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8.8 NONBLOCKING POINT-TO-POINT COMMUNICATION 
The point-to-point communication calls introduced in Sections 8.5.1 and 8.5.3, MPI_Send and 
MPI_Recv, do not return from the respective function call until the send and receive operations have 
completed. While this ensures that the send and receive buffers used in the MPI_Send and MPI_Recv 
arguments are safe to use or reuse after the function call, it also means that unless there is a simul
taneously matching send for each receive, the code will deadlock, resulting in the code hanging. This 
common type of bug is examined in Chapter 14. One way to avoid this is by using nonblocking point
to-point communication. 

Nonblocking point-to-point communication returns immediately from the function call before 
confirming that the send or the receive has completed. These nonblocking calls are MPI_Isend and 
MPI_Irecv. They are used coupled with MPI_ Wait, which will wait until the operation is completed. 
When querying whether a nonblocking point-to-point communication has completed, MPI_Test is 
often paired with MPl_lsend and MPI_Irecv. Nonblocking point-to-point calls can simplify code 
development to avoid such deadlocks more easily and also potentially enable the overlap of useful 
computation while checking to see if the communication has completed. 

The syntax of each of these calls is the same as for the blocking calls except for the addition of a 
request argument and the elimination of the status output in the MPI_Recv arguments. 

int MPI_I1end (void •message, i~t count, MPI_Datatype datatype. int desti int tag, 
MPI_Comm comm. MPI_Request •send_request) 

int MPI_Irecv (void *message, tnt count, MPI_Datatype datatype, tnt Source~ int tag, 
MPI_Comm comm, MPI_Request •recv_requestl 

Because both MPl_lsend and MPI_Irecv return immediately after calling without confirming that 
the message-passing operations have completed, the application user needs a way to specify when 
these operations must complete. This is done with MPI_ Wait: 

int MPI_Wait(MPI_Request •request, MPI_Status •status) 

When MPI_ Wait is called, the nonblocking request originating from MPl_lsend or MPI_Irecv is 
provided as an argument. The status that was previously provided directly from MPI_Recv is now 
supplied as an output from MPI_ Wait. 

Similar to MPI_ Wait, MPI_Test can be paired with an MPI_lsend or MPI_Irecv call to query 
whether the message passing has completed while performing other work. MPI_ Test shares similar 
syntax to MPI_ Wait, adding only a flag that is set to true if the request being queried has completed. 

int MPCTest(MPI.:..Request Hequest, int •flag, MPI_Status •status l 
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An example of using nonblocking communication is presented in Code 8.12. In this example, the 
send commands are issued first, followed by the receive commands. If using blocking communication 
and sending a sufficiently large message this would normally result in a deadlock, but nonblocking 
communication avoids this pitfall. 

1 #include <stdlib.h> 
2 #include <stdio.h> 
3 #include <mpi .h> 
4 

int main(int argc, char* argv[J) { 
int a, b; 
int size. rank; 

8 int tag= O; // Pick a tag arbitrarily 
9 MPI_Status status; 

10 MPI_Request send_request, recv_request; 
11 
12 MPI_Init(&argc, &argv); 
13 MPI_Comm_size(MPI_COMM_WORLD, &size); 
14 MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
15 
16 if (size !=2) { 
17 printf("Example is designed for 2 processes\n"); 
18 MPI_Finalize(); 
19 exit(O); 
20 
21 if (rank=O) { 
22 a=314159; //Value picked arbitrarily 
23 
24 MP I_! send (&a, 1, MP!_! NT, 1, tag, MP l_COMM_WORLD, &send_reques t); 
25 MPI_Irecv (&b, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &recv_request); 
26 
27 MPI_Wait(&send_request, &status); 
28 MPI_Wait(&recv_request, &status); 
29 printf ("Process %d received value %d\n", rank, b); 
30 
31 }else{ 
32 
33 a=667; 
34 
35 
36 
37 

MPI_Isend (&a, 1, MPI_INT, 0, tag, MP!_COMM_WORLD, &send_request); 
MPI_Irecv (&b, 1, MP!_!NT, 0, tag, MPI_COMM_WORLD. &recv_request); 

38 MPI_WaitC&send_request, &status); 
39 MPI_Wait(&recv_request, &status): 
40 printf("Process%dreceivedvalue%d\n", rank, b); 
41 l 
42 

,,,.I 
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43 MPI_Finalize(J: 
44 return o: 
45 I 
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Code 8.12. Example of nonblocking point-to-point co · · 
3 I 4 I 59 to process I while process I sends the inte er 6~~umcat1on. Process O . sends the integer 

listing oflsend and Irecv in lines 24-25 and 35-36 J o process 0. The particular order of the 
oes not matter because the calls are nonblocking. 

> mpirun -np 2 ./code12 
Process O rec~ived value .667 
Pr'ocess 1 received value 314159 

8.9 USER-DEFINED DATA TYPES 
Application develop~rs wil_l frequently wish_ to_ create a user-defined data type built out of the pre

defined MPI types hsted m Table 8.1. This 1s accomplished using MPI_Type_create_struct and 
MPI_Type_commit. 

MPI_Type'""create_struct(int number_items; 
const int *blocklengths, 
canst MPI_Ai nt •arraLof _offsets. 
constMPI_Oatatype *arraLof_types, 
MPCDatatype *new_datatype_name) 

;M PI_Type_commi t(MPI_Datatype · *new_datatype_name) 

Creating a user-defined data type consists of providing the number of different partitions of existing 

MPI data-type elements (number _items), three separate arrays of length number _items containing the 

number of elements per block, byte offsets of each block and the MPI data types of each block, and the 

new name for the user-defined type. This name is then passed as an argument to MPI_Type_commit, 

after which it can be used in all existing MPI functions. 
An example of creating a user-defined data type from a C struct and broadcasting it to all processes 

is provided in Code 8.13. In this example, a C struct containing some typical variable names for a 

simulation is populated with values on process 0. The user-defined data type for this C struct, mpi_par, 

is created and committed on lines 38-39. The values for the structure are then broadcast to all other 

processes in line 41. 
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1 4tinclude <stdio.h> 
2 jfai ncl ude <s tddef, h> 
3 #include "mpi .h" 
4 
5 typedef struct \ 
6 intmax_iter: 
7 doubletO: 
8 doubletf: 
9 daub le xmi n: 

10 l Pars: 
11 
12 int main(int argc,char **argv) 

13 
14 MPI_lnit(&argc,&argv): 
15 int rank: 
16 ; nt root= O: //define the root process 
17 MP I_Comm_rank ( MP J_(OMM_WORLD, &rank) : / / identify the rank 

18 
19 Pars pars: 
20 if ( rank= root l 
21 pars.max_iter=lO; 
22 pars.tO=O.O; 
23 pars.tf=l.O; 
24 pars.xmin=-5.0; 
25 
26 
27 intnitems=4: 
28 MPI_Datatype types[nitems]: 
29 MPI_Datatype mpi_par: // give my new type a name 
30 MPI_Aint offsets[nitems]: // an array for storing the element offsets 
31 int blocklengths[nitemsJ; 
32 
33 types[OJ = MPI_INT: offsets[OJ = offsetof( Pars ,max_iter) ;bl ockl engths[O] = 1; 
34 types[l] =MPI_DOUBLE; offsets[l] =offsetof(Pars,tOJ;blocklengths[lJ = 1; 
35 types [2] = MP !_DOUBLE; offsets [2] = offsetof (Pars, t f); b 1 ockl engths [2] = 1; 
36 types [3] = MPI_DOUBLE; offsets [3] = offset of (Pars, xmi n l; bl ockl engths [3] = 1; 
37 
38 MPI_Type_create_struct(nitems,blocklengths,offsets,types,&mpi_par); 
39 MPI_Type_commi t(&mpi_par); 
40 
41 MPI_Bcast(&pars,1,mpi_par,root,MPI_COMM_WORLD); 
42 
43 
44 
45 
46 

printf("Hello from rank %d; my max_iter value is %d\n" ,rank,pars.max_iter); 

MPI_Final i ze(); 

47 return O; 
48 

Code 8.13. Example of creating and using a user-defined data type in an MPI collective. 

_I 

l 
J 

l 
.\ 
I 

'I 

) 

I 
I 
I 

j 
! 
L 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 304



''-, ./ 
:;;:' 

8.11 EXERCISES 283 

> mpirun -np 4 . /c-0del3 
Hello from rank 0: my max_iter value s 10 
Hello from rank 2; my max_i-ter value s 10 
Hello from rank 1; my max_J ter value s 10 
Hello from rank 3; my max_iter value s 10 

8.10 SUMMARY AND OUTCOMES OF CHAPTER 8 
• There was probably no greater achievement of practical utility for the advancement of HPC than 

the development of MPI. 
• MPI is a community-driven specification that continues to evolve. 
• MPI is a library with an API, not a language. 
• MPICH was the first reduction to practice the MPI standard. 
• Key elements of MPI are point-to-point communication and collective communication. 
• MPI has a set of predefined data types for use in library calls. 
• Point-to-point communication calls are typified by the MPI_Send and MPI_Recv calls. 
• Collective communication is typified by the broadcast, gather, and scatter operations. 
• Important extensions of these collective operations are allgather, reduce, and alltoall. 
• Nonblocking point-to-point communications are frequently used to simplify code development 

and avoid deadlocks. 
• User-defined data types can be built up starting from existing MPI data types and used in MPI 

function calls. 

8. 11 EXERCISES 
1. Modify Code 8.13 to send and receive the user-defined data type mpi_par multiple times between 

two processes. Add an integer to the Par struct to count how many times the data have been passed 
back and forth. 

2. Modify Code 8.13 so that each process sends mpi_par to the process with rank+ 2 and receives 
data from rank - 2. For example, if there were 16 processes, process O would send to process 2 
and receive from process 14 while process 1 would send to process 3 and receive from process 15. 

3. Write a distributed matrix-vector multiplication code using MPI. Use a dense matrix and a dense 
vector. Call C language Basic Linear Algebra Subprograms (CBLAS) on each process for the 
local matrix-vector multiplication. 

4. Rewrite Code 8.11 using point-to-point communication. Generalize the code to run on an 
arbitrary number of processes. Compare the performance of MPI_Alltoall with your point-to
point communication implementation. 
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5. Rewrite Code 8.9 so that the global vector sizes stay the same as the number of processes varies. 
This will require changing the local vector size depending on the number of processes on which 
MPI is launched. Plot the time to solution for your code as a function of the number of processes 
for various global vector sizes. 
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9.1 INTRODUCTION 
Modern supercomputers employ several different modalities of ?peration to .ta~e advant~ge of 
parallelism both to exploit enabling technologies and to contribute to ach1evmg the highest 
. performance possible across a wide spectrum of algorithms and applications. Three of these most 

common hardware architecture fonns present in a supercomputer are single-instruction multiple data 

(SIMD) parallelism, shared memo,y parallelism, and dlstril,ure.f memory p /l /' Sh d 
memory and distributed memory parallelism are subclasses of the multiple-inst a~ e I(~.. are 
(MIMD) class of Flynn's computer architecture taxonomv. rue 100 mu hp)e data 

Each of these modalities is present in a modern supe~omputer. \VhiJ . . 
parallel computer architecture is parallelism, the ways in which a P~l 

I 
e th~ urufymg theme of a 

parallelis~ in each of the~ modalities can differ substantially. Some Paral~I algon~hm exploits physical 

for one kind of parallelism versus another. Often a completely difti algonthms are beuer SUited 
needed, depending on the targeted parallel computer architecflae Sfnlc erenr Parallel algorithm will be 

all three will be necessary for a parallel algorithm to achiee the hi~ure. Frequently a combination of 
supercomputer can provide. e5i f'OSsibJe performan ,,._ 

ce ut,ll a 
High Perrormance Co • 
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Table 9.1 Examples of G . 

· ,~-.-- . --- enenc Classes f p -Generic,:~ot . - o arallel Algorithms 
J;l~~~r~l'#Jun ··• ,,Ji;· I 

_ Fork-join ·•··--~~t 

Divide and conquer OpenMP parallel for-loop 
Halo exchange F~s-t Fourier Transfonn, parallel sort 

- Fm1te difti 1 . . . erence finite element Partial 
Permutation differential equation solvers 

- Cannon's algorithm Fast F . 

Embarrassingly parallel 
Transfonn ' ouner 

Monte Carlo Manager worker 
Simple adaptive mesh refinement Task dataflow 
Breadth first search 

In 2004 an influential set of seven classes of numerical th d 
computers were identified [1] Th kn " me O s commonly used on super-algebra I' . ese are own as the seven dwarfs" or "seven motifs"· dense linear 

d M
' sparse mear algebra, spectral methods, N-body methods, structured grids unst~ctured grids 

an onte Carlo meth d Th I · ' ' . . . 0 s. ese seven c asses of algonthms represent a large segment of super-
com~utmg apphcat10ns today and many high performance computing (HPC) benchmarks are built 
specifically to target them. In addition to the original "seven dwarfs", researchers have added other 
important emerging classes of numerical methods found in supercomputing applications, including 
graph traversal, finite state machines, combinational logic, and statistical machine learning [2]. 
Optimally mapping these numerical methods to a parallel algorithm implementation is a key challenge 
for supercomputing application developers. 

Several classes of parallel algorithms share key characteristics and are driven by the same underlying 
mechanism from which the parallelism is derived. Some examples of these generic classes of parallel 
algorithms include fork-join, divide and conquer, manager-worker, embarrassingly parallel, task 
dataflow, permutation, and halo exchange. Some examples of each class are listed in Table 9.1. 

This chapter examines a wide variety of parallel algorithms and the means by w~ich the 
parallelism is exposed and exploited. While the specific implementation of t~e algonthm _for 
SIMD or MIMD parallel computer architectures will differ. the co~c~ptual ba~1s_ for extractmg 

· 'thm wi\\ not. The chapter begins by exammmg fork-Jom type parallel 
parallelism from the a\gon /,a· 'd d-conquer class of parallel algorithms. parallel sort. . le from the u1v1 e-an . . I algonthms and an examp l ..lthms and a specific subclass of it, embarrassmg y worker type a go.. · · 1 ct· Examples from mana~er- cnangtpparallel algorithm examples are examm~d also me u mg 
n\\r~\\t\ 'M.t \\\t\\ t\'3.\'(\\l\ec\. H.a\o-e.t matrix vector multiplication. A permut~t1on example t 
ihe ad~ection equation and sp~o~ example of a breadth first search algonthm complete t e 
Cannon's a\gorithm and a task 

chapter. 

10\N MP execution model presented in 9 2 fQR\(- is a~ component of the Ope~ d ry parallelism. In • . . nara\\e\ design paitern .1. • \'.!Vamming models targetmg share memo 
ihe tork-1oin ~ \ ue\\\\':j em\l\l)':jeu \1\ 

C,\\a\?~t 1 an\\ \'i, tt~ i ,-. 

../ 
\_,.ff l 
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This is an illustration of the fork-join parallel design pattern frequently used in parallel algorith~s intended for 

shared memory parallelism. The empty boxes indicate work that is serial (i.e., not parallelizable), while the filled 

boxes indicate work that can be performed concuITently. In the "fork" phase, concurrent operators known as 

threads (denoted here by the branching lines) are created to perform the concurrent work. In the "join" phase, the 

results of those concurrent operators are accumulated into a single resulting operator. 

regions of a sequential algorithm where work can proceed concurrently, a group of lightweight concurrent 

operators, frequent! y called "threads", are created to perform that work. Once the work is completed, the 

results from each of these operators are accumulated during the "join" phase. This process is illustrated in 

Fig. 9.1. 
The OpenMP parallel for-loop construct is a simple example of this type of parallel algorithm. 

Consider the example of parallel work sharing presented in Code l. A previously initialized array b is 

added to another expression to initialize array a. Because each work element in the for-loop (see line 3) 

is independent of every other element, the work in this loop can proceed concurrently. Consequently, a 

parallel for-loop construct is added in line I. Fig. 9.2 illustrates the fork- join behavior of the resulting 

concurrent operators. 

1 #pragma omp parallel for 
2 for ( i =O ;i <30 ; i++) 
3 a[i J = b[i] + s in (i l 

Code I: An OpenMP example of fork-join for work sharing. 
While the fork-join parallel design pattern is the main execution model for OpenMP, it is also 

found in other parallel programming models, especially those which target shared memory parallelism. 

9.3 DIVIDE AND CONQUER 
Algorithms denoted as "divide and conquer" break a problem into smaller subproblems which 

share similar enough algorithmic prope11ies to the original problem that they can in tum al~o be 

subdivided. Using recursion, the larger problem is broken down into small enough pieces that ,t can 
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Tim, I 
FIGURE 9.2 

i=0 .. 5 
a[i] = ... 

,-,~~.,,· ,1,1•A.;,Jit 

The resulting fork-join structure from the work-sharing example in Code 9.1 for five threads. Each concurrent 
operator performs an independent computation that is then joined into the final serial operator. 

be easily solved with minimal computation. Because the original problem has been broken down into 
several smaller computations that are independent of one another, there is a natural concurrency for 
exploiting parallel computation resources. Frequently, divide-and-conquer type algorithms are also 
naturally parallel algorithms because of this concurrency and, like fork- join type algorithms, can 
perform very well on shared memory architectures. On distributed memory architectures, however, 
network latency and load imbalance can complicate the direct application of divide-and-conquer 
type algorithms. 

One well-studied example of a divide-and-conquer algorithm with natural concurrency is quicksort 
[3]. As a s01ting algorithm, it aims to sort a list of numbers in order of increasing value. To start, a 
random element of the array is selected to serve as a pivot point. Using this pivot, the rest of the list is 
divided into a list containing numbers smaller than the pivot and a list containing numbers larger than 
the pivot. This process is then repeated recursively for each of the two lists. Upon completion of 
recursion the resulting sorted child subproblems are concatenated for the final result. An example is 
given in Fig. 9.3. 

The efficiency of the algorithm is significantly impacted by which element is chosen as the pivot 
point. If the array has N data items, the worst-case performance will be proportional to N2

; however, 
for most cases the performance is much faster, proportional to N log N. Because the two branched 
lists in quicksort can be s01ted independently, there is a natural concurrency of computation that can 
be used for parallelization. On a distributed memory architecture, exploiting this concurrency incurs 
a significant communication cost as sorted lists are passed from one process to another during 
recursion. This makes direct application of quicksort on a distributed memory architecture 
undesirable. However, a modification to the approach based on sampling can be made to improve this 
situation . 

The regular sampling parallel sort algorithm is designed for better perfonnance on distributed 
memory architectures with quicksort underlyi ng the approach [4]. The algorithm is detailed below. 
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Given List of numbers { 3, 14, 15, 12, 9, 7, 5 } Random choice of pivot: 12 

Low list {3,9,7,5) 

Random choice of pivot: 7 

{3,5) {9} 

{14,15) High list 

Random choice of pivot: 15 

{14) {) 

Random choice (!f pivot: 3 

{} {5} 

Concatenated result: {3,5,7,9,12,14,15} 

Example of serial quicksort algorithm. 

• An array of numbers to be sorted is distributed equally among P processes. Thus if the array size 
is N, each process will have NIP local elements. 

FIGURE 9.4A 

• Each process runs sequential quicksort on its local data. 

FIGURE 9.48 
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. . d • db th global array size N and the 
• The resulting sorted arrays are sampled at intervals et~rlmme_ y t ~- t O i e . array element 

number of processes P. Samples are taken at every NIP ocat1on s aI mg a , · ·•· , 
• ct· 0 NIP2 2NIP2 (P _ I) N/P2 form the sample array from each local data. 1n ices , , , ... , 

FIGURE 9.4C 

{3,14} 

Proc:essO 

• The resulting samples are gathered to a root process and sorted sequentially with quicksort. 

FIGURE 9.4D 

{3,5,9,14} 

ProcessO 

• Regularly sampled P - l pivot values computed from the sample set are broadcast to the other 
processes. Thus NIP2

, 2NIP2
, •.• , (P - 1) N/P2 indices form the sample P - 1 pivot points. In this 

example, the only pivot point broadcast is 9. 

FIGURE 9.4E 

• Each process divides its sorted segment of the array into P segments using the broadcast P - 1 
pivot values. 

Pivot: 9 
{ 3, 12, 14, 15} 

✓\ 
{3} {12,14,1S} 

ProcessO 

FIGURE 9.4F 
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• Each process performs an all-to-all operation on the P segments. Thus the ith process keeps the ith 
segment and sends the jth segment to the jth process. 

FIGURE 9.4G 

• The arriving segments are merged into a single list and locally sorted. 

Pivot: 9 
{3,5,7} 

r-. ~• r:~ •-:~7 
. ' 

ProcessO . . -~ -··' ~- ,! 
Final result: {3,5, 7,9,10,12,14,15} 

FIGURE 9.4H 

An example of this algorithm for P = 2 and N = 8 is illustrated in Fig. 9.4A-H. 

9.4 MANAGER-WORKER 
Manager-worker incorporates two different workflows in its execution: one intended for execution by just 
one process called the manager process, and another intended for execution by several other processes 
called worker processes. This approach has also historically been called "master-slave". Applications 
that are dynamic in nature frequently use this type of parallel design algorithm so that the manager process 
can coordinate and issue task actions to worker processes in response to changes in a simulation outcome. 
Many adaptive mesh refinement applications also use this parallel design algorithm because the meshes 
and data placement patterns change in response to a solution value. Such an adaptive mesh refinement is 
illustrated in Fig. 9.5 . Manager-worker codes frequently take the form illustrated in Code 9.2, where an 
"if' statement distinguishes the workflow between manager and worker ta~ks. 

1 if ( my_rank == master l { 
2 send_action(INITIALIZEl ; 
3 
4 for (i nt i=O ; i<num_timesteps ; i++l 
5 send_action(REFINEl ; 
6 send_acti on( INTEGRATE ) ; 
7 send_action(OUTPUT) ; 
8 
9 else I 

10 listen_for_actions(l : 
11 
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FIGURE 9.5 

Example of a manager-worker adaptive mesh refinement code evolving a dynamic system of two compact objects 
orbiting each other. The meshes follow the orbiting compact objects as they move clockwise in the computational 
domain. 

Code 9.2 is manager-worker example code adapted from the adaptive mesh refinement code used to 
generate Fig. 9.5. The manager process (called "master" in this example) directs the refinement 
characteristics and sends actions to worker processes that are always listening for additional 
instructions from the manager. 

9.5 EMBARRASSINGLY PARALLEL 
The term "embarrassingly parallel" is a common phrase in scientific computing that is both widely 
used and poorly defined. It suggests lots of parallelism with essentially no intertask communication 
or coordination, as well as a highly partitionable workload with minimal overhead. In general, embar
rassingly parallel algorithms are a subclass of manager-worker algorithms. They are called embarrass
ingly parallel because the available concun-ency is trivially extracted from the workflow. These algorithms 
sometimes require reduction operation at the end to gather the results into a manager process. While this 
does require some minimal coordination and intertask communication, these "almost embarrassingly 
parallel" algorithms are still generally referred to as embarrassingly parallel. 

Monte Carlo simulations mainly fall into the category of embarrassingly parallel. Monte Carlo 
methods are statistical approaches for studying systems with a large number of coupled degrees of 
freedom, modeling phenomena with significant uncertainty in the inputs, and solving partial differential 
equations with more than four dimensions. Computing the value of 1r is a simple example. 

• Define a square domain and inscribe a circle inside that domain. 
• Randomly generate the coordinates of points lying inside the square domain; count the points that 

also lie in the circle. 
• rr/4 is the ratio of the number of points that lie in the circle to the total number of random points 

generated. 
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Acirc1, = 1tr
2 

A,qua.e = 4r2 
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2r 

When generating random coordinates inside a square, the ratio of the number of points lying inside an inscribed 
circle to the total number of random points will be 1r/4. 

The reasoning behind this algorithm is as follows. A circle with radius r inscribed in a square will 
have an area of 1r? while the square will have an area of (2r)2 = 4r2

, as seen in Fig. 9.6. The ratio of the 
area of the circle to the area of the square will also be the probability that a random point generated in 
the square lies in the circle. The ratio of these two areas is 1r/4. 

The parallel version of this algorithm is illustrated in Fig. 9.7. 

Initialize variables 
~":.<.:·,.·.:Z:/J:.N,,<'.:..:·;·• .. ;.,.,~· 

Generate random x,y I Generate random x,y Generate random x,y 

FIGURE 9.7 

Embarrassingly parallel example: computing 7r using statistical methods. The manager is in light gray while the 
various workers are in black. 
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9.6 HALO EXCHANGE 
Many parallel algorithms fall into a problem class where every parallel task is executing the same 
algmithm on different data without any manager algorithm present. This is sometimes referred to as 
the data parallel model. Data parallelism is frequently used in applications that are static in nature 
because a computational task can be mapped to particular subset of data throughout the life of the 
simulation. However, in all but the most simple of applications, some information in each data subset 
mapped to the parallel task has to be exchanged and synchronized for the application algorithm to 
function properly. This exchange of intertask information is called halo exchange. 

As the name implies, a halo is a region exterior to the data subset mapped to a parallel task. It acts 
as an artificial boundary to that data subset and contains infonnation that miginates from the data 
subsets of neighboring parallel tasks. A halo is illustrated in Fig. 9.8. 

FIGURE 9.8 

Process O • 

Process 1 

• • 

Process O • 

• • • 
• 

• •• • • • •••• 

/ 
Halo for process 0 

Process 2 

Process 3 

Illustration of a one-deep halo. In this illustration, various data points (colored dark) are split across four different 

processes (top figure) . For each process there are two boundaries in the data that a.re interprocess boundaries. For 
process 0, these are the right and bottom edges of the square. A one-deep halo for process 0 (bottom figure) 
consists of those data points that are closest to the interprocess boundary of process 0 but not mapped to process 0. 
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Halo exchange enables each task to perform computations and update the subset of data mapped to 
that task while having access to any data necessary for such computations that may not be local. Halo 
exchange is extremely common in parallel toolkits for solving partial differential equations and in 
linear algebra computations. Two parallel algorithm examples are presented in this section using halo 
exchange: the advection equation and sparse matrix vector multiplication. 

9.6. 1 THE ADVECTION EQUATION USING FINITE DIFFERENCE 
Wavelike phenomena permeate nature: examples include light, sound, gravitation, fluid flow, and 
weather, to name just a few. The study of wavelike phenomena is ubiquitous in supercomputing systems 
and is frequently modeled using a partial differential equation, or an expression involving derivatives 
taken against different independent variables. One of the simplest ways to solve these wavelike partial 
differential equations on a supercomputer is through the use of finite differencing and halo exchange. 
Finite differencing involves replacing the derivative expressions in the partial differential equation with 
approximations originating from estimating the slope between neighboring points on a uniform grid. 

As an example of this parallel algorithm, consider the advection equation in Eq. (9.1). 

aJ aJ 
at= -v ax (9.1) 

This advection equation transports a scalar field fix, t) toward increasing x with speed v. The 
analytic solution to this partial differential equation is 

f(x, t) = F(x - vt) (9.2) 

where F(x) is an arbitrary function describing the initial condition of the system. So if the initial 
condition of the wavelike phenomenon for solution is 

F(x) = e-x2 

then the analytic solution to Eq. (9.1) would be 

f(x, t) = e-(x-vt)2 

as plotted in Fig. 9.9. 

(9.3) 

(9.4) 

While the advection equation in Eq. (9.1) can be solved analytically with the solution shown in 
Fig. 9.9, a parallel algorithm based on halo exchange can be crafted to solve this equation numerically. 
The left- and right-hand partial derivatives in Eq. (9.1) are replaced with finite difference approximations 
to those derivatives: 

f;n+ I -J;.n J;!' -J;.n 
l l = -V~ 

dt dx 
(9.5) 

where the fieldf(x,t) has been discretized to a uniform mesh in which the x points are separated by 
distance dx and the time points are separated by time dt, with the subscript to f indicating the spatial 
location in that mesh and the superscript to f indicating the temporal location in that mesh. This is 
illustrated in Fig. 9.10. 
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l 

0.8 

Ql 0.6 
"O 

-~ c.. 
E 
<i: 0.4 

0.2 

0 
-4 -2 0 2 

X 

FIGURE 9.9 

4 6 

f(x,0) -
f(x,2) 
f(x.s)--

8 10 

The solution to the advection equation given in Eq. (9.1) with the initial condition in Eq. (9.3) and velocity set to 
be I. The solution at several times (t = 0, 2, and 5) is plotted. The scalar field is transported to the right as time 
increases. 

Time 

FIGURE 9.10 

dx 

@000 
000(]) 
0000 

X 

dt 

The scalar field values are assigned to discrete mesh points in time and space, with points separated from one 
another by value dx in the x direction and dt in the time direction. The superscript indicates the time index (0-2 in 
this illustration) and the subscript indicates the spatial index in the x direction (0-3 in this illustration). 
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Process 0 Process 1 

Time 

X 

FIGURE 9.11 

The discretized mesh is partitioned across several processes. As an example of a data parallelism, the same 

computation from the right-hand side of Eq. (9.6) is concurrently applied to different data in process O and I 

starting at the first row of values corresponding to the initial time. 

Because the initial condition of the scalar field, .J? or fix,0), is known, algebraic manipulation of 
Eq. (9.5) enables all future time values to be found iteratively using Eq. (9.6) provided that the right
hand side of the expression can be computed. 

f,n+ I = f,-" _ V :!!_ (f;"+ I - ff') 
1 1 dx dx 

(9.6) 

To compute the right-hand side of Eq. (9.6) in parallel, the discretized mesh is partitioned across 
several processes, as illustrated in Fig. 9 .11. This is an example of data parallelism where the same 
operation, computing the right-hand side of Eq. (9.6) in this case, is applied to different data spread 
across several processes. 

To compute the right-hand side for the data in process 0, however, some information is needed from 
process I. This information is provided through halo exchange, as illustrated in Fig. 9.12. 

The parallel algorithm is summarized in Fig. 9.13. 

9.6.2 SPARSE MATRIX VECTOR MULTIPLICATION 
Parallel algorithms designed around halo exchange frequently show up not just in mesh-based solvers, 
as seen in Section 9.6.1, but also in sparse linear algebra operations such as the sparse matrix vector 
multiplication used in the high performance conjugate gradients (HPCG) benchmark presented in 
Chapter 4. 

For a matrix of size N x N and vector of size N, matrix-vector multiplication is given by Eq. (9.7): 

N - 1 

x; = LAijbj 
j = O 

(9.7) 
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Process 0 

Process 1 

FIGURE 9.15 

Row Index 

3 a321 a3~ 

4 a 

A 

~ 
~ 

b b 

Illustration of the data parallel model with halo exchange for sparse matrix vector multiplication. Process O requires 
element b3 to be available to compute Eq. (9.8). while process I requires element b2 . Once these vector elements are 

exchanged, indicated by the arrows, each process is able to compute Eq. (9.8) independently with local data. 

FIGURE 9.16 

Generate local rows of 
matrix A and vector b 

Broadcast matrix sparsity 
pattern 

Request b; needed 
by local rows in Eq. 
9.8 

For each local row i, 
compute X; from Eq. 9.8 

t 
Finished 

Summary of sparse matrix vector multiplication using a compressed sparse row format for a data parallel model 

with halo exchange. The halo-exchange phase is indicated in red (gray in print version). 
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9.7 PERMUTATION: CANNON'S ALGORITHM 
Among algorithms which rely upon a data parallelism approach where the same algorithm is applied to 
different data to extract concurrency, a certain subclass of problem relies upon permutation routing op
erations to perform all-to-all operations iteratively. This type of parallel algorithm is very frequent used in 
applications requiring a linear algebra transpose operation or some type of matrix-matrix multiplication. 
In this section, one such example is explored: Cannon's algorithm for dense matrix-matrix [5]. 

In computational linear algebra, algorithms involving matrix operations are frequently divided into 
two classes: sparse and dense. Sparse matrices refer to those matrices that are dominated by zeros and 
generally employ some type of compression algorithm so that the zero entries are neither stored nor 
operated on. Dense matrices are those which are dominated by nonzero entries. Cannon's algorithm is 
a matrix-matrix multiplication algorithm for distributed memory parallelism designed for dense 
matrices, and relies heavily on permutation routing. 

Matrix-matrix multiplication for two N x N matrices A and B is summarized in Eq. (9.9) 

k=N-1 

Cij = L A;kBkj (9.9) 
k=O 

where the subscripts indicate the row and column index of the matrix entry. To create a parallel 
algorithm for Eq. (9.9), a good place to start is a block algorithm that distributes subblocks of A, B, and 

C among processes where each subblock is of size N //P x N / /P and P is the number of processes. 
This is illustrated in Fig. 9.17. 

For example, computing the subblock C11 of the matrix-matrix product of AxB requires 

computing several serial matrix-matrix products each of size N / /P x N //P, as illustrated in 
Fig. 9.18. 

For this block partitioning approach, matrix-matrix multiplication becomes a matter of orchestrating 
the communication and computation of the various serial subblock matrix-matrix products. This is the 
heart of Cannon's algorithm. 

Initially the subblocks are mapped to each process, as illustrated in Fig. 9.19. 

Coo Co1 Co2 Co3 Aoo Ao1 Ao2 Ao3 Boo B01 B02 

C10 Cu Cll Cu A10 Au A12 Au B10 B11 B12 

Czo C21 Czz C23 A20 A21 A22 Az3 B20 B21 B22 

C30 C31 C32 ½3 A30 A31 A32 A33 B30 B31 B32 

FIGURE 9.17 

The global N x N matrices A and B are partitioned into P subblocks so that each subblock is of size 
N / ./P x N / ../i'. ln this illustration, P = 16. Each process holds only one subblock. 

B03 

B13 

B23 

B33 
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Coo Co, Co2 Co3 Aoo Ao, Aa2 Aa3 Boo 801 802 803 

---
C10 Cu C12 C13 A,o Au A12 An B10 Bu B12 813 

! -
C20 C21 C22 C23 A20 A21 A22 An B20 821 B22 B23 

-

C30 C31 C32 Cn A30 A31 A32 A33 B30 831 B32 B33 

FIGURE 9.18 

To compute the C 11 subblock of the matrix-matrix product of A xB, several matrix-matrix products of the 

highlighted subblocks must be computed. However, one block is assigned to each process, and only subblocks A 11 

and B 11 are local to the process where C 11 resides. All others subblocks must be communicated. 

0 4 8 12 

Coo Co1 Co2 Ca3 
Aao Ao1 Ao2 Ao3 
Bao Bo1 Bo2 Bo3 

5 9 13 

C10 (11 C12 C13 
A10 Au A12 A13 
Bio Bu B12 B13 

2 6 10 14 

C20 C21 C22 C23 
A20 A21 A22 A23 
B20 B21 B22 B23 

3 7 11 15 

C30 C31 C32 C33 
A30 A31 A32 A33 
B30 B31 B32 B33 

FIGURE 9.19 

The subblocks are each mapped to a process for distributed memory parallelism. The process number is indicated 
in the upper left-hand corner in this illustration. 
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To set up Cannon's algorithm, the A subblocks are shifted to the left while the B subblocks are 
shifted up, as illustrated in Figs. 9.20 and 9.21. 

The memory layout after the set-up permutations is shown in Fig. 9.22. 
Cannon's algorithm consists of moving matrix subblocks so that for each iteration k from O to 3 

mat1ix subblocks A;,(i+.i+kl and Bu+j+klJ are located on the same process as Cu. For each iteration, the 
partial sum in Eq. (9.10) is accumulated to C;/ 

(9.10) 

where each subblock matrix-matrix multiplication uses Eq. (9.9) to compute the matrix-matrix 
product. The sums in Eq. (9. 10), i + j + k, are modulus ,/P (4 in this example). Thus if (i + j + k) = 6, 
the index in the matrix would become 2. 

Fork = 0, Cannon's algorithm has already been set up. For example, in Fig. 9.22 matrix C31 is 
located in the same process as matrix A30 and Bo1. For every subsequent iteration of k, the A matrices 
have to be shifted once left and the B matrices have to be shifted up once to satisfy the condition of 
Eq. (9.10) and compute the partial sum. This is illustrated in Fig. 9.23. 

After ,IP iterations of k, the matrix-matrix product has been computed. The resulting matrices 
for each of the k iterations for the example are shown in Fig. 9.24. Cannon's algorithm is summarized 
in Fig. 9.25. 

Cannon's Algorithm: Setup 

0 4 8 12 

Cao Ca1 Ca2 Ca3 
Aoo A01 Ao2 Ao3 
Bao Ba1 Ba2 Ba3 

1 5 9 13 

C10 Cu C12 C13 
A10 Au A12 A13 
B10 Bu B12 B13 

2 6 10 14 

C20 ... C21 Cn C23 
A20 A22 A23 

B20 
... 

B2:t B22 B23 

3 

C33 
A33 
B33 

FIGURE 9.20 

The A subblocks are permuted to the left to set up Cannon's algorithm. 
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[TI 4 

Co1 
Ao1 
Bo1 00 

8 

Co2 
Ao2 
Bo2 

12 

¼3 
Ao3 
Bo3 

5 

C10 
A10 
Bio Bu 

Jg 

J 
13 

6 10 14 

C20 C21 
A20 A21 

B20 B21 B22 

3 7 11 15 

C30 C31 
A30 A31 
B30 B31 B33 

FIGURE 9.21 

The B subblocks are permuted up to set up Cannon's algorithm. 

0 4 8 12 

Coo Co1 Co2 Co3 
Aoo Ao1 Ao2 A03 

Boo Bu B22 B33 

5 9 13 

C10 (11 C12 C13 
An A12 A13 A10 

Bio B21 B32 Bo3 

2 6 10 14 

C20 C21 C22 Cz3 
An A23 A20 A21 
B20 B31 Bo2 B13 

3 7 11 15 

C30 C31 C32 C33 
A33 A30 A31 A32 
B30 Bo1 B12 B23 

FIGURE 9.22 

The layout of the matrix subblocks after performing the permutations illustrated in Figs. 9.19 and 9.20. This 

completes the set up of Cannon's algorithm. 
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K=l 

0 4 8 12 

Coo Co1 Co2 Co3 
Aoo f Ao1 I" Ao2 Ao3 
Boo B11 B22 833 

j j j - -

/ 1 
, 5 , 9 13 

B10 B21 B32 B03 

2 6 10 14 

B20 831 B02 B13 
il'lr.. ... 

3 

' 7 ' 11 ' 15 
I , 

' B30 \ B01 
\ '~ 

B12 B23 

0 

FIGURE 9.23 

For each subsequent iteration of k, the B matrices are shifted up and the A matrices are shifted to the left to fulfill 
the condition for Eq. (9. 10). 
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K=0 

[TI '-4-~_:: _ _, .._8_~_:: _ _, '-1-2 _f_:: _ _, 

C20 
A22 
B,o 

c,o 
A,, 

B,o 

c,o 
A20 
Boo 

FIGURE 9.24 

c,, 
A,, 

B31 

K=-2 

c,, 
A21 
B,, 

C31 
A32 
B21 

10 

11 

10 

11 

c,, 
A,o 
Bo, 

c,, 
A31 
B,, 

c,, 
Au 
B,, 

c,, 
A,, 

822 

13 

14 

15 

13 

14 

15 

K=l 

01· ~ I, ~ 
C10 
A12 
B,o 

c,o 
A,, 
B,o 

c,o 
A,o 
Boo 

C11 
A,, 
B,, 

c,, 
A,o 
Bo, 

C31 
A31 
Bu 

K=3 

10 

11 

C12 
A,o 
Bo, 

c,, 
A21 
B,, 

m1· ~ I' ~ 
c,o 
A,o 
Boo 

c,o 
A,, 
B,o 

c,o 
A,, 
B,o 

Cu 
Au 
Bu 

C31 
A,, 
B,, 

10 

11 

12 

13 

14 

15 

13 

14 

15 

c,, 
A22 
B,, 

The distribution of the subblock matrices for each iteration of Cannon's algorithm for the example presented in Fig. 9.18. 

9.8 TASK DATAFLOW: BREADTH FIRST SEARCH 
The breadth first search algorithm is used for traversing graph data structures and is a key component of the 
Graph500 benchmark discussed in Chapter 4. A particular root vertex is given to the algorithm to start 
traversing the graph data structure. Each adjacent vertex to the root is then traversed and so on, thereby 
establishing the level (or distance) of every vertex from the root. An illustration is provided in Fig. 9.26 . 

. While any parallel algorithm can be expressed as a graph of dependencies, many algorithms that 
explore graphs themselves are naturally expressed as task dataflow to maximize concurrency. 
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Initialize local matrix A and 
B sub-block 

Permute sub-blocks so 
that A1,11+n and B(l+il,J are 

local to c11 

Accumulate partial sum 
from Eq. 9.9 to c;i 

Shift A sub-blocks to the 
left and B sub-blocks up 
to fulfill condition of Eq. 

9.9 

Finished 

Summary of Cannon's algorithm for dense matrix-matrix multiplication. 

I Starting at root 8: 8, , 1 , 7. 9 I 

FIGURE 9.26 

Example of the breadth first search traversal of this graph data structure starting at vertex 8. The adjacent vertices 
to the root are 4 and 5, colored light gray. The adjacent vertices to those are I, 7, and 9, colored dark gray. Lines 
connecting the vertices are called edges. 
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The standard parallel breadth first search algorithm is illustrated as follows. 

• Each vertex list is partitioned by process with its edge list (Fig. 9.27). 

FIGURE 9.27 

Partitioning the vertex. list by process. 

• For each vertex, associate a parent vertex and a binary flag indicating if the vertex has been visited 
(Fig. 9.28). 

FIGURE 9.28 

parent: ff 
visited: 1 

Process 1 

parent: lt 
visited:? 

.. ) 
parentlt / 
vrs1ted 1 

Adding parent vertex. data and a bit to indicate if the vertex. has been visited. 
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In each process, scan if new vertices are visited (Fig. 9.29). 

FIGURE 9.29 

parent: 8 
visited: y 

I 

) 

Each process scans if a vertex has been visited. In process I, the scan finds that vertex 5 has been visited with 
parent vertex 8; in process 0, the scan finds that vertex 4 has been visited. 

• For each process and each new vertex visited, follow the edge list; if the vertex is unvisited, set the 
parent and set to visited (Fig. 9.30). 

FIGURE 9.30 

par;;;i°:4 
vlsited:y 

parent: 5 
visited:y 

The edge lists for vertex 4 and vertex 5 are traversed by process O and process I, respectively. Vertices I, 7, and 9 
are visited and marked accordingly. Only adjacent vertices to 4 and 5 are traversed to ensure level-wise iteration. 
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• Level-wise iteration is enforced with two global barriers per level, thereby ensuring no out
of-order traversals occur between processes. 

• Perform an all-reduce operation at the checks to see if the algorithm has finished. 

The concurrency of this breadth first search parallel algorithm is naturally tied to the edge list and 
the traversal tasks that result from traversing these edges. While all parallel algorithms presented in 
this chapter could be recast as task dataflow parallelism, many graph and knowledge management 
applications tend to be naturally expressed using this parallel model. 

9.9 SUMMARY AND OUTCOMES OF CHAPTER 9 
• Parallel algorithms are methods for organizing the computational work of a given application 

such that multiple parts of the workload can be performed concurrently to reduce the time to 
solution and increase performance. 

• Fork-join parallelism delineates a set of tasks that can be executed simultaneously, beginning at 
the same starting point, the fork, and continuing until all concurrent tasks are finished having 
reached the join point. Only when all the concurrent tasks defined by the fork-join have been 
completed will the succeeding computation proceed. 

• Fork-join parallelism is often used to divide instances of a given loop among multiple physical 
execution resources. This is referred to as "loop parallelism". 

• Divide-and-conquer parallelism divides a large problem into two or more smaller problems that 
can be performed concurrently. Each of the smaller problems may be further subdivided to 
produce yet more parallel actions of even smaller work. This recursive dividing of work 
repeatedly into ever smaller subtasks increases the application parallelism until the smallest 
resulting tasks are trivial to perform. 

• Quicksort is an example of a divide-and-conquer algorithm for ordering data. 
• The regular sampling parallel sort algorithm improves efficiency and scalability for distributed 

computing, still borrowing from the quicksort method. 
• Manager-worker workflow has one process, the manager, controlling the remaining worker 

processes, which exhibit the parallelism required to speed up the execution of the total 
workload. With a central control process, load balancing can be dynamically adapted to 
evolving data states. 

• Embarrassingly parallel algorithms are a subclass of manager-worker algorithms. They are 
called embarrassingly parallel because the available concurrency is trivially extracted from the 
workflow. 

• A halo is a region exterior to the data subset mapped to a parallel task. It acts as an artificial 
boundary to that data subset and contains information that originates from the data subsets of 
neighboring parallel tasks. 

• Halo exchange enables each task to perform computations and update the subset of data mapped 
to that task while having access to any data necessary for such computations that may not be 
local. 
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• Sparse matrix calculations exploit arrays (e.g., vectors) that are mostly populated with elements 
of value zero and where only a relatively small number of the elements are nonzero. Sparse data 
structures compress the matrix by only storing the nonzero elements, thereby permitting much 
larger matrices to be represented than the main memory of a computer could otherwise store. 

• Task dataflow algorithms represent the precedent constraints among subtasks by their 
dependencies in the form of a directed acyclic graph. This establishes which tasks must be 
completed prior to initiating a succeeding task. 

9. 10 EXERCISES 
1. Implement the regular sampling parallel sort algorithm using a message-passing interface (MPI). 

Plot the time to solution as a function of the number of processes. Include the performance using 
serial quicksort as a comparison. 

2. Compute the Mandelbrot set using MPI with a manager-worker algorithm. Produce a picture of 
the Mandelbrot set and of the speeding up as a function of the number of processes. 

3. Using MPI, write a distributed sparse matrix vector multiplication based on halo exchange of the 
dense vector. Use the Fluorem/HV15R matrix from the SuiteSparse Matrix Collection [6] and 
generate a random dense vector. Plot the time to solution of the sparse matrix vector 
multiplication as a function of the number of processes. Include the memory bandwidth 
performance for the machine on which you run as given by the HPC Challenge memory 
bandwidth benchmark. 

4. Implement the advection equation using finite difference as illustrated in this chapter using MPI. 
Plot the solution as a function of time and indicate in the plot which process calculated which 
point in the solution. 

5. Explore the numerical methods identified in the "seven dwarfs". For each numerical method, list 
the different parallel algorithms that have been historically applied for solving the method. List 
the reasons that make it difficult to identify the best parallel algorithm for a numerical method. 
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10.1 INTRODUCTION 
Computational science applications use a significant amount of the available high performance 
computing (HPC) resources. A typical breakdown of the types of computational science research 
areas represented on HPC resources is presented in Fig. 10.1. This summary of HPC allocations 
originates from the Extreme Science and Engineering Discovery Environment (XSEDE) virtual 
system [1], which integrates 12 very large HPC resources for use in peer-reviewed research. 

High Performance Computing. https://doi.org/l0.1016/B978-0-12-420158-3.000I0-1 
Copyright © 2018 Elsevier Inc. All rights reserved. 
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Extreme Science and Engineering Discovery Environment (XSEDE) allocation summary for 2015 indicating the number of service units (SUs) 
allocated to various research areas. Only research areas with allocations exceeding 1 million SUs are listed here. An SU is defined locally on each 
supercomputer, but is generally the walltime in hours multiplied by the number of cores used for a simulation. Thus a simulation requiring 64 cores 
that nm for I h would be charged 64 SUs. The research areas receiving the most HPC time from XSEDE in 2015 were biophysics and materials 

research. 
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While these applications are used in a wide variety of very different disciplines, their underlying 
computational algorithms are frequently very similar to one another. As a consequence, several 
software libraries have been developed for HPC resources to fill a specific computing need, so 
application developers do not have to waste time redeveloping supercomputing software that has 
already been developed elsewhere. Subsequently, these libraries end up becoming required software 
dependencies across many user applications, and their performance and usage become critically 
important for an application's performance. Libraries targeting numerical linear algebra operations are 
the most common, given the ubiquity of linear algebra in scientific computing algorithms. Other 
libraries target operations like input/output (1/0), fast Fourier transform (FFf), the finite element 
method, and solving ordinary differential equations. These libraries have generally been highly tuned 
for performance, often for more than a decade, making it difficult for the casual application developer 
to match a library's performance using a homemade equivalent. On account of their ease of use and 
their highly tuned performance across a wide range of HPC platforms, the use of scientific computing 
libraries as software dependencies in computational science applications has become widespread. 

Apart from acting as a repository for software reuse, libraries serve the important role of providing 
a knowledge base for specific computational science domains. These libraries become community 
standards and serve as ways for members of the community to communicate with one another. This 
chapter explores some of the most widely used libraries in computational science and their charac
teristics on HPC resources. An abbreviated list of some of the most important libraries for scientific 
computing is found in Table 10.1. Each of the application domains in Table 10.1 is explored in the 
following sections. 

10.2 LINEAR ALGEBRA 
Numerical linear algebra is a key component to a large number of HPC applications, and libraries that 
provide numerical algorithms for solving sets of linear equations are among the most widely used on 
modem supercomputers. This is illustrated in part in Fig. 10.2, where a small sample of widely used 

Table 10.1 Some Widely Used Libraries on HPC Systems and Their Associated Application 
Domains 

Linear algebra 

Partial differential equations 

Graph algorithms 

Input/output 

Mesh decomposition 

Visualization 

Parallelization 

Signal processing 

Performance monitoring 

,; iW!~tJ:J~(Abt11J:il.lS onHr(]i~tj,pS,,\i:' 

BLAS [2], Lapack [3], ScaLapack [4], GNU Scientific Library 
[5], SuperLU [6], PETSc [7], SLEPc [8], ELPA [9], Hypre [10] 

PETSc [7], Trilinos [II) 

Boost Graph Library [12), Parallel Boost Graph Library [12) 

HDF5 [13), Netcdf [14). Silo [15) 

METIS [16), ParMETIS [17) 

VTK[18] 

Pthreads, MPI, Boost MPI [12) 

FFTW [19] 

PAPI [20), Vampir [21) 
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FIGURE 10.2 

A small sample of core linear algebra libraries (blue [dark gray in print versions]) and a small sample of widely 
used application frameworks with dependencies on these libraries (red [black in print versions]). The 
dependencies (sometimes optional) are indicated by green arrows (light gray in print versions). The most 
fundamental libraries, basic linear algebra subprograms (BLAS), the linear algebra package (Lapack), and the 
portable, extensible toolkit for scientific computation (PETSc), show up very frequently as application de
pendencies. The application frameworks represented here include the Dakota software toolkit [22], the Caffe 
deep-learning framework [23], the SuiteSparse suite of sparse matrix algorithms [24], the parallel ice sheet model 
[25], the finite element high performance geometric multigrid benchmark [26], the Dendro suite of parallel al
gorithms [27], the Cubica toolkit for subspace deformations [28], the finite element incompressible 
Navier-Stokes solver [29], the Armadillo c++ linear algebra library [30], the multifrontal massively parallel 
sparse direct Solver [31], the UINTAH software suite [32], and the Trilinos project [I I]. 

application frameworks is listed along with their dependencies on some of the key linear algebra 
libraries explored in this chapter. In addition to application frameworks, numerical linear algebra is a 
principal component of many of the key HPC benchmarks. For instance, seven of the HPC benchmarks 
explored in Chapter 3 deal with numerical linear algebra performance-highly parallel Linpack, 
DGEMM, high performance conjugate gradients, conjugate gradient, BT, SP, and lower/upper 
(LU)-reflecting the impact this discipline has on HPC. 

This section explores several types of numerical linear algebra libraries, including very low 
abstraction level serial libraries like BLAS [2], higher abstraction level parallel libraries with extensive 
sparse matrix support like PETSc [7], and very high abstraction level domain-specific language 
libraries like MTL4 [33] and Blaze [34]. 
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10.2.1 BASIC LINEAR ALGEBRA SUBPROGRAMS 

Photo by Pierre Lescanne via Wikimedia Commons 

John Backus was the cocreator of the first practical and widely used computer programming language, Fortran. In 1953 

he assembled and led a team of 10 researchers at !BM whose task was to find an approach that would simplify the 

programming of computers while permitting proper structuring of the executable code to make it more understandable to 

other programmers. In times when computers were predominantly coded in machine language targeting a specific 

architecture that demanded a thorough understanding of machine internals, this was a truly groundbreaking development. 

The Fortran language, short for formula translator, was released in 1957 and combined elements of algebra and English 

language. This high-level language and its compiler (originally written in 25,000 lines of code) enabled practical portability 

and platform independence of computer programs. While Fortran syntax and concepts have been updated several times since 

its inception, it remains one of the most common programming languages in supercomputing and has an e,nensive set of 

software libraries supporting many domains of computational science. 

John Backus is also known for developing the Backus-Naur Form (BNF), a metalanguage for expressing context-free 

grammars. For this contribution he was honored with the Association for Computing Machinery Turing Award in 1977. BNF 

is commonly used to describe the syntax of various programming languages, communication protocols. file formats, and 

others. Backus helped develop the influential ALGOL programming language that introduced many important procedural 

programming concepts; the original ALGOL variant has been fleshed out in BNF. His later work on the FP language and its 

descendant FL inspired broader research in functional programming. 
For his achievements. John Backus was awarded an IBM Fellowship in 1963; he also received a National Medal of 

Science in 1975. the Harold Pender Award in 1983, and the Charles Stark Draper Prize in 1993. 

BLAS provides a standard interface to vector, matrix-vector, and matrix-matrix routines that 
have been optimized for various computer architectures. In addition to the reference implementation 
[2], which provides both Fortran 77 and C interfaces, and the Automatically Tuned Linear Algebra 
Software project [35], which also has a BLAS implementation, there are multiple vendor-provided 
BLAS libraries optimized for their respective hardware. Finally, the Boost libraries [12] provide a 
c++ template class with BLAS functionality called uBLAS. 
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BLAS design and implementation was handled by Charles Lawson, Richard Hanson, F. Krogh, 
D.R. Kincaid, and Jack Dongarra beginning in the 1970s; the genesis of the idea for BLAS is credited 
to Lawson and Hanson while they were working at NASA's Jet Propulsion Laboratory [36]. BLAS 
development coincided with development of the Linpack package introduced in Chapter 3. Linpack 
was the first major package to incorporate the BLAS library. 

The first BLAS routines developed were limited to vector operations, including inner products, 
norms, adding vectors, and scalar multiplication, and are typified by the operations of Eq. (10.1), 

y = ax + y ( IO.I ) 

where x, y are vectors and a is a scalar value. These vector-vector operations are referred to as 
BLAS Level 1. At the time the fastest supercomputer in the world was the Control Data Corporation 
(CDC)-7600 (shown in Fig. l 0.3), which had such a small cache size that matrix operations were not 
possible, thereby limiting the first BLAS routines to vector operations. The CDC-7600 further 
motivated the BLAS creators to focus on developing a portable linear algebra interface so that others 
would not have to compile assembly code by hand to utilize the CDC-7600's capabilities fully. 

In 1987, about 10 years after BLAS Level 1 was released, routines for matrix-vector operations 
became available, followed by matrix-matrix operations in 1989. These later additions are the Level 2 
(matrix-vector) and Level 3 (matrix-matrix) BLAS operations, typified by Eqs. (10.2)- (10.3). 

FIGURE 10.3 

y = aAx + {Jy 

C = aAB + {JC 

(10.2) 

(10.3) 

A section of the CDC-7600. The CDC-7600 could achieve up to 36 Mflops and was the fastest computer available 
from 1969 to 1975. 

Photo by Jitze Couperus via Wikimedia Commons 
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. BLAS matrix-vector operations are illustrated in Eq. (10.2), where x and y are vectors and a and (3 
are scalars. BLAS matrix-matrix operations are illustrated in Eq. (10.3), where A, B, and C are 
matrices and a and (3 are scalars. 

Each routine in BLAS has a specific naming convention that specifies the precision of the oper
ation, the type of matrix (if any) involved, and the operation to perform. BLAS is natively written in 
Fortran 77, but C bindings to BLAS are available via CBLAS and are used in this chapter for illus
tration. For BLAS Level 1 operations there is no matrix involved and so the naming convention for 
each routine begins with cblas_ after which a precision prefix is placed before the operation name. The 
core BLAS precision prefixes are summarized in Table 10.2. While these are the core precision 
prefixes, some BLAS operations support mixed precisions, resulting in combinations of the listed 
prefixes. · 

BLAS Level 1 operations can be subdivided into four different subgroups: vector rotations 
(Table 10.3), vector operations without a dot product (Table 10.4 ), vector operations with a dot product 
(Table 10.5), and vector norms (Table 10.6). 

BLAS Level 2 and Level 3 operations involve matrices, and indicate the type of matrix they support 
in their name. Levels 2 and 3 names are of the form cblas_pmmoo, where the p indicates the 
precision, mm indicates the matrix type, and oo indicates the operation. Possible matrix types are listed 
in Table 10.7. Apart from general matrices, all other matrix types come in three storage scheme flavors: 
dense (default), banded (indicated by a "b" in the name), and packed (indicated by a "p" in the name). 
Dense storage schemes are either row-based or column-based storage in a continuous memory array. 
Packed storage schemes hold matrix values that are packed by rows or columns in a one-dimensional 
array, while band storage is applied to sparse matrices where the nonzero entries lie _in diagonal bands. 
An example of a banded matrix is a tridiagonal matrix which has nonzero column entries at the i - I, i, 
and i + I columns for the ith row. In band storage for a banded matrix, the diagonal bands to the left of 
the main diagonal ("subdiagonals") and diagonal bands to the right of the diagonal ("superdiagonals") 
are placed in a two-dimensional (2D) array. 

BLAS Levels 2 and 3 operations are summarized in Table 10.8. 
As an example, the name of the BLAS Level 3 routine cblas_dgemm indicates that this routine will 

perform a double-precision dense matrix-matrix multiplication. DGEMM is also the name for the 
matrix-matrix multiplication benchmark in the HPC Challenge suite introduced in Chapter 4. 

Table 10.2 Precision Prefixes Used by BLAS Routines 

·Prefix . · ~~riJ!~.9l1 . 
Single precision (float), 4 bytes 

d Double precision (double), 8 bytes 

Complex (two floats), 8 bytes 

CornpleX* 16 (two doubles), 16 bytes 

Some BLAS operations support mixed precision operations resulting in 
combinations of the following prefixes as well. 
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Table 10.3 BLAS Level 1 Rotation Operations 

rotg 

rot 

rotmg 

rotm 

Computes parameters for a Givens rotation; that is, 
given scalars a and b, compute c and s so that 

(~s :) G) = G) 
where r = Jial2 + 1h12 

Applies the Givens rotation; that is, provided two 
vectors as input, x and y, each vector element is replaced 
as follows: 
x; = ex; +syi 
Yi = -SXi + C)'i 
where c and s are the parameters for the Givens rotation 
(see rotg) 

Computes the 2 x 2 modified Givens rotation matrix 

H=(h11 h12) 
h21 h22 

That is, given scaling factors d 1 and d2 with Cartesian 
coordinates (xi,y1) of an input vector, compute the 
modified Givens rotation matrix H such that 

(XI)= H(Xi /di) 
O Ytjd;_ 

Applies the modified Givens rotation; that is, provided 
two vectors, x and y, compute: 

(Xi)=(h11 h12)(x;) 
Yi h21 h22 Yi 

where hi.I are the elements of the modified Givens 
rotation matrix (see rotmg) 

Suppo~Pret:isto~ 
s,d 

s,d 

s,d 

s,d 

Table 10.4 BLAS Level 1 Vector Operations Without a Dot Product 

Name ~eserl11tlon: Supm,rwt Pl'.ecislons 
swap Swaps vectors s,d,c,z 

x+-+y 

seal Scales a vector by a s,d,c,z,cs,zd 
constant 
y= ay 

copy Copies a vector s,d,c,z 
y=x 

axpy Updates a vector s,d,c,z 
y=ax+y 

Note that the seal operation supports mixed precisions. where the a single-precision or 
double-precision constant can be multiplied by a complex vector. 
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Table 10.S BLAS Level 1 Vector Operations Involving a Dot Product 

Name Description Supported Precisions 

dot Dot product s,d,ds 
xT_v 

dote Complex conjugate dot product c,z 
J•y 

dotu Complex dot product c,z 
XT)' 

sdsdot Dot product plus a scalar sds 
a + xTy 

Table 10.6 BLAS Level 1 Vector Operations Involving a Norm 

Name Description Supported Precisions 

nrm2 Compute the 2-norm s,d,sc,dz 

llxll2 = ✓L [x;1
2 

asum Compute the I-norm s,d,sc,dz 
llxll, = I:lx;J 

i - amax Compute the oo -norm s,d,c,z 
ll xll "° = max(jx; I) 

Table 10.7 Matrix Types Supported in BLAS Levels 2 and 3 

Matrix Type Description 
~ 

General: ge,gb General, nonsymmetric, possibly rectangular matrix. 

Symmetric: sy,sb,sp Symmetric matrix. This is a special class of square matrix that is 
equal to its own transpose. So for matrix A with elements au, a 
symmetric matrix would have elements which satisfy au = aJi. 

Hermitian: he,hb,hp Hermitian matrix. This is a special class of square matrix that is 
equal to its own Hermitian conjugate. So for matrix A with 
elements a,,,1, matrix A is Hermitian if all elements satisfy 
a,,,, = a,,,, where the overbar is the complex conjugate. 

Triangular: tr.lb.Ip Triangular matrix. This is a special class of square matrices 
where all the entries above the diagonal are zero (lower 
triangular) or all the entries below the diagonal are zero (upper 
triangular). 
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Table 10.8 BLAS Levels 2 and 3 Operations 

Name .l)escrlption 

mv Matrix-vector product 

SY Solve matrix (only for triangular matrices) 

mm Matrix-matrix product, C = aAB + {jC where A, B, C 
are matrices and a, {j are scalars 

rk Rank-k update, C = aAAr + {jC where A, Care 
matrices and a, {j are scalars 

r2k Rank-2k update, C = aABr + ciBAr + {jC where A, B, 
C are matrices and a, {j are scalars 

The cblas_dgemm routine takes 14 arguments, shown here: 

void cblas_dgemm(const enum CBLAS_OROER Order, const enum CBLAS_TRANSPOSE TransA, 
canst enum CBLAS_TRANSPOSE TransB, const int M, canst int N, 
const int K, const double alpha, const double *A, 
const int lda, const double *B, const int ldb, 
const double beta, double *C, canst int ldc); 

• Order indicates the storage layout as either row major or column major. This input is either 
CblasRowMajor or CblasColMajor. 

• TransA indicates whether to transpose matrix A. This input is either CblasNoTrans, CblasTrans, 
or CblasConjTrans, indicating no transponse, transpose, or complex conjugate transpose, 
respectively. 

• TransB indicates whether to transpose matrix B. Acceptable options are the same as those listed 
for A. 

• M indicates the number of rows in matrices A and C. 
• N indicates the number of columns in matrices B and C. 
• K indicates the number of columns in matrix A and the number of rows in matrix B. This is the 

shared index between matrices A and B. 
• alpha is the scaling factor for A*B. 
• A is the pointer to matrix A data. 
• Ida is the size of the first dimension of matrix A. 
• B is the pointer to matrix B data. 
• lbd is the size of the first dimension of matrix B. 
• beta is the scaling factor for matrix C. 
• C is the pointer to matrix C data. 
• Ide is the size of the first dimension of matrix C. 

An example of matrix-matrix multiplication is provided in Fig. 10.4. In this example a 3 x 3 
matrix-matrix product is computed. 

( 

47.1 

131.88 

216.66 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 341



FIGURE 10.4 

#include <stdio.h> 
#include <stdlib.h> 
#include <cblas.h> 

in'.: main() 
{ 

double *A, *B, *C; 

10.2 LINEAR ALGEBRA 

im:: m = / / square matrix, number of rows and columns 
in:: i,j; 

A (double*) malloc(m*m*sizeof(double)); 
B (double*) malloc(m*m*sizeof(double)); 
C (double*) malloc(m*m*sizeof(double)); 

// initialize the matrices 
for (i=: ; i<m; i++) { 

for (j=:::;j<m;j++) { 
A[j + m*i] j + m*i; 
B[j + m*i] ~•(j + 
C[j + m*i] ,1; 

dcuble alpha= 
double beta = ,.-, 

// arbitrarily initialized 
m*i); 

cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 
m, m, m, alpha, A, m, B, m, beta, C, m); 

for (i=•.:; i<m; i++) { 
for (j= '; j<m; j ++) 

printf(" /\I'd] I :di~ rJ ",i,j,A[j+m*i]); 

printf("\n"); 

for (i=l'•; i<m; i++) { 
for (j='.!; j<m; j++) 

printf(" B: 'd1 I 

printf ("\n"); 

for (i=.'; i<m; i++) { 
for (j=C; j<m; j++) 

-'tJ ",i,j,B[j+m*i]); 

printf(" C, di: ct·~,g ",i,j,C[j+m*i]); 

printf ("\n"); 

free (A); 
free(B); 
free(C); 
return 

Example of multiplying two 3 x 3 matrices using cblas_dgemm. 

323 
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10.2.2 LINEAR ALGEBRA PACKAGE 
Lapack [3] was developed by a collaboration between Jack Dongarra, James Demmel, and others, and 
provides driver routines designed to solve complete problems such as a system of linear equations, 
eigenvalue problems, and singular value problems. It also provides computational routines that can 
perform specific tasks like LU or Cholesky factorization. Certain auxiliary routines are provided for 
common subtasks. Lapack requires BLAS Level 2 and Level 3 functionality, and it supersedes the 
Linpack library. Unlike Linpack, which also required BLAS but which targeted vector machines with 
shared memory, Lapack is designed around the cache-based memory hierarchies found on modem 
supercomputers. It was initially written in Fortran 77, but switched to Fortran 90 in 2008. AC interface 
to Lapack is provided by using Lapacke [37]. 

The naming scheme for Lapack routines is similar to BLAS. All routines are in the form of 
XYYZZZ, where Xis the data type ( one of s, d, c, or z, as in Table I 0.2), YY is the type of matrix, and 
ZZZ is the computation performed. Lapack matrix types share all the BLAS matrix types in Table 10.7 
and use the same names. Lapack has some additional matrix types, including unitary matrices and 
symmetric positive definite matrices among others. Like BLAS, Lapack provides support for dense, 
banded, and packed storage formats, but not for general sparse matrices. Driver routines are sum
marized in Table 10.9. Expert versions of some of these drivers are available by appending an x to the 
name; these versions provide more functionality but also generally require more memory. In some 
cases multiple driver routines are available to solve the same problem type reflecting different 
underlying algorithms. 

Table 10.9 Lapack Driver Routines 

fhirer ll(ame . . .·J)es~p~. 

SV Solver for system of linear equations: Ax = b 

LS, LSY, LSS, LSD Solver for linear least squares problems: minimize x inllb - Axlli where A is not 
necessarily a square matrix, generally with more rows than columns as would occur 
in an overdetermined system of linear equations. 

LSE Linear equality-constrained least squares problems: minimize x in lie - Axll 2 subject 
to the constraint that Bx= d where A is an m x n matrix, c is a vector of size m, B is a 
p x n matrix, and d is a vector of size p, where p Sen Som + p. 

OLM General linear model problems: minimize x in IIYlli subject to the constraint that 
d = Ax + By where A is a m x n matrix, B is a n x p matrix, d is a vector of size n, 
and m Sen Som + p. 

EV, EVD, EVR Symmetric eigenvalue problems: find eigenvalues }. and eigenvectors k where 
Ak = Ak for a symmetric matrix A. 

ES Nonsymmetric eigenvalue problems: find eigenvalues}. and eigenvectors k where 
Ak = Ak for a nonsymmetric matrix A. 

SVD, SDD Compute the singular value decomposition of m x n matrix A: A= UDVT where 
matrices U and V are orthogonal and D is a diagonal real matrix of size m x n 
containing the singular values of matrix A. 

Some of these drivers also comes in an expert flavor accessible by appending an X to the name. The expen flavor provides 
additional functionality but also generally requires more memory. In some cases, multiple drivers are available to solve the same 
problem type using different algorithms. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 343



10.2 LINEAR ALGEBRA 325 

While Lapack is written in Fortran, C bindings are available through the Lapacke library which 

comes with Lapack. Fortran routines in Lapack can be called directly from C code, but the C bindings 

simplify code portability. The naming convention for Lapacke remains the same as Lapack but prefixes 

IAPACKE_ to each routine. An example solving a system of linear equations in double precision is 

given in Fig. 10.5. This example solves the linear system: 

There are eight arguments to the dgesv routine: 

lapack_int LAPACKE_dgesv( int matrix_layout, lapack_int n, lapack_int nrhs, 
double* a, lapack_int lda, lapack_inh ipiv, 
double* b, lapack_int ldb ); 

FIGURE 10.5 

#include <stdio.h> 
#include <lapacke.h> 

int main (int argc, canst char* argv[]) 

double A[·][·]= {,, ,:, ,•:.,, ,_}; 
double b [ ] = { - , - , } ; 
lapack int ipiv[ ]; 
lapack=int info,m,lda,ldb,nrhs; 
int i,j; 

m = 
nrhs = 
lda = 
ldb = 

II So~ve the linear system 
info= LAPACKE_dgesv(LAPACK_ROW_MAJOR,m,nrhs,*A,lda,ipiv,b,ldb); 

II check for singularicy 
if (info > ) { 

printf(" :J ( ., n1 

return 

II print the answer 
for (i= ; i<m; i++) { 

printf(" q\n",i,b[i]); 

printf( "·1•" ); 
return 

3:r:(1~1.::::ir '.n" ,info,info); 

Example of Lapack DGESV general matrix solve (Ax= b) with one right hand side vector, b. Here the C bindings 
to Lapack (Lapacke) are used. 
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• matrix_layout specifies the whether the matrix comes in row-major or column-major form. 
Acceptable inputs are either LAPACK_ROW _MAJOR or LAPACK_COL_MAJOR. 

• n indicates the size of the square matrix. 
• nrhs indicates the number of right-hand-side vectors on which to perform the solve. dgesv can 

solve multiple right-hand sides in each call. 
• a is the matrix. 
• Ida is the size of the first dimension of the matrix. 
• ipiv is a vector of size n containing the pivot points. 
• b is the right-hand-side vector. 
• !db is the size of the first dimension of the right-hand-side vector. 

10.2.3 SCALABLE LINEAR ALGEBRA PACKAGE 
The scalable linear algebra package (ScaLapack) [4] is the HPC equivalent of Lapack and shares 
much of the same interface. It is built on message passing, and relies on a parallel version of BLAS 
called PBLAS that accompanies the library. The relationship between ScaLapack and PBLAS is 
analogous to the dependency of Lapack on BLAS Levels 2 and 3 routines. Like Lapack, support is 
available for dense and banded matrices but not general sparse matrices. Matrices are decomposed in 
a 2D block-cyclic distribution across processes for use on distributed-memory architectures. The 2D 
block-cyclic distribution decomposes the matrix into 2D blocks of size mbtock x llb/ock which are then 
mapped on to the processes. 

l 0.2.4 GNU SCIENTIFIC LIBRARY 
The GNU scientific library (GSL) [5] provides a wide array of linear algebra routines, including an 
interface to BLAS for C and c++. Unlike the other libraries described so far, support for general 
sparse matrices is provided in GSL, along with support iterative solvers for sparse systems of linear 
equations. 

As an example of the GSL interface to dgemm is shown in Fig. l 0.6. 

10.2.5 SUPERNODAL LU 
Supemodal LU (SuperLU) [6] is a library for direct solves of general sparse systems of equations 
through LU decomposition on HPC systems. It supports shared-memory and distributed-memory 
architectures as well as accelerator architectures such as graphics processing units (GPUs). Like 
Lapack and ScaLapack, it can solve multiple right-l1an<l-side vectors in a single call for improved 
efficiency. The right-hand-side vectors are assumed to be dense, while the matrix must be square and is 
assumed to be sparse (dominated by zero entries). SuperLU consists of three libraries: 

• Sequential SuperLU, like Lapack, is designed for sequential execution on processors with cache
based memory hierarchies. 

• Multilhreaded SuperLU is designed for SMP architectures. 
• Distributed SuperLU is designed for distributed-memory architectures. Some routines in this 

library support hybrid computer architectures incorporating multiple GPUs. 
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#include <stdio.h> 
#include <gsl/gsl_blas.h> 

int main (void) { 
double a[]= { 

,:i, , 
} ; 

double b[] 

double c [] 
1\ ., 

11('\
1 
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I.!,·-' • - ? } j 

} ; 

gsl matrix view A= gsl matrix view array(a, , ·) 
gsl-matrix-view B = gsl-matrix-view-array(b, , ) 
gsl=matrix=view C = gsl=matrix=view=array(c, ') 

II Compute C =AB 

gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 
: • 1.1, &A .matrix, &B. matrix, 
r,.u, &C.matrix); 

printf (" -g, HJ, tq\n", c[':!), c[ ],c[}.]); 
printf (" ·',g, ''-g, '9\n", c[.'], c['i],c["·]); 
printf (" -;,9, '.sq, '\g\n", c[,;], c['!],c[S]); 

return 

An example of using the BLAS dgemm routine in GSL. The example from Fig. 10.4 is redone here using GSL. 
The interface to dgemm in GSL simplifies things considerably; the number of arguments is only 7 instead of 14. 

SuperLU complements ScaLapack, in that it provides a high performance direct solver for general 
systems of sparse linear equations whereas ScaLapack provides high performance direct solver 
support for dense and banded systems of linear equations. 

10.2.6 PORTABLE EXTENSIBLE TOOLKIT FOR SCIENTIFIC COMPUTATION 
PETSc [7] was started in 1991 and led by William Gropp, with the goal of providing a suite of data 
structures and routines to aid application scientists in solving partial differential equations on HPC 
resources. As the discretization of partial differential equations often results in a very large system of 
sparse linear equations, PETSc provides a large suite of parallel iterative linear equation solvers. 
These solvers are principally Krylov subspace solvers like the generalized minimum residual 
(GMRES) method and CG. PETSc also provides simple interfaces for application-specific linear 
solver preconditioners, including domain decomposition type preconditions like additive Schwartz 
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Table 10.10 A Small Sample of Distributed Vector Operations in PETSc 

Vector F~on Name Description 

VecAXPY(Vec y, PetscScalar alpha, Vee x) y=ax+y 

VecAYPX(Vec y, PetscScalar alpha.Vee x) y=x+ay 

VecPointwiseMult(Vec w, Vee x, Vee y) W;=X; * Y; 

VecMax(Vec x, Petsclnt *P, PetscReal *r) Returns the maximum value, 
r = max(x;), and its location 

VecCopy(Vec x,Vec y) y=x 

VecShift(Vec x, PetscScalar s) X; = S +x; 

VecScale(Vec x, PetscScalar alpha) x=ax 

type and others. PETSc provides support for distributed matrices and vectors where each process 
locally owns a subvector of contiguous data. Selected distributed vector operations in PETSc are 
listed in Table 10.10. PETSc employs message-passing interface (MPI) for communication on 
distributed-memory architectures. 

PETSc interfaces with a large number of other widely used libraries and forms one of the core 
libraries found on a supercomputer. Libraries which interface with PETSc include Hypre [38], SLEPc 
[8], Uintah [32], Sundials [39], Trilinos [11], SuperLU [6], SAMRAI [40], and TAU [41]. An 
application using PETSc was awarded the Gordon Bell Prize in 1999 [42]. 

10.2. 7 SCALABLE LIBRARY FOR EIGENVALUE PROBLEM COMPUTATIONS 
The scalable library for eigenvalue problem computations (SLEPc) [8] is an extension of PETSc and 
complements ScaLapack in providing an HPC library for solving very large sparse eigenvalue 
problems with both real and complex numbers. Like PETSc, it is built on the MPI library and shares 
much in common with PETSc. SLEPc is similar in function to the Fortran 77-based ARPACK software 
[43], which is also designed to solve large eigenvalue problems using message passing. SLEPc 
provides a transparent interface to ARPACK. 

10.2.8 EIGENVALUE SOLVERS FOR PETAFLOP-APPLICATIONS 
For many scientific computing applications such as quantum chemistry, computing the eigenvalues and 
eigenvectors of Hermitian matrices is a key computational kernel. The Eigenvalue SoLvers for Petaflop
Applications (ELPA) [9] created by the ELPA consortium is free software designed for highly scalable 
eigenvalue and eigenvector computations on Hermitian matrices. ELPA uses BLAS, Lapack, the basic 
linear algebra communication subroutines [44], ScaLapack, and MPI. ELPA is widely used in the 
materials science cbmmunity on HPC resources via the density functional theory toolkit VASP [45]. 

10.2.9 HYPRE: SCALABLE LINEAR SOLVERS AND MULTIGRID METHODS 
The Hypre library [38] provides a set of highly scalable preconditioners for systems of linear equa
tions, as well as scalable iterative solvers and algebraic multigrid algorithms that have found broad 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 347



10.4 GRAPH ALGORITHMS 329 

usage in the HPC community. Hypre uses MPI for communication and interfaces with the PETSc 
library. Like PETSc, it also provides support for distributed vectors and matrices. 

10.2.10 DOMAIN-SPECIFIC LANGUAGES FOR LINEAR ALGEBRA 
The complexity of using linear algebra library routines like those in BLAS, Lapack, or PETSc has 
motivated in part the development of several higher-level abstraction interfaces so that application 
developers can develop distributed linear algebra applications using code that is very simple to read. 
The MATLAB® framework [46] is a proprietary example of such an approach, but is not competitive 
in terms of performance with the libraries presented in this section. A template library which achieves 
comparable performance with PETSc for sparse linear algebra operations but retains the look and feel 
of the original mathematical notation oflinear algebra is MTL4 [33]. An example of MTL4 is shown in 
Fig. 10.7: it creates a Laplacian matrix, computes a sparse matrix-vector multiplication, and then 
performs a linear solve using a Krylov solver. The output from this code is shown in Fig. 10.8. The MPI 
distributed-memory version of the example MTL4 code in Fig. 10.7 is shown in Fig. 10.9. Another 
library with a similar goal to MTL4 is Blaze [34]. These two are a small sample of the many libraries 
available that aim to address the growing need in linear algebra libraries for both HPC capability and 
an intuitive interface to simplify application development. 

10.3 PARTIAL DIFFERENTIAL EQUATIONS 
PETSc [7], mentioned in Section 10.2.6 is one of the most important toolkits for solving systems of 
partial differential equations. Beyond supporting distributed vectors and matrices as well as distributed 
Krylov subspace methods like GMRES and CG, PETSc provides ordinary differential equation in
tegrators and nonlinear solvers, including Newton-based methods. 

A second widely used library for solving systems of partial differential equations is the Trilinos 
project [11]. Trilinos is a collection of libraries spread across 10 different capability areas, each with a 
direct impact on applications targeting the solution of partial differential equations. These capability 
areas range from the standard scalable linear algebra support to nontraditional parallel programming 
environments to provide portability across multiple HPC architectures while leveraging architecture
dependent system capabilities. 

10.4 GRAPH ALGORITHMS 
Sparse graph algorithms such as the breadth first search explored in Chapter 9 form a crucial 
component in many core HPC algorithms, such as shortest path problems, PageRank, and network 
flow problems. Three libraries available for high performance graph algorithms are the Parallel Boost 
Graph Library (PBGL) [12], Combinatorial BLAS [47], and Giraph [48]. PBGL extends the Boost 
Graph Library for HPC and provides a large number of graph algorithms for distributed-memory 
architectures. Combinatorial BLAS is another parallel graph library which provides linear algebra 
primitives for graphs and also targets distributed-memory architectures. 
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#include <iostream> 
#include <boost/numeric/mtl/mtl.hpp> 
#include <boost/numeric/itl/itl.hpp> 

int main(int argc, char* argv[]) 

using namespace mtl; 

mtl::par::environment env(argc, argv); 

// Use compressed sparse row forrrcat for sparse matrix element storage 
typedef matrix::compressed2D<double> matrix_type; 

typedef mtl::vector::dense_vector<double> 

matrix_type A; 

in-;: n = 
laplacian_setup(A,n,n); 

vector_type x(num_rows(A), . ) ,b; 

// Sparse matrix vector multiplication 
b =A* x; 

II Compute the two norm 
double mbnorm = two_norm(b); 
printf(" b c'I ~jr,,:,1.n, 

// reset x vector to be zero 
x= 

. r," , mbnorm) ; 

vector type; 

// Solve for x in Ax=b using a Krylov solver, BiCGStabilized. 
// Use the ILU O preconditioner 
itl::pc::ilu O<matrix type> P(A); 
itl::cyclic Iteration~double> iter(b, •); 
bicgstab_2(A, x, b, P, iter); 

// Print an element of x (should be one) 
printf(" :-:· - •J (.c·j-,c)ll 'l!ic)\:1",x( )}; 

return 

FIGURE 10.7 

A sparse linear algebra example using MTIA. This code stores a matrix in compressed sparse rows format (line 13), 
creates a Laplacian matrix (line 20), creates two vectors (a and b) (line 22), initializes vector x to be one (line 22), 

computes the sparse matrix vector product of A*X (line 25), resets x to be zero (line 32), and solves Ax=b (line 38). 

10.5 PARALLEL INPUT/OUTPUT 
Parallel 1/0 libraries provide high perfonnance output to a single file to avoid the problems associated 
with nonparallel 1/0, including poor perfonnance and creating a large number of individual files each 
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[ b vector l2no rm 20. 20 
iteration 0: resid 13.0643 
iteration 5: resid 0,272981 
iteration 10: resid 0,11331 
iteration 15: resid 0.00256046 
iteration 20: resid 4,89401e-05 
iteration 25: resid 4,90882e-06 
finished! error code= 0 
26 iterations 
7.61006e-08 is actual final residual. 
3,76754e-09 is actual relative tolerance achieved. 
Relative tel: le-08 Absolute tel: 0 
Convergence: 0,474244 
x[l] = 1 (should be one) 

Output from the MTL4 example in Fig. 10.7. 

written by a single process that must be combined in postprocessing. Common libraries used for HPC 
1/0 include the Network Common Data Form (NetCDF) [49] and the Hierarchical Data Format 
(HDF5) [50]. 

NetCDF is a portable format to represent scientific data and has been used extensively in climate 
modeling, satellite data processing, and geological institutes. NetCDF files are self-describing, 
portable across hardware architectures, and directly appendable. However, one of the most appealing 
properties of this data form is that it is archivable, meaning backward compatibility with earlier 
versions of NetCDF data is supported. 

The HDF library was first created in 1988 at the National Center for Supercomputing Applications 
at the University of Illinois at Urbana-Champaign and, like NetCDF, provides a self-describing, 
portable data format. HDF5 is the most recent version of the format and provides support for parallel 
1/0. HDF5 parallel 1/0 is built on top of the MPI 1/0 functionality. An example using the HDF5 library 
to write an array of particle data to a file in HDF5 format is provided in Fig. I 0.10. 

The HDF5 library also provides a series of tools for examining HDF5 format data, including the 
tools h5ls and h5dump. h5ls is analogous to the Unix ls command and enables the user to query 
the HDF5 namespace in the same way ls queries the Unix file system directory. Executing h5ls on the 
"particles.h5" output file produced in Fig. 10.10 results in the following output: 

Particle/data Dataset { 15 } 

The h5dump utility will dump to screen the data stored in the hdf5 file. The small portion of output 
resulting from executing h5dump on the "particles.h5" file in Fig. 10.10 is shown in Fig. 10.11. 

The Silo library [15] developed at Lawrence Livermore National Laboratory uses lower-level 1/0 
libraries such as HDF5 and portable binary database [51] to simplify implementation of parallel 1/0 
schemes and output for scientific computing applications. Its application programming interface (API) 
supports output types common to scientific computing, including adaptive mesh refinement and un
structured grids in both 2D and 3D. As an example of simple parallel 1/0 of a 2D structured unigrid 
quad mesh, Fig. 10.12 shows how one might use Silo for distributed output. In this example each MPI 
process holds a local 2D mesh for output, but the number of 1/0 ranks can be varied by the user. If the 
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#include <iostream> 
#include <boost/mpi.hpp> 
#include <boost/numeric/mtl/mtl.hpp> 
#include <boost/numeric/itl/itl.hpp> 

int main(in= argc, char* argv[]) 

using namespace mtl; 

mtl::par::environment 
boost::mpi::communicator 

env(argc, argv); 
world; 

typedef matrix::distributed<compressed2D<float> > matrix type; 
typedef mtl::vector::distributed<dense_vector<doub~e> > vector_type; 

matrix_type A; 

int n = 
laplacian_setup(A,n,n); 

vector_type x (num_rows (A),_.':) ,b; 

II Sparse matrix vector multiplication 
b =A* x; 

II Compute the two norm 
double mbnorm = two_norm(b); 
printf(" 1, ·.1~ 1.~~ncilT :(.i.~•:f\r:f' ,mbnorrn); 

II reset x vector to be zero 
x= 

II Solve for x in Ax=b using a Kryiov solver, BiCGStabilized. 
II Use the ILU O preconditioner 
itl::pc::ilu O<matrix type> P(A); 
itl::cyclic iteration<double> iter(b, .); 
bicgstab_2(A, x, b, P, iter); 

// Print an element of x (should be one} 
printf(" :-: 'l U;hou_:i b<c cne)\n",x(.)); 

return 

FIGURE 10.9 

A version of the serial MTL4 code from Fig. 10.7 for running on a distributed-memory supercomputer using MPI 
is shown here. The matrix and vector types in lines 14-15 have been changed to distributed, and the print output 
has been restricted to rank O (lines 29, 43). All other pieces of the example code remain the same as in the serial 
version. 

number of MPI ranks is greater than the number of 1/0 ranks, some MPI processes will write to the 
same file. For instance, if the number of 1/0 ranks specified by the user is one, all data for each MPI 
rank will be written to a single file. When datasets are written to multiple files, metadata connecting 
each file is also written so that a visualization tool can read the separate files as if they were one file. 
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*include <hdfS.h> 
*include <math.h> 

// particle data structure 
typedef struct particle3D { 

doub~e x, y, z; // coordinates 
} particle_t; 

c,on:- *define PARTICLE COUNT 
CJ()_ l 

int main(int argc, char **argv) 
{ 

// declare and initialize particle data 
- i _ ., particle t particles [PARTICLE_ COUNT] ; 

for (int-i ; i < PARTICLE_COUNT; i++) 
doublet *i; 
particles[i] .x 
particles[i] .y 
particles[i] .z 

cos(t); 
sin (t); 
t; 

// create HDF5 type layout in memory 
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int mtype = HSTcreate(HST COMPOUND, sizeof(particle t)); 
HSTinsert(mtype, "x ccJCn-:::nc.1~e", HOFFSET(particle t-;- x), HST NATIVE DOUBLE); 
HST insert (mtype, "y ·=cor-:,inate", HOFFSET (particle -t, y), HST-NATIVE-DOUBLE); 
HSTinsert(mtype, "z c.')Ot:iinute", HOFFSET(particle-t, z), HST=NATIVE=DOUBLE); 

// create data space 
hsize t dim= PARTICLE COUNT; 
int space = HSScreate_simple (:, &dim, NULL); 

// create new file with default properties 
·:,_•':- int fd = HSFcreate("p<1rticles.hc,", HSF ACC TRUNC, HSP_DEFAULT, HSP_DEFAULT); 

II create data set -
int dset = HSDcreate (fd, "p,nlicle ,bta", mtype, space, HSP_DEFAULT, 

HSP_DEFAULT, HSP DEFAULT); 
// write the entire dataset and close the file 
HSDwrite(dset, mtype, HSS ALL, HSS ALL, HSP DEFAULT, particles); 
HSFclose(fd); - - -

FIGURE 10.10 

Example of use of the HDF5 library for output in the HDF5 format. This example outputs an array of particle 
information to a file called "particles.h5" and places this data in the dataset called "particle data". The HDF5 
namespace resembles a file system directory, where HDF5 groups are analogous to directories and HDF5 datasets 
are analogous to files. 

10.6 MESH DECOMPOSITION 
One of the most important and widely used libraries for partitioning a finite element mesh across 
multiple processes is the METIS family of graph and hypergraph partitioning software, consisting of 
METIS [16) and its parallel MPI based counterpart called ParMETIS [17]. An example of mesh 
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FIGURE 10.11 

HDFS "particles, hS" { 
GROUP "/" { 

DATASET "particle data" { 
DATATYPE HST_COMPOUND { 

} 

HST IEEE F64LE "x coordinate"; 
HST =IEEE=F64LE "y coordinate"; 
HST _IEEE_F64LE "z coordinate"; 

DATASPACE SIMPLE { ( 15 ) / ( 15 ) } 
DATA { 
(0): { 

}, 

1, 
0, 
0 

(1): { 
0,877583, 
0,479426, 
0.5 

}, 

Output from executing h5dump on the "particles.h5" output by the code in Fig. 10.10. 

partitioning using the Trilinos library is shown in Fig. 10.13. These partitioning software tools are 
ubiquitous in simulations with unstructured meshes in order to decompose the mesh across multiple 
MPI processes. 

10. 7 VISUALIZATION 
One of the most important libraries for HPC users is the Visualization Toolkit (VTK) [18]. It provides 
hundreds of visualization algorithms, enabling application developers to create their own visualization 
tools. It includes support for scalars, vectors, and tensors as used in contours, streamlines, and 
hyperstreamlines, respectively. VTK also supports distributed-memory parallel processing using MPI 
and multithreaded parallel processing for SMP architectures. An example of the VTK in use is the 
Para View visualization tool, discussed in Chapter 12. 

10.8 PARALLELIZATION 
The most important parallelization library for distributed-memory architectures is the MPI library. 
There are multiple vendor and open-source implementations of MPI. Ac++ friendly interface MPI is 
available via Boost.MP! [ 12]. For SMPs the most important parallelization libraries are OpenMP and 
Pthreads. 

10,9 SIGNAL PROCESSING 
Among libraries providing discrete Fourier transform capability, the FFTW ("fastest Fourier transform 
in the West") is one of the most widely used. It was developed at the Massachusetts Institute of 
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i #include <stdio.h> 
#include <stdlib.h> 
#include <assert.h> 
#include <math.h> 
#include <string.h> 
#include <mpi. h> 

II Si:o output headers 
#include <silo.h> 
#include <pmpio.h> 

void DumpDomainToFile(DBfile *db, float *field, int myRank,int nx,int ny); 
void DumpMetaData(DBfile *db, PMPIO_baton t *bat, char basename[], int 

numRanks); 
,; void *Test PMPIO Create(const char *fname, const char *dname, void *udata); 

·_, void *Test-PMPIO-Open(const char *fname, const char *dname, PMPIO_iomode_t 
ioMode, void *udata);-

void Test_PMPIO_Close(void *file, void *udata); 

int main(~nt argc,char *argv[]) 
- r, { 

int numRanks, myRank; 
MPI Init(&argc, &argv) 
MPI-Comm size(MPI COMM WORLD, &numRanks) 
MPI=Comm=rank(MPI-COMM=WORLD, &myRank) ; 

II The total number of files to write out 
int numfiles = q; 
if ( numfiles > numRanks) numfiles = numRanks; 

II The loca~ structured mesh size of each rank 
int nx 
int ny 'i; 

II The data to write 
float *field; 
field= (float*) malloc(sizeof(float)*nx*ny); 

II Specify some initial data 
for (inti= ;i<nx*ny;i++) { 

field[i] = myRank* .. 

II The silo library handler 
DBfile *db; 

II the output filename 
char basename[ ]; 
sprintf(basename," □ u:pu~_fiie.000.pdb"); 

II the subdirectory where the data is written 
char subdirName['~]; 
sprintf (subdirName, "d,:i cc, 'd" ,myRank); 

FIGURE 10.12 

Example of parallel 1/0 using the Silo library and the portable binary database as the low-level 1/0 library. Each 
MPI rank has its own unique 2D data that needs to be output. The number of files written by the code is decided by 
the user by changing the variable "numfiles" in line 27. Changing this variable can change the time it takes to write 
the output. The optimal performance will change depending on the file system in the supercomputer, but is 
generally somewhere between the two extremes of having each MPI process write its own file and having all MPI 
processes write to just one file. Regardless of the number of files written, however, visualization tools like Visit 
(discussed in Chapter 12) can read and tie the separate output files together using the metadata added in line 84. 
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if ( numRanks > ) { 
II Set up baton passing 
II Three handler routines control the parallel creation, opening, and 

closing of the files. 
II These are named here: Test PV.PIO Create, :est PMPIO Open, 

Test: __ PMPIO _ Close 
II They are defined at the end. 
PMPIO_baton_t *bat PMPIO_Init(numfiles, 

PMPIO_WRITE,MPI_COMM_WORLD, 
Test PMPIO_Create, 
Test PMPIO Open, 
Test-PMPIO-Close, 
NULL); -

II Determine the IIO rank 
int myiorank PMPIO_GroupRank(bat,myRank); 

char fileName[ •·']; 

// If I/O rank is 0, the filename is as specified 
II Otherwise, give the filename an integer suffix 
if (myiorank = ) { 

strcpy(fileName, basename); 
else { 
sprintf(fileName, " ,J:O,.i", basename, myiorank); 

// Wait for ;:he turn to write data to ~he file 
"" ·., db = (DBfile*)PMPIO_WaitForBaton(bat, fileName, subdirName); 

DumpDomainToFile(db, field, myRank,nx,ny); 

if (myRank = · ·) { 
// Dump necessary met:ada;:a 
DumpMetaData(db, bat, basename, numRanks); 

II Finish writing, give someone else a turn to write 
PMPIO_HandOffBaton(bat, db); 

PMPIO Finish(bat); 
else { 
II Only one rank in this case, no parallel I/O needed 
int driver=DB PDB; 
db = (DBfile*) DBCreate (basename, . , DB LOCAL," 
if (db) { 

DumpDomainToFile(db, field, myRank,nx,ny); 
DBClose (db) ; 

free (field) ; 

MPI_Finalize (); 
return 

FIGURE 10.12 Cont'd 

driver); 
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void DumpDomainToFile(DBfile *db, float *field, int myRank,int nx,int ny) 

// allocate the coordinate arrays 
float *nodex,*nodey; 
nodex = (floa~ *) malloc(nx*sizeof(floa~)); 
nodey =(float*) malloc(ny*sizeof(float)); 
int dimensions[]; 
dimensions [ ] nx; 
dimensions[]= ny; 

float *coordinates[]; 
const char *coordna~es[ ·]; 

coordnames [ ] ":-:" ; 
coordnames [.] "y"; 

'' 1. ,. // Give the j_ocal data some x and y coordinates 
for (inti= ;i<nx;i++) 

nodex[i] = *(myRank*nx + i); 

for (inti= ;i<ny;i++) { 
nodey[i] = *(myRank*ny + i); 

coordinates[ 
coordinates[ 

nodex; 
nodey; 

static char meshname[] = {"mesh"}; 
DBPutQuadmesh(db,meshname,coordnames,coordinates, 

dimensions, ,DB_FLOAT,DB_COLLINEAR,NULL); 

char fname [ · ] ; 
sprintf (fname, ": '"'' ") ; 

DBPutQuadvarl(db, fname, meshname,field, 
.1 '.i dimensions, ,NULL, , DB_FLOAT, DB_NODECENT ,NULL); 

free(nodex); 
free(nodey); 

return; 

void DumpMetaData(DBfile *db, P~PIO baton t *bat, 
char basename[] ,-int numRanks) 

// We only write out. on variabJ..e in th.:.s e>:ar-,.ple, ca2.led "tes::var 11 

int numvars = 
char vars[numvars] [ 
sprintf (vars [ ] , " 

FIGURE 10.12 Cont'd 
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NULL); 

II These objects provide the metada:a needed to tie together 
II data from multiple files 
II the 'multi' objec:s :e:: us where the mesh and variables are written 
II in the files directory 
char **multi_mesh; 
char ***multi var; 
multi mesh= malloc(numRanks*sizeof(char*)); 
multi-var= malloc(numvars*sizeof(char**)); 
for(int v=. ; v<numvars ; ++v) { 

multi_var[v] = malloc(numRanks*sizeof(char*)); 

II the 'type' objects cell us the type of mesh and variab!es written 
int *typemesh; 
int *typevar; 
typemesh = malloc(numRanks*sizeof(int)); 
typevar = malloc(numRanks*sizeof(int)); 

II We start from the roo: directory in the silo file 
DBSetDir(db, "/"); 

II Specify the type of mesh and variab:e being wricten 
for(int i=, ; i<numRanks ; ++i) { 

multi_mesh[i] = malloc (· :•sizeof(char)); 
typemesh[i] = DB QUADMESH; 
typevar[i] = DB_QUADVAR; 

for(inc v=, ; v<numvars ; ++v) 
for(int i= ; i<numRanks; ++i) 

multi_var[v] [i] = malloc( ,*sizeof(char)); 

II :ndicate where in :he file hierarchy to write the mesh and data 
for(int i=·; i<numRanks ; ++i) { 

int iorank = PMPIO GroupRank(bat, i); 
if (iorank = '.) {-

snprintf (multi_mesh[i], tir~.~•:;I,", i); 
for(int v= ; v<numvars 

snprintf (multi var [v] [i], 
} -

else 

++v) 
s", i, vars [v]) ; 

snprintf(multi mesh[i], J." 
basename, iorank, i); 

for(int v= ; v<numvars ; ++v) 
snprintf (multi_ var [v] [ i] , , , 

basename, iorank, i, vars[v]); 

// write out the metadat:a 
DBPutMultimesh(db, ",:.00 1.", numRanks, (cons: char**)multi_mesh, typemesh, 

FIGURE 10.12 Cont'd 
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for (int v=, ; v<numvars ; ++v) { 
DBPutMultivar(db, vars[v], numRanks, (const char**)multi_var[v], typevar, NULL); 

for(int v=c'; v < numvars; ++v) 
for(int i = ; i < numRanks; i++) 

free(multi_var[v] [i]); 

free(multi_var[v]); 

//Cleanup 
for(int i= ; i<numRanks 

free(multi_mesh[i]); 

free(multi mesh); 
free(multi-var); 
free(typemesh); 
free(typevar); 

return; 

i++) { 

void *Test PMPIO_Create(const char *fname, 
const char *dname, 
void *udata) 

// This is where the file is created. // We overwrite ("clobber") any existing files with the same name that 
might 

// be in the way 
int driver=DB PDB; 
DBfile* db= DBCreate(fname, DB_CLOBBER, DB_LOCAL, NULL, driver); 

// All data is placed in the dname subdirectory. 
if (db) { 

DBMkDir(db, dname); 
DBSetDir(db, dname); 

return (void*)db; 

void *Test PMPIO Open(const char *fname, 
- canst- char *dname, 

PMPIO_iomode_t ioMode, 
void *udata) 

// This is where we open the file for appending to each. DBfile* db= DBOpen(fname, DB_UNKNOWN, DB_APPEND); 

FIGURE 10.12 Cont'd 
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FIGURE l 0.12 Cont'd 

FIGURE 10.13 

// Al: data is p~aced in ~he dname subdi r ectory . 
if (db ) { 

DBMkDir (db , dname); 
DBSetDi r (db , dname ); 

return (void*) db ; 

vo~d Test PMPI O_Clos e (void * file , void *udata ) 

// Here the f~"e is closed 
DBfile *db = (DBfi l e *) file; 
if ( db ) 

DBClose (db ) ; 

■■■II ■■■■••••■E~"••~■ ·············~~!!!!!!!!!!!!!!!!!l■■■::■■!I!!'! ii!H~ H 11!1!!'!!1!~ !l!!i!~ !I! 
~~~~~~~~~~~~~~~~::::::■■::: :i·,· ·· ·······--·••t i ■ -. : H 1111
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••=···· 
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Example of partitioning algorithm using the Zoltan library. The different regions indicate the different partitions 
of the mesh domain. 

Courtesy Lawrence C Musson at Sandia National Laboratories 

Technology by Matteo Frigo and Steven Johnson, and provides discrete sine/cosine transform, discrete 
Fourier transform, and Hartley transform. It is optimized for speed by means of a special-purpose 
codelet generator called "genfft", which actually produces the C code that is used. FFTW supports 
SMP architectures with threads and distributed-memory architectures with MPI. It is used in two 
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#include <fftw3-mpi.h> 
#include <stdlib.h> 
# include <stdio.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
# include <time.h> 
#include <math.h> 

~ int main(inc argc, char **argv){ 

10.10 PERFORMANCE MONITORING 341 

const ptrdiff t NO= II 2A33 
fftw plan plan; 
fftw-complex *data; 
ptrdiff t alloc local, local nO, local_O_start,local_no,local_o_start, i, j; 
MPI Init(&argc,-&argv); 
fftw_mpi_init(); 

II This tells us the local size for each process 
alloc local fftw_mpi_local_size_ld(NO, MPI_COMM_WORLD,FFTW_FORWARD, 

FFTW ESTIMATE, 
&local_nO, &local_O_start,&local_no,&local_o_start); 

II Allocate the data 
data= (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * alloc_local); 

II This creates the plan for the forward FFT 
plan= fftw mpi plan dft ld(NO, data, data, MPI_COMM_WORLD, FFTW_FORWARD, 

FFTW ESTIMATE); - - - -

II Initialize the input complex data to some random numbers between O and 1 
for (i = ('; i < local nO; ++i) ( 

data[i] [, ]= rand() / (double)RAND MAX; 
data[i] [.]= rand() / (double)RAND=MAX; 

II Compute an unnormalized forward FFT 
fftw_execute(plan); 

II Clean up 
fftw destroy plan(plan); 
fftw-free(data); 
MPI_Finalize (); 
return 

FIGURE 10.14 

Example parallel one-dimensional discrete Fourier transform using FFTW with MPI. 

widely distributed molecular dynamics toolkits, NAMD [52] and Gromacs [53]. An example of a 
parallel one-dimensional complex discrete Fourier transform using FFIW is shown in Fig. 10.14. 

10.10 PERFORMANCE MONITORING 
The Performance API (PAPI) [20] provides tools for performance measurement and portable access to 
hardware performance counters for monitoring software performance. For many users the PAPI 
performance counters most frequently encountered are those which measure the Ll data cache misses 
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Performance-monitoring timeline of an OpenMP code run using 16 OpenMP threads within the VampirTrace 
framework. The timeline of execution for each thread is shown on the left, while the time summary of application 
functions and OpenMP looping is shown on the upper right. Context information for a region in the execution 
timeline can be examined, and is shown on the lower right above the function legend . 

. .:,iJ 

(PAPl_ll _DCM), the L2 data cache misses (PAPI_L2_DCM), and the number of floating-point 
operations executed (PAPI_FP _OPS). The PAPI library provides an important tool for users to 
diagnose performance issues via hardware counters from the bottom up in a portable way. 

Other performance-monitoring tools like VampirTrace [21) can interface with PAPI as well as 
instrument MPI, OpenMP, and Compute Unified Device Architecture codes to provide a timeline of 
execution complete with messages and threads, illustrated in Fig. 10.15 using the Vampir performance
visualization tool. 

10.11 SUMMARY AND OUTCOMES OF CHAPTER 10 
Several software libraries have been developed for HPC resources to fill specific computing 
needs, so application developers do not have to waste time redeveloping supercomputing software 
that has already been developed elsewhere. 
Apart from acting as a repository for software reuse, libraries serve the important role of 
providing a knowledge base for specific computational science domains . 
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• Libraries become community standards and serve as ways for members of the community to 
communicate with one another. 

• BLAS provides a standard interface to vector, matrix-vector, and matrix-matrix routines that 
have been optimized for various computer architectures. 

• BLAS Level 1 involve vector operations. The naming scheme is a cblas_ after which a precision 
prefix is placed before the operation name. Operations include dot products, norms, and rotations, 
among others. 

• BLAS Levels 2 and 3 operations involve matrices and incorporate the type of matrix they support 
in their name. Levels 2 and 3 names talce the form cblas_pmmoo, where the p indicates the 
precision, mm indicates the matrix type, and oo indicates the operation. 

• Lapack incorporates BLAS Levels 2 and 3 to provide full problem drivers such as eigenvalue 
p~oblems and linear solvers. A high performance version of Lapack is available: ScaLapack. 

• Multiple additional widely used libraries exist which specifically target HPC resources. This 
chapter summarizes 25 such mature libraries to give a small sampling of what is currently 
available. 

10. 12 EXERCISES 
1. Explore the performance of matrix-matrix multiplication using the BLAS Level 3 dgemm 

routine for increasingly larger matrix sizes. Start with a randomly generated dense 3 x 3 matrix 
and incrementally increase the matrix size. For timing comparison, compute the matrix-matrix 
multiplication yourself just using for-loops without any BLAS calls for each matrix size explored. 
For each matrix size, which performs better, and by how much? Produce a plot comparing the 
time to solution for matrix-matrix multiplication with and without BLAS for each matrix size 
explored. 

2. Using the DLATMR routine in Lapack to generate random square test matrices, compute the 
vector b = Au where u is a vector whose elements are all 1 and A is the random matrix. Then use 
Lapack to solve the linear system Ax= b for x. Check the solution to be sure that all elements of x 
are 1 after the solve. Produce a plot of the performance for solving Ax= b for a wide variety of 
matrix sizes, beginning with 3 x 3 and exploring both symmetric and nonsymmetric test 
matrices. 

3. Use PETSc and MPI to compute the sparse matrix vector product of a matrix and vector with 
randomly generated elements on a distributed-memory architecture. Select several sparse 
matrices to explore from the Matrix Market repository [54], and plot the time to solution as a 
function of the number of MPI processes used for the solve. 

4. Write a code using the HDF5 library to read in the particles.h5 file that is generated by running 
the code in Fig. 10.10. 

5. Modify the FFfW code in Fig. 10.14 to compute the backward transformation, and then compare 
the input data prior to the forward transformation against the data that has gone through the 
forward and backward transformation. 

6. Extend the Silo 1/0 example in Fig. 10.12 to support parallel 3D 1/0. Test it by having each MPI 
rank write 3D data to file, instead of just 2D data as was done in Fig. 10.12. 
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11.1 INTRODUCTION 
A supercomputer is manifest visibly as a large room filled with many rows of many racks of many 
nodes of many cores, combined with the loud noise of myriad fans moving tons of air for cooling. But 
from the perspective of most users, who never actually see the physical high performance computing 
(HPC) system, the supercomputer is most readily viewed as the operating system (OS) and the user 
interface to it. In day-to-day usage patterns with a supercomputer, the OS gives the sense that it is the 
supercomputer itself. The OS owns the supercomputer. 

An OS is a persistent program that controls the execution of application programs, as illustrated in 
Fig. 11.1. It is the primary interface between user applications and system hardware. The primary 

High Performance Computing. https://doi.org/10.1016/B978-0-12-420158-3.000ll-3 
Copyright© 2018 Elsevier Inc. All rights reserved. 
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FIGURE 11.1 
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The primary functionality of the OS is to exploit the hardware resources of one or more processors, provide a set 
of services to system users, and manage secondary memory and I/0 devices, including the file system. 

functionality of the OS is to exploit the hardware resources of one or more processors, provide a set of 
services to system users, and manage secondary memory and input/output (I/O) devices, including the 
file system. The OS objectives are convenience for end users, efficiency of system resource utilization, 
reliability through protection between concurrent jobs, and extensibility for effective development, 
testing, and introduction of new system functions without interfering with ongoing service. The OS is 
one of the key layers in the total computer system stack, as illustrated in Fig.11.1. 

Resources managed by the OS are the processors and their integrated cores, the main memory of 
the systems out of which the cores work, I/O modules, and the system bus. Processors within the same 
system may be of different classes, such as conventional processors (e.g., Xeon), lightweight cores 
(e.g., PHI), and graphics processing unit accelerators. Managing main memory is challenging, as it 
involves both the memory hierarchy and the virtual address space. Main memory usually refers to the 
banks of dynamic random access memory (DRAM) directly connected to the processors, but it also 
includes data movement between the main memory and the intervening cache hierarchy (two to four 
layers) and in the other direction to secondary storage. Memory objects are virtually addressed and the 
translation between virtual and physical addresses is the responsibility of the OS, including their 
placement in main memory and secondary storage. The I/O modules have diverse subsystems, 
including secondary storage and the file system hierarchy, communications equipment such as wide 
area networks, and terminals for user interactive control. The system bus provides communication 
between the processors, memory, and I/O. 

The OS incorporates all services and facilities of a supercomputer. 

• It holds the local directory and files system. 
• It controls the allocation of the hardware resources. 
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• It governs the scheduling of user jobs. 
• It stores temporary results. 
• It provides many of the high-level programming tools and functions. 
• It exports the user interface to the system for all user commands. 
• It protects user programs from errors caused by other running applications. 
• It supports user access to system 1/0, networks, and remote sites. 
• It provides firewalls for security of operation and data storage. 

The OS performs all of these purposes and more to make a convenient, reliable system which 
delivers efficient and scalable performance. OS structures and interfaces can be complex, large, and 
complicated to use or program. The purpose of this chapter is to highlight specific capabilities, 
structures, and functionality that relate to effective HPC operation and use. It does not give exhaustive 
coverage of the entire OS, as the user is unlikely to encounter most of these aspects. An appendix, "The 
Essential Linux", describes the interface syntax that the user is likely to need in performing the 
hands-on examples and exercises. This chapter presents key aspects to understand the operation and 
use of the HPC OS, including: 

• OS structures and services 
• process management 
• parallel threads 
• memory management 
• modem OS, Unix, and Linux. 

11.2 OPERATING SYSTEM STRUCTURES AND SERVICES 
OSs can be described in a number of ways. One is to represent the OS components and their in
terconnections, describing the data and control flow. Another way is to describe the services that are 
performed by the components comprising the OS. A third approach is to define the interface semantic 
constructs employed by users and programmers. This section introduces these ideas of OS structures 
and the services they provide. 

11.2.1 SYSTEM COMPONENTS 
OSs are complex software packages consisting of many separate but interrelated components. These 
components individually or in combination achieve the functions and deliver the services required by 
the users directly or for system management and control. While the OS may differ from machine to 
machine with low-level variation of means and methods, essentially all mainstream HPC OSs share the 
same major components. The following are representative of what one is likely to find in any of these 
computers. 

11.2.2 PROCESS MANAGEMENT 
User and system programs that are executing are made up of instances called "processes", which are 
instantiations of program procedures (code text). Many processes may operate concurrently under a 
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single OS, so the OS incorporates a major component responsible for managing them. The process 
management component controls the full lifecycle of a process running on the system hardware. It 
creates and ultimately terminates all the processes, whether provided by the end user or part of the 
functioning system itself. Throughout the lifecycle of a process, this component manages its sched
uling of operation and allocation of processor resources, suspending and resuming processes as 
required to optimize a selected objective function for system operation. Processes can communicate 
among themselves, with the output results of one conveyed to the input of another. The process 
management component enables the paths of communication between processes (e.g., sockets). The 
control flow between processes requires process synchronization and variables supervised by this 
component. In addition, the processor resource allocation to processes is handled by the process 
management component. 

11.2.3 MEMORY MANAGEMENT 
By some measures, including cost, an HPC system is mostly data storage. Program data must reside 
within the memory system, which seen from the architecture perspective is a multilevel hierarchy 
including registers, buffers, and three layers of cache: main memory, which may be distributed among 
all nodes, secondary storage, which is still primarily hard disks but increasingly includes nonvolatile 
semiconductor storage technology, and tertiary storage employing tape cassettes and drives for 
archival storage. The tradeoffs of all these layers are speed of access and cost of capacity, with 
reliability and energy also being important. The OS is responsible for data allocation to memory 
resources and migration between levels. Memory management is also responsible for address 
translation between the virtual address blocks of program data, called pages, and blocks of physical 
storage, called frames. The OS manages the page table that maps the page numbers to the frame 
numbers. In case that a particular page is not in memory, that is a page fault occurs, the OS has to 
swap the frame from secondary storage into main memory and update the page table accordingly 
prior to the related process continuing. 

11.2.4 FILE MANAGEMENT 
The OS is responsible for users' data and programs organized in files through a hierarchy of named 
directories. The file system managed by the OS presents this abstraction of the system to the user, 
and includes many more functions and used services. The system supports nonvolatile storage; that 
is, the information does not go away when the associated processes terminate. Ordinarily the file 
system resides on secondary storage, which is primarily hosted by hard-disk drives. However, 
newer systems may include nonvolatile random access memory (NVRAM) semiconductor devices 
for lower power consumption and faster response, sometimes dedicated to metadata for large graph 
structures. In the case of laptops, pads, and phones, solid-state devices made from these compo
nents may constitute all the file system. File management may also involve tertiary storage in the 
form of tape robots. The cost per byte of such storage is much lower than the cost for other forms, 
with much higher density, and it is therefore are perfect for archival storage of files. Initial access 
times can be measured in minutes, however, so the OS supports the user's file management system 
across a complex multilevel storage system, and possibly mounts external file systems as well for 
even greater data storage space. 
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11.2.5 1/0 SYSTEM MANAGEMENT 
The OS is responsible for managing all sources and destinations of data flow in and out of the computer 
it supports. The file system is just one example of the 1/0 system employing secondary storage. Users 
are most familiar with the standard 1/0 that gives them direct interactive access with the system by a 
minimalist command-line interface or the increasingly common windows-based graphical interfaces. 
Web browsers access the internet through additional 1/0 devices (e.g., Ethernet) from which much of 
the external data is acquired, also supported by the OS 1/0 management. For clusters and massively 
parallel processors, at the lowest level the system area network (e.g., Infiniband) for each node is the 
1/0 channel that connects it to all the other system nodes comprising the total supercomputer and again 
managed by the OS 1/0 system. Many other devices are also supported, as described in the Chapter 6 
on architecture. Some of these are for maintenance and are not visible to the users; others are as simple 
as switches and lights. 

11.2.6 SECONDARY STORAGE MANAGEMENT 
As mentioned, the OS is responsible for secondary storage. Usually comprising many hard-disk drives, 
but possibly also some solid-state NVRAM, secondary storage delivers high density and nonvolatility 
for long-term storage. The OS may manage access to local disks for each node or a separate part of the 
system of disks connected by a storage area network such as a redundant array of independent disks 
configuration (there are several) for higher access bandwidth and greater reliability through redun
dancy of storage. While secondary storage is important to users in its OS support for file systems, it 
also provides other services. Virtual memory, in which pages of data for a process may be temporarily 
stored in secondary storage, gives the impression of larger memory capacity, although the data pages 
are actually distributed between physical main memory and secondary storage. The OS also uses 
secondary storage to buffer processes for future scheduling, or sometimes when swapping jobs in and 
out of memory systems. In all these cases and more, the OS is responsible for managing secondary 
storage, providing interfaces to it, and including services. 

11 .3 PROCESS MANAGEMENT 
A process is a program or subprogram in execution. It is a unit of work within the system that is 
performed to completion. A program is a passive entity; principally a block or blocks of binary code 
produced by a compiler from a high-level representation of an application to the low-level machine
interpretable form for machine execution. A process is the instantiation of a program within a 
computer as an active entity of work in progress. It consumes resources and combines program blocks 
with data representing both its current operating state and the information upon which the program is 
to operate. The OS is responsible for process management: where the data elements of the process are, 
its current control state and intermediate values, and how the process is related to both its parent 
(calling) process and possibly its child processes (those which it has called). This section introduces 
the elements and mechanisms of OS process management. 

A process needs resources to accomplish its task(s): both hardware functionality and logical objects 
defining the state and direction of the process. A process needs to have allocated to it such hardware as 
one or more central processing units (CPUs), memory for both data being processed and program 
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blocks, access to 1/0 ports and devices, and files in mass storage where input data to start the program, 
output data to store the process results, and possibly additional storage for intermediate results are 
handled. 

The logical resources that ultimately specify the process include a number of data objects. The 
program counter points to the next instruction to be executed (an address) within the program code 
block. The code section itself describes the operations of the process to be performed. The process 
stack contains localized data of direct importance to the process specification and intermediate values, 
including such things as return addresses upon completion. The data section contains the global 
variables of the user computation. When the process terminates, all the reusable resources allocated to 
it are reclaimed by the OS for use by future processes. 

Section 11.4 introduces the idea of a thread, which is itself an executable within the context of a 
process. If the process has only one thread, it includes only a single program counter defining the 
location of the next instruction to be performed. It is possible for a process to have more than one active 
thread, in which case the process contains multiple program counters; one counter for each operating 
thread. 

A modern system, whether an enterprise server or a basic laptop, has a number of concurrent 
processes operating at the same time. Some are user processes, possibly in support of applications with 
multiple users; others are system processes providing services directly in response to user application 
requests or to support the management of system resources. Curiously, one process is responsible for 
the management of all these processes. These OS process management tasks are discussed in the 
following subsections. 

11.3. 1 PROCESS STATES 
At any one time each activated process managed by the OS exists in one of a number of states, 
depending on its current condition and activity. These process states are mutually exclusive and 
collectively exhaustive, in that they fully describe the possible lifecycles of a given process. Different 
OSs are distinguished in part by the possible process states each supports and employs in guiding the 
evolution of its constitutive processes, but they exhibit many similarities. Here a relatively simple 
machine in a fully functional state is considered to illustrate OS-supported process states, as shown in 
the diagram below. All OSs will include these states or multiple states. For example, the Linux OS 
presented in Appendix B has a more diverse state structure, but all the states in this diagram can be 
mapped on top of the Linux state diagram. 

When a new process is initiated for the first time for a specified program, it enters into the new state 
among the process states. In this state the process is being created and the necessary memory objects 
fully designing the process are being allocated and populated. When this has been accomplished, the 
process transitions into the ready state. In a symmetric manner, when the process has completed all 
work associated with it and deposited its results in the appropriate locations for future use, it enters the 
terminated state. Once in this state, the process is known to have finished execution. At this point the 
OS modifies its control tables to eliminate the context of the process and reclaim the physical and 
logical resources associated with the process. 

The running state of the process is that condition under which the process is actually executing its 
instructions on the data associated with it. When running, the process is making progress toward 
completion of its workload. If in this state it reaches the point of completion, it transitions to the 
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terminated state as described above. However, it is possible that other events will occur and require the 
process to suspend temporarily and resume at a later time. One of these circumstances can be an 
asynchronous external interrupt. An interrupt is a signal from any of several sources indicating that 
another process has immediate priority, such as an OS service routine that must be engaged for the 
system as a whole to progress. An interrupt will cause the current process in the running state to exit 
the processing resources (e.g., CPU) and transit to the ready state. Alternatively, if a process in the 
running state experiences a need to delay because of a wait event or an I/O request that may take tens of 
milliseconds, then if the process remained in the running state it would waste precious computing 
resources due to the delay caused by these conditions. Instead, the process will transition from the 
running state to its waiting state. 

The waiting state is that condition of the process assumed when it is unable to proceed immediately 
with its execution because of a delay of a pending service, access such as I/O requests to mass storage, 
or a need for user input. Once entered, a process remains in the waiting state until the source of the 
delay is cleared by some external action (e.g., the arrival of the data requested from secondary storage). 
In this way other processes can enter the running state and take advantage of the processor resources 
for greater efficiency of system usage. When the delaying condition is satisfied and the process can 
proceed forward, it is unlikely that the computing resources are immediately available as one or more 
other processes are likely to be actively using them. Thus the process that had been in the waiting state 
transitions to the ready state of the process lifecycle. The OS draws upon the processes in the ready 
state to select the next process to be placed in the running state. Many processes may be pending in the 
running state, waiting for their tum to begin executing either for the first time after originating from the 
new state or resuming, having previously been in the running state at some time in the past. It is typical 
for a process to cycle back and forth among the three states, ready, running, and waiting, prior to 
completing its workload and finally entering the terminated state. In this way the user gets the 
impression that any number of processes are computing concurrently, when in fact they are time
sharing the physical resources but switching states so quickly that they all appear to be making 
progress towards their end computational goals. 

11 .3.2 PROCESS CONTROL BLOCK 
Each process being managed by an OS is represented by a dedicated data structure referred to as a 
"process control block" (PCB). Like the process state machine, the PCB will vary from OS to OS. 
However, there are a minimum number of basic parameters common to the PCBs of all OSs. The PCB 
contains the data that specifies the existence of a particular process and the information necessary to 
permit the process to make forward progress. 

From the previous subsection, it is clear that the process state is a critical parameter determining the 
modality of a process at any point in time and thus the possible states to which it may transit. The PCB 
contains a field that specifies an encoding of all possible process states, and holds the value associated 
with the state of the process as the process evolves throughout its lifecycle. 

Calling parent process pointer provides the link to the active process that was responsible for 
the instantiation of the current process represented by the PCB. This pointer link is either the name 
of the parent or calling process (process number) or the virtual address of the PCB of the parent 
process. The process number is an arbitrary positive integer that is unique among all processes running 
in the system at any one time. The process pointers combined with the PCBs of an entire program form 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 372



354 CHAPTER 11 OPERATING SYSTEMS 

a tree describing the operating state of the program (user or system), with the PCBs as the vertices 
(nodes) of the tree and the pointers as the links. The next instruction to be executed by the process is 
represented in the PCB by the program counter. This can either be the virtual address of the next 
instruction or a combination of the virtual address of the program code block and the offset within the 
code block of the next instruction. This is updated, often incremented, after every instruction issue. 

Registers are the highest level of the memory hierarchy ( or lowest, depending on how you draw it) 
and hold the most important values of a process execution at any one time. Registers have their own 
namespace (register number) and update their value contents through load and store instructions. 
When a process is suspended (to either waiting or ready state), the values of the physical registers must 
be copied to the PCB, from which the registers can be restored when the process restarts in the running 
state. The other main data of the process is stored in main memory. It may include a stack frame 
assigned to the process and the blocks of main memory that it uses and possibly shares with other 
processes. Because the process data is in main memory, it does not need to be copied in the PCB; but 
the locations of such data may be required, including pointers to the head of the associated data blocks 
and the limits of those blocks and the stack frame. 

Other information that is usually incorporated in a PCB specification includes accounting details 
associated with the program system resource usage, such as CPU utilization, memory capacity 
employed, secondary file storage space, priority, user information, and other characterizing data. In 
addition, the PCB holds information about the process related to the 1/0 devices allocated to it, 
including a list of all the open files it is currently accessing. With the PCB, a process can be restarted 
from any of its passive states to the running state at any time. 

11.3.3 PROCESS MANAGEMENT ACTIVITIES 
The OS is responsible for a number of services associated with all the processes active in the system. 
Implicit in these services is the simple overarching task of keeping track of all the active processes on 
the system and the resources of the physical system (e.g., CPUs, memory blocks, files, etc.) that are 
allocated to the processes. Foremost among these management activities is the creation and termi
nation of processes-both user and system types. The creation of a process, that is its instantiation, is 
in response to a call either by the system (including user command-line requests) or the user program 
giving initial data. A new PCB is produced by the OS for instantiation of the specific process, with 
fields filled as previously discussed. Other resources such as additional memory blocks, file accesses, 
and 1/0 sockets may also be allocated. The termination of a process by the OS involves the deletion of 
the PCB and other assigned resources to free them up for future computations. 

To achieve higher efficiency by making better use of the physical resources of the computer system, 
the OS supports process context switching. This requires suspending and resuming a process. A 
process can be suspended for a number of reasons. One is multiprogramming, where one or a few 
computing resources are shared by a much larger number of active processes so all of them are 
operating concurrently, making progress toward their conclusion in sufficiently small time steps such 
that the user experiences a sense of continued operation, but the time steps are large enough to avoid 
the deleterious effects of the overhead time associated with the action of context switching. Another 
important factor motivating context switching is the avoidance of resource blocking in the presence of 
operations imposing extended delays. Such waiting times can greatly degrade the efficiency of system 
usage. This is predominantly associated with 1/0 tasks, such as reading a file from secondary storage or 
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waiting for real-time user input from a standard I/O. Operations like this can take hundreds of 
milliseconds or multiple seconds depending on the specific nature of the requests and contention for 
shared resources by other processes. When a process is so engaged, the OS relinquishes its dedicated 
computing resources (e.g., processor core), putting the process state in memory while simultaneously 
allocating those same resources to another pending process waiting for access to make progress. Upon 
completion of the delaying service request of the original process, the OS resumes activation of the 
process in its turn, based on scheduling mechanisms and policies (discussed below). 

Processes often work together, cooperating on a single program and sometimes sharing mutable 
data and other resources. To do so con-ectly they must occasionally synchronize, so computational 
work is done in the right order. For example, if two processes share information in memory, they must 
coordinate to ensure that one does not read data until the other has written it (read-before-write 
hazard), or conversely that one does not write to a memory location until the other process has accessed 
it (write-before-read hazard). The OS supports synchronization mechanisms such as bamers, sema
phores, and mutexes, among others, by which two or more processes may order their respective 
computations to avoid these possible hazards. 

Processes may directly communicate with each other, passing or exchanging messages or data 
streams. Mechanisms for conducting such message passing between concurrent processes are provided 
by the OS, including the user interface calls that give control to the user program. Sockets are one 
example of the class of constructs used for this purpose, and are found in many but not all modern OSs. 
This is one case where multiprogramming becomes critical. If one process is active (occupies the 
processor) but requires a message from another process that is suspended, without appropriate OS 
control a deadlock condition could occur, precluding forward progress. 

11.J.4 SCHEDULING 
At the heart of the process management services supported by the OS and described in earlier sections 
is the cross-cutting functionality of process scheduling: the determination of what processes are given 
the necessary physical resources to run and when they are allocated. With a number of processes active 
(running, pending, or suspended) at any one time and fewer executing resources than processes, this 
selection and control function is actually very difficult to perfect and has been the subject of countless 
research and engineering undertakings over many decades. 

The job queue holds all processes, whatever their states, and any new process entering the system is 
put in the job queue by the OS. Only upon termination is a process eliminated from the job queue. At 
any one time a process may be ready for execution or waiting for an I/O device service call. The job 
queue consists of a number of subqueues (this varies somewhat among different OSs) in which 
processes may be temporarily held until specific requirements are satisfied. A representative structure 
of the job queue may include the following. 

• Ready queue-holds pointer to PCBs of processes pending execution. 
• Child queue-holds processes (PCB pointers) waiting for their respective child processes to 

terminate. 
• Interrupt queue-includes processes waiting for interrupts to occur. 
• Multiprogramming queue-processes that have used up their last timeslice and must delay a 

minimum amount of time prior to resuming execution. 
• I/O queues-a queue for each I/O device holding PCBs of processes requiring that device. 
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FIGURE 11.2 
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The job queue holds all processes, whatever their states, and any new process entering the system is put in the job 

queue by the OS. A representative job queue may include a ready queue, child queue, intenupt queue, 

multiprogramming queue, and 1/0 queues. 

These are illustrated in Fig. 11.2. The OS is responsible for managing these (and potentially other) 
subqueues as part of the job queue structure. Each queue usually has two pointers, one to the head of 
the queue and one to its tail, if a first-in, first-out policy is employed, but other queue organizations are 
possible, such as a stack (last in, first out). The OS transfers the pointer to a process PCB from one 
queue to another as its condition state is altered. 

The process scheduler incorporates a job scheduler where a job may comprise multiple processes. 
When many more jobs and their component processes exist than there are execution resources (e.g., 
processor cores), with total memory requirements that exceed the capacity of the physical memory (a 
common situation for a typical server), then many or perhaps a majority of the jobs must be spooled to 
secondary storage (typically hard disks) and only individually migrated to main memory when ready 
to be executed. 

Typically, three job schedulers are employed to manage scheduling within the context of this 
memory hierarchy. 

• Long-term scheduler- identifies processes or jobs from the spooler in mass storage to swap them 
into main memory in preparation for execution. Responsible for maintaining a balanced set of 
jobs, some 1/0 bound and some compute bound, to maintain even flow in all queues. 

• Short-term scheduler- chooses the next process to be allocated computing resources for 
execution from those residing in the ready queue. 

• Medium-term scheduler-swaps jobs or processes from main memory back into the mass-storage 
spooler when the priority of job ordering demands that main memory be freed up so new jobs can 
be included in the execution stream. Thus jobs may have to be swapped back on to the spooler on 
occasion. 
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As previously discussed, context switching is an OS function that moves a process state in and out 
of the execution resources. Specifically, when the short-term scheduler is preparing to execute a 
process that is in the ready queue, the OS must first copy the state of the prior process that had been 
using the resources intended for the new process into the first process' PCB. Then the context of the 
new process in its PCB is loaded into the execution resources, such as processor registers. 

11.4 THREADS 
Threads present another level of parallelism control within a process. While processes are said to 
provide coarse-grain parallelism, threads provide the means of realizing medium-grain parallelism, 
which may give more parallelism, better scalability, and possibly shorter time to solution. Sometimes 
threads are referred to as "lightweight processes", but this text avoids this, as there are specific 
distinctions between threads and processes that distinguish their usage and effects. Finally, processes 
and threads map very nicely on to modem architectures using many nodes, each with a number of 
processor cores. A process can occupy a full node of cores with threads running on individual cores. 

The thread state is reminiscent of that of a process included in the PCB, but is generally less 
complex. The thread state will include: 

• a designator of the process of which it is a part 
• a program counter indicating the next instruction to be executed by the thread 
• a stack pointer to the frame of the pages directly related to the thread 
• register contents. 

This context data must be swapped in and out of the hardware resources as one thread is replaced 
by another in the executing processor cores. 

There are two general categories of threads. Threads directly managed by the OS, as discussed 
above, are known as "kernel threads". The OS allocates specific kernel threads to underlying hardware 
processor cores. Because the OS is involved in the direct manipulation of the kernel thread, the overhead 
of its management is significant, even if less than the management of processes. The other kind is the 
"user thread", sometimes referred to as "runtime threads". These are not directly managed by the OS but 
rather by a runtime software system in user space. The overheads are smaller and the runtime system 
knows more about what the user job wants to do and how to do it better. The relationship between the 
two kinds of threads is that the runtime system allocates user threads to individual kernel threads. 
Usually (but not always) there is one kernel thread instantiated by the OS for each processor core. Except 
in the case of interrupts or multiprogramming, the kernel thread stays relatively static in this mapping, so 
few context switches of kernel threads are required. The runtime system allocates the kernel threads 
made available to it to the user threads for which it is responsible. There are several ways that it can do 
this, illustrated in Fig. 11.3. For example, all user threads may be assigned to a single kernel thread, 
sharing it one at a time. This is known as "all to one". In this case no parallelism is exploited within the 
application, but rather the kernel threads are running different jobs for job parallelism. A second case is 
when the runtime system may simply assign one user thread to each of multiple available kernel threads. 
In this case overheads are low and parallelism is exploited but no dynamic control is used, as might be 
necessary with irregular user threads. This is known as "one to one". The most general form of mapping 
of user threads to kernel threads is when the set of user threads is dynamically and possibly adaptively 
assigned to kernel threads as the workload requires and kernel threads become available. The policy 
guiding such a "many-to-many" strategy can become quite complex and is a subject of continued study. 
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FIGURE 11.3 
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The runtime system allocates the kernel threads made available to it to the user threads for which it is responsible 
in several different ways. 

11.5 MEMORY MANAGEMENT 
While it may appear from the preceding text that the most important responsibility of the OS is 
management of execution resources and scheduling of jobs, processes, and threads on them, it can be 
argued that the management of the memory hierarchy is equally important and if anything more 
complex and demanding of OS functionality. Part of this is due to the disparity between the clock rates 
of the processor cores (complementary metal-oxide semiconductor technology) and the main memory 
(DRAM technology), which is between one and two orders of magnitude. With the separation of 
processor logic and main memory banks (the von Neumann bottleneck), full time to completion of 
memory access by cores can be between 100 and 200 processor core cycles. As discussed in Chapters 2 
and 6 on architecture, modem computers and HPC systems incorporate multiple levels of storage to 
mitigate the latencies and bandwidth constraints imposed by this structure, and these are managed in 
part by the OS. 

Memory management controls what data is in the main memory and registers at any particular 
time. Such data is usually stored in secondary storage organized in directories, files, and special blocks 
employed by the virtual memory page backing store. The OS ensures that all data needed for a 
scheduled process is in the main memory, as well as instructions for the executing code. The OS 
memory management subsystem maintains the tables (reference tables) that map the virtually 
addressed pages (discussed later) to the physical pages of memory and provide means for virtual 
address (to physical) translation. Memory management is an important part of achieving high 
utilization of the processor cores by maintaining the right data most likely to be accessed in the main 
memory. To achieve these goals, the OS memory management supports a multiplicity of activities, 
including control of allocation of physical memory to instantiated processes and deciding which 
memory pages should be swapped between memory and secondary storage to assign and reacquire 
memory space. Throughout these activities the OS must maintain its ability to support virtual address 
translation. This section expands on some of these key points. 
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11.5.1 VIRTUAL MEMORY 
Virtual memory is a powerful abstraction for naming memory blocks independent of their physical 
location, supported by the OS. It is implemented by the memory management part of the OS. Virtual 
memory controls the relationship and mapping of the logical (virtual) address of a page of data to the 
location of physical data storage, which can be either main memory or secondary storage (e.g., hard 
disks). The implementation of virtual memory over the history of computing has yielded several 
important advantages over direct user control of physical memory. Originally, with the amount of main 
memory being relatively small, the use of mass storage to give the appearance of a larger storage space 
than just the physical memory greatly simplified the programmer's task while allowing portability of 
code across systems of different scale, type, and generation. Over time and the use of multipro
gramming and multitasking where a multitude of processes and jobs would be being performed 
concurrently, virtual memory systems provided protection of memory usage by different processes, 
giving each process its own virtual address structure and making sure that one process did not interfere 
with the data in another process. Virtual memory also allowed the OS to overlap the sequence of 
different processes, so while one process is executing another process memory content can be read into 
memory and possibly a previous process results are read at the same time, thus minimizing the lag 
between the execution of successive jobs. 

11.5.2 VIRTUAL PAGE ADDRESSES 
There are a number of ways to organize data for use and storage. Among these is the simple concept of 
a "page", which is a fixed-length contiguous block of data that can be mapped on to an equivalent-sized 
block of physical memory or similar space on secondary storage. Paging allows a process to consist of 
a collection of fixed-size blocks. Each page has a virtual address. Every unit of data (i.e., bytes, words) 
within a page is identified by the virtual address of the page, and by an offset index from the starting 
location of the page to the position of the data within the page. The virtual address of the page is simply 
a page number. The virtual address of the page, once assigned by the OS, remains a constant inde
pendent of whether the virtually addressed page is stored in main memory or secondary storage. The 
medium-term scheduler may cause a page and other pages related to a process to swap in and out of 
secondary storage from main memory. A virtual page may reside in different physical memory pages 
throughout the computation, as determined by the OS memory management function. 

11.5.3 VIRTUAL ADDRESS TRANSLATION 
The OS incorporates a page table which is central to the method for associating virtual page addresses 
(or page numbers) to physical locations within the main memory or secondary storage. The page table 
has one entry per page. This entry is determined by the assigned page number as an offset within the 
page table (the value of the offset cannot exceed the length of the page). The page table entry for a 
particular virtual page stores the memory frame number of a page frame (or physical page) within the 
main memory. A request to memory for data can always be located through the page table. When the 
virtual page migrates in physical space, its respective entry in the page table is updated by the OS. 

While this works logically and is a necessary component of OS memory management, it alone is 
insufficient to deliver performance. Every access request using the page table requires an OS 
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function call, which is quite time consuming. For each instruction issue, which is about every 
processor core cycle, there must be a load of the instruction from the memory system. In addition, 
operational data needs to be loaded in the order of a quarter of the time (this varies per application 
workload). So the page table alone is inadequate to provide performance-oriented memory access in 
a virtually paged system. 

The translation lookaside buffer (TLB), illustrated in Fig. 11.4, is an architecture means to deliver 
much of this needed performance, at least under favorable conditions. The TLB is a special-purpose 
cache that provides high-speed mapping of virtual page numbers to main memory frame numbers for 
recently used stored data. This in turn delivers very fast data access for memory loads and stores. Like 
a cache, the TLB exploits temporal locality where the physical addresses ofrecently used virtual pages 
are stored. The TLB has an associative access hardware that enables fast address translation and thus 
data access. Of course, regular data and instruction LI caches provide most data access requests in one 
or two cycles as well, so on a good day (microcycle) virtually addressed data can be loaded in one or 
two cycles. Only when there is a TLB miss, when a particular virtual page number is not found in the 
TLB, does a page table access take place, with its significant overhead. In this case the OS accesses the 
page table, determines the correct frame number, and updates the TLB, at which point the memory 
access can continue as usual. 

It is possible when locating a virtual page as a physical frame in main memory that there is no 
matching memory frame associated with the desired virtual page. This is referred to as a "page fault". 
It is a function of the OS to attempt to minimize page faults, as the cost of encountering one can be 
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The translation lookaside buffer (TLB) is a special-purpose cache that operates to provide high-speed mapping of 
virtual page numbers to main memory frame numbers for recently used stored data. 
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significant. The combination of OS overheads and the transfer of a frame from secondary storage to 
main memory can take tens to hundreds of milliseconds. The OS bringing frames in from secondary 
storage when needed is known as demand paging. OS policies are applied to minimize the page faults. 
But programmers can help the system operate more efficiently in this regard by constructing work
flows such that they take best advantage of data reuse and thereby limit the TLB misses, cache misses, 
and page faults. 

Virtual-memory OSs provide a seamless way to take advantage of secondary storage without 
explicit user intervention through process and page swapping. In terms of user productivity this can be 
a very good thing; in terms of system performance it can be a very bad thing. The OS provides a 
powerful functionality in the form of a directory and file system that enable users to store and manage 
their data in a nonvolatile form. Indeed, a user's perspective of a supercomputer is largely enabled by 
the file system through the user interface, whether command line or point-and-click windows. The OS 
file system is so important to HPC that Chapter 18 is dedicated to this capability. 

11.6 SUMMARY AND OUTCOMES OF CHAPTER 11 
• The OS owns the supercomputer. 
• An OS is a persistent program that controls the execution of application programs. It is the 

primary interface between user applications and system hardware. 
• The primary function of the OS is to exploit the hardware resources of one or more processors, 

provide a set of services to system users, and manage secondary memory and 1/0 devices, 
including the file system. 

• Resources managed by the OS are the processors and their integrated cores, the main memory of 
the systems out of which the cores work, 1/0 modules, and the system bus. 

• User and system programs that are executing are made up of instances called "processes", which 
are instantiations of program procedures. 

• Many processes may be operating concurrently under a single OS. 
• OS memory management is responsible for address translation between the virtual addresses 

blocks of program data, called pages, and blocks of physical storage, called frames. 
• The OS is responsible for the users' data and programs, organized in files through a hierarchy of 

named directories. 
• The OS is responsible for managing all sources and destinations of data flow in and out of the 

computer it supports. 
• The OS is responsible for a number of services associated with all the processes active in the 

system. 
• At the heart of the process management services supported by the OS is the cross-cutting 

functionality of process scheduling: the determination of what processes are provided the 
necessary physical resources to run and when are they allocated. 

• Threads present another level of parallelism control within a process. 
• Virtual memory is a powerful abstraction for naming of memory blocks independent of their 

physical location, supported by the OS. 
• The OS incorporates a page table, which is central to the method for associating virtual page 

addresses (or page numbers) to physical locations within the main memory or secondary storage. 
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11. 7 EXERCISES 
1. Explain the differences between a TLB miss, a cache miss, and a page fault. What are the 

performance consequences of each? 
2. What is the purpose of the virtual memory address? 
3. What types of processes are kept in the ready queue? Which types of processes are not in the 

ready queue? 
4. What is the difference between OS threads and processes? Can processes be preempted? Can 

threads be preempted? Are threads confined to a process? 
5. Is the PCB affected by a thread context switch? Explain. 
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12.1 INTRODUCTION 
Supercomputer applications frequently produce enormous amounts of output data that must be 
analyzed and presented to understand the application outcome and draw conclusions on the results. 
This process, frequently referred to as "visualization", can itself require supercomputing resources and 
is a fundamental modality of supercomputer usage. 

Some of the principal reasons for visualizing data resulting from running an application on a 
supercomputer include debugging, exploring data, statistical hypothesis testing, and preparing 
presentation graphics. In some cases the output from running an application on a supercomputer will 
be something as simple as a single file with comma-separated values. However, it is much more likely 
that the output will be in a special parallel input/output (I/O) library format, like one of those 
mentioned in Chapter 10, to manage and coordinate the simultaneous output from multiple compute 
nodes to a single file. 

This chapter discusses four key foundational concepts frequently needed as part of high 
performance computing (HPC) visualization: streamlines, isosurfaces; volume rendering through 
ray tracing, and mesh tessellations. Visualization is then practically explored through the use of five 
different visualization tools that are frequently used in the context of HPC: Gnuplot [l], Matplotlib [2], 
the Visualization Toolkit (VTK) library [3], Para View [4], and Visit [5]. Three of these tools (VTK, 
ParaView and Visit) already incorporate the ability to use distributed memory parallel processing to 
accelerate the visualization process itself. 

High Performance Computing. https://dof.orwJ0.1016/8978-0-12-420158-3.00012-5 
Copyright© 2018 Elsevier Inc. All rights reserved. 
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12.2 FOUNDATIONAL VISUALIZATION CONCEPTS 
Among the most frequently used concepts in scientific visualization are streamlines, isosurfaces, 
volume rendering through ray tracing, and mesh tessellations. Streamlines, like those illustrated in 
Fig. 12.1, take a vector field as input and show curves that are tangent to the vector field. Streamlines 
may be thought of as showing the trajectory that a massless particle would travel in the input vector 
field. While the starting point for each streamline can be specified explicitly, it is more common to use 
random starting points seeded inside a small geometric object like a sphere or a cube. 

An isosurface, illustrated in Fig. 12.2, is a surface that connects points which have the same value. 
Isosurfaces are frequently used in medical visualization to extract surfaces that have the same density, 
like that seen in a 3D ultrasound. An isosmface is the 3D analogue to a contour line in two-dimensional 
(2D) visualizations. 

Volume rendering through ray tracing, illustrated in Fig. 12.3, is where for each pixel a ray is used 
to sample the volume through which it passes. Based on a provided color transfer function, the ray is 
shaded while an opacity function alters the transparency of the data in the volume. This type of volume 
rende1ing can reveal internal structures in data, and produce blurry or sharp edges depending on the 
opacity function chosen. 

A mesh tessellation, seen in Fig. 12.4, is where a collection of data points and their connectivities 
to other data points are visualized through a set of polygons, frequently triangles or quadrilaterals in 
2D and tetrahedra or hexahedra in 3D. The meshes often provide important statistical information 
about a simulation, including error bounds and mesh adaptivity, while also visually conveying the scale 
at which simulation features are resolved. 

These foundational visualization concepts are usually not implemented directly by the application 
developer, but rather accessed in the context of an existing visualization toolkit or library. Some of the 
most common visualization toolkits and libraries for HPC are discussed in the following sections. 

FIGURE 12.1 

Streamline example using the gradient of the functionf(x,y,z) = 2550 sin ( I OOx) sin (30y) cos (40z) as input. Two 
different three-dimensional (3D) views are provided. 
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· ~ 
FIGURE 12.2 

Isosurface example of the functionf(x,y,z) = 2550 sin (I Ox) sin (I 0y) cos (!Oz) as input with the isosurface value 
set at 200. Two different 3-D views are provided. 

FIGURE 12.3 

Example of low-resolution volume rendering of the functionf(x,y,z) = 2550 sin (50x) sin (50y) cos (50z). The 
color and opacity map were chosen arbitrarily. Two different 30 views are provided. 

12.3 GNUPLOT 
Gnuplot [I] is a freely available and open-source command-line-driven visualization tool that includes 
support for both 2D and 3D plots. It has been around since 1986 and is found in most Linux distri
butions and on supercomputer login nodes. Several other independent applications use Gnuplot for 
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FIGURE 12.4 

An example of a 2D mesh tessellation for an adaptive mesh shockwave simulation. The mesh, consisting of black 

lines, is visualized on top of a 2D color plot of the shockwave density. 

graphics output, including GNU Octave [6], which features a high-level programming language very 
similar to Matlab [7]. 

Like most spreadsheet tools, Gnuplot is capable of a wide range of 2D plots. This is demonstrated 
here using the space-separated text data in Fig. 12.5. To initiate an interactive Gnuplot session, the 
gnuplot executable is launched from the command line, as shownin Fig. 12.6. 

FIGURE 12.5 

1 1 - 1 
2 2 - 2 
3 3 - 3 
4 4 - 7 

Example of three-column space-separated text data, referred to in the code examples as "gnu_example.dar". 

FIGURE 12.6 

Ma tthews-MacBook -Pro-2 : data ander smw$ gnuplot 

G N U P LO 
Version 5 . 0 patchlevel 5 la st modi fi ed 2016-10-02 

Copyright (C) 19B6-1993 , 199B , 2004 , 2007-2016 
Thomas Williams . Colin Kelley and many others 

gnup lot home : 
f aq , bugs, etc : 
immediat e help : 

http : / / WWW • g n Up l O t . i n fo 
ty pe "help FAO " 
ty pe "help " (plot window : hit ' h') 

Terminal type set to ' aqua' 
gnuplot>I 

Launching an interactive Gnuplot session. 
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The plot command is the main command for 2D plots in Gnuplot, and takes the form of: 

plot [ranges] <plot member>[, <elot member>, (plot member>] 

If no ranges are specified, a default is computed based on the specific plot member. A plot member 
may be a predefined function like sin(x) or data read from a file, like that given in Fig. 12.5. Each 
plot member may have its plotting style altered using a predefined plotting style, such as linespoints 
or circles. Referring to the data in Fig. 12.5 as the file called "gnu_example.dat", three different ways 
of plotting with Gnuplot are illustrated in Figs. 12.7-12.9. 

plot "griu_example.dat" us1ng 1:2 with linespoints 

plot "ghu_example.dat" using 3:2 with li,:iespoints 

piot L0:4][-5:5] "g.nu_example.dat" using 1:2 with linespoints title "data", ,sin(x) 
title "sin(x)" 

Gnuplot is also capable of 3D plots using the splot command, which shares most of the syntax of 
the 2D plot command. When plotting space-separated text data like that in Fig. 12.5, the first column 
gives the x values, the second the y values, and the third column is the value of the function at that 
point. An example of this is illustrated in Fig. 12.10. 

"gnucxample.dat" using 

3.5 

2.5 

1.5 

IJL_ __ _.__ __ __,_ ___ .,__ __ _.__ __ ___._ __ __, 

I 1.5 2.5 3.5 

FIGURE 12.7 

The first column of the data in Fig. 12.5 is used as the x values and the second column as they values. Default 
ranges are generated. 
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"gnuexample.dat" using 3:2 -

3.5 

2.5 

1.5 

,~--~--~~--~--~---~--__. 
-7 -6 -5 -4 -3 -2 -I 

FIGURE 12.8 

The third column of the data in Fig. 12.5 is used as the x values and the second column as they values. Default 
ranges are generated. 

splot "gnu_exatnple.dat" with linespoints title "data", l0>1<exp(-(x·3h*2-(y-3)>1<>1<2) 
title "gaussian" 

Among the many strengths of Gnuplot is the easy-to-use documentation accessed via the help 
command in interactive mode. 

-2 

-4 

0.5 

FIGURE 12.9 

1.5 2.5 

duto 
sin(x)-

3.5 

Plot containing the data from Fig. 12.5 as well as a plot of sin(x) with specified ranges. 
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data ----,
gaussian -·~· 

-~ L 0 ---"~?~~:.:::s:+=7=-;:1:::~~;z:-:-:----;-:__ 
-4 
-6 
-8 

FIGURE 12.10 

An example of a Gnuplot-generated 3D plot showing both the data in Fig. 12.1 andf(x,y) = 10e-(x-3)2-(y-3)'. 

12.4 MATPLOTLIB 
Matplotlib [2] is a freely available and open-source Python language-based visualization tool with 
an interface that is similar to the look and feel of Matlab. It relies upon the NumPy extension to Python 
as a required dependency for array and matrix support. Like Gnuplot, Matplotlib is frequently 
found already installed on many supercomputers and is easily integrated into existing HPC application 
code bases for application-specific visualizations. Python is frequently used in scientific visualization, 
and in the case of Matplotlib using Python is a requirement. While the Python syntax is fairly simple 
and intuitive, a quick overview is given in an online guide [8]. 

In interactive mode, Matplotlib is initialized by launching Python and loading NumPy and 
Matplotlib, as illustrated below: 

$ python 
>» import matplotliti.pyplot as pJot 
>» import numpy · 

Once Matplotlib has been started in interactive mode, the data in Fig. 12.5 can be plotted inter
actively in a way analogous to that used with Gnuplot in Fig. 12.7. The Matplotlib example is shown in 
Fig. 12.11. 

»> data = numpy. loadtxt( "gnu_ex~mpl e. dat'', sld prows=O) 
>>> xvalues - data.T[OJ 

»> yval ues = data. T[lJ 

>» H, "' plot.plot(xvalues,yvalues) 
>>> plot.show() · 
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4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

FIGURE 12.11 

An interactive plot of the first and second columns of the data in Fig. 12.5 using Matplotlib. This is analogous to 
the Gnuplot version shown in Fig. 12.7. The text file "gnu_example.dat" is read into the data variable using the 
loadtxt method from NumPy. The data is rotated upon read-in so the data variable is transposed using the ''T" 
operation and the columns are loaded into variables xvalues and yvalues for plotting. 

Matplotlib easily integrates with the data-storage libraries explored in Chapter 10, including HDF5 
and netCDF through their respective Python bindings. Data can then be easily manipulated using 
NumPy and plotted using Matplotlib. This is illustrated in Fig. 12.12. 

In Fig. 12.12 the HDF5 dataset that was illustrated in Chapter 10 Fig. 10.7,particles.h5, is read into 
Python and the x and y values of the particles are plotted using Matplotlib. To do this, the Python 
bindings to HDF5 are loaded using the import h5py command in addition to loading Matplotlib and 
NumPy, as illustrated in the python script in Code 12.1. 

1 import h5py 
2 import numpy as np 
3 import matplotlib.pyplot as plot 
4 
5 f= h5py.File("particles.h5","r") 
6 dataset= f["particl e data"] 
7 xvalues=np.zeros(dataset.shape)f,/initializingmemory 
8 yvalues =np.zeros(dataset.shape) #initializing memory 
9 for idx,item in enumerate(dataset): 

10 
11 
12 

xval ues[idx] = item[OJ 
yval ues[idx] = item[l] 

13 71, = plot.plot(xvalues,yvalues) 
14 plot.show() 

Code 12.1. Python code to plot the x and y values of the particle data stored in the "particles.h5" file 
created in Chapter 10. 
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'--,---r----,----,------.---r----,----,------,--' 

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 

FIGURE 12.12 

Matplotlib plotting the x and y coordinates of the particles data written in HDF5 format in Fig. 10. 7 of Chapter 10. 
Matplotlib integrates well with the parallel 1/0 libraries discussed in Chapter 10. 

The HDFS file can then be loaded using the h5py.File method. A specific dataset in the file can be 
accessed by using the dataset name as a key to the file; in this case the dataset name is "particle data". 
A list of all datasets present in an HDF5 file can be found using the h5ls utility as well. The values in 
the dataset are copied to the appropriate xvalues and yvalues NumPy arrays and plotted, just as was 
done in Fig. 12.11. 

Like Matlab, Matplotlib provides a number of tools for visualizing sparse matrices. One of the most 
common of these is the ability to plot the sparsity pattern of a matrix. This is illustrated in Code 12.2 
and Fig. 12.13 for the matrix "bcspwr06.mtx" from the Matrix Market collection [9], using the matrix 
market reader provided in the SciPy ecosystem [IO]. 

import scipy. io as sio 
2 from matp l otl i b. pyp lot import figure, show 
3 import numpy 
4 
5 A=sio.mmread("bcspwr06.mtx"); 
6 
7 fig=figure(l 
8 axl=fig.add_subplot(llll 
9 

10 axl.spy(A,markersize=ll 
11 show( l 

Code 12.2. Python script illustrating the ability to plot the sparsity pattern of a matrix. The matrix in 
this case, bcspwr06.mtx, comes from the Matrix Market collection [9]. The resulting sparsity pattern 
plot, producing using the spy method in line 8, is shown in Fig. 12.13. 
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200 400 600 800 1000 1200 1400 

200 

400 
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800 

1000 

1200 

FIGURE 12.13 

The sparsity pattern of a matrix plotted using Code 12.2. 

Unlike Gnu plot, Matplotlib itself does not support 3D surface plots or other 3D-type visualizations. 
However, there are extension modules that can enable 3D plotting using Matplotlib, including mplot3d 
[ 11]. Matplotlib plots are also capable of integration within one of the most important and widely used 
libraries for 3D computer graphics, the VTK. 

12.5 THE VISUALIZATION TOOLKIT 
One of the most important open-source visualization libraries for HPC users is the VTK [3]. The 
VTK provides many 3D visualization algorithms, parallel computing support, and interfaces to 
interpreted languages like Python, which are used as examples in this section. The VTK is also used 
in several full visualization tools, including ParaView and Vislt, which are illustrated later in this 
chapter. 

The most recent release of VTK is 8.0 and is conceptually laid out around the idea of a data 
pipeline incorporating maps with keys and values for passing information through the pipeline, 
objects for storing source data, algorithms, and filters, and a class for connecting together and 
executing the pipeline. In VTK terminology, "mappers" convert data into graphics primitives while 
"actors" alter the visual properties of those graphics. The example shown in Fig. 12.14 and Code 12.3 
reads the HDFS data "particles.h5" from Chapter 10 and plots a line in 3D through the points in the 
HDFS dataset using VTK. 
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FIGURE 12.14 

Two 3D plots of the particle locations found in partic/es.h5 from Chapter 10 using VTK. The corresponding code 

for this visualization is found in Code 12.3 . 

import h5py ff the HDF5 Python interface 
import vtk # the VTK Pytl1on interface 
f=h5py . File ("particles.h5","r" ) # read in the file "parti cles . h5 " 

4 dataset=f["particledata " J /fa acces s the dataset "particle data " in "particles.h5 " 
5 points= vtk . vtkPoi nt s () 
6 points . SetNumberOfPo in ts(dataset . shape [O J ) # create a list of poi nts for 

particle locations 
7 for idx , item in enumerate(dataset): 
8 points .SetPoint(idx ,dataset[idx][OJ ,dataset[idxJ[lJ ,da taset[idxJ[2J) #assign 

values 
9 

10 lines= vtk . vtkCellArray() 
11 lines .I nsertNextCell (dataset.shape[OJ) 
12 for idx in range(O ,d ataset . shape[O]) : ff assign the con ne ctivity between the 

points 
13 lines . InsertCellPoint(idx) 
14 

15 polygon = vtk . vtkPolyOata() ff create a polygon geometric s tructure 
16 polygon.SetPoints(points ) 
17 poly gon.Setlines (l ine s) 
18 
19 poly gonMapper = vtk . vtkPolyDataMapper() # map the polygonal data to graphics 
20 polygonMapper .Setln putData(polygonl 
21 polygonMapper . Update() 
22 
23 axes = vtk.vtkAxesActor() ff create some axe s 
24 polygonActor = vt k. vtkActor( ) ff Manage the rendering of the mapper 
25 po lygonActor .SetMapper(polygonMapper) 
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26 renderer= vtk . vtkRenderer() # The viewport on the screen 
27 renderer .Add Actor(polygo nActor) 
28 renderer . Add Actor(axesl 
29 rendere r .SetBackgrou nd (0 . l, 0. 2, 0.3) 
30 
31 renderer . ResetCamera() 
32 
33 rend erWin dow = vtk . vtkRend erWindow() 
34 renderWindow .AddRenderer ( renderer l 
35 

36 inte ract ive_r en = vtk . vtkRenderWindowlnte ractor() # enable interactivity wit h 
visua lization 

37 interactiv e_ren . SetRe nderWindow (renderWin dow) 
38 interactive_ren.Initialize() 
39 interactive_ren.Start() 

Code 12.3. A Python script to read in and visualize the 3D trajectory of the particle data stored in 
particles.h5 from Chapter 10 using VTK. The resulting visualization is seen in Fig. 12.14. 

All other major scientific visualization components are available in VTK. Isosurfaces of 3D data 
can be produced using vtkContourFilter, as illustrated in Fig. 12.15. In VTK, filters like vtkCon
tourFilter are optionally applied in the pipeline before applying mappers and actors, as illustrated in 
Code 12.4. 

FIGURE 12.15 

An isosurface in VTK using Code l 2.4. 
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3 rt=vtk.vtkRTAnalyticSource(l It data for testing 
4 

5 contour_filter=vtk.vtkContourFilter(l It isosurface filter 
6 contour_filter.SetlnputConnection(rt.Get0utputPort()l 
7 contour_filter.SetValue(0, 190) 
8 
9 mapper= vtk. vtkPolyDataMapper( l 

10 mapper.SetlnputConnection(contour_filter.Get0utputPort(ll 
11 
12 actor= vtk.vtkActor(l 
13 actor.SetMapper(mapperl 
14 
15 renderer= vtk.vtkRenderer() 
16 renderer.AddActor(actorl 
17 
18 renderer.SetBackground(0.9. 0.9. 0.9) 
19 
20 renderWindow = vtk.vtkRenderWindow() 
21 renderWindow.AddRenderer(renderer) 
22 renderWindow.SetSize(600, 600) 
23 
24 interactive_ren = vtk.vtkRenderWindowlnteractor(l # enable interactivity with 

visualization 
25 interactive_ren.SetRenderWindow(renderWindow) 
26 interactive_ren. Initialize( l 
27 interactive_ren.Start() 

Code 12.4. Example isosurface using the ContourFilter filter; the value of the isosurface is set at line 7. 
Test data was provided using vtkRTAnalyticSource in line 3. The resulting visualization is shown in 
Fig. 12.15. 

One way to execute volume rendering through ray tracing in VTK is using the SmartVolume
Mapper class illustrated in Code 12.5 and Fig. 12.16. In this example, a color transfer function and an 
opacity map are passed as properties to shade the rays appropriately as they pass through the volume. 

import vtk 
2 
3 rt= vtk.vtkRTAnalyticSource( l 
4 rt.Update() 
5 
6 image= rt. Get0utput ( l 
7 range= image. GetScal arRange( l 
8 
9 mapper=vtk.vtkSmartVolumeMapper() It volume rendering 

10 mapper.SetlnputConnection(rt.Get0utputPort()l 
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11 mapper.SetRequestedRenderModeToRayCast() 
12 
13 color= vtk.vtkColorTransferFunction() 
14 color.AddRGBPoint(range[0J, 0.0. 0.0, 1.0) 
15 color.AddRGBPoint((range[0J + range[l]) * 0.75, 0.0, 1.0, 0.0) 
16 color.AddRGBPoint(range[l], 1.0, 0.0. 0.0) 
17 
18 opacity= vtk.vtkPiecewiseFunction() 
19 opacity.AddPoint(range[0J, 0.0) 
20 opacity.AddPoint((range[0J + range[l]) * 0.5, 0.0) 
21 opacity.AddPoint(range[lJ, 1.0) 
22 
23 properties= vtk.vtkVolumeProperty() 
24 properties.SetColor(color) 
25 properties.SetScalar0pacity(opacity) 
26 properties.SetlnterpolationTypeTolinear() 
27 properties.Shade0n() 
28 
29 actor= vtk.vtkVolume() 
30 actor.SetMapper(mapper) 
31 actor.SetProperty(properties) 
32 
33 renderer= vtk.vtkRenderer() 
34 renderWindow = vtk.vtkRenderWindow() 
35 renderWindow.AddRenderer(renderer) 
36 
37 renderer.AddViewProp(actor) 
38 renderer.ResetCamera() 
39 renderer.SetBackground(0.9, 0.9, 0.9) 
40 renderWindow.SetSize(600, 600) 
41 
42 interactive_ren = vtk.vtkRenderWindowlnteractor() 
43 interactive_ren.SetRenderWindow(renderWindow) 
44 interactive_ren.Initialize() 
45 interactive_ren.Start() 

Code 12.5. Example volume rendering using VTK. Test data was provided using vtkRTAnalyticSource at 
line 3. Opacity and color map settings were made based on the image scalar range. The resulting 
visualization is shown in Fig. 12.16. 

Streamlines in VTK are accomplished using the StreamTracer class. Streamlines require vector 
data as input, but VTK also provides a means to take a gradient of scalar data and then assign output as 
a vector which can be visualized as a streamline. This entire pipeline is demonstrated in Code 12.6 and 
Fig. 12.17. The starting point for a single streamline can be specified, as illustrated in the comment on 
line 31 of Code 12.6, or a streamline seed region can be created for starting multiple streamlines, as 
illustrated in lines 23-27. 
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FIGURE 12.16 

An example volume rendering in VTK using Code 12.5. 

FIGURE 12.17 

Streamlines in VTK using the gradient of the data shown in Figs. 12.15 and 12.16. The code that produced these 
streamlines in VTK is shown in Code 12.6. 
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import vtk 
2 
3 rt=vtk.vtkRTAnalyticSource() # data for testing 
4 rt.Update() 
5 
6 ftcal cul ate the gradient of the test data 
7 gradient= vtk. vtklmageGradi ent() 
8 gradient.Set0imensionality(3) 
9 gradient.SetlnputConnection(rt.GetDutputPort()) 

10 gradient.Update() 
11 
12 # Make a vector 
13 aa = vtk.vtkAssignAttribute() 
14 aa.Assign("SCALARS","VECTORS","POINT_DATA") 
15 aa.SetlnputConnection(gradient.GetOutputPort()) 
16 aa.Update() 
17 
18 # Create Stream Lines 
19 rk = vtk.vtkRungeKutta45() 
20 streamer= vtk.vtkStreamTracer() 
21 streamer.SetlnputConnection(aa.GetOutputPort()) 
22 
23 # seed the stream lines 
24 seeds= vtk.vtkPointSource() 
25 seeds.SetRadius(l) 
26 seeds.SetCenter(l,1.1,0.5) 
27 seeds.SetNumberOfPoints(50) 
28 
29 # options for streamer 
30 streamer.SetSourceConnection(seeds.GetOutputPort()) 
31 #streamer.SetStartPosition(l.0,1.1,0.5) 
32 streamer.SetMaximumPropagation(500) 
33 streamer.SetMinimumlntegrationStep(0.01) 
34 streamer.SetMaximumlntegrationStep(0.5) 
35 streamer.Setlntegrator(rk) 
36 streamer.SetMaximumError(l.Oe-8) 
37 
38 mapStream = vtk.vtkPolyDataMapper() 
39 mapStream.SetlnputConnection(streamer.GetOutputPort()) 
40 streamActor = vtk.vtkActor() 
41 streamActor.SetMapper(mapStreaml 
42 
43 ren = vtk.vtkRenderer() 
44 renWin = vtk.vtkRenderWindow(l 
45 renWin.AddRenderer(ren) 
46 iren = vtk.vtkRenderWindowlnteractor() 
47 iren.SetRenderWindow(renWin) 
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48 
49 ren .AddActor(streamActor) 
50 ren . SetBackgrou nd( 0 . 9 , 0. 9, 0. 9) 
51 ren Win . SetSize(300 ,300J 
52 i ren . Initialize() 
53 i re n. Start () 
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Code 12.6. Example code using vtkRTAnalyticSource to create streamlines with VTK. The gradient of 
the test data is computed in lines 7-10; the gradient is then assigned as vector data for use by the 
vtkStreamTracer filter for producing streamlines. The starting points for the streamlines are produced 
from point sources in a sphere computed in lines 24-27. A single starting point could also be assigned, 
as illustrated in the comment in I ine 31. The result from this code is seen in Fig. 12.17. 

While the VTK library provides a complete visualization pipeline solution for HPC users, many 
users will prefer a turnkey visualization solution that is driven by a powerful graphical user interface 
(GUI) and is ready for supercomputing usage without having to write any code. Two widely used 
turnkey visualization tools that incorporate the powerful algorithms of VTK are Para View and Vislt. 

12.6 PARAVIEW 
Para View is an open-source HPC-capable turnkey visualization solution based on VTK. Like other 
visualization tools examined in this chapter, significant support for the Python language is provided, 
enabling control of Para View from both a GUI or a script. Because Para View is based on VTK, the 
naming of elements in the visualization pipeline follows that of the VTK APL Para View has data 
readers for over 70 different data formats. An example dataset that comes with Para View is shown in 
Fig. 12.18. 

FIGURE 12. 18 

Example visualization that comes with Para View illustrating streamlines with arrows and data slices. 
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12.7 VISIT 
Vislt is another open-source HPC-capable turnkey visualization solution that uses VTK for several 
visualization algorithms. Vislt is particularly well suited for in situ visualization which occurs while 
the supercomputing simulation that creates the data is ongoing. An example Visit visualization is 
shown in Fig. 12.19, with a skewed color map to reveal features in the data that would not be otherwise 
apparent. 

VTK accepts over a I 00 different data input formats and provides a simple scripting interface as an 
alternative to using the GUI for creating visualization. 

FIGURE 12.19 

DB: mhd.3000 . db 
Cycle: 0 
Ps.eudocolor 
Vor:rho 

0.1788 

3.10 

3.00 

2.90 

l.30 l.40 l.SO 
x Axis 

l.60 

Example Visit pseudo-color plot using a skewed color map to reveal a physical instability manifested as rolls in 

the data. The name of the visualized file appears in the upper left-hand comer, and the field variable name ("rho") 
is given above the color legend. 
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12.8 SUMMARY AND OUTCOMES OF CHAPTER 12 
• Motivations for visualizing data include debugging, exploring data, statistical hypothesis testing, 

and preparing presentation graphics. 
• Many scientific visualizations incorporate at least one of four foundational visualization 

concepts: streamlines, isosurfaces, volume rendering by ray tracing, and mesh tessellations. 
• Streamlines take a vector field as input and show curves that are tangent to the vector field 
• Isosurfaces are surfaces connecting data points which have the same value. 
• Volume rendering by ray tracing casts rays through the data volume and samples the volume 

through which the rays pass. 
• Mesh tessellations visualize data points and their connectivities to other data points using 

polygons. 
• Gnuplot is a simple command-line visualization tool for 2D and 3D plots. 
• Matplotlib is a Python-based visualization tool with easy integration to other libraries with 

Python bindings. 
• VTK is an open-source collection of visualization algorithms for creating application-specific 

visualization solutions. 
• Para View and Visit are turnkey visualization solutions incorporating VTK algorithms but 

providing a GUI and scripting interface for visualization. 
• Para View and Visit already incorporate support for hundreds of widely used data formats on HPC 

systems. 

12. 9 EXERCISES 
1. List all the factors that impact a decision to use a particular visualization approach for an HPC 

application. Create a table listing the trade-off space of the five visualization tools explored in this 
chapter. 

2. Create a set of streamlines, isosurfaces, and volume renderings of the function f(x,y,z) = 
2550 sin (50x) sin (50y) cos (50z) using the visualization tool of your choice. 

3. Create a 2D dataset using the output library of your choice (i.e., HDF5, NetCDF, Silo, etc.) for 
the following function:f(x,y) = e-x2-l where XE [ - I, I] and yE [-1, I]. Then, using the 
visualization library of your choice, read in this data and visualize it. Finally, compute the 
gradient of this data using the visualization tool you have chosen, and plot the result. 

4. Visualization tools provide a large number of optional color legends. Why? In what 
circumstances is one color legend better than another? 

5. Explore the parallel visualization capabilities of Visit or Para view by redoing problem 2 but using 
HPC resources. Produce a strong scaling plot showing the time to solution for the visualization as 
a function of the number of computing resources employed. 
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13, 1 INTRODUCTION 
Performance monitoring is both an inherent and a key step in application development. The code 
development process does not stop when the program appears to be doing what it was designed to do 
and the generated results are validated for correctness. Even when the application has been tested using 
a broad range of input parameters and datasets as well as multiple supported computational modes 
stressing individual program features, there may still be hidden problems preventing it from executing 
at the smaximum performance permitted by the underlying platform. This is particularly important in 
parallel computing, where the impact of every inefficiency is effectively multiplied by the number of 
processor cores the application is running on. Besides increasing the time necessary to arrive at 
solutions, this may also have financial implications, since often the user is charged for computer use in 
proportion to the consumed aggregate machine time. One of the most important reasons for perfor
mance monitoring is therefore to verify that the application is not impacted by any obvious or easily 
preventable degradation factors. One way to confirm this is a simple sanity check: is the actual 
computation time in line with the processor speed and the estimated total number of operations that 
need to be performed? Is the communication phase taking longer than estimated given the message 
sizes transmitted by the application and network bandwidth? Fortunately, these questions may be 
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answered by performing simple instrumentation of application code to measure the time required to 
execute the segments of the program involved. This is discussed in Section 13.2. 

Even a simple measurement, such as capture of a timestamp, affects program execution due to 
greater than zero latency of the operation accessing the system timer and the nonzero resource foot
print required to perform the operation. The more complex and frequent the measurements, the more 
overhead is introduced into program execution, potentially skewing the measurement results and in the 
worst case completely changing the application execution flow. The latter may be particularly 
damaging, since the identification of sections of code that need to be revised for performance 
improvement may be incorrect and cause additional programmer effort with little or no benefit. One 
way to alleviate this problem is to apply statistical sampling. Instead of registering every occurrence of 
an event in a program, a snapshot of program's state (sample) is taken at fixed intervals. The sampling 
period usually may be raised within a permitted range to increase the accuracy (again, at the cost of 
additional overhead) when there is a good possibility that some events were not accounted for, or 
lowered if the monitoring is discovered to be too intrusive or a coarse execution profile is sufficient. 
Another, albeit limited, way to lower instrumentation overheads is to use custom hardware to capture 
the events of interest. Modem CPUs implement dedicated registers that may be configured to count the 
occurrences of specific low-level events, such as branches, cache misses, instruction retirement, etc. 
Since the register updates are carried out entirely in hardware, executing software almost never sees 
the monitoring overhead. However, the consequence of hardware implementation is that the classes of 
supported events are predefined and cannot be extended or customized. 

The remainder of this chapter discusses various performance monitoring tools commonly used to 
evaluate high performance computing workloads. Due to easier accessibility, broader portability, and 
no licensing costs, open-source tools are usualfy preferred. However, there are several useful pro
prietary tools that provide easy-to-use interfaces (especially those driven by a graphic user interface or 
GUI) and may leverage better technical expertise of hardware products than can be derived from 
publicly available documentation. While they will not be discussed in depth, they deserve a mention 
and are listed here to make the reader aware of other performance analysis options: 

• Intel VTune Amplifier [l] is an integrated profiling environment targeting primarily Intel CPUs, 
including Xeon Phi. It can perform statistical hotspot analysis, thread profiling, and Jock and 
blocking analysis, measure floating-point unit (FPU) utilization and Flops values, analyze 
memory and storage accesses, and trace computation offload to Graphics Processing Units 
(GPUs) via OpenCL. The tool integrates with Intel Parallel Studio XE and Microsoft Visual 
Studio, and supports programming languages such as C, c++, C#, Fortran, Java, Python, Go, and 
assembly. It is also capable of remote trace collection to enable monitoring of distributed 
applications such as a message-passing interface (MPI). Supported operating systems include 
Linux, Windows, and Mac OS X. 

• CodeXL [2] is AMD's equivalent of VTune, providing an integrated suite of tools for 
performance analysis targeting x86-compatible CPUs as well as AMD GPUs and accelerated 
processing units (APUs) through the OpenCL Software Development Toolkit (SOK). It supports 
time-based profiling on CPUs, event-based profiling and instruction-based sampling on CPUs and 
APUs, and real-time power profiling including capture of CPU core clock frequencies, thermal 
trends, and P-states. CodeXL may be used as a standalone tool on Linux (Red Hat, Ubuntu, 
SUSE) and Windows, and is also available as an extension to Microsoft Visual Studio. While the 
source code is available through GitHub [3], much of the tool's core functionality relies on the 
proprietary AMO Catalyst software [4]. 
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• The Nvidia CUDA Toolkit [5] includes a visual profiler (nvvp) that can be used to monitor and 
analyze the execution of parallel programs on Nvidia GPU s. Through collected traces, it gives the 
user an insight into program activity and the execution timeline decomposed into individual 
processing threads and workload phases. It also monitors memory usage (including unified 
memory on supporting architectures) as well as power consumption, clock speed, and thermal 
conditions. The tool has an option to analyze Pthread behavior on the host CPU as well as 
OpenACC applications (this requires a POI compiler). Profiling may also be enabled from the 
command line using the nvprof utility. The toolkit is available for Linux, OS X, and Windows. 

13.2 TIME MEASUREMENT 
Execution time is one of the critical metrics of application performance and of primary importance to 
both application developers and end users. Its measurement may be carried out at the whole-program 
level as well as for selected sections of the monitored application. Each of these scenarios requires a 
different approach. The measurement of duration of application execution should typically be 
synchronized with the wall clock time to establish a common reference permitting meaningful 
comparisons with results obtained on other platforms and environments. This is particularly important 
when application execution takes a significant amount of time, potentially counted in days or months. 
Most computer system clocks are periodically synchronized over the network to a common high
accuracy standard, typically derived from an atomic clock using protocols such as Network Time 
Protocol (NTP) [6]. This provides sufficiently good average accuracy in the long term, although it does 
not avoid the issue of local clock jitter. It is also affected by the characteristics of the clock adjustment 
algorithm: if the measurement happens when the system clock's value is updated to match the stan
dard, potentially a large skew may be introduced to the result. Most implementations tend to tune the 
system clock gradually by small amounts, thus alleviating the problem of a measured value being 
dependent on the time when the act of measurement is being performed. 

Most Unix systems provide several utilities to access the wall clock time from the command line. 
One is the date program that outputs the current date and time with accuracy down to single seconds. It 
may be used in batch job scripts to provide coarse timestamps for the start and end times of application 
execution (or any intermediate phases as long as they are represented by separate applications). Its 
output will be captured in a file storing the standard output stream of the job's execution shell for future 
inspection. An example output of the command as invoked from the shell prompt is: 

> date 
-sun, Feb 05, 2017 6:17:33 PM 

The date command also accepts custom date format specification as a command-line argument in 
case the default form shown above is not acceptable. 

Since resolution at the full-second level may not be sufficient for short-running applications, more 
precise measurements can use the time utility that may be available as a bash shell built-in command or 
a standalone system program. It has to be followed by a correctly formed command line fully 
describing the application with its options and command-line arguments. The specified application 
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will immediately be spawned as specified, while the timing utility captures several key characteristics 
of its execution. For example: 

> /usr/bin/time dd if=/dev/zero of=/dev/nul 1 bs=4096 count=lM 
1048576+0 records in 
1048576+0 records out 
4294967296 bytes (4.3 GB, 4.0 GiB) copied, 0.482873 s. 8.9 GB/s 
0.37user O.lOsystem 0:00.48elapsed 100%CPU (Oavgtext+Oavgdata 415744maxresfdent)k 
Oinputs+Ooutputs (1643major+Ominor)pagefaults Oswaps 

The above times the execution of the dd program (available on any Linux distribution and used to 
copy and convert file data) that transfers 4 GB of zero-filled data to a null device. Note that the first 
three lines contain output from the dd utility itself. In this case, the program execution took 0.48 s 
(as given by the elapsed time entry), of which 0.37 s were spent executing user code and 0.1 s system 
(or kernel) code. The reported system and user times do not necessarily have to add to the elapsed 
time value. This is because program execution may be stalled, e.g., waiting for user input, 
completion of input/output (1/0) operations, or other external events. If the program could not fully 
utilize the allocated processor core(s), the reported utilization (as a percentage of the CPU) may be 
lower than 100%. Note that multithreaded programs may report values greater than 100%, since the 
displayed user and system times are the aggregate values over all compute threads spawned by the 
application. 

The time utility also reports other details of program execution that may be helpful in analyzing the 
application's behavior. One of them, following the timings, provides information about memory 
resources allocated by the application. The first number indicates the average size of memory used by 
program text (instruction pages), the second represents the average size of unshared program data, and 
the third shows the maximum size of physical memory (resident set) used by the application's process. 
These numbers are reported in kilobytes. The last line displayed by the time command lists the number 
of 1/0 operations performed by the program, the number of minor and major page faults, and how 
many times the process was swapped out from memory for disk. The difference between major and 
minor page faults is that the first involves access to a storage device required to retrieve the contents of 
memory page, while a minor fault only requires an update of a page table entry. Thus the cost of a 
major fault is typically substantially higher than that of a minor fault. Similarly to date, the output of 
the time command may be customized through the command-line option -f or - -format to include 
additional parameters such as the number of involuntary and voluntary context switches, the number of 
messages in socket-based communication, the number of signals delivered to the process, and the exit 
status of the process. Note that the shell built-in time command reports only the user, system, and 
elapsed timings for the monitored program. 
The timing utilities operating at the whole-application level are not useful for measuring duration of 
execution of individual functions or code segments. For that purpose, a number of timing functions 
accessing the system's high-resolution clock are used. Individual implementations of high-resolution 
timers may differ from system to system depending on the actual processor type and system config
uration. Since the native interfaces exposed by such timers are often not compatible with each other, 
typically the most portable way to access them is to use POSIX clock functions. The most frequently 
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used call, cl ock_gett i me, obtains the value of time that has elapsed from some fixed reference point in 
the past, typically machine boot time. Its prototype looks as follows: 

#include <time.h> 
int clock_gettime(clockid_t id, struct timespec *tsp); 

where id identifies one of the clocks available on the system and the structure to store the time data 
pointed to by tsp comprises two fields. The first of them, tv_sec contains the number of full seconds 
and the other. tv_nsec, stores the number of nanoseconds expressing the remaining fraction of a 
second for the measured time interval. Both of these fields are integers of sufficient size to store the 
required data, frequently equal to machine's native word size. The function returns zero on success. To 
verify the actual resolution of the accessed clock, POSIX provides the cl ock_getres function that 
takes the clock identifier argument and stores the measurement resolution value in a structure pointed 
to by tsp: 

int clock_getres(clockid_t id, struct timespec *tsp); 

For fine-granularity measurements, useful clock ids include C LOCK_MONOTON IC and 
CLOCK_MONOTONIC_RAW. Unlike the system wall clock, which may be subjected to coarse changes of 
value due to the administrator manually adjusting the system time, the monotonic clock is only 
affected by incremental adjustments performed by the time synchronization protocol in use 
(e.g., NTP). The raw monotonic clock has the same properties as the monotonic clock, but it is not 
affected by external time adjustment. The POSIX interface also supports other clocks of interest: 
CLOCK_BOOTTIME that is similar to the monotonic clock, but includes the time that elapsed while the 
system was suspended; CLOCK_PROCESS_CPUTIME_ID, which measures processor time consumed by all 
threads in the process it was called in; and CLOCK_THREAD_CPUTIME_ID for a processor time clock that is 
limited to the specific thread. Selection of the suitable clock should be performed in the context of 
application and type of measurement; for most performance measurements on an "always-on" 
platform, the monotonic clock is often sufficient as long as the overhead of several tens of nanoseconds 
per access is acceptable. 

To take advantage of POSIX clocks, the user code needs to be explicitly instrumented with timing 
functions. To demonstrate this, a program performing matrix-vector multiplication with source 
code listed in Code 13.1 is used. The same code is subsequently subjected to analysis by other 
performance monitoring tools in the next sections of this chapter. The application allocates heap 
memory, initializes the matrix and multiplicand and product vectors (routine i nit, lines 6-15), 
performs the multiplication by invoking the CBLAS library function (refer to Chapter 11 for more 
details on BLAS) to compute dot products (mult function, lines 17-23), and verifies the result by 
performing an absolute value sum on the elements of the product vector (cblas_dasum in line 33). 
Both initialization and multiplication can be performed in row- or column-major fashion, potentially 
impacting the duration of computations. This is controlled by the second command-line argument 
(transposition flag); the first one specifies the size of the matrix. To gather the timing information, · 
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cl ock_gettime functions were added to the main function of the source as shown in Code 13.2 (only 
the instrumented section is provided; the starting part of the program preceding line 25 is un
changed). Code 13.2 also defines the sec function that is used to convert the contents of the ti mes pe c 
structure to a floating-point number of seconds, thus enabling a straightforward calculation of time 
intervals. Note that collection of timestamps is arranged with as little additional code as possible, and 
therefore the conversions of timing values to seconds and printout of final values are performed 
outside the timed regions. 

1hnclude <stdio.h> 
2 1hnclude<stdlib.h> 
3 #include <cblas.h> 
4 1hnclude <time.h> 

voidinit(intn, double**m, double**V, double**p, int trans) { 
7 *m=calloc(n*n, sizeof(double)): 
8 *v=calloc(n, sizeof(double)): 
9 *p=calloc(n, sizeof(double))_: 

10 for(inti=0:i<n;i++){ 
11 ( *V )[ i] = ( i & 1)? -1. 0: 1. 0; 
12 if (trans) for (int j = 0; j <= i: j++) (*m)[j*n+i] = 1.0; 
13 else for (int j = 0; j <= i: j++) (*ml[i*n+j] = 1.0: 
14 
15 
16 
17 void mult(int size, double *m, double *v, double *P, int trans) 
18 int stride=trans? size: l; 
19 for (int i =0; i < size; i++) I 

20 intmi=trans?i:hsize: 
21 p [ i J = c bl as_ d dot ( s i z e , m+m i , st r i de , v , 1 ) : 
22 
23 
24 
25 intmain(intargc, char**argv) { 
26 intn=l000,trans=0: 
27 if (argc > 1) n = strtol (argv[l], NULL, 10): 
28 if (argc > 2) trans= (argv[2][0J == 't'); 
29 
30 
31 
32 
33 
34 
35 
36 

double *m, *V, *P: 
init(n, &m, &v, &p, trans); 
mult(n, m. v, p, transl; 
doubles=cblas_dasum(n, p, ll: 
printf("Size%d: abs. sum: %f (expected: %d)\n", n, s. (n+ll/2): 
return 0: 

Code 13.1. Matrix-vector multiply code operating in row- and column-major modes. 
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5 

13.2 TIME MEASUREMENT 389 

6 void init(int n, double **m, double **v, double **P, int trans) 
7 *m= calloc(n*n, sizeof(double)); 
8 *v=calloc(n, sizeof(double)); 
9 *P=calloc(n, sizeof(double)); 

10 for (int i =0; i <n; i++l { 
11 (*v)[i]=(i&ll?-1.0:1.0; 
12 if (trans) for (intj=O; j <=i; j++) (*m)[j*n+i]=l.0; 
13 el s e for ( i n t j = 0 ; j < = i ; j ++) ( *m) [ hn+ j J = 1 . 0 ; 
14 l 
15 
16 
17 void mult(int size, double *m, double *V, double *P, int trans) { 
18 int stride=trans? size: 1; 
19 for (int i =O; i < size; i++) ( 
20 intmi=trans?i:hsize; 
21 p[i]=cblas_ddot(size, m+mi, stride, v, l); 
22 l 
23 
24 
25 double sec(struct timespec *ts) { 
26 return ts->tv_sec+le-9*ts->tv_nsec; 
27 
28 
29 int main(int argc, char **argv) { 
30 struct timespec tO, tl. t2, t3, t4; 
31 cl ock_gettime(CLOCK_MONOTONIC, &tO); 
32 int n = 1000, trans= O; 
33 if (argc > 1) n = strtol (argv[l], NULL, 10); 
34 if (argc > 2) trans= (argv[2][0J == 't · l; 
35 
36 double*m,*v,*p; 
37 clock_gettime(CLOCK_MONOTONIC, &tl): 
38 init(n, &m, &v, &p. trans); 
39 clock_gettime(CLOCK_MONOTON!C, &t2): 
40 mult(n, m, v, p, transl; 
41 cl ock_gettime(CLOCK_MONOTONIC, &t3): 
42 doubles=cblas_dasum(n, p, l); 
43 clock_gettime(CLOCK_MONOTONIC, &t4): 
44 printf("Size%d; abs. sum: %f (expected: %d)\n", n, s, (n+l)/2); 
45 pri ntf( "Timings: \n program: %f s\n". sec(&t4)-sec(&t0)): 
46 printf(" init: %f s\n mult: %f s\n sum: %f s\n", 
47 sec(&t2J-sec(&tl). sec(&t3)-sec(&t2), sec(&t4)-sec(&t3) l: 
48 return O: 
49 

Code 13.2. Instrumented section of the matrix multiplication code. 
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Execution of the instrumented code in row-major mode with matrix size 10,000 x 10,000 yields: 

> ./mvmu 1 t 20000 
Size 20000; abs. sum: 10000.000000 (expected: 10000) 
Timings: 

program: 1.148853 s 
init: 0.572537 s 
mult: 0.576276 s 

sum: 0.000037 s 

Doing the same using the less efficient column-major operation results in: 

> , /mvmul t 20000 t 
Size 20000: abs. sum: 10000.000000 (expected: 10000) 
Timings: 

program: 12. 126625 s 
init: 4.343727 s 
mult: 7.782852 s 

sum: 0.000043 s 

As can be seen, program execution in the transposed mode takes an order of magnitude longer. The 
change is attributed primarily to a substantial increase in execution time of initialization and multi
plication subroutines that access the matrix data. The absolute sum performed in the verification phase 
takes roughly the same amount of time, since the layout of the input data (product vector) does not 
change. 

13.3 PERFORMANCE PROFILING 
13.3.1 SIGNIFICANCE OF APPLICATION PROFILING 
The goal of profiling is to provide an insight into application execution that may help identify the 
potential performance problems. These may be related to the algorithmic code makeup, memory 
management, communication, or 1/0. Profiling tools usually concentrate on hotspot analysis-that 
is, detection of the parts of code the program spends most of its time executing. This may lead to 
identification of bottlenecks, or those hotspots that have unduly adverse effects on the application's 
performance. A bottleneck is usually apparent as a throughput-limiting component in processing 
flow. Typically, both the predecessor and successor components of a bottleneck are capable of 
providing higher aggregate throughput than that of a bottleneck. Bottlenecks may sometimes be 
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replaced by a less limiting implementation (optimized); this may cause a dominant program 
bottleneck to move to another location in the code. Note that not every hotspot is necessarily a 
bottleneck. Many tightly optimized numeric libraries, for example, will spend nearly all of their time 
performing FPU computations, but this does not mean they are inefficient (the evidence for this is 
provided when the machine reaches performance near its hardware peak or close to the theoretical 
throughput limit of the computational algorithm used). Profilers may record compute performance 
data at the system level (including all active processes, system daemons, and kernel code running on 
a node), the process level, where only data relevant to a specific process is collected, or at the level of 
individual threads of a process. Additionally, profiling may be restricted to a user space, a kernel 
space, or both. Profiling requires that the analyzed application is instrumented, or modified in a way 
that permits the profiler to access the required runtime information. This process may be more 
invasive (e.g., the programmer injecting the required function calls or macros in the relevant places 
of source code) or less so (linking with a profiling library or attaching an external profiler to an 
already running process). The former often occurs when the tracking of user-defined events is 
necessary. 

Besides analysis of computational performance, profiling tools may monitor other characteristics 
of the executed programs. One is memory usage over the course of program execution. This may apply 
to the overall size of virtual memory allocated by the application, the amount of physical memory 
assigned to the program, the shared memory that may be accessible to other concurrently executing 
processes, and the sizes of the program's stack, data, and text segments. The other aspect is I/0, for 
which the profiler may record the number of I/0 operations, the amount of data transferred to or from 
the secondary storage or buffer cache, achieved data bandwidth, number of files opened, and so on. 
Finally, communication profiling registers the number and size of messages sent, their destinations, 
latencies, and bandwidths. This can be further categorized by network type (Ethernet, InfiniBand, etc.), 
communication endpoint type (sockets, RDMA), or protocol used. Information collected during 
profiling may be used to classify a program or its individual subroutines as CPU (or compute) bound, 
where execution time is dominated by processor speed, memory bound, for which execution time is 
primarily dictated by the amount of memory needed to store the program's data structures, or 1/0 
bound, where a dominant fraction of execution time is spent performing I/0 operations. It is worth 
noting that the code characteristic may change as a result of optimization, e.g., from CPU bound to I/0 
bound. 

13.3.2 ESSENTIAL GPERFTOOLS 
The time utility discussed previously is an example of a simple profiler. Its usefulness is limited 
by reporting only the single average, cumulative, or maximum value of parameters of interest for 
the entire duration of program execution. This makes it impossible to pinpoint the moment in 
program execution when performance was degraded and cross-reference it to the responsible sections 
of source code. 
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Modem profiling tools attempt to address this issue. One of the commonly used profilers is 
available as a part of the gpeiftools [7] package. While originally named Google Performance Tools, 
the code is currently maintained by the community and distributed under the BSD license. It provides a 
statistical CPU profiler, pprof, and several tools based around the tcmalloc (thread-caching malloc) 
library. Besides offering an improved memory allocation library for multithreaded environments, 
tcmalloc library supports memory leak detection and dynamic memory allocation profiling. To 
illustrate the use of these features, the program from Code 13.1 was compiled using the command 
shown below (note the addition of -1 profiler to the command line). To permit access to the pro
gram's symbol table, a -ggdb option was specified as well: 

> gee -02 -ggdb mvmult.c -o mvmult -lcblas -lprofiler 

The gpeiftools CPU profiler does not require any changes to the source code, and after successfully 
linking the instrumented application may be executed. The location of the file containing the collected 
data must be specified using the CPUPROFILE environment variable, as demonstrated below: 

> env CPUPROFI LE=mvmult. prof. /mvmult 20000 
Size 20000; abs. sum: 10000.000000 (expected: 10000) 
PROFILE: interrupts/evictions/bytes= 115/0/376 

The program execution proceeds as before, with the expected output appearing on the console. The 
only change is the final line, which confirms that the profiling indeed took place and collected 115 data 
samples. To display the obtained information, the pprof tool is used: 

> pprof --text mvmult.mvmult.prof 
Using 1oca1 file mvmult. 
Using local file mvmult,prof. 
Total: 115 sampies 

58 50.4% 50.4% 
57 49.6% 100.0% 
0 0.0% 100.0% 

58 50 .4% ddot_ 
57 49.6% init 
57 49. 6% Ox00007f2c9485e00f 

The produced output is organized in several columns. The first shows the sample count associated 
with each function. Whenever the profiler collects a sample, it records, among other things, the 
current address stored in the instruction pointer of the running program context. Subsequent analysis 
done by pprof assigns the collected addresses to individual program functions. This is shown 
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in the second column. The result above indicates that practically the entire program time is 
spent in two functions, ddot_ and i nit. While init may be found in Code 13.1, ddot_ is a Fortran 
function indirectly called by CBLAS that computes the double-precision dot product. The third 
column lists the cumulative percentage of samples for all functions displayed so far. The fourth and 
fifth columns deal with the aggregate sample counts and percentages for the annotated function as 
well as all its callees. Hence the unnamed function in the last line is the likely ancestor of the i nit 
function; it might be related to an early setup code that executes before the invocation of main. 
Finally, the last column lists the affected function names, or if not available, the raw sampled 
addresses. 

The default sampling frequency is 100 samples per second. This can be set to a custom value using 
the CPUPROFILE_FREQUENCY environment variable, although the maximum speed for most Linux 
platforms is limited to 1000 per second. Since the test application runs for only about a second, trying 
to increase the number of samples may offer additional insights: 

> env CPUPRdFIL~=mvmultlK.pr()f (;PU~ROFII.E_:.JREdLiENCY""1000 ./mvmult 20000 
Size 20000: abs, sum: 10000.000000 (expected: 10000) · 
PROF I LE: i nterrupts./evi ct i 011s/b.ytes "" H47/0'./53-6 

About 10 times as many samples were collected. Their analysis reveals the following: 

> ·_ ppror - 0 text mvmv1 t. ritvmul tlK,proi. 
Using local file ~vmult. 
Using local file.mvinultlK.proL 
Total: 1147 samples 

~76 50.2% 50.2% 
571 4}L8% lQQ.0% 

O 0,0.% 100.0%. 

57Q 50 .. 2:% ddot.:. 
571 49~8%. 1hit 
· 57_1 49 .8%' 0~·00001f?fdpccJaOOf. 

It is apparent that most of the test application execution is indeed concentrated in the two functions 
identified before. However, pprof supports other analysis options that may be changes through 
command line switches: 

• - -text displays the profile in a plain-text form 
• - -1 i st=<regex> outputs only data related to functions whose names match the provided regular 

expression 
• - -di sasm=<regex> is like list, but performs disassembly ofrelevant section of the program while 

annotating each line with a sample count 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 412



394 CHAPTER 13 PERFORMANCE MONITORING 

- -dot, - - pd f, - - p s , - -g i f , and - -g v generate annotated graphical representation of a call graph 
and output it to stdout in the requested format. Requires that the dot converter is installed in the 
system. The last option uses gv viewer to open a window with call graph visualization. 

The default output of pprof is performed at function granularity, but sometimes it is useful to 
change this to avoid lengthy output or zoom in more closely on to the source of the problem. 
Adjustment options, in order of decreasing resolution, are: 

-- addres ses shows annotated code addresses 
- -1 i nes annotates source code lines 
- - functions lists the statistics per function 
- - fi l es switches to whole-file granularity. 

To see how the samples are distributed within the in it function, one may apply the following 
command to the set of profiling data collected before (to save space, the produced output was truncated 
and removed lines were replaced with" [ ... ]"): 

> pprof --l ist=init - lines mvmult mvmu lt lK . prof 
Using local file mvmult . 
Using local file mvmultlK . prof . 
ROUTINE========= init in /home/maciek/perf/mvmult.c 

571 571 Total samples (fl at / cumulative) 
[ ... ] 

6 : void i nit( int n. double **m , double **V , double **P , 
int trans) 

7: *m=calloc(n*n , sizeof(double)) ; 
8: *v=calloc(n , sizeof(double)); 
9: *P=calloc(n , sizeof(double)) ; 

10: for (int i= O; i < n; i++l { 
11: ( *v )[ i J = Ci & l l? -1. D: 1. D; 
12: if (transl for (int j = 0 ; j <= i; j++l (*m)[j*n+iJ 

1.0; 
570 570 13 : e 1 s e for ( i n t j = D ; j < = i ; j ++ ) ( *m l [ h n + j J = 

1.0; 
14 : 
15 : 

[ ... ] 

Not unexpectedly, this shows that most initialization time is spent within the main loop. Of that, the 
inner loop performing initialization of matrix rows dominates the execution time, while the multi
plicand vector initialization is marginal by comparison. Since the sources of BLAS routines are not 
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available, a disassembled code listing may be used to identify the fine-grain hotspots in that code 
(again, the output was shortened to the most interesting fragment): 

> pprof ·· disasm=ddot_ mvmult mvmult . prof 
Using local file mvmult. 
Using local file mvmult. prof . 
ROUTINE ddot __ 

576 576 samples (flat, cumulative) 50 . 2%oftotal 
[ ... ] 

48 48 fccO : movsd -Ox8(% rax) , %xmm0 
9 9 fcc5 : add $0x28,%rax 

fc c9 : add $0x28 ,%rcx 
60 60 feed : mo vsd -Ox20(1rax) , %xmm2 
43 43 fcd2 : mulsd -Ox30(%rcx) , %xmm0 

fed? : mulsd -Ox20(%rcx) , %xmm2 
2 2 fcdc : addsd %xmm0,%xmml 

26 26 fceO : movsd -Ox28(%rax),%xmm0 
fce5 : mulsd -Ox28(%rcx) , %xmm0 
fcea : addsd %xmm0 ,%xmml 

81 81 fcee : addsd %xmm2 ,%xmml 
93 93 fcf2 : movsd -Oxl8(%rax) , %xmm2 

9 9 fcf7 : mulsd -Oxl8(%rcx),%xrnm2 
fcfc : movapd %xmml , %xmm0 

57 57 fdOO : movsd -Oxl0(%rax) ,%xmml 
13 13 fd05 : rnul sd -Ox10(%rcx) ,%xrnml 

fdOa : crnp %rax ,%rdx 
fdOd : addsd %xrnrn2,%xrnrn0 

70 70 fdll : addsd %xmm0 . %xmml 
65 65 fd l 5: jne fccO <ddo t _+OxllO> 

[ ... ] 

It is not difficult to guess that the annotated instructions are performing the arithmetic operations 
(scalar double-precision multiplication and addition) and managing the data movement between 
memory and floating-point registers (here denoted as %xmm with a numeric suffix). The listed 
code segment captures the innermost loop, as evidenced by the backward conditional branch in 
the last line. The overhead of memory access is comparable to the cost of computation. The fact that 
only scalar arithmetic operations were used indicates an optimization opportunity, since the dense 
algebra algorithms frequently benefit from SIMD support available on modern CPUs. Further 
investigation reveals that CBLAS was linked to the reference BLAS library rather than to of any of 
the optimized versions. 
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For completeness, profile data of the transposed case sampled at 100 samples/second is available 
below. While the program's execution is still confined to the same functions as before, the 
ratio of data timing has changed: initialization is less affected by column-major layout. At this 
point it is difficult to ascertain the reason for the difference in performance based solely on CPU 
profile data. 

> pprof --text mvmult mvmult_trans.prof 
Using loca1 file mvmult. 
Ustng local file mvmult_trans.prof. 
Total: 13577 samples 

9240 68 .1% 68 .1% 
4335 31.9% 100.0% 

2 0.0% 100.0% 
0 0.0% 100.0% 

9240 68 .1% ddot_ 
4335 31.9% init 

2 O. 0% ddotsub_ 
4335 31. 9% Ox00007f6440b6900f 

One of gperftools features is the ability to detect memory leaks. To enable this functionality, it is 
necessary to link the application with the tcmalloc library or set the environment variable LD_PRELOAD 
to l i btcma 11 oc. so. Before launching the application, the leak detector needs to be informed about the 
flavor of checking that should be performed. This is accomplished by storing one of the keywords 
(minimal, normal, strict, or draconian) in the HEAPCHECKenvironment variable. They differ in scope 
and level of detail performed by the heap allocation checker; for most purposes normal mode is 
sufficient. The compilation command line and results of the instrumented program execution are 
shown below. 

> gee -02 mvmult.c -o mvmult ·lcblas -ltcmalloc 
> env HEAPCHECK=normal ./mvmult 20000· 
WARNING: Perftools heap leak checker is active"- Performance may suffer 
tcmalloc: large alloc 3200000000 bytes = Oxe9eOOO @ Ox7f887688eae7 
Ox4009bl Ox400b95 
Size 20000; abs. sum: 10000.000000 (expected: 10000) 
Have memory regi.ons w/o callers: might reportfalseleaks 
Leak check _main_ detected leaks of 3200160000 bytes in 2 objects 

Since the program in Code 13.1 performs explicit memory allocation in in it and that memory is never 
freed, the heap checker reports a leak at the end of main. Note that tcmalloc prints statements whenever 
large amounts of memory are allocated. 

The tool may also profile memory management, similarly to CPU profiling. In this case the source 
code needs to be explicitly instrumented: a HeapProfi l erStart function has to be inserted before the 
profiled section of code, and a HeapProfi l erStop function must be added at the end. The first function 
takes one argument describing the file name prefix used to store the profiling data (since multiple files 
may be generated, each has a unique number and ".prof' extension added automatically). The 
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prototypes of these functions are defined in the header file "gperftools/heap-profiler.h". The profiler's 
behavior may be adjusted through dedicated environment variables, detailed below. 

• HEAP _PROFILE_ALLOCATION_INTERVAL: each time the specified number of bytes is 
allocated the profile data is stored in file. Allocation interval defaults to I GB. 

• HEAP _PROFILE_INUSE_INTERVAL: as above, but the profile is written every time the total 
memory use by the program increases by the specified value, defaulting to 100 MB. 

• HEAP _PROFILE_TIME_INTERVAL: stores data for every time period in seconds (default: 0). 

• HEAP _PROFILE_MMAP: in addition to the usual C and c++ memory allocation calls such as 
mal lac, cal lac, real lac, and new, this also profiles mmap, mremap, and sbrk calls. By default it 
is disabled (false). 

• HEAP_PROFILE_ONLY_MMAP: constraints the profiling to only mmap, mremap, and sbrk 
functions; the default value is false. 

• HEAP _PROFILE_MMAP _LOG: enables logging of mmap and mun map calls; default is false. 

To illustrate the use of the memory profiler, the following sequence of commands compiles the 
instrumented application (the file prefix was set to "mvmult") and launches it with profiling enabled. 
The threshold is set to a low value to capture all allocation calls. 

> env HEAP _PROF I LE_ALL0CA TI 0N_I NTERVAL-:=1 . /mvmu lt ..... hea p 20000 
Starting tracking the heap .. 
tcma 11 oc: large all oC 3200000000 bytes = 0x2258000 @ 0x7fd915a2eae7 
0x400a71 0x400t55 . 
01,lmping heap profile to mvmult.0001.heap 
(3051 MB allocated cumulatively, 3051 MB currently in use) 
Dumping heap profile to mvmult.0002.heap _. _ __ _· 
(3051 MB allocated cumulatively, 305lMB.currentlyinuse) 
Dumping heap profile to mvmult.0003.heap . 
(3052 MB allo_cated cumulatively, 3052 MB cLirrentlyln use) 
Dumping heap profile to mvmult.0004.heap · · 
(3052 MB ctllocated cumulatively, 3052MB cµrrently in use) 
Size 20000; abs. sum: 10000. 000000 (expected: 10000) 

After the program execution completes, four data dump files may be found in working directories 
named from "mvmult.0001.heap" to "mvmult.0004.heap". The pprof may display the information in 
one of four modes determined by the additional command-line switch: 

• - -i nuse- space:-shows the number of megabytes currently in use (the default) 
• - -i nuse- objects-shows the number of objects in use 
• - -all oc_space-shows the number of allocated megabytes 
• - -all oc -objects-shows the number of allocated objects. 
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Thus to display the allocated data captured by the last sample, the following command is used: 

> pprof --text --alloc_space mvmult_heap mvmult.0004.heap 
Using local file mvmult_heap. 
Uiing local file mvmult.0004.heap. 
Total: 3052.1 MB 

3052.1 100.0% 100.0% 
0.0 6.0% 100.0% 
o.o· 0.0% 100.0% 
0.0 0.0% 100.0% 

3052.1 100.0% init 
0.0 0.0% _Gl_IO_file_doallocate 
0.2 0.0% 0x00000000c0el9fff 

3051.9 100.0% _libc_csu_init 

While the gpe,ftool suite directly supports profiling of individual applications, it is also possible to 
use it for inspection ofMPI programs. Since application performance data must be written to a specific 
file, one way to avoid collisions is to make sure that each monitored MPI process is assigned a different 
file. This is accomplished by adding the following statement to the application's source at a point 
following MPI_Init invocation: 

Profi 1 erStart(jilename); 

The prototype of this function is available in gperftoo ls /profi 1 er. h along with other calls that may 
be helpful to control the profiler's operation. The filename parameter must be a different string for each 
MPI process. This is typically arranged by deriving it from the rank of the process within 
MP!_C0MM_W0RLD. For example: 

int rank: 
MPI_Comm_rank(MPIC0MM_WORL0, &rank); 
char filename[256]; · 
snprintf(filename, 256, "my_app%04d.prof", rank); 
ProfileStart(filename). 

13.4 MONITORING HARDWARE EVENTS 
13.4.1 PERF 
The pe,f framework [8], also referred to as pelf _events, is a performance monitoring tool and event 
tracer closely integrated with the Linux OS kernel. Its primary functionality is based on the 
sys_pe,f _event_open [9] system call introduced in the 2.6 series of Linux. The system call enables 
access to special-purpose registers of the CPU that may be configured to collect the counts of specific 
hardware-level events. These events may vary from processor to processor, but their main categories 
include the following: 

• Cache related: misses and references issued. These may be further grouped by cache level 
(Ll through L3), cache type (instruction and data), and access type (loads and stores). 
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• Translation lookaside buffer related. These may also be subdivided into instruction and data 
categories, and by access type (load/store). 

• Branch statistics. These include counts of overall branch occurrences and missed branch target 
loads. 

• Instructions and cycles. Perf can provide the number of executed instructions or the count of CPU 
cycles that occurred during program execution. 

• Stalled or idle cycles. These further subdivide into front-end and back-end stalls. The first 
indicates inability to fill completely the available capacity of the first stages of the execution 
pipeline, and may be caused by instruction cache or translation lookaside buffer (TLB) misses, 
mispredicted branches, or unavailability of translation into microoperations for specific 
instruction(s). The back-end issues may be caused by interinstruction dependencies (e.g., a long
latency instruction delaying the execution of other dependent instructions, such as division) or 
availability of memory units. 

• Node-level statistics: prefetches, loads and stores, and misses. Prefetch misses are counted 
separately to avoid false inflation of statistics describing actual data accesses generated by the 
monitored code. 

• Data collected by the processor's performance management unit (PMU). These counters provide 
the aggregate values for the whole CPU, including primarily uncore-related events. Uncore is a 
term coined by Intel to describe segments of CPU logic that are not parts of the core execution 
pipeline and thus are shared by the cores. They include memory controllers and their interfaces, a 
node-level interconnect bus that provides NUMA functionality, last-level cache, a coherency 
traffic monitor, and power management. 

The perf tool also provides access to many software-level kernel events that may be of great use for 
performance analysis. They comprise counts of context switches, context migrations, data alignment 
faults, major, minor, and aggregate page faults, accurate time measurements, and custom events 
defined using the Berkeley Packet Filter framework. The complete list of events supported on the local 
system is obtained with: 

> perflist I 
Perfmay be invoked in several modes of operation selected by the first argument on the command 

line. The frequently used commands are: 

• stat . which executes the provided application with arguments while collecting the counts of 
specified events or a default event set 

• record, which enables per thread, per process, or per CPU profiling 
• report, which performs analysis of data collected by records 
• annotate, which correlates the gathered profiling data to assembly code 
• top, which displays the statistics in real time using format resembling that of the Unix top utility 

for visualization of process activity 
• bench, which invokes a number of predefined kernel benchmarks. 
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To test this functionality in practice, we can profile the test application shown in Code 13.1. The 
result for row-major (nontransposed) mode is presented below. 

> perf stat ./mvmult 20000 
Size 20000; abs. sum: 10000.QOOOOO (expected: 10000) 

Performance counter stats for • ./mvmult 20000'; 

1219.404556 task-clock (msec) fF 1.000 CPUs utilized 
1 context-switches IF 0.001 K/sec 
0 cpu-mi'grati ons ff 0;000 K/sec 

781,490 page-faults fl 0.641 M/sec 
3,898.266,727 cycles fF 3.197 GHz 
2,283,166,328 stalled-cycles-frontend fF 58.57% frontend 

cycles idle 
l,372;252,385 stalled-cycles-backend 1; . 35 .. 20% backend 

cycles idle 
3,764,331.355 instructions 1F 0.97 i nsns per 

cycle 
fF 0.61 stalled cycles 

per insn 
495,220,268 branches fF 40.6..116 M/sec 

815,338 branch-misses fF 0.16% of all 
branches 

1.219967824 seco.nds ti me elapsed 
··. 

Invoking the same for a column-major layout produces the following. 

Performance counter~stats for './mvmult 20000 t': 

12212.530334 task-clock (msec) fF 1. QOO CPUs utilized 
11 context-switches ff 0.001 K/sec 
0 cpu-migrations 1F 0.000 K/sec 

1,213,417 page-faults ff 0.099 M/sec . 
42,933,883,759 cycles ft 3.516 GHz 
39,567,001,587 stalled-cycles-frontend 1F 92.16% frontend 

cycles idle 
37,181,761,140 stalled-cycles-backend IF 86.60% backend 

cycles idle 
6,077,067,370 instructions 1F 0.14 i nsns per 

cycle 
IF 6.51 sta 11 eel eye 1 es 

per i nsn 
918;790,187 branches IF 75.233 M/sec 

1,276,.503 branch-misses IF 0.14% of all 
branches 

12.213751102 seconds time elapsed 
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Besides the duration of program execution, there are several other noticeable differences between 
the two modes of operation. Firstly, the number of front-end and back-end stalls is significantly 
increased. The effective number of stalls per instruction is an order of magnitude higher. The 
instruction throughput per cycle is also much lower. This suggests that serious inefficiencies are 
introduced in the processing pipeline. Curiously, despite using nearly identical algorithms, the 
number of executed instructions is 60% greater for the column-major case. The code also encounters 
a much higher number of page faults in that mode. 

Since the types of executed instructions are likely similar for both cases, the increased number 
of stalls may indicate caching issues. The higher count of page faults might also suggest TLB 
problems. To confirm this, the codes are reexecuted with custom selection of events. Note that perf 
may accommodate a greater number of events in a single invocation than available hardware slots 
in the processor using a technique called multiplexing. It means that at any given moment only a 
subset of requested events is configured on the processor; this subset is periodically replaced with one 
that contains other requested events. This is repeated cyclically to permit all specified events to be 
active for an approximately equal share of time during application execution. The additional options 
that may be passed to pe,f invocation are listed below. 

• -e event [: modijier][, event[: modijier]] ... 

• -B 

• -p pid 

Explicitly specifies the kinds of monitored events. Each event name may be followed by 
one or more modifiers, such as u for measuring only the events when the application 
executes in user mode or k when it is in kernel mode (and others which are not relevant 
here). 

Separates groups of every three digits in numbers by commas for easier readability. 

Instead of directly launching an application, the profiler attaches to an existing process 
with the specified pid. 

• -r integer 

• -a 

Repeatedly runs the command, collecting the aggregate statistics. The result shows the 
mean values for each event and deviation from the mean. 

Forces perfto collect data for all CPUs, including profiles of other applications running at 
the same time. The default is to monitor only the specified application's threads. 
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To put this into practice, the code was run again with monitoring of cache misses and TLB load 
misses enabled: 

> perf stat -B -e cache-misses,dTLB-load-misses,iTLB-load-misses ./mvmult 
20000 
Size 20000: abs. sum: 10000.000000 (expected: 10000) 

Performance counter stats for './mvmult 20000': 

29,307,244 
3,121.156 

4,224 

cache-misses 
dTLB-load-misses 
iTLB-load-misses 

l.227144489 seconds time elapsed 

And in transposed version: 

Performance counter stats for './mvmult 20000 t': 

79,004,606 cache-misses 
405,044,765 dTLB-load-misses 

33,124 iTLB-load-misses 

12.185000849 seconds time elapsed 

The collected data shows a significant increase for all three figures. Particularly damaging is the 
two orders of magnitude jump in data-TLB misses. This is caused by strided access to matrix elements; 
the consecutive references not only touch different cache lines but involve different memory pages 
(eight-byte entries with 20,000 element stride are effectively separated by 160 KB, which is far greater 
than the default page size of 4 KB). This emphasizes the importance of selecting algorithms that 
exhibit good spatial locality of access. 

To verify that the change is caused by different data layouts used by the main compute functions, 
the performance data was recorded in sampling mode using the command shown below. The -F option 
controls the sampling frequency; in this case 1000 samples per second are requested. 

> perf record -F 1000 -e cache-misses,dTLB-load-misses,iTLB-load-misses 
./mvmult 20000 t 
Size 20000; abs. sum: 10000.000000 (expected: 10000) 
[ perf record: Woken up four times to write data ] 
[ perf record: Captured and wrote 0.834 MB perf.data (17,967 samples} J 
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The collected information may be analyzed using the "perf report" command. The most significant 
excerpts of the result are listed below. 

# Samples: 6K of event 1cache-misses' 
# Eveht count (approx.): 78141963 · 
# 
# Overhead Command Shared Object 
ft 
4f 

Symbol 

33.64% mvmult libblc1s.so.3.6.0 [.J ddot_ 
27 .12% mvmult [ kernel . vml i nux] [k] clear _page 
24. 04% mvmult mvmult [.] i nit 
6.73% mvmult [kernel.vmlin.uxJ. [k]_raw_spin_lock 
3.93% mvmult [kernel.vmlinuxJ [.kJpa.ge.: . ..fault 

[ ... ] 
# Samples: lOkof event 'dTLB-loadcmisses' 
# Ev~nt couht (approx;): 405199968 
11 
ft Overhead Command Shared Object 
ft 
# 

Symbol 
• • - • ~ • o •~ • • • '0 • • ,• • -•- o O o -., o o O t 'o I ♦ • ·0 • l, .- 0. 0 o e • 

99.03% mvmult libblas.so.3.6.0 [.Jddot_ 
0.63% mvmult [kernel.vmlinuxJ [kJpage_fault 
0.14% mvmult [kernel.vmlinux] [k]handle..:.mm_fault 

[ ... J 
#.Samples: lK of event 'iTLB-load-misses' 
4f Evetit count (approx.}: 33857 
it 
# Overhead Command Sha red Object Symbol. 

. .ff ..... •.•. 
··········· ................ ·······••.•·••·• .. 

15.57% mvmult l ibbl as. so.3. 6, 0 [ .:J ddot_ 
8.86% invmult libcblas.so [, J cbl as_ddot 
6; 16% mvmult mvmult [.Jinit 
5 .97% riwmult [kernel .vml nuxJ [k] cpuma s k,_any_but 
5.74% mvmult [kernel. vml nux] [k] page_fault 
5 .•. 54% mvmult [kernel.vml nuxJ [kJ notifier _call_chai n 
4.62% mvinult [kernel. vml nux] (kJ fl ush_tl b_mm_range 
4.57% mvmult libcblas.so [. J ddotsub_ 
3.27% mvmult [kernel.vml nux] [ k] smp.:._a pi c_ti mer_ interrupt 
2.90% mvmult [kernel.vml nux] C kJ api c_ti iner_i nterrupt 
2:33% mvmult [kernel. vml nux] [kJ update'-vsyscal l 
2.10% mvmult mvmult [. J mult 

[ ••• J 
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As can be seen, the ddot_ function is the primary contributor of cache and TLB misses. A large 
percentage of cache misses are also caused by the kernel's page-clearing function, most likely called 
as a consequence of using the call oc function to allocate the memory for matrix and vectors. Not 
surprisingly, the i nit function is the source of a significant fraction of cache misses. 

Unlike gperftools, perf can only record the performance data in a file with a fixed name. 
This makes it harder to analyze the performance of all component processes comprising an MPI 
application. The workaround on a machine with dedicated local storage partitions (e.g., in /tmp) 
could be by starting the application in node-exclusive mode (one process per node) after changing 
the working directory to one on the local file system. After the application terminates, the generated 
data files may be copied (and renamed) for analysis to a shared file system using scp. If all 
component processes of the application execute a similar workload, it may suffice to set up 
monitoring for only one of them, as described in Section 3.5.2.2. The approximate counts for the 
whole application are then derived by multiplying the single process count by the number of 
executed MPI processes. Note that monitoring of arbitrary rank can also be arranged by subdividing 
the processes into correctly sized groups using the -np n option to mpirun, while remembering that 
they have to add up to the total count of processes required by the application and only one instance 
may invoke perf. 

13.4.2 PERFORMANCE APPLICATION PROGRAMMING INTERFACE 
The Performance Application Programming Interface (PAPI) [10] is a performance monitoring 
toolkit developed at the University of Tennessee Innovative Computing Laboratory. It provides C and 
Fortran library and header files containing prototypes of functions that may be used to instrument user 
applications. The application programming interface (API) categories comprise library initialization 
and shutdown, event description and translation between symbolic event names and their codes, 
creation and manipulation of event sets, starting and stopping of event counters, retrieval, accumu
lation, resetting, and initialization of counter values, system parameter queries, and various timing 
functions. The package also provides a number of practical utilities. 

• pap i _avail prints the symbolic names of preset events annotated with availability flags on the 
local systems and noting whether they are counted directly or derived by using more than one 
counter. Using option -a limits the display only to events locally available. 

• papi_nati ve_avai l similarly displays so-called native events, which typically comprise uncore 
and node-level events. 

• papi_decode outputs more detailed event descriptions in comma-separated values (csv) format. 
• papi_cl ockres determines the practical resolution of various time and cycle measurement 

interfaces. 
• papi_cost checks the latency of invocation of various API functions in different configurations. 
• papi_event_chooser prints out events that may be added without conflict to a set containing 

events specified by the user. 
• papi_mem_i nfo shows the local machine cache and TLB hierarchy information. 
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PAPI events are less portable across processor architectures than those exposed by the pe,f tool. 
The user always needs to confirm whether a specific event is available on the target platform by using 
papi_avai l or papi_nat i ve_ava i l. Due to the growing complexity of microprocessor designs, the 
interpretation of seemingly the same events may change even between different iterations of the same 
architecture. On the other hand, PAPI may be used to instrument the application in precise locations of 
the code and enables use of events that are normally not supported by pe,f. 

To showcase the use of the interface, Code 13.1 was instrumented with two counters that tally the 
occurrences of double-precision operations, but one counts instances of all floating-point operations 
converted to scalar operations (PAP !_DP _OPS) and the other counts all vector operations 
(PAPI_VEC_DP). The counters are activated just before initialization (line 45) and their values are 
retrieved after return from the in it, mu l t, and cb l a s_d as um functions (lines 48; 50, and 52). To guard 
against silent failures, a PAPI_CALL macro was defined in lines 25-30 to verify that called PAPI 
routines are completed successfully. As before, only the modified portion of the source code is 
provided (not counting the inclusion of the PAPI header, pap i . h, in the top section of the source file) 
in Code 13.3. 

#include <stdio.h> 
2 #include <stdlib.h> 
3 ffinclude <cblas.h> 
4 #include <time.h> 
5 #include <papi. h> 
6 
7 voidinit(intn, double**m, double**v, double**P, int transl { 
8 *m=calloc(n*n, sizeof(double)); 
9 *v=calloc(n, sizeof(double)l; 

10 *P=calloc(n, sizeof(double)); 
11 for(inti=O;i<n;i++)( 
12 (*v)[i]=(i&l)?-1.0:1.0; 
13 if (trans) for (intj=O; j <=i; j++) (*m)[j*n+i]=l.O; 
14 else for (int j = 0; j <= i; j++) (*m)[hn+j] = 1.0; 
15 
16 
17 
18 void mult(int size, double *m, double *V, double *P, int trans) { 
19 int stride= trans? size: 1; 
20 for (inti= O; i < size; i++) { 
21 intmi=trans?i:hsize; 
22 p[i]=cblas_ddot(size. m+mi, stride, v, l); 
23 l l 
24 
25 //define PAPI_CALL(fn, ok_code) do I\ 
26 if (ok_code !=fn) ( \ 
27 fprintf(stderr, "Error:" #fn "failed, aborting\n"); \ 
28 exit ( 1) ; \ 
29 \ 
30 }while(O) 
31 
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32 #define NEV 2 
33 
34 int main(int argc, char **argv) ! 
35 intn=lOOO,trans=O; 
36 if (argc > ll n=strtol(argv[l], NULL, 10); 
37 if (argc > 2) trans= (argv[2][0] == 't ·); 
38 
39 
40 
41 
42 
43 

int evset = PAPI_NULL; 
PAPI_CALL(PAPI_library_init(PAPI_VER_CURRENT), PAPI_VER_CURRENT); 
PAPI_CALL(PAPI_create_eventset(&evset), PAPI_OK); 
PAP I_CAL L( PAP I_add_event ( ev set, PAP I_DP _OPS), PAPI_OK); 
PAP I_CAL L( PAP I_add_event ( ev set, PAP I_VEC_DP), PAPI_OK); 

44 double*m,*v,*p; 
45 PAPI_CALL( PAPI_start(evset), PAPI_OK); 
46 init(n, &m, &v, &p, trans); 
47 long long vl[NEVJ, v2[NEVJ, v3[NEV]; 
48 PAPI_CALL(PAPI_read(evset, vl), PAPI_OK); 
49 mul t(n, m, v, p, trans); 
50 PAPI_CALL(PAPI_read(evset, v2), PAPI_OK); 
51 doubles= cbl as_dasum( n, p, 1); 
52 PAPI_CALL(PAPI_stop(evset, v3), PAPI_OK); 
53 printf("Size %d; abs. sum: %f (expected: %d)\n", n, s, (n+l)/2); 
54 printf( "PAPI counts :\n"); 
55 printf(" init: eventl: %15lld event2: %15lld\n", vl[OJ. vl[l]l; 
56 printf(" mult: eventl: %15lld event2: %15lld\n", v2[0]-vl[OJ, v2[1]-vl[l]); 
57 printf(" sum: eventl: %15lld event2: %15lld\n", v3[0]-v2[0J. v3[1]-v2[1]); 
58 return O; 
59 

Code 13.3. Instrumented section of Code 13.1 for collection of floating-point operation counts using 
PAPI. 

For correct compilation, the program must be linked with the PAPI library, as shown below. 

> gee -02 mvmult_papi .c -o mvmult_papi -lcblas -lpapi. 

Running the instrumented program produces the following output. 

> ./mvmult_papi 20000 
Size 20000; abs. sum: 10000.000000 (expected: 10000) 
PAPI counts: 

init:eventl: 
mul t: eventl: 

sum: eventl: 

0 event2: 
804193640 event2: 

20276 event2: 

0 
0 
0 
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Since the reference BLAS implementation does not use vector floating points, the count of vector 
operations stays at zero. The theoretical count of scalar operations should be 20,0002 for multiplication 
and 20,000*19,999 for addition, for a grand total of 799,980,000 in the mul t function and 19,999 
operations (since the absolute value computation requires only clearing the sign bit) in cbl as_dasum. 
The counters consistently register higher values, most likely due to speculative execution. 
After replacing the reference BLAS library by a highly optimized Intel Math Kernel Library [11] that 
takes advantage of vector instructions supported by the target machine, the application was reexecuted 
to produce the following values. 

PAPI counts: 
init: eventl: 0 event2: 0 . 
mult: event 1: 1055372246 event2: 527686123 

sum: eventl: 24674 event2: 12337 

The count of vector operations was roughly half of the scalar figure. This indicates that the library 
selected the use of vector instructions with two floating-point numbers per instruction. Indeed, the 
machine on which the test was performed supports Streaming SIMD Extensions (SSE) instruction set 
with up to two operands per vector. As a result of this change, the execution time dropped from 1.22 s 
to 1.08 s. 

13.5 INTEGRATED PERFORMANCE MONITORING TOOLKITS 
Software application components do not operate independently: not only do they have to share various 
system resources, such as processor cores, memory, storage, and network bandwidth, but they must 
also coexist with the periodically executing operating system threads, service daemons, and other 
applications. While the last issue is mitigated to some extent by properly configured job managers that 
schedule new processes on shared resources only when permitted by the owner of the already 
executing job on the node, the resultant application performance is the outcome of multiple factors, 
frequently acting against each other. To gain more complete understanding of an application's 
behavior, it therefore makes sense to create performance monitors that combine various aspects of 
application profiling in a single package that permits easy visualization and comparison of perfor
mance data. 

One such tool is the Tuning and Analysis Toolkit (TAU) [12] developed at the Performance 
Research Laboratory at the University of Oregon and distributed under the BSD license. TAU may be 
used in single-node and distributed environments, including 32-bit and 64-bit Linux clusters, ARM 
platforms, Windows machines, Cray computers running Compute Node Linux, IBM BlueGene and 
POWER families on AIX and Linux, NEC SX series, and AMD, Nvidia, and Intel GPUs as well as a 
number of older architectures. In addition to instrumentation (for profiling or tracing), measurement, 
analysis, and visualization, it is capable of managing performance information databases and per
forming data mining functions. For graphical display of collected data TAU provides a Java-based 
paraprof visualization tool. Supported languages include C, C++, Fortran, UPC, Python, Java, and 
Chapel. 
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Event types recognized and captured by TAU include interval and atomic events. Interval events 
have defined start and end points. The statistics derived from interval event measurement may be 
inclusive, where outer intervals include event counts or timing collected for all nested intervals, or 
exclusive, when the resultant data shows only values for event counts or times that are relevant solely to 
the specified interval but excludes the statistics for all its "children" intervals. Interval metrics are 
monotonic-they may only increase during program execution (e.g., when a monitored function is 
reinvoked). Atomic events capture momentary metric values related to computation state at predefined 
trigger points. They may vary throughout the execution of the application. TAU captures them as 
a total (cumulative) value, minimum, maximum, average, and number of samples collected. The user
defined events may be of both interval and atomic kinds. In addition, execution context may be 
attached to atomic events to determine the calling path taken. 

TAU supports three instrumentation methods that differ in level of their provided features. 

• Source-level instrumentation is the most flexible method. This is the only mode supporting 
insertion of user-defined probes. Using this method permits exclusion of regions of code that are 
not critical for program performance or otherwise not interesting from the output. It also allows 
profiling of various low-level events, such as loops or program phases. This is accomplished by 
static analysis of source code using the Program Database Toolkit (PDT) package, creating a 
modified copy of sources, and compilation of the instrumented code. 

• Library-level instrumentation is employed in cases when sources are not available, for example 
when monitoring of external or system libraries is needed. It applies wrapper libraries that may be 
used with static or dynamic libraries under investigation. In both cases symbol rewriting 
techniques are used (such as weak symbols for static libraries and library preloading for dynamic 
libraries) that redefine functions associated with specific identifiers, thus permitting interception 
of user calls and insertion of appropriate monitoring code. 

• Binary code instrumentation requires Dyninst [13], developed by the Paradyn Tools Project. 
While the least invasive of all the described methods, it does not support many features available 
using other instrumentation approaches. Binary instrumentation is performed by rewriting binary 
application code, hence it may be used with already linked applications and without requiring any 
access to source files. 

To demonstrate necessarily only a very few options from TAU's broad palette of supported 
configurations and measurements, Code 13.1 has been transformed using PDT-driven source instru
mentation and compiled using the following command: 

> taucc -tau:verbose -tau:pdtinst -optTauSelectFile=select.tau mvmult.c -02 
-o mvmult -lcblas 0 lm 

While not required by the application, math library ( - l m) had to be added to the command line to 
avoid linker complaints. TAU installation may support several different configurations involving on 
occasion options that may not be specified at the same time. The conflicts are avoided by encoding 
such configurations into separate Makefiles with names suffixed with the applicable configuration 
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options. To point the TAU compiler toward the most relevant option, a suitable environment variable 
needs to be set: 

> export TAU_MAKEFI LE=/opt/tau/x86...:64/l i b/Makefi le .tau-memory-phase" papi 
·mpi ~p.thread-pdt 

Of course, the installation path and the actual Makefile name have to be modified as appropriate on the 
local host. 

The compilation command presented above illustrates simple selective instrumentation defined in 
the file select. tau. Its content is as follows. 

BEGIN_EXGLUOE_LlST 
void cbl as_das1.1m( int, double otc, tnt) 
END_EXCLUDE...:UST. 

BEGIN_FI LE_EXCLUDE_UST 
>I<, so 

END_FI LE_EXCLUDE_LI ST 

BEGI N_INSTRUMENT_SECT I ON 
·l~ops file="mvmult~~- routine-"mult" 
memory file="mvmult,c" routine="ini.t" 

.. E~D..,.JNSTRUMENT_SECTION 

This instructs TAU to exclude cbl as_dasum (which earlier measurements showed to be nonessential to 
program perfonnance) from profiling, as well as all dynamic libraries (since they contain system-level 
CBLAS and BLAS routines that are not the subject of investigation). TAU is also supposed to provide 
loop-level instrumentation in the mu lt function and memory instrumentation in in it. Note that the 
wildcard character for function specification is "H" to avoid confusion with pointer syntax. 

To collect data during the application's execution, TAU needs additional guidance on whether to 
profile or trace the application, what execution parameters to capture, and what type of hardware 
events should be collected. This is accomplished via environment variables, e.g.: 

> TAU_METRICS=TIME 
> .TAU_PROFlLE=l 

The TAU_METRlCS variable may contains several metric identifiers, including preset and native 
PAPI event names, separated by colons. After execution of the instrumented program is complete, a 
number of profile. x. y. z files, where x, y, and z are numbers corresponding to nodes (MPI ranks), 
contexts, and thread numbers, may be found in the execution directory. The graphical analysis tool, 
paraprof, may then be invoked to visualize the stored data-the main view window is shown in Fig. 13.1. 
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At the same time paraprof opens a second window that visualizes execution phases (see Fig. 13.2). 
Moving the mouse cursor over bars representing execution phases provides additional data, while 

the right-click opens context menus for additional actions. TAU GUl supports many more data views, 
including histograms, derived metrics, and three-dimensional profiling graphs. Additionally, the data 
may be presented in text format using the pprof utility. The reader is strongly encouraged to explore 
these options to gain more familiarity with the tool. 

Rle OpbOns Windows Help 
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Paraprof execution-phase window. 
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13.6 PROFILING IN DISTRIBUTED ENVIRONMENTS 
The gperftools and pe,f profilers discussed previously were originally developed for use with 
sequential codes, although there are somewhat more complex ways of using them with parallel pro
grams. TAU, depending on configuration, may be capable of monitoring sequential, OpenMP, and MPI 
applications. However, there are several software tools explicitly designed for performance monitoring 
and profiling in distributed environments, including Scalasca [14], VampirTrace [15], and MPE2 [16]. 
As representative of the capabilities of these tools, this section explores VampirTrace profiling for 
distributed environments. 

VampirTrace is an open-source performance monitoring infrastructure targeting high 
performance computing (HPC) applications. It provides a means for easily adding timing 
measurement function calls and performance counters to an application as part of instrumentation. 
Instrumentation in VampirTrace may be automatic or manual, and can be driven by the choice 
of programming model (MPI, OpenMP, CUDA, OpenCL, or hybrid), by a third-party package like 
TAU or Dyninst, or by using the VampirTrace API to insert measurement function calls manually to 
regions of interest in an HPC application. The output from VampirTrace instrumentation is in an 
open-source format, called the Open Trace Format, which is readable and analyzable through 
multiple tools including the proprietary Vampir graphical toolkit. VampirTrace itself is included as 
part of recent releases of OpenMPI and is frequently found already available on many 
supercomputers. 

For most HPC applications developers, the quickest way to use VampirTrace for performance 
monitoring is to compile an application using the VampirTrace compiler wrappers: vtcc for C, vtcxx 
for c++, and vtfort for Fortran. The pingpong.c code illustrated in Code 13.4 is used as an example for 
MPI code, and the forkjoin.c code illustrated in Code 13.5 as an example for OpenMP code. 

1 #include<stdio.h> 
2 #include<stdlib.h> 

3 #include <uni std. h> 

4 1finclude"mpi.h" 

5 
6 intmain(intargc,char**argv) 
7 { 

8 
9 

10 
11 
12 

int rank.size; 
MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

MPI_Comm_size(MPI_COMM_WORLD,&size); 

13 if(size!=2){ 

14 pri ntf(" Only runs on 2 processes \n"); 
15 MPI_Fi na l i ze(); / / this example only works on two processes 

16 exit(O); 

17 
18 
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19 int count; 
20 if ( rank= 0 ) ( 
21 // initialize count on process 0 
22 count= 0; 
23 
24 for (int i=O;i<lO;i++) ! 
25 if ( rank==O) ! 
26 MPI_Send(&count,l,MPI_INT,1,0,MPI_COMM_WORLD); // send "count" to rank 1 
27 MPI_Recv(&count, l ,MPI_INT, 1,0,MP!_COMM_WORLD,MPI_STATUS_IGNORE); //receive it back 
28 sleep(l); 
29 count++; 
3 0 pr i n t f ( " Count % d \ n" , count ) ; 
31 else{ 
32 MPI_Recv(&count,1,MP!_INT,0,0,MP!_COMM_WORLD,MP!_STATUS_IGNORE); 
33 MP!_Send(&count,l,MPI_INT,0,0,MPI_COMM_WORLD); 
34 
35 
36 
37 if(rank==O)printf("\t\t\tRoundtripcount=%d\n",count); 
38 
39 MPI_Finalize(J; 
40 } 

Code 13.4. MPI pingpong.c code for illustrating MPI instrumentation using VampirTrace. 

#include <omp. h> 
2 #include <unistd.h> 
3 ffinclude <stdio.h> 
4 ffinclude<stdlib.h> 
5 #include <math. h> 
6 
7 int main (int argc, char *argv[J) 
8 { 

9 constintsize=20; 
10 int nth reads. threadi d. i; 
11 double arrayl[si ze]. array2[si ze], array3[si ze]; 
12 
13 // Initialize 
14 for(i=O;i<size;i++){ 
15 arrayl[i]=l.O*i; 
16 array2[i]=2.D*i; 
17 
18 
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19 int chunk= 3: 
20 
21 #pragma omp parallel private(threadid) 
22 { 
23 threadid = omp_get_thread_num(); 
24 if (threadid = 0) { 
25 nth reads= omp_get_num_threads( l; 
26 print f ("Number of th reads = %ct \n", nth reads); 
27 
28 printf("Mythreadid%d\n",threadid); 
29 
30 #pragma omp for schedule(static,chunk) 
31 for ( i =0 ; i < s i z e ; i ++) { 

32 array3[i]=sin(arrayl[i]+array2[i]); 
33 printf("Threadid:%dworkingonindex%d\n",threadid,i); 
34 sleep(ll; 
35 
36 
37 }//join 
38 
39 return O; 
40 

Code 13.5. Example forkjoin.c code for illustrating instrumentation in OpenMP using VampirTrace. 
When compiling C-language-based MPI code with the VampirTrace compiler wrappers, the MPI 

wrappers can be specified to the VampirTrace wrapper using the -vt: cc flag: 

vtcc -vt;cc mpkc pingpong.c I 
Alternatively, the MPI libraries can be linked in without using the MPI compiler wrapper: 

vtcc pingpong.c -lmpi I 
Note that in the latter approach the user may have to specify to the compiler where to find the MPI 

header file (mpi.h) and the MPI library. 
While in principal using the VampirTrace compiler wrapper is enough to trigger automatic 

instrumentation for either MPI, OpenMP, or hybrid MPI +OpenMP applications, it is sometimes 
necessary to specify the programming model explicitly to the compiler using the -vt :mpi, -vt: mt, or 
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- vt : hyb specifications for MPI, OpenMP, and MPI + OpenMP applications respectively. For example, 
the pingpong.c MPI code (Code 13.4) could be compiled with MPI instrumentation as follows: 

vt ee - vt :ee mpiee - vt :mpi pingpong.e I 
Likewise, the forkjoin.c OpenMP code in Code 13.5 could be compiled as follows: 

vtee -vt :ee gee -vt :mt -fopenmp forkjoin.e I 
In this OpenMP example, the choice of the underlying compiler was explicitly set to be the GNU 

compiler (gee) and the OpenMP library was enabled using the -fo penmp flag. 
Once the codes are compiled using the VampirTrace compiler wrappers, they are executed just as 

they would normally be. However, upon completion of execution, an Open Trace Format file with the 
name of the code executable will appear in the execution directory. This file contains the measurement 
information provided by the instrumentation. There are several tools which can read the Open Trace 
Fonnat file: Figs. 13.3 and 13.4 show Open Trace Files using the Vampir visualizer for the MPI 
pingpong.c code and the OpenMP forkjoin.c code, respectively. 
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Instrumentation results from the pingpong.c MPI code (Code 13.4). A phase diagram shows the amount of time 

spent in application-level code (green (light gray in print versions)), MPI code (red (gray in print versions)), and 

time associated with the VampirTrace APL The infonnation is shown both individually for each process as a 
function of time and cumulatively for the entire execution. In the top phase plot where information is shown 

individually for each process, the messages passed between the processes are illustrated using black lines. Portions 

of this phase plot can be highlighted and explored in detail with more information on the selected computational 

phase appearing in the context view labeled "Master Timeline". 
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FIGURE 13.4 

Instrumentation results from the forkjoin.c OpenMP code (Code 13.5) run using eight OpenMP threads. A color

coded computational phase diagram reveals most of the application time spent in the OpenMP loop, except for 
thread 7 which was idle throughout the computation. The cumulative time spent in each color-coded phase is also 
reported. Individual phase segments in each thread can be highlighted with more information appearing in the 
context view labeled "Master Timeline". 

Apart from automatic instrumentation based on the programming model, VampirTrace can provide 
instrumentation via TAU, Dyninst, or manually inserting VampirTrace API calls to the code. These 
options are specified to the VampirTrace compiler wrapper as follows: 

vtcc - vt:inst tauinst (For automatic TAU instrumentation) 

vtcc -vt : inst dyninst (Fo r automatic Dyninst instrumentation ) 

vtcc -vt :i nst manual (For exclusive manual instrumentation) 

Manual instrumentation in VampirTrace requires placing two API calls in regions of interest in a 
source code, VT_USER_START("< user-chosen name >") and VT_USER_END(" < user-chosen 
name> "), and compiling with the flag -D VTRACE . To illustrate this, the pingpong.c code (Code 13.4) is 
modified to add these calls in Code 13.6. 
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#include <stdio. h> 
2 #include<stdlib.h> 
3 Hi ncl ude <uni std. h> 
4 #include"mpi.h" 
5 #include "vt_user.h" 
6 
7 intmain(intargc,char**argv) 
8 ( 
9 int rank.size; 

10 MPI_Init(&argc .&argv); 
11 MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
12 MPI_Comm_size(MPI_COMM_WORLD,&size); 
13 
14 if(size!=2){ 
15 printf(" Only runs on 2 processes \n"); 
16 MPI_Finalize(); //thisexampleonlyworksontwoprocesses 
17 exit(O); 
18 
19 
20 int count; 
21 if(rank==O){ 
22 II ; nit i a 1 i ze count on process O 
23 count= 0; 
24 
2 5 for ( i n t i =O ; i < 10 ; i ++) { 

26 if ( rank==O) I 

27 MPI_Send (&count. 1, MPI_I NT. 1, 0, MPI_COMM_WORLD); / / send "count" to rank 1 
28 MP l_Recv (&count. 1. MPI_I NT. 1, 0. MP l_COMM_WORLD, MP !_ST A TUS_l GNORE); / / receive it back 
29 VT_USER_START("sleep section"); 
30 sleep(l); 
31 VT_USER_END("sleep section"); 
32 count++; 
33 printf(" Count %d\n" ,count); 
34 else { 
35 MPI_Recv(&count,1,MPI_INT,0,0,MPI_COMM_WORLD,MP!_STATUS_IGNOREJ; 
36 MPI_Send(&count,l,MPI_INT,0,0,MPI_COMM_WORLD); 
37 
38 
39 
40 if ( rank==O) printf("\t\t\t Round trip count=%d\n",count); 
41 
42 MPI_Finalize(); 
43 

Code 13.6. The pingpong.c code (Code 13.4) has been modified here for manual instrumentation. The 
VampirTrace API header ("vt_user.h") has been added in line 5 and the calls to VT_USER_START and 
VT_USER_END have been added surrounding the sleep function call in line 30. The section has been 
labeled "sleep section". 
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ProcessO 
Processl 

FIGURE 13.5 

3s 4 s 5 s 6 s 7 s Bs 9.s 1Qs 

The computational phase plot for Code 13.6 with manual instrumentation along with compiler insnumentation of 
the MPI calls. The phase plot is now annotated not only with MPI calls but also with the manually instrumented 

"sleep section" which appears in the computational phases of process 0. 

Code 13.6 can be compiled just as before, but with the -D VTRACE flag so that the manually added 
VampirTrace API calls will be recorded. In this example it is beneficial to combine the manual 
instrumentation with the MPI instrumentation automatically provided by the compiler, so the -vt : 
inst manual specification is not included in the compile command (it would otherwise override all 
compiler instrumentation): 

vtcc -vt :cc mpicc -DVTRACE pingpong .c 

The resulting computational phase plot for each process of Code 13.6 shown in Fig. 13.5 is now 
annotated with the manually instrumented computational phases labeled "sleep section" as well as the 
compiler-instrumented MPI phases. 

13.7 SUMMARY AND OUTCOMES OF CHAPTER 13 
• Pe1formance monitoring is closely associated with application development and optimization. It 

detects the most frequently executed sections of code and measures the application's resource 
footprint. 

• The act of measuring disturbs the measured system. Performance monitors employ minimally 
intrusive solutions to collect the performance metrics, leveraging dedicated low-overhead 
implementations such as hardware event counters whenever available. 

• Monitored programs need to be instrumented, i.e., modified through insertion of suitable 
measurement and result collection functions. This may be accomplished at source level using 
compiler techniques, at library level by instrumentation, or at executable level. Each of these 
mechanisms differs in the degree of user involvement, measurement scope and precision, 
supported features, and intrusiveness. 

• One of the fundamental metrics is time. Its measurement may be invoked from the command line 
using the time system utility or by instrumenting an application with timestamp collection 
functions such as clock_gettime. 

• Profiling is one of the elementary techniques of performance monitoring. It is used to identify a 
program's execution hotspots and potentially capture other runtime metrics, such as memory size, 
communication parameters, and 1/0 activity. They may be used to classify the program as 
compute bound, memory bound, or 1/0 bound. 
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• Hotspots are parts of code the program spend most of the time executing. Bottlenecks are hotspots 
that have unduly adverse effects on the application's performance. Program optimization may 
relocate the bottleneck to another part of the code. 

• One of the commonly used general-purpose profilers is provided by the gpe,ftools suite. It can 
detect hotspots and memory management issues without modifications to the source code. 

• The pe,f_events and PAPI packages are commonly used interfaces accessing hardware event 
counters. The first may be used from the command line, while the second enables instrumentation 
of arbitrary application sections. 

• TAU is an example of an integrated profiling environment that supports multiple instrumentation 
modes, collection of execution profiles with multiple parameters, custom user probes, 
performance database management, and both text- and GUI-driven data analysis. It also 
interoperates with other tools using shared data formats. 

• VampirTrace is one of the broadly used distributed profilers that is particularly useful for MPI and 
OpenMP (or hybrid) program tracing to capture program execution phases and communication 
activity. The generated traces may be displayed in a proprietary Vampir visualizer or exported to 
open-source tools such as TAU. 

13.8 QUESTIONS AND PROBLEMS 
1. Discuss differences between hotspots and bottlenecks. Provide examples to illustrate your answer. 
2. Why do hardware event counters often provide a better insight into runtime behavior of an 

application? What are their limitations? 
3. Write a program that estimates the overhead of time measurement using POSIX clocks. Make 

sure you collect numbers for both "hot" (i.e., initialized) and "cold" (uninitialized) cache 
scenarios. 

4. Consider the following program: 

1 #include <stdio.h> 
2 
3 int main() { 
4 longsum=0; 
5 for (inti= 0; i < 1000000; i++) 
6 if(i&l!=0lsum+=3*i; 
7 printf( "sum=%1 d\n". sum); 
8 return 0; 
9 

Instrument the for-loop using PAPI to count all conditional branches and taken conditional 
branches. Estimate the counts and verify your numbers by executing the instrumented code. How 
do the values change when the program is compiled with optimizations enabled compared to the 
unoptimized version? Why? 
Note: to explain the discrepancies, it may be helpful to look at the generated assembly code. For 
gee it can be done using the command: 

gee -S -fverbose-asm program.c 

The resultant assembly listing annotated with variable names will be placed in the file program. s. 
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5. Profiling a program with the pe,f tool produces the following output: 

Performance counter stats for ·.la.out': 

14207.022284 task-clock: u (msec) ft 1.000 CPUs utilized 
0 coritext-switches~u .ff 0.000 Kise( . 
0 cpu-migrations:u fl 0.000 K/sec 

10,301 page-faults:u ff 0.725 K/sec 
50,036,833,663 cycles :.u ft 3.522 GHz 
49,799,684,446 stalled-cycles-frontend;u ffi 99. 53% frontend 

cycles· idle · 
46,725,530,082 stalled-cycles-backerid:u .fl 93 .38% backend cycles 

idle 
1,059,912.928 i nstructfons: u ff 0.02 i nsn per cycle 

ft 46.98 sta lledcycl es 
per insn 

1151260,873 branches:u fl 8.113 M/set. 
55,407 branch_-mi sses: u ff O .05% of all 

branches 

14 .. 208427535 seconds time elapsed 

What may be inferred about the code based on the above statistics? 
6. Why might correlating different types of metrics supported by tools such as TAU be useful to 

program optimization? Provide examples. 
7. An MPI program that makes a frequent use of MPI_Allreduce calls achieves poor parallel 

execution performance. Its developer suspects that this is due to load imbalance between the 
cores. How would you confirm her/his theory using VampirTrace? 
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14.1 INTRODUCTION 
Frequently high performance computing (HPC) practitioners encounter anomalies in application 
execution that arise from a wide variety of origins, including hardware failures, programming errors, 
software technical errors, or even the unlikely case of a cosmic ray flipping a bit and interfering with 
the computation. Tracking the origin of such application execution anomalies is difficult even when 
using just a simple desktop or laptop computer. On an HPC resource, resolving such an anomaly in an 
application is compounded many times by the complex interplay between the multiple network, 
memory, and library components of the supercomputer and the different execution modalities 
employed. This chapter introduces several techniques and tools for debugging an HPC application and 
explores several of the more common types of bugs the practitioner will encounter, including dead
locks, races, memory leaks, segmentation faults, and invalid references, among others. 

High Performance Computing. https://doi.org/10.1016/8978-0-12•420158-3.00014-9 
Copyright© 2018 Elsevier Inc. All rights reserved. 
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Grace Brewster Murray Hopper seated at the input console for the UNIVAC I. Photo by Smithsonian Institution via 

Wikimedia Commons 

Grace Brewster Murray Hopper was a mathematics professor who became a US Navy rear admiral and strongly pro
moted and influenced the development of higher-level programming languages at a time when most programming was done 
in nonportable, machine-specific languages. In addition to her programming language and compiler work, which served as 
the genesis of the common business-oriented language (COBOL), she was a senior developer on the first commercial 
electronic computer, the UNIVAC 1. In her own words, "the most important thing I've accomplished, other than building the 
compiler, is training young people". Among numerous other accolades, Grace Hopper received the highest civilian award of 
the United States, the Presidential Medal of Freedom, posthumously in 2016. 

Historically debugging is popularly associated with Grace Hopper, who discovered a moth inter
fering with a computer's operation while working on the Harvard Mark II electromechanical computer 
in I 947. The moth was placed in the group's logbook with the caption "First actual case of bug being 
found", as seen in Fig. 14.1. In a similar story that slightly predates Grace Hopper's experience, 
mathematician Norbert Wiener was called to diagnose the anomalous behavior of the automatic fire 
control of a warship gun during World War II. After hearing a description of the specific short circuits 
that occurred at certain gun muzzle positions, he correctly predicted that a dead mouse would be found 
in the device and the specific location where it would be found [I]. 

Not entirely unlike these famous cases of literal debugging, debugging an application on a high 
performance computer frequently requires a fairly detailed view of the supercomputer software and 
hardware stack to diagnose the anomaly properly. There are a wide variety of tools that can assist in 
diagnosing a problem. This chapter begins by introducing the use of the GNU debugger (GDB) and the 
Valgrind instrumentation framework, and mentioning some of the more prevalent commercial 
debugger tools. The chapter then uses the tools to explore a series of common bugs found in message
passing interface (MPI) and OpenMP codes. It finishes by enumerating a list of common compiler flags 
and messages that are helpful in debugging applications, and some available system monitor 
approaches to debugging. 
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An example of literal debugging from the Harvard Mark II as recorded by Grace Hopper-a moth found in the 
machine has been taped to the logbook. 

Photo courtesy: Naval Surface Warfare Center, Dahlgren, VA, 1988 via Wikimedia Commons 

14.2 TOOLS 
The complexity of debugging a code has motivated the development of multiple open-source and 
proprietary tools to assist the programmer in stepping through a code in execution and enabling the 
placement of breakpoints where the execution is paused and the memory can be viewed. The most 
common open-source debugging tools are serial in nature; however, they can be adapted for debugging 
in parallel, as shown later in this chapter. There are also several commercial debuggers specifically 
targeting parallel execution on a high perfonnance computer; these are often made available to 
supercomputing users by system administrators, although the license cost per node may limit the scale 
at which a commercial debugger can be used. This section introduces two open-source and freely 
available debugging tools, the GDB and the Valgrind instrumentation framework, and gives some 
information on a subset of the more common commercial parallel debuggers available. 

14.2.1 THE GNU DEBUGGER 
The GDB is one of the commonest open-source debuggers available. One commercial debugger 
(Allinea DDT [2]) even uses the GDB as its engine. The GDB is a command-line debugger invoked on 
Linux and Unix systems using the command: 

gdb <executable name> where the angled brackets are substituted for the executable intended for 
debugging. This section explores a small but important subset of GDB functionality that is used for the 
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FIGURE 14.2 

Jinclude <stdlib.h> 
Jinclude <stdio.h> 

inL main(int argc,char **argv) { 
inti; 
// Make the loca: vector s:ze constant 
int local vector_size = 

// initialize the vectors 
double *a, *b; 
a= (double*) malloc( 

local vector size*sizeof(double)); 
b =(double*) malloc( 

local vector size*sizeof(double)); 
for (i= ;i<local ;ector size;i++) { 

a[i] - -

b[i] = 

II compute dot product 
double sum= 
for (i=i;i<local vector size;i++) { 

sum+= a[i]*b[i); 

printf(" :l,e 

free (a); 
free (b); 
return 

r;,1\:-:" ,sum); 

The example code dotprod_serial.c for exploring the GNU debugger. 

debugging examples later in this chapter. To help illustrate GDB commands and usage, the example 
code of Fig. 14.2 is used. When running GDB on an executable, it is important to let the compiler know 
that the executable will be used for debugging. This is done by using the "-g" flag when compiling. 

14.2.1.1 Break Points 
One of the most useful commands in GDB is for setting a break point. A break point is an inter
ruption in the execution of a code, enabling the user to examine the program's state at that moment. 
There are several ways to set a break point with the GDB, including specifying a function name, line 
number, file name and line number, a conditional, or even a memory address. Using the code from 
Fig. 14.2, several of these options are explored in Table 14.1, assuming that the code has been 
compiled with debug information enabled using the -g flag and the GDB has already started on the 
executable as indicated. 

Information on each of the break points can be queried from the gdb command line using the 
command info breakpoints, as seen in Fig. 14.3. When calling info breakpoints, seven quantities are 
reported: the identi1fier of the break point, the type of break point, the disposition of the break point, 
whether or not the break point is enabled, the memory address of where the break point is in the 
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Table 14.1 Examples of Different Ways to Set a Break Point Using the Code in Fig. 14.2 as an 
Example 

le. · ....... :·: "' · .. • ... . 

. 'IJJ:"~ PoHlf C:~~8Iiil Type . 

Break by function 

Break by line number 

Break by line number and 
filename 

Break by conditional 

info breakpoints 

·~~~~ow~:~~~~' . 
break printf 

break 17 

break dotprod_serial.c: 17 

break dotprod_serial.c: 16 if 
i==4 

i(gdb) 
Num Type Disp Enb Address What 

Pauses the execution at line 24 

Pauses the execution at line 17 

Pauses the execution at line 17 

Pauses the execution at line 16 
when i equals 4 

1 breakpoint keep y 0x0000000000400450 <printf@plt> 
2 breakpoint keep y 0x00000000004005ef in main at dotprod_serial.c:17 
3 breakpoint keep y 0x00000000004005ef in main at dotprod_serial.c:17 
4 breakpoint keep y 0x00000000004005cf in main at dotprod_serial.c:16 

stop only if i=4 
(gdb) I 

FIGURE 14.3 

Information on all the break points in Table 14.1 set for the code in Fig. 14.2. 

program, and where the break point is in terms of the file name and line number. While only break 
points have been discussed up to this point, two similar types of pausing points, called watch points 
and catch points, are discussed in the following subsection. 

The disposition of a break point indicates whether it will be deleted when reached, or kept. This is 
often useful when setting a break point inside a for-loop so that the same break point is not repeatedly 
hit. A break point can be disabled by using the disable command followed by the break point identifier. 
For example, entering disable 2 in the command line would disable break point number 2. It can be 
reenabled by using the command enable 2. Break points can be deleted altogether by using the delete 
command followed by the break point identifier. The disposition of a break point can also be changed 
by using the enable command. For example, if break point number 3 should be disabled after being hit 
once, the command enable once 3 is used. To set a break point with the disposition to be deleted when 
hit, the tbreak command is used following the syntax of Table 14.1. These four useful break point 
commands, enable, disable, delete, and tbreak, are illustrated in Fig. 14.4. 

While the setting of the break point by itself is frequently useful in helping to deduce control flow, it 
is usually most useful in examining the variables at that moment in the program's state. This can be 
done using the print command, illustrated in Fig. 14.5. Note that for the execution to begin after setting 
the break point in Fig. 14.5, the command run must be issued. Once the break point is reached, the 
execution will pause and the variables can then be examined via print. 

14.2.1.2 Watch Points and Catch Points 
Watch points and catch points are similar in nature to break points, but are conditional upon some 
variable being written to or some prespecified event like catching a c++ exception. To set a watch 
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disable 2 
enable once 3 
delete 1 
info breakpoints 

l(gdb) 
l(gdb) 
l(gdb) 
l(gdb) 
Num Type Disp Enb Address What 
2 breakpoint keep n 0x00000000004005ef in main at dotprod_serial. c 17 
3 breakpoint dis y 0x00000000004005ef in main at dotp rod_se rial. c 17 
4 breakpoint keep y 0x00000000004005cf in main at dotprod_serial. c 16 

stop only if i=4 
l(gdb) tbreak dotprod_serial.c:24 
Temporary breakpoint 5 at 0x40067b: file dotprod_serial.c, line 24. 
(gdb) info breakpoints 
Num Type Disp Enb Address What 
2 breakpoint keep n 0x00000000004005ef in main at dotprod_serial.c:17 
3 breakpoint dis y 0x00000000004005ef in main at dotprod_serial.c:17 
4 breakpoint keep y 0x00000000004005cf in main at dotprod_serial.c:16 

stop only if i==4 
5 breakpoint del y 0x000000000040067b in main at dotp rod_serial. c: 24 
(gdb) l!3 

FIGURE 14.4 

Beginning with the break points in Fig. 14.3, the commands disable, enable, delete, and tbreak are used to alter the 

enablement of a break point, disposition of a break point, deletion a break point, and setting of a temporary break 
point, respectively. 

i(gdb) tbreak 17 
Temporary breakpoint 1 at 0x4005ef: file dotprod_serial. c, line 17. 
i(gdb) run 
Starting program: /home/ande rsmw/lea rn/a. out 

Temporary breakpoint 1, main (argc=l, argv=0x7fffffffdfc8) at dotprod_serial. c: 17 
17 b[i] = 6.67; 
'(gdb) print i 
$1 = 0 
(gdb) print a[il 
$2 = 3. 1400000000000001 
:(gdb) print b[il 
$3 = 0 
(gdb) ~ 

FIGURE 14.5 

Example of using a temporary break point at line 17 of Fig. 14.2 and then examining the values of the variables 
inside the break point. Notice that the a[O] element has been initialized while the b[O] element has not yet been 

initialized, indicating that the break point pauses before the specified break point line is executed. 

point, the command watch followed by the expression to watch is entered into the gdb command line. 
For example, to watch for changes to the value of the sum variable in Fig. 14.2, the command watch 
sum would be issued to the gdb command line once the variable sum was in the current context at line 
20. This is illustrated in Fig. 14.6. Information on watch points can be obtained issuing the info 
watchpoints command illustrated in Fig. 14.7. 
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l(gdb) b 20 
Breakpoint 1 at 0x40061b: file dotprod_serial.c, line 20. 
l(gdb) r 
Starting program: /home/andersmw/learn/a.out 

Breakpoint 1, main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:20 
20 double sum= 0,0; 
!(gdb) watch sum 
Hardware watchpoint 2: sum 
[ ( gdb) continue 
Continuing. 
Hardware watchpoint 2: sum 

Old value= 6.9533558074263132e-310 
New value= 0 
main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:21 
21 for (i=0;i<local_vector_size;i++) { 
i ( gdb) continue 
Continuing. 
Hardware watchpoint 2: sum 

Old value= 0 
New value= 20.9438 
main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:21 
21 for (i=0;i<local_vector_size;i++) { 
(gdb) Ill 

FIGURE 14.6 

A demonstration of setting a watch point on the variable sum from Fig. 14.2. A break point is set at line 20 so the 
variable is in the current memory context. Then the watch point is issued using issuing the command "watch sum". 
Each time the sum variable is written to, the execution will pause. The "continue" command is used to resume 
execution. The watch point is hit twice in this example. The abbreviations for "break", "b", and "run", "r", are also 
used. Command abbreviations are included in the GDB cheat sheet. 

FIGURE 14.7 

(gdb) 
Num 
2 

(gdb) 

info watchpoints 

!ffl 

Type Disp Enb Address 
hw watchpoint keep y 
breakpoint already hit 2 times 

Information on watch points can be obtained issuing the "info watchpoints" command. 

14.2.1.3 Back Trace 

What 
sum 

When the execution has paused in the debugger, an overview of the callers leading to the present point 
in the execution can be revealed using the back trace command. As the example in Fig. 14.2 only has 
one call (main), any back trace using that example would only give one frame, or call stack member. To 
better illustrate the back trace command, the example of Fig. 14.2 is modified to include another 
function as seen in Fig. 14.8. 
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FIGURE 14.8 

#include <stdlib.h> 
#include <stdio.h> 

, void initialize(double *a, double *b,int local_vector_size) 
{ 

inti; 
for (i= ·;i<local_vector_size;i++) 

a[il 
b[il = 

int main(int argc,char **argv) { 
inti; 
// Make the local vector size constant 

·· ! • int local_vector_size = 1
• 

// initialize the vectors 
•_, l ,, double *a, *b; 

a= (double*) malloc( 
local vector size*sizeof(double)); 

b =(double*) malloc( 
local_vector_size*sizeof(double)); 

initialize(a,b,local_vector_size); 

// compute dot product 
double sum= 
for (i=• ; i<local vector_size; i++) { 

sum+= a[il*b[i]; 

printf("Th•2 dot prc:,clucl is c1\!,",sum); 

free(a); 
free (b); 
return 

Example code for exploring the back trace command. 

By setting a break point at line 8 in the initialize function of Fig. 14.8, the call stack for that point in 
the execution can be revealed using the back trace command, as shown in Fig. 14.9. 

The call stack can be traversed using the up and down commands, enabling the user to exit or enter 
function calls and examine the variables and memory in those calls. The up and down commands, 
illustrated in Fig. 14.10, can be followed by a number to traverse several call stack frames with a single 
command. 

14.2. 1.4 Setting a Variable 
Using GOB it is possible to set a variable during execution and continue execution using that variable. 
This capability is achieved using the set command, illustrated in Fig. 14.11. After setting a break point 
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i(gdb) break 8 
Breakpoint 1 at 0x40059e: file dotprod_serial.c, line 8. 
i(gdb) run 
Starting program: /home/andersmw/lea rn/a. out 

14.2 TOOLS 429 

Breakpoint 1, initialize (a=0x601010, b=0x601340, local_vector_size=100) 
at dotprod_serial.c:8 

8 a[i) = 3.14; 
l(gdb) backtrace 
#0 0x000000000040059e in init~alize (a=0x601010, b=0x601340, local_vector_size=100) 

at dotprod_serial.c:8 
#1 0x0000000000400643 in main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:25 
(gdb) i 

FIGURE 14.9 

Illustration of the back trace command for showing the call stack. A break point is set in the code from Fig. 14.8 at 

line 8 and the code is executed to that point. Issuing the back trace command reveals a call stack with two frames: 

the execution frame in the initialize function (frame #0), and the calling frame (frame #1) back to the main routine. 

i ( gdb) backt race 
#0 0x000000000040059e in initialize (a=0x601010, b=0x601340, local_vector_size=100) 

at dotprod_serial.c:8 
#1 0x0000000000400643 in main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:25 
[ (gdb) up 
#1 0x0000000000400643 in main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial, c: 25 
25 initialize(a, b, local_vector _size); 

!(gdb) list 
20 a = (double *) malloc( 
21 loca l_vecto r _size*sizeof ( daub le)) ; 
22 b = (double *) malloc( 
23 loca l_vecto r _size*sizeof ( daub le) ) ; 
24 
25 
26 

initialize(a, b, local_vector _size); 

27 II compute dot product 
28 double sum = 0.0; 
29 for (i=0;i<local_vector_size;i++) 

!(gdb) down 
#0 initialize (a=0x601010, b=0x601340, local_vector_size=100) at dotprod_serial.c:8 
8 a[il = 3.14; 
!(gdb) list 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
(gdb) !!j 

FIGURE 14.10 

void initialize(double *a, double *b,int local_vector_size) 
{ 

int i; 
for ( i=0; i<local_vector_size: i++) 

a[il = 3.14; 
b[i) = 6.67; 

Example of traversing the call stack frames using the up and down commands. Beginning with the back trace from 

Fig. 14.9, the up command is issued moving the debugger context outside the initialize function to the main routine 
at line 25 of Fig. 14.8. The "list" command is useful in printing a few lines of the source code from the current 
context to screen. The down command is then issued and the debugger context is returned to the initialize function. 
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r(gdb) break 17 
Breakpoint 1 at 0x4005ef: file dotprod_serial.c, line 17. 
i(gdb) run 
Starting program: /home/andersmw/learn/a.out 

Breakpoint 1, main (argc=l, argv=0x7fffffffdfb8) at dotprod_serial.c:17 
17 b[i] = 6.67; 

! (gdb) set var i=99 
i ( gdb) continue 
Continuing. 
The dot product is 0 
[Inferior 1 (process 12264) exited normally] 
(gdb) !j 

FIGURE 14.11 

After setting a break point inside the initialization for-loop in the code from Fig. 14.2, the value of the variable i is 
set to 99, forcing the loop to exit when execution is resumed. Using the "set var" command, the execution can be 
steered inside the debugger. 

inside the initialization for-loop in the code from Fig. 14.2, the value of the variable i is set to 99, 
forcing the loop to exit when execution is resumed. Using the "set var" command, the execution can be 
steered inside the debugger. 

14.2.1.5 Threads 
For multithreaded applications such as OpenMP, the GOB enables switching context between threads 
as well as applying debugger commands to all threads. The info threads command will list the threads 
along with a thread identifier. The debugger can switch between threads by issuing the thread com
mand followed by the thread identifier. 

To explore the thread debugging functionality in GOB, the OpenMP dot product example in 
Fig. 14.12 is used. The environment variable OMP _NUM_ THREADS is set to four and the GOB is 
started in the normal way: gdb <executable name>. Stepping through the code and examining the 
private variables of each thread is illustrated in Fig. 14.13. A break point is placed at line 23 of the code 
in Fig. 14.12. The debugger notifies the user of the creation of three additional threads upon running, 
making a total of four threads as expected. Once at the break point, the command "info threads" lists 
the threads available. When issuing "info threads", the asterisk that appears next to the thread number 
indicates which thread context is active in the debugger. The private variable i is printed for each thread 
and the debugger context is switched between the threads using the "thread" command. 

14.2.1.6 GOB Cheat Sheet 
A brief summary of some of the more important GOB commands is listed in Table 14.2, along with 
their functions and abbreviations. 

14.2.2 VALGRIND 
The Valgrind tool suite [3] provides several very important tools for debugging applications, especially 
in the context of memory errors and thread data races. The suite consists of the tools shown in 
Table 14.3. 
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FIGURE 14.12 

#include <stdio.h> 
#include <omp.h> 

int main () 
{ 

const int n = '~
int i,chunk; 
double a[n], b[n], result= G.~; 

/* Some initializations*/ 
chunk= 
for (i=. ; i < n; i++) 

a[i] i * _,. ,.; ; 
b[i] = i * i. 

#pragma omp parallel for \ 

c<.: } 

default(shared) private(i) \ 
schedule(static,chunk) \ 
reduction(+:result) 

for (i= ,; i < n; i++) 
result+= (a[i] * b[i]); 

printf("F'i.nal result= f\n" ,result); 

OpenMP dot product code to illustrate the GDB capability with threads. 

14.2 TOOLS 431 

Like the GDB, it is best practice to compile the executable with debugging information using 
the -g flag to provide the most information. Valgrind usage is simple: the executable is passed to 
Valgrind after passing the desired suite tool or check to perform. For example, the command 

valgrind -tool=helgrind <program executable> would run the Helgrind tool for finding data race 
conditions on a specified program executable, such as an OpenMP code. If no tool is specified, 
Valgrind will run the Memcheck tool. Memcheck is one of the most widely used tools for identifying 
memory errors. 

14.2.3 COMMERCIAL PARALLEL DEBUGGERS 
There are a number of commercial parallel debuggers providing debugging support for C, c++, and 
Fortran-based codes for a wide variety of programming models and hardware architectures, including 
general-purpose graphics processing units and many integrated core architectures. A list of some of the 
more widely used parallel commercial debuggers available is provided in Table 14.4. 

Each of the debuggers in Table 14.1 has a graphical user interface (GUI) for examining the state 
of each process or thread in a parallel execution. Several provide detection for memory leak or other 
memory errors. It is also common now to provide a replay capability whereby the execution state 
of the entire program is recorded for later playback. This can be especially useful in debugging the 
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(gdb) break 23 
Breakpoint 1 at 0x40093c: file dotproduct.c, line 23. 
(gdb) run 
Starting program: /home/andersmw/learn/a.out 
[Thread debugging using libthread_db enabled] 
Using host libth read_db library "/lib/x86_64-linux-gnu/libth read_db. so .1". 
[New Thread 0x7ffff73d1700 (LWP 44176)] 
[New Th read 0x7ffff6bd0700 ( LWP 44177)] 
[New Thread 0x7ffff63cf700 (LWP 44178)] 

Breakpoint 1, main._omp_fn.0 () at dotproduct.c:23 
23 result += ( a [i] * b [i]); 
(gdb) info threads 

Id Target Id Frame 
4 Thread 0x7ffff63cf700 (LWP 44178) "a.out" main._omp_fn,0 () at dotproduct.c 23 
3 Thread 0x7ffff6bd0700 (LWP 44177) "a.out" main._omp_fn.0 () at dotproduct.c 23 
2 Thread 0x7ffff73d1700 (LWP 44176) "a.out" main._omp_fn.0 () at dotproduct.c 23 

* 1 Thread 0x7ffff7fdc7c0 (LWP 44172) "a.out" main._omp_fn.0 () at dotproduct.c 23 
(gdb) print i 
$1 = 0 
(gdb) thread 2 
[Switching to thread 2 (Thread 0x7ffff73d1700 (LWP 44176)) l 
#0 main._omp_fn.0 () at dotproduct.c:23 
23 result+= (a[i] * b[i]); 
(gdb) print i 
$2 = 5 
(gdb) thread 3 
[Switching to thread 3 (Thread 0x7ffff6bd0700 (LWP 44177)) l 
#0 main._omp_fn.0 () at dotproduct.c:23 
23 result += (a [i] * b [i]); 
(gdb) print i 
$3 = 10 
(gdb) thread 4 
[Switching to thread 4 (Thread 0x7ffff63cf700 (LWP 44178))] 
#0 main,_omp_fn.0 () at dotproduct.c:23 
23 result+= (a[il * b[i]); 
(gdb) print i 
$4 = 15 
(gdb) i 

FIGURE 14.13 

GNU debugger using threads. The code in Fig. 14.12 is executed in the GDB, where the environment 
OMP _NUM_THREADS is set to be four. 

so-called Heisenbugs, which disappear when attempting to trap them. The startup options for 
TotalView include both a replay capability and memory debugging, as seen in Fig. 14.14. The entire 
program state can be viewed and toggled between each process or thread, as illustrated for Total View 
inFig.14.15. 

Commercial parallel debuggers provide excellent debugging support, but often at a significant 
license cost that becomes prohibitive as the number of nodes increases. For this reason, super
computing centers frequently have an upper limit on the number of nodes across which such com
mercial debuggers will function. Application users debugging on scales above this limit will often have 
to revert to some of the other tools discussed in this chapter. 
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Table 14.2 Brief Summary of Some Major GDB Commands 

. C!?.~~·; ~b~ri\~~¥: ·. ,;.~~#,@ 
':\: "' .• .... 

Run Begins execution in the debugger 

continue C Continues execution in the debugger after a pause 

quit q Quits the debugger 

break b Sets a break point 

watch Sets a watch point 

backtrace bt Prints the call stack 

set variable set var Sets a variable value 

thread Switches to a different thread identifier 

list Lists source code near the present stopping point 

Table 14.3 Tools in the Valgrind Tool Suite 

Memcheck 

Cachegrind 

Callgrind 

Massif 

Helgrind 

DRD 

~~r~#°'~ 
Reports memory errors, including memory leaks and access to 
memory that is not yet allocated 

Identifies the number of cache misses 

Extends cachegrind with some additional information 

Heap profiler 

Debugger for finding data race conditions 

Multithread debugging for C and c++ programs 

Table 14.4 Some of the More Widely Used Parallel Commercial Debuggers 

. G~,m~rJtjl]Pebu~e,:· -. ~ol~~•t"Q!JP,~~~9~> .. 
TotalView [4] Support for OpenMP, MPI, OpenACC, CUDA 

Allinea DDT [2] Support for OpenMP, Pthreads, MPI, CUDA 

Intel Parallel Debugger [5] Support for multicore debugging 

14,3 DEBUGGING OPENMP EXAMPLE: ACCESSING AN UNPROTECTED 
SHARED VARIABLE 

One of the most common errors made by OpenMP programmers is accessing an unprotected shared 
variable; an example is shown in Fig. 14.16. A correct version of this example is given in Fig. 14.17. 

If the code in Fig. 14.16 is run using Valgrind, the data race on the variable sum is immediately 
identified: 

valgrind -tool=helgrind .la.out 
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• ~ Startup Parameters - aprun 

Q_ebugging Options l ~rguments l ~tandard 1/0 l Para~lel l 
r Enable ReplayEngine 

Record all program state while running. Roll back your program to any point in the past. 

..J Enable memory debugging 
Track dynamic memory allocations. Catch common errors, leaks, and show reports . 

..J Halt on !:'!emory errors 

..J Enable CUDA memory checking 
Detect global memory addressing violations and misaligned global memory accesses. 

r ~how Startup Parameters when TotalView starts 

Changes take effect at process startup. 

Cancel Help 

A 

FIGURE 14. 14 

Startup options for a two-process MPI SendRecv example using Total View. Important options include enabling 
replay and memory debugging. 

Valgrind produces a warning of a data race in the code bug.c (Fig. 14. I 6); this warning is shown in 
Fig. 14.18, and it even correctly indicates the line number where the problem occurs. This experiment 
could also have been conducted using the GDB to observe the race condition as different threads 
attempt to write to the variable sum concurrently. 

14.4 DEBUGGING MPI EXAMPLE: DEADLOCK 
A common e1rnr in MPI programming is a deadlock, where competing requests completely impede 
their fulfillment and the program cannot proceed. An example is given in Fig. 14.19, and the situation 
is rectified in Fig. 14.20. Deadlocks like this can be difficult to debug, as they result in the program 
execution hanging without error message or additional output. 

This deadlock can be easily identified using a debugger. Although the GDB is a serial debugger, 
one simple and straightforward way to debug this parallel application is Lo launch the GDB for each 
process. There are two ways to do this. 
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• • • ;x; aprun Help 

E_ile §_dit View Group Process Thread Action Point Debug To~? .'!'!_lndow . "' ~j ~~--

~ II • I► I i .., i ... I • ◄ J B ~To u,;e s~~! 
Group (Control) _:j W t K·11 Restart Next Step Out Run To Record Go_Back Prev Un Step Caller ac - - -

...:::.=-'------- Go Hal I . ==~m · 
-D . _ Process 1 (7_61 _0): _aprun (Stopped) si~ . I . · 

..C..llllllU--1111 Thread 1 (1400746'37375296) (Slopped) <Trace Trap> ID m 
wmwmww.iw .... ~ Stack. Frame ~ 

_ . !Registers for the frame . ~-~ ~ 
FP:7fff32f547c0 %rax : Ox7f 6!',aar:8860c (140074633692684) 

%r dx : OxOOOOOOOO ( 0) 
% OxOOOOOOOb (11) 

:~~~ : g:mr~:ro~ mg~::~~~m~m 
%rdi : Ox7fff32f545c0 ( 140734048323008) 
%rbp : Ox7fff32f545c0 (140734048323008) 

Ox7f ff32f54480 ( 140734048322688) 
J / t~g : ""'"'-~~1: .... ... ..... ooc .f;l.. , .. ~nn"'l'o1C??CO'lCC -J '\ 

~=======~:::~:;~~===========~;~F~u~nt~cttt<io~n~mniaiii1nii1irinaap°pru~n= 
Ir Ox0040bf08 - g~~~ call 0;,;4044c0 

Ox0040bf09 : Oxb
2 Ox0040bf0a : OxBS 

Ox0040bf0b : Oxff 

g:gg!g~m ~!~ mov %rbp, %rdi 

g~g:gm~: Ox89 

Ox0040bf10 · g;:~ mov %rax. %rsi 

g~gg:g~m: Ox89 

Ox0040bfl3 - :~~ call Ox403f20 

g;gg:g~gi Ox07 

Ox:0040bf16 : OxSO 

Ox0040bfl 7 . g~~~ fu 
Ox0040bf18 - Ox8S teatl %eax. %eax I" 
Ox0040bf19 · OxcO r 
Ox:0040bfla O 

Ox:0040bflb . g~~~ jne Ox40c6d · ... 

g~gg:g~~i~. Oxaf 
I

i 

;}~;;;;;;; Ox~;0~0;;4;0;b;fl; ei;;;;;;;;:;:;:;:;O;;;:;xo:

7

;;:;:;:;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~~Ti~Yi~J~ff~2 

( '" '""' ] Th~•" l m~ ~ !cJ, 

FIGURE 14.15 

The Total Vi ew GUI for examining and stepping through rhe program state on each process or thread. 

The first approach involves launching an xterm window for each process and using the debugger in 

each to investigate the problem. This is illustrated in Fig. 1-L~ I. While this will work on some clusters. 

many are not configured to allow xtenn windows to be launched from the compute nodes. 

The second approach does not require launching an xtenn window and will work on nearly all 

clus1ers. However. it requires adding a few Jines of code to \\hat is being debugged, This additional 

a 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 454



a 
~----------------

a 
436 C\-\~P"tER 14 ornUGG\~G ~ ' 

-,:J.1 

FIGURE 14.16 

#include <stdio.h> 
#include <omp. h> 

1::: main () 
::.r.: i; 
1r:t sum= 

#pragma omp parallel for 
for (i= ;i< ;i++) { 

sum+= i; 

printf(" ",sum); 

Example of unprotected access of a shared variable· bug c The shared variable 1·s "·u " d · th' 'th 
h 

. . • • . s m . an running 1s w1 
more t an one OpenMP thread will result m both incorrect and inconsistent resulls. 

#include <stdio.h> 
#include <omp.h> 

.:.n;: main () 
.:..n: i; 
_:-,: sur.. = ; 

#pragma omp para::e: for recuction(+:sum) 
for (::.= ; i< ; ::.++) ( 

sum += _, 

printf(" ",sum); 

FIGURE 14.17 

Corrected version of the code in Fig. 14.16. 

==30110== Possible data race during write of size 4 at 8x5845808 by thread #1 
==30110== Locks held: none 
==30110= at 0x4E4E638: gomp_barrier_wait_end (bar,c:40) 
==30110= by 0x4E4C681: gomp_team_start (team.c:885) 
==30110== by 0x4E48999: GOMP _parallel (parallel. c: 167) 
==30110= by 0x400725: main (bug,c:7) 

WRE 14.18 

tput from Valgrind when debugging the code bug.c in Fig. 14.16. 

e prints the process identifier (PID) for each process to allow the GOB to be attached to that 
;ess. A "while" loop is added to pause the execution of the code until a debugger can be attached to 
1 process. The deadlock code modified for debugging with the GDB is presented in Fig. 14.22; the 

\ that has been added is seen in lines 17-24. 
"o debug in parallel with the GDB, the code in Fig. 14.22 is run as normal on two processes. i.e .. 

un -np l<ex.ecutab\e name>. The P1Ds then print and the execution will pause, as illustrated in 

\4.JJ. 

, .. 
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14.4 DEBUGGING MPI EXAMPLE: DEADLOCK 437 

#include <stdio.h> 
#include <stdlib.h> 
#include <mpi.h> 

int main(int argc, char* argv[]) 
const .:_m: n 
inL *x, *y, nprocs,proc_id,i; 
inc tagl = 
int tag2 = 
MPI_Status status; 
MPI_Request send_request, recv_request; 

MPI Init(&argc, &argv); 
MPI-Comm size(MPI COMM WORLD, &nprocs); 
MPI=Comm=rank(MPI=COMM=WORLD, &proc id); 

x =(int*) malloc(sizeof(int)*n); 
y = (.:_nc *) malloc(sizeof(int)*n); 

// this example only works on two processes 
if (nprocs != . ) { 

if (proc_id = · ) { 
printf (" :·11.:_ .~ en: y 

MPI_Finalize (); 
return 

if (proc_id = •) { 

on 

// only process 0 does this part 
for (i= ;i<n;i++) x[i] !_, ; 

MPI Send(x, n, MPI INT, . , tag2, MPI COMM WORLD); 
MPI=Recv(x, n, MPI=INT, -, tagl, MPI=COMM=WORLD,&status); 

printf(" ?r:::::ecs 
el.se { 

MPI Send(y, n, MPI_INT, 
MPI=Recv(y, n, MPI INT, 

free(x); 
free(y); 

MPI_Finalize (); 
return 

··J\r,',proc_id,x[ ]); 

, tagl, MPI COMM WORLD); 
tag2, MPI-COMM=WORLD,&status); 

Example of a deadlock: two competing MPI_Send requests block the communication progress and the execution 

hangs. 

Once the PIDs are known, the GDB can be attached to each process. This is done by logging on to 
the node(s) where the processes are waiting and launching the GDB for each PID waiting on that node, 
as illustrated in Fig. 14.24. 

[andersmw@cutter: ~$ gdb attach 17331 
[andersmw@cutter: ~ $ gdb attach 17332 
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FIGURE 14.20 

#include <stdio.h> 
#include <stdlib.h> 
#include <mpi.h> 

int main(int argc, char* argv[J) 
const int n 
int *x, *Y, nprocs,proc_id,i; 
int tagl = 
int tag2 = 
MPI Status status; 
MPI=Request send_request, recv_request; 

MPI Init(&argc, &argv); 
MPI-Comm size(MPI COMM WORLD, &nprocs); 
MPI=Comm=rank(MPI=COMM=WORLD, &proc_id); 

x = (int*) malloc(sizeof(int)*n); 
y = (int*) malloc(sizeof(int)*n); 

// this example only wor~s on two processes 
if (nprocs != ) { 

if (proc id= ) { 
printf{":': :."); 

MPI_Finalize () ; 
return 

if (proc_id = ) { 
// only process O does thi3 ~a:t 
for (i= ;i<n;i++) x[i] 

MPI_Send(x, 
MPI_Recv(x, 

n, MPI_INT, , tag2, MPI COMM WORLD); 
n, MPI_INT, tagl, MPI=CO~tt-l=WORLD,&status); 

printf(" 
else { 

MPI Recv(y, n, MPI_INT, 
MPI=Send(y, n, MPI INT, 

free (x); 
free (y); 

MPI Finalize() ; 
return 

:",proc_id,x[ ]); 

, tag2, MPI_COMM_WORLD,&status); 
tagl, MPI_COMM_WORLD); 

A corrected version of the deadlock in Fig. 14.19. 

Note that there is no need to attach the debugger to the process in the same directory as in the 
original executable. This will start a GOB for each process. Each process will still be in the while loop 
in line 23 of Fig. 14.22, so it will be necessary to change the value of the "t' variable to proceed with 
the debugging. Running back trace in one of the debuggers shows that the "f' variable is not in the 
current call stack frame, but two frames above the current execution frame. This is shown in Fig. 14.24. 
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andersmW@cutter: .... /learn$ mpirun -np 2 xterm -e gdb • /a. out 
D 

GHU gdb (Ubuntu 7.7.1-oubuntu5"14.04.2) 7.7.1 
Cop,p-ight (C) 2014 F,... Software Foundation, Inc. 

· Licenso Cl'lv3+: GHU GPt. .,.,..,on 3 or law <http://gnu.org/ll-1SP1.htol> 
This is free sofblare: \iOU ar-e fn,:e to chMge and radlstrtbute It. 
There Is NO~. to the extent pen,,itted b!l 1 ... T!lPO 'sh.. C4P11ing" 

;and •~warranty" fordet.a1ls. 
; Thls GDB WAS configured as "x86_64-llnux-gnu". 

TVPC •:mow configuration" for conflgw-ation details. 
· For bug reporting Instructions, please see: 

<http:11 ........... orgl.oftuarels<il>/bu9,ll>. 
find the GDB ~I .m\d other ~Ion r8$Cl.il'C$$ online at: 
<http:/ ✓-.gnu.org/softwaro/gdb/-tatlon/). 
For help, t!JPO "help". 
T!,lHI "a:pr-opos word" to sear-ch for co:roiands related to ·word" ... ~\1.,..i,olo frco .lo.out ••• (no debussing S\!l'OOIS fOID!d) ••• dore. 

FIGURE 14.21 

.:\, gdb_ 
GNU gdb (Ubuntu 7.7.1-o..t>untu5"14.04.2) 7.7.1 
Cop,jrlght (C) 2014 F,..,. Software Foundation, Inc. 
License GPl.v3+; GMJ GPL \lef"sion 3 or later <http;//gnu,Ol'1,llicenses/gpl ,ht.Oil> 
This ls free software: ijC)U are fr-ee to change .snd redistribute It. 
Th..-e ls NO WARRANTY, to the extent .,.,..1tted bl/ Ja.,. T!lPO "show eo,>\llng" 
and "shot.I warrant!:t for detatls. 
This GDB ... confl,..-.d .. "x86.64-llnux·snu•. 
T1:1J!e .. SNN ccnflguratton• for CCl"lfiguratton det.at ls. 
For bug reporting instructions, please see: 
<http://-.gnu.org/software/gdb/bugo/>. 
Find the CDB MttUal and other doc::ufllent.ation resources cnline at: 
<http: ✓l-.gnu.org/software/gdb/doc:1loentationl>. 
Fa- help, t!JPO "help". 
Tij?O •- word" to ....-ch for ~ related to "word" ••• ~\"ll S\IOl>Ob fro,, .la,out ••• (r,o debugging Sll'lbols fOID!d) ••• done. 

Example oflaunching two serial debuggers via xterm to debug the deadlock in Fig. 14.19. While this will work on 
some clusters, many will not be configured to allow this type of operation. 

To set the "i" variable to some value other than O and thereby break out of the while loop in line 23, 
the debugger frame is changed to frame #2 and the "i" is set to 1 using the set variable command in 
GDB. This is done in both debugger command lines, and is illustrated in Fig. 14.25. 

The code is now running in parallel within two different instances of the GDB. Generally it is best 
practice to set any desired break points prior to issuing the continue command in Fig. 14.25. However, 
in this deadlock example the debugger will be used to establish why the code hangs by simply stopping 
the execution of both debuggers using control-c and then issuing the back trace command in each 
debugger, as illustrated in Fig. 14.26. 

The back traces from both debugger instances gives the call stacks for the two hanging processes, 
indicating that they are both waiting on account of blocking send calls resulting in a deadlock. 

The debugger allows the MPI application developer to query the behavior of a parallel application 
directly, place break points and watch points, and traverse the call stack and memory to diagnose 
problems quickly at large scales. While in this example a GDB was attached to each process, this is 
probably not feasible when debugging with thousands of processes. In such a case the debugger can be 
attached to only a relevant subset of processes by appropriately modifying the code inserted to print out 
Pills and wait, as shown in lines 17-24 of Fig. 14.22. 

14.5 COMPILER FLAGS FOR DEBUGGING 
Compiler warnings are a significant resource to assist in debugging an application. Specific command
line options for the compiler can be used to check for common mistakes programmers make. In 
Table 14.5 a summary of command-line options for the GNU, Intel, LLVM, and PGI compilers is 
presented, along with the associated action they invoke in the context of debugging. 
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FIGURE 14.22 

#include <stdio. h> 
#include <st.dlib.h> 
#include <mpi.h> 

.:.n: main(c:i·. argc, ::ccSr* argv[l) 
cc:--,.':::.. .:._ ~1·_ n 
-=-i·_ *x, *y, nprocs,proc_.:..d,.:.; 
c:i·. ::.agl = 
cc,·: tag2 = 
MPI S:at.us st.at.us; 
MPI =Request send_ request, recv _request; 

MPI Init (&argc, &argv); 
MPI-Comm size(MPI CO~ WORLJ, &nprccs); 
MPI=Comm=rank(MPI=COMr•(WORLD, &proc_.;.d); 

i = 
c•ic, r hostname [ ] ; 
gethostnarr.e (hostname, sizeof (hos:nar.:e)); 
printf(" ·· ge::.p.:.d(), hos::.nar.e); 
fflush (stdout); 
while ( = i) 

sleep( ) ; 

x = (::,·. *) malloc(sizeof(.:.·.)*n); 
y (.:,·. *) malloc(sizeof(-'.:.·.) *n); 

:.:---,.::..;:; •.:>:a:..!)lc' ::-~·uy ;-:.::rt:s 
if (nprocs ! = ) { 

if (proc id = ) { 
printf("'' 

MPI Finalize(); 
return 

if (proc id ) { 

:•-:-- -;:.c: :-;,·,.· 

"); 

'/ .):·:ly :-:r:,,:,· ... :::;;;:; •'J::--::::: ,:.: · ... 

for (i= ·;i<n;i++) x[i] 

MPI Send (x, -
MPI Recv(x, -

printf(" 
else { 

MPI _ Send (y, 
MPI_Recv(y, 

free (x); 
free (y); 

n, 
n, 

n, 
n, 

MPI Finalize() ; 
return 

MPI - INT, 
MPI - INT, 

, :ag2, :-'.?I COY.?·'. WORLD) ; 
, tagl, ::-'.?I=COY.?~=WORLD,&s::a:cus); 

",proc_id,x[ ]); 

MPI - INT, 
MPI - INT, 

:agl, M?I COMM WO~D) ; 
:ag2, ½?I=CO:-:X=WORLD, &status); 

Deadlock example modified for attaching to the debugger. Lines 17-24 have been added to print the PIDs and 
then wait for the debugger to be attached to those processes. 
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landersmw@cutter:---/learn$ mpirun -np 2 ,/a.out 
PIO 17331 on cutter ready for attach 
PIO 17332 on cutter ready for attach 
I 

FIGURE 14.23 

Running the code in Fig. 14.22 results in the Pills for the processes printing to screen. The execution then pauses 
due to the "while" loop in line 23 of Fig. 14.22. 

l(gdb) backtrace 
#0 0x00007fa6cebcbdfd in nanosleep () at • , /sysdeps/unix/syscall-template, S: 81 
#1 0x00007fa6cebcbc94 in _sleep ( seconds=0) 

at , ,/sysdeps/unix/sysv/linux/sleep.c:137 
#2 0x0000000000400c55 in main (argc=l, argv=0x7ffe6f24c2d8) at deadlock, c: 24 

FIGURE 14.24 

The call stack upon attaching the GDB to one of the Pills. Note that the call frame where the "i" variable and 
while loop are found is frame #2, or two frames up from the execution frame (frame #0). 

l(gdb) up 2 
#2 0x0000000000400c55 in main ( a rgc=l, a rgv=0x7ffe6f24c2d8) at deadlock, c: 24 
24 sleep(5); 

l(gdb) list 
19 char hostname [256]; 
20 gethostname(hostname, sizeof(hostname)}; 
21 printf ( "PID 5\sd on 5\ss ready for attach\n", getpid (), host name); 
22 fflush ( stdout); 
23 while (0 == i) 
24 sleep(5); 
25 
26 x = (int *l mallodsizeof(int)*n); 
27 y = (int *l malloc(sizeof(int)*n); 
28 

l(gdb) set var i=l 
[ (gdb) continue 

FIGURE 14.25 

The variable "i" is set to 1 to break out of the while loop, pausing execution in the code of Fig. 14.22. This is done 
by changing the execution frame to be where the variable "i" is in the current context ("up 2"), resetting "i" to be I 
("set var i= l "), and resuming execution. 

14.6 SYSTEM MONITORS TO AID DEBUGGING 
Many clusters employ monitoring software to inspect the status of node hardware and obtain infor
mation about the currently executing workload. The former may be as simple as verification that the 
node is responsive to remote commands, but may also include measurement of temperatures of critical 
components (they typically rise under increased load) or even access to low-level built-in sensors that 
monitor other physical aspects of the hardware (supply voltages, fan speeds, etc.). The latter is pri
marily concerned with the utilization of available central processing units (CPUs) (see Fig. 14.27), but 
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MP/ "C 
ProcessO Program received signal SIGINT, Interrupt. 

0x00007fa6cebd62a7 in sched_yield ( I at •• /sysdeps/unix/syscatl-temptate.S:81 
81 • ,/sysdeps/unix/syscatl-template.S: No such file or directory. 
l(gdb) backtrace 
#0 0x00007fa6cebd62a7 in sched_yietd ( I at •• /sysdeps/unix/syscall-template.S:81 
#1 0x00007fa6c93da772 in psmi_mq_wait_internat (do_lock=0, status=txll, ireq=llx7ff 
e6f24bde8) at psm_mq. c: 279 
#2 0x00007fa6c93da772 in psmi_mq_wait_internat ( ireq=0x7ffe6f24bde8) 

at psm_mq. c: 314 
#3 0x00007fa6c93bd6lf in amsh_mq_send (ten=40000, ubuf=0xl53c6a0, tag=20, flags=< 
optimized out>, epaddr=0xl517498, req=0x7fa6cf551ef0, mq=0xl4c3468) 

at am_reqrep_shmem. c: 2799 
#4 0x00007fa6c93bd6lf in amsh_mq_send (mq=0xl4c3468, epaddr=llxl517498, flags=<opt 
imized out>, tag=20, ubuf=llx153c6a0, len=40000) at am_reqrep_shmem. c: 2847 
#5 0x00007fa6c93daa4b in _psm_mq_send (mq=<optimized out>, dest=<optimized out>, 

flags=<optimized out>, stag=<optimized out>, buf=<optimized out>, len=<optimized 
out> I at psm_mq. c: 393 

MP/ "C 
Process 1 Program received signal SIGINT, Interrupt. 

0x00007flcl04ef690 in _psmi_potl_internal (ep=0xlebf538, 
pol l_amsh=po l t_amsh@ent ry=l) at psm. c: 499 

499 } 
l(gdb) backtrace 
#0 0x00007flc104ef690 in _psmi_po tl_interna l ( ep=0xlebf538, po ll_amsh=po ll_ams 
h@entry=l) at psm.c:499 
#1 0x00007flc104ed7a6 in psmi_mq_wait_internat (do_lock=0, status=0x0, ireq=0x7 
ffcfrbfeac8) at psm_mq, c: 279 
#2 0x00007flc104ed7a6 in psmi_mq_wait_internat ( ireq=0x7ffcffbfeac8) 

at psm_mq. c: 314 
#3 0x00007flc104d061 f in amsh_mq_send (ten=40000, ubuf=0xlf0a280, tag=429496731 
5, flags=<optimized out>, epaddr=0xle6b2e8, req=0x7flc16664ef0, mq=0xle88458) 

at am_reqrep_shmem. c: 2799 
#4 0x00007flc104d06lf in amsh_mq_send ( mq=0xle88458, epadd r=0xle6b2e8, ftags=<o 
ptimized out>, tag=4294967315, ubuf=0xlf0a280, len=40000) 

at am_reqrep_shmem. c: 2847 
#5 0x00007flc104eda4b in _psm_mq_send (mq=<optimized out>, dest=<optimized out 
>, ftags=<optimized out>, stag=<optimized out>, buf=<optimized out>, ten=<optimi 
zed out>) at psm_mq. c: 393 

FIGURE 14.26 

The back trace from both debugger instances after pausing execution via control-c to find out why the program is 
hanging. The call stacks for both processes indicate that they are both waiting (frames #1 and #2) on account of 
blocking send calls resulting in a deadlock. 

may also provide other important statistics such as fraction of workload spent executing in user and 
system modes, amount of used and free memory, volume of data transferred in input/output operations, 
network traffic level, available disk space, and others. The monitoring relies on lightweight daemons 
executing in the background on every node that sample and collect the required information at regular 
intervals (e.g., every minute). This information is aggregated on a dedicated server and available to 
users through a commonly accessible interface, such as a webpage. Commonly used system monitors 
include Nagios [6] and Ganglia [7]. 
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Table 14.5 Command-Line Options Used for Debugging for GNU, Intel, LLVM, and PGI Compilers 

:~P '~: ./ 
·:_.._-;;.;._:,· ./. ·, 

'.~': •. ._;;_ . .,:_ 

Enable pointer bounds -fcheck-pointer-bounds -check-pointers-mpx=rw -Mbounds 
checking (R) 

Enable address sanitizer (R) -fsanitize=address -fsanitize=address 

Enable thread sanitizer (R) -fsanitize=thread -fsanitize=thread 

Enable leak sanitizer (R) -fsanitize=leak -fsanitize=leak 

Enable undefined behavior -fsanitize=undefined -fsanitize=undefined 
sanitizer (R) 

Enable all common warning -Wall -Wall -Wall -Minform=warn 
types (S) 

Warn if the code does not -pedantic -pedantic -Xa 
strictly comply with ANSI C or 
ISO C++ (S) 

Warn on use of uninitialized -Wuninitialized -Wuninitialized -Wuninitialized 
variables (S) 

Warn when local variable -Wshadow -Wshadow -Wshadow 
shadows another variable (S) 

Warn if comparison between -W sign-compare -W sign-compare -Wsign-compare 
signed and unsigned integer 
may produce wrong result (S) 

Warn if undefined identifier is -Wundef -Wundef 
used in preprocessor directive 
(S) 

Warn when undeclared function -Wimplicit -Wmissing-declarations -Wimplicit 
is used or declaration does not -Wmissing-prototypes 
specify a type (S) 

ANSI, American National Standards Institute. 
Note: Actions annotated with (R) denote that error conditions are indicated during runtime, while (S) produces a warning during static analysis of the code (compilation). 
Options in shaded cells do not accurately reflect the semantics of the Gee option in the same row. 
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FIGURE 14.27 

Example snapshot of processor load produced by Ganglia and presented as (A) composite graph for all monitored 
nodes and (B) individual nodes (only a fragment shown due to space constraints). 
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Since sampling is performed at a relatively coarse resolution to minimize the impact of monitoring 
on the primary workload execution, only limited analysis is possible. However, coupling the execution 
of a debugged application with a graphical representation of system status may frequently provide 
clues that would be otherwise difficult to obtain. Any load imbalances during application execution are 
immediately visible. If the load is expected to be uniform by algorithm design but in reality is 
asymmetric, this immediately identifies locations (nodes) that require closer inspection. This may arise 
from logical flaws in the code, but may also be caused by an incorrectly terminated job that previously 
executed on the same node or a system service that got out of control. Threads stuck in a spin lock 
usually exhibit CPU load close to 100%, while idling threads (such as those waiting for tasks to 
execute) have a minimal CPU utilization. Large load changes observed in multithreaded programs may 
suggest incorrectly designed critical sections or improper locking mechanisms. Monitoring memory 
usage may explain random performance fluctuations caused, for example, by approaching the point of 
exhaustion of physical memory. While a debugger will certainly catch a failed memory allocation call, 
it often will not be able to establish whether the failure occurred after prolonged execution with a large 
memory footprint or was a result of a spurious allocation request. Observation of network traffic may 
help identify undesirable hotspots for algorithms with an expectation of uniform communication 
patterns. While many of the system-monitor-inspired approaches are related to performance debug
ging, harnessing them for conventional debugging may help focus on the true cause of faults faster. 
They also provide much-needed sanity checks to verify that the startup environment for application 
execution matches the programmer's expectations. 

14.7 SUMMARY AND OUTCOMES OF CHAPTER 14 
• Tracking the origin of a parallel application execution anomaly on a supercomputer is generally 

much more difficult than debugging a serial application. 
• Debugging an application on a high performance computer frequently requires a fairly detailed 

view of the supercomputer software and hardware stack to diagnose the anomaly properly. 
• Several open-source and commercial debugging tools and suites have been developed to assist the 

debugging process. 
• There are several commercial parallel debuggers which support MPI and OpenMP codes. 
• There are several open-source serial debuggers and tool suites which can be used to debug MPI 

and OpenMP codes. In the case of MPI, they may require attaching several serial debuggers to a 
simulation. 

• The GDB provides multiple tools for debugging a code and enabling the user to step through the 
code and call stack, as well as viewing variables and changing their values. 

• The GDB also provides support for debugging codes with multiple threads. 
• The Valgrind suite of tools provides six major tools for debugging applications, including 

rectifying data races and memory leaks. 
• Multiple serial debuggers can be attached to an MPI execution to conduct parallel debugging. 
• There is significant compiler support for debugging through specific flags to enable pointer 

bounds checking and other memory checking. 
• System monitors provide an independent way to examine program execution and match that to 

the programmer's expectations. 
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14.8 EXERCISES 
1. The following code allocates and initializes a two-dimensional array for a send buffer in 

connection with an MPI code. However, it has memory problems: an invalid write and a memory 
leak. Use Valgrind to identify and fix the invalid write and memory leak. 

Hinclude <stdio.h> 
2 #include<stdlib.> 
3 

4 intmain(intargc,char**argvJ 
5 
6 int comm_count = 20; 
7 int numfields = 10; 
8 int length=l59; 
9 

10 daub le **send_buff er= ( daub le** J ma 11 oc ( comm_count•s i zeof ( daub le•) J; 
11 for (int p=O;p<comm_count;p++) I 
12 send_buff er [ p J = ( daub le * J ma 11 oc ( numf i el d s• l ength•s i zeof ( daub le J J; 
13 
14 
15 // Copy data into the send buffer 
16 for (int p=O; p<comm_count; p++ J { 
17 for (int fields=O;fields<numfields;fields++J { 
18 for (int i=O:i<=length;i++J I 
19 send_buffer[p][i + length•numfields] = 3.14159; 
20 
21 
22 
23 
24 return O; 

25 

2. The following code uses OpenMP to compute a3 = sin(a1 + a2) where a1, a2, a3 are arrays of 
length 20. 

Hinclude <omp.h> 
itinclude <unistd.h> 

3 Hinclude <stdio.h> 
4 #include<stdlib.h> 
5 #include <math.h> 
6 
7 int main (int argc, char •argv[JJ 
8 { 

9 constintsize=20; 
10 int nthreads. threadid, i; 
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11 double arrayl[si ze], array2[si ze], array3[si ze]; 
12 
13 // Initialize 
14 for (i=O; i < size; i++l 
15 arrayl[i]=l.O*i; 
16 array2[i]=2.0*i; 
17 
18 
19 intchunk=3; 
20 
21 #pragma amp parallel private(threadidl 
22 { 
23 threadi d = omp_get_thread_num(); 
24 if(threadid==O){ 
25 nthreads = omp_get_num_threads(); 
26 pri ntf( "Number of threads= %d\n", nth reads); 
27 l 
28 printf(" My thread id %d\n", threadid); 
29 
30 #pragma amp for schedule(static,chunk) 
31 for (i=O; i<size; i++) { 
32 array3[i] =sin(arrayl[i] +array2[iJ); 
33 printf(" Thread id: %d working on index %d\n", threadid, i); 
34 sleep(l); 

35 
36 
37 l//join 
38 
39 returnO; 
40 

Run the code using four OpenMP threads. Use the GOB to perform the following operations. 
Put a hardware watch point on the variable nthreads. Which thread ID stops at this hardware watch 
point? Does the debugger thread ID correspond to the threadid variable in line 23 of the code? 

3. The following code creates a new communicator, and within that communicator sends its rank to 
its new communicator neighbor. However, it has a bug. This code works properly when run on 
between one and four processes, but hangs when using anything more than four processes. Use 
the tools and techniques from the chapter to debug why this code fails on five or more processes. 
Then fix the problem. 

1 #include<mpi.h> 
2 #include<stdio.h> 
3 itinclude<stdlib.h> 
4 
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int main( int argc .char *argv[ J l 
I 

7 int myi d. numprocs: 

8 

9 MPI_Jnit(&argc,&argv): 

10 MPJ_Comm_size(MPI_COMM_WORLD,&numprocsl: 

11 MPI_Comm_rank(MPI_COMM_WORLD.&myid): 

12 

13 i n t col or = my i d % 2 : 

14 MPI_Comm new_comm; 

15 MPI_Comm_split(MPI_COMM_WORLD.color,myid,&new_comm); 

16 

17 int new_id,new_nodes: 

18 MPI_Comm_rank(new_comm,&new_id): 

19 MPI_Comm_size(new_comm.&new_nodes): 

20 

21 printf(" Rank %ct Numprocs %ct New id %ct New nodes% 

d\n",myid,numprocs,new_id,new_nodes): 

22 

23 int right= (new_id + 1) % new_nodes: 

24 int left= new_ id - 1: 

25 if(left<O) 

26 left= new_nodes - 1: 

27 

28 int buffer[2] ,buffer2[2]: 

29 MP!_Status status: 

3 0 bu ff er [ 0 J = my i d : 

31 buffer[l]=rand(): 

32 

33 MP!_Sendrecv(buffer, 2, MPJ_JNT. right, 123, 

34 buffer2, 2, MP!_JNT, right, 123, new_comm, &status); 

35 

3 6 p r i n t f ( " Rank % d rec e i v e d % d \ n" , my i d , bu ff er 2 [ 0 J ) : 
37 

38 MPJ_Finalize(l; 

39 return O: 
40 

4. The following code hangs when run on two processes. 

1 #include <stdlib.h> 

2 #include <stdio.h> 

3 #include "mpi .h" 
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5 int main(int argc, chaN argv[J) ( 

6 con st int n = 100000; 
7 intx[nJ,y[nJ,np,id,i; 
8 inttag1=19; 

9 int tag2 = 20; 

10 MPI_Status status; 
11 

12 MPI_Init(&argc, &argv); /* Initialize MPI */ 

13 MPI_Comm_si ze(MPI_COMM_WORLD, &np); /* Get number of processes*/ 

14 MPI_Comm_rank(MPI_COMM_WORLD, &id); /* Get own identifier*/ 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

/* Check that we run on exactly two processes*/ 
if (np !=2) { 

I 

if (id=O) { 

printf("Only works on 2 processes\n"); 

I 
MPI_Finalize(); 
exit(O); 

/* Quit if there is only one process*/ 

25 if (id= 0) { /* Process O does this*/ 

26 for(i=O:i<n;i++)x[i]=314159; 
27 

28 MPI_Send(&x, n, MPI_INT, 1, tag2, MPI_COMM_WORLD); 

29 MPI_Recv(&x, n, MPI_INT, 1, tagl, MPI_COMM_WORLD,&status); 

30 

31 printf(" Process %ct received value %d\n",id,x[O]); 

32 )else{ 

33 for (i=O;i<n;i++) y[iJ = 137035; 

34 MPI_Send(&y. n, MPI_INT, 0, tagl, MPI_COMM_WORLD); 

35 MPI_Recv(&y, n, MPI_INT, 0, tag2, MPI_COMM_WORLD,&status); 

36 J 

37 
38 MPI_Finalize(); 
39 exit(O); 

40 

a. Why does it hang? 
b. When size of variable n in line 6 is changed to be much smaller, the code does not hang any 

more. Try this: set n = JO in line 6. What does process O print to screen? Why? 
c. Why does the code not hang when variable n is small? 
d. Fix the problem so that the code works for any n size. What prints to screen as the result now? 

Why? 
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15.1 INTRODUCTION 
The design of the modem processor involves multiple trade-offs focused on optimizing the func
tionality, performance, energy consumption, and manufacturing cost. The final product is a compro
mise between the supported feature set, physical constraints, and a projected retail price. Since CPUs 
must execute a very broad range of workload types, their instruction sets are as generic as possible to 
enable reasonable performance for most applications. While additional specialized function units 
could be and sometimes are incorporated on processor dies to enable hardware support for specific 
computation types, this increases the final chip and case size. The function units may also require 
additional input/output (I/O) pins for dedicated communication links or memory banks, and increased 
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die size results in greater probability of the occurrence of manufacturing defects. All these factors have 
nonlinear effects on the final product price, which often renders such enhancements prohibitive. 

Practical accelerators explore different functionality, power requirements, and resultant price 
points to offer complementary features to existing processors, albeit without trying to optimize 
execution perfonnance for all anticipated application profiles. In high perfonnance computing (HPC) 
accelerators are typically employed to increase the computational throughput (most often expressed in 
tenns of floating-point operations per second), although at a cost of programmability. Control logic 
used by accelerators is often incompatible with the existing processor instruction set architecture 
(ISA); forcing the application developers to invest their time in mastering custom programming 
languages, language extensions, or wrapper libraries provided by the vendor to enable access to 
accelerator features. More often than not, nai've usage of accelerators without a working knowledge 
of their control and data paths and other details of internal architecture does not yield the desired 
results expected by interpolation from raw peak perfonnance of the underlying hardware modules 
and general application traits measured on conventional processors. Thus programming of such 
heterogeneous systems that include accelerators working side by side with regular processors still 
presents many challenges to the uninitiated. 

To improve portability, accelerators are frequently attached to the remainder of the system using 
industry-standard interfaces, such as Peripheral Component Interconnect (PCI) Express [ 1] (see 
Fig. 15.1 ). This pennits the incorporation of accelerated hardware in practically any machine that is 
equipped with such an interface, has sufficient power budget to supply energy to the accelerator, and, 

Processor 

FIGURE 15.1 

Accelerator 

PCI-Express 

Chipset 

QPI 
DMI or 
HyperTransport 

Compute Node 

Typical placement of an accelerator in a conventional compute node. Modem processors often incorporate 
Peripheral Component Interconnect (PC!) Express endpoints on the die, thereby not relying on the chipset as a 
necessary component to achieve accelerator connectivity. 
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16.1 INTRODUCTION 
As discussed in Chapter 15, graphics processing units (GPUs) are currently one of the most dominant 
accelerator types employed in high performance computing. In contrast to conventional multicore 
processors, however, their programming is a much more complex task. The main reason for this stems 
from the relatively young age of GPU technology, resulting in a dearth of mature programming tools 
and environments. Various aspects of the technology are constantly being improved and modified, 
which further complicates the development of general-purpose programming approaches and 
compilers. Compared to conventional hardware, the accelerators also use a diametrically different 
execution model. While for many practical purposes each core on a multicore CPU could be 
considered a separate context of execution, the same is not true for a thread ensemble running on a 
GPU core. This is particularly apparent in cases of performance loss due to branch divergence, when a 
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subset of threads follows a different code path than the others as a result of a conditional instruction. 
Conventional processor architecture in combination with an optimizing compiler makes many implicit 
components of program execution (register allocation, cache management, data consistency enforce
ment, optimization of branches, instruction reordering, speculative execution, and many others) trans
parent to the user, who is free to focus on fleshing out the essential program algorithms and data 
structures in a high-level programming language. In GPUs many details of the architecture still need 
to be explicitly addressed by a programmer who is interested in extracting the highest level of 
performance. Due to the much larger number of execution resources and also the stronger emphasis 
on parallelism, resource allocation and management become far more critical to achieving a good 
level of performance. These often have to take into account the physical structure, count, and 
resource limits on GPUs, especially if many computational kernels with different memory footprints 
and performance characteristics need to be scheduled concurrently. Since data locality references 
play a critical role in maximizing the performance and GPU memory capacity is traditionally un
dersized compared to that of the host machine, efficient scheduling of data offloads adds another 
dimension to the complexity of managing the computations on an accelerator. Note that offload 
speeds are usually constrained by the available bandwidth of the PCI Express bus, potentially 
resulting in significant latencies when transferring large amounts of data. To offer any advantage 
over a nonaccelerated model of computation, these costs would have to be amortized by performance 
gains over the entire course of an application execution. Moreover, the question of what is the right 
placement for a specific kernel in a heterogeneous architecture is not always easy to answer. It has to 
_be weighed against the individual programmer's experience in GPU code development, familiarity 
with the architectural features of the target GPU, programming tools available, and ported algorithm 
characteristics. Even then it may turn out that due to unforeseen overheads or latencies the speed-up 
gained through execution on an accelerator does not present any practical advantage compared to 
conventional hardware. This directly affects programmers' productivity: their time would have 
likely been better spent developing and optimizing a multicore implementation of the algorithm, or 
even better linking with an optimized external library providing the required functionality. Finally, to 
take advantage of both worlds, one might attempt to balance the computation across all available 
execution resources in the system. While potentially yielding the best performance, this approach is 
also the most difficult to manage. Strong disparities between the execution environments involved 
make the predictable scheduling of computations very difficult to attain, save for the most trivial and 
well-characterized problems. 

Initially, GPU programs leveraged three-dimensional graphics application programming interfaces 
(APis) such as OpenGL [I] and DirectX [2] to perform operations on vectors and dense matrices, since 
these were natively supported by the graphics pipeline. One of the first algorithms accelerated on a 
GPU was matrix multiplication using 8-bit (with 16-bit internal precision) fixed-point arithmetic 
published in 2001 [3]. To trick the graphics hardware into performing the desired operations, the 
authors used two textures corresponding to the input matrices and mapped multiple copies of them on 
to the interior of a cube, keeping one parallel and the other perpendicular to the projection plane. The 
partial products obtained through multitexturing in modulate mode were summed on to the front face 
of the cube using blending in orthographic view (to avoid perspective distortions). The final result 
(image) was then retrieved using GPU-to-CPU memory copy. The reader will immediately notice that 
this method of performing computations is not very practical. To provide a more convenient pro
gramming environment, a number of custom interfaces specialized for GPUs and in some cases 
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targeting general heterogeneous platforms were developed throughout the 2000s. As the feature sets of 
newer GPUs grew richer and after the introduction of new architectural capabilities (programmable 
shaders, double-precision floating points, support for dynamic parallelism, etc.), many of these 
interfaces were revised to include the appropriate support for added extensions. It is not uncommon for 
many of these APis to undergo several specification revisions over the relatively short span of their 
existence, the newest of which frequently require recent versions of graphics hardware to provide the 
full set of operational features. A brief overview of several popular toolkits with different program
ming models, supported features, portability, and scope is presented below. 

16.1.1 CUDA 
This widespread proprietary GPU programming toolkit, originally known as the Compute Unified 
Device Architecture (CUDA) [4], only works with devices manufactured by Nvidia, including the 
GeForce, Quadro, and Tesla families. Frequently used high performance computing languages such as 
C, c++, and Fortran are supported through compiler extensions and a runtime library. For the C 
family of languages Nvidia provides nvcc, a low level virtual machine-based compiler, while Fortran 
support is available from the Portland Group's (PGI) CUDA Fortran compiler. The programming 
environment is supplemented by libraries optimized for specific tasks, such as fast Fourier transform 
computation, basic linear algebra subprograms, random number generation, dense and sparse solvers, 
graphs analytics, and game physics simulation. CUDA has several performance-oriented features that 
are typically not available through standard graphics-based interfaces, such as scattered memory reads, 
unified memory access, fast on-GPU shared memory access, improved speeds of offload and state 
retrieval, additional data types, mixed-precision computing, supplementary integer and bit-wise op
erations, and profiling support. As of June 2017, the most recent revision of the toolkit is 8.0. 

16.1.2 OPENCL 
Open Computing Language [5], initially released in 2009 by the non-profit Khronos consortium, is 
an open standard attempting to define a unified heterogeneous programing framework. It provides 
an API on top of the C language (ISO/IEC 9899: 1999) and c++ 14 (starting with revision 2.2) that 
supports using the target device's memory and processing elements (PEs) for program execution. 
Execution in a heterogeneous environment places substantial constraints on.language features that 
are permitted-for example, recursion, type identification, go-to statements, virtual functions, 
exceptions, and function pointers may not be used at all or only with severe limitations. Device 
vendors determine how and which PEs are actually offered to the user. OpenCL permits up to four 
levels of memory hierarchy to be implemented by the device: global memory (large, but with 
substantial latency), read-only memory (small and fast, but writable by the host only), local 
memory shared by a subset of PEs, and per PE private memory (e.g., registers). Corresponding 
qualifiers (global, local, constant, private) are integrated with the language and understood by 
the compiler when used in variable declarations. Functions executing on accelerators are marked 
with the kernel attribute and accept argument declarations tagged with the address space quali
fiers listed above. Kernels defined as source code may be compiled in runtime by the appropriate 
online compiler if the platform is full-profile compliant; otherwise an offline, platform-specific 
compilation is used (embedded profile). Besides explicitly defined kernels, devices may provide 
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built-in functions that are enumerated and offered by OpenCL. The framework supports execution 
synchronization at three levels: workgroup, subgroup, and command. Revision 2.2-3 of the 
Open CL specification was released in May 2017. 

16. 1.3 C+ + AMP 
Developed by Microsoft, c++ Accelerated Massive Parallelism [6] is a compiler and set of extensions 
to C++ that enable the acceleration of c++ applications on platforms that support various fonns of 
data-parallel execution. The accelerator does not necessarily have to be an external device such as a 
GPU; it could be integrated on the same die as the main CPU, or even be an extension of the main 
processor's industry-standard architecture, such as streaming single-instruction multiple data (SIMD) 
extensions or advanced vector extensions provided by some members of the x 86 processor family. Its 
device model assumes that the accelerator may be equipped with a private memory that is not 
accessible to the host, or that both host and device share the same memory. The c++ AMP runtime 
performs or avoids memory copies as required by a particular implementation. The framework defines 
two types of function restriction specifiers, cpu and amp, the latter of which marks the relevant code for 
execution on the accelerator. Functions tagged in this way must confonn to the c++ subset that is 
permitted by the underlying hardware type. Accelerators are represented by accelerator objects with 
an associated logical view (more than one view per accelerator is possible) that implement command 
buffers for computational tasks to be processed by the accelerator. Commands may be submitted for 
execution immediately or deferred; completion of the accelerator workload may be synchronous 
(blocking) or asynchronous, using future-based markers for a single task or task group. Data types are 
based on n-dimensional arrays with related n-dimensional extent (determining array bounds) and index 
objects (referring to a specific element). To exercise control over data copying and caching with 
minimal overhead, array views are provided that permit access to a segment of a relevant array. Array 
views may be accessed locally or in a different coherence domain, implying the necessary data copies 
for the latter. c++ AMP also supports a range of atomic operations and a parallel_for_each 
construct to launch parallel operations. The current revision of the specification is v 1.2, released in 
2013. 

16. 1 .4 OPENACC · 
The Open Accelerator framework [7], also known as "directives for accelerators," differs from the 
approaches described above in that it attempts to simplify the accelerator programming interface 
significantly, making code development for GPUs and other attached devices more approachable to a 
casual developer. It also focuses on better code and performance portability across different platforms. 
The initial OpenACC specification was created by POI, CAPS Entreprise, Cray, and Nvidia in 2011. 
Since then the group has been joined by national labs and multiple industry and academic members, 
including AMD, Pathscale, and Sandia and Oak Ridge National Laboratories. Since the directive
based approach requires compiler support, commercial tools from POI (support for multiple target 
platforms with OpenACC compatibility version 2.5) and Cray (for Cray systems only) are available. 
Several open-source compilers have also been developed, including OpenUH from University of 
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Houston [8], OpenARC provided by Oak Ridge National Laboratory [9], and GCC's experimental 
OpenACC v2.0a support starting with version 5.1, to be further refined in the GCC 6 release series. 
Since OpenACC resembles another directive-based parallel programming framework, OpenMP, it is 
expected that the two environments will eventually be combined and share a single programming 
specification. The most recent (October 2015) revision of the OpenACC API is 2.5. Its essential 
features are discussed in more detail in the remainder of this chapter. 

16.2 OPENACC PROGRAMMING CONCEPTS 
OpenACC supports offloading of designated parts of the program on to accelerator devices connected 
to the local host computer. Segments of code that may benefit from parallel execution must be 
explicitly identified by the programmer through relevant directives, or pragmas in C and C++, and 
specially formatted comments in Fortran. Automatic detection of the offloadable sections of program 
is not supported. The applied method is portable between different CPU types, supported accelerator 
devices, and underlying operating systems. The details of initialization of accelerator hardware and 
suitable functions responsible for parallel code execution, management of workload offload, and result 
retrieval from the accelerator are hidden from the programmer and performed implicitly by the 
compiler and runtime system. OpenACC currently does not support automatic workload distribution 
across multiple accelerator devices, even if such are available on the same host machine. Similarly to 
OpenMP, the directives are simply ignored if the relevant functionality is not supported or not enabled 
in the compiler. 

The execution of the user application is controlled by the host, which nominally follows most of the 
control flow within the program and initiates transfer of work and data constituting the identified 
parallel regions to the accelerator. For these code segments, the host may be involved in the allocation 
of sufficient memory on the device to accommodate the computational kernel's dataset, performing the 
relevant data transfer between the host and accelerator memory (frequently over the direct memory 
access or DMA channel), sending the executable code, marshalling and forwarding the input argu
ments for the parallel region, queuing the code for execution, waiting for completion, and finally 
fetching the computation results and releasing the memory allocated on the device. Accelerators 
typically support several levels of parallelism: coarse grain, referring to parallel execution on multiple 
execution resources, fine grain, involving one of multiple threads within a PE, and function unit level, 
which exposes SIMD or vector operations within each fine-grain execution unit. In OpenACC these 
levels are matched respectively by gang, worker, and vector parallelism, as illustrated in Fig. 16.1. The 
accelerator device executes a number of gangs, each of which contains one or more workers. In tum, a 
worker may take advantage of available vector parallelism by executing SIMD or vector instructions. 

Execution of a compute region on the accelerator starts in so-called gang-redundant (GR) mode, in 
which each gang has a single worker executing the same code. Once the control flow in the program 
reaches the region marked for parallel execution, the execution switches to gang-partitioned (GP) 
mode, where the work performed by different iterations of one loop or multiple loops is distributed 
across the gangs, but still with only one worker active in each gang. In both these scenarios program 
execution proceeds in worker-single mode; similarly, if only one lane of vector processing is used by 
the worker, the program operates in vector-single mode. If the parallel region or its section has been 
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Example mapping of nested loop iterations on to OpenACC parallelism levels with 2 gangs, 4 workers, and 16 
vector lanes. The numeric indices of the accessed matrix element in a specific iteration are shown in square 

brackets. In this case the outer loop is partitioned across gangs, while the inner loop iterations are divided among 
workers and vector lanes. 

marked for worker-level work sharing, all workers in a gang are activated and the execution continues 
in worker-partitioned mode (WP). Note that parallel regions may enable GP and WP modes at the 
same time, which causes distribution of available work among all workers in all gangs. A similar 
distinction applies to vector parallelism: it may be enabled on a per loop or loop nest basis to partition 
the parallel operations across available SIMD or vector units, thus executing in vector-partitioned (VP) 
mode. VP mode for the specific portion of workload may be activated concurrently with any com
bination of gang and worker modes. 

Explicit synchronization involving batTiers or locks across gangs, workers, and vector operations is 
discouraged. Due to differences between OpenACC implementations and accelerator architectures, 
some of the gangs may not even begin to execute before others complete. A similar observation applies 
to workers and vector lanes: since scheduling of worker or vector operations is not always defined 
deterministically, a specific workload synchronization method that works on one accelerator archi
tecture may lead to a deadlock on another. 

Both hosts and accelerators use the concept of a thread, albeit with some differences. Host threads 
are closely tied to processor execution units, such as cores or hyperthread slots, depending on the 
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actual architecture. What constitutes an accelerator core strongly depends on the accelerator type or 
even the particular implementation of the same device type. For example, AMD demarcates core 
boundaries on its GPUs differently from Nvidia. OpenACC defines the accelerator thread as a single 
lane of a single worker in a gang; this unambiguously corresponds to a single parallel execution 
context. Most accelerator threads can operate asynchronously from host threads. The framework 
permits submitting the work units to one or more activity queues on the device. Operations entered in a 
single queue will execute in submission order, but operations stored in different activity queues may 
execute in arbitrary order. The usage of other multithreading environments on the host, such as 
OpenMP, concurrently with OpenACC is generally unrestricted, although users should take care to 
avoid oversubscription of execution resources if OpenACC code regions are also scheduled to run on 
the host processors. 

The conscientious OpenACC programmer must be aware of the consequences of the memory 
model exposed by the framework. Many accelerators, especially PCI Express attached GPUs, are 
equipped with separate memories from that of the host computer. It means that the host is inca
pable of directly accessing the device memory and, conversely, the device cannot efficiently access 
the host memory. Data movement between the two memory pools has to be orchestrated through 
other means, such as DMA. The programmer must take this into account when writing portable 
OpenACC code, since the overhead of scheduling and performing a data transfer between host and 
accelerator memory usually impacts the overall execution performance and may vary from 
instance to instance. When computing on a large amount of data, the programmer must also be 
aware of memory size limitations, which are typically much more restrictive on the accelerator 
side. The datasets accessed by the application must be appropriately partitioned into pieces that 
may individually fit in the device memory, in some cases imposing changes on the computational 
algorithm. Data structures containing raw pointers to data in the host memory may also have to 
be redesigned. Many GPUs utilize a weak memory model in which operations between acceler
ator threads are performed in arbitrary order unless synchronized by a memory fence, thus 
potentially producing different results for multiple runs of the same code. Similar considerations 
apply to unified memory architectures or those offering shared memory space between the host 
and the accelerator or multiple accelerators. Explicit synchronization to ensure that updates to 
shared data are fully carried out before they are accessed by the consumer entity is strongly 
recommended. 

16,3 OPENACC LIBRARY CALLS 
OpenACC provides a number of predefined values and library functions that may be invoked from user 
applications. Note that in general none of these functions is required to create fully functional 
OpenACC programs. They are used in situations when additional information has to be retrieved from 
the system or explicit management of runtime functions may yield better execution performance. 
Specifications subdivide the library interfaces into five major sections: definitions, device-oriented 
functions, asynchronous queue management, device functionality tests, and memory management. 
Since application of many of these requires an in-depth understanding of host-accelerator interactions, 
only a small subset of the available interfaces is discussed below. 
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Since actual OpenACC implementations may conform to different revisions of the specification, 
one of the macros provided by the OpenACC library may be used to test for the provided functionality. 
It is called _OPENACC and expands to a six-digit decimal number, in which the first four digits denote the 
year and the remaining two the month of the specification release date on which the library is based. 
The _OPENACC macro may be used to enable conditional compilation of code segments that rely on 
more recently introduced features. 

The OpenACC library definitions comprise prototypes of runtime functions and internal data types 
used by the library that specifically describe runtime function arguments as well as enumerations that 
identify accelerator types or variants of asynchronous request queue management. The commonly 
used runtime calls include the following. 

int acc_get_num_devices(acc_device_t devtype); 

This returns the number of attached accelerator devices of the type specified by devtype. It must 
not be used inside parallel regions offloaded to an accelerator. Even though symbolic identifiers 
describing permitted devtype values may depend on the actual implementation, the standard rec
ommends the following: 

• acc_device_nvidia for Nvidia GPUs 
• acc_devi ce_radeon for AMO GPUs 
• acc_device_xeonphi for Intel Xeon Phi processors. 

acc_device_t acc_get_device_type(); 

This indicates the device type currently set as the target accelerator, and may return acc_device_none 
if the accelerator device has not been selected. Similar to acc_get_num_devi ces, it may not be called 
inside the accelerator region. 

void acc_set_device_type(acc_device_t devtype); 

This sets the type of device to be used as the accelerator for parallel regions of code. The device 
type is indicated by the input argument. Calling this function may result in undefined behavior 
(including program abort) if devices of the requested type are not available or the program was not 
compiled to support execution on the specified accelerator type. This function may not be called inside 
the accelerated region of code. 

int acc_get_device_num(acc_device_t devtype); 

The function returns the number (index) of the accelerator device of the specified type that will be 
used by the current thread to offload the parallel computations. As before, it may not be called inside 
the code region to be executed on the accelerator. 

void acc_set_device_num(int n. acc_device_t devtype): 

This defines which accelerator device of the specified type may be used to execute parallel regions 
by the current thread. If the value of n is negative, the implementation will select a default accelerator 
device. If devtype is zero, the specified number will be assumed for all attached accelerator types. 
Function execution may result in undefined behavior if n is greater than or equal to the number of 
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devices available of the indicated type. Again, acc_set_devi ce_nummay not be called from within the 
accelerated code region. 

Example: 

1 #include<stdio.h> 
2 #include <openacc. h> 
3 
4 int main() { 
5 print f ( "Supported 0penACC revision: %ct.\ n", _0PENACC); 
6 
7 int count = acc_get_num_dev ices ( acc_devi ce_nv i ct i a); 
8 pri ntf( "Found %ct Nvidia GPUs. \n", count); 
9 int n = a cc_get_dev i ce_num( acc_devi ce_nvi di a): 

10 printf("Defaul t accelerator number is %ct. \n", n); 
11 
12 count= a cc_get_num_dev ices ( acc_dev i ce_hos t) : 
13 pri ntf("Found %ct host processors. \n", count); 
14 n = acc_get_devi ce_num(acc_devi ce_hostJ: 
15 printf("Default host processor number is %d.\n", n): 
16 

Code 16.1. Example code illustrating the use of the OpenACC library functions. 

The example program shown in Code 16.1 invokes several library functions and has been compiled 
to run on a Cray XK7 system containing AMD Opteron CPUs and Nvidia Kepler GPUs. Launching it 
on a node equipped with a single GPU prints the following: 

Supported 0penACC revision: 201306. 
Found 1 Nvidia GPU(s). 
Default accelerator number is 0. 
Found 1 host processors. 
Default host processor number is 0. 

The retrieved release date is June 2013, which corresponds to OpenACC specifications revision 
2.0. All the following code examples presented in this chapter were executed in the same environment. 

16.4 OPENACC ENVIRONMENT VARIABLES 
Currently, OpenACC defines only three environment variables that may be used to modify the runtime 
behavior of applications. 

• ACC_DEVICE_TYPE determines the default device type which will be used to accelerate the marked 
parallel regions of the code. This value is implementation dependent. For example, the PGI 
compiler permits the values of NVIDIA, RADEON, and HOST to signify respectively the selection of 
an Nvidia or AMD branded GPU as the target accelerator device or execution on the host processor. 
The program has to be compiled in a way that enables the use of multiple accelerator devices. 
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• num_gangs (integer-expression) 
The num_gangs clause is used to specify explicitly the number of gangs across which the workload 
is distributed. If absent, an implementation-specific default is used. Note that restrictions imposed 
by the target architecture may cause the implementation to choose a lower number of gangs than 
that requested. 

• n um_wo rke rs (integer-expression) 
Analogous to num_gangs, this clause requests the specific number of workers per gang used for 
execution of the parallel workload in WP mode. The default number of workers is chosen if not 
specified, in which case it is not guaranteed to be consistent between different parallel regions 
(marked by the parallel or kernel directives) invoked by the program. As mentioned above, the 
particular implementation may modify the number of workers due to architectural constraints. 

• vector_ length (integer-expression) 
This requests the specific number of vector lanes to be assigned to each worker for code segments 
annotated by the vector clause with the loop directive (discussed later). Due to the arrangement of 
execution resources, the implementation is free to choose a value that better matches hardware 
specifications. 

In addition to these, data management clauses may be present; these are discussed in Section 
16.5.3. 

Example: 

Hinclude <stdio.h> 
2 
3 constintN=lOOO; 
4 
5 i n t main ( ) I 
6 intvec[NJ; 
7 intcpu_sum=O,gpu_sum=O; 
8 
9 II initialization 

10 for(inti=O;i<N;i++)vec[i]=i+l; 
11 
12 Hpragma ace parallel a sync 
13 for (int i =100; i < N; i++) gpu_sum+=vec[i]; 
14 
15 II the following code executes without waiting for GPU result 
16 for (int i =O; i < 100; i++l cpu_sum+=vec[i]; 
17 
18 I I synchronize and verify results 
19 Hpragma ace wait 
20 printf("Result: %ct (expected: %d)\n", gpu_sum+cpu_sum, (N+lhNl2); 
21 
22 return O; 
23 

Code 16.2. Example of concurrent GPU and CPU execution triggered by the async clause. 
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The example application listed in Code 16.2 sums all components of a 1000-element vector. The 
first 100 elements are added on a CPU, while the GPU asynchronously sums the remaining 900 
numbers at the same time. Synchronization with the GPU is achieved in line 19 preceding the result 
output. It uses a wait directive and not await clause on a par a 11 e 1 directive, since the latter would 
require an executable workload to be specified. That way, the pri ntf statement immediately 
following in line 20 is executed by the host. The para 11 e 1 directive allows the user to define pre
cisely the way in which the affected workload is parallelized, but by default it is not going to 
parallelize anything (the execution is started in GR mode). As there are no additional parallelization 
clauses specified in line 12, the compute region in line 13 is not going to be vectorized. Since the 
code does not use any OpenACC library calls or macros, it is not necessary to include the OpenACC 
header file. The program produces the following output: 

Result: 500500 (expected: 500500) 

16.5.2 KERNELS CONSTRUCT 
The compiler encountering the kernels directive performs the analysis of marked sections of the 
code and converts these into a sequence of parallel kernels that will be executed in order on the 
accelerator device. The number of gangs and workers and vector size may be different for each such 
kernel. The workload subdivision is typically performed in a way that creates one kernel for each 
loop nest present in the code. The primary difference between the kernels construct and the 
para 11 e 1 directive is that the latter relies on the programmer to configure various parameters that 
divide the workload across accelerated execution resources. Thus the use of the ke rne 1 s directive is 
recommended for beginners to OpenACC programming, but it may not always yield the best
performing code. Its syntax is shown below: 

ffpragma ace kernels [clause-list] 

structured-block 

The kernels construct accepts async and wait clauses that behave as described for the 
para 11 e 1 clause, as well as data management clauses (discussed further in Section 16.5.3). Similar 
restrictions to those of the parallel directive apply: the code may not branch out or into the 
accelerated region. 
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Example: 

1 4/include <stdio.h> 
2 
3 constintN=500; 
4 
5 int main() { 

6 II initialize triangular matrix 
7 doublem[NJ[NJ; 
8 for(inti=0;i<N;i++) 

for (int j =0; j < N; j++) 
10 m[i]~j]=(i>j)?0:1.0; 
11 
12 II initialize input vector to all ones 
13 double v[NJ; 
14 for (inti= 0; i < N; i++) v[i J = 1.0; 
15 
16 II initialize result vector 
17 double b[NJ; 
18 for(inti=0;i<N;i++)b[i]=0; 
19 
20 //multiply in parallel 
21 #pragma ace kernels 
22 for(inti=0:i<N;i++) 
23 for(intj=0:j<N;j++) 
24 b[i]+=m[i][jhv[j]; 
25 
26 I I verify result 
27 doubler=0; 
28 for(inti=0:i<N:i++)r+=b[i]; 
29 printf("Result: %f (expected %O\n", r, (N+lhN/2.0); 
30 } 

Code 16.3. Accelerated matrix-vector multiply using the kernels directive. 

The program listed in Code 16.3 performs multiplication of a matrix and a vector, the dimensions 
of which are known at compile time and fixed. The accelerated region of code follows the kerne 1 s 
directive in line 22 and contains a loop nest: the outer loop iterates over matrix rows (index i) and 
the inner loop over the columns (index j). Unlike Code 16.2, the execution of the parallel region is 
synchronous (there is no async clause), meaning that the program will not proceed to result verifi
cation until the accelerated kernel computation is finished. The result of program execution is shown 
below: 

Result: 125250.000000 (expected 125250.000000) 
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16.5.3 DATA MANAGEMENT 
The resultant speed-up of an accelerated program strongly depends on the efficiency of data transfers 
between host and accelerator memories. In some cases, such as for AMD accelerated processing units, 
the accelerator shares the address space with the host processor. The overheads of communicating the 
data structures between the two components are minimal, as they are simply accomplished through 
pointer passing without any explicit data copies. If an accelerator needs to perform computation on 
certain elements of the data array, it only has to compute the resulting address of the data element 
based on the supplied pointer value, element index, and data type, and dereference it (fetch the desired 
element from memory), just as the host processor would. Unfortunately, many accelerator devices 
utilized in current supercomputing installations feature separate memory modules that necessitate 
explicit data transfers. Ideally, such transfers would be orchestrated without involving any unnecessary 
data or even entirely avoiding communication when not required. The first case is apparent when 
performing computation only on a subset of array or vector elements; copying the entire structure 
would only increase the latency data offload. The second scenario may arise when a dataset produced 
as a result of GPU computation would overwrite the contents of an array originally created on the host. 
Copying the initial state of such an array to the GPU before performing the accelerated computation is 
obviously unnecessary. 

Unfortunately, due to the complexity of C and c++ code, static analysis of data access patterns by 
the compiler cannot always determine with ·certainty which portions of the affected data structures 
should be offloaded to the accelerator. OpenACC by default chooses correctness over efficiency and 
performs full bidirectional copies, i.e., transfer of the initial state of all involved data structures to the 
device before initiating accelerated computations and copying back the possibly updated state of 
involved datasets after the accelerated region's execution completes. Note that this is supported 
implicitly only when the dimensions of the involved arrays are known at compile time; for dynami
cally allocated arrays or arrays that are passed by pointer, it is a good idea to specify explicitly the 
ranges of data that should be offloaded to avoid potential out-of-bounds access errors during runtime. 
OpenACC implementations may further optimize (or even avoid) the data transfers if the accelerator is 
capable of accessing the host memory directly. 

OpenACC provides the following clauses to control data copying between the host and accelerator 
memories. 

• copy (variable-list) 
This makes data copies upon entry to and exit from the parallel region. First, for each variable 
specified in the variable list, the runtime system checks if the required data exists in the 
accelerator memory. If so, its reference count is incremented; otherwise a sufficient accelerator 
memory is allocated and a data copy from host memory to the allocated memory is arranged. The 
corresponding reference count for the data structure is set to one. On exit from the parallel region, 
the reference count is decremented. If it reaches zero, the corresponding data is copied back to the 
host memory and the allocated memory segment on the accelerator is deallocated. 
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• copyi n ( variable-list) 
This makes data copies upon entry to the parallel region. It behaves as a one-directional version 
of the copy clause. All operations specified for region entry in the copy clause are executed 
without modification. However, on exit from the parallel region the reference counts for all data 
structures specified in the variable list are decremented. If the count for a specific variable reaches 
zero, the corresponding device memory is deallocated, but no data transfer to host memory takes 
place. 

• copyout(variable-listl 
This makes data copies upon exit from a parallel region. The copyout clause may be viewed as a 
complement to the copyi n clause. Upon entry to the parallel region, if the data are already present 
in the accelerator memory, their reference counter is incremented. If not, the sufficient memory 
segment is allocated in the device memory and the reference count for it is set to one. The allocated 
memory is not initialized (and no data transfer takes place). 
Upon exit, the reference count for the involved data structures is decremented. If it reaches zero, 
the data are copied back to the host memory and the corresponding memory segment on the device 
is deallocated. 

• create(variable-listl 
This creates a data structure on the accelerator to be used by local computation. The create clause 
never transfers any data between the host and accelerator memories. When the affected parallel 
region is entered and the data structure already exists in the device memory, the runtime increments 
the reference counter; otherwise a suitable amount of device memory will be allocated, with the 
reference count set to one. On exit the reference count is decremented, and if it reaches zero the 
corresponding memory is deallocated. 

The variable-list specifier accompanying the clauses listed above contains identifiers of program 
variables that are subjected to data copy operations. The identifiers are separated by a comma (". "). 
They may be optionally followed by a range specification consisting of a pair of square brackets per 
dimension, each enclosing the index range specification. The index range consists of two integer 
expressions separated by a colon (": "), with the first integer value denoting the starting index and the 
second value indicating the length (number of contiguous elements per dimension). If the first number 
is omitted, zero is assumed. The second number may be omitted if the size of the array is known at 
compile time, and implies that the full dimension is used. Thus a [ 5: t J describes the range of elements 
of vector a starting at index 5 and containing t elements, i.e., the sequence a [ 5 J , a [ 6 J , ... , a [ 5 + t-1 J. 
Analogously, mat[: NJ [16: 32] refers to a rectangular segment of array mat that comprises 32-element
long fragments of its first N rows. Each such fragment starts at index 16. The entire dataset thus 
includes N x 32 array elements. 

Thanks to compiler support, OpenACC supports several different ways in which arrays may be 
defined in C and c++ programs. 
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1. Statically allocated arrays with fixed bounds, such as: 

int cnt[4][500J; 

One important restriction related to specifying the data transfer range for statically allocated 
arrays is that it must identify a contiguous chunk of memory. Only the range specifier for the first 
dimension may describe a subset of elements, while the specifiers for the remaining dimensions 
must identify full bounds. Thus for the declaration above cnt[2: 2] [: 500] (last two rows of matrix 
cnt) is legal, whereas cnt [: 4] [O: 100] (first 100 columns of matrix cnt) is not. 

2. Pointers to fixed-bound arrays: 

typedef double vec[l000J; 

vec · *Vl: 

3. Statically allocated array of pointers: 

float *farray[S00J: 

4. Pointer to array of pointers: 

double **dmat:. I 
Multidimensional array definitions may include mixed declarations involving static bounds and 

pointers. To follow the range specification constraints correctly in a general case, it may be helpful to 
realize that the runtime system will mirror the organization of the source data structures from the host 
on the accelerator, allocating pointers where necessary and filling in their values. Once the data 
structures are defined, modification of the embedded pointers on the host or device is discouraged. To 
demonstrate the application of improved data management techniques to Code 16.3, it is rewritten to 
support dynamically allocated arrays storing the main matrix data and input and output vectors. The 
result is listed in Code 16.4. 
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Example: 

1 /finclude<stdio.h> 
2 #include <stdlib.h> 

3 
4 intrnain(intargc, char**argv) I 

5 unsigned N = 1024; 
6 if(argc>l) N=strtoul(argv[l], 0.10); 

7 
8 // create triangular matrix 

9 double*Hestrictrn=rnalloc(N*sizeof(double*)); 
10 for(inti=0;i<N;i++) 
11 { 
12 rn[i] =rnalloc(N*sizeof(double)); 
13 for (int j = 0; j < N; j++) 

14 rn[i][j]=(i>j)?0:1.0; 

15 
16 
17 I I create vector fi 11 ed with ones 
18 doubleHestrictv=rnalloc(N*sizeof(double)); 
19 for(inti=0;i<N;i++)v[i]=l.0; 

20 
21 // create result vector 
22 double *restrict b=rnalloc(N*sizeof(double)l; 

23 
24 // multiply in parallel 
25 /fpragrna ace kernels copyin(rn[:N][:N]. v[:N]) copyout(b[:NJ) 

26 for (int i = 0; i < N; i ++) 

27 \ 
28 b[i]=0; 

29 for (int j = 0; j < N; j++) 

30 b[i] +=rn[i][jhv[j]; 

31 
32 
33 // verify result 
34 doubler=0; 
35 for(inti=0;i<N;i++)r+=b[i]; 

36 printf("Result: %f (expected %f)\n", r, (N+l)*N/2.0); 
37 
38 return 0; 
39 

Code 16.4. Example OpenACC matrix-vector multiply with improved data transfers. 
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The size of the involved arrays may be defined (within reason) on the command line. To preserve 
the double-index notation when accessing the elements of matrix m rather than flattening it to a vector, 
it has been declared as a pointer to a vector of pointers to dynamically allocated rows (this corresponds 
to scenario 4 described above). The pointers are declared with the restrict attribute telling the 
compiler that it should not expect pointer aliasing and potentially leading to a better optimized code. 
Since both the input matrix m and vector v are not modified by the computation, they are declared in the 
copyi n clause. Vector b does not need to be initialized from the host memory, since its entire content is 
overwritten by computation. It is therefore declared as a copyout variable. Since the accelerator can 
easily zero out individual elements of b before accumulating partial dot product values into it, this part 
of the computation has been explicitly moved to the accelerated region. Running the program with 
argument 2000 yields: 

Result: 2001000. 000000 < expected 2001000. 000000) 

16.5.4 LOOP SCHEDULING 
The loop directive is one of the fundamental OpenACC constructs responsible for identifying and fine
tuning the parallelization of accelerated workloads. It may be specified either as a separate directive: 

/lpragma ace loop [clause-list] 

for ( ... ) 

Or as a clause combined with a parent para 11 el or kernels directive. In any case, it applies to the 
for-loop immediately following the clause or directive. The available loop control clauses include the 
following: 

• co 11 apse ( integer-expr) 
This specifies how many nested loop levels indicated by the argument value are affected by 
the scheduling clauses present in the directive. Normally only the nearest loop following the 
directive is considered. The argument must evaluate to a positive integer. 

• gang 
• gang(/num:J integer-expr [, integer-expr ... }) 
• gang (static: integer-expr) 
• gang(static:•l 

This distributes iterations of the affected loop(s) across gangs created by the parent para 11 e 1 or 
kernels directive. 
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When used with the parallel construct, the number of gangs is determined by the parent directive, 
hence only the static argument is permitted in one of the two forms listed above. It indicates the 
chunk size: a count of loop iterations that is used as a unit of workload assignment. Chunks are 
assigned to gangs in a round-robin fashion. If the last form of gang specification is used, chunk size 
is determined by implementation. It should be stressed that for correct results loop iterations must 
be data independent (except for the reduction clause described below), since the compiler is not 
going to perform the full code analysis, as when using the kernels directive. 

If the loop clause is associated with the kernels construct, all forms are permitted with some 
restrictions. The first two variants may be specified only if num_gangs does not appear in the parent 
kernels construct. If used with a numeric argument, it specifies the number of gangs to be used for 
parallel execution of the loop. The meaning of the static argument is as described above for the 
parallel construct. 

• worker 
• worker ({num :Jinteger-expr) 

This causes the loop iterations to be distributed across the workers in a gang. When used with the 
parallel construct, only the first form is allowed. It causes the gang to switch to WP execution. 
The loop iterations must be data independent. When the parent directive is kernels, the form with 
an argument may be used only if num_workers was not specified in the parent construct. The 
expression must evaluate to a positive integer that indicates the number of workers per gang to be 
used. 

• vector 
• vector({length:}integer-expr) 

This enables execution of loop iterations in vector or SIMD mode. The conditions of use are 
analogous to those of the worker clause, except that they apply to vector-level parallelism. 

• auto 
This forces analysis of data dependencies in the loop to determine if it can be parallelized. It is 
implied in every kernel directive that does not contain the independent clause. 

• independent 
This instructs the compiler to treat the loop iterations as data independent, thus enabling more 
possibilities for parallelization. It is implied for all parallel directives that do not specify auto 
clauses. 

• reduction(operator:variable[, variable ... }) 
The reduction clause marks one or more of the specified variables as a participant in the reduction 
operation performed at the end of the loop. The variable may not be an array element or a structure 
member. The supported operators include +,*,max, min,&, I,&&, and II for sum, product, 
maximum, minimum, bitwise-and, bitwise-or, logical-and, and logical-or, respectively. 
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1 #include<stdio.h> 
2 
3 con st int N = 10000; 
4 
5 int main() { 
6 double x[NJ. y[NJ; 
7 doublea=2.0,r=0.0; 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

#pragma ace kernels 
{ 

// initialize the vectors 
f/pragma ace loop gang worker 
for (int i =0; i < N; i++) ( 

x[iJ=l.0; 
y[i]=-1.0; 

18 // perform computation 
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19 /lpragma ace loop independent reduction(+:r) 
20 for(inti=0;i<N;i++){ 
21 y[i J = a*x[i J+y[i J; 
22 r+=y[i]; 
23 
24 
25 
26 I I print result 
27 printf("Result: %f (expected %f)\n". r. (float)N); 
28 
29 return 0; 
30 

Code 16.5. Example program using the loop directive with parallelism and reduction clauses. 

The program listed in Code 16.5 showcases the use of the loop directive to perform accelerated 
vector scaling and accumulation reminiscent of the daxpy routine from the linear algebra package. For 
demonstration purposes, the initialization code has also been moved to the accelerator. It requests 
parallelization in WP mode with the default number of gangs and workers. The parallelization pa
rameters of the computational loop are left to the discretion of the implementation. The loop is 
explicitly marked as data independent to promote this and avoid the compiler analysis which would be 
performed by default for the kernels construct (less sophisticated compilers may interpret the update 
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of y [ i J as data dependence). To verify the correctness of the result, a reduction clause is used that sums 
all elements of the result vector y into variable r. The generated output is given below: 

Result: 10000.000000 (expected 10000.000000) 

16.5.5 VARIABLE SCOPE 
It should be apparent at this point that the OpenACC treatment of variables participating in the 
computation varies depending if they are loop indices or data structures and where they are declared in 
the code. Loop variables are considered private to each thread that executes loop iterations. Variables 
declared in a block of code that is marked for execution in VP mode are private to the thread that is 
associated with each vector lane. For code executed in WP vector-single mode the variables are private 
to each worker, but shared across vector lanes associated with that worker. Similarly, variables 
declared in a block marked for worker-single mode are private to the containing gang, but shared 
across the threads operating at worker and vector levels in that gang. 

OpenACC defines a private clause that may be used to restrict the sharing of variables further. 
It may be declared alongside the para 11 e 1 or 1 oop directive, and accepts a list of variable names 
as argument. In the first case, a copy of each variable in the list is generated for each parallel gang. 
In the loop context, a copy of each variable is created for each thread associated with each vector lane 
(VP mode). In vector-single WP mode, a copy of every item in the list will be created and shared for 
each set of threads associated with vector lanes in each worker. Otherwise, a variable copy is created 
and shared across all vector lanes of every worker in each gang. A fi rstpri vate variant of the 
private clause is also available for the para 11 el directive with the same access semantics, except the 
variable copies are additionally initialized to the value of the variables inherent to the first thread 
encountering the par a 11 e 1 construct during the code execution. 

16.5.6 ATOMICS 
Parallelization of code across multiple execution resources on occasion calls for synchronization 
of access to some data structures that should be carried out in predefined order. This is enforced by 
the atomic construct with the syntax described below: 

{fpragma ace atomic [atomic-clause] 

statement; 

Supported atomic clauses include read, write, update, and capture, depending on the type of 
access synchronization. If a clause is absent, an update clause is assumed. The read clause is used to 
force atomic access to variables on the right-hand side of the equal sign in an assignment statement. 
Analogously, the write clause protects writes to variables on the left-hand side of the equal sign 
in assignments. The update clause enforces correct updates of values of variables that have to be 
performed using read-modify-write sequence of operations. Examples include prefix and postfix 
increment and decrement operators as well as updates in the form of op=, where op is a binary 
operator such as +, -, *,etc.The capture clause refers to assignment statements in which the right
hand side is an atomic update expression such as described for the update clause, while the left-hand 
side is a variable supposed to capture the original or final value of the atomically modified variable 
(depending on the operation type). 
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1 #include <stdio. h> 
2 
3 intmain(intargc, char**argv) { 
4 if(argc=l){ 
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5 fprintf(stderr. "Error: file argument needel\n"); 
6 exit(l); 
7 ) 
8 FILE*f=fopen(argv[l]. "r"); 
9 if ( ! f) { 

10 fprintf(stderr, "Error: could not open file \"%s\"\n", argv[l]); 
11 exit(l); 
12 
13 

14 canst int BUFSIZE = 65536; 
15 char buf[BUFSI ZEJ. ch; 
16 // initialize histogram array 
17 inthist[256].most=-l; 
18 for (int i =0: i < 256; i++) hist[i] =0; 
19 
20 I I compute histogram 
21 while(l){ 

22 size_tsize=fread(buf, 1. BUFSIZE. f); 

23 if(size<=0)break; 
24 #pragma ace parallel loop copyin(buf[:size]) 
25 for (int i =0; i < size; i++) { 
26 intv=buf[i]; 

27 #pragma ace atomic 
28 hi st[v]++; 

29 
30 
31 / / print the first highest peak 
32 for(inti=0;i<256;i++) 
33 if(hist[i]>most)I 
34 most= hi st[ i J; ch= i; 
35 
36 print f ("Highest count of %d for character code %d \n", most. ch); 

37 
38 return 0; 
39 

Code 16.6. Example program showing the application of the atomic clause. 

The program presented in Code 16.6 calculates a histogram of ASCII character occurrences in a file 
given as the command-line argument. The atomic directive in line 27 (implied update clause) ensures 
the correct increment of the histogram bin for a specific character. Running the code for file containing 
the first paragraph of the "lorem ipsum" text [10] produces: 

Highest count of 68 for character code 32 
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16.6 SUMMARY AND OUTCOMES OF CHAPTER 16 
• There are several programming environments for accelerators; they differ in approach, scope, 

supported features, and availability. The most commonly used include CUDA, OpenCL, 
OpenACC, and C++ AMP. 

• OpenACC is a GPU and accelerator programming framework that attempts to simplify parallel 
programming and achieve better programmability by using a directive-based approach similar to 
OpenMP. It requires a specialized compiler capable of generating executable accelerator code 
following the static analysis of appropriately marked source code. Compilers with OpenACC 
support are available from PGI, Cray, and several open-source communities (OpenUH, 
OpenARC, and GCC). 

• The main method of identifying potential parallel execution regions is through the addition of 
suitable "l/pragma ace" directives in the relevant places in source code. In addition to directives, 
the execution of programs is affected by predefined library calls and environment variables. 

• OpenACC programs rely on the host machine to initiate the program computations and offload 
the data and executable code to the accelerator at appropriate times. Accelerated code execution is 
by default synchronized with the execution of the nonaccelerated sections of the program on the 
host machine. Additional speed-up may be obtained by asynchronously coscheduling 
computations on the GPU with computations on the host processor. 

• Performance gains in regions executed on the accelerator are realized through parallelization at 
three levels: gang, worker, and vector (from the coarsest to the finest grain). The programmer 
retains control of parameters influencing each level, although he/she may also select 
implementation defaults. 

• There are two main compute directives: "para 11 el" and "kernels." The first forgoes much of the 
correctness analysis of the source code, relying on the programmer to verify data independence 
between concurrently executing accelerator threads. The second performs a thorough static 
analysis of the code, and allows vectorization and parallel execution only if it is safe to do so. 

• Distribution of regular and nested loop iterations across the accelerated execution resources is one 
of the primary methods of increasing application performance gains. It is controlled by the loop 
clause, which also supports an accelerated set of reduction operations. 

• Overall application performance depends on the efficiency of data transfers between accelerator 
and host memories. OpenACC supports additional control clauses to optimize this aspect of 
execution (copy, copyi n, copy out, create). 

• OpenACC provides simple mechanisms for synchronization of access to critical variables from 
multiple accelerator threads to ensure the correctness of program execution. Four modes of 
atomic access are supported: read, write, update, and capture. 

16.7 QUESTIONS AND PROBLEMS 
1. Characterize directive-based programming. How does it differ from using functionality provided 

by software libraries? 
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2. Write an OpenACC program to compute the approximation of the natural logarithm of 2 using the 
first 10,000,000 terms of Maclaurin expansion: 

12 13 14 ln(l+x)=x- 2x-+ 3x - 4x + ... 

Make sure the generated accelerator code is parallelized. 
3. Modify Code 16.6 to compute the frequency of alphabetic digraph (two-letter sequence) 

occurrence in a block of text. Ignore case sensitivity. 
4. Write a simple OpenACC program that computes the average value of elements occupying the 

lower triangular part (i.e., all elements on and below the main diagonal) of a large square matrix. 
Is it possible to optimize the program so that: 
a. efficiency of data transfers is improved (by avoiding copying data not used by computation)? 
b. the work performed in each iteration is balanced across GPU threads? 

Implement optimizations that are possible. How do they affect performance? Test several 
different matrix sizes. 

5. To debug an OpenACC program, the irrelevant portions of the code were removed, yielding the 
following: 

1 1hnclude <stdio.h> 
2 
3 canst int N = 100, M = 200: 
4 
5 int main() { 
6 intm[NJ[MJ; 
7 for(inti=O:i<N;i++l 
8 for(intj=O:j<M:j++) 
9 m[i][j]=l; 

10 
11 Npragma ace kernels 
12 for (inti= 0: i < N; i++) 
13 for(intj=M-i:j<M;j++) 
14 m[iJ[jJ=i+j+l: 
15 
16 / / verify result 
17 interrcnt=O; 
18 for(inti=O:i<N;i++) 
19 for (intj=O: j <M: j++) { 
20 intexpect=(j>=M-i)?i+j+l:l: 
21 if (m[i][jJ !=expect) errcnt++: 
22 
23 printf("Encountered %d errors\n". errcnt): 
24 return er rent != 0: 
25 

The code fails (produces a nonzero error count) when compiled with certain OpenACC compilers. 
What may be the reason for that? How may the errors be prevented? 
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17 .1 INTRODUCTION 
The storage subsystem is one of the key components of every computing platform. Although the 
organization, speed, capacity, and supported functions of storage vary depending on platform class, its 
presence is always required for computations to be carried out. In high performance computing (HPC) 
one can observe quite possibly the broadest variety of storage options and involved storage technol
ogies as well as range of implementation scales. This chapter discusses the segment of storage 
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technology and low-level techniques utilized to support the requirements of HPC systems reliably to 
preserve the high volume of computational state in the form of both scientific data and elements of the 
operating environment. The state retention must be persistent between the power cycles of the machine 
for it to be able to execute bootstrap procedures on restart, attain the correct operational status, and 
resume interrupted computational tasks. This part of the storage hierarchy is referred to as "mass 
storage" to reflect its capability to absorb large amounts of data. Mass storage is not concerned with 
volatile devices, such as main memory or processor registers. Besides input and output (I/O) datasets 
used by and produced as a result of computation, mass storage preserves the code (executables and 
libraries) necessary to run the operating system and its associated background management processes, 
configuration, and update scripts, as well as the user's and system administrator's tools and utilities. 
Finally, mass storage plays an integral role in checkpoint and restart of compute applications, alle
viating the impact of temporal and system resource limits imposed on application execution. 

Traditionally, the storage hierarchy is subdivided into four levels that differ in access latency and 
supported data bandwidth, with latencies increasing and effective transfer bandwidth dropping when 
moving away from the top level of the hierarchy. At the same time, storage capacity rapidly grows. The 
commonly recognized hierarchy levels are as follows. 

• Primary storage, which comprises system memories, caches, and CPU register sets. This type of 
storage is predominantly volatile (loses data contents when powered off), with the exception of 
read-only memories (ROMs) that store firmware or CPU boot code. While there have been some 
efforts to utilize various types of nonvolatile random access memories (NVRAMs) as a part of the 
overall memory pool accessible to processors, their access latencies typically prohibit achieving 
good integration, requiring dedicated and nontransparent support from the operating system (OS) 
and applications. The data access latencies range from a single CPU clock cycle (a fraction of a 
nanosecond) for registers to several hundred cycles for dynamic memories in remote non-uniform 
memory access domains; the respective bandwidths span from over 100 GB/s (SIMD registers in 
a single core) down to a few GB/s per bank of double data rate memory (such as DDR3, still in use 
in many installations). Aggregate memory size in HPC ranges from a few tens of gigabytes for 
small nodes to hundreds of gigabytes for nodes dedicated to memory-intensive tasks. 

• Secondary storage is the first level of storage that leverages mass-storage devices. Normally 
CPUs cannot directly access the secondary (or higher-level) storage and therefore transfers of 
data between primary and secondary storage have to be mediated by the OS and computer chipset. 
The granularity of data access is typically limited to fixed-size blocks, while most primary storage 
devices operate at byte resolution. The most commonly used technology in this tier are hard disk 
drives (HDDs), which offer the industry's best cost per unit of storage coupled with satisfactory 
reliability. Over the last decade, however, their dominance in the market has been slowly eroding 
due to the introduction of high-capacity solid-state storage. The random access latency of 
secondary storage media may be less than 100 µs for the fastest solid-state devices to as much as 
tens of milliseconds for HDDs. The bandwidths may range from just below 100 MB/s for slower 
HDDs to a single GB per second for solid-state devices. HDDs still maintain the lead in total 
capacity, with up to 10 TB per single device. 

• Tertiary storage is distinguished from secondary storage in that it usually involves large 
collections of storage media or storage devices which are nominally in an inaccessible or 
powered-off state, but may be reasonably quickly enabled for online use. Activation is typically 
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accomplished by automated mechanisms such as robots that physically move the requested mass
storage medium from its assigned long-term retention slot to the specified online access device 
(drive). To lower contention between multiple users, tertiary storage equipment typically hosts 
several independent media drives that may be accessed concurrently. Examples of tertiary storage 
equipment include tape libraries and optical jukeboxes. Since the bandwidth of a single drive is 
often insufficient to sustain many concurrent I/0 requests, the content of the selected medium is 
copied to secondary storage first (e.g., disk cache). The access latency to tertiary storage may be 
substantially greater than that of secondary storage, especially when multiple competing requests 
must be serviced. In a contention-free state it typically takes single tens of seconds for the robot to 
grab and mount the medium, and the achieved single-device bandwidths are comparable to those 
of secondary storage. The storage capacity of robotic jukeboxes may reach as much as multiple 
hundreds of petabytes. 

• Offiine storage requires human intervention to enable access to the storage medium. It is 
primarily employed to archive, frequently in a secure location off site, precious information. 
Since the storage unit is not under the direct control of any computer, this provides a much-needed 
"air gap" to protect the security, confidentiality, and integrity of the archives. Offline storage is in 
principle similar to tertiary storage, although lack of predictability related to medium load 
requests results in highly random latency figures and it may not be considered a practical high 
performance solution other than for some niche applications. 

The design and deployment of supercomputing storage subsystems comes with their own set of 
challenges. The prevailing trends of the past few decades have shown steady increases not only in 
memory capacity due to Moore's law, but also in supercomputing platform scale expressed as number of 
nodes per machine. As the aggregate size of computed datasets is roughly proportional to the total 
system memory size, this has resulted in a superlinear increase in demand for mass-storage capacity. 
Moreover, each successive generation of dynamic random access memory (DRAM) improved data 
transfer bandwidth, thus enabling faster data creation rates. At the same time, 1/0 device bandwidth 
exhibited comparatively modest growth and over the last decade effectively leveled out. Storage capacity 
per device originally loosely followed Moore's curve, but suffered from highly limited growth rates 
throughout most of the 2010s. This resulted in a continuously increasing storage performance gap, and 
the time required to save or retrieve the data occupying a significant fraction of a machine's memory is 
rising as well. In extreme cases checkpoint or restart of large applications may take several hours. 

The addition of global high-bandwidth networks, such as Intemet2 [I], has enabled access to col- . 
lections of data at remote sites as well as input data streaming. In many cases the expansion of the input 
dataset is reflected by the volume of generated output and/or intermediate data, additionally stressing the 
local storage subsystem. This is particularly relevant to a relatively new class of data-intensive appli
cations collectively known as "Big Data" which, in addition to operating on large data volumes and 
requiring substantial processing speeds, are frequently hampered by intrinsic variety and irregularities of 
the processed data structures. As the storage capacity scales linearly with the number of 1/0 devices, 
support of large volumes of data results in I/0 subsystems occupying a significant amount of floor space 
at data centers and drawing substantial amounts of electric power. Since the bulk of secondary storage 
capacity is provided by electromechanical devices such as disk drives, the data centers must install 
measures to deal with common device failures. Even though devoid of moving parts, solid-state storage 
devices are not immune to failures either, and these are exacerbated by dissipated heat and the number of 
data rewrites per device. To maintain the operation the centers must therefore provide redundant storage, 
further expanding the system's volume and energy requirements. 
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Efficient data transfer between the primary and other storage levels requires significant dedicated 
interconnect bandwidth. Unfortunately, large machine procurement practices at many institutions 
frequently focus on components directly related to computations, such as processors, memory, and 
network. Storage considerations are often secondary and based on poor analysis of requirements. This 
produces bandwidth-starved implementations with insufficient reliability and performance that, in 
some cases, share the 1/0 load with other components of the system (such as login nodes). While an 
increase in network switch capacity to provide the required bandwidth from compute nodes to mass 
storage may visibly impact the final system's cost, it will yield a better-balanced computing platform. 

The challenges outlined above apply to many systems currently in service. While there is no single 
universal solution to address them, their impact may be alleviated through exploration of better 1/0 
architectures, hardware-level solutions, and advances in the software stack. Architectural solutions 
may introduce additional intermediate hierarchy levels that provide high performance data sinks and 
sources in close vicinity to compute nodes. Such storage devices are capable of high-bandwidth 
communication with the nodes to satisfy the most urgent 1/0 requests with low latency, while 
constantly performing in the background slower data exchanges with larger storage devices located 
lower in the hierarchy. An example of this is the Cray burst buffer technology [2], which provides a 
number of nodes equipped with fast solid-state storage and regularly interspersed with other compute 
nodes. The burst buffer nodes have the benefit of the full Aries interconnect [3] bandwidth, but can also 
use a fraction of switch performance to interact with the storage servers. Hardware improvements are 
primarily focused on building more reliable, faster, and higher-capacity mass-storage devices. This is 
expected to lower power consumption, reduce the volume occupied by the secondary storage sub
system, and decrease the costs of ownership by requiring fewer spare storage devices to replace those 
that fail. An overview of these advances is discussed in the remainder of this chapter. Finally, software 
solutions arising from the design of better storage abstractions that embrace parallelism and asyn
chrony of access (such as the parallel file systems described in Chapter 18) can anticipate the 1/0 
access patterns utilized by applications, fetch the required data ahead of time, and forward it to the 
memory of the prospective client, or provide smart checkpoint and restart that can gracefully overlap 
compute state management (saving, retrieval, transformation, compression) with ongoing computa
tions. Software improvements may also directly address deficiencies or extend functionality of specific 
components in the system. For example, locating the data preprocessing and postprocessing engine on 
a storage node may conserve the network bandwidth required to ship the data between storage devices 
and compute nodes. 

17 .2 BRIEF HISTORY OF STORAGE 
Technological progress brought dramatic improvements in both capacity and performance of mass
storage devices over the course of several decades. As illustrated in Fig. 17 .1, starting with 
punched cards as the first external information store in the mid- l 940s, through tape drives in the early 
1950s, and continuing with HDDs from the mid- l 950s to the present day, storage capacity grew an 
amazing 11 orders of magnitude. The increases in device storage capacity were reflected by the 
corresponding improvements in device 1/0 bandwidth (Fig. 17.2), which advanced six orders of 
magnitude over the same period. However, access latency improvements were far more modest, 
decreasing from single and tens of seconds for punched cards and tape to a few milliseconds in modem 
HDDs. Latency still remains one of the biggest performance bottlenecks plaguing most of the 1/0 
devices in use today. 
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Increases in mass-storage capacity. Represented systems are a punch card on the ENIAC (1946), a Uniservo tape 
drive (1951), IBM 350 (1956), IBM 1301 (1961), IBM 1302 (1963), IBM 2314 (1965), IBM 3330 (1970), IBM 
3350 (1975 ), IBM 3380 (1980), IBM 3390 (1991), Western Digital Raptor (2003), Seagate Barracuda 7200.10 
(2006), HGST Desks tar 7K I 000 (2007), Seagate Barracuda 7200.1 J (2008), Western Digital WD20EADS (2009), 
HGST Ultrastar He6 (2013), and HGST Ultrastar He JO (2015). 

Punchcard, UNIVAC I, and IBM 3380 photos by Arnold Reinhold via Wikimedia Commons. IBM 305 photo by US Army Red River 

Arsenal via Wikimedia Commons. IBM 2314 photo by Scott Gerstenberger via Wikimedia Commons 
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Improvements in 1/0 data access bandwidth. Represented systems include a punch card on the ENIAC ( 1946), a 
UNISERVO tape drive (1951), IBM 350 (1956), IBM 1301 (1961), IBM 1302 (1963), IBM 2314 (1965), IBM 
3330 (1970), IBM 3350 (1975), IBM 3380 (1980), IBM 3390 (1991), Western Digital Raptor (2003), Seagate 
Barracuda 7200.10 (2006), HGST Deskstar 7KI000 (2007), Seagate Barracuda 7200.11 (2008), Western Digital 
WD20EADS (2009), HGST Ultrastar He6 (2013), HGSTU!trastar Hel0 (2015). 

Punchcard, UNIVAC I, and IBM 3380 photos by Arnold Reinhold via Wikimedia Commons. IBM 305 photo by US Army Red River 

Arsenal via Wikimedia Commons. IBM 2314 photo by Scott Gerstenberger via Wikimedia Commons 
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17 .J STORAGE DEVICE TECHNOLOGY 
As illustrated by the preceding section, the technology of hardware storage devices continuously 
evolved to support the ever-increasing demands for storage capacity and data access bandwidth. 
Currently the majority of storage systems utilize four main types of mass storage devices: HDDs, 
solid-state drives (SSDs), magnetic tapes, and optical storage. Although they serve largely the same 
purpose, they substantially differ in the underlying physical phenomena used to implement data 
retention as well their operational characteristics and cost. The fundamental properties and working 
principles of modem storage devices are discussed below. 

17.3.1 HARD DISK DRIVES 
HDDs have a long history as a data storage device in computing. Introduced in 1956, the first hard 
drive used in the IBM 350 RAMAC system [4] was approximately 68" high, 60" deep, and 29" wide, 
and weighed approximately one ton. It contained 50 platters (disks serving as the recording medium 
for data) with a diameter of 24 in rotating at 1200 revolutions per minute (RPM). It stored 5 million 
six-bit characters that were transferred at a rate of 8800 per second. The successor drives appearing in 
the 1960s featured removable platter packs that could be moved between the different drive enclosures. 
Many improvements utilized by modem HDDs were developed in that decade, such as a multiple 
read-write head assembly that avoided the delay of head movement from one data platter to another, 
aerodynamic head design that permitted stable head operation in very close proximity to the recording 
medium, and the first voice-coil actuator. The introduction of the "Winchester" design in the early 
1970s, using a dedicated portion of the media as a landing zone for read-write heads, marked the 
return to nonswappable platters (hence the occasionally used alternative name "fixed-disk drive"). The 
rotary actuator, a common component of modem HDDs, was developed by IBM in 1974 and used in its 
Gulliver [5] line of drives. The first disk drive approximating form factors broadly used today was 
released by Shugart Technology (now Seagate) in 1980; it featured 5.2511 housing, stored 5 MB of data, 
required an external controller board, and could be mounted inside larger personal computers such as 
the IBM PC [6]. Ongoing developments in this decade brought the familiar 1" high 3.5" (Conner 
Peripherals CP3022 storing 21 MB) and 2.5" (PrairieTek 220 with a capacity of 20 MB) form factors. 
The 1990s brought many improvements in drive speed and capacity prompted by the development of 
partial response maximum likelihood (PRML) technology [7] (see below) for reliable decoding of 
weak signals retrieved from media and successive application of the giant magnetoresistive (GMR) [8] 
phenomenon to disk head design. Progress in storage areal density increase enabled a 1.811 drive to be 
created in 1991 (Integral Peripherals 1820 with over 20 MB per disk), followed by IBM's 1" 
Microdrive in 1999 that stored 340 MB of data. As the flash memory technology could not support 
competitive bit densities in that period, such miniature HDDs from multiple manufacturers were used 
as content storage for portable media players, among others the Apple iPod. At the same time, Sea
gate's Cheetah drives became one of the first to feature the record-breaking 10,000 RPM and later 
15,000 RPM spindle speeds. Advances that followed after the year 2000 leveraged perpendicular 
magnetic recording to increase information density further on storage media, continuously increased 
embedded buffer memory size to permit better latency management, shifted to glass-based platter 
substrates, introduced helium as a cavity-filling gas to minimize energy loses due to rotating platter 
drag and turbulence, and used shingled magnetic recording. This continued technological progress has 
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FIGURE 17.3 
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resulted in hard drives being able to store more information per device, provide faster access to data, 
consume less energy per operation, and last longer in a production environment. 

Modern HDDs are a marvel of materials, electrical, and mechanical engineering. Their principal 
internal components are annotated in Fig. 17.3. The information is recorded on one or both surfaces of 
a disc-shaped platter. While the base material for platters is typically glass due to several well
mastered technological processes that guarantee the maximum surface flatness, the platters may 
also be made of aluminum or ceramics. The platters are polished to a roughness of less than 1 A 
(10- 10 m) and covered with several thin (single nanometers) layers of various materials containing 
cobalt, iron, nickel, ruthenium, platinum, chromium, and their alloys that promote the formation of the 
required crystallographic structure with properly 01iented magnetic domains. The resulting material 
exhibits high coercivity, which is the ability to retain the acquired magnetization in the presence of an 
external magnetic field. The deposition of individual layers is done using a process called magnetron 
sputte1ing. The platter also receives a protective carbon-based coating through ion-beam or plasma
enhanced vapor deposition. Finally, a lubricant coat is deposited on the active smfaces and bonded. 
Storage densities of media manufactured this way exceed 800 Gb per square inch. A typical HDD 
stacks several platters on the same axle (spindle) to achieve the desired total storage capacity. The 
spindle is a part of a direct-drive brushless motor that rotates at several thousand RPM (commonly 
used speeds are 3600, 4200, 5400, 7200, and occasionally 10,000 and 15,000 RPM). Data are retrieved 
from and written to the platters using multiple read-write heads mounted at the end of the actuator 
arm. The arm can move in an arc over the platters to be able to locate a specific data track; the in
formation is stored on platters in the form of concentric circles, referred to as cylinders to emphasize 
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the three-dimensional aspect of the data layout. The actuator motion is controlled by the so-called 
voice coil, named in analogy to a dynamic loudspeaker construction which has coils surrounded by 
permanent magnets which push the sound-generating membrane. Both mechanisms work due to 
Lorentz force causing the motion of a conductor in a magnetic field when electric current flows 
through it. While earlier implementations used stepper motors to move the heads, voice coils are a 
much more lightweight alternative and thus may achieve significantly faster movement at a lower 
energy profile. 

Read-write heads are not attached directly to the actuator arms, but to sliders-tiny (that is, a 
fraction of millimeter in the longest dimension and weighing a fraction of a gram) aerodynamically 
shaped carriers that are responsible for maintaining the correct distance between the head and the 
spinning medium. Interestingly, no electrically powered techniques are used to stabilize the separation 
distance. Sliders are mounted on a gimbal assembly attached to the arm, and thus have some freedom 
of motion. Since the spinning platters force the boundary layer of air to move with them, this generates 
an aerodynamic force acting on the slider. The slider's surface consists of a number of patterns that 
generate both an air bearing with positive air pressure that pushes the slider away from the medium and 
a negative pressure area that pulls the slider closer to the surface. Since the relative linear motion of the 
slider with respect to the platter surface changes significantly for the inner and outer cylinders, the 
parameters of the slider's shape must be precisely calculated to provide nearly constant flight height in 
these conditions. In modem HDDs this distance is on the order of few nanometers. 

Due to the precision involved, it is not difficult to see that foreign contaminants present a serious 
damage risk to HDDs. Most drives have ventilation outlets protected by additional filters to stop 
foreign matter. Some HDD versions are hermetically sealed and use inert gases such as nitrogen or 
helium to support their operation. Since debris may also be generated by nonfatal impacts of the slider 
with the medium, there is an additional built-in recirculation filter to contain the particulate matter. 
This works due to constant motion of the air propelled by the spinning platters. 

Modem hard drives utilize multiple technologies to improve their access speeds and increase 
storage density. One breakthrough was the practical application of the GMR effect to the construction 
of read-write heads. A GMR head sandwiches a spacer of nonmagnetic metal between two layers of 
magnetic metal and adds a fourth antiferromagnetic layer to "pin" the magnetic orientation of the 
nearest magnetic layer. This structure, called a spin valve, demonstrates high sensitivity to weak 
magnetic fields (such as those recorded on the HDD medium) of the unpinned layer, resulting in 
substantial resistance changes following those of the external magnetic field. Besides information 
access, signals derived from the GMR head serve as a feedback to head movement servos, resulting in 
accurate positioning on top of the recorded track. Another critical technique is perpendicular 
recording, illustrated in Fig. 17.4. Due to the fundamental limit on magnetic domain size caused by the 
superparamagnetic effect, the traditional horizontal arrangement of domains results in poor utilization 
of the medium surface. Reorienting the domains vertically, which requires a specially formed 
recording medium via the multistage process mentioned above as well as the modification of the 
writing head's shape, produces increased bit density. 

The peak media transfer speeds of current HDDs are in the order of 100-250 MB/s. In addition to 
user data, the recorded information contains error-correcting codes (ECCs) to detect and if possible 
correct any malformed data. The information in each track is subdivided into a number of sectors of 
constant size, each requiring an identifier, synchronization information, and an explicit gap separating 
it from its nearest neighbors. The standard for several decades was 512-byte sectors, but modem large-
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Bit density increase with perpendicular recording. 

Diagram by Luca Cassio/i via Wikimedia Commons, 2005 

capacity drives forced manufacturers to migrate to 4096-byte sectors (called Advanced Format) to 
lower the spatial overheads of metadata, primarily ECCs, associated with each sector (see Fig. 17 .5A). 
Older disks maintained a fixed number of sectors in each cylinder, hence producing a nonuniform 
recording density between the innermost and outermost tracks. Since the platters spin mostly at a 
constant rate, the solution was to introduce zone bit recording, illustrated in Fig. 17.5B. The platter 
surface is subdivided into concentric zones with different radii. Each zone features a specific number 
of sectors per track, thus allowing an increased number of sectors to be stored in the outer cylinders. 
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Physical information layout on HDDs: (A) advantage of larger sectors, (B) zone bit recording. 
Diagrams by Dmitry Nosachev and Jan Schaumann via Wikimedia Commons 
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The continuing increases in bit density resulted in a smaller effective size of "bit area" and 
therefore weaker signals that still must be reliably detected. PRML is a signal processing technique 
responsible for boosting storage densities by as much as 40% while retaining a very high probability of 
correctly reconstructing the recorded information. In contrast to older methods relying on peak 
detection in read signal (which corresponds to points where the read head passes over domains, 
changing orientation of their magnetic field), PRML operates not only with weaker signals but signals 
where narrowly spaced domains may affect each other's magnetic field magnitude. The induced 
signals usually have too low an amplitude to register correctly with conventional peak detectors. 
PRML implementation consists of a variable-gain amplifier, an analog-to-digital converter, analog and 
digital filters, a clock recovery circuit, and finally a Viterbi [9] decoder running in real time analyzing 
serial input data streams at a rate of several gigabits per second. PRML inspired even more complex 
algorithms of signal reconstruction, such as the noise-predictive maximum likelihood [10] method. 

Despite all the precautions, internal material imperfections and external shocks may eventually 
cause damage or otherwise degrade sections of recorded media. HDDs are manufactured with spare 
capacity that permits transparent remapping of damaged sectors. The only indication that this has 
happened is decreased sequential access performance; the sectors that were occupying the same 
physical track and could be read back-to-back during a single rotation of the platter may require 
additional head movement if they were migrated to different areas of the disk. Most drives available on 
the market are equipped with self-monitoring, analysis, and reporting technology (SMART) [11] that 
continuously monitors the health status of the device and may even warn the user ahead of time about 
an impending failure. While the interpretation details of individual values may be vendor specific, 
commonly reported parameters include start/stop count, spin-up time, seek and read error rates, total 
power-on hours, power cycle count, reallocated sector count, unrecoverable error count, command 
timeouts, current and highest recorded temperature, registered shock values, servo off-track errors, 
uncorrectable and failing sector count, total data read and written, and others. SMART is also capable 
of performing a variety of online and offline tests to verify the most visible problems related to drive 
operation. 

Due to the nature of their implementation and their broad range of performance characteristics, 
HDDs are described using a number of parameters that help determine their usefulness for a specific 
application (Table 17.1 ). Many of these metrics also apply to other storage devices. 

• Storage capacity is typically expressed in gigabytes or terabytes. Unlike memory capacities it is 
measured in powers of 10, hence l TB is 1012 bytes. HDD manufacturers tend to round this figure 
up. Note that due to storage of file system metadata, the data capacity available to users is 
1 %-5% less than the nominal capacity of the drive. 

• Seek time (in milliseconds) expresses the duration taken by the read-write head to move to a 
specific cylinder. Average seek time is determined statistically as travel distances over one-third 
of all tracks on a disk. Of specific interest are also track-to-track latency (moving the head 
between adjacent tracks) and full-stroke latency, which involves travel between the innermost and 
outermost cylinders. They describe respectively the shortest and longest possible seek times. 

• RPM is the number of rotations the platters perform in 1 min. 
• Rotational latency (in milliseconds) describes the time required to position a specific sector under 

the read-write head. Average latency is typically given as the time it takes the drive to perform 
half a rotation of the platter, and is directly dependent on its RPM rating. 
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Table 17.1 Comparison of Characteristic Hard Disk Drive Properties From Several Manufacturers 
-

Average Acoustic 
Seek Time Power Noise 

(ms) (W) [dB(A)] 
Media Cache 
Transfer Track (DRAM/ MTBF Form 

Manufacturer Capacity Rate to Full flash) (million Factor Market 
and Drive (TB) (MB/s) Track Stroke RPM (MB) hours) Seek Idle UER Seek Idle (inches) Segment 

woe 10 249 7200 256/0 2.5 7.1 5.0 < 1 in 1015 36 20 3.5 Enterprise 

WO101KRYZ 

woe WO60EZRZ 6 175 5400 64/0 5.3 3.4 < 1 in 1014 28 25 3.5 Economy 
desktop 

HGST 1 124 1 20 5400 8/0 1.8 0.5 26 24 2.5 Mobile 

HTS54 IO I 0A9E680 

Seagate 10 210 256/0 I 6.8 4.42 < I in 1015 3.5 NV 
STIOOO0VX0004 streaming 

Seagate 2 156 < 9.5 (average) 64/8192 6.7 4.5 < I in 10 14 3.5 Performance 

ST2000OX002 desktop 
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• Access time (in milliseconds) is the delay between the time a request for data is submitted by the 
host and the time data is returned by the drive. It is a compound metric involving a combination of 
rotational latency and seek time, typically determined through a synthetic benchmark that 
exercises various access scenarios. 

• Media transfer rate (in megabytes per second) measures how fast the signal processing chain and 
controller can read the data from the platter. 

• Burst rate (in megabytes per second) describes how fast the data may be transmitted between the 
host and the disk cache using transfers that do not exceed the cache capacity. 

• Areal density (in gigabits per square inch) provides the achievable upper limit of information 
density per surface area on a recordable medium. Related metrics involving linear densities are 
tracks per inch and bits per inch. 

• Mean time between failures (MTBF, in millions of hours) estimates a drive's resilience to 
nonrecoverable faults. 

• Uncorrectable error rate (UER, no unit) estimates the probability of receiving data containing a 
hard error, i.e., an error that could not be either detected or fixed by the built-in ECC mechanisms 
or could not be corrected through operation retries. 

• Power consumption (in watts) describes average energy requirements of a drive in several 
possible scenarios: during regular operation, during power-up (spin-up), while idle, and during 
standby. The latter may involve several levels of inactivity (sleep modes) that are particularly 
relevant to mobile and other battery-powered devices. 

• Acoustic noise (in dB(A)) provides an upper bound on noise level produced by the device during 
active operation. 

• Shock resistance (in g) describes a device's resilience to external mechanical impact. Typically 
two figures are given, for nonoperating and operating modes (the first is often orders of magnitude 
higher due to the robust protection mechanisms used in powered-off devices). The figures are 
often accompanied by test conditions specifying the shock duration or whether it was repeating. 

• Size (in inches) provides mechanical dimensions of the drive so that proper enclosure may be 
adopted for its use. 

17 .3.2 SOLID-STATE DRIVE STORAGE 
Advances in semiconductor technology enabled practical realization of high-capacity persistent 
storage in solid-state devices. The most broadly utilized SSDs today are the descendants of electrically 
erasable programmable read-only memory (EEPROM) technology, introduced by Toshiba in 1984. 
EEPROMs can store small amount of data using floating-gate metal oxide semiconductor (FGMOS) 
arrays. The FGMOS transistors are similar to regular field-effect transistors with oxide isolators, but 
they sandwich additional electrodes between the oxide layers above the channel. During the pro
gramming cycle (Fig. 17.6A), sufficiently high potential applied to the control gate causes the tran
sistor to conduct. Applying a relatively high source-drain voltage causes some high-energy channel 
electrons to overcome the oxide barrier and "jump" to the floating gate in a process called hot electron 
injection. After the removal of programming voltage, the charge remains trapped on the floating 
electrode, thus creating an additional electric field that may modulate the width of the transistor's 
channel. By putting suitable voltages on the control gate and drain (much lower than those needed for 
programming), the channel source-drain resistance reflects the amount of charge stored on the floating 
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FIGURE 17.6 

FGMOS transistor: (A) programming by hot electron injection and (B) erasing through quantum tunneling. 

(BJ From Smart Card Handbook, W. Rank/ and W. Effing, third edition © 2002 Carl Hanser Verlag, M1Jnchen 

gate. The erase process (Fig. 17.6B) requires negative voltage on the control gate and positive potential 
on the source and drain electrodes to cause Fowler-Nordheim tunneling of Lhe trapped charge to the 
transistor body. Some variants of EEPROM used quantum tunneling for both programming and 
erasure. EEPROMs usually provide fine-grain access to storage, typically organizing data in groups 
equal in size to the width of a data bus (8 or 16 bits), but their capacities rarely exceed a few megabits. 
Early EEPROMs were frequently unable to supporl a fine-granularity erase function, instead sup
porting erasure of the entire chip or significant portions Lhereof. Future implementations alleviated this 
limit. 

Increasing the device capacity necessitated reduction of the control structure and the number of 
internal connections, resulting in two dominant flash memory types: NOR and NAND. Their 
respective layouts are illustrated in Fig. 17. 7. The names of flash configurations are derived from 
internal structures resembling that of NOR gate with a parallel arrangement of output n-type transistors 
and series connection of n-type transistors in the NAND gate. While the NOR configuration is nearly 
directly derived from the initial EEPROM structure, the NAND cell was proposed in 1987. Due to 
associated changes in storage transistor architecture (e.g., split gates and multiple-control gates) and 
their size, various flash operations became faster and more power efficient. This is particularly true for 
the erase operation, which could take as many as several seconds for EEPROMs but requires only a 
few tens of milliseconds for the NOR flash and single milliseconds for a NAND flash. 

All flash memories are susceptible to several issues that negatively affect the reliability of general 
operation and data retention in the floating gate. The first is charge leakage, which may be caused by 
oxide (isolator) defects, electron detrapping, or contamination, in which positive ions present in the 
memory cell may in part offset the charge stored on the floating gate. The others are called disturbs, 
and may occur in neighbming cells that share some electrical connections with the cells that are 
programmed or erased (gate and drain disturbs). Moreover, as the electrical erase operation is not self
limiting, an extended erase cycle may leave a net-positive charge on the floating gate. This effect is 
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Storage cell connections and corresponding hardware implementation of (A) NOR flash memory and (B) NAND 

flash memory. 
Both diagrams by Cyferz via Wikimedia Commons 

called overerasing. The inverse phenomenon, overprograming, is also possible. The speed of various 

operations on flash storage is affected by its organization; the main features of NOR and NAND flash 

memories are compared in Table 17 .2. 
As can be seen, neither of the currently available flash technologies is ideal for mass storage. While 

the ability to manufacture high-capacity storage devices cheaply is paramount, selection of NAND 

memory is associated with serious drawbacks. The first is the relatively low number of update cycles 

that can be performed. Modern devices cope with this by application of wear-leveling algorithms that 

distribute the updates across all physical data blocks in a device by performing on-the-fly remapping of 
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Table 17.2 Comparison of Principal Properties of NOR and NAND Flash Memory 
-· 

··~~p~ .NA,ND,;E:~~-.-. ·•, N().J1.]118$JI :,:> ., 

Capacity Low High 

Cost per bit High Low 

Read speed High Medium 

Write speed Very slow Slow 

Erase speed Very slow (10-100 s of ms) Medium (single ms) 

Erase cycles (endurance) 100,000-1,000,000 1000-10,000 

Active power High Low 

Standby power Low Medium 

Random access Easy Hard 

Block storage Medium Easy 

logical addresses of rewritten blocks to physical addresses of the least utilized available blocks. This 
also means that many applications which take for granted multiple rewritability of stored data (such as 
when using HDDs) should not be used without caution. A good example is data wiping performed by 
repeated in-place overwriting of the file contents with pseudorandom data to prevent the reconstruction 
of its contents; due to wear leveling, it is completely ineffective in an SSD. The jury is still out on 
whether installation of a swap partition on a flash device is a good idea. It may substantially boost the 
performance compared to HDD-based solution; but while for relatively lightweight paging duties such 
an arrangement should not cause measurable problems, its use in severely memory-constrained sys
tems may lead to premature failure of the flash drive. 

Charge leakage is one of the main factors limiting the miniaturization of storage cells. Moreover, 
the amount of charge per cell cannot be decreased indefinitely. Thus in recent years the industry 
transitioned to encoding multiple bits per cell. Originally, NAND storage used single-level cell (SLC) 
implementation; commercial devices available today resort to multilevel cells (MLCs) with 2 bits per 
cell and even triple-level cells (TLCs) with 3 bits stored in a cell, thus representing eight data states. 
Sizes of cells used in MLC and TLC devices are somewhat larger than those of SLC to provide a 
reasonable margin of error despite leakage and disturbs. To ensure reliability, flash-based solid-state 
storage employs Bose-Chaudhuri-Hocquenghem codes [12] for error detection and correction. 
These enable correction of 24-bit errors in each 1024-bit sequence (two data sectors), with about 4% 
encoding overhead. Even then, endurance of TLC devices drops effectively to about 3000 erase cycles. 

To operate correctly, SSDs require controller logic in addition to flash memory circuits. The 
controller interfaces to the host computer, typically using common high-bandwidth buses such as 
Serial AT Attachment, PCI Express (PCie), or their variants (mini-PCie, M.2, etc.). The controller 
must support a data buffer implemented in fast memory (DRAM) to cope with relatively slow per
formance of erase and write operations by individual chips. Since the storage pool is organized into 
multiple banks, the controller takes care of proper interleaving and overlap of the data accesses to 
extract maximum bandwidth from the pool. Mapping of logical to physical data blocks and wear 
leveling are also handled by the controller. Due to charge leakage, the read data has to be verified 
against ECC; if errors are detected, the corrected bit values are computed and written back to the 
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storage. The controller may periodically check for data that has been residing a long time in storage 
without being accessed to ensure it is viable; this function is called data scrubbing. Finally, the 
controller takes care of block allocation for new data, in many cases interpreting block usage hints 
from the OS, such as TRIM commands. 

Table 17 .3 presents examples of commercially available SSD devices with their parameters. Unlike 
HDDs, SSDs do not have moving parts, hence there is no equivalent of RPM or seek time. However, 
since solid-state storage handles multiple short accesses with much better perfonnance, the number of 
1/0 operations per second (IOPS) is given. The limited rewrite count of a flash is reflected through the 
terabytes written (TBW) statistic, which estimates the total volume of data a drive is guaranteed to 
accommodate over its lifetime taking into account wear leveling. Alternatively, some manufacturers 
may specify diskful writes per day over the warranty period of the drive. Independent tests verify that 
most SDDs significantly exceed this parameter in typical usage environments, with the possible 
exception of applications in which the drive is updated in low temperatures (significantly below room 
temperature) and stored in powered-off state for extended time at an elevated temperature ( e.g., 50°C). 
Fig. 17 .8 shows photographs of the devices listed in Table 17 .3. 

17 .3.3 MAGNETIC TAPE 
Magnetic tape has a long history as a computer data storage medium. Having been used as secondary 
storage (manufactured by Uniservo) in UNIVAC in 1951, tape predates HDDs by approximately 
5 years. It consisted of 0.5 11 wide and 0.0015 11 think nickel-plated phosphor bronze metal tape wound 
on open reels, was up to 1500 ft long, and recorded information at the density of 128 bits per inch. The 
sustained data bandwidth was 7200 characters per second. A single reel with tape weighed about 
3 pounds. 

Later developments introduced polymer-based tapes, such as cellulose acetate, incorporating 
ferrous oxides as the magnetic recording medium. The IBM 726 shown in Fig. 17.9A is the iconic 
example of mid-1950s tape storage technology. The data was recorded in seven parallel tracks 
(including one-bit parity for ECC) on tape that could be read forwards and backwards. The tape could 
start advancing or reach a full stop in much less than 10 ms thanks to an innovative "vacuum column" 
arrangement that avoided the use of slower conventional tape-tensioning mechanisms. The maximum 
per-reel capacity was about 2 million six-bit characters. 

Besides increases in data density and length of tape stored on a reel, improvements in tape and deck 
technology brought more practical implementations of replaceable storage media. Instead of using 
independent reels, they were packaged into tape cartridges that combined reels, tape, and some el
ements of a guiding mechanism into a single enclosure. An example is IBM's 3840 tape fonnat 
(Fig. 17.9B) and its later derivatives. IBM's compatible tape storage was also manufactured by other 
vendors, such as Fujitsu, M4 Data, StorageTek, VDS, and Overland Data. But a lack of widely 
accepted standards for tape storage resulted in a proliferation of mutually incompatible cartridge 
families, including DDS (digital data storage, from 1989), DAT (digital audio tape, originated in 
2003), DLT (digital linear tape, 1984-2007), and finally LTO (linear tape-open, 2000-today). 
Example cartridges and supporting tape decks are shown in Fig. 17 .10. There were several iterations of 
capacity and resultant cartridge fonnats within each family; with some exceptions (e.g., DLT value 
line, or DLT-V), the newer releases are explicitly not backwards compatible with the products of 
earlier generations in each product line. 
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Table 17.3 Examples of Currently Manufactured SSD Devices and Their Operational Properties 
- - -- -

Maximum Maximum 
4KB 4KB 

Sequential Sequential Random Random M'ITF Power 
Manufacturer Capacity Read Write Reads Writes Terabytes (million (Active/ Memory 
and Device (GB) (MD/s) {MD/s) (klOPS) (klOPS) Written hours) Idle) (W) Type Interface 

-

Crucial 2050 530 510 92 83 400 1.5 0.15 3DTLC SATA 6Gbps 
CT2050MX300SSD 1 (average) NAND 

Samsung MZ- 2048 3500 2100 440 360 1,200 (5.8/1.2) 48-layer NVMe I. l, PC!e 
V6P2T0BW MLC 3.0 X 4 

V-NAND 

SanDisk 6400 2800 2200 285 385 22,000 25 (peak) MLC PC!e 2 x 8 
SDFADCMOS-6T40-
SFI 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 512



526 CHAPTER 17 MASS STORAGE 

(A) 

(B) a NVMeSSD ~',::"~~,. ""°" SftMSUNG • : 

960 r r ,- ) ~ i1111m11n 110iii'i11ii1i1i1,mi ; 
·--·-·., ~--·~':: 2re iii11u1111,n11111 1111iiiiiiiinll'1iii111ii · 

:;:t1t.-:·;11t~~1:::1-:-;t :C.1 : i.:::~.i>~ ,~£=•;.::.} J 

(C) 

FIGURE 17.8 

SSD examples: (A) Crucial MX300 series (2.5 11 form factor), (B) Samsung 960 PRO series (M.2 form factor), and 

(C) SanDisk Fusion ioMemory SX350 series (8-lanc PC! Express card). 
(BJ Photo by Dmitry Nosachev via Wikimedia Commons 

The tape is a sequential-access medium, which means that it may require a comparatively lengthy 
time to locate a specific piece of data. The information on tape can be arranged in several ways. The 
earliest approaches used linear multitrack recoding, illustrated in Fig. 17.1 lA. In this mode, each 
read-write head records data lengthwise in a separate linear data track; the tracks are parallel to each 
other. As the bit density increased and track width decreased, linear-serpentine recording (Fig. 17. l lB) 
permitted installation of several read- write heads side by side without loss of medium coverage. The 
head assembly moves across the width of the tape to start a new track in unrecorded space whenever 
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(A) (B) 

FIGURE 17.9 

Advances in magnetic tape storage: (A) IBM 726 from 1951, (B) IBM 3480 format tape (top) and the corre
sponding deck subsystem (bottom) from 1984, with older 3480 system in the background. 

(A) Courtesy of International Business Machines Corporation, © International Business Machines Corporation. (B) Bottom .

Courtesy of International Business Machines Corporation, © International Business Machines Corporation 

the tape reaches one of its ends. Helical recording, shown in Fig. 17 .11 C, arranges a large number of 
relatively short data tracks at an angle to the tape's edge. This last approach, resembling the recording 
technology used by tape-based camcorders and videocassette recorders, requires the use of a scanning 
head (a revolving drum which contains one or more heads along its circumference and is mounted at an 
angle to the tape's movement). 

The longest-surviving technology still popular today is LTO, established in response to proprietary 
tape formats and developed by a consortium founded by Hewlett-Packard, IBM, and Quantum. Its 
current generation, LTO-7, supports up to 6 TB of data per cartridge packed on a 960 m long, 
12.65 mm wide, and 5.6 µm thick tape. The tape substrate is polyester-based (polyethylene naph
thalate), encasing particles of barium ferrite pigment as the active storage medium. The data is 
recorded in a linear-serpentine fashion on four data bands interleaved with five nan·ow servo (posi
tioning) bands. Each data band is further subdivided into 28 wraps. There are 32 tracks per wrap (the 
same as the count of read-write elements in a head assembly), hence the total number of tracks stored 
on a tape is 4 x 28 x 32 = 3584. The number of head passes required to fill the tape completely is a 
product of the data band count and the wrap count or 112; a data band is usually completely filled 
before the mechanism advances to the next band. 

Table 17.4 compares operational parameters (only uncompressed data rates and capacities are 
reported) of some currently available tape decks. Their p1imary applications are backups and 
archivization of large datasets. 
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FIGURE 17 .10 

Comparison of dominant tape storage families: (A) DDS-I (1989), (B) DLT-IV (1999), and (C) LTO-2 (2005). 
Data cartridges are shown on top and the corresponding tape decks at the bottom in each column. 

(A) bottom photo by Adlerweb via Wikimedia Commons; (8) bottom photo by Christian Taube Chtaube via Wikimedia Commons; 

(C) Bottom and top figures by Austin Murphy via Wikimedia Commons 
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Tape-recording formats: (A) linear, (B) linear-serpentine, and (C) helical. 
Diagrams by Kubanczyk at the English language Wikipedia 
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Table 17.4 Operational Parameters of Selected Tape Drives 

IBMTS1150 Up to 10 360,300 12.4 46 32- IBM 3592 8 Gbps 
(medium channel Generations fiber 
dependent) linear- 3 and 4 channel 

serpentine 

HP Enterprise Upto6 300 32- LTO-7 6Gbps 
BB873A channel (rewritable), Serial 

linear- LTO-6 Attached 
serpentine (rewritable), SCSI 

LTO-5 (read 
only) 

17 .3.4 OPTICAL STORAGE 
While there were many attempts to apply optical means for storage and retrieval of digital information, 
none attained widespread popularity before the commercial release of the compact disc (CD) in 1982. 
The CD is the result of a collaboration between Philips and Sony, who jointly developed the Red Book 
CD digital/audio specifications and agreed to manufacture compatible hardware. Even though origi
nally intended as a medium for music distribution, the CD was soon used to store photographs, 
graphics, artwork, sound samples, video, and, of course, data. As early versions did not support 
recording data, the information stored on the disks was read-only and inspired the CD-ROM moniker 
describing media carrying digital data. Starting in the 1990s and continuing to this day, CD-ROM and 
its derivatives are extensively used as an inexpensive medium to distribute software and other auxiliary 
data. 

Physically, a CD is a 1.2 mm thick plastic disc with a diameter of 120 mm. The base material is 
polycarbonate with an impressed spiral pattern of elongated pits to encode the data. The data track is 
covered with a reflective metal layer (usually aluminum or occasionally gold) before sealing it with a 
protective layer of lacquer and artwork (Fig. 17.12B). The information is retrieved from the spinning 
disc using an infrared laser beam equipped with appropriate collimating optics and tracking mecha
nism (Fig. 17.12C). Most discs have just one active surface that is used to read the data, although there 
are variants with information recorded on both sides. A smaller 80 mm version of the disc called a 
mini-CD is also in circulation. While a conventional CD stores 74-80 min of audio or up to 700 MB of 
data, a mini-CD reduces this to up to 24 min of music and approximately 200 MB of data. On audio 
disc, two channels of sound are sampled at 44.1 kHz using linear 16-bit encoding (the complement 
integer of two) per sample per channel. The audio data is organized in 192-bit frames; each frame 
contains six interleaved audio samples from left and right channels. In addition to audio samples, 
frames incorporate ECC and synchronization data. Due to symbol transcoding to reduce the density of 
pits on the disc surface (eight-to-fourteen modulation code [13]), each frame effectively ends up 
occupying 588 bits on the disc. Frames are combined into sectors, each containing 98 frames or 
2352 bytes of audio data. The sectors are assigned to tracks that correspond to individual songs on the 
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Compact disc: (A) medium, (B) component layers, (C) optical pickup mechanism, and (D) geometric properties of 

the data track. 
(A) Image by Arun Kulshreshtha via Wikimedia Commons; (B) Image by Pbroksl 3 via Wikimedia Commons; (0) Image by Valacosa 

and Blair Lebert via Wikimedia Commons 

CD; up to 99 tracks may be stored on one disc. The nominal data rate is 2 (channels) x 2 (bytes per 
sample) x 44, IOO (samples per second) = 176.4 kB/s; this is equivalent to a throughput of 75 sectors 
per second. Data integrity is protected by cross-interleaved Reed-Solomon code (CIRC) [14], which 
adds one parity byte for every three bytes of data. CIRC is capable of correcting up to two full byte 
errors in each 32-byte block, or, due to interleaving of parity data with the neighboring blocks, it can 
fully coJTect up to 4000-bit-long error bursts corresponding to 2.5 mm in linear distance. This makes it 
a very effective solution to deal with scratches, particulate matter, and small stains on the disc surface. 

For data storage, a CD-ROM retains the basic organization of information on the disc, but the 
effective number of data bytes per sector is reduced to 2048 (CD-ROM Mode 1) due to the stronger 
ECC schemes employed (audio data may be reconstructed to some extent by interpolation, but this is 
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not true for arbitrary digital information). For some applications, like video, robust protection is less 
important than data density, hence CD-ROM Mode 2 specification permits 2336 data bytes per sector. 
The base data rate, referred to as 1 x speed, is derived as the data throughput of 75 CD-ROM Mode 1 
sectors per second or 153.6 kB/s. Many currently manufactured CD-ROM drives are capable of 
spinning the disc much faster than that, resulting in sustained transfer rates of 24 x -48 x and higher. 

One of the main drawbacks of a CD-ROM is that its content is fixed at the factory, essentially 
precluding its use as a practical mass-storage medium. This has been addressed by CD-recordable 
(CD-R) and later CD-rewritable (CD-RW) formats, detailed by Orange Book specifications. Both 
retain the original form factor of the 120 mm disc. CD-R media replace data-defining pits with a fixed 
spiral "pregroove" to aid laser positioning and add a layer of organic dye between the polycarbonate 
substrate and reflective layer. During the write process, the laser power is modulated to affect ("bum") 
the organic dye, making it locally more opaque or absorptive. The read is performed at much lower 
beam power so the written data is not destroyed. As the mass-produced media adopt primarily three 
(cyanine, phtalocyanine, and azo) dyes of quite different properties, careful calibration of laser power 
is required ahead of data deposition. This process is aided by the additional information (absolute time 
in pregroove) stored on the blank disc in the pregroove outside the useful data area, which identifies 
media manufacturer as well as the recommended laser power. CD-R discs may be "burned" only once, 
but depending on the write mode selected it may be possible to add data at a later time to a disc that has 
not been "closed" (track at once mode as opposed to disk at once mode). Since some of the dyes are 
sensitive to ultraviolet light, ensuring proper storage conditions is strongly encouraged to achieve the 
desired information longevity. Good-quality CD-R media recorded in properly calibrated devices and 
stored in a dark location with stable temperature and humidity may last over 50 years without data loss; 
archival-quality discs using gold as the reflective layer may extend this to as much as 100 years. A 
National Institute of Standards and Technology study estimated the longevity of several tested media 
brands to be at least 30 years if kept at ambient temperature and controlled humidity conditions [ 15). 
Rewritable discs utilize silver-indium-antimony-tellurium phase-change media that may alternate 
between crystalline and amorphous phases differing in reflectivity. Thus the composition of CD-RW 
discs is similar to that of regular CD-ROMs, but with a different material constituting the reflective 
layer. As the nominal reflectivity of phase-change media is much lower than that of aluminum or gold, 
the recorded CD-RW media may not always work correctly in older CD-ROM drives. CD-RW discs 
require even more precise control of laser power while writing than CD-R, and constrain both the 
upper and lower limits of data transfer rate while burning. Rewritable media endurance is commonly 
estimated at approximately 1000 rewrite cycles. Since CD-RW media can be updated and erased, 
packet writing mode has been developed to support changes to the stored information. 

The maximum data capacity of a CD is insufficient to store a full-length movie in National 
Television System Committee resolution, even using a lossy compression such as MPEG-2. To cope 
with the growing demand for multimedia content and simultaneously increase the storage capacity of 
disc-based media, Philips, Sony, Toshiba, and Panasonic introduced the DVD (digital versatile disc, 
alternatively known as digital video disc) in 1995. While DVDs have the same external dimensions as 
CDs, the information is retrieved using a red laser of wavelength 650 nm, which permits reducing the 
gap between the consecutive windings of data "groove," thus making it much longer. DVDs may store 
data in one or two layers; this results in a total capacity of 4.7 GB or 8.5 GB per disc. The nominal (1 x) 
data rate is 1385 kB/s; note that this reference speed for DVDs is substantially higher than that of CDs. 
Modem DVD-ROM drives may retrieve the data at a rate that is 8-20x greater than the base rate. 
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Similar to CDs, DVDs support recordable and rewritable variants. Due to "format wars" there are 
two recordable versions, DVD-R and DVD + R and two rewritable versions, DVD-RW and 
DVD + RW. The "-" and "+ " formats are not directly compatible with each other, but most drive 
manufacturers release products that support both. Since the -Rand -RW formats originally developed 
by Pioneer were released earlier, they are supported by more devices, especially standalone DVD 
video players. The "+ " variants specified by Sony and Philips feature more robust error con-ection, 
hence they may be somewhat more suitable for data preservation. Additionally, the DVD-RAM (digital 
versatile disc-random access memory) format backed by Hitachi, Toshiba, Maxell, Samsung, LG, 
Panasonic, Lite-On, and Teac offers very good support for data updates (minimum of l00,000 rewrites 
at low speeds), protection, and retention. Unlike other recordable DVD discs, the DVD-RAM stores 
data in concentric tracks, similarly to HDDs, and therefore requires specialized drives. 

Widespread adoption of high-definition (HD) video formats prompted the development of a 
suitable storage medium. Of two competing variants, HD-DVD and Blu-ray disc (BD), the latter ul
timately emerged as a winner in 2008. Blu-ray media can store 25 GB per layer thanks to the avail
ability of violet laser diodes operating at 405 nm wavelength. This permitted shrinking the track pitch 
further from 740 nm for DVDs to just 320 nm (Fig. 17.13). BD differs from other optical disc tech
nologies in that the data tracks are much closer to the surface and thus are more vulnerable to scratches. 
A specially formulated hard-coat layer applied to the top surface alleviates the effects of mechanical 
impact. The I x speed for Blu-ray is equivalent to real-time reproduction bandwidth for compressed 
I080p video at 60 frames per second, and equals 4.5 MB/s. Practical speeds achieved by currently 
manufactured drives range from 4x to 16 x . Data capacities per disc range from 25 to 50 GB for 
single-layer and dual-layer media to JOO GB (triple-layer) and 128 GB (quad-layer) BDXL discs. 
Example optical drive specifications are listed in Table 17 .5. 
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Table 17.5 Parameters of a Typical Consumer-Grade Multiformat Optical Drive 
- -----

CD Maximum Data Rate 
access - - . - -- - Buffer 

Manufacturer BD access DVD access Time DVD CD Size 
and Drive Time(ms) Tune (ms) (ms) BDRead BDWrite Read DVD Write Read CD Write (MB) Interface 

Lite-On 250 (SL) 150 (ROM) l50 6x (REDL) 2 x (rewrite) 16 x 6x (rewrite) 48x 24 x (- RW) 8 SATA 
iHBS31 2 380 (DL) 160 (DL) 8x (SL) 8x (DL) 12 x (RAM) 48x (-R) (internal) 

200 (RAM) 12x (SL) 16 x (+ R,-R) 
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17.4 AGGREGATED STORAGE 
17 .4. 1 REDUNDANT ARRAY OF INDEPENDENT DISKS 
Redundant array of independent disks (RAID; fonnerly redundant array of inexpensive disks, 
attributed to David Patterson, Garth Gibson, and Randy Katz of the University of California at Ber
keley) attempts to address reliability issues of conventional mass-storage devices. All storage devices, 
including HDDs and SSDs, have a limited lifespan and undergo random mechanical or electrical 
failures. The consequence of a failure is usually loss of a portion or the whole amount of the data stored 
on the device. RAID works by extending the pool of drives containing actual data with additional 
devices. These redundant drives store infonnation that is derived from the contents of other drives in 
the pool. By treating such a fonned array of drives as a single, virtualized 1/0 device, the impact of 
individual component failures may be alleviated. However, RAID should never be considered a perfect. 
or universal solution. It may mitigate component failures only to a certain extent, which is defined by 
RAID level, implementation, parameters of component drives, and even their fabrication character
istics. Since drives in an array are accessed in aggregate, in many cases RAID usage translates into 
improved data access performance compared to that of a single device. Here a number of commonly 
recognized RAID configurations are discussed, along with their main operational properties. 

17.4. 1. 1 RAID 0: Striping 
RAID 0 is not a proper RAID level, in that it does not provide any data redundancy should drive 
failures occur. It describes a configuration in which the data blocks are simply distributed (striped) 
across available disks in a round-robin fashion, as shown in Fig. 17. l 4. A stripe is a sequence of blocks 
spanning all disks in the array; for example, block 4-block 5-block 6 in the figure constitutes a stripe. 
An arbitrary number of disks may be arranged this way, but assuming that failure occurrences are 
independent and have exponential probability distribution, the reliability for the whole array including 
d data disks will be a fraction of that for a single drive: 

MTBFv 
MTBFo=-d-

Thus building an array of four enterprise drives, each with a good MTBF rating of 1,200,000 h, will 
result in an MTBF for the array of 300,000 h-equivalent to an average consumer drive. With 

FIGURE 17.14 

RAID O data layout. 

[ block 1 ) 

( block 4 ) 

( block2 ) 

( block 5 ] 

( block 3 ] 

( block6 ] 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 521



17.4 AGGREGATED STORAGE 535 

independent controllers, data on the drive may be accessed concurrently, providing increased read and 
write bandwidths in proportion to the number of drives: 

BR0 = d·BR0 

Bw0 = d·Bw0 

where BR0 and BWo are respectively read and write bandwidths of a single drive. 
Finally, the storage capacity of the whole array is a sum of the component drive capacities: 

Co =d·Cv 

where Co is the capacity of a single drive. 

17.4. 1.2 RAID 1: Mirroring 
RAID 1 is the lowest RAID level supporting data protection (Fig. 17.15). This is accomplished by 
storing replicas of used data blocks that reside on the primary data drive on all other drives in the array 
(data mirroring). While there is no upper limit on the number of drives arranged in this fashion, typical 
installations use just one redundant drive (mirror) in addition to the primary drive. Hence the number 
of data disks is fixed at d = 1; assuming a general case with p mirror drives, a RAID 1 array can 
tolerate up top concurrent drive failures without data loss. It is worthy of note that read accesses can 
take advantage of all 1/0 devices to issue concurrent requests, thus effectively matching the throughput 
of RAID 0 with the equivalent number of devices. Write operations, however, need to store data 
replicas on all mirror drives in addition to the "regular" data drive, effectively achieving the write 
throughput equivalent of a single drive. The resulting formulae are: 

d = 1, p 2: 1 

BR1 = (p+ l)·BR0 

C1 =Cv 

Due to its simplicity, mirroring is frequently used by both hardware and software RAID imple
mentations, but its biggest drawback is 50% (or higher) storage overhead. 

FIGURE 17.15 

RAID I data layout. 
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17.4.1.3 RAID 2: Bit-Level Striping With Hamming Code 
RAID 2 attempted to reduce spatial overheads caused by data mirroring by selecting a more efficient 
data protection code. Hamming code uses p 2 2 code bits to protect each group of d = 2P - p - 1 data 
bits against single bit errors, hence attaining (2P - p - 1 )/(2P - 1) efficiency or code rate. A RAID 2 
array consists of d data drives and p parity (protection bits are calculated as parity for selected bits in 
the entire bit-stripe) drives. The minimum configuration consists of two parity drives and one data 
drive, although it has poor storage efficiency of 1/3; the efficiency vastly improves for larger en
sembles. The drives have synchronized spindles, ensuring lock-step update and retrieval of each bit in 
individual stripes (denoted as a and bin Fig. 17.16). This arrangement is able to recover from a single 
device failure. Since hamming code can pinpoint the position of the erroneous bit in each stripe, RAID 
2 is capable of detecting silent drive malfunctions in which the affected device may appear to work but 
returns invalid data. This property may also be used to correct occasional data errors on the fly due to 
the nonzero probability of uncorrectable read errors returned by individual disks. Due to the imple
mentation complexity requiring specialized hardware controllers, RAID 2 is no longer used in prac
tice. Its performance characteristic strongly depends on the implementation details, and hence is not 
analyzed here. 

d=2P-p-1, p22 

C2 = d·Co 

17.4. 1.4 RAID 3: Byte-Level Striping With Dedicated Parity 
RAID 3 further decreases the required number of redundant drives in the assembly. Unlike RAID 2, it 
performs byte-level striping. Just one extra drive (p = 1) is used to store the parity value for all bytes in 
the same stripe (Fig. 17 .17). Since the parity alone cannot be used to identify a broken drive, RAID 3 
recovery is activated after one of the devices overtly fails. In that case, the missing information 
(assuming the failed drive was not the parity drive) is reconstructed from parity information and the 
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RAID 3 data layout. 
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[ parity a ) 

( pirity_b·) 

remaining byte values in the corresponding stripe. Operation at byte granularity forced synchronized 
disk spindle control, similar to RAID 2. As RAID 3 does not offer specific advantages over higher 
RAID levels and requires specialized hardware support to work, it too was phased out from common 
usage. RAID 3 achieves good large-volume sequential read and write performance (see below), but 
lags for small or multiple simultaneous requests. 

d 2:: 2, p = 1 

BR3 = d·BR0 

Bw3 = d·Bw0 

C3 =d·Co 

17.4.1.5 RAID 4: Block-Level Striping With Dedicated Parity 
RAID 4 (Fig. 17 .18) eschews the fine-granularity synchronization of RAID 3, instead performing 
block-level striping across all data devices much like RAID 0. For recovery, one parity drive is used; its 
function is similar to the parity drive in RAID 3 except that parity information is computed on a per 
block basis. The minimum configuration consists of three devices (two data drives, one parity drive). 
The large request performance is good, since it can be satisfied with sequential access to multiple 
blocks on each data drive. Since the drives do not have to be synchronized, simultaneous small requests 
may be distributed over multiple devices, yielding improved !OPS figures. 

d 2:: 2, p = 1 

BR4 = d·BR0 

Bw4 = d·Bw0 

C4 =d·Co 
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FIGURE 17.18 

RAID 4 data layout. 
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17.4.1.6 RAIO 5: Block-level Striping With Single Distributed Parity 

parity A 

parity B 

RAID 5 is one of the most commonly employed data protection schemes (Fig. 17 .19). It shares many 
similarities with RAID 4 in terms of parity computation, access granularity, minimum configuration, 
and vulnerability to failures. The main difference is that there is no dedicated paiity drive: the parity 
blocks are distributed in round-robin fashion across all participating devices. This modification en
ables the system to achieve high read bandwidths, effectively matching those of RAID O with an equal 
number of disks. The main issue of RAID 5 storage is its high vulnerability in a degraded state (i.e., 
after it has suffered drive failure). Even if the replacement drive is quickly furnished, the rebuild 
process for the whole array may take several hours. During that time the component drives are 
accessed at close to full bandwidth, exposing the remaining devices to increased stress levels. A second 
device malfunction during that time may effectively destroy the nonrebuilt fraction of data stored in 
the array. 

d 2: 2, p = I 

BR5 = (d + I ) -BR/) 

block A1 block A2 block A3 parity A 

block B1 block B2 parity 8 block B3 

block C1 parity C block C2 block C~ 

FIGURE 17.19 

RAID 5 data layout. 
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RAID 6 data layout. 
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17.4. 1. 7 RAID 6: Block-Leve/ Striping With Dual Distributed Parity 
To maintain array operation in a degraded state with no more than two failed drives, RAID 6 associates 
two parity drives with each group of data drives. Much like RAID 5, the parity blocks are distributed 
over all drives in the array. Parity information, denoted in Fig. 17.20 by indexes p and q, must be 
computed using different methods, e.g., conventional bitwise XOR on the original contents of the 
stripe and XOR on the stripe contents transfom1ed by an irreducible binary polynomial selected using 
the Galois field [16] theory. Following a single drive failure, the array may be reconstructed using 
conventional parity, which is fast to compute. A double fault requires usage of both parity blocks per 
stripe or, if the simple parity block was stored on the faulty drive, the missing data may be recomputed 
from the available data blocks and the secondary parity info1mation. The calculation of secondary 
parity is more involved, and may benefit from hardware implementation. 

17.4. 1.8 Hybrid RAID Variants 

d 2: 2 , p = 2 

BR6 = (d + 2)-BR0 

Bw0 = d·Bw/) 

The most common hybrid RAID configurations are illustrated in Fig. 17 .21. RAID 10, also denoted 
RAID 1 +o, combines data mi1rnring at a lower level and striping at a higher level. This provides the 
benefits of a simple-to-implement redundancy scheme (mirroring) with improved data access per
f01mance due to striping. The main drawback is the low storage utilization of 50%. The configuration 
shown in Fig. 17 .21 can tolerate two drive failures ( one per minw group). This version of RAID is 
commonly implemented in hardware controllers, including low-cost solutions embedded in mother
board firmware. A variant of RAID IO that improves storage utilization replaces the mi1Toring with 
RAID 5 at the lowest level, and is known as RAID 50. As the smallest number of devices supported by 
RAID 5 is three, the minimum layout of RAID 50 consists of six devices. In comparison to con
ventional RAID 5 with six devices, striping improves the write throughput, while the ability to tolerate 
one fault per redundancy group makes this arrangement substantially more resilient. Of course, either 
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Diagram of data distribution: (A) RAID 10 (stripe of mirrors) and (B) RAID 01 (mirror of stripes). 

RAID x0 configuration may include more than two components per stripe for further bandwidth boost, 
albeit at the cost of additional drives. 

RAID 01 (or 0+ 1) has the same storage utilization, capacity, and access performance as RAID IO 
with an equivalent number of mirrors and stripe units. However, while RAID IO is still able to operate 
with one failed drive per mirror group, in RAID 01 loss of single drive equals the loss of the entire 
stripe. This has dramatic consequences for rebuild performance: RAID 10 can accomplish this by 
simply copying the contents of the remaining drive in its mirror group without disturbing other 
components of the array, while RAID 01 must pull the data from another functional mirror, interfering 
with its regular operation. RAID 01 has, however, practical applications when portions of the array are 
distributed over a network. Having a fully functional local RAID 0 setup is more important in the event 
of network outage than a mirror containing partial data. 
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Since the timely completion of array rebuild is often critical to stored data integrity, many RAID 
implementations include hot spares: idle drives that are connected to the controller, but do not actively 
share any part of the data. When a disk failure occurs, the controller may automatically switch to the 
replacement drive and start repopulating the array without having to wait for the system administrator. 
The failed drive may be pulled and replaced later at the operator's convenience. 

Selection of component drives for the array has to be performed with special care. Good practice 
calls for verification that devices come from different fabrication batches to minimize the probability 
of correlated failures. Since malfunctions may also be related to other connected devices, avoiding 
sharing of critical components, such as power supplies, may prevent some failure modes. RAID
compatible drives typically support time-limited error recovery, which constrains the time spent by 
the drive on bad-sector recovery to prevent it from being marked by the RAID controller as unre
sponsive or faulty. 

With high performance multicore processors being a common component of a node, many RAID 
modes do not require a specialized hardware controller to achieve good performance. Operating 
systems frequently offer optimized support for common levels (such as RAID 0, 1, 5, 6, and their 
hybrids) and sometimes nonstandard levels that nevertheless may provide well-performing redundant 
storage with less common drive counts and configurations. Software implementations may expose 
more configuration parameters, thus 1/0 benchmarking with different options is crucial to extracting 
maximum performance. They may, however, suffer from problems that are avoided by correctly 
designed hardware controllers; one such issue is the "write hole" caused by a system crash (e.g., due to 
power blackout) leaving parity information in an inconsistent state with the data on drives. Some file 
systems, such as ZFS developed by Sun Microsystems, support RAID-like data striping and protection 
without being vulnerable to this issue. Harnessing OS support to manage data integrity has additional 
benefits. Neither hardware controllers nor low-level software implementations are aware which por
tions of disk store the actual information, so upon failure the recovery algorithms must perform 
verification of data consistency on the entire drive, or at least the impaired partition. The same process 
guided by a file system's internal data structures may be far more efficient and focus only on the 
relevant areas of the disk. Prioritization is also possible, so the most critical file system metadata is 
recovered first. Since array rebuild places the system in a particularly vulnerable state, minimizing its 
duration additionally lowers the chances of unrecoverable failures. 

17.4.2 STORAGE AREA NETWORKS 
A storage area networks (SAN) provides a block-level storage abstraction over common networks 
(Fig. 17.22). Its purpose is to enable access to shared storage devices for multiple entities, including 
virtualized server pools or other hosts (e.g., related to management and monitoring infrastructure) 
attached to a common network. The shared storage devices may include HDDs or SSDs, optical 
jukeboxes, and tape silos. Clients connected to a correctly implemented SAN have an illusion of 
directly communicating with the attached storage devices, extracting close to the full available 
device bandwidth. 

SANs offer many benefits to system administrators. Physical separation of servers and storage 
enables fast and independent replacement of failed components. Scaling in the number of storage 
devices as well as servers is usually easily accomplished. Application servers may directly boot from 
the attached drives, which minimizes the configuration time for newly added or replaced servers. Since 
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FIGURE 17.22 
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the connecting network can span a large distance, significantly exceeding the length of interface link 
attaching individual storage devices, SANs are key to efficient disaster recovery. Storage contents can 
be replicated to different physical locations, with fast synchronization mechanisms already in place 
should major faults occur. SANs are frequently configured with multiple switches and redundant paths 
for increased reliability. 

A SAN encapsulates lower-level access protocols to storage devices, such as SCSI (small computer 
system interface), in higher-level network protocols, prima1ily Ethernet, InfiniBand, and Fibre 
Channel (FC). The latter frequently utilizes optical fiber for connectivity, with communication rates 
between I and 128 Gbps. FC supports multiple topologies, including point to point, arbitrated loop, 
and switched fabric. Even though it has a reputation for being expensive and difficult to manage, it is 
often the preferred choice for SAN implementation. One of its main advantages is the asynchronous 
protocol design that is able to handle large numbers of data packets in a heavily loaded network. 
Different implementations of SANs utilize protocols that best fit the class of deployed network and 
low-level interfaces used by mass-storage devices. The number of combinations is quite large, but the 
dominant variants include FCP (Fibre Channel Protocol that encapsulates SCSI packets over FC), 
FCoE (Fibre Channel over Ethernet), HyperSCSI (SCSI over Ethernet), iFCP (FCP over IP), iSCSI 
(SCSI over Transmission Control Protocol/Internet Protocol (TCP/IP)), iSER (iSCSI extensions for 
RDMA in the InfiniBand network), SRP (a simpler SCSI RDMA protocol for transmitting SCSI over 
InfiniBand), AoE (ATA over Ethernet), and FICON (Enterprise Systems Connection over FC, used by 
mainframe machines). 

L 
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17.4.3 NETWORK ATTACHED STORAGE 
Network attached storage (NAS) is a common component of supercomputing installations. It provides 
centralized shared storage capability, frequently with very large capacity, to multiple hosts, specifically 
including compute and login nodes. While SANs provide shared access to mass storage at the device 
level, NAS operates at file-system level. The accessing clients use specifically designed libraries or 
kernel extensions to import data volumes hosted by NAS servers. Remote data shares may be mounted 
on the client side to provide practically identical application programming interfaces to those exposed 
by local file systems, such as Portable Operating System Interface 1/0. The contents of remote data 
shares may be then accessed using standard utilities and libraries that have been developed to support 
"regular" files, effectively making the fact that the communication with the server and the data transfer 
are performed over the network completely transparent to the application. 

NAS implementations utilize a handful of network file system protocols. The commonly used ones 
include Server Message Block (SMB), originally developed by IBM and Microsoft, Common Internet 
File System (CIFS), which is a more feature-rich version of SMB, Apple Filing Protocol (AFP), a 
proprietary protocol used by Apple File Service, and Network File System (NFS), which originated at 
Sun Microsystems. While the first two are usually found in Microsoft DOS and Windows-based en
vironments, AFP is restricted to Apple products and NFS is broadly employed in the Unix world, 
including Linux. NFS is an open standard defined in the Internet Engineering Task Force/Internet 
Society Request for Comments and has open-source implementations. SMB functionality is available 
on Unix-compatible platforms thanks to the open-source SMB/CIFS reimplementation known 
as Samba. Finally, AFP is supported by the open source Netatalk project. All these protocols rely on 
TCP/IP for connectivity, although some SMB and NFS variants are capable of datagram-based 
communication (User Datagram Protocol). 

A high performance NAS server, depicted in Fig. 17.23, derives from the architecture of a con
ventional compute node. The primary differences are possible inclusion of multiple network adapters 
to provide the necessary data bandwidth to clients and a substantially expanded storage pool. The latter 
usually requires multiple controller boards to provide the required number of ports for connecting the 

NAS Server 

FIGURE 17 .23 

Simplified architecture of NAS server. 
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storage devices and optionally to incorporate hardware-level data protection, such as RAID. The server 
should have a sufficiently large memory pool to be able to accommodate a large number of outstanding 
I/O requests and efficiently buffer data. Due to the increased power draw caused by the large storage 
pool, a NAS server should also be equipped with redundant power supplies of appropriate rating and 
make allowance for sufficient case ventilation to evacuate the generated heat. Since a single server will 
eventually hit a perfomrnnce barrier, a clustered NAS may be considered to enable capacity scaling. A 
clustered NAS takes advantage of distributed (Ceph, AFS, GFS, and others) or parallel (GPFS, Lustre, 
PANFS, OrangeFS, PVFS, and others) file systems to provide an abstraction of a single logical file 
system comprising all storage devices while enabling high-bandwidth access to file data and load 
distribution across the component servers. 

17.4.4 TERTIARY STORAGE 
Tertiary storage comprises high-capacity data archives designed to incorporate vast numbers of 
removable media, such as tapes or optical discs. The removable media are normally not stored in 
suitable drives but held in specially arranged retention slots, shelves, or carousels in an offline state. A 
tertiary storage platform may be perceived as a specialized type of NAS that uses additional robotic 
mechanisms to transfer media between their long-term storage locations and available drives without 
human intervention. To fulfill a client access request, a separate database that maintains the catalogue 
of archive contents must be consulted. As the tape library or optical jukebox cannot handle a large 
number of concurrent requests (there is only a limited number of tape or optical drives which operate at 
nominal data rates per device), the archive contents are typically copied to a data cache, for example a 
regular NAS server. Clients may then access the data at high speeds and possibly in parallel. The 
retrieved content is retained in the cache for as long as it is needed or until it is retired as an effect of the 
application ofrelevant data retention policies. Tertiary storage also performs periodic (or other policy
managed) scans of stored media to detect signs of content decay and possibly activate recovery 
procedures. Examples of two high-capacity te1tiary storage systems, a tape library and an optical 
jukebox, are shown in Fig. 17 .24 and compared in Table 17 .6. 

(A) (B) 

FIGURE 17.24 

Tertiary storage platforms: (A) Quantum tape library, (B) BluRay optical jukebox. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 531



17.5 SUMMARY AND OUTCOMES OF CHAPTER 17 545 

Table 17.6 Properties of Selected High-Capacity Tertiary Storage Systems 

Quantum 

1-IlT Storage 

Scalar i6000 
tape library 

HMS-5175 
BluRay library 

180,090 

175 

12,006 

1750 

LT0-7 
cartridge 

100GB 
BDTL disc 
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8 Gbps Fibre 
Channel 

I Gbps 
Ethernet 

24kVA 

• Mass storage enables computational state retention to be consistent between power cycles of the 
machine. 

• The majority of storage systems utilize four main types of mass-storage devices: HDDs, SSDs, 
magnetic tapes, and optical storage. Although they serve largely the same purpose, they 
substantially differ in the underlying physical phenomena used to implement data retention as 
well their operational characteristics and cost. 

• The storage hierarchy is subdivided into four levels that differ in access latency and supported 
data bandwidth, with latencies increasing and effective transfer bandwidth dropping when 
moving away from the top level of the hierarchy. 

• Primary storage comprises system memories, caches, and CPU register sets. 
• Secondary storage is the first level that leverages mass-storage devices. Normally, CPUs cannot 

directly access the secondary (or higher-level) storage and therefore transfers of data between the 
primary and secondary storage have to be mediated by the OS and computer chipset. 

• Secondary storage capacity grew 11 orders of magnitude between the 1940s and 2016. Device I/0 
bandwidth advanced six orders of magnitude over the same period. 

• The most commonly used technology in the secondary storage tier is HDDs, which offer the 
industry's best cost per unit of storage coupled with satisfactory reliability. 

• Redundant array of independent disks (RAID) attempts to address reliability issues of 
conventional mass-storage devices. 

• Tertiary storage is distinguished from secondary storage in that it usually involves large 
collections of storage media or storage devices which are nominally in an inaccessible or 
powered-off state, but may be reasonably quickly enabled for online use. 

• Tertiary storage comprises high-capacity data archives designed to incorporate vast numbers of 
removable media, such as tapes or optical discs. 

• Latency remains one of the biggest performance bottlenecks plaguing most of the I/0 devices in 
use today. 

• SANs provide a block-level storage abstraction over a common network. Their purpose is to 
enable access to shared storage devices for multiple entities, including virtualized server pools or 
other hosts attached to a common network. The shared storage devices may include HDDs and 
SSDs, optical jukeboxes, and tape silos. 
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• Network attached storage is a common component of supercomputing installations. It provides 
centralized shared storage capability, frequently with a very large capacity, to multiple hosts, 
specifically including compute and login nodes. 

17 .6 QUESTIONS AND PROBLEMS 
1. What are the main storage-related challenges presented by large HPC systems? Elaborate. 
2. Identify parameters the values of which may be used to classify an arbitrary HDD to one of the 

market segment categories mentioned in the last column of Table 17 .1. 
3. Your product development team has been tasked with design and implementation of an in-flight 

entertainment system for a large airliner. Your responsibility is to select a suitable lightweight 
storage device from several technologies discussed in the chapter. Justify your choice taking into 
account (1) cost, (2) reliability of operation, (3) required storage capacity, and (4) performance. 
When considering your choices, be mindful of the target operating environment for the system. 

4. A 4096-node cluster runs large-scale simulations that are checkpointed every 2 h using burst 
buffers for intermediate 1/0 storage. The nodes are equipped with 64 GB memory each and the 
ratio of nodes to burst buffers is 16: 1. Calculate: 
a. the minimum required capacity of each burst buffer to keep the checkpoint phase as short as 

possible 
b. the duration of a large simulation before device failures appear, given that the TBW metric of 

each burst buffer is 400. 
5. A RAID6 system uses eight 4 TB drives, including the minimum required number of parity 

drives. Calculate the effective read and write data throughput for the array. What is its effective 
data capacity? How many drives would be needed to assemble a RAID 10 system of equivalent 
capacity? How would the data throughputs change? 

6. SAN and NAS are similarly sounding acronyms that may confuse novices in the field. What are 
the differences and advantages of each over the other? Provide primary examples of their 
application. 

7. A particle detector generates data streams requiring an aggregate bandwidth of 4 TB/s in bursts of 
up to 1 min long. The streams are analyzed by a 2048-node system that extracts events of interest 
and compresses them, reducing the data volume to 11100th of the original size. The events of 
interest are then archived on a dedicated robotic tape storage using LTO-7 tapes at a sustained rate 
of 250 MB/s per deck. Given that experiments (each producing a single burst of data) are 
performed at I h intervals and the tape change overhead is factored into sustained storage 
bandwidth, answer the following. 
a. How many tape decks working in parallel are necessary to accommodate the extracted event 

data without forced interruptions to the experiment schedule or additional intermediate data 
buffers? 

b. If the capacity of a tape cartridge is 6 TB, how many tapes are required to provide data storage 
for experiments performed over the span of 1 year? What is the estimated shelf volume 
required to archive all cartridges written in I year if the dimensions of a single cartridge are 
102 mm x 105 mm x 21 mm? 
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c. Assuming that data processing requires a negligible amount of memory in addition to that 
needed to hold the input data, how much DRAM (in powers of2) must each node be equipped 
with to avoid the use of intermediate data buffers? 
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18.1 ROLE AND FUNCTION OF FILE SYSTEMS 
The mass-storage devices discussed in Chapter 17 use only a limited number of data-access interfaces. 
They are closely related to the low-level protocols used for data transfers between the device and the 
system's memory, and to the physical data layout and storage partitioning permitted by the device. The 
stored data may only be accessed at predefined granularity dependent on the particular device, namely 
at the level of physical blocks ( occasionally also referred to as records or sectors) that typically vary in 
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size from 512 bytes to as much as 16 KB. Carrying out small modifications to stored data or appending 
information to it in smaller than block-sized amounts may require a sequence of multiple read and 
write operations. Such direct data accesses necessitate correct calculation of the physical addresses of 
relevant blocks. This computation in some cases may involve intrinsic parameters describing the 
storage geometry implemented by the device, such as the now-obsolete cylinder-head-sector schema 
utilized by older hard-disk drives. As many modem storage appliances in tandem with their operating 
system (OS) drivers attempt to hide the details of translation of logical block addresses to physical, 
device-specific locations as well as the remapping of damaged blocks, they provide only very limited 
means of keeping track of the allocation of the device's storage space or higher-level content man
agement of utilized blocks. Furthermore, mass storage with asymmetric performance or protocol 
structures for different operation types, such as reading from and writing to optical discs, may require 
different strategies and scheduling to support these operations efficiently, placing the burden of 
encoding the related control algorithms and heuristics on the application writer. Even though direct 
access to the physical medium is on occasion necessary to extract a predictable level of performance 
from a storage device or ensure strict control of data state replication in some applications (virtual 
memory swap space, some database implementations), it is far too inconvenient for general use in 
multitasking and multiuser environments. 

File systems provide an abstraction that addresses these issues and adds other usability and con
venience features, including storage space management and organization, a consistent programming 
interface that is portable and mostly independent from the underlying mass-storage device types, and 
extensions that use functions of other system components through the same application programming 
interface (API). To achieve good performance and coordinate access to shared physical resources from 
multiple programs issued by multiple users, the file system code is usually integrated with the OS. As 
is explained in Section 18.2, certain elements of the file system programming interface may be also 
implemented at the runtime-system level, both to provide additional features and for efficiency. 
Additional storage is needed for metadata, or information that indicates various attributes of stored 
datasets, comprises file system data structures, and is used to manage the allocation of physical storage 
blocks. Because of that, the effective space available on a mass-storage device that implements a file 
system will typically be reduced by a few percent compared to its raw capacity. The most notable 
features commonly supported by file systems are as follows: 

• Organization. The file system imposes a hierarchical layout using directories and.files as its 
primary components. Directories serve as containers for other directories and files, while the files 
comprise the actual datasets written to or read from the mass storage. File systems rarely impose 
limitations on what kinds of information may be stored inside files; this is usually decided by the 
applications creating and accessing files. In many cases additional conventions and even software 
are required to decipher the actual contents of files, which otherwise may be viewed only as 
anonymous byte streams. Depending on the file system, file size is usually limited to a large value 
that rarely interferes with the practical aspects of file access. In most modem disk or solid-state 
device (SSD) file systems, that value is on the order of tens or hundreds of terabytes. Similarly, the 
directory space may have constraints, such as the maximum number of entries (files or 
directories) per directory it can accommodate, and possibly the total number of all directories and 
files coexisting in a single file system. 
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• Name space. One of the most important usability aspects of a file system is the support of a naming 
scheme independent of the system architecture for stored information. All logical names of files 
and directories are expressed in the form of paths, or multicomponent strings in which each 
element names the containing directory ordered from the topmost in the hierarchy to the lowest 
level at the path's leaf component (which may be either a file or directory). Thus each file system 
component is uniquely identified by its symbolic name. While some details of path construction 
and how many roots, i.e., top-level hierarchy entry points, are supported differ between the 
individual file systems, the overall naming scheme conforms to the same common model across 
many implementations. One of the frequently used conventions to interpret the file contents relies 
on so-called extensions: a short suffix added to the file name and separated from it by an agreed 
character, typically a period. File system namespaces often support additional constructs, for 
example links that act as aliases for storable components. This permits the creation of alternative 
traversal paths that are not confined to the tree hierarchy and in some variants may even cross the 
file system boundary. 

• Metadata. Due to the shared nature of file systems, access to certain datasets must be 
constrained to only preapproved users in the system. In Unix this is traditionally arranged at the 
level of the file or directory owner, a specific user group, and "others" (collectively all users 
known to the system). In each of these categories the access rights may be individually enabled 
or revoked for reading, writing, and executing a specific file system entry. Unix and compatible 
file systems may also specify additional flags, such as "sticky bits" (restricting file deletion only 
to the actual owner), setuid and setgid flags that elevate the effective execution privileges to 
those of the file's owner, or a flag that restricts the file's execution to specific users. Some 
implementations also support more fine-grained access schemes, such as access control lists 
(ACLs). They are more flexible than the default owner/group/others categories in that arbitrary 
permissions can be assigned to arbitrary users, albeit at the cost of additional space that may be 
required to store the list. Metadata are commonly used to describe other properties of files, most 
notably their size. Even though storage is allocated in blocks, file size is tracked with byte 
resolution (the last block of a file may be partially filled). File systems may combine several 
small files into a single block to conserve storage space. Note that large amounts of metadata 
remain opaque to the user, including the actual device block numbers allocated to the file as well 
as internal data structures that describe more complicated layouts, such as large files or files 
with "holes". 

• Programming interface (AP/). From the user's perspective, one of the fundamental operational 
properties of a file system is to permit creation of, writing to, and reading back the contents of 
files. This is accomplished through library calls that internally invoke the lower-level system 
functions. The files are identified by their symbolic names (paths) before the actual data access 
functions are enabled. This verifies that the target file exists and may be accessed by the requestor, 
and initializes the necessary data structures for access. It also relies on shorter and uniform file 
handles, eliminating the need to pass potentially highly variable file names to the data access 
functions. The API also allows specification of some metadata elements when new files are 
created. Besides file data access, the programming interface supports the manipulation of the 
storage hierarchy, such as directory traversal, file and subdirectory deletion, and creation of new 
subdirectories and links. 
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• Storage space management. As all physical devices have explicit capacity limits, the file system 
must carefully monitor the use of space in the storage medium, which may be shared potentially 
between millions of files and directories. Additionally, space for newly created files should be 
allocated in a way that ensures good access performance for the specific device type. Thus for 
standard hard-disk drives the file system typically strives to reserve the space for a file in 
continuous segments that reside on the same platter and cylinder, since sequential access offers 
the highest effective data bandwidth and latency. However, as the device becomes full, allocation 
in contiguous chunks may become more and more difficult (the available space becomes 
fragmented). Many modem file systems implement on-the-fly defragmentation algorithms, so 
performance degradation is not noticeable until the available capacity drops below a few percent 
(or even less in some cases). Other file systems may require explicit online or offline 
defragmentation to restore performance. 

• File system mounting. Computers frequently utilize multiple storage devices at the same time. 
They can be made available for use at arbitrary points in time and not only during system 
initialization, as some of the storage media may be removable. This is performed in a process 
called mounting, in which the hierarchy defined by the imported file system is exposed to the OS 
and runtime environment. In single-namespace file systems utilized by some operating systems 
like Unix, this requires support to expand the existing name hierarchy. In such an OS the mount 
points under which the external file systems may be made accessible can conceivably be any 
existing directories. After the mount operation is completed, the imported file system hierarchy 
replaces the original layout extending below the mount point. Multiple file systems may be 
mounted at the same time, including nesting. 

• Special files. The Unix environment is commonly known for implementing the "everything is a 
file" abstraction. This means the file system namespace may be used to provide access to other 
system entities and software constructs such as raw devices, named pipes, and sockets. The 
latter two enable interprocess communication as long as the interacting entities agree in 
advance on the name and type of the communication channel. While the communication uses 
the same API as that applied to transfer data to and from regular files, users must take care not 
to exceed the internal buffer capacity. Unfortunately, the elegance of the abstraction breaks 
when access to advanced features or adjustment of control parameters is necessary; in such 
cases the much-overloadedfcntl and ioctl interfaces are invoked to access the required 
functionality. 

• Fault handling. As with any physical device, mass storage suffers from random failures. A 
properly designed file system can minimize the impact of these faults on stored data integrity. 
While device-related faults can range from individual bad blocks to whole devices, this does not 
exhaust the possible spectrum offailures. Due to data caching in memory and the need to perform 
multiple low-level updates even for a single logical access operation, commonly occurring 
problems are aborted write operations or destruction of unwritten data in memory caused by 
power fluctuations or system crashes due to other reasons. The data and/or metadata stored on 
disk may thus be left in inconsistent state and needing to be fixed before regular operation 
resumes. Many file systems deal with this by scanning the contents of data structures on the 
storage device during bootstrap and fixing incompatible entries using a dedicated utility program 
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(fsck in Unix). Such scan operations may be significantly accelerated when using an independent 
journal, or log of file system transactions that have to be carried out. While the file system check 
operation is not always able to recover all the data that were misplaced during a crash, it ensures 
that the loss is limited only to the data transferred during the failed operation and that stored 
metadata are consistent. 

The landscape of currently available file systems covers many instances with different features and 
characteristics, deployment environments, target storage devices and media, and applications. There 
are file systems specifically optimized for use with hard-disk drives, SSDs, flash memories, tapes, and 
optical media. File systems may transparently support compression to save space and encryption to 
protect the confidentiality of the stored information. Pseudo file systems are used to expose details 
related to arbitrary installed devices and system data structures using familiar semantics (such as 
procfs, sysfs, and devfs in Linux).' Particularly important to high performance computing (HPC) are 
distributed and parallel file systems, which support multiple clients communicating with storage 
devices over network or computer interconnects. However, unlike storage area networks (SANs), they 
do not share file contents at the physical block level but implement a service layer translating and 
executing received requests. Not all distributed file systems can necessarily provide high performance 
concurrent access to the same file from multiple clients, but instead focus on supporting the shared 
namespace and metadata and achieving significantly better throughputs when each client operates on 
its own disjoint set of files. This issue is better addressed by parallel file systems, making them more 
suitable for supercomputing applications which may read or write various sections of the same file or 
file set from multiple compute nodes. Note that this mode of operation is associated with several 
nontrivial challenges. Firstly, a parallel file system needs to employ appropriate mechanisms to 
accommodate multiple storage devices by distributing the contents of files over multiple disks or 
SSDs (striping). This is necessary to extract the required aggregate data throughput. The stripe unit 
has to be carefully chosen so as not to impose too high an overhead (small blocks) and not to destroy 
striping benefits for smaller files (large blocks). Secondly, the file system is expected to provide the 
abstraction of a single server to accessors: details of the underlying architecture, physical arrange
ment of supporting hosts and storage devices, fault-tolerance measures, file striping parameters, and 
many other aspects should be hidden from users who are not interested in optimizing the input/output 
(I/0) performance for specific applications. A familiar file access interface (such as Portable Oper
ating System Interface or POSIX) may be provided to reduce the learning curve for new users and 
facilitate application porting. Thirdly, both metadata and data have to utilize appropriate consistency 
protocols, since there must be no discrepancies between file contents, sizes, and other attributes when 
simultaneously viewed by different nodes. While multiple readers of a file can easily be accom
modated, the addition of even a single writer may complicate the way information is propagated to 
and possibly replicated on the participating nodes. Parallel file systems may also resort to relaxing 
access atomicity (i.e., the guarantee that no portion of data read or written in a single call is ever 
modified by an overlapping preceding or subsequent access) to be able to attain reasonable data 
throughput rates. Finally, the governing algorithms must scale to support not only a large number of 
concurrent accessors, possibly extending to the total number of compute nodes in the system, but also 
growing storage pools. 
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18.2 THE ESSENTIAL POSIX FILE INTERFACE 
The POSIX standard [I] describes the elements of runtime API, shells, and utilities, specifying 
compatibility requirements for variants of the Unix operating system. The file I/0 interface is part of 
the specification. The necessarily limited overview presented here focuses only on a subset of data 
transfer functions, with a few auxiliary calls that are frequently used in parallel programs. Directory 
access and manipulation, link creation, file deletion, and other namespace and metadata functions are 
not discussed, as they are rarely invoked directly from applications but instead are typically handled by 
job scripts using appropriate system utilities. File access functions come in two flavors: system calls 
and buffered I/0. Both are described below, along with usage examples and enumeration of their 
semantic differences. 

18.2.1 SYSTEM CALLS FOR FILE ACCESS 
System calls are used to invoke OS kernel functions directly. While all system calls typically share the 
same generic invocation format, a thin wrapper layer is additionally provided by the runtime library for 
user convenience and to facilitate first-level argument checking. Since system calls incur greater 
overheads than regular user-space function invocation, this interface should be used to transfer larger 
amounts of data (several memory pages or more) per call. The interfaces described below show 
function arguments and the necessary "include" files, defining their prototypes and optional argument 
macros. Since system calls are often used to access other entities in the system, such as terminals, 
pipes, or sockets, only semantics related to regular file access are discussed here. 

18.2. 1.1 File Open and Close 

#include <sys/stat.h> 
#include <fcntl.h> 

int open(const char *Path, int flags, ... ): 

#include <unistd.h> 

int close(int fd): 

The open call allocates an integer file descriptor that shall be used in all subsequent accesses to the 
file whose name is specified in the path. The descriptor returned is the lowest integer not currently used 
for file access by the calling process, and identifies the kernel data structure associated with the opened 
file. The flags argument consists of just one of O_RDON LY, O_W RON LY, and O_RDW R for read-only, write
only, and mixed read-and-write access respectively. The access mode flag can be bitwise or-ed with the 
arbitrary combinations of flags listed below. 

• O_APPEND causes initial file offset to be set to the end of file instead of its beginning. 
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• 0_C REAT creates the file if it does not exist, and is otherwise ignored as long as 0_EXC L is not set. 
The file is created with access rights specified in the third argument that conform to conventional 
owner/group/other permissions. 

• 0_EXC L when used together with 0_CREAT will cause the call to fail if the file exists. If the flag is 
specified without o_c REA T, the result is undefined. 

• O_TRUNC truncates the existing file to zero length if the access mode is 0_WR0NLYor 0_RDWR. Using 
this flag in read-only mode produces an undefined result. 

The list of supported flags in the open call is fairly extensive and permits among other uses the 
specification of nonblocking accesses and synchronization of write operations. The description of their 
exact semantics is beyond the scope of this brief overview. 

A successful open call returns a nonnegative integer that is a valid file descriptor. A negative one is 
returned on failure and a corresponding code is set in the global errno variable. Error causes include 
insufficient access or file creation rights, invalid path, exceeded maximum number of simultaneously 
opened files in the system, and requested file creation with an exclusive flag but the target file already 
exists. A failed open cannot modify an existing file status or create a new file. 

The opened files may be closed by passing their descriptors to the close call. This causes deal
location of the file data structure and releases the file descriptor for reuse within the calling process. 

18.2. 1.2 Sequential Data Access 

#include <unistd.h> 

ssize_t read(int td, void *but, size_t n); 
ssize_t write(int td. void *but, size:...t n): 

The read function attempts to read at most n bytes at the current offset from the file identified by td 
into a user buffer pointed to by bu f. Successful invocation returns the actual number of bytes stored in 
the user buffer. The call may return a value less than n if the number of bytes between the current offset 
associated with f d and the end of the file is smaller than the requested value. Partial read interrupted by 
a signal may also return fewer bytes than requested. A successful call will increase the file offset by the 
number of bytes transferred to the user buffer and update the file access time to the system time at 
which the access was carried out. 
A negative return value indicates an error whose cause is identified in the global variable errno. 
Possible error causes include the use of an invalid file descriptor, exceeding the maximum offset, and a 
read operation that has been interrupted by a signal without having started yet. 

The write call attempts to transfer n bytes provided in the user buffer pointed to by buf to a file 
identified by the descriptor fd. The position at which the data are stored in the file is determined by the 
current value of the file offset associated with the descriptor. If the offset of the last written byte is 
greater than the file length, the file length will be updated to the position of the last written byte 
increased by one. A successful call returns the actual number of bytes written; the internal file offset is 
incremented by this value and file's modification and status timestamps are updated as well. If the write 
would exceed the maximum file size limit or medium capacity, only the portion of user buffer that can 
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be accommodated is written. Successful file updates are immediately visible to other accessors 
(including other processes); "read" from file locations affected by a successful write call will return the 
data transferred by that call. This data will persist only as long as there is no subsequent write call 
issued that would overwrite the data in the same position. 

Similarly to "read", the write function returns -1 on error. The error causes resemble those of 
"read", with the addition of writes that would exceed the maximum file size without the possibility of 
performing a partial data transfer. 

18.2.1.3 File Offset Manipulation 

#include <unistd.h> 

off_t lseek(int fd, off_t offs, int whence); 

The l seek call is used to modify the file offset associated with the descriptor fd. The semantics of 
the call depend on the value of the whence parameter. The offset is directly set to offs value if whence 
is SEEK_SET. If whence is SEEK_CUR, the file offset is set to the sum of the current offset value and offs. 
Finally, for SEEK_END the resultant offset is the length of file plus offs. Note that the file offset can be 
advanced to point beyond the end of file; the unwritten segments of the file will read as zeros until they 
are overwritten. The call returns the updated offset value (measured from the beginning of the file) in 
bytes. 

18.2. 1.4 Data Access With Explicit Offset 

#include <unistd.h> 
I 

ssize_t pread(int fd, void *buf, size_t n, off_t offs); 
ssize_t pwrite(int fd, void *buf, size_t n. off_t offs): 

The pre ad and pwri te calls provide explicit offset variants of the read and write functions. They 
save the explicit invocation of l seek when accesses at random locations in the file need to be per
formed. The value of the implicit file offset associated with the descriptor fd is not modified by the 
calls. 

18.2.1.5 File Length Adjustment 

/fi ncl ude <uni std. h> 

int ftruncate( int fd. off _t 1 en J: 
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The ftruncate function sets the length of file identified by fd to l en; the file must be opened for 
writing. The result may be the effective truncation of file length, in which case the data located at l:.llld 
after l en offset will no longer be accessible to reads or file length increase, with the appended data 
segment reading as zero-filled. The ftruncate function does not modify the value of the file pointer 
associated with the descriptor fd. 
The call returns zero on success or - 1 on error. 

18.2.1.6 Synchronization With Storage Device 

#include <unistd.h> 

int fsynciint fd): 

The fsync function transfers all data and metadata associated with the file identified by fd to the 
underlying storage device. The call blocks until all data are transferred or an error occurs. On success 
zero is returned, otherwise it is -1. 

18.2. 1. 7 File Status Query 

li~clude <fcntT,h> 
#include <sys/stat.h> 

int lstat(const char ,restrfct path, struct stat ,restrict buf); 
int fstat(tnt fd, struct stat ,~estrtct buf); 

Both calls retrieve metadata of the file system entity identified either by path (l stat) or by the 
opened file descriptor f d ( f stat) in a status structure pointed to by bu f. They return a value of zero on 
success and -1 otherwise. Individual metadata entries are stored in different fields of struct stat, 
and include among others: 

• st_size-size of file in bytes 
st_blksize-size of block used by file system in 1/0 operations 

• st_mode-file type "sand" mode; if set, bit flags S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, 
S_IROTH, and S_IWOTH identify enabled read and write access rights for user, group, and 
others in the system 

• st_uid-user ID of file owner 
• st_gid-group ID of file owner 
• st_atim-time of last file access 
• st_mtim-time of last modification of the file 
• st_ctim-last status change time. 

Code 18.1 shows an example code using a system call file interface to write a number of integers to a 
created (or truncated) file, flush it to persistent storage, and read back a smaller section of written file. 
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1 #include <stdio.h> 
2 #include <stdlib.h> 
3 #include <unistd.h> 
4 #include <sys/stat.h> 
5 #include <fcntl .h> 
6 
7 #define BUFFER_SIZE 4096 
8 #define HALF (BUFFER_SIZE/2) 
9 
10 int main(int argc, char **argv) 
12 { 
12 //initializebuffer 
13 int wbuf[BUFFER_SIZEJ, i: 
14 for ( i = 0; i < BUFFER_SIZE; i++) wbuf[i J = 2*i+l: 
15 
16 // open file, write buffer contents, and flush it to the storage 
17 // the file is accessible (read/write) only to the creator 
18 int fd = open("test_file.dat", O_WRONLY I O_CREAT I O_TRUNC, 0600): 
19 int bytes= BUFFER_SIZE*sizeof(int): 
20 if (write(fd, wbuf, bytes) !=bytes) { 
21 fpri ntf( stderr, "Error: truncated write, exiting! \n"): 
22 exit(l): 
23 
24 fsync(fd): 
25 close(fd): 
26 
27 II retrieve the second half of the file and verify its correctness 
28 int rbuf[HALFJ; 
29 fd=open("test_file.dat", O_RDONLY); 
30 bytes/= 2: 
31 if (pread(fd, rbuf, bytes, bytes)!= bytes) { 
32 fpri ntf( stderr, "Error: truncated read, exiting! \n"): 
33 exit(l): 
34 
35 close(fd): 
36 
37 for (i =0; i < HALF; i++) 
38 if (wbuf[i+HALFJ != rbuf[i J) 
39 fprintf(stderr, "Error: retrieved data is invalid!\n"); 
40 exit(2); 
41 
42 pri ntf( "Data verified. \n"): 
43 
44 return O: 
45 l 

Code 18. l. Example demonstrating the use of 1/0 system calls to create, write, and read data from a 
file. 
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18.2.2 BUFFERED FILE VO 
Buffered file access is implemented by the Unix runtime system library, l i be. It introduces additional 
data buffers in the application's address space that may improve performance if frequent operations 
involving small amounts of data are performed. The buffers and their control parameters are not 
exposed directly to the application. Whenever possible, I/O calls issued by users are satisfied by 
copying the data between the user buffer in the application and the internal library buffer, thus avoiding 
the overhead of system calls. Occasionally system calls have to be issued to access the underlying 
physical storage, but their cost is amortized by transferring large amounts of data between the OS 
kernel and library buffers either by performing read-ahead for the input stream or waiting until the 
internal buffer is sufficiently filled before handing it off to the kernel. This interface is also known as 
the streaming interface (and related file description structures as streams), since the best performance 
is achieved during sequential access. As the buffering layer is not exposed to the kernel, the newly 
written file data may not be immediately visible to other accessors of the file in the system and are also 
more likely to be lost in a system crash. 

This interface is part of the stdio.h chapter of the International Organization for Standardization 
(ISO)/International Electrotechnical Commission (IEC) C language standard [2] and is thus far more 
portable than functions based on system calls. 

18.2.2. 1 File Open and Close 

#inc1ude <stdio.h> 

FILE *fopen(const char *restrict path, canst char *restrict model: 
int fclose(FtLE *stream): 

The fopen call opens or creates a file identified by path and associates it with a stream. The first 
character of the mode argument determines the file access mode and may be one of the following: 

• "r" opens the file for reading 
• "w" creates a file or truncates the file to zero length if it already exists and opens it for writing 
• "a" creates or opens a file for write access at the end of file (append mode). 

The mode string may also contain a "+" character which enables access in update mode, or both 
reading and writing performed in any order. The other characteristics defined by the first character of 
the mode string are preserved. If the file is used in update mode, the application must ensure that input 
and output operations are separated by a seek call, or, in case of reads following writes, ffl ush. 

A successful call to fopen returns a valid stream pointer, or NULL otherwise. 
The opened streams may be closed using the f close function. The side-effect of close operation is 

propagation of the contents of data buffers to the file. Invocation of fcl ose causes the stream to be 
disassociated from the underlying file independently of return status. The function returns zero on 
success or EOF on failure. Common error causes include exceeding the file size or offset limit while 
attempting to flush the buffer contents to storage, exhausting the space available on the device, and 
receiving a signal while executing fcl ose. 
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18.2.2.2 Sequential Data Access 

#include <stdio.h> 

size~t fread(void *restrict buf, size_t size. size_t n, FILE *restrict stream); 
size_t fwrite(const void *restrict buf, size~t size, size_t n, FILE Hestrict stream); 

The fread and fwri te functions are stream equivalents of read and write calls. They attempt 
respectively to read or write an integral number of elements, n, each of size size bytes, from an 
opened stream st ream by transferring them from or to the user buffer pointed to by buf. Both functions 
return the number of elements successfully transferred. The return value may be less than n only if the 
end of the file has been encountered while reading or an error has occurred during writing. The file 
offset associated with the stream is increased by the number of bytes successfully transferred. If an 
error occurs, the value of offset for the file associated with the stream is unspecified. 

18.2.2.3 Offset Update and Query 

#include <stdio.h> 

int fseek(FILE *stream. lo~g offs. int whence); 
long ftell(FILE *Stream); 

The fseek function sets the value of the file offset for a specified stream in accordance with the 
values of offs and whence arguments. The latter can be one of SEEK_SET, SEEK_CUR, and SEEK_END; 

their interpretation is the same as for 1 seek. Upon success, fseek returns zero or -1 on error. fseek 
causes the yet-unwritten buffered data to be propagated to the underlying file. 
The ftel 1 call returns the current value of the internal file offset associated with stream stream 
measured in bytes from the start of the file. The error is indicated by -1 as a return value. Note 
that fte 11 fails if the current offset cannot be correctly stored in a variable of 1 ong type. 

18.2.2.4 Buffer Flush 

#incl~de <stdio.h> 

int fflush(FILE *stream): 

The ffl us h function forces the unwritten data stored in a buffer associated with a stream opened in 
write or update mode to be written to the underlying file. If the stream has been opened for reading, the 
call will set the offset of the underlying file to the current offset position of the stream. If the stream is a 
null pointer, the function will perform the desclibed action for all opened streams. The call returns zero 
on success and EOF on error. 
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18.2.2.5 Conversion Between Streams and File Descriptors 

#include <stdio.h> 

FILE *fdopen(int fd, const char ~mode)~ 

#tnclude <unistd.h> 

int fileno(FILE *stream): 

On occasion it may be useful to convert between streams and file descriptors to be able to invoke 
alternative interface functions. For example, the stream library does not provide any calls to force data 
propagation to the physical storage medium; this is typically handled by kernel functions. Similarly, 
switching to a buffered interface may be beneficial if large numbers of fragmented sequential 1/0 
operations are to be carried out. Thus fdopen accepts an open file descriptor and mode string whose 
meaning is the same as for the fopen call, and creates and returns a corresponding stream descriptor. 
The supplied mode argument has to be compatible with the access mode of the file referred to by the 
descriptor fd. The offset of the returned stream will be set to the same value as that of the opened file 
indicated by fd. A failed call returns a null pointer. 
The converse operation, fi l eno, extracts the descriptor of the underlying file from the specified stream 
structure, or returns - 1 to indicate an error. 

Code 18.2 presents a converted version of a program originally listed in Code 18.1 that uses a 
buffered 1/0 interface instead of system calls. While the transformation is obvious for most 1/0 
functions used, one detail is particularly noteworthy. Since the ffl ush call native to the stdio library 
can only push the contents of stream buffers to the kernel, the actual propagation of dirty data to 
storage has to be performed by a system call (fsync). To provide the file descriptor expected as an input 
argument to that call, fileno is used to retrieve it from the stream descriptor (line 21). 

1 #include <stdio.h> 
2 #include <stdlib.h> 
3 #include <unistd.h> 
4 
5 /tdefi ne BU FFER_S I Z E 4096 
6 #define HALF (BUFFER_SIZE/2) 
7 
8 int main(int argc, char **argv) 
9 { 
10 // initialize buffer 
11 int wbuf[BUFFER_SIZEJ, i; 
12 for ( i = 0; i < BUFFER_SIZE; i++) wbuf[i J = 2*i+l; 
13 
14 // open file, write buffer contents, and flush it to the storage 
15 FILE*f=fopen("test_file.dat", "w"); 
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16 si ze_t count= BUFFER_SIZE; 
17 if (fwrite(wbuf, sizeof(int), count, fl !=count) { 
18 fprintf(stderr, "Error: truncated write. exiting! \n"); 
19 exit(l); 
20 
21 fflush(f); fsync(fileno(f)); 
22 fclose(fl; 
23 
24 / / retrieve the second half of the file and verify its correctness 
25 intrbuf[HALFJ; 
26 f=fopen("test_file.dat", "r"); 
27 count /= 2; 
28 fseek(f, count*sizeof(intl, SEEK_SETl; 
29 if (fread(rbuf, sizeof(int), count, fl !=count) 
30 fprintf(stderr, "Error: truncated read, exiting! \n"); 
31 exit(l); 
33 
34 fclose(f); 
35 
36 for (i =0; i <HALF; i++l 
37 if (wbuf[i+HALFJ != rbuf[i J l { 
38 fprintf(stderr, "Error: retrieved data invalid!\n"); 
39 exit(2); 
40 
41 pri ntf( "Data verified. \n"); 
42 
43 return 0; 
44 

Code 18.2. Equivalent program to Code 18.1 that uses the streaming 1/0 interface. 

18.3 NETWORK FILE SYSTEM 
The Network File System (NFS) is one of the oldest and at the same time one of the most broadly 
deployed distributed file systems in computing installations. Originally conceived at Sun Microsystems 
in 1984, it is currently an open standard that has spurred many implementations, including several open
source versions. Its main appeal is that a regular file system with access confined to a single host can be 
"exported" to permit remote access to its contents (files, directories, links, etc.) from multiple client 
machines. There are no significant restrictions regarding the properties of the underlying file system; 
any POSIX-compliant file system can be accessed via NFS and in some cases (e.g., new technology file 
system through the Microsoft Subsystem for Unix-based Applications) even file systems with 
incompatible interfaces are available. The remote file system can be transparently mounted at any place 
in the directory hierarchy and accessed as if it was local. Earlier revisions of NFS were frequently 
described as stateless protocols, since the server did not track clients which mounted the file system or 
which files were in use. This has the benefit of easy recovery after failures: the client must only retry the 
request until the server responds, but without renegotiating the connection and causing rebuild of the 
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preexisting state or generating a new, incompatible state. While some persistent data structures had to 
be introduced to alleviate certain problems, the protocol attempts to limit the additional server-side state 
as much as possible. The NFS requests are self-contained, which makes the protocol very efficient. 

NFS services can utilize both transmission control protocol (TCP) (connection-oriented) and user 
datagram protocol (UDP) (datagram based) messages. At the heart of the protocol stack is support for 
Remote Procedure Call (RPC), which permits sending requests from clients to a remote host, invo
cation of a function local to the host, and propagation of returned data and operation status in reply 
packets. Originally based on Sun RPC implementation, it is now defined by the Open Network 
Computing (ONC) RPC specification [3]. RPC implementation must uniquely specify the procedure to 
be called on the remote end, match the response messages to original requests, and define provisions 
for authenticating the requestor to service and vice versa. It also handles errors caused by protocol and 
version mismatch, unavailability of the requested procedure on the server, and authentication failures. 
Due to the requirement to support hosts with different data type properties and byte order, an external 
data representation [4] layer is used to serialize and retrieve the call arguments and other data that are 
conveyed as packet payloads. To support RPC, port mapper services on a dedicated port 111 must be 
configured on the participating machines. ONC RPC was relicensed in 2009 to use the standard three
clause Berkeley Software Distribution license. 

The basic architecture of NFS is illustrated in Fig. 18.1. Before users are permitted to issue any data 
access requests, the remote file system has to be mounted on the client host. This is accomplished by 
the mount program parsing the name of the NFS server and asking it to provide the handle for the 
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Architecture of Network File System and its integration with other kernel components in Linux. The arrows show 
the propagation of client requests to the server and remote file system. The virtual file system (VFS) layer provides 
an implementation-independent interface to access the underlying file system(s). The NFS client relies on the 
Remote Procedure Call (RPC) service to enable transparent invocation of file system functions on a remote node 
as requested by a client. 
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remote directory. If the requested directory exists and export is permitted, the server returns its handle. 
This causes the local kernel to access the virtual file system (VFS) layer and create a virtual node 
(vnode), or translation from a symbolic path to an arbitrary accessed file system object, for the remote 
directory. Among other things, vnodes store information about whether the target object is local or 
remote. Thus the subsequent open request for the remote file issued by the user finds the parent portion 
of the file's path that translates to vnode marked as remote, retrieves the stored server address, sends 
the lookup request to the server utilizing the RPC code stubs on client and server, and creates the 
opened file entry using the retrieved file attributes provided by the server. The corresponding descriptor 
index is then returned to the user program. The lookup procedure is used since the server does not 
execute a regular open call to avoid creation of state; as a result of using lookup a specially formed 
handle is returned that uniquely identifies the file to the server. Data access, such as read operations, 
proceeds similarly, except that since the client may be permitted to cache the file data locally in newer 
NFS revisions, a local cache lookup is performed to check if the data are available locally. NFS servers 
also use a simple strategy to deal with request duplication, such as that caused by packet retransmits 
due to network errors. This applies only to nonidempotent requests, i.e., those that would fail if 
retransmitted, such as directory or file removal. The servers maintain a request replay cache in which 
all nonidempotent requests are kept for a predetermined period; finding that a newly received request's 
transaction ID, source address, and port match one already in the cache will suppress its execution and 
cause the cached reply to be reemitted. 

The first publicly released version of NFS was version 2 (NFSv2). Since it was developed in the late 
1980s, it is considered dated by today's standards. For example, NFSv2 used 32-bit signed integers for 
file offsets, practically limiting access to the first 2 GB (gigabytes) of data per file. The size of the data 
payload per packet was limited to 8 KB; this, coupled with synchronous operation in which the server 
must complete a data write before issuing a reply to the client, caused poor write throughput. While 
asynchronous operation was possible, it gave rise to silent corruption of data in certain circumstances. 
Another problem of NFSv2 was lack of data consistency enforcement across multiple clients. File 
handles in this version were 32 bytes long. 

NFSv3 was a much-improved revision of the protocol that still preserved the "stateless" design. It 
is still found in use today, although many data centers and institutions switched to the next version, 
which introduced some minimal state at the server to handle features that otherwise would have to be 
supported externally. Version 3 offered 64-bit offsets, practically removing file size limitations. The 
per-packet payloads increased to about 60 KB for UDP and typically 32 KB with TCP. A weak cache 
consistency scheme was implemented to detect changes to files made by other clients. This was 
achieved by injecting current file attributes into the server's reply to read and write requests; these 
could be used by the client to determine if its cached file data or attributes were stale. If this was the 
case, the client would discard the cached information and flush any dirty data to the server. While 
NFSv2 clients were interpreting mode flags passed to the open call directly to verify access permis
sions, NFSv3 made this a server's responsibility (using the access call), thus enabling correct access to 
file systems supporting ACLs from non-ACL-aware clients. The write performance was also improved 
by storing data sent in multiple data requests (while acknowledging each received packet) in memory 
and then committing all of them at once to disk. 

The current revision of NFS was heavily influenced by the design of the Andrew File System [5] 
and Microsoft's Common Internet File System (CIFS) [6]. NFSv4 supports operations that inherently 
require server-side state, such as file locking. The new protocol is capable of byte-range locking that is 
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lease based. Since clients may crash before releasing active locks, it forces them to stay in touch with 
the server for the duration of locked operations. Otherwise, the locks are revoked after preset timeout. 
A new approach to caching of file contents called delegation has been introduced. It permits a client to 
modify files locally in its own cache without communication with the server. Read delegation can be 
granted to multiple clients simultaneously, while write delegation may be permitted to only one client 
at a time. When a conflict is detected for the currently held delegation(s), they may be revoked using a 
callback mechanism. Version 4 improves overall response time by permitting compound RPCs, i.e., 
calls that combine several commonly executed request sequences (such as lookup, open, and read) into 
one. The security of operation and authentication has been substantially augmented through intro
duction of Kerberos 5 [7] and SPKM/LIPKEY [8]. The administrative overhead required to coordinate 
numeric user and group IDs across multiple hosts and to enforce conventional Unix permission flags is 
reduced thanks to the new ACL mechanism that interoperates with both POSIX (though not perfectly) 
and Windows ACLs, with user names expressed as strings. Finally, the NFSv4 protocol implements 
file migration and replication. 

Despite these improvements, NFS best supports session semantics, in which clients have exclusive 
access to files and the updates to them are propagated on file close (session finish). Scenarios where 
multiple applications perform modifications of a shared file, such as appending to a shared log file, will 
not achieve good performance. While the optional parallel NFS extension introduced in the minor 
revision 4.1 [9] of the standard supports rudimentary parallel access semantics, these operations are 
better left to parallel file systems, two examples of which are discussed in the next sections. 

18.4 GENERAL PARALLEL FILE SYSTEM 
The General Parallel File System (GPFS) was developed by IBM and released commercially in the late 
1990s. Its functionality has been influenced by the Tiger Shark file system [10] research project at IBM 
Almaden, oriented to provide high performance multimedia streaming. GPFS also incorporates design 
ideas from an earlier Vesta parallel file system designed by IBM [11]. It supports concurrent access 
from multiple clients to possibly multiple file system instances distributed over physical storage 
devices in the system. The storage devices can be either accessible via SAN or exported over network 
using higher-level protocols. The file placement optimizer is a feature that allows efficient GPFS 
operation in the "shared-nothing" cluster architecture frequently favored by "big data" applications. 
GPFS features data replication, providing high recoverability and availability, policy-based storage 
management, a global namespace that permits shared file access across different GPFS instances 
(called GPFS clusters) on wide area networks (WANs), and standard (including POSIX) file interfaces 
that support conventional OS file system utilities as well as execution of unmodified applications. 
Similarly to NFS, the latter is accomplished through kernel extensions that inject GPFS functionality 
into the VFS layer, making it appear to the kernel as another natively supported file system. The high 
level of performance is achieved by spreading data accesses across multiple storage devices (to obtain 
high aggregate data bandwidth), load balancing to eliminate storage hotspots, efficient support for 
concurrent reads and writes from multiple clients (even to the same files), a sophisticated token 
management system as a basis for distributed lock management and file data consistency, intelligent 
prefetching of file data recognizing sequential (forward and reverse) and various forms of strided 1/0 
patterns, and the ability to specify multiple networks for communication between GPFS daemons. 
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Table 18.1 Selected Operational Parameter Limits of the Current 
Version of GPFS 

Pal'.alUe~ Design Lia;nit . Tested Yalne 

Number of joined nodes per cluster 16,384 9,620 

Number of disks per cluster 2,048 Unknown 

File size 299 bytes Approximately 18 PB 

Number of files per file system 264 9,000,000,000 

GPFS implementation of journaling (I/0 transaction logging) improves the chances of recovery after 
system crashes. The architectural limits of the main operational parameters listed in Table 18.1 give an 
idea of the extent of scaling supported by GPFS. The most recent revision, GPFS v4.2, is available for 
AIX (Power processor), Windows, and Linux OS (x86 series processors). Since 2015 the IBM GPFS 
brand has been known as IBM Spectrum Scale. 

The basic architecture of GPFS is illustrated in Fig. 18.2. The diagram shows two configurations, 
one with 1/0 nodes resembling a traditional network attached storage arrangement and separated from 
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Some of the possible deployment configurations of GPFS: a network attached storage pool servicing a collection 
of client compute nodes on the left (GPFS cluster I), and a server group managing SAN devices based on 
redundant array of independent disks on the right (GPFS cluster 2). Both clusters may communicate thanks to the 
shared WAN connection. Physical storage in both installations is abstracted through the Network Shared Disk 
(NSD) protocol. The core file system functionality is provided by the GPFS daemon, mmfsd, distributed across 
multiple computational resources in the system. 
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the compute nodes, and a second with nodes that provide storage server capabilities while also 
permitting client applications to run. The second configuration transparently integrates a SAN storage 
pool which may offer enhanced resilience in case of either disk or network link failures through 
redundant links exposed by the SAN fabric. Other configurations are also possible. Both GPFS in
stances (clusters) may interact thanks to the WAN connection. The storage devices in GPFS in
stallations are abstracted via the Network Shared Disk (NSD) protocol. They provide cluster-wide 
naming and high-bandwidth access to disk data for all clients that have no physical access to the 
underlying storage. NSD servers are started on the storage-equipped nodes, thus exposing virtual 
storage connections to other NSD components. For robust resilience, each NSD component may be 
associated with up to eight NSD servers: if one server fails, the next one in the list takes over. Older 
revisions of GPFS executing on the IBM SP series of machines provided an analogous service using 
virtual shared disk entities that communicated using a proprietary IBM interconnect. The current 
NSDs relax this constraint to permit other network types, but still require that a high-speed network is 
present. 

GPFS daemons (denoted mmfsd in the figure) implement the core functionality ofGPFS, including 
support for all I/0 operations and data buffer management. They are instantiated as multithreaded 
processes with a separate group of dedicated threads for high-priority requests. Multiple daemons may 
communicate with each other to coordinate changes in configuration and recovery, and to synchronize 
concurrent updates to the same data. GPFS daemons are responsible for allocation of disk space 
required by newly created files and when existing files need to be extended; management of di
rectories, including creation of new directories, updating the contents of existing directories, and 
identification of directories with pending I/0 operations; lock management to protect the integrity of 
both file data and metadata; starting the related I/0 operations; and quota accounting. To optimize 
performance, the daemons take advantage of pagepool, a pinned memory region that contains data and 
metadata of selected files. It is used to support frequent writes that may be overlapped with the 
execution of applications and data that are frequently reused (but fit into pagepool), and to provide 
buffer space for data prefetch, thus accelerating the performance of large sequential reads. Nonpinned 
memory may be allocated from the kernel heap and is primarily used to hold control structures and 
vnode information related to in-kernel aspects of file system management. The in-daemon shared 
memory is used as inode cache (inodes, short for index-nodes, are internal data structures used by the 
file system to control file layout) and stat cache that contains a subset of attributes of the most recently 
accessed files and directories. The daemons may also allocate internal nonshared memory segments to 
support operation of file system manager functions (including token management). 

The file system manager (one per file system, but possibly distributed across multiple nodes), 
which may run on a dedicated node or as part of a regular client node, supervises the operation of all 
nodes using the file system. It provides services oriented on file system configuration (expanding the 
storage pool, performing file system repairs, and adjustment of disk availability), storage space 
allocation, token management, and quota management. Token management is critical to concurrent 
operations performed on shared GPFS files. If the file system manager executes on multiple nodes, the 
load is distributed across all participating token management servers. Token services issue tokens that 
temporarily grant file access rights (read and write of file data and metadata) to token holders. This 
locking is done per byte range, thus permitting simultaneous read accesses to some portions of a file 
while enforcing a rigorous order of updates on portions of file that are targeted by writes without 
explicit serialization of all requests. Interaction with the token server happens the first time a node 
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requests access to a file. After having been granted a read or write token, the client may perform 
compatible data accesses without further contact with the token manager. If the token server detects a 
conflicting access, it provides a list of all nodes holding tokens to the requested byte range. To avoid 
blocking the token server, it is the requesting client's responsibility to get the current token holders to 
relinquish them. As this must potentially wait for release of locks held on file, often the related pending 
l/0 operations must be completed. 

Each GPFS cluster has one associated cluster manager, elected by a quorum of the nodes 
constituting the cluster. The cluster manager keeps track of disk leases, monitors node failures and 
supervises recovery processes while ensuring that the necessary quorum of nodes exists to support the 
continued operation of the cluster, propagates configuration changes to remote nodes, chooses the file 
system manager node(s), and performs user identifier mapping from remote nodes . 

Since concurrent write operations are often the source of conflicts when performed on shared files, 
it is educational to analyze the involved data and metadata paths (Fig. 18.3). A dirty block of data must 
be written when a system command requesting a flush of buffered data to storage has been invoked, a 
write in synchronous mode was called, the system needs to reuse buffers currently occupied by dirty 
data, a file token has been revoked, or the last byte of file block accessed sequentially has been written. 
Each open file in GPFS is associated with precisely one metanode, which is used Lo maintain metadata 
integrity. Typically the metanode is located on the host that had the file open for the longest period of 
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Data and control paths for execution of a remote wri te in GPFS. 
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time and functions as a synchronization point for file metadata for all nodes in the system. Both data 
and metadata are flushed as described in the following three scenarios of varying complexity: 

1. Buffer available in client memory. This occurs if the buffer has been created for a previous write 
and the write token is still available. The contents of the application buffer are copied to the GPFS 
data buffer; at this point the write is complete from the application perspective. If the buffer flush 
conditions listed above are fulfilled, the daemon schedules an asynchronous buffer write to 
storage using one of its threads. This permits the write to overlap with application execution. The 
GPFS worker thread calls the NSD layer, causing the request to be broken up into chunks fitting 
message payloads and copied to the communication buffers in send pool. The list of destination 
I/O nodes is derived from file metadata. The data are transferred over the interconnect to the NSD 
server receive buffer pool. As soon as all packets are received, a buddy buffer is allocated to 
reassemble the write buffer contents. At this stage the related receive buffers in the NSD server 
are released and disk write is initiated. The latter may be delayed by a preconfigured time to 
permit coalescing with other neighboring write requests. Since the buddy buffer may not always 
be available, the request could remain queued with data stored in receive pool buffers until 
sufficient space is provided. 

2. Write token locally available, but data buffer absent. This may happen if the buffer has been 
reused due to recent I/O activity or a previous write did not "touch" all data locations for which it 
obtained a token. Kernel code suspends the calling thread and instructs a daemon thread to obtain 
a buffer. If the write range covers the whole block (full overwrite), a new empty buffer is 
allocated. If the write affects a portion of a block and the remainder of the block exists, the 
remaining portion of the block is fetched and placed in the buffer. The call then proceeds as 
described in (1). 

3. Both data buffer and token are unavailable. First a token for a specific byte range must be 
acquired. Based on the discovered I/O pattern, the byte range may be larger than the one requested 
by the application in anticipation offuture requests, as long as no conflicts are detected with other 
accessors of the file. The token management may be forced to revoke the token currently owned 
by another node. After the token is obtained, processing progresses as delineated in (2). 

As can be seen, parallel file systems provide much richer semantics and are more flexible in terms 
of supported file access patterns and data sharing than distributed file systems. Their algorithms are 
carefully designed to avoid communication and synchronization hotspots while maintaining high
bandwidth access to file data whenever possible, providing stronger guarantees of data integrity, 
and supporting the necessary level of fault resilience and availability. Of the top 10 machines on the 
Top 500 list, Cori at National Energy Research Scientific Computing Center, Mira at Argonne National 
Laboratory, and Piz Daint at Centro Svizzero di Calcolo Scientifico (Switzerland) use GPFS to manage 
respectively 30, 27, and 5.8 PB of storage. 

18.5 LUSTRE FILE SYSTEM 
Lustre is a parallel distributed file system originally released in 2003. Its name is derived from 
"Linux" and "clusters", indicating the intended target platforms for its deployment. Its development 
was initially carried out under the Department of Energy Accelerated Strategic Computing Initiative 
(ASCI) Path Forward [12]. Corporate ownership of the project and its code base changed hands 
several times and has included Sun Microsystems, Oracle, Whamcloud, and, since 2012, Intel. 
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Lustre provides a POSIX-compliant file system interface with atomic semantic support for most 
operations, thus avoiding data and metadata inconsistencies. It design is highly scalable, making it a 
preferred file system for HPC by supporting multiple tens of thousands clients, petabytes of storage, 
and 1/0 bandwidths reaching multiple hundreds of GB/s. Deployment of multiple clusters is 
simplified with Lustre, as it permits aggregation of both capacity and performance of multiple 
storage subsystems. The storage space and 1/0 throughput can be also dynamically increased by 
providing additional storage servers as needed. Lustre takes advantage of high performance 
networking infrastructure, such as low-latency communication and remote direct memory access 
(ROMA) over lnfiniBand with OpenFabrics Enterprise Distribution (OFED) [13]. Lustre software 
enables the bridging of multiple ROMA networks and provides integrated network diagnostics. The 
file system supports high availability with multiple failover modes using shared storage partitions 
and interfacing with different high-availability managers. This implements automatic failovers with 
no single point of failure, as well as transparent application recovery. The chances of file system 
corruption are minimized through a multiple-mount protection feature. Particularly noteworthy is 
the online distributed file system check (LFSCK) that is capable of operating while the file system 
is in use to restore data consistency after a major file system error is detected. Security of operation is 
enforced by permitting TCP connections only on privileged ports and application of ACLs and 
extended attributes based on POSIX ACLs with custom additions, such as root squash (reduction of 
effective access rights for the remote superuser). Lustre uses a distributed lock manager (LDLM) to 
permit file locking with byte granularity as well as fine-grain metadata locks to permit concurrent 
operation of multiple clients on the same files and directories. File striping across physical storage 
devices permits the user to specify the layout parameters, which may be flexibly arranged at the level 
of a whole file system, a single directory, or individual files to match the needs of specific appli
cations. Lustre is highly interoperable; it supports a dedicated MPI-IO abstract-device interface for 
1/0 layer to provide optimized parallel 1/0 to message-passing interface (MPI) applications and 
permits exports of its files through commonly used distributed file system interfaces such as NFS and 
CIFS, enabling access to its files from non-Unix hosts. The Lustre code base compiles and runs on a 
variety of hardware platforms, including machines of different endianness and native data sizes, and 
transparently interfaces with older revisions of file system software. Lustre software is open sourced 
under the GNU public license 2.0 license; its current major revision is v2.8. Many of these features 
account for the popularity of Lustre deployment in HPC systems: as of November 2016 half the 10 
fastest supercomputers on the Top 500 list (Tianhe 2, Titan, Sequoia, Oakforest-PACS, and Trinity) 
integrated Lustre as the main storage management layer. 

A schematic view of Lustre architecture is shown in Fig. 18.4. The primary functional components 
of a Lustre system are as follows: 

• Management server (MGS) is responsible for storing, managing, and supplying the configuration 
information to other Lustre components. It interacts with all targets (configuration providers) and 
clients (configuration accessors) in the system. While MGS typically works using a dedicated set 
of storage devices for independent operation, the storage could also share the physical devices 
present in the metadata server pool. 

• Management target (MGT) provides storage space for the management server. Its 
space requirements rarely exceed 100 MB even in large-scale Lustre installations. While 
the performance of the underlying storage is not critical for the operation of the system 
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(seeks and writes of small amounts of data), its reliability is paramount. MGT may leverage 
redundant storage structures such as RAID I to provide it. Multiple MDTs per system are 
supported. 

• Metadata server (MDS) that is responsible for management of the names and directory contents. 
The namespace in Lustre may be distributed across multiple MDSs. Each MDS also handles 
network requests for one or more MDTs. MDS failovers are supported: a standby MDS assumes 
the functions of a failed active MDS. 

• Metadata target (MDT) that stores various metadata, including directories, file names, 
permissions, and file layout information on physical storage associated with an MDS. There is 
nominally one MDT per file system, although recent revisions support multiple MDTs under the 
distributed namespace environment (DNE). The primary MDT comprises the root of the file 
system, while the additional MDSs with their own attached MDTs may hold various 
subdirectories. It is also possible to distribute the contents of a single directory across multiple 
MDT nodes, thus creating a striped directory. MDT storage usually accounts for 1 %-2% of the 
total file system capacity. 
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• Object storage server (OSS) that services file data I/0 requests and other network requests for one 
or more object storage target (OST). A common Lustre configuration involves an MDT on a 
dedicated hardware node, two or more OSTs on every OSS node, and an I/0 client on every 
compute node of a system. The ratio of OSTs to OSSs typically varies between two and eight. 

• Object storage target (OST) that manages physical storage for user file contents. The file data are 
contained in one or more objects, each of which is under control of a specific separate OST. The 
number of objects a file is divided into is configurable by the user. Single OST capacity is limited 
to 128 TB (256 TB on ZFS, an advanced file system originally developed at Sun Microsystems); 
the total file system capacity is the sum of capacities of all OSTs. 

• Clients that execute the applications generating the I/0 data. They may include conventional 
compute nodes, but also loosely associated desktops, workstations, or visualization servers that 
are permitted to mount the file system. 

• lustre Networking (LNET) that provides the communication infrastructure for the whole system. 
Its main features include concurrent access to and support of many common network types (IB/ 
OFED, TCP variants, including GigE, lOGigE, and IPoIB, Cray Seastar, Myrinet MX, Rapid 
Array, and Quadrics Elan), RDMA (if available), routing between individual network segments, 
high availability, and recovery from network errors. LNET strives to achieve end-to-end 
communication bandwidth nearing the available peak bandwidth. Its software includes the 
higher-level code module and the underlying network driver (LND). The LNET layer is 
connectionless and asynchronous, leaving the verification of data transmission status to the 
connection-oriented LND. Bonding of multiple network interfaces for increased bandwidth is 
also supported. 

The high-level organization of a file in Lustre is depicted in Fig. 18.5. The files are referred to by 
128-bit file identifiers (FIDs) that consist of a unique 64-bit sequence number, a 32-bit object ID (OID), 
and a 32-bit version number. FID identifies an object in MDT whose extended attributes encode the 
layout information: one or more pointers to OST objects that contain the file data. Since the objects must 
be stored on different OSTs, the data are striped in a round-robin fashion across all OSTs ( obviously, no 
striping is applied if only one OST is associated with the file). The number of stripes, stripe size, and 
target OSTs are user configurable. The default stripe count is one and the default stripe size is 1 MB. 
There may be up to 2000 objects per file. Since the client performing data I/0 operations on a file must 
first fetch the layout extended attribute data from the MDT object identified by FID, further data 
transfers can be arranged directly between the client node and the related OSS nodes storing the file 
data. 

Efficient synchronization of file operations in parallel file systems is a key factor in achieving a 
good level of performance. Lustre resources are associated with locks that may be local or global. 
LDLM is based on a locking algorithm utilized by VAX DLM [14]. To give the reader an idea of the 
complexity, a brief overview of the involved data structures and algorithms is presented below. 

LDLM locks may exist in one of six modes. 

• Exclusive mode requested by MDS before a new file is created. 
• Protective Write mode issued by the OST to the client requesting a write Jock. 
• Protective Read mode granted by the OST to clients that need to read or execute files. 
• Concurrent Write mode issued by the MDS to clients requesting write lock when opening a file. 
• Concurrent Read mode associated with intermediate path traversal during path lookups and 

effected by the related MDS. 
• Null mode. 
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In addition, Lustre defines four types of locks: 

• extent lock for OST data protection 
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• flock required to suppott user space requests for file locking 
• inode bit lock to protect metadata attributes 
• plain lock, usually unused. 

Lock management supports three types of callback functions. Blocking callback is invoked when a 
client requests a lock conflicting with the cuITent one, giving the client an opportunity to renounce the 
lock or the lock is forcibly revoked. Completion callback is called when a requested lock is granted or a 
lock is converted to a different mode. Finally, a glimpse callback is used to provide certain information 
about file without releasing the held lock. LDLM also uses the concepts of namespace and intent. Each 
service in Lustre, such as OST, MDS, and MOS, is associated with a namespace. In turn, the intent is a 
small amount of data indicating that special processing must be invoked during the lock processing 
operation. Each namespace has potentially several different intent handlers to support that. The two 
fundamental operations, lock request and release, are controlled by precisely defined algorithms. Thus 
to obtain a lock, the following actions must occur. 

1. A client locking service determines if the lock belongs to a local namespace. If it is local, the 
algorithm advances to (7). 
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2. A lock enqueue RPC is sent to LDLM on the appropriate server. An initial ungranted lock is 
created, with some fields initialized from data supplied by the request. 

3. The enqueue step inspects if there is an intent set on the lock. If not, it invokes the policy function 
associated with the lock type. The policy function determines whether the lock may be granted or 
not. If the intent on the lock is set, the algorithm proceeds to (6). 

4. The server then checks if there are any conflicts with already granted and waiting locks for the 
resource specified by the request. If no conflict is found, the lock is granted. A completion 
callback is invoked and the lock is acquired. Otherwise, the processing continues in (5). 

5. A blocking callback is invoked for every conflicting lock. The lock may be held at the client, in 
which case an RPC request is emitted; otherwise, a flag is set at the server. After all the locks are 
scanned, the processed lock request is entered on the waiting list and the lock is returned to the 
client with its status set to "blocked". 

6. After the lock intent is set, an appropriate intent handler is called. LDLM returns the result of the 
call without further interpretation. 

7. Local locks are created and then enqueued to check if they can be granted as described above. This 
process continues without any RPCs. If the lock can be granted or errors are detected, the control 
returns immediately with the lock status correctly marked. Otherwise, the lock request is blocked. 

Typically, locks in Lustre are held indefinitely. Lock release is initiated when another process 
requests a conflicting lock, a blocking callback is issued by LDLM, or a blocking callback is invoked 
on the client node. The lock cancellation proceeds as follows. 

1. If the sum of active readers and writers is nonzero, it means that another process on the same 
client is using the lock and no action is taken. The lock owner(s) will eventually release it. 

2. There are no readers or writers. A blocking callback is invoked with a flag indicating lock 
revocation. 

3. If the lock is not in the local namespace, an RPC call is sent to the client containing a cancellation 
request. Otherwise, local cancellation is performed that takes the lock off all the lists. 

4. All waiting locks on the resource are reevaluated. 
5. If any of the waiting locks can be granted, they are moved to the granted lock list and a completion 

callback is invoked. 

One of Lustre's strengths is fault management, which can be applied to most of its functional 
components. Two basic failover modes are available: active/passive and active/active. In the first 
configuration the active server processes client requests and provides resources, while the passive 
server stays idle. In case of active node failure, the passive server becomes active and takes over. The 
second scenario involves multiple active servers, each providing a subset of resources. If one fails, the 
remaining ones take over the failed node's resources. A variation of these schemes is also used to 
provide better utilization of system resources. For example, an idle server in active/passive configu
ration for one Lustre cluster may at the same time be the active server for another file system. 

An overview of various operational parameters of the Lustre file system is presented in Table 18.2. 
Since the underlying file system can be selected by the system administrator as either /dis/ifs (a 
modified and patched revision of the Linux ext4 journaling file system) or ZFS, some of the absolute 
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Table 18.2 Select Operational Parameters of Lustre 

' rar,metet ' ' .;;, 

' ~~~~~,(.f,:),· ,,, ,, .. ~~~.{~ ···:> ,••. 
,, 

t< '-, 

~ ;:. : ,,'" 

Maximum file size 31.25 PB (ldiskfs) Multiple TB 
16 TB (32-bit ldiskfs) 
8EB (ZFS) 

Maximum file count 32 billion (ldiskfs) 2 billion 
256 trillion (ZFS) 

Maximum storage space 512 PB (ldiskfs) 55 PB 
I EB (ZFS) 

Number of clients <131,072 50,000+ 

Single-client I/0 performance 90% network bandwidth 2 GB/s data I/0 
1000 metadata ops/s 

Aggregate-client 1/0 10 TB/s 2.5 TB/s 
performance 

OSS count I 000 OSSs, up to 4000 OSTs 450 OSSs with 1000 4 TB OSTs 
192 OSSs with 1344 8 TB OSTs 
768 OSSs with 768 72 TB OSTs 

Single OSS performance 10 GB/s 6+ GB/s 

Aggregate OSS performance 10 TB/s 2.5 TB/s 

MDS count <256 MDTs, :S256 MDSs 1 primary and 1 backup 

MDS performance 50,000 create ops/s 15,000 create ops/s 
200,000 stat ops/s 50,000 stat ops/s 

Exce1ptedfrom Intel Corp., Lustre Software Release 2.x Operations Manual [Online/. Available: http://doc.lustre.org/lustre_manual. 
pdf 

limits listed depend on the file system type used. As Lustre continues to be deployed in installations of 
increasing scales and capacities, some of the listed configurations tested in production may be out of 
date by the time of publication. 

18.6 SUMMARY AND OUTCOMES OF CHAPTER 18 
• File systems provide an abstraction necessary to manage the information kept on mass-storage 

devices. They organize the information in a hierarchical layout, provide human-accessible 
namespace to identify individual stored entities uniquely, maintain attributes describing access 
permissions and various properties of individual entries, verify the consistency of stored 
information, provide fault-recovery mechanisms, and expose the user interface for access. File 
systems achieve these by defining and manipulating additional metadata that describes the layout 
and various properties of the stored raw data. 

• Distributed file systems are file systems that are capable of handling 1/0 requests issued by 
multiple clients over the network. To manage the demands of scaling, they frequently span 
multiple server nodes while providing a "single view" access to the stored data and related 
names pace. 
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• Parallel file systems are distributed file systems that are specifically optimized to support 
concurrent file access efficiently from parallel applications. In particular, they implement 
synchronization mechanisms that permit the distributed application to operate on different 
sections of the same file or enable strided access for individual clients accessing the same file 
while preserving the consistency of data and metadata for multiple accessors. 

• The POSIX standard defines a local file access interface in Unix environments. Two modes of 
access are commonly supported by the runtime library: one based on system calls and another on 
buffered file 1/0 (streams). 

• NFS is one of the most frequently deployed distributed file systems in small and medium cluster 
environments. It permits the use of the POSIX interface and implements session semantics in 
which the clients most efficiently operate on disjoint files with updates propagated at the end 
session (file close). The available features and performance strongly depend on the installed NFS 
code revision and configuration. 

• GPFS is a high performance proprietary parallel file system designed for scalability and high
bandwidth concurrent file access. It implements token-based Jocking of arbitrary shared file 
sections and synchronization techniques that identify concurrent file access conflicts and 
guarantee consistency of the affected data and metadata. 

• Lustre is a high performance open-source parallel file system supporting multiple network types 
and host architectures. Due to its good performance, permissive licensing, and extensive list of 
features (dynamic expandability, multiple network support, RDMA, failover for multiple 
components, sophisticated distributed file lock management, POSIX and MPI-IO interfaces, NFS 
and CIFS export support, and many others), it is frequently used in large-scale cluster 
installations. 

18.7 QUESTIONS AND PROBLEMS 
1. Summarize the main challenges of creating efficient persistent data storage for an HPC system. 

How may they be solved? 
2. What are the differences between system-call-based and streaming 1/0 interfaces in POSIX? 

What are their implications for file access performance? 
3. Write a program that saves an array of 1000 double-precision floating-point numbers to a file 

using in-memory layout and an array of 1000 structures consisting of one character and one 
double-precision number to another file. Do the sizes of the generated files match the 
estimated values based on the sizes of the involved elementary data types multiplied by array 
size? If not, what is the reason for the discrepancy? Can the inefficiency (if any) be 
eliminated? 

4. A computational scientist attempts to debug his stubbornly crashing MPI application. Due to a 
complicated sequence of events leading to the crash, he gets an idea to use a shared log file 
located on an NFS partition to store the information about the event occurrences on every node. 
When analyzing the file he begins to suspect that not all captured data were actually written to 
file. What may be the reason for that? How would you improve the reliability of logging the 
precrash data? 
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5. Consider the following code that prints array elements to a file and reads them back. 

1 #include <stdio.h> 
2 
3 #define SIZE 512 
4 #define FILENAME "myfile" 
5 
6 int main() I 

double data[SIZEJ, iodata[SIZEJ; 
8 for (int i =O: i < SIZE; i++) data[i] = i+l/(double)(i+l); 
9 
10 FILhf=fopen(FILENAME, "w"); 

11 for (int i =O: i < SIZE; i++) fprintf(f, "%1f\n", data[i]); 
12 fclose(f); 
13 
14 f=fopen(FILENAME, "r"); 
15 for (inti= 0: i < SIZE; i++) I 
16 fscanf( f, "%lf", &i odata [ i J); 
17 if (data[iJ != iodata[i]l 
18 printf("ERROR: item%dshouldbe%1f, got%1f\n", i, data[i], iodata[i]); 
19 
20 fclose(f); 
21 return O; 
22 

a. Is running the code going to produce any error messages? Why? Verify your answer by 
compiling and executing the program. 

b. How would you fix the encountered problem(s)? 
C. Based on this experience, would you recommend saving floating-point data as text? Justify 

your answer. 
6. Contrast distributed and parallel file systems. Which solutions provided by the latter improve the 

efficiency of concurrent accesses to shared files? 
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19.1 INTRODUCTION 
MapReduce is a simple programming model for enabling distributed computations, including data 
processing on very large input datasets, in a highly scalable and fault-tolerant way. While the concept 
of MapReduce was motivated initially by functional programming languages like LISP with its map 
and reduce primitives, it is also closely related to the message-passing interface (MPI) concepts of 
scatter and reduce for distributed-memory architectures. However, unlike in MPI programming, the 
details of the underlying parallelization in MapReduce are hidden from the programmer, making it 
easier to use. MapReduce algorithms have been shown to scale from single servers all the way to 
hundreds of thousands of cores while at the same time delivering transparent fault tolerance to the end 
user. MapReduce was developed by Google [2], and the programming model has since been adopted 
by many software frameworks, libraries, and end users. Apache's open-source Hadoop framework [1] 
is one of several libraries which support MapReduce, and is used for the examples in this chapter. 

19.2 MAP AND REDUCE 
A map is a functional that executes a supplied function on all members of an input list. Because the 
map function only requires the input data member to execute, it can be run in parallel, providing a 
massive potential speed-up. The map function itself returns a set of two linked data items: a key for 
lookup and a value. The key can either be the output from the function or the input data element itself. 

High Pel'formance Computing. hllps://doi.org/J0.1016/8978-0-12•420158-3.00019-8 
Copyright© 2018 Elsevier inc. Ail rights reserved. 
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For example, suppose the map function counts the number of characters of an input word, returning as 
a key the word length and returning as a value the input word. So if the word "computing" is supplied 
to the map function, it would return the key-value pair of "9:computing" where the key is "9", the 
length of the word "computing", and the corresponding value to the key is the input data element word, 
"computing". The keys from the output are then grouped by key after executing the map function on 
each data element. For example, if the same map function were executed on each word in the sentence 
"This is a book about high performance computing", the result of the map portion in MapReduce 
would be the groupings shown in Table 19.1. 

The results of the map function and associated groupings are then passed to the reduce function. 
The reduce function takes as an argument a key and all values associated with that key. Like the map 
function, the reduce function can also be executed independently on each key and grouping of values, 
thereby enabling embarrassingly parallel execution. For example, suppose a crossword-puzzle 
designer would like to know the number of words with a length of four characters that occur in a 
large-input dataset. The reduce function in this case would simply count the number of grouped values 
associated with each key. Using the previous map function example, the output from the reduction 
function in this case would be as shown in Table 19.2. 

In this example, there are three words with a length of four characters and the rest are all 
of length one. 

From the user's perspective, some of the principal strengths of the MapReduce programming 
model are that the parallelization and fault-tolerance details of the MapReduce implementation are 
hidden from the user and only the map and reduce functions need to be supplied. Map and reduce 
functions themselves vary widely in complexity. The following subsections give some additional 
examples of map and reduce functions. 

Table 19.1 Sample MapReduce Map 
Function Groupings 

Key . ·. ·GroupedV~ 

I "a" 

2 "is" 

4 "this", "book", "high" 

9 "computing" 

11 "performance" 

Table 19.2 Sample MapReduce Reduce 
Function Groupings 

Output. FtoJD Reduce. 
Key Function 

I I 

2 I 

4 3 

9 I 

11 I 
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19.2.1 WORD COUNT 
Counting the number of times each word has been used in a body of text is the canonical didactic 
example for MapReduce. The map function returns as a key a single word and the associated value 
with the key is unity. For example, the result for this map function on the famous text from Shake
speare's Hamlet, "To be or not to be-that is the question", is as shown in Table 19.3. 

Because the words "to" and "be" occur twice, the value of 1 is added to the grouped values twice 
(once per occurrence). 

The reduce function simply sums up the grouped values for each key, as illustrated in Table 19.4. 
Running this map and reduce function on the entire text of Shakespeare's Hamlet gives the word 

counts for some common words, as shown in Table 19.5. 

19.2.2 SHARED NEIGHBORS 
Finding shared neighbors in graph applications provides another good example of MapReduce 
functionality. A sample graph is shown in Fig. 19.1, where multiple vertices share the same neighbors. 
For example, in this graph vertex "O" shares a common neighbor with vertex "2"; this common 
neighbor is vertex "l". MapReduce can be used to find those shared neighbors. 

Table 19.3 Sample MapReduce Word Counts 

.,(¾~o*r1ifv~~·••.· 
"to" 1, 1 

"be" 1, 1 

"or" 

"not" 

"that" 

"is" 

"the" 

"question" 

Table 19.4 Sample MapReduce Reduce 
Function Output 

,·t~t:riit#:~#qce : · 
"to" 2 

"be" 2 

"or" 

"not" 

"that" 

"is" 

"the" 

"question" 
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Table 19.5 Sample MapReduce Word Counts 

Output ~.Jlec1u~ 
Key Function 

"but" 269 

"as" 222 

"be" 210 

"England" 21 

"Norway" 13 

FIGURE 19.1 

A small graph where the vertices share multiple neighbors. Vertices are listed as numbers (0-3) and edges are 
lower-case letters (a-e). 

In this case, the map function returns each edge of a vertex as a key. The value for each key is the 
list of all the neighboring vertices to that vertex (Table 19.6). 

This gives the group values shown in Table 19.7. 
The reduce function returns the intersection of each key's grouped values, thereby revealing shared 

neighbors for each edge (Table 19.8). 
This simple map and reduce operation reveals the shared neighbors between any two connected 

vertices. For example, vertices connect by edge "a" in Fig. 19.1 (vertices O and 1) also share two of the 
same neighbors, vertices 2 and 3. 

19.2.3 K-MEANS CLUSTERING 
K-means clustering partitions a data space into k clusters, each with a mean value. Each individual in 
the cluster is placed in the cluster closest to the cluster's mean value. K-means clustering is frequently 

Table 19.6 Values of Vertices in Fig. 19.1 

VertexO' V~rlex 1 Vertext Vertexj 
-

·~ey . Value$ Key Values Key V•ues Key Values 
a 1,2,3 a 0,2,3 e 0,1 C 0,1 

b 1,2,3 d 0,2,3 b 0,1 d 0,1 

C 1,2,3 e 0,2,3 
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Table 19.7 Grouped Values of Vertices in 
Fig. 19.1 

a 

b 

d 

· ~r~~~ v~ .. ~•. 
(1,2,3), (0,2,3) 

1,2,3), (0,1) 

(1,2,3 ), (0, I) 

(0,2,3), (0,1) 

(0,2,3), (0,1) 

Table 19.8 Shared Neighbors in Fig. 19.1 
Revealed in MapReduce 

~lly< ' i ; ·.<=rum ~ecl~ce . 

a 2,3 

b 

d 0 

0 

used in data analysis, and a simple example with five x and y value pairs to be placed into two clusters 
using the Euclidean distance function is given in Table 19.9. 

To begin the clustering, two initial cluster points are supplied: (0,0) and (1,1). Using the Euclidean 

distance measure, J(x1 - x2)
2 + (y, - yz)2

, each individual is assigned to the cluster nearest to the 

(x,y) pair, as summarized in Table 19.10. 
The initial cluster points have moved from (0,0) to (0.1,0.3) and from (1,1) to (0.8,0.85). This same 

process can be repeated until the cluster mean values stop changing or a maximum number of iterations 
is reached. 

In a MapReduce programming model, for a given (x,y) value pair the mapper iterates over each 
cluster's mean value and finds the cluster with the nearest distance to the (x,y) pair. It returns as a key 
the cluster and as a value the (x,y) pair (Table 19.11). 

Table 19.9 Example of K-Means 
Clustering 

.. ·•· .. ·,~.~~)!'~ 
(0.1,0.3) 

b (l.l,0.4) 

(0.8,0.7) 

d (l.2,1.2) 

(0.1,1.1) 
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Table 19.10 Assignment of Cluster Members 

Cluster.I 

a 

'M~an.rj, Value 

(0.1,0.3) 

Members 

b,c,d,e 

Table 19.11 MapReduce K-Means 
Clustering 

Key Grouped V'afu~ 
I (0.1,0.3) 

2 (1.1,0.4), (0.8,0.7), 
(1.2,1.2), (0.1,1.1) 

Clusterl 

•M~.r~Value 

(0.8,0.85) 

The reducer receives a list of (x,y) value pairs for each cluster and computes the new cluster mean 
value (Table 19.12). 

This MapReduce operation can be performed iteratively until no more updates occur or a 
maximum number of iterations is reached. 

19.3 DISTRIBUTED COMPUTATION 
Distributed processing in MapReduce may be summarized in three phases: a map phase, a shuffle 
phase, and a reduce phase. These phases can be overlapped to some degree to improve efficiency. The 
map step applies the map function to data local to the processor. Input data for MapReduce is 
frequently stored in a distributed file system where data blocks are already shared between different 
linked storage devices, with some redundancy for fault tolerance. The map function does not operate 
on redundant copies. The shuffle step relocates the map output data based on the output key from the 
map function so that map output is grouped by output key. The reduce step applies the reduce function 
to the output data from the map function. 

The map functions, like the reduce functions, can be executed concurrently giving a significant 
potential for speedup. However, efficient distributed MapReduce execution generally requires mini
mizing the movement of data. For example, it is more efficient for the nodes performing map functions 
to execute the map on blocks local to the node. Similarly, in the shuffle and reduce phases, the 
movement of data can be reduced by executing reduce functions on nodes where the map output data 
already resides. 

Table 19.12 MapReduce Cluster Mean 
Values 

Output :From Reduce 
Key Function 

I (0.1,0.3) 

2 (0.8.0.85) 
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19.4 HADOOP 
The Hadoop project by Apache [1] is an open-source implementation of the MapReduce programming 
model. It provides a distributed file system, job scheduling and resource management tools, including 
YARN (Yet Another Resource Negotiator), and MapReduce programming support. Historically, 
MapReduce applications in Hadoop are programmed using Java, although support for C++, Python, 
and a few other languages is also available. 

The Hadoop distributed file system (HDFS) enables distributed file access across many linked 
storage devices in an easy way. It was motivated by the Google file system, which was instrumental in 
the original MapReduce programming model development [3]. Data in the distributed Hadoop file 
system is broken into blocks and distributed across the linked storage devices on the system. Blocks 
are generally replicated at least once to guard against storage or machine failures depending upon the 
fault-tolerance properties used when configuring Hadoop. File system commands are run on the 
Hadoop distributed file system using the hdfs dfs command. A summary of the most commonly used 
file system commands for hdfs dfs are listed in Table 19.13. 

As an example, a text file of Shakespeare's Hamlet (hamlet.txt) stored in the local file system can be 
placed in HDFS as follows: 

I hdfs Ms -put hamlet. txt /hamlet 

The contents of hdfs can be queried using the "ls" command on the "f' directory: 

I hdfs Ms -1 s / I 
This file can now be used in conjunction with a MapReduce operation inside Hadoop. 
As an example MapReduce application, the word count MapReduce from Section 19.2.1 is 

implemented in Hadoop using the Java programming language in Fig. 19.2. The mapper function, 
which returns a single word for the key and unity for a value, is illustrated in lines 69-82. The reducer, 
which returns the single word as a key and the sum of the grouped values provided from the mapper as 
a value, is illustrated in lines 87-98. 

Table 19.13 Select Hadoop Distributed File System Commands 

S·"'.·.el.·;. ..... mm.~.••·.·.·c;.i'!, ·_.dd_.• .. •
8
·i,o·,•·· ~ ~tiuted FUe:-~#eia \, ,/i ..,., .. • ..... . -~ ;~~~n ,: .. 

hdfs dfs -cat <filename> Copies the specified filename to stdout. 

hdfs dfs -ls HDFS equivalent of Linux "ls" command. 

hdfs dfs -mkdir <directorv> HDFS equivalent of Linux "mkdir" command 

hdfs dfs -put <local files> ... <destination> Copy the source files to the destination path in HDFS 

hdfs dfs -get <src> <destination> Copy the source file to the local file system destination 

hdfs dfs -rm <filenames> Delete the specified files; only deletes files 

hdfs dfs -rmr <directory name> Delete the specified directory and all content 
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import java.io.IOException; 

II need StringTokenizer for space delimited input 
import java.util.StringTokenizer; 

II Needed for filesystem path (lines 49-50) 
import org.apache.hadoop.fs.Path; 

1 II Needed for providing job configuration 
, , 

1
, -, ,, import org. apache. hadoop. conf. Configuration; 

I[! 

II Needed for Hadoop data wrappers like Text and IntWritable 
import org.apache.hadoop.io.*; 

I I MapReduce 
, :, I import org. apache. hadoop. map reduce. Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 
'1,, ! , import org. apache. hadoop. map reduce. Job; 

import org.apache.hadoop.mapreduce.lib.input.FileinputFormat; 
r, import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

public class HamletCounter { 

public static void main(String[] args) throws Exception { 

II check that two arguments are supplied: the input data and output 
location 

if (args.length != ') 
{ 

System.out .println ("'!.'c,kes t,,,,:, argum,~nvc: 
System.exit U'); 

II Set up the job configuration 
Configuration config = new Configuration(); 

II Give a name to the job: 
Job job new Job(config, 

"Counting Hamlet" 
__ untino Hamlet"); 

II Use Hadoop data types: in both the mapper and the reducer 
II the key is a string and the value is an int. The Hadoop 
II equivalents to string and int are Text and IntWritable, respectively. 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(IntWritable.class); 

II Give the job the names of the map and reduce classes 
job.setReducerClass(reducing.class); 
job.setMapperClass(mapping.class); 

FileinputFormat.addinputPath(job, new Path(args[ ])) ; 
FileOutputFormat.setOutputPath(job, new Path(args[.])); 

II start 
job.waitForCompletion(true); 

FIGURE 19.2 

Example code, HamletCounter.java, using Hadoop. The mapper is in lines 69-82 and returns each word as a key 
and unity as a value. The reducer is in lines 87-98 and returns the word as a key and the sum of the list of values it 
receives from the reducer. 
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public static class mapping extends Mapper<LongWritable, Text, Text, 
IntWritable> 

587 

II IntWritable is the Hadoop version of an integer optimized for Hadoop 
private final static IntWritable unity= new IntWritable(l); 

II Usage of Hadoop data wrappers was set in lines 42-43 
II Use Text instead of Java's String class for output 
private Text single_word = new Text(); 

II The Hadoop MapReduce framework calls map(Object, Object, Context) 
II The key is a LongWritable -- Hadoop's version of long 
II The value is a Text -- Hadoop's version of String 
II Context objects are used for writing output pairs from mappers and 

reducers 

:-: ! 

public void map(LongWritable key, Text val, Context output) 
throws IOException, InterruptedException 

II Converting the input line of text from Hadoop's Text to a String 
String text line= val.toString(); 

II Split the line into space delimited 
StringTokenizer space delimited= new StringTokenizer(text line); 
while (space delimited.hasMoreTokens()) { -

single_word.set(space_delimited.nextToken()); 

II Here we write a single word as the key and give it a value of unity 
output.write(single_word, unity); 

public static class reducing extends Reducer<Text, IntWritable, Text, 
IntWritable> 

public void reduce(Text key, Iterable<IntWritable> grouped_values, Context 
output) 

throws IOException, 
InterruptedException 

int sum_of_times word is used= 
for (IntWritable-single ;alue : grouped values) { 

sum_of_times_word_is_~sed += single_value.get(); 

II Hadoop data wrappers are set to be used in lines 42-43 so the output 
can't be an int; 

II make it an IntWritable 
IntWritable total times word used= new 

IntWritable(sum of times word is used); 
output.write(key~ total times_word_used); 
} 

} 
·;1 } 

FIGURE 19.2 Cont'd 
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The application requires two arguments: the input data file placed in HDFS and the output directory 
where results from the reducer will be written. The code is compiled using javac and the compiled 
classes are placed in a subdirectory called build: 

mkdir builo 
javac -cp $(hadoop classpath) -d build HamletCounter.java 

A Java archive file, hamletcount.jar, is then created using the compiled class files in the build 
directory in preparation for execution by Hadoop: 

I Jar -cvf hamlet.count.jar -C build I 
Hadoop then executes the Java archive file as follows: 

hadoop jar hamlet.count.jar Hamlet.Counter /hamlet /hamlet_result 

where /hamlet and /hamlet_result are the input and output arguments required by the program. The 
/hamlet text was already added to HDFS and the output from the MapReduce execution will be written 
to the lhamlet_result directory. This data can be retrieved from the distributed file system to the local 
file system using hdfs dfs -get as follows: 

I hdfs dfs -get /hamlet_result I 
This will copy the entire directory of lhamlet_result to the local file system with the results of the 

word count for Hamlet. 

19.5 SUMMARY AND OUTCOMES OF CHAPTER 19 
MapReduce is a simple programming model for enabling distributed computations, including 
data processing on very-large-input datasets in a highly scalable and fault-tolerant way. 

• The details of the underlying parallelization in MapReduce are hidden from the programmer, 
thereby making it easier to use. 

• A map is a functional that executes a supplied function on all members of an input list. 
• The results of the map function and associated groupings are passed to the reduce function. 
• The map functions, like the reduce functions, can be executed concurrently giving a significant 

potential for speed-up. 
• Distributed processing in MapReduce may be summarized in three phases: a map phase, a shuffle 

phase, and a reduce phase. 
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• Efficient distributed MapReduce execution generally requires minimizing the movement of data. 
• The Hadoop project provides an open-source implementation of the MapReduce programming 

model. 
• Hadoop provides a distributed file system, job scheduling and resource management tools, and 

MapReduce programming support 

19.6 EXERCISES 
1. By either using the word counter map and reduce functions from Fig. 19.2 or creating your own, 

discover how many times the word Denmark is used in Shakespeare's Hamlet. Then find William 
Shakespeare's top 10 most used words by applying your word counter tool to all the works of 
Shakespeare. 

2. Implement the map and reduce functions of the shared neighbor finder in the graph problems 
presented in Section 19.2.2. Apply this map-reduce operation to the IMDb movie database [4] to 
find the common costar links between 10 famous actors or actresses. 

3. Implement the map and reduce functions of the K-means clustering algorithm presented in 
Section 19.2.3. Generate a random set of x and y points and execute K-means clustering on this 
set. Plot the time to solution as a function of set size. 

4. Using a full Wikipedia dump [5] as input, find the 20 most common words in the 10 most widely 
spoken languages [6] (Mandarin, Spanish, English, Hindi, Arabic, Portugese, Bengali, Russian, 
Japanese, and Punjabi). 

REFERENCES 
[l] Apache, Apache Hadoop. [Online] http://hadoop.apache.org/. 
[2] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in: OSDI'04: Sixth 

Symposium on Operating System Design and Implementation, s.n., San Francisco, 2004. 
[3] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, in: 19th ACM Symposium on Operating 

Systems Principles, ACM, Lake George, NY, 2003. 
[4] IMDb, Plain Text Data Files for IMDb FTP Site. [Online] ftp://ftp.fu-berlin.de/pub/misc/movies/database/. 
[5] Wikipedia, Wikipedia Downloads. [Online] https://dumps.wikimedia.org/. 
[6] List of Languages by Number of Native Speakers, Wikipedia. [Online] https://en.wikipedia.org/wiki/List_of_ 

languages_by _number_of_native_speakers. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 575



CHECKPOINTING 20 
CHAPTER OUTLINE 

20.1 Introduction ............................................................................................................................... 591 
20.2 System-Level Checkpointing ....................................................................................................... 592 
20.3 Application-Level Checkpointing ................................................................................................. 598 
20.4 Summary and Outcomes of Chapter 20 ......................................................................................... 602 
20.5 Exercises ................................................................................................................................... 602 
References .......................................................................................................................................... 603 

20. 1 INTRODUCTION 
Many high performance computing (HPC) applications take a very long time to run even when using a 
large number of concurrent compute resources. Examples of applications that have historically 
required very long runtimes on HPC resources include molecular dynamics simulations, fluid-flow 
simulations, astrophysical compact object merger simulations, and mathematical optimization prob
lems. Apart from these, an application that does not strong scale very well may require large runtimes 
because it can only effectively use a limited number of compute resources and would see no time-to
solution benefit when adding more. Applications with long execution times run a significant risk of 
encountering a hardware or software failure before completion. Long execution times also frequently 
violate supercomputer usage policies where a maximum wallclock time limit for a simulation is 
established to accommodate a large number of users better. In either case, the consequences of having 
a job killed can be very significant and costly in terms of time lost and computing resources wasted. 
Checkpointing is one way to help mitigate this risk. 

At designated points during the execution of an application on a supercomputer, the data necessary 
to allow later resumption of the application at that point in the execution can be output and saved. This 
data is called a checkpoint, and the resumption of application execution is called a restart. It is no 
surprise that checkpoint files can be extremely large. Beyond mitigating the cost of an execution 
failure during a simulation that runs for a long time, checkpoint files provide snapshots of the 
application at different simulation epochs, help in debugging, aid in performance monitoring and 
analysis, and can help improve load-balancing decisions for better distributed-memory usage. This 
chapter explores two different approaches to checkpointing frequently encountered in HPC: system
level approaches and application-level approaches. 

High Performance Computing, https://doi.org/l0.1016/8978-0-12•420158-3.00020-4 
Copyright © 2018 Elsevier Inc. All rights reserved. 
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20.2 SYSTEM-LEVEL CHECKPOINTING 
System-level checkpointing performs the checkpoint and restart procedures via a full memory dump. 
This type of checkpointing does not require any changes to the application to enable its use, and 
writing of the checkpoint may be triggered either by the system or by the user. Examples of such user
transparent approaches for HPC support include Berkeley Lab Checkpoint/Restart [l], Checkpoint/ 
Restore in Userspace [2], and Distributed MultiThreaded CheckPointing (DMTCP) [3]. These system
level approaches are generally fully integrated with the resource management system on a super
computer, including Simple Linux Utility for Resource Management (SLURM) and Portable Batch 
System (PBS), and provide checkpoint/restart support for multithreaded applications and distributed
memory applications based on the message-passing interface (MPI). They are fully transparent to the 
user, requiring no change,s to an application code, although they generally require a preload library step 
and inputs to specify the checkpoint interval, checkpoint directory, and restart directory. 

The key advantage of system-level checkpoint/restart approaches over application-level 
approaches is that they require no changes to the application source code. Additionally, many 
system-level approaches incorporate access to kernel resource information, such as process IDs, which 
can simplify restarting the application. However, because the system-level checkpointing strategy 
includes a full memory dump, the checkpoint files may be significantly larger than just saving the 
smallest amount of relevant information, as is done with an application-level approach. 

As an example of interactive system-level checkpointing, the OpenMP code in Code 20.1 is used in 
conjunction with the DMTCP tool in this section. 

1 /Ii ncl ude <amp. h> 
2 ffi ncl ude <uni std. h> 
3 1/i ncl ude <stdio. h> 
4 fli ncl ude <stdl i b. h> 
5 #include <math.h> 
6 
7 int main (intargc, char*argv[J) 
8 { 

9 constintsize=20; 
10 int nth reads. threadi d, i; 
11 double arrayl [size], array2[si ze]. array3[si ze]; 
12 
13 //Initialize 
14 for ( i =0 ; i < s i z e ; i ++ l { 
15 arrayl[i]=l.0*i; 
16 array2[i]=2.0*i; 
17 
18 
19 intchunk=3; 
20 
21 ffpragma amp parallel private(threadid) 
22 { 
23 threadid = omp_get_thread_num(); 
24 if(threadid==0){ 
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25 nthreads = omp_get_num_threads(); 
26 pri ntf( "Number of threads= %d\n". nth reads); 
27 l 
28 printf(" My threadid %d\n" ,threadid); 
29 
30 Npragma omp for schedule(static,chunk) 
31 for (i=0; i<size; i++) [ 
32 array3[i] =sin(arrayl[i] +array2[i]); 
33 printf(" Thread id: %d working on index %d\n". threadid, i); 
34 sleep(l); 
35 
36 
37 }//join 
38 
39 printf(" TEST array3[199] = %g\n" ,array3[199]); 
40 
41 return0; 
42 

Code 20.1. Example OpenMP code, checkpoint_openmp.c, for demonstrating system-level check
pointing. A "sleep" statement has been added to line 34 to add a pause to the execution after each 
thread performs the operation of line 32. 

DMTCP provides several easy-to-use commands for transparent system-level checkpointing. The 
dmtcp_coordinator acts as a command-line interface to DMTCP for examining the checkpoint 
interval, accessing status messages, and forcing a manual checkpoint outside the specified checkpoint 
interval from the command line. The dmtcp_coordinator is launched in a separate terminal and awaits 
command-line input instructions and outputs status messages, as shown in Fig. 20.1. 

FIGURE 20.1 

andersmw@cutter :~/dmtcp-dmtcp-35386c2/bin$ • /dmtcp_coo rdinato r 
dmtcp_coordinator starting ••• 

Host: cutter (156,56,64,43) 
Port: 7779 
Checkpoint Interval: disabled ( checkpoint manually instead) 
Exit on last client: 0 

Type '7' for help. 

7 
COMMANDS: 

l List connected nodes 
Print status message 
Checkpoint alt nodes 
Print current checkpoint interval 
(To change checkpoint interval, use dmtcp_command) 

k Kill a tt nodes 
q Kit l alt nodes and quit 
? Show this message 

The dmtcp_coordinator for status updates and interact with DMTCP via the specific commands listed here, 
including forcing a checkpoint outside the checkpoint interval by issuing the "c" command. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 578



594 CHAPTER 20 CHECKPOINTING 

To checkpoint the code illustrated in Code 20.1, it is compiled just as if it were not being 
checkpointed: 

gee -fopenmp -03 -o checkpoi nt_openmp checkpoi nt_openmp. c -1 m 

The math library ("-Im") is added for the sin(x) function used on line 32 of Code 20.1 and the 
executable is named "checkpoint_openmp". 

The number of OpenMP threads is also set in the nonnal way through the environment variable 
OMP _NUM_THREADS (illustrated here using bash shell syntax; for tcsh shell, use setenv): 

export OMP _NUM_THREADS=16 I 
The checkpoint interval can be changed using dmtcp_command, which sends the command to the 

dmtcp _coordinator already launched in Fig. 20.1: 

dmtcp_command --interval <checkpoint interval in seconds> 

Because Code 20.1 executes very quickly, a checkpoint request will be manually input into the 
dmtcp_coordinator command interface. The executable is launched with checkpoint capability using 
the dmtcp_launch tool: 

dmtcp_ launch . / checkpoi nt_openmp 

The executable begins to run as normal, and if a checkpoint interval has been supplied, at every 
specified interval of wallclock time a checkpoint is written to the file system. Additionally, if the 
command "c" is supplied to the dmtcp_coordinator command interface, a checkpoint is written to the 
file system at that point. DMTCP checkpoint files have the naming convention of "ckpt_ <executable 
name>_ <client identity>.dmtcp" and are written in the directory where the executable was launched. 
A manually issued checkpoint request is illustrated in Fig. 20.2, which creates, in this example, a 
checkpoint file named ckpt_checkpoint_openmp _l 6707 l l 2e4c8f-42000-8687 a700c J 8a5.dmtcp. 

The checkpoint file is restarted using the dmtcp_restart command: 

dmtcp_restart <checkpoint file> I 
A snippet of the standard output for Code 20.1 with and without checkpoint restart is shown in 

Fig. 20.3. The same OpenMP threads operate on the same array indices and all operations are identical 
in the restarted case and the nonrestarted case. No changes were made to the code to enable 
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C 

(40367) NOTE at dmtcp_coordinator, cpp: 1071 in startCheckpoint; REASON=' starting checkpoint, suspending all nodes• 
s, numPeers = 1 

(40367) NOTE at dmtcp_coordinator. cpp: 1073 in startCheckpoint; REASON=' Incremented computationGeneration' 
compld,computationGeneration() = 1 

(40367) NOTE at dmtcp_coordinator. cpp:413 in updateMinimumState; REASON=' locking all nodes• 
(40367) NOTE at dmtcp_coordinator, cpp: 419 in updateMinimumState; REASON=' draining all nodes' 
(40367) NOTE at dmtcp_coordinator. cpp :425 in updateMinimumState; REASON=' checkpointing all nodes• 
(40367) NOTE at dmtcp_coordinator,cpp:449 in updateMinimumState; REASON='building name service database' 
(40367) NOTE at dmtcp_coordinator.cpp:465 in updateMinimumState; REASON='entertaining queries now' 
(403671 NOTE at dmtcp_coordinator. cpp:470 in updateMinimumState; REASON=' refit ling all nodes• 
(40367) NOTE at dmtcp_coordinator. cpp: 510 in updateMinimumState; REASON=' restarting all nodes• 

FIGURE 20.2 

A manually issued checkpoint request followed by the associated status messages from DMTCP for 
checkpointing Code 20.1. 

andersmw«1cutter1 ... /textbookS dmtcp_restart ckpt_checkpoint_openmp_16787112e4c8f-428H-8687a780cl8aS.dmtcp 
Thread id: 15 working on index 141 
Thread id: 14 working on index 138 
Thread id: 7 workin9 on index 117 
Thread id: 12 working on index 132 
T'hread id: 1 working on index 99 
Thread id: 2 working on index 182 
Thread id: 8 working on index 129 
Thread id: 5 working on inde:11 111 
Thread id: 11 working on index 129 
Thread id: 13 working on index 135 
Thread id: 3 working on index 195 
Thread id: 18 working on index 126 
Thread id: 9 working on index 123 
Thread id: 6 working on index 114 
T-hread id: 4 workin9 on index 188 
Thread id: B workinQ on index 96 

FIGURE 20.3 

Thread id1 15 working on index 141 
Thread id: 14 working on index 138 
Thread id: 8 working on index 128 
Thread id: l working on index 99 
Thread id: 2 working on index 182 
Thread id: 4 working on index 188 
Thread id: 12 working on index 132 
Thread id: 7 working on index 117 
Thread id: 8 working on index 96 
Thread id: 13 working on index 135 
Thread id: 11 working on index 129 
Thread id: S working on index 111 
Thread id: 3 working on index 185 
Thread id: 9 working on index 123 
Thread id: 6 working on index 114 
Thread id: te working on index 126 

The standard output from Code 20.1 after checkpoint restart (left) and without restart (right). The same OpenMP 
threads operate on the same indices and aJI operations are identical in the restarted case and the nonrestarted case. 
As is standard in system-level checkpointing, no changes to Code 20.1 were made to enable checkpoint capability. 

checkpoint/restart capability, and the checkpoint files written could also be used for debugging, 
execution snapshots, or as part of a strategy for fault tolerance. 

Interactive system-level checkpoint/restart using DMTCP for an MPI application is similar to that 
for an OpenMP application, but with small differences. An example MPI "pingpong" code, referred to 
as pingpong.c, using MPI_Send and MPI_Recv is shown in Code 20.2, which passes back and forth an 
integer and increments that integer for each iteration. 

1 1/include<stdio.h> 

2 1/include<stdlib.h> 

3 #include<unistd.h> 
4 #include "mpi .h" 

5 
6 int main(int argc,char **argv) 
7 ( 
8 

9 
10 
11 
12 

int rank.size; 
MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_C0MM_W0RL0,&rank); 
MPI_Comm_size(MPI_C0MM_W0RL0,&size); 
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13 if(size!=2JI 
14 printf(" Only runs on 2 processes \n"); 
15 MPI_Finalize(); //thisexampleonlyworksontwoprocesses 
16 exit(O); 

17 J 

18 

19 intcount: 
20 if ( rank==O J { 

21 // initialize count on process 0 
22 count= 0; 

23 l 
24 for (int i=O;i<lO;i++J I 
25 if ( rank==O) { 
26 MPI_Send(&count,l,MPI_INT,1,0,MPI_COMM_WORLO); // send "count" to rank 1 
27 MP l_Recv(&count, 1, MP !_I NT .1, 0 ,MPI_COMM_WORLD, MPI_ST ATUS_l GNORE l; //receive it 

back 
28 sleep(l); 

29 count++; 
30 pri ntf(" Count %d\n", count); 
31 }else{ 

32 MPI_Recv(&count,l,MPI_INT,0,0,MPI_COMM_WORLD,MPI_STATUS_IGNOREJ; 
33 MPI_Send(&count,l,MPI_INT,0,0,MPI_COMM_WORLDJ; 

34 l 
35 I 
36 
37 if ( rank==O) printf("\t\t\t Roundtripcount=%d\n",count); 
38 
39 MPI_Finalize(J; 
40 

Code 20.2. Example MPI "pingpong" code for demonstrating system-level checkpoint/restart using 
DMTCP. A "sleep" command has been added to line 28 to slow down the execution for checkpoint 
demonstration purposes. This code is designed to work on only two processes and will print out the 
"count" integer at each message epoch. 

Just as in the OpenMP checkpoint/restart example, the code is not modified and is compiled as 
usual without including any extra libraries specific to checkpoint/restart: 

mpi cc -03 -o pi ngpong pi ngpong. c I 
In this example MPICH-2 is the MPI implementation used; DMTCP supports several different 

implementations ofMPI. After the dmtcp_coordinator is started in a separate window to issue manual 
checkpoint commands and monitor status messages, the pingpong executable is then launched on two 
processes using a combination of dmtcp_launch and mpirun as follows: 

dmctp_launch --rmmpirun -np 2 ./pingpong 
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C 
(22984) NOTE at dmtcp_coordinator. cpp: 1071 in startCheckpoint; REASON=' starting checkpoint, suspending all nodes• 

s. numPeers = 4 
[22984) NOTE at dmtcp_coordinator. cpp: 1073 in startCheckpoint; REASON=' Incremented computationGeneration • 

compld.computationGeneration() = 1 
[22984) NOTE at dmtcp_coordinator.cpp:413 in updateMinimumState; REASON=' tocking an nodes• 
[22984) NOTE at dmtcp_coordinator. cpp:419 in updateMinimumState; REASON='draining all nodes' 
[22984) NOTE at dmtcp_coordinator.cpp:425 in updateMinimumState; REASON='checkpointing all nodes' 
[22984) NOTE at dmtcp_coordinator.cpp:449 in updateMinimumState; REASON='buitding name service database' 
[22984) NOTE at dmtcp_coordinator.cpp:465 in updateMinimumState; REASON='entertaining queries now' 
[22984) NOTE at dmtcp_coordinator, cpp: 470 in updateMinimumState; REASON=• refi Hing all nodes' 
[22984) NOTE at dmtcp_coordinator.cpp: 510 in updateMinimumState; REASON=' restarting an nodes• 

FIGURE 20.4 

Status messages generated after issuing the checkpoint com.'lland ("c") to the dmtcp_coordinator. Each process 
generates a checkpoint file, which is stored in the directory where the executable was launched. 

After five message epochs the command for generating the checkpoint ("c") is issued to the 
dmtcp_coordinator, as illustrated in Fig. 20.4. 

Four checkpoint files result from the checkpoint command, one from each process and two 
associated with the MPI launcher. A restart script specific to the checkpoint files generated is also 
created to simplify the restart process. This script is created in the directory where the dmtcp_coor
dinator was launched and is called dmtcp_restart_script_ <client identity>.sh. The script requires no 
arguments and already knows where to find the checkpoint files in the file system. Launching this shell 
script will restart the job, as illustrated in Fig. 20.5. 

Both the OpenMP and MPI examples explored here using the DMTCP system-level checkpointing 
tool were performed interactively for ease of demonstration. However, on most supercomputing 
systems a user does not attempt to perform a checkpoint/restart interactively but launches applications 
through a resource management system like PBS or SLURM. DMTCP, like the other system-level 
checkpointing tools mentioned here, is integrated with PBS and SLURM and provides example 
scripts for launching and restarting applications through a resource management system. In the case of 
DMTCP, using a resource management system to checkpoint an MPI or OpenMP application requires 
the dmtcp_coordinator to be launched as a daemon in the PBS or SLURM script while the other 
commands (dmtcp_launch, dmtcp_restart_script) remain the same, as was demonstrated in interactive 
mode. On HPC resources with an Infiniband network, the dmtcp_launch command also requires the 
flag -infiniband for checkpoint/restart support of MPI-based applications using lnfiniband. 

[andersmw@cutte r text book I $ • /dmtcp_resta rt_sc r 1pt_129b865bca8bbal1-56808-87bae5e9cb84. sh 
Count 6 
Count 7 
Count 8 
Count 9 
Count 18 

Round tr-ip count ::::, 18 

FIGURE 20.5 

Countl 

~:~:! : 
Count4 
Count S 
Count 6 

~~~~; : 
Count 9 
Count 18 

Round trip count .,. 10 

The standard output from the MPI "pingpong" from Code 20.2 after checkpoint restart (left) and without using any 
checkpoint/restart (right). The checkpoint restart case (left) began from checkpoint data generated after the fifth 
epoch, and consequently the first output seen after restart is the sixth epoch. 
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20.3 APPLICATION-LEVEL CHECKPOINTING 
In application-level checkpointing the application developer has the responsibility to perform all 
checkpoint/restart operations. As opposed to system-level checkpointing, application-level check
pointing requires changes to the application code. While inconvenient, application-level checkpoint/ 
restart tends to produce checkpoint files that are smaller than system-level checkpoint/restart, where a 
full memory dump is performed. Checkpoint files originating from application-level checkpointing are 
generally smaller than those originating from system-level checkpointing approaches simply because 
the application developer will only output the most pertinent information necessary for application 
restart. The system, in contrast, has to dump the entire application memory because it cannot single out 
what data is relevant for restart. 

For distributed-memory applications based on MPI, application-level checkpoint/restart ap
proaches often share some basic characteristics: 

• Only one checkpoint file is written per MPI process. 
• Only one MPI rank accesses a single checkpoint file. 
• Checkpoint files do not contain data from multiple checkpoint epochs. 
• Checkpoint files are generally written to the parallel file system by the compute nodes. 
• Checkpoint/restart overheads can be large. 

Application-level checkpoint/restart implementations generally pick designated points in the 
computational phase in the simulation algorithm for checkpointing, to ensure computational phase 
consistency in the checkpoint epoch. For example, in a timestepping algorithm a natural place to 
incorporate checkpoint/restart would be at the end of one timestep, thereby ensuring that all check
point files are at the same computational phase even if they each reached this phase at different 
wallclock times. This is in contrast to system-level checkpointing, where, regardless at what phase of 
computation the process may be, a checkpoint is dumped as designated by a wallclock time interval or 
an event such as a manual request for checkpoint given in the command line. Consequently, 
application-level checkpoint/restart implementations may not specify a checkpoint interval in terms of 
wallclock time, as in system-level approaches, but rather require the interval of computational phases 
for checkpoint/restart. 

Some of the 1/0 libraries explored in Chapter 10 are especially well suited for use in application
level checkpointing. For instance, the HDF5 library is widely used in this checkpointing because it is 
well suited for parallel 1/0 and creates data structured for different execution configurations as well as 
providing portability. As with any parallel 1/0 operation, however, the developer will still have to 
ensure that all application data is actually written to the checkpoint files and not just the pointer 
addresses to data. Because C codes frequently access data indirectly between different functions, it is a 
common novice C programmer mistake to output a pointer address rather than the data itself. 

Application-level checkpoint/restart is very popular in large-scale MPI applications and toolkits 
because it can be tailored for the application to be as efficient and minimal as possible. However, the 
checkpoint/restart overhead is still very high and there are checkpoint/restart libraries written to assist 
in reducing this overhead for application-level checkpoint approaches. One such library is Scalable 
Checkpoint/Restart (SCR) for MPI [4]. 

The SCR library assists application-level checkpoint strategies by reducing the load on a parallel 
file system and partially utilizing nonparallel fast storage local to a compute node for checkpoint file 
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storage, with some redundancy in the event of a failure on the local storage. SCR provides several 
different checkpoint file redundancy schemes with varying levels of resilience and performance. It 
requires the parallel remote shell command [5] and the Perl module for date/time interpretation [6], 
and works natively with the SLURM resource manager. 

The SCR library is built around an application-level checkpoint strategy like that illustrated in 
Code 20.3 where only one checkpoint file is written by an MPI process. When using the SCR library, 
the library needs to know when to start a checkpoint and when to finish a checkpoint through API calls 
that are collective across all MPI processes. The SCR library can also determine if a checkpoint file is 
needed rather than having some user-defined checkpoint frequency, as was seen in Code 20.3. This is 
done by configuring SCR with system information to estimate checkpoint costs and frequency of 
failure, and then using the application programming interface (API) call SCR_Need_checkpoint to let 
SCR decide the frequency of checkpointing. 

1 1/i ncl ude <stdio. h> 
2 1/include<stdlib.h> 
3 
4 1/include"mpi.h" 
5 
6 
7 int write_checkpoint() 
8 { 
9 II get our rank 

10 intrank; 
11 MPI_Comm_rank(MPI_C0MM_W0RLD, &rank); 
12 
13 charfile[l28J; 
14 sprintf(file,"checkpointl%d_checkpoint.dat",rank); 
15 
16 F!Lhfp=fopen(file,"w"); 
17 
18 // write sample checkpoint to file 
19 fprintf(fp," Hello Checkpoint World\n"); 
20 fclose(fp); 
21 
22 return 0; 
23 
24 
25 int main(int argc,char **argv) 
26 { 
27 MP!_lnit(&argc,&argv); 
28 
29 int max_steps = 100; 
30 intstep; 
31 int check poi nt_every = 10: 
32 
33 for ( step=0; step<ma x_s teps; step++) { 
34 I* perform simulation work *I 
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35 
36 if ( step%checkpoint_every == 0 l { 
37 write_checkpoint(l; 
38 l 
39 l 
40 
41 MPI_Finalize(); 
42 return 0; 
43 l 

Code 20.3. Simple example of a common application-level checkpoint strategy. Each process writes its 
own checkpoint data to a single checkpoint file. The frequency of writing the checkpoint is determined 
by the user, set here to be 10 (line 31 ). 

The modifications to Code 20.3 needed to incorporate the SCR library are limited to adding the calls 
SCR_lnit, SCR_Finalize, SCR_Start_checkpoint, SCR_Complete_checkpoint, and SCR_Route_file. 
Optionally, the checkpoint frequency can be determined by SCR using the call SCR_Need_checkpoint, 
as already noted. SCR_Init and SCR_Finalize initialize and shut down the SCR library, analogous to 
MPI_lnit and MPI_Finalize. SCR_Start_checkpoint and SCR_Complete_checkpoint indicate, respec
tively, that a checkpoint is about to begin to write and a checkpoint has successfully been written. 
SCR_Route_file is used for getting the full path and file name for SCR access. Each SCR API call is 
collective across all MPI processes. The SCR version of Code 20.3 is provided in Code 20.4. 

1 /finclude<stdio.h> 
2 #include <stdl i b. h> 
3 #include "scr.h" 
4 #include"mpi.h" 
5 
6 intwrite_checkpoint() 
7 { 
8 SCR_Start_checkpoint(); 
9 

10 // get our rank 
11 int rank: 
12 MPI_Comm_rank(MPI_C0MM_W0RLD, &rank); 
13 
14 char file[l28J; 
15 sprintf(file,"checkpoint/%d_checkpoint.dat",rankl; 
16 
17 FILE*fp=fopen(file,"w"); 
18 
19 char scrfile[SCR_MAX_FJLENAMEJ: 
20 SCR_Route_file(file.scrfile); 
21 
22 //write sample checkpoint to file 
23 fpri ntf (fp." Hello Checkpoint Worl d\n"): 
24 fclose(fpl: 
25 
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26 intvalid=l; 
27 
28 SCR_Complete_checkpoint(valid); 
29 
30 return O; 
31 
32 
33 int main(int argc,char **argv) 
34 I 
35 MPI_Init(&argc,&argv); 
36 
37 if ( SCR_lnit() !=SCR_SUCCESS) I 
38 printf("SCRdidn'tinitialize\n"); 
39 return -1; 
40 
41 
42 intmax_steps=lOO; 
43 int step; 
44 for (step=O;step<max_steps;step++) I 
45 /* perform simulation work*/ 
46 
47 int checkpoi nt_fl ag; 
48 SCR_Need_checkpoint(&checkpoint_flag); 
49 if ( checkpoi nt_fl ag ) I 
50 write_checkpoint(): 
51 } 
52 l 
53 SCR_Finalize(); 
54 MPI_Finalize(); 
55 returnO; 
56 

Code 20.4. SCR version of Code 20.3 application-level checkpointing. Calls to the SCR API include 
SCR_Init (line 37), SCR_Finalize (line 53), SCR_Start_checkpoint (line 8), SCR_Comple
te_checkpoint (line 28), SCR_Need_checkpoint (line 48), and SCR_Route_file (line 20). The 
SCR_Need_checkpoint call is optional and allows SCR to control the checkpoint frequency. Relatively 
few changes are needed to an existing application-level checkpoint strategy to take advantage of the 
benefits of SCR. 

To use SCR and execute Code 20.4, SCR must be integrated with the supercomputer's resource 
management system. In the case of SLURM, an SCR-enabled code would launch using scr _srun 
instead of srun. 
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20.4 SUMMARY AND OUTCOMES OF CHAPTER 20 
• Applications with long execution times run a significant risk of encountering a hardware or 

software failure before completion. 
• Long execution times also frequently violate supercomputer usage policies where a maximum 

wallclock limit for a simulation is established. 
• The consequences of a hardware or software failure can be very significant and costly in terms of 

time lost and computing resources wasted for long-running jobs. 
• At designated points during the execution of an application on a supercomputer, the data 

necessary to allow later resumption of the application at that point in the execution can be output 
and saved. This data is called a checkpoint. 

• Checkpoint files help mitigate the risk of a hardware or software failure in a long-running job. 
• Checkpoint files also provide snapshots of the application at different simulation epochs, help in 

debugging, aid in performance monitoring and analysis, and can help improve load-balancing 
decisions for better distributed-memory usage. 

• In HPC applications, two common strategies for checkpoint/restart are employed: system-level 
checkpoint and application-level checkpointing. 

• System-level checkpointing requires no modifications to the user code but may require loading a 
specific system-level library. 

• System-level checkpointing strategies center on full memory dumps and may result in very large 
checkpoint files. 

• Application-level checkpointing requires modifications to the user code. Libraries exist to assist 
this process. 

• Application-level checkpoint files tend to be more efficient, since they only output the most 
relevant data needed for restart. 

20.5 EXERCISES 
1. List the trade-offs between system-level checkpointing and application-level checkpointing. 

Survey the some of the many scientific computing toolkits available for download that 
have checkpoint/restart capability. What form of checkpointing is the most popular in these 
toolkits? 

2. How might checkpoint files be used for debugging? Illustrate this by introducing a race condition 
into Code 20.1, such as a reduction operation without the appropriate reduction clause, and 
expose the bug by using a checkpoint file. Use system-level checkpointing. 

3. For an application that runs on I 00,000 cores for 9 days of wallclock time, estimate the likelihood 
that the application will encounter a hardware failure during the simulation. Use the reported 
annualized failure rate for a hypothetical collection of hard drives, processors, and power 
supplies. 

4. What could happen if a system failure occurs while a checkpoint is being written? What are the 
ways to mitigate this type of failure? 

5. What is the trade-offs between checkpointing frequently and infrequently? Suppose the example 
in Code 20.2 is checkpoint every 1 s versus every 30 s. What are the performance consequences 
and benefits of these? 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 587



REFERENCES 603 

REFERENCES 
[l] Berkely Laboratory, Berkeley Lab Checkpoint/Restart (BLCR) for LINUX. [Online] http://crd.lbl.gov/ 

departments/computer-science/CLaSS/research/BLCR/. 
[2] CRIU, Checkpoint/Restore In Userspace. [Online] https://criu.org/. 
[3] DMTCP: Distributed MultiThreaded CheckPointing. [Online] http://dmtcp.sourceforge.net/. 
[4] Lawrence Livermore National Laboratory, Scalable Checkpoint/Restart Library. [Online] http://computation. 

llnl.gov/projects/scalable-checkpoint-restart-for-mpi/software. 
[5] Parallel Remote Shell Command (PDSH). [Online] http://sourceforge.net/projects/pdsh. 
[6] Perl Date Manipulation. [Online] http://search.cpan.org/~sbeck/Date-Manip-6.56. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 588



NEXT STEPS AND BEYOND 21 
CHAPTER OUTLINE 

21.1 Introduction ............................................................................................................................... 606 
21.2 Expanded Parallel Programming Models ...................................................................................... 606 

21.2.1 Advance in Message-Passing Interface ................................................................... 606 
21.2.2 Advances in OpenMP ............................................................................................ 607 
21.2.3 MPl+X ................................................................................................................ 607 

21.3 Extended High Performance Computing Architecture ..................................................................... 608 
21.3.1 The World's Fastest Machine ................................................................................. 608 
21.3.2 Lightweight Architectures ...................................................................................... 608 
21.3.3 Field Programmable Gate Arrays ............................................................................ 609 

21.4 Exascale Computing ................................................................................................................... 610 
21.4.1 Challenges to Exascale Computing ......................................................................... 611 
21.4.2 Doing the Math, How Big Is Exascale? .................................................................... 611 
21.4.3 The Accelerated Approach ..................................................................................... 612 
21.4.4 Lightweight Cores ................................................................................................. 612 

21.5 Asynchronous Multitasking ......................................................................................................... 613 
21.5.1 Multithreaded ...................................................................................................... 613 
21.5.2 Message-Driven Computation ................................................................................. 613 
21.5.3 Global Address Space ........................................................................................... 614 
21.5.4 Actor Synchronization ........................................................................................... 615 
21.5.5 Runtime System Software ..................................................................................... 615 

21.6 The Neodigital Age ..................................................................................................................... 616 
21.6.1 Dataflow .............................................................................................................. 617 
21.6.2 Cellular Automata ................................................................................................. 618 
21.6.3 Neuromorphic ...................................................................................................... 619 
21.6.4 Quantum Computing ......................................................................... , ................... 619 

21.7 Exercises ................................................................................................................................... 620 
References .......................................................................................................................................... 621 

High Performance Computing. bttps://dol.org/J0.1016/B!l78-0-12-420158-3.00021-6 
Copyright © 2018 Elsevier Inc. All righis reserved. 

605 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 589



606 CHAPTER 21 NEXT STEPS AND BEYOND 

21.1 INTRODUCTION 
This textbook gives a comprehensive top-level coverage of high performance computing (HPC), 
both to present the complex interdisciplinary components of the field and to provide the basic skill
sets that an entry-level student practitioner requires and can use to employ such systems for end-user 
applications. It presents major classes of architecture, programming models, basic algorithmic 
techniques, and widely used tools and environments. More deeply, it shares the fundamental con
cepts that govern the challenges of efficiency, scalability, parallel semantics, and metrics. But while 
an excellent first coverage of the broad field, it is far from complete; it is more of a starting point than 
exhaustive. In this chapter the authors complete this treatise by noting what has not been covered that 
may be of interest and serve as a roadmap for further study in specific areas, incrementally building 
on what has already been presented. This is done in two domains. Sections 21.2 and 21.3 describe in 
brief the more sophisticated techniques currently employed in both programming models and 
hardware architectures. Section 21.4 discusses current directions toward exascale computing, which 
is occupying much energy in near-term research across the northern hemisphere, with likely impact 
in the early 2020s. Section 21.5 considers a shift in computing methods being explored, sometimes 
referred to as "asynchronous multitasking", that will enable dynamic adaptive techniques for 
improved efficiency and scalability. Section 21.6 on the "neodigital age" may be viewed for your 
curiosity. It projects ideas about what may happen with the end of Moore's law and nanoscale 
semiconductor technology, and where revolutionary approaches to computer architecture going 
beyond the von Neumann architecture and its decades of derivatives may take us. This includes 
"quantum computing", which is in a most inchoate phase, but if it proves possible will be able to 
perform some computations that could not be done even in the lifetime of the universe if performed 
on even the biggest conventional computer. 

21.2 EXPANDED PARALLEL PROGRAMMING MODELS 
21.2.1 ADVANCE IN MESSAGE-PASSING INTERFACE 
The message-passing interface (MPI) is one of the most widely used means of describing programs to 
run on scalable distributed-memory systems comprising multiple computing nodes integrated via one 
or more interconnection networks. This textbook describes the programming principles of MPI 
consistent with the MPI-1 standard, including the basics of establishing virtual topologies among 
processes, send/receive message communication constructs, scalar data types and some complex data 
structures, collective operations for synchronization, data distribution, and collective reduction 
operations. But in total only a couple of dozen MPI functions are described. These are sufficient to 
represent a wide range of useful parallel algorithms and run these applications on a wide range of 
large-scale current-generation systems, yet only scratch the surface of the rich set of commands 
actually available even by MPI-1 for optimization and to facilitate sophisticated communication and 
shared computation patterns. Since the final specification of MPI-1 in 2008, including more than 120 
functions, MPI has evolved as a model and a parallel programming interface, expanding to the 
advanced versions of MPI-2 and MPI-3. MPI-2 made important extensions to the original standard, 
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including a strong set of input/output (l/0) calls to manage access to mass storage, dynamic process 
management, and single-sided functions on remote memory. MPI-3 added significant extensions to the 
previous versions, expanding the full set of collective operations specifically in the domain of non
blocking as well as other improvements. 

21.2.2 ADVANCES IN OPENMP 
OpenMP has been demonstrated as a popular programming interface for shared-memory computing 
systems. First introduced in 1997 with Fortran bindings and in 2002 with CIC++ bindings for 
OpenMP-2, OpenMP language extensions have provided environment variables, directives, and library 
functions for transforming sequential application codes into programs that include multiple-thread 
computing for a degree of parallelism and reduction in time to solution. This textbook presents the 
foundation concepts of OpenMP, and many of the key constructs and their syntax. The full OpenMP 
specification is far larger, with many valuable optimizations that are not covered. But even the chosen 
subset shows that substantive and diverse applications can be constructed and run on a wide array of 
systems. Further advances beyond the basic functions were devised in later versions of OpenMP. For 
example, the powerful capability of multitasking and the task construct were a centerpiece of 
OpenMP-3 in 2008. In 2013 OpenMP-4 was released with a number of significant improvements, such 
as support for heterogeneous systems incorporating accelerators, the inclusion of thread affinity to 
assist in managing some aspects of locality, and methods for exploiting single-instruction multiple data 
(SIMD) parallelism. OpenMP has been very successful, but has some shortcomings that bound its 
effectiveness in terms of efficiency and scalability. Because it assumes a shared-memory ecosystem, it 
is limited in scaling on single symmetric multiprocessor (SMP) systems. This is in part mitigated by 
increasing the number of cores integrated on chip and per socket. Its efficiency is constrained by its 
heavy use of fork-join semantics in which global barriers play a significant part. This is sensitive to 
Amdahl's law with the purely sequential parts of any OpenMP code. The tasking mechanisms can help 
offset this property. 

21.2.3 MPl+X 
In brief, MPI provides a form of scalability with coarse-grain parallelism across distributed-memory 
systems while OpenMP provides a form of medium-grain parallelism within the boundaries of shared
memory nodes. Neither is sufficient for the future challenges of exascale computing and beyond. But 
the combination of the two, each complementing the other, is viewed as a significant opportunity for 
the next stages in the field. MPI processes across distributed-memory system architectures will 
continue to provide the scalability required, while OpenMP delineates medium-grain threads that can 
be performed by the many cores within a single node. This permits a coarse-grained MPI process to 
span the entire node (as it did in the early days of massively parallel processors-MPPs), but allows the 
efficiencies of shared memory hardware to be exploited and greater parallelism to be exposed with the 
assistance of OpenMP constructs. The general concept has been referred to as "MPI+X", where "X" 
refers to another or additional programming interface working in cooperation with MPI. X could also 
mean OpenCL, or perhaps even configuring field programmable gate arrays (FPGAs) within a node. 
As Bill Gropp said, "The important part of MPI+X is the '+' ." [1] 
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21.3 EXTENDED HIGH PERFORMANCE COMPUTING ARCHITECTURE 
The end of Moore's law marks a milestone in HPC. Over multiple decades technology could be 
anticipated to deliver exponential growth in device density and clock rate. But this is rapidly changing, 
with parallel architecture being the only remaining strategy to continue performance growth, at least 
until some significant advance in enabling technology emerges to replace CMOS (such as super
conducting Josephson junction logic) or an entirely new paradigm (such as quantum computing) is 
developed and made practical. This section touches on some advances in HPC system architecture that 
are being pursued. 

21.3. 1 THE WORLD'S FASTEST MACHINE 
The world's fastest machine as of June 2017 is the third Chinese machine to make the number 1 slot of 
the Top 500 list in recent years: the Sunway TaihuLight (~Jlt-;ldiJ.IZJ't) based on Sunway micro
processors. It is an example of pursuing alternative approaches outside conventional architectures. 
This system, which has a peak performance greater than 100 Petaflops and a Linpack rating of almost 
that much, is based on a new architecture fully developed and manufactured in China. The architecture 
features an extremely lightweight core that dispenses with many of the conventional internal 
subcomponents such as data caches. While some efficiency, as measured by arithmetic logic unit 
utilization, is degraded, a much larger number of cores can be integrated on to a die, each using much 
less energy. This machine, although more than two times faster than its predecessor (also Chinese), 
uses less than half as much electrical power. This is a remarkable achievement. The Sunway archi
tecture is also controversial, as its memory capacity is relatively small given its peak floating-point 
performance. But in a very short time it has demonstrated significant achievement in real-world 
applications. In all it has more than 10 million cores-an unprecedented record. 

21.3.2 LIGHTWEIGHT ARCHITECTURES 
The vast majority of the fastest supercomputers (see the Top 500 list) employ either Intel x 86 
architecture microprocessors (including AMD variants) or IBM Power-based microprocessors with or 
without accelerators, including Nvidia and Intel Phi. However, there is a trend toward lightweight 
architectures to increase peak performance per socket and reduce power consumption and space 
costs. 

As noted, a dramatic example is the TaihuLight, the world's fastest supercomputer measured by the 
high performance Linpack (HPL) benchmark in 2017. It comprises 10 million cores, each of which is 
very lightweight with only some scratchpad high-speed memory (with an instruction cache). Sixty
four of these are organized in a "group", and there are four groups in a processor socket for 256 
cores plus four management processing elements to manage the computation. At a peak performance 
of 125 petaflops it is the first system to enter the I 00 Pflops performance regime. 

A second important trend is the evolution of the Intel Xeon Phi processor, derived from the failed 
Larrabee Project [2]. Intel chose to address the challenge of ultrahigh performance through pervasive 
integration of a semiconductor die with· many lightweight cores rather than the fewer heavyweight 
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Xeon cores that have dominated MPPs and commodity clusters for 2 decades. These were originally 
treated like graphics processing units (GPUs), as attached processors with printed circuit boards 
(PCBs) incorporating Phi chips integrated via industry interface standards, principally PCI express 
(PCle). While a convenient way to introduce a new technology rapidly, this approach suffered from the 
treatment of these devices as attached array processors controlled by master processors and separated 
by relatively slow Peripheral Component Interconnect (PCI) buses in terms oflatency, bandwidth, and 
control overheads. The latest generation of Xeon Phi corrects these shortcomings by allowing the Phi 
processor sockets to operate in "self-hosting" mode; that is, to be their own masters, eliminating the 
PCI bottlenecks and equally important the control overheads. This is a big deal, and will be first 
demonstrated in the 2018 as currently planned. 

An alternative path that is trending is the evolution of the long-serving ARM processor architec
ture. The heritage of ARM is in the vast operational space of mobile, embedded, and control pro
cessing. ARM can be custom configured by the end implementer to provide a wide variation in the 
ecosphere of the support logic and interfaces on die. Although primarily a 32-bit architecture, ARM 
has now been extended to several variants of 64-bit architecture, making it truly suitable in the context 
of supercomputing for conventional numeric applications such as simulation and data analysis. At least 
one major-scale experimental supercomputer, Mont Blanc, is under development in Europe using 
ARM as the principal processor core. Unconfirmed reports suggest that the National University of 
Defense Technology in China is pursuing a similar approach. While ARM is not currently regarded as 
part of the HPC field, this may change radically toward the end of this decade. 

21.3.3 FIELD PROGRAMMABLE GATE ARRAYS 
An FPGA is, as the name implies, a component comprising a large number of logic gates and other 
functional parts connected by a network, the connectivity of which can be determined by "pro
gramming" the device. That is, there is a protocol by which the end user can determine the logic 
circuitry of the component. While less dense and somewhat slower than application-specific integrated 
circuits (ASICs), FPGAs enable custom designs to be produced to optimize them for special-purpose 
functionality. This permits the rapid development of prototype designs and gives a means to distribute 
a small number of parts to end users. One area of use that may prove promising is application-specific 
FPGA logic circuits optimized for specific algorithms. Such structures as systolic arrays can be 
implemented readily with FPGAs to accelerate important applications by one to two orders of 
magnitude with respect to conventional microprocessors. Other uses may include logic designs to 
support future system software to reduce overheads. 

The major challenge is to provide efficient functionality that best suits application algorithms and 
the means of rapidly programming FPGAs. Much work has been done in both domains, but use still 
demands expertise. Another problem is the integration of FPGAs with otherwise conventional sys
tems. This is in part addressed through industry-standard interfaces to which custom boards are 
designed with FPGA components. But this still has its limitations. Now hybrid subsystems with both 
processors and FPGAs integrated together are being made available, again improving their mutual 
connectivity. 
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21.4 EXASCALE COMPUTING 

IBM Blue Gene/Q. Courtesy Argonne National Laboratory via Wikimedia Commons 

Alan Gara is the chief architect of the highly successful series of IBM Blue Gene supercomputers, named after its 
intended applications: study of gene development and protein folding. Blue Gene architecture was a significant departure 
from the then leading Earth Simulator computer emphasizing vector processing. Blue Gene instead incorporated a large 
number of simple cores derived from embedded processors, resulting in improved energy efficiency. Its first model, Blue 
Gene/L, employed dual processor nodes with compute logic and NlC integrated on a single ASIC. The central processing 
units (CPUs) were based on PowerPC 440 with added double-precision floating-point pipelines delivering a peak of 
5.6 Gflops per node. Thanks to high-density packaging, a single rack contained I 024 such nodes. Blue Gene/L (shown in the 
right picture) included 32,768 cores and debuted as number I on the Top 500 list in November 2004, achieving over 
70 Tflops or twice the performance of the previous incumbent. In an updated configuration Blue Gene maintained this 
position for the next 3.5 years, achieving a peak throughput of nearly 600 Tflops while consuming only 2.3 MW of 
electricity. The architecture is also notable for incorporation of three network types: three-dimensional torus for point-to
point communication, a dedicated collective communication interconnect, and a global interrupt network. The later versions 
of Blue Gene architecture included Prevision with quad-core nodes and a performance-to-power metric of 0.35 Gflops/W 
and Q, utilizing 18-core four-way simultaneously multithreaded processors and scaling to 20 Pflops. 

For his work on three generations of Blue Gene architecture, Alan Gara was recognized with the Seymour Cray Award in 
2010. He also codeveloped high performance implementations of quantum chromodynamics applications; one on the 
QCDSP custom architecture and the other on Blue Gene/L. each of which won the Gordon Bell Prize. 

Hislorically within the field of supercomputing there has been a natural tendency of the com
munity as a whole to speculate, consider, and ultimately to achieve the next three orders of 
magnitude pe1formance-gain milestone over the previous major one. The first megaflops computer 
was the CDC-6600 in 1968, followed by the first gigaflops computer, the Cray-YMP in 1988, the 
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first teraflops machine, the Intel Red Storm in 1997, deployed at Sandia National Laboratories, and 
finally the first petaflops machine in 2008, the IBM Roadrunner deployed at Los Alamos National 
Laboratory. Roughly speaking these accomplishments occur approximately every 11 years. But this 
would suggest that the next milestone, exaflops, should be anticipated for 2019. While conceivable, 
this is not likely for a number of reasons. In recent years the fastest supercomputers measured by the 
HPL benchmark have been developed and deployed in China, with the most recent approaching 
100 petaflops Rmax. 

21.4. 1 CHALLENGES TO EXASCALE COMPUTING 
While most HPC systems within the mainstream are capable of one petaflops or less, the goal of 
exascale computing suggests 1000 times this norm, or more than 10 times the fastest computer in the 
world today. The challenges to achieving this are many and are application dependent. While tech
nology is approaching the asymptote with respect to Moore's law and nanoscale semiconductors, 
exascale computing is still within the scope of Moore's law, even if approaching the end. The principal 
challenges as viewed by the industry and its users include the following: 

• Energy and power-this is a limiting factor that goes beyond just the cost of the energy, which is 
about $1 M/MWyear. It is also constrained by the maximum power that can feed a semiconductor 
die before it reaches a threshold of failure. A target goal is 20 MW or 50 Gflops/W. 

• Hardware parallelism-expected to be in the order of a billion, which may be manifest by 
hundreds of millions of cores, each operating with IO-way parallelism like SIMD or vector. 

• Software parallelism-application programs and algorithms using and exploiting more than a 
billionfold parallelism to take advantage of the hardware, including communication and 
secondary storage access. 

• Overhead-the work required to manage the system and control each task. While a source of loss 
of efficiency, it also bounds the granularity of the tasks and therefore the available useful 
concurrency. 

• Latency-with larger systems including more racks the physical distances for global access of 
data or services increase, requiring even more parallelism to hide the latency. 

• Reliability-with the increase in the number of devices both on and off the die the chance of a 
single point failure increases and the potential reduction of the mean time to failure could make 
exascale computing impractical. Methods are required to provide resilience of both hardware and 
software with sufficient confidence that large and time-consuming computations can be 
performed. 

21.4.2 DOING THE MATH, HOW BIG IS EXASCALE? 
By any measure, exascale computing is enormous and its achievement, anticipated sometime in the 
next decade, will be a tour de force. In this textbook we have identified and considered a number of 
different dimensions by which a class of system can be measured. As a benchmark, the TaihuLight 
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Chinese system achieves about 100 petaflops with IO million cores (a little less for Rmax, a little 
more for peak). This suggests that an exascale machine will require at least a 100 million cores for an 
exaflops. Of course these are lightweight cores with limited capability. Fewer cores would be 
required but at much more die space if heavyweight cores like the IBM Power 9 are employed, such 
as in the future (2018) Summit machine expected to operate at about 200 petaflops. But for real
world codes rather than for a friendly Linpack benchmark, much more will be required. With 
typical efficiencies around 10% (often less but sometimes more), this would project that there is 
significant room for dramatic improvements in delivered performance and reduced energy 
consumption. 

21.4.3 THE ACCELERATED APPROACH 
GPU accelerators are extremely effective for performing specific classes of streaming processing, and 
doing so with high-throughput performance. They incorporate many specialized processor cores 
interconnected to form useful dataflow paths to minimize the need for write-back of intermediate data 
and avoid control overheads. System nodes are heterogeneous, combining multicore CPU chips and 
GPU modules to permit computing workflows as appropriate running on the GPUs and the remaining 
computations being performed on the CPUs. An important path to exascale is a heterogeneous system 
architecture combining CPUs with GPUs which will provide high-density peak floating-point 
operations. A major challenge, programming such heterogeneous systems, is receiving significant 
attention, as is discussed in .this book. The Summit supercomputer is planned to employ this kind of 
heterogeneous system architecture using GPUs; it will be deployed in 2018 at Oak Ridge National 
Laboratory with a delivered performance of approximately 200 petaflops. 

21 .4.4 LIGHTWEIGHT CORES 
The alternative approach to achieving exascale performance is the use of a very large number of very 
lightweight cores. A typical core such as an Intel Xeon processor or IBM Power 8 architecture engages 
many mechanisms to keep the execution pipeline full and the time to execution of a thread to its 
minimum possible with the enabling technology. One school of thought is that to build the fastest 
system, one needs the fastest node; and to build the fastest node, the fastest core possible is required. 
But for a given socket package size and energy budget, a different strategy is to provide the highest 
number of cores possible, which means implementing the smallest-size core possible with full 
functionality. This was first tried with some success by IBM's Blue Gene systems using the lightweight 
PowerPC processor. Today Intel provides the Xeon Phi lightweight processor core with 76 cores per 
socket for Knights Landing. The next generation of Phi will be Knights Hill, which will provide the 
basis for the future systems to be deployed possibly in 2018. TaihuLight has 256 very lightweight cores 
per socket; a total of IO million cores providing roughly 100 petaflops and using low energy. The ARM 
processor is emerging as yet another choice for large systems based on lightweight cores. Japan, China, 
and the European Union are all planning ARM-based systems of between 100 Petaflops and 
1 Exaflops. 
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21.5 ASYNCHRONOUS MULTITASKING 
Asynchrony is the property of uncertainty of timing and ordering of known events and operations. 
Greater scaling, such as remote data access or services performed, aggravates the variability of timing. 
Thus handling the effects of asynchrony becomes increasingly important as system scale and het
erogeneity increase. A class of computing methodology referred to as "asynchronous multitasking" 
(AMT) is a topic of extensive research that shifts computing from static scheduling and conventional 
resource management methods to dynamic adaptive control of program execution and the application 
of available memory and processing resources. The following subsections describe aspects being 
considered as means for addressing the challenges imposed by asynchrony and exploiting the op
portunities that asynchrony offers. 

21.5.1 MULTITHREADED 
Threads are generally considered as sequences of instructions sharing intermediate result data that can 
be scheduled on individual cores. Multithreaded computing is when there is more than one thread 
operating concurrently and possibly in parallel, in which case time to solution improves, perhaps 
proportionally with the number of threads. This is not a new concept, of course, but how it is 
implemented in terms of control, synchronization, scheduling, and resource allocation has evolved and 
differs substantially among different methodologies. Typically there is a one-to-one mapping of 
application threads to hardware threads, but having more application threads than physical threads 
opens opportunities to address asynchrony. This is commonly known as "overdecomposition", and if 
used opportunistically can avoid blocking of hardware resources. It is done by switching out an 
application thread that has been blocked while waiting for a long-duration access or service and putting 
a pending thread on the hardware to continue using these resource, improving efficiency and scaling. 
This requires the ability to do on-the-fly context switching. As the granularity of threads can be made 
finer and still be efficient, this permits an increase in scalability for strong scaling and more threads 
with weak scaling. Hardware for multithreaded execution has been developed, including the Tera MTA 
with 128 threads with single-cycle context switching times. 

21.5.2 MESSAGE-DRIVEN COMPUTATION 
The historical load/store architecture combined with message passing for scalability has proved 
effective over more than 25 years. But with increasing scale and resulting asynchrony, the effects of 
latency have proven increasingly costly in dimensions of both time and energy. Where both temporal 
and spatial locality could be exploited by caches, the deleterious effects of latency could be bounded, 
especially with cache-aware programming techniques. However, more general computation, extended 
scale, and broader access patterns expose system latencies and uncertainties. An alternative stratagem 
is message-driven computations that move work to the data rather than always demanding that data is 
moved to the nexus of the static work control state. Combined with multithreading, this technique can 
hide some latencies, especially long-distance latencies, and avoid blocking hardware as a result. By 
keeping the work and the data close together, it can reduce absolute latencies of action. 
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Within computing research there is a long heritage of exploration of message-driven computation. 
Dataflow architectures of the 1970s and 1980s considered lightweight messages called "tokens" to 
move intermediate result data between succeeding actors, referred to as "templates". The actors' 
model added semantic richness to this in the form of "futures". In 1992 Dally's J-machine provided 
hardware support for messages to instantiate methods for remote procedure calls. The University of 
California at Berkeley, as part of the threaded abstract machine model, devised a version of message
driven computing called "active messages", a term that has had some traction. More recently the 
ParalleX execution model and the HPX runtime systems it inspired incorporate "parcels" that convey 
actions to be performed on remote data, as well as the means to support the migration of continuations 
to provide for dynamic placement of the parallel control state. 

In essentially every case, a lightweight message is structured to incorporate several fields of 
information. These include a destination, an action specification, a payload field, and in some cases a 
continuation. The destination can be a physical node, software process, core thread, or virtual data 
object. The action can be as simple as an operation, a sequence of instructions, a pointer to a method or 
procedure, or an effect on some element of control state or synchronization object. The payload varies 
from nothing or void to a set of independent scalars, vector, list, or a more general structure. These 
values (or pointers) are used along with the destination object data to perform the projected calcu
lations. The final field is referred to as the "continuation", which in simplest terms tells the destination 
what to do after the specified action is completed. This can be as simple as return the result to the 
originating source of the action-typical of more conventional computing. It also can indicate what 
recovery response to an error should occur. But more interesting in some models is the effect on the 
global control state either by modifying the state of an existing control object or adding such a control 
object to the existing global parallel control state. 

21 .5.3 GLOBAL ADDRESS SPACE 
A division in thinking about scalable computing has existed for more than two decades concerning 
support for global address spaces. This single issue has incited severe argument on occasion, as 
substantial investment has been made in both classes of system. In truth, it is much harder to design a 
very large computer of many, perhaps thousands, of nodes that retains uniformity of address spaces 
across the entire system. While delivering a means to access known physical addresses correctly is 
achievable, the more challenging problems are dealing with virtual addresses and cache coherency. 
One approach employed for virtual address is the partitioned global address space (PGAS). Here the 
virtual address space is partitioned as contiguous blocks among the physical nodes. The upper bits of 
the virtual address identify the node on which it will be found. This is efficient, but it has the 
unfortunate property that a word associated with a given virtual address cannot be moved between 
nodes and retain the same virtual address. Cache coherence is even more challenging, as any processor 
becoming the owner of a virtual location, i.e., it can write to it, must be able to invalidate all copies 
of that location throughout the distributed system. In some cases cache coherency is not assumed and 
remote accesses are differentiated from local accesses, only the latter of which within a given node is 
treated as cache coherent. Yet another problem is implicit: locality and latency. A strong argument for 
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message passing in a distributed-memory address space such as that used with MPI is that it forces the 
programmer to deal explicitly with locality, optimizing local operations and minimizing global 
accesses through message passing. This has proven quite effective for many applications. Nonetheless, 
the inefficiencies of using message passing for lightweight remote data accesses and the increased 
difficulties in having to control data movement explicitly by this means has led to many experimental 
AMT software systems incorporating global address space frameworks, at least of the PGAS type. 

21.5.4 ACTOR SYNCHRONIZATION 
Conventional programming methods, particularly of the message-passing forms but also for multiple
thread operation, use global barriers, blocking message send/receives, or nonblocking send/receives 
with waiting. These are semantically weak, in that they accomplish relatively little in flow control 
while incurring significant overheads. They tend to be coarse grained, especially in the case of global 
barriers where all processes or threads must come to a stop until all tasks have completed their 
respective work prior to the barrier synchronization point. Some AMT systems incorporate advanced 
dynamic synchronization constructs such as dataflow and futures, both of which have a heritage 
extending back more than 3 decades. Dataflow addresses out-of-order completion of input operands 
and asynchrony of arrival prior to scheduling a specified operation to be performed. The futures 
synchronization extends this to different uses of the same prior result value requested by other streams 
of execution delivering the equivalent of an IOU that can be treated as a manipulatable pointer to an 
eventual value and employed in building data structures giving additional parallelism. 

21.5.5 RUNTIME SYSTEM SOFTWARE 
The concepts described in the subsection on AMT are found most readily in a small number of 
runtime software libraries developed for scalable and efficient HPC. Work on such runtimes as 
Charm++ from the University of Illinois Urbana-Champaign, OCR from Rice University, and HPX 
from Louisiana State University and Indiana University is representative, but these are by no means 
the only packages. They vary in detail, sometimes in important ways, but have many similarities in 
their main functionality and semantics. Runtime software is the easiest way to achieve dynamic 
adaptive computing, and for some classes of applications such as adaptive mesh refinement, 
molecular dynamics, particle in cell, fast multipole methods, and dynamic graph problems including 
data analytics it can serve well for improved efficiency, scalability, and user productivity. But for 
some applications there is little or no performance improvement, in part because runtime software 
actually adds to the total overhead imposed on the system. Some cases have been documented where 
performance actually degrades with scale for this reason. Runtime software can manage over
decomposition and this often makes better utilization of computing resources, at least up to a point. 
But runtime software behavior is also sensitive to scheduling policies, which may need to adapt to 
application algorithm requirements. In the future it is hoped that hardware architectures will evolve to 
incorporate mechanisms for accelerating certain aspects of runtime system operation to lower 
overhead and improve useful parallelism. 
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21.6 THE NEODIGITAL AGE 
After decades of exponential growth of semiconductor technology, Moore's law is coming to an end, if 
it has not already done so (depending on how its defined). This explosion of on-chip components can 
no longer be relied upon to deliver continued performance gain. Even over the last decade clock rates 
have flattened due to power limitations, and instruction-level parallelism has also flatlined despite 
optimistic expectations. This period has seen performance delivery gains achieved principally through 
multicore and many-core processors using up the last vestiges of Moore's law as enabling technology 
reaches nanoscale. If Moore's law can no longer yield greater performance given the other limitations, 
what can? 

Here we hypothesize a new generation of HPC systems that differ significantly from conventional 
practices and their incremental extensions. Design strategies include the following: 

• Execution models. The history of high-end computing has experienced about half-a-dozen 
paradigm shifts over the last 7 decades to adopt new enabling technologies and exploit different 
forms of hardware parallelism. Such phase changes include the original von Neumann 
architecture, vector and SIMD processing, and communicating sequential processes and shared
memory multithreaded. But new execution models are required that dramatically increase both 
scalability and efficiency to drive future computing across the exascale performance region, even 
possibly to zetaflops. 

• Architecture fundamentals. Originally, floating-point operations were the performance-limiting 
property of HPC systems and the early architectures were designed to achieve highest arithmetic 
unit utilization. Efficiency is often described as the ratio of sustained floating-point performance 
to peak floating-point performance. But today memory bandwidth is the critical resource and 
memory capacity the biggest single cost factor. Overall data movement system-wide is also time 
limiting. Future architectures need to be redesigned around these performance and energy 
boundaries rather than historical biases. 

• Parallel algorithms. How we organize a computation is highly sensitive to the nature of the 
machine structure upon which a problem is to be executed. Changes in algorithms are required to 
adjust to new structures and expose and exploit parallelism intrinsic to the target problem domain, 
as well as effective memory usage. There have been many instances when algorithmic changes 
have dramatically improved overall computational time to solution. 

• Programming interfaces. The semantics of control and data are reflected by the programming 
interfaces, including languages and libraries that determine the means of applying applications to 
HPC systems. As system architectures have evolved over the decades, changing the forms of 
parallelism they exploit, programming methods have to evolve as well to let programmers take 
advantage of the hardware. We have watched this as MPI has evolved from MPI-1 to MPI-4. 
Programming interfaces are often extended, and sometimes new ones are created. The creation 
and use of CUDA allow programmers to take advantage of the peculiarities and opportunities 
made possible by the architecture improvements. 

In the following sections examples of approaches to computing beyond conventional practices are 
presented to hint at possible elements of future HPC systems and methods. Some of these ideas have a 
long legacy in the research community. Others have yet to be investigated in any depth but are 
considered (by the authors at least) to have future promise. 
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21.6.1 DATAFLOW 
Dataflow is a parallel execution model originally developed in the 1970s but explored and enhanced as 
the basis for non-von Neumann computing architecture and techniques. While there were many 
contributors over a period of more than two decades, two investigators stand out: Jack Dennis and 
Arvind, both at Massachusetts Institute of Technology. These two leaders in the field, although at the 
same institution, led separate research groups and pursued distinct conceptual strategies. Jack Dennis, 
who may be considered the father of dataflow, founded what has now come to be called "static 
dataflow", while Arvind is credited with the introduction of the school of "dynamic dataflow". Strong 
research programs, especially in the 1980s, were conducted worldwide, with full implementations of 
hardware systems in the United States, Japan, and Europe. Some fundamental flaws in architecture 
reflecting the abstract model naively ultimately doomed this particular approach, largely due to 
overheads. But the underlying concepts are important and contribute to many hardware and software 
techniques, although not in the original forms anticipated by its founders. It is quite likely that 
innovative approaches exploiting the valuable aspects of dataflow will drive future system architec
tures and programming methods at the end of Moore's law in nanoscale fabrication technology. 

Dataflow in its purest form represents a computation in terms of the data precedence constraints of 
the operations to be performed. A visual presentation of a dataflow program looks like a directed graph, 
with its vertices determining the operations to be performed and the links between vertices determining 
the flow of operand values, from the source vertices that produce the intermediate values of the 
computation to the destination vertices that consume the values as input operands to their own 
operation. "Tokens" were initially expected to serve as messages that carry these values from the 
output of the source where the values are calculated to the input of the destinations where the values are 
used for follow-on calculations. The operations themselves are designated by a small data structure or 
record referred to as a "template", which specifies the operation to be performed, buffers the input 
values, designates the destination templates for the result values, records and updates synchronization 
control state, and includes other information as required by the specific design. 

Dataflow is a functional or value-oriented model of computation. There is no shared data; no global 
side-effects. Only actual values can be exchanged between operator templates. This has many 
advantages, at least in the abstract. In its original version dataflow was fine grained, revealing most of 
the intrinsic parallelism. It is very robust, avoiding many of the pitfalls associated with shared-memory 
models. As intrinsics, tokens provide event-driven computing through self-synchronization and 
templates maintain control state, permitting operations to be performed only when all operand values 
have been received, although order of arrival does not matter. Problems with aliasing and race con
ditions are thus avoided. Backus (inventor of Fortran) in his famous Turing Award lecture strongly 
advocated functional programming as the only means of writing robust code. A number of functional 
programming languages have been developed over the decades, with Haskell the most recently and 
widely used example. 

Dataflow, at least as manifest, suffered from a number of inefficiencies which ultimately made it 
nonviable as a basis for hardware architecture. Perhaps most egregious was that it was inefficient due 
to overheads of operation control and scheduling. Many microoperations were required for each 
template operation performed, yet those operations were very lightweight and did not amount to a lot 
of work. This meant that more work was performed in managing a template than the resulting full 
operation performed. Compared to a typical program counter, this was far more effort. It was sensitive 
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to bubbles or gaps in the operational pipeline because of the need for all these update events for each 
single useful operation. It was memory intensive due to requirements of template storage. Perhaps 
worse was that it was also memory bandwidth intensive, again due to all the data transfer and 
synchronization events. This was compounded by the dissemination of result values to possibly many 
destination templates. The failure to take advantage of usual accelerating mechanisms such as 
registers, caches, and reservation stations made it difficult for it to compete effectively with RISC 
uniprocessor architecture, although these were sequential and used execution pipelines with out-of
order completion, effective compiler methods, higher clock rates, and lower energy. Finally, in a period 
when parallel computers were limited to at most a few hundred processors, and this rare, coarse
grained parallelism was sufficient to keep the resources fully utilized. Full use of the fine-grained 
operation implied by dataflow was unnecessary and in fact wasteful. 

In spite of these deficiencies of the original dataflow architecture designs, the underlying execution 
model is very powerful. It addresses the key challenge of asynchrony and the resulting uncertainty of 
order of operational events. It makes for cleaner composability of separately developed software. It 
provides a clean means of overdecomposition which can be used for dynamic adaptive resource 
management and task scheduling to avoid resource blocking and circumventing contention over shared 
resources. It provides a natural way to minimize starvation by using much of the available parallelism. 
There are many possible variations, compromises, and hybrid structures that may be able to benefit 
from the dataflow concept. Already there is increased use of directed acyclic graph representation of 
computations at the medium- or coarse-grained level to exploit more adaptive flow control for 
enhanced efficiency and scalability. For these reasons it is projected that where new architectures will 
be required to increase performance at the end of Moore's law, concepts embodied by the dataflow 
execution model will be employed, although in innovative ways. 

21.6.2 CELLULAR AUTOMATA 
Among the many contributions by the mathematician John von Neumann was the invention of a 
distinct model of computation, cellular automata, in 1949. The irony cannot be avoided: the cellular 
automaton is considered a "non-von Neumann architecture". 

In its simple form, a cellular automaton consists of a two-dimensional array (it can be one- or three
dimensional as well) of cells, each of which is connected to its nearest neighbors (typically four: up, 
down, right, left). Each cell contains a small amount of state: sometimes a few bits or a few words, 
although it can be more. Finally, a cell incorporates a set of rules that determines how its own state will 
change depending on its current state and that of its immediate neighbors. 

The classic example of cellular automata is Conway's Game of Life, in which each cell has one of 
two states (e.g., alive or dead), and a small set of simple rules as follows. 

• A cell dies if it is alive and only one or none of its neighbors is alive. 
• If two or three of the neighbors are live, then an alive cell remains in that state. 
• But if an alive cell has four, five, or six live neighbors, then it dies. 
• Finally, a dead cell with three live neighbors becomes live. 

The evolution of this cellular automaton is determined entirely by its initial state, that is the state of 
all its cells. Von Neumann was able to demonstrate that there is a set of rules and state that is Turing 
equivalent and therefore, in principle, can serve as a general-purpose computer, although his solution 
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was theoretical and did not reflect a practical framework for real-world computing. Conway's model is 
much simpler, and it too is a universal Turing machine. 

A cellular automaton has a number of properties that makes it interesting as a future class of HPC 
architecture. It exposes an enormous amount of hardware parallelism, as each cell can be very small 
and thus for a given fabrication feature size and die area there can be a maximum number of execution 
units, although of modest capabilities. It has very large storage bandwidth, although the memory 
density may not be as good as other means. Latency for local storage access will be very low, as well as 
to the nearest neighbor state. If the communication is flat as described, remote access could take many 
hops and impose long latencies. However, hierarchical topologies can strongly mitigate this. 
Asynchrony across the very wide system can also be ameliorated by local synchronization built 
into the hardware functionality. A number of data and operation sequence layout patterns can be 
devised to take advantage of vector, systolic, SIMD, wave, dataflow, and graph algorithms derived 
from prior art. 

There are many open questions, many tradeoffs in balancing storage capacity, operation functions, 
and communication, and the major challenge of achieving the global emergent behavior of general
purpose parallel computing from massive local basic operations across the array of cells. Essen
tially, what is the new execution model? It is not clear that this is ultimately possible. However, it does 
open a new class of HPC architecture at a time when architecture may be the only hope of a significant 
performance advance. 

21.6.3 NEUROMORPHIC 
The human brain is an extraordinary system, perhaps the most complex known. It incorporates more 
interconnections within a single cranium than all the stars in the Milky Way galaxy. With 89 billion 
neurons it consumes only 20 W of power, with each neuron on average communicating through 10,000 
synaptic junctions. While each neuron operates at less than 1 kHz, a brain activates more than 
10 trillion spikes per second. And it is constantly changing in topology to fix long-term memories. 
Certain forms of operation, such as associative processing of images, sounds, and patterns, are 
accomplished with a throughput unachievable by even the highest-performance supercomputer. Then, 
speculate researchers, cannot a future class of computers be developed around the same principles as 
the human brain to make artificial computing systems with similar remarkable capabilities? In the 
most general sense these are known as "neuromorphic" computers; there are many diverse approaches 
being explored at this time, but all are inspired by the brain. 

21.6.4 QUANTUM COMPUTING 
Trying to explain quantum computing is like teaching computer science at Hogwarts. But quantum 
computing is not magic, even if it seems like it. And in no practical sense is it real yet. But it is both 
theoretically possible and becoming ever more likely technically, although there is still some way to 
go. Why there is so much interest and investment in what is still a research domain is the capability and 
impact that it would have if actually achieved. Again theoretically, it would be possible to do certain 
calculations that would be impossible with conventional supercomputers even if running for the entire 
age of the planet. And this is not limited to some esoteric or obscure problem, but rather for areas of 
extreme criticality such as cryptanalytics or multidimensional nonlinear optimization. 
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The fundamental concepts behind quantum computing have been understood since the 1980s, 
including the foundational work by the Nobel Laureate Richard Feynman of Caltech, among other 
pioneers. The core idea for quantum computing is embodied in the idea of the "qubit" that stores 
quantum information as the Shannon bit stores binary information. But there the similarity ends. A 
qubit state is not a 0 or a 1 but rather the superposition of the probabilities of the data being either a 0 or 
a 1. A set of n qubits can store the probabilistic distribution of all possible values, that is 2° possible 
values, and process all of these simultaneously, at least in principle. The sum of the probabilities must 
be equal to 1. When the values of the hypothetical qubit are measured (observed), the output value 
collapses to a single n-bit answer. The likelihood of any particular answer is the probability of the 
superimposed field associated with that value. That means that rerunning the computation a number of 
times is likely to deliver different values. 

Important breakthroughs came with the development of particular algorithms that showed how 
theoretical quantum computers could be employed to accelerate certain problems. Sher's algorithm for 
factorization was an example that spawned significant interest and research in this field. A variant of 
such machines, called "quantum annealing" computers, perform a narrower range of optimization 
algorithms. In spite of its limitations, practical systems of this type have been built and operated, in 
particular by the Canadian company D-wave. 

The technology required to achieve this functionality, at least as understood through actual 
experimentation, involves extremes in cryogenic superconductivity. Specifically, Josephson Junctions 
cooled to 10 s of millikelvins (degrees Celsius above absolute zero) are employed to maintain stability 
of the quantum state long enough to perform the required computation. It is not easy, and alternative 
methods are under research. Whether or not a viable technology solution is ultimately developed, the 
advantages of full quantum computing are still limited. There are certainly many classes of problems 
performed by conventional computers today that cannot be accelerated by a quantum computer as 
currently conceived. Also, it is not possible that a future quantum computer can in principle solve a 
problem not solvable by conventional computers, in that they are Turing equivalent. Nonetheless, for 
those problems with a conceivable performance advantage, the prospects for futuristic quantum 
computers are very exciting. 

21 . 7 EXERCISES 
1. Look up the most energy-efficient supercomputer on the Green 500 list [3]. Extrapolate the top 

system to exascale and estimate the power cost to operate. How close is it to the goal of 20 MW/ 
year for an exascale machine? 

2. Review the most recent Gordon Bell Prize winners [4]. How many applications used "MPI+X"? 
How many utilized GPUs? What architectures are represented? 

3. What kinds of applications will benefit from exascale computing resources? What kinds of 
applications will not benefit from such resources? 

4. What types of applications are currently being deployed on commercial quantum computers? 
5. Explain why Moore's law has given a free ride to application developers in improving application 

performance. What are the consequences of Moore's law ending? 
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Essential C 

This appendix is intended to assist those who already know one or more programming languages 
and may need a brief introduction to C syntax and semantics. The approach provided here is driven 
by four examples which address a wide range of C usage: numerical integration, lower/upper 
(LU) decomposition, the fast Fourier transform (FFT), and the game of tic-tac-toe. In these ex
amples the core C syntax is illustrated. Some of the key C syntax elements are highlighted in 
Table A.I. 

A.1 NUMERICAL INTEGRATION 
Integrating an ordinary differential equation using a method from the Runge-Kutta family of in
tegrators is a common task in scientific computing. The classic fourth-order algorithm, frequently 
referred to as rk4, illustrates many important features of the C programming language. In the example 
presented in Code 1, which solves the ordinary differential equation 

dx 
-= -Jcx 
dt 

for the function x(t), there are only two routines required: main and rhs. While the main routine is 
present in all C codes, the rhs function provides the right-hand side evaluation of the ordinary 
differential equation evaluated at different function values and times. The header for the rhs function 
is declared in line 13, while the function itself is declared in lines 71-73. The header provides 
main with information on the expected input and output of the function and aids in type checking. 
Output from each step of the Runge-Kutta integration is written to a file. The file handler is declared 
in line 35, while the output file itself, rk4.dat, is opened in line 38 with "write" access, as indicated by 
the w in the last argument to the routine fopen. Output from each step of the integration is written to 
the file using the fprintf function in line 54, and the file is cJosed in line 65 using fclose. 
The rk4 integrator itself is listed in lines 56-63. The exact solution to this ordinary differential 
equation is 

x(t) = Ce-"1 

where the constant C = 1 based on the initial condition for x(t) given in line 41. The exact solution 
is evaluated in line 49 and used to evaluate the error in the numerical solution throughout the 
integration. 

High Performance Computing. https://doi.org/10.1016/8978-0-12-420158-3.JSOOJ-4 
Copyright © 2018 Elsevier Inc. All rights reserved. 
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Table A.I Some Key C Syntax Elements Used in the Four Example Codes Here 

Operational or Functional 
Element Location Example 

For loop Code I, line 44 for ( i -0 ; i <N ; i ++) { 

While loop Code 3, line 11 . 85 while ( nmoves ++ < 9) { 

If statement Code 4, line 90 if ( !p - >le vel) return: 

Bitwise right shift Code 3, line 12 k »= 1 : 

Bitwise left shift Code 3, lines 27,28 i f( n & ( 1 « (log2_i nt(N ) 

j))) 

Bitwise AND Code 3, lines 20, 27,58 i f( ! ( i & n)) { 

Bitwise OR Code 3, line 28 
p I= 1 « ( j l ) : 

Modulo Code 3, line 60 double complex Temp = W[(i * al 

% (n * al J * f[ i + n] : 

Increment operator Code I line 44 
Code 4 line 148 

for ( i =O : i <N: i ++) { 

Subtract and assignment Code 2, lines 71,74 for (int j 
operator 

= 0 : j < i : j++) 

X [ i ] -= ap[i ][j]*x[j] : 

Conditional Expression Code 4 line 55 char wh o= (u pper - >who -

comp_mark ) ? user_mark : 

comp mark; 

Structures Code 4 line 10 typedef struct move I 
Allocate and zero initialize Code 4 line 60 if ( !m ) m = ca ll oc( l. 

sizeof(move t)): 

Complex allocation Code 3, line 46 w = (double complex * )malloc( N 

I 2 * sizeof(double complex )) : 

Powers of complex numbers Code 3, line 52 W[i J = cpow(W[l] . i ) : 

File handling Code I, lines 38 ,54,65 FILE *f = fope n ( path , " r " l : 
Code 2, lines 19, 33,34 

Getline Code 2, line 23 getl i ne(& li ne , &n , f} : 
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0001 I* 
0002 * Solving the Ordinary Differential Equation 
0003 * dxldt = -1 ambda x 
0004 * using Runge-Kutta 4th order 
0005 *I 
0006 
0007 #include <stdio.h> 
0008 #include <stdlib.h> 
0009 #include <math.h> 
0010 
0011 #define lambda 5.0 
0012 
0013 double rhs(double x,double tl; 
0014 
0015 int main(int argc, char *argv[Jl 
0016 I I Starting and Stopping integration time 
0017 doubleA=O.O; 
0018 doubleB=l.O; 
0019 
0020 IISizeoftimestep 
0021 doubledt=O.l; 
0022 
0023 I I Number of timesteps 
0024 intN=(B-A)ldt+l; 
0025 
0026 int i ; 
0027 
0028 I I predictor-corrector rk4 steps 
0029 double Fl,F2,F3,F4; 
0030 doublex,t; 
0031 daub le exact; 
0032 doublesmall_number=l.e-15; 
0033 
0034 I I file for output 
0035 FI LE *rk4data; 
0036 
0037 I* open a file for output* I 
0038 rk4data = fopen("rk4.dat". "w"l; 
0039 
0040 I* initial condition: x(Al = 1.0 *I 
0041 X = l.Q; 
0042 
0043 fprintf(rk4data,"#t x(t) exact diff\n"); 
0044 for (i=O:i<N;i++) { 
0045 /* RK4 *I 
0046 t=A+dt*i; 
0047 
0048 I* Exact solution* I 
0049 exact= exp( -1 ambda*t l; 
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0050 
0051 I* Write to file the log of the difference 
0052 * between the exact solution and integrated solution *I 
0053 llfprintf(rk4data,"%g%g\n",t,log(x-exact+small_number)); 
0054 fprintf(rk4data, "%g %g %g %g\n",t,x,exact,x-exactl: 
0055 
0056 I I Runge-Kutta 
0057 Fl= rhs(x, tl; 
0058 F2 = rhs (x+O. 5*dt*Fl, t+O. 5*dt l; 
0059 F3 = rhs ( x+O. 5*dt*F2, t+O. 5*dt); 
0060 F4=rhs(x+dt*F3,t+dt); 
0061 
0062 llupdatex(t) 
0063 x=x+l.016.0*dt*( Fl+2.0*F2+2.0*F3+F4 ); 
0064 l 
0065 fclose(rk4data); 
0066 
0067 return O; 
0068 l 
0069 
0070 II The right hand side of the first order differential equation 
0071 double rhs(double x,double t) { 
0072 return -1 ambda*x; 
0073 l 

Code 1. Integrating an ordinary differential equation using a Runge-Kutta method in C. 

A.2 LOWER/UPPER DECOMPOSITION 
The LU decomposition program is an example of dense algebra processing. Such problems deal with 
matrix and vector representation of systems of equations, potentially including thousands of interre
lated equations and variables. Among many other applications, matrix-based equation solvers are used 
to generate numerical solutions of ordinary and partial differential equations, and thus are widely 
employed in simulations of real-world phenomena in nearly every branch of physics. 

The program, listed in Code 2, solves the equation Ax = b for x. Matrix A and vector bare given to 
and retrieved from files passed to the program as the required command-line arguments. To be able to 
solve the system, A must be square and contain linearly independent columns and rows. To calculate 
the solution taking into account a broad range of possible instances of A, the code employs a specific 
approach in which the matrix is expressed as a product of a lower triangular matrix L (all its elements 
above the main diagonal are zero) and an upper triangular matrix U (all elements below the main 
diagonal are zero). Since converting the original matrix to triangular form requires that the so-called 
pivot elements located on the main diagonal of A are nonzero (the algorithm divides by pivot value to 
compute values of other elements of the matrix), on occasion rows of the matrix must be swapped to 
avoid this issue. Note that this simply corresponds to changing the order in which original equations 
are listed, and therefore does not change the solution. The reordering is expressed by a permutation 
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matrix P, which has a single 1 in every column and row and Os elsewhere. The matrix is expressed 
thus as: 

PA=LU 

Leading to the problem definition as 

LUx = Pb 

This may be further decomposed into two related systems by introducing an intermediate vector y: 

Ly=Pb 

Ux=y 

Thanks to the fact that L is triangular, obtaining the solution of the first equation may be done 
trivially via forward substitution. Note that the first element of y may be calculated by dividing the first 
element of permuted vector b by the element in row 1 and column 1 of L. Since the second row of L 
contains only two nonzero elements, the second element of y may be computed based on the value of 
the first element. This process continues row by row until all elements of y are known. The calculated y 
can be plugged into the second matrix equation involving U, and used to compute the values of vector x 

using an analogous approach (back substitution). 
The contents of matrix A and vector b are fetched from storage using various file I/O operations 

seen in the readJrom_file function (Jopen, getline,fread, andfclose). The first of them (invoked in line 
19) opens a file described by path for reading. The file contains a header with one or two decimal 
numbers separated by a space and terminated with a new-line character; they describe the dimensions 
of the matrix or vector. This part is extracted using the getline function (line 23) that stops after reading 
the full line, followed by the sscanf function (line 24) that converts the text representation of the 
numbers into integer variables. Since sscanf returns the number of items converted, the following 
switch statement explicitly zeroes out each dimension that could not be read. The routine allocates the 
storage for the array or vector and treats the remaining contents of the file as serialized binary data (a 
sequence of double-precision floating-point numbers without gaps). The data is stored in row-major 
form, starting with the lowest row index and the lowest column index in each row. While this 
approach results in efficient use of storage space, the files are not portable to architectures with 
incompatible memory layout, i.e., different endianness and different number size. Also, due to diffi
culties associated with inspecting the contents of such files, the use of portable and self-describing file 
formats such as HDF5 or NetCDF is recommended. The transfer of the file contents to data memory is 
performed by the fread function in line 33. After the number of retrieved elements (not bytes!) is 
verified, the file is closed by the fclose function (line 34). 

The LU decomposition is performed by the decompose function. To conserve memory, a 
commonly used trick stores both L and U matrices in the space occupied originally by A. This is 
possible because matrix L has only ones on its diagonal, thus eliminating the need for their explicit 
storage, so the diagonal elements of A can be used to keep the corresponding elements of matrix U. To 
accelerate the computations and enable more familiar double-index notation when accessing the 
matrix elements, an array of pointers to rows ap is allocated and initialized. This allows for much faster 
row permutations. To swap two rows, only their pointers are exchanged; the contents of rows are kept 
in their original memory locations. The decomposition scans the values of elements underneath each 
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diagonal component to select the largest (in absolute value sense) pivot in each row. This is both to 
avoid zero- or near zero-valued pivots and to obtain good numerical accuracy. Since the permutation 
matrix P is very sparse (recall that it has only one nonzero element per row), a permutation vector is 
used instead. It stores the updated index for each row that will be later used to fetch the elements of 
vector b correctly. Originally each index in P points to the initial position of the row; whenever the 
rows are swapped, the corresponding entries in P are swapped as well. 

The solve function computes the solution vector x in two steps. The first calculates the intermediate 
vector from L and vector b accessed via the redirection vector p. The seconds step converts the ele
ments of the intermediate vector into final solution values. No extra storage is needed, since the el
ements of the intermediate vector are consumed at the same rate as the elements of x are produced. 

If the user specifies the third argument on the command line, it will be interpreted as a path name to 
the file storing the solution vector. Function write_to_file handles the data output using similar 1/0 
functions as those used for reading, but with the exception offprintf (line 84) andjwrite (line 85). The 
first behaves much like the regular print!, except it redirects its output to the stream specified as its first 
parameter. The/write, on the other hand, accepts the same arguments asfread and writes the raw data 
to the opened file. If the third argument is not given, the program prints out all elements of vector x 
(lines 106-108). 

The program uses the variadic function (that is, a function accepting a variable number of argu
ments) error to handle critical execution problems. This is indicated by the ellipsis(" ... ") as the last 
formal parameter. Thanks to variadic support, the programmer may pass additional information to be 
included in the error messages. The definitions required to access this functionality are provided by the 
include file "stdarg.h". 

0001 #include <stdio.h> 
0002 #include <stdlib.h> 
0003 #include <stdarg.h> 
0004 #include <math.h> 
0005 
0006 #define EPS le-20 
0007 
0008 II handle error occurrence 
0009 void error(char *fmt, ... ) 
0010 va_l i st ap; 
0011 va_start(ap, fmt); 
0012 fprintf(stderr, "Error:"); 
0013 vfprintf(stderr, fmt, ap); 
0014 exit(l); 
0015 
0016 
0017 II read in contents of matrix or vector from file 
0018 double *read_from_file(char *path, unsigned dim[2J) 
0019 FILE *f=fopen(path, "r"); 
0020 if (!f) error("cannot open \"%s\" for reading\n", path); 
0021 size_tn=0; 
0022 char *line= NULL; 
0023 getline(&line. &n, f); 
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0024 switch (sscanf(line, "%u %u", &dim[OJ, &dim[l])) { 

0025 case 0: dim[OJ=O; 
0026 case 1: dim[l] = O; 

0027 break; 

0028 
0029 if ( !dim[OJ) error("invalid data file format in file \"%s\"", path); 

0030 
0031 n = dim[OJ*(dim[l]? dim[l]: 1): 

0032 double *data= ma 11 oc ( s i zeof (double )*n); 

0033 size_t cnt=fread(data, sizeof(double), n, f); 

0034 fclose(f): 

0035 if (cnt < n) error("file \"%s\" seems to be truncated\n", path); 

0036 return data: 

0037 
0038 
0039 II perform LU decomposition 

0040 double **decompose(int n, double *a, double *b. int *p) { 

0041 double **ap =mal loc(sizeof(double)*n): I I array of row pointers 

0042 for (inti= 0: i < n: i++) I 

0043 ap[i J = &a[i*n]: p[i J = i: 

0044 
0045 
0046 for (int i =O: i < n; i++) { 

0047 for (int j = i+l: j < n: j++) { 

0048 intmaxind=i: 
0049 if (fabs(ap[j][i]) > fabs(ap[maxind][i])) maxind = i: 

0050 if (maxind != i) { 

0051 double*atmp=ap[i]: 
0052 ap[i]=ap[j]; ap[j]=atmp: II pivot row swap 

0053 int ptmp = p[i J; 

0054 p[i]=p[j]; p[j]=ptmp: II permutation tracking 

0055 
005 6 if ( f abs ( a p [ i ][ i J ) < EPS) error ("matrix A i 11 - defined. aborting\ n") ; 

0057 
0058 for(intj=i+l;j<n;j++){ 

0059 ap[j][iJ l=ap[iJ[iJ: 
0 0 6 0 for ( i n t k = i + 1 : k < n ; k++) a p [ j J [ k J -= a p [ j ][ i J * a p [ i ][ k J ; 

0061 l 
0062 
0063 return ap; 

0064 l 
0065 
0066 II solve system of equations 
0067 double *solve(int n, double **ap, double *b, int *p) { 

0068 double*x=malloc(sizeof(double)*n); 

0069 for (inti= O; i < n; i++) {II forward substitution with L 

0070 x[iJ=b[p[iJJ; 
0071 for (int j = 0; j < i ; j ++) x [ i J -= a p [ i J[j J *x [j J ; 

0072 
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0073 
0074 
0075 
0076 
0077 
0078 
0079 

APPENDIX A 

for (inti= n-1; i >= O; i - - ) I I I backward substitution with U 
for (int j = i+l; j < n: j++) x[i] -= ap[iJ[jJ*x[jJ; 
x[i J = x[i Jlap[i J[i J: 

return x; 

0080 II save result vector to file 
0081 void save_to_file(char *path, int n, double *x) I 

.0082 FI LE *f = fopen (path, "w" l: 
0083 if ( !fl error("cannot open \"%s\" for writing\n", path): 
0084 fprintf(f, "%d\n", n): 
0085 if (fwrite(x, sizeof(double), n, fl !=n) 
0086 error("short write to \"%s\" file\n", path): 
0087 fclose(fl: 
0088 
0089 
0090 
0091 
0092 
0093 
0094 

0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 

int main(int argc, char **argv) ( 
II initialization and sanity checks 
if (argc != 3 && argc != 4) 

error("usage: %smatrix_filevector_file [result_file]\n", argv[OJ); 
int Asize[2], bsize[2J; 
double *A= read_from_file(argv[l]. Asize): 
if (Asize[OJ !=Asize[l]) error("matrix A is not square\n"): 
double *b = read_from_fi le( a rgv[2J, bs i ze): 
if (bsize[l] > 0) error("b is not vector\n"l: 
if (bsize[OJ !=Asize[OJ) error("size of b incongruent with A\n"): 
int *P=malloc(sizeof(int)*(*bsizel); II row permutation vector 
I I decompose and solve 
double**Ap=decompose(*bsize, A, b, Pl: 
double*x=solve(*bsize, Ap. b, Pl: 
I I output handling 
if (argc>3) save_to_file(argv[3J. *bsize, x); 
else I II if no output file specified, print out the solution 

for (inti= O; i < *bsize; i++) printf("%f ", x[i ]) ; 
pri ntf( "\n"); 

0111 return 0: 
0112 

Code 2. Source code for matrix LU decomposition and solver. 

A.3 FAST FOURIER TRANSFORM 
The FFT is a core computational science algorithm that usually involves complex numbers. Code 3 
illustrates computing the FFT in C using the Cooley-Tukey algorithm. This implementation illustrates 
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the use of the computing powers of complex numbers (line 52);bit right-shift assignment (line 12), the 
bitwise AND operator (lines 20, 27, and 58), bitwise OR assignment (line 28), bitwise left shift (lines 
27 and 28), modulo (line 60), while-loops (lines 11 and 85), for-loops, and if conditionals. It is an 
example of a divide-and-conquer algorithm. 

0001 #include <stdio.h> 
0002 #include <stdlib.h> 
0003 #include <math.h> 
0004 #include <complex.h> 
0005 
0006 #define MAX 200 
0007 
0008 int log2_int(int N) /*function to calculate the log2(.) of int numbers*/ 
0009 { 
0010 intk=N,i=O; 
0011 while(k) I 
0012 k»=l; 
0013 i++; 
0014 
0015 return i - 1; 
0016 
0017 
0018 int check(int n) //checkingifthenumberofelementisapowerof2 
0019 
0020 return n > 0 && ( n & ( n - 1)) = = 0; 
0021 
0022 
0023 int reverse(int N, int n) //calculating revers number 
0024 { 
0025 int j, p=O; 
0026 for(j=l;j<=log2_int(N);j++){ 
0027 if(n & (1 « (log2_int(N) - j))) 
0028 p \=1 « (j -1); 
0029 
0030 return p; 
0031 
0032 
0033 void ordina(double complex* fl, int N) //using the reverse order in the array 
0034 { 
0035 double complex f2[MAXJ; 
0036 for(inti=O:i<N;i++) 
0037 f2[i] = fl[reverse(N, i )] ; 
0038 for(intj=O;j<N;j++) 
0039 fl[j]=f2[j]; 
0040 
0041 
0042 void transform(double complex* f, int N) // 
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0043 
0044 ordina(f. N): //first: reverse order 
0045 daub le complex *W; 
0046 W= (double complex *)malloc(N / 2 * sizeof(double complex)); 
0047 doublerho=l.0: 
0048 doubletheta=-2. *M_PI / N: 
0049 W[l J = rho*cos (theta) + rho*s in (theta) *I ; 
0050 W[0J=l: 
0051 for(int i =2; i < N / 2: i++) { 
0052 W[i]=cpow(W[l], il: 
0053 
0054 int n = 1; 
0055 int a = N / 2: 
0056 for(intj =0: j < log2_int(Nl: j++) { 
0057 for(int i = 0: i < N: i++) { 
0058 if ( ! ( i & n) l { 
0059 double complex temp= f[ i J: 
0060 double complex Temp= W[Ci *a)% (n * a)J * f[i + nJ; 
0061 f[i]=temp+Temp: 
0062 f[i + n] = temp - Temp: 
0063 J 

0064 J 

0065 
0066 
0067 l 
0068 l 
0069 

n *= 2: 
a=a/2: 

0070 void FFT(double complex* f, int N, doubled) 
0071 { 
0072 transform(f, Nl: 
0073 for(int i = 0: i < N; i++l 
0074 f[i J *= d: / /multiplying by step 
0075 
0076 
0077 int main() 
0078 { 
0079 intn: 
0080 do { 
0081 printf(" Give array dimension (needs to be a power of 2)\n"); 
0082 char strl[20]; 
0083 scanf("%s",strll: 
0084 n=atoi(strl); 
0085 J while(!check(n)); 
0086 double sampl i ng_step = 1. 0: 
0087 double complex vec[MAXJ; 
0088 doublefreq=l00; 
0089 doublex; 
0090 pri ntf(" Input vector\n"); 
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0091 for(inti=O;i<n;i++){ 
0092 x=-M_PI+i*2*M_PI/(n-l); 
0093 vec[i J = cos(-2*M_PI*freq*xl; 
0094 printf("%g+%g I\n",creal(vec[i]),cimag(vec[i])); 
0095 
0096 printf("--------------------\n"); 

0097 FFT(vec, n, sampling_stepl; 
0098 printf(" FFT of the array\n"l; 
0099 for(intj=O;j<n;j++) 
0100 printf("%g+%g I\n",creal(vec[j]),cimag(vec[j])); 
0101 
0102 returnO; 

0103 

Code 3. FFT in C. This code was adapted from a c++ version in Wikipedia [l]. 

A.4 GAME OF TIC-TAC-TOE 
To illustrate a problem with dynamically generated and deleted data structures, Code 4 provides a 
simplified implementation of the popular tic-tac-toe game. The game begins with the user making the 
first move by placing an "X" anywhere in a 3 ° x O 3 grid. At this point the computer generates the graph 
of all possible moves and selects the one giving it the best chance of winning. Since some of the 
reviewed moves are no longer necessary, the other graph branches will be removed to release the 
allocated memory. While this is not absolutely necessary for game play, it serves as an example of 
recursive function invocation coupled with dynamic memory operations and pointer manipulation. 

The fundamental data structure used in the program is move_t (lines 10-15), storing the details of a 
single move (placement of "X" or "0") in the game. It is a C structure containing the next and level 
pointers to other like structures, and permits building graphs extending in two dimensions. The next 
pointer points to a structure containing the immediate follow-on move from the current state. Since 
there may be more than one move possible, they are stored in the list linked by level pointers. The wins 
and losses fields contain the sum of all wins and losses computed for the entire subtree below the 
current move. A leaf node in the graph is one that ends with one of the parties winning (and hence one 
of the wins and losses fields is O and the other is 1) or a draw when the board is completely filled with 
no winner identified. For the latter both wins and losses are 0. The structure also contains the column 
and row coordinates of the current move (x and y), as well as information about who was moving (a 
character field storing either "X" or "0"). 

The move space is generated by the build_tree function starting at line 54. This function allocates a 
new move_t structure for every empty field found on the board, adding it to the level list. The list is 
pointed to by the next pointer stored in the upper-level node. If any of the board layouts in the list is 
identified as a winning move, the wins and losses fields are filled out appropriately. Otherwise, 
build_tree is invoked recursively, with the current move set as the ancestor node. In either case the 
values of wins and losses for the current move are added to the corresponding fields of the upper node, 
ensuring the propagation of these values up to the starting node. 

Selecting the next computer move (make_next_move, line 120) involves traversing the level list 
immediately below the node representing the most recently made move. The strategy is rather 
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8.1 LOGGING IN 
Most computers, including large installations, have various means to protect the stored information 
from unauthotized access. This is particularly important in systems that are shared by many users. 
The first line of defense consists of validating the access rights of a particular user, completely 
disabling access to storage contents and preventing the usage of system utilities when a user's 
identity cannot be properly confirmed. This is accomplished through the so-called login screen 
depicted in Fig. B. l. While the actual appearance may differ from system to system, the screen 
contains two fields that must be filled out. The first is the user identifier as assigned by the system 
administrator, which is a combination of letters, digits, and underscore ("_") and may be in some 
cases derived from the actual user's name. It has to be a unique, contiguous string of characters. The 
second entry accepts the user's password, or a secret combination of arbitrary printable characters, 
preferably including upper- and lower-case letters, digits, and punctuation marks. Note that the typed 
characters are replaced on screen by asterisks or dots to avoid showing the actual password text. For 
improved security, use of plain English words as listed in a dictionary should be avoided as much as 
possible. Many systems have rules governing password selection with which all users must comply, 
including the minimum password length. Of course, the user is obliged to remember his or her ID and 
password, and avoid disclosing the latter to anyone (including system administrators, since they have 
other means at their disposal to manage the user's account). 

I Enter your password 7 
Cancel Log In 

FIGURE B.1 

Login dialog window used by a variant of Debian Linux distribution. 

High Performance Computing. hllps://doi.org/lO. 1016/8978-0-12-420158-3,15002-6 
Copyrighl © 20 18 Elsevier Inc . All rights reserved. 
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After entering the correct user name and password and clicking on the "log in" button (or its 
equivalent), the user is presented with a graphical desktop. To take advantage of material described 
in this book, a terminal application must be invoked. Linux distributions typically offer several 
such applications that differ in their look and feel, configuration options, and capabilities. The 
most common include xterm (a basic tenninal emulator for the X Window system), urxvt (a Unicode
capable version of the older rxvt terminal), gnome-terminal (available in the Gnome desktop 
environment), and konsole (a terminal emulator bundled with the KDE desktop environment). They 
may be found in the "system" entry of the "application" menu on most desktops. Clicking on the 
relevant entry opens a terminal window with a prompt (usually a"> " or"$" character, on occasion 
following some additional information such as current time or host name), at which point one enters 
commands to be executed. A snapshot of a graphical desktop with an opened terminal emulator is 
shown in Fig. B.2. 

In some cases a graphical desktop may not be available when using a simple text-based console 
or when more advanced display modes have not been configured or were disabled on the machine. 
This does not make it unusable, but the operation may be limited to text mode on a single terminal 
(see Fig. B.3). The login proceeds as described previously, with the user entering the credentials at 
the appropriate prompts. The main difference is that during the password entry no characters are 
echoed to the screen. 

FIGURE B.2 

Graphical desktop with a terminal emulator window (CentOS distribution). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 619



(A) 

(B) 

FIGURE B.3 

. ,:ntOS release 6.7 (filwl) 
,o:rnel 2.& 32 573.0 I cl&.xO& M on au x06_&1 

,:ntos loy in: _ 

;,'.ntOS relcc\:=.r: &.·1 (Fiu,,I) 
1: rue I Z . 6. 3Z 573. 0. 1 e 16 .. ""<86 61 on ,tn xfH, 61 

.,:nt.o s login: uscrft01 
P1\ SSIJOI'd; 

i uscr00t&ccntos · 1$ _ 

APPENDIX B 641 

Terminal login: (A) authentication prompt; (B) shell prompt after successful user authentication. 

B.2 REMOTE ACCESS 
The login procedure delineated above may be used to gain access to a local Unix (or Linux in 
pa11icular) machine. However, permitting only local login to a supercomputer would be overly 
restrictive. The preferred approach is to enable remote login over the network to accommodate 
even the broadest base of users without forcing them to be in physical proximity to the machine . 
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The commonly used program for that purpose is Secure Shell, or ssh. It transmits all information, 
including login credentials, in encrypted format, thus preventing the potential eavesdroppers on the 
network from intercepting any useful data. A sample first-time ssh login sequence which may be 
executed on any terminal mentioned in Section B.1 is shown below: 

> ssh userOOl@bigiron.some.university.edu 
The authenticity of host :bigiron.some.university.edu (10.0.0.ll' can't be 
established. 
ECDSA key fingerprint is SHA256:pyYRR3L9EZXAlalJ/EytelkfL2RJhwiAS2j174UbMlc. 
Are you sure you want to continue connecting (yes/no)? yes 
Warning: Permanently added "bigiron.some.university.edu• (ECDSA) to the list of 
known hosts. 
user00l@btgiron.some.university;edu's password: 
[user00l@bigiron ~]$ 

In this example the user name is "userO0l" and the login host is "bigiron.some.university.edu". 
Since this is the first time this user attempts to connect to "bigiron.some.university.edu", ssh warns 
that it does not have any previously collected information about the target machine. Unless there are 
good reasons to assume that host spoofing is indeed taking place, the user should answer "y" to the 
question about whether to continue connecting to the server. This produces the password prompt. 
Entering the password (which will not be shown on the screen) completes the login process by 
presenting the user with a shell prompt on the remote machine. The subsequent login sequence is 
much shorter, since the client machine is already in possession of the encrypted keys identifying 
the remote host. The warnings may reappear when the target machine changes its keys, which 
should happen relatively infrequently. As demonstrated in the example below, ssh also reports the 
time and origin of the last session to alert the user if a third party managed to gain illicit access to his 
or her account. 

The connection to the remote host established in this way permits the use of arbitrary command
line applications that do not require a graphical environment to run. Occasionally, however, 
it is desirable to start a graphical user interface (GUI) application on the remote host to take 
advantage of improved user interface or to access graphical tools that are licensed only for local use. 
Adding a -Y option to the ssh command activates the X Windows protocol forwarding over the 
network connection: 

> ssh -Y userOOl@bigiron.some.university.edu 
Last login: Fri Mar 24 10:47:22 2017 from mybox.some.university.edu 
[user00l@bigiron ~]$ vtk 

This results in the vtk window appearing on the client machine's display. Beware that slow network 
links may result in substantial delays between the command being issued and the resultant window 
being displayed (or even redrawn) on the client screen. Of course, the forwarding works only if the 
client machine supports and is actively running a graphical desktop environment. 
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8,3 NAVIGATING THE FILE SYSTEM 
Persistent information in computer systems is stored in files, named entities organized in a hierarchy 
referred to as a file system. Unlike memory contents, once committed to physical storage the files 
survive machine reboots and shutdowns. All information that needs to be preserved, such as important 
datasets or programs to be executed, has to be stored in files. Files are explicitly created, read, and 
written by programs. 

The file system provides its own naming scheme to facilitate access to specific files. Individual files 
have their own names, such as "main.c" or "task_plan.txf'. While not strictly required, these names 
have typically two components separated by a period("."): base name and extension. The base name 
may be anything the user has selected to hint at the file's purpose or suggest its contents. The extension 
describes the file's type. Thus for the two examples given above, "main.c" most likely contains source 
code of a program in C language, while "task_plan.txt" is probably a plain-text file containing the 
description of some planning activity. File names tend to be relatively short, as most file systems 
impose a fixed limit on their length. Since Unix file names may contain multiple periods, only the 
group of characters following the last of them is considered an extension. 

Using plain file names as the only access method would quickly become unmanageable in 
systems that must handle thousands of them. It also does nothing to prevent collisions on the same 
file name. For example, to store two code versions of the same program source, one would have to be 
renamed; that change would in turn have to be propagated through scripts that build the final 
executable code, preventing reuse and creating unnecessarily replicas. To organize the file system 
contents better, the notion of directory was introduced. Directories are named groups of files and 
other directories. They may have (almost) any name, but unlike files they do not use extensions, 
although periods are permitted in their names. Directories may be arbitrarily nested. The top-level 
directory indicates the root (topmost entry) of the file system and is referred to as "/" (single 
forward slash). Forward slashes are used as separators of hierarchy levels leading to the specific file 
or directory. Thus "/homeluserOOJ/srclheat.c" uniquely identifies file named "heat.c", presumably a 
C source code, that is contained by the "src" directory stored in the "userOOJ" directory, and that in 
turn resides in the "home" directory directly below the root of the file system. Note that this scheme 
allows for two or more different files called "heat.c" to exist within the file system as long as they are 
stored in different directories. The sequence of hierarchy elements necessary to reach the specific file 
starting from the root is called a path. 

Using full paths to identify files being accessed may become tedious and verbose in the long run. 
Since commands are executed by the shell (see Section B.5), a more convenient solution is possible 
thanks to the notion of a working directory. The shell retains the path name of the working directory 
between command invocations, and updates it only when dedicated commands changing its value are 
called by the user. The working directory acts as a prefix that is prepended to the so-called relative 
paths, which are distinguished from full or absolute paths by the fact that they do not begin with a 
slash. Thus if the current working directory is set to userO0l 's home, or "lhome/userOOJ", the C source 
file from the example may be referred to by typing only "srclheat.c". Other conveniences include 
syntax shortcuts that simplify the formation of various paths. 

• The user's home directory is abbreviated to "~" (tilde character). The home directory is the 
current working directory set immediately following user login. Thus the file above could also be 
reached by using "~ ls re/heat. c". 
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• The current directory is represented by"." (single period). Thus the paths "/home/userOOJ/src" 
and "/homel.l./userOOJ/srcl." are equivalent. While it may look like this shortcut is not terribly 
useful, its benefits become more obvious when discussing commands that take directories as 
arguments. 

• The parent directory may be expressed as" .. " (double period). Hence "/home" and"~/.." refer to 
the same directory. 

File systems typically conform to default layout rules to make computer users more effective and 
help them to find various utilities, documentation, and appropriate storage for data. See , Chapter 3 for 
a more detailed description of the standard directory structure utilized by Linux distributions. 

A number of Linux system utilities have been developed, with a goal of simplifying the 
management of the file and directory hierarchy and accessing file contents. They are briefly described 
below, with simple usage examples. The shell prompts were shortened to a single">" character for 
brevity. Due to context sensitivity, the examples were created with the assumption that they are 
executed in order on the same host. 

• ls (list directory contents) 

Without arguments, this lists the contents of the current working directory. The arguments 
may include an arbitrary number of file and directory paths. Additional options may provide 
more information about the stored entries, such as access permissions, ownership, modification 
date, size, etc. The commonly used ones include "-l" to select the "long" format and "-a" to 
enable display of hidden entries (i.e., all files and directories whose names start with a period). 

Note: many distributions by default alias the ls command with frequently used options to "If'. 

> ls -1 /home/user00l/src 
total a 
-rw-r--r-- 1 user00l user001361 Mar 2417:55 Makefile 
-rw-r--r-- 1 user00l user00l 491 Mar 2417:55 heat.c 

• cd ( change working directory) 

This changes the working directory to the specified path or, when invoked without arguments, to 
the user's home directory. The example below changes the working directory to the user's home, 
descends into the "src" subdirectory, and lists all files there: 

> cd 
> cd src 
> 1 s -la 
total 16 
drwxr-xr-x 2user001 userO0l 4096 Mar 24 20:03. 
drwxr-xr-x 3 user00l user00l 4096 Mar 24 20:07 .. 
-rw-r--r-- 1 userOOl user00l 361 Mar 2417:55 Makefile 
-rw-r--r-- 1 user00l user00l 491 Mar 2417:55 heat.c 

r' 
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• pwd (print working directory) 

This prints the current working directory. 

> pwd 
/home/userOOl/src 

• mkdir (make directory) 

APPENDIX B 645 

This creates new directories whose paths are specified as arguments to the command. Nominally, 
the new directory must be an immediate child of an existing path. To permit creation of arbitrarily 
nested paths, a " -p" option (for "parents") should be used. The example below has to use the 
parents option, since the "src2" directory currently does not exist: 

> mkdir -p -/src2/tmp 
> ls -1 •. /src2 
total 4 
drwxrwxr-x 2 userOOl user0014096Mar 24 20:44tmp 

• cp (copy files and directories) 

This takes at least two path arguments: the last argument is the destination for the copy operation, 
while all preceding arguments are considered to be the source arguments. Source arguments must 
exist. Multiple sources are permitted only if the destination is an existing directory. To copy 
source directories properly, a recursive option "- r" should be specified. 

> cp heat.c -/src2/heat2.c 
cp -r ~/src2 

> ls -Lsrc2 
total ·8 
-rw-r--r--1 userooi userOOl 491Mar.2421t2.4heat2.c · 
drwxrwxr-x 2 userOOl userOOl 4096 Mar 24 21 :24 tmp 

The example above copies the content of the heat.c file to the src2 directory created before and 
stores it in a file named heat2.c. The second call copies the whole directory "/home/user001/src2" 
to the current working directory (note the use of"."). Since the whole subdirectory tree is 
replicated, a recursive option is used. 

• mv (move files and directories) 

The move command is used to relocate files and directories within the file system. Its syntax 
resembles that of cp, but the recursive option is no longer necessary, since changing the location of 
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a directory implies changing it for all its children. The mv command may also be used to rename 
either files or directories. 

> mv src2/heat2.c src2/tmp 
> mv src2/tmp ./other 
>ls~, other src2 
other: 
total 4 
-rw-r--r-- 1 userOOl userOOl 491 Mar 24 21:24 heat2.c 
src2: 
total O 

The first command moves file heat2.c from the src2 directory to its child subdirectory tmp. 
The second moves that subdirectory along with its contents to the current working directory 
and renames it to "other". The directory listing confirms that the operations have been 
carried out correctly: the src2 directory is now empty and "other" directory is now a 
direct child of the current working directory and contains file heat2.c that was originally stored 
in src2. 

• rm (remove files of directories) 

The rm command irreversibly deletes files or directories. For the latter, a recursive option("- r") 
must be added. The example shows how to remove the now empty src2 subdirectory: 

> rm -r src2 
> 1 s -1 
total 12 
-rw"r--r-- 1 userOOl userOOl 361 Mar 2417:55 Makefile 
-rw-r--r-- 1 userOOl userOOl 491 Mar 24 21:38 heat.c 
drwxrwxr- x 2 userOOl userOOl 4096 Mar 24 21: 51 other 

• find (look for specific files) 

The find command searches for files of predefined characteristics. While its option list is 
quite extensive, it is frequently used to find files or directories with specific names_ This is 
controlled by the predicate " -name filename" for exact matches and " - i name filename" for 
case-insensitive matching. The search may be further restricted to report only directories 
by specifying "-type d" and regular files by using "-type f". The only argument of find, 
immediately following the command, is a path name identifying the top directory on 
whose contents the lookup will be performed recursively. The example below attempts to find 
all file system entries named heat2.c that exist at any hierarchy level under the user's home 
directory, and later all files starting with "heat" to demonstrate wildcard use (explained in detail 
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in Section B.5). Note that the latter requires protecting the name argument from shell expansion 
by enclosing it in single quotes: 

> find "' -name heat2. c 
/home/user001/src/other/heat2.c 
/home/user001/src2/heat2.c 
>find-· •name 'heat*' 
/home/userOOl/src/heat.c 
/home/user001/src/other/heat2.c 
/home/user001/src2/heat2.c 

8.4 EDITING THE FILES 
Having learned the basics of file system access, the next step is to create files with the desired 
contents. This capability is provided by text editors. Linux distributions offer many options of 
different complexity, resource footprint, supported environments, and integration features targeting 
code development. One of the main distinguishing factors for editor selection is GUI availability: 
some editors may only work invoked inside a text terminal, some support graphical desktops, and a 
subset provides both. For editors that are incapable of accessing remote files, terminal-based 
operation consumes much less network bandwidth, resulting in smoother editing when invoked on 
a remote machine (such as a supercomputer's login node). A short description of commonly used text 
editors is given below. 

8.4.1 VI 
Vi is a nonGUI editor with a broad user base and a long history in Unix environments originating 
in the 1970s. Its code has been updated many times and has inspired a number of clones. Perhaps 
the most characteristic feature of vi is modality. Text input using keystrokes (insert mode) and 
execution of editor commands (normal or command mode) are performed in dedicated modes 
of operation that the user explicitly switches between. Most current Linux versions bundle vim 
("Vi IMproved"), which offers new features compared to the original, such as syntax highlighting 
(coloring of various syntactic constructs in programming languages to make the code makeup more 
apparent), mouse support, completion, file comparison and merging, regular expressions, scripting, 
spell checking, tab support, and many others. Vim is also available in a GUI variant, complete with 
menus and toolbars, as gVim. 

B.4.2 EMACS 
Another editor with an established presence in the Unix world is Emacs. Its name was derived as 
a contraction of "editor macros". Of a number of clones spawned over the years, the most popular 
remains GNU Emacs, a free software implementation based on a small core written in C with most 
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functionality provided by the Elisp (a dialect of LISP) extension language. GNU Emacs layout consists 
of a main text window and a much smaller minibuffer that displays status information and acts a 
command interface. This layout works in both text-only mode and with a GUI, although the latter also 
provides a set of menus for common operations. The editor is highly extensible and configurable, 
implementing over 2000 commands. Another important feature is support of major and minor modes, 
in which a specific major mode is activated per file buffer and usually triggered by the file type (such as 
C code or HTML source), while further customizations, including on-the-fly spell checking, automatic 
line breaking, or highlighting of specific portions of text, may be enabled or disabled at any time. Any 
number of minor modes may be active at any time. 

B.4.3 NANO 
The GNU nano editor embraces interface simplicity as its main design goal, making it an obvious 
choice for beginners. The commonly used command key combinations are displayed on the same 
screen as edited text, thus not requiring their memorization for effective editing. Despite its small 
size, nano features colored text, multiple edit buffers, search-and-replace operations based on 
regular expressions, recent operation undo and redo, and modification of key bindings. Nano operates 
in text-only mode. 

B.4.4 GEDIT 
Gedit is a GUI-centered editor developed for the Gnome desktop environment, deployed by default 
on many Linux distributions including Ubuntu, Fedora, Debian, CentOS, and others. The editor's long 
list of features supports syntax highlighting, multilanguage spell checking, tabbed mode, session 
preservation, line numbering, parenthesis matching, automatic indentation, autosave, font configura
tion, etc. Gedit is also capable of editing files on remote hosts. Its core functionality may be further 
extended through plugins. 

B.4.5 KATE 
The other popular desktop environment, KDE, provides a default GUI-based editor called Kate. The 
basic feature set is similar to that of Gedit. Kate's indentation and tool functionality accessed through 
the command line may be additionally customized through javascript code. Kate is the source code 
editor used by the Kdevelop integrated development environment in KDE. 

File editing using any of these editors is quite straightforward. The editor programs are started 
by typing their name (in lower case) on the command line, optionally followed by the path name of 
the file one wants to modify or create. The editor marks the place being edited with a cursor, or a 
single character-sized block or bar that may be blinking for faster visual location on the screen. The 
arrow keys on the keyboard move the cursor in any of the four principal directions (up, down, left, 
and right). Typing printable characters enters them at the cursor's current position and displaces 
the existing text to the right. Advancing the text by larger strides is possible using the page-up 
and page-down keys in most editors. With the exception of vi, the editors allow free mixing 
of text editing and command execution. In vi the insert mode (for typing the text directly) is 
activated by typing letter "i" in command mode, while switching back to command mode 
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Table B.1 Key Bindings for Frequently Used Commands in Popular Text Editors 

.Function Vi .. :Em11ca•. ·. .. ; 
~!Qlo .,,: /Gedit:'"'., . ·, <.J{af¢ 

I·.-·. -· ••: ·" -· -~::·-,- --~- -; ~ :. 

Display help :h Ctrl-h Ctrl-g Fl Fl 

Undo :u Ctrl-x u Alt-u Ctrl-z Ctrl-z 

Open a file :rfilename Ctrl-x Ctrl-f Ctrl-r Ctrl-o Ctrl-o 

Save file :w Ctrl-x Ctrl-s Ctrl-o Ctrl-s Ctrl-s 

Save as another file :w filename Ctrl-x Ctrl-w Ctrl-o Ctrl-Shift-s Ctrl-Shift-s 

Find a string I Ctrl-s Ctrl-w Ctrl-f Ctrl-f 

Search and replace :s/pattemlreplacement/ Esc % Alt-r Ctrl-h Ctrl-r 

Cut text dd Ctrl-k Ctrl-k Ctrl-x Ctrl-x 

Paste text p Ctrl-y Ctrl-u Ctrl-v Ctrl-v 

Exit :q Ctrl-x Ctrl-z Ctrl-X Ctrl-q Ctrl-q 

All vi commands must be entered in the "normal" (command) mode. For other editors, Ctrl, Alt, Shift, and Fl denote specific 
keys on the keyboard. A dash following one of these keys and a letter signifies concurrent activation of several keys. For 
example, the Ctrl-h sequence is petformed by first pushing the control key and then depressing the "h" key while the control key 
is held down. 

is performed by pressing the escape key. Table B. l summarizes the keyboard shortcuts for common 
editing operations. 

18.5 ESSENTIAL BASH 
Command invocation, job management, and many aspects of file handling may be vastly simplified by 
using various features provided by the shell. The shell is used to issue commands, display their output, 
and manage concurrent tasks. It also acts as an interpreter for a language that may express sequences of 
operations and implement elements of flow control that permit building custom execution scripts. 
Since bash is set up as the default login shell when creating new user accounts and is configured by 
default by many (if not all) Linux installations, this section focuses exclusively on its syntax and 
features. 

8.5.1 PATH EXPANSION 
The first important feature that permits easier manipulation of file groups is called path expansion. The 
characters"*" (asterisk),"?" (question mark),"[',']" (square brackets), and"{','}" (curly braces) 
have special meanings when used inside directory and file paths. The first matches any string of 
characters, including an empty string. Assuming the current working directory contains files as listed 
by the command below: 

> 1 s 
Makefile example.txt fLtxt f2.txt f22,txt heat.c 
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matching all files with the extension ".txt" may be accomplished as: 

> ls *.txt 
example.txt fl.txt f2.txt f22.txt 

The question mark matches precisely one character. Thus to select only files from the above set 
with a single character between the "f' character and the extension ".txt", one could type: 

> ls f?.txt 
fl. txt f2. txt 

Square brackets match one of the specified characters. For example, to find files with the second 
letter in their names of either "a" or "e", the following pattern may be used: 

> ls ?[ae]* 
Makefile heat.c 

Braces are used to list arbitrary substrings or patterns to be matched. Multiple substrings must 
be comma separated. Thus the following selects all files for which the ".txt" extension is immediately 
preceded either by a digit "2" or a string "pie": 

> ls *{2,ple}.txt 
example. txt f2. txt f22. txt 

To verify that patterns work when specified within braces, try to match all text files whose base 
names are exactly two characters long or end in "ample": 

> ls {??,*ample).txt 
ex amp 1 e. txt fl. txt f2. txt 

The path substitution forms discussed above may be applied to any portion of a path name, 
including directory components. However, the matching is always limited to the single level of the 
hierarchy. Thus "/*" will not select all entries present in the file system, but only files and directories 
contained by the root directory. 
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18.5.2 SPECIAL CHARACTER HANDLING 
On occasion it may be necessary to refer to a path name that contains one or more special characters. In 
such situations these characters will have to be escaped using a backslash ("\") or placed between 
single quotes. To refer to a file named "ready?", the actual string argument appearing on the command 
line would have to be typed as "ready\?" (without the double quotes which serve here only as name 
delimiters) or "'ready?"'. As the shell breaks down the command-line contents at blank spaces (which 
actually may be regular spaces or tabs) to identify command options and arguments, the same method 
may be used to refer to files whose names contain spaces. Shell language syntax assigns special 
meaning to several other characters, making escaping them necessary if used within path names. They 
include the pipe symbol ("I"), ampersand ("&"), semicolon (";"), parentheses ("(' and ')"), angle 
brackets ("<" and ">"), and the end-of-line character. To minimize the occurrence of related prob
lems, avoiding use of these characters in file names is a good general rule, especially for users who are 
just beginning to learn the shell concepts. 

B.5.3 INPUT/OUTPUT REDIRECTION AND PIPELINES 
Some commands executed by the shell generate output and some expect input data. The shell provides 
dedicated operators to manage the standard input, standard output, and standard error streams 
mentioned in Appendix A. In Unix systems these streams are by convention associated with file 
descriptors numbered 0-2, respectively. So-called "redirection" may be used to channel the input to 
the application from a specific file (instead of requiring the user to type in the input data every time that 
application is run) or permit the capture of application output in a file (instead of making just an 
ephemeral appearance on the screen). The operators governing the 1/0 redirection include the 
following. 

• ">" redirects the application's standard output to the specified file. To illustrate this, a cat utility 
(described in Section B.7.l) is used to display the contents of the file: 

> ls * .. c > c_files 
> cat c_fi 1 es 
heat.c 

• "&>" redirects both standard output and standard error to the specified file. The example below 
tricks ls into generating error output by specifying an argument that refers to a nonexistent file: 

> ls *.h > h~files 
ls: cannot access *.h: No such file or ~i~ectofy 
> cat h_fi 1 es 
> ls *.h &> h_files 
> cat h_files 
ls: cannot access *.h: No .such file or directory 
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Since ">" only redirects the standard output, the error was not captured as the content of 
"h_jiles" but displayed in the terminal instead. The capture file is still created, but nothing is 
stored in it. The second invocation applies the"&>" operator that redirects both types of output. 
This is particularly useful when saving the output of installation or compilation scripts; using 
only the first kind of redirection might omit the actual error information, making the subsequent 
troubleshooting more difficult. 

• ">>" redirects the standard output while appending it to the specified file. This variant may be 
used to merge the output of several commands into a single file, since the application of">" to the 
same file would simply overwrite its contents. To illustrate this in action, a shell built-in echo 
command that outputs (echoes) strings to the standard output will be used. Since path expansion is 
applied to all unescaped arguments in commands executed by the shell, there is no need to invoke 
the ls command explicitly: 

> echo "These are my C files:" *.c >> rny_files 
> echo "These a re my text files:" *. txt >> rny_fil es 
> cat my_files 
These a re my C files: heat .. c 
These are my text files: example.txt fl.txt f2.txt f22.txt 

• "&>>" redirects both standard output and error streams to be appended to the given file. 
• "<" redirects the application's standard input to be read from the specified file. The somewhat 

contrived example below (since the cat utility can accept a file argument directly) demonstrates 
its use: 

>cat< my_files 
These are my C files: heat.c 
These a re my text files: example. txt fl. txt f2. txt f22. txt 

As many applications both accept input and generate output, it stands to reason there is a way 
to daisy-chain them to implement more complex processing flows. This concept is called pipelining, 
and is realized using the pipe operator "I". It enables forwarding the standard output created by 
command k to be standard input of command k+l in the pipeline, as shown below: 

command_l I command_2 I ... I command_n 

Of course, the output(s) of command_n may be captured in a file by applying the redirection 
mechanism described above. A variant of the pipe operator, "I&", supports redirection of merged 
standard output and error streams to the standard input of the next pipeline stage. 

8.5.4 VARIABLES 
Bash supports variables that may be used to store arbitrary strings produced by commands and ap
plications or to retain control state in scripts. The fundamental variable assignment statement is 

name=value 
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where name is a variable identifier consisting of an arbitrary combination of letters, digits, and un
derscores as long as the first character is not a digit. Value may be a string or an array. It may also be 
omitted, in which case an empty variable is created. Once assigned, the variable value can be retrieved 
by placing a dollar sign ("$") before its identifier: 

> X'-'99 
> echo $x 
99 

Array variables may be created by the explicit assignment of an element at a specific index, 
such as 

name[ index] =value 

where index has to evaluate a number. Another way to create arrays is by assignment of list of values: 

name=(value_l value_2 ... value_n) 

To dereference a specific element of an array, ${name[index]} format should be used. Special 
subscripts of"@" or"*" retrieve all values of the array, but with one difference: the first produces a list 
of values very much mirroring the way they were originally assigned to the array, while the latter yields 
a single string containing concatenated values. The first element of an array is located at index 0, 
hence: 

> numbers.a(one 2 three 4 five) 
> echo $numbers· 
one 
> echo ${numbers[@]} 
one 2 three 4 ffve 
> echo ${numbers[2Jl 
_three 

The content of an array may be expanded using the "+=" operator. For instance: 

> fruits=(apple peach) 
> fruits+=(banana) 
> echo ${fruits[@)} 
apple peach banana 

Defined variables are normally accessible within the scope of the current shell. Since shell 
scripts are executed in a subshell, they typically do not have access to the parent shell variables set 
up in the way described above. To enable such access, each variable must be explicitly exported. 
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This is accomplished by preceding the variable assignment (or just the variable name if already 
defined) by the keyword "export": 

> cat showx 
#!/bin/bash 
echo $x 
> x=99 
> ./showx 

> export x 
> ./showx 
99 

In the example above, the first line of the script "showx" is a hint to the execution environment that 
the remainder of the file should be interpreted by a program residing at the specified path ("/bin/bash" 
in this case). The variable "x" is unknown to the script until it is exported. The same could have been 
accomplished at the variable definition time using "export x=99". 

Variables may be deleted using a statement in the form: 

unset name 

> echo $x 
99 
> unset x 
> echo $x 

Bash provides a number of predefined variables that may provide useful information to scripts. 
The necessarily limited list below describes those most often used. 

• BASH provides the full path name leading to the shell program currently executing. 

• BASHOPTS lists enabled shell options in a colon-separated format. 

• BASH_ VERSION gives the version number of the currently executing shell. 

• HOSTNAME contains the name of execution host. 

• MACHTYPE describes the system (machine) type the shell is running on. 

• OSTYPE identifies kind of operating system executing on the host. 

• PATH contains a colon-separated list of directory locations (search paths) that the shell scans for 
commands. For any command invoked by name only (i.e., without specifying the path to its 
executable), Bash will try to determine its location by checking each specified search path in the 
order listed. 

• PWD is the path name of the current working directory. 

r 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 633



APPENDIX B 655 

• OLDPWD is the path name value identifying the previous working directory. 

• GLOBIGNORE contains a colon-separated list of patterns to be ignored when performing path 
name expansion. 

• HOME stores the path name of the user's home directory. 

• GROUPS is an array of identifiers of groups of which the user is a member. 
• PIPESTATUS is an array storing exit status values of all processes comprising the most recently 

executed pipeline statement. 

• RANDOM is a variable generating a random integer value between O and 32767 whenever read. 

• SECONDS stores the number of seconds elapsed since the shell was started. 

Bash supports many syntactic enhancements that provide additional information about existing 
variables or transform them into other forms of data. The commonly encountered constructs include 
the following. 

• "${#name}" returns the length of the variable (the number of characters used by its string 
representation). 

• "${#name[@]}" provides the count of elements stored in the array. 

• "${name:offset}" or "${name:offset:length}" performs substring expansion, i.e., it extracts the 
section of string of length characters starting at an offset. If length is not specified, the substring 
starts at an offset and continues until the last character of name. 

• "#{name/pattern/string}" substitutes the first longest occurrence of pattern with string. If pattern 
begins with"/", every occurrence of pattern is replaced. The string may be empty, in which case 
the second"/" may be omitted. 

• "${name#pattern}" or "${name##pattern}" removes the matching prefix. The first deletes the 
shortest matching prefix, while the second form removes the longest. The pattern is transformed 
using path name expansion rules. 

• "${name%pattern}" or "${name% %pattern}" is analogous to the previous construct except it 
removes the suffix portion of the string. 

Examples: 

> s=fhornefuserOOl/error.c 
> echo ${1fs} 
21 
> echo ${s/er/ing} 
/horne/usingOOl/error.c 
> echo ${s//er/ing} 
/home/usingOOl/ingror.c 
> echo ${s/Nf*/l 
error.c 
> echo ${s%/*l 
/home/userOOl 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 634



656 APPENDIX B 

18.5.5 ARITHMETIC ON VARIABLES 
Variables representing numbers may be used in simple arithmetic expressions. The construct to 
accomplish this is "$((expression))" and may be nested. 

> x=99 
> etho S(((x+l)*lO)) 
1000 

The supported operators include "+" (addition), "-" (subtraction), "*" (multiplication), "/" 
(division),"%" (remainder),"**" (exponentiation),"~" (bitwise negation),"&" (bitwise and), "I" 
(bitwise or),"" (bitwise exclusive or),"<<" (left bitwise shift),">>" (right bitwise shift),"==" 
(compare for equality), "!=" (compare for inequality), "<" (less than), "<=" (less or equal), ">" 
(greater than),">=" (greater or equal),"&&" (logical and), "II" (logical or), "exprl?expr2:expr3" 
(conditional operator), "name++" (postincrement), "++name" (preincrement), "name-" 
(postdecrement), and "-name" (predecrement). The last four operators change the value of variable 
name. While the post- variants return the variable value before the operation is performed, the pre
variants return the value of variable after the update. For example: 

> echo $x 
99 
> echo $((x++)l 
99 
> echo $x 
100 

B.5.6 COMMAND SUBSTITUTION 
A particularly useful feature of the shell is the ability to capture directly the output of a command in a 
variable. There are two forms of syntax to do this: by encasing the command in a pair of backquotes 
(""'), or by invoking it as "$(command)". The command may be compound, including a pipeline. Bash 
provides a faster option to read file contents into a variable with"$( <file)" rather than "$(catfi/e)". The 
following example stores paths of all files matched by the find command into the variable "text_files": 

> text_fil es=' find . -name "*. txt" · 
> echo $text_files 
./f22.txt ./f2.txt ./example.txt ./fl.txt 

B.5. 7 CONTROL FLOW 
Creation of sophisticated shell scripts takes advantage of more complex constructs that permit 
definition of loops and conditional execution. To introduce them, the concept of exit status needs to 
be explained. Every command and application run by a shell returns a numeric status value when 
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it finishes the execution; this value is not displayed on the screen but kept internally by the shell. For 
C programs, this is the value of the expression following the "return" keyword in the main function 
or argument to the "exit" library function. For shell scripts, the status is that of the last command 
executed by the script, or zero if no commands were executed. By convention in Unix systems, zero 
exit status indicates success, while any nonzero value is a failure. 

A brief overview of the commonly used constructs is presented below. 

• "command_] ; command_2 ; ... ; command_n" executes each of the specified commands in order, 
waiting for command x to finish before starting the command x + 1. The exit status is that of the 
last command. 

> ls M*; ls *. h; 1 s *. c 
Makefile 
ls: cannot access *. h: No such file or di rectory 
heat.c 

• "command_] && command_2 && ... && command_n" executes commands in sequence, 
stopping after the first failing command. The example below attempts to list different kinds of 
files and displays "Success!" if all of them exist: 

> ls *.c && ls_ M* && echo •success!" 
heat.c 
Make.file 
Success·! 

• "command_I 11 command_2 II ... II command_n" attempts to execute command k+l only if all k 
preceding commands failed. None of the commands following the successful one is executed. For 
example: 

> ls *.h 11 echo "Could notfi~d any -fi•lesr• 
1 s: cannot access *. h: No sl.lch file or dfrect·orY 
Could not find any files! 

• "for name in word] word2 ... ; do list ; done" implements a loop that iterates over values 
represented by word], word2, etc. while storing them in a variable name. That variable may be 
referenced by any of the commands inside the loop body represented in the syntax above by list. 
For example: 

> for f in 'ls *.txt'; do echo "Text file:" $f; done 
Text Hle: example.txt 
Text file: fl. txt 
Text file~ f2.txt 
Text file: f22.txt 
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• "for (( exprl ; expr2 ; expr3 )) ; list; done" implements an arithmetic loop which resembles the 
"for-loop" syntax in C language discussed in Appendix A. For instance: 

> for ((x=2; x<5: x++)); do echo "square of $xis $((x*x))"; done 
square of 2 is 4 
square of 3 is 9 
square of 4 is 16 

• "while list] ; do list2 ; done" behaves similarly to the while-loop in C language. As long as the 
status of the last command in list 1 is zero, commands in list2 are executed. The exit status is that 
of the last executed command in list2, or zero if none was run. The following sequence of 
commands appends paths in reverse order from the "files" array to the "names" array until the 
latter includes four elements or there is nothing left to copy: 

> files=(*.txt *.c Makefile) 
> echo ${#files[@]} 
example. txt fl. txt f2. txt f22. txt heat.c Makefile 
> names=() > i=$[/ffi1es[@J} > while (($!/fnames[@J}<4 && $i>O)); do names+=(${files 
[$((--i)JJJ)i done 
> echo ${names[*]} 
Makefile heat.c f22.txt f2.txt 

• "if list] ; then list2; [else list3 ;] fl" executes statements in list2 if the exit status of list] is zero. 
Otherwise, if the else branch is specified, statements of list3 are executed. For example: 

> for ((x=3: x<6; x++)l; do echo -n "cube of $xis": if C(x**3%2=0ll: then echo even; 
else echo odd; fi; done 
cube of 3 is odd 
cube of 4 is even 
cube of 5 is odd 

Note that the "- n" option to echo suppresses the output of the end-of-line character. 

8.6 COMPILATION 
Compilation is a process of converting the program description stored in one or more source files to 
executable code. Creation of executable files typically proceeds in two stages: generation of so-called 
object files for each C language source file, and linking the resultant files into a single final executable 
binary. Many compilers support invocation formats that permit combination of these two phases into a 
single command for convenience. 

Object files normally have an ".o" extension. They contain machine instructions to be later 
executed by the CPU, but which cannot run by themselves. The "gee" C compiler commonly found 
in Linux distributions uses the -c option to create them. Let us assume we have three source files 
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(as shown in the example below) that together contain the full functionality of the program. The 
"main" function is defined within the "main.c" file; the other sources may not contain their own 
"main" functions, since it would make it ambiguous as to which one of them is the entry point to the 
program. Compilation of the "main.c" file to object code is invoked as follows: 

> ls 
rnain.c srel.e sre2.e 
> gee -e rnain.e 
> ls 
rnain.e main.o srel.e sre2.e 

Note that the object file created in that way retains the base name of the input source file, only 
replacing the extension. If the source code does not contain any problematic constructs or undefined 
identifiers, the compiler typically will not produce any text output. The code generation is controlled 
by a plethora of options, of which the most common are listed below. 

• -Onumber performs code optimizations at a level determined by number. Generally, the higher the 
level and the more involved the optimizations, the better the resultant performance of the code, 
but also the longer compilation. In practice, "-02" and "-03" offer the best tradeoff between 
compilation time and code quality. The "-00" turns off the optimizations-this is the default 
behavior when no optimization option is specified. 

• -g embeds the debugging information, such as variable and function names, in the resultant object 
file. While gee permits combining debugging and optimization options in the same command, one 
has to remember that higher optimization levels may severely modify flow control in the program, 
on occasion completely eliminating some variables or functions. A variant of this option, -ggdb, 
produces debug information specifically for use with the GNU debugger, potentially including 
gdb-specific extensions. 

• -o file places the compiler output in an explicitly named file. When generating an object file, it 
should have an ".o" extension. 

• -ldirectory adds directory to the set of header (files with an ".h" extension) search paths. Multiple 
-I options are permitted in the same command. Header files installed under "/usr/include" (such as 
prototypes and macros used by the C library) are searched by default. 

To make the object files into a self-contained program, a linker must combine them together, make 
sure there are no missing functions and variables, and add extra code that correctly sets up the execution 
environment. Conveniently, the gee compiler may be also used to perform this operation. Remembering 
that there two more source files to compile, and the remaining sequence of commands is as follows: 

> gee '.'"e srcl .e 
> gee -e sre2,c 
> gee rnain.o srel.o sre2.o -o my_program: 
> ls 
main.e rnain.o rny_program srcl.c sre1.o srcz.e sre2.o 
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The newly created executable "my _program" may be now invoked at the shell prompt just like any 
other program. If the "-o" option is not used, a default executable name is assumed, typically "a.out" 
on Unix systems. 

In simple cases similar to the example above, creation of the executables may be performed in a 
single command. The intermediate object files are not retained in this case, so from the user's 
perspective it appears as though the compiler produced the final binary directly from sources. The 
following example illustrates this, while at the same time performing code optimization: 

> rm -f *. o tny_program 
> gee -02 main.o srel.o sr_e2.o -o opt_program 
> 1 s 
main.e opt_program srel.e src2.c 

The examples so far have not created or taken explicit advantage of external libraries. Actually, the 
latter is not quite correct: the linker silently links the object code with the system's C library, so if 
any of the listed sources invoked C library functions or-used its internal variables, they would be 
automatically resolved. To learn how to create custom libraries, let us assume that "srcl.c" and 
"src2.c" contain functionality that could be reused by several programs and is thoroughly debugged 
and fine-tuned for performance. It would thus make sense to avoid their recompilation every time a 
new version of the program needs to be built. This is accomplished by converting them into a library, 
with the familiar first step involving compilation to object files with the desired debugging and 
optimization flags: 

> gee -e -g -02 srel.e 
> gee -e -g -02 sre2.e 
> ar res libmy_library.a srel.o sre2.o 

The last command invokes the Unix archive tool "ar" that packages all specified object code files 
into a library file named "libmy_library.a". Customarily, code libraries have the ".a" extension and 
carry names starting with "lib". The remaining, not yet compiled, functionality of the program is now 
limited to the contents of the file "main.c". To create a correctly formed executable, just two more 
commands are needed: 

> gee -e -g -02 main.e 
> gee main.a -o opt_deb_program -L. -lmy_library 
> ls 
11 bmy_li bra ry. a 
main.e 

main.o 
opt_deb_program 

opt_program 
srel.e 

srel.o 
sre2.e 

sre2.o 
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As a result, an "opt_deb_program" optimized executable with debug symbols has been 
created. Note that the linking command this time contained only one object file "main.a", since the 
other required program functions are already provided by the library. To tell the linker which 
libraries should be used when looking for missing symbols, -lname option is used, where name is the 
library file name stripped of the "lib" prefix and extension. Since custom libraries may reside 
anywhere in the file system, the linker is informed about their location through the -Ldirectory 
option. Of course, the linking command may specify multiple library search paths and multiple 
libraries. 

18.7 OTHER COMMAND-LINE UTILITIES 
8. 7. 1 TEXT TOOLS 
less (file viewing utility) 

The less program is a simple file visualization tool, also called a pager, that permits scrolling of file 
contents by an arbitrary number of lines (using arrow keys), pages (page-up and page-down keys), and 
jumping directly to a specific location (line number followed by a "G"). The supported navigation and 
text search operations are a subset of the vi editor commands. 

cat (concatenate files and print them on standard output) 
This command takes any number of file arguments and merges their contents in a specified order. 

The concatenated text is printed to the standard output. When used without arguments, it passes 
standard input to standard output. 

> cat fl. txt 
file 1 
> cat f2.txt 
file 2 
> cat f*.txt 
file 1 . 
file 2 

head (print the beginning part of files) 
The head command outputs the first number of lines (" -n number" option) or characters 

("- c number" option) of specified files to the standard output. If the number is preceded by a minus, 
the output includes all but the last number of lines or characters. Without options, it prints the first 10 
lines of indicated files. If multiple files are given, the printout for each is preceded by a header 
indicating the file name. The example below shows that no extra end-of-line character is added at the 
end of output (hence the shell prompt is adjacent to the printed text), and that end-of-line characters 
are included in the count. 
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> cat example.txt 
line 1 
line 2 
line 3 
> head -c 10 example. txt 
Tine 1 
l in> 

tail (print the last part of files) 
Analogous to head, this outputs the last number of characters or lines (the same options are 

used) of files. The number may be prefixed with a "+" (plus sign) to force starting the output 
with the numberth character or line of the file. The tail command is also often used to monitor 
growing files (with contents appended by other running applications). This behavior is activated by 
option " - f". 

> tail -n +3 example.txt 
line 3 

cut (cut a section of each line) 
The command selects a specific range of characters ( option " -c lisf') or fields ( option " -f list") 

from each line of the input files (or standard input if" -"is specified instead a file name) and prints it to 
the standard output. The fields are determined by splitting each line at every occurrence of a predefined 
delimiter character (controlled by the option "-d character"), or by default the tabulation mark. The 
list may be a single integer to identify a specific field or character, a range in the form start-end 
(inclusive), or with the first or last number of the range missing, indicating starting from the first or 
ending on the last field or character of the line, respectively. The example below illustrates how to set 
the space character as the field delimiter: 

> cut -f 2- -d ' ' example. txt 
1 
2 
3 

grep (find lines matching a pattern) 
The grep utility matches lines that contain a specific character pattern. Its arguments include text 

pattern to look for, and optionally names of the files to search (standard input is assumed if no files are 
given). With multiple files, for each line containing the pattern grep outputs the name of the relevant 
file followed by the contents of the line. Printing of line numbers may be requested with option "-n". 
The matching is normally case sensitive, but specifying "- i" suppresses this behavior. Grep behavior 
may be reversed to output all the lines which do not contain the specified pattern by adding the " -v" 
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option. Finally, recursive searches on directories may be triggered with option"- r". The latter permits 
specification of directory paths as command arguments. 

> grep -n 'e 2' f*.txt example.txt 
f2.txt:1:file 2 
example.txt:2:line 2 

B.7.2 PROCESS MANAGEMENT 
ps (output current process status) 

Applications and system utilities that are not built-in shell commands have to be started as 
processes. To view a snapshot of their status, a ps command is used. Without options, it reports only 
processes that belong to the current user: 

> ps 
PIO TTY TIME CMD 

18441 pts /25 00: 00: 00 bash 
18444 pts/25 00:00:00 ps 

The processes are characterized by their process identifier (PID), a numeric handle that uniquely 
identifies the running process. To display all processes running in the system along with full 
information about them, "ps auxw" may be invoked (note there is no minus preceding the options). 
An interesting variant presented below reorganizes the output to display process tree, in which one 
can determine which processes are children of others: 

> ps ax -H 
PIO TTY STAT TIME COMMAND 

1 Ss 0:04 /sbi n/init 
370 s 0:00 upstart-udev-bridQe --claemon 
374 Ss 0:00 /lib/systemd/systemd-udevd --daemon 
514 ? . s 0:01 upsta.rt-socket-brfdge - -daemon 

kill (deliver a signal to a process) 
As its rather gruesome name suggests, the kill command may be used to terminate processes via 

Unix's signal mechanism. Not all signals result in a process termination; some may interrupt its 
execution, pause it, etc. Their full listing may be obtained with the "kill -l" command. 

Without any options, a TERM (terminate) signal delivered to a process is in many cases sufficient 
to cause its more or less graceful termination. Some stubborn processes may ignore it, in which case a 
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KILL signal must be sent. The arguments of the kill command are PIDs of target processes. The 
example shows how to kill the user's bash process (which is usually a bad idea and is mentioned here 
only for illustrative purposes) with a PID obtained from the ps listing above: 

I> kill -KILL 18441 

B.7.3 DATA COMPRESSION AND ARCHIVING 
gzip (compress or expand a file) 

The gzip utility is one of the most common compression programs, characterized by achieving 
substantial data compaction ratios (especially for text files) and fast operation. It takes as its argument 
path the name of the file or multiple files to be compressed: 

> ls -1 Ma.kefi le 
-rw-r--r-- luserOOl userOOl 361 Mar 2417:55 Makefile 
> gzip Makefile 
> ls -1 Makefile* 
-rw-r--r-- 1 userOOl userOOl 233 Mar 2417:55 Makefile.gz 

Gzip removes the original file if the compression is successful and adds the ".gz" extension to the 
compressed file name. If the compaction process fails, for example due to running out of disk space, 
the original file is left untouched. To restore the original file, one can use: 

> gzip -d Makefile.gz 
> ls -1 Makefile* 
-rw-r--r-- 1 userOOl userOOl 361 Mar 2417:55 Makefile 

For convenience, the same effect may be achieved using the "gunzip" program (without the "-d" 

option). 
Linux provides other file compression utilities that function in a similar fashion to gzip, such as 

bzip2, lzma, 7z, and others. While they may achieve better data compression ratios, the compute time 
required to process the input files may be substantially longer. 

tar (archive files) 
The tar program has a long tradition as the primary file archiving tool for Unix. Its three primary 

invocation formats are: 

tar -c -f archive options path ... 

tar -x -f archive options 

tar -t -f archive 
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The first creates an archive containing all file system objects pointed to by paths (which may 
be files and directories). For any path identifying a directory, its content will be archived recursively. 
The options may specify the compression algorithm to be used: "-z" for gzip, "-j" for bzip2, "-J" 
for xz, and "--lzma" for lzma. Other useful options include verbose output "-v" and preservation of 
original permissions "-p". 

The second form extracts the contents of the archive to the current working directory or location 
specified in the "-C directory" option. The decompression algorithm does not need to be specified, 
as it is automatically determined through examination of archive content. Finally, the third instance 
lists the contents of the specified archive. 

Example: 

> 1 s -1 src 
total 12 
-rw-r--r-- 1 userOOl userOOl 361 Mar 2714:06 Ma.kefile 
-rw-r--r-- 1 userOOl userOOl 491 Mar 27 14:0.6 heat.c 
drwxrwxr -x 2 userOOl userOOl .4096 Mar 24 21: 51 other 
> tar -c -f sources.tar.gz -z src 
> ls -1 sources,tar.gz 
- rw 0 rw- r- - 1 userOOl userOOl 540 Mar 27 14: 08 sources. tar. gz 
> tar -t -f sources.tar.gz 
src/ 
src/other/ 
src/other/heat2.c 
src/heat.c 
src/Makefile 
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Absolute Time in Pregroove (ATIP) An additional metadata segment that guides the process of data storage on recordable and 
rewritable optical media. 

Abstract Device Interface for 1/0 (ADIO) A device-independent layer providing I/O functionality in MPI. 
Accelerated Processing Unit (APO), formerly Fusion A processor architecture developed by AMO that combines conven-

tional CPU cores and GPU logic on a single die, sharing external memory. 
Accelerator A special-purpose hardware device used to speed up the execution of specific tasks. 
Access Control List (ACL) Implementation of a fine-grain access control to file system entities. 
Accumulator A dedicated processor register used for operand and result storage in ALU operations. 
Adaptive Mesh Refinement (AMR) A numerical method employing multiple-resolution meshes adaptively in a simulation to 

improve efficiency and reduce the memory requirements for a simulation. 
Advanced RISC Machine (ARM) A family of computer processors with fewer transistors but also lower power consumption 

and lower cooling requirements. RISC stands for "reduced instruction set computing." 
American Standard Code for Information Interchange (ASCII) One of the most widespread character encoding standards, 

comprising 128 characters including all letters of the English alphabet. 
AND Binary logic function that evaluates to one only when all its inputs are ones. 
Andrew File System (AFS) A distributed file system developed at Carnegie Mellon University. 
Antialiasing A signal processing technique that minimizes distortions due to artifacts outside the sampling band. 
Apple Filing Protocol (AFP) A proprietary remote file access protocol developed by Apple; formerly AppleTalk Filing 

Protocol. 
Application-Specific Integrated Circuits (ASICs) An integrated circuit designed for a specific application using predefined 

gates.· 
Arithmetic Logic Unit (ALU) The circuit that performs digital operations on integer numbers and logic values. Its counterpart 

for floating-point operations is the FPU. 
ATA over Ethernet (AoE) A simple protocol for accessing block storage devices over Ethernet networks. 
Automatically Tuned Linear Algebra Software Project (ATLAS) A project providing a BLAS implementation that is 

automatically tuned for performance. 
Backfill Scheduling A job scheduling strategy that avoids starving the lower-priority jobs by scheduling them ahead of higher

priority jobs provided this will not delay the execution of the latter, effectively "filling back" the voids in the time-resource 
scheduling graph. 

Ball Grid Array (BGA) A common high-density chip package type consisting of a grid of solder balls attached to a flat case. 
Basic Linear Algebra Subprograms (BLAS) A standard interface to vector, matrix-vector, and matrix-matrix routines that 

have been optimized for various computer architectures. 
Batch Processing A processing mode in which multiple, possibly parallel, compute jobs are executed without the involvement 

of a user; the opposite of interactive processing. 
Binary-Coded Decimal (BCD) (a) Number encoding in which each decimal digit occupies a four-bit field; (b) several 

nonstandard encodings of upper-case letters, digits, and special codes using six-bit characters. 
Bit Block Transfers (BitBLT) A set of memory copy and bit-wise compositing operations used in computer graphics and video 

processing. 
Bit, "Binary Digit" The smallest unit of information used by most digital computers assuming one of two values, typically "O" 

or"!." 
Block Smallest granularity of data used in transfers to and from some device types, particularly mass storage. 
Btu-ray Disc (BD) Optical storage technology developed to support data volumes and transfer rates required by high-definition 

video. 
Btu-ray Disc XL (BDXL) Blu-ray disc specification update introducing high-capacity (up to 128 GB per disc) media. 
Bottleneck An execution hotspot that negatively impacts an application's performance. 
Branch Prediction A hardware mechanism (frequently in combination with software support) used to determine with a high 

level of probability whether a conditional branch is taken or not. 
Buffered File 1/0 An intermediate file access layer supported by the C library, often resulting in performance advantages. 

667 
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Burst Buffer A high-bandwidth storage device capable of quickly storing moderate amounts of data and acting as an l/0 buffer 
between compute nodes and (slower) secondary storage. 

Byte The smallest unit of addressable memory in computers, commonly comprising eight bits. 
Cache A component of CPU architecture that stores a subset of main memory contents providing lower access latency and 

higher data bandwidth. 
Cell Broadband Engine (CBE) or Cell Processor A heterogeneous multicore processor based on Power architecture and 

developed by Sony, Toshiba, and IBM for embedded applications. 
Central Processing Unit (CPU) A primary hardware device performing code execution and data processing in a computer 

system; a processor. 
Checkpointlng The process of saving the necessary data from a running application to allow later resumption of the application 

in the event of system failure or to work around wallclock time execution limitations on a supercomputer. 
Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) A joint procurement of supercomputing resources between 

two key US Department of Energy National Laboratories. 
Common Internet File System (CIFS) A variant of SMB protocol for remote file access. 
Compact Disc (CD) An optical storage technology on 120 mm discs developed by Sony and Philips and originally used to 

store digital audio. 
Compact Disc Read-Only Memory (CD-ROM) A variant of a CD dedicated to data storage. 
Compact Disc Recordable (CD-R) An optical storage technology based on the CD format that permits one-time writing of 

user-defined data to the medium. 
Compact Disc Rewritable (CD-RW) A variant of CD technology permitting multiple updates of medium contents. 
Complementary Metal-Oxide Semiconductor (CMOS) The currently dominant technology used to fabricate integrated logic 

circuits. 
Complex Instruction Set Computer (CISC) A type of processor architecture supporting instructions that consist of multiple 

low-level operations or support complex addressing modes; the opposite of RISC. 
Compute Unified Device Architecture (CUDA) Nvidia's application programming interface for parallel computing on 

graphics processing units. 
Conjugate Gradient (CG) A Krylov subspace iterative solver used for solving positive definite systems of equations. 
Coprocessor A dedicated circuit accelerating a specific kind of computation. 
Cross-Interleaved Reed-Solomon Code (CIRC Code) An error-detecting and error-correcting code with good spatial effi

ciency and well suited to correcting random and burst errors. It is used to protect the information stored on some optical 
media. 

Cycles per Instruction (CPI) A performance metric specifying average number of processor cycles for each instruction 
performed. 

Cylinder One of the physical address components used to locate data blocks on a hard-disk drive and identifying set of tracks 
equidistant from the spindle. 

Daemon A process executing in the background and performing specific services. 
Data Writes per Day (DWPD) Metric used to assess the endurance of SSDs due to a finite number of flash rewrites and equal to 

the number of full device capacity rewrites performed per day over the warranty period. 
Debugger A tool to assist the programmer in stepping through a code in execution and examining program state. 
Degrees of Freedom per Second (DOFS) The output metric for the HPGMG benchmark. 
Department of Energy (DOE) The United States agency tasked with nuclear stockpile stewardship and research in science. 
Die A semiconductor substrate for integrated circuit implementation. 
Digital Audio Tape (DAT) A digital storage technology using magnetic tapes originally developed for digital audio recording 

by Sony. 
Digital Data Storage (DDS) Magnetic-tape-based digital storage technology, now obsolete. 
Digital Linear Tape (DLT) Digital storage technology using a magnetic tape format developed by Digital Equipment Cor

poration, no longer manufactured. 
Digital Signal Processing (DSP) A computing technique used to extract features of, modify, or generate sampled signal values, 

frequently through the use of specialized hardware. 
Digital Versatile Disc or Digital Video Disc (DVD) Digital storage technology involving 120 mm optical discs with increased 

capacity and data transfer rates compared to a CD. 
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Digital Versatile Disc Random Access Memory (DVD-RAM) A storage technology permitting a large number of rewrites of 
compatible DVD media; incompatible with either DVD-R and DVD+R. 

Digital Versatile Disc Recordable (DVD-R and DVD+ R) A one-time recordable version of DVD; DVD-R and DVD+R 
denote incompatible formats of similar technology. 

Digital Versatile Disc Rewritable (DVD-RW and DVD+RW) A version of DVD storage whose contents may be updated 
multiple times; DVD-RW and DVD+RW are incompatible formats of similar technology. 

Direct Memory Access (OMA) A hardware mechanism in computers allowing memory access by system devices without 
interaction with the CPU. 

Directory A unit of content organization within a file system which functions as a container for other directories, files, and file 
system entities. 

Disc at Once (DAO) A recording mode in optical storage in which all data is written to a medium in a single operation. 
Diskless Node A type of compute node that does not include secondary storage devices. 
Distributed Lock Manager (DLM) Implementation of an algorithm for coordinating accesses to shared resources in a 

distributed computer system. 
Dual In-Line Package (DIP) A type of case used to package integrated circuits with a low pin count. 
Dynamic Random Access Memory (DRAM) A high-density variant of random access memory that requires periodic 

refreshing of its contents. 
Eigenvalue Solvers for Petaflop Applications (ELPA) An HPC library for computing the eigenvalues and eigenvectors of 

Hermitian matrices. 
Eight-to-Fourteen Modulation (EFM) A run-length-limited encoding technique frequently used to store data on optical media 

such as CDs. 
Elastic Computing A type of processing in which the footprint of utilized resources may significantly vary over time. 
Electrically Erasable Programmable Read-Only Memory (EEPROM) A variant of semiconductor read-only memory whose 

contents may be electrically erased and reprogrammed. 
Environment Variable A uniquely named string defined in a context (environment) of the underlying command shell and 

providing additional information or configuration to specific tools or applications. 
Error-Correcting Code (ECC) An additional code accompanying a data segment that permits both detection and correction of 

data corruption; the extent of detection and correction relies on the data size and algorithm used. 
Escape Opcode A predefined prefix used in assembly code causing the CPU to transfer control to a coprocessor for the duration 

of the next instruction. 
Event-Triggered Scheduling A simple variant of scheduling in which only jobs at the front of system queues are considered for 

scheduling. 
Exclusive Or (XOR, EXOR or EOR) A binary function evaluating to one only if the number of one-valued arguments is odd. 
External Data Representation (XOR) Data serialization layer enabling interoperability between hosts using different internal 

data representations. 
Extreme Science and Engineering Discovery Environment (XSEDE) An NSF-funded project aiming to provide coordinated 

and unified access to supercomputing resources, expertise, and related tools to researchers, scientists, and engineers around 
the world. Formerly known as Teragrid. 

Failover The process of replacing failed services in a high-availability system. 
Fast Fourier Transform (FFT) A transform frequently used in signal processing and solving partial differential equations. 
Fibre Channel (FC) A custom high-speed network technology used to attach storage devices to servers. 
Fibre Channel over Ethernet (FCoE) A protocol encapsulating Fibre Channel communication over an Ethernet network. 
Fibre Channel Protocol (FCP) A protocol encapsulating SCSI communication over a Fibre Channel connection. 
Fibre Connection (FICON) Mapping IBM's specific storage access protocols onto Fibre Channel, used primarily by mainframes. 
Field-Effect Transistor (FET) A semiconductor device applying a field effect controlled by the potential of the gate electrode 

to modulate the conductance of a channel between the source and drain electrodes. 
Field Programmable Gate Array (FPGA) A device whose logical functionality may be specified and reconfigured by the user 

at the hardware level. 
File A named entity representing a collection of data in a file system. 
File Access Delegation Optimization of file data operations implemented by some versions of NFS. 
File Descriptor A handle, usually an integer, identifying an open file. 
File Extent A contiguous storage space reserved for file data; a file fragment. 
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File Identifier (FID) A unique file name in the Lustre file system. 
File Placement Optimizer (FPO) A feature of GPFS utilized to process "big data" workloads. 
File System A high-level system for organizing and accessing data written to persistent storage devices exposing a relevant user 

interface and supported by the operating system. 
First Come, First Serve (FIFO) A processing or data ordering structure in which individual entries are stored and processed in 

order of arrival; a queue. 
Floating-Point Operations per Second (Flops) The output metric for the HPL and HPCG benchmarks. 
Floating Gate MOS (FGMOS) Transistor A variant of MOSFET with an additional gate buried within the oxide layer which 

permits trapping of charge; a storage element in some nonvolatile memories. 
Floating-Point Unit {FPU) A dedicated circuit performing floating-point arithmetic; a common part of CPUs and GPUs. 
Gang Scheduling A scheduling strategy that groups a number of jobs, processes, or threads with similar resource requirements 

for the purpose of concurrent execution, allowing low latency communication between them or coordinated access to shared 
resources. In the Slurm Workload Manager, gang scheduling grants only one job in a gang the exclusive access to shared 
resources and cyclically preempts it at a timeslice boundary to enable execution of other gang members. 

Gang-Partitioned (GP) Mode The initial mode of work.load parallelization in OpenACC. 
General Parallel File System (GPFS) A proprietary parallel file system developed by IBM, recently rebranded as IBM 

Spectrum Scale. 
Generalized Minimum Residual Method (GMRES) A Krylov subspace iterative solver for solving general sparse systems of 

equations. 
Generic Security Service Application Program Interface (GSS-API) A programming interface to security services stan

dardized by the Internet Engineering Task Force (IETF). 
Giant Magnetoresistance (GMR) A quantum-mechanical phenomenon in layered ferromagnetic and weakly magnetic 

materials providing the basis for construction of read-write heads in modem hard-disk drives. 
Gigabit Ethernet (GigE) An implementation of an Ethernet network capable of a peak data rate of I billion bits per second. 
GNU Debugger (GDB) An open source tool to assist the programmer in stepping through a code in execution. 
GNU General Public License (GNU GPL) A free software license with distribution terms defined by the Free Software 

Foundation. 
GNU Scientific Library (GSL) A library which provides a wide array of linear algebra routines, including an interface to BLAS 

for C and c++. 
Gperftools A popular open-source code profiling and memory allocator package originally developed by Google. 
Graphical User Interface (GUI) A type of interface permitting specification of input parameters and interaction with appli-

cation execution through graphics-based (instead of text-only) dialogs. 
Graphics Core Next (GCN) A GPU microarchitecture developed by AMD and used in its current line of products. 
Graphics Processing Unit (GPU) A specialized device accelerating computations related to image or video generation. 
Hadoop Distributed File System (HDFS) A file system in Hadoop which enables distributed file access across many linked 

storage devices. 
Hamming Codes A family of error-correcting codes capable of correcting single bit errors and detecting single or double 

(extended hamming code) bit errors with optimal spatial overhead. 
Hard Disk Drive (HDD) A storage device technology utilizing rigid, spinning, magnetic platters as media to store information. 
Heap A segment of an application's memory space that hosts dynamically allocated storage. 
Heterogeneous System Architecture (HSA) A set of specifications maintained by the HSA Foundation that simplifies the 

management and programming of heterogeneous devices sharing memory resources by providing unified architecture, AP!, 
and language support. 

Hierarchical Data Format (HDFS) A library for self-describing portable data output frequently used in HPC applications. 
High-Bandwidth Memory (HBM) A memory technology providing high data bandwidths utilizing a large number of interface 

pins and three-dimensional die stacking. 
High-Density Complementary Metal-Oxide-Semiconductor (HCMOS) An older description of a CMOS process variant 

used to manufacture circuits with high transistor counts. 
High Performance Computing (HPC) A parallel computing mode involving the use of supercomputers. 
High Performance Conjugate Gradients (HPCG) A benchmark complementing the HPL benchmark which explores memory 

and data access patterns that are not well represented by HPL. 
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High Performance Linpack (HPL) The third iteration of the Unpack benchmark, used for the Top 500 supercomputer 
ranking list. 

Highly Scalable Preconditioner (HYPRE) A library developed at Lawrence Livermore National Laboratory which provides a 
set of highly scalable preconditioners for sparse linear system solves. 

High-Throughput Computing A parallel computing strategy in which a large number of loosely coupled tasks is executing on 
distributed execution resources. 

Hotspot In performance analysis, a part of code dominating the program execution time. 
HyperSCSI A protocol implementing SCSI communication over an Ethernet network. 
Hyperthread Intel's variant of multithreading in which two threads may coexecute on a single CPU core. 
IBM Spectrum Scale The current name of the IBM General Parallel File System. 
IEEE754 An IEEE standard defining the format of floating-point numbers. 
InfiniBand Architecture (IBA) A high-speed interconnect technology found in many current HPC cluster installations. 
lnode An internal data structure in a Unix-compatible OS kernel containing low-level metadata of file system objects. 
Input/Output Operations per Second (IOPS) A performance metric of storage devices specifying the number of small in-

dependent UO requests processed by the device within a second; may be further qualified as read or write accesses, random or 
sequential, etc. 

Instruction-Level Parallelism (ILP) A type of fine-grain parallelism due to multiple operations issued as result of instruction 
processing. 

Instruction Mix Decomposition of a computational workload or benchmark by types of instructions it executes (such as ALU, 
branches, memory access, etc.). 

Instruction Set Architecture (ISA) A description of computer architecture based on a command set it can execute. 
Instrumentation A program modification that permits extraction of specific performance data or other execution-related details. 
Interactive Processing A processing mode that grants the user control over job execution, frequently used to facilitate 

debugging of applications. 
Internet Fibre Channel Protocol (iFCP) A communication protocol enabling Fibre Channel connectivity over an IP network. 
Internet Protocol over InfiniBand (IPoIB) The encapsulation of Internet Protocol traffic over physical InfiniBand fabric. 
Internet Small Computer Systems Interface (iSCSI) A protocol forwarding SCSI commands over an IP network. 
lnternet2 A nonprofit technology community of US academic, government, research, and industrial partners founded in 1996, 

primarily known for advancing global research by offering access to high-bandwidth networks on a national scale. 
iSCSI Extensions for RDMA (iSER) An extension of the Internet Small Computer System Interface enabling the use of remote 

direct memory access over the underlying network. 
Isosurfaces Surfaces that connect data points which have the same value. 
Job Array A collection of a specific number of jobs with similar properties and characteristics, managed as a single group. 
Job Queue A named entity in a resource management system allowing grouping of jobs with similar characteristics and 

associated with a specific set of execution resources. 
Job Step A meaningful part of a larger computational job; a task. 
Joint Test Action Group (JTAG) A formative body and a resulting standard that defines the signaling interface and protocol for 

in-circuit access to the internal state of hardware devices. 
Journaling File System A file system implementation in which uncommitted transactions are stored in a dedicated log, 

resulting in improved reliability. 
Kerberos A network-enabled authentication software layer. 
Knights Landing (KNL) The code name for a revision of Intel Xeon Phi architecture. 
Linear Algebra Package (LAPACK) A linear algebra library that provides driver routines designed to solve complete problems 

such as a system of linear equations, eigenvalue problems, or singular value problems. 
Linear Tape-Open (LTO) A digital storage technology using magnetic tapes and developed as an open standard by the LTO 

Consortium. 
Link A construct supported by some file systems and used to provide alternative names (aliases) for stored objects. 
Linpack A linear algebra library for solving systems of linear equations. It has been superseded by LAPACK. 
Linux A popular open-source operating system kernel based on Unix. 
Low Infrastructure Public Key Mechanism (LIPKEY) A credential exchange protocol implemented as a layer above SPKM. 
Low Level Virtual Machine (LLVM) An open-source compiler project that has become a key component of development tools 

for Apple's MacOS and iOS. 
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Lustre Distributed Lock Manager (LDLM) The component of a Lustre file system responsible for efficient synchronization of 
concurrent accesses to shared files. 

Lustre File System Check (LFSCK) A distributed file system check utility customized for Lustre. 
Lustre Networking (LNET) The communication infrastructure in a Lustre file system. 
M.2 The form factor and interface specification of internal expansion cards (primarily storage) attached through a miniaturized 

edge connector. 
Management-Processing Element (MPE) A conventional core that provides directive functions, as opposed to a compute

processing element intended for computation. 
Management Server (MGS) The component of a Lustre file system responsible for maintaining and providing configuration 

information. 
Management Target (MGT) Storage space for MOS in a Lustre file system. 
Many-Integrated Core (MIC) Architectural concept and hardware product introduced by Intel in which multiple tens of 

interconnected identical computing cores are embedded in a single device; currently known under the brand name Xeon Phi. 
Mass Storage A class of storage capable of accommodating large amounts of data. 
Massively Parallel Processor (MPP) A class of parallel computing architecture consisting of very large number of nodes 

connected by a network. 
Matrix Template Library (MTL) A library for linear algebra operations that retains the look and feel of the original math

ematical notation of linear algebra. 
Mean Time Between Failures (MTBF) An estimated measure of system or device reliability equal to the average period of 

time between consecutive failures. 
Memory Wall A mismatch between the computational throughput of a processor and the data rate a connected storage device 

(memory) is capable of supporting. 
Message-Passing Interface (MPI) A programming interface and software stack used in supercomputing environments for 

communication between participating processes. 
Metadata Additional attributes or information about stored data, typically used to indicate the owner, access rights, creation 

time, size, etc. 
Metadata Server (MDS) The Lustre file system component managing namespace and metadata. 
Metadata Target (MDT) The metadata storage in a Lustre file system. 
Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) A variant of field-effect transistor (FET) with an insulated 

gate; a building block of electronic CMOS circuits. 
Microcode A translation layer in processing hardware permitting implementation of higher-complexity instructions. 
Microprocessor without Interlocked Pipeline Stages (MIPS) An influential RISC processor architecture originally developed 

at Stanford University. 
Mini-Compact Disc (Mini-CD) A smaller version of a CD with a diameter of 80 mm. 
Mini-SATA (mSATA) A miniaturized variant of a SATA connector utilized by small form factor storage devices. 
MoM A job execution daemon in PBS. 
Moore's Law An observation made by Gordon Moore of Fairchild Semiconductor stating that the number of transistors in large 

integrated circuits doubles approximately every 2 years. 
Motion Picture Experts Group (MPEG) A standards group founded by ISO and IEC tasked with creating specifications for 

compressed digital video and audio encoding; the standards names include "MPEG-" followed by a numerical or alphabetic 
suffix (such as MPEG-2). 

Mount Point Directory under which the contents of another file system is exposed in a process called "mounting." 
MPI + X The concept of using coarse-grained MPI processes to span an entire node but allowing the efficiencies of shared

memory hardware to be exploited with the assistance of an additional programming interface like OpenMP working in 
cooperation with MPI. 

Multi-Chip Module (MCM) A type of electronic device assembly and packaging combining several dies on a common carrier. 
Multilevel Cell (MLC) Nonvolatile storage organization in which each storage cell of a device contains two bits of information. 
Multiple-Mount Protection The aspect of failover management in a Lustre file system preventing simultaneous mounts on 

different nodes. 
Multithreading A parallel execution paradigm employing multiple control flow contexts (threads) sharing an address space. 
Myrinet High performance network developed by Myricom and deployed as cluster interconnect. 
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National Aeronautics and Space Administration (NASA) A US government agency that manages and directs the civilian 
space program and is a frequent driver of high performance computing applications. 

National Television System Committee (NTSC) A standard defining video stream properties, color encoding, and the 
transmission modulation scheme for the analog television signal used in most of the Americas and some Pacific territories. 

National University of Defense Technology (NUDT) The top military academy and defense research university in Changsha, 
Hunan, China. NUDT supports both supercomputing research and the Chinese space program. 

Network Attached Storage (NAS) A shared network-connected storage pool accessible remotely through specialized protocols 
and software. 

Network File System (NFS) A remote, shared file access service with a protocol defined by several open RFC standards and 
commonly used in Unix environments. 

Network Interface Controller (NIC), also Network Interface Card A specialized electronic device or adapter board that 
allows connecting the computer to a specific network type. 

Network Shared Disk (NSD) Storage abstraction in IBM Spectrum Scale (GPFS). 
Noise-Predictive Maximum Likelihood (NPML) A set of digital signal processing methods used to improve the reliability of 

retrieved information from noisy channels or media (such as magnetic disks). 
Nonuniform Memory Access (NUMA) A memory architecture in which memory access latency varies depending on the 

relative location of the issuing processor and targeted memory module. 
Nonvolatile Memory Express (NVMe) The interface specification for attaching nonvolatile storage devices over a PCI express 

bus. 
Nonvolatile Random Access Memory (NVRAM) A class of memory whose contents are retained after device power is 

turned off. 
NAND Binary logic function that evaluates to zero only when all its inputs are ones. 
NOR Binary logic function that evaluates to one only when all its inputs are zeroes. 
NVLink A short-range communications protocol between a GPU and a CPU or multiple GPUs, developed by Nvidia. 
Object Storage Server (OSS) Processes file data requests in a Lustre file system. 
Object Storage Target (OST) The underlying physical storage for OSS in a Lustre file system. 
Offline Storage A variant of archival storage in which access to storage media is explicitly managed by a human operator. 
Open Accelerators (OpenACC) A programming model for accelerators using an approach similar to OpenMP. 
Open Computing Language (OpenCL) An application programming framework providing a unified interface to execution 

resources, including conventional CPUs and various accelerator types. 
Open Multiprocessing (OpenMP) A compiler-supported programming environment enabling application parallelization on 

shared-memory multiprocessors. 
OpenFabrics Enterprise Distribution (OFED) A set of software stack components and protocols developed and distributed by 

OpenFabrics Alliance in support of InfiniBand technology. 
Operating System (OS) A system software layer that allocates and manages hardware resources, enforces resource protection, 

provides standardized services, and schedules execution of applications. 
OR Binary logic function that evaluates to zero only when all its inputs are zeroes. 
Overhead An additional amount of work required to manage a computation. 
Packet Writing A method of contents modification on recordable or rewritable optical media that permit5 addition and deletion 

of files and directories at any time. 
Page A unit of memory organization and address translation, ranging from a few KB to a few GB. 
Parallel Boost Graph Library (PBGL) A library for high performance graph algorithms. 
Parallel File System A file system optimized for concurrent access to data objects. 
Parallel NFS (pNFS) An extension to NFS supporting parallel access to shared files. 
Partial Response Maximum Likelihood (PRML) A set of algorithms in signal theory used to increase the reliability of in

formation retrieved from weak or interfering signals. 
Path The name identifying a specific entity or object in a file system. 
Perf (on occasion perf_events, perf tools or Performance Counters for Linux, PCL) A performance-monitoring and event

tracing tool available for Linux systems. 
Performance Application Programming Interface (PAPI) A library which provides tools for performance measurement and 

portable access to hardware performance counters. 
Peripheral Component Interconnect (PCI) A parallel expansion bus standard. 
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Peripheral Component Interconnect Express (PCie or PCI Express) A serial expansion bus standard with a control protocol 
derived from and extending that of PC!. 

Perpendicular Recording A method of storing information on a magnetic medium that results in increased bit density 
compared to more traditional horizontal recording. 

Picture Element (Pixel) The smallest, indivisible element of a digital image. 
Pin Grid Array (PGA) An integrated circuit enclosure placing 1/0 leads on the bottom of ceramic or plastic case. 
Plastic Leaded Chip Carrier (PLCC) A type of enclosure used to house integrated circuits with leads arranged along the four 

sides of a rectangular case. 
Portable Batch System (PBS) A common cluster-oriented resource management system developed and maintained by Altair 

Engineering; recently open sourced. 
Portable, Extensible Toolkit for Scientific Computation (PETSc) A suite of data structures and routines for solving partial 

differential equations on distributed-memory architectures. 
Portable Operating System Interface (POSIX) A collection of IEEE standards specifying operating environment, pro

gramming interfaces, and interaction and management of executing entities for compatibility and interoperability across 
variants of the Unix operating system. 

Preemption A scheduler feature allowing it to interrupt and suspend an already running lower-priority task to start the execution 
of a higher-priority task. 

Prefetch A mechanism reducing data access latency by initiating data transfer ahead of actual data use. 
Primary Storage The top level of storage hierarchy, including CPU registers, caches, and main memory. 
Printed Circuit Boards (PCB) An insulated board providing mechanical support for interconnected electrical components. 
Process Identifier (PID) A number used by the operating system to identify an active process. 
Processing Element A primitive hardware computing unit; one of many replicated components of a processing array or a vector 

unit. 
Profiling A performance analysis technique that measures the dynamic properties of program execution. 
Programmed Input/Output (PIO) A method of data transfer between computer memory and a system device explicitly 

performed by the CPU. 
Pseudo File System A data structure or service exposing an access interface compatible with a file system APL 
Raster Operation (ROP) An operation executed during one of the final steps in computer image rendering, generating the 

actual displayed pixel value. 
Reduced Instruction Set Computer (RISC) A processor architecture paradigm emphasizing ISAs with fewer, simpler, and 

more generic instructions rather than complex ones. 
Redundant Array of Independent Disks, formerly Redundant Array of Inexpensive Disks (RAID) A form of aggregated 

storage incorporating multiple HDDs or SSDs capable of tolerating a limited number of device failures. 
Remote Direct Memory Access A low-overhead data transfer technique between the memories of two machines that avoids 

direct involvement of their processors. 
Remote Procedure Call (RPC) A distributed computing paradigm in which the client node supplies input arguments and 

requests the invocation of a function using these arguments on a remote server in a specific application's address space. 
Request for Comments (RFC) A publication body maintained by the IETF and Internet Society, and used as a forum for 

internet standard development. 
Request Replay Cache A data structure in some NFS implementations used to avoid duplicate request execution. 
Resource Management A collection of methodologies, algorithms, and tools supporting efficient allocation of computing 

resources to executable tasks. 
Restart At designated points during the execution of an application on a supercomputer the data necessary to allow later 

resumption of the application at that point in the execution can be output and saved. This data is called a checkpoint, and the 
resumption of application execution is called restart. 

Round-Robin A task scheduling or data distribution method in which tasks or data units are repetitively assigned to resources in 
the same predefined order. 

Scalable Library for Eigenvalue Problem Computations (SLEPc) An extension of PETSc for solving very large sparse 
eigenvalue problems. 

SCSI RDMA Protocol or SCSI Remote Protocol (SRP) A protocol leveraging the use of remote direct memory access for 
SCSI commands over supporting networks such as InfiniBand or 10 Gbps Ethernet. 
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Secondary Storage The second level of storage hierarchy, incorporating high-bandwidth mass-storage devices for persistent 
preservation of data. 

Sector A unit of data access on storage devices; a block. 
Self-Monitoring, Analysis, and Reporting Technology (SMART) A self-contained, built-in monitoring system analyzing the 

health status of storage devices such as HDDs and SSDs. 
Serial Advanced Technology Attachment (SATA) A high-speed serial interface bus used to connect storage devices to 

motherboards and 1/0 expansion cards. 
Server Message Block (SMB) A proprietary protocol with currently open specifications for remote file, printer, and hardware 

port access originated in the Microsoft Windows environment. 
Service Unit (SU) A metric for charging supercomputer time against a user account. While defined locally for each super

computer, it is generally considered the wall time in hours multiplied by the number of cores used for a simulation. 
Setgid Analogous to "setuid," but applied to user groups. 
Setuid A flag associated with an executable file changing the effective program's ownership even when executed by ordinary 

users; typically used to elevate the privilege level. 
Shader A replicated processing component in a GPU that supports a number of bit-wise and arithmetic operations. 
Shell An interface facilitating the execution of operating system commands and user programs as well as visualization of their 

output. 
Simple Public Key GSS-API Mechanism (SPKM) An authentication protocol defined by RFC2025. 
Single Instruction, Multiple Data (SIMD) An element of Flynn's taxonomy for achieving parallelism where several pro

cessing units perform the exact same operation simultaneously on multiple data inputs. 
Single Program, Multiple Data (SPMD) An element of Flynn's taxonomy for achieving parallelism, and the most common 

style of parallel programming for distributed-memory architectures. 
Single-Level Cell (SLC) Nonvolatile storage organization in which each storage cell of a device contains exactly one bit of 

information. 
Sturm Partition Slurm's equivalent of a job queue. 
Sturm Workload Manager, "Sturm" A popular open-source resource management suite for cluster computers, originally an 

acronym of "Simple Linux Utility for Resource Management." 
Small Computer System Interface (SCSI) A standard family describing electrical and mechanical interfaces, communication 

protocols, and supported device functions for various peripherals such as HDDs, tape drives, scanners, and others. 
Small-Scale Integration (SSI) A scale of integrated circuit minimization placing tens of transistors on a single die. 
Socket A physical connector on the motherboard accommodating a CPU or a representation of physical resources provided by a 

single CPU package. 
Solid-State Drive or Solid-State Disk (SSD) A storage device technology leveraging solid-state devices (such as flash memory) 

for persistent data storage and thus containing no moving components. 
Starvation, Latency, Overhead, Contention, Energy, Resilience (SLOWER) Sources of performance degradation. 
Stateless Protocol A communication protocol in which neither client nor server is required to retain session-related information. 
Static Random Access Memory (SRAM) A variant of memory technology with the fastest access time but a higher unit cost 

and lower storage density than DRAM. 
Sticky Bit A flag associated with files or directories that restricts when they may be deleted. 
Storage Area Network (SAN) A storage virtualization layer using a network to provide block-level accessibility to remote 

storage devices. 
Stream Multiprocessor (SM) A component of Nvidia GPU architecture consisting of multiple shader units with related 

infrastructure that execute concurrent compute threads. 
Streamlines Streamlines take a vector field as input and show curves that are tangent to the vector field. 
Stripe In distributed storage, the smallest sequence (or its size) of data blocks spanning all devices in the array. 
Supercomputer A computing system exhibiting high-end performance capabilities and resource capacities within practical 

constraints of technology, cost, power, and reliability. 
Superconducting Josephson Junction Logic (Superconducting JJ) Two superconductors coupled together across a thin 

insulating barrier or nonsuperconducting metal. 
Symmetric Multiprocessor (SMP) The most common type of shared-memory compute node. 
System on Chip (SoC) An integrated circuit containing multiple components of a computing system (CPU, memory, signal 

converters, graphics processors, analog functions, etc.) on a single die. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 653



676 GLOSSARY 

TaihuLight Currently the fastest supercomputer in the world, located in China. 
Tarball A file that contains a group of archived files with the extension .tar. It is often compressed using gzip, resulting in the 

filename extension . tar.gz. 
TeraBytes Written (TBW) A metric estimating the maximum aggregate volume of data that may be written to a storage device 

without causing its failure or data Joss. 
Tertiary Storage A storage hierarchy level maintaining large amounts of data, frequently supporting automated media changes. 
Texture Element (Texel) In computer graphics, a basic unit of texture. 
Time-Limited Error Recovery (TLER) A property of a storage device that bounds the time required to process an internal 

error, making is suitable for use with RAID controlJers. 
TOPS00 List A rankeq listing of the world's fastest 500 supercomputers, updated twice a year. 
Track at Once (TAO) A recording mode used in optical storage in which data may be added to a disc in several sessions. 
Translation Lookaslde Buffer (TLB) A critical component of modem CPUs, accelerating virtual to physical address 

translation. 
Transmission Control Protocol (TCP) One of the commonly used internet protocols providing reliable, connection-oriented 

data transfer. 
Traverse Edges per Second (TEPS) The output metric for the Graph500 benchmark. 
Triple-Level Cell (TLC) Nonvolatile storage organization in which each storage eel) of a device contains three bits of 

information. 
Tuning and Analysis Toolkit (TAU) An open-source performance measurement, analysis, and visualization suite developed by 

the University of Oregon. 
Uniform Memory Access (UMA) UMA shared memory is a memory architecture in which memory access latency does not 

vary depending on the relative location of the issuing processor and targeted memory module. 
Universal Standard Bus (USB) A short-range peripheral interconnect standard. 
Unix A family of multiuser operating systems descended from the original Unix developed at AT&T BelJ Laboratories. 
User Datagram Protocol (UDP) A simple connectionless communication protocol supporting messaging over the internet. 
VampirTrace A fine-grain trace collection tool commonly used to profile MP! and OpenMP applications. 
Vector-Partitioned (VP) Mode The finest grain of workload parallelization in OpenACC that uses the SIMD capabilities of the 

accelerator. 
Very Large-Scale Integration (VLSI) The currently highest level of integrated circuit miniaturization, placing several 

thousands to billions of transistors on a single die. 
Vienna Ab Initio Simulation Package (VASP) A widely used density functional theory toolkit for HPC systems. 
Virtual Address Extension (VAX) An ISA, and a family of microcomputers based on it, developed by Digital Equipment 

Corporation in the 1970s. 
Virtual File System (VFS) A system-independent abstraction of a file system. 
Virtual Memory A memory abstraction and management technique aJJowing mapping of regions of an address space to 

different types of underlying physical storage devices. 
Virtual Node or Vnode A system-independent representation of an inode in a virtual file system. 
Visualization Toolkit (VTK) A visualization library that provides hundreds of visualization algorithms. 
Von Neumann Bottleneck See "memory walJ." 
Wide Area Network (WAN) A communication network that spans large distance. 
Worker-Partitioned (WP) Mode A method of workload paralJelization supported by OpenACC that uses multiple workers per 

gang. 
Xeon Phi See "many integrated core." 
Yet Another Resource Negotiator (YARN) A central resource manager used in Hadoop. 
Z-Buffer A data structure used in computer graphics to provide the accurate depth coordinate for each rendered pixel. 
ZFS (initially Zettabyte File System) An advanced-featured file system developed by Sun Microsystems and currently owned 

by Oracle. 
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Benchmarking (Continued) 
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