, browse the Internet,
communicate with other electronic devices, and support gaming. A device mav
execute several of these applications over time, giving it a "general-purpose"
flavor within an "embedded" body. Reconfigurable hardware is attractive for
devices such as this because of its flexibility to reconfigure to accelerate a variety
of applications. The compute-intensive computations of an application execute

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 260

11.1 History 233

in hardware to operate faster, using less power (battery) than even an embedded
instruction-based processor [34,41].

Even a single-function device may require many different compute-intensive
operations. For example, a digital audio player may need to perform error check­
ing, Huffman decoding, IDCT, and other tasks. The reconfigurable hardware
that accelerates these operations may, because of cost considerations, be too
small to fit all hardware tasks simultaneously. However, an operating system
can automatically reconfigure it to implement each task in sequence, as shown
in Figure 11.1 (and discussed in Chapters 4, 5, and 9), allowing applications to
execute all hardware tasks as if they were persistent in hardware. This provides
the application programmer with a virtualized hardware view not hampered by
low-level details.

Another contributor to the growing demand for OS support for reconfig­
urable computing is the increasing difficulty of providing clock speed increases
to general-purpose processors [1]. This problem is causing researchers to
more closely investigate the potential benefit of reconfigurable computing
in general-purpose computers in order to boost performance for compute­
intensive applications, including multimedia and communications applications.
Using reconfigurable computing in a general-purpose machine requires more

(a)

> �=====> 0
Roooof;g"'' LJ Reoonfig",e L-=J

(b)

FIGURE 11.1 ■ The abstraction of a large virtual hardware capacity (a) can be implemented on
more limited hardware resources using runtime reconfiguration (b).

[8 I
.------, .-----i

~7 8 !
-------.. ----------------... ----· ••••• J

~==== □ □

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 261

234 Chapter 11 • Operating System Support for Reconfigurable Computing

sophisticated resource management than can be expected from individual
applications, further driving the need for OS support.

11.2 ABSTRACTED HARDWARE RESOURCES

The official Commodore Programmer's Reference Guide for the C64 computer,
originally published in 1982, provides programmers with a great deal of infor­
mation [10]. For example, it contains a table of the memory map of the C64,
including the memory location of the BASIC ROM, the memory-mapped
screen output, other memory-mapped 1/0, and available program memory loca­
tions. It even provides the pinouts of the C64's 1/0 ports and a schematic of
the motherboard-as information to a programmer. Much like the preceding
evolution of abstracted programming models for mainframe computers [28],
increased complexity in personal computing systems later both enabled and
required an increase in abstraction.

Today's programming texts do not provide explicit hardware details; instead,
for example, they instruct on the use of system calls to provide 1/0. One can
write an application in a high-level language such as Java or C without knowing
even what processor it will run on or how much memory the system will have.
For some time, the average software programmer has not needed an understand­
ing of underlying hardware. 1

To ease programmer burden, the OS provides an abstracted view of hardware-a
simpler virtual machine as the target for the application. In this virtual machine,
the programmer may use library or system calls that provide standardized
interfaces to interact with a wide variety of 1/0, such as the screen, storage
units, and other peripherals. The virtual machine also gives the programmer
the appearance of isolation, effectively providing the illusion of dedicated use of
the computer's resources [47]. Furthermore, specific details of system resources,
such as their quantity and speed, are abstracted. In reality, the operating system
is managing these limited physical resources both to allow sharing and to avoid
conflicts between applications, each of which was designed as if it were the
only one in the system and as if resources were unbounded.

The section that follows discusses the abstraction provided to the programmer
by the reconfigurable computing operating system.

11.2.1 Programming Model
Reconfigurable computing provides a mechanism for parallel computation. In
some cases, compute-intensive tasks in a sequential application are converted to
hardware to capture instruction- or data-level parallelism within the sequential
framework. In others, the application is designed explicitly for parallel execution

1 Embedded systems, some graphics, and other specialized programmers may still require some
knowledge of hardware to target specific customized architectures or to meet stringent perfor­
mance requirements.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 262

11.2 Abstracted Hardware Resources 235

throughout, with many concurrent hardware (and software) tasks. Chapter 5,
Section 5.1, discusses a variety of compute models for reconfigurable computing.

- The application developer, the compiler, or the runtime environment can
create multiple interchangeable implementations for a task using a separable
interface and implementation. This separation is analogous to the delineation
between interface and architecture in VHDL (Chapter 6), or the interface and
implementation in Java or C++. The operating system can use the interchange­
able implementations to bind the computation to a specific resource at runtime,
as discussed in Section 11.3. Compiled applications may be a combination
of software components and either abstracted hardware components (which
undergo the final steps of compilation/synthesis at install time or runtime) or
configuration bitstreams that represent hardware tasks.

Depending on the development environment, designers may explicitly
partition their application between hardware and software components, or
the compiler may automatically partition a high-level application description
(Chapter 26). If explicitly partitioned, the hardware components may be speci­
fied in a hardware description language (HDL) or in a high-level language with
added constructs to specify parallelism, communication, variable bit width, or
other hardware-specific features (e.g., Chapter 7).

Implicit partitioning facilitates application portability, as added language
constructs for explicit partitioning may not be available for different systems,
and hardware descriptions, while more portable than postsynthesis designs, may
still depend on specific hardware features. Automatic partitioning and synthesis
at compilation time allows an application description to be easily recompiled
for different systems (provided that tool support is available).

Because software programmers are not usually hardware designers, and auto­
matic compilation from a high-level ' language to hardware does not always
provide acceptable results, reusable libraries can provide a balance between
ease of specification and result quality. Developers can use library calls to per­
form compute-intensive operations without concerning themselves with how
the operation is actually implemented (hardware versus software, hardware
and software details). Libraries can contain efficient hardware implementations,
potentially at multiple area/performance tradeoff points, and, possibly, soft­
ware alternatives for a set of related operations [29,., 45]. Static linking to such
a library could significantly increase application distribution size if multiple
implementation options were included to support different execution platforms
or to provide runtime binding (as discussed in Section 11.3). A dynamic­
ally linked library (DLL) could ameliorate this problem if it were reused by
other applications.

A final approach is to use description languages designed to be agnostic to
the eventual implementation in hardware, software, or a mix of the two [13, 22].
Much of the automatic partitioning work focuses on high-level languages
normally used in software programming, which were created for inherently
sequential compute structures (instruction-based processors). Depending on the
hardware design, a reconfigurable computing platform has the potential to pro­
vide much more parallelism at a variety of levels difficult to describe using

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 263

236 Chapter 11 ■ Operating System Support for Reconfigurable Computing

a software-centric approach. (These concepts are discussed in more detail in
Chapter 5.)

Within an application, the programmer or compiler instantiates a hardware
task as a virtual resource and later applies it to the suitable input data. When the
operating system scheduler (Section 11.4) decides to allocate hardware to the task,
it loads that task onto hardware. For best performance, a single hardware task
can (and should) execute repeatedly on successive input data. Depending on the
eJ(tent of runtime support, the operating system could instantiate multiple copies
of the task to increase captured parallelism or time-multiplex multiple tasks if
hardware resources are limited, as discussed in Section 11.3. This detail should
be abstracted from the user, however, as the amount of resources available for the
task can be based on runtime system state, which is likely unknown at design time.
One approach (discussed in Chapter 9) is to design the application for maximum
possible parallelism, with the operating system automatically time-multiplexing
the different tasks if insufficient resources are available for the full application
simultaneously [13].

11.3 FLEXIBLE BINDING

Because reconfigurable computing systems are inherently flexible, they allow the
operating system greater freedom in managing shared resources. The operat­
ing system can perform flexible binding of tasks to different types of resources
(hardware/software) and, for those bound to hardware, can perform a run­
time tradeoff between resource use and performance. Flexible binding allows
a single application to be implemented using different resources on different
computing platforms, or even on the same platform at different times. Install­
time binding decisions are. bas�d on the physical characteristics of the system
(e.g., the number of programmable resources or memories). Runtime binding,
on the other hand, uses information about the physical characteristics along with
the current system state (e.g., number of running tasks) to make implementation
decisions.

11.3.1 Install Time Binding

Install time binding involves the compilation of applications to a generic
representation analogous to an intermediate representation in software com­
pilation. Final synthesis of the generic representation occurs at install time
based on the specific resource types available on the system. Install time bind­
ing is therefore important to the prevailing economic model of computer pur­
chasing: Spending more money does not (generally) allow one to run different
applications but rather the same applications better. Likewise, reconfigurable
computing machines should be available at multiple price points, with the
capacity/performance/power efficiency of their resources increasing in relation
to cost.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 264

11.3 Flexible Binding 237

Applications running on a more expensive, more powerful machine should
perform better than those running on a base machine-but they should still run on
that base machine. In keeping with this economic discussion, if the reconfigurable
hardware in a computer is upgraded, the applications may require reinstallation
to leverage the new resources. Depending on the level of abstraction of the specifi­
cation, this may require CAD processing, which should be performed quickly (and
potentially in the background when the system is idle) to avoid system slowdown,
as discussed in Section 11.3.3 and Chapter 20. An alternate form of install time
binding is dynamic linking to precompiled libraries of hardware (and software)
task implementations [29]. Libraries can be compiled for different platforms and
distributed with the OS as part of the hardware drivers.

11.3.2 Runtime Binding

Runtime binding is based on both physical characteristics and current system
state, and may be performed as part of the scheduling process (Section 11.4).
It modifies a task's implementation based on the resources allocated to it dur­
ing scheduling. The most simple form of runtime binding supports relocation
of hardware tasks to different regions of the hardware resources. Relocation
(discussed in more detail in Chapter 4) facilitates concurrent residency and/or
operation of multiple hardware tasks. It also affects task communication, discus­
sed in Section 11.5.

Another form of runtime binding allows a given task to execute in either
hardware or software depending on scheduling decisions [14, 29, 31], discussed in
Section 11.4.3. Systems that permit dynamic binding can avoid stalling for hard­
ware availability by proceeding with a software alternative for the task. Dynamic
hardware/software binding at runtime requires either a task executable capable
of running on hardware or software (e.g., [22]) or a pair of interchangeable hard­
ware and software implementations [13, 14, 29]. To facilitate application design
and debug, the two components should have identical functional behavior.

Runtime binding can allow hardware tasks to expand or contract to make use
of the resources allocated to them by the scheduler, as discussed in Section 11.4.
This ability allows tasks to be implemented on a variety of architectures, from
low capacity to high capacity, to promote portability. Hardware tasks can also
be modified based on system load, occupying fewer resources in a system under
heavy load and more in a system under light load, as shown in Figure 11.2.
In (a), task A is using fewer resources because of increased demand by other
tasks. In (b), task A rebounds to more resources after task Bis no longer needed.
Task A's data rate is improved in (b) by the increased parallelism.

A task can occupy fewer resources by time-multiplexing its functionality, or
more resources by unrolling or replicating [13]. Time-multiplexing a task requires
storage to hold intermediate results between the temporal partitions. Performing
time-multiplexing or expansion at runtime can be quite expensive, potentially
involving a modified CAD flow, as discussed next in Section 11.3.3. Alternately,
implementations at multiple area-performance (or power) tradeoffs can be created
at compilation time, eliminating transformation overhead at runtime [14, 29].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 265

238 Chapter 11 ■ Operating System Support for Reconfigurable Computing

(a) (b)

FIGURE 11.2 ■ Flexible binding allows tasks to use a different number of resources based on
hardware capacity and resource availability. In this example, Task A can either occupy less area
at the expense of performance (a), or achieve a higher data rate at the expense of area (b).

Although a specific palette of implementations reduces OS complexity, it also
limits the possibilities of customizing the hardware task to the exact hardware
resources available.

11.3.3 Fast CAD for Flexible Binding

Modifying a hardware task after application distribution may require that one
or more CAD operations, such as placement, be applied at install time or run­
time [13, 39, 43, 44] (e.g., Section 9.4). Unfortunately, CAD algorithms, depend­
ing on the problem size, can be quite slow. Chapter 20 discusses a number of fast

· CAD approaches for hardware task implementation motivated in part by flexi­
ble binding. Some possible solutions to accelerating install time or runtime CAD
processes include

■ Trading solution quality for speed in the CAD process (less optimized
solutions).

■ Accelerating CAD algorithms in hardware (i.e., implementing CAD
hardware tasks on the target reconfigurable computing system).

■ Abstracting some of the hardware detail to simplify the problem (applying
algorithms to larger blocks of structures, where intragroup CAD decisions
are fixed at compile time, and only intergroup CAD decisions are required
at install time or runtime, as discussed in Chapter 4 and Section 9.2.4).

■ Using a compile time CAD process to generate static information about
the hardware task that can be used to accelerate later CAD operations
(marking areas of the circuit for replication or time-multiplexing).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 266

11.4 SCHEDULING

11.4 Scheduling 239

Scheduling determines what tasks should use hardware when, and may also decide
how many resources (and what type) to allocate to each. These decisions may be
made at compile time based on static application information, at runtime based
on dynamic system status, or at a combination of the two. The scheduling goals
may include maximizing application or system performance, minimizing power
consumption, or meeting real-time deadlines. Achieving these goals also requires
minimizing the reconfiguration overhead, as discussed in Chapter 4.

Schedulers that include resource allocation also perform flexible binding
(Section 11.3), choosing specific resources to implement a given task and poten­
tially altering that task to fit the resources. Flexible binding complicates the sched­
uler's decision process by expanding the search space. However, expanding the
search space with flexible binding also opens the door to scheduling solutions
that would otherwise not be possible.

11.4.1 On-demand Scheduling
One of the simplest forms of runtime scheduling is servicing hardware resource
requests in the order received, reconfiguring as needed, and queuing requests that
cannot yet be serviced [6]. When an application calls a hardware task, its request is
sent to the operating system. If the task is preconfigured on hardware, it executes;
otherwise, it must be loaded into hardware (configured) prior to execution. If
all hardware resources are allocated and in use, the system will queue waiting
requests until the resources are freed.

Hardware requests are generally blocking, forcing the requestor to busy-wait
until the hardware is available. Then the task is configured and finally executes.
Busy-waiting can contribute significantly to reconfigurable computing overhead,
as discussed in Chapter 4, but the system (with an appropriate compute model) can
use a sleep/wake approach instead of busy-waiting to allow nonblocking threads
or processes to use the compute resources in the meantime, hiding some of the
configuration latency. Furthermore, runtime binding, discussed in Section 11.3,
allows threads or processes that might otherwise be blocked waiting for hardware
availability to execute in software instead.

11.4.2 Static Scheduling
Static scheduling relies on analyzed, profiled, or annotated application behav­
ior to determine when an application should request that each hardware task
be configured [23, 26, 27]. Static schedulers operate "offline" and thus have
a more global view of the task requirements and are able to search a greater
expanse of the solution space than a dynamic (online) scheduler. Brute-force or
Monte Carlo approaches may therefore be feasible for static schedulers even if
prohibitively slow for dynamic scheduling. A static scheduler can also attempt to
load hardware tasks prior to their execution to minimize configuration overhead
(a technique known as prefetching [24]).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 267

240 Chapter 11 ■ Operating System Support for Reconfigurable Computing

For static scheduling to be profitable, however, both the application task
set and resource availability must be highly predictable. An offline schedule
does not have access to runtime information and therefore cannot adapt to the
current system load. This can prevent the static schedule from computing a good
coschedule of multiple independent tasks. Further, if the static schedule is wrong
about which tasks must run next, prefetching can actually be detrimental to
performance, forcing needed configurations to be evicted and performing extra,
unnecessary reconfigurations.

11.4.3 Dynamic Scheduling

Dynamic schedulers use runtime information to aid scheduling. Data-dependent
application behavior, system load, and the characteristics of other executing appli­
cations can therefore all contribute to (and complicate) schedule computation.
Although single-application behavior may be statically predictable in some cases,
the interferences arising from multiple simultaneously executing applications lead
to an explicitly nondeterministic interleaving of hardware task calls from different
applications.

As a simplification, some schedulers use a window-based approach, dividing
time into windows and solving the scheduling problem for each [14, 27, 31].
Figure 11.3 illustrates the timing of window-based scheduling. Once the scheduler
determines which tasks should be implemented in hardware, the hardware must be
reconfigured to implement them. After reconfiguration, the hardware can execute
until the next reconfiguration phase in the following window. To minimize the
impact of scheduling overhead, the window should be "large" compared to the
time required to compute the schedule and perform reconfiguration. However, it
should also be small enough to capture current system behavior for use in the
scheduling decision. Statistics from the previous interval (or multiple previous
intervals) provide recent behavior information to the scheduler.

A "frontier" dynamic scheduler [27] uses appiication dataflow and task execu­
tion information from the previous interval (such as which tasks .executed and
at what data rate) to compute the·new schedule for the next interval. Input data
availability and allocatable output space information are requirements for task
scheduling and are used to compute the relative priority of tasks. The scheduler
can use resource availability and information on data rate (of the conside,red task

Reconfiguration Reconfiguration

Scheduling Scheduling

HW execution HWexecution

Window
-Time ----------------------------

FIGURE 11.3 ■ A dynamic scheduler can divide time into a series of windows, each with
its own scheduling problem.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 268

11.4 Scheduling 241

and ones it communicates with) to choose a flexible binding implementation. This
approach matches a streaming communication approach (Chapter 9), where good
scheduling is necessary to minimize the buffering requirements between tasks.
Flexible binding allows the frontier scheduler to time-multiplex or replicate tasks
to balance the data rate between one task and those adjacent [27].

Runtime information, such as the frequency of task use in the prior inter­
val and task performance information, also can be used without considering
the dataflow of the executing applications. In each window, hardware resources
can be treated as a knapsack, which the scheduler tries to pack with the great­
est overall value [14]. Each task is assigned a "value" based on performance or
power consumption and a "cost" based on hardware area requirements. Tasks
not scheduled to hardware execute with lower performance in software to avoid
starving less valued tasks. By including multiple implementations of a task with
different values/costs, the scheduler can also use dynamic binding to adapt task
implementations based on resource availability/demand [14, 27]. The knapsack
problem can be solved either heuristically or, if the problem size is small enough,
exactly.

11.4.4 Quasi-static Scheduling

A purely dynamic scheduler only considers information available at runtime and
loses the opportunity to optimize based on known application characteristics.
In contrast, quasi-static scheduling combines dynamic system and application
information with static application analysis. Using dynamic management with
static analysis enables the scheduler to more accurately predict near-future hard­
ware task needs (and, just as important, which tasks will not be needed) [24, 27].
Quasi-static scheduling also accelerates the scheduling process by reducing the
dynamic scheduler's burden.

For example, static analysis can provide the ordering of tasks within an applica­
tion, timing estimates for when the tasks will be executed relative to one another,
data rate analysis of different possible time-multiplexing/replications of the tasks,
and intertask communication resource requirements. The runtime scheduler can
then use dynamic scheduling techniques, but prune the solution space based
on static analysis information to arrive at an improved solution more quickly.
Dynamic scheduling can also allow otherwise statically scheduled applications to
reuse hardware tasks configured for other applications to reduce configuration
costs [35].

11.4.5 Real-time Scheduling
Scheduling for real-time systems considers task deadlines rather than general
performance. Hard deadlines must be met within the specified time or the sys­
tem has failed. An example of a hard deadline would be triggering operation of
strictly timed automotive engine components. Soft deadlines must be generally
met for acceptable use, but missing one or even a few is not mission-critical. An
example of missing a soft deadline would be dropping a frame in real-time video.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 269

242 Chapter 11 ■ Operating System Support for Reconfigurable Computing

Missing a sof:t deadline may not invalidate the computation, but it may degrade the
application in some way. This type of operation is common in embedded systems.
Indeed, real-time system!? and their operating systems are the focus of much
research [20, 23].

One approach to implementing reconfigurable real-time systems is to leverage
the vast real-time research effort by wrapping hardware tasks with a thread inter­
face [4]. Such a system includes a generic hardware-based scheduler for both hard­
ware and software threads using whatever scheduling algorithm is implemented
within it. Synchronization details of this approach are presented in Section 11.6.1.

Alternately, the scheduling algorithm can be tailored specifically to reconfig­
urable computing, using information about hardware capacity, task hardware
requirements, and task configuration time in addition to deadline information
[39, 43]. For example, tasks that can fit in a currently available area are more
likely to be guaranteed to meet a deadline than are those that require recon­
figuration due to reconfiguration overhead. If sufficient resources are free, but
are distributed throughout the hardware, defragmentation may be required (see
Chapter 4) to consolidate sufficient free space for the incoming task.

The time required for this process affects the ability of the system to
meet the task's deadline. If free space is not available even with defragmentation,
the task may be rejected or its deadline not guaranteed. The task could meet
the deadline if one or more other tasks executing on hardware complete with
enough time left to permit configuration and execution of the new task before
its deadline expires. Alternately, a task implemented in hardware may be pre­
empted (see next section) in favor of an incoming task if the latter has higher
priority [43].

11.4.6 Preemption

A scheduler may use preemption to reallocate hardware to a "more desirable"
task, whether based on meeting specific deadlines in a real-time system, based
on the relative priority of different tasks in a performance-based system, or to
allow a more balanced use of hardware in the presence of long-executing tasks
[2, 18, 31, 43]. The configuration data for a given task holds some of the required
information, such as circuit structure, and possibly initial values for embedded
memories. However, any values in state-holding elements that change in response
to hardware operation are not included. Therefore, the complete "saved state" for
preempting a hardware task is a combination of its configuration data and the
current values of any state-holding elements modified during execution. Provided
a hardware interface to this information is available, the operating system can
read the current state to store in memory and later load it back into hardware
when needed.

Preemption is complicated by flexible binding if the implementation saved does
not match the implementation resumed. The sizes of configuration data and the
number of state-holding elements may not match between different implementa­
tions. Therefore, systems supporting flexible binding and preemption must save
an abstracted view of task state.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 270

11.5 COMMUNICATION

11.5 Communication 243

A key feature of communication abstractions is that they are, in fact, abstractions.
Although certain abstractions may map well to specific hardware architectures
(and vice versa), the use of one in particular does not necessarily require a partic­
ular hardware structure (or vice versa). For example, a message-passing abstrac­
tion could be implemented on a shared memory architecture, or a shared memory
abstraction could be implemented on top of a message-passing architecture.
Library calls and the compilation environment map communication abstractions
to the actual implementation, and the operating system manages the implemen­
tation. The abstractions, however, allow the programmer to ignore implementa­
tion details and focus on efficient specification. The following subsections discuss
a number of abstractions and their operating system requirements, along with
other communication issues requiring operating system intervention.

11.5. 1 Communication Styles

When our applications are composed from multiple, concurrent tasks (e.g.,
threads, hardware tasks, software tasks, operators), the tasks must often exchange
intermediate data in order to solve the entire problem. Specifying this com­
munication can be highly error prone and performance critical. The form in
which the communication is specified should match both the natural compute
model (see Section 5.1) for the application and the nature of the communication
required.

Shared memory
Shared memory is an implicit form of communication motivated by certain
implementations where tasks share a common memory pool (Single memory
pool subsection of Section 5.1.4) and address space, or share a mapped portion
of an address space (Section 11.5.2). Here, the semantics are that each task sees
the same image of memory. If one task writes to the image, another should be
able to see the values written to the memory. In this way, the memory addresses
serve as named locations through which values can be exchanged among tasks.

Uniprocessor operating system developers see shared memory as a particularly
efficient way of communicating between tasks. In multithreaded environments
where tasks are interleaved in time on the same processor, shared memory seg­
ments within the single memory hierarchy allow multiple tasks to share data with­
out an explicit need for data to be copied between the routines. This can minimize
the overhead for data communication between tasks. Without caches, shared bus
multiprocessing systems with a common main memory would exhibit a similar
efficiency. Local caches potentially complicate the picture. However, good archi­
tecture and engineering can maintain this abstraction efficiently in the common
case, at the cost of additional hardware to support cache coherence.

A reconfigurable computing architecture may nevertheless more closely mirror,
at the chip or board level, the organization of a large, distributed memory system.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 271

244 Chapter 11 ■ Operating System Support for Reconfigurable Computing

Here, data may actually need to be copied between distant memories, complicat­
ing the shared memory abstraction. The result is both significant hardware over­
head to support the model and, often, significant communication time overhead
beyond what would be required to move the data between the producer and the
consumer. Furthermore, synchronization between shared memory threads/tasks
(Section 11.6.1) is a common source ofapplication errors, leading some to question
the viability of this model for capturing larger-scale parallelism [21, 36].

Method calls

As the previous section suggested, word-level shared memory is a very low-level
form of implicit communication that is prone to synchronization issues. Imple­
menting the abstraction can increase hardwa,re requirements in architectures
containing distributed memories. In modern object-oriented systems, particularly
when each object may itself be an independent thread, a higher-level communica­
tion technique is method calls between objects or operators (see Section 5.1.2).
The method call on the object explicitly states the intended destination for the
data; further, the object method provides additional semantic information to the
receiver about what the data means. As long as object methods are serialized on
each object, method invocation can be atomic, providing a natural mechanism
for consistent updates to object state. In some cases, method calls can eliminate
the need for a hardware task to communicate directly with memory, allowing
many lightweight, reconfigurable operators to avoid the expense of a memory
interface unit.

When the destination object is running on hardware that is physically distinct
from the sending object, the method invocation, and the communication in gen­
eral, requires data to _be routed from the sending to the receiving hardware. This
is true even in a shared memory implementation-the method call style simply
makes this communication explicit. However, when the objects share the same
physical memory, method call communication can still occur through shared
memory.

Message passing (discussed in the Message passing subsection of Section 5.2.6)
is a form of method call communication, as is remote procedure call [30]. MPI [38]
is a well-developed standard for message passing, and reconfigurable computers
have been built to interface with standard MPI communications [32]. However,
MPI itself is fairly heavyweight, and its overhead may be too high for finer­
grained composition of tasks and operators. Lighter-weight message passing
designed for on-chip reconfigurable applications has been developed [31], as
have remote procedure call interfaces for symmetric use between processors and
reconfigurable logic [8].

Streams

While method invocation is an explicit communication mechanism, it is still
dynamic and does not provide the OS with advanced warning about which
tasks will communicate and when. Further, the actual graph of communica­
tion remains implicit in the object call structure. A more explicit form of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 272

11.5 Communication 245

communication is to represent the graph structure for task communications
and share that information with the operating system. This is similar to the ·
use of pipes or streams in conventional software multi-threading to represent
persistent communication links ·between communicating threads. The reconfig­
urable computing dataflow models in Section 5.1.3, and the streaming dataflow
programming approaches in Chapters 8 and 9 provide some ways to capture
these communication graphs. Data-centric compute models (Section 5.1.6) do so

· as well.
Streams (pipes, channels) are persistent, unidirectional links between tasks

(software or hardware) that pass data or control information. Tasks receive
available data from one or . more input streams and write the results of their
computation to one or more output streams. [9, 13]. A stream may buffer data
in a FIFO manner between the producer and consumer to allow. them to nin
independently of each other and minimize the effects ofboth reconfiguration
and communication latency. Figure 11.4 is an example that shows abstract use of
streams (a) and its implementation on a streaming architecture (b). Sections 5.1.3
and 5.2.1 and Chapter 9 present in-depth discussions of streaming models and
architectures.

Because the structure of communication (producer..,.consumer) is explicit, the
operating system is able to more easily make intelligent decisions about where
to place tasks to promote physical locality, and the scheduler is able to better
choose when to run them. For example, if a stream between a producer and
consumer is empty or near empty, the scheduler knows that it is more profitable
to run the producer than the consumer. A very full stream would imply the
opposite.

The persistence of abstract streams allows us to separate the part of com­
munication that specifies the location (source/destination) of data from the part

(a)

�

�·

Task

C

.__ _ _,

�

FIFO

(b)

FIGURE 11.4 ■ A stream abstraction defines application dataflow (a); a streaming architecture
can implement the streams between tasks using FIFOs (b).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 273

246 Chapter 11 ■ Operating System Support for Reconfigurable Computing

that provides or uses it. For regular communications, this brings the destination
specification out of the inner loop of communication, reducing communication
overhead. For spatial, reconfigurable datapaths, it allows a stronger correla­
tion between the abstraction and implementation of communication between
currently-executing hardware tasks, reducing overhead. The stream can be imple­
mented with simple wires, or a FIFO, between the producer and consumer.
Nonetheless, although specifying, allocating, and setting up the stream can be
expensive, for heavily used, persistent communications, the long use over time
amortizes the cost of stream setup. Short communication sequences or commu­
nications to short-lived tasks may not be able to amortize this cost and may be
better served with a different communication scheme.

Stream abstraction can be implemented efficiently on a variety of physical
communication structures. It can be supported efficiently on a shared memory
system with the use of a well-designed and well-tested queue object library that
encapsulates the explicit synchronization necessary to implement the stream.
Encapsulation is a huge benefit in that it allows one highly trained system
programmer to work out a robust locking discipline that can then be used by
other programmers with less (or no) experience with synchronization primitives.
Stream data can be packed into efficient, longer messages on packet-switched,
message-passing systems, or it can be supported by concurrent direct memory
access (OMA) data transfers. A message-passing implementation of a stream
abstraction can also be extended across the Internet using TCP/IP connections.
As noted earlier in this section and elaborated in Chapter 9, when the source and
the sink are coresident, the stream can reduce to a direct, configured connec­
tion between tasks, requiring minimum hardware and latency overhead during
operation.

11.5.2 Virtual Memory

Software applications for general-purpose systems use a virtual memory abs­
traction, enabled by a combination of hardware and software, to simplify the
programming model and to provide isolation (protection) from other processes.
Reconfigurable computing systems require this abstraction for the same reasons.

To avoid the complexities of virtual address translation in reconfigurable hard­
ware, the reconfigurable computing system designer may place the burden of
memory communication on host processor resources, which already support vir­
tual memory. When the reconfigurable unit is tightly coupled with a processor, it
can explicitly share the processor's memory management unit (MMU) [18]. Alter­
nately, the processor can perform memory accesses for a hardware task, feeding
data to the task through a dedicated buffer structure [15]. The drawback of using
the processor in this fashion is a lack of efficiency. The processor is consigned to
acting as an overqualified memory controller, which reduces its availability for
parallel computation.

To leverage the processor's address translation capability (including translation
lookaside buffer [TLB] miss processing and page fault handling) and at the same
time remove the processor from the inner memory access loop, a OMA-style

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 274

11.5 Communication 247

approach can be used. The processor provides hardware with translated physical
addresses for the needed virtual addresses. User hardware should not, however,
be able to issue these accesses directly, as it could potentially issue memory
requests to other physical addresses outside the task's virtual memory space. An
architectural solution to this problem is to add one or more hardware memory
address generators that are guaranteed to abide by the virtual memory abstraction.
The address generator may require the processor to translate all addresses, or it
potentially can combine offsets from the hardware task with a translated page or
segment base address to further reduce processor involvement.

Finally, a dedicated hardware MMU can directly translate virtual addresses to
physical ones [16, 42]. It maintains its own copy of the TLB for address lookups.
TLB misses can be handled either by the hardware MMU itself or by interrupting
a processor to walk the page table. In this arrangement, page faults are handled
by the operating system, which updates the hardware MMU's TLB based on the
result.

11.5.3 VO

Finally, in addition to communicating with other tasks, a hardware task may need
to communicate with system 1/0. Libraries abstract the hardware interfaces for
the programmer [11] (as discussed in Chapter 8). However, 1/0 standards are con­
tinually evolving and can do so during the lifetime of a given application. The oper­
ating system, through 1/0 device drivers, can support changing 1/0 standards by
providing these libraries in dynamically linked form so that they can be updated
and expanded without requiring any changes to the applications in order to
use them.

11.5.4 Uncertain Communication Latency

Communication between tasks (and memory) is subject to uncertain latencies
for a number of reasons. One common example in many traditional computing
systems is the uncertain latency of memory access due to location in the memory
hierarchy and memory contention. Reconfigurable computing systems share this
problem. However, those that support flexible binding (Section 11.3) are subject
to additional sources of uncertainty, as different implementations of a given task
have different data rates. Even given the same implementation of a hardware task,
its location on hardware can affect the latency of communication between it and
other tasks. Depending on the physical implementation of the routing network
between physical task locations, some locations may be "closer" than others.

Although this could create variable clock rates depending on task loca­
tions, the problem is easily addressed using pipelined interconnect and data
presence (discussed in the Data presence subsection of Section 5.2.1 and
in Chapter 9). The same set of data presence techniques also support flexible
binding where a task implemented in hardware can have a much higher data rate
than one implemented in software.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 275

248 Chapter 11 • Operating System Support for Reconfigurable Computing

11.6 SYNCHRONIZATION

Reconfigurable computing applications are generally concurrent, executing one or
more hardware tasks in parallel along with one or more software tasks. Therefore,
they require synchronization between tasks. A number of factors complicate syn­
chronization in reconfigurable computing. First, reconfigurable computing appli­
cations can leverage a variety of parallelism types (instruction-level, data-level,
task-level, pipeline-level) to a greater degree than software-only applications can,
as discussed in Chapter 5. More parallelism exacerbates the already difficult pro­
cess of concurrent programming [33]. Furthermore, runtime binding and place­
ment can affect communication source/destination locations and task data rate
even after program specification and compilation. Given this degree of parallelism
and uncertainty, effective synchronization techniques are critical to reconfigurable
computing application design and performance.

These effects are mitigated to some extent by the fact that reconfigurable com­
putations and data often use distinct resources with less potential sharing; this
can often clarify the synchronization required and permits more coarse-grained
resource locking. Depending on the abstraction employed, synchronization may
be controlled explicitly by the programmer or implicitly by the operating system
or underlying hardware.

11.6.1 Explicit Synchronization
Synchronization between tasks can be performed explicitly through abstractions
similar or identical to those used in software-only multi-threaded programming.
This approach is particularly appealing in embedded systems, where application
designers may have used a shared memory multi-threaded model more widely than
the average general-purpose computer programmer would have. As in software­
only shared memory applications, constructs such as locks and semaphores can
protect access to shared resources to avoid race conditions.

We can impose thread-style interfaces on hardware tasks [4, 7, 42]. The thread
interface requests/releases a semaphore and forces hardware to stall or sleep
while waiting to acquire one. Memory structures within the hardware must be
augmented with a table to hold semaphore information. This has the advantage
of hiding details of the hardware task implementation from the communicating
thread but at the cost of logic overhead to interface hardware with the shared
memory pool that holds the synchronization address.

11.6.2 Implicit Synchronization
Low-level, thread-style synchronization, already prone to design error and debug
difficulty, is likely to become even more difficult to implement correctly as
the degree of pa:railelism required to achieve demanded performance increases
[21, 36]. Instead, designers could turn to abstractions that provide more explicit
parallelism with implicit synchronization.

To efficiently use our reconfigurable :i;-esources, we typically provide them
with large blocks of data at a time contained in contiguous memory addresses

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 276

11. 7 Protection 249

(e.g., an image frame). Thus, it is natural to give exclusive ownership of a memory
block to a hardware task during its execution. By combining this locking with
the instantiation semantics for the operation, we can automate locking to prevent
the programmer from having to manage it explicitly. This can even be supported
by hardware using a scoreboarding technique similar to the ones used to prevent
hazards in aggressive processor pipelines [19].

Synchronization is implicit in all forms of dataflow (Chapter 5, Section 5.1.3).
The semantics of its operation are based on data arrival, not sequential timing,
which makes proper synchronization the job of the compiler, the hardware, and
the runtime system rather than the programmer. In streaming dataflow, stream
data comes with data presence information (see Section 11.5.1 and Chapter 9). In
general dataflow, I-structures allow fine-grained synchronization and concurrent
cooperation on common data structures [5].

11.6.3 Deadlock Prevention

Whether synchronization is implicit or explicit, the need for it in a concurrent
application presents the unfortunate opportunity for deadlock. Essentially, one or
more tasks in the application may not be able to continue because they are waiting
on other tasks. When the waiting set forms a cycle, the system will never be able
to make forward progress. However, because deadlock can arise only when a task
needs exclusive access to multiple resources simultaneously, many hardware tasks
will work on a single, coarse-grained set of data at a time, avoiding this issue.
Nonetheless, it is common for a hardware task to need multiple resources (e.g.,
one or more input buffers and an output buffer).

A common method to prevent deadlock is to force tasks to acquire all of their
resources in a canonically ordered sequence. This way we avoid deadlock by never
creating a cyclic dependence that could lead to it. With implicit and higher-level
locking, runtime support mechanisms can provide the ordering guarantee. This
demands that we establish a ·canonical ordering for all resources that might be
locked, both in hardware and in memory locations, and use it uniformly through­
out the system.

11. 7 PROTECTION

Modem computing systems all share a need for protection from processes
(intentionally or unintentionally) interfering with one another. This protec­
tion is critical for dealing with not only maliciously coded applications but
also poorly programmed ones. During the application development process,
isolation is critical because it allows designers to test and inspect their
implementations. Development is significantly more complicated if bugs can
bring down the development system, destroying state information critical to
the debugging process. The same need for protection holds for reconfig­
urable computing systems. The operating system must prevent processes from

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 277

250 Chapter 11 ■ Operating System Support for Reconfigurable Computing

using hardware inappropriately or from interfering with or intercepting
communication between tasks (hardware or software) of other processes. Some
of these responsibilities fall to the scheduler-preventing task resource starva­
tion is one example; others fall to the hardware allocator (which may be part of
the scheduler); still others fall to the system's hardware interlace.

11. 7 .1 Hardware Protection

Implementing user tasks as hardware circuits in the reconfigurable fabric
introduces a major security flaw unfathomable to the average software user or
developer. Depending on the underlying hardware design, a hardware task can
cause a short circuit, permanently damaging the computing system. Therefore,
either the hardware structure itself must prevent the possibility of short circuits
[3, 46] or the operating system must screen user hardware and prohibit any
implementations that cannot be proven to be free of short circuits.

Even if an individual task does not cause a short circuit, incorrectly allocating
hardware resources to more than one task can create one. That is why the allocation
process must physically separate tasks [44]. Figure 11.5 shows a generic FPGA
architecture with resources allocated to two different tasks (separated by the heavy
dashed line). Wires shown in bold cross the boundaries between tasks, causing
potential conflicts. Resources that cross task boundaries can be allocated to no
more than one task unless they are part of intertask communication (discussed in
the next section). This restriction also prevents maliciously designed tasks from
"snooping" communication paths to which they should not have access (also
discussed in the next section).

General FPGA structures complicate the task interference problem by having
large numbers of extremely flexible routing structures that may span large dis­
tances in the hardware. In contrast, some architectures designed specifically for

I I I I I I I I I I I I
- ,__ ,__ - -

- CLB --- I- - CLB ,__ ,__ ,__ - CLB -- -- CLB -

- - ,__ ,__ -

I I I I
I I I l

-- " -- . - . -... -.. - "-- ·-· - - . -.. - -- -· - - . --- -- --

I r r r

I I I I
- - - - -

- CLB -,__ I- ,__ CLB ,__ - -- CLB -- -- CLB -
- - ,__ - -

I I I I I I I I I I I I

FIGURE 11.5 ■ A generic FPGA architecture may have resources (bold lines) that cross the
boundary (dashed line) between two hardware tasks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 278

11. 7 Protection 251

reconfigurable computing, such as SCORE (Chapter 9 and (13]) and PipeRench
(Chapter 2, Section 2.1.2, and (17]), are composed of sets of reconfigurable logic
(pages/blocks/stages) that are more self-contained, and are the atomic hardware
unit for task allocation. Restricted, well-structured connections between these
blocks simplify the problem of preventing cross-task interference.

11. 7 .2 Intertask Communication

As discussed in Section 11.5.2, virtual memory provides each process with a
separate address space, preventing one process from accessing the memory space
of another. For the same reason, we must provide similar isolation for other forms
of communication.

Point-to-point communication, too, can provide isolation if we can guaran­
tee that tasks can only access communication paths owned by their process.
The programming model may support this view, but simply trusting it would be
equivalent to trusting that compilers will not allow hackers to create viruses. The
system (hardware and operating system) must ensure that the isolation model
is enforced.

To-provide isolation, the system could allow only indirect intertask com­
munication through shared virtual memory (15, 16]. However, this approach
can introduce significant communication latencies if both tasks are present
in hardware close to one another, but communicate through a relatively dis­
tant memory hierarchy acting as intermediary. Safe direct on-hardware inter­
task communication can be implemented by treating intertask communication
routing as special resources that cannot be self-allocated by a hardware task
description. Instead, the operating system must allocate these resources when
configuring the related tasks onto hardware (13]. By removing user control over
allocation of these resources, the isolation the programming model provides is
implemented by the operating system. This is much like how only the OS is
allowed to manipulate the page tables and TLBs that support the virtual memory
abstraction.

11. 7 .3 Task Configuration Protection

The loading of tasks into hardware must be restricted to the operating system to
ensure that the OS has an accurate view of hardware for scheduling/allocation
decisions and to enforce hardware and communication protection as discussed
previously. Hardware communication paths must therefore be accessible only to
OS kernel-level processes. An operating system can isolate task addressability
by employing a model akin to virtual memory, where each process can address
its own tasks only. Any tables of task information used by the operating system
in this case include the process ID as part of the task ID. Any requests for task
access are within the user task ID space. Isolation not only prevents processes
from triggering the execution, reconfiguring, removing, or altering of tasks from
another process, but it also reinforces the abstraction that processes have the
hardware to themselves.

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 279

252 Chapter 11 ■ Operating System Support for Reconfigurable Computing

11.8 SUMMARY

The primary role of the operating system is to provide abstraction. Abstraction
benefits the application designer in the following ways:

■ By simplifying the design process to remove the burden of low-level details.
■ By allowing the application to run on various hardware platforms and

capacities.
■ By implementing a virtual machine for each application to prevent

interference between them.

This chapter presented the needs, opportunities, benefits, and techniques sur­
rounding the abstraction of reconfigurable resources. It also showed how abstrac­
tion affects the application specification process, and discussed the issues involved
in implementing these abstractions in the operating system and architecture of
the reconfigurable computing system.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Buger. Clock rate versus IPC: The
· end of the road for conventional microarchitectures. International Conference on
Computer Architecture, 2000.

[2] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, J. Teich. Task scheduling for hetero­
geneous reconfigurable computers. Symposium on Integrated Circuits and System
Design, 2004.

[3] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, L. Albertson. Plasma: An
FPGA for million gate systems. ACM International Symposium on Field-Programmable
Gate Arrays, 1996.

[4] D. Andrews, D. Niehaus, R. Jidin. Implementing the thread programming model
on hybrid FPGA/CPU computational components. Workshop on Embedded Processor
Architectures, International Symposium on Computer Architecture, 2004.

[5] Arvind, R. S. Nikhil, K. Pingali. I-Structures: Data structures for parallel computing.
Proceedings of the Workshop on Graph Reduction, 1986.

[6] G. Brebner. A virtual hardware operating system for the Xilinx XC6200. International
Workshop on Field-Programmable Logic and Applications, 1996.

[7] G. Brebner. Multithreading for logic-centric systems. International Conference on
Field-Programmable Logic and Applications, 2002.

[8] M. Budiu, M. Mishra, A. Bharambe, S. C. Goldstein. Peer-to-peer hardware-software
interfaces for reconfigurable fabrics. IEEE Symposium on Field-Programmable Cus­
tom Computing Machines, 2002.

[9] M. Butts, A. M. Jones, P. Wasson. A structural object programming model, archi­
tecture, chip and tools for reconfigurable computing. IEEE Symposium on Field­
Programmable Custom Computing Machines, 2007.

[10] Commodore Business Machines. Commodore 64: Programmer's Reference Guide,
H. W. Sams, 1982.

[11] C. Chang, J. Wawrzynek, R. W. Brodersen. BEE2: A high-end reconfigurable com­
puting system. IEEE Design and Test of Computers 22(2), 2005.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 280

11.8 Summary 253

(12] M. Dales. Managing a reconfigurable processor in a general purpose workstation
environment. Design, Automation and Test in Europe, 2003.

(13] A. DeHon, Y. Markovskiy, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,
J. Wawrzynek. Stream computations organized for reconfigurable execution. Micro­
processors and Microsystems 30, September 2006.

(14] W. Fu, K. Compton. An execution environment for reconfigurable computing. IEEE
Symposium on Field-Programmable Custom Computing Machines, 2005.

[15] W. Fu, K. Compton. A simulation platform for reconfigurable computing research.
International Conference on Field-Programmable Logic and Applications, August 2006.

(16] P. Garcia, K. Compton. A reconfigurable hardware interface for a modem
computing system. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2007.

(17] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, R. Laufer.
PireRench: A coprocessor for streaming multimedia acceleration. International Sym­
posium on Computer Architecture, May 1999.

[18] J. R. Hauser. Augmenting a Microprocessor with Reconfigurable Hardware, Ph.D.
thesis, University of California, Berkeley, 2000.

[19] J. A. Jacob, P. Chow. Memory interfacing and instruction specification for recon­
figurable processors. ACMISIGDA International Symposium on Field-Programmable
Gate Arrays, 1999.

(20] H. Koptez. Real-Time Systems: De.sign Principles for Distributed Embedded Applica­
tions, Kluwer Academic Publishers, 1997.

(21] E. Lee. The problem with threads. Computer 39(5), May 2006.
(22] B. Levine, H. Schmit. Efficient application representation for HASTE: Hybrid

architectures with a single, transformable executable. IEEE Symposium on Field­
Programmable Custom Computing Machines, 2003.

[23] Z. Li, K. Compton, S. Hauck. Configuration caching management techniques
for reconfigurable computing. IEEE Symposium on FPGAs for Custom Computing
Machines, 2000.

[24] Z. Li, S. Hauck. Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation. ACMISIGDA Symposium on Field­
Programmable Gate Arrays, 2002.

(25] J. W. S. Liu. Real Time Systems, Prentice-Hall, 2000.
(26] R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida, N. Bagherzadeh, H. Singh.

A framework for reconfigurable computing: Task scheduling and context manage­
ment. IEEE Transactions on VLSI 9(6), December 2001.

(27] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, A. DeHon. Analysis
of quasi-static scheduling techniques in a virtualized reconfigurable machine.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2002.

[28] G. H. Mealy. The functional structure of OS/360, Part I: Introductory survey. IBM
Systems Journal 6(1), 1966.

[29] N. Moore, A. Conti, M. Leeser, L. S. King. Writing portable applications that
dynamically bind at run time to reconfigurable hardware. IEEE Symposium on
Field-Programmable Custom Computing Machines, 2007.

(30] B. J. Nelson. Remote Procedure Call, Xerox. Palo Alto Research Center technical report,
1981.

(31] V. Nollet, P. Coene, D. Verkest, S. Vemalde, R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable SoC. Proceedings of the Reconfigurable
Architectures Workshop, 2003.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 281

254 Chapter 11 ■ Operating System Support for Reconfigurable Computing

[32] A. Patel, C. A. Mad.ill, M. Saldana, C. Comis, R. Pomes, P. Chow. A scalable
FPGA-based multiprocessor. IEEE Symposium on Field-Programmable Custom Com-
puting Machines, 2006. · ·

[33] S. Qadeer, D. Wu. KISS: Keep It Simple and Sequential. ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2004.

[34] J. Rabaey. Reconfigurable processing: The solution to low-power programmable DSP.
Proceedings of ICASSP, April 1997.

[35] J. Resano, D. Mozos, F. Catthoor. A hybrid prefetch scheduling heuristic to minimize
at runtime the reconfiguration overhead of dynamically reconfigurable hardware.
Design, Automation, and Test in Europe, 2005.

[36] S. Singh. Integrating FPGAs in high-performance computing: Programming
models for parallel systems-the programmer's perspective. ACMJSIGDA Interna­
tional Symposium on Field-Programmable Gate Arrays, 2007.

[37] G. Snider, B. Shackleford, R. J. Carter. Attacking the semantic gap between application
programming languages and configurable hardware. International Symposium on
Field-Programmable Gate Arrays, 2001.

[38] M. Snir, W. Gropp. MPI: The Complete Reference, 2nd ed., MIT Press, 1998.
[39] C. Steiger, H. Walder, M. Platzner. Operating systems for reconfigurable embedded

platforms: Online scheduling of real-time tasks. IEEE 1ransactions on Computers
53(11), 2004.

[40] A. S. Tanenbaum. Modern Operating Systems, Prentice-Hall, 1992.
[41] R. Tessier, W. Burleson. Reconfigurable computing and digital signal processing:

A survey. Journal of VLSI Signal Processing 28(1-2), 2001.
[42] M. Vuletic, L. Pozzi, P. Hauck. Seamless hardware-software integration in reconfig­

urable computing systems. IEEE Design and Test of Computers 22(2 N), 2005.
[43] H. Walder, M. Platzner. Online scheduling for block-partitioned reconfigurable

devices. Design, Automation and Test in Europe, 2003.
[44] G. Wigley, D. Kearney. The development of an operating system for reconfig­

urable computing. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

[45] M. J. Wirthlin, B. L. Hutchings. A dynamic instruction set computer. IEEE Symposium
on FPGAs for Custom Computing Machines, 1995.

[46] Xilinx. XC6200 FPGA Advanced Product Specification, June 1996.
[47] B. Ylvisaker, B. Van Essen, C. Ebeling. A type architecture for hybrid micro­

parallel computers. IEEE Symposium on Field-Programmable Custom Computing
Machines, 2006.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 282

CHAPTER 12

THE JHDL DESIGN AND DEBUG SYSTEM

Brent Nelson, Brad Hutchings
Department of Electrical and Computer Engineering
Brigham Young University

JHDL [l, 8] is a CAD environment developed at Brigham Young University for
the design, debug, and runtime control of configurable computing applications
based on field-programmable gate array (FPGA) technology. Developed roughly
between 1997 and 2003 it was made available under an open-source license
(http://www.jhdl.org) in approximately 2000. The term JHDL can refer to one of
two things: (1) the JHDL circuit design language itself, or (2) the JHDL CAD
system. The JHDL language is a text-based design language for algorithmic
construction of structured circuits that is embedded within the Java program­
ming language. JHDL designs are created as Java programs that access JHDL
libraries to generate circuits. Within the JHDL CAD environment, circuits can
be simulated, netlisted, and downloaded to the reconfigurable computing plat­
form for execution and testing. Additional CAD tools can be built on top of the
JHDL infrastructure to support higher-level circuit construction, optimization,
and debugging tasks. One of the most unique features of JHDL is its runtime
environment, which provides a unified simulator/hardware debugger that can be
used to debug and validate a circuit through either simulation or hardware exe­
cution, and which contains many features normally found only in source-level
software debuggers.

12.1 JHDL BACKGROUND AND MOTIVATION

Historically, FPGA designers have used CAD tools from three sources to develop
their designs. The early tools were derived from application-specific integrated
circuit (ASIC) tool flows such as schematic capture, HDL synthesis, and so on.
Some were invented as new languages or language dialects specifically for FPGA
design [4]. Finally, some designers have used general-purpose programming lan­
guages (GPLs) to describe FPGA circuitry [3, 9]. Although there are good rea­
sons behind all three tool approaches, the case for using GPLs for FPGA design
is quite compelling. Compared to the other two alternatives (schematic capture
and HDL synthesis), GPLs are much more accessible to a larger set of users and
can be applied to a much broader set of problems. In addition, GPL program­
ming environments are less expensive, more widely available, and more mature
(less buggy} than the other two alternatives.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 283

256 Chapter 12 ■ The JHDL Design and Debug System

Within the realm of GPL-based design tools, a range of approaches as well as
design abstraction levels can be (and have been) supported. Sea Cucumber [HJ
is representative of high-level tools that compile standard programming lan­
guage descriptions into hardware. In this case, the tie to GPLs is simply that
the input specification syntax used is based on a GPL. A different approach
is represented by structural design languages that leverage GPL language con­
structs to assist the user in creating a circuit from a set of building blocks (gates,
wires, etc.).

JHDL is an embedded design language based on the Java GPL and is a struc­
tural design tool. Embedded languages like JHDL are specialized application
programming interfaces (APis) where user-defined classes and function over­
loading are carefully used to create the illusion of a customized circuit design
language within the GPL environment. APis allow designers to build circuits
by declaring interfaces and interconnecting gates and modules, all in a struc­
tural way. Embedding does this without making any modifications to existing
language syntax, which is an important point because modifying the GPL syntax
negates most of the advantages of the embedding approach. Examples of past
embedded languages include PAMDC [2] and Spyder [9].

As a structural design tool, JHDL constructs circuits from library primitives
with the help of provided Java methods (subroutines) and module generators
whose execution produces a circuit graph. This graph is then available for manip­
ulation, including simulation and netlisting. In this era of behavioral synthesis,
why are we still interested in structural design? There are three answers to this
question. First, when working with FPGAs, structural design techniques often still
result in circuits that are substantially smaller and faster than those developed
using only behavioral synthesis tools. Second, for many applications found in the
reconfigurable computing arena (especially where control over circuit placement
is required), structural capture is simply a faster, easier to learn, and more effec­
tive way to design an application. Thus, it has a place in any high-performance
FPGA design tool kit. Third, the circuit graph produced by the execution of a
JHDL description is amenable to a variety of modifications prior to netlisting. For
example, it can be programmatically modified to insert debug support features,
it can be instrumented to support runtime profiling and monitoring of the final
hardware, and it can be modified to support checkpointing (extraction of the
hardware computation's state for later restoration) and therefore support con­
text switching of designs on and off a configurable computing platform. None
of these features are as readily performed using other approaches, especially
behavioral synthesis approaches.

An overview of the design process for JHDL-based design is presented in
Figure 12.1. As shown, a collection of JHDL class libraries provides the founda­
tion for all JHDL designs. These libraries contain, at a minimum, Java classes
representing primitive circuit elements. Layered on top of the device primi­
tives library are additional libraries that contain subroutines to programmat­
ically generate higher-level circuits from the primitives (known variously as
module generators). A user creates a JHDL design by writing a Java program
that instances these library primitives or calls the module generator subroutines
that, in tum, instance primitives.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 284

12.2 The JHDL Design Language 257

JHDL Libraries

Module
generators
The Logic

class
Device

primitives

-

User's
JHDL circuit

description
(. j ava files)

+ Compile (j avac ...)

.class file�

+ Execute (j ava ...)

TheJHDL
circuit data
structure -Inetlist

Simul:a' i \\
Circuit

visualization
Other tools

EDIF J
I Vendor
t place/route

Bitstream j

FIGURE 12.1 ■ An overview of the design process and the J H DL system.

Once a JHDL Java program has been written and compiled to a set of class
files, it may be executed. The result is an in-memory data structure representing
the constructed circuit in the form of a graph, in which nodes represent circuit
elements and wires, and arcs represent connections between them. As shown in
Figure 12.1, once this data structure has been built, various CAD tools can be
applied to it to accomplish simulation, netlisting, or other desired activities. Of
interest is that tools can be used to modify the JHDL circuit data structure prior
to netlisting or simulation. This is shown in the figure by the arrow leading from
"Other tools" up to "The JHDL circuit data structure." These modifications can
be for purposes of adding debug or in-circuit monitoring features, and so on.

12.2 THE JHDL DESIGN LANGUAGE

As noted, because JHDL is embedded, two mechanisms are used to create the illu­
sion of it as a customized circuit design language: classes and function overload­
ing. The predefined classes provided by JHDL represent primitives, such as gates
and wires, so one design method is to simply create instances of these primitives
using the Java new construct. Beyond this, function overloading provides a higher
level of design abstraction by allowing the designer to call parameterized func­
tions that build the desired circuit out of primitive objects. This section describes
these levels of JHDL design from a circuit designer's perspective.

12.2.1 Level-1 Design: Primitive Instantiation
The JHDL primitives library shown in Figure 12.1 is simply a package of Java
classes where each class corresponds to a circuit primitive (e.g., AND, OR).
Given such a library, the lowest level of JHDL design is to instance primitives
from it using new.

gD
□-

[
-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 285

258 Chapter 12 ■ The JHDL Design and Debug System

Listing 12.1 shows a simple design built by instantiating primitives. The first
two lines import general JHDL libraries needed by all designs. The thirdlinport
makes the primitives from JHDL's Xilinx Virtex library available for use in the
construction of this design.

The mux class is next declared by subclassing (extending) the JHDL Logic

class. The interface ports (the named inputs and outputs for the cell) are declared
using the Cellinterface mechanism where, for example, in ("sel", 1)

declares an input port named sel that is of width 1 and out ("q", 1) declares
an output port named q that is also of width 1.

Listing 12.1 ■ Multiplexer example using primitive instantiation.

import byucc.jhdl.base.*;

import byucc.jhdl.Logic.*;

import byucc.jhdl.Xilinx.Virtex.*;

II This cell is a Java class called 'mux'

public class mux extends Logic

I I Declare the cell's ports

public static Cell Interface [] cell_interface = {

in ("a", 1),

in ("b", 1),

in ("sel", 1) ,

out ("q", 1),

) ;

I I This is the mux' s constructor

public mux(Node parent, Wire aw, Wire bw, Wire selw, Wire qw) {

super(parent);

connect("a", aw); connect("b", bw);

connect ("sel", selw); connect ("q", qw);

I I The code below this point is the 'body' of the cell and builds

II it from primitive wire and gate objects.

I I Declare and construct local wires

Wire al= new Xwire(this, 1, "al");

Wire a2 = new Xwire (this, 1, "a2");

Wire selbar = new Xwire (this, 1, "selbar");

II Invert signal "sel"

new inv(this, selw, selbar);

I I Form AND gates

new and2(this, aw, selbar, al);

new and2(this, bw, sel, a2);

I I Form OR gate for final output

new or2(this, al, a2, qw);

}

}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 286

12.2 The JHDL Design Language 259

The declaration of the constructor for the mux class comes next. This is a
standard Java constructor method that can be called to construct a new instance
of mux. The connect () calls associate a given wire with a specific port; for
example, the wire parameter aw is associated with (connected to) port a.

The last section of the constructor instantiates the wires and gates needed
to implement the multiplexer logic using Java new ... calls. The objects
being created to build the circuit are implemented by Java classes from the
byucc. jhdl. Xilinx. Virtex package and represent wires and logic gates.

The problem with using primitive instantiation, as just described, is that the
resulting design is specific to a particular primitive library (the example above
relies on the byucc. jhdl. Xilinx. Virtex package). Designing this way limits
the portability of the design between technologies, even when it is based on
building blocks as simple as individual Boolean gates. Another problem with
this design style is that it was specifically written for a multiplexer that has
single-bit inputs and outputs-in essence, it is a fixed netlist. The Logic class
overcomes these limitations.

12.2.2 Level-2 Design: Using the Logic Class
and Its Provided Methods

The Logic class consists of a large collection of subroutines that can be called
to create user logic. Listing 12.2 shows the design of the same multiplexer
(Listing 12.1) written using methods of the Logic class. The difference between
this and the previous design is that at the bottom of the constructor, rather than
primitive instantiation, this version uses method calls to build the MUX circuit.
These methods are available for our use because the mux class extends the prede­
fined Logic class. In Listing 12.2, the changes from the previous MUX example
are underlined, to show how the portion of the code that actually builds the
logic has been changed.

Listing 12.2 ■ MUX example written using Logic class.

import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
import byucc.jhdl.Xilinx.Virtex.*;

II This cell is a Java class called 'mux'
public class mux extends Logic {

II Declare the cell's ports
public static Cellinterface [J cell_interface = {

in ("a", 1),
in("b", 1),
in("sel", 1),
out("q", 1),

};

I I This is the mux' s constructor
public mux(Node parent, Wire aw, Wire bw, Wire selw, Wire qw)

super(parent);

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 287

260 Chapter 12 • The JHDL Design and Debug System

}

}

connect (•a•, aw); connect ("b", bw);
connect ("sel •, selw); connect ("q", qw);

I I The code below this point is the 'body' of the cell and builds
// it from Logic class subroutine calls.

or_o(this, and'("aw, not(selw)), and(bw, sel), qw);

Invoking and (a, b) calls byucc. jhdl. Logic. and (a, b), which is a subrou­
tine that builds the desired logic (an AND gate) and returns a reference (pointer)
to the output wire it created for the gate. This wire can then be used as an input
to the or_o () call, which creates a 2-input OR gate. 1

In addition to less verbosity, tremendous power derives from using methods
(subroutines) to build circuitry in this manner. OR methods with as many
inputs as desired can be created to accommodate any size OR gate and
can be written to accommodate input/output wires of any width. Thus, the
overloaded or () subroutine can handle requests for 2-input OR gates with
single-bit inputs/outputs as well as requests for 8-input OR gates with 32-bit
inputs/outputs.

The Logic class methods accomplish this using JHDL Techmapper classes.
Figure 12.2 shows that when user code calls a Logic method, that method
ultimately calls a Techmapper class object to do a technology-specific imple­
mentation of the logic it has determined should be built, and the Techmapper

object ultimately maps the resulting logic to technology-specific primitives. This
means that designs created using Logic class methods are completely tech­
nology independent-retargeting a design created using Logic to a different
technology is as simple as instructing the Logic class object to call on a
different technology's Techmapper. To date, Techmappers have been written
at Brigham Young University for the Xilinx: 4K, Virtex, Virtex-11, and Virtex-11
Pro technologies.

The Logic class contains methods to build gates, wires, registers, mem­
ories, multiplexers, adders, subtracters, and shifters, as well as methods for
manipulating wires: concatenation, slicing, and so forth. Users are encour­
aged to use the Logic style of Listing 12.2 instead of the primitive style of
Listing 12.1 whenever possible, as primitive instantiation is typically used only
for taking advantage of device-specific features such as clock managers and
memories.

1 Note that �ome of the function calls have an an_o suffix. Functions with this suffix instantiate
the gate using the provided input and output wires. Functions without this suffix instantiate both
the gate and an output wire that is connected to it. In either case, the output wire is returned
by the function. This approach reduces verbosity by eliminating the need to declare and construct
intermediate wires.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 288

12.2 The JHDL Design Language 261

UserCodej

> and2 & Virtex I r3

B
o'f-?, .__T _ .. �_ch_m_ap_p _e_r__, ne

w or
3 (

. ..)
x�_r_2_

� Library:

�
byucc. jhdl .Xilinx. Virtex

�A 4K I new or
3 (

. -�
a

��
2

Y Te chmapper V xor2

Library:
byucc.jhdl.Xilinx.4K

FIGURE 12.2 ■ The relationsh ip of user code, Logic class methods, and Techmapper objects.

12.2.3 Level-3 Design: Programmatic Circuit Generation
(Module Generators)

The creation of programmatic circuit generators (module generators) is a
natural extension of the techniques employed by the Logic class. That is, Java­
based subroutines that intelligently create complex hardware modules based
on build time-supplied parameters can be created by any JHDL user. A very
simple example that illustrates parameterized design is shown in Listing 12.3.

Listing 12.3 ■ n-bit full adder example.

/ / This design assumes the existence of a FullAdder JHDL design
// which it instances repeatedly to build an n-bit adder.
import byucc.jhdl.base.*;
import byucc. j.hdl. Logic. *;
public class NBitAdder extends Logic

public static Cell Interface [] cell_interface = {
pa ram (R n R , INTEGER) ,
in(RaR, R

n
R) f

in(R b R, R
n

R),
out(Rsum R , Rn+l")

};

public NBitAdder (Node parent, Wire a, Wire b, Wire sum) {
super (parent); / / Always call super-constructor
int width = a. get Width () ; / / Get the width of the 'a' wire
bind("n R , width);
connect("a", a); connect (R b", b); connect("sum", sum);

/ I Create intermediate carry wires as a multi-bit wire
Wire carries = wire (width);

/ / Build and connect together needed full adders
// The gw () method calls pull individual bits
// out of multi-bit wires. The gnd () method returns
/ / a single constant '0' wire.

~==n
D==-0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 289

262 Chapter 12 ■ The JHDL Design and Debug System

}

for (int i=O; i < width; i++) (
if (i==O)

new FullAdder(this, a.gw(i), b.gw(i), gnd(),
sum.gw(i), carries.gw(O));

else
new FullAdder(this, a.gw(i), b.gw(i), carries.gw(i-1),

sum.gw(i), carries.gw(i));

buf_o(carries.gw(width-1), sum.gw(width));
}

This is an NBitAdder design2 that programmatically constructs a multibit adder
using previously designed full adder cells (not shown). In its Cellinterface

declaration, the first line, par am ("n", INTEGER), declares a parameter n that
is of type integer (similar to a generic in VHDL-see Section 6.1.3). More
precisely, n is declared to be an instance of the Java class INTEGER. All port
declarations in the Cellinterface then use n or n+l as their width. When
NBi tAdder is constructed, the bind () call binds the value of n to the width of
the a wire. Based on this information, connect () calls will verify that the wires
passed in to the constructor are the correct width for the ports they are being
connected to. Finally, the ripple-carry adder body is constructed using a Java
for loop that creates and interconnects FullAdder cells. The final buf_o ()

call connects the top carry-out bit to the most significant bit of the sum.
NBi tAdder is a trivial example of a module generator, that is, a circuit that

can be parameterized according to some set of criteria. Listing 12.4 is a slightly
more complex version of the NBi tAdder design that has been parameterized for
pipelining (additions to the original design have been underlined in the source
code). Here a single Boolean parameter "pipe" is passed into the cell construc­
tor method to control whether a pipeline register is to be placed on the adder
output. The main difference between this and the previous design is that the last
few lines of the constructor body connect the adder outputs to the cell's outputs
through either a register or a buffer, based on the value of the "pipe" parameter.

Listing 12.4 ■ n-bit full adder with optional pipelining .

. . . I I Same imports as previous NBitAdder design
public class NBitAdder extends Logic (

public static Cellinterface [] cell_interface =

I I Same ports as previous NBitAdder design
} ;

public NBitAdder (Node parent, Wire a, Wire b, Wire sum, Boolean pipe) {

2 The Logic class contains a family of multibit adder constructor methods that would normally
be called instead of this example design. Nevertheless, this design is presented here to illustrate
module generator-like concepts in JHDL.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 290

12.2 The JHDL Design Language 263

... I I Main constructor body same as previous NBitAdder design

Wire tmpsum;

I I New code is below

// If desired, insert pipeline latch

if {pipe)

{reg_o {tmpsum, sum);

else

buf_o {tmpsum, sum);

On the surface this is similar to what can be accomplished through the use
of VHDL generics: the for-generate and if-generate statements. However,
parameterized circuit generation is limited in VHDL, consisting of very simple
conditional circuit instantiations that are controlled by a small subset of the
language dedicated solely to this purpose. In JHDL, the entire Java language can
be brought to bear on this problem and sophisticated algorithms can be used
to generate circuits. JHDL module generators exist for counters, comparators,
accumulators, arithmetic units (multipliers, dividers, floating-point units, digit
serial units), decoders, shift registers, and memories. These have employed, as
a part of the module generators' calculations, simple timing and area estima­
tion techniques, recursive tree search computations, file 1/0, and the like. Such
module generators have been parameterized for features such as number format,
rounding/saturation/truncation modes, pipelining granularity, constant encoding
methods, and resource usage (serial versus parallel implementation).

12.2.4 JHDL Is a Structural Design Language

Structural design often improves the performance of configurable comput­
ing applications because many applications that are FPGA based can benefit
from manual placement of at least some parts of the design. Effective manual
placement can be achieved only if the overall organization of the circuit is well
understood-it is very difficult to manually place circuitry generated by behav­
ioral synthesis.

Placement attributes can be attached to JHDL primitive circuit objects as
string properties, to be interpreted by backend tools. To simplify the attaching
of these attributes when Logic methods are used in circuit building, the Logic

class also contains a placement API to help in the tasks of (1) mapping gates to
lookup tables (LUTs), ALUs, or other atomic FPGA cells, and (2) specifying the
relative placement of those cells. For example, to force a collection of gates that
implement a 3-input, 1-output logic function into a single LUT, the map () call
can be used as in:

map(a, b, ci, s);

This will force the cone of logic with a, b, and ci as inputs and with s as
output into a single primitive (a LUT for most FPGA technologies). Then that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 291

264 Chapter 12 ■ The JHDL Design and Debug System

primitive can be placed by specifying the location of its output wire in a place ()
call:

place (s, "R0C0 .F") ;

Note that these methods do not create logic themselves, but rather pack already
created logic into LUTs, which they then physically place. The use of these
method calls is technology specific, so a technology-specific Techmapper is
used to determine their interpretation for the target technology at build time.
This placement API acts as a window of opportunity for the user to obtain
design assistance from the Techmapper. For example, when map () is called, the
Techmapper checks the network of gates for validity (i.e., intermediate fanin or
fanout to the network), and, when the circuit is fully constructed, it resolves
all placement hints and reports any placement conflicts. In this way placement
errors can be detected at the front of the tool chain rather than during place
and route, which helps minimize design cycles.3

12.2.5 JHDL Is a Programmatic Circuit Design Language

That JHDL is also a programmatic circuit design language is perhaps the most
powerful and unique feature of GPL-based circuit generation techniques. The
key point is that a JHDL description, once compiled, is an executable Java pro­
gram; it is the execution of that Java program that constructs the circuit. This
gives JHDL significant advantages over HDL descriptions, which must be parsed
by a synthesizer and a corresponding circuit then constructed.

With JHDL there is no separation between the code that represents the
circuit itself and any code that might be executed to help determine how best
to generate it-all of the code in a JHDL description is executable Java. In a
language like JHDL there is a very clear separation between circuit genera­
tion and computation: Module instantiation is circuit generation and everything
else is computation. In contrast, all code written in a VHDL or Verilog design
(excepting simulation testbenches) is the circuit description-there is no provi­
sion for code that can be executed apart from it. This presents difficulties when
computations are required, prior to circuit construction, to determine how best
to generate the circuit.

At one time, designers often resorted to macro preprocessors with Verilog
code to provide for-generate- and if-generate-like functionality for their
designs. Similarly, some designers (including our own students) have often writ­
ten C or C++ circuit generators that generate VHDL or Verilog code as output in
order to work around the lack of an effective compile time computational capa­
bility in conventional HDLs. In contrast, JHDL and other GPL-based embedded
languages avoid such workarounds because they provide a clean mechanism

3 In contrast, VHDL annotation approaches for placement are nonstandard and differ from tool
to tool (see Section 6.2.1). Also, VHDL placement directives are passed through to the backend
tools without performing any error checking such as described previously.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 292

12.3 The JHDL CAD System 265

for freely intermixing computational code with circuit descriptions-all based
on the general-purpose computational power of the underlying GPL. One could
say that languages like JHDL don't need a formal elaboration step as VHDL and
Verilog do. Or one could say that the entire circuit construction process in JHDL
is an elaboration step, albeit a much more powerful one than that provided by
HDLs.

Finally, there is no synthesizable subset of JHDL, and thus there is no possi­
bility for a mismatch between simulation and synthesis results due to differing
CAD tools' interpretation of the description. The same circuit is constructed
each time the JHDL code is executed regardless of whether it is intended for
simulation or for netlisting.

12.3 THE JHDL CAD SYSTEM

As Figure 12.1 showed, the execution of a compiled JHDL design creates an
in-memory structural representation of the JHDL circuit. This is a classical cir­
cuit graph where Java objects represent the cells and wires in the circuit and
pointers between these objects represent connections and hierarchical parent­
child relationships. The figure also showed that this circuit data structure is the
entry point for the JHDL CAD system, meaning that all CAD functions and tasks,
such as simulation and netlisting, use the circuit data structure via an API pro­
vided for this purpose. The result is that it is straightforward to write Java-based
CAD tools for interacting with and manipulating the circuit data structure (and
therefore the circuit).

12.3.1 Testbenches in JHDL

Because a JHDL design is a Java program, it needs a main () routine. It is the
program's main () routine that usually acts as a testbench for JHDL designs.
Listing 12.5 shows such a main () testbench that, like most JHDL testbenches,
does three things:

■ First, it creates an HWSystem object that is the top-level container object
for the circuit and contains the simulator and netlister objects. The entire
user design (testbench and device under test) exists as a child node of
HWSystem in the resulting JHDL object hierarchy.

Listing 12.5 ■ A sample JHDL testbench.

import ... ; / / Import needed packages

I I Declare testbench class
public class tb_myCell extends Logic implements TestBench {

static HWSystem hw; / / Declare a HWSystem
private int aVal, bVal, cinVal; // Deslare some private variables

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 293

266 Chapter 12 • The JHDL Design and Debug System

I I The main () routine for this Java program

public static void main (String argv [J) {

)

II Step 1: build a HWSystem

hw = new HWSystem {) ; I I Build a HWSystem

I I Step 2: Build an instance of this testbench

tb_myCell tb = new tb_myCell (hw, ...) ; I I Pass in some params

I I Step 3: Do something with the circuit now that the testbench

I I and DUT are built. We can do any one of:

II 1. Start a simulation

II 2. Netlist the circuit

I I 3. Traverse or modify the circuit data structure

I I 4. Start a GUI-based CAD system

I I We will do the last - create a GUI-based CAD system

II Create a new instance of cvt (the Circuit Visualization Tool)

new cvt (tb) ;

I I The constructor for this testbench

public tb_myCell (Node parent, ...) ; I I Not all params shown

super(parent);

)

II Step 1: Specify (create) a TechMapper for Virtex

setDefaultTechMapper(new VirtexTechMapper(true));

I I Step 2: Build wires to connect to DUT

bn = wire(l,"bn"); cinn = wire (1, "cinn"); an = wire (1, "an");

sn = wire (1, "sn"); coutn = wire(l,"coutn");

I I Step 3: Build mycell (the DUT)

myCell dut = new myCell (this, an, bn, cinn, sn, coutn, "myCell");

■ Second, as shown in Listing 12.5, it creates a testbench object (which in
tum creates the device under test).

■ Third, once the JHDL circuit data structure has been created, the main ()

routine can do one of a number of things: (1) start a batch simulation,
(2) call on the netlister to netlist the design, or (3) create a GUI-based
interface to enable the user to interactively work with the circuit. In
Listing 12.5, the main () routine starts up cvt, a graphical environment
for viewing the circuit, simulation, and netlisting.

12.3.2 The cvt Class

Class cvt is a GUI-based system with widgets for navigating the design hierarchy,
starting a simulation of the circuit, generating a netlist of the circuit, and so forth.
The actual simulation and netlisting classes are accessed via the HWSystem class,
and cvt makes calls into it to satisfy user requests. The cvt class implements
a standard event-driven GUI system based on Swing, distributed as a part of
the JHDL language. Swing was chosen for its portability and availability on all

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 294

FIGURE 12.3 ■ The JHDL cvt GUI.

12.3 The JHDL CAD System 267

platforms. Class cvt uses the built-in Swing event mechanism for its own internal
communication.

Figure 12.3 shows a screenshot of the cvt GUI. In the upper left is a text con­
sole window where commands may be typed. Menus and buttons above largely
duplicate what can be entered in the window. Below the console is a hierarchy
navigation tool. On the left is a hierarchy browser; on the right is a list of ports
for the currently selected cell along with their current values (if a simulation is
in progress). Beneath the browser is a waveform viewer; and on the lower right
half of the figure are two different schematic viewers. This screenshot shows
that the various parts of the GUI are all contained in a single pane but each can
be broken out into an individually sized window if desired.

Unlike with most CAD tools, there is no standard JHDL CAD system. Rather, the
circuit data structure API provides a mechanism for any program a user might
write to interact with the circuit. The cvt class is simply one such example.
Examples of other programs include stand-alone simulators and netlisters.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 295

268 Chapter 12 • The JHDL Design and Debug System

Many of the debugging experiments described later in this chapter were carried
out by writing custom CAD tools to interact with the circuit data structure API.
For example, a number of tools have been written that modify the circuit prior
to netlisting by, for example, inserting clock managers or other special-purpose
circuitry into the user's design. These tools have also instrumented designs for
debug by adding scan chains to them. Finally, complete software applications
that interact with the circuit during simulation and execution have been created.
This last point is a unique feature of JHDL-once the circuit has been built,
application software can be written that communicates with the design via the
HWSystem APL This allows the complete application (software and hardware) to
be deployed as a single Java program.

12.4 JHDL'S HARDWARE MODE

JHDL supports hardware-in-the-loop debugging with what is called hardware
mode. Hardware mode is based on the observation that much of the data created
when a JHDL circuit is built and simulated is also useful in the actual hardware
debug process.

Figure 12.4 shows JHDL's dual simulation/hardware execution environment.
When initially simulating a design (left side of figure), the simulation/runtime
API provides cvt and simulator access to the JHDL circuit graph.

After the design's configuration bitstream is created, hardware debugging can
take place using hardware mode (on the right of Figure 12.4). Loading a JHDL
design in cvt now performs two steps: (1) the JHDL design is constructed as
usual to create the internal circuit representation, and (2) the bitstream is con­
figured onto the specified FPGA platform. Using the same cvt GUI as before, the
user can advance execution of the design via the simulator control buttons or via
commands on the command line. However, instead of cycling the simulator, these
actions cause cvt to send clocking commands to the FPGA platform through the
board's driver. After a clock command is executed, the state of the FPGA olatform is
retrieved using readback and back-annotated into the JHDL circuit data str.A.cture.

Simulate Simulator

cvt and
14--------,-HWSystem_....,.___...._. Hardware Configure

Execute
.__

m_a....,
na

....
g_e _r Readback

..... ..

...

Simulation/runtime API

The JHDL
circuit data

structure

FPGA
platform

FIGURE 12.4 ■ The JHDL unified simulation/hardware execution environment.

I I

□

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 296

12.5 Advanced JHDL Capabilities 269

The simulator is then used to compute the steady state of all combinational nodes
in the circuit as a function of these state values, and a complete picture of the
hardware execution state is now present in the JHDL circuit data structure. As
a result, cvt can query and display the state of the circuit as normal, just as it
would if the circuit were being simulated. In this case, however, it displays hard­
ware signal values rather than simulated signal values.

JHDL's hardware mode is readily adapted to new hardware platforms given
programmatic methods that exist for communicating with the board. The
following capabilities are required for adaptation:

■ Configuration: This is needed to configure the FPGA(s) on the hardware
platform with bitstreams.

■ Clock control: One or more subroutines are required to single- or
multistep the clock on the board.

■ Readback: This is necessary to read back the state from the FPGA(s) on
the board.4

Given these capabilities, JHDL can easily be extended to communicate with the
board for hardware mode operation. 5 This is achieved by modifying a thin layer
of Java translation code so that standard JHDL methods can communicate with
the specific C-based device driver subroutines for the board.

12.5 ADVANCED JHDL CAPABILITIES

A variety of design and debug tools have been built on top of JHDL. A few of
these are described in the following sections.

12.5.1 Dynamic Testbenches

Some of the power of JHDL derives from its extensive use of the Java feature
called reflection. The Java reflection API provides a set of methods that a Java
program can use to examine the structure of a Java . class file. By reflecting
on a Java class, a program can determine the names and type signatures of all
methods in it and, if desired, dynamically load the class file and construct an
object of the class.

4 To date, JHDL supports hardware mode only on Xilinx platforms, because they contain a read­
back capability. Experiments have also been done to determine the cost of adding a scan chain
to user designs for this purpose when readback is not available [12].
5 An additional capability would also prove very useful-loading state into the FPGA. In the case
of Xilinx FPGAs (the focus of the JHDL hardware mode work), this can be done by modifying
the configuration bitstream appropriately and then reconfiguring the FPGA with that bitstream.
Thus, this capability is not listed as a strict requirement in the list. A number of the debug experi­
ments described in the next section performed bitstream modification to load state into an FPGA,
but would have benefited from a simpler mechanism that did not require a reconfiguration of
the FPGA.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 297

270 Chapter 12 ■ The JHDL Design and Debug System

The JHDL dtb class is a general-purpose testbench tool that uses reflection to
automatically perform testbench functions, eliminating the need, in most cases,
for the user to write code for constructing the testbench. The user runs dtb

and specifies the name of the circuit to be constructed on the command line.
dtb examines the corresponding file (FullAdder. class, for example) using
reflection to determine the parameters required by its constructor. It then creates
the necessary wires and calls the constructor to build an instance of the specified
class, connecting it to the wires it created. When dtb is used, the dtb object itself
performs all of the services required of a testbench. For example, it examines
the constructed circuit, determines the clocking required, and sets up the clock
for simulation. In addition, when everything has been constructed, it brings up
cvt so that design simulation and netlisting can proceed as usual. All that is
required of the user is to provide the simulation stimulus either interactively or
via a script.

12.5.2 Behavioral Synthesis

Sea Cucumber [11] is a behavioral synthesis tool that was built on top of the JHDL
framework and accepts a behavioral description written in Java that is compiled
into bytecodes by any standard Java compiler. It parses these byte codes, dis­
covers instruction-level parallelism, performs other common optimizations, and
then synthesizes a circuit by invoking calls to the JHDL Logic library. Advan­
tages provided by the JHDL framework include access to JHDL visualization and
debugging tools to verify Sea Cucumber designs and access to JHDL netlisting
modules so that the synthesized JHDL circuitry can be converted into netlists for
place and route by vendor software. In fact, all of the previously mentioned JHDL
features are available to Sea Cucumber, including hardware mode, dynamic test
benches, and the like.

A behavioral debugger, also developed in conjunction with Sea Cucumber [7],
allows the user to debug fully optimized code in the context of the original
user description. It does this by traversing the JHDL circuit structure to retrieve
circuit values and presenting them to the user in the context of the JHDL CAD
framework.

12.5.3 Advanced Debugging Capabilities
Much of the power of JHDL comes by exploiting a single FPGA feature (read­
back) to access internal FPGA state and present the data to the user in some
form. Because of this enhanced visibility, the current JHDL debugging environ­
ment has proved to be effective for verifying and debugging large, complex appli­
cations. However, much more powerful debugging capabilities can be achieved
if a small part of the FPGA is reconfigured to implement supplemental circuitry
to aid debug and validation. This is similar in spirit to the "-g" flag used in
conventional software compilation where the compiler can enable debugging
by inserting additional code. Because FPGA hardware is reconfigurable, any
inserted debugging circuitry can be removed when the application is ready for
deployment.

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 298

12.5 Advanced JHDL Capabilities 271

Some of the advanced debugging features that are possible via embedded
debug circuitry include:

■ Signals can be automatically routed to external 1/0 pins for viewing.
■ Unused FPGA circuitry and memory can be used to implement "probe"

circuits that sample and store circuit activity during circuit execution.
■ Unused FPGA hardware can be used to implement complex, real-time

hardware breakpoints.

As long as designers must manually modify their designs in order to embed
debug circuitry, these powerful techniques may go unused. The best way to
overcome this is to automate the process of synthesizing and embedding debug
circuitry into user circuitry-a task best performed directly by the CAD tool
environment. The ability to use a debugging tool as an integrated part of the
design environment, tied to the original design specification and accessed using
standard user interfaces, makes this a powerful and convenient way to develop
and verify a design.

As a part of DARPA-funded research at Brigham Young University, researchers
investigated a variety of advanced debug mechanisms using JHDL, all of them
were aimed at providing a debug system with capabilities similar to those found
in software development systems and that are significantly easier to use than
manual methods. A few of these mechanisms are described in the following
subsections.

Debug circuitry synthesis
In software debugging using the gdb symbolic debugger or similar tools, it is
not uncommon for the user to temporarily change variable values as a way of
determining how the program would behave if the variable had that different
value. The work described by Graham [6] demonstrated a similar capability for
hardware. First, JHDL was used to perform a readback of the FPGA's state.
Changes were then made to the bitstream to reflect the user's choice for the
new circuit state, and the bitstream was configured back into the FPGA. Upon
resumption, the system was seen to continue execution from the previous point
but with changed state values.

As another example, in the work described by Graham et al. [5], JHDL and
JBits were used together to modify FPGA design bitstreams on the fly in order to
rewire embedded logic analyzers to user logic in a placed-and-routed design-all
within a few seconds of a mouse click. The collected data could then be viewed
in the original design environment using the built-in JHDL GUI framework.

When these features first appeared in JHDL, there were no equivalent com­
mercial debugging tools available. However, with the passage of time, commer­
cial offerings have improved, incorporating some of the features of the original
JHDL system. Altera's SignalTap and Xilinx's ChipScope now provide conve­
nient ways to integrate customized logic analyzers into user designs (these are
implemented with unused programmable circuitry), and offer separate tools
that emulate a logic analyzer display on the PC's monitor. However, JHDL still
differs from these products in the level of integration it provides (the debug

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 299

272 Chapter 12 ■ The JHDL Design and Debug System

environment is the design environment). Perhaps Synplicity's Identify tool comes
closest to JHDL in this regard because it provides the ability to view some circuit
behavior in the original VHDL context. Still, none of the commercial offerings
allow the user to simultaneously integrate logic analyzers, display these results
in the original design environment, and modify the current state of the circuit
during debug.

Checkpointing, context switching, and remote access
Checkpointing is defined as saving the state of a computation in a way that
the computation can later be restarted from that same point. It is often used
in software to allow a long-running computation such as a simulation to be
restarted from a known point if, for example, the system it is running on goes
down. The concept of readback can easily be extended to extract the state of the
entire FPGA platform.

Once this is done, checkpointing of FPGA-based computations can be sup­
ported. To do this, the JHDL HWSystem was augmented not only to retrieve the
state of the FPGA but also to retrieve the state of all memory elements on the
hardware platform (FIFOs and memories) and save that information to disk.
Later, the state could be retrieved from disk and loaded back onto the FPGA
platform, whereupon execution would continue from the time of the check­
point. What is important is that a simulation checkpoint could be loaded onto
the FPGA platform and hardware execution could be continued from that point.
Likewise, a hardware execution checkpoint could be loaded into JHDL and a
simulation continued from that point. With the availability of checkpointing in
JHDL, it then became possible to time-share an FPGA platform using context
switching (swapping an application off the platform to make room for another).
Experiments conducted at Brigham Young University on checkpointing and con­
text switching are described by Landaker et al. [10], to which the interested
reader is referred for more information and results.

Finally, JHDL was also modified to permit remote access to an FPGA plat­
form. In this work, the cvt and HWSystem classes were extended to include a
client-server capability so that hardware mode communications with an FPGA
platform could be conducted over a network.

12.6 SUMMARY

JHDL is currently in use in a variety of research projects, from module gener­
ators systems to behavioral synthesis systems to microarchitectural simulation
systems. By providing a framework for the construction, simulation, netlisting,
and hardware debug of FPGA-based designs, JHDL allows researchers to focus
on tasks other than recreating the infrastructure that JHDL provides. Of particu­
lar importance in this regard, is that JHDL provides a target for use by synthesis
tools with its primitive libraries and its Logic and Techmapper classes.

JHDL has been in use since approximately 1998 and was released under
an open-source license (http://www.jhdl.org) in approximately 2000. Potential

PATENT OWNER DIRECTSTREAM, LLC
EX. 2137, p. 300

