
Homayoun

Reference 24 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 1



MODERN SYSTEMS AND PRACTICES 

TH ·MAS "TEu.LING, MATTHEW AN ·:'\, 
11 MACIEJ l :l{• 1] ,, ,w1cz 

F EW· Y C. G N ELL 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 2



High Performance 
Computing 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 3



High Performance 
Computing 

Modern Systems and Practices 

Thomas Sterling 
Matthew Anderson 
Maciej Brodowicz 

School of Informatics, Computing, and Engineering 
Indiana University, Bloomington 

Foreword by C. Gordon Bell 

M< 
MORGAN KAUFMANN PUBLISHERS 

ELSEVIER AN IMPRINT OF ELSEVIER 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 4



Morgan Kaufmann is an imprint of Elsevier 
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States 

Copyright © 2018 Elsevier Inc. All rights reserved. 

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or any information storage and retrieval system, without 
permission in writing from the publisher. Details on how to seek permission, further information about the 
Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance 
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. 

This book and the individual contributions contained in it are protected under copyright by the Publisher (other 
than as may be noted herein). 

Notices 
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our 
understanding, changes in research methods, professional practices, or medical treatment may become 
necessary. 

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using 
any information, methods, compounds, or experiments described herein. In using such information or methods 
they should be mindful of their own safety and the safety of others, including parties for whom they have a 
professional responsibility. 

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any 
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or 
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the 
material herein. 

Library of Congress Cataloging-in-Publication Data 
A catalog record for this book is available from the Library of Congress 

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library 

ISBN: 978-0-12-420158-3 

For information on all Morgan Kaufmann publications visit 
our website at https://www.elsevier.com/books-and-joumals 

[I .,.,..._ Working together 
:_..11(1 to grow libraries in 
BookAid d 1 · · International eve Oplllg COUntrteS 

www.clsc\ ICI.lOlll • www.houL11d.tH g 

Publisher: Katey Birtcher 
Acquisition Editor: Steve Merken 
Developmental Editor: Nate McFadden 
Production Project Manager: Punithavathy Govindaradjane 
Designer: Mark Rogers 

Typeset by TNQ Books and Journals 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 5



Dedicated to 

Dr. Paul C. Messina 

Leader, colleague, collaborator, mentor, friend 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 6



Contents 

Foreword ............................................................................................................................................. xix 
Preface ................................................................................................................................................ xxi 
Acknowledgments ............................................................................................................................ xx vii 

CHAPTER 1 Introduction ........................................................................................... 1 
1.1 High Performance Computing Disciplines ................................................................. 3 

1.1.1 Definition .......................................................................................................... 3 
1.1.2 Application Programs ....................................................................................... 4 
1.1.3 Performance and Metrics ................................................................................. 4 
1.1.4 High Performance Computing Systems ........................................................... 5 
1.1.5 Supercomputing Problems ............................................................................... 7 
1.1.6 Application Programming ................................................................................ 8 

1.2 Impact of Supercomputing on Science, Society, and Security ................................ 10 
1.2.1 Catalyzing Fraud Detection and Market Data Analytics .............................. 10 
1.2.2 Discovering, Managing, and Distributing Oil and Gas ................................. 10 
1.2.3 Accelerating Innovation in Manufacturing .................................................... 10 
1.2.4 Personalized Medicine and Drug Discovery ................................................. 11 
1.2.5 Predicting Natural Disasters and Understanding Climate Change ................ 12 

1.3 Anatomy of a Supercomputer ................................................................................... 14 
1.4 Computer Performance ............................................................................................. 16 

1.4.1 Performance .................................................................................................... 16 
1.4.2 Peak Performance ........................................................................................... 17 
1.4.3 Sustained Performance ................................................................................... 18 
1 .4.4 Scaling ............................................................................................................ 18 
1.4.5 Performance Degradation ............................................................................... 19 
1.4.6 Performance Improvement ............................................................................. 20 

1.5 A Brief History of Supercomputing ......................................................................... 21 
1.5. I Epoch I-Automated Calculators Through Mechanical Technologies ......... 22 
1.5.2 Epoch II-von Neumann Architecture in Vacuum Tubes ............................. 24 
1.5.3 Epoch III-Instruction-Level Parallelism ...................................................... 29 
1.5.4 Epoch IV-Vector Processing and Integration .............................................. 30 
1.5.5 Epoch V-Single-Instruction Multiple Data Array ....................................... 33 
1.5.6 Epoch VI-Communicating Sequential Processors and Very Large 

Scale Integration ............................................................................................. 34 
1.5.7 Epoch VII-Multicore Petaflops .................................................................... 37 
1.5.8 Neodigital Age and Beyond Moore's Law .................................................... 37 

1.6 This Textbook as a Guide and Tool for the Student... ............................................. 38 

vii 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 7



viii CONTENTS 

1.7 Summary and Outcomes of Chapter l ..................................................................... 39 
1.8 Questions and Problems ........................................................................................... 40 
References ......................................................................................................................... 41 

CHAPTER 2 HPC Architecture 1: Systems and Technologies ............................... 43 
2.1 Introduction ............................................................................................................. 44 
2.2 Key Properties of HPC Architecture ..................................................................... .44 

2.2.l Speed ............................................................................................................ 45 
2.2.2 Parallelism .................................................................................................... 45 
2.2.3 Efficiency ...................................................................................................... 46 
2.2.4 Power ............................................................................................................ 46 
2.2.5 Reliability ..................................................................................................... 47 
2.2.6 Programmability ........................................................................................... 48 

2.3 Parallel Architecture Families-Flynn's Taxonomy ............................................. .48 
2.4 Enabling Technology .............................................................................................. 51 

2.4.1 Technology Epochs ...................................................................................... 51 
2.4.2 Roles of Technologies .................................................................................. 55 
2.4.3 Digital Logic ................................................................................................. 55 
2.4.4 Memory Technologies .................................................................................. 58 

2.5 von Neumann Sequential Processors ..................................................................... 62 
2.6 Vector and Pipelining ............................................................................................. 64 

:J..6.1 Pipeline Parallelism ...................................................................................... 65 
2.6.2 Vector Processing ......................................................................................... 68 

2.7 Single-Instruction, Multiple Data Array ................................................................ 69 
2.7.1 Single-Instruction, Multiple Data Architecture ........................................... 69 
2.7.2 Amdahl's Law .............................................................................................. 70 

2.8 Multiprocessors ....................................................................................................... 73 
2.8. l Shared-Memory Multiprocessors ................................................................. 74 
2.8.2 Massively Parallel Processors ...................................................................... 76 
2.8.3 Commodity Clusters ..................................................................................... 77 

2.9 Heterogeneous Computer Structures ...................................................................... 78 
2.10 Summary and Outcomes of Chapter 2 ................................................................... 78 
2.11 Questions and Problems ......................................................................................... 80 
References ......................................................................................................................... 82 

CHAPTER 3 Commodity Clusters ............................................................................ 83 
3. 1 Introduction ............................................................................................................... 84 

3.1.1 Definition of "Commodity Cluster" ............................................................... 84 
3.1.2 Motivation and Justification for Clusters ....................................................... 84 
3.1.3 Cluster Elements ............................................................................................. 85 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 8



CONTENTS ix 

3.1.4 Impact on Top 500 List.. ................................................................................ 86 

3.1.5 Brief History ................................................................................................... 88 

3.1.6 Chapter Guide ................................................................................................. 90 

3.2 Beowulf Cluster Project. ........................................................................................... 91 
3.3 Hardware Architecture .............................................................................................. 93 

3.3.1 TheNode ........................................................................................................ 93 
3.3.2 System Area Networks ................................................................................... 94 
3 .3 .3 Secondary Storage .......................................................................................... 95 

3.3.4 Commercial Systems Summary ..................................................................... 95 
3.4 Programming Interfaces ............................................................................................ 97 

3.4.1 High Performance Computing Programming Languages .............................. 97 
3.4.2 Parallel Programming Modalities .................................................................. 97 

3.5 Software Environment .............................................................................................. 98 
3.5.1 Operating Systems .......................................................................................... 98 
3.5.2 Resource Management ................................................................................... 99 
3.5.3 Debugger. ...................................................................................................... 101 
3.5.4 Performance Profiling ................................................................................... 101 

3.5.5 Visualization ................................................................................................. 101 
3.6 Basic Methods of Use ............................................................................................. 104 

3.6.1 Logging On ................................................................................................... 104 
3.6.2 User Space and Directory System ............................................................... 105 

3.6.3 Package Configuration and Building ........................................................... 110 
3.6.4 Compilers and Compiling ............................................................................ 112 

3.6.5 Running Applications ................................................................................... 113 
3. 7 Summary and Outcomes of Chapter 3 ................................................................... 113 
3.8 Questions and Exercises ......................................................................................... 114 

References ....................................................................................................................... 114 

CHAPTER 4 Benchmarking ................................................................................... us 
4.1 Introduction ........................................................................................................... 115 
4.2 Key Properties of an HPC Benchmark ................................................................ 117 
4.3 Standard HPC Community Benchmarks .............................................................. 120 
4.4 Highly Parallel Computing Unpack .................................................................... 120 
4.5 HPC Challenge Benchmark Suite ........................................................................ 123 
4.6 High Performance Conjugate Gradients .............................................................. 126 
4. 7 NAS Parallel Benchmarks ........................................................................... : ........ 130 
4.8 Graph500 ............................................................................................................... 132 
4.9 Miniapplications as Benchmarks .......................................................................... 135 

4.10 Summary and Outcomes of Chapter 4 ................................................................. 138 
4.11 Exercises ............................................................................................................... 139 
References ....................................................................................................................... 139 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 9



x CONTENTS 

CHAPTER 5 The Essential Resource Management .............................................. 141 
5. 1 Managing Resources ............................................................................................... 142 
5.2 The Essential SLURM ............................................................................................ 146 

5.2.1 Architecture Overview ................................................................................. 147 
5.2.2 Workload Organization ................................................................................ 148 
5.2.3 SLURM Scheduling ..................................................................................... 149 
5.2.4 Summary of Commands ............................................................................... 151 
5.2.5 SLURM Job Scripting .................................................................................. 166 
5.2.6 SLURM Cheat Sheet .................................................................................... 171 

5.3 The Essential Portable Batch System ..................................................................... 172 
5.3.1 Portable Batch System Overview ................................................................ 172 
5.3.2 Portable Batch System Architecture ............................................................ 173 
5.3.3 Summary of PBS Commands ...................................................................... 174 
5.3.4 PBS Job Scripting ......................................................................................... 184 
5.3.5 PBS Cheat Sheet .......................................................................................... 186 

5.4 Summary and Outcomes of Chapter 5 ................................................................... 187 
5.5 Questions and Problems ......................................................................................... 189 
References ....................................................................................................................... 190 

CHAPTER 6 Symmetric Multiprocessor Architecture .......................................... 191 
6.1 Introduction ............................................................................................................. 191 
6.2 Architecture Overview ............................................................................................ 192 
6.3 Amdahl's Law Plus ................................................................................................. 196 
6.4 Processor Core Architecture ................................................................................... 199 

6.4.1 Execution Pipeline ........................................................................................ 200 
6.4.2 Instruction-Level Parallelism ....................................................................... 201 
6.4.3 Branch Prediction ......................................................................................... 201 
6.4.4 Forwarding .................................................................................................... 202 
6.4.5 Reservation Stations ..................................................................................... 202 
6.4.6 Multithreading .............................................................................................. 203 

6.5 Memory Hierarchy .................................................................................................. 204 
6.5. I Data Reuse and Locality .............................................................................. 204 
6.5.2 Memory Hierarchy ....................................................................................... 205 
6.5.3 Memory System Performance ...................................................................... 207 

6.6 PCI Bus ................................................................................................................... 209 
6.7 External 1/0 lnterfaces ............................................................................................ 213 

6.7.1 Network Interface Controllers ...................................................................... 213 
6.7.2 Serial Advanced Technology Attachment ................................................... 215 
6.7.3 JTAG ............................................................................................................. 218 
6.7.4 Universal Serial Bus ..................................................................................... 220 

6.8 Summary and Outcomes of Chapter 6 ................................................................... 222 
6.9 Questions and Exercises ......................................................................................... 223 
References ....................................................................................................................... 224 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 10



CONTENTS xi 

CHAPTER 7 The Essential OpenMP ...................................................................... 22s 
7 .1 Introduction ............................................................................................................. 225 
7 .2 Overview of OpenMP Programming Model .......................................................... 226 

7 .2.1 Thread Parallelism ........................................................................................ 226 
7.2.2 Thread Variables ........................................................................................... 228 
7 .2.3 Runtime Library and Environment Variables .............................................. 228 

7 .3 Parallel Threads and Loops .................................................................................... 231 
7.3.1 Parallel Threads ............................................................................................ 231 
7.3.2 Private ........................................................................................................... 232 
7 .3 .3 Parallel "For" ................................................................................................ 233 
7.3.4 Sections ......................................................................................................... 239 

7 .4 Synchronization ...................................................................................................... 241 
7.4.1 Critical Synchronization Directive ............................................................... 242 
7.4.2 The Master Directive .................................................................................... 242 
7.4.3 The Barrier Directive ................................................................................... 243 
7.4.4 The Single Directive ..................................................................................... 243 

7.5 Reduction ................................................................................................................ 244 
7.6 Summary and Outcomes of Chapter 7 ................................................................... 245 
7. 7 Questions and Problems ......................................................................................... 246 
Reference ........................................................................................................................ 24 7 

CHAPTER 8 The Essential MPI ............................................................................. 249 
8.1 lntroduction ........................................................................................................... 250 
8.2 Message-Passing Interface Standards ................................................................... 251 
8.3 Message-Passing Interface Basics ........................................................................ 253 

8.3.1 mpi.h ........................................................................................................... 253 
8.3.2 MPI_Init. ..................................................................................................... 253 
8.3.3 MPI_Finalize .............................................................................................. 254 
8.3.4 Message-Passing Interface Example-Hello World .................................. 254 

8.4 Communicators ..................................................................................................... 255 
8.4.1 Size ............................................................................................................. 256 
8.4.2 Rank ............................................................................................................ 256 
8.4.3 Example ...................................................................................................... 257 

8.5 Point-to-Point Messages ....................................................................................... 258 
8.5.1 MPI Send .................................................................................................... 259 
8.5.2 Message-Passing Interface Data Types ...................................................... 259 
8.5.3 MPI Recv .................................................................................................... 259 
8.5.4 Example ...................................................................................................... 260 

8.6 Synchronization Collectives ............................................................................... • • 262 
8.6.1 Overview of Collective Calls ..................................................................... 262 
8.6.2 Barrier Synchronization ............................................................................. 263 
8.6.3 Example ...................................................................................................... 264 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 11



xii CONTENTS 

8.7 Communication Collectives ................................................................................. 265 

8.7.1 Collective Data Movement. ........................................................................ 265 

8.7.2 Broadcast .................................................................................................... 268 

8.7.3 Scatter ......................................................................................................... 269 

8.7.4 Gather ......................................................................................................... 271 

8.7.5 Allgather ..................................................................................................... 272 

8.7.6 Reduction Operations ................................................................................. 274 

8.7.7 Alltoall ........................................................................................................ 277 

8.8 Nonblocking Point-to-Point Communication ....................................................... 279 

8.9 User-Defined Data Types ...................................................................................... 281 

8.10 Summary and Outcomes of Chapter 8 ................................................................. 283 

8.11 Exercises ............................................................................................................... 283 

References ....................................................................................................................... 284 

CHAPTER 9 Parallel Algorithms ........................................................................... 285 

9.1 Introduction ........................................................................................................... 285 

9.2 Fork-Join ............................................................................................................. 286 

9.3 Divide and Conquer .............................................................................................. 287 

9.4 Manager-Worker ................................................................................................. 291 

9.5 Embarrassingly Parallel ........................................................................................ 292 

9.6 Halo Exchange ...................................................................................................... 294 

9.6.1 The Advection Equation Using Finite Difference ..................................... 295 

9.6.2 Sparse Matrix Vector Multiplication .......................................................... 297 

9.7 Permutation: Cannon's Algorithm ........................................................................ 301 

9.8 Task Dataflow: Breadth First Search .................................................................... 306 

9.9 Summary and Outcomes of Chapter 9 ................................................................. 310 

9.10 Exercises ............................................................................................................... 311 

References ....................................................................................................................... 311 

CHAPTER 10 Libraries ........................................................................................... 313 

10. 1 Introduction ........................................................................................................ 313 

10.2 Linear Algebra .................................................................................................... 315 

10.2.1 Basic Linear Algebra Subprograms ..................................................... 317 

10.2.2 Linear Algebra Package ....................................................................... 324 

10.2.3 Scalable Linear Algebra Package ........................................................ 326 

10.2.4 GNU Scientific Library ........................................................................ 326 

10.2.5 Supernodal LU ..................................................................................... 326 

10.2.6 Portable Extensible Toolkit for Scientific Computation ...................... 327 

10.2.7 Scalable Library for Eigenvalue Problem Computations .................... 328 

10.2.8 Eigenvalue SoLvers for Petaflop-Applications .................................... 328 

10.2.9 Hypre: Scalable Linear Solvers and Multigrid Methods ..................... 328 

10.2.10 Domain-Specific Languages for Linear Algebra ................................. 329 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 12



CONTENTS xiii 

10.3 Partial Differential Equations ............................................................................. 329 
10.4 Graph Algorithms ............................................................................................... 329 
10.5 Parallel Input/Output .......................................................................................... 330 
10.6 Mesh Decomposition .......................................................................................... 333 
10. 7 Visualization ....................................................................................................... 334 
10.8 Parallelization ..................................................................................................... 334 
10.9 Signal Processing ................................................................................................ 334 

10.10 Performance Monitoring .................................................................................... 341 
10.11 Summary and Outcomes of Chapter 10 ............................................................. 342 
10.12 Exercises ............................................................................................................. 343 
References ....................................................................................................................... 344 

CHAPTER 11 Operating Systems ........................................................................... 347 
11.1 Introduction ........................................................................................................... 34 7 
11.2 Opeq1ting System Structures and Services .......................................................... 349 

11.2.1 System Components ................................................................................. 349 
11.2.2 Process Management ................................................................................ 349 
11.2.3 Memory Management .............................................................................. 350 
11.2.4 File Management ...................................................................................... 350 
11.2.5 1/0 System Management. ......................................................................... 351 
11.2.6 Secondary Storage Management.. ............................................................ 351 

11.3 Process Management ............................................................................................ 351 
11.3.1 Process States ........................................................................................... 352 
11.3.2 Process Control Block .............................................................................. 353 
11.3.3 Process Management Activities ............................................................... 354 
11.3.4 Scheduling ................................................................................................ 355 

11.4 Threads .................................................................................................................. 357 
11.5 Memory Management. .......................................................................................... 358 

11.5.1 Virtual Memory ........................................................................................ 359 
11.5.2 Virtual Page Addresses ............................................................................. 359 
11.5.3 Virtual Address Translation ..................................................................... 359 

11.6 Summary and Outcomes of Chapter 11 ............................................................... 361 
11. 7 Exercises ............................................................................................................... 362 

CHAPTER 12 Visualization ................................................................................... 363 
12.1 Introduction ........................................................................................................... 363 
12.2 Foundational Visualization Concepts ................................................................... 364 
12.3 Gnuplot ................................................................................................................. 365 
12.4 Matplotlib .............................................................................................................. 369 
12.5 The Visualization Toolkit ..................................................................................... 372 
12.6 Para View ............................................................................................................... 379 
12.7 Vislt ....................................................................................................................... 380 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 13



xiv CONTENTS 

12.8 Summary and Outcomes of Chapter 12 .................................. : ............................ 381 
12.9 Exercises ............................................................................................................... 381 
References ....................................................................................................................... 382 

CHAPTER 13 Performance Monitoring ................................................................. 383 
13.1 Introduction ........................................................................................................... 383 
13.2 Time Measurement ............................................................................................... 385 
13.3 Performance Profiling ........................................................................................... 390 

13.3.l Significance of Application Profiling ....................................................... 390 
13.3.2 Essential gperftools .................................................................................. 391 

13.4 Monitoring Hardware Events ............................................................................... 398 
13.4.1 Perf ............................................................................................................ 398 
13.4.2 Performance Application Programming Interface ................................... 404 

13.5 Integrated Performance Monitoring Toolkits ....................................................... 407 
13.6 Profiling in Distributed Environments ................................................................. 411 
13. 7 Summary and Outcomes of Chapter 13 .............................................................. .417 
13.8 Questions and Problems ....................................................................................... 418 
References ....................................................................................................................... 419 

CHAPTER 14 Debugging ........................................................................................ 421 
14.1 Introduction ........................................................................................................... 421 
14.2 Tools ...................................................................................................................... 423 

14.2.1 The GNU Debugger ................................................................................. 423 
14.2.2 Valgrind .................................................................................................... 430 
14.2.3 Commercial Parallel Debuggers ............................................................. .431 

14.3 Debugging OpenMP Example: Accessing an Unprotected Shared Variable ...... 433 
14.4 Debugging MPI Example: Deadlock ................................................................... 434 
14.5 Compiler Flags for Debugging ............................................................................. 439 
14.6 System Monitors to Aid Debugging .................................................................... 441 
14.7 Summary and Outcomes of Chapter 14 ............................................................... 445 
14.8 Exercises ............................................................................................................... 446 
References ....................................................................................................................... 450 

CHAPTER 15 Accelerator Architecture ................................................................. 451 
15.1 Introduction ............ : .............................................................................................. 451 
15.2 A Historic Perspective ......................................................................................... .454 

15.2.1 Coprocessors ............................................................................................. 456 
15.2.2 Accelerators in Processor 1/0 Space ........................................................ 461 
l 5.2.3 Accelerators with Industry-Standard Interfaces ...................................... .462 

15.3 Introduction to Graphics Processing Units .......................................................... 464 
15.4 Evolution of Graphics Processing Unit Functionality ......................................... 466 
15.5 Modern Graphics Processing Unit Architecture .................................................. 471 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 14



xxviii ACKNOWLEDGMENTS 

high performance computing to mission-critical problem domains of the US Department of Energy 
(DOE). He then founded and directed the Caltech Concurrent Supercomputing Facilities that staged 
the Intel Touchstone Delta massively parallel processor, the fastest computer in the world in 1991 
and the prototype of a family of massively parallel processors that determined the future direction 
of high performance computing for the next 30 years. Caltech Concurrent Supercomputing Facilities 
evolved into the Caltech Center for Advanced Computing Research, at which two of the authors spent 
some of their most formative years. Paul was particularly instrumental and served as co-principal 
investigator for the pioneering NSF Teragrid and the National Virtual Observatory. He directed the 
DOE ASCI program for almost 3 years, building up the nation's high performance computing capa
bilities toward the leadership-scale computing it currently demonstrates. Most recently Paul Messina 
led the Exascale Computing Project, America's biggest undertaking in achieving exascale computing 
performance by the beginning of the 2020s. For some Paul has had a direct and meaningful effect on 
their individual careers. To author Thomas Sterling Paul has been a colleague, leader, mentor, and 
friend for many years. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 15



Acknowledgments 

This textbook would not have been possible in either form or quality without the many contributions, 
both direct and indirect, of a large number of friends and colleagues. It is derivative of first-year grad
uate courses taught at both Louisiana State University (LSU) and Indiana University (IU). A number of 
people contributed to these courses, including Chirag Dekate, Daniel Kogler, and Timur Gilmanov. 
Amy Apon, a professor at the University of Arkansas, partnered with LSU and taught this course in 
real time over the internet and helped to develop pedagogical material, including many of the exercises 
used. Now at Clemson University, she continued this important contribution using her technical and 
pedagogical expertise. Andrew Lumsdaine, then a professor at IU, cotaught the first version of this 
course at IU. Amanda Upshaw was instrumental in the coordination of the process that resulted in 
the final draft of the book, and directly developed many of the illustrations, graphics, and tables. 
She was also responsible for the glossary of terms and acronyms. Her efforts are responsible in part 
for the quality of this textbook. 

A number of friends and colleagues provided guidance as the authors crafted early drafts of the book. 
These contributions were of tremendous value, and helped improve the quality of content and form to be 
useful for readers and students. David Keyes of KAUST reviewed and advised on Chapter 9 on parallel 
algorithms. Jack Dongarra provided important feedback on Chapter 4 on benchmarking. 

This textbook reflects decades of effort, research, development, and experience by uncounted num
ber of contributors to the field of high performance computing. While not directly involved with the 
creation of this text, many colleagues have contributed to the concepts, components, tools, methods, 
and common practices associated with the broad context of high performance computing and its value. 
Among these are Bill Gropp, Bill Kramer, Don Becker, Richard and Sarah Murphy, Jack Dongarra and 
his many collaborators, Satoshi Matsuoka, Guang Gao, Bill Harrod, Lucy Nowell, Kathy Yelick, John 
Shalf, John Salmon, and of course Gordon Bell. Thomas Sterling would like to acknowledge his thesis 
advisor (at MIT) Bert Halstead for his mentorship to become the contributor that he has become. 
Thomas Sterling also acknowledges Jorge Ucan, Amanda Upshaw, co-authors who made this book 
possible, and especially Paul Messina who is his colleague, role model, mentor, and friend without 
whom this book would never occurred. Matthew Anderson would like to thank Dayana Marvez, Oliver 
Anderson, and Beltran Anderson. Maciej Brodowicz would like to thank his wife Yuko Prince Brodo
wicz. The authors would like to thank Nate McFadden of Morgan-Kaufmann who provided enormous 
effort, guidance, and patience that made this textbook possible. 

DEDICATION TO PAUL MESSINA, WRITTEN BY THOMAS STERLING 
The authors are pleased to dedicate this book to Dr Paul C. Messina, in acknowledgment of and grat
itude for his exceptional contributions to and leadership in the field of high performance computing 
over a career of more than 4 decades. It is impossible to capture fully the importance of his impact, 
but many of the significant national programs have benefited from his guidance. Dr Messina has 
been a visionary, a strategist, and a leader of programs, projects, organizations, initiatives, and, perhaps 
most importantly, the careers of individual scientists who would come to deliver technical accomplish
ments and leadership of their own. Dr Messina was the founding director of the Mathematics and 
Computer Science Division at Argonne National Laboratory, a leading institution applying 

xxvii 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 16



xxvi PREFACE 

• Future engineers and HPC system developers, and 
• HPC system administrators and data center managers. 

HOW TO USE THIS TEXTBOOK 
The textbook is designed to serve multiple distinct approaches to learning and education, depending on 
the needs of the specific students. 
• To achieve a full and in-depth understanding of HPC from an initial starting position, the book can 

be read from cover to cover. Its order of presentation of topical chapters is organized so that each 
builds on the material of the previous ones in the areas of concepts, knowledge, and skills. The 
examples embedded within the text are sufficient to represent the distinct points such that they are 
accessible to the reader. 

• At the other extreme, the textbook can serve as a tutorial by reading the chapters and sections with 
titles/headings beginning with "The Essential...". These units are intended to develop the reader's 
skill-sets with minimal background and contextual information. 

• Emphasis can be achieved by selecting the critical path chapters (or sections). Four models of 
parallel computing are represented: throughput, message passing, shared memory, and accelerated. 
But in some cases only one of these is required by the student or educator, thus a student may only 
need to be immersed in a subset of the chapters offered. For example, a course may use OpenMP or 
MPI but not both. For basic job-stream parallelism, both of these can be s.ide-stepped and instead 
the student is focused on SLURM or PBS for throughput computing. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 17



PREFACE xxv 

VII. WORKING WITH THE REAL SYSTEM (CHAPTERS 11 AND 17-23) 
The HPC system does not operate in a vacuum, and is of little value if it is not connected with the 
outside world. Throughout the book the reader is exposed to necessary bits of the system environment, 
but these chapters give a focused and comprehensive description of the operating system and its inter
face to the outside world. In particular, mass storage is described at both hardware and software levels 
for persistent storage of large blocks of data through the file system. As an example of the use of the file 
system, the map-reduce algorithm, which is very popular for big-data problems, is described in detail. 
The file system is also used to improve reliability through a method of checkpoint-restart. This tech
nique periodically stores a snapshot of the intermediate data state of an application on mass storage 
in case a fault occurs in the system. Should this happen, the application program can be restarted 
not from the beginning but rather at the last known good checkpoint, thus saving a lot of time to 
get to a solution. 

vm. NEXT STEPS 
At this point the reader will have come to the end of his or her introduction to HPC. But where does the 
reader go from here? There is much more to the field of such systems and their use than could be incor
porated in any single textbook, although a good job of it has been done here. It is useful for the student 
to have a clear picture of what is out in front and, depending on one's interests or goals, which areas to 
pursue next. This chapter maps out the space of HPC beyond that contained in this text, and highlights 
the different areas as they relate to distinct professional objectives. But there is another dimension to 
the next steps: where is the field of HPC going itself, for it is changing very rapidly? The chapter con
cludes with a high-level description of the challenges facing HPC and the opportunities driving it 
forward. 

WHO CAN BENEFIT FROM THIS TEXTBOOK? 
This book is constructed so that the widest readership with diverse backgrounds can with a high prob
ability of success take on the subject matter. For this reason it has been crafted with the minimal pre
requisites of a working knowledge of programming in the C language and a familiarity of working 
within the context of a Unix-like operating system. But it is understood that even these requirements 
may be too stringent for some. For this reason, the appendix of the book includes two tutorials. One, 
"The Essential C," provides sufficient descriptive details in tutorial form to use the C programming 
language. It is not a primer of computer programming, as it is expected that the student has experience 
writing programs with some other programming language like Python, Java, Fortran, or MATLAB, but 
this tutorial is sufficient to support your needs through all the examples and exercises. Second, "The 
Essential Linux for Users," gives all the user interface descriptions and techniques that are required to 
fulfill all the tasks employed in this textbook. 

This textbook may serve a broad community of possible readers including (but not limited to): 
• Research scientists 
• Computational scientists in end science, engineering, and societal domains 
• HPC research faculty 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 18



xxiv PREFACE 

consistency is assumed by hardware cache coherence. This part of the book describes this parallel 
execution model, the characteristics of shared-memory multiprocessors, and the OpenMP parallel pro
gramming language. 

IV. MESSAGE-PASSING COMPUTING (CHAPTER 8) 
For truly scalable parallel computing that may employ a million cores or more on a single application, 
the distributed-memory architecture and communicating sequential processing execution model is the 
dominant approach. This part of the book builds on topics associated with the nodes used for SMPs and 
the cluster approach previously described for throughput computing by adding the semantics of mes
sage passing, collective operations, and global synchronization. It is in this section that message
passing interface (MPI) is taught, the single most widely employed programming interface for scalable 
science and engineering applications. 

V. ACCELERATING GPU COMPUTING (CHAPTERS 15 AND 16) 
For certain widely used dataflow patterns, higher-level structures of specialized cores can provide 
exceptional performance and energy efficiency. Such subsystems, classified in the most general sense 
as "accelerators," can speed up applications by many times, sometimes by over an order of magnitude. 
Also referred to as GPGPUs, these often take the form of attached array processors, but in some cases 
are being integrated within single-socket packages or even the same die. This part of the textbook de
scribes GPU structures, available products, and programming, with an emphasis on one programming 
interface, OpenACC. 

Vi. BUILDING SIGNIFICANT PROGRAMS (CHAPTERS 9, 10, AND 12-14) 
By this point in the book the reader is well acquainted with the primary modes ofHPC, knows the rules 
for the principal programming interfaces, and has hands-on experience with making basic parallel 
functions work within these frameworks. But for more complicated, more sophisticated, more useful, 
and frankly more professional supercomputing programs a number of additional methods and tools are 
required. This segment of the textbook takes the HPC novice from the beginner level to that of useful 
apprentice. Several key topics and skills are introduced here to give the student the necessary abilities 
to be useful in system design and application. First among these is a broad array of parallel algorithms 
for a diverse set of needs. Many of these are already made available in collections known as "libraries" 
that can save the application developer an enormous amount of time, if appropriately used. To get a 
program from its first draft to its final correct and efficient form requires a combined approach 
involving parallel debugging for correctness of answers and performance optimization through oper
ation monitoring. Tools and methods for both are presented here, including the detailed skill-sets 
required. Finally, HPC runs tend to produce enormous amounts of data-as much as terabytes or peta
bytes of results in a single execution. Scientific visualization, the producing of images or even movies 
from such massive datasets, is the only practical way to achieve understanding of the results of a tech
nical computing simulation. Examples of widely used tools for this purpose are presented, with essen
tial techniques to make them useful. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 19



PREFACE xxiii 

of this distinction is that while much of the knowledge about this rapidly evolving field will change, 
and even become obsolete in some cases, the basic concepts offered are invariant with time and will 
serve the reader with strong long-term understanding even as the details of some specific machine or 
language may become largely irrelevant over time. 

This textbook is organized first according to the four separate models of parallel computation, and 
then for each model according to the underlying concepts, the relevant knowledge with an emphasis on 
system architectures that support them, and the skills required to train the reader in how each class of 
system is programmed. In preparation for this approach, some initial material, including the introduc
tory chapter, provides the basic premises and context upon which the textbook is established. Each of 
the four parallel computing models is described in terms of concepts, knowledge details, and program
ming skills. But while this covers a large part of the useful information needed to understand and pro
gram HPC systems, it misses some of the cross-cutting topics related to environments and tools that are 
an important, even pervasive, aspect of the full context of a system that makes it truly useful beyond 
the limits of an idealized beginner's viewpoint. After all, the intent of the textbook is to give the reader 
an effective working ability to take advantage of supercomputers in the professional workplace for 
diverse purposes. Thus a number of important and useful tools and methods of their use are given 
in an effective order. Finally, the reader is given a clear picture of the wide field of HPC, and where 
within this broader context the subject matter of this book fits. This can be used to guide planning 
for future pursuits and more advanced courses selected in part based on readers' ultimate professional 
goals. The overall structure and flow of this textbook are summarized below. 

L INTRODUCTORY AND BASIC IDEAS (CHAPTERS 1 AND 4) 
These chapters provide a firm grounding on the basics, including an introduction to the domains of 
execution models, architecture concepts, performance and parallelism metrics, and the dominant class 
of parallel computing systems (commodity clusters). They give a first experience with running parallel 
programs through the use of a special kind of benchmarks that allow measurement and comparisons 
among different HPC systems. It is here that a sense of the history, the evolution of the contributing 
ideas, and the culture of the field is first given to the reader. 

ii. THROUGHPUT COMPUTING FOR JOB-STREAM PARALLELISM 
(CHAPTERS 5 AND 11) 

Although among the simplest ways to take advantage of parallel computers, throughput computing 
(also referred to as capacity computing) as widely used is sufficient for many objectives and 
workflows. It can also prove to be among the most efficient, as it usually exhibits the most coarse
grained tasks and a minimum of control overheads. Widely used middleware that manages 
job-stream workloads such as SLURM and PBS are given in tutorial form for both independent 
jobs and related sets, such as parameter sweeps and Monte Carlo simulations. 

Ill. SHARED-MEMORY MULTITHREADED COMPUTING (CHAPTERS 6 AND 7) 
One of the dominant models of user parallel processing is task ( or thread) parallelism in the context of 
shared memory. All the user data can be directly accessed by any of the user threads, and sequential 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 20



xxii PREFACE 

ORGANIZATION OF THIS BOOK 
This textbook serves as a bridge between the reader's initial curiosity, interests, and requirements in 
HPC and the ultimate knowledge, capabilities, and proficiency to be acquired through its study. It is 
a starting point for those in pursuit of a number of different possible professional paths that share a 
common foundation in the nature and use of these state-of-the-art systems. Whether the reader intends 
ultimately to be able to build hardware or software systems, use such systems as a critical tool in the 
pursuit of other fields in science, engineering, commerce, or security, conduct research to devise future 
means of pushing the state of the art in HPC, or administer, manage, and maintain HPC systems for 
other users, the textbook is structured to create a seamless flow of topics, each benefiting from those 
preceding while contributing to the foundations supporting those following. Thus the book presents its 
major subjects in an order that provides early basic skills of HPC use even as it conveys underlying 
concepts upon which a deeper understanding of these complex systems and their use is based. Where 
necessary, an introductory view of a topic is given with enough information to consider other topics 
that are dependent, only to return in greater depth in later chapters. The readers' understanding and 
capabilities are ratcheted up through incremental enhancement across the diversity of interrelated 
topical areas. 

The textbook is about computing performance. For current and next-generation systems, this means 
the use and exploitation of workload parallelism to achieve scalability and the means of managing data 
to achieve efficiency of operation. The four principal overarching subject domains are listed below. 
• System hardware architecture, and enabling technologies. 
• Programming models, interfaces, and methods. 
• System software environments, support, and tools. 
• Parallel algorithms and distributed data structures. 

This would suggest an obvious pedagogical organization of the textbook based on a logical flow. 
But there is another dimension to HPC: alternative strategies for organizing and coordinating paral
lelism and data management, and the roles of each of the component layers that contribute to them. 
This book presents four major strategies. 
• Job stream parallelism, throughput, or capacity computing. 
• Communicating sequential processes, or message passing. 
• Multiple-threaded shared memory. 
• SIMD or graphics processing unit (GPU) accelerated. 

From a pedagogical perspective, the authors wish to convey three kinds of information to facilitate 
the learning process and hopefully also the enjoyment of the reader. At the foundational level are the 
concepts that establish understanding of the underlying principles that guide the form and function of 
HPC. There is a lot of basic information as well as some cultural (who, what, when) facts making up 
the necessary collection of knowledge that provides the framework (scaffolding) of the field. Finally, 
there are the skill-sets that teach how to do things. While admittedly not orthogonal to each other, the 
textbook approaches the presentation of all the material in each case as one of these three forms. For 
example, chapters with headings that begin "The Essential ... " (such as "The Essential OpenMP") are 
crafted as skills modules with a tutorial presentation style for easiest learning. While the mixing of 
concepts and knowledge is unavoidable, separate sections emphasize one or the other. The importance 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 21



Preface 

THE PURPOSE OF THIS TEXTBOOK 
High performance computing (HPC) is a multidisciplinary field combining hardware technologies and 
architecture, operating systems, programming tools, software, and end-user problems and algorithms. 
Acquiring the necessary concepts, knowledge, and skills for capable engag~ment within HPC 
routinely involves an apprenticeship at one of a few rarefied sites with the essential experts, facilities, 
and mission objectives. Whether one's goals are associated with specific end-user domains such as sci
ence, engineering, medicine, or commercial applications, or focused on the enabling systems' technol
ogies and methodologies that make supercomputing effective, the entry-level practitioner must 
embrace a wide range of distinct but interrelated and interdependent areas that require an understand
ing of their synergies to yield the necessary expertise. The study material could easily encompass a 
dozen or more books and manuals, but even together they would not deliver the necessary perspective 
that fully embodies the field as a whole and guides the student in pursuit of an effective path to achieve 
sufficient expertise. 

This textbook is designed to bridge the gap between myriad sources of narrow focus and the need 
for a single source that spans and interconnects the range of disciplines comprising the HPC field. It is 
an entry-level text requiring a minimum of prerequisites, but provides a full understanding of the do
mains and their mutual effects that make supercomputing an interdisciplinary field. From a practical 
point of view, this textbook builds valuable and specific skill-sets for parallel programming, debug
ging, perfonnance monitoring, system resource usage and tools, and result visualization among other 
useful techniques. These skills are provided in the reinforcing context of basic foundational concepts 
of prolonged relevance, and knowledge of detailed attributes of hardware and software system com
ponents more likely to evolve over time. 

The textbook is chartered as support for a single-semester course for beginners to prepare them
selves for a diversity of roles in supercomputing to pursue their chosen professional career goals. It 
is appropriate for future computational scientists who are dedicated to the use of supercomputers to 
solve science, engineering, or societal-domain applications, among others. It provides a base-level 
description of possible target capabilities for system designers and engineers in hardware and software. 
It also is a foundation for those who wish to proceed as researchers in supercomputing itself, as an 
introductory presentation of conventional systems and practices as well as a representation of the chal
lenges facing this exciting domain of exploration. The book is equally appropriate for those engaged in 
supporting supercomputing environments, such as data centers and system administrators, operators, 
and management. In infonning future professionals, the textbook can be used in multiple ways. It 
serves as a reference work of basic information for supercomputing. It provides a sequence of lecture 
content for classroom delivery. It supports a hands-on approach with substantial examples, all of which 
can be executed on parallel computers, and exercises to guide students as they learn by doing. It makes 
clear where skill-sets and training are presented, with an easy-to-learn tutorial style. Concepts are pre
sented in a detailed but accessible form to establish the "why" of methods conveyed and assist future 
users in decision-making based on fundamental truths, factors, and sensitivities. Finally, this book 
unifies within the same context the many sets of facts associated with the multiplicity of subdisciplines 
that in combination make up the field of supercomputing. 

xxi 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 22



xx FOREWORD 

Fortunately, in the mid- l 980s the "killer microprocessor" arrived, demonstrating cost effectiveness 
and unlimited scaling just by interconnecting increasingly powerful computers. Unfortunately, this 
multicomputer era has required abandoning both the single memory and the single sequential program 
ideal of Fortran. Thus "supercomputing" has evolved from a hardware engineering design challenge of 
the single (mono-memory) computer of the Seymour Cray era (1960-95) to a software engineering 
design challenge of creating a program to run effectively using multicomputers. Programs first oper
ated on 64 processing elements (1983), then 1000 elements (1987), and now 10 million (2016) pro
cessing elements in thousands of fully distributed (mono-memory) computers in today's 
multicomputer era. So in effect, today's high performance computing (HPC) nodes are like the super
computers of a decade ago, as processing elements have grown 36% per year from 1000 computers in 
1987 to 10 million processing elements (contained in 100,000 computer nodes). 

High Performance Computing is the essential guide and reference for mastering supercomputing, 
as the authors enumerate the complexity and subtleties of structuring for parallelism, creating, and 
running these large parallel and distributed programs. For example, the largest climate models 
simulate ocean, ice, atmosphere, and land concurrently created by a team of a dozen or more domain 
scientists, computational mathematicians, and computer scientists. 

Program creation includes understanding the structure of the collection of processing resources and 
their interaction for different computers, from multiprocessors to multicomputers (Chapters 2 and 3), 
and the various overall strategies for parallelization (Chapter 9). Other topics include synchronization 
and message-passing communication among the parts of parallel programs (Chapters 7 and 8), addi
tional libraries that form a program (Chapter 10), file systems (Chapter 18), long-term mass storage 
(Chapter 17), and components for the visualization of results (Chapter 12). Standard benchmarks for 
a system give an indication of how well your parallel program is likely to run (Chapter 4). Chapters 16 
and 17 introduce and describe the techniques for controlling accelerators and special hardware cores, 
especially GPUs, attached to nodes to provide an extra two orders of magnitude more processing per 
node. These attachments are an alternative to the vector processing units of the Cray era, and typified 
by the Compute Unified Device Architecture, or CUDA, model and standard to encapsulate 
parallelism across different accelerators. 

Unlike the creation, debugging, and execution of programs that run interactively on a personal 
computer, smartphone, or within a browser, supercomputer programs are submitted via batch process
ing control. Running a program requires specifying to the computer the resources and conditions for 
controlling your program with batch control languages and commands (Chapter 5), getting the pro
gram into a reliable and dependable state through debugging (Chapter 14), checkpointing, i.e., saving 
intermediate results on a timely basis as insurance for the computational investment (Chapter 20), and 
evolving and enhancing a program's efficacy through performance monitoring (Chapter 13). 

Chapter 21 concludes with a forward look at the problems and alternatives for moving supercom
puters and the ability to use them to petascale and beyond. In fact, the only part of HPC not described 
in this book is the incredible teamwork and evolution of team sizes for writing and managing HPC 
codes. However, the most critical aspect of teamwork resides with the competence of the individual 
members. This book is your guide. 

Gordon Bell 
October 2017 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 23



Foreword 

High Performance Computing is a needed follow-on to Becker and Sterling's 1994 creation of the 
Beowulf clusters recipe to build scalable high performance computers (also known as a supercomputers) 
from commodity hardware. Beowulf enabled groups everywhere to build their own supercomputers. 
Now with hundreds of Beowulf clusters operating worldwide, this comprehensive text addresses the crit
ical missing link of an academic course for training domain scientists and engineers-and especially 
computer scientists. Competence involves knowing exactly how to create and run (e.g., controlling, 
debugging, monitoring, visualizing, evolving) parallel programs on the congeries of computational 
elements (cores) that constitute today's supercomputers. 

Mastery of these ever-increasing, scalable, parallel computing machines gives entry into a compar
atively small but growing elite, and is the authors' goal for readers of the book. Lest the reader believes 
the name is unimportant: the first conference in 1988 was the ACM/IEEE Supercomputing Confer
ence, also known as Supercomputing 88; in 2006 the name evolved to the International Conference 
on High Performance Computing, Networking, Storage, and Analysis, abbreviated SCXX. About 
11,000 people attended SC16. 

It is hard to describe a "supercomputer," but I know one when I see one. Personally, I never pass up 
a visit to a supercomputer having seen the first one in 1961-the UNIVAC LARC (Livermore 
Advanced Research Computer) at Lawrence Livermore National Laboratory, specified by Edward 
Teller to run hydrodynamic simulations for nuclear weapons design. LARC consisted of a few dozen 
cabinets of densely packed circuit board interconnected with a few thousand miles of wires and a few 
computational units operating at a 100 kHz rate. In 2016 the largest Sunway Light supercomputer in 
China operated a trillion times faster than LARC. It consists of over 10 million processing cores oper
ating at a 1.5 GHz rate, and consumes 15 MW. The computer is housed in four rows of 40 cabinets, 
containing 256 processing nodes. A node has four interconnected 8 MB processors, controlling 64 pro
cessing elements or cores. Thus the 10.6 million processing elements deliver 125 peak petaflops, i.e., 
160 cabinets x 256 physical nodes x 4 computers x ( 1 control + 8 x 8) processing elements or cores 
with a 1.31 PB memory (160 x 256 x 4 x 8 GB). Several of the Top 500 supercomputers have 
0(10,000) computing nodes that connect and control graphic processing units (GPUs) with 0(100) 
cores. Today's challenge for computational program developers is designing the architecture and 
implementation of programs to utilize these megaprocessor computers. 

From a user perspective, the "ideal high performance computer" has an infinitely fast clock, 
executes a single instruction stream program operating on data stored in an infinitely large and fast 
single-memory, and comes in any size to fit any budget or problem. In 1957 Backus established the 
von Neumann programming model with Fortran. The first or "Cray" era of supercomputing from 
the 1960s through the early 1990s saw the evolution of hardware to support this simple, easy-to-use 
ideal by increasing processor speed, pipelining an instruction stream, processing vectors with a single 
instruction, and finally adding processors for a program held in the single-memory computer. By the 
early 1990s evolution of a single computer toward the ideal had stopped: clock speeds reached a few 
GHz, and the number of processors accessing a single memory through interconnection was limited to 
a few dozen. Still, the limited-scale, multiple-processor shared memory is likely to be the most 
straightforward to program and use! 

xix 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 24



CONTENTS xvii 

21.3 Extended High Performance Computing Architecture ........................................ 608 
21.3.1 The World's Fastest Machine ................................................................... 608 
21.3.2 Lightweight Architectures ........................................................................ 608 
21.3.3 Field Programmable Gate Arrays ............................................................ 609 

21.4 Exascale Computing ..... , ....................................................................................... 610 
21.4.1 Challenges to Exascale Computing ......................................................... 611 
21.4.2 Doing the Math, How Big Is Exascale? .................................................. 611 
21.4.3 The Accelerated Approach ....................................................................... 612 
21.4.4 Lightweight Cores ......................................................... : .......................... 612 

21.5 Asynchronous Multitasking .................................................................................. 613 
21.5.1 Multithreaded ............................................................................................ 613 
21.5.2 Message-Driven Computation .................................................................. 613 
21.5.3 Global Address Space .............................................................................. 614 
21.5.4 Actor Synchronization .............................................................................. 615 
21.5.5 Runtime System Software ........................................................................ 615 

21.6 The Neodigital Age .............................................................................................. 616 
21.6.1 Dataflow .................................................................................................... 617 
21.6.2 Cellular Automata .................................................................................... 618 
21.6.3 Neuromorphic ........................................................................................... 619 
21.6.4 Quantum Computing ................................................................................ 619 

21.7 Exercises ............................................................................................................... 620 
References ....................................................................................................................... 621 

Appendix A: Essential C ................................................................................................................... 623 
Appendix B: Essential Linux ............................................................................................................ 639 
Glossary ............................................................................................................................................. 667 
Index .................................................................................................................................................. 677 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 25



xvi CONTENTS 

17 .5 Summary and Outcomes of Chapter 17 ............................................................... 545 
17 .6 Questions and Problems ....................................................................................... 546 
References ....................................................................................................................... 54 7 

CHAPTER 18 File Systems .................................................................................... 549 
18.1 Role and Function of File Systems ...................................................................... 549 
18.2 The Essential POSIX File Interface ..................................................................... 554 

18.2.1 System Calls for File Access ................................................................... 554 
18.2.2 Buffered File I/0 ...................................................................................... 559 

18.3 Network File System ............................................................................................ 562 
18.4 General Parallel File System ................................................................................ 565 
18.5 Lustre File System ................................................................................................ 569 
18.6 Summary and Outcomes of Chapter 18 ............................................................... 575 
18.7 Questions and Problems ....................................................................................... 576 
References ....................................................................................................................... 577 

CHAPTER 19 Map Reduce ...................................................................................... 579 
19.1 Introduction ........................................................................................................... 579 
19.2 Map and Reduce ................................................................................................... 579 

19.2.l Word Count .............................................................................................. 581 
19.2.2 Shared Neighbors ..................................................................................... 581 
19.2.3 K-Means Clustering ................................................................................. 582 

19.3 Distributed Computation ...................................................................................... 584 
19.4 Hadoop .................................................................................................................. 585 
19.5 Summary and Outcomes of Chapter 19 ............................................................... 588 
19.6 Exercises ............................................................................................................... 589 
References ....................................................................................................................... 589 

CHAPTER 20 Checkpointing ................................................................................. 591 
20.1 Introduction ........................................................................................................... 591 
20.2 System-Level Checkpointing ................................................................................ 592 
20.3 Application-Level Checkpointing ........................................................................ 598 
20.4 Summary and Outcomes of Chapter 20 ............................................................... 602 
20.5 Exercises ............................................................................................................... 602 
References ....................................................................................................................... 603 

CHAPTER 21 Next Steps and Beyond .................................................................. 605 
21. 1 Introduction ........................................................................................................... 606 
21.2 Expanded Parallel Programming Models ............................................................. 606 

21.2.1 Advance in Message-Passing Interface .................................................... 606 
21.2.2 Advances in OpenMP ............................................................................... 607 
21.2.3 MPI+X ..................................................................................................... 607 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 26



CONTENTS xv 

15.5.1 Compute Architecture .............................................................................. 471 

15.5.2 Memory Implementation .......................................................................... 474 

15.5.3 Interconnects ............................................................................................. 475 

15.5.4 Programming Environment ...................................................................... 476 

15.6 Heterogeneous System Architecture .................................................................... 477 

15.7 Summary and Outcomes of Chapter 15 .............................................................. .480 
15.8 Problems and Questions ....................................................................................... 480 

References ....................................................................................................................... 481 

CHAPTER 16 The Essential OpenACC ................................................................... 483 

16.1 Introduction ........................................................................................................... 483 

16.1.1 CUDA ....................................................................................................... 485 

16.1.2 OpenCL .................................................................................................... 485 

16.1.3 c++ AMP ................................................................................................ 486 

16.1.4 OpenACC .................................................................................................. 486 

16.2 OpenACC Programming Concepts ...................................................................... 487 

16.3 OpenACC Library Calls ....................................................................................... 489 

16.4 OpenACC Environment Variables ........................................................................ 491 

16.5 OpenACC Directives ............................................................................................ 492 

16.5.1 Parallel Construct ..................................................................................... 493 

16.5.2 Kernels Construct ..................................................................................... 495 

16.5.3 Data Management. .................................................................................... 497 

16.5.4 Loop Scheduling ....................................................................................... 501 

16.5.5 Variable Scope .............................................................. ,. ........................... 504 

16.5.6 Atomics ..................................................................................................... 504 

16.6 Summary and Outcomes of Chapter 16 ............................................................... 506 

16.7 Questions and Problems ....................................................................................... 506 

References ....................................................................................................................... 508 

CHAPTER 17 Mass Storage ................................................................................... 509 

17 .1 Introduction ........................................................................................................... 509 

17 .2 Brief History of Storage ....................................................................................... 512 

17 .3 Storage Device Technology .................................................................................. 514 

17.3.1 Hard Disk Drives ...................................................................................... 514 

17.3.2 Solid-State Drive Storage ......................................................................... 520 

17.3.3 Magnetic Tape .......................................................................................... 524 

17.3.4 Optical Storage ......................................................................................... 529 

17 .4 Aggregated Storage .............................................................................................. 534 

17.4.1 Redundant Array of Independent Disks ................................................... 534 

17.4.2 Storage Area Networks ............................................................................ 541 

17.4.3 Network Attached Storage ....................................................................... 543 

17.4.4 Tertiary Storage ........................................................................................ 544 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 27



INTRODUCTION 1 
CHAPTER OUTLINE 

1.1 High Performance Computing Disciplines ........................................................................................... 3 
1.1.1 Definition .................................................................................................................... 3 
1.1.2 Application Programs .................................................................................................... 4 
1.1.3 Performance and Metrics .............................................................................................. 4 
1.1.4 High Performance Computing Systems ........................................................................... 5 
1.1.5 Supercomputing Problems ............................................................................................ 7 
1.1.6 Application Programming .............................................................................................. 8 

1.2 Impact of Supercomputing on Science, Society, and Security ........................................................... 10 
1.2.1 Catalyzing Fraud Detection and Market Data Analytics ................................................... 10 
1.2.2 Discovering, Managing, and Distributing Oil and Gas ..................................................... 10 
1.2.3 Accelerating Innovation in Manufacturing ..................................................................... 10 
1.2.4 Personalized Medicine and Drug Discovery ................................................................... 11 
1.2.5 Predicting Natural Disasters and Understanding Climate Change .................................... 12 

1.3 Anatomy of a Supercomputer ........................................................................................................... 14 
1.4 Computer Performance ................................................................................................................... 16 

1.4.1 Performance .............................................................................................................. 16 
1.4.2 Peak Performance ...................................................................................................... 17 
1.4.3 Sustained Performance ............................................................................................... 18 
1.4.4 Scaling ...................................................................................................................... 18 
1.4.5 Performance Degradation ............................................................................................ 19 
1.4.6 Performance Improvement .......................................................................................... 20 

1.5 A Brief History of Supercomputing ................................................................................................... 21 
1.5.1 Epoch I-Automated Calculators Through Mechanical Technologies ............................... 22 
1.5.2 Epoch 11-von Neumann Architecture in Vacuum Tubes ................................................ 24 
1.5.3 Epoch Ill-Instruction-Level Parallelism ...................................................................... 29 
1.5.4 Epoch IV-Vector Processing and Integration ................................................................ 30 
1.5.5 Epoch V-Single-lnstruction Multiple Data Array ........................................................... 33 
1.5.6 Epoch VI-Communicating Sequential Processors and Very Large Scale Integration ......... 34 
1.5.7 Epoch VII-Multicore Petaflops ................................................................................... 37 
1.5.8 Neodigital Age and Beyond Moore's Law ...................................................................... 37 

High Performance Computing. https://dol.org/l0.1016/B978-0-12-420158-3.0000I-O 
Copyright © 2018 Elsevier Inc. All rights reserved. 

1 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 28



2 CHAPTER 1 INTRODUCTION 

1.6 This Textbook as a Guide and Tool for the Student. .. ......................................................................... 38 
1.7 Summary and Outcomes of Chapter 1 ... ................. .......... ................................................................. 39 
1.8 Questions and Problems ....................................... ........................................................................... 40 
References ................................................................ , .. ....... .. ... ... .............................................. .. .... .. ... . 41 

Supercomputing, which means supercomputers and their application, is among the most important 
developments of the modem age, with unequaled impact across a vast diversity of fields of inquiry 
and practical effect. From the extremes of arcane sciences to the most immediate practical concerns, 
supercomputers play an essential role in the progress and advancement of human capabilities, envi
ronments, and understanding. No other single technology in the history of humanity has experienced a 
similar rate of growth, even in its relatively short existence. Within the span of a single human lifetime, 
supercomputers have expanded their ability to perfom1 calculations by a factor of 10 trillion or 13 orders 
of magnitude, and this is a conservative estimate. From less than a I 000 basic operations per second in 
the late 1940s to today's perfmmance in excess of a 100 quadrillion floating-point operations per second 
(over I 00 petaflops), supercomputer speed has steadily improved by about a factor of 200 times every 
decade through a series of advances in technology, architecture, programming methods, algorithms, and 
system software (Fig. 1.1 ). High performance computing (HPC), synonymous with supercomputing, is a 
principal means of exploration complementing empirical methods used for more than 2 millennia and 
theory practiced in the age of enlightenment of the last 4 centu1ies. As the "third pillar" of investigation, 
supercomputing enables new paths of inquiry, new techniques of design, and new methods of operating 
process. Even discoveries coITectly credited to other classes of tools and instrumentation, such as giant 
telescopes or particle accelerators, require the use of supercomputers as well to produce their final results 
through data analysis (sometimes refeITed to as "big data"). It can be asserted that supercomputing 
allows us to understand the past, to control the present, and in limited cases to predict the future. 

The skills required to employ HPC are multiple and complex, while the means of acquiring such 
skills to a sufficient degree require potentially years of study and experience at least in normal practice. 

~,• '~ ~~ 

•NIJ'i: t, 'i i ~I Iii ' 'ft .f,·. -,, "'' :: ,,,,~ ~ 
- . . . I! ;:I <:I.,, 

FIGURE 1.1 

The Titan petaftops machine fully deployed at Oak Ridge National Laboratory in 2013, It takes up more than 

4000 sq ft and consumes approximately 8 MW of electrical power. It has a theoretical peak performance of over 

27 petaftops and delivers 17.6 petaflops R max sustained performance for the highly parallel Linpack (HPL) 
benchmark. This architecture includes Nvidia graphics processing unit accelerators. 

Photo courtesy of Oak Ridge National Laboratory, US Dept. of Energy 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 29



1.1 HIGH PERFORMANCE COMPUTING DISCIPLINES 3 

This often means lengthy apprenticeships in research facilities in academia, industry, or national 
laboratories. There are many books written to teach particular programming languages; others describe 
in detail the structures and instruction sets of computer architectures; and still others discuss system 
software such as operating systems. But missing has been a single textbook that serves as an entry
level presentation of all these elements and their interrelationships in one place, combined with 
guided hands-on experience. This work, High Performance Computing, is developed as a carefully 
crafted synthesis of relevant elements of related disciplines, all of which contribute in critical ways to 
supercomputing and its use. This book presents the foundation concepts, in-depth relevant knowledge, 
and detailed skills that together will give you a meaningful understanding of HPC and an initial set of 
techniques to make you an effective, albeit incipient, practitioner in its use. Throughout this text the 
best practices employed by the community are presented with training, so you learn to do, the how, 
even as you are gaining understanding of the what and the why. 

This textbook provides a comprehensive introduction to the field of HPC. It is presented in a form 
that will be both intellectually rewarding and practical in teaching useful basic skills. It combines 
perspectives about supercomputing concepts, knowledge about supercomputers, and techniques for 
using and programming supercomputers. But teaching a complex subject like HPC is challenging, in 
that just about everything is defined in terms of and relates to everything else. Yet by the nature of 
pedagogy, material must be presented in some sequential order. This first chapter is a brief introductory 
presentation of the essential elements of HPC to provide an overview of everything; a first pass that 
will allow successive in-depth chapters to be related to this broad context. 

The chapter looks at the many facets which comprise HPC. The importance of the material is that it 
provides a complete, albeit simplified, perspective of HPC so that more detailed discussion of specifics 
can be understood within the full context. Because no piece makes sense without the others, almost all 
areas are briefly introduced in this chapter. To reinforce the interrelated broad-brush presentation of 
issues, this chapter concludes with a history of the field and its rapid evolution. 

1.1 HIGH PERFORMANCE COMPUTING DISCIPLINES 
As previously noted, HPC is really a collection of multiple interrelated disciplines, each providing an 
important aspect of the total field. To master HPC as a useful tool is to develop an understanding and 
associated skills in each of these corresponding areas. These broad areas are described here, including 
a formal definition of "high performance computing" that applies throughout the treatment of the 
field, end-user application problems that are the intended purpose of HPC across a wide range of 
science, engineering, societal, and security· domains, the core concept of performance which is the 
distinguishing characteristic of HPC compared to other forms of computing, the hardware and 
software components that make up an HPC system, environments, tools, application programming, 
and the interfaces used. Each of these is presented in some detail in the following sections and together 
form a major portion of the concepts, knowledge content, and skills comprising this textbook. 

1. 1. 1 DEFINITION 
HPC is a field of endeavor that relates to all facets of technology, methodology, and application 
associated with achieving the greatest computing capability possible at any point in time and technology. 
It engages a class of electronic digital machines referred to as "supercomputers" to perform a wide array 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 30



4 CHAPTER 1 INTRODUCTION 

of computational problems or "applications" (alternatively "workloads") as fast as is possible. The 
action of performing an application on a supercomputer is widely termed "supercomputing" and is 
synonymous with HPC. 

1. 1.2 APPLICATION PROGRAMS 
The purpose of HPC is to derive answers to questions that cannot be adequately addressed alone 
through means of empiricism, theory, or even widely available or accessible commercial computers 
(e.g., enterprise servers). Historically supercomputers have been applied to science and engineering, 
and the methodology has been described as the "third pillar of science" alongside and complementing 
both experimentation (empiricism) and mathematics (theory). But the range of problems that super
computers can tackle extends far beyond classical scientific and engineering studies to include 
challenges in socioeconomics, big-data management and learning, process control, and national 
security. An application, then, is both the problem to be solved and the body of "code" or collection of 
ordered computing instructions that represent the means of solving the problem. The code is the means 
by which the user conveys to the supercomputer how it is to perform the necessary computations to 
achieve the objectives of the problem. The full set of code used is a "computer program" or just 
"program", and the person developing the application code is the "programmer". 

1 . 1 .3 PERFORMANCE AND METRICS 
While the notion of performance may be intuitive, it is not simple. There is no single measure of 
performance that fully reflects all aspects of the quality of computer operation. A "metric" is a 
quantifiable observable operational parameter of a supercomputer. Multiple perspectives and related 
metrics are routinely applied to characterize the behavioral properties and capabilities of an HPC 
system. Two basic measures are employed individually or in combination and in differing contexts to 
formulate the values used to represent the quality of a supercomputer. These two fundamental 
measures are "time" and "number of operations" performed, both under prescribed conditions. 

For HPC the most widely used metric is "floating-point operations per second" or "flops". A 
floating-point operation is an addition or multiplication of two real (or floating-point) numbers 
represented in some machine-readable and manipulatable form. Because supercomputers are so 
"powerful", to describe their capability would require phrases like "a trillion or quadrillion operations 
per second". The field adopts the same system of notation as science and engineering, using the 
Greek prefixes kilo, mega, giga, tera, and peta to represent 1000, I million, I billion, 1 trillion, and 1 
quadrillion, respectively. The first supercomputers barely achieved I kiloflops (Kflops). Today's fastest 
supercomputer exhibits a peak performance in the order of 125 petaflops. The laptop computer upon 
which this textbook was written has a peak performance of a few gigaflops. A supercomputer is 
millions of times more powerful than a laptop by this metric. 

The true capability of a supercomputer is its ability to perform real work, to achieve useful results 
toward an end goal such as simulating a particular physical phenomenon (e.g., colliding neutron stars 
to determine resulting electromagnetic burst signatures). A better measure than flops is how long a 
given problem takes to complete. But because there are literally thousands (millions?) of such 
problems, this measure is not particularly useful broadly. Thus the HPC community selects specific 
problems around which to standardize. Such standardized application programs are "benchmarks". 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 31



1.1 HIGH PERFORMANCE COMPUTING DISCIPLINES 5 

Performance Development 
1 Eflop/s -: 
100 Pflop/s 

10 Pflop/s 

1 Pflop/s ; _ a 'll&lcleA 

100 Tflop/s ----~-
10 Tflopls '. __,,~~ 

1 Tflop/s . - - - - -:~~-~/-_....--

100 Gflop/s , ~i-~. _____-. - . -~ N=SOO 
10Gflop/s _ _ _ _ ~. _ _ . _ 

. ~' 

1 Gflop/s • _ ___,.lllDlkiffi 
100 Mflop/s 

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 

FIGURE 1.2 

The evolution of the Rmax from the HPL benchmark for supercomputing systems in the Top 500 list since the list 
began in 1993. The top line indicates the cumulative performance of all the computers in the list. The middle line 
shows the performance of the number one computer in the list. The bottom line shows the performance of the last 
computer in the list (number 500). 

Image courtesy Erich Strohmaier 

One particularly widely used supercomputer benchmark is "Unpack", or more precisely the "highly 
parallel Unpack" (HPL), which solves a set of linear equations in dense matrix form [1]. A benchmark 
gives a means of comparative evaluation between two independent systems by measuring their 
respective times to perform the same calculation. Thus a second way to measure performance is time 
to completion of a fixed problem. The HPC community has selected HPL as a means of ranking 
supercomputers, as represented by the "Top 500 list" begun in 1993 (Fig. 1.2). But other benchmarks 
are also employed to stress certain aspects of a supercomputer or represent a certain class of programs. 

1.1.4 HIGH PERFORMANCE COMPUTING SYSTEMS 
The most visible aspect of the field of HPC is the high performance computers, or simply super
computers, themselves. Today these machines appear as rows upon rows of many racks taking up 
thousands of square feet and consuming potentially multiple megawatts of electrical power. To be in 
the presence of one (which often means to be literally inside it) offers a whole other experience in 
terms of noise, rapidly shifting temperature gradients, and many blinking lights. Even the most staid 
observer cannot help but be awestruck by the impressive massiveness of such systems, the engineering 
by which they are achieved, the commitment they represent to the edges of computing capability, and 
the problems only they can solve. And beyond what is visible even to the not-so-casual observer is the 
infrastructure that supports the operation of these systems, much of which is below floors, in adjacent 
rooms, and outside the building that houses the machine. The deployment of a state-of-the-art 
supercomputer is truly a major engineering undertaking involving time, expense, and expertise, as 
well as responsible management and maintenance throughout the lifetime of the system. And yet the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 32



6 CHAPTER 1 INTRODUCTION 

visible, audible, and other sensory experiences barely reflect the true nature of the accomplishment 
embodied by these machines. At the heart of the HPC system is the structure and organization of its 
myriad components and the semantics or rules by which they operate and perform the user applications 
offered to them. Even more than the hardware, the HPC system is a vast array of software components 
that control the hierarchy of the physical components and manage the user workloads. If the physical 
hardware, racks and all, is what the visitor experiences, the system software, its interfaces, and 
functionality are what the user experiences (usually at a location far from the physical machine) when 
developing and running the applications and analyzing the results. 

In one important sense, the high performance computer system has basic functionality and sub
systems in common with the laptop personal computer upon which this textbook was written. These 
principal capabilities, shared by both extremes, include the following. 

• The operational functions that transform input data values to output results. 
• The internal memory that stores the data upon which the system operates. 
• The communication channels through which intermediate data is transferred between different 

components and subsystems during application execution. 
• The control hardware that coordinates the interoperability among the constituent components and 

subsystems. 
• The mass storage that organizes and holds the persistent data, system software, and application 

programs. 
• The input/output (1/0) channels and interfaces (like the keyboard I am typing on and the screen I 

am looking at) that connect users to the system. 

Similarly, the software of an HPC system has much in common with the desk-side workstation or 
departmental enterprise server. Like these more pervasive albeit more modest computers, the super
computer has a software structure that serves many of the same purposes of interface, control, and 
functionality, including but not limited to the following. 

• The operating system that manages all aspects of the machine and its operation. 
• The compilers that translate application programs written in human-readable syntactic languages 

(and other interfaces) to machine-readable binary code. 
• File systems that present a logical abstraction of mass storage and organize the data on mass

storage devices (like hard-disk drives). 
• The myriad software drivers of the 1/0 devices by which the computer communicates with the 

external world and users. 
• The many tools that make up much of the expected user environments. 

What distinguishes an HPC system from a conventional computer is the organization, inter
connectivity, and scale of the component resources and the ability of the supporting software to 
manage the operation of the system at that scale (Fig. 1.3). By scale is meant the degree of physical 
and logical parallelism, i.e., the replication of key physical components such as processors and 
memory banks and the delineation of a number of tasks to be performed simultaneously. While even a 
single socket laptop incorporates some parallelism, an HPC system is structured in far more levels, 
each of which is usually much more substantial (but there are exceptions to this). It is this parallel 
organization, the methods by which the constituent subsystems are coordinated to solve a shared 
problem, and the additional functionality of the system software and programming models providing 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 33



FIGURE 1.3 

1.1 HIGH PERFORMANCE COMPUTING DISCIPLINES 7 

. . 

l ·-·-·-·-·-·-·-·Global_ Interconnection Netwo~~----·-·-·-·- ----~ 

Accelerator 

Core 
Array 

Scratch 
pad 

memo 

Node 1 

Node 
2 

Node 
3 

■ ■---Node 
N 

HPC systems are distinguished from a conventional computer by the organization, interconnectivity, and scale of 
the many component resources illustrated here. A "node" incorporates all the functional elements required for 
computation, and is highly replicated to achieve large scale. 

such management that differentiate the supercomputer from its smaller counterparts. But from the 
viewpoint of the programmer, it is the need to think in parallel (many things happening at the same 
time) and distributed (things happening in different places separated by distance) that differentiates the 
supercomputer from the day-to-day computer [2]. This requires knowledge and skill in employing 
programming interfaces that expose and exploit application parallelism and algorithms that permit 
simultaneous operation of many parts of the computation contributing to the final answer. 

1. 1.5 SUPERCOMPUTING PROBLEMS 
The field of supercomputing was born in the midst of revolutionary advances in experimental nuclear 
research, and has since grown to affect nearly all research fields driven by experiment. Because the 
genesis of supercomputing lies in simulating problems driven by nuclear physics, many supercomputing 
problems are framed in the context of tracking large systems of particles consisting of different 
species that may interact with one another and are not in equilibrium. Such nonequilibrium problems 
are generally difficult to compute analytically and can be very costly to explore experimentally. 
Consequently, these types of problems frequently appear on supercomputers, because of both the high
resolution probing ability of the simulation and the substantially reduced cost at which the computational 
experiment can be conducted [3]. 

Another class of supercomputing problem that overlaps with tracking large systems of particles 
with pair-wise interactions is the class that solves some set of partial-differential equations. For 
instance, a large fraction of supercomputing time is spent solving the Navier-Stokes equations for 
fluid flow because of their relevance to many engineering problems. As a second example, the direct 
detection of an astrophysical source of gravitational radiation in 2015 by the UGO Scientific 
Collaboration was supported by millions of hours of supercomputing resources solving the Einstein 
field equations to simulate the merger of binary black holes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 34



8 CHAPTER 1 INTRODUCTION 

Table 1.1 Supercomputing Problem Representatives and How They Are Used in Academia, 
Industry, and Government 

. Supereo~pQtlilg 
··.· . 

. 
. , 

Problem · 
. aepi-~entativ~ ' ..... Academia Ind~ GoverWJi_!9it . I.', 

Solution of partial- Na vier-Stokes Black-Scholes Weather prediction, 
differential equations equations, Einstein equation, hurricane modeling, 

equations, Maxwell Na vier-Stokes storm-surge modeling, 
equations equations for sea-ice modeling 

compressible flow, oil 
reservoir modeling 

Large systems with pair- Cosmology, molecular Medicine development, Plasma modeling 
wise force interactions dynamics simulations biomolecular dynamics 

Linear algebra Supporting solution of Search engine HPC machine 
partial-differential PageRank, finite- evaluation, climate 
equations, fundamental element simulations modeling 
benchmarks of HPL and 
high performance 
conjugate gradients 

Graph problems Systems research, Fraud detection Security services, data 
machine learning analytics 

Stochastic systems Radiation transport, Risk analysis in finance, Public health, modeling 
particle physics nuclear reactor design, spread of disease 

process control 

Many classes of HPC problems are designed around the supercomputer's ability to solve problems 
in linear algebra. In science and engineering the result of discretizing partial-differential equations 
frequently results in a system of linear equations. This has led to the development of both direct and 
iterative solution techniques for supercomputers. The main benchmark currently used to measure a 
supercomputer's peak performance is a dense linear algebra problem. 

While many HPC problems arise from mathematical models, some of the most important super
computing problems today arise from graph problems. Graph problems often come from problems 
arising in knowledge management, machine intelligence, linguistics, networks, biology, dynamical 
systems, and collections of pair-wise systems. 

HPC problem representatives and examples of their usage in academia, industry, and government 
are presented in Table I. I. 

The variety and novelty of supercomputing problems continue to expand far beyond its nuclear 
physics roots (see the example in Fig. 1.4). As supercomputing skill-sets and resources become 
increasingly commonplace, it is difficult to imagine an analytical field that will not be impacted by 
HPC in the future. 

1.1.6 APPLICATION PROGRAMMING 
The principal view the user has of a HPC system is through one or more programming interfaces, 
which take the form of programming languages, libraries, or other services. These are expanded by 

/ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 35



1.1 HIGH PERFORMANCE COMPUTING DISCIPLINES 9 

FIGURE 1 .4 

A particle-in-cell simulation from the Gyro
kinetic Toroidal code (Princeton Plasma 

Physics laboratory) that simulates a plasma 
within a Tokomak fusion device. A sampling 

of some particles within the toroid is shown 
here colored according to their velocity, with 
different supercomputing processor bound

aries delineated by the toroidal subdivisions. 

additional sets of tools that assist in crafting, optimizing, and debugging application codes. Ironically, 
a major means of programming is the use of existing programs either directly or as templates to modify 
for specific purposes. There are hundreds of computer programming languages, from very low level 
including assemblers to very high reaching to the declarative regime. But for HPC the number of 
conventionally adopted programming interfaces is relatively few, in the order of dozens, although there 
are many more experimental or research models. At the risk of oversimplification, a programming 
language defines a set of named objects that can be manipulated, the basic operations that can be 
performed on these objects, the flow-control mechanisms for establishing the conditions and order of 
operation execution, the means of encapsulation for modularity, and 1/0 including mass storage. 

Programming in the regime of supercomputing has additional requirements and characteristics. 
Performance is the driving requirement that differentiates HPC programming from other domains. It is 
second only to correctness and repeatability, which are of serious concern. Performance is most 
significantly represented by the need for representation and exploitation of computational parallelism: 
the ability to perform multiple tasks simultaneously. Parallel processing involves the definition of 
parallel tasks, establishing the criteria that determine when a task is performed, synchronization among 
tasks in part to coordinate sharing, and allocation to computing resources. A second aspect of 
programming for HPC is control of the relationship of allocations of data and tasks to the physical 
resources of the parallel and distributed systems. The nature of the parallelism may vary significantly 
depending on the form of computer system architecture targeted by the application program. Also of 
concern are issues of determinism, correctness, performance debugging, and performance portability. 

Depending on the nature of the class of parallel system architecture, different programming 
models are employed. One dimension of differentiation is granularity of the parallel workflow. Very 
coarse-grained workloads with no interactivity, sometimes referred to as "embairnssingly parallel" or 
"job-stream" workflow, suggest one class of workflow managers. Fine-grained parallelism is 
emphasized in multiple-thread shared-memory system programming interfaces such as OpenMP and 
Cilk++. Medium- to coarse-grained parallelism, as reflected by highly scaled massively parallel 
processors (MPPs) and clusters, is primarily represented by communicating sequential processes such 
as the message-passing interface (MPI) and its many variants. Each of these forms of parallel pro
gramming is explored in this textbook, with extensive presentation and direct hands-on experience. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 36



10 CHAPTER 1 INTRODUCTION 

1.2 IMPACT OF SUPERCOMPUTING ON SCIENCE, SOCIETY, AND 
SECURITY 

The broader HPC ecosystem today is a vibrant $23 billion market, projected to grow to more than $30 
billion by 2020 and with a compound annual growth rate of 8%. HPC represents one of the fastest
growing markets, primarily driven by end-user demand in various application domains, including 
financial services, oil and gas, manufacturing, earth sciences, life sciences, national laboratories, and 
government intelligence. 

1.2.1 CATALYZING FRAUD DETECTION AND MARKET DATA ANALYTICS 
Rapidly growing global demand for financial services functions, including trading, banking, and 
financial transactions such as mortgage processing, is stressing financial information management 
systems to an unprecedented degree. Increasingly financial services companies such as proprietary 
trading firms, investment banks, and payment processing firms are deploying supercomputing to solve 
core business problems like backtesting, risk management, and fraud detection. Proprietary trading 
and investment management firms frequently deploy HPC systems ( ~ 100s of Tflops) to develop 
accurate trading strategies and predict market performance, enabling them to package highly profitable 
financial instruments. In many investment bank and mortgage/credit processing firms supercomputers 
(10- lO0s of Tflops) are used to process millions of records and accurately predict the risk of diverse 
portfolios. Payment processing firms are increasingly adopting supercomputing technologies for fraud 
prevention, using pattern detection and matching algorithms. 

1.2.2 DISCOVERING, MANAGING, AND DISTRIBUTING OIL AND GAS 
Oil and gas companies are some of the largest commercial users of supercomputing technologies, 
including all the publicly cited commercial petascale systems. Supercomputers drive all aspects of 
oil and gas workflows for exploration, production, and distribution. In exploration, supercomputers 
are deployed for the high-resolution seismic processing used to identify oil reservoirs through 
subsurface imaging (Fig. 1.5). In production workflows supercomputers are used in characterizing 
reservoirs and identifying the safest means of managing reserves. Increasingly oil and gas companies 
are using HPC capability to devise new predictive analytics for effective distribution of petroleum 
products. HPC is a crucial foundational capability for oil and gas companies today, and is widely 
deployed in exploration and production to minimize exploration risks and increase the safety of the 
overall processes involved. 

1.2.3 ACCELERATING INNOVATION IN MANUFACTURING 
Manufacturing encompasses a wide range of industries, including aerospace, automotive, consumer 
products, heavy industries, tire manufacturers, and electronics/semiconductor manufacturers. The 
common thread across these diverse industries is the use of computer-aided engineering applications 
for product design and manufacturing processes. In automotive industries supercomputers are used 
in simulating crashes, structural analysis of noise, vibration, hardness, and stress, and finally 
computational fluid-dynamics-driven product design. In aerospace supercomputers are primarily used 

F 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 37



1.2 IMPACT OF SUPERCOMPUTING ON SCIENCE, SOCIETY, AND SECURITY 11 

Gas Production in Offshore Fields, Lower 48 States 

FIGURE 1.5 

Researchers at BP use HPC to simulate subsurface geologies, using multidimensional analysis and character
ization to identify oil reservoirs accurately. 

Image by US Energy Information Administration via Wikimedia Commons 

for computational fluid-dynamics-based aerodynamics simulations and virtual prototyping. By using 
simulation as opposed to physical testing in the design process, manufacturing firms are accelerating 
time to market through shortened design cycles while reducing development costs and delivering safer 
products to customers. HPC is perhaps one of the most important technologies in manufacturing today. 
Using simulation-driven engineering, organizations can improve the efficiency of jet engines, wind 
turbines, heavy machinery, and gas turbines (Fig. 1.6). Even a 2%- 4% improvement in performance 
can result in billions of dollars in reduced operational and fuel costs. 

1.2.4 PERSONALIZED MEDICINE AND DRUG DISCOVERY 
Life sciences are another major vertical segment that relies on HPC technologies in various application 
areas. Supercomputing is used by researchers and enterprises for genome sequencing and drug 
discovery. Pharmaceutical companies often deploy supercomputers to accelerate the process of drug 
discovery using various molecular dynamic simulation methodologies. Using HPC and molecular 
dynamics simulations researchers are able to design new drugs and virtually test effectiveness, 
enabling significant optimization of the research process while resulting in safer and more effective 
drugs. HPC is also used to develop virtual models of human physiology (e.g., heart, brain, etc.), which 
enable scientists and researchers to understand ailments and potential treatments better (Fig. 1.7). 
Increasingly life sciences researchers and companies are engineering new methodologies combining 
genome sequencing and drug discovery to enable new and more effective forms of personalized 
medicine that could cure some of the most challenging diseases. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 38



12 CHAPTER 1 INTRODUCTION 

FIGURE 1.6 

(Top) HPC is frequently used in high-fidelity virtual engine simulation and design. (Bottom) Researchers at 

NASA use HPC to simulate the design of next-generation turbines for both aviation and power production. 

(Top) Simulation image via Wikimedia Commons; (Bottom) Simulation image by Dale Zante and Jay Horowitz via Wikimedia 

Commons 

· 1.2.5 PREDICTING NATURAL DISASTERS AND UNDERSTANDING CLIMATE CHANGE 
Another key field where HPC has delivered a transformational impact is Earth sciences. Super
computing is frequently used to study climate change and its impact. Research organizations around 
the world rely on HPC to predict weather phenomena and enable highly accurate hyperlocalized 
forecasts. A crucial broader application area of these foundational domains is emergency prepared
ness, where HPC models are used to predict aspects of natural disasters such as intensity and impact of 
earthquakes, path and ferocity of hurricanes, direction and impact of tsunamis, and more (Fig. 1.8). 
The climate is ever changing, with increasing threats of intense hurricanes, heatwaves, and other 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 39



1.2 IMPACT OF SUPERCOMPUTING ON SCIENCE, SOCIETY, AND SECURITY 13 

FIGURE 1.7 

HPC is used to develop virtual models of kidney 

podocytes. 
Image from C. Falkenberg et al. via Wikimedia 

Commons 

extreme events necessitating the need for higher-fidelity computational models and more super
computing capabilities. 

In each of these application domains and beyond, supercomputers have a wide range of impact in 
accelerating innovation, optimizing business processes, saving lives, and delivering transformational 
socioeconomic impact. It is no surprise that HPC now forms a core strategic component in industrial 
innovation, research, and government policy development. 

FIGURE 1.8 

Researchers at Oak Ridge National 
Laboratory explore the advection of 
carbon dioxide in an atmospheric model. 

Image courtesy of F. Hoffman and 

J. Daniel via Wik/media Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 40



14 CHAPTER 1 INTRODUCTION 

Table 1.2 Broader Impacts of Supercomputing: How HPC Is Used by Different Application 
Domains to Accelerate Time to Innovation and Deliver Socioeconomic Impact 

• Vetf;l~al $egin,ent$ , C6nmi~n Workfthw_s . 
-

·-

Financial services Fraud and anomaly detection, backtesting for algorithmic/proprietary trading, 
risk analytics 

Oil and gas Seismic processing, interpretation, reservoir modeling 

Manufacturing Materials simulation, structural simulations (noise/vibration/hardness and crash), 
aerodynamics simulations, design space exploration, thermal simulations and 
many more 

Life sciences Molecular dynamics, drug discovery, virtual modeling, genome sequencing and 
many more 

Earth sciences Atmospheric modeling, hydrodynamic modeling, ice modeling, coupled climate 
modeling 

Table 1.2 highlights a subset of vertical segments that use HPC in their production environments to 
give faster time to innovation and deliver broad socioeconomic impact. Without supercomputing, these 
and other domains would be severely constrained in being able to deliver innovative, safer, and better 
products, with the pace of innovation far lower. 

1.3 ANATOMY OF A SUPERCOMPUTER 
To get a sense of what a modem supercomputer looks like, we give a brief description of Titan 
(Fig. 1.1 ), one of the fastest computers in the world. In November 2012 it was rated as the fastest; it has 
since been surpassed but is still among the top 10 supercomputers and the most powerful computer in 
the United States. Titan is true to its name in sheer size as well as in computational capability: it takes 
up more than 4000 sq ft and consumes approximately 8 MW of electrical power. Deployed at Oak 
Ridge National Laboratory in Tennessee, Titan was developed by Cray Inc. It incorporates the 
structure, function, and scale of elements found in most state-of-the-art high-end machines, with a 
theoretical peak performance of over 27 petaflops and delivering 17.6 petaflops Rmax sustained per
formance for the HPL (Linpack) benchmark by which the Top 500 list is measured. Sponsored by the 
US Department of Energy and National Oceanic and Atmospheric Administration, the purpose of 
Titan is to do scientific research, at which it excels. 

Titan is a Cray XK7 architecture: a heterogeneous architecture reflecting an important trend in 
HPC-the mixing of different kinds of processing units to provide the best possible operational 
support for distinctly different kinds of computation, even in the same application. 

The block diagram of the system stack (Fig. 1.9) shows the layered hierarchy of the many physical 
and logical components contributing to a general-purpose supercomputer [4,5). The bottom layer, the 
system hardware, represents the physical resources that are the most visible (and audible) aspect of a 
supercomputer like Titan. Even in this high-level view, the principal components of the system are 
perceived. The processors that perform the calculations and the memory which stores both the data 
and the program codes that operate on it are shown here, as well as the interconnection network that 
integrates potentially many thousands and eventually millions of such processor/memory "nodes" into 
a single supercomputer. Another family of hardware provides long-term storage of data and 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 41



FIGURE 1.9 

1.3 ANATOMY OF A SUPERCOMPUTER 15 

Programming Environment Tools & Libraries 

Programming Model 

The system stack of a general supercomputer consists of a system hardware layer and several software layers. The 
first software layer is the operating system, encompassing both resource management and middleware to access 

input/output (1/0) channels. Higher software layers include runtime systems and workflow management. 

programs. Hard-disk drives and archival tape storage can keep user data indefinitely and have much 
greater capacity than ephemeral main memory, but at a cost of significant access times. 

The first levels of software that control the hardware and manage these resources are associated 
with the operating system, which is far more complex than the two layers shown would suggest. Each 
node has a local instance of an operating system controlling the physical memory and processor 
resources of the node as well as the interface to the external (to the node) system area network. An 
additional layer of the operating system, sometimes referred to as the middleware, logically integrates 
the many nodes and their local operating systems into a single system image to which users can submit 
their application programs and access standard I/O channels. In some supercomputers a separate 
front-end software environment running on a dedicated computer known as the host provides most of 
the user interfaces and services other than the scalable computing itself. The layered operating 
system reflects an abstract or virtual machine to the upper levels of the system, including the user
programming interface. It ensures a standardized set of user services upon which the application 
can depend, with common interface protocols independent of the specific system upon which it is 
performed. Among these services is the file system than manages much of the persistent storage and 
presents a structured organization of the diverse forms of user data. 

Above the layers dedicated to resource management are those associated with the means of 
veloping and executing user applications and workloads. Here "workloads" are defined as a 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 42



16 CHAPTER 1 INTRODUCTION 

collection of loosely coupled applications, each performing a different aspect of the total set of tasks 
that need to be computed. For example, one might have three applications, simulator, a data analyzer, 
and a visualization package, with each of these three applications streaming data to the next function. 
The overall work management layer involves several support capabilities, including the programming 
languages (e.g., Fortran, C, C++ ), additional libraries often for parallelism (e.g., MPI, OpenMP), and 
compilers that provide machine-readable code for the processor cores translated and optimized from 
the user code. Higher-level environments and tools help in building more complex workflows and 
managing them. An important part of such environments are the many sophisticated libraries of 
previously developed and highly optimized functions that many programs can use; these enhance 
programmer efficiency through code reuse. 

One last layer of the supercomputer system is the runtime system software. While this level tends to 
be a rather thin layer in conventional HPC practices, in programming models such as Java it can be 
much more substantial, as in the NM (Java Virtual Machine). HPC runtime systems manage some 
aspects of resource management and task scheduling as well as communication. It is possible that in 
future supercomputers runtime systems may play a far more significant role, but such claims are 
speculative at this time and await confirmation through experimentation. 

1.4 COMPUTER PERFORMANCE 
The principal defining property and value provided by HPC is delivered performance for an end-user 
application. Expressions of "speed" or "how fast" are common, describing, perhaps vaguely, the 
relationships among time, work as computation actions, system size, and other factors. But in spite of 
its central role in the domain of HPC, performance itself as a measure is ambiguous, has different and 
in some cases contradictory meanings, and can result in different conclusions depending on inter
pretation. Nonetheless, despite these vagaries, performance as both an achievement and a means to 
achievement is core to HPC as a discipline and means of accomplishment [6]. This section briefly 
introduces performance as a quality metric and describes its various aspects, even as attempts are made 
to measure and apply it to guide system and application development. 

1 .4. 1 PERFORMANCE 
Performance is an intuitive notion of a person or a machine going well. It is a natural part of how we 
think about athletes, vehicles on land, sea, and air, and more abstract accomplishments such as a grade 
in an exam. Performance for a computer could easily be thought of as how fast it runs or the speed of an 
application. While not wrong, this vague idea is inadequate to allow quantitative assessment or 
comparisons between separate machines running the same program, separate programs designed to 
get the same answer, or alternative support software (e.g., two different compilers or languages) 
facilitating both. It is necessary to define performance in one or more useful ways and establish the ,/"""' 
quantitative metrics used to measure it. As will be seen, there are multiple meaningful and useful ,/' 
definitions. They share the common parameters of time (seconds) and work (primitive operations). / 
However, depending on the context in which the two are used, the meaning can be quite different and / 
possibly lead to coµflicting conclusions. r" 

,/ 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 43



1.4 COMPUTER PERFORMANCE 17 

1.4.2 PEAK PERFORMANCE 

Gordon Moore, the cofounder of Intel Corporation. noted that the number of transistors in an integrated circuit doubles 

roughly every 2 years. This observation is widely known as "Moore's law". Photo by 1he Chemical Heritage Foundation 

via Wikimedia Commons 

Gordon Moore is the cofounder of Intel Corporation along with Robert Noyce and a pioneer in the semiconductor industry. 
Gordon Moore made an observation now known as "Moore's Law" which states that the number of transistors on an integrated 
chip doubles roughly every 2 years. Moore's law subsequently became a driving goal in the semiconductor industry that has 
resulted in enormous perfom1ance gains in computational science achieved simply by adopting the latest integrated chip, an era 
sometimes referred to as the "free ride." Gordon Moore is a recipient of the Presidential Medal of Freedom and the IEEE Medal 
of Honor. 

Peak perfmmance of a system is the maximum rate at which operations can be accomplished 
theoretically by the hardware resources of a supercomputer. Usually in HPC peak performance 
is measured in units of flops (megaflops, gigaflops, teraflops, petaflops), with peak perfmmance by the 
end of this decade anticipated to hit exaflops. (Note that the "s" in flops is not the plural but rather 
stands for "seconds". This is a common error even among otherwise knowledgeable people. ) But 
different kinds of operations may have different peak rates. Integer operations, floating-point opera
tions, and memory access (load-store) operations will take different times (instruction issue to 
instruction retire) and there will be different numbers of such operations that can be performed 
concurrently. To complicate this, a given operation type may take different amounts of time depending 
on the circumstances of the action (e.g., load operation through a cache hierarchy). 

Peak performance is determined by the combination of the clock rate provided by the device 
technology and the hardware parallelism determined by the computer architecture. Both are a function 
of device density, which has demonstrated a remarkable growth rate over the last 4 decades. This trend 
was captured by Gordon Moore, who predicted that device density would increase by a factor of two 
every 2 years. This has proven uncannily accurate. Reduced feature size (i.e., width of a wire on a die) 
reduces capacitance and natural time constants, pe1mitting a higher clock rate. At the same time, more 
devices can be put on a single semiconductor die, which permits more sophisticated processor core 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 44



18 CHAPTER 1 INTRODUCTION 

architectures that can do more operations per cycle (at peak). The system architecture determines the 
number of processor cores that together comprise the total system and contributes to the total number 
of operations that can be performed at the same time. Thus peak performance in terms of operations 
per second is determined by clock rate and architecture. 

1.4.3 SUSTAINED PERFORMANCE 
Sustained performance is the actual or real performance achieved by a supercomputer system in 
running an application program. While sustained performance cannot exceed peak performance, it can 
be much less and often is. Throughout the period of computation the instantaneous performance can 
vary, sometimes quite dramatically depending on a number of variable circumstances determined by 
both the system itself and the immediate requirements of the application code. Sustained performance 
represents the total average performance of an application derived from the total number of operations 
performed during the entire program execution and the time required to complete the program, 
sometimes referred to as "wall clock time" or "time to solution". Like peak performance, it may be 
represented in terms of a particular unit (kind of operation) of interest, such as floating-point opera
tions, or it can include all types of operations available by the computing system, such as integers (of 
different sizes), memory load and stores, and conditionals. 

Sustained performance is considered a better indicator of the true value of a supercomputer than 
its specified peak performance. But because it is highly sensitive to variations in the workload, 
comparison of different systems only has meaning if they are measured running equivalent applica
tions. Benchmarks are specific programs created for this purpose. Many different benchmarks reflect 
different classes of problems. The Linpack or HPL benchmark is one such application used to compare 
supercomputers: it is widely employed and referenced, and is the baseline for the Top 500 list that 
tracks the fastest computers in the world (at least those so measured) on a semiannual basis. 

1.4.4 SCALING 
"Scaling" or alternatively "scalability" is a relationship of performance to some measure of the size ( or 
"scale") of the HPC system. It reflects the ability to achieve increased performance for an application 
by employing machines of ever-greater size. Although there are many ways to quantify a system's size, 
a simple and widely used measure is the number of processor cores employed, recognizing that there 
are multiple cores per processor socket and usually multiple processor sockets per system node. The 
added complexity of how these are distributed in their use for a given application (e.g., how many of 
the cores in a given socket are actually used) is largely ignored for this purpose, although it can in fact 
have a significant impact on the resulting performance. 

As is explored at greater depth in later chapters, an important subtlety associated with performance 
scaling is the application program size employed as the system size is modified. For this purpose, the 
size of an application can be quantified as the amount of data used, such as the dimensions of a problem 
matrix (n by n). Over the last 2 to 3 decades, weak scaling has been an important way to take advantage 
of ever-larger systems where the size of the data (such as n) grows proportionally with the size of the 
system (again, number of cores). This keeps the amount of work that a given core does about the same 
even as the system scale increases. Granularity of a given task (process or thread) stays about the same 
and so does efficiency, at least for many regular problems. This has been an important enabler of the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 45



1.4 COMPUTER PERFORMANCE 19 

extraordinary apparent perfonnance gain witnessed over the last 20 years. However, as systems grow 
in scale the amount of main memory incorporated does not grow proportionally due to costs. As a 
result, the amount of memory per core has been going down, limiting the opportunity for weak scaling. 
At one time it was presumed that there would be about I byte of main memory per I flops of 
perfonnance. Now with the largest machines this factor has shrunk to below I 0% (I% for TaihuLight) 
in some cases. 

The alternative to weak scaling is the much more challenging but important approach of strong 
scaling, where the application dataset size remains constant in the presence of increased system size. 
The key measure for strong scaling is not flops but time to solution. If a system were to be doubled in 
scale (twice as many cores), the ideal case would exhibit an execution time of half. The total work 
perfonned would be the same, but with double the number of cores it should be possible to do this in 
half the time. As will be seen, there are many reasons why this often is not possible, and some experts 
dismiss strong scaling as no longer being a viable approach. While controversial, the position taken by 
this discussion is that both strong and weak scaling are important, although often for different 
purposes. 

1.4.5 PERFORMANCE DEGRADATION 
The causes that result in the degradation of performance from the (not to be exceeded) peak perfor
mance to the observed sustained performance are many and varied. But they all contribute to a failure 
to exploit all the resources all of the time. No single part of the system is responsible for this 
degradation, but rather it is the imperfect match of the user application code, the compiler translation 
of the high-level application specification to low-level binary representation, the potential intrusion 
and overheads of the operating system, and the many facets of the computer architecture at the system 
and microcore levels. Usually, it is no single element but rather the interplay of two or more such 
elements that together conspire against perfection of operation. Much of this book is about how such 
degradation occurs and what measures can be taken to mitigate it. However, at a more abstract level 
four principal factors determine the delivered (sustained or actual) performance for a given application 
running on a target platfonn, here briefly introduced. This formalization of performance degradation is 
referred to through the acronym SLOW, which identifies the sources as starvation, latency, overhead, 
and waiting for contention. 

Starvation directly relates to a critical source of performance, parallelism. Peak performance is 
measured with the assumption that all functional units are operating simultaneously on separate op
erations. If sufficient application parallel work is not available at any instance in time to support 
issuing instructions to all functional units every cycle, then less work will be perfonned than is 
possible, at least ideally. The achieved perfonnance will be less than the possible peak perfonnance. 
Starvation is this absence of work. Either there is not enough parallelism exhibited by the user 
application to keep all the system resources busy, or while there is enough work it is not distributed 
evenly (load balanced). In this latter case, some resources have too much work to do while other have 
too little. 

Latency is the time it takes for infonnation to travel from one part of a system to another. If an 
operation requires some data from a remote resource to proceed, latency will contribute to the amount 
of time it takes for that data to be delivered and cause the associated execution unit to stall or cease 
functioning until the data is available and it can continue. If latency for all such requests is very short, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 46



20 CHAPTER 1 INTRODUCTION 

the effect is small. But if an execution unit is blocked (cannot continue) until a request from across the 
system is delivered, the effect can be very significant. Latency occurs in many aspects of system 
operation, including (but not limited to) local memory accesses, data transfer between separate nodes, 
and length of execution pipeline (number of stages to completion of operation). To minimize its effects 
on performance, latency can be reduced through exploitation of locality where everything is retained 
relatively close to each other. Or latency can be "hidden" by making certain that blocking offunctional 
unit operation does not occur, even in the presence of high-latency requests. This can be achieved if a 
unit can temporarily work on some other task. Cache hierarchies and multithreading hardware are 
examples of ways of mitigating the effects of latency. But locality management by the programmer 
and/or the system software dominates the means of limiting latency effects. 

Overhead is the amount of additional work beyond that actually required to perform the computation 
(such as on a pure sequential processor). Overhead work is necessary to manage resources and task 
scheduling, control parallelism through synchronization, support communication, handle address 
translation, and perform many other support functions that do not actually contribute to the operations 
needed for the computation itself. Overhead degrades performance through a couple of mechanisms. It 
wastes operations, time, and resources that are not directly associated with the computation; this alone is 
cause for concern and corrective measures. But there is a subtle indirect effect as well. As will be seen 
when we explore scaling, overhead is associated directly with setting up individual tasks, and the 
duration of the overhead puts a lower bound on the granularity (length) of the task it is controlling to 
achieve effective operation. For a fixed amount of task work (for example for strong scaling), the amount 
of parallelism that can be exploited is dependent in part on the fineness of granularity that can be 
employed and therefore the total parallelism that may be available. Thus scalability (and starvation) is 
indirectly affected by overhead. 

Waiting of threads of action for shared resources due to contention of access degrades performance. 
When two or more requests are made at the same time to be serviced by the same single resource, 
either hardware or software, only one can proceed. The other(s) must wait until the first request is 
retired and the required resource is freed. One effect is that the delayed actions are extended in time, 
taking longer to complete. This has a cascading effect as follow-on actions dependent on this first one 
will also be extended in their time of initiation. A second effect is that the hardware upon which the 
delayed action is being performed may be blocked and its potential capability wasted for the duration 
of the delay. Both time and energy are lost. Finally, such events occur unpredictably (in most cases) 
and create uncertainty in the execution, making optimization methods less effective. Typical examples 
include bank conflicts for main memory and insufficient bandwidth for communication networks. 

1.4.6 PERFORMANCE IMPROVEMENT 
With these factors in consideration, the HPC user can find a number of ways to improve delivered 
performance-referred to sometimes as "performance debugging". This textbook continuously 
describes techniques to improve one's performance, including hardware scaling, parallel algorithms, 
performance monitoring, work and data distribution, task granularity control, and other sometimes 
subtle means. 

Something as simple as increasing the number of nodes employed in the execution of an 
application can be a major method of improving performance. But one will quickly experience 
limitations to scaling and efficiency due to contributing factors such as uniformity (or irregularity) of 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 47



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 21 

tasks on processor cores, distribution of data across memory affecting bank conflicts, cache and 
translation lookaside buffer (TLB) misses, and page faults. Minimization of data movement, especially 
between system nodes, will reduce latency effects. Granularity of tasks (e.g., processes, threads) and 
messages will amortize overhead and latency costs if it is made more heavyweight. Exploiting 
compiler optimizations correctly, increasing problem dataset sizes (weak scaling), algorithm im
provements, and circumventing 1/0 bottlenecks are among additional methods that may result in 
performance gain. This list of strategies is very long, if not unending. Many of these basic techniques 
are demonstrated in the following chapters as they relate to the respective topics. 

In general, the key to performance improvement is performance measurement and profiling. Entire 
classes of performance measurement toolkits and frameworks have been developed directly to fulfill 
this important role. Due to the intricacies of performance profiling on a supercomputer, an entire 
chapter is dedicated to this topic later in the text. 

1.5 A BRIEF HISTORY OF SUPERCOMPUTING 
The history of HPC is among the most dramatic examples of human achievement through innovations 
in scientific discovery and engineering. Without exaggeration, no other technology in the history of 
mankind has exhibited such extraordinary growth and in such a narrow time span. In the course of a 
single human lifetime, the capability of supercomputing as measured by floating-point operation 
throughput has achieved a growth factor of more than 10 trillion. It is not that somehow the field 
just got it wrong for a period of time and then suddenly got it right. Instead, through a series of half
a-dozen epochs, device technologies, system architectures, and programming approaches, the fastest 
computers at any point in time grew in performance by about a factor of 200 times each decade. This 
unique story is easily the subject of entire volumes. But the intent here is to grasp the lessons of this 
history as it defines current practices in HPC and guides future developments in to the era of exascale 
computing. Examples from the history of supercomputing illustrate and highlight critical ideas, and 
their importance in defining HPC and driving its progress. The overall pattern of the history of 
HPC provides a framework for future detailed discussions. But even in this initial presentation the 
fundamental concepts, touched on briefly above, are engaged as the fabric from which the more precise 
patterns of this story later evolve. 

The age of modem computing has been powered by continuous and significant technology 
advances and achieved through innovations in computer architecture and programming models. But 
this accomplishment has only had true meaning and value due to the driving needs and empowerment 
of end-user goals: specifically domains of consideration that could only be addressed by computational 
means. The conceptual underpinnings of this constructive tension have been the continuous need 
to increase speed and concurrency while minimizing sources of inefficiencies. The changes in 
architecture were driven by a need to exploit the new opportunities enabled by new emergent 
technologies while addressing the challenges that each new advance imposed. Thus one perspective 
(there are many) of the history of supercomputing is to examine briefly seven epochs enabled 
through device technology and achieved through computer architecture supported with responsive 
programming models. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 48



22 CHAPTER 1 INTRODUCTION 

1.5.1 EPOCH I-AUTOMATED CALCULATORS THROUGH MECHANICAL 
TECHNOLOGIES 

Vannevar Bush with US President Harry Truman. Pharo by Abbie Rowe via Wikimedia Commons 

Vannevar Bush's pioneering work on large-scale analog computers for solving differential equations paved the way for the 
tremendous expansion in computational science that continues to grow this day. The "differential analyzer", named and 
developed by Bush while at Massachusetts Institute of Technology (MIT), became the first general-purpose, large-scale analog 
computer for integration and served as a catalyst for the subsequent development of electronic digital computers. Apa11 from 
his influential impact on government support for big science and wartime management of scientific research, Bush is also 
considered an internet pioneer even though he had no direct involvement in the development of the internet. His influential 
1945 essay describing a theoretical device that could store and access documents through associative linking was credited by 
information technology pioneer Theodor (Ted) Nelson with helping inspire the hypertext concept used in the internet today. 

For multiple millennia mankind has sought aid in performing calculations through mechanical 
means, both to store intennediate values and to perfo1m arithmetic operations on them. These methods 
increased speed and improved accuracy compared to pure mental or written methods. Although 
primitive, these techniques proved very effective and supported many important tasks associated with 
commerce, logistics, and even early science. Enumeration and summation were among the earliest 
computing tasks and these were facilitated by a family of simple recording media, such as the "tally 
sticks" used more than 10,000 years ago, culminating in the "abacus" in its many forms in Babylonia 
at about 2400 BCE. The abacus permitted integer numbers to be represented through physical 
arrangements of beads, and for addition and subtraction operations to be performed through 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 49



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 23 

mechanical actions. By 200 BCE the Chinese had developed the suanpan, an advanced form of abacus 
that has been employed up to the modem era in some parts of the world. This achieved two principles 
that are relevant to today's supercomputers: artificial representation and storage of numbers and the 
concept of process, a sequence of simple actions to achieve a more complex result. A third aspect of 
modem digital computation is manifest: the discrete data representation referred to now as "digital". 

The 17th century and the age of enlightenment saw the first developments of the mechanical 
calculator. Blaise Pascal, a French mathematician, invented the "Pascaline" in 1642; this simplified the 
user interface such that anyone could use it and incorporated a carry mechanism for addition and 
subtraction. Gottfried Leibniz developed a "stepped reckoner" that performed the operation of digital 
multiplication in 1671. Throughout the 18th century many advances were made in mechanical 
calculators, culminating in 1820 with the "Arithmometer" developed by Charles de Colmar, which was 
mass produced from 1851 and performed division, addition, subtraction, and multiplication. This 
sequence of developments over a period of 2 centuries achieved practical artificial calculation 
delivered in a useful form to a wide market. It also provided a functional capability that would be 
embedded in all future modem computers, now referred to the "ALU" or "arithmetic logic unit". 

At the beginning of the 19th century the second major advance toward fully automated computing 
was introduced by Joseph Jacquard for the special-purpose application of weaving. His contribution in 
1801 was the concept of sequence of control through the storage of commands or instructions capable 
of eliciting specific automated action. The "punched card" was invented, which through a pattern of 
holes could define and activate a particular action of a possible set of many. The "Jacquard loom" was 
fed a sequence of such cards determining the color and pattern of weaving of threads to produce cloth. 
In 1890 the punched card storing data (rather than instructions) and the mechanical calculator were 
integrated to form the "tabulator", developed by Herman Hollerith and first applied to the US census. 
This provided the foundation for complex data processing by mechanical means that dominated 
commercial information management for almost a century and established what would become the 
world's largest computer company, IBM (originally the Tabulating Machine Company). 

The basic concepts for general fully automated calculation by mechanical means were established 
by Charles Babbage, a British mathematician, starting in 1834 with his design of the "analytical 
engine" [7]. His earlier ideas of the "difference engine" which computed polynomial tables and was 
eventually built led to conceptual extensions for general-purpose computation. It embodied the 
principles of the mechanical ALU with that of punched-card sequence control. Babbage was not to see 
the realization of this dream, but he influenced the work of Konrad Zuse, who in 1938 completed the 
first programmable mechanical computer in Germany, and in 1944 Howard Aiken and IBM developed 
the "Harvard Mark 1 ". This final system was the culmination of 3 centuries of advances, starting with 
the Pascaline, that demonstrated the viability of automated computation, including the basic concepts 
of arithmetic function units, sequence control through stored instructions, intermediate data storage, 
and 1/0. But despite all these innovations, the resulting calculating speed, i.e., the rate at which 
operations could be performed, was relatively slow: about 1 instruction per second (IPS). It would take 
a breakthrough in device technology, unanticipated in the time of Pascal and Leibniz, as well as f~~er 
conceptual advances beyond that of Babbage to create the paradigm shift that led to the modem digital 
computer and supercomputer. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 50



24 CHAPTER 1 INTRODUCTION -----------

1.5.2 EPOCH II-VON NEUMANN ARCHITECTURE IN VACUUM TUBES 
The second epoch of high-speed computing (what we would call "supercomputing") incorporated a 
paradigm shift that was enabled by a component technology revolution and driven by the crisis of war. 
Four fundamental concepts laid the groundwork for the modem computational age: Boolean logic, 
binary arithmetic, computability, and what would be called the von Neumann architecture. Logic was 
developed by the British mathematician George Boole in 1848 and provided the fundamental 
framework for the design of complex digital logic functions through the synthesis of basic Boolean 
operations (e.g., AND, OR, NOT), the basis of virtually all modem computers today. In 1937 Claude 
Shannon derived the basic unit of information, the "bit" (binary digit) that comprises the basis for 
binary arithmetic, the principal means of conducting calculations by artificial means (decimal or base 
IO had also been used). A year earlier, in 1936, Alan Turing presented what would become the 
fundamental model of computation, the "Turing machine", which resolved a key issue of comput
ability put forth by Hilbert and also addressed work by Church. Today we determine that a computing 
machine is general purpose if it is a "Turing equivalent". Finally, the mathematician John von 
Neumann, influenced by the work of Eckhart and Mauchly, described a class of general-purpose 
stored-program digital computing that has served as the basis of the architecture for almost all central 
processing unit (CPU) designs to this day. Central to this was the concept of the program counter and 
program representation as a sequence of encoded instructions stored in the main memory where the 
data also resides. 

Alan M. Turing 
June 23, 1912-June 7, 1954 
Alan Turing laid the theoretic foundations of what would become the field of computer science, and in so doing defined 

what computability itself was. He applied his concepts and insights into the development of automated computing systems 
for breaking the German Enigma code during World War II, and developed one of the first stored-program digital electronic 
computers, the automatic computing engine (ACE). Due to his theoretical and applied research, Alan Turing is noted as one 
of the premier contributors to the establishment of modem computing. 

Turing devised the concept of an abstract computing construct that would later come to be called the "universal Turing 
machine", and was employed to solve a central mathematical problem posed by the mathematician Hilbert, known as the halting 
problem. This established the principles of computability (also contributed to by Church with an alternate abstraction, the lambda 
calculus). Through this work a deep understanding of how all computers must work was devised, as well as the basic idea of 
computer algorithms. Any computer that can be fully general purpose is identified as a "Turing equivalent" to this day. 

Turing brought his prodigious acumen and insights in mechanical computation to the requirements of crypto-analysis, 
and more specifically code breaking at Bletchley Park in England, where the challenge of decoding Enigma messages was a 
priority. His contributions to the development of advanced "bombes", electromechanical computers that tested many 
possible decoding combinations, are considered critical to bringing World War II to a successful and relatively fast 
conclusion and saving many lives. Among other effects, it was crucial to helping win the Battle of the Atlantic, enabling 
supplies and personnel to cross the ocean from the United States and Canada to Great Britain. 

Alan Turing produced the first full design of a stored-program digital electronic computer, the ACE, which for various 
reasons was not built until after his premature death. However, a smaller version, the Pilot ACE, was implemented and the 
concepts incorporated in this early work had significant impact on future computer designs. Toward the end of his life, 
Turing considered the implications of mechanical computing and the idea of artificial intelligence. He conceived of a test 
that would mark the achievement of a thinking machine; this has come to be called the "Turing test" for machine 
intelligence. 

,, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 51



-CONT'D 

Photo via Wikimedia Commons 

Photo from Wikimedia Commons 

Claude Elwood Shannon is widely considered to be the father of modern information theory. He applied probability theory 
to the communication problem of finding the best way of encoding information for transmission. One of the fundamental 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 52



26 CHAPTER 1 INTRODUCTION 

-CONT'D 

concepts of this field, infonnation entropy, describes the measure of infonnation contents in a message. The unit of entropy 

has been named the "shannon" in his honor, and is equivalent to I bit. 
Shannon created one of the first digital logic circuits based on the work of George Boole. At that time such circuits used 

arrangements of electromechanical relays, each of which could be in one of two states: "on" or "off". This corresponded to 

the O and I values used by binary Boolean algebras. Shannon expanded the concept by rigorously proving that digital 
circuits are capable of solving Boolean algebra problems, thus effectively establishing the theoretical foundations of digital 

logic design. 
Shannon's research at Bell Laboratories focused on cryptography and weapons control systems during World War II. He 

proved that cryptographic one-time pads are unbreakable. He is credited with the invention of signal-flow graphs that may be 
used to describe signal propagation in a broad class of cyber-physical systems. He also introduced sampling theory that 
analyzes the relationships between the continuous-time (analog) signal and its uniformly sampled discrete-time 

representation. One outcome of this research is the famous Shannon-Nyquist theorem that quantifies the impact of signal 

aliasing. After leaving Bell Laboratories Shannon joined MIT, where he taught and worked at the Research Laboratory of 

Electronics until 1978. 
During his prolific career Shannon maintained professional contacts with Alan Turing. Hennann Wey!, John von 

Neumann, Hendrik Bode, John Tukey, and many others. His achievements were recognized by numerous awards. including 

the Morris Liebmann Memorial Prize, Stuart Ballantine Medal of the Franklin Institute. AIEE Mervin J. Kelly Award, 
National Medal of Science, IEEE Medal of Honor, Royal Netherlands Academy of Arts and Sciences Joseph Jacquard 

Award, Audio Engineering Society Gold Medal, Kyoto Prize, and Eduard Rhein Foundation Basic Research Award, as well 

as multiple honorary doctorates bestowed by institutions of higher learning around the world. He was also inducted into the 

National Inventors' Hall of Fame in 2004. 

MAURICE WILKES AND THE ELECTRONIC DELAYED STORAGE 
AUTOMATIC CALCULATOR 
Maurice Wilkes was a pioneer in and major founder of the field of digital electronic computing. Arguably he is responsible 

for the first practical stored-program digital computer. the electronic delayed-storage automatic calculator (EDSAC), 
launched in May 1949. Wilkes spent his professional life primarily at the University of Cambridge as both a student and a 

professor, ultimately becoming director of the University of Cambridge Computer Laboratory. Throughout his career 

Professor Wilkes made a number of fonnative advances in computer principles and practices that led the field from its 

inchoate phase to commercial success; among these were EDSAC. microcontrollers. and microprogramming. His influence 

is felt even today after his death in 2010 at the age of 95. 
EDSAC was derived from the concepts of von Neumann, Eckert, and Mauchly and from his in-depth experience with the 

electronics technology of the 1940s, primarily in radar during World War II. This included vacuum tube devices and circuits, 

mercury delay lines (tanks) for short-tenn data storage. and pulse transfonners for data communication. Electromechanical 

devices used for tabulation and business data formation. search, and enumeration were employed for data entry and long
term storage on paper tape with teleprinters for output. The tanks held 1024 (initially 512) words, each of 18 bits. This was 
an accumulator machine with an additional buffer to aid in multiplication. It was a conservative machine, in that its clock 

rate was only about 660 Hz ( 1.5 ms), but this delivered the important reliability required for practical application 
computations. Double words of 35 bits could be used, and the accumulator was 71 bits Jong to hold two of these. The bihary 

instruction set included a 5-bit op code, a 10-bit operand (often an address). a I-bit length code, and a spare bit. 

It was Maurice Wilkes who introduced the concept of microcontrollers to computer design. A microcontroller is a 

computer within a computer optimized to generate the control signals for the computer operations efficiently. By changing 

the microcode in the control store (usually a fast memory). the computer's instruction set could be added to or improved 
without changing the hardware. This solution was inspired by Wilkes's visit to MIT. where the Whirlwind computer was 

being developed using a similar hardwired controller with a sequence of rows of diodes determining the order of control 

signals. It was Wilkes's innovation to change the diodes to electronic switches. EDSAC-2 would later be the first computer 
to be microcoded, selling a trend that lasted at least 25 years. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 53



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 27 

MAURICE WILKES AND THE ELECTRONIC DELAYED STORAGE 
AUTOMATIC CALCULATOR-CONT'D 

Maurice Wilkes and the EDSAC I under construction. Copyright Computer Laboratory, Universiry of Cambridge. 

Reproduced by permission 

John von Neuman. Photo by Los Alamos National Laboratory via Wikimedia Commons 

John van Neumann's enormously wide-ranging scientific and mathematical work includes significant contributions to 
computer architecture. supercomputing algorithms, and cellular automata. His name is commonly associated with the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 54



28 CHAPTER 1 INTRODUCTION 

-CONT'D 

stored-program architecture used by modem computers, even though the stored-program concept is also attributable to the 
developers of the electronic discrete variable automatic computer, J. Presper Ecken and John William Mauchly. John von 
Neumann's work on the electronic numerical integrator and computer (ENIAC) led to his realization that it could compute 
pseudorandom numbers. thereby paving the way for the first Monte Carlo simulations ever performed on an electronic 
computer in 1948. von Neumann was also involved in the first numerical weather predictions, also using the ENIAC. Both 
Monte Carlo simulations and numerical weather predictions are mainstays on supercomputers today. 

The revolutionary enabling device technology that inaugurated modem computing was electronics, 
the amplification and control of electricity through the agent of active device components, the first of 
which was the vacuum tube. The vacuum tube was produced by the prolific inventor Thomas Edison by 
accident while working on the electric light in 1880. He witnessed the counterintuitive phenomenon of 
an electric current flowing in a vacuum between two disconnected elements (cathode and anode). 
Called the "Edison effect" (he patented it), it did little more than rectify an alternating current but 
served as the basic technology upon which electronics would be devised. The second breakthrough 
was the use of the vacuum tube as an amplifier by adding one or more screens between the cathode and 
the anode to which a much weaker signal could be applied. The Audion, the first amplifying vacuum 
tube, was produced by Lee De Forrest in 1906 and led to a series of advances, starting with the 
"Triode" that allowed a strong current to be controlled by the much weaker one. In 1937 John Ata
nosoff developed digital logic circuits for binary computing using vacuum tubes as electronic switches, 
replacing the mechanical counterparts employed by Zuse and Aiken and all of their forerunners. 

During World War II Eckert and Mauchly in the United States and Turing in Great Britain 
developed special-purpose vacuum-tube-based digital electronic calculating systems for ballistics 
calculations (ENIAC) [8] and code breaking (Colossus), respectively. Immediately after the war, the 
von Neumann architecture concept was applied as the basis of the first generation of the modem digital 
computer for several projects in the US, England, and Germany. EDSAC was developed at Cambridge 
University by Maurice Wilkes in 1949 as the first full embodiment of the combination of principles and 
technologies described above [9]. In the United States a number of machines were implemented, 
including the MIT Whirlwind, the IBM 704, the IAS, and the UNIVAC I among others. Of these, 
Whirlwind was perhaps the supercomputer of the day. Performance of these systems ranged from 
below l KIPS to about IO KIPS, and was principally limited by the speed of data-storage technology. 
After early flirtations with such primitive storage technologies as mercury delay lines and Williams' 
tubes, memory using small toroidal ferromagnetic cores to store magnetic fields was developed as part 
of the Whirlwind project and mass marketed by IBM to provide a stable, dense (relatively), three
dimensional (3D) matrix of memory bits that revolutionized digital computing and served as its 
main memory for more than 2 decades. 

The first commercially produced computer was the LEO 1 developed by J. Lyons & Co. in the 
United Kingdom, based on EDSAC. It was capable of approximately 600 IPS. The first commercial 
digital electronic computer in the United States was the UNIVAC I, delivered in 1951 by Remington 
Rand. IBM produced its first scientific computer, the 701, and first mass-produced commercial 
machine, the 650, in the mid-1950s. The 701 was capable of 4 KIPS. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 55



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 29 

Performance for this first generation of digital electronic computers was a direct function of the 
clock rate of the CPU and the number of bits processed in parallel. Clock speed and parallelism would 
become the two principal dimensions driving the evolution of supercomputer performance. It was also 
dependent on the number of clock cycles required to perform each operation. 

1.5.3 EPOCH Ill-INSTRUCTION-LEVEL PARALLELISM 
The next technology breakthrough to revolutionize supercomputing was the development of the 
"transistor" in 1947 at Bell Laboratories. The transistor served as an alternative to the vacuum tube 
as an electronic switch. Unlike the tube, the transistor employed semiconductor materials to control 
the flow of electrons through a solid medium. It was much smaller and faster than the vacuum tube, 
required much less energy, and was more reliable. Eventually it became much more cost effective 
as well. Without exaggeration, the transistor made the digital computer practical and commercially 
viable to a large market, guaranteeing its positioning as a strategic technology. As a functional 
device, the transistor had three connections: emitter, collector, and base. These, roughly compared 
to the older vacuum tubes' cathode, anode, and grid in their respective roles, with the weak current 
into the base being amplified as a much larger current between the emitter and collector. The 
transistor went through two phases of evolution: the first using germanium, and the second 
employing silicon. The latter demonstrated significant improvements over germanium, and once 
perfected largely replaced it. These bipolar transistors were themselves replaced with field-effect 
transistors that greatly increased input impedance, providing lower current drains between 
successive circuit stages and superior isolation between them for improved operational properties 
and easier circuit design [10]. 

The early transistor-based computers were first and foremost advances in circuit design, replacing 
the previous vacuum tube epoch with new logic circuits using transistors. Among the first experimental 
machines was the TX-0 developed by Lincoln Laboratories, demonstrating in principle the viability of 
transistor digital electronics for stored-program digital computing. As transistors improved in quality 
and reliability, design practices became standardized and printed circuit boards and modules were 
developed that reflected the higher abstraction of logical gates (Boolean functions) and latches (single
bit storage) with well-defined voltage levels representing binary 1 and 0 or Boolean true and false. 
From these, computer architectures were constructed. The IBM 1401 launched in 1959 ( of which more 
than 10,000 were delivered in various configurations) and the DEC PDP-1 launched in 1960 (which 
began the minicomputer) and based on the TX-0 were two among many. They all executed one in
struction at a time. The IBM 7090, also launched in 1959, was essentially a transistor version of the 
previous vacuum tube 709 but six times faster. 

While every advance in delivered performance may be interpreted as improvement in HPC, it 
became clear even in the first generation of digital electronics that system design and program
ming for business purposes and scientific applications were different, with the former emphasizing 
long-term data storage and I/0 devices while the latter required optimization for numeric 
computation with an emphasis on floating-point (real numbers) operations. As basic methods of 
circuit design, reliability, and cost were refined, these two distinct domains of computing began to 
be distinguished as two increasingly disparate system designs or architectures. Ultimately a 
machine architecture emerged which so dramatically reflected this demarcation of combined 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 56



30 CHAPTER 1 INTRODUCTION 

purpose-built design that it would be recognized as the first true supercomputer. That machine was 
the CDC 6600. 

Developed under the leadership of Seymour Cray and designed by Jim Thornton, the CDC 6600 
was delivered in 1964 by Control Data Corporation (CDC), and in its various forms was deployed at 
over 100 user sites. It was the first 1 megaflops (peak) supercomputer. While a tour de force in the use 
of the new silicon transistor technology that enabled it, providing an unprecedented IO MHz clock 
rate, it was its use of innovative computer architecture to provide and exploit lightweight or 
instruction-level parallelism (ILP) that catalyzed a revolution in HPC, here categorized as the third 
epoch, arguably creating the supercomputer itself. It incorporated 10 separate logic units and was 
served by as many peripheral processors for accessing memory and 1/0 channels. Each was served in 
its turn by the CPU, overlapping the many operations and for the first time adding this new level of 
parallelism to achieve a dramatic performance increase. 

1.5.4 EPOCH IV-VECTOR PROCESSING AND INTEGRATION 

The SX-9. Photo by GenGen via Wikimedia Commons 

Tadashi Watanabe is a computer architect and engineer. primarily responsible for the design of the highly successful SX series 
of vector supercomputers. The NEC SX-2. introduced in 1983, was the first machine to break the I GF!ops barrier. It utilized 
four sets of pipelines feeding 16 vector arithmetic units implemented in high-density large-scale integration (LSI) logic and 
operating at a 6 ns machine cycle. It was also the first Japanese liquid-cooled supercomputer. Over the years the SX series 
significantly expanded in memory capacity and computational throughput while lowering the energy requirements. including, 
for example, the first single-image multinode installation in 1994 that performed at I TF!ops peak utilizing 512 processors 
housed in 16 nodes, marketed as the SX-4. Later. the SX-6 served as the building block of the famous Earth Simulator that was 
used to perfom1 the unprecedented whole-earth climate simulatiorL~ at 10 km grid resolution. 111e best-performing member of 
the family. the SX-9. scales to 512 nodes that comprise a grand total of8192 processors and 512 TB of memory, achieving in 
aggregate 839 TF!ops. While at Riken R&D Center. Watanabe also influenced the design of another large-scale computer. K. 
that debuted at number one position in the Top 500 list in 2011. delivering over 8 PFlops in Lin pack. and 6 months later was the 
first machine to cross the lO PFlops threshold. For his achievements Tadashi Watanabe was honored with the IEEE-ACM 
Computer Society Eckert-Mauchly Award, the IEEE Computer Society Seymour Cray Award. the US National Academy of 
Engineering (Foreign Associate) Prize. and the Japan Academy Prize. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 57



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 31 

Seymour Cray and the Cray- I 
September 28, 1925-October 5, 1996. 
If any one person can be described as "the father of supercomputing", Seymour Cray is that person. Cray was largely 

responsible for the first true supercomputer while at CDC, the CDC-6600, delivered in 1965 with a performance well in 
excess of I megaflops on real-world applications. More than 100 of the 6600s were sold to national and academic 
laboratories. It was superseded in its status as "fastest computer in the world" in 1969 by the CDC-7600, also designed by 
Cray, and IO times faster than the 6600 with a peak performance of about 36 Mflops. An attempt at a third-generation 
supercomputer, the CDC-8600, failed due to cost overruns. 

Seymour Cray founded a new company, Cray Research Inc. (CR!), to chart the future direction in supercomputers, resulting 
in the Cray-I, the first true vector computer, launched in 1976 and beating just about anything on the market to a significant 
degree with a peak performance of I 00 Mflops and more than 80 systems shipped. 1l1is was a really big success, and as much 
as any single machine defined supercomputing. The Cray-I had both exceptional vector throughput and scalar speed. 

Other teams at CR! extended the Cray- I to the Cray-XMP and the Cray-YMP by employing multiple vector pipelines 
while improving clock rates and memory speeds. Seymour Cray developed the Cray-2, which was highly innovative but due 
to delays in delivery and poorer than expected memory speed technology failed to achieve a large market share. The design 
of the Cray-3 and Cray-4 by his new startup, Cray Computer Corporation (CCC), proved unsuccessful, with the ultimate 
bankruptcy of CCC due to heavy investments in gallium arsenide technology and the emergence of MPPs using very large
scale integration (VLSI) complementary metal-oxide semiconductor technologies which delivered superior performance to 
cost. Sadly, Cray died in a car accident in 1996 shortly after the founding of his last company, SRC. 

Photo by Michael Hicks via Wikimedia Commons 

As silicon transistor technology matured and feature size shrank it became possible to integrate 
more than one transistor along with diodes, resistors, and connecting wires on a single semiconductor 
die. The integrated circuit emerging in the late 1960s repeated the breakthrough of the original 
transistor, again pushing size, speed, power, and cost to new and unprecedented levels and driving the 
next revolution in supercomputing. This technology in its earliest phase was referred to as "SSI'' for 
"small-scale integration" and incorporated one or more logical gates on a single die, exposing all their 
inputs and outputs via pins. SSI was formed in a number of basic technologies, such as resistor 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 58



32 CHAPTER 1 INTRODUCTION 

FIGURE 1.10 

The Cray- I Supercomputer. First deployed in 1976 with a peak performance of 136 MFlops, this machine in
augurated the modern age of supercomputing. 

Photo by Clemens Pfeiffer via Wikimedia Commons 

transistor logic, diode transistor logic, transistor logic, and ECL (emitter coupled logic), among others. 
ECL was probably the fastest integrated logic at the time, but consumed more power. 

As before, technology enabled significant advances in clock rate, but more importantly it inspired 
the next paradigm shift in supercomputer architecture: the exploitation of pipelining structures to 
process vectors of numbers . In 1976 Seymour Cray delivered the Cray- I supercomputer to Los 
Alamos National Laboratory (Fig. I. I 0) [ 11, 12). This architecture exploited the new technologies to 
achieve the then high clock rate of 80 MHz and vector pipelined processing for ultralightweight 
parallelism. But the pipelining did not just contribute to exposing and exploiting new levels of 
parallelism; it was also necessary to permit the 12.5 ns cycle time to be achievable by reducing the 
amount of logic that had to be processed at each physical point in the system. Further, the Cray- I 
through this form of architecture addressed key factors of efficiency, specifically latency and 
overhead. 

The key idea to pipelining is to divide a function into a balanced set of successive subfunctions, 
each of which takes much less time than performing the full function at one time. Each subfunction or 
pipeline stage operates simultaneously with the others but on different sets of operand data. Thus for a 
p-stage function pipeline, p different operations are being performed simultaneously, but at different 
stages of their completion. At the completion of a compute cycle, all the intermediate results of each 
stage are passed to their successive stage. A new set of operands is fed to the first stage of the pipeline, 
while the final result values are extracted from the final stage. The set of operand values fo1ms a vector 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 59



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 35 

-CONT'D 

a payload bandwidth of approximately 500 MB/s per link. This permitted efficient remote memory access with storage 
capacities ranging from 64 MB to 2 GB per node. One of the machine's unique features was self-hosting: no additional 
front-end system was required to manage its operation. A 1480-processor T3E system was the first to achieve a teraflops 
performance in a scientific application (simulation of metallic magnetism) in 1998. The Cray XI combined the advanced 
network of the T3E with improved memory bandwidth and vector performance ofup to 12.8 GFlops per processor to deliver 
over 50TFlops aggregate in the largest configuration. The follow-on, the "Black Widow", introduced four-way symmetric 
multiprocessing nodes and a high-radix (64-port) yet another router chip that permitted growing the system to 32K 
processors in a fat-tree topology with the worst-case diameter of 7 hops. 

While Scott's career was closely associated with CRI and Cray Inc., he also served as senior vice-president and chief 
technology officer of the Tesla business unit at Nvidia and principal engineer of the Platforms Group at Google. He holds 27 
patents on interconnect, processor, and cache architecture, synchronization mechanisms, and parallel processing. 

The previous epoch in HPC was triggered by the advent of VLSI technology, which has ultimately 
resulted in literally billions of transistors on a single semiconductor die. This technology demanded 
new strategies for making best use of the enormous capability now possible. It also opened up a new 
relationship between the special needs of supercomputing and the mass-market needs of general 
computing that was also enabled through VLSI. This was the era of the "killer micro". 

VLSI permitted more concentration of functional ability on a single chip than ever before. This was 
most dramatically reflected by the microprocessor, a logical element with all the necessary func
tionality to perform complex computations and handle the workload of user application programs. 
Where once such a machine would cost a million dollars and fill a large machine room, by the 
beginning of this epoch a deskside or desktop box could do the same work and cost less than $40,000. 
Unlike the other epoch-spanning technologies, VLSI itself went through orders-of-magnitude tran
sitions in device density throughout its 2-decade duration. Prior to this period, early microprocessors 
provided basic functionality with very limited performance. The first microprocessors actually entered 
the market in the 1970s, with 4-bit and 8-bit microprocessors being used in first-generation personal 
computers (PCs) and 16-bit microprocessors available at the start of the 1980s, causing a mitosis of the 
market between lower-cost PCs for personal use and higher-cost "workstations" for industrial-grade 
purposes. Early experiments were conducted in the late 1980s to explore the potential of integrating 
multiple microprocessors into ensemble systems, including the Caltech Cosmic Cube, MIT Concert, 
IBM RP2, Intel Touchstone Delta (Fig. 1.12), and others. In the meantime, farms of workstations on 
local area networks sharing 1/0 devices such as printers, early mass-storage systems, and access to the 
precursors to the internet were pursued as a means for cycle harvesting to perform large workloads on 
systems not in use (such as idle workstations at night). 

By the beginning of the 1990s the first commercial MPPs with custom networks were being offered 
by vendors. Among these were the Intel Touchstone Paragon (1994), the Thinking Machines 
Corporation CM-5 (1992), and the IBM SP-2. With distributed-memory hardware a new model of 
programming was required, one in which each processor performed a separate process. Coordinated 
action was achieved through a combination of data exchange using message-passing methods and 
synchronization primitives, both across the interconnection network. CRI also introduced the T3D and 
later the T3E that integrated microprocessors, but in a configuration that permitted a degree of shared 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 60



36 CHAPTER 1 INTRODUCTION 

FIGURE 1.12 

Intel Touchstone Delta. With over 500 cores connected with a mesh topology, it delivered performance of 
I 0-20 GFlops. 

Photo courtesy of Dr. Paul Messina 

memory across the entire system. Silicon Graphics, Inc and Convex extended the level of shared 
memory to include a nonuniform memory-access cache-coherent model through hardware. 

A second strategy in the exploitation of VLSI microprocessor and high-density DRAM technol
ogies emerged as a result of the success of the commercial market for workstations and the dramat
ically larger consumer market for PCs. The commodity cluster is a form of high performance computer 
assembled from commercially manufactured subsystems, each of which serves its own market niche as 
a standalone product. The cluster "node" is a computer that can be directly employed individually as a 
workstation, PC, desktop, or deskside machine, or as part of a set of independent computing facilities. 
Originally the network was derived from technology used as local area networks. In each case the 
markets for individual components greatly exceed the market for the components in cluster functions, 
enabling economy of scale to increase performance to cost dramatically with respect to custom
designed MPPs of the same scale (i.e., number of processor cores). 

The concept of clustering of computing units predates this epoch, with perhaps the earliest example 
in the 1950s in the development and deployment of SAGE, a multiple computer system produced by 
IBM for North American Aerospace Defense Command to defend North America from the threat of air 
attack. The term "cluster" was first adopted by the DEC M31 Project (Andromeda), which assembled 
32 VAX I I /750 minicomputers into a single ensemble system in the late 1980s. A number of early 
projects were initiated to investigate the feasibility and utility of harnessing the aggregate power of 
clustered systems, most notably the UC Berkeley Network of Workstations (NOWs) and the NASA 
Beowulf Project, both started in l 993. NOW s devised a series of increasingly sophisticated clusters of 
workstations, stressing the importance of the highest-quality and highest-performing components. In 
1997 the first commodity cluster to be represented on the Top 500 list was the Berkeley NOW. The 
Beowulf Project pursued an alternative strategy, exploiting mass-market consumer-grade components 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 61



1.5 A BRIEF HISTORY OF SUPERCOMPUTING 37 

to achieve the best possible performance to cost, even at the expense of efficiency and performance. 
Beowulf was also the first application of the inchoate Linux operating system for scientific parallel 
computing, to which the project contributed a large number of network drivers [14, 15]. As this epoch 
comes to an end, the formula of commodity clusters now dominates the Top 500, with more than 82% 
of deployed systems in this category. The Beowulf integration of clusters of x86 processor architec
tures, the family of Ethernet networks, the Linux operating system, and message-passing programming 
modes all dominate in their respective categories the field of HPC due to the contributions of many 
researchers and developers in the field. 

1.5. 7 EPOCH VII-MULTICORE PETAFLOPS 
It is controversial to assert that HPC is departing from the epoch of communicating sequential pro
cesses and being driven by technology toward something else in the petaflops era. But the now 
ubiquitous use of multicore sockets and graphics processing unit accelerators combined with explo
ration and experimentation of hybrid programming methods strongly suggests that the field is in a 
phase transition, with the ultimate outcome still undetermined [16]. Performance gains like never 
before are now determined by the growing number of cores employed, while programming models and 
methods are struggling to catch up. But some applications are failing to take full advantage of the 
hardware resources available, and are thus being dropped by the wayside as ever-fewer programs 
operate effectively across all systems. 

A dominant trend is toward the synthesis of coarse-grained distributed-memory techniques using 
independent processes and medium-grained shared-memory techniques using interrelated multiple 
threads. Also being pursued is the addition of or replacement by lightweight processing cores for 
greater control state and higher memory-usage bandwidth. Nonetheless this is a rapidly evolving area, 
with large-scale system architectures evolving at least incrementally and programming methods 
changing to support them. 

Even as this strategy is pursued, alternative pathfinding techniques are being explored to take 
advantage of dynamic adaptive computing methods supported by a new generation of runtime system 
software and programming interfaces. The future is far from known in this regard, but what will 
emerge when the smoke clears will be as interesting and exciting as any of the prior epochs. 

1.5.8 NEODIGITAL AGE AND BEYOND MOORE'S LAW 
The international HPC development community will extend many-core heterogeneous system tech
nologies, architectures, system software, and programming methods from the petaflops generation to 
exascale in the early part of the next decade. But the semiconductor fabrication trends that have driven 
the exponential growth of device density and peak performance are coming to an end as feature size 
approaches nanoscale (approximately 5 nm). This is often referred to as the "end of Moore's Jaw". 
This does not mean that system performance will also stop growing, but that the means of achieving it 
will rely on other innovations through alternative device technologies, architectures, and even para
digms. The exact forms these advances will take are unknown at this time, but exploratory research 
suggests several promising directions-some based on new ways of using refined semiconductor 
devices, and other complete paradigm shifts based on alternative methods. Other forms will be in
cremental changes to current practices benefiting from a legacy of experience and application. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 62



38 CHAPTER 1 INTRODUCTION 

While not commonly employed, the term "neodigital age" designates and describes new families of 
architectures that, while still building on semiconductor device technologies, go beyond the von Neumann 
derivative architectures that have dominated HPC throughout the last 6 decades and adopt alternative 
architectures to make better use of existing technologies. The von Neumann architecture emphasizes the 
importance of arithmetic floating-point units (FPUs) as precious resources which the remainder of the 
chip logic and storage is designed to support. It also enforces sequential instruction issue for execution 
control. Complexity of design offers many workarounds, but the fundamental principles prevail. Now 
FPUs are among the lowest-cost items and parallel control state is essential for scalability. New advances 
to current architecture and possible alternatives to von Neumann architectures may be among the in
novations to extend the performance of semiconductor technologies beyond exascale. 

More radical concepts are being pursued, at least for certain classes of computation. Special
purpose architectures where the logic design and dataflow communications match the algorithms 
can significantly accelerate computations for specific problems. Digital signal processing special
purpose chips have been employed since at least the 1970s. More recently architectures such as the 
Anton expand the domain of special-purpose devices to simulation of N-body problems, principally 
for molecular dynamics. Even more revolutionary approaches to computing are targets of research, 
including such techniques as quantum computing and neuromorphic architectures. Quantum 
computing exploits the physics of quantum mechanics to use the same circuits to perform many actions 
at the same time. Potentially some problems could be solved in seconds that would take conventional 
computers years to perform. Neuromorphic architecture is inspired by brain structures for such pro
cesses as pattern matching, searching, and machine learning. It is uncertain when such innovative 
concepts will achieve useful commercialization, but the future of computing systems and architecture 
is promising and exhibiting exciting potential. 

1.6 THIS TEXTBOOK AS A GUIDE AND TOOL FOR THE STUDENT 
This textbook is a graded introduction to the theory and practice of supercomputing. Each chapter 
brings in three or four key concepts, semantics, and technologies aimed at providing a pe,formance
oriented and systems-oriented introduction to HPC. The topics are selected to provide both the 
theoretical background for understanding the abstract components of the field and a practical un
derstanding of conventional practice needed to deploy applications, implement parallel algorithms, 
debug code, and monitor performance. While this textbook is intended for study under the guidance of 
an instructor in a college course, it is also suitable for individual study with the basic computing 
prerequisites covered in the appendices. 

Chapters are organized to deliver three kinds of information: concepts, knowledge, and skills. 
Concept discussions aim to teach those ideas that have established theoretical foundations, enjoy 
longevity, and largely will not change. For instance, Amdahl's Jaw, a performance model, is such a 
concept. Knowledge chapters aim to impart information about supercomputing to the reader that will 
evolve with time and will need to be added to in the future. For instance, the historical aspects of 
supercomputing fall into this category. Finally, skills needed for entry-level work in supercomputing 
are presented in tutorial style for ease of learning. These skills may change over time, but represent 
current conventional practice in the field. An example of this is the specifics on how to use the resource 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 63



1.7 SUMMARY AND OUTCOMES OF CHAPTER 1 39 

management tools on a supercomputer or how to program with a specific user application program
ming interface (e.g., OpenMP, MPI). 

Exercises aimed at reinforcing understanding of the material are found at the end of each chapter. 
While much of the material will not require the use of a supercomputer to understand it fully, arranging 
access to a small cluster is recommended to attempt the practical coding exercises and examples given 
throughout the text. 

Several of the chapters may serve as a reference guide to the specific technology they introduce. For 
example, the chapters on MPI, OpenMP, and essential resource management have also been written for 
self-contained reference usage. 

The HPC field is replete both with freely available and proprietary software and toolkits designed 
to assist the practitioner and systems engineer in designing and deploying supercomputing applica
tions. In general, this textbook provides a brief survey of such software and toolkits where relevant. 
However, for all examples and exercises only open-source and freely available software applications 
are utilized. 

At the end of this course, the student can expect the following outcomes. 

• A general overview of conventional practice in supercomputing in terms of both hardware 
architecture and software. 

• A practical understanding of conventional practice in HPC software, including MPI, OpenMP, 
and OpenACC. 

• A theoretical understanding of performance modeling and the key elements affecting parallel 
performance. 

• A theoretical and practical understanding of file systems, resource management systems, 
debugging, and performance measurement. 

• A theoretical and practical understanding of several key widely used parallel algorithms from a 
broad range of disciplines. 

• A theoretical and practical understanding of the key operating systems in use by supercomputing 
systems. 

• A broader view of the future directions of supercomputing in terms of both architecture and 
systems software. 

1.7 SUMMARY AND OUTCOMES OF CHAPTER 1 
• Definition of supercomputing and HPC. HPC incorporates all facets of three key disciplines: 

technology, methodology, and application. The principal defining property and value provided by 
HPC is delivered performance for an end-user application. 

• Moore's law: the prediction by Intel cofounder Gordon Moore that device transistor density 
would increase by a factor of two every 2 years. 

• Top 500 list. The Top 500 list ranks supercomputers in order of their performance running the 
HPL or "Unpack" benchmark for dense linear algebra. The list is updated twice a year. 

• System stack of hardware and software comprising a supercomputer. The system stack of a 
supercomputer is a layered hierarchy of many physical and logical components, beginning with 
the system hardware and including processors, interconnection, and data storage. The system 
software that controls the hardware and manages the physical resources is associated with the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 64



40 CHAPTER 1 INTRODUCTION 

operating system, comprising both node-level instances controlling the node resources and the 
middleware which logically integrates many nodes and their local operating systems into a single 
system image. Software above the operating system abstraction includes resource management 
associated with executing user applications and workloads. 

• Sustained and peak performance. Peak performance of a system is the maximum rate at which 
operations can be accomplished theoretically by the hardware resources of a supercomputer. 
Sustained performance is the actual or real performance achieved by a supercomputer system in 
the performance of an application program. While sustained performance cannot exceed peak 
performance, it can be much less. 

• Benchmarks. The HPC community selects specific problems to compare and assess different HPC 
systems and capabilities. One of the most widely reported HPC benchmarks is HPL. 

• Sources of performance degradation: starvation, latency, overhead, and contention. Starvation is 
when sufficient work is not available at any instance in time to support issuing instructions to all 
functional units every cycle. Latency is the time it takes for information to travel from one part of 
a system to another. Overhead is the amount of additional work beyond that which is actually 
required to perform the computation. Contention is when two or more requests are made at the 
same time and have to be serviced by the same single resource, either hardware or software, 
meaning that the requests can only proceed one at a time. 

• Major epochs of supercomputing evolution based on technology drivers, execution models, and 
computer architecture. A perspective of seven epochs includes calculator mechanical technology, 
van Neumann architecture in vacuum tubes, ILP, vector processing, SIMD arrays, communicating 
sequential processes, and multicore petaflops. 

• Possible future directions of HPC architecture. With the end of Moore's law, continued system 
performance growth will rely on other innovations through alternative device technologies, 
architectures, and even paradigms. 

1 .8 QUESTIONS AND PROBLEMS 
1. Define or expand each of the following terms or acronyms. 

• HPC 
• Flops, gigaflops, teraflops, petaflops, exaflops 
• Benchmark 
• Parallel processing 
• OpenMP 
• MPI 
• Moore's Jaw 
• Strong scaling 
• Starvation 
• Latency 
• Overhead 
• TLB, TLB miss 
• ALU 
• van Neumann architecture 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 65



REFERENCES 41 

• Turing machine 
• SSI 
• DRAM 
• SIMD 
• VLSI 
• Distributed memory 
• Commodity cluster 
• NASA Beowulf Project 
• Communicating sequential processors. 

2. What is the primary requirement that differentiates HPC from other computers? What other 
requirements are also important? 

3. Describe four reasons for performance degradation using the acronym SLOW. Give examples of 
each. 

4. Give six techniques noted in the text for improving performance. 
5. Name and give a brief description of the seven epochs in the history of supercomputing. 
6. Describe the computer recognized as the first true supercomputer. Who developed it, and what 

company did he later form? 
7. Suppose you have a computer that has a four-stage pipeline and a workload with an input set of 

operand values of size 100. Assuming that each stage takes one unit of time and passing results 
from one stage to the next is instantaneous, what is the average parallelism in your computer for 
this workload? 

8. Describe Beowulf computers, with at least five characteristics. What makes them significant to 
supercomputing? 

9. Describe what is meant by the "end of Moore's law". 
10. What was the fastest computer in the year that you were born? What technologies were used in 

that fastest computer? How much faster is the world's fastest computer today? 

REFERENCES 
[lj J.J. Dongarra, P. Luszczek, A. Petitet, The UNPACK benchmark: past, present and future (PDF), John Wiley 

& Sons, Ltd. Concurrency and Computation: Practice and Experience (2003) 803-820. 
[2] T. Rauber, G. Runger, Parallel Programming for Multicore and Cluster Systems, Springer, 2013, ISBN 

978-3-642-37800-3. 
[3] The Potential Impact of High-End Capability Computing on Four Illustrative Fields of Science and 

Engineering, Committee on the Potential Impact of High-End Computing on Illustrative Fields of Science 
and Engineering and National Research Council, October 28, 2008, ISBN 0-309-12485-9, p. 9. 

[4] J.P. Singh, D. Culler, Parallel Computer Architecture, Nachdr. ed., Morgan Kaufmann Pub!., San Francisco, 
1997, ISBN 1-55860-343-3, p. 15. 

[5] J.L. Hennessy, D.A. Patterson, J.R. Larus, Computer Organization and Design: The Hardware/software 
Interface, second ed., third print. ed., Kaufmann, San Francisco, 1999, ISBN 1-55860-428-6. 

[6] A.O. Allen, Computer Performance Analysis with Mathematica, Academic Press, 1994. 
[7] B. Collier, J. MacLachlan, Charles Babbage: And the Engines of Perfection, Oxford University Press, 

September 28, 2000, ISBN 978-0-19-514287-7, p. 11. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 66



42 CHAPTER 1 INTRODUCTION 

[8J ENIAC in Action: What It Was and How It Worked, ENIAC: Celebrating Penn Engineering History, Uni
versity of Pennsylvania. Retrieved 2017. 

[9] M.V. Wilkes, Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass, 1985, ISBN 0-262-23122-0. 
[ I 0] M.D. Hill, N.P. Jouppi, G.S. Sohi (Eds.), Readings in Computer Architecture, Morgan Kaufmann, September 

23, 1999, ISBN 978-1558605398, p. 11. 
[I I] The Cray-I Computer System (PDF), Cray Research, Inc, 1978. 
[ 12] C.J. Murray, The Supermen: Story of Seymour Cray and the Technical Wizards behind the Supercomputer, 

1997, ISBN 0-471-04885-2. 
[13] K.E. Batcher, Design of a massively parallel processor, IEEE Transactions on Computers. C 29 (9) 

(September I, 1980) 836-840, http://dx.doi.org/10.1109/TC.1980.1675684. 
[14] D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V. Packer, BEOWULF: a parallel 

workstation for scientific computation, Proceedings, International Conference on Parallel Processing 95 
(1995). 

[15] T.L. Sterling, Beowulf Cluster Computing with Linux, MIT Press, 2001, ISBN 0262692740. 
[16] Blue Gene: A Vision for Protein Science Using a Petaflop Supercomputer (PDF), IBM Systems Journal, 

Special Issue on Deep Computing for the Life Sciences 40 (2) (2001). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 67



HPC ARCHITECTURE 1: 
SYSTEMS AND TECHNOLOGIES 2 
CHAPTER OUTLINE 

2.1 Introduction ................................................................................................................................. 44 
2.2 Key Properties of HPC Architecture ............................................................................................... 44 

2.2.1 Speed ...................................................................................................................... 45 
2.2.2 Parallelism ............................................................................................................... 45 
2.2.3 Efficiency ................................................................................................................ 46 
2.2.4 Power ...................................................................................................................... 46 
2.2.5 Reliability ................................................................................................................ 47 
2.2.6 Programmability ....................................................................................................... 48 

2.3 Parallel Architecture Families-Flynn's Taxonomy .......................................................................... 48 
2.4 Enabling Technology ..................................................................................................................... 51 

2.4.1 Technology Epochs ................................................................................................... 51 
2.4.2 Roles of Technologies ............................................................................................... 55 
2.4.3 Digital Logic ............................................................................................................ 55 
2.4.4 Memory Technologies ............................................................................................... 58 

2.4.4.1 Early Memory Devices ......................................................................................... 59 
2.4.4.2 Modern Memory Technologies ............................................................................. 61 

2.5 von Neumann Sequential Processors ............................................................................................. 62 
2.6 Vector and Pipelining ................................................................................................................... 64 

2.6.1 Pipeline Parallelism .................................................................................................. 65 
2.6.2 Vector Processing ..................................................................................................... 68 

2.7 Single-Instruction, Multiple Data Array .......................................................................................... 69 
2. 7 .1 Single-Instruction, Multiple Data Architecture ............................................................. 69 
2.7.2 Amdahl's Law .......................................................................................................... 70 

2.8 Multiprocessors ........................................................................................................................... 73 
2.8.1 Shared-Memory Multiprocessors ................................................................................ 74 
2.8.2 Massively Parallel Processors ..................................................................................... 76 
2.8.3 Commodity Clusters .................................................................................................. 77 

2.9 Heterogeneous Computer Structures .............................................................................................. 78 
2.10 Summary and Outcomes of Chapter 2 ............................................................................................. 78 
2.11 Questions and Problems ................................................................................................................ 80 
References ............................................................................................................................................ 82 

High Performance Computing. hllps:l/doi.org/10.1016/8978•0-12-420158-3.00002-2 
Copyright© 2018 Elsevier Inc. All rights reserved. 

43 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 68



44 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

2.1 INTRODUCTION 
High performance computer architecture determines how very fast computers are formed and 
function. High performance computing (HPC) architecture is not specifically about the lowest-level 
technologies and circuit design, but is heavily influenced by them and how they can be most 
effectively employed in supercomputers. HPC architecture is the organization and functionality of its 
constituent components and the logical instruction set architecture (ISA) it presents to computer 
programs that run on supercomputers. HPC architecture exploits its enabling technologies to 
minimize time to solution, maximize throughput of operation, and serve the class of computations 
associated with large, usually numeric-intensive, applications. In recent years supercomputers have 
been applied to data-intensive problems as well, popularly referred to as "big data" or "graph 
analytics". For either class of high-end applications, HPC architecture is created to overcome the 
principal sources of performance degradation, including starvation, latency, overheads, and delays 
due to contention. It must facilitate reliability and minimize energy consumption within the scope of 
performance and data requirements. Cost is also a factor, affecting market size and ultimate value to 
domain scientists and other user communities. Finally, architecture shares in combination with the 
many other layers of the total HPC system the need to make application programming by end users as 
easy as possible. 

A number of classes of HPC architecture have been employed for different technological niches 
over the decades, each addressing these key performance issues in the context of their respective 
enabling technologies. A unifying theme across HPC architectures is "parallelism", meaning the 
ability to perform multiple actions simultaneously and thus reduce the total time to accomplish 
the combined tasks and operations of a user workload. The different classes of architecture intro
duced in this chapter reflect some of the most widely employed forms of parallelism. While 
discussion of HPC is often focused on the largest systems, the field spans a wide range of perfor
mance operating points. More important than specific design points is the ability to bring orders 
of magnitude more capability to a valued problem than would be possible with a conventional 
uniprocessor or personal workstation. Thus the effect that defines a supercomputer and differentiates 
it from commercial (or even consumer) servers is that it delivers greatly enhanced performance to 
solve real-world problems. This can be realized with even a modest parallel computer, far smaller 
than the number one machine on the Top 500 list, but still much faster than the machine on which this 
textbook has been prepared. 

2.2 KEY PROPERTIES OF HPC ARCHITECTURE 
HPC architecture extracts performance from the underlying enabling technologies for the range 
of applications deemed important in the context of the user institution's mission. The organization 
of the architecture incorporates structures of the components that make best use of the devices 
and the dataflow patterns that move information between them. Three key properties of an 
architecture determine delivered performance: the speed of the components comprising the system, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 69



2.2 KEY PROPERTIES OF HPC ARCHITECTURE 45 

the parallelism or number of components that can operate concurrently doing many things simul
taneously, and the efficiency of use of those components in the degree of utilization achieved. 
A simple relationship of these key factors shows their contributions to delivered performance in 
Eq. (2.1). 

p = e X s X a(R) X µ(E) (2.1) 

where Pis average performance, Sis scaling (the number of units that can operate at the same time), 
a (which is a function of reliability, R) is availability, which is the total fraction of time the system 
is capable of performing a computation, andµ is the instruction retirement rate (usually the clock rate) 
of the processor core, which is a function of the power, E. Average performance is normally reported in 
terms of clock rate, while S and a are generally reported without units. 

2.2.1 SPEED 
HPC system performance is directly related to the speed of its components. A key parameter is the 
clock rate of its constituent processor cores, or basically the rate at which each retires instructions. 
But the technologies employed for different functionality have widely differing speeds or cycle 
times. Much architecture is devising structures and methods that match these disparate speeds. For 
example, a major concern is the speed of the processor, again the clock rate, with the cycle time of 
the main memory. Processor core clock rates may vary from slightly less than 1 GHz to approaching 
3 GHz, with a few more extreme examples in both directions. Memory cycle times presented by 
dynamic random access memory (DRAM) devices to the processors are in the order of 100 times 
longer (substantial variation depends on details). But there are other forms of memory, specifically 
static random access memory (SRAM) technology, that depending on size and power consumption 
can operate at or near the speeds of the processor core logic. A modem architecture will include 
a memory hierarchy consisting of a mix of slower higher-density DRAMs for capacity with faster 
low-density SRAMs called "caches" to achieve speed. A third aspect of speed is the rate at which 
data can be transferred or communicated between any two points within the system. Two measures 
are applied for this communication speed. The bandwidth determines how much information can be 
moved between two points in unit time or the rate of data movement. The latency measures how long 
it takes to move data between the two points. These too can vary dramatically depending on the 
distances between the source and destination, as well as the type of technology employed and the 
amount used. Architecture is, among other things, the art of balancing these different time constants 
in structures and through methods that will yield the overall best delivered performance for a user 
workload (e.g., application) within normalizing cost factors like nonrecurring engineering (NRE), 
deployment, power, and user productivity. 

2.2.2 PARALLELISM 
No matter how fast the speed of the parts technology can be, it will never be fast enough alone to 
deliver the necessary performance required by major application problems. Fundamental limits such 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 70



46 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

as the speed of light, atomic granularity, and the Boltzmann constant constrain how fast a single 
processor core can execute a stream of instructions. Thus HPC architecture is heavily dependent on 
structures that permit many actions to occur simultaneously: the ability to do many things at once. 
This is referred to as "parallelism", and the many different classes of parallel computer architecture 
are defined and distinguished by the diversity of structures that are employed to achieve parallelism 
in different ways. But HPC architecture is also determined by how such parallelism is controlled. 
Thus both the data path and the control path are factors in how parallelism is exploited by an HPC 
architecture. 

2.2.3 EFFICIENCY 
The third factor that determines delivered performance for a user workload is efficiency. Efficiency is 
primarily the utilization of the system, or the percentage of time that the critical components are 
employed. This is more complicated than it suggests. The question is: upon which components should 
efficiency be measured? For HPC, a common measure of efficiency is the ratio of the sustained 
floating-point performance to the theoretical peak floating-point performance, both measure in flops, 
floating-point operations per second (please note that the "s" is not the plural, but rather stands for 
"second"). 

Psustai11ed 
ef/ops = -P-

peak 
(2.2) 

where efiops is floating-point efficiency such that 0 ::; efiops :::; 1, Ppeak is the theoretical peak perfor
mance of the HPC architecture measured in flops, and Psusrained is the achieved average floating-point 
performance. 

However, this typical measure of efficiency reflects an earlier era when a floating-point operation 
was expensive, either taking a long time to perform or requiring expensive and complicated floating
point hardware. Today data movement and the costs of data access from memory are far more 
significant in die space, time, and energy than a register-to-register floating-point operation. None
theless, this is the metric that is most likely encountered. 

2.2.4 POWER 
Every computer, large or small, uses electrical power for its operation. The speed of processor 
cores is in part proportional to their clock rate, and this in tum relates to the power applied. As 
long as a computer like your laptop does not consume more power than is available via the 
typical electrical infrastructure, this is not an issue. For example, a laptop computer will require 
perhaps 80 W or less sustained power. A deskside workstation may demand 200-400 W depending 
on such features as number of screens and amount of disk capacity. These are well within the 
capacity of the electrical service infrastructure of a light industry building, even for many worker 
stations. Electricity is not only required to deliver power to drive the many integrated circuits, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 71



2.2 KEY PROPERTIES OF HPC ARCHITECTURE 47 

interconnection channels, and input/output (1/0) devices but also to remove the resulting heat from 
the system. 

Thermal control is essential if the system is not to overheat and ultimately fail as a consequence. 
A high-end processor socket may consume anywhere from about 80 W to more than 200 W. Small to 
modest-size computers are air-cooled. Cold air is forced through the system modules and over the 
processor, memory, and control sockets to remove the heat generated as they operate. For higher
wattage parts, substantial metal radiator hardware is fitted directly on to the sockets for thermal 
conductivity, providing greater surface area and cooling capacity. This reduces the density of 
packaging and ultimate computing capability per unit module. Additional electrical power is 
required to chill the air and force it through the systems. This can easily be as much as 20% of the 
total power budget. Liquid cooling exploits the higher specific heat of fluids, most often water, to 
increase packing density and enable higher-power parts for higher clock rates or larger logic dies. 
There is a wide range of liquid cooling systems and mechanisms, and hybrids of combined air and 
liquid cooling. 

Active thermal control is becoming increasingly important and common among the new 
generation of high performance computers. Measurement of temperatures throughout the system, 
including key chip temperatures, allows monitoring of thermal gradients and can support thermal 
control. Modem multicore processors permit variable clock rates, voltage adjustment, and variable 
numbers of active cores, all of which facilitate achieving a balance between power and performance. 
This requires some level of software management, either to establish settings at the beginning of an 
application program execution or to adjust these settings continually during runtime as application 
demands change. 

2.2.5 RELIABILITY 
No systems operations are perfect, and the reliability of HPC systems is additionally compounded by 
their scale. Errors can occur periodically due to hardware or software faults. "Hard" faults occur 
when some part of the hardware breaks permanently, causing an intrachip component to fail, a core 
of a processor socket to be inoperable, or the entire socket to become useless. Hard faults can affect 
cores, memory, communications, secondary storage, and control. A "soft" fault occurs when a part 
intermittently fails but otherwise operates correctly. Such transient failures are due to a number of 
possible causes, including occasional cosmic rays or "noise" resulting from low voltage margins 
among others. Software errors are due to flawed coding of either the user application program or the 
supporting system software, such as the operating system. Programmer errors are routine, and a 
process of program debugging is a part of the task of application development. An interruption due to 
a mistake by the operating system is more difficult to deal with, as it is usually the province of the 
system vendor. 

Different application problems may require different responses to lead to a final and correct 
solution. For large computations of big problems on high-scale machines, a common methodology is 
"checkpoint/restart". Periodically the system will stop a computation being performed and store all 
the program state at that point ("checkpoint"), usually on secondary storage. If an error occurs after 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 72



48 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

that time in the execution, the problem need not be restarted from the beginning but rather from the 
last checkpoint. If the error is caused by a hard fault, the system has to be reconfigured to eliminate 
the broken hardware from the part of the system being used prior to restarting the application. If it is 
a soft error, the program can be restarted from the last checkpoint without reconfiguration. In the case 
of a software bug, the code will have to be corrected by the user or application supplier before it can 
proceed. In all three cases, diagnosis is required to establish the cause and possible source of the 
error before execution proceeds. 

2.2.6 PROGRAMMABILITY 
How difficult it is to write or develop a complex application code reflects the programmability of 
the system. While other parameters such as performance or power can be readily defined and 
quantified, programmability largely defies specification although there have been many attempts; 
for example, standard lines of code (SLOC). Although less straightforward to define, it is none
theless extremely important to the overall utility of HPC. While the cost of deploying a major 
HPC platform may reach hundreds of millions of dollars, the cost of the software that runs on it may 
reach billions of dollars in total. Many factors contribute to programmability (or the lack thereof), 
including the processor core and system architectures, the programming models and facility of the 
language, the effectiveness of the system software such as compilers, runtime systems, and operating 
system, and the skills of the programmers themselves. The level of effort required to write the 
application is strongly related to the performance ultimately achieved. Within a range of behaviors, 
the greater the performance required, the harder it is to optimize the user program. This interrela
tionship between performance achieved and programming effort is sometimes referred to as 
"productivity". 

Improving the ease of use of HPC systems for domain applications benefits from a number of 
techniques making up a discipline of code development. Indeed, the best way to write an application 
code is "do not". Many libraries of common codes have been developed by experts and optimized for a 
diversity of HPC system types and scales. Code reuse is critical to managing application development 
complexity and difficulty. An application program can become as simple as building a high-level 
framework that calls a sequence of existing library routines and passing data between them succes
sively. When programs get very complicated and are borrowed by many different users, management 
of the code base itself can become challenging. The discipline of "software engineering" provides 
principles and practices that guide overall control of workflow management, including testing. These 
and other methods contribute to programmability. 

2.3 PARALLEL ARCHITECTURE FAMILIES-FLYNN'S TAXONOMY 
There are many distinct classes of parallel architectures. Further, individual architectures may be 
hybrids incorporating characteristics and strengths of more than one type. This section introduces 
parallel architecture families in terms of structure of concurrent processing components and their 
parallel control. This overview is intended to convey a sense of the alternatives available, their 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 73



2.3 PARALLEL ARCHITECTURE FAMILIES-FLYNN'S TAXONOMY 49 

relationship to the underlying enabling technologies, and to some degree how they address the key 
challenges to achieving sustained performance. 

The 1970s saw a rapid increase in the practical application of parallel architecture for super
computing, with a number of technology and organizational choices available. Michael Flynn 
proposed a taxonomy that simplified categorization of distinct classes of parallel architecture and 
control methods based on the relationships of data and instruction (control) with respect to parallelism 
of "streams". Although of limited value today, this nomenclature has stuck and is, if nothing else, part 
of our culture and vernacular. It also established the notion of data parallelism and task parallelism, to 
be encountered later in greater specificity. 

Comprising four characters, it divides the world of computing structures into four mutually 
exclusive, collectively exhaustive classes that can be viewed in a two-dimensional space. One 
dimension concerns the data stream, "D", and whether there is one such stream, "S", or multiple data 
streams, "M". The other dimension relates to the control or instruction stream, "I", and similarly 
whether here too there is only a single stream of control or multiple instruction streams. From these 
Flynn proposed a set of four four-character acronyms as a codification of the parallel architecture 
choice space. It is still used today, more than 4 decades later. 

SISD-single instruction stream, single data stream (pronounced "sisdee"): this represents the 
conventional sequential (serial) processor structure where a single thread of control, the instruction 
stream, guides the sequence of operations performed on a single set of data, one operand at a time. In 
truth, this is even more simplistic than today's conventional uniprocessors, which actually have several 
operations "in flight" at any one time. 

SIMD-single instruction stream, multiple data stream (pronounced "simdee"): the first form of 
parallelism conveyed within this taxonomy is simultaneous operation on multiple datasets, controlled 
by the same set of instructions. Thus each operation at any one time is the same performed on different 
data arguments. Although simple in concept, SIMD has had long-term impact, first as the basis for 
entire systems and later as part of more complex control structures in today's heterogeneous micro
processors and supercomputers. 

MIMD-multiple instruction stream, multiple data stream (pronounced "mimdee"): this category 
suggests that, like SIMD, there are many sets of data but in this case each dataset has its own in
struction stream associated with it. At any one time there are many operations being performed, but 
they need not be the same and in fact are almost always different. As will be seen, this is the most 
widely used form of parallel architecture, but the category has many different subclasses. 

MISD-multiple instruction stream, single data stream (pronounced "misdee"): surprisingly, the 
fourth of Flynn's categories is controversial, with some practitioners of the field considering it 
meaningless. It is not. One possible interpretation is a coarse-grained pipeline where each pipe stage 
accepts data from the previous stage, performs a set of operations on these data stream elements, and 
then passes on the results to the next stage. Another interpretation is a shared-memory multiprocessor 
(Section 2.8.1) where, as the name suggests, multiple processors each with its own instruction stream 
work on the same (therefore shared) data on which all the other processors operate. 

One last related term, SPMD (pronounced "spimdee"), while not strictly part of Flynn's 
taxonomy, is related to and inspired by it. SPMD stands for "single program, multiple data stream" 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 74



50 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

and reflects a practical vanat10n of the SIMD model. Instead of issuing and broadcasting one 
instruction at a time to all the simple processing units of a SIMD-like machine, SPMD sends a 
function call of a coarse-grained procedure that is to be performed by all the processing units of the 
parallel machine. The invocation of heavyweight tasks rather than lightweight instructions amortizes 
the overheads and latency times involved in system control, and enables the operation of some forms 
of modern computing structures, including graphics processing unit (GPU) accelerators (Fig. 2.1) 
(Chapter 15). 

D 

A 

T 

A 

D 

A 

T 

A 

FIGURE 2.1 

data stream 

I 

E 
"' -~ 
"' - -ii, 
-0 

SISD 

INSTRUCTIONS 

! 
C 

., I ~ I 
:i 

SIMD 

INSTRUCTIONS 

~ 
~ 
~ 
C 
0 

-~ 

-~ 

I 

D 

A 

T 

A 

data stream 

MISD 

INSTRUCTIONS 

instruction streams 

... - . 

MIMD 

INSTRUCTIONS 

instruction streams 

Flynn's taxonomy. MIMD, multiple instruction stream, multiple data stream; MISD, multiple instruction stream, 
single data stream: SIMD, single instruction stream, multiple data stream; SISD, single instruction stream, single 
data stream. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 75



2.4 ENABLING TECHNOLOGY 51 

2.4 ENABLING TECHNOLOGY 
HPC systems are products of opportunity enabled by device technologies. Such technologies may be 

derived through development unrelated but useful to HPC, created for the purpose of advancing 

computing, or result from incremental enhancements or extensions to existing HPC component types. 

Early digital electronics technologies were derived from radio and radar devices. Magnetic core 

memory was created to revolutionize data storage, which it did. Very large-scale integration (VLSI) 

circuits spanned more than 2 decades of continued improvement through increases in semiconductor 

device density and switching ti.mes. HPC architecture is strongly influenced by existing and emerging 

technologies to make best use of the opp01tunities that they may deliver and adjust to the challenges 

they impose. 

2.4.1 TECHNOLOGY EPOCHS 

Photo by Jitze Couperus via Wikimedia Commons 

The Control Data Corporation (CDC) 6600 computer released in 1963 could perform over 3 million operations per 

second. operated at 10 MHz, was roughly 50 times faster than its immediate predecessor, the CDC-1604 released in 1960 

(the fastest machine in the world at the time of its release), and was three times faster than the fastest IBM machine at the 

time, the IBM 7030 Stretch. The CDC-6600 was designed by Seymour Cray with a remarkably small staff of 34 people 

(with only one PhD among them) at his Chippewa Falls, Wisconsin, laboratory. and was innovative in using silicon-based 

transistors from Fairchild Semiconductor (cofounded by Robert Noyce, future cofounder of Intel Corporation) and Freon 

cooling rather than air cooling. Because of the unique cooling arrangement, the CDC-6600 was physically smaller than 

its CDC-1604 predecessor even though it was 50 ti mes faster. The CDC-6600 was an enormous commercial success, 

selling over 100 units each costing US$8 million. Many of these machines were used at US national laboratories as part of 

the nuclear weapon simulations which helped contribute to the negotiations of the nuclear test ban treaty with the USSR 

in 1963. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 76



52 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

US Army photo of the EN/AC via Wikimedia Commons 

The electronic numerical integrator and computer (ENJAC) was the first large-scale electronic digital computer that 
could be reprogrammed for running different applications. It was developed at the University of Pennsylvania under 
contract by the US Army. and consisted of 18,000 vacuum tubes requiring 150 kW to operate. Its genesis was in World 
War II. when requests for improved tables for artillery and bombing overwhelmed the personnel developing such tables 
using mechanical calculators. Interestingly, at that time those people were called "computers". Unlike previous 
electromechanical devices, the ENIAC internals contained no mechanical moving parts, enabling it to produce an entirely 
electronic computation and significantly speed up work. It was reprogrammed by a lengthy process of manually changing 
switches and cables; even so. it was still used for over 9 years from 1946 to 1955. In April and May 1948. the first-ever 
electronic Monte Carlo simulations were successfully performed on the ENIAC. simulating the diffusion of neutrons. 
Monte Carlo methods remain today a mainstay of scientific computation. 

Historically, epochs of device technology spanning the centuries of calculating machines may be 
delineated by key transitions of the components of which they are comprised. The following dates are 
approximate, with substantial overlapping between successive periods of technology adoption. 

3000 BCE-primitive counting devices: enumeration or counting of amounts of important stock 
like domesticated animals, agricultural produce (units of grains, containers of olive oil), and 
products like lengths of textiles even at early stages of civilization in the Bronze Age and before 
required mechanical means of recording (storing) quantities and performing simple additions and 
subtractions to abstract actual real-world items. This inaugurated data storage, calculation, and 
abstraction through mechanical means. The abacus used in some areas up until the postwar era is 
a direct derivative. 
In 200-100 BCE one of the earliest known analog computers was developed, consisting of more 
than 80 pieces and 30 mechanical gears. Known as the Antikythera, this instrument was used for 
astronomical predictions (Fig. 2.2). The technology for this device was subsequently lost, and any 
widespread cultural impact of the Antikythera mechanism on the ancient world is generally 
considered controversial. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 77



2.4 ENABLING TECHNOLOGY 53 

FIGURE 2.2 

The Antikythera mechanism, one of the earliest known analog computers. 

By Tilemahos Efthimiadis via Wikimedia Commons 

1600-mechanical devices with gears and levers: the evolution of clockwork mechanisms, which 
were applied to relatively compact, reliable, and eventually sophisticated calculating devices that 
mastered sequencing of microoperations such as carries in decimal addition and multiplication. 
The Pascaline (see Fig. 2.3) developed by the mathematician Pascal is one of many such 
calculating devices, culminating in significant calculating engines like the difference engine 
invented by mathematician Charles Babbage in the early 19th century. 

• 1850-electromechanical: motors, relays, punched cards. The inauguration of electricity offered 
new media for basic operation, sequencing, and data storage, both temporary and persistent. The 
tabulator (Fig. 2.4) devised by Hollerith for the 1890 US census led to the founding of IBM and 
50 years of commercial data processing. The Mark I developed by Aiken at Harvard and 

FIGURE 2.3 

The Pascaline mechanical calculator. 
By David Monniaux via Wikimedia Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 78



54 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOG IES 

FIGURE 2.4 

The tabulator built for the 1890 US census. 
Photo by Adam Schuster via Wikimedia Commons 

manufactured by IBM was a culmination of the complex calculating systems enabled by these 
technologies, delivering approximately I operation per second (ops). Processor cores that 
separate instruction streams from data streams are still known as "Harvard architectures" today. 
1940-vacuum tube: logic gate, flip-flop, magnetic core. With the emergence of electronics, 
initially by means of the amplifying vacuum tube, and their incorporation in digital logic by 
Atanasoff in the l 940s, calculators such as the US ENIAC and British Colossus increased 
computing rates I 000-fold and inspired the advanced architecture concept attributed to the 
mathematician John von Neumann, providing the foundation of the digital programmable 
computing paradigm. The three pivotal elements of the modern computer were firmly established 
and integrated into a form of which most future models would be derivatives. These elements were 
memory implemented as magnetic cores (old terminology; not processors), digital electronic logic 
using Boolean and binary encoding, and communication via digital signals through electrical wires. 
1955-transistor: the replacement of vacuum-tube technology with semiconductor technology 
(germanium and silicon) dramatically reduced power consumption, cost, and size while greatly 
increasing speed and reliability. 
1965- integrated circuits (small-scale integration/medium-scale integration): the placement and 
interconnection of multiple transistors with other components (e.g., resistors and capacitors) 
heralded another stage of cost and power reduction with speed and reliability increase by 
modularized logic gates on a single semiconductor die or "chip". The concept of the architecture 
family was introduced with the IBM 360 ("mainframe") and the Digital Equipment Corporation 
(DEC) PDP-8 ("minicomputer"), where multiple versions of computers with the same logical ISA 
could be sold with different performance-to-cost market points. Intermediate binary values were 
stored temporarily in semiconductor latches, with all intercommunication between functional 
modules encoded as digital signals. The CDC-6800 using multiple processing units and parallel 
ISA was among the first computers to deliver one megaflops. 
1975- large-scale integration (LSI): large an-ays of gates on a single chip permitted increasingly 
complex digital functional units to be implemented on single semiconductor dies, with core 
memory being replaced by semiconductor DRAM over this period. "Bit-slice" components allowed 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 79



2.4 ENABLING TECHNOLOGY 55 

full computers to be implemented with relatively few parts, yet permitted a wide diversity of ISAs 
through microcoding. High-speed technologies, although of lower density, drove new classes of 
supercomputers, like the Cray-1 vector processor delivering peak performance in excess of 100 
megaflops. During this era, LSI also enabled the modem SIMD array computers such as the 
Maspar-1 and the CM-2. The first microprocessors were commercialized with 4-, 8-, and 16-bit 
architectures, and, while limited in performance, they dramatically reduced the costs of commercial 
and early consumer-grade computer electronics, including the first video games. 

• 1990-VLSI with complementary metal-oxide semiconductor (CMOS): with increased device 
density through VLSI, significant single-chip microprocessors were possible, ultimately leading to 
32-bit and eventually 64-bit data path architectures. These sparked a revolution, with the "killer 
micro" replacing more discrete component processor designs and ensembles of microprocessors 
replacing other forms of supercomputers. While a diversity of such multiprocessors were developed, 
three general classes emerged as dominant: the symmetric multiprocessor (SMP), the massively 
parallel processor (MPP), and the commodity cluster (e.g., Beowulf). Each has a different 
performance-to-cost design point. 

• 2005-multicore heterogeneous with GPU: the modem era of technology and architectures 
emerged with the two combined trends of stagnant processor speed and multicore chips. Due to 
power constraints clock rates have remained relatively constant, although there is a significant 
spread of their values from below 1 GHz for embedded and mobile processors to over 3 GHz for 
the fastest. The continuing progress of Moore's law has made possible the incorporation of 
multiple processor cores on a single die to increase aggregate performance per chip. Special 
configurations of processing elements (PEs) can greatly accelerate important functions. The 
current era of supercomputers employ these two strategies to address these trends. 

2.4.2 ROLES OF TECHNOLOGIES 
Technologies play many different roles in enabling the implementation of computing systems and 
supporting their functionality. Three dominant classes of technologies largely define the design space 
for how HPC architectures evolve and the performance they are able to achieve. Throughout this text 
these fundamental aspects of HPC system implementation and operation will be examined. Here the 
dominant functional roles are introduced. The first technology class, digital logic, makes possible the 
actu~l basic operations that perform the calculations comprising the end-user work. It transforms one 
or more sets of input values, usually encoded as binary or Boolean information, into output values 
determined by the specified function (e.g., integer addition). The second technology class, memory, 
allows information to be stored temporarily (ephemeral) or permanently (persistent), to be accessed by 
logic elements, and to be modified (updated) as required. Memory technologies, even in a single ar
chitecture, are of a number of types that vary in speed and capacity. The third technology class, data 
communication, moves information from one part of the system architecture to another. 

2.4.3 DIGITAL LOGIC 
Digital logic technology is the workhorse of computer architecture. It occupies roles in every part of 
the computer system, from performing the actual operations of a calculation to controlling the memory 
subsystems and data communications. Digital logic is hierarchical (like architecture itself), in that the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 80



56 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

simplest devices are organized to create basic Boolean gates, which in turn are used to make more 
sophisticated functional units, and so on. The basic technology is an on/off switching device that 
permits or impedes the flow of electric current based on the state of an input signal. Alternatively, such 
switching devices determine the voltage exhibited at an output device, usually either a O V level or an 
alternative nonzero level to distinguish between two distinct associated Boolean or logical values, false 
or true, respectively, or "O" or "I" as they are often depicted. Over the last 7 decades these most basic 
switching devices have been successively vacuum tubes, discrete transistors, and integrated transistors 
(multiple transistors on a single semiconductor die). 

Depending on the exact circuit design and basic physical technology, a number of switching de
vices are structured to work as logical gates or other simple functional units accepting one or a 
few input values (equivalent to Boolean I and 0) and producing one or more output values. The 
basic two-input logic gates represent every possible logical outcome, of which there are 16, including 
fixed values, invert, and, nand, or, nor, xor, and others, as shown in Fig. 2.5. Although circuits differ, 
typical gates are implemented with a dozen or so transistors. Key metrics of logic gate operation 
include switching rate and propagation delay. Switching rate is the highest frequency at which a logic 
gate output can change from a logical I to O (or O to I) and back again. It is usually measured in 
gigaHertz (GHz) or billions of cycles per second. Propagation delay is the amount of time required for 

A-{>-- x 

Inverter (NOT gate) 

A B X 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

AND gate 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

OR gate 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

XOR gate 

FIGURE 2.5 

Basic two-input logic gates with corresponding logical functions. 

1 
0 

A 
0 
0 
1 
1 

NANO gate 

A 
0 
0 
1 
1 

NOR gate 

A 
0 
0 
1 
1 

XNORgate 

B X 
0 1 
1 1 
0 1 
1 0 

B X 
0 1 
1 0 
0 0 
1 0 

B X 
0 1 
1 0 
0 0 
1 1 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 81



2.4 ENABLING TECHNOLOGY 57 

a change in value of an input of a gate to be reflected by a corresponding change on the gate's output. 
This is usually measured in picoseconds or trillionths of a second. Fig. 2.6 illustrates these measures 
for an SN74AHC04 CMOS inverter manufactured by Texas Instruments, collected using a Tektronix 
MS5104 oscilloscope. A relevant excerpt from the datasheet for this integrated circuit is also shown in 
Fig. 2.6. Since propagation delay typically depends on the output load, such as the number of other 
gates driven by it, the workbench result differs somewhat from the specification. 

Due to the limited number of states assumed by each connection in digital logic, representation of 
more complex concepts requires collections of multiple binary lines. To express integer numbers, an 

input signal 

propagation delay 

10.llns/dlv 10.0GSJs 100ps/pt 

._..,.....,.,,__ _ __,,"'"-.,I FostAcq 8lffllph, I 
I~~========~--------~ .... 112..... RL,1,0k 

Mu St ~ Count Info 

1.G06p 1.B.311 
Auto Juno OJ, 2018 01:4':13 

(8) SWITCHING CHARACTERISTICS 
over recommended operating free air temperature range V -c = 3 3 V ± O 3 V (unless otherwise noted) (see Fig 2 1) \.. 

TA• -45'C TO TA =-40'C TO 
TA •-40'C TO 

125'C 

FROM TO LOAD TA= 25'C 12s•c 85'C 
Recommended UNIT PARAMETER PNPUl) (OUTPUl) CAPACITANCE 

SN54AHC04 8N74AHC04 SN74AHC04 

TYP MAX MIN MAX MIN MAX MIN MAX 

~ 
5(1) 8.Q{I) 111, 10.s11 J 1 10.5 1 10.5 

ns A y CL= 15pF 
5(1) e.et1) 1(1) 10.Slll 1 10.6 1 10.6 

"'"' l,,u, 7.5 11.4 1 13 1 13 1 13 
ns A y CL=50pF 

1 13 1 13 1 13 ...,, 7.5 11.4 

FIGURE 2.6 

Timing in digital logic: (A) annotated oscilloscope trace showing propagation delay for a single inverter and 
(B) datasheet specification for the measured circuit. 

Image (8): Courtesy Texas Instruments 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 82



58 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

ordering is imposed to signify the power of two each line's position is associated with, very much like 

the position of every digit in commonly used decimal numbers is associated with units, tens, hundreds, 

and so on (consecutive powers of 10). By convention, the least significant digit is written at the 

rightmost position in the number. For example, to express decimal number 6 as a binary number, it has 

to be converted to the sum of powers of two: 6 = 4 + 2 = 22 + 2 1 = 1 ·22 + 1 ·2 1 + 0·2° = 1102 

(subscript 2 denotes the radix, or the base of the number, to avoid confusion when numbers in different 

bases are used in the same place). The reverse conversion requires summation of powers of two 

corresponding to the positions of ones in a binary number: 1101 2 = 23 + 22 + 2° = 8 + 4 + I = 13. 

Binary numbers consist typically of significantly more digits, or bits, than the equivalent decimal 

numbers. To keep verbosity in check, octal (radix 8) or hexadecimal (radix 16) notation is frequently 

used as an alternative to a binary base, while offering ease of conversion to and from the actual binary 

fonnat. Each octal digit, spanning values from Oto 7, represents an arbitrary group of three binary 

digits, while a hexadecimal digit replaces four bits. Since there are no decimal digits to express values 

from IO to 15, letters A through F (upper or lower case) are customarily used to express them. This is 

illustrated in Fig. 2.7. 

2.4.4 MEMORY TECHNOLOGIES 
Memory technology in its alternative fmms enables the storing, access, and changing of data. As in the 

case of digital logic, info1mation is represented by collections of bits. Each bit is O or I (alternatively 

true or false), and they are usually grouped as 8-bit bytes or multiple byte words. Information is treated 

and encoded as distinct types, such as Boolean, character, strings, integers (of different lengths), and 

floating point (32 bit or 64 bit), among others. 

(A) (8) 

Octal Binary Hexadecimal Binary Hexadecimal Binary 
digit equivalent digit equivalent digit equivalent 

0 000 0 0000 8 1000 

1 001 1 0001 9 1001 

2 010 2 0010 A 1010 

3 011 3 0011 B 1011 

4 100 4 0100 C 1100 

5 101 5 0101 D 1101 

6 110 6 0110 E 1110 

7 111 7 0111 F 1111 

FIGURE 2.7 

Conversion between (A) octal and (B) hexadecimal and binary bases. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 83



2.4 ENABLING TECHNOLOGY 59 

2.4.4. 1 Early Memory Devices 

WHIRLWIND-THE FIRST SUPERCOMPUTER 

The Whirlwind vacuum-tube-based digital electronic computer was the first modem computer architecture and represented 
the state of the art in high-speed calculation. It may be considered the first general-purpose supercomputer. Developed at 
Massachusetts Institute of Technology (MIT) under successive projects sponsored by the US Navy and then the US Air 
Force, its intended applications stressed performance initially for flight simulation and ultimately for radar-based air 
defense. Whirlwind employed a bit parallel logic design with 16-bit words performed and simultaneously implemented with 
vacuum tubes. It stored and controlled access to 2048 words using electrostatic storage tubes with an original (never 
achieved) bit density of I 024 bits per unit. The control structure incorporated an innovative diode matrix for speed as well as 
simplicity and flexibility of design. Its initial design was completed in 1947 by Jay Forrester and Robert Everett; it became 
operational in 1951 and consisted of 5000 vacuum tubes. Whirlwind was upgraded in 1953 with a new kind of memory 
developed by Forrester that used arrays of magnetic cores in stacks, replacing the slow and less reliable vacuum-tube 
storage. The resulting performance of up to 40 K instructions per second made Whirlwind the fastest computer of its time, 
dramatically increased its reliability and reducing its cost of operation. 

The Whirlwind computer and its many innovations had far-reaching impacts on the field of computing. The invention 
of core memory redefined computer architecture for the next 2 decades, and is one of the main reasons why digital 
computers became commercially practical. Bit-parallel logic units became the norm for data processing. The 
diode-matrix control unit inspired Maurice Wilkes to conceive of microcontrollers and microprogramming, upon which 
future computers would be based at least until the microprocessor era. Whirlwind was the prototype for the first major 
parallel computer system, SAGE, employed as the original US air defense system. A spinoff of the Whirlwind project was 
the founding of DEC, which invented the minicomputer and rose to become the world's second-largest computer 
company in the 1980s. A second spinoff, MITRE, a major defense research contractor, can also be attributed to 
Whirlwind. With the final operational deployment of the Whirlwind computer, the future direction of high performance 
computer architecture was established. 

History's earliest forms of memory predate the use of the abstraction of the bit and took such primitive 
forms as grooves on wooden sticks, marks on clay and stone tablets, pebbles used for counting (sometimes 
in depressions of wooden boards or tables), and beads on rows of horizontal rods ( of wood or metal). In 
the age of enlightenment starting in the 17th century and extending well into the 20th century the position 
of gears served as storage, often distinguishing among 10 items in support of the decimal system. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 84



60 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

With the emergence of digital electronics enabled by the vacuum tube and derived from analog 
electronics components such as radio, amplifiers, and radar, a clear need was seen for a technology that 
could store information to complement the logic that was performing operations on that information. 

The first generation (1940-1952) saw many memory technologies devised and applied as part of the 
earliest digital computers, which were the supercomputers of their day ( compared to rooms full of women 
with mechanical calculators). Among the earliest were mercury delay lines, also called "tanks", devel
oped for radar uses during World War II. A tank was, as the name implies, a container, filled with the liquid 
metal mercury. At one end of the tank was an acoustic speaker that would create sound impulses into the 
medium. At the other end a microphone was positioned to detect the same sound signals. A closed loop 
was created in which the detected sounds from the microphone (acoustic sensor) were amplified (elec
tronically) and fed back to the speaker at the top of the tank. Thus any individual bit of information would 
continue in a perpetual loop. The number of bits that could be stored in the mercury tank was a function of 
the maximum pulse repetition frequency, the length of the tank, and the propagation delay of the medium. 
This is one form of a dynamic memory in which the information has to be continuously refreshed. It was 
also referred to as a "one-dimensional memory" because of the serial nature of the bit availability. 
Mercury delay lines were used in such first-generation computers as EDSAC [1] and the IBM 704 [2]. 

A two-dimensional memory was also developed in the mid-1940s: it stored electrostatic charges on a 
phosphorous screen on the inside of a vacuum tube, very much like the old-fashioned video tubes in 
televisions and oscilloscopes. Originally named the Williams tube after its British inventor, the small 
regions of charge were created on the rectangular surface and could be viewed from the outside as an array 
of glowing bits. This vacuum-tube memory was also dynamic, as the stored charge would slowly "leak" off 
of the phosphorous surface and have to be rewritten every few milliseconds. The capacity of the memory 
was dependent on the surface area of the screen and the granularity of the charge bit cells. The speed of the 
memory was a function of the electronic delays to send a signal to hit the bit cell with an electron beam and 
detect its scattered charge (if one was there). It was more than an order of magnitude faster than the 
mercury delay line memory. Vacuum-tube storage was used in such computers as EDVAC [3] and IAS [ 4]. 

The breakthrough storage technology of the first generation of digital electronic computers was "core 
memory". Developed as part of the MIT Whirlwind [5] project in the late 1940s and manufactured by 
IBM, core memories used doughnut-shaped ferromagnetic beads to represent bits and exploited the 
hysteresis of the magnetic properties to store statically the equivalents of 1 sand Os. If there was a magnetic 
flux in one direction around the core, it would be a 1; if there was no flux in the core, it represented a 0. 
Core memory was organized in stacks of planes of such cores, referred to as three-dimensional memories. 
Three wires went through the center of a core being accessed. Electric currents through two of the wires 
were applied at the same time to provide enough stimulus to cause a core bit to set its flux. When reading 
the memory, the third wire is used to sense the change in flux (or absence thereof). While static, in that it 
can retain state indefinitely without active recharge, it is an example of destructive reading. When a bit is 
read, the state is potentially erased in the process and has to be reset. Nonetheless, core memory enabled 
the modern digital electronic computer. It was faster than any other storage technology, higher density, 
lower cost per bit, and lower energy. Its impact was so extreme that it was employed for more than 
2 decades and almost immediately replaced the earlier storage technologies described above. 

Magnetism as a physical phenomenon has played a major role in data storage, far beyond its appli
cation to core memory. As the key element of a thin veneer, ferromagnetic oxides have been applied to 
strings, tapes, drums, hard disks, and floppy disks. In this general form, it represents among the longest
lasting technologies in computing, used from the 1940s to the present mass-storage systems. Its principal 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 85



2.4 ENABLING TECHNOLOGY 61 

value has been the combination of density, cost, and persistence. Some machines, such as the IBM 1620 
[6], used it as a main memory due to the relatively low cost. Today all mass-storage systems comprise 
giant arrays of hard drives, possibly in combination with tape-drive robots for even greater capacity. 

Lest we forget, paper (yes, paper) has a long tradition in data storage and was among the longest and 
most effective technologies employed for the purpose. While usually overlooked, paper served directly 
as "scratch pads" for people to write partial results of calculations for many hundreds of years. More 
directly, throughout the history of modem computing printers employ paper as the primary medium of 
storing and presenting output results to end users. Mechanical printer devices dominated this last stage of 
computing over the first 40 years of its history, although the work is now primarily performed by laser 
printers (and some ink-jet printers). Punched cards and later paper tape used paper products with 
punched holes to represent data. Punched cards were first devised for Jacquard's loom to control the 
patterns for weaving cloth, introduced in 1801. Cards were connected in a sequence as a chain with the 
holes in the card controlling the threads that were woven cross-wise to make the fabric. Later Hollerith 
developed the tabulating machine for the 1890 US census. Each card represented a US citizen, and the 
holes encoded various characteristics. This was the supercomputer of the day and led to the establish
ment of IBM, with punched cards among its core technologies and employed well into the 1960s. 
Punched cards were used not just for data but to represent lines of code to describe computer programs, 
one line per card. The pattern of punched holes to represent characters was referred to as "Hollerith 
code". Punched cards were also used as a medium of output as well as data input and source code. Card 
punches were connected as output devices to early computers (e.g., the IBM 360) for the results of user 
programs to be returned. Paper tape in rolls or fan-folded provided a cheap way of storing program code 
and data for low-cost computers like the minicomputers of the 1960s and 1970s. 

2.4.4.2 Modern Memory Technologies 
Modem computer architecture incorporate three principal memory technologies dominant in super
computing: DRAM, SRAM, and magnetic storage media, including hard-disk drives and tapes. A 
fourth, nonvolatile random access memory (NVRAM), is emerging as a technology sitting between 
DRAM and mass storage. 

SRAM provides the highest-speed semiconductor memory. But it is also the largest, taking up the 
greatest die area, and it consumes by far the greatest power. SRAM cells use a number of transistors
between 6 and 12, depending on how they are employed within the total logic structure (Fig. 2.8A). 
The fastest SRAM devices are used for processor core registers and latches, and can operate at pro
cessor clock rates of less than 1 ns. These are relatively low density. As is discussed in future chapters, 
small memory blocks referred to as "caches" are used to take advantage of locality to give the effect of 
fast memory while holding only a small portion of the total program data. Caches may be divided into 
levels, with the L1 cache the fastest but the smallest, providing a throughout of one word per clock 
cycle. L2 caches can be much larger than L 1 and hold much more data, but operate slower in the order 
of 4-20 cycles. A third level, the L3 cache, may also be included, but these are not usually SRAM. 

The main memory is the primary component for storing data within a computer and is composed 
almost entirely of DRAM technology. DRAM is much denser than SRAM, holding far more bits per 
unit area. It consumes much less power as well, but it is much slower. It can take between 100 and 200 
cycles for a processor to access data from DRAM. Each bit cell of a DRAM chip consists of a single 
transistor and a capacitor (Fig. 2.8B). A capacitor can store an electrostatic charge difference which 
represents a Boolean or binary state value of "l". No charge difference represents "O''. The single 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 86



62 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

(A) (B) 

word line 

I -A -
FIGURE 2.8 

Single-bit storage cell structure in (A) static random access memory and (B) dynamic random access memory. 
Image (A) by Martin Thoma via Wikimedia Commons 

transistor isolates the capacitive charge from the sense lines to hold it and retain its state. Unfortu
nately, DRAMs are volatile. They require a destructive read where accessing a DRAM cell destroys its 
value and it has to be rewritten. Also, leakage from DRAM cells requires that they be refreshed in the 
order of tens of milliseconds. 

2.5 VON NEUMANN SEQUENTIAL PROCESSORS 
Although the word "supercomputer" may invoke mental images of specialized Cray vector machines or 
large concurrent-array systems, in fact the very first electronic digital stored-program computers were 
the supercomputers of their day. They delivered a level of performance 1000 times that of previous 
methods of calculation. The von Neumann architecture of sequential processing represents an important 
starting point in understanding how HPC is achieved. Initially a supercomputer in its own right, the 
original von Neumann architecture concepts and elements permeate in one form or another most of the 
modern and certainly the dominant form of supercomputer execution strategies. 

Fig. 2.9 represents the principal elements of the von Neumann architecture conceived by Eckert, 
Mauchly, and the mathematician John von Neumann in the mid- l 940s that has provided the recipe for 
most computing over the last 7 decades, admittedly with dramatic enhancements. This simplistic 
diagram offers an idealized picture of a sequential architecture. Nonetheless, most of the complicated 
elaborations have been devised to retain the image of this more perfect form and function. And while 
many of the key factors influencing performance are not shown by this template, speed is there, and 
provides a starting point to consider the extensions and elaborations embodied by the processing 
systems of today. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 87



2.5 VON NEUMANN SEQUENTIAL PROCESSORS 63 

Memory Banks 

r---- --------------------, 
' Cache Processor •

1
. ! ._ __ ~ I 

: I 
' ' I ,S I 
.I 1111 I 
: ~ r::=:J..--~ I : ~ I 
! l 
J I 
i I 
.I ....--. _ __..__.C..... I 

J I 
( . 
I '-----J ! 
~M#M#N#iJOO~k¥WifoW:JifiW'.ffe~$ .. ¾i.iikfifo~' 

FIGURE 2.9 

The principal elements of the von Neumann architecture. The caches and register banks were introduced at a later date. 

Historically, the arithmetic logic unit (ALU) was considered the heart of the computer. It performed the 
actual numeric, character, and logical (Boolean) operations of the computation. It operates on argument 
values presented to it from some form of high-speed buffers, latches, or registers (shown here). Registers 
can be read and written to at the speed of the surrounding logic. In the earliest architectures, a single 
register, the accumulator, was used with an instruction set that referenced it implicitly. A bank of several 
registers has multiple ports so that simultaneous reads and writes can be performed. Unlike addresses for 
memory, registers have their own namespace, which usually cannot be operated on but only referenced. 

The processor accesses the main memory of the computer system to store and use the values of the 
program variables making up the state of the calculation. While at first available main memory data was 
measured in thousands of bytes, today a typical processor core has direct access to billions of bytes 
(gigabytes) of memory. The largest HPC systems have an aggregate memory capacity in the order of a 
petabyte of main memory. A main memory is referred to as random access memory, as any of the 
storage locations may be designated by its hardware address to select one byte or word from the many. 
A load operation by the processor reads a word from the main memory and places its value into a 
designated register, to be used by the ALU at a later time. Because the cycle time of the memory is about 
two orders of magnitude slower than the clock rate of the processor, an intermediate level of storage 
referred to as "cache" is incorporated in the processor. Data that is accessed from memory is also copied 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 88



64 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

to cache, with the expectation that it may be accessed again (a pattern referred to as temporal locality). 
When accessed in the future, the cached data can be acquired much faster from the cache than from the 
main memory itself. But the cache is much smaller than the main memory, so only some of the data can 
reside in the cache at any one time. Finding a sought-for value in cache is referred to as a "cache hit". 
The converse, not finding a required variable value in cache, is appropriately designated a "cache miss". 

The operation of the processor is managed by the controller, which creates a sequence of signals 
to the hardware. Originally this was done as a series of phases: fetch instructions, execute operation, 
and write back to register (or memory). This would be repeated for each succeeding operation of 
the instruction stream. Far more complicated control sequences are required today, with multi
operation instructions performed with out-of-order completion, speculative execution for conditionals, 
reservation stations, and other advances to be considered in future chapters, all to achieve superior 
efficiency and ultimately performance. 

2.6 VECTOR AND PIPELINING 

EARTH SIMULATOR 

Photo by Manatee_tw via Wikimedia Comnwns 

The Earth Simulator (ES) was a hallmark supercomputer developed and deployed by the Japanese , with operations beginning 
in 2002 at the Earth Simulator Center in Yokohama, Japan. As measured by the highly parallel Linpack (I-IPL) benchmark, it 
was the fastest computer in the world then and for two more years, with a delivered performance of 35.9 teraflops. The ES is a 
milestone in supercomputing, as it marks the halfway point logarithmically between the first documented systems of the Top 
500 list in 1993 and tl\e current highest-rated system, which spans u range of approximately six orders of magnitude 
performance gain. The ES was a game changer, being about five times as fast as the previous top machine. 

The ES was architecturally an elegant machine, built by NEC based on its SX-6 vector processor. It was an MPP with 
640 nodes, each with eight vector processors that operated at a 3.2 GHz clock rate. Its total memory capacity was 20 TBs. 
The internode crossbar network had IO TB/s bandwidth. The building in which the ES was housed was purpose built, and 
included lightening suppression and protection against earthquakes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 89



2.6 VECTOR AND PIPELINING 65 

Pipelining is among the most widely employed and enduring fonns of parallelism. It is so broad in 
applicability that it goes far beyond its use in computing and impacts many aspects of our daily lives. 
Mass production of automobiles is an example. Each frame moves from station to station to have one 
small assembly action (e.g., attaching a side mirror) perfonned on it. The vehicle then moves to the 
next station to have yet another assembly step perfonned, while at the previous station a new car frame 
rolls into place to get its mirror. Many different cars are being built at the same time on the assembly 
line, and it can take a long time for a car to be built-from hours to days. But the miracle is that a new 
car is finished every few minutes and driven out of the manufacturing plant. 

Pipelining is used in many places within supercomputing system architecture, even today. At one 
time it was the principal fonn of parallelism exploited in a class of supercomputers referred to as 
vector computers, of which the Cray-1 [7] launched in 1975 is perhaps the archetype and recognized as 
the iconic supercomputer. 

2.6.1 PIPELINE PARALLELISM 
Pipeline parallelism is derived by dividing a complicated action into a sequence of simpler actions, 
each of which may be perfonned independently. For any one instance of the complex action, only one 
stage is perfonned at any one time and there is no concurrency. But when many instances of the same 
action have to be perfonned, they can be issued to the pipeline one at a time so that in each pipeline 
stage one of the concurrent operations is being perfonned. Thus a complex action is divided into a 
sequence of simpler steps and different parts of multiple operations are perfonned simultaneously. It is 
the combination of the number of separate instances of a given operation that need to be perfonned and 
the number of pipeline stages in which the operation may be divided that yields the parallelism. 
Further, exploitation of this kind of parallelism, as is the case for many other fonns of parallelism, 
requires a combination of hardware architecture that can do many different things at the same time and 
software that exposes and controls the application parallel work to be perfonned. Thus except in 
special cases, both hardware and software have to work together to exploit this kind of parallelism. 

A simple example will illustrate these basic ideas. We propose to increment (add one) to every 
integer of a block of numbers. To do this very fast we want to overlap the carries between successive 
bits (here four bits for ease of exposition). Thus the time to perfonn each stage is only that of a single 
bit full add rather than having to wait for the propagation of carries through the entire sequence of bits. 
This is illustrated in Fig. 2.10. Every stage of the addition pipeline consumes one bit of each input 
operand and generates a corresponding bit of output sum, starting with the least significant bit (bit 0). A 
dedicated chain of registers implements the intennediate storage for the carry bit. As the operation 
progresses, the input bits of operand A are successively replaced with the computed sum bits, finally 
resulting in the full sum and fours-bit addition carry bit produced at the end of stage 4. 

The effective operation of a pipeline is a function of five parameters: 

• ts: operation time of each pipeline stage 
• tv: overhead to switch between successive stages 
• Ps: number of stages 
• nd: number of input datasets 
• tm: execution time of a monolithic version of the same function. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 90



66 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

(A) (8) Stage 1 Stage 2 Stage 3 Stage 4 

A A 
B s 

C;n 

B 

Coul 

(C) 

Register Input Stage 1 Stage 2 Stage 3 Stage 4 
output output output output 

Operand A/ Sum A3A2A,A0 A3A2A1So A3A251S0 A3525150 53525150 

Operand 8 83828180 838281 8382 83 

Carry C;n C0out clout Czout C3out 

FIGURE 2.10 

(A) Single-bit full adder. (B) Complete pipeline with input data, operation, and output. (C) Propagation of 
computations through individual pipeline stages. 

s 

The operation time of a pipeline stage is the propagation delay through the digital logic of the 
stage from when the input data is presented to it until it delivers the resulting data of that stage. The 
overhead is the small amount of time needed to control the movement of data from the output of a 
previous stage to the input of the next stage. Different kinds of functions can be divided into different 
number of parallel pipeline stages. Even for a given function there may be many alternative ways to 
divide the required workload into multiple successive stages. To determine the speedup of a pipeline 
structure, G, the total throughput rate is calculated and compared with the alternative monolithic 
structure. 

T111 = t,,, X nd 

Tp = (rv + ts) X (Ps + nd), Ps > 1 

G 
t111 X n,1 

(tv + rs) X (p,. + nd) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

The total time to execute a set of data operands, Tm, employing a monolithic logical functional unit 
is simply the product of the time to perform the calculation of a single dataset and the number of such 
datasets to be processed. No parallelism is being used or exploited, except perhaps at the bit level 
within the logic design. The total time to execute all the sets of data operands, Tp, by a pipelined 
structure of logical stages is more complex. The finest-grain time is that of the propagation delay 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 91



2.6 VECTOR AND PIPELINING 67 

through a given stage, tp, to which must be added a small amount of time to coordinate between 
successive stages and transfer partial results and operand values from each stage to its succeeding one, 
tv, which is referred to as overhead time. The total number of steps to perform the complete 
computation for all the datasets is a function of both the number of such datasets, nd, and the number of 
stages in the pipeline, p. It can be viewed as the number of steps to fill the pipeline with data plus the 
number of steps to empty the pipeline, which is the number of data elements. 

The advantage achieved through pipelining or its perfonnance gain, G, is given as the ratio of the 
monolithic logic execution time of all the data and the time required for the pipelined structured to 
complete the operation on the same argument dataset as presented in the equation above. A successful 
pipeline structure is one for which the following conditions hold: 

tp << tm 

(p X tp ) > t111 

nd>>p 

fp >> tv 

Under these favorable conditions, the limit is: 

Jim G~~ 
nr1 _. 00 tp 

(2.7) 

(2.8) 

This returns the optimal performance gain for a structure exploiting pipelined parallelism 
(Fig. 2.11 ). However, there are boundary conditions that limit the degree to which the performance 
gain can be increased through reduction of size to tp. Major constraints are as follows. 

1. The number of logic layers within a pipeline stage cannot be practically reduced below four- to 
six-gate depth, thus imposing a lower bound of a few gate delays. 

2. The overhead, tv, imposes a second bound on G when tv 2 fp-

FIGURE 2.11 

Pipeline parallelism. 

t 
p ,..,_, 

7-{0011~ 
T 

p 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 92



68 CHAPTER 2 HPC ARCHITECTURE l: SYSTEMS AND TECHNOLOGIES 

3. The slowest pipeline stage (longest propagation delay) determines the clock rate of the entire 
pipeline. 

4. When nc1 becomes small with respect top. 

Performance gain is bounded by the overhead, tv, limiting the degree of useful pipelining that can 
be achieved. 

Jim G = 03., for nd -> oo 
p--"> oo fv 

(2.9) 

While the propagation delay of a pipeline stage is much less than that of the monolithic logic 
version of the same function, the advantage of pipelining the logic is lost when nc1 is very small or even 
length 1 (scalar). In this case, performance gain could be less than I. The breakeven point for the 
special case of no overhead (t,, = 0) is: 

p X fp 
11d 2'. --

t111 - tp 

With fp « t111 , this converges to: nc1 2'. p x t/tm-

(2.10) 

Pipeline structures are employed in many aspects of computer architecture. As is described later, a 
common application is in the execution pipeline, where many instructions can be executing at the same 
time, significantly increasing the rate of instruction throughput. However, the iconic use of pipelining 
for supercomputing was in the vector-processing architecture of the mid-1970s, described in the next 
subsection. 

2.6.2 VECTOR PROCESSING 
Vector-processing architecture exploits pipelining to achieve the advantages of fine-grain paral
lelism, latency hiding, and amortized control overheads (Fig. 2.12). Pipelining also permits a high 
clock rate for vector-based computer architecture by keeping the pipeline stages small in terms of the 
logic depth. 

High speed memory bus 
t

0
: time for memory access 

FIGURE 2.12 

The vector-processing architecture. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 93



2.7 SINGLE-INSTRUCTION, MULTIPLE DATA ARRAY 69 

2.7 SINGLE-INSTRUCTION, MULTIPLE DATA ARRAY 
The SIMD an-ay was a major class of parallel computer architecture in the 1980s and 1990s. It was 
particularly well suited to LSI technology, although such systems were implemented both before and 
after this era. This strategy for parallel processing is still found in subsystems of a wide range of 
computers today for specialized tasks and accelerators. _ 

2.7 .1 SINGLE-INSTRUCTION, MULTIPLE DATA ARCHITECTURE 
The SIMD array class of parallel computer architecture consists of a very large number of relatively 
simple PEs, each operating on its own data memory (Fig. 2.13). The PEs are all controlled by a 
shared sequencer or sequence controller that broadcasts instructions in order to all the PEs. At any 
point in time all the PEs are doing the same operation but on their respective dedicated memory 
blocks. An interconnection network provides data paths for concurrent transfers of information 
between PEs, also managed by the sequence controller. I/0 channels provide high bandwidth (in 
many cases) to the system as a whole or directly to the PEs for rapid postsensor processing. SIMD 
array architectures have been employed as standalone systems or integrated with other computer 
systems as accelerators. 

Central Processor 

FIGURE 2.13 

. -~- ~ 
. I 

(~?-~ -

·~ -
Processing Element 

Instruction Broadcast 
Bus 

The SIMD array class of parallel computer architecture. 

Data Processors 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 94



70 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

The PE of the SIMD array is highly replicated to deliver potentially dramatic performance gain 
through this level of parallelism. The canonical PE consists of key internal functional components, 
including the following. 

• Memory block-provides part of the system total memory which is directly accessible to the 
individual PE. The resulting system-wide memory bandwidth is very high, with each memory 
read from and written to its own PE. 

• ALU-performs operations on contents of data in local memory, possibly via local registers with 
additional immediate operand values within broadcast instructions from the sequence controller. 

• Local registers-hold current working data values for operations performed by the PE. For load/ 
store architectures, registers are direct interfaces to the local memory block. Local registers may 
serve as intermediate buffers for nonlocal data transfers from system-wide network and remote 
PEs as well as external 1/0 channels. 

• Sequencer controller-accepts the stream of instructions from the system instruction sequencer, 
decodes each instruction, and generates the necessary local PE control signals, possibly as a 
sequence of rnicrooperations. 

• Instruction interface-a port to the broadcast network that distributes the instruction stream from 
the sequence controller., 

• Data interface-a port to the system data network for exchanging data among PE memory blocks. 
• External 1/0 interface-for those systems that associate individual PEs with system external 1/0 

channels, the PE includes a direct interface to the dedicated port. 

The SIMD array sequence controller determines the operations performed by the set of PEs. It also 
is responsible for some of the computational work itself. The sequence controller may take diverse 
forms and is itself a target for new designs even today. But in the most general sense, a set of features 
and subcomponents unify most variations. 

As a first approximation, Amdahl's law may be used to estimate the performance gain of a classical 
SIMD array computer. Assume that in a given instruction cycle either all the array processor cores, Pn, 
perform their respective operations simultaneously or only the control sequencer performs a serial 
operation with the array processor cores idle; also assume that the fraction of cycles, f, can take 
advantage of the array processor cores. Then using Amdahl's law (see Section 2.7.2) the speedup, S, 
can be determined as: 

S= 1 

1-f+ (f) 
(2.11) 

2. 7 .2 AMDAHL'S LAW 
Ideally, all parts of a computation from beginning to end could be further partitioned into parallel 
pieces executing concurrently, such that many computing resources could be applied to the compu
tation simultaneously to reduce time to solution uniformly (across the computation) and accelerate the 
rate of processing. While there are some extreme examples of this ideal case, more frequently 
application programs exhibit operational behavior such that some parts of the computation are indeed 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 95



2.7 SINGLE-INSTRUCTION, MULTIPLE DATA ARRAY 71 

parallel, supporting acceleration through concurrent operation, while other parts show less or even no 
parallelism in the limit, operating purely sequentially and issuing only one instruction at a time. This 
computing profile combining both parallel and sequential fractions of the complete execution imposes 
an important bound on the maximum acceleration that can be achieved through parallelism. The most 
widely recognized formulation of this boundary condition is referred to as Amdahl's law after the 
famous computer architect who first codified it. While more broadly applicable to parallel computing 
in general, Amdahl's law is particularly well suited to modeling the performance of SIMD array 
computing (with some slight simplifying assumptions), and this motivates its introduction here. Later 
it is employed to understand other forms of parallel architectures. 

Assume that a SIMD array has two modalities of execution, either sequential, where its central 
processor performs one instruction at a time, or parallel, where all the array processor cores perform 
their respective operations at the same time. For simplicity it is assumed that the clock rates of both 
the central processor and the array processors are the same, but this is of little importance to the 
implications of this performance model. 

Figs. 2.14 and 2.15 show two timelines: the first a sequential execution of all the operations of 
a computation To, and the second with the fraction/ of the operations, T1, done in parallel, with a level 
of parallelism g. Ideally, the gain in performance would be g. But only TF of the total To operations 
can be performed in parallel to at least some degree, with the remaining To - TF operations still 
done sequentially, where f = T FIT0• As shown below, the actual speedup, S, can be determined by the 
ratio of the times of the two solution times with and without g parallelism, such that S = T of TA where 
TA = TF/g. The resulting formulation for Sis derived below as a function of g andf, independent of the 
exact times involved. 

FIGURE 2.14 

S = To/TA 

f = TF/To 

TA = ( 1 - f) x To + G) x To 

(2.12) 

(2.13) 

(2.14) 

The timeline of a computation performed sequentially taking time T 0. The black segments of the line of execution 
represent the set of operations that have to be done in order. The green (light gray in print versions) segment of the 
line of execution represents the set of T F operations that can be performed concurrently. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 96



72 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

I I 

B 

FIGURE 2.15 
The timeline of a computation where those operations that can be done in parallel are performed concurrently with 
a parallelism of g, resulting in a shorter time to solution, TA· 

S= (/) ( 1 - f) x To + g x To 

To (2.15) 

1 

s = (l)' 1-/ + g 
(2.16) 

where To = time for nonaccelerated computation; TA = time for accelerated computation; T F = time 
of portion of computation that can be accelerated; g = peak performance gain for accelerated portion 
of computation; f = fraction of nonaccelerated computation to be accelerated; S = speedup of 
computation with acceleration applied. 

This formulation of Amdahl's law can be understood by considering various possible operating 
points. In the limits, if the entire code can be executed (equally) in parallel by a concurrency of g, then 
the fraction/= l and the total speedup is the ideal case of g. But if none of the code can be performed 
in parallel despite having g-level hardware parallelism, f = 0 and S = l, so there is no gain as one 
would expect. What is more sobering, and why Amdahl's law is so important, is seen with yet another 
operating point. Suppose the parallel hardware exhibits an ideal gain of I million, that is 
g = 1,000,000, and half the code can be done concurrently,/= 0.5. Simple substitution shows that in 
spite of this enormous potential gain, the actual delivered speedup is less than 2; S < 2. In fact, even if 
g were infinity, with a fraction of 0.5, you would still not get a speedup greater than 2. A range of 
speedups is shown in Fig. 2.16 with respect to the fraction of total time to be accelerated with different 
ideal accelerator gains. 

Example. Consider a SIMD array computer with an 8 x 8 array of core processors and one 
sequential control processor. In a given computing cycle, either the control processor performs an 
operation or all the array cores perform the same operation on their respective data. What fraction of 
the total workload needs to be performed by the core array to deliver an overall speedup of eight times? 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 97



2.8 MULTIPROCESSORS 73 

10 

9 2--
8 9 5 

9 10 
9 20 

g- 6 9 50 · 
"O 9 100 
Q) 
Q) 

~4 

2 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 2.16 

Examples of delivered speedup with respect to the fraction of code that can be parallelized and the gain of the 
accelerator hardware. 

The total speedup, S = 8, is required with an acceleration gain, g = 64. Substituting appropriately: 

S= 

8= 

f 
1-f+ -

g 

f 
1-f+ -

64 

8- 8f +~ = 1 

64-63! = 8 

56 = 63f 

56 
f = 63 = 0.889 

here it is seen that to achieve only 12.5% of the peak gain of 64 requires almost 90% of the workload to 
be able to be parallelized. Experience throughout this course will demonstrate that this is a tall order 
and difficult to achieve. 

2.8 MULTIPROCESSORS 
The multiprocessor class of parallel computer is the dominant form of supercomputer today. 
Most broadly, it is any system comprising a set of individual self-controlled computers integrated by 
a communications network and coordinated to perform a single workload. By the Flynn taxonomy 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 98



74 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

the multiprocessor is a MIMD-class machine. Each processor making up the system has its own data
processing units controlled by its own local instruction stream controller. Multiprocessors have a long 
history reaching back to the 1950s and SAGE, consisting of MIT Whirlwind-class computers deployed 
by IBM for the US Air Force at North American Aerospace Defense Command. A number of com
mercial multiprocessors consisting of two processors were deployed, with one processor dedicated to 
the computing (heavy lifting) while the other managed 1/0 tasks. 

Multiprocessors grew in importance for supercomputing with the advent of VLSI technology and 
the development of microprocessor architecture. This represented an important change in the trend 
and direction of supercomputer architecture. Cost benefits through the exploitation of economy of 
scale derived from the mass market of general-purpose microprocessors defined the next generation 
of high performance computers. The integration of microprocessors derived for the broader markets of 
workstations, personal computers, and enterprise servers as the principal compute engines of super
computers had a dramatic impact on large-scale system architecture, largely displacing the previous 
specialized designs. One visible impact was the sheer physical size of supercomputers, which greatly 
escalated to multiple rows of racks, each incorporating many VLSI microprocessors. Today the 
multiprocessor has made yet another leap in technology, with a decade of multicore technology where 
each socket now incorporates multiple processors, referred to as "cores". 

There are three mainstream configurations in use: SMPs, MPPs, and commodity clusters. A 
single processor system reflects a unified memory in which all of your data sits in the same memory 
subsystem. When multiple processors are used, a choice has to be made about how the processors 
and memory are interrelated. Do all the processors within the system share the same memory 
subsystem, or does each processor have its own separate memory? A third choice is somewhere in 
between: groups of processors share a memory block while the different groups, often referred to as 
"nodes", have distinct memory blocks. With multi core sockets this last is often the structure 
employed. These different classes of multiprocessor system architectures are described in detail in 
the following subsections. 

2.8.1 SHARED-MEMORY MULTIPROCESSORS 
A shared-memory multiprocessor is an architecture consisting of a modest number of processors, all 
of which have direct (hardware) access to all the main memory in the system (Fig. 2.17). This permits 

Memory Banks 

FIGURE 2.17 

The shared-memory multiprocessor architecture. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 99



2.8 MULTIPROCESSORS 75 

any of the system processors to access data that any of the other processors has created or will use. The 
key to this form of multiprocessor architecture is the interconnection network that directly connects 
all the processors to the memories. This is complicated by the need to retain cache coherence across all 
caches of all processors in the system. 

Cache coherence ensures that any change in the data of one cache is reflected by some change to 
all other caches that may have a copy of the same global data location. It guarantees that any data 
load or store to a processor register, if acquired from the local cache, will be correct, even if another 
processor is using the same data. The interconnection network that provides cache coherence may 
employ any one of several techniques. One of the earliest is the modified exclusive shared invalid 
(MESI) protocol, sometimes referred to as a "snooping cache", in which a shared bus is used to 
connect all processors and memories together. This method permits any write of one processor to 
memory to be detected by all other processors and checked to see if the same memory location is 
cached locally. If so, some indication is recorded and the cache is either updated or at least inva
lidated, such that no error occurs. 

Shared-memory multiprocessors are differentiated by the relative time to access the common 
memory blocks by their processors. A SMP is a system architecture in which all the processors can 
access each memory block in the same amount of time. This capability is often referred to as "UMA" 
or uniform memory access. SMPs are controlled by a single operating system across all the processor 
cores and a network such as a bus or cross-bar that gives direct access to the multiple memory banks. 
Access times can still vary, as contention between two or more processors for any single memory bank 
will delay access times of one or more processors. But all processors still have the same chance and 
equal access. Early SMPs emerged in the 1980s with such systems as the Sequent Balance 8000. Today 
SMPs serve as enterprise servers, deskside machines, and even laptops using multicore chips, and thus 
play a major role in the medium-scale computing which is a major part of the commercial market. 
SMPs also serve as nodes within much larger MPPs. 

Nonuniform memory access (NUMA) architectures retain access by all processors to all the main 
memory blocks within the system (Fig. 2.18). But this does not ensure equal access times to all 

Processor Processor Processor Processor 

FIGURE 2.18 

Nonuniform memory access architectures retain access by all processors to all the main memory blocks within a 
system, but does not ensure equal access times to all memory blocks by all the processors. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 100



76 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

memory blocks by all processors. This is motivated by the architecture opportunity provided by 
modern microprocessor designs to exploit high-speed local memory communication channels while 
providing access to all the memory through external, albeit slower, global interconnection networks. 
NUMA architectures benefit from scaling, permitting more processor cores to be incorporated into a 
single shared-memory system than SMPs. However, because of the difference in memory access times, 
the programmer has to be conscious of the locality of data placement and use it to take best advantage 
of computing resources. NUMA multiprocessor architectures first emerged with such systems as the 
BBN Butterfly multiprocessors, including the GP- I 000 and the TC-2000. 

2.8.2 MASSIVELY PARALLEL PROCESSORS 
MPP architecture is the structure that most easily scales to the extremes of computing system size 
and performance (Fig. 2.19). The largest supercomputers today, comprising millions of processor 
cores, are of this class of multiprocessor. MPPs are (in most cases) not shared-memory architectures, 
but are distributed memory. In an MPP separate groups of processor cores are directly connected to 
their own local memory. Such groups are colloquially referred to as "nodes", and there is no sharing of 
memory between them; this simplifies design and eliminates inefficiencies that impede scalability. 
But in the absence of shared memories, a processor core in one group must employ a different method 
to exchange data and coordinate with cores of other processor groups. The logical capability for 
message passing is enabled by the physical system area network (SAN) that integrates all the nodes to 
form a single system. As discussed in greater detail in Chapter 8, a message is transferred between two 
processor cores of the system, with each core running a separate process. By this means a receiving 
process and its host processor can acquire data from a sending processor's process. The same network 
can be used to synchronize processes running on separate processors. By 1997 the first system capable 
of teraflops (HPL benchmark) was the Intel ASCI Red MPP deployed at Sandia National Laboratories. 

_________ N_etwo=_rk ____________ __ 

NIC 

Processor Processor Processor Processor 

FIGURE 2.19 

The massively parallel processor class of parallel computer architecture. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 101



2.8 MULTIPROCESSORS 77 

2.8.3 COMMODITY CLUSTERS 
While all current generations of supercomputers exploit the economic advantages of incorporating 
VLSI microprocessors and DRAM main memory that are mass produced for commercial and 
consumer markets, the systems discussed thus far are still based on special-purpose designs to 
provide tight coupling among processor cores for superior performance. However, the dominant 
class of deployed supercomputers, the commodity clusters, take exploitation of mass-market 
economics one step further to introduce even an greater cost advantage. As the name suggests, 
such systems consist exclusively of commodity subsystems, sometimes referred to as COTS 
(commodity off-the-shelf) components. Dongarra et al. [8] defines a "commodity cluster" as "a 
cluster in which both the network and the compute nodes are commercial products available for 
procurement and independent application by organizations (end users or separate vendors) other than 
the original equipment manufacturer". The key idea is that a supercomputer can be made up of 
component subsystems, all of which can be procured by and are produced for a much larger user 
market than the deployed base of supercomputers, thus leveraging economy of scale for dramatic 
improvements of performance to cost. 

Emerging in the mid- l 990s, such improvements often exceeded an order of magnitude when 
using consumer-grade system components. In 1997 the network of workstations (NOW) cluster [9] 
of commercial-grade workstations from the University of California at Berkeley was the first 
commodity cluster to be placed in the Top 500 list, and the Beowulf cluster [10] (of consumer-grade 
personal computers) from NASA Jet Propulsion Laboratory and the California Institute of Tech
nology was the first to be awarded the Gordon Bell Prize (Fig. 2.20). As this early history suggests, 
there were two levels of commodity clusters due to two corresponding levels of microprocessors. 
Commercial-grade microprocessors were used for industrial-grade workstations where performance 
mattered, while consumer-grade microprocessors were used for personal computers where cost was 
of the greatest importance. Eventually this differentiated market merged, as 32-bit and eventually 
64-bit architectures became common. 

FIGURE 2.20 

An example of the Beowulf class of parallel computer architecture. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 102



78 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

Typically commodity clusters exhibit lower efficiencies with respect to number of cores than 
MPPs. While contemporary MPPs may demonstrate efficiency approaching 90% on some work.loads, 
commodity clusters are more likely to yield efficiency between 60% and 70% (HPL benchmark). 
However, work.loads vary significantly in terms of degree of coupling, and clusters are excellent for 
throughput computing such as parameter sweeps that rely less on intercommunication and more on 
local processing capabilities. 

Today the fastest supercomputers are a mix of MPPs and commodity clusters. Clusters currently 
exceed 80% (four out of five) of all the systems rated by the Top 500 list. Not surprisingly, due to the 
superior properties of the MPPs purpose built for supercomputing with their optimized SANs, the 
majority of the fastest machines are of this class. Historically commodity clusters have employed a 
number of COTS networks, including such early offerings as asynchronous transfer mode (ATM), 
Myrinet, and Ethernet lO0BaseT. Current-generation clusters principally employ Gigabit Ethernet or 
Infiniband Networks. 

2.9 HETEROGENEOUS COMPUTER STRUCTURES 
The homogeneous computing systems described so far employ a single type of processing 
component to perform all computation, such as a typical multicore processor socket component. The 
majority of supercomputers are of this type. However, for certain patterns of computing, other core 
designs and structures made of them can deliver sometimes dramatic performance improvements, at 
least for some kinds of computing algorithms. Systems comprising two or more types of computer 
cores, sockets, and nodes are distinguished from homogeneous computing systems that have only 
one type, and are designated as heterogeneous systems. Accelerators, sometimes known as GPUs, 
are attached to a system node via the 1/0 bus, principally the peripheral component interconnect bus, 
and can be accessed by any of the conventional processor cores of the system within the same node. 
Accelerators are designed to perform certain classes of computation extremely well, like linear 
algebra and signal processing problems. Heterogeneity is also finding its way directly into chip 
design, thus circumventing the intermediary 1/0 bus. 

While each of these classes of architecture, both sequential and multiple forms of parallel, has been 
presented as separate and distinct, modern computer architecture such as MPPs in the broadest sense 
often incorporate the best aspects of all of them. A modern microprocessor socket incorporates 
structures derived from each of these main types, including sequential, pipelining, SIMD, and 
multiprocessor organizations. 

2.10 SUMMARY AND OUTCOMES OF CHAPTER 2 
• Computer architecture is the structure and semantics of a computer. HPC architecture is 

optimized to achieve high speed through aggressive exploitation of fast technologies and parallel 
organization of its component modules. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 103



2.10 SUMMARY AND OUTCOMES OF CHAPTER 2 79 

• Key properties of HPC architecture include speed of operation, parallelism for doing multiple 
operations at the same time, efficient use of critical components, the electrical power that it 
consumes, reliability, and how easy it is to program. 

• Flynn's taxonomy of parallel architectures, while a bit stale, is still widely cited. It includes SISD, 
SIMD, and MIMD, which can be applied to system types today. 

• HPC has advanced over many generations, with progress determined in part by evolving 
device technologies, including simple devices (e.g., abacus), mechanical gears, 
electromechanical, such as the Hollerith, and electronics, including vacuum tubes, transistors, and 
integrated circuits. 

• Technologies serve multiple purposes. These include storing information in binary (base 2) form 
in memory (e.g., magnetic cores and DRAM), performing operations using Boolean logic, and 
moving data on buses and network interconnect channels. 

• The von Neumann architecture is the foundational concept for sequential stored-program 
computers, which are the basis for essentially all modem supercomputers today. 

• HPC systems are derivatives of the von Neumann architecture through many innovations, which 
include diverse forms of parallelism, memory hierarchies, and advanced networks to integrate the 
many subsystems together. 

• Pipelining connects successive component stages together so data can pass from one stage to the 
next for rapid throughput. 

• Vector architectures (e.g., the Cray-1) exploit pipelining for high-speed arithmetic units, register 
loads and stores, and overlapping memory accesses. 

• SIMD array processing uses many lightweight cores dedicated to separate partitioned memory 
banks. All cores perform the same kind of operation at the same time but on their local data, to 
achieve a high degree of parallelism managed by a control processor. 

• MPPs are single systems comprising many integrated computer processors. There are diverse 
forms of multiprocessor, differentiated by the way they are interconnected and the relationship 
between processors and memory banks. 

• Shared-memory multiprocessors combine individual processors with multiple memory 
banks, such that all processors are able to access all the shared memory banks. SMPs have 
equal access to all memory in terms of time and bandwidth. Distributed shared-memory 
(DSM) architectures also share the same memories but have preferential access to some 
memory banks in lieu of others. SMPs are referred to as UMA, while DSMs exhibit NUMA 
behavior. 

• Commodity clusters are another form of multiprocessor, made entirely from subsystems that are 
COTS to exploit economy of scale for superior performance to cost. 

• Amdahl's law relates achievable delivered speedup to the gain of a parallel accelerator and the 
fraction of the total workload that can be performed in parallel. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 104



80 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

2.11 QUESTIONS AND PROBLEMS 
1. Define or expand each of the following terms or acronyms. 

Computer architecture SISD Punched cards 

ISA SIMD Paper tape 

Parallelism MIMD Cycle time 

GHz MISD Volatile 

DRAM SPMD Destructive read 

SRAM GPU accelerator Register 

NVRAM Abacus Accumulator 

Cache Harvard architecture PE 

Bandwidth Chip Interconnection network 

Latency Mainframe Data path 

NRE Minicomputer UO channel 

Botzmann constant Vector processor Amdahl's law 

Data path SIMD array Shared-memory 

Control path CMOS multiprocessor 

Efficiency, floating-point SMP Cache coherence 

efficiency MPP MESI protocol 

Hardware fault Vacuum tube Snooping cache 

Software fault Discrete transistor SMP 
Hard fault, soft fault Integrated transistor UMA 

Cosmic ray Logic gate NUMA 
Checkpoint/restart Circuit SAN 
Programmability Switching rate COTS 

SLOC Propagation delay ATM 
Programming model Mercury tank Myrinet 

Productivity One-dimensional Gigabit Ethernet 

Software engineering memory Infiniband 

Workflow management Two-dimensional Heterogeneous system 

Flynn's taxonomy, Michael memory architecture 

Flynn Core memory Microprocessor socket 

2. State whether each of the following statements is true or false. 
• HPC architecture is concerned with only the lowest-level technologies and circuit design. 
• An HPC system will never be fast enough to deliver the necessary performance required by 

major application problems. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 105



82 CHAPTER 2 HPC ARCHITECTURE 1: SYSTEMS AND TECHNOLOGIES 

• Design an effective automotive assembly strategy that includes a pipeline. Analyze your 
design, including a calculation of the throughput of your system and the performance gain of 
your system over a simple monolithic assembly system. State your assumptions explicitly in 
your analysis. 

17. Name and describe the key internal functional components of an SIMD array. 
18. Suppose that 5% of my program is sequential and cannot be parallelized. If I can execute my 

program in 10 min on one processor, how fast can I expect it to run on 10 processors according 
to Amdahl's law? What is the maximum speedup that I can obtain, no matter how many 
processors I use, according to Amdahl's law. 

19. Discuss the efficiency that is likely obtainable with commodity clusters versus MPPs. How can 
workload affect efficiency? 

REFERENCES 
[l] M.W. Wilkes, W. Renwick, The EDSAC (electronic delay storage automatic calculator), Mathematics of 

Computation 4 (1950) 61 -65. 
[2] IBM Corp, 704 Data Processing System, August 30, 2013 l Online]. Available: http://www-03.ibm.com/ibm/ 

history/exhibits/mainframe/mainframe_PP704.html. 
[3] J. von Neumann, First Draft of a Report on the EDVAC, University of Pennsylvania, 1945. 
[4] Institute for Advanced Study, IAS Electronic Computer Project, 2017 [Online]. Available: https://www.ias. 

edu/electronic-computer-project. 
[5] Massachussets Institute of Technology, Project Whirlwind, MIT Institute Archives & Special Collections, 

2008 [Online]. Available: https://libraries.mit.edu/archives/exhibits/project-whirlwind/. 
[6] I.B.M. Corp., 1620 Data Processing System, August 30, 2013 [Online]. Available: https://www-03.ibm.com/ 

ibm/history/exhibits/mainframe/mainframe_PP1620.html. 
(7] Cray Research, Inc., Cray-I Computer System Hardware Reference Manual, 1977 [Online]. Available: 

http://history-computer.com/Library/Cray-1 _Reference%20Manual .pdf. 
[8] J. Dongarra, T. Sterling, H. Simon, E. Strohmaier, High-performance computing: clusters, constellations, 

MPPs, and future directions, Computing in Science & Engineering 7 (2) (2005) 51-59. 
[9] T.E. Anderson, D.E. Culler, D.A. Patterson, A case for NOW (networks of workstations), IEEE Micro 15 (1) 

(1995) 54-64. 
[10] D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V. Packer, BEOWULF: a parallel 

workstation for scientific computation, in: In Proceedings of the 24th International Conference on Parallel 
Processing, 1995. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 106



2.11 QUESTIONS AND PROBLEMS 81 

• The time to do a floating-point operation is the most important aspect of the efficiency of an 
HPC system. 

• The cost of the software on an HPC system is much less than the cost of the hardware 
platform. 

• The greater the performance that is required, the harder it is to optimize the user program. 
• Code reuse is critical to managing application development complexity and difficulty. 
• Magnetism is the longest-lasting technology in computing, having been used from the 1940s 

to the present (2010s). 
3. HPC architecture exploits enabling technologies to minimize __ , maximize __ , and serve 

___ . In recent years HPC has been applied to ___ . 
4. Name and describe the four principal sources of performance degradation. In addition to 

performance, name and describe four factors that are of concern for HPC. 
5. Explain what distinguishes a supercomputer from a commercial or consumer-grade server. 
6. Name and describe three key properties that determine the performance of an HPC architecture. 

Give a formula that shows the relationship of these properties. Name and describe two additional 
factors that influence HPC systems operation. 

7. Which has better performance, a supercomputer with 10,000 CPUs that can operate in 
parallel at a clock rate of 2.9 GHz and is available 80% of the time, or a supercomputer with 
10,000 CPUs that can operate in parallel at a clock rate of 2.7 GHz and is available 95% of the 
time? 

8. Name and describe three aspects of speed of an HPC system. What are the two measures for 
communication speed? 

9. Describe how air cooling works. Explain why liquid cooling is sometimes used. 
10. Describe three types of faults in an HPC system. Describe how recovery from a fault can work. 
11. Describe two modem architecture strategies that address the two trends of stagnant processor 

speed and multicore chips. 
12. Name and briefly describe the three dominant classes of technologies that define the design 

space for HPC architecture. 
13. Describe the purpose of cache memory. Describe the purpose of LI, L2, and L3 cache. 
14. Discuss at least three different features of SRAM, DRAM, and NVRAM, including their relative 

access speeds. 
15. Draw a figure that illustrates the principal elements of the von Neumann architecture. 
16. Suppose that you want to optimize an automotive assembly plant. In your plant the automotive 

frame and whole components arrive at the plant and the task is to assemble the complete 
automobile. For simplicity, let us assume there are five steps to assembling an automobile: add 
and configure engine in frame; add seats; assemble wheel subsystem; assemble steering; and 
assemble and configure braking system. Also for simplicity, assume that these can be done in any 
order and can be done at the same time, except that the assembly of the seats cannot happen at the 
same time as the assembly of the steering system, and assembly of the brakes has to come after 
the assembly of the wheels. Also assume that the time for all steps is the same, except that the 
time to assemble the braking system is two times the time required for each of the other steps. 
• Discuss at least three alternatives that are possible for an automotive assembly strategy. 

Include SISD, SIMD, MISD, and MIMD alternatives in your discussion. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 107



COMMODITY CLUSTERS 3 
CHAPTER OUTLINE 

3.1 Introduction ................................................................................................................................... 84 
3.1.1 Definition of "Commodity Cluster" ............................................................................... 84 

3.1.2 Motivation and Justification for Clusters ....................................................................... 84 

3.1.3 Cluster Elements ........................................................................................................ 85 
3.1.4 Impact on Top 500 List .............................................................................................. 86 

3 .1.5 Brief History .............................................................................................................. 88 

3.1.6 Chapter Guide ............................................................................................................ 90 

3.2 Beowulf Cluster Project .................................................................................................................. 91 
3.3 Hardware Architecture .................................................................................................................... 93 

3.3.1 The Node ................................................................................................................... 93 

3.3.2 System Area Networks ................................................................................................ 94 

3.3.3 Secondary Storage ...................................................................................................... 95 

3.3.4 Commercial Systems Summary .................................................................................... 95 

3.4 Programming Interfaces .................................................................................................................. 97 
3.4.1 High Performance Computing Programming Languages ................................................. 97 

3.4.2 Parallel Programming Modalities ................................................................................. 97 

3.5 Software Environment ..................................................................................................................... 98 
3.5.1 Operating Systems ..................................................................................................... 98 

3.5.2 Resource Management ................................................................................................ 99 

3.5.3 Debugger ................................................................................................................. 101 
3.5.4 Performance Profiling ............................................................................................... 101 

3.5.5 Visualization ............................................................................................................ 101 

3.6 Basic Methods of Use ................................................................................................................... 104 
3.6.1 Logging On .............................................................................................................. 104 

3.6.2 User Space and Directory System .............................................................................. 105 
3.6.3 Package Configuration and Building ........................................................................... 110 

3.6.4 Compilers and Compiling .......................................................................................... 112 

3.6.5 Running Applications ............................................................................................... 113 
3.7 Summary and Outcomes of Chapter 3 ............................................................................................. 113 
3.8 Questions and Exercises ............................................................................................................... 114 
References .......................................................................................................................................... 114 

High Performance Computing. https://doi.org/10.1016/8978•0-12•420158-3.00003-4 
Copyright© 2018 Elsevier Inc. All rights reserved. 

83 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 108



84 CHAPTER 3 COMMODITY CLUSTERS 

3.1 INTRODUCTION 
The commodity cluster [l] represents possibly the single most successful form of supercomputing in 
the history of high performance systems. It exploits technology advancements in the areas of very 
large-scale integration microprocessors, dynamic random access memory (DRAM), and networking, 
as well as improving performance relative to cost through the economy of scale of mass production. 
The secret of the success of commodity clusters is that they comprise major components that are 
standalone computers in their own right, marketed to a much larger market segment than the narrower 
high performance computing (HPC) community, and delivering an economy of scale benefit from the 
larger consumer base. But the commodity cluster is also successful because it provides great flexibility 
of system configuration and tremendous accessibility for a broad range of users, from the most arcane 
national laboratory scientists to high-school students. Indeed, commodity clusters may constitute the 
third revolution in supercomputing since its inception in the late 1940s. For our purposes, the com
modity cluster will serve as the archetype of the conventional scalable HPC system, and its description 
will delineate the many system component layers that comprise a full supercomputer in terms of both 
hardware and software. 

3.1.1 DEFINITION OF "COMMODITY CLUSTER" 
The commodity cluster is a group of integrated computer systems. The component computers are 
standalone, capable of independent operation, and marketed to a much broader consumer base than the 
scaled clusters which they comprise. The integration network employed is separately developed and 
marketed for use by a systems integrator. Mass storage devices are off the shelf and either physically 
installed within the system nodes or connected externally. All interfaces adhere to industry standards 
for both attached devices (e.g., USB [2], peripheral component interconnect express [PCle] [3]) and 
system networking. Although not required, system software is usually open-source, nonproprietary, 
and Linux based. Programming interface libraries are bound to C, c++, or Fortran and employ a 
message-passing interface (MPI), OpenMP, or both. 

3. 1.2 MOTIVATION AND JUSTIFICATION FOR CLUSTERS 
While the motivation for adopting commodity clusters may differ among individuals and institutions, 
there are clear attributes that have justified their adoption for the last 2 decades. Some of the most 
prevalent among these are briefly discussed below. 

Accessibility-more likely than not, access to a medium-scaled supercomputer will link to a 
commodity cluster of moderate scale. This is in part because they are by far the most prevalent form of 
supercomputer available. But it is also true that due to their cost, commodity clusters make up a 
disproportionate number of systems deployed at institutions where entry-level experience is likely to 
be acquired. 

Performance relative to cost-the relatively low cost of acquisition and within some environments 
the low cost of ownership are often the dominant reason for the procurement choice of commodity 
clusters. Simply put, one gets more peak performance for a given price than using more tightly 
coupled, admittedly more efficient alternatives. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 109



86 CHAPTER 3 COMMODITY CLUSTERS 

memory access and processor to I/0 controllers, and the node "chip-set" that manages the node 
transparently to the user while providing basic primitives for the OS and bootstrapping the node 
from the powered-down state. The node may include a diversity of I/0 controllers for various 
purposes, including but not limited to the system area network(s) (SANs). 

• The system area network, or SAN-the off-the-shelf communication channel that interconnects 
all the nodes together into a single distributed computing system. The network supports data 
message passing between nodes, interprocess synchronization such as global barriers, and other 
collective actions such as reduction operations. It also may support communication with external 
system I/0 devices and the internet. The network consists of the physical data paths of either 
copper wires or fiber optics, network interface controllers (NICs) to move node data to the data 
paths, and routers for switching data between data paths to arrive at the destination node. 

• Host-a special node to support user services, including login accounts, administration, resource 
allocation and scheduling, and user directories. The host node may serve multiple users 
simultaneously even as it spatially partitions the compute nodes among user jobs. The host node 
may have its own secondary storage, use the clusterwide mass storage, or access an external file 
system. Users usually log in to the host node through an institution's local area network (LAN) . 

• Secondary storage-associated with the commodity cluster provides persistent storage for user 
files and direct01ies, user programs, input data, and result data associated with the jobs that run on 
the cluster. Logically, the storage is exp01ted to the user through the operating system file system. 
Physically the storage is a set of disk drives (and possibly tape drives) combined with controller 
hardware and connections between the controllers and the hard drives. Each node may have its 
own disk(s) built into the node or have access to a set of disk drives comprising the systemwide 
file system, sometimes referred to as the "storage area network". Alternatively, the file system 
may be external to a cluster in the form of a network file system. 

The canonical commodity cluster block diagram shown in Fig. 3.1 contains these principal 
components. 

3.1.4 IMPACT ON TOP 500 LIST 
As previously discussed, the field of HPC tracks its progress by measuring the performance of systems 
executing a derivative of the Linpack benchmark, high performance Linpack, and listing the fastest 500 

Network 

Compute nodes 

FIGURE 3.1 

Commodity cluster components. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 110



3.1 INTRODUCTION 85 

Scalability-unlike symmetric memory processor (SMP) systems, commodity clusters are scalable 
in that the number of nodes can vary widely dependent on need, space, power, and cost. As above, for a 
given scale the cost is probably less than for alternative custom systems. However, this claim may be 
primarily in the domain of throughput computing rather than capability computing, for which the 
overheads, latencies, and bandwidths may be less substantial than using custom systems. 

Configurability-the flexibility of configuration for commodity clusters has been historically 
greater than vendor-configured custom systems. Not only is variability of scale more flexible, but 
topology of node interconnects, node memory, and processor sockets, external input/output (1/0) 
components, and other properties can be easily specified by the end-user institution. Because of 
exploitation of industry standards and multiple sources of system elements, a diversity of choices gives 
even greater flexibility and more alternatives. Also, systems can be modified over time rather than 
remaining stagnant throughout their lifetime. 

Latest technology-clusters are made of subsystems that have large markets, hence the economy of 
scale through mass production. As a consequence, such subsystems are targets by vendors for 
incorporation of the latest technologies to remain competitive in large markets such as enterprise 
servers or SMP platforms. The integration of these leading-edge subsystems guarantees that com
modity clusters, even those provided by system integrators, will incorporate the state of the art in 
component technologies. 

Programming compatibility-while very different in appearance and cost, commodity clusters are 
compliant in for if not function to massively parallel processors (MPPs). The approach to program
ming both is quite similar although optimizations may differ. Both clusters and MPPs consist of 
microprocessor cores, tightly coupled nodes of processors and memories, and integration networks of 
various topologies. This permits an MPI to be employed in programming both classes of supercom
puter, and the use of OpenMP for programming the individual system nodes. This compatibility 
permits application codes and libraries to be shared between clusters and MPPs, and similar skill sets 
to be used for both as well. 

Empowerment-a sociological aspect of commodity clusters, unanticipated by their original de
velopers, was that users in labs and academia principally found that they had control of their system 
and were not bound or constrained by commercial fixed product specifications or proprietary software. 
There was an excitement about supercomputers, an ease of engagement in doing it with off-the-shelf 
components, and it was fun. Due to this a whole new generation was attracted to this form of 
supercomputing, and it continues to draw young people into the field to this day. 

3.1.3 CLUSTER ELEMENTS 
There are widely varying alternative structures for commodity clusters, this being one of their features 
for scalability and configurability. But in one form or another, almost all clusters comprise the same 
four classes of component types. 

• Node-the principal element that contains the major processing and main memory components to 
perform user computations. The node is a standalone computer capable of handling independent 
user workloads. Even as part of a larger cluster, a node may be used to perform a single 
computation with other nodes doing separate work in the mode of throughput computing. 
Additional components of nodes usually include communication channels for processor to 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 111



3.1 INTRODUCTION 87 

machines every 6 months. Over this period, observed performance has experienced a gain factor of 
more than a billion (> I 09 times). Fig. 3.2 represents this history in terms of the class of HPC systems 
contributing to the list at any period ofreview. Commodity clusters did not even show up on the list until 
1997, with the entry of the network of workstations (NOW) system. In 2005 commodity clusters 
constituted half of all systems in the Top 500 list; today that proportion has grown to about 85%, and has 
been above 80% for the last 8 years. 

FIGURE 3.2 

Architecture - systems share 

1995 2000 

■ Single Procf!5SOt' Conste-llations 

■ MPP ■ SIMD 

2005 

SMI> 

2010 

■Cluster 

2015 

The dominant system architecture classes comprising the fastest 500 computers over the last 24 years. 
Courtesy Top500.org 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 112



88 CHAPTER 3 COMMODITY CLUSTERS 

3.1.5 BRIEF HISTORY 

Robert Metcalf. Photo from wikimedia commons 

Robert Metcalfe is an American electrical engineer who helped to invent Ethernet while working at the Xerox Palo Alto 
Research Center. He also gave Ethernet its name. borrowing the term from the ether incorrectly thought to be the medium 
for light propagation in the 19th century. After leaving Xerox he founded 3Com Corporation in his Palo Alto apartment in 
1979, initially producing network adapters and going on to produce a wide range of computer network products. 
3Com was ultimately acquired by Hewlett-Packard in 2010 for $2.7 billion. Robert Metcalfe is the recipient of the 
National Medal of Technology, IEEE Medal of Honor, ACM Grace Murray Hopper Award, and IEEE Alexander 
Graham Bell Medal. 

The general strategy of clustering or the implementation of larger systems from smaller fully 
operational computer systems is not new, and goes back to the 1950s. Among the most prominent 
system was the IBM SAGE multiple computer developed for the US Air Force NORAD air defense 
system to acquire and display radar data of incoming aircraft (over the polar regions) to provide an 
early instance of automated situational awareness and control. SAGE comprised a number of systems 
that were derivatives of the Whirlwind computer developed by MIT in the late 1940s, a 16-bit vacuum 
tube architecture that was the supercomputer of its day. The SAGE cluster was motivated by the need 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 113



3.1 INTRODUCTION 89 

for high throughput of large (for that day) datastreams and many-user simultaneous access. It was a 
pioneer in the use of real-time visual display and screen-input interface. SAGE was also designed to 
provide enhanced reliability through the multiplicity of identical component systems. When one 
failed, the others could assume the added workload for nonstop operation. 

Although not as exotic, two-way clusters were adopted commercially in the late 1950s, where one 
system was employed to perform the computing workload while the other was assigned the task of 
controlling 1/0 devices such as tapes, disk drives, punched-card handlers, and printers. The IBM 7090/ 
7040 was a very successful example of these dual-node commercial clusters. 

The term "cluster" itself was first employed in the late 1980s by Digital Equipment Corporation for 
its Andromeda project. This early cluster combined 32 VAX 11/750 minicomputers and served as a 
testbed for experimental studies of hardware system interconnection and software support. This cluster 
system was never commercialized. 

During the 1970s and 1980s network technologies were devised to serve as LAN s to allow multiple 
standalone computer systems in the same environment to share resources such as file systems, laser 
printers, and ports to external wide area networks such as the emerging internet. The IBM token ring, 
ATM, and Ethernet were among the most prominent of these. Ultimately, Ethernet emerged as 
dominant and eventually superseded the others. Ethernet, developed by Metcalf and Boggs [4], was 
first successfully deployed commercially as a multidrop carrier-sensed arbitration protocol in 1980, 
permitting multiple systems to share a single interconnection framework to move data between them. 
These first Ethernet LANs operated at a peak bandwidth of 2.94 Megabit/second in 1973, but were 
soon replaced with a more pervasive 10 Megabit/s commercial standard in the mid-1980s. It was the 
establishment of dependable and relatively low-cost LAN interconnection capabilities that set the 
stage for the next steps to commodity clusters. 

The microprocessor was invented by Intel in 1971 [5] and by 1980 was employed in a number of 
personal computers (PCs), such as the TRS 80, Apple 2, and IBM PC. These were quickly followed by 
higher grades of single-person direct-access computers employing 16-bit microprocessors referred to 
as workstations, including the IBM RS-6000, the Sun-1, and others. PCs offered a consumer-grade 
computer that was relatively slow, with limited main memory and storage, and limited resolution 
and screens. Their saving virtue was their price, due to large and growing mass market resulting in 
economy of scale. Workstations provided far more performance, memory, storage, and visual pre
sentation resolution for industrial-grade applications. The difference in cost between a workstation and 
a PC could be as much as an order of magnitude. 

In the late 1980s and early 1990s the combination of LANs integrating workstations offered an 
opportunity that emerged as workstation farms for sharing batch workloads made up of many user jobs. 
It was recognized that workstations were often high-availability, low-utilization devices supporting real
time user access but not always fully busy with executing intensive computing tasks. Software was 
developed, such as the widely used Condor system by Miron Livny, to distribute pending jobs from 
workstations within the farm to idle workstations. At the job grain boundary, such farms supported 
parallel job throughput or capacity computing. This would portend the later evolution of workstation 
clusters. 

In 1993 Chuck Sites, former professor at California Institute of Technology, invented the SAN, 
optimized to connect workstations so they could work together on a common workload. The Myrinet, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 114



90 CHAPTER 3 COMMODITY CLUSTERS 

manufactured and marketed by Myricom, had significantly lower communication latency and higher 
bandwidth than prior LANs. 

Also in 1993 two cluster projects were started: the UC Berkeley Network of Workstations (NOW) 
Project and the NASA Beowulf Project. The NOW Project pursued the premise that many powerful 
small-scale computers, in this case workstations, could together outperform a single very large 
computer such as a mainframe or supercomputer of the day. The NOW Project implemented a series of 
clusters constructed from high-end workstations, specifically SUN workstations, and the Myrinet 
network. By 1997 the NOW Project was represented as the first cluster on the Top 500 list; the same 
year as the first Teraflops computer, the Intel ASCI Red. 

As discussed in the next section, the NASA Beowulf Project used a distinctly different approach, 
incorporating low-end consumer-grade PCs and integrating them with the widely used Ethernet LAN. 
It also introduced Linux to the supercomputing community. For much of the succeeding 2 decades, this 
formula dominated commodity clusters and ultimately supercomputing as a whole. 

Throughout the late 1980s and the early 1990s a series of message-passing programming interfaces 
were developed by industry, national laboratories, and academia. These represented in one form or the 
other the communicating sequential processes execution model derived by Anthony Hoare in the late 
1970s [6]. Ultimately this body of work culminated in the communitywide application programming 
interface being developed and agreed upon, MPI. Shortly thereafter, MPI over CHameleon (MPICH) 
[7] was developed as a first reduction to practice by Argonne National Laboratory, making MPI widely 
accessible to a broad user community and establishing it as the premier programming library for both 
MPPs and commodity clusters. 

By the late 1990s commodity clusters emerged as one of several forms of supercomputing systems 
contending for supremacy. By 2005 and throughout the succeeding decade commodity clusters ach
ieved primary status in terms of number of deployed systems on the Top 500 list. 

3.1.6 CHAPTER GUIDE 
This chapter describes commodity clusters in breadth, providing an overview of this class of super
computer and a good picture of supercomputing overall. The next section delivers a technical history 
of a major milestone in the development of commodity clusters, the Beowulf Project in the mid- l 990s, 
and in so doing introduces many of the components, hardware and software, making up the modem 
commodity cluster. Section 3.3 gives a detailed description of the hardware components making up the 
commodity cluster, including the processing nodes, the SAN for integration, communication, and 
synchronization, and the mass storage for nonvolatile data archiving. Section 3.4 presents the principal 
ways in which commodity clusters are programmed, involving sequential programming languages 
combined with parallel programming interfaces and libraries. Section 3.5 provides a software coun
terpart to the previous hardware discussion, describing the principal system software components, 
environments, and tools such as the operating system and resource management middleware. Section 
3.6 begins the process of hands-on skill-set development. It walks the student through the simplest of 
actions for logging in to clusters and moving through the user directory hierarchy, running parallel 
programs, compiling application source codes, and visualizing result data, among other tasks. Section 
3.7 closes with a set of conclusions and outcomes of the chapter content. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 115



3.2 BEOWULF CLUSTER PROJECT 91 

3.2 BEOWULF CLUSTER PROJECT 

Thomas Sterling in front of a commodity cluster built as part of the Beowulf Project. Such commodity clusters are now 

frequently referred to as belonging to the Beowulf class of supercomputer. 

Thomas Sterling is widely known as the father of the Beowulf class of supercomputers. His pioneering work in 1994 along 
with Don Becker in creating a cluster comprised of commodity-grade computers, collectively referred to as a "Beowulf 
cluster", significantly reduced the cost of supercomputing and later resulted in the widespread adoption of commodity 
clusters for scientific computing. This effort resulted in Beowulf being awarded the 1997 Gordon Bell prize in the 
price-performance category. The Beowulf Project's adoption and software support of the Linux operating system also 
contributed to the widespread adoption of this operating system in supercomputing systems worldwide. Apart from being 
the "father of Beowulf', Thomas Sterling's contributions to the hybrid technology multithreaded architecture based on 
superconducting logic continue to have impacts on high-end computer system architecture design. Thomas Sterling is the 
recipient of the American Association for the Advancement of Science and HPC Vanguard Awards. 

As the history of cluster computing in the previous section indicates, many projects from industry, 
academia, and government across the international community contributed to the culmination of 
commodity clusters as the dominant fonn of supercomputing applicable to a wide range of problem 
domains and system scales. Nonetheless, one project stands out as the preeminent milestone in the 
emergence of commodity clusters into the mainstream: the Beowulf Project, begun in the fall of 
I 993 at the NASA Goddard Space Flight Center by Thomas Sterling and James Fischer, and soon 
joined by Donald Becker at the start of 1994. 

The Beowulf Project explored the potential of deploying systems of a peak performance of 
I Gigaflops and sufficient memory and disk storage to hold scientific data for problems of interest, 
notably in the earth and space sciences, at a cost that justified systems dedicated to individual 
computational scientists. At this time, the cost of a high-end workstations was about $50,000 and a 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 116



92 CHAPTER 3 COMMODITY CLUSTERS 

FIGURE 3.3 

The 1996 I Gigaflops Beowulf cluster. 

system capable of the abovementioned peak performance was a.round a million dollars. In the summer 
of 1994 the first system, "Wiglaf', was deployed, constructed of 16 PC nodes each with one Intel 
80486 at 100 MHz, 16 Mbytes of memory, and dual I0BASE-T Ethernet, at a cost of approximately 
$40,000. By I 996 the third-generation Beowulf Project proof-of-concept system, "Hyglac", achieved 
sustained performance on a real code in excess of 1 Gigaflops, again with 16 nodes (Fig. 3.3). This 
time the processors were Intel Pentium Pros at 200 MHz, with a total of 2 Gigabytes of main memory 
and employing a much-imp.roved l00BASE-TX Fast Ethernet with a nonblocking switch. While the 
details have changed, this represented the trajectory for future mainstream commodity clusters. 

The Beowulf Project also broke ground in its use of the open-source Linux operating system. It 
made major contributions by providing almost all network driver software employed by Linux at that 
time and for years to come (for which Donald Becker would rightfully be credited worldwide). This 
began a process by which Linux ultimately became the number one operating system used in the field 
of supercomputing up to this day. The Beowulf Project adopted the use of the initial MPICH libraries 
developed by Bill Gropp and his team at Argonne National Laboratory, which too through evolution 
would become the standard for programming distributed clusters. 

By 1997 a new phase of the Beowulf Project engaged multiple research sites. That year a joint team 
including Salmon, Warren, Becker, and Sterling won the Gordon Bell Prize for performance to cost. 
This team also presented a series of tutorials at various conferences that ultimately led to the publi
cation of the popular "How to Build a Beowulf' by Sterling, Salmon, Becker, and Savarese by MIT 
Press [8]. Later, a second, more comprehensive and up-to-date book, also published by MIT Press and 
entitled "Beowulf Computing with Linux", was authored by Bill Gropp, Rusty Lusk, and Sterling, and 
eventually went into a second edition [9]. 

Beowulf is not the creation of a single individual or even a group; rather it is a synthesis of a set of 
diverse accomplishments in hardware technology, software libraries, and application programming 
developed concurrently by many different individual contributors, teams of experts, and product 
vendors. One example is the community driven development of the MPI programming interface and 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 117



3.3 HARDWARE ARCHITECTURE 93 

the MPICH reduction to practice. But while considered an obvious outcome, it was not obvious to 
mainstream practitioners at the time-in fact for at least 3 years there was strong resistance, even 
intransigence, at all levels of the supercomputing community to the introduction of commodity 
clusters as a medium of HPC. It was the vision, tenacity, and trial and error or experimentalism of the 
early explorers that brought this strategy in hardware and software to the realm of scientific and en
gineering problem solving. Eventually, the vendors themselves recognized the market opportunity and 
enhanced aspects of node systems and packaging as well as networking to facilitate commodity 
clusters and their effective usage. Many hardware vendors and independent software vendors would 
provide an ever-growing customer base with higher-density, full-featured, highly scalable, and more 
efficient commodity cluster systems. 

Today both within the United States and worldwide, commodity clusters have become a vehicle to 
excite and educate college students in parallel processing and supercomputing. Major contests are held 
every year at both the Supercomputing Conference in the United States and the International Super
computing Conference in Germany. Even high-school students have been attracted to the hands-on 
aspects of Beowulf computing. In closing, the term "Beowulf computing" was not coined by the 
original team of developers; they were only responsible for naming a project Beowulf and so injecting 
the word into the lexicon. Someone else in the public media, and it may never be known whom, used 
the phrase in print and it caught on. More than 20 years after its first humble and uncertain beginnings, 
Beowulf computing in the form of commodity clusters now dominates the field of supercomputing. 

3.3 HARDWARE ARCHITECTURE 
Commodity cluster hardware is, by definition, all commodity off the shelf (COTS) to maximize the 
benefit of economy of scale and achieve the best performance to cost. The hardware architecture of the 
commodity cluster is therefore driven and constrained by this requirement. As briefly discussed in 
Section 3.1, the principal system components in a commodity cluster are the computer nodes, SAN, 
host node, and mass storage. The architecture of a cluster exploits these resource classes, but is also 
limited by them and additional support components (e.g., graphics processing units) that conform to 
industry interface standards. The hardware architecture of a cluster reflects the choices of the specific 
component types, their number, and the structure in which they are organized and integrated via 
associated networks. These components and their effect on system architecture are described below, 
with further expansion and details on specific component types presented in later chapters. 

3.3. 1 THE NODE 
The principal system component of the commodity cluster is most commonly referred to as the "node", 
and includes most of the active components that make up the aggregate cluster computer. The 
replicated nodes, also referred to as "the compute nodes", in combination with the integrating inter
connection network and the mass (secondary) storage comprise the complete scalable commodity 
cluster with associated mass storage. But the node itself is a full and self-contained computer that alone 
and individually serves a much larger user market and therefore benefits from economy of scale to 
deliver exceptional performance relative to cost, at least for some important institutional workloads. 
The peak performance and capacity of a cluster are essentially the aggregate capability of all of the 
compute nodes in combination. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 118



94 CHAPTER 3 COMMODITY CLUSTERS 

The responsibility of the node is to perform useful computing work for the end user. This is 
achieved through the collection of processor cores. A modem cluster node is made up of one or more 
multicore chips, also referred to as "processors", "sockets", "processor sockets", and so on. Depending 
on the type and number of cores on the chip, the term "many core" may be used. A core is the 
workhorse of any modem computer. It issues a sequence of user instructions, each potentially 
designating multiple operations to be performed. A multistage execution pipeline carries out the 
microoperations required in succession to complete a given instruction and retire it when results are 
written back into the associated register, to the memory system, or to an J/O channel (other effects are 
possible as well). A processor socket contains multiple cores, one or more layers of memory cache for 
high memory bandwidth and low latency access, and chip networks that integrate the cores, caches, 
and external J/O ports together. In many cases a cluster node incorporates multiple multicore processor 
sockets. As is discussed in more detail in the following chapters, the microarchitecture of the node 
cores varies depending on manufacturer and system integrator. Popular processors have variants of two 
separate architectures by Intel, the IBM Power architecture family, x86 variants by AMD, and the 
ARM architecture, which is becoming increasingly interesting although it has not as yet had significant 
impact on the cluster market. 

The node is also the container for the main system memory, which primarily uses DRAM tech
nology. Although there are many variants of technology and design, a typical DRAM bit cell consists 
of a switching transistor and associated capacitor for high-density, low-cost, and moderate-speed data 
access, both read and write. Although core and main memory are both made from semiconductor 
devices, they are usually on separate chips because the respective manufacturing processes are very 
different for optimal behavior of each. Multiple DRAM chips are mounted on single cards, and a 
number of cards are plugged into industry standard interfaces. The sum of these cards determines the 
total main memory capacity of the node, with the number of nodes then determining the total main 
memory of the commodity cluster. 

The onboard network channels of the node support intranode communication to move data between 
the processor sockets, the main memory boards, and the external J/O ports of the node. These networks 
are transparent to the user and controlled either by the low-level "chip-set" also on the node mother
board or by the node operating system. One of these communications channels is open to the user 
institution at the time of deployment or when reconfiguration is being conducted. The PCI "bus" is a 
standardized multiport J/O device that permits additional subsystems to be added in a "plug-and-play" 
manner to the node without additional hardware changes. Several generations of PCI interconnects have 
been employed in succession, the latest being PCie. Even for this single specification, there are many 
distinct scales for each generation. Other interface ports, some of which go through the PCI bus on the 
node, are available, such as the ubiquitous USB ports and more obscure accesses for maintenance and 
administration. Of particular importance is possible direct access to hard disk drives for secondary 
storage, network controllers for the LAN, and an additional NIC for the SAN discussed below. 

3.3.2 SYSTEM AREA NETWORKS 
The SAN is the central and differentiating attribute of a commodity cluster that varies in industry 
standards for communications. It is the principal distinction between a commodity cluster and a more 
generalized clustering of components where the network is custom designed, such as the Intel 
Omnipath. Many different networks have served this purpose. In 1994-1995 two approaches were 
explored. The first was the invention of the SAN by Chuck Seitz, a former professor at Caltech, who 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 119



3.3 HARDWARE ARCHITECTURE 95 

created and manufactured the "Myrinet" that was very high performance and low latency for its day. It 
was also expensive. It was employed by the UC Berkeley NOW project that used Sun Microsystems 
workstations (hence network of workstations), which were also relatively expensive. 

The second was the adoption of the Ethernet LAN to this purpose by the NASA Beowulf Project 
using low-cost, but low-performance, PCs based on the x86 Intel microprocessor architecture. Both 
approaches were heavily used throughout the following decade in commodity clusters. Myricom, the 
vendor and distributor for Myrinet, is no more, but Ethernet continues to this day, only recently being 
surpassed by the Infiniband network architecture, "IBA". Ethernet has dominated the low-cost SAN 
market and those clusters employed primarily for throughput computing, while IBA is widely used for 
more tightly coupled commodity clusters with higher bandwidth and significantly lower latency. Both 
branches of the SAN technology continue to evolve. Some commodity clusters will incorporate both 
types of network, with the actual computing being conducted over the IBA network and the "out-of
band" activities for administration and system maintenance being performed over the Ethernet network. 

SANs comprise physical channels for data transfer over distances of a few centimeters to hundreds 
of meters. These may be either conductors, usually copper, or optical fiber depending on issues of cost, 
energy, and bandwidth requirements. They are connected to nodes by NICs. These may be hardwired 
into the node motherboard, as is found with GigE (1 Gigabit per second Ethernet) in many cases, or 
with separate NIC cards often plugged into the nodes' PCie connectors. The NIC converts data pro
vided by the processors or directly from main memory into message packets of varying length to be 
sent to destination nodes. The third component is the router or switch used to create topologies of 
multilayer network structures for higher degree of nodes. Switches are characterized by their degree 
(number of ports) and their time to transfer a packet from input port to output port, including the time 
to set up the internal switching configuration. For very large systems, switches can make up a large 
investment and a major part of the system total cost as well as energy usage. 

3.3.3 SECONDARY STORAGE 
Persistent storage in one or more forms is essential for computing to retain indefinitely user programs, 
libraries, and input and result data. Commodity clusters may directly employ hard disk drives or solid
state devices (SSDs) built in to each node. Alternatively, a storage subsystem with its own controllers 
and possibly its own network may be included as a separate unit within the cluster. Finally, the 
commodity cluster may access an external mass storage system via the LAN and share it with other 
user systems. A mix of these is possible and often used. One advantage of not having hard disks in
tegrated within the node is a significant reduction in node power consumption and improved reliability. 
Disk drives are mechanical and therefore have a higher failure rate (like fans), so avoiding them in the 
node improves the node's downtime. These would be referred to appropriately as "diskless nodes". 
However, the recent rapid growth of use of nonvolatile random access memories fabricated from 
semiconductors eliminates the use of mechanicals and can largely resolve this problem. Separate file 
systems are usually built from faster hard disks and incorporate redundancy (e.g., RAID) to circumvent 
downtime due to single disk failures. This is often a cost-effective and operationally better approach to 
providing persistent storage for users. 

3.3.4 COMMERCIAL SYSTEMS SUMMARY 
Table 3.1 gives an overview of several commercially available commodity clusters. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 120



Table 3.1 Overview of Components of Several Commercially Available Commodity Clusters 

Cores per Memory Secondary Nodes per 
Machine Network Processor Node Capacity Blades Vendor Storage Rack 

SuperMUC Infiniband-FDR Sandy 16 32 GB/node Yes IBM/ 15 PB (scratch) 512 
(41.25 Gb/s) Bridge-EP Intel Lenovo 3.5 PB (home) 
Mellanox Xeon E5-2680 

SC, 2.7 GHz 
(Turbo 3.5 GHz) 

Mistral Jnfiniband-FDR Xeon E5-2680v3 24 64 GB/node No Bull, 18 
12C 2.5 GHz/ Atos 
E5-2695v4 18c 
2.1 GHz 

Cray CS- Infiniband-FDR Xeon E5-2660v2 20 Up to No Cray 23 
Storm IOC 2.2GHz 1024 GB/node 

Stampede Infiniband-FDR Xeon E5-2680 16 32GB/node No Dell 14 PB (shared) 40 
(56 Gbps) SC 2.7 GHz 1.6 PB (local 

aggregate) 

HPC4 HP lnfiniband-FDR Xeon E5-2697v2 24 Yes Hewlett- 1.8 PB (shared) 160 
POD 12C 2.7 GHz Packard 0.75 PB 

(midterm 
shared) 
1.5 PB (local 
aggregate) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 121



3.4 PROGRAMMING INTERFACES 97 

3.4 PROGRAMMING INTERFACES 
The principal programming modes for parallel programming involve using parallel library application 
programming interfaces that have bindings to sequential languages. This is the main modality that will 
be presented here. 

3.4.1 HIGH PERFORMANCE COMPUTING PROGRAMMING LANGUAGES 
Among programming languages frequently used in HPC, the most popular continue to be Fortran, C, 
and C++. Some other languages are growing in popularity for HPC applications, including the Python 
scripting language. 

Fortran was developed by John Backus at IBM and first released in 1957. The name derives from 
the original description of the language as a formula translating system, and it is designed to be well 
suited for high-level programming of numerical calculations. In fact, many have described Fortran as a 
domain-specific language for mathematics. Subsequent standardizations followed, including Fortran 
66, Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008. 

The C language emerged in the late 1960s and early 1970s from Bell Laboratories using work by 
Dennis Ritchie. It was first standardized in 1989 and has gone through multiple updates, including 
C95, C99, and CI 1. In 1978 Brian Kernighan and Dennis Ritchie published one of the most influential 
books and tutorials on C programming, "The C Programming Language" [10], which continues to 
influence C programmers today. 

The c++ language emerged in the early 1980s, developed by Bjarne Stroustrup. The name arises 
from the"++" increment operator and indicates the "evolutionary nature of the changes from C" [11]. 
Just as in the case for the C language, the c++ creator also wrote a highly influential book entitled 
"The c++ Programming Language", which has gone through multiple editions and continues to 
influence c++ programmers strongly. The c++ standard continues to evolve, from c++98 to 
c++03, c++ll, and c++t4. 

3.4.2 PARALLEL PROGRAMMING MODALITIES 
There are three main parallel programming modalities present in most clusters today: throughput 
computing, message passing, and shared-memory multiple-thread applications. 

Throughput computing involves efficiently running a large number of jobs that may be either 
entirely independent of one another or require minimal communication or coordination between them. 
An example is conducting an application parameter survey where a single application is run with 
thousands of different input parameters concurrently to explore its parameter space. Throughput 
computing is covered in greater detail in Chapter 19. 

In contrast to throughput computing, a single message-passing application requires a significant 
amount of communication and coordination within the application to speed up the time to solution. 
The principal programming model for achieving this speed up is the communicating sequential pro
cesses model, as exemplified by the MPI (Chapter 8). 

Like message passing, shared-memory multiple-thread applications also focus on speeding up the 
time to solution for a single application rather than efficiently executing a large number of mostly 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 122



98 CHAPTER 3 COMMODITY CLUSTERS 

independent applications, as in throughput computing. However, as the name implies, shared-memory 
multiple-thread applications are restricted to shared memory as opposed to distributed memory, as in 
the case of message passing. The shared-memory multiple-thread parallel programming modality is 
exemplified by the OpenMP programming model (Chapter 7). 

3.5 SOFTWARE ENVIRONMENT 
The software environment is a critical element of every computer's operational infrastructure. It 
exposes and manages functionality supported by hardware, provides different access and usage 
modalities for different users, manages global and local resources, and offers tools to expand the 
installed software base further. The latter is accomplished through utilities focusing on development, 
testing, optimization, configuration, performance monitoring and tuning, and trackable incorpora
tion of new software modules into the existing code base. Below is a necessarily brief discussion of 
common software components composing a cluster's operational environment. A number of usage 
examples are also provided to help readers who have not been exposed to this class of systems 
before. 

3.5.1 OPERATING SYSTEMS 
The operating system (OS) provides the software environment and services necessary to use the 
computer and execute custom applications. It consists of a kernel that manages hardware resources 
and arbitrates access to them from other software layers, system libraries that expose a common set 
of programming interfaces permitting application writers to communicate with the kernel and un
derlying physical devices, additional system services performed by the background processes, and 
various administrator and user utilities that comprise programs invoked by users of the computer to 
accomplish specific minor tasks. The reader is likely familiar with OSs commonly found on desktop 
and laptop computers such as Microsoft Windows or Apple OS X. Traditionally, however, this space 
on "big-iron" systems was reserved to several variants of the UNIX OS-a proprietary OS developed 
by Bell Laboratories in 1970. Thus one could find AIX on IBM machines, HP-UX on Hewlett
Packard computers, UNICOS on Cray, IRIX on SGI, and Solaris on Oracle products, in addition to 
academic equivalents such as Minix and Berkeley Software Distribution (BSD and its subsequent 
forks, OpenBSD, NetBSD, and FreeBSD). Note that the series of Apple Mac OSs mentioned above 
are also a derivative of FreeBSD. Another important UNIX-like OS that has been steadily gaining in 
prominence over that last 2 decades is Linux. Linux is frequently employed as the OS of choice on 
servers and clusters, although it is also used in a broad range of mobile computing devices, 
for example providing the core implementation for Android OS. While successful in mobile and 
enterprise markets, Linux desktop penetration oscillates at around only 1 %-2% depending on the 
statistics. 

The development of the Linux kernel was started by Linus Torvalds in 1991. Since then many 
individual developers and companies have contributed to its source, making it a truly multiplatform 
product, effectively supporting an impressive number of hardware devices through the available driver 
pool and execution environments, ranging from small embedded devices to large multiprocessor 
systems. The Linux kernel is an open-source product licensed under GPLv2. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 123



3.5 SOFTWARE ENVIRONMENT 99 

On most systems the Linux kernel is accompanied by an open-source suite of libraries and utilities 
primarily contributed by the GNU Project. These tools were developed and refined over the course of 
several decades in a massive online collaboration that originated in 1983, and include the following 
among many other entries. 

• C library (glibc) 
• C, c++, Fortran, and a compiler for several other languages (gee) 
• Debugger (gdb) 
• Binary utilities comprising linker, assembler, symbol table tools, simple archive manager, and 

others (binutils) 
• Application build system support (make, autoconf, automake, libtool) 
• Command-line shell (bash) 
• Core utilities that support low-level operations on file systems and contents of stored files 

(coreutils, less, findutils, gawk, sed, diffutils) 
• Text editors (emacs, vi, nano) 
• Email utilities (mailutils) 
• Terminal emulator (screen) 
• Archiving and compression tools (tar, gzip). 

While these utilities provide a near-complete basic UNIX-like operating environment, most Linux 
distributions include additional open-source software packages, many of them released under a GPL 
license. They enable more flexible process management, bootstrap service configuration, network 
tools, improved email client and server programs, graphical environments (X Window System, 
Wayland), and desktop environments (Gnome, KDE) in addition to a plethora of other special-purpose 
programs. To ensure broad compatibility, most of the software conforms to the IEEE POSIX standards, 
effectively enabling drop-in replacement for proprietary implementations. 

3.5.2 RESOURCE MANAGEMENT 
Large computers employ resource management systems to coordinate accesses to multiple execution 
units, memory allocation, network selection, and persistent storage allocation. The number of users of 
even a single machine can easily reach several thousands, and each of them may potentially execute 
multiple applications with different properties, requirements, and run time. Manual management of 
every aspect of machine resource allocation by the operators is therefore prohibitive. Fortunately, 
several sophisticated resource management packages have been developed and are in extensive use 
today to automate the tasks related to distribution of user workloads across the compute nodes and 
monitoring the progress of their execution. One of the most widespread resource management systems 
is Slurm. The example commands described below may be directly used on any correctly configured 
system equipped with Slurm. 

The resource management programs encapsulate user workloads in self-contained units, or jobs, 
that specify at the very least the program to be run, its input and output datasets, the number of nodes 
(or cores) to be used for its execution, and the maximum time the program is expected or required to 
work. These parameters are encoded in job scripts, which are discussed in greater detail in Chapter 5. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 124



100 CHAPTER 3 COMMODITY CLUSTERS 

The user infonns the system of the intended workload and its resource requirements by submitting a 
job script to the execution queue. This is done using the sbatch command: 

I sbatch j ob_script I 
If the script j ob_scri pt is an existing file, this command will create a new job, append it to the 

default job queue, and print a confinnation similar to the following: 

I Submitted batch job 123451 

In this output, "12345" is a unique job number assigned by the system to the job that has just been 
queued. The user may subsequently refer to this number to examine the job status using the squeue 
command: 

I squeue -j 123451 

The resulting output contains among other infonnation the name of the queue the job was stored in 
(PARTITION field), the name of the job (NAME), the submitting user's ID (USER), and the execution 
status (ST). The example output may look as follows: 

JOBID PARTITION NAME USER ST 
12345 batch job_scri user03 R 

TIME NODES NODELIST(REASON) 
0: 13 1 node0l 

In this particular case, the job was submitted to the "batch" queue by user "user03" and is already 
running (status "R") on one node of the cluster. Other noteworthy status flags include "CA" for 
canceled jobs, "CD" for completed, "F" for failed, "TO" for timed out, and "PD" for pending. The 
latter marks jobs that await allocation of resources to avoid conflicts with other jobs that are already 
executing. 

A pending or running job may be at any time canceled using the command: 

I seance l 123451 

If successful, the command does not print any confinnation after removing the job from the queue 
or killing the related executing application and releasing the affected nodes. Errors (for example an 
invalid job number given as the argument) will cause an explicit error message to be printed on the 
console. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 125



3.5 SOFTWARE ENVIRONMENT 101 

3.5.3 DEBUGGER 
A debugger enables the programmer to step through code in execution, place breakpoints in the code, 
view memory, change variables, and track variables, among other capabilities. One of the most 
common serial debuggers available is the gnu debugger (gdb). The gdb debugger is a command-line 
debugger where the user can give a series of commands to set a break point, continue execution, 
examine a variable, set a watch point, etc. Table 3.2 gives a few of the basic gdb commands. 

To debug a code, that code must be compiled with debugging information included. For most 
compilers this is accomplished by adding the "-g" flag to the list of compiler flags when compiling. An 
example of this using the gnu debugger to alter the execution flow of a serial dot-product computation 
is provided in Fig. 3.4. 

Debugging a parallel application on a commodity cluster introduces several complications. These 
are addressed in further detail in Chapter 14. A simple and straightforward way to debug a parallel 
application on a commodity cluster is to launch a serial (nonparallel) debugger for each process. An 
example is provided in Fig. 3.5. 

3.5.4 PERFORMANCE PROFILING 
Profiling the performance of an application on a commodity cluster can be carried out in a very similar 
way to debugging, by launching serial performance profilers on one or several processes. The Linux 
pe,futility provides a simple interface for profiling a serial application and can be launched on a single 
process of a parallel application. An example of launching the serial performance profiler pe,f in 
conjunction with an MPI supercomputing code is given in Figs. 3.6 and 3.7. Further discussion and 
details of performance profiling on supercomputers are given in Chapter 13. 

3.5.5 VISUALIZATION 
There are many open-source and proprietary solutions for visualization of data generated in a 
commodity cluster. One ubiquitous command-line and script-driven solution is gnuplot. An example 

Table 3.2 A Few Basic gnu Debugger Commands 

. ~i t1~.iknri : 
gdb <executable name> Starts the gnu debugger on the specified executable 

Starts executing the code 

Lists the current source code where execution is paused 

bt Provides a back trace from the stack 

p <variable name> Prints the variable value 

set var <var> = <value> Sets the value of the specified variable 

watch <var> Sets watch point on specified variables 

b <filename>:<line number> Set break point at specified source code line number 

C Continue execution after pausing after a break point or some other pause 

quit Quit 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 126



102 CHAPTER 3 COMMODITY CLUSTERS 

1 /Ii ncl ude <stdl i b. h> 
2 //include <stdio. h> 
3 
4 int ma in( int argc ,char ••argv) ( 
5 inti: 
6 II Make the local vector size constant 
7 int local_vector_size"" 100; 

9 II initialize the vectors 
10 double •a, •b: 
11 a=(double•}malloc( 
12 1 ocal_vector _s i ze•s i zeof ( doL1bl e)): 
13 b~ (double•l malloc( 
14 l oca 1 _vector _s i ze•s i zeof (double l l ; 
15 for (i=O:i<local_vector_size:i++J ( 
16 a[i J = 3.14: 
17 b[ i J - 6 .67: 
18 
19 //compute dot product 
20 doublesum=D.D: 
21 for (i=O:f<local_vector_size:i++) I 
22 sum+-=a[i]•b[iJ: 
23 
24 printf("Thedot product is%g\n".sum): 
25 
26 free(al: 
27 free( b): 
28 returnO; 
29 I 

Launch gdb on the executable (a.out here): 

andersmw@cutter:~/learn$ gdb ./a.out 

Command line interaction with gdb: 
Reading symbols from ./a.out •• ,done. 
(gdb) b dotprod_serial. c: 17 
Breakpoint 1 at Bx4BB5ef: file dotprod_seria\.c, line 17. 
(gdb) r 
Starting program: /home/andersmw/learn/a. out 

Breakpoint 1, main (argc=l, argv=8x7fffffffdfeB) at dotprod_serial.c:17 
17 b[il = 6.67; 
(gdb) p i 
$1 = B 
(gdb) l 
12 local_vector _size•sizeof (double)); 
13 b = (double •> manoc( 
14 local_vector _sizO*sizeof (double)); 
15 for (i=8;i<local_vector_size;i++) { 
16 alil = 3.14; 
17 b(i] = 6.67; 
18 } 
19 // compute dot product 
2B double sum = B.0; 
21 for (i=8;1<loca\._vector_size;i++) { 
(gdb) set var 1=108 
(gdb) c 
Continuing. 
The dot product is e 
[Inferior 1 (process 24118) exited normally] 
(gdb) D 

FIGURE 3.4 

Example usage of the gnu debugger. The left panel illustrates a simple serial dot-product computation. The right 
panel illustrates command-line interaction with the gnu debugger, including the setting of break points, printing 
variables, setting variables, and continuing execution. In the gnu debugger interaction, the loop variable in source 
code line 15 is reset to be 100, forcing the exit of the loop and the null dot-product result. 

andersmw@cutter:~/learn$ mpirun -np 2 xterm -e gdb ./a.out 
0 

®() (I) • i.lll!ldl! 
GNU gdb (llbuntu 7.7.1-tu5"14.04.2l 7.7.1 
COl>,rlgl\t (C) 2014 Free Sofwore foundation, Inc. 
License GPLv3+: GNU CiPL \ler'$1on 3 or later <http://gnu.org/ltcensea/gpl.ht11l> 
This is free software: ~ are fr-cc to change and redlstr-lbute It. 
There Is liD '1111111AHTY, to the °"tent peroitted by 18". Tl!PO "show C<Jp\jlng" 
and '"shot, W11Tant1t" for details. 
Thts GDJ 1itaS configured= ·xes_64-llnux-snu·. 

· T\jpe "$how conftguratton• fOf" conflgLration details. 
For bug n,porttng tnstructtom, ploaae :ee: 
<http:/ lww.gnu.orgl,of......,,sdJ>,'bugs/). 
Find the GDB IIISOOal and other doculaent.atton l"HOUr"Ces onllne at: 
<http://-.gnu.org/,of......,,gdb/~tlon/). 
For help, ~ "help". 

' Tw:-e ·.-op03 word" to 8Nr"Ch for ~ related to 0 1110t'd" ••• ~\1 oy,,bols froa ,/a.out ••• (no debugging oy,,bols found) ••• done. 

FIGURE 3.5 

....... ;x,~ 
GIIIJ gdb (Ubuntu 7.7.1-aubuntu5"14.04.2) 7.7.1 
COl>,rigllt (C) 2014 f,... Sofwore Foundation, Inc, 
Llcen!e GPLv3+: GNU GPL Yet'$lon 3 or later <http://gnu.org/licenses/gpl.ht(l)I> 
Thta is Free software: lP-1 4N free to monger and redistribute It. 
There ts liD IIRIIRAHTY, to the extent pen,itted by 1... ll!PO "shoo C<Jp\Jing" 
and "show Y&Tan~• for details:. 
This GDB was config,.red as "x86.64·1t"-"'-gnu". 
ll(Pe "show conftgi.Nt.lon" For configuration detat ls. 
FOt"' bug reporting lf'ISt.Nl:tiom:, ple.ne ne: 
<http:11-.gnu.orglsof.......,,gdblbugsl>. 
Find the GDB ~I and other do:cwlentatton re$0Ul"'C8$ online at: 
<http:11 ..... gnu.orgl,oft--.lgdb/-t.otiorv>. 
For halp, l.\jPO "help". 
l!:IJ)e •apropos wcrd· to search fer CCrlllllWld9 related to ·wcrd• ... ~l"fi ..,.i,ols fr.. .la.out. ••• (no debugging ..,.i,ols found) ••• doo<I. 

Using the "mpirun" command, the gnu debugger is launched for each process to enable parallel debugging. Two 
processes are launched here. More details on parallel debugging are given in Chapter 14. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 127



3.5 SOFTWARE ENVIRONMENT 103 

andersmW@cutter:~/learn$ mpirun -np 7 , /a. out -np 1 perf record . /a, out 
The sum of the ranks is 28 
I perf record: Woken up 1 times to write data I 
I perf record: Captured a~d wrote 0,034 MB perf,data (~1474 samples) ] 

FIGURE 3.6 

In this example, a parallel application is run on eight cores where the serial Linux performance counter tool, perf, 
is run on the application (called a.out here) in just one of those cores. The perf utility is given the instruction to 
"record" the events in this example for postprocessing. Postprocessing is shown in Fig. 3.7. 

FIGURE 3.7 

Samples: 125 of event 'eye les' , Event count (approx. ) : 68985441 
ve rhead Command Sha red Ob ect S mbo l 

5, 76% a.out ld-2, 19, so 
5.13% a.out ld-2, 19. so 
4 . 16% a.out libc-2. 19. so 
4. 07% a.out [kernel. kallsyms l 
3. 20% a.out libc-2. 19, so 
2.87% a.out [kernel. kal lsymsl 
2, 87', a.out [kernel. kal lsymsl 
2, 79% a.out [kernel. kallsymsl 
2,63"r, a.out [kernel. kal lsymsl 
2.58% a.out [kernel. kallsymsl 
2.52% a.out [kernel. kallsyms l 
2,42% a.out libopen-pa l. so. 13 
2. 351\s a.out libc-2. 19. so 
2.31% a.out libc-2. 19. so 

I, l do_ lookup_x 
[, l _dl_ lookup_symbol_x 
[,] memset 
[kl perf _event_aux_ctx 
I, l _st rncmp_sse2 
[kl _d_lookup_rcu 
[kl clear _page_c 
[kl native_write_ms r _safe 
[kl fo rmat_decode 
[kl shmem_getpage_gfp 
[kl _rmqueue 
[. l opal_memory_ptmalloc2_malloc 
I, l vfprintf 
[. l malloc 

The postprocessing of the results from the serial performance record in Fig. 3.3 originating fro.rn a parallel 
execution is reported using the "perf report" command. 

FIGURE 3.8 

"geodesics.dat" u 4:5:6 -
"horizon.dat" --

' '- I I' ,,,, - - -.. : :: : ::. ::.:.:., : :=-=-=== - - - - - -. ..._ ...... :«--- - -

===~~~f~:l~~~:::--

-60 -40 -20 0 20 40 60 

60 

40 

20 

:j 0 

-20 

-40 

-60 

Visualization of the bending of light around a spinning black hole using gnuplot. 

--

I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 128



104 CHAPTER 3 COMMODITY CLUSTERS 

FIGURE 3.9 

I/To run this file, type: gnuplot -persist plot.gnu 
2 sp[-70:70][-70:70][-50:50] "geodesics.dat" u 4:5:6w lines 
3 unset ztics 
4 set style line! lt 1 lw3pt3linecolorrgb"blue" 

replot "horizon.dat" with lines ls I 
II bottom 
set view 0,0 
replot 

Script10 gener-ate Fig. 3.8. The fourth, fifth, and sixth columns of the file "geodesics.dat" are used to plot the light 

rays; the spinning blackho\~ horizon-is-adde_g__t~ th_t! figure from the "horizon.dat" file. These data files are 
available for download at the textbook website. -

of gnuplot visualization is provided in Figs. 3.8 and 3.9. Visualization is covered in greater detail in 
Chapter 12. 

3.6 BASIC METHODS OF USE 
3.6.1 LOGGING ON 
Some readers may already be familiar with the login procedure on common desktop machines. It 
typically requires providing the user identifier (or clicking on a corresponding icon) and typing a 
correct password to verify that the person attempting to log on is the same as the one who set up the 
password. Unfortunately, this method requires direct proximity to the target computer, which is not 

_ _,,, practical with systems hosting thousands of users or located far away. Hence the login has to be 
performe<fover the network utilizing a computer local to the user to act as a connection client. Most 

~ercomputers provide the Secure Shell (SSH) managed logins, which require that an SSH client is 
instaHed on the user's machine. Secure connections are preferred, as they thwart most eavesdropping 
attempts by using strong encryption of all communications, including login information and 
passwords. Most UNIX-like computers are typically configured to include the SSH program used 
for this purpose, and on Windows one can install the popular PuTTY package to achieve the same 
goal. While PuTTY provides a dialog window that manages the login procedure, a login sequence 
using a command prompt in a terminal window or console is described below. For those unfamiliar 
with UNIX systems, launching the program called xterm is recommended to get the command 
prompt. Depending on the system, there may be other graphical terminal emulators available, such as 
gnome-terminal, konsole, or urxvt. If using a console directly (and after a successful login to 
the local computer), secure communication with a target computer is achieved after typing at the 
command prompt: 

I ssh -l user03 cluster.hostname.ed~-J 

In this example the SSH client connects to the account of user03 on the login node 
cluster. hostname. edu. Note that the user ID refers to the user's login name on the target machine, 
here identified as cluster.hostname.edu, and not the one on which SSH was invoked. After the 
connection is established, the SSH client prints a password prompt on the client machine and the user 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 129



3.6 BASIC METHODS OF USE 105 

should supply the account password, again for the target machine. Alternatively, the above command 
may be invoked as: 

1.ssh user03@cl Oster. hostname .edu I 
If the password is accepted, SSH will respond with the remote machine command prompt in the local 
terminal. Arbitrary commands may be entered at this prompt and executed in the same way as if they were 
invoked directly on the remote machine. To finish the interactive session on the remote computer and 
return to the local shell prompt, it is necessary to type exit or simultaneously press Control and D keys. 

Another utility, scp, is a close companion to SSH and often installed with it. It enables secure 
transfer of files between the local and remote computers. For example: 

scp . /myfil e user03@tluster.hostname'.edu: 

This copies the local file myfi 1 e from the current working directory on the local machine to the 
home directory on the cluster. hostname. edu host. Note that the colon following the remote host 
name is required to inform the scp that the second argument is a host and not a file name. Transfer of 
directories is accomplished by specifying the - r option: 

scp -r user03®c.lyster .• hostnarne.E!dµ:/}mp/user03/91r 

This command copies the directory /tmp/user03/di r with all its contents to the current working 
directory on the local machine. An absolute path was specified for the source directory, but only its last 
component, di r, will be created and populated on the local machine. 

3.6.2 USER SPACE AND DIRECTORY SYSTEM 
Persistent infonnation in a computer has to be stored in a secondary storage system (such as a disk or 
SSD), since the contents of RAM are volatile. File systems organize this information into hierarchical 
name spaces, where each chunk of data can be properly named and attributed for access. The indi
vidual datasets and program executables are stored infiles. Which parts of the data belong in each file 
and how to subdivide the computational datasets into files is at the discretion of the user. Each file in a 
file system has a unique name by which it can be accessed by executing programs. Files are stored in 
logical containers called directories; a directory may also include other directories, permitting building 
of tree-like structures with arbitrary depth. Like files, directories also have unique names. UNIX-like 
systems use single-rooted name spaces for all file systems in current use. 

A path describes a file or directory identifier that is sufficient to locate it in the file system hier
archy. Path components, from left to right, name the subsequent containing directories in descending 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 130



106 CHAPTER 3 COMMODITY CLUSTERS 

order (from the root downwards). The last component of a path identifies the target file or directory in 
its immediate containing unit. In UNIX (and therefore Linux), path components are separated by 
forward slashes("/"), hence the individual directory or file names should not contain forward slashes to 
avoid confusion. By convention, "f' denotes the topmost directory in a file system, referred to as the 
"root". "/tmp/myfile" identifies a file called "myfile" stored in a directory called "tmp", one level 
below the root. The typical location of files owned by a specific user on most machines is in the 
directory "/home/user", where "user" is substituted with the login ID of that user. The users are free to 
create their own subtrees of directories and files in these locations. While the exact details of name 
space taxonomy may vary from system to system, in Linux they are regulated by an informal speci
fication, Filesystem Hierarchy Standard (FHS) [12], maintained by the Linux Foundation. It defines 
the typical layout as containing the following directories. 

• "/bin" contains critical executables that may be used during system boot 
• "/shin" contains critical system executables that may be used during system boot 
• "nib" includes libraries for the essential executables in "/bin" and "/shin" 
• "/usr" is a root of secondary hierarchy containing mostly read-only data. Notable subdirectories 

of "/usr" include the following. 
• "/usr/bin" contains nonessential executables, typically system-wide application binaries. 
• "/usr/sbin" contains nonessential system executables such as auxiliary services and daemons. 
• "/usr/lib" holds libraries used by executables in "/usr/bin" and "/usr/sbin". 
• "/usr/include" contains "include" files (headers) used by compilers. 
• "/usr/share" includes shared, architecture-independent data frequently associated with the 

installed systemwide applications. 
• "/usr/Iocal" stores local, host-dependent data. It has additional subdirectories similar to those 

of "/usr", such as "bin", "include", "lib", and others. 
• "/home" hosts individual user subdirectories with their own settings, configuration files, and 

custom user datasets. 
• "/tmp" is a systemwide store for temporary data that is cleaned after every reboot. While on 

desktop machines its capacity may be limited, on cluster computing nodes with dedicated storage 
it is often configured to provide a sizable scratch space with its own data retention policy. 

• "/dev" keeps entries representing physical and logical devices under the control of the OS. These 
entries are not regular files, and special care should be exercised when accessing them. 

• "/etc" stores host-specific configuration files. 
• "/var" contains logs, spools, email, temporary files, and other variable datasets. 
• "/root" provides a dedicated home directory for the superuser (administrator). 
• "/opt" is used to store optional packages, frequently third-party proprietary or licensed software. 
• "/mnt" contains temporarily mounted file systems. 
• "/media" includes mount points for external removable storage media such as USB drives 

(including flash), e-SATA drives, and CD- or DVD-ROMS. 
• "/proc" and "/sys" are pseudo-file systems (not backed up by physical storage devices) providing 

runtime process data, memory allocation, 1/0 statistics, performance information, and device 
configuration and status. These file systems are frequently used by monitoring programs and scripts 
to obtain access from user space to certain types of information maintained by the OS kernel. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 131



3.6 BASIC METHODS OF USE 107 

Unlike some other OSs, UNIX-compatible systems do not introduce distinct directory hierarchies 
for each storage device. Instead, the contents of a file system associated with a specific device are 
mounted under some predefined directory (called a mount point). The location of that directory in the 
hierarchy may be arbitrary, and is typically preselected by the system administrator or a suitable device 
access daemon. This offers the benefit of being potentially able to reach any of the files and directories 
available in the entire node by performing a recursive traversal of the hierarchy starting from its root. 
To examine the currently mounted file systems, the user may issue the "disk free" command: 

The example output may look as follows: 

Filesystem s,ze Used Avail Use% Mounted on 
udev 16G 12K 16G 1% /dev 
tmpfs 3.2G 1. 7M 3.2G 1% /run 
/dev/sda2 235G 146G 78G 66% I 
none 4.0K 0 4.0K 0%. /sy.s/fs/cgroup 
none 5.0M 0 5.0M 0% /run/lock 
none 16G 3.3G 13G 21% /.run/shm 
none lOOM 0 lOOM 0%, /run/user 
/dev/sdal 290M 175M 96M. 65% /boot 
/ dev /mapper /vgO-home 6.8T 4.6T 1.9T 72%. /home 

The devices representing individual component file systems are listed in the leftmost column and 
the corresponding mount points in the rightmost column. The command also presents the actual size of 
storage devices suffixed with a proper unit ("K" for kilobytes, "M" for megabytes, "G'' for gigabytes, 
and "T" for terabytes). For users generating a lot of data, "Avail" and "Use%" columns are of particular 
interest, as they show how much free space is remaining on each device. 

To list the contents of any directory an ls command is used. If invoked without any options, it will 
simply print the names of all files in the current working directory in several columns. It is far more 
useful to see various attributes of files, such as their sizes, access permissions, modification time
stamps, and so on. For example: 

I 1 s -haH /some/path I 
This command is going to output information about all files and directories contained in "/some/ 

path" directory, or, if "/some/path" is a file, only about that file. The output data produced with the 
"long" ("-l") option shows the file ownership (user and group), its size, the last modification date and 
time, and file name. Other options add useful features: "-a" will list "hidden" entries (all items whose 
names start with a period"."); "-h" converts numbers to "human-readable" format with suffixes instead 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 132



108 CHAPTER 3 COMMODITY CLUSTERS 

of printing size data in bytes; and "-F' appends a symbol after each name indicating the type of entry. 
Thus directory entries will end in "f' and executable files in"*"· The ls command offers many more 
useful options; to see what they do one can access the relevant manual page by typing 

Of course, the man command can also display information about other commands available in the 
system. Exploration is strongly encouraged! 

To navigate the directory hierarchy, one of the most useful commands is "change directory". For 
example, typing: 

at the prompt will move the shell context to the closest encompassing directory. The double dot 
notation is a special shortcut to denote the parent directory; similarly, single dot(".") has a special 
meaning indicating the current directory. This notation introduces another important concept, namely 
that of relative paths. So far, all examples have used paths that begin at the root (the first character is 
"f'). To reach the final component of such a path, called the absolute path, the system needs to start at 
the root and traverse all component subdirectories. However, it is frequently more convenient (and on 
occasion faster) to indicate the target location relative to the current working directory. Thus speci
fying " . ./tmp/some_file" while located in "/usr" directory would effectively refer to a file described by 
an equivalent absolute path "/tmp/some_file". To verify that the directory change performed by the last 
command actually happened, a "print working directory" command may be called: 

If the previous command was invoked in the user's home directory, the result of the last command 
will likely be "/home". Another useful path shortcut is a tilde("~"), which expands to the user's home 
directory. Hence executing the following will change the working directory to the parent directory of 
the user's home independent of where it is invoked: 

Both files and directories can be added to and removed from the hierarchy at will. To create a new 
directory, a "make directory" command is issued: 

I mkdi r /tmp/user13 I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 133



3.6 BASIC METHODS OF USE 109 

This will create an empty "user13" subdirectory in the systemwide temporary data directory. Since 
it is owned by the creating user, it may subsequently be used to store arbitrary data attributed to that 
user. Very few system directories delineated by FHS have this property; typically creation of new 
entries in system directories by regular users will be denied (for good reasons!) due to insufficient 
access rights. Note that creating directories with paths containing multiple components that do not 
exist yet requires a "-p" option (for "parents"). Removal of files and directories is achieved with 
"remove" or the rm command. Thus: 

I rm· -r ~/rny_jobs I 
deletes the "my_jobs" subdirectory from the user's home. While removing files does not require 

any special options, for directories one needs to specify "-r" (meaning "recursive") to scan for and 
eliminate all the contents within the directory. Since the rm command is frequently configured with a 
fail-safe interactive mode that requires the user to confirm deletion of every entry, this is often 
impractical for subdirectories containing thousands of files. For that reason a "-f' or "force" option 
may be specified to suppress any confirmation prompts. 

Note that rm -fr is one the most dangerous commands on UNIX systems. Since there is no 
undelete functionality integrated with most file systems, all deleted files and directories are usually 
irretrievably lost. 

Another useful set of commands performs moving, renaming, and copying of file system entries. To 
relocate a file or directory to another location, a "move" command is used, with the first argument 
being the source path and the second being the destination path: 

I rnv /trnp/useri3/src ~/dst I 
Interestingly, the outcome of this command depends on whether "dst" exists and is a file or directory. 

If it is a directory, "src" will be removed from the "/tmp/user13" directory and stored in the "dst" 
directory (this works independently of the original "src" being a file or directory). If both "src" and 
"dest" are files, "src" will be removed from "/tmp/user13" and stored in the user's home under a new 
name, "dst". Since this operation also destroys the original contents of the file "dst", mv typically will ask 
the user to confirm the operation. If "src" is a directory but "dst" is a file, the command unconditionally 
fails (one cannot move a directory into a file). Finally, if there is no object named "dst" in the home 
directory, the operation removes the original entry from "/tmp/user13" and stores it in the user's home 
renamed as "dst". Since no preexisting files are overwritten, mv does not issue confirmation prompts in 
this case. As can be seen, the mv command is quite multifaceted in that it combines the semantics of 
relocating the objects in the file system hierarchy, object deletion, and object name modification. 

Most of the remarks described for move can be applied for the copy command, or cp. There are two 
crucial differences: cp does not remove the original entry referenced by the source path, and the 
explicit "-r" option has to be specified for all operations in which the source path is a directory. Thus 

I Cp -r "'/data/set5 -I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 134



110 CHAPTER 3 COMMODITY CLUSTERS 

replicates "set5" directory in the current working directory, leaving the source directory intact. 
While this guide introduces some of the most essential file system operations, the world of POSIX 

commands has much more to offer. Listed below are other commonly available commands suggested 
for further exploration that can be carried out by consulting the related manual pages (using the man 
command) in a working system: 

• cat concatenates the contents of multiple files, but is also useful for printing their contents 
• less permits browsing the contents of text files, scrolling line by line or page by page, or 

advancing directly to points requested by the user 
• chmod changes the access permission flags for a file or directory 
• chown changes the file ownership (user and group) 
• In creates a link (named reference) to a file system object 
• du computes the total storage usage by a specific file or directory 
• touch updates the file timestamp or creates an empty file 
• head prints out the starting lines of a file 
• tail prints out the final lines in a file 
• wc computes the count of characters, words, and lines 
• file guesses the file format based on its contents (not extension) 
• find searches for specific files and directories 
• grep searches for patterns and phrases in files 
• uname prints out brief information about the system in use 
• ps lists processes in the system 
• top ranks the processes in order of resource usage 
• kill sends signals to processes, in particular allowing their termination 
• bash is the primary shell on most systems. 

The suggested topics to master include I/0 redirection, pipelines, globing, command aliasing, user 
environment initialization, variable expansion, job control, and basics of scripting. 

3.6.3 PACKAGE CONFIGURATION AND BUILDING 
The source code of most software packages is distributed in the form of so-called tar archives. tar is a 
utility to create, examine, and unpack the contents of these archives. They retain the original directory 
layout and file contents of the package-build directory and include the configuration data required to 
build the binaries on another platform. In addition, the archives may be compressed to save storage 
space. The following command lists the contents of the archive "package.tgz": 

I tar tvf package.tgz I 
The archives may use different extensions depending on the used compression algorithm. Thus 

".tar" indicates an uncompressed archive, files ending in ".tgz" and ".tar.gz" were prepared using gzip 
compression, while ".tbz2" and ".tar.bz2" are the result of applying the bzip2 tool. Other compression 
formats are also possible. Recent versions of tar are capable of recognizing the compression algorithm 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 135



3.6 BASIC METHODS OF USE 111 

automatically and do not require specific command-line options for that purpose. The archive is 
unpacked by invoking: 

I tar xf package. tgz I 
Typically the command will create a subdirectory tree in the current working directory containing 

the package source files and configuration scripts. There may also be README and INSTALL files 
providing additional configuration and installation instructions. Before initiating the build process, it is 
worth examining various configuration options to customize the features of created executables and 
libraries properly. After changing the working directory to the top directory of the unpacked archive 
contents, it may be done with: 

,/configure --help I 
Most commonly, options like "-prefix" that determines the final installation directory, "-with-mpi" 

that includes MPI support, and "-with-omp" that enables OpenMP-based multithreading are of in
terest. The final configuration may be then generated as: 

./configure --prefix=/home/userl3/some..,.package 

The last command creates the necessary makefiles, which are files that contain various definitions, 
rules, and commands required to execute the build process successfully. Makefiles are utilized by the 
make utility, which optimizes the build process by only executing commands for which the de
pendencies are newer than the build target. Default makefile names include "makefile", "Makefile", 
and "GNUmakefile", although the last should be used only for build scripts that contain GNU-specific 
extensions. To start the build process, one needs to issue: 

I make -j9 I 
While the make command alone would suffice, the "-j" option initiates a much faster parallel build 

using multiple processors in the system. The commonly applied rule of thumb suggests passing it an 
argument that equals the number of available cores plus one, thus the above command should work 
well on eight-core platforms. The final step when preparing new packages for use is installation of the 
generated programs, libraries, and data to the target directory. This is accomplished through: 

lmake install I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 136



112 CHAPTER 3 COMMODITY CLUSTERS 

3.6.4 COMPILERS AND COMPILING 
Cluster supercomputers provide several suites of compilers and debugging tools to support the diverse 
user community using the cluster. The individual user environments are most frequently customized 
using a module system. Using modules, the compilers and relevant environment paths can be changed 
in a dynamic way transparent to the user. A list of the most common module commands is given in 
Table 3.3. An example of module usage on a Cray XE6 is provided in Fig. 3.10. 

With the specific compiler flavor and version controlled by loading modules, compiling a source 
code usually translates into invoking a compiler wrapper and supplying compiler flags along with the 

Table 3.3 A List of Commonly Uses Module Commands for Dynamically Controlling the User's 
Software Environment 

l\fodule Comm~, D•i>tJoi:i• ,, 

module load [module name] Loads the specified module 

module unload [module name] Unloads the specified module 

module list Lists the modules already loaded in the user environment 

module avail <string> Lists the available modules that can be loaded; if a string is 
provided, only those modules starting with that string are listed 

module swap [module I] [module 2] Swaps out module I for module 2 

An example of some usage of these commands is shown in Fig. 3.10. Brackets indicate required arguments, while angle brackets 
indicate optional arguments. 

hpstrn01@login1: /N/dc2/scratch/hpstrn01> module list 
Currently Loaded Modulefiles: 

1) modules/3,2. 10.3 
2) eswrap/1,1,0-1,020200.1231.0 
3) craype-network-gemini 
4) cce/8,4.6 
5) craype/2.4,2 
6) totalview-support/1,2.0.2 
7) totalview/8.14,0 
8) cray-libsci/13.2.0 
9) udreg/2.3,2-1.0502.10518.2. 17 .gem 

10) ugni/6,0-1.0502.10863,8,28,gem 
11) pmi/5.0.10-1,0000. 11050.179,3,gem 
12) dmapp/7 .0.1-1.0502.11080.8. 74.gem 

13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 

gni-headers/4.0-1.0502, 10859. 7. a.gem 
xpmem/0.1-2,0502, 64982. 5, 3.gem 
dvs/2.5_0.9.0-1,0502,2188. 1, 113.gem 
alps/5. 2.4-2. 0502. 9774, 31, 12, gem 
rca/1. 0. 0-2.0502, 60530, 1. 63. gem 
atp/1,8,3 
PrgEnv-cray/5. 2, 82 
craype-interlagos 
c ray-mpich/7. 2. 6 
moab/8,0, 1 
torque/5, 0, 1 

hpstrn01@ll)gin1: /N/dc2/scratch/hpstrn01> module avail PrgEnv 

-------------- /opt/cray/modulefiles ---------
PrgEnv-cray/5, 2. 82 (default) PrgEnv-intel/5. 2. 82 (default l 
PrgEnv-gnu/5, 2, 82 (default) PrgEnv-pgi/5, 2, 82 (default) 
hpstrn01@login1:/N/dc2/scratch/hpstrn01> module swap PrgEnv-cray PrgEnv-gnu 
hpst rn01@login1: /N/dc2/scratch/hpst rn01> 111 

FIGURE 3.10 

An example of using modules to control a user's software environment dynamically. The first command, module 
list, lists the modules already loaded. The second command lists the modules available for loading, which begin 
with the string "PrgEnv". The last command swaps out the Cray programming environment for the GNU pro
gramming environment. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 137



3.7 SUMMARY AND OUTCOMES OF CHAPTER 3 113 

source code in the same way as is done when compiling a serial (nonparallel) application. In cluster 
environments, the C compiler wrapper for applications using the MPI (see Chapter 8) is most 
frequently called mpicc. 

3.6.5 RUNNING APPLICATIONS 
After accessing compute nodes from the resource management system, as summarized in Section 3.5.2 
and detailed in Chapter 5, the user can launch a parallel application on the compute nodes using a shell 
script to start the computation if using an application in a distributed memory context. In the case of 
using the MPI, this shell script is most often called mpirun. The most important argument it takes is the 
flag specifying the number of processes to launch, usually given by -n <# of processes>. Other 
options and flags associated with the mpirun script can be found by passing to the script the help flag, 
-h. In the case of launching a shared memory application with OpenMP (see Chapter 7), no shell script 
is needed to start the application. 

3,7 SUMMARY AND OUTCOMES OF CHAPTER 3 
• A commodity cluster is a group of integrated computer systems. The component computers are 

standalone, capable of independent operation, and marketed to a much broader consumer base 
than the scaled clusters which they comprise. The integration network employed is separately 
developed and marketed to be used by a systems integrator. 

• A commodity cluster is constructed from a set of processing nodes, one or more interconnection 
networks that integrate the nodes, and secondary storage. 

• A node of a cluster contains all the components required to serve as a standalone computer. 
• Commodity clusters benefit from high performance relative to cost due to the economy of scale 

achieved by mass production. 
• A node incorporates one or more processor cores and sockets, main memory banks, a 

motherboard controller, an onboard network connecting all the components, external I/O 
interfaces including an NIC to the SAN, possibly one or more disk drives for nonvolatile storage 
of data, user program code, and system libraries. 

• The principal programming modes for parallel programming involve using parallel library 
application programming interfaces that have bindings to sequential languages. 

• The OS provides the software environment and services necessary to use the computer and 
execute custom applications. It consists of a kernel that manages hardware resources and 
arbitrates access to them from other software layers, system libraries that expose a common set of 
programming interfaces permitting the application writers to communicate with the kernel and 
underlying physical devices, additional system services performed by the background processes, 
and various administrator and user utilities that comprise programs invoked by users of the 
computer to accomplish specific minor tasks. 

• Large computers employ resource management systems to coordinate accesses to multiple 
execution units, memory allocation, network selection, and persistent storage allocation. 

• A debugger enables the programmer to step through code in execution, place break points in the 
code, view memory, change variables, and track variables. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 138



114 CHAPTER 3 COMMODITY CLUSTERS 

• A simple and straightforward way to debug a parallel application on a commodity cluster is to 
launch a serial (nonparallel) debugger for each process. 

• Persistent information in a computer has to be stored in a secondary storage system (such as a disk 
or SSD), since the contents of RAM are volatile. File systems organize this information into 
hierarchical name spaces, where each chunk of data can be properly named and attributed for 
access. 

• Cluster supercomputers provide several suites of compilers and debugging tools to support the 
diverse community using the cluster. The individual user environments are most frequently 
customized using the module system. 

3.8 QUESTIONS AND EXERCISES 
1. What are the four principal components of a commodity cluster? Describe their functions. 
2. Name the required and optional hardware components of a cluster node and describe their 

properties. Which of them would be more suitable for installation in a compute node and which in 
a host node? What would be their preferred traits and parameters in each of these environments? 

3. Expand and explain the COTS acronym. What is the role of COTS components in a commodity 
cluster? 

4. Contrast a commodity cluster and NOW. What are the drawbacks and benefits of each? 
5. List elements of the software environment critical to cluster operation. Which of these 

components directly involve interaction with the user? 
6. What are the steps required to develop and execute a custom application on a cluster? 
7. Describe two primary named entities supported by file systems. Why is maintaining consistent 

organization of file system hierarchy such as the one suggested by FHS important to daily 
operation of a computing center? 

REFERENCES 
[I] M. Baker, R. Buyya, Cluster computing: the commodity supercomputer, Software - Practice and Experience 

29 (6) (1999) 551-576. 
[2] USB-IF, Universal Serial Bus Revision 3.1 Specification, Revision 1.0, July 26, 2013 [Online]. Available: 

http://www.usb.org/developers/docs/usb_3 I_061917.zip. 
[3] PCI Special Interest Group, PCI-Express Base Specification Revision 3.la, December 7, 2015 [Online]. 

Available: http://pcisig.com/specifications/pciexpress/. 
[4] R.M. Metcalfe, D.R. Boggs, Ethernet: distributed packet switching for local computer networks, Commu-

nications of the ACM 19 (7) (1976) 395-404. 
[5] F. Faggin, M.E. Hoff, S. Mazor, M. Shima, The history of the 4004, IEEE Micro 16 (6) (1996) 10-20. 
[6] C.A.R. Hoare, Communicating sequential processes, Communications of the ACM 21 (8) (1978) 666-677. 
[7] MPICH: High-Performance Portable MPI, [Online], 2017. Available: https://www.mpich.org. 
[8] T.L. Sterling, J. Salmon, D.J. Becker, D.F. Savarese, How to Build a Beowulf, MIT Press, 1999. 
[9] W. Gropp, E. Lusk, T. Sterling, Beowulf Cluster Computing with Linux, second ed., MIT Press, 2003. 

[!OJ B.W. Kernighan, D.M. Ritchie, The C Programming Language, Prentice Hall, 1978. 
[11] B. Stroustrup, The c++ Programming Language, fourth ed., Addison-Wesley, 2013. 
[12] The Linux Foundation, Filesystem Hierarchy Standard (FHS), July 19, 2016 [Online]. Available: https:// 

wiki.linuxfoundation.org/lsb/fhs. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 139



BENCHMARKING 4 
CHAPTER OUTLINE 

4.1 Introduction ............................................................................................................................... 115 
4.2 Key Properties of an HPC Benchmark .......................................................................................... 117 
4.3 Standard HPC Community Benchmarks ......................................................................................... 120 
4.4 Highly Parallel Computing Unpack .............................................................................................. 120 
4.5 HPC Challenge Benchmark Suite ................................................................................................. 123 
4.6 High Performance Conjugate Gradients ........................................................................................ 126 
4.7 NAS Parallel Benchmarks ........................................................................................................... 130 
4.8 Graph500 ................................................................................................................................... 132 
4.9 Miniapplications as Benchmarks ................................................................................................. 135 

4.10 Summary and Outcomes of Chapter 4 ........................................................................................... 138 
4.11 Exercises ................................................................................................................................... 139 
References .......................................................................................................................................... 139 

4.1 INTRODUCTION 

Benchmarking efforts for evaluating the performance of a computer have been ongoing since the 
beginning of the age of general-purpose computers. The nature of those benchmarks has generally 
reflected the intended purpose for which the computer was built, while also providing an empirical 
performance measure that can be compared against the manufacturer's theoretical performance esti
mate. In the case of the first general-purpose electronic computer, the electronic numerical integrator 
and computer (ENIAC) ( 1946) [I], the de facto performance benchmark was computing an artillery 
trajectory and comparing the time to solution against a human computing the same trajectory. Modem 
supercomputers employ a wide variety of benchmarks, ranging from linear algebra to graph appli
cations, reflecting the diversity of users on modem systems. Just as in the case of the artillery trajectory 
calculation on the ENIAC, however, user applications are also used on modern supercomputers as de 
facto benchmarks even though they are generally not standardized nor qualified for generic use as a 
benchmark. 

One of the earliest general-purpose benchmarks for evaluating computer performance was the 
Whetstone [2], named after Whetstone village in Leicestershire, England, where the Whetstone 
compiler was developed. This benchmark, first released in 1972, consisted of multiple programs that 

High Performance Computlng. https://dol.org/l0.1016/8978-0-12-420158-3.00004-6 
Copyright© 2018 Elsevier Inc. All righlS reserved. 

115 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 140



116 CHAPTER 4 BENCHMARKING 

JACK DONGARRA AND THE UNPACK BENCHMARK 

Photo by the University of Tennessee, Knoxville via Wikimedia Commons 

Jack Dongarra is one of the most prolific academic researchers, contributing practical advances to high performance 
computing (HPC) applications, algorithms, and tools over a period of 4 decades. With a principal focus on the central 
problem of linear algebra critical to many important applications, Dongarra has advanced methods and libraries for 
effective, efficient, and scalable use of HPC. In so doing he has contributed significantly and provided leadership for such 
open-source libraries as basic linear algebra subprograms (BLAS). Linpack, Lapack. and ScaLapack among others. From 
this work came the most widely recognized computing benchmark, highly parallel Lin pack (HPL), as a derivative of the 
earlier Linpack. HPL is the metric by which the Top 500 list of the last 25 years has been measured, essentially defining 
progress in the field of HPC. Dongarra's more recent work on the high performance conjugate gradients (HPCG) benchmark 
(conjugate gradient) provided another powerful means to explore the capabilities of emerging HPC systems, stressing more 
aspects of their architectural properties. Jack is the founding director of the Innovative Computing Laboratory at the 
University of Tennessee at Knoxville. a Distinguished Research Staff at the Department of Energy Oak Ridge National 
Laboratory. and a member of the National Academy of Engineering. 

created synthetic workloads for evaluating kilo Whetstone instructions per second. In 1980 it was 
updated to report floating-point operations per second (flops). While this was a serial benchmark not 
specifically designed for supercomputing systems, it became an industry standard and was used to 
evaluate the performance of the microprocessors being used in some supercomputers. 

In 1984 a benchmark with a standardized synthetic computing workload, named Dhrystone, was 
released. This benchmark became an industry standard for measuring integer performance. Its name 
reflects its function as the counterpart to the Whetstone benchmark, but intended for integer perfor
mance rather than floating-point performance. Like Whetstone, Dhrystone was not created as a 
supercomputing benchmark but has been used for evaluating microprocessor components of super
computers. Dhrystone has since been superseded by the SPECint suite [3]. 

The genesis of one of the most widely used benchmarks in supercomputing is the Linpack 
benchmark introduced by Jack Dongarra in 1979 and based on the Linpack linear algebra package 
developed by Dongarra, Jim Bunch, Cleve Moler, and Gilbert Stewart [4]. While the Linpack linear 
algebra package has since been superseded by the Lapack library [5] and other competitors, the 
Linpack benchmark continues to exert a strong influence in the field. It provides an estimate of the 
system's effective floating-point performance. Beginning in 1979, results from the Linpack benchmark 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 141



4.2 KEY PROPERTIES OF AN HPC BENCHMARK 117 

on various systems have been collected by Dongarra. This list started with just 23 computer systems 
and ultimately grew to include hundreds. 

The Linpack benchmark employs a workload that solves a dense system of linear equations. That 
is, it solves for x in 

Ax=b (4.1) 

where b and x are vectors of length n and A is an n x n matrix with very few or no zero elements. The 
original Linpack benchmark solved matrices with n = 100 and was written for serial computation. No 
changes to the source code were allowed; only optimizations achieved through compiler flags were 
permitted. A second iteration of the benchmark used matrices with n = 1000 and allowed user 
modifications to the factorization and solver portions of the code. An accuracy bound on the final 
solution was also introduced. The third iteration of the benchmark, HPL, allows variations in both 
problem size and software and can run on a distributed-memory supercomputer. This version of the 
benchmark is used to generate the Top 500 list that is frequently used to rank supercomputers around 
the world. Section 4.3. l discusses HPL in greater detail. 

Today there are a wide variety of general-purpose benchmarks used for evaluating the performance 
of supercomputers and supercomputing elements. These benchmarks often originate from a specific 
application domain with a workload motivated by that application class rather than from a synthetic 
workload to achieve better relevance with respect to actual user applications. Table 4.1 provides a brief 
summary of some of the benchmarks available for HPC users, along with their motivating application 
domain and characteristics. Some of the most highly used benchmarks come in suites containing 
multiple individual benchmarks. Two widely used versions are the HPC Challenge suite [6] consisting 
of seven individual benchmarks (including HPL), and the NAS parallel benchmarks [7] (NPB) ·con
sisting of 19 benchmark specifications and reference implementations. These suites are discussed 
further in Sections 4.5 and 4.7 respectively. 

4.2 KEY PROPERTIES OF AN HPC BENCHMARK 
HPC benchmarks fulfill several important roles in the HPC community. Benchmarks are frequently 
used to help decide the size and type of a supercomputer that an institution procures. In this role, many 
different benchmarks may be used to assess if a candidate supercomputer will adequately address the 
needs of its users. In a similar role, benchmarks are often called upon to estimate the performance of 
certain user applications at processor scales and dataset sizes much larger than those available to the 
user. Benchmarks also help identify and quantify performance upper bounds and limitations for 
specific application algorithms. For emerging technologies, benchmarks play a key role in comparing 
performance between conventional practice and a new technology using the same workloads. On many 
supercomputing systems, benchmarks provide performance milestones against which users can 
compare their specific application performance and make assessments about the efficiency of their 
application. Benchmark results form an important historical record for exploring trends in HPC. 
Finally, benchmarks play an important role in quantifying what percentage of the theoretical peak 
performance a supercomputer can achieve. 

Good benchmarks share several key properties. First, they are relevant and meaningful to the target 
application domain. Second, they are applicable to a broad spectrum of hardware architectures. Third, 
they are adopted both by users and vendors and enable comparative evaluation. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 142



118 CHAPTER 4 BENCHMARKING 

Table 4.1 Brief Summary of Some Benchmarks Used in the UPC Community 

· ApePcation ,;-·/:., 
/&Jifain: . "'.•.-·•,·· 

8en~~k 
··•· 

Worldo,!ld Aim Plltl:lllelmtt ~ij~'1S.\) ;. 
HPL Dense linear Estimate system's MPI (message Part of HPC 

algebra effective flops passing Challenge suite; 
interface) used for Top 500 

list 

STREAM Synthetic Estimate sustainable None Part of HPC 
memory bandwidth Challenge suite 
(GB/s) 

RandomAccess Synthetic Estimate system's MPI, OpenMP Part ofHPC 
effective rate of integer Challenge suite 
random updates of 
memory, reported as 
giga updates per second 
(GUPS) 

HPCG Sparse linear Estimate system's MPI +OpenMP Used for HPCG list 
algebra effective flops for those ranking 

applications poorly 
represented by HPL 

SPEC CPU 2006 Various Estimate system's None Commercial 
effective processor, 
memory, and compiler 
performance 

High Geometric Estimate system's MPI +OpenMP Used for HPGMG 
performance multigrid effective evaluation of +CUDA list ranking 
geometric number of degrees of Comes in two 
multigrid freedom per second flavors: finite 
(HPGMGJ (DOFS) element and finite 

volume 

IS Computational Estimate system's MPI, OpenMP Part of NPBs 
fluid dynamics effective integer sort 

and random access 
performance 

Graph500 Data-intensive Estimate system's MPI, OpenMP Used for Graph500 
applications effective traversed list ranking 

edges per second 
(TEPS) for a graph 
traversal 

Some other de facto properties of successful HPC benchmarks are worth noting. One is that most 
UPC benchmarks are short. Table 4.2 gives the line count for each of the nonproprietary benchmarks 
summarized in Table 4.1. While many HPC user applications regularly exceed 100,000 lines of source 
code, the benchmarks used for evaluating supercomputing resources are generally much smaller. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 143



4.2 KEY PROPERTIES OF AN HPC BENCHMARK 119 

Table 4.2 Approximate Line Count, Parallelism Application Programming 
Interface (API), and Language for the Nonproprietary Benchmarks in Table 4.1 

- · ;_i-.. -.. -._ -- · ··App~~•3t~) <} <~;::::,~ialleDSllt:-•·-. ··.·-,;tangu3ge;. · 
1 -~~~r~ . / : liinif;C()~' • c?<J1t , :~~'.\f : · '.~P~: . ·' b++c• 

HPL 26,700 X X 

STREAM 1500 X 

RandomAccess 5800 X X X 

HPCG 5700 X X X 

IS 1150 X X X 

Graph500 1900 X X X 

HPGMG 5000 X X X 

HPC benchmarks in general specify guidelines about how the benchmark may be run and opti
mized. Similarly, the results from the benchmark can be archived and shared. Among the benchmarks 
in Table 4.2, there are four maintained supercomputer ranking lists associated with four benchmarks: 
HPL [8], HPCG [9], HPGMG [10], and Graph500 [11]. The top supercomputer on each of the lists in 
June 2017 is provided in Table 4.3. 

In addition to providing guidelines for execution, optimization, and result reporting, HPC 
benchmarks generally use standard parallel programming APis such as OpenMP and message passing 

Table 4.3 The Top-Performing Supercomputer in June 2017 for Each of the Four Benchmarks 

n:;;,;_~i:;_.,..;lk'·•• --- Sunercompu•"r c-- (.::,L~ti:O!!ti/ .:':?-, _,:.-~ __ --_._erforma, ______ -- ··,_-__ ,_-_ _ ,-".-_n_. ·c.-_e_·_- -_Resul,_.-- ___ -.-_-.ilc_-____ ',_- - t. o.'ies __ '.--_._i_-_- _ .\,_ ,_- -•·~~""'< \i_:;; -, __ ,,,_r, ., (. _";-,.·; ,>!". - . l'',O _.t; , 

HPL Sunwa TaihuLi ht 93.0 etaflo s 

HPGC 0.6027 etaflo s 

Gra h500 Kobe, Ja an 38621.4 GTEPS 

HPGMG Cori Berkeley, CA, USA 859 gigaDOFS 

The rank of eac/z supercomputer cross-listed on each list is shown in Table 4.4. 

Table 4.4 Ranking of the Top-Performing Supercomputers in June 2017 for 
Each of the Maintained Ranking Lists 

:·S'~~~pu~ 
Sunway Taihu 
Li ht 

Tianhe-2 

K com uter 

Cori 

2 2 

2 2 

8 

6 6 

10,649,600 

705,024 

705,024 

632,400 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 144



120 CHAPTER 4 BENCHMARKING 

interface (MPI) (discussed in Chapters 7 and 8, respectively). They also enable the use of different 
dataset sizes as part of the optimization. For example, the fastest-performing supercomputer for the 
GraphS00 benchmark in June 2016, the K computer in Kobe, Japan, used a graph problem size that was 
smaller than the third-fastest machine in the list even while they benchmarked against the same type of 
workload. For HPC benchmarks in general, while the type of workload may be the same within a list of 
benchmark results, the size of that workload may differ considerably. 

One of the most important properties of an HPC benchmark is that its workload should represent 
some appropriate set of real supercomputer application workloads. This is often one of the most 
difficult properties for a benchmark, and the performance impact of the type of workload can be 
significant. The HPCG benchmark mentioned in Tables 4.1-4.4 is intended to complement the HPL 
benchmark by exploring workloads with data access patterns not exhibited by HPL. The difference 
between the peak performance of these two types of workloads can be seen in Table 4.3. The fastest 
HPCG performance is typically less than 1 % of the fastest HPL performance, illustrating a huge 
performance disparity between these two different types of workloads. In June 2017 the notable 
exception to this was the K computer, which achieves a remarkable 5.3% of the theoretical HPL peak 
performance. HPC benchmarks with workloads that represent real applications enable better perfor
mance estimation and evaluation. 

4.3 STANDARD HPC COMMUNITY BENCHMARKS 
Sections 4.4-4.8 explore several of the most widely used benchmarks in the HPC community. The most 
important of these benchmarks, HPL, is part of the HPC Challenge benchmark suite but is singled out in 
Section 4.4 because of its impact on the HPC industry. The HPC Challenge suite contains seven different 
benchmarks examining a wide array of memory access patterns and workload types. Complementing the 
HPC Challenge suite but not part of it is the HPCG benchmark, which covers a large number of ap
plications with workloads not represented by the dense linear solver in HPL and better represents ap
plications with sparse systems of equations. Another important suite of benchmarks is the NPB, which 
consisted originally of written algorithm specifications for benchmarks with later reference imple
mentations that ultimately ended up becoming the benchmarks themselves in subsequent iterations. This 
benchmark suite is intended to represent workloads commonly seen in computational fluid dynamics 
applications. Lastly, the GraphS00 benchmark and its associated graph traversal workload are described. 

4.4 HIGHLY PARALLEL COMPUTING LINPACK 
HPL is one of the most influential HPC benchmarks in the HPC community. It solves a dense system of 
linear equations and is well suited for floating-point-intensive computations. As noted in Section 4.1, 
its genesis is the Linpack benchmark introduced by Jack Dongarra in 1979. HPL also serves as the 
benchmark for determining the supercomputer ranking on the Top 500 list. HPL is written in C and 
targets distributed-memory computers. 

The key workload algorithm in HPL is lower/upper (LU) factorization. Given a problem size n, 
HPL will perform O(n3

) floating-point operations while only performing O(n2
) memory accesses. 

Consequently, HPL is not strongly influenced by memory bandwidth and is well suited for empirically 
exploring the peak floating-point computation capability of a supercomputer. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 145



4.4 HIGHLY PARALLEL COMPUTING LINPACK 121 

HPL contains many possible variations in the way it is executed so the best-performing approach 
for a particular supercomputer can be found empirically. The user is also allowed to replace the LU 
factorization and solver step reference implementation entirely with an alternative implementation if 
so desired. Unlike the earlier versions of Linpack, there are no restrictions on problem size in HPL. 

HPL is available through netlib.org at www.netlib.org/benchmark/hpl, with the most recent version 
developed by Antoine Petitet, Clint Whaley, Jack Dongarra, Andy Clear, and Piotr Luszczek. There are 
two external dependencies for HPL: MPI and the BLAS routines. The compressed tarball is un
compressed as follows: 

I tar -zxf hpl-2.2.tar.gz I 
The directory hpl-2.2 will then appear. In the setup directory there are several examples of compile 

settings for various architectures. For this example, the make_generic script is executed to produce a 
template for creating compile settings. 

ca hpl-2.2/setup 
sh 111ake_generic 
cp Make.UNKNOWN· .• /Make.linux: ed .•. 

The Make.linux file now needs to be modified to reflect the location of the hpl-2.2 directory and the 
BLAS libraries, and the name of the C compiler. In Make.linux the location of the BLAS libraries can 
be specified in line 97 immediately before the -!bias: 

95 LAdir 
96 LAinc 
97 LAlib =-lblas 

A library location is given to the compiler using the -L flag. For example, if the BLAS libraries were 
located in /usr/local/lib, line 97 would be changed to read: 

95 LAdi r 
96 LAinc 
97 LAlib =-L/usr/local/lib-lblas 

The location of the hpl-2.2 directory can be specified at line 70. The architecture name can be 
changed from UNKNOWN to linux in line 64: 

64 ARCH = l i nux 
65 4f 
66 ff - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
67 ff - HPL Directory Structure/ HPL library--------------------------------------
68 4f - - - - - - - - - - - - - - - - - - - - - - - · - · - - - - - - - - - · - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
69 ff 
70 TOPdi r = /your/path/to/hpl-2. 2 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 146



122 CHAPTER 4 BENCHMARKING 

0001 HPLinpack benchmark input file 
0002 Innovative Computing Laboratory, University of Tennessee 
0003 HPL.out output file name (if any) 
0004 6 device out (6=stdout,7=stderr,file) 
0005 4 # of problems sizes (N) 
0006 29 30 34 35 Ns 

4 0007 # of NBs 
0008 NBS 1 2 3 

0 0009 PMAP process mapping (O=Row-,l=Column-major) 
0010 # of process grids (P x Q) 

1 4 0011 Ps 
2 4 1 0012 Qs 
16.0 0013 threshold 
3 0014 # of panel fact 

0015 PFACTs (O=left, l=Crout, 2=Right) 0 1 2 
2 0016 # of recursive stopping criterium 
2 0017 NBMINs (>= 1) 
1 0018 # of panels in recursion 
2 0019 NDIVs 
3 0020 # of recursive panel fact. 

0021 RFACTs (O=left, l=Crout, 2=Right) 0 1 2 
1 0022 # of broadcast 
0 0023 BCASTs (O=lrg,l=lrM,2=2rg,3=2rM,4=Lng,5=LnM) 
1 0024 # of lookahead depth 
0 0025 DEPTHS (>=0) 
2 0026 SWAP (O=bin-exch,l=long,2=mix) 
64 0027 swapping threshold 
0 0028 11 in (O=transposed,l=no-transposed) form 
0 0029 U in (O=transposed,l=no-transposed) form 

0030 Equilibration (O=no,l=yes) 
0031 memory alignment in double (> 0) 

FIGURE 4.1 

An example parameter file, HPL.dat for HPL. Parameter inputs separated by spaces on each line are each explored 
and reported independently by HPL to ease the tuning of HPL. 

Once the Make.Iinux file is prepared, HPL can be compiled by issuing the following command: 

I make arch=l inux I 
This will create the HPL executable, xhpl, in the bin/linux directory. 
Accompanying the xhpl executable is a parameter file to tune HPL for the supercomputer. An 

example is provided in Fig. 4.1. 
The parameter space for tuning HPL is very large, so parameter inputs separated by a space on each 

line are run independently. For example, the default parameter file in Fig. 4.1 will run HPL through 864 
( = 4 x 4 x 3 x 3 x 2 x 3) distinct parameter combinations with a separate report of Gflops for each 
unique combination. 

A brief explanation of the HPL tuning parameters is as follows. 

• Lines 1-2 are ignored. 
• Line 3 specifies the name of the file where any output should be redirected if requested in line 4. 
• Line 4 specifies whether to print the output to screen or to a file. 
• Line 5 indicates the number of different problem sizes explored in this parameter file. It cannot be 

greater than 20. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 147



4.5 HPC CHALLENGE BENCHMARK SUITE 123 

• Line 6 gives a space-separated list of the matrix problem sizes. If the number of problem sizes 
given exceeds the number specified in line 5, those excess problem sizes will be ignored. 

• Line 7 gives the number of block sizes explored in this parameter file. 
• Line 8 gives a space-separated list of those block sizes. 
• Line 9 indicates how MPI processes are mapped on to the nodes, and whether row major or 

column major. 
• Line 10 indicates the number of process grid configurations specified in this parameter file. 
• Lines 11-12 specify those process grid configurations. 
• Line 13 specifies a threshold used for flagging residuals as failed. In general, residuals will be order 

1. Specifying a negative threshold turns off checking and allows faster parameter space sweeps. 
• Lines 14-31 specify algorithmic variations in HPL. HPL has a number of different algorithm 

options, including six different virtual panel broadcast topologies (line 23), a bandwidth-reducing 
swap-broadcast algorithm (line 26), back substitution with a look-ahead depth of one (line 24), 
and three different LU factorization algorithms (lines 21) among other options. Tuning for these 
parameters on a specific supercomputer is a routine task with HPL. 

Output for each parameter combination choice is reported in Gflops. 

T/V N NB Time Gflops 

WR11C2R4 1000 80 0.09 7.694e+ee 

I IAx-bl 1_00/(eps*( 1 IAI 1-o~:l!~I l:~o•,=l l=bl=l-=oo=)*N=l====0=.0=07=2s=10= •••••• PASSED 

For a certain problem size Nmax, the cumulative performance in Gflops reaches its maximum value, 
Rmax• The Rmax value is what is reported for the Top 500 list ranking supercomputers. Another 
interesting metric from the HPL benchmark is N112, which is the problem size where the maximum 
performance achieved is Rmaxl2. 

4.5 HPC CHALLENGE BENCHMARK SUITE 
The HPC Challenge benchmark suite consists of seven different tests that cover a range of application 
types and memory access patterns. The first, HPL, was discussed in Section 4.4 because of its large 
impact on the HPC community. The other six tests are: 

• DGEMM-double-precision matrix-matrix multiplication 
• STREAM-synthetic workload to measure sustainable memory bandwidth 
• PTRANS- parallel matrix transpose 
• RandomAccess-reports the rate of integer random updates of memory in giga updates per 

second (GUPS) 
• FFT-double-precision complex one-dimensional discrete Fourier transform 
• B_eff-reports latency and bandwidth for several different communication patterns. 

The HPC Challenge benchmark suite can be accessed from the HPC Challenge website [6]. The 
code is uncompressed and accessed as follows: 

I tar -zxf hpcc-1.5.0. tar.gz I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 148



124 CHAPTER 4 BENCHMARKING 

The directory hpcc-1.5.0 will then appear. The build methodology for the HPC Challenge 
benchmark is the same as for HPL: a Make.architecture file is created specifying the compiler and any 
dependency and optimization information for the supercomputer. Example Make.architecture files are 
found in the hpcc-1.5.0/hpl/setup directory: 

cd hpcc-1.5.0/hpl/setup 
sh make_generic 
cp Make.UNKNOWN .. /Make.linux 

The same changes are made to Make.linux as were done in Section 4.3.1. The benchmark suite is 
then compiled as follows: 

I make arch•l i nux I 
This will produce an executable called hpcc in the hpcc-1.5.0 directory. The parameter file is 

called hpccinf.txt and an example version is provided. This parameter file has nearly the same format 
as the HPL.dat parameter file of Section 4.3.1 but has been augmented slightly to incorporate pa
rameters specific to the matrix transpose benchmark, PTRANS. This change is noted in the 
parameter file itself: 

32 #MINI This line (no. 32) is ignored (it serves as a separator). 111111111111 
33 0 Number of additional problem sizes for PTRANS 
34 1200 10000 30000 values of N 
35 0 number of additional blocking sizes for PTRANS 
36 40 9 8 13 13 20 16 32 64 values of NB 

where lines 1-32 have the same meaning as those in Fig. 4.1. Additionally, the process grid con
figurations specified in lines 11-12 and the residual threshold in line 13 are used for PTRANS. An 
example of running the HPC Challenge benchmark is as follows: 

I mpi run -np 16 . /hpcc I 
This produces output from each of the seven benchmarks, summarized in Figs. 4.2-4.8. 

FIGURE4.2 

DGEMM_N=288 
StarDGEMM_Gftops=2,44343 
SingteDGEMM_Gftops=2,45875 

Example DGEMM summary section output. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 149



FIGURE 4.3 

4.5 HPC CHALLENGE BENCHMARK SUITE 125 

PTRANS_GBs=2.17378 
PTRANS_ time=0, 000628948 
PTRANS_residua t=0 
PTRANS_n=500 
PTRANS_nb=80 
PTRANS_np row=2 
PTRANS_npco l=2 

Example PTRANS summary section output. 

FIGURE 4.4 

MPIRandomAccess:GUPs;.0.144392 
StarRandomAccess_LCG_GUPs=0.11601 
SingteRandomAccess_LCG_GUPs=0.118885 
StarRandomAccess_GUPs=0. 0829133 
Sing teRandomAccess_GUPs=0. 083817 

Example RandomAccess summary section output. 

FIGURE 4.5 

STREAM_VectorSize=83333 
STREAM_Threads=1 
StarSTREAM_Copy=5.14952 
Sta rSTREAM_Sca le=5. 27086 
StarSTREAM_Add=7.09093 
StarSTREAM_Triad=5.0111 
SingleSTREAM_Copy=5.33624 
SingleSTREAM_Scale=5.53154 
SingleSTREAM_Add=7. 25028 
SingteSTREAM_Triad=6. 75953 

Example STREAM summary section output. 

FIGURE 4.6 

MaxPingPongLatency_usec=0. 55631 
RandomtyOrderedRingLatency_usec=0, 768096 
MinPingPongBandwidth_GBytes=4. 28756 
Natura t tyOrderedRingBandwidth_GBytes=0, 533907 
RandomtyOrderedRingBandwidth_GBytes=0. 576042 
MinPingPongLatency_usec=0. 238419 
AvgP ingPongLatency _usec=0, 390631 
MaxP ingPongBandwidth_GBytes=9. 36751 
AvgPingPongBandwidth_GBytes=6. 48206 
Natural tyOrderedRingLatency_usec=0, 751019 

Example b_eff summary section output. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 150



126 CHAPTER 4 BENCHMARKING 

T/V N NB p Q Time 

WR11C2R4 1000 80 2 2 0.09 

I IAx-bl l_oo/(eps*( I IAI 1_00*1 lxl l_oo+l lbl l_oo)*H)= 

FIGURE4.7 

Example HPL summary section output. 

FIGURE 4.8 

Example FFf summary section output. 

FFT.::_N=32768 
StarFFT_Gftops=0,594992 
SingteFFT_Gflops=0,613019 
MPIFFT_N=262144 
MPIFFT_Gftops=6,17472 
MPIFFT_maxErr=1,28804e-15 
MPIFFT_Procs=16 

4.6 HIGH PERFORMANCE CONJUGATE GRADIENTS 

Gflops 

7,694e+00 

0,0072510 , . , , , . PASSED 

The HPCG benchmark was created by Jack Dongarra (HPL creator), Michael Heroux, and Piotr 
Luszczek (HPL developer), with the first release in 2000 and the most recent version released in 2015. 
It aims to complement the HPL benchmark in exploring memory and data-access patterns in appli
cation workloads that are not well represented by HPL. The workload in HPCG centers on a sparse 
system of linear equations arising from the discretization of a three-dimensional (3D) Laplacian partial 
differential equation with a 27-point stencil. Like HPL, the workload in HPCG is geared for solving 
Eq. (4.1), but the A matrix is dominated by zeros in the HPCG workload. Unlike HPL, the solution 
method in HPCG is driven by a Krylov subspace solver known as conjugate gradient. Krylov subspace 
solvers are iterative solvers requiring multiple iterations to produce an approximate solution to Eq. 
(4.1) to within a certain tolerance, and are among the most common methods used for solving sparse 
linear systems of equations. Because the matrix in HPCG is dominated by zeros, the nonzero elements 
of the matrix are stored in contiguous memory locations for each row. 

The sparse nature of the workload in this benchmark requires many more memory accesses than in 
HPL. For a problem size n, HPCG will perform O(n) floating-point operations while also requiring 
O(n) memory accesses. Given this, it is no great surprise that in Table 4.3 the peak flops measured for 
HPL and HPCG differ by over a factor of 150. 

The HPCG benchmark incorporates five major kernels: sparse matrix vector multiplication, symmetric 
Gauss-Seidel smoothing, global dot product evaluation, vector update, and multigrid preconditioning. In 
addition, the benchmark provides seven different reference routines, which can be replaced in their en
tirety by user code optimized for the intended supercomputer in accordance with some specific guidelines. 

For Krylov subspace solvers, a significant portion of the solve time is spent in sparse matrix vector 
multiplication, thereby making the HPCG sparse matrix vector multiplication kernel performance very 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 151



4.6 HIGH PERFORMANCE CONJUGATE GRADIENTS 127 

relevant to performance in many user applications. For a matrix of size N x N and a vector of size N, 
matrix vector multiplication is given by Eq. (4.2) 

N-1 

X; = LAiJbj 
j=O 

(4.2) 

where Au is the (ij)th element of the matrix and b1 is the }th element of the vector. Because nonzero 
elements of sparse matrix are stored in contiguous memory locations for each row, Eq. (4.2) can be 
modified to reflect that zero matrix entries in HPCG are neither stored nor manipulated: 

11; 

x; = LAubJ (4.3) 
J=O 

where n; indicates the number of nonzeros in sparse matrix A for the ith row. The sparse matrix vector 
multiplication kernel in HPCG evaluates Eq. (4.3) in distributed memory requiring some exchange of 
needed b1 values between memory localities. This is an example of halo exchange and is explored in 
detail in Chapter 9. Both the halo exchange routine and the entire sparse matrix vector multiplication 
kernel code in HPCG can be replaced or altered with certain restrictions by the user. 

Gauss-Seidel smoothing is an iterative solution method for linear systems of equations. The 
Gauss-Seidel kernel in HPCG tests recursive execution and has memory access characteristics similar 
to that of the sparse matrix vector multiplication kernel. Like the sparse matrix vector kernel, the entire 
reference implementation of Gauss-Seidel smoothing can be modified or replaced in the benchmark 
by the user under specified guidelines. 

One of the most important collective communication-type operations in HPCG is computing a 
global dot product of two vectors in distributed memory to produce a single scalar value available to all 
processing elements. This type of operation is common in most user applications. HPCG reporting 
includes the minimum, maximum, and average MPI allreduce time when using MPI for the bench
mark. A user-provided dot product routine can be substituted for the reference implementation. The 
same is true for the vector update and multigrid preconditioner, where all the key kernels of HPCG are 
tested using four different grid sizes. 

Compiling the HPCG benchmark on a supercomputer is straightforward. The MPI-OpenMP 
reference implementation of the benchmark can be downloaded from the HPCG website, www. 
hpcg-benchmark.org. The benchmark tarball is unpacked with the following command: 

I tar -zxf hpcg-3.0.tar.gz I 
A resulting directory, hpcg-3.0, containis the source code for the benchmark. HPCG supports out

of-source builds to avoid cluttering the source code directories with build-related files. To compile, a 
build directory is created; for simplicity this is placed in the hpcg-3.0 directory: 

cd hpcg-3.0 
mkdi.r build: ed. build 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 152



128 CHAPTER 4 BENCHMARKING 

In the build directory, execute the configure script and pass it the name of the architecture for which 
the build is desired. The compiler flags and commands for several standard options are already in the 
setup directory. In the example below, the Linux_MPI configuration option is used . 

.. /configure Linux_MPI 
make 

The hpcg executable, called xhpcg, will appear in the build/bin directory along with a parameter 
file named hpcg.dat. 

Unlike the HPL parameter file, the HPCG parameter file is very simple and only contains four lines: 

1 HPCG benchmark input file 
2 Sandia National Laboratories; University of Tennessee, Knoxville 
3 104 104 104 
4 60 

The first two lines are unused and can be replaced with user-motivated descriptions. The third line 
specifies the dimensions of the problem that are local to each MPI process. Consequently, the global 
problem size changes for HPCG depending on the number of processes launched, while the local 
problem size stays the same. In this sense, HPCG is already set up for weak scaling tests. The third line 
contains three space-separated numbers which correspond to the number of collocation points in a 
cubic grid used for discretizing the 3D Laplacian partial differential equation that is at the heart of the 
HPCG workload. The fourth line specifies how long in seconds the benchmark should run (60 sin this 
example parameter file). To submit official HPCG results, the benchmark should run for at least 
1800 s. The parameter file should reside in the same directory as the executable when running. 

To run the benchmark using MPI, the mpirun script will launch the executable on the desired 
number of processes, 16 in this example: 

I mpi run -np 16 , /xhpcg I 
Two files result from this operation, named HPCG-Benchmark-3.0_ <today's date and time>.yaml 

and hpcg_log_ <today's date and time>.txt. The hpcg_log file contains the log of output from the 
HPCG execution; the benchmark results are in the yaml file. Extracts from an example yam! file output 
from HPCG are shown in Fig. 4.9. 

Current HPCG implementations generally achieve only a small fraction of peak flops (most around 
1 %-2%) on the fastest 10 supercomputers in the Top 500 list while they achieve as much as 90% of 
the theoretical peak performance for HPL. This highlights the different nature of the HPCG benchmark 
versus HPL, even though they both report flops as the final overall rating. Fig. 4.10 shows the HPCG 
and HPL performance for the top 10 supercomputers. One outlier is the K computer, which achieves a 
staggering 5.3% fraction of peak HPL performance with HPCG. In general, the low efficiency in terms 
of flops exhibited by HPCG is because even small problems for HPCG do not fit in the (L3) cache, halo 
exchange and allreduce become network bottlenecks as the number of nodes becomes large, and sparse 
matrix vector multiplication is limited by memory bandwidth. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 153



4.6 HIGH PERFORMANCE CONJUGATE GRADIENTS 129 

HPCG-Benchmark version: 3.0 
Release date: November 11, 2015 
Machine Summary: 

Distributed Processes: 16 
Threads per processes: 1 

Global Problem Dimensions: 
Global nx: 416 
Global ny: 208 
Global nz: 208 

Processor Dimensions: 
npx: 4 
npy: 2 
npz: 2 

Local Domain Dimensions: 
nx: 104 
ny: 104 
nz: 104 

## 11 I 11 V&V Testing Summary ##1111 I #: 
Spectral Convergence Tests: 

P.esu l t: PASSED 
Unp reconditioned: 

Maximum iteration count: 11 
Expected iteration count: 12 

Preconditioned: 
Maximum iteration count: 2 
Expected iteration count: 2 

Departure from Symmetry Ix 'Ay-y'Ax l/(2•1 Ix I l•I IAI l•I IY 11 )/ep 
Result: PASSED 
Departure for SpMV: 3.15835e-08 
Departure for MG: 4.00058e-09 

GFLOP/s Summary: 
Raw DDOT: 4,48213 
Raw WAXPBY: 7. 70723 
Raw SpMV: 7. 3242 
Raw MG: 7. 07338 
Raw Total: 7. 05082 
Total with convergence overhead: 7,05082 

Final Summary 
HPCG result is VALID with a·GFLOP/s rating of: 6,88674 

FIGURE 4.9 

Some extracts from the HPCG benchmark yam! output file. The raw Gflops summary of several of the key HPCG 
kernels is itemized independently in addition to providing an overall Gflops rating. Verification and validation testing 
is also reported. The local problem size, 104 x 104 x 104, was specified in the hpcg.dat parameter file, while the 
HPCG output also reports the global problem size as determined by the number of MPI processes launched. 

100 

0.1 

FIGURE 4.10 

HPL and HCGP for the ToplO (June 2017) 

-HPL -<>HPCG 

Oakforest-PACS 
Piz Daint Titan SequCJ~-Go . Mira 

Tianhe-2 

S~nway Taihulig~t 

i 

Titan 

K computer 

Kcomputer 

Sequoia 

Trinity 

Trinity 

Comparison of HPL and HPCG performance for the top 10 supercomputers in the Top 500 list in June 2017. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 154



130 CHAPTER 4 BENCHMARKING 

4. 7 NAS PARALLEL BENCHMARKS 
NPB is a series of small self-contained programs that encapsulate the perfonnance attributes of a large 
computational fluid dynamics application. It originated from the NASA Ames research center in 1991, 
and the first version of the benchmark consisted of eight problems that were specified entirely in a 
"pencil-and-paper" fashion: there was no reference implementation, as in other benchmarks, and the 
benchmark programs were specified algorithmically. In 1995 the second version of NPB was 
announced, where reference versions based on MPI and Fortran77 were distributed. Subsequently a 
third version ofNPB was released, which included a number of additions to the original eight problems 
as additional parallel programming APis beyond MPI, such as OpenMP, high perfonnance Fortran, 
and Java. 

The original eight problems in NPB are a large integer sort for testing both integer computation 
speed and network performance, embarrassingly parallel random number generation for integral 
evaluation, a conjugate gradient approximation to compute the smallest eigenvalue of a sparse 
symmetric matrix, a multigrid solver for computing a 3D potential, a time integrator of a 3D partial 
differential equation using fast Fourier transform, a block tridiagonal solver with a 5 x 5 block 
size, a pentadiagonal solver, and an LU solver for coupled parabolic/elliptic partial differential 
equations. These problems are referred to by the two-letter abbreviations IS, EP, CG, MG, FT, BT, 
SP, and LU respectively. A brief summary of these benchmarks is given in Table 4.5. 

The latest version, NPB3, can be downloaded from the NPB page [7] and uncompressed as 
follows: 

I tar -zxf NPB3.3.Ltar.gZI 

Table 4.5 Some Characteristics of the NAS Parallel Benchmarks (NPB) 

.··.··· .. · • < ·.. · Parailelism L~~~~,\: ·,. 
~'pnrtj~itte; ,, '". 
t11ie Collli( > ·· .. · :MJ>t Oife~ :'. : : ,F~rirllfi : 1 {¢'; ;':' ,it 

IS-Inte er Sort 1150 

Parallel 400 

1900 

2600 

Ff-Discrete 30 Fast Fourier 2200 
Transform 

BT-Block Tridiagonal 9200 
Solver 

SP-Scalar Pentadiagonal 5000 
Solver 

LU-Lower Upper 6000 
Gauss-Seidel Solver 

X 

X 

X 

X 
X 

X 

X 

X 

X X 
X X 

X X 

X X 

X X 

X X 

X X 

X X 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 155



4.7 NAS PARALLEL BENCHMARKS 131 

This will create a directory called NPB3.3. l, wherein can be found the MPI versions of the 
benchmark that are demonstrated here. To compile, enter the NPB MPI version directory: 

I cd NPB3.3.l/NPB3.3-MPI I 
Compiling the benchmark problems requires specifying a compiler choice for C and Fortran in the 

make.def file located in the config directory: 

cd·canfig 
cp make.def.template make.def 

Now modify the make.def file in the config directory by specifying the Fortran and C compilers on 
lines 32 and 78, respectively: 

29 tf - - - - - - - - - - - - -
30 # This is the fortran compiler used for MPI programs 
31 # - - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
32 MPIF77 = mpif90 

75 # -- - - -- -- - - -- -- - --- - - -- - - - --- -- - - - -- - --- - - -- - - - --- -- - - -- -- -- - - -- - -- -- --- - - -- - --
76 # This is the C compiler used for MPI programs 
77 # - - - - -- -- -- - -- -- --- - - - -- - - ---- - - - - - -- - -- - - -- - - -- -- - -- - -- -- -- - - - -- -- - - --- - - -- - - -
78 MPICC = mpicc 

Return to the NPB3.3-MPI directory to compile the specific benchmark problem. To compile, three 
pieces of information must be given to the Makefile: the two-letter (lower-case) reference to the 
benchmark problem, the number of processes on which to run, and the class of problem where the class 
is one of S, W, A, B, C, D, or E. S indicates a small problem size; W indicates a problem for a l 990s-era 
workstation; A, B, and C indicate standard problem sizes increasing by a factor of 4 with each letter; 
and D and E indicate large test problems increasing by a factor of 16 by each letter. 

An example compiling the IS benchmark problem for the smallest problem size on four cores is as 
follows: 

cd .. 
make is NPROCS=4 CLASS=S 

The executable will be placed in the bin directory with a name indicating the number of processes 
and the class for which it was compiled, is.S.4 in this case: 

cd bin 
mpirun -rr4 ./is.S.4 

Output is shown in Fig. 4.11. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 156



132 CHAPTER 4 BENCHMARKING 

FIGURE 4.11 

NAS Parallel Benchmarks 3.3 - IS Benchmark 

Size: 65536 (class S) 
Iterations: 10 
Number of processes: 

IS Benchmark Completed 
Class 
Size 
Iterations 
Time in seconds= 
Total processes= 
Compiled procs 
Mop/s total 
Mop/s/process 
Operation type 
Verification 
Version 
Compile date 

Compile options: 
MPICC = mpicc 

4 

CLINK = $(MPICC) 

s 
65536 

10 
0.00 

4 
4 

274.91 
68,73 

keys ranked 
SUCCESSFUL 

3.3.1 
16 Aug 2016 

CMPI_LIB = -L/usr/local/lib -lmpi 
CMPI_INC = -I/usr/local/include 
CFLAGS = -0 
CLINKFLAGS = -0 

Please send feedbacks and/or the results of this run to: 

NPB Development Team 
npb@nas.nasa.gov 

Output from the parallel IS benchmark for a small class problem size run on four processes. 

4.8 GRAPH500 
The Graph500 benchmark was announced in 2010, and is intended to represent data-intensive 
workloads rather than floating-point-intensive computations as in HPL. With support from an inter
national steering committee of over 50 members and led by Richard Murphy, the Graph500 benchmark 
targets three key problems in the context of data-intensive applications: concurrent search, the single
source shortest path, and the maximal independent set. At present only the concurrent search problem 
has been specified as Graph500 benchmark I, and is sometimes known as the Graph500 benchmark. In 
this subsection the Graph500 benchmark I is referred to as the Graph500 search benchmark to avoid 
confusion. 

The Graph500 search benchmark implements the breadth-first search algorithm on a large graph. 
An illustration of this algorithm is given in Fig. 4.12. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 157



4.8 GRAPH500 133 

7 

FIGURE 4.12 

Example of breadth-first search traversal of this graph data structure starting at vertex 8. The starting vertex is also 

called the root. The adjacent vertices to the root are 4 and 5, colored red (light gray in print versions). The adjacent 

vertices to those are I, 7, and 9, colored blue (dark gray in print versions). Lines connecting the vertices are called 
edges. 

The reference implementation comes with parallelism in several forms, including MPI and 
OpenMP for distributed and shared-memory settings, and was developed by David Bader, Jonathan 
Berry, Simon Kahan, Richard Murphy, Jason Riedy, and Jeremiah Willcock. It includes both a graph 
generator and a breadth-first search implementation. The benchmark starts with a root and finds all 
reachable vertices from that root; 64 unique roots are checked. There is only one kind of edge and there 
are no weights between vertices. The output performance metric is traversed edges per second (TEPS). 
The resulting search tree is validated to ensure it is the correct tree given the root. The graph con
struction and graph search are both timed in the Graph500 search benchmark. 

The reference implementation may be downloaded from www.graph500.org. The tarball is un
compressed and untarred as follows: 

bzip2 -d graph500-2.1.4.tar.bz2 
tar -xf graph500-2.l.4.tar 

This will create a directory called graph500-2. l .4. In this directory there are several imple
mentations, including MPI. To build the MPI version: 

cd rnpi 
make· 

The Makefile for the reference implementation automatically assumes the use of the gnu com
pilers and that the MPI compiler wrapper mpicc is available in the user's path. The Makefile can be 
directly modified for alterations to these assumptions. No external libraries or dependencies are 
needed. 

Five different executables result from the compile process, reflecting different ways of imple
menting the breadth-first search algorithm with graph500_mpi_simple being the standard level-

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 158



134 CHAPTER 4 BENCHMARKING 

Usage: ,/graph500_mpi_simpte SCALE edgefactor 
SCALE = log_2(# vertices) (integer, required] 
edgefactor = (# edges) / (# vertices) = ,5 * (average vertex degree) (integer, defautts to 16) 

(Random number seed and Kronecker initiator are in main.cl 

FIGURE 4.13 

Usage reminder for the Graph500 search benchmark. 

synchronized breadth-first search algorithm with a bitmap and two queues. This algorithm is explored 
in detail in Chapter 9. It requires at least one input to run and can take a second input. The usage for the 
benchmark shown in Fig. 4.13 appears in the event the user attempts to run the benchmark without 
arguments. 

The first input supplies the code with the number of vertices: 

Nvertices = 2sca/e (4.4) 

The number of edges is given by product of the number of vertices and the edgefactor: 

Nedges = edgefactor X Nvertices (4.5) 

The default edgefactor is I 6. Problem sizes in the Graph500 search benchmark are classified into 
six categories: toy, mini, small, medium, large, and huge. These are also referred to as levels I0-15, 
with level IO being toy and level 15 huge. The scale factor for each of these and the associated memory 
requirements for the graph are given in Table 4.6. 

An example execution of the Graph500_simple executable is as follows: 

lmpirun -np 16 ,/graph500_mpi_simple 91 

At this point the graph is constructed and the timing output for that graph is printed to screen, as 
shown in Fig. 4.14. 

The timing for the breadth-first search kernel then prints to screen for each of the 64 roots, followed 
by a validation phase, as partially shown in Fig. 4.15. 

Table 4.6 Problem Size Classes, Number of Vertices, and Memory 
Requirements for Graph500 Search Benchmark 

Le.Yel .· .Scale Size Vertices (Billions) Tet4.~~8:0:' 
10 26 Tov 0.1 0.02 

11 29 Mini 0.5 0.14 

12 32 Small 4.3 1.1 
13 36 Medium 68.7 17.6 

14 39 Large 549.8 141 

15 42 Huge 4398.0 1126 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 159



FIGURE 4.14 

4.9 MINIAPPLICATIONS AS BENCHMARKS 135 

g raph_gene rat ion: 
con st ruction_ time: 

0,115093 s 
0.224907 s 

Graph generation statistics output from Graph500 search benchmark. 

FIGURE 4.15 

Running BFS 0 
Time for BFS 0 is 0.007095 
Validating BFS 0 
Validate time for BFS 0 is 1,80583S 
TEPS for BFS 0 is 1. 15464e+06 
Running BFS 1 
Time for BFS 1 is 0,000358 
Validating BFS 1 
Validate time for BFS 1 is 2,007691 
TEPS for BFS 1 is 2.28912e+07 
Running BFS 2 
Time for BFS 2 is 0.000500 
Validating BFS 2 
Validate time for BFS 2 is 1.967331 
TEPS for BFS 2 is 1.63852e+07 

Partial output of the breadth-first search output for each of the 64 roots. 

At the end of the graph traversal for each of the 64 roots, the final statistics for the graph500 search 
benchmark will print to screen, as shown in Fig. 4.16. 

The Graph500 search benchmark does not output flops, but rather TEPS. This makes a comparison 
like that between HPL and HPCG difficult for the Graph500 search benchmark. However, two 
important trends for this benchmark are noticeable. First, while the HPL benchmark continues to show 
exponential improvement on newer supercomputers, the Graph500 search benchmark performance has 
gone flat. This is illustrated in Fig. 4.17, where the best performance of the Graph500 search 
benchmark is plotted as a function of time. This can be compared to Fig. 1.2, where the HPL per
formance for the Top 500 list continues to grow exponentially while the Graph500 performance has 
flat-lined. 

The second noticeable trend is that the effective giga-traversed edges per second (GTEPS) per core 
is much lower for distributed-memory architectures than for shared memory. This is illustrated in 
Fig. 4.18, where the effective GTEPS/core in the best distributed and shared-memory results for each 
of problem scales 31-34 are plotted and the problem scale = 1og2(Nvertices)-

4.9 MINIAPPLICATIONS AS BENCHMARKS 
While benchmarks continue to serve an important role in the HPC community, there are many criti
cisms about their validity in fully capturing real application behavior. One of the principal concerns is 
that HPC benchmarks are too simple to assess a supercomputer's performance properly with respect to 
a dynamic application. HPC benchmarks generally aim to be specific to a small subset of independent 
HPC system performance attributes by design. To complement HPC benchmarking efforts and better 
capture real application behavior, many in the HPC community have turned to using miniapplications. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 160



136 CHAPTER 4 BENCHMARKING 

FIGURE 4.16 

SCALE: 
edgefactor: 
NBFS: 
graph_generation: 
num_mpi_processes: 
con st ruction_time: 
min_time: 
firstquarti te_time: 
median_time: 
thirdquartite_time: 
max_time: 
mean_time: 
stddev_time: 
min_nedge: 
firstquartite_nedge: 
med ian_nedge: 
thirdquartite_nedge: 
max_nedge: 
mean_nedge: 
stddev_nedge: 
min_TEPS: 
firstquartite_TEPS: 
median_TEPS: 
thirdquarti te_TEPS: 
max_TEPS: 
harmonic_mean_ TEPS: 
harmonic_stddev_TEPS: 
min_vatidate: 
firstquarti te_vatidate: 
median_vatidate: 
thirdquartite_vatidate: 
max_vatidate: 
mean_vatidate: 
stddev_vatidate: 

9 
16 
64 
8,115893 
16 
8,224987 
8,888169839 
8,888285517 
0. 000221094 
8,888342687 
8,8959749 
8,88589841 
8,819746 
8192 
8192 
8192 
8192 
8192 
8192 
8 
8S355,6 
2,39187e+e7 
3, 68732e+87 
3, 98685e+87 
4,84623e+e7 
1, 38885e+e6 
585773 
1, 72823 
1,86437 
1,91839 
2,88359 
2,11599 
1,92975 
8,8889!81 

Final statistical output from the Graph500 search benchmark. 

FIGURE 4.17 

GraphS00 Search Benchmark: Best performance over 
time 

100000 

10000 

Ill 1000 

~ 100 

10 

Jul-09 Nov-10 Apr-12 Aug-13 Oec-14 May-16 Sep-17 

The Graph500 best performance as a function of time. Performance has gone flat, while the HPL performance 
continues to grow exponentially. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 161



0.5 

FIGURE 4.18 

4.9 MINIAPPLICATIONS AS BENCHMARKS 137 

GraphSOO Effective GTEPS/core at different scales: 
shared versus distributed memory 

' -shared memory 

~ -<>-distributed memory 

31 32 33 34 
Problem Scale 

Results from the June 2016 Graph500 list comparing the effective GTEPS/core for the best results in shared 
memory and distributed memory at problem scales 31-34. 

As the name implies, miniapplications are smaller versions of real applications. They originate 
from a large number of scientific disciplines and are generally much longer than HPC benchmarks. 
They do not generally output any standardized metric like flops, GUPS, TEPS, or degrees of freedom 
per second (DOFS), but do provide time to solution for various kernels as well as strong and weak 
scaling information. Table 4. 7 provides an overview of some common rniniapplications from the 
Mantevo suite [12] organized by Michael Heroux (HPCG benchmark cocreator) and Richard Barrett. 

Miniapplications fulfill several roles that are difficult for standard HPC benchmarks. They enable 
large application developers to interact with a broader software engineering community by producing 
simplified, smaller, open-source versions of their application for outside scrutiny and optimization. 
Miniapplications also serve an important role in testing emerging programming models outside the 
scope of conventional parallel programming APis like MPI and OpenMP. Miniapplications are well 
suited for performing scaling studies, especially in the context of dynamic simulations and on emerging 
hardware architectures. Finally, miniapplications are sufficiently complex yet small enough to explore 
the parameter and interaction space of memory, network, accelerators, and processor elements. 

Table 4.7 Some Characteristics of Miniapplications from the Mantevo Suite 

' · I ! .~~~.".: . ·.· ... ·. .. I ·~~-a:gi}< , ,_; 
Mtnf.:~ .,:::/ ::~jj.r«iit#~ · i' - •-, 

. ApJ,li~ti»1t,; ·. ,L'm~.C9ntWr ·· · , -P~~ '.>' >QJ)ter · •-.. · · ·• •· Jl:o~e •·• Ji ,, ,'tt:++ ' 
MiniAMR 9,400 X X 

MiniFE 14,200 X X CUDA, X 
Cilk 

MiniGhost 12,770 X X OpenACC X 

MiniMD 6,500 X X OpenCL, X 
QpenACC 

CloverLeaf 9,300 X X OpenACC, X X 
CUDA 

TeaLeaf 6,500 X X OpenCL X 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 162



138 CHAPTER 4 BENCHMARKING 

The Mantevo suite contains a large number of open-source miniapplications from a wide array of 
application domains, including those listed below. 

• MiniAMR-a miniapplication for exploring adaptive mesh refinement and dynamic execution 
with refinement and coarsening of meshes driven by objects passing through the mesh. 

• MiniFE-a miniapplication for finite element codes. 
• MiniGhost-a miniapplication for exploring halo exchange in the context of a finite differencing 

application on uniform 3D mesh. 
• MiniMD-a miniapplication based on a molecular dynamics workload. 
• Cloverleaf-a miniapplication for solving compressible Euler equations. 
• TeaLeaf-a miniapplication based on a workload for solving linear heat conduction equation. 

Some of these miniapplications are revisited in the context of the software libraries discussion in 
Chapter 10. 

In addition to the Mantevo suite, a large number of miniapplications are maintained at the many 
supercomputing centers around the world. These miniapplications often complement standard HPC 
benchmarks by playing a significant role in procurement decisions. Consequently, they have signifi
cant supercomputing vendor involvement as well. As an example, in the collaboration of Oak Ridge, 
Argonne, and Livermore US National Laboratories (CORAL) to procure two 150 petaflops machines, 
results from over 25 miniapplications were requested from hardware vendors [13] in addition to 
several of the benchmarks mentioned in this chapter. 

4.10 SUMMARY AND OUTCOMES OF CHAPTER 4 
• Benchmarking is a way to measure the performance of a supercomputer empirically. A 

benchmark provides some standardized type of workload that may vary in size or input 
dataset. 

• Computational benchmark workloads come in two types: synthetic, where workloads are 
designed and created to impose a load on a specific component in the system; and application, 
where the workload is derived from a real-world application. 

• Good benchmarks are relevant and meaningful to the target application domain, applicable to a 
broad spectrum of hardware architectures, adopted by both users and vendors, and enable 
comparative evaluation. 

• Early benchmarks include the floating-point-intensive Whetstone benchmark and the integer
oriented Dhrystone benchmark. 

• The Linpack benchmark solves a dense, regular system of linear equations and provides an 
estimate of a system's effective floating-point performance. 

• The HPL benchmark is used for ranking supercomputers in the Top 500 list. 
• HPL is part of the HPC Challenge benchmark suite that contains seven widely used HPC 

benchmarks. 
• The HPCG benchmark is meant to complement the HPL benchmark in exploring memory and 

data-access patterns in application workloads that are not well represented by HPL. The workload 
in HPCG centers on a sparse system of linear equations arising from the discretization of a 3D 
Laplacian partial differential equation with a 27-point stencil. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 163



REFERENCES 139 

• HPCG performance continues to be, at best, a very small fraction of HPL performance on even 
the fastest supercomputers in the Top 500 list. 

• NPB is a series of small self-contained programs that encapsulate the performance attributes of a 
large computational fluid dynamics application. 

• NPB started as a pencil-and-paper benchmark, but later reference implementations became the 
benchmark itself in NPB iterations. 

• The Graph500 benchmark is intended to represent data-intensive workloads. 
• The Graph500 search benchmark implements the breadth-first search algorithm and reports TEPS 

as a key metric. 
• Graph500 benchmark performance has gone flat even while HPL benchmark performance 

continues to grow exponentially. 
• To complement HPC benchmarking efforts and better capture real application behavior, many in 

the HPC community have turned to using miniapplications. 
• Miniapplications fulfill several roles that are difficult for standard HPC benchmarks, including 

exploring the parameter and interaction space of memory, network, accelerators, and processor 
elements, especially in terms of emerging hardware and programming models. 

4. 11 EXERCISES 
1. Run the HPL benchmark on an accessible supercomputer and an available laptop. Tune the input 

parameters independently for each system to get the best possible performance. For what matrix 
size does the supercomputer give the best HPL performance? At what matrix size does the laptop 
give the best HPL performance? Explain your results in terms of the system architecture and 
memory characteristics of HPL. 

2. Run the HPCG benchmark on an accessible supercomputer. Compare the peak HPCG 
performance versus the peak HPL performance. Which performs best and why? 

3. Compile and run the HPC Challenge benchmark suite on an accessible supercomputer and an 
available laptop. Provide a table with the final results (number and units) of each of the seven 
problems. Your table should have two columns: test name, and a numeric value of a certain metric 
with its units. Pick only one metric for each problem. Compare the performance between the 
supercomputer and the laptop. 

4. Run the Graph500 benchmark on an accessible supercomputer. Plot the performance of the 
Graph500 in GTEPS as a function of graph size. What is the biggest graph problem that you can 
run on the supercomputer? 

5. Explore the performance of the discrete 3D Fourier transform on an accessible supercomputer 
using the FT NPB. Plot the performance in gigaflops as a function of problem size. What is the 
peak gigaflops achieved for FT compared with the peak gigaflops achieved for the HPL 
benchmark on the same supercomputer? 

REFERENCES 
[I] Wikipedia, ENIAC, [Online]. https://en.wikipedia.org/wiki/ENIAC. 
(2) R. Longbottom, History of Whetstone, [Online]. http://www.roylongbottom.org.uk/whetstone.htm. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 164



140 CHAPTER 4 BENCHMARKING 

[3] Standard Perfonnance Evaluation Corporation, SPEC CPU, 2006 [Online], https://www.spec.org/cpu2006/. 
[4] Netlib, Linpack FAQ, [Online]. http://www.netlib.org/utk/people/JackDongarra/faq-linpack.htm. 
[5] LAPACK, [Online]. http://www.netlib.org/lapack/. 
[6] Innovative Computing Laboratory, The University of Tennessee, HPC Challenge Benchmark Suite, [Online]. 

http://icl.cs.utk.edu/hpcc/. 
[7] NASA, NAS Parallel Benchmarks, [Online]. http://www.nas.nasa.gov/publications/npb.html. 
[8] Top500, Top500 List, [Online]. https://www.top500.orgnists/. 
[9] HPCG, HPCG Benchmark, [Online]. http://www.hpcg-benchmark.org/. 

[JO] Computational Research, Berkeley Laboratory, HPGMG Performane Results, [Online]. https://crd.lbl.gov/ 
departments/computer-science/PAR/research/hpgmg/results/. 

[I I] Graph500, Graph500, [Online]. http://graph500.org/. 
(12] M. Heroux, Mantevo Suite of Mini Apps, [Online]. https://mantevo.org. 
[13] Lawrence Livermore National Laboratory, Coral Benchmarks, [Online]. https://asc.llnl.gov/CORAL

benchmarks. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 165



THE ESSENTIAL RESOURCE 
MANAGEMENT 

CHAPTER OUTLINE 

5 
5.1 Managing Resources .................................................................................................................... 142 
5.2 The Essential SLURivl .................................................................................................................... 146 

5.2.1 Architecture Overview ............................................................................................... 147 
5.2.2 Workload Organization .............................................................................................. 148 
5.2.3 SLURM Scheduling .................................................................................................. 149 

5.2.3.1 Gang Scheduling ................................................................................................. 149 
5.2.3.2 Preemption ......................................................................................................... 149 
5.2.3.3 Generic Resources .............................................................................................. 150 
5.2.3.4 Trackable Resources ........................................................................................... 150 
5.2.3.5 Elastic Computing ............................................................................................... 150 
5.2.3.6 High-Throughput Computing ............................................................................... 150 

5.2.4 Summary of Commands ............................................................................................ 151 
5.2.4.1 srun .................................................................................................................... 151 
5.2.4.2 sal/oc .................................................................................................................. 160 
5.2.4.3 sbatch ................................................................................................................ 161 
5.2.4.4 squeue ............................................................................................................... 162 
5.2.4.5 seance/ ............................................................................................................... 163 
5.2.4.6 sacct .................................................................................................................. 164 
5.2.4.7 sinfo ................................................................................................................... 165 

5.2.5 SLURM Job Scripting ............................................................................................... 166 
5.2.5.1 Script Components .............................................................................................. 166 
5.2.5.2 MP/ Scripts ......................................................................................................... 167 
5.2.5.3 OpenMP Scripts .................................................................................................. 167 
5.2.5.4 Concurrent Applications ...................................................................................... 167 
5.2.5.5 Environment Variables ......................................................................................... 169 

5.2.6 SLURM Cheat Sheet ................................................................................................. 171 
5.3 The Essential Portable Batch System ............................................................................................. 172 

5.3.1 Portable Batch System Overview ................................................................................ 172 
5.3.2 Portable Batch System Architecture ........................................................................... 173 
5.3.3 Summary of PBS Commands ..................................................................................... 174 

5.3.3.1 qsub ................................................................................................................... 174 
5.3.3.2 qdel .................................................................................................................... 180 

High Performance Computing. https://doi.org/l0.1016/B978-0-12-420158-3.00005-8 
Copyrighl © 2018 Elsevier Inc. All righlS reserved. 

141 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 166



142 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

5.3.3.3 qstat ................................................................................................................... 180 
5.3.3.4 trace/ob .............................................................................................................. 182 
5.3.3.5 pbsnodes .............................................................................. .............................. 183 

5.3.4 PBS Job Scripting .................................................................................................... 184 
5.3.4.1 OpenMPJobs ..................................................................................................... 184 
5.3.4.2 MP/ Jobs ............................................................................................................ 185 
5.3.4.3 Environment Variables of Interest ......................................................................... 185 

5.3.5 PBS Cheat Sheet ...................................................................................................... 186 
5.4 Summary and Outcomes of Chapter 5 ............................................................................................. 187 
5.5 Questions and Problems ................................................................................................................ 189 
References .......................................................................................................................................... 190 

5.1 MANAGING RESOURCES 
Supercomputer installation frequently represents a significant financial investment by the hosting 
institution. However, the expenses do not stop after the hardware acquisition and deployment is 
complete. The hosting data center needs to employ dedicated system administrators, pay for support 
contracts and/or a maintenance crew, and cover the cost of electricity used to power and cool the 
machine. Together these are referred to as "cost of ownership". The electricity cost is frequently 
overwhelming for large installations. A commonly quoted average is over US$1 million for each 
megawatt of power consumed per year in the United States; in many other countries this figure is much 
higher. It is not surprising that institutions pay close attention to how supercomputing resources are 
used and how to maximize their utilization. 

Addressing these concerns, resource management software plays a critical role in how super
computing system resources are allocated to user applications. It not only helps to accommodate 
different workload sizes and durations, but also provides uniform interfaces across different machine 
types and their configurations, simplifying access to them and easing (at least some) portability 
concerns. Resource management middleware provides mechanisms by which computing systems may 
be made available to various categories of users (including those external to the hosting institution, for 
example via collaborative environments such as the National Science Foundation XSEDE [1]) with 
accurate accounting and charging for the resource use. Resource management tools are an inherent 
part of the high performance computing (HPC) software stack. They perform three principal functions: 
resource allocation, workload scheduling, and support for distributed workload execution and moni
toring. Resource allocation takes care of assigning physical hardware, which may span from a fraction 
of the machine to the entire system, to specific user tasks based on their requirements. Resource 
managers typically recognize the following resource types. 

• Compute nodes. Increasing the number of nodes assigned to a parallel application is the simplest 
way to scale the size of the dataset (such as the number of grid points in a simulation domain) on 
which the work is to be performed, or reduce the execution time for a fixed workload size. Node 
count is therefore one of the most important parameters requested when scheduling an application 
launched on a parallel machine. Even single physical computers may include various node types; 
for example differing in memory capacity, central processing unit (CPU) types and clock 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 167



5.1 MANAGING RESOURCES 143 

frequency, local storage characteristics, available interconnects, etc. Properly configured resource 
managers permit selection of the right kind of node for the job, precluding assigning resources 
that will likely go unused. 

• Processing cores (processing units, processing elements). Most modem supercomputer nodes 
feature one or more multicore processor sockets, providing local parallelism to applications that 
support it through multithreading or by accommodating several concurrent single-threaded 
processes. For that reason, resource managers provide the option of specifying shared or exclusive 
allocation of nodes to workloads. Shared nodes are useful in situations where already assigned 
workloads would leave some of the cores unoccupied. By coscheduling different processes on the 
remaining cores, better utilization may be achieved. However, this comes at a cost: all programs 
executing on the shared node will also share access to other physical components, such as 
memory, network interfaces, and input/output (I/0) buses. Users who perform careful 
benchmarking of their applications are frequently better off allocating the nodes in exclusive 
mode to minimize the intrusions and resulting degradation due to contention caused by unrelated 
programs. Exclusive allocation can also be used for programs that rely on the affinity of the 
executing code to specific cores to achieve good performance. For example, programs that rely on 
lowest communication latency may want to place the message sending and receiving threads on 
cores close to the PCI express bus connected to the related network card. This may not be possible 
when multiple applications enforce their own, possibly conflicting, affinity settings at the same 
time. 

• Interconnect. While many systems are built with only one network type, some installations 
explicitly include multiple networks or have been expanded or modernized to take advantage of 
different interconnect technologies, such as GigE and InfiniBand architecture in combination. 
Selection of the right configuration depends on the application characteristics and needs. For 
example, is the program execution more sensitive to communication latency, or does it need as 
much communication bandwidth as possible? Can it take advantage of channel bonding using 
different network interfaces? Often the answer may be imposed by the available version of the 
communication library with which the application has been linked. For example, it is common to 
see message-passing interface (MPI) installations with separate libraries supporting InfiniBand 
and Ethernet if both such network types are available. Selecting a wrong network type will likely 
result in less efficient execution. 

• Permanent storage and I/O options. Many clusters rely on shared file systems that are exported to 
every node in the system. This is convenient, since storing a program compiled on the head node 
in such a file system will make it available to the compute nodes as well. Computations may also 
easily share a common dataset, with modifications visible to the relevant applications already 
during their runtime. However, not all installations provide efficient high-bandwidth file systems 
that are scalable to all machine resources and can accommodate concurrent access by multiple 
users. For programs performing a substantial amount of file I/0, localized storage such as local 
disks of individual nodes or burst buffers (fast solid-state device pools servicing I/0 requests for 
predefined node groups) may be a better solution. Such local storage pools are typically mounted 
under a predefined directory path. The drawback is that the datasets generated this way will have 
to be explicitly moved to the front-end storage after job completion to permit general access 
(analysis, visualization, etc.). Since there is no single solution available, users should consult 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 168



144 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

local machine guides to determine the best option for their application and how it can be conveyed 
to the resource management software. 

• Accelerators. Heterogeneous architectures that employ accelerators (graphics processing units 
(GPUs), many integrated cores (MICs), field programmable gate array modules, etc.) in addition 
to main CPUs are a common way to increase the aggregate computational performance while 
minimizing power consumption. However, this complicates resource management, since the 
same machine may consist of some nodes that are populated with accelerators of one type, some 
nodes that are populated with accelerators of a different type, and some nodes that do not contain 
any accelerating hardware at all. Modern resource managers permit users to specify parameters of 
their jobs so that the appropriate node types are selected for the application. At the same time, 
codes that do not need accelerators may be confined to regular nodes as much as possible for best 
resource utilization over multiple jobs. 

Resource managers allocate the available computing resources to jobs specified by users. A job is a 
self-contained work unit with associated input data that during its execution produces some output 
result data. The output may be as little as a line of text displayed on the console, or a multiterabyte 
dataset stored in multiple files, or a stream of information transmitted over the local or wide area 
network to another machine. Jobs may be executed interactively, involving user presence at the 
console to provide additional input at runtime as required, or use batch processing where all necessary 
parameters and inputs for job execution are specified before it is launched. Batch processing provides 
much greater flexibility to the resource manager, since it can decide to launch the job when it is optimal 
from the standpoint of HPC system utilization and is not hindered by the availability of a human 
operator, for example at night. For this reason, interactive jobs on many machines may be permitted to 
use only a limited set of resources. 

Jobs may be monolithic or subdivided into a number of smaller steps or tasks. Typically each task is 
associated with the launch of a specific application program. In general, individual steps do not have to 
be identical in terms of used resources or duration of execution. Jobs may also mix parallel application 
invocations with instantiations of single-threaded processes, dramatically changing the required 
resource footprint. An example is a job that first preprocesses input data, copying them to storage local 
to its execution nodes, then launches the application that gives high-bandwidth access to the data, and 
finally copies the output files to shared storage using shell commands. 

Pending computing jobs are stored in job queues. The job queue defines the order in which jobs are 
selected by the resource manager for execution. As the computer science definition of the word 
suggests, in most cases it is "first in, first out" or "FIFO", although good job schedulers will relax this 
scheme to boost machine utilization, improve response time, or otherwise optimize some aspect of the 
system as indicated by the operator (user or system administrator). Most systems typically use multiple 
job queues, each with a specific purpose and set of scheduling constraints. Thus one may find an 
interactive queue solely for interactive jobs. Similarly, a debug queue may be employed that permits 
jobs to run in a restricted parallel environment that is big enough to expose problems when running on 
multiple nodes using the same configuration as the production queue, yet small enough that the pool of 
nodes for production jobs may remain substantially larger. Frequently there are multiple production 
queues available, each with a different maximum execution time imposed on jobs or total job size 
(short versus long, large versus small, etc.). With hundreds to thousands of jobs with different prop
erties pending in all queues of a typical large system, it is easy to see why scheduling algorithms are 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 169



5.1 MANAGING RESOURCES 145 

critical to achieving high job throughput. Common parameters that affect job scheduling include the 
following. 

• Availability of execution and auxiliary resources is the primary factor that determines when a job 
can be launched. 

• Priority permits more privileged jobs to execute sooner or even preempt currently running jobs of 
lower priority. 

• Resources allocated to the user determines the long-term resource pool a specific user may 
consume while his or her account on the machine remains active. 

• Maximum number of jobs that a user is permitted to execute simultaneously. 
• Requested execution time estimated by the user for the job. 
• Elapsed execution time may cause forced job termination or impact staging of pending jobs for 

upcoming execution. 
• Job dependencies determine the launching order of multiple related jobs, especially in 

producer-consumer scenarios. 
• Event occurrence, when the job start is postponed until a specific predefined event occurs. 
• Operator availability impacts the launch of interactive applications. 
• Software license availability if a job is requesting the launch of proprietary code. 

Resource managers are equipped with optimized mechanisms that enable efficient launching of 
thousands or more processes across a comparable number of nodes. Nai've approaches, such as 
repeated invocation of a remote shell, will not yield acceptable results at scale due to high contention 
when transferring multiple programs' executables to the target nodes. Job launchers employ hierar
chical mechanisms to alleviate the bandwidth requirements and exploit network topology to minimize 
the amount of data transferred and overall launch time. Resource managers must be able to terminate 
any job that exceeds its execution time or other resource limits, irrespective of its current processing 
status. Again, distributed termination should be efficient to release the allocated nodes to the pool of 
available nodes as quickly as possible. Finally, resource managers are responsible for monitoring 
application execution and keeping track of related resource usage. The actual resource utilization data 
is recorded to enable accounting and accurate charging of users for their cumulative system resource 
usage. 

A number of resource management suites have been created that differ in their features, capabil
ities, and adoption level. The software commonly used today includes the following. 

• Simple Linux Utility for Resource Management (SLURM) [2] is a widely used free open-source 
package. 

• Portable Batch System (PBS) [3] was originally available as proprietary code as well as several 
open implementations with compatible application programming interface and commands. 

• Openlava [ 4] is an open-source scheduler based on the Platform Load Sharing Facility and 
originally developed at the University of Toronto. 

• Moab Cluster Suite [5], based on the open-source Maui Cluster Scheduler, is a highly scalable 
proprietary resource manager developed by Adaptive Computing Inc. 

• Loadleveler [6], currently known as the Tivoli Workload Scheduler LoadLeveler, is a proprietary 
IBM product originally targeting systems running the AIX operating system (OS) but later ported 
to POWER and x86-based Linux platforms. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 170



146 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

• Univa Grid Engine [7] uses technology originally developed by Sun Microsystems and Oracle 
that supports multiple platfonns and OSs. 

• HTCondor [8], formerly known just as Condor, is an open-source framework for coarse-grain 
high-throughput computing. 

• OAR [9] provides database-centered resource and task management for HPC clusters and some 
classes of distributed systems. 

• Hadoop Yet Another Resource Negotiator (YARN) [10] is a broadly deployed scheduler 
specifically tailored to MapReduce applications, discussed in detail in Chapter 19. 

Unfortunately there is no common standard specifying the command fonnat, language, and 
configuration of resource management. Every system mentioned above uses its own interface and 
supports different sets of capabilities, although the basic functionality is essentially similar. Thus two 
widely used examples of resource managers are described here in detail, SLURM and PBS. Both have 
particularly broad adoption in the HPC community. These sections are presented in tutorial form to 
build the reader's skill-set. 

5.2 THE ESSENTIAL SLURM 
SLURM is an open-source, modular, extensible, scalable resource manager and workload scheduling 
software for clusters and supercomputers running Linux or other Unix-compatible OS. Its origins 
date back to 2001, when a small team of developers started by Morris Jette at Lawrence Livermore 
National Laboratory originated work on advanced scheduling systems for HPC. Since that time 
SLURM development has grown significantly, extending to nearly 200 contributors as well as 
multiple institutions, including SchedMD LLC (currently the core company responsible for its 
development, support, training, and consulting services), Linux NetworX, Hewlett-Packard, 
Groupe Bull, Cray, Barcelona Supercomputing Center, Oak Ridge National Laboratory, Los Alamos 
National Laboratory, Intel, Nvidia, and many others. In June 2014 SLURM was among the most 
dominant resource management systems, being utilized in approximately 60% of machines in the 
Top 500 list [11 ]. 

The popularity of SLURM is in no small part due to its impressive list of operational features. As an 
open-source solution it is available and affordable to even the smallest computing centers and schools. 
Its core functionality may be extended using plugins written in C or Lua, thus providing complex 
configuration options and support for various interconnect types, scheduling algorithms, MPI 
implementations, accounting, and more. SLURM scales to the largest systems in use today, including 
the fastest supercomputer of 2016, Sunway TaihuLight, with its 40,000 CPUs (over 10 million cores). 
Five of the top 10 machines are managed by SLURM. It can handle up to a I 000 job submissions and 
500 job executions per second. A number of strategies are available to optimize power consumption, 
ranging from the ability to specify clock frequency for CPUs to powering down unused nodes 
completely-an important feature when power draw for the largest platforms may exceed 10 MW. 
Adjusted power levels can be entered in job records to account more accurately for resource usage. 
Single points of failure are eliminated through the use of multiple backup daemons, permitting the 
affected applications to continue running and request resources to replace those that fail. Network 
topology factors into resource allocation to minimize communication latency when it is critical to 
application execution. SLURM maintains detailed architectural information about each component 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 171



5.2 THE ESSENTIAL SLURM 147 

node, including distribution of cores across nonuniform memory access domains and hyperthread 
affinities. The user may utilize these parameters to optimize binding of tasks to resources. Job sizes are 
not necessarily fixed over their execution time; they may grow or shrink in accordance with the 
specified size and time limits. Sophisticated scheduling algorithms are available, including gang 
scheduling and preemption. Control over scheduling policies is enabled through constraints specified 
by the user, a bank account, or quality of service metrics. Finally, SLURM integrates support for 
execution on heterogeneous components, such as GPUs, MIC processors, and other accelerators. An 
optional database may be used to store each job's execution profile, detailing CPU, memory, network, 
and 1/0 usage, providing the means for postmortem analysis and optimization of system allocation in 
the future. 

5.2.1 ARCHITECTURE OVERVIEW 
To support its extensive functionality, SLURM employs a collection of daemons (programs contin
uously running in the background) to interpret user commands and distribute work to individual nodes 
in the system. Similar arrangements are commonly used by other cluster resource management sys
tems. Users, including programmers and system administrators, issue commands on one of the head 
nodes. These commands typically communicate with local control daemons slurmctld, which relay 
specific management tasks to the slurmd daemons running on the compute nodes. Some commands 
may directly interact with slurmd backends. Each slurmd daemon listens to a network connection to 
accept an incoming work item, execute it, return completion status, and wait for another work unit. 
These daemons are organized hierarchically to optimize communication and provide fault tolerance, 
as illustrated in Fig. 5.1. SLURM may optionally support a performance collection database, shown in 
the figure as an external storage component marked db and managed by a dedicated daemon, 
slurmdbd. Slurmdbd may also connect to other machines to provide a central recording of accounting 
information for multiple clusters that run the SLURM software suite. 

r , . .-.. ~ 

Ji ._ __ ......., 
Head Node 

FIGURE 5.1 

Head Node 

Compute 
Node 

Simplified architecture of SLURM. Components framed by dashed lines are optional. 

Compute 
Node 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 172



148 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

5.2.2 WORKLOAD ORGANIZATION 
One of the primary resource types managed by SLURM is the compute node. Nodes are divided into 
logical sets called partitions. Partitions in SLURM represent individual job queues and thus impose 
specific constraints on user jobs. Depending on the prevalent characteristics of computational work
loads and user needs, the cluster administrator may decide to create completely disjoint or overlapping 
partitions. The latter may be useful to permit the allocation of all available execution resources to 
certain, usually severely constrained, job types. 

The scheduler assigns the available nodes in the partition to the highest-priority eligible jobs until 
the pool of available nodes is exhausted. The individual tasks composing a job, called job steps, may 
utilize the entire set of nodes allocated to the parent job or only a fraction. The example in Fig. 5.2 
shows a 20-node cluster that has been partitioned into two disjoint node sets, Partition 1 and 
Partition 2. As illustrated in the figure , Job 1 has been assigned all nodes in Partition 1 and all are 
currently utilized by Job Step 1. In Partiti on 2 the scheduler designated only 9 out of 12 available 
nodes for Job 2 and 8 of them are in use by two concurrent job steps, Job Step s 5 and 6 (they could be 
a physics simulation application and connected visualization engine executing in parallel). The 
remaining three nodes in Partition 2 could be allocated to another job concurrent with Job 2 as long 
as its resource constraints can be satisfied. A typical system would use more meaningful partition 
names indicative of their function in the system, such as debug or main . Similarly, good practice calls 
on users to label their jobs in a way that pem1its easy identification of their purpose and configuration 
variant. 

SLURM uses the concept of job arrays to provide a highly efficient means for submission and 
management of collections of similar jobs. While their initial parameters, such as time limit or size, 
have to be identical, they may be changed later on a per-an·ay or per-job basis. Job arrays may only be 
batch processed. 

-

I Node4 I I Node8 l I Node 12 I I Node 16) I Node 20) 

I Node 3 I I Node7 I I Node 11 I I Node 1s J I Node 19 l 

I Node2 I I Node6 I I Node 10) I Node 14 l I Node 1s l 

I Node 1 l I NodeS l I Node9 l I Node 131 I Node 17 I 
' 

Job Step 1 

Job 1 l Job Step 6 l Job Step 5 - -
Job 2 

Partition 1 Partition 2 

FIGURE 5.2 

Relationships between partitions, jobs, and job steps in SLURM. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 173



5.2 THE ESSENTIAL SLURM 149 

5.2.3 SLURM SCHEDULING 
SLURM employs relatively simple default scheduling algorithms to comply with its design goals of 
efficiency and simplicity. Whenever a job is submitted or completed, or system configuration changes, 
only a limited and predefined number of jobs at the front of the queue will be considered for sched
uling. This is called event-triggered scheduling. This algorithm is complemented by another that at
tempts to take into consideration all queued jobs before making scheduling decisions. Due to 
significantly increased overheads, the latter runs at much less frequent intervals. The scheduling al
gorithm marks the subset of highest-priority eligible jobs that in aggregate satisfy the available 
resource footprint as pending for execution. As long as there are any pending jobs in a partition, 
scheduling for that partition is disabled. 

SLURM also provides a baclifill scheduler plugin that can considerably improve the overall 
arrangement of job execution compared to the priority-based FIFO scheduling. For example, low
priority jobs requesting a significant amount of resources could be delayed indefinitely in the queue 
if the influx of small, higher-priority jobs is large. Due to a larger number of jobs considered for 
.execution, the system utilization may also improve. The backfill scheduler will attempt to start lower
priority jobs if this will not delay the expected start time of any of the higher-priority jobs. Making 
accurate scheduling decisions relies heavily on job completion estimates, defined as the queue 
configuration parameters and submitted as wallclock limit estimates with individual jobs. Thus the 
administrators of many systems recommend that their users specify these constraints as accurately as 
possible. 

Job scheduling in SLURM is a complex topic, with many additional improvements and scheduler 
variants available through plugins. The following is a brief discussion of some of the more prominent 
concepts. 

5.2.3. 1 Gang Scheduling 
Gang scheduling supports a scheduling approach in which two or more jobs with similar character
istics are allocated the same set of resources. These jobs are then executed in an alternating fashion so 
that only one of them obtains the exclusive access to the resources at a time. The time for which a 
single job retains access to the resources, or a timeslice, is a configurable parameter. This scheduling 
mode permits shorter jobs to be started ahead of longer jobs as long as there are available resources, 
instead of being forced to wait in the queue behind the longer job. As a result they may be started (and 
finished) earlier, increasing the overall throughput of the system. 

SLURM spawns a dedicated timeslicer thread that prevents starvation of gang-scheduled jobs. The 
timeslicer wakes up periodically (at the start of each timeslice period) and checks for suspended jobs. 
If there are any, the currently running jobs are moved to the end of queue. The timeslicer then cal
culates a new allocation for the partition by scanning the queue for suspended jobs which have been 
waiting longest to run. If there are other active jobs that can be run concurrently with the newly 
computed allocation, they are added to it. All other currently running jobs that do not fit into the new 
allocation are suspended. 

5.2.3.2 Preemption 
Closely related to gang scheduling is preemption, or stopping lower-priority jobs to permit the 
execution of higher-priority jobs. Preemption is implemented using a variant of gang scheduling. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 174



150 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Whenever a high-priority job receives a resource allocation that overlaps the allocation already 
assigned to one or more low-priority jobs, the affected low-priority jobs are preempted. They may 
resume once the high-priority job completes or, in newer versions of SLURM, be requeued and started 
using a different set of resources. 

5.2.3.3 Generic Resources 
Generic resources (GRES) in SLURM terminology refer to other hardware devices associated with 
nodes, most commonly accelerators. SLURM currently supports Nvidia GPUs and Intel MICs through 
a plugin mechanism. As there is no default configuration available, the system administrator has to 
specify the resource name, count, CPUs that may access the resource, device type, and file system 
pathname that can be used to access or exclusively allocate the device. Only the permitted CPUs may 
access the device, even though there may be no physical counterindications to disable access for the 
remaining CPUs in the node. Unlike other execution resources, GRES allocated to a job will not 
become available to other jobs when that job gets suspended. The job steps may request fewer GRES 
than the amount allocated to the parent job (by default they are allocated all the GRES that the job 
holds). This permits easy partitioning of GRES among concurrent jobs steps. 

5.2.3.4 Trackable Resources 
SLURM provides additional options to track the use of or enforce custom constraints on various kinds 
of resources. Such trackable resources (TRES) are identified by their types and names; examples 
include burst buffers, CPUs, energy, GRES, licenses, memory, and nodes. This feature helps establish 
more accurate formulas to bill for computer usage in which predefined weights may be assigned to 
each TRES type. 

5.2.3.5 Elastic Computing 
Elastic computing refers to a scenario in which the overall resource footprint available in a system or 
consumed by a specific job can grow or shrink on demand. This usually relies on external cloud 
computing services, where the local cluster provides only part of the resource pool available to all jobs. 
However, elastic computing may also be implemented on standalone clusters. 

Elastic computing may improve power efficiency by explicitly turning off nodes that are not in use. 
These nodes will be restored to normal operation as soon as there are any jobs assigned to them. To 
prevent power surges, which are inevitable when powering up or down large groups of nodes, SLURM 
gradually changes power consumption at a configurable rate. This typically requires CPU throttling 
support built into the OS kernel on the affected nodes. The power-saving algorithms drive the node 
provisioning logic in coordinating reservation and relinquishing the external nodes to the cloud as 
needed. 

5.2.3.6 High-Throughput Computing 
SLURM provides rudimentary support for high-throughput computing, in which large numbers of 
relatively small, loosely coupled jobs are launched over an extended period of time. A correctly tuned 
SLURM system may execute as many as 500 simple batch jobs per second (sustained), with bursts 
significantly exceeding this number. SLURM high-throughput job selection logic has been signifi
cantly optimized, retaining roughly half of the original scheduling code. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 175



5.2 THE ESSENTIAL SLURM 151 

5.2.4 SUMMARY OF COMMANDS 
The purpose of this subsection is to familiarize the reader interested in using a system equipped with 
the SLURM resource manager with the basic commands to perform job submission, job status 
retrieval, system status query, and basic management of jobs. Commands primarily targeting system 
administration are beyond the scope of this presentation. Along with each command description listed 
are the most frequently used options (both short and long forms are provided if available) and usage 
examples. The option syntax used below shows literal parameter names and operators except for the 
following cases: 

• angle brackets,"<" and">", signify a parameter name, which may expand to a number or a 
string depending on the context 

• square brackets, "[" and"]", denote an optional entry 
• braces, " {" and "} ", encompass a list to describe selection of one of the items in that list. 

SLURM commands start with lower-case "s" and include the following. 

5.2.4. 1 srun 
srun [<options>] <executable> [<arguments>] 

The srun command is used to start parallel jobs or job steps on a cluster. If the resources to run the 
job have not been allocated yet (for example, the command is executed on the head node's terminal), 
the resource allocation will be performed first. If invoked from an already started job, such as the job's 
batch script, srun starts a new job step. If the resources to start the job are available, the job is started 
immediately, otherwise the command blocks until the resources become available. 

The list of options presented below is comprehensive, but in no way exhaustive. Many of these 
options also apply to resource allocation used by other SLURM commands. 

-Nor --nodes=<min_nodes>[-<max_nodes>] 

This allocates nodes for a job to be executed. The number of nodes has to be at least min_nodes but 
not exceed max_nodes. The numbers may be followed by the suffix "k" or "m" to signify a multiplier 
of 1024 (i 0

) or 1,048,576 (220
). SLURM will allocate as many nodes in the range specified as possible 

without causing additional delays. 

Example 

I srun -Nl /bin/bash 

This starts an interactive shell on one of the compute nodes for the default period of time. 

-nor --ntasks=<number_of_tasks> 

-c or --cpus-per-task=<number_of_cpus> 

The ntasks option specifies the number of tasks (processes) to run and requests allocation of a 
sufficient number of nodes for them. By default one task per node is started, unless overridden by the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 176



152 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

cpus-per-task option, which defines the maximum number of cores assigned to each process. The 
latter may be used to launch multithreaded processes. 

Example 

I srun -n4 -c8 my_app 

This launches four processes using executable my_app, each limited to eight threads of execution. 
If the cluster has 16-core nodes, 2 nodes will be allocated for the job, unless the exclusive option is 
used (see below). 

--mincpus = <number _of_cpus> 

This allocates nodes for job that have at least number_of_cpus cores per node available. 

Example 

I srun -n4 -c8 · ·mincpus=32 my_app 

This will place all four instances of my _app on a single node. 

-B or --extra-node-info= <sockets_per _node>[ :<cores_per _socket>[:<threads_per _core>]] 

--cores-per-socket= <number _of_cores> 

--sockets-per-node= <number _of_sockets> 

--threads-per-core= <number _of_threads> 

The first form allocates nodes with a specific number of sockets (physical processors), and 
optionally given a count of cores per socket and threads per core. The last parameter applies to ar
chitectures that permit concurrent threads effectively to share execution units, such as Intel processors 
with hyperthreading. The remaining three options enable independent specification of each parameter. 

Example 

srun -Nl -B2:4 my_app 
srun -Nl ··cores-per-socket=4 --sockets·per-node=2 my_app 

Both examples are equivalent, and will allocate one node for application my_app with at least two 
physical CPUs each containing at least four cores. 

-m or --distribution= <node_distr>[ :<socket_distr>[ :<core_distr> 11[,{Pack,NoPack} J 

This specifies different distribution modes of the job's tasks across system resources. It may have 
dramatic implications for application performance, e.g., due to grouping related threads on topolog
ically close resources and separating unrelated tasks. The option argument contains up to three entries 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 177



5.2 THE ESSENTIAL SLURM 153 

separated by colons,":", that determine process assignment to nodes, sockets, and cores, respectively. 
Only the first entry (node distribution) is required. The argument may optionally contain the Pack or 
NoPack directive, which either directs the allocator to pack the tasks on the nodes as tightly as possible 
or forces as even a task distribution as possible. The node distribution parameters are as follows: 

• * to accept the default distribution, typically block 

• block will try to assign consecutive tasks to the same node before moving to the next node 

• cyclic distributes consecutive tasks over consecutive nodes in a round-robin fashion 

• plane= <size> distributes the processes in blocks of specified size; after placing block of size 
processes on one node, it moves to the next node to assign the next block, and so on 

• arbitrary mode distributes the tasks in the order specified in the environment variable 
SLURM_HOSTFILE, defaulting to block if the variable is unspecified. 

The supported socket and core distribution parameters are identical, and include: 

• * default mode, which is cyclic for sockets and derived from the socket distribution for cores 

• block assigns consecutive tasks to the same socket/core before moving to the next socket or core 

• cyclic will assign CPUs consecutively from the same socket/core to the same task and from the 
next socket/core for the next task in a round-robin fashion. 

• fcyclic or "full cyclic" assigns CPUs to tasks across consecutive sockets/cores in a round-robin 
fashion without trying to group them based on task boundary. 

Example 

srun -n6 -c2 -m'block:cyclic' my_app 
srun -n6 -c2 ~llipl ane=2:fcycl ic.NoPac~ my.:Capp-

If the first example is submitted on a machine equipped with dual quad-core processors (each core 
supporting single thread of execution), two nodes will be allocated for the job. Assuming the first 
socket of node 0 includes cores numbered 0-3 and the second cores 4-7, task 0 will run on cores 0 and 
I , task 1 on cores 4 and 5, task 2 on cores 2 and 3, and task 3 on cores 6 and 7. The remaining tasks will 
be instantiated on node 1, with task 4 using cores 0 and 1 and task 5 cores 4 and 5. 

Launching the second example on the same platform results in allocation of three nodes. Tasks 
0 and 1 are assigned node 0, tasks 2 and 3 node 1, and tasks 4 and 5 node 3. Individual tasks within the 
node use cores O and 4 (first task) and 1 and 5 (second task). 

-w or --nodelist=<Iist_of_nodes> 

This requests specific nodes for job execution. The list may contain individual node names 
separated by commas, or node ranges. Iflist_of_nodes contains a "f' (forward slash character), it will 
be assumed to represent a path to file containing the node list. Note that if the specified node list is not 
sufficient to support the job, the system will attempt to allocate additional nodes as required. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 178



154 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Example 

I srun -wnode0[4·6],node08 -N6 my_app 

This will allocate nodes 4, 5, 6, and 8 plus two more not explicitly specified nodes for the total of 
six required tasks. 

--mem=<megabytes> 

--mem-per-cpu = <megabytes> 

This controls the allocation of physical memory. The first form specifies the total memory per node 
required for job execution. The value of zero specified in the job step invocation restricts that job step 
to memory allocated to the parent job. The second option is used to limit the amount of memory 
allocated to individual processors. 

Only one of these options may be specified at a time. 

Example 

I srun -N2 -cs ·-mem-per-cpu=4096 my_app 

Here "my _app" will be allocated 32 GB of memory ( or 4 GB per core) on each of the two assigned 
nodes. 

--hint= <type> 

This allocates resources based on a literal hint describing the job's properties: 

• compute_bound causes allocation of all cores in each socket with one thread per core 

• memory _bound uses one core in each socket and one thread per core 

• [no]multithread instructs the system (not) to use multiple threads per core, which could improve 
the performance of communication-intensive applications. 

Example 

I srun -N48 - · hi nt=compute_bound bh_mol 

This will start the compute-bound application "bh_mol" on all cores of 48 assigned nodes. 

--ntasks-per-core = <number> 

--ntasks-per-socket = <number> 

--ntasks-per-node = <number> 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 179



5.2 THE ESSENTIAL SLURM 155 

These set the upper bound for the number of tasks per core, socket, and node, respectively. The last 
option is useful for starting mixed MPJ/OpenMP jobs which require that only one MPI process is 
created per node that utilizes multiple threads for increased local parallelism. 

Example 

srl.in -N16. - -ntasks-per~node=-16 mpi run my_sHn 

This will launch an MPI application on 16 nodes utilizing a total of 256 threads. 

--multi-prog 

This runs a job consisting of different programs with different arguments. A configuration file 
listing the applications with related arguments for each task is required. A path to that file replaces the 
usual executable name at the end of the srun command line. The syntax of this file is explained in the 
Section 5.2.5 discussing job scripting in detail. 

--exclusive[= user] 

-s or --oversubscribe 

These affect resource undersubscription and oversubscription. The first option suppresses node 
sharing with other jobs. If the optional parameter user is specified, the node will not be shared with 
jobs submitted by other users, but may be available to jobs owned by the same user. When used for job 
step launch, each of the concurrently executing job steps is assigned a separate processor. If such 
assignment is not possible at the time of invocation, launch of the job step may be deferred. 

The oversubscribe option permits the resource oversubscription with other jobs that may apply to 
nodes, sockets, cores, and hyperthreads depending on system configuration. Jobs enabling over
subscription may obtain their resource allocation sooner and thus be started earlier than in exclusive 
mode. 

Example 

I srun -n4 -c2 --exclusive my_app 

This launches each of the four my _app instances on a separate node, even if the nodes have four or 
more cores. 

--gres = <resource_list> 

The first option is used to specify GRES. Each entry in the list has a format of <name>[[:<type>]: 
count], where name is the name of the resource, count indicates the number of allocated units (one 
being the default), and type further restricts the resource to a specific class. When used with job steps, 
using --gres = none prevents a specific job step from using any of the resources allocated to the job (by 
default job steps are permitted to use all GRES allocated to the job). Simultaneous job steps may also 
partition the job resources by defining their own GRES allocations. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 180



156 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Example 

srun -N16 --gres=gpu:kepler:2 my_app 
srun --gres=help 

The first example allocates 16 nodes each equipped with two Kepler GPUs for the my_app job. The 
second invocation may be used to obtain the description of all GRES defined in the specific system. 

-C or --constraint=<features> 

This specifies additional resource constraints that will apply. The option parameter may be a 
feature name, feature name with associated node count, or an expression formed by concatenating its 
clauses using the following operators. 

• AND ("&"): only the nodes containing all specified features are selected. 

• OR ("I"): only the nodes containing at least one of the listed features are chosen. 

• Matching OR ("[<featurel>l<feature2>1---l": variant of OR where precisely one of the 
alternatives is matched. 

Currently, jobs steps may only use a single feature name as a constraint (no operators are sup
ported). Features are defined by administrators, and therefore meaningful only on a specific system. 

Example 

srun -n4 -C 'big_mem*21small~mem*4' my_app 
srun -N8 -C · [rackllracR31.rack5J' rny_app 

The first example reserves two large memory nodes or four nodes with small memory capacity, and 
starts four user processes on the selection. The second command allocates eight nodes within a single 
rack selected from three possibilities. 

-tor --time=<time> 

This is one of the most frequently used options, and limits the total runtime of the job allocation. 
When the execution time limit is reached, all running tasks are sent a TERM signal followed soon 
thereafter by a KILL signal. Intercepting the first signal may be used to arrange for graceful termi
nation of affected processes. Time resolution is 1 min (seconds are rounded up to the next minute) with 
allowed specification formats of [ <hours>:]<minutes>:<seconds>, <minutes>[:<seconds> ], 
<days>-<hours>[:<minutes>[:<seconds> ]]. SLURM is frequently configured to permit a 
reasonable grace period following the expiration of the job allocation. A time value of zero imposes no 
temporal limit on the execution. 

Example 

srun -Nl -tl5 my_app 
srun -NS -tl-3:30 my_app 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 181



5.2 THE ESSENTIAL SLURM 157 

The first command executes the job for 15 min on one node. The second will allocate eight nodes 
for 1 day, 3 h, and 30 min. 

-i or --immediate[= <seconds>] 

--begin=<time> 

--deadline= <time> 

These options additionally affect the temporal aspect of job scheduling. The first attempts to start 
the job within a specified period given in seconds (resources must be available right away if no 
argument is present). The job is not started if the resources cannot be allocated within the time 
indicated. The last two options may be used either to postpone the start of the job until a specific time 
(begin) or to make sure that it finishes before a certain time (deadline). The latter removes the job if 
completion by the deadline is not possible. The time specification format for both is YYYY-MM-DD 
[THH:MM[:SS]] for each letter standing for year, month, day, hour (24 h clock), minute, and second. 
Letter "T" separates the date from the time. If launching on the same day, just the time specification 
may be used without the letter "T" and with optionally appended "AM" or "PM". Both options offer 
additional time formats for convenience (see the examples). 

Example 

srun -N4 --deadline=S/27-16:30 -tl-0 my_app 
srun -NB --begin="now+300" my_app 
srun -Nl --begin=noon my_app 

The first example sets the completion deadline for an application estimated to run for a single day 
to May 27th at 4:30 p.m. in the current year. The second command will attempt to schedule the 
application within the next 5 min after submission (default units are seconds, but "minutes" and 
"hours" may be specified following the number). Finally, the third example will limit the job start to no 
later than noon (note that this may be the current or the following day, depending on the time of 
submission). Other predefined times of day include midnight, teatime (4 p.m.), and fika (3 p.m.). 

-d or --dependency= <Iist_of_dependencies> 

This defers job execution until the listed dependencies are satisfied. This option applies only to full 
jobs and not job steps. list_of_dependencies may assume one of two forms, one using commas, ",", to 
separate the entries, while the other uses question marks, "?". With the first format all specified de
pendencies must be satisfied for the job to be launched. The other form means that satisfying any of the 
dependencies is sufficient for the dependent job to be started. Each entry assumes one of the following 
expressions: 

• after:<id>[:<id> .. . ] delays the dependent job start until all listed jobs start the execution 

• afterany:<id>[:<id> .. . ] defers the dependent job until the listed jobs terminate 

• aftercorr:<id>[:<id> .. . ] is used to start tasks in the current job array after successful completion 
of the corresponding tasks in the listed job array 

• afternotok:<id>[:<id> ... ] specifies dependency on failed jobs (timed out, nonzero exit code, 
node failure, and others) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 182



158 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

• afterok:<id>[:<id> . .. ] starts the job after successful completion of listed jobs (completed with 
zero exit code) 

• expand:<id> indicates that resources allocated to this job are used to expand the job <id>, which 
must execute in the same partition 

• singleton defers the execution of this job until all previously started jobs with the same name and 
by the same user terminate. 

Example 

I srun -N4 --dependency=afterok:1234 my_app 

This will not start the job involving "my_app" until job 1234 completes successfully. 

-J or --job-name=<name> 

This permits the user to specify the job name. The default is to use the submitted executable name. 
The job name is displayed alongside the job ID when listing the queue contents. 

Example 

I srun -N4 --job-name=gamma_ray_4n my_sim I 
This will change the default job name my_sim to gamma_ray_4n. 

--jobid= <id> 

This initiates a job step under an already allocated job with the specified ID. For regular users, this 
command is limited to job step control only and should not be used for full job allocations. 

--checkpoint= <time> 

--checkpoint-dir = <path> 

--restart-dir = <path> 

These handle automatic checkpointing and restart. The first option will create checkpoints at 
regular intervals specified by the time argument. The time format is identical to that used by the time 
option. The default is not to generate checkpoints. The directory to store the checkpoint data is defined 
by the second option, defaulting to the current working directory. The third option specifies the 
directory from which the checkpoint data will be read when restarting a job or job step. 

Example 

srun -N4 -t40:00:00 --checkpoint=120 --checkpoint-dir=/tmp/user036/chckpts my_app 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 183



5.2 THE ESSENTIAL SLURM 159 

This will run the job for 40 h, checkpointing its state every 2 h. The checkpoint files are stored in a 
user's subdirectory on a temporary file system. 

-Dor --chdir=<path> 

This changes the current working directory to the path specified before initiating job execution. The 
default is the working directory used for job submission. The path may be absolute or relative to the 
current working directory. 

Example 

srun -N64 -tl0:00 -D /scratch/datasets/0015 dataminer.sh 

This will switch the working directory to scratch storage before starting the application. 

-p or --partition= <partition_name> 

This specifies a partition (queue) to be used. A comma-delimited list of partitions may be specified 
to accelerate the job allocation. 

Example 

I s run -N4 -t30 -p sma 11 , medium, large my.:..app 

This will start the application in the small, medium, or large job queue, whichever becomes 
available first. 

--mpi = <mpi_type> 

This identifies the MPI implementation to use. Supported types (which may not be supported on all 
systems) include: 

• openmpi enables the use of OpenMPI library and implementation 

• mvapich supports MPI implementation on InfiniBand 

• lam with one lamd process per node and appropriate environment variables 

• mpichl_shmem launches one process per node and environment initialized for shared memory 
support in either MPICHl or MVAPICH shared memory build 

• mpichgm to be used with Myrinet networks 

• pmi2 if the underlying MPI implementation supports the process management interface (PMl2) 

• pmix includes support for PMil, PM12, and PMlx, and requires that SLURM is configured 
accordingly 

• none used for other MPI environments. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 184



160 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Example 

I srun -N64 -t300 --mpi=mvapich mpirun my_sim I 
This will run the MPI application my _s i m on 64 nodes using InfiniBand interconnect. 

-1 or --label 

This prepends a task number to every output line (for both stdout and stderr) generated while 
running the job. Since the output of all processes may be interleaved on the console, this option helps 
identify and sort the output lines printed by individual tasks. This has uses in debugging and post
mortem analysis of applications. 

Example 

I srun -N4 -1 hostname 

A possible output is shown below: 

1: node06 
0: node05 
3: node08 
2: node07 

-Kor --kill-on-bad-exit[= {0,1}] 

This determines whether to terminate the job if one of its tasks fails (exits with nonzero status). The 
job will not be terminated if the argument "l" is specified; in all other cases ("0" or no argument) task 
failure will imply the job's failure. 

-W or --wait=<seconds> 

This specifies the waiting period in seconds for other task termination after completion of the first 
task. "0" signifies unlimited waiting time, with a warning issued after the first 60 s. The kill-on-bad
exit option takes precedence over wait, causing the immediate termination of other tasks after the first 
one exits with nonzero status. 

5.2.4.2 salloc 

salloc [<options>] [ <command> [ <command_arguments>]] 

The salloc command obtains resource allocation and runs the command specified by the user. The 
allocation is relinquished after the user's command completes. The salloc command manipulates 
terminal settings and therefore should be executed in the foreground. The command may be an 
arbitrary program or possibly shell script containing srun commands. The job output is shown directly 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 185



5.2 THE ESSENTIAL SLURM 161 

on the terminal from which the command was invoked. The resource allocation options are identical to 
those listed for snm above, with the addition of the following: 

-For --nodefile=<path> 

Similarly to the nodelist option described above, this explicitly specifies names of the nodes to be 
used for allocation. The names are stored in a file identified by path argument. The node names may be 
listed in multiple lines. Duplicates and ordering do not matter, as the list will be sorted by SLURM. 

5.2.4.3 sbatch 

sbatch [<options>] [script [<arguments>]] 

The sbatch command is used to submit batch scripts for execution to the SLURM system. This is 
the preferred way of running large or long jobs, as it allows the scheduler to pick the right moment for 
their launch to maintain high system utilization and job throughput. The job parameters are fully 
described by sbatch command line options and script contents, including I/O stream redirection. This 
frees the user from being continuously present at the terminal. The script may be a file or, if omitted on 
the command line, entered directly on the terminal. Batch script contents are described in more detail 
in the next subsection. 

Normally, sbatch exits as soon as the script is successfully submitted to the SLURM controller 
daemon. This does not mean that the job has executed, or even that it has been allocated resources, only 
that it has been queued. When the resources for execution are granted, SLURM starts a copy of the 
submitted script on the first of the assigned nodes. If commands executed by the script generate any 
output, it is stored in files with the name "slurm-%j.out", where "%j" is the job number. For job arrays 
the output is captured in files named "slurm-%A_ %a.out", with "%A" denoting job identifier and "% 
a" job index. 

Like sallocate, sbatch recognizes many of the same resource allocation options, but also supports a 
few of its own. 

-a or --array=<index_Iist> 

This submits a job array containing multiple jobs with the same parameters. The index_Iist 
specifies numerical IDs of individual jobs and may use comma-delimited numbers, ranges (two 
numbers separated by a dash), and step functions (range followed by a colon and a number). Addi
tionally, the user may put a restriction on a number of simultaneously executing tasks from the job 
array by suffixing the index_list with a "%" (percent sign) and a number. 

Example 

sbatch -N6 -aS-8,10,15%3 script.sh 
·sbatch -N2~aO·ll:5script.sh 

This will create a six-job array with job indexes 5, 6, 7, 8, 10, and 15 while limiting the number of 
concurrent tasks to three. The second command creates a job array with three jobs indexed 0, 5, and 10. 

-o or --output=<pattern> 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 186



162 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

This redefines the default file name to store the job script's output stream with a pattern. The 
pattern may be an arbitrary literal that could be used as a file name by the underlying file system with 
special character sequences that are expanded by SLURM using current job parameters. They include: 

• \\ to suppress the processing of expansion sequences 

• % % to insert the single "%" character 

• %A expands into the job array's master job allocation number 

• %a produces a job index within a job array 

• %j yields a job allocation number 

• %N is the node name of the first node used by the allocation 

• %u converts to the user's name. 

Example 

I sbatch -NlO -o"ljs-%u-%j.out• ljs.sh 

This will capture the job's output in file "ljs-joe013-1337.out" if submitted by user joe013 and the 
allocated job number was 1337. 

-W or --wait 

This postpones the sbatch exit until the submitted job terminates. The exit code of sbatch will be 
the same as the exit code of the job, and for job arrays it will be the highest recorded exit code of all 
jobs in the array. 

5.2.4.4 squeue 
squeue [<options>) 

The squeue command displays information about jobs and job steps in SLURM queues. It may be 
used to examine the status of queued, running, and suspended jobs, and show their resource alloca
tions, time limits, associated partitions, and job owners. The frequently used options are as follows. 

--all 

-1 or --long 

These force additional information to be shown. The all option displays the status of jobs in all 
partitions, including hidden partitions and partitions that are unavailable to the user invoking the com
mand. The long option is specified to list the contents of additional fields, e.g., time limit for each job. 

-Mor --clusters=<cluster_list> 

-p or --partition=<partition_list> 

-u or --user=<user_list> 

-tor --states=<state_list> 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 187



5.2 THE ESSENTIAL SLURM 163 

These restrict the reported information to specific clusters, partitions, users, or states. Each option 
accepts a single name or comma-separated list of applicable names (for the first three options they are 
system dependent). The states option accepts the following state IDs, listed here in full and shortened 
format: PENDING (PD), RUNNING (R), SUSPENDED (S), STOPPED (ST), COMPLETING (CG), 
COMPLETED (CD), CONFIGURING (CF), CANCELLED (CA), FAILED (F), TIMEOUT (TO), 
PREEMPTED (PR), BOO_TFAIL (BF), NODE_FAIL (NF), and SPECIAL_EXIT (SE). The state IDs 
are case insensitive. 

Example 

I squeue -presearch -tPD,S ~i60 

This lists all pending and suspended jobs for the research partition of the currently used cluster, and 
updates it every minute. 

-i or --iterate=<seconds> 

This repeatedly updates the displayed information every given number of seconds. The time stamp 
of the last update is included in the header. 

--start 

This shows the expected start time and resource allocation for pending jobs if the SLURM 
scheduler is configured with the backfill plugin. The output is ordered by increasing start time. 

-r or --array 

This prints each job element per line when showing job arrays. If not specified, the output contains 
condensed information about job arrays combining all information about each job array into a single 
line. 

5.2.4.5 seance/ 

seance) [<options>] [<job_id>L <array_id>][.<step_id>]] ... 

The seance) command cancels or delivers signals to jobs, job arrays, and job steps. Besides the 
options, seance) accepts any number of arguments denoting the identifiers of specific jobs or job steps. 
An underscore("_") is used to specify the individual elements of a job array. Both regular jobs and job 
array elements may append a step identifier after a period(".") to limit the scope of signal delivery to 
the specific job steps. The target job subset may also be identified by application of filters, in which 
case no explicit job identifiers need be given. 

The essential command options include the following. 

-s or --signal= <signal> 

This determines the type of Unix signal to be delivered. The signal argument may be either the 
signal's name or its number, and is typically one of HUP, INT, QUIT, ABRT, KILL, ALRM, TERM, 
USRl, USR2, CONT, STOP, TSTP, TTIN, and TTOU. Absence of this option causes job 
termination. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 188



164 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Example 

I scancel -sSTOP 12345 

This will send the STOP signal to job number 12345. 

-nor --name=<job_name> 

•P or --partition= <partition_name> 

-t or --state= <job_state> 

-u or --user=<user_name> 

These options restrict the set of jobs affected by scancel. The job filtering may be done by job 
name, partition name, state, or user ID of the job's owner, respectively. The job state must be 
PENDING, RUNNING, or SUSPENDED. 

Example 

I scancel -tPENDING -ujoe013 

This terminates all pending jobs owned by user "joe013". 

-i or --interactive 

This enables an interactive mode in which the user has to confirm the cancellation of each 
affected job. 

5.2.4.6 sacct 
sacct [<options>] 

This retrieves job accounting data from SLURM logs or databases. Information is collected on 
jobs, job steps, their status, and exit codes. This command may also be used to access the status of no 
longer existing jobs to determine if they completed successfully. The options available to the regular 
user include the following: 

-a or --allusers 

-Lor --allclusters 

-1 or --long 

-Dor --duplicates 

The options listed above increase the amount of information reported by sacct. The first outputs 
data related to jobs owned by all users of the cluster (note that this may be restricted in some envi
ronments). Similarly, allclusters includes data collected for all clusters under SLURM control; 
otherwise the output is limited to the machine from which the command is invoked. The long option 
provides practically all information that has been retained in logs pertaining to the finished job. Finally, 
the last option provides information for all jobs that used the same ID. Normally, only the records with 
the most recent timestamp are reported for each job ID. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 189



5.2 THE ESSENTIAL SLURM 165 

-b or --brief 

-j or --job=<job>[,<step>] 

--name= <jobname_list> 

-s or --state_list=<state_list> 

-i or --nnodes = <min_nodes>[-<max_nodes>] 

-k or --timelimit-min=<time> 

-Kor --timelimit-max=<time> 

-Sor --startime=<time> 

-E or --endtime=<time> 

Options in this group filter or otherwise restrict the output of the sacct command. The brief option 
shortens the listing to just job ID, status, and exit code. The job and name take arguments that identify 
the specific job ( or job steps) and job names of interest. The state_list will list jobs that are pending, 
executing, or terminated in a specific state. The state mnemonics include (short form in parentheses) 
CANCELED (CA), COMPLETED (CD), COMPLETING (CG), CONFIGURING (CF), PENDING 
(PD), PREEMPTED (PR), RUNNING (R), SUSPENDED (S), RESIZING (RS), TIMEOUT (TO), 
DEADLINE (DL), FAILED (F), NODE_FAIL (NF), and BOOT_FAIL (BF). The nnodes option 
shows only entries that allocated a specific number of nodes (a range may be specified). The remaining 
options are used to limit the retrieved records by the range of execution time limits (timelimit-max 
may only be specified if timelimit-min is set), and actual start and end times. The time format is 
the same as for the srun time option. 

Example 

I sacct -sF,NF ,BF-a -D 

This will list all failed jobs (including errors due to node failures) on the current machine. 

5.2.4. 7 sinfo 
sinfo [<options>] 

This shows information about system partitions and nodes managed by SLURM. The options all, 
long, clusters, partition, and iterate are available, and have the same semantics as described above 
for squeue. In addition to these, sinfo interprets the following options. 

-nor --nodes=<node_list> 

This displays information only about the specified nodes. Node names may be individually listed in 
a comma-separated list or use range syntax, as described for the nodelist option of srun. 

-r or --responding 

-d or --dead 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 190



168 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

command line (executable with options and arguments) for each application used. The program ar
guments in the configuration file may contain percent sign ("%") expressions that will be replaced by 

relevant job parameters when actually run: 

• %tis replaced by the task number under which the application executes 

• %0 expands to task offset within a range specified at the start of the line for the application. 

For example, we can create the file "multi.cf' with the following contents: 

2. 7 hostname 
0-l,6 echo sample task A: task=%t offset=%o 
3-5 echo sample task B: task=%t offset=%o 

We use the script shown below to execute the job: 

#!/bin/b.ash 
#SBATCH 0 -ntasks=8 
ffSBATCH --ntasks-per-node=4 
srun -l --multi-pro~ multi .cf 

Option ntasks-per-node forces the distribution of tasks across two nodes, while the -I option 

passed to srun causes it to prefix every output line with the number of the task that prints it out. Script 
execution produces the following output: 

0: sampletask A: task=O offset=O 
1: sample task A: task=l offset=l 
3: sample task B: task=3 offset=O 
2: node02 
5: sample task B: task=5 offset=2 
6: sample task A: task=6 offset"'2 
7: node03 
4: sample task B: task=4 offset=l 

The second method to achieve concurrent execution of different applications is by spawning 
simultaneous job steps. The following script illustrates the concept: 

/fl /bin/bash 
#SBATCH --ntasks=l536 
#SBATCH --time=l:00:00 
srun -nl ./single_process & 
srun -n16 mpirun ./small_mpi_app & 
srun -nl024 mpirun ./big_mpi_app & 
wait 

The concurrent job steps are created by placing an ampersand("&") at the end of the relevant lines, 

which cause the srun command to execute in the background. Note that unlike multi-prog, this 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 191



5.2 THE ESSENTIAL SLURM 169 

method enables concurrent execution of parallel applications. The wait statement is required to 
prevent script exit before all the background job steps complete. On systems with installed PMI, the 
mpi run commands may be dropped, since the MPI applications already include support for parallel 
launch. Also, the resource requests in the script header need not exactly match the aggregate resource 
allocations of all simultaneous job steps. However, if they are significantly overestimated the un
necessarily increased amount of requested resources may delay job execution. As a general 
rule, creating multiple job steps is preferable to submitting multiple jobs, as the mechanisms used to 
launch the job steps introduce much lower overheads than full-scale job resource allocation and 
scheduling. 

5.2.5.5 Environment Variables 
The execution of scripts may be further modified by using environment variables that are provided by 
SLURM to reflect the details of resource assignment to a particular job and expose information that is 
not known prior to its execution. These environment variables (only a subset is shown) may be 
categorized in the following groups. 

• Propagated option values 

SLURM_NTASKS or SLURM_NPROCS 

SLURM_NTASKS_PER_CORE 

SLURM_NTASKS_PER_NODE 

SLURM_NTASKS_PER_SOCKET 

SLURM_CPUS_PER_TASK 

SLURM_DISTRIBUTION 

SLURM_JOB_DEPENDENCY 

SLURM_CHECKPOINT_IMAGE_DIR 
These variables reflect the values of sbatch options specified either on the sbatch command line or 
in the job script header. They correspond respectively to the ntasks, ntasks-per-core, ntasks-per
node, ntasks-per-socket, cpus-per-task, distribution, dependency, and checkpoint-dir options. 

• Counts of resources allocated to the job: 

SLURM_JOB_NUM_NODES or SLURM_NNODES holds the total number of nodes 
allocated to the job 

SLURM_JOB_CPUS_PER_NODE, depending on the scheduler, indicates the total number of 
CPUs (cores) available on the local node or the actual number of CPUs allocated to the job 

SLURM_CPUS_ON_NODE indicates the number of CPUs on the current node. 

• Runtime assigned IDs and enumerations: 

SLURM_SUBMIT_HOST specifies the name of the host on which the job was submitted 

SLURM_CLUSTER_NAME contains the name of the cluster on which the job is running 

SLURM_JOB_PARTITION names the partition in which the job is running 

SLURM_JOB_ID or SLURM_JOBID indicates the ID of the current job 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 192



170 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

SLURM_LOCALID indicates the ID of the node-local task corresponding to the current process 

SLURM_NODEID is the ID of the allocated node 

SLURM_PROCID specifies the global relative ID of the current process (MPI rank if the process 
is a part of MPI process group) 

SLURM_JOB_NODELIST or SLURM_NODELIST contains a list of node names that were 
allocated to the job; it may contain node ranges or individual entries 

SLURM_TASKS_PER_NODE shows the number of tasks executing on each node; entries in 
the list correspond to host names in the SLURM_JOB_NODELIST variable, with some space
saving notation applied to identical consecutive entries (e.g., 4(x2) indicates two consecutive 
nodes with a task count of 4) 

SLURM_ARRAY_TASK_ID stores the index of job array elements 

SLURM_ARRAY_TASK_MIN and SLURM_ARRAY_TASK_MAX provide the minimum 
and maximum indices used by the job array 

SLURM_ARRAY_TASK_STEP indicates the step by which the index is increased in the job 
array 

SLURM_ARRAY_JOB_ID specifies the ID of the master job in the job array. 

• Other 

SLURM_SUBMIT_DIR contains the directory name from which the job was submitted 

SLURM_RESTART _ COUNT stores the current count if the job has been restarted due to failure 
or requeueing. 

Importing the actual configuration parameters into the script and application space through envi
ronment variables permits nearly arbitrary customization of job execution. It also enables creation of 
more flexible job scripts. For example, the following script calculates the total number of cores 
allocated to the job and selects the appropriate input configuration based on the outcome. It also 
provides a unique log file name to be generated by the master task, reflecting the job number and used 
resource geometry. 

1f! /bin/bash 

job=$SLURM_JOB_ID 
nodes=$SLURM_JOB_NUM_NODES 
cores=$SLURM_JOB_CPUS_PER_NODE 
total=$((nodes • cores)) 

config=small .conf 
[ $total -ge 4096 J && config=medium.conf 
[ $total -ge 16384 J && config=large.conf 

mpirun ./my_sim -i $config -o sim_${job}_${nodes)x${cores}.log 

J: 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 193



5.2 THE ESSENTIAL SLURM 171 

SLURM environment variables may be helpful in staging files to a higher performance file system 
than shared Network File System storage (frequently used to provide global access to home di
rectories). The script listed below creates a unique temporary directory for each task in local temporary 
storage, copies the dataset data.in prepared in the submission directory, spawns tasks that modify it, 
and copies the results back. It assumes that the cluster supports a passwordless secure shell on login 
and compute nodes. 

/tl/bin/bash 

host=-$SLURM_SUBMIT_HOST 
hostdir=$SLURM_SUBMIT_DIR 
tmpdi r=/tmp/$ {USER I/$ { SLURM_JOB_ID} 

srun mkdi r -p $tmpdi r/$SLURM_P.ROCID 
srun scp ${hostl:S{hostdirl/data.in \ 

$tmpdir/$SLURM_PROCID/data 

srun • /update~fi le $tmpdi r/$SLURM_PROCID/data 

srun scp Stmpdi r/$SLURM_PROCID/data \ 
$ { host l: $hostdi r / data .. out.$ { SLURM_PROCID} 

5.2.6 SLURM CHEAT SHEET 
This subsection contains a collection of commands that accomplish frequently performed tasks but 
may sometimes be difficult to locate in the manual. They are presented in the way they would be typed 
by a user at the login shell prompt, although many of them can be converted to the equivalent job 
scripts. The examples below serve primarily as a template, since in many cases the option arguments 
are strongly platform dependent. For commands that require resource allocation, both the time limit 
and the number of nodes or tasks are specified to enforce good practices. 

Invoke the interactive shell on the allocation: 

I srun -N4 -t30 --pty /bin/bash I 
Enable X windows forwarding for graphical applications (requires an Xl 1 plugin installed): 

I srun -Nl -t30 "·xll xterm I 
(Here xterm is used as an example application). 
Submit job to the specific queue ("debug" in this case): 

I sbatch -N4 -t30 ~pdebug job.sh 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 194



172 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

Submit a multithreaded MPI job (MPI with OpenMP). The command below spawns 16 MPI 
processes with 8 OpenMP threads each, placing 2 processes per node: 

env OMP_NUM_THREADS=8 sbatch -n16 -c8 -t30 
--ntasks-per-node=2job.sh 

Specify memory requirements for the job (4 GB = 4096 MB per node shown): 

I sbatch --mem=4096 -n2 -t30 job.sh I 
Find out the estimated start of execution time (1234 is the queued job identifier): 

I squeue - -start -j 1234 I 
Ask to be notified by email when the job terminates or fails: 

I sbatch --mail-type=ENO,FAIL -N4 -t30 job.sh I 
Kill a submitted or currently running job (1234 is the identifier of the queued job): 

I seance l 1234 

5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 
5.3.1 PORTABLE BATCH SYSTEM OVERVIEW 
PBS is one of the oldest resource management suites. It originated in 1991 as a contract project for 
NASA, with the bulk of the proprietary code developed by MRJ Technology Solutions. The PBS 
interface was based on the POSIX 1003.2d standard defining batch environments, which was ulti
mately released in 1994. The underpinnings of the initial PBS design were the result of collaboration 
between NASA Ames, Lawrence Livermore National Laboratory, and the National Energy Research 
Scientific Computing Center. Further developments brought integration with operating environments 
on Cray (UNICOS), Intel Paragon, and iPSC/860, as well as checkpoint/restart, interactive job support, 
and initiated experiments resulting in execution of workloads on supercomputers located at opposite 
ends of the United States (NASA Metacenter). In 1998 the PBS team led by Bill Nitzberg released 
version 2.0 of the resource manager code, which included the ability to add and remove execution 
nodes dynamically. Two years later Veridian Corp. announced the first commercial release of PBS, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 195



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 173 

PBS Pro 5.0. At this point PBS supported an advanced reservation mechanism and peer scheduling, 
and was capable of managing grid workloads using Globus. The intellectual prope1ty behind the 
proprietary version of PBS has been acquired by Altair Engineering, which rem<l!ns its home to this 
day. The improvements that followed include topology-aware scheduling, on-demand computing, 
scheduling on GPUs, and support for pe1formance data analysis and visualization. In May 2016 Altair 
opened the code base of PBS Professional to stimulate innovation across all markets important to the 
HPC community. 

Several open-source PBS implementations compatible in essential functionality but not in all of the 
features have been developed over the years. The most notable are the following. 

• OpenPBS, deriving from the revision open sourced by the MRJ in the late 1990s. This version is 
no longer in development. 

• TORQUE, or Terascale Open-Source Resource and Queue Manager. TORQUE was developed 
and is supported by Adaptive Computing with significant community contributions. It includes 
such features as job an-ays, GPU scheduling, high-throughput support, advanced diagnostics, log 
and statistics collection, node health monitoring, and high availability. 

Both open and proprietary versions of PBS were extensively used by among others the NASA 
Goddard Space Flight Center, Chevron, Conoco, Wolfram Research, Nvidia, the US Department of 
Defense, Department of Energy national laboratories, National Center for Supercomputing Applica
tions, and Australian National Computational Infrastructure. Altair Engineering and Adaptive 
Computing formed partnerships with Hewlett-Packard, Cray, Silicon Graphics International, Fujitsu, 
Groupe Bull, and others as resellers of resource management products. Software from both companies 
was also awarded the Intel "cluster ready" certification. PBS maintains a very strong presence in the 
HPC community and is one of the most popular and broadly used resource management systems. 

5.3.2 PORTABLE BATCH SYSTEM ARCHITECTURE 
Similar to SLURM, PBS consists of a number of daemons accepting user commands and sharing job 
execution duties. User-command processing, job creation, monitoring, and dispatch, and protecting 

I 

( __ 
1 

_j 

Server Host 

FIGURE 5.3 

Simplified PBS architecture. 

Execution 
Host 

Execution 

Host 

From Altair/PBS 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 196



174 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

against system failures are the responsibility of the server daemon (Fig. 5.3). The server runs on the 
cluster's head node, or server host in PBS terminology, and interacts with other entities in the system 
via the communication daemon. The communication daemon is based on the internet protocol. There 
is one server for each set of resources. 

The compute nodes (execution hosts in PBS) typically run only the machine-oriented miniserver 
(MoM) daemons, one instance per node. MoMs play the role of job executors, and are more commonly 
described as "the mother of all executing jobs". Mo Ms communicate with the server to receive the jobs 
to be run on local execution resources. They are also responsible for faithfully instantiating shell-like 
user sessions, including the correct initialization of the related environment (in particular execution of 
the appropriate shell initialization scripts and set up of environment variables) as well as proper 
redirection of I/0 and error streams. 

The scheduler is responsible for monitoring the state of system resources and deciding when and on 
which subset of resources each job is to run. It does so by polling the MoM daemons to obtain the most 
current utilization data. The scheduler also communicates with the server to sample the status of job 
queues and thus determine the next most eligible jobs to execute. 

The configuration described above is most typical for small and medium-scale platforms. 
Optionally, a PBS installation may include additional server hosts to reduce the amount of resources 
that need to be managed per server instance. In some cases MoM daemons may be permitted to execute 
on server hosts to extend the pool of available resources. Finally, PBS allows the inclusion of nodes 
whose only function is command submission. 

5.3.3 SUMMARY OF PBS COMMANDS 
5.3.3.1 qsub 

qsub [<options>] [ <script_name>] 

The qsub command is likely the most frequently used command in PBS. It allows users to submit 
jobs to the batch system, along with their resource requirements and additional attributes. If the name 
of the script file is omitted, qsub reads the equivalent statements from the terminal input or starts the 
application specified on the command line. After the submission is successfully accepted, qsub 
prints the job identifier in the form <sequence_number>. <server _name> or, for job array, 
<sequence_number> [ J. <server _name>. Job parameters can be defined directly in scripts (discussed in 
Section 5.3.5) or passed through command-line options. These include the following. 

-1 <resource_list> 

This frequently used option requests resources, specifies distribution of job components, and im
poses limits on various aspects of job execution. To allocate job-wide resources, the option's argument 
assumes the format: 

<resource_name> = <value>[, <resource_name> =<value> ... ] 

The following are some of the supported resource names. 

• Nodes-number and type of nodes to be allocated for the job. They are described using the 
following format: 

<node_spec>[ + <node_spec> ... ] 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 197



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 175 

where each <node_spec> starts with the number of nodes followed by one or more named 
properties separated by colons,":". If no number is provided, "I" is assumed. The properties 
may be: 

• name of the node (hostname) 

• ppn=<processors_per_node> (defaults to 1) 

• another string assigned by the system administrator which may identify additional parameters 
of interest, such as memory size, CPU type, or accelerator availability. 

• Walltime-the maximum amount of time a job is permitted to run. 

• T)le names cput and pcput refer respectively to the aggregate CPU time used by all processes and 
the maximum time used by any of the job's processes (unit: time). 

• The names pmem, pvmem, and vmem are respectively the maximum physical memory used by 
any of the processes, maximum virtual memory used by any of the processes, and maximum 
virtual memory used by all processes in aggregate (unit: size). 

• File-the maximum size of any of the files created by the job (unit: size). 

The qsub command also offers new style resource selections and job placement statements. The 
new syntax uses the abstraction of vnodes (virtual nodes) to make the resource allocation and parti
tioning more flexible. Vnodes represent a set of resources that are a usable part of a machine. A vnode 
can be an entire host or a part of it, such as a single processing blade. A host may comprise multiple 
vnodes. 

The new style resource allocation formats are incompatible with the syntax described above, thus 
mixing these two approaches in a single job will result in an error. The resource selection is specified 
using the following format: 

select= [ <number>:]<chunk>[ + [ <number>: ]<chunk> ... ] 

where <number> determines how many instances of <chunk> are needed. Each chunk is a list of 
<resource_name>=<value> assignments separated by colons (":"). Some of the commonly used 
built-in resources include: 

• arch-type of the architecture (site dependent) 

• ncpus-number of processing cores 

• mem-amount of physical memory allocated to the chunk 

• mpiprocs-number of MPI processes per chunk 

• accelerator-indicates whether the chunk contains an accelerator 

• naccelerators-number of accelerators on the host (host-level resource) 

• accelerator_memory-amount of memory with which accelerators on this vnode are equipped 

• accelerator_model-type of accelerator associated with a vnode 

• ompthreads-number of OpenMP threads 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 198



176 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

• host-name of host to execute the job on 

• vnode-name of virtual node to be used for execution. 

The placement format supported by the -1 option must conform to the following: 

place= [<arrangement>][ :<sharing>][ :<grouping>] 

The following rules apply. 

• arrangement may be one of free, pack, scatter, or vscatter. free will place the job on any of the 
vnodes, pack will put all chunks on a single host, scatter will assign only one MPI chunk to a host 
(although nonMPI chunks may be assigned to the same node), and vscatter takes one chunk from 
one vnode. 

• sharing keywords include excl, shared, and exclhost. They determine the exclusivity of vnode 
allocation for the job. The first permits only this job to use the allocated vnodes, the second allows 
vnode sharing, and exclhost allocates the entire host to the job. 

• grouping determines how chunks are grouped according to a resource. It takes the form of 
<group>= <resource> with <resource> being either a built-in resource host or a node-level 
resource that is site specific. 

Some of the option variants expect arguments that express time. The time value must conform to 
the string in the format [[<hours>:]<minutes>:]<seconds>[,<milliseconds>]. Other arguments 
denote size, which is expressed by a number followed by either b or w for bytes or words, respectively. 
The actual word size in bytes is system dependent and equal to the native word size on the execution 
host. The specification permits k, m, and g (kilo, mega, and giga) prefixes that scale the basic unit 210

, 

220
, and 230 times, respectively. 

Example 

I qsub -1 nodes=16 .-1 walltime=lS:00 my_job.sh 

This will submit a job described by the script my_j ob. sh to be executed on 16 nodes for at most 
15 min. 

qsub -1 nodes'-'node0l+node20+node21.walltime=l.:00:00 my_job.sh 

This will execute the job on three specific hosts, named "node0l", "node20", and "node21 ", for up 
to 1 h. 

I qsub -1 select=2:ncpus=4:mem=2gb my_job.sh 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 199



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 177 

This will submit the job, requesting allocation of two resource chunks with four cores and 2 GB 
memory each. 

-q <destination> 

Depending on the argument, this sends the job to a specific queue, server, or queue at a server. The 
argument format corresponding to these cases is <queue>, @<server>, and <queue>@<server>. 

Example 

I qsub -l~odes=2 -q debug test.sh 

This will submit a two-node job to the debug queue. 

-N <name> 

The first option permits the user to associate a name with the job. If omitted, it defaults to the name 
of the script or STD IN if submitted from the standard input on the console. 

Example 

qsub -1 nodes=12,wa1ltime=10:0Q:do :-N hurt'icahe job.sh 

This will submit a job named "hurricane" to the pending job queue. 

-J <range> 

This declares a job array. The range argument assumes the form <x>-<y>[:<z>], with x being the 
starting index of the array, y being the upper bound on the index value, and z the step (index increment) 
value. By default, the step value is one. 

Example 

I qsub ::-J 5-22:.5 -1 walltime=25:Q0 job.sh 

This will create a job array with element job indices of 5, 10, 15, and 20. 

-a <date_time> 

This postpones job execution at least until the specified time. The argument format is [[[[CC]YY] 
MM]DD]hhmm[.SS], where CC is the century, YY is the year, MM is the month, hh is the hour in 
24 h format, mm is the minute, and SS is the second. The omitted components of <date_time> are 
extracted from the current date and time as long as they specify a time point in the future. If not, the 
nearest time in the future matching the specified <date_time> string is assumed. 

Example 

I q.sub -1 nodes=1600 -a 151630 big_one;s11 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 200



178 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

If submitted on June 17, this will schedule the job execution for on or afterJuly 15, 4:30 p.m., in the 
same year. 

-W <attribute_name> = <value>[, <attribute_name> =<value> ... ] 

This specifies additional job attributes. Due to limited space, only a subset is presented here. 

• depend= <dependency>[, <dependency> ... ] 

where the individual dependencies may be 
• after:<job_id>[,<job_id> .. . ] delays the execution of this job until all jobs in the list have 

started execution 

• afterok:<job_id>[,<job_id> .. . ] does not start the job until all jobs in the list have terminated 
successfully 

• afternotok:<job_id>[,<job_id> .. . ] waits until all jobs in the list terminate with errors 

• afterany:<job_id>[,<job_id> ... ] postpones the job start until all jobs in the list terminate 
with any exit status 

• before:<job_id>[,<job_id> .. . ] jobs specified in the list may begin execution only after this 
jobs starts execution 

• beforeok:<job_id>[,<job_id> .. . ] jobs in the list may start execution only after this job's 
successful termination 

• beforenotok:<job_id>[,<job_id> .. . ] jobs in the list may execute after the current job 
terminates with an error 

• beforeany:<job_id>[,<job_id> .. . ] argument jobs may begin execution only after this job 
terminates 

• on:<number> this job may start execution only after <number> of dependencies on other 
jobs has been satisfied. 

• block= true causes qsub to block until the submitted job terminates. The command returns the 
job's exit status. 

• run_count=<number> sets the number of times the job should be run. 

Example 

qsub -1 nodes=l -W depend=afterok:simulate.cluster.edu \ 
postprocess 

This makes the postprocess job dependent on the successful tennination of the job simulate. 

-V 

-v <variable_list> 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 201



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 179 

These options control the export of environment variables to the job's environment. The first 
one forces copying of all environment variables and shell functions from the user login environment 
in which qsub is run. The second uses an explicit list of variables to be exported. The entries 
on the list are separated by commas and take the form <variable> or <variable>=<value>. The 
first form simply names the variable to be exported (such a variable must exist in the login environment 
in which qsub is invoked), while the second defines both the name and the value of the exported 
variable. 

-I 

-X 

These start an interactive job, causing the stdin, stdout, and stderr streams of the job to be con
nected to the terminal session in which qsub is running. If a job script is provided, only its PBS di
rectives are processed. Jobs belonging to a job array cannot be interactive. 

The second option enables an interactive job to open X windows on the user's display. 

-e <path> 

-o <path> 

-j { oe,eo,n} 

These affect handling of the output and error streams of the job. The first two options save the 
contents of respectively error and standard output streams to specified files. If omitted, stderr is 
captured in the file <job_name>.e<number>, while stdout stream is redirected to <job_name>. 
o<number>, where <number> is the job's ID. The <path> may be expressed as [<host>:]<path>. 
Both relative and absolute paths are permitted; in the first case they are relative to the current working 
directory during qsub invocation. 

The third option describes how standard error and output streams are merged. The parameters listed 
above correspond to both merged into stdout, both merged into stderr, and not merged. 

-S <path>[@<host> ][, <path>[@<host>] ... ] 

-C <prefix> 

These options may be used to modify how job scripts are processed by PBS. The first specifies the 
path to the shell executable acting as an interpreter for the job script. By default the user's login shell is 
used. If the host name is not entered, only one shell path may be listed that applies to all execution 
hosts. The second option specifies the literal to be used as a prefix for PBS directives inside the script, 
nominally "#PBS". 

Example 

qsub -1 nodes=l -S $PBS_EXEC/bin/pbs_python test.py 

This will execute a python script on the target host. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 202



180 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

5.3.3.2 qdel 

qdel [<options>] <job_id> [<job_id> ... ] 

This deletes specified job(s). If used without any options, qdel removes any queued, running, or 
suspended jobs. In such a case, the job history is retained. Job deletion begins by sending the affected 
processes the SIG TERM signal. Afterwards, if there are still any remaining processes belonging to the 
job, they are sent SIGKILL. Supported options include the following. 

-W force 

This deletes the job even if the execution host cannot be reached. 

•X 

This applies to all jobs in the system, including finished and moved jobs. The related job history is 
also removed. 

Example 

I qdel -x mpi_sparse8.some.host.com I 
This will delete job mpi _spa rse8 from the server some. host. com irrespective of its status. The job's 

history will also be erased. 

5.3.3.3 qstat 
The qstat command displays on the standard output status of jobs, queues, or servers. Each of these 
functions requires a different set of options and command-line arguments, which are briefly discussed 
below. 

5.3.3.3.1 Job Status Query 

qstat [<options>] [{ <job_id>, <destination>} ... ] 

These are default job status options, as follows. 

-J 

This shows the status of job arrays only. 

-t 

This displays the status of jobs, job arrays, and subjobs. When combined with -J, it only shows the 
subjob status. 

·P 

This replaces values in the time-use column with completion percentages. For job arrays, it lists the 
percentage of subjobs completed. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 203



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 181 

-x 

In addition to queued and running jobs, this displays the status of finished and moved jobs. 
For alternative job status options, the command argument in this mode may be a job ID, which 

causes the printed information to be limited to that specific job, or a server name, in which case the 
information is restricted to jobs managed by that server. 

-a 

The status of running and queued jobs is reported. 

-H 

This displays the status of finished and moved jobs. 

-i 

This shows information about waiting, held, and queued jobs. 

-r 

This lists running and suspended jobs. 

-T 

This replaces the E 1 a p Ti me field with the estimated time for queued jobs. 

-u <user.[,<user> ... ] 

-f 

This shows information about jobs owned by a specific user(s). 
Long job status options are available from: 

The full option lists the job information in long format, including job ID, job attributes (one per 
line), job submission arguments, the job's executable, and the argument list. 

5.3.3.3.2 Queue Status Query 

qstat -Q [-f] [<destination>[,<destination> ... ]) 

qstat -q {-G,-M} [<destination>[,<destination> ... ]) 

Queue status may be examined using one of two forms. The first displays the status of specified 
queues, one queue per line. If the -f option is given, the full status of each queue is listed, one attribute 
per line. The destination argument may be <queue_name>, <quque_name>@<server>, or 
@<server> (the last reports on all queues managed by the specified server). 

The second form shows queue status in alternate format, one queue per line. The additional options 
are as follows. 

-G 

This shows size in gigabytes. 

-M 

This shows size in megawords (8 bytes per word). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 204



182 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

5.3.3.3.3 Server Status Query 

qstat -B [-f] [-GI [-MI [<server>[,<server> ... I 

The arguments of this command must be server names. The meaning of options is analogous to that 
described above for queue status query. 

5.3.3.4 tracejob 

tracejob [ <options> I <job_id> 

This extracts and outputs log information about a specific job. Log data includes server (time when 
the job was queued or modified), scheduler (circumstances that prevent the job from running), ac
counting (track of the job entering the queue, starting execution, termination, and deletion), and MoM 
(what happened to job while it was running) information. Supported options are: 

-a 

-1 

-m 

-s 

Each of these options suppresses the presentation of the respective class of data, in order: ac
counting, scheduler, MoM, and server. Note that to retrieve MoM's log, tracejob has to be invoked on 
the node where the examined MoM daemon runs. 

-c <number> 

-n <day _count> 

-f <filter> 

These options provide additional filtering of displayed data. The first limits the count of specific 
messages to the number of most recent occurrences. The second accesses only the logs that go back no 
more than day_count days. Finally, the filter option excludes specific events from the printout. The 
filter argument is any of the keywords listed below, or a number formed by using OR on the flags given 
in parentheses: 

• error (0x000I) filters internal errors 

• system (0x0002) filters system errors 

• admin (0x0004) filters administrative events 

• job (0x0008) filters job-related events 

• job_usage (0x00lO) filters job accounting information 

• security (0x0020) filters security violations 

• sched (0x0040) filters scheduling events 

• debug (0x0080) filters common debug messages 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 205



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 183 

• debug2 (0x0l 00) filters less common debug messages 

• resv (0x0200) filters reservation debug messages 

• debug3 (0x0400) filters debug messages less common than debug2 

• debug4 (0x0800) filters debug messages less common than debug3. 

-v 

This increases the verbosity of presented information. Using this option will include additional 
error messages in the output. 

Example 

I tracejob -a -n 7 -f 0x84 1234 

This will display log information related to jobs with IDs of 1234 and collected in the past week. 
Accounting, administrative, and debugging information will not be included. 

5.3.3.5 pbsnodes 
pbsnodes [<options>] [<host>[ <host> ... ]] 

The pbsnodes command is used to examine the status of system hosts. This information is obtained 
through interaction with the PBS server. The command supports a number of different invocation 
formats that use different option subsets. Necessarily, only some of them are described below. 

-a 

This lists all hosts and their attributes. The attributes may include jobs that are currently running on 
the specific hosts and resources that are used by running jobs. Summary information about all 
consumable resources across all vnodes is reported for each host. 

-H <host>[,<host> ... ] 

This outputs all attributes with nondefault values on all hosts listed and their vnodes. 

-j 

-S 
These change the format of information displayed for each vnode. The first includes jo?-related 

fields such as vnode name, vnode state, number of jobs per vnode, running and suspended Job~, and 
total and free memory, CPUs, MICs, and GPUs per vnode. The second option presents system-onented 
information that besides vnode name and state contains the values of OS custom and hardware re
sources, host name, queue attribute, amount of vnode memory, and the count of CPUs, MICs, and 
GPUs. 

-L 
This causes pbsnodes to produce output in long format with no restrictions on column width. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 206



184 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

5.3.4 PBS JOB SCRIPTING 
PBS job scripts share many similarities with SLURM scripts. In both cases the scripts are executed by 
an interpreter, which is typically a shell such as bash or csh. They also use prefixed comments in the 
script header to define job parameters. Each line of the PBS script header needs to begin with a "#PBS" 
prefix, which is followed by the qsub command option. For example: 

Ill/bin/bash 
#PBS -J 0-3 
11 PBS -1 nodes=4 
#PBS -1 walltime~30:00 
/home/user13/my_app 

This will start four instances of the my_app program (one per host) as a job array with an execution 
time limit of half an hour. While SLURM relies on the built-in shell mechanisms to start the appro
priate interpreter (following "#!" in the first line of the script), in PBS this can be changed explicitly 
using the -S option. In addition, the PBS -C option may redefine the directive prefix to something other 
than "#PBS". This helps to accommodate scripts and shells in which comments do not start with the 
"#" character. 

Despite many similarities between PBS and SLURM, there are some noteworthy differences in 
the default setup of the execution environment. While SLURM exports all environment variables set 
in a user's login shell to a job's environment, by default PBS does not export anything. The user must 
therefore use -v or -V options to control explicitly what is copied to the target job's environment. 
While SLURM attempts to emulate running in the current directory as much as possible (one may 
use file paths relative to the submission directory and the captured standard outputs are also placed 
there), PBS runs in a spool directory. Finally, PBS does not merge the standard output and error 
streams by default. 

5.3.4.1 OpenMP Jobs 
In contrast to uniprocessor jobs, OpenMP scripts must explicitly request the number of cores required 
to support the multithreaded application. This is illustrated below: 

#!/bin/bash 
#PBS -1 node.s=l: ppn=16 
1/PBS -1 walltime=45:00 
export ·OMP_NUM_THREADS=16 
./my_omp_prog 

The ~b~ve ~cript allocates one node with 16 cores for the job. Note that the OMP NUM TH
READS 1s m this case set explicitly in the script, but it may also be defined using the -v option 0~ the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 207



5.3 THE ESSENTIAL PORTABLE BATCH SYSTEM 185 

command line. The equivalent script using the new style of "chunked" resource requests is presented 
below: 

ff! /bin/bash 
/!PBS -1 sel ect=l: ncpus=16 :.ornpthreads=16 
/IPBS -1 wallti.rne=45:00 ·· 
./rny_ornp_prog 

Note that since the ompthreads directive automatically sets the OMP _NUM_THREADS envi
ronment variable, it is no longer necessary to export it explicitly. 

5.3.4.2 MP/ Jobs 
The basic MPI job script is shown below: 

fl! /bin/bash 
#PBS -1 nodes=16:ppn=8 
/IPBS -1 walltirn&=l:00:00 
module load openrnpi 
rnpi run rnpi .... app rnpi...;app_arg 

It will allocate 16 execution hosts for the job, scheduling eight single-threaded MPI processes on 
each of them for a total of 128 parallel processes. Expressing the same using the new syntax yields: 

#!/bin/bash 
#PBS -lselect=16.:ncpus""B 
/fPBS -1 wal 1 ti rne=l: 00: 00 
module load .openmpi 
rnpirunmpi_app rnpi_app_arg 

As PBS does not automatically export the user's environment to the job, the note in the SLURM 
section about properly setting up the MPI environment is particularly important here. While SLURM 
users who forget to do this may be "saved" in some cases by SLURM's automatic propagation of the 
environment, in PBS the task has to be performed explicitly. In the scripts above, this is ensured by the 
rnodul e statements. In general, however, the specific command for the task is platform dependent and 
should be checked with the system administrator or online manuals. 

5.3.4.3 Environment Variables of Interest 

• PBS_ENVIRONMENT-either PBS_BATCH or PBS_INTERACTIVE. 

• PBS_NODEFILE-name of the file containing the assigned execution vnodes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 208



186 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

• NCPUS-number of usable threads per vnode. 

• PBS_TASKNUM-the process number on this vnode. 

• PBS_ARRAY_INDEX-index of subjobs in the job array. 

• PBS_ARRAY_ID-identifier of the job array. 

• PBS_JOB_ID-job or subjob identifier; if the latter, the <job_id>[ <index> ].<server> format 
is used 

• PBS_JOBNAME-user-defined job name 

• PBS_QUEUE-queue from which the job is executed 

• PBS_SERVER-default submission server. 

• PBS_JOBDIR-the staging and execution directory for the job. 

• PBS_TMPDIR-a job-specific temporary directory. 

• PBS_O_ WORKDIR-the absolute path to the job submission directory. 

• PBS_O_HOME-the value of the HOME variable from the submission environment. 

• PBS_O_HOST-host name of the machine on which qsub was invoked. 

• PBS_O_SHELL-value of the SHELL variable from the submission environment. 

• PBS_O_PATH-value of the PATH variable from the submission environment. 

5.3.5 PBS CHEAT SHEET 
Invoke the interactive shell on the allocation: 

I qsub -I -l nodes=4,walltime=30:00 f 

Enable X windows forwarding for graphical applications: 

I qsub -X -I -l nodes=4,walltime=30:00 xterm f 

(Here xterm is used as an example application.) 
Submit the job to the specific queue ("debug" in this case): 

qsub -q debug -l nodes=4,walltime=30:00 job.sh 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 209



5.4 SUMMARY AND OUTCOMES OF CHAPTER 5 187 

Submit the multithreaded MPI job (MPI with OpenMP). The command below spawns 16 MPI 
processes with eight threads each: 

qsub -1 select=l6:ncpus=B:mpiprocs=l:ompthreads=8 
--wal ltime=30:00 job. sh 

Specify the memory requirements for the job (4 GB per vnode shown): 

qsub -1 se1ect=2:mem=4gb,walltime=30:00 job.sh 

Find out the estimated start of execution time (1234.host.org is the queued job identifier): 

I qstat -T 1234'.host.org I 
Ask to be notified by email when the job gets aborted or terminates: 

I qsub -m ae -1 nodes=4,walltime=30:00 job.sh I 
Kill a submitted or currently running job (1234.host.org): 

I qdel 1234 .. host.org 

5.4 SUMMARY AND OUTCOMES OF CHAPTER 5 
• Resource management tools are an inherent part of the HPC software stack and perform three 

principal functions: resource allocation, workload scheduling, and support for distributed 
workload execution and monitoring. 

• Resource allocation takes care of assigning physical hardware, which may range from a fraction 
of the machine to the entire system, to specific user tasks based on their requirements. 

• Resource managers typically recognize the resource types of compute nodes, processor cores, 
interconnects, permanent storage and I/O devices, and accelerators. 

• Resource managers allocate the available computing resources to jobs specified by users. 
• Jobs may be executed interactively or batch processed. Batch processing requires all necessary 

parameters and inputs for job execution to be specified before it is launched. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 210



188 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

• Jobs may be monolithic or subdivided into a number of smaller steps or tasks. Each such task is 
associated with the launch of a specific application program. 

• Pending computing jobs are stored in job queues, which define the order in which jobs are 
selected by the resource manager for execution. 

• Most systems use multiple job queues, each with a specific purpose and set of scheduling 
constraints. 

• Common parameters that affect job scheduling include availability of execution and auxiliary 
resources, priority, resources allocated to the user, maximum number of jobs, requested execution 
time, elapsed execution time, job dependencies, event occurrence, operator availability, and 
software license availability. 

• Job launchers employ hierarchical mechanisms to alleviate bandwidth requirements and exploit 
network topology to minimize the amount of data transferred and overall launch time. 

• Resource managers must be able to tem1inate any job that exceeds its execution time or other 
resource limits, irrespective of its current processing status. 

• The software commonly used today includes SLURM, PBS, OpenLava, Moab Cluster Suite, 
LoadLeveler, Univa Grid Engine, HTCondor, OAR, and YARN. 

• There is no common standard specifying the command format, language, and configuration of 
resource management. 

• SLURM is an open-source, modular, extensible, scalable resource manager and work.load 
scheduling software for clusters and supercomputers running Linux or other Unix-compatible 
OSs. 

• SLURM scales to the largest systems in use today, including the fastest supercomputer of 2016, 
the Sunway TaihuLight, with its 40,000 CPUs (over IO million cores). It is also used on 5 of the 
top IO machines. It can handle up to 1000 job submissions and 500 job executions per second. 

• Single points of failure are eliminated through the use of multiple backup daemons, permitting the 
affected applications to continue running and requesting .resources to replace those that fail. 

• Job sizes are not necessarily fixed over their execution time; they may grow or shrink, but should 
not exceed the maximum specified size and time limits. Sophisticated scheduling algorithms are 
available, including elastic scheduling, gang scheduling, and preemption. 

• SLURM integrates support for execution on heterogeneous components, such as GPUs, MIC 
processors, and other accelerators. 

• Gang scheduling supports a scheduling approach in which two or more jobs with similar 
characteristics are allocated the same set of resources. These jobs are then executed in an 
alternating fashion, so that only one of them obtains exclusive access to the resources at a time. 

• PBS is a resource management suite that is among the most widely employed within HPC, 
including open-source versions such as OpenPBS and TORQUE. 

• PBS consists of a number of daemons accepting user commands and sharing the job execution 
duties. User-command processing and job creation, monitoring dispatch, and protecting against 
system failures are the responsibility of the server daemon. 

• The PBS server runs on the cluster's head node, or server host in PBS terminology, and interacts 
with other entities in the system via the communication daemon. Communication is based on the 
internet protocol, with one server for each set of resources. 

• The compute nodes run typically only MoM daemons, with one instance per node. 
• The PBS MoMs play the role of job executors. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 211



5.5 QUESTIONS AND PROBLEMS 189 

• MoMs communicate with the server to receive the jobs to be run on local execution resources. 
• The scheduler is responsible for monitoring the state of the system resources and deciding when 

and on which subset of resources each job is to run. 

5.5 QUESTIONS AND PROBLEMS 
1. Describe the role of resource management systems. Can they be implemented as a part of a 

conventional OS? Elaborate. 
2. Based on Figs. 5.1 and 5.3, what are the primary software components of a resource 

management system in a cluster? Which physical system components do they rely on? 
3. What are the two primary types of jobs? Why are they needed? 
4. What are the differences between a job array and job step in SLURM? 
5. Imagine you are a system administrator for a newly installed computer composed of 260 nodes 

in total. Of those, 64 come equipped with GPUs and 36 have substantially larger memory 
capacity. Your users execute both regular and (infrequently) high-priority jobs. The latter require 
exclusive access to nonaccelerated hardware resources, but never occupy more than 128 nodes. 
a. Propose a partitioning scheme (enumerate the types and sizes of SLURM partitions) that 

provides good utilization of the entire machine. Identify any partition overlaps. 
b. What kind of provisions would you implement to facilitate parallel job debugging? 
C. Which SLURM features would you take advantage of to minimize the impact of conflicts 

between jobs of different priorities? 
6. What is backfill? How does it affect computer utilization? 
7. Provide a couple of realistic cases that would utilize job dependencies in batch processing. Why 

would emulating this functionality with blocking statements inside job scripts be ill advised? 
8. Write a SLURM command line to schedule an MPI application "mpi_compute" that takes input 

file argument "my_file.dat" stored in the user's home directory. The application must run on 
10,240 cores on a machine equipped with 16-core compute nodes that are available in the 
"production" partition. The anticipated execution time is 1.5 hours. Also provide an equivalent 
job script with a correctly formed header. 

9. Provide the PBS equivalent of the command described in Question 8. 
10. List notable user interface differences between SLURM and PBS. How would you instruct a 

novice SLURM user with experience in PBS to make her/his initial interactions with the job 
manager more productive? 

11. The following PBS job script was submitted on a machine equipped with dual eight-core CPUs 
per node: 

If! /bin/bash 
#PBS ~N sim3-grid25x4 
/FPBS -1 selec.t,a,;4:ncpus=4:ompthreads.=4 
/f P.BS -1 pl a.ce=pack 
ffoPBS -1 walltime=2:30:00 
/fPBS -o ${PBS_0_W0RKD.IR}/${PBS...:;J0B_ID}.out 
#PBS -j oe 
mpirun·.sim3 -x 25 -y 4 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 212



190 CHAPTER 5 THE ESSENTIAL RESOURCE MANAGEMENT 

What information can be inferred about the scheduled job? How are the application's processes and 
threads distributed across the physical execution resources? How is the distribution going to change if 
the fourth line is replaced with: 

I ttPBS -1 pl ace=scatter 

REFERENCES 
[l] XSEDE: Extreme Science and Discovery Environment, 2011 [Online]. Available: https://www.xsede.org. 
[2] SchedMD, Slurm Workload Manager Version 17.02, November 2, 2016 [Online]. Available: https://slurm. 

schedmd.com. 
[3] Altair Engineering, Inc., PBS Professional Open Source Project, 2016 [Online]. Available: http://www. 

pbspro.org. 
[4] OpenLava: Open Source Workload Management, 2011-2015 [Online]. Available: http://www.openlava.org. 
[5] Adaptive Computing, Inc., MOAB HPC Suite, 2017 [Online]. Available: http://www.adaptivecomputing. 

com/products/hpc-products/moab-hpc-basic-edition/. 
[6] IBM, IBM DeveloperWorks: Tivoli Workload Scheduler, [Online]. Available: https://www.ibm.com/ 

developerworks/community/wikis/home?lang=en#!/wikiffivoli%20Documentation%20Central/page/ 
Tivoli %20Workload%20Scheduler. 

[7] Univa, Grid Engine, 2017 [Online]. Available: http://www.univa.com/products/. 
[8] University of Wisconsin-Madison, HTCondor High Throughput Computing, April 23, 2017 [Online]. 

Available: https://research.cs.wisc.edu/htcondor/. 
[9] OAR Home Page, February 25, 2016 [Online]. Available: http://oar.imag.fr. 

[10] A. Murthy, Apache Hadoop YARN - Concepts and Applications, August 15, 2012 [Online]. Available: 
https://hortonworks.com/blog/apache-hadoop-yam-concepts-and-applications/. 

[11] Top 500. The List, 1993-2016 [Online]. Available: https://www.top500.org. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 213



SYMMETRIC MULTIPROCESSOR 
ARCHITECTURE 

CHAPTER OUTLINE 

6 
6.1 Introduction ................................................................................................................................. 191 
6.2 Architecture Overview ................................................................................................................... 192 
6.3 Amdahl's Law Plus ....................................................................................................................... 196 
6.4 Processor Core Architecture ......................................................................................................... 199 

6.4.1 Execution Pipeline ................................................................................................... 200 
6.4.2 Instruction-Level Parallelism ..................................................................................... 201 
6.4.3 Branch Prediction .................................................................................................... 201 
6.4.4 Forwarding ............................................................................................................... 202 
6.4.5 Reservation Stations ................................................................................................. 202 
6.4.6 Multithreading ......................................................................................................... 203 

6.5 Memory Hierarchy ........................................................................................................................ 204 
6.5.1 Data Reuse and Locality ........................................................................................... 204 
6.5.2 Memory Hierarchy .................................................................................................... 205 
6.5.3 Memory System Performance .................................................................................... 207 

6.6 PCI Bus ........................................................................................................................................ 209 
6.7 External VO Interfaces .................................................................................................................. 213 

6.7.1 Network Interface Controllers .................................................................................... 213 
6.7.1.1 Ethernet. ............................................................................................................. 213 
6.7.1.2 lnfiniBand ........................................................................................................... 215 

6.7.2 Serial Advanced Technology Attachment .................................................................... 215 
6.7.3 JTAG ....................................................................................................................... 218 
6. 7 .4 Universal Serial Bus ................................................................................................. 220 

6.8 Summary and Outcomes of Chapter 6 ............................................................................................. 222 
6.9 Questions and Exercises ............................................................................................................... 223 
References .......................................................................................................................................... 224 

6.1 INTRODUCTION 
The most widely used fonn of high perfonnance computer is the symmetric multiprocessor (SMP). It 
represents a class of parallel architectures that exploits multiple processor cores to increase perfor
mance through parallelism while maintaining a single image of common memory across the entire 

High Performance CompuUng. https://doi.org/lO.I016/B978·0.12-420158-3.00006-X 
Copyright © 20 I 8 Elsevier Inc. All rights reserved. 

191 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 214



192 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

Table 6.1 Some Examples of SMPs and Their Characteristics 

··:',' . . . . - .. · .,,.... :· .... · .: ·., .·•.·.···Pr.f .. ·~-=--~.····'·r•,.'_ : •·· :'.l:r~,i · C~or · : ::'•~~~: ~ .... 
IBM S822LC IBM 

HPE 
rx2800 i6 

Dell 
PowerEdge 
R930 

Oracle 
SPARC T7-4 

HPE 
ProLiant 
DL385p 
Gen8 

POWERS 
2,92 GHz 

Intel Itanium 
9760 
2.66GHz 

Intel E7-
8870v4 
2.1 GHz 

SPARCM7 
4.13 GHz 

AMD 
Opteron 
6373 
2.3 GHz 

20 JO 

16 

80 20 

128 32 

32 16 

256GB 

384GB 

12TB 

4TB 

384GB 

2 x 16-lane 
Gen.3 
3 x 8-lane Gen.3 

3 x 16-lane 
Gen.2 
2 x 8-lane Gen.2 

JO Gen.3 

8 x 16-lane 
Gen.3 
8 x 8-lane Gen.3 

3 x 16-lane 
Gen.2 
3 x 8-lane Gen.2 

12LFF 

8 SFF 

24 SFF 
8NVMe 

8 SFF 

8 SFF 

parallel computer. This global virtual address space shared by all of the incorporated processors 
minimizes the changes from a single processor machine thus simplifying the transformation from 
sequential applications to parallel programs. SMPs are also referred to as shared-memory machines or 
cache-coherent computers. The "S" in SMP stands for symmetric, which refers to the property of equal 
access times by any processor core to any of the main memory banks. As will be seen, this is at best an 
approximation as secondary effects cause some variability in load/store operations. But overall SMPs 
provide balanced operations where data placement need not be a major consideration. This differs 
from the distributed-memory systems discussed in detail elsewhere in the text. 

The principal strength of the SMP architecture family is that it is tightly coupled, i.e., all the 
components are close together in terms of time-distance of operations, data manipulation, and 
communication. Some examples of SMPs and their characteristics are provided in Table 6.1. 

6.2 ARCHITECTURE OVERVIEW 
An SMP is a full-standing self-sufficient computer system with all subsystems and components needed 
to serve the requirements and support actions necessary to conduct the computation of an application. 
It can be employed independently for user applications cast as shared-memory multiple-threaded 
programs or as one of many equivalent subsystems integrated to form a scalable distributed
memory massively parallel processor (MPP) or commodity cluster. It can also operate as a 
throughput computer supporting multiprogramming of concurrent independent jobs or as a platform 
for multiprocess message passing jobs, even though the interprocess data exchange is achieved through 
shared memory transparent to the parallel programming interface. The following sections describe the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 215



6.2 ARCHITECTURE OVERVIEW 193 

key subsystems in some detail to convey how they contribute to achieving performance, principally 
through parallelism and diverse functionality with distinct technologies. This section begins with a 
brief overview of the full organization of an SMP architecture and the basic purposes of its major 
components, to provide a context for the later detailed discussions. 

Like any general-purpose computer, an SMP serves a key set of functions on behalf of the user 
application, either directly in hardware or indirectly through the supporting operating system. These 
are typically: 

• instruction issue and operation functions through the processor core 
• program instruction storage and application data storage upon which the processor cores operate 
• mass and persistent storage to hold all information required over long periods of time 
• internal data movement communication paths and control to transfer intermediate values between 

subsystems and components within the SMP 
• input/output (1/0) interfaces to external devices outside the SMP, including other mass storage, 

computing systems, interconnection networks, and user interfaces, and 
• control logic and subsystems to manage SMP operation and coordination among processing, 

memory, internal data paths, and external communication channels. 

The SMP processor cores perform the primary execution functions for the application programs. 
While these devices incorporate substantial complexity of design (described later), their principal 
operation is to identify the next instruction in memory to execute, read that instruction into a special 
instruction register, and decode the binary instruction coding to determine the purpose of the operation 
and the sequence of hardware signals to be generated to control the execution. The instruction is issued 
to the pipelined execution unit, and with its related data it proceeds through a sequence of micro
operations to determine a final result. Usually the initial and resulting data is acquired from and 
deposited to special storage elements called registers: very high-speed (high bandwidth, low latency) 
latches that hold temporary values. Somewhat simplistically, there are five classes of operations that 
make up the overall functionality of the processor core. 

1. The basic register-to-register integer, logic, and character operations. 
2. Floating-point operations on real values. 
3. Conditional branch operations to control the sequence of operations performed dependent on 

intermediate data values (usually Boolean). 
4. Memory access operations to move data to and from registers and the main memory system. 
5. Actions that initiate control of data through external 1/0 channels, including transfer to mass storage. 

Until 2005 essentially all processors in the age of very large-scale integration (VLSI) technology 
were single-microprocessor integrated circuits. But with the progress of semiconductor technology 
reflecting Moore's law and the limitations of instruction-level parallelism (ILP) and clock rates due to 
power constraints, multicore processors (or sockets) starting with dual-core sockets have dominated 
the processor market over the last decade. Today processors may comprise a few cores, 6-16, with 
new classes of lightweight architectures permitting sockets of greater than 60 cores on a chip. An SMP 
may incorporate one or more such sockets to provide its processing capability (Fig. 6.1). Peak per
formance of an SMP is approximated by the product of the number of sockets, the number of cores per 
socket, the number of operations per instruction, and the clock rate that usually determines the in
struction issue rate. This is summarized in Eq. (6.1). 

Ppeak ~ Nsockets * Ncores per socket* Relock* Noperations per instruction (6.1) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 216



194 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

FIGURE 6.1 

0 ... 0 
8B 8E 
I L3 I 
MP 

0 ... 0 
EITJ [ITT 

L2 ] 0IJ 
I - L3 I 
MP 

~7 { ~ ···G 
Chipset 

1B Network 

C: core 
MP: microprocessor 

Ll, L2, L3 : caches 
Ml, M2, ... : memory banks 

S: storage 
HCA: host channel adapter 

Other 
Peripherals 

Internal to the SMP are the intranode data paths, standard interfaces, and motherboard control elements. 

The SMP memory consists of multiple layers of semiconductor storage with complex control logic to 
manage the access of data from the memory by the processor cores, transparent vertical migration 
through the cache hierarchy, and cache consistency across the many cache stacks suppo1ting the pro
cessor core and processor stack caches. The SMP memory in terms of the location of data that is being 
operated on is, in fact, three separate kinds of hardware. Already mentioned are the processor core 
registers; very fast latches that have their own namespace and provide the fastest access time (less than 
one cycle) and lowest latency. Each core has its own sets of registers that are unique to it and separated 
from all others. The main memory of the SMP is a large set of memory modules divided into memory 
banks that are accessible by all the processors and their cores. Main memory is implemented on separate 
dynamic random access memory (DRAM) chips and plugged into the SMP motherboard's industry
standard memory interfaces (physical, logical, and electrical). Data in the main memory is accessed 
through a virtual address that the processor translates to a physical address location in the main memory. 
Typically an SMP will have from 1-4 gigabytes of main memory capacity per processor core. 

Between the processor core register sets and the SMP main memory banks are the caches. Caches 
bridge the gap of speeds between the rate at which the processor core accesses data and the rate at 
which the DRAM can provide it. The difference between these two is easily two orders of magnitude, 
with a core fetch rate in the order of two accesses per nanosecond and the memory cycle time in the 
order of 100 ns. To achieve this, the cache layers exploit temporal and spatial locality. In simple terms, 
this means that the cache system relies on data reuse. Ideally, data access requests will be satisfied with 
data present in the level 1 (LI) cache that operates at a throughput equivalent to the demand rate of a 
processor core and a latency of one to four cycles. This assumes that the sought-after data has already 
been acquired before (temporal locality) or that it is very near data already accessed (spatial locality). 
Under these conditions, a processor core could operate very near its peak performance capability. But 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 217



6.2 ARCHITECTURE OVERVIEW 195 

due to size and power requirements, Ll caches (both data and instruction) are relatively small and 
susceptible to overflow; there is a need for more data than can be held in the Ll cache alone. To address 
this, a level 2 (L2) cache is almost always incorporated, again on the processor socket for each core or 
sometimes shared among cores. The L2 cache holds both data and instructions and is much larger than 
the Ll caches, although much slower. Ll and L2 caches are implemented with static random access 
memory (SRAM) circuit design. As the separation between core clock rates and main memory cycle 
times grew, a third level of cache, L3, was included, although these were usually implemented as a 
DRAM chip integrated within the same multi-chip module packaging of the processor socket. The L3 
cache will often be shared among two or more cores on the processor package. 

This contributes to achieving the second critical property of the SMP memory hierarchy: cache 
coherency. The symmetric multiprocessing attribute requires copies of main memory data values that are 
held in caches for fast access to be consistent. When two or more copies of a value with a virtual address 
are in distinct physical caches, a change to the value of one of those copies must be reflected in the values 
of all others. Sometimes the actual value may be changed to the updated value, although more frequently 
the other copies are merely invalidated so an obsolete value is not read and used. There are many 
hardware protocols that ensure the correctness of data copies, started as early as the 1980s with the 
modified exclusive shared invalid [ 1] family of protocols. The necessity to maintain such data coherence 
across caches within an SMP adds design complexity, time to access data, and increased energy. 

Many SMP systems incorporate their own secondary storage to hold large quantities of informa
tion, both program codes and user data, and do so in a persistent manner so as to not lose stored in
formation after the associated applications finish, other users employ the system, or the system is 
powered down. Mass storage has usually been achieved through hard magnetic disk technology with 
one or more spinning disk drives. More recently, although with somewhat lower density, solid-state 
drives (SSDs) have served this purpose. While more expensive, SSDs exhibit superior access and 
cycle times and better reliability as they have no moving parts. Mass storage presents two logic in
terfaces to the user. Explicitly, it supports the file system consisting of a graph structure of directories, 
each holding other directories and end-user files of data and programs. A complete set of specific file 
and directory access service calls is made available to users as part of the operating system to use the 
secondary storage. A second abstraction presented by mass storage is as part of the virtual memory 
system, where "pages" of block data with virtual addresses may be kept on disk and swapped in and 
out of main memory as needed. When a page request is made for data that is not found in memory, a 
page fault is indicated and the operating system performs the necessary tasks to make room for the 
requested page in main memory by moving a less-used page on to disk and then bringing the desired 
page into memory while updating various tables. This is performed transparently to the user, but can 
take more than a million times longer than a similar data access request to cache. Some SMP nodes, 
especially those used as subsystems of commodity clusters or MPPs, may not include their own 
secondary storage. Referred to as "diskless nodes", these will instead share secondary storage which is 
itself a subsystem of the supercomputer or even external file systems shared by multiple computers and 
workstations. Diskless nodes are smaller, cheaper, lower energy, and more reliable. 

Every SMP has multiple 1/0 channels that communicate with external devices ( outside the SMP), 
user interfaces, data storage, system area networks, local area networks, and wide area networks, 
among others. Every user is familiar with many of these, as they are also found on deskside and 
laptop systems. For local area and system area networks, interfaces are most frequently provided to 
Ethernet and InfiniBand (IB) to connect to other SMPs of a larger cluster or institutional 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 218



196 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

environments such as shared mass storage, printers, and the internet. The universal serial bus (USB) 
has become so widely employed for diverse purposes, including portable flash drives, that it is 
ubiquitous and available on essentially everything larger than a screen pad or laptop, and certainly on 
any deskside or rack-mounted SMP. JTAG is widely employed for system administration and 
maintenance. The Serial Advanced Technology Attachment (SATA) is widely used for external disk 
drives. Video graphics array and high-definition multimedia interface provide direct connection to 
high-resolution video screens. There is usually a connection specifically provided for a directly 
connected user keyboard. Depending on the system, there may be a number of other 1/0 interfaces. 

6,3 AMDAHL'S LAW PLUS 
Consider a situation analogous to one that dominates computing: whether to fly or drive to get from 
one city to another nearby city. The airplane travels about 10 times faster than a car. At first thought, it 
would be obvious 'that flying is better than driving with a peak performance gain of an order of 
magnitude. But door to door may not be an advantage: it takes about the same amount of time either 
way. The overheads of getting to and from the airport, the waiting time at the airport, waiting at 
baggage claim, the delay in getting a rental car or taxi, and even the time to check in at the hotel all 
degrade the positive effect of having a significant accelerator (the jet airplane versus the automobile) 
over the majority of the distance. A very similar situation dominates computing: it is codified in an 
observation made by Gene Amdahl, and is appropriately referred to as "Amdahl's law". 

As previously presented, the SLOW performance model identifies key factors that determine 
delivered (or sustained) performance, including parallelism (starvation), latency, overheads, and 
contention (waiting for arbitration for shared resources). The effective operation of SMP-class ar
chitecture can be measured as the ratio of the delivered performance to the theoretical peak perfor
mance of the system. Amdahl's law is an important relation that captures a critical aspect of the SLOW 
performance model, specifically the effect of the program parallelism that provides the performance 
gain. If, with some simplification, a computation is divided between the part or fraction (f, where 
0 < f < l) that can benefit from acceleration, such as the number of processor cores available for 
parallel execution and the remaining part of the computation ( 1 - j) that is forced to perform at the rate 
of a single-thread execution, a total performance gain, S, with respect to the full computation being 
performed at sequential speed can be determined. This is illustrated in Fig. 6.2. 

In Fig. 6.2 the upper line represents the computation being performed in a purely sequential manner 
from start to end over a period of To. The part of the total execution that is available for acceleration, 
shown as the lighter shaded line, is T F where h < To. The fraction of the computation that can benefit 
from performance gain is f = T FITo. With acceleration applied to the fraction designated, the total 
speedup is S = To/TA, where TA is the time to solution of the accelerated code. The derivation for Sis 
shown in Eqs. (6.2)-(6.6), where g is the gain of the accelerator over the conventional execution rate. 
This is known as Amdahl's law: 

S = To/TA 

f = TF/To 

f 
TA = ( I - f) * To + - * To 

g 

S= 
To 

f 
(I - f) *To+ - * To 

g 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 219



6.3 AMDAHL'S LAW PLUS 197 

FIGURE 6.2 

The time required to complete the serial execution (T0) and accelerated (parallel) execution (TA) of an application. A 
fraction of the application can be accelerated, indicated in green (light gray in print versions), requiring a non

accelerated time of T F and an accelerated time of Tr.lg. The total performance gain of the acceleration, S, is T ofT F· 

S= 
f 

1-f + -
g 

(6.6) 

where To is time for the nonaccelerated computation; TA is time for the accelerated computation; TF is 
time of the portion of computation that can be accelerated; g is peak performance gain for the 
accelerated portion of computation; f is fraction of the nonaccelerated computation to be accelerated; 
and S is speedup of the computation with acceleration applied. 

The fundamental consequence of Amdahl's law is that independent of the size of the accel
erator's peak performance gain, g, the sustained performance is bounded by the fraction, f, of the 
original code that can be accelerated. As a trivial limit, imagine that you have an accelerator capable 
of ~nstantaneous execution no matter what the code, and that half the problem can be executed this 
way; that is, consider the case of infinite gain. The speedup for infinite gain and f = 0.5 is 
only S = 2.0. Fig. 6.3 shows the speedup with respect to the fraction of code accelerated for several 
values of g. 

It is clear from the set of curves in Fig. 6.3 that sustained speedup is highly sensitive to the fraction 
of the computation that can benefit from acceleration. Where the fraction, f, to which g can be applied 
is less than 0.5 or so, S remains relatively low even if g is greater than an order of magnitude. It is only 
when f approaches 1.0 that dramatic reductions of time to solution result. For an SMP comprising p 
processor cores, g can be approximated by PA, which is the number of cores applied to the parallel 
segments of the code <PA -5, p). 

Example 
What is the minimum number of processor cores one must employ in an SMP to achieve a speedup 

of 3x where 75% of the user application can be fully parallelized? 
Here S = 3, andf = 0.75 where we are seeking PA as the minimum value of g required. Using the 

formulation for Amdahl's law derived above, the calculation follows: 
3 = 1/(1-0.75 + (0.75/g)) or g = 9. 
At least nine cores of the SMP must be used to get a speed up of 3 x with this code. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 220



198 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

10 

g= 2 
8 g= 5 

g= 10 · 
g= 20 

a. 6 g= 50 
::, g = 100 · "Cl 

al a. 
4 en 

2 

o~~-~-~~-~-~~~~-~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIGURE 6.3 

The speedup with respect to the fraction of code accelerated for several values of g. 

But that is the good news. There are other sources of performance degradation that also come into 
play; in particular the overhead, v, of managing the parallel tasks, which does not contribute to the real 
work but does add to the critical time to solution. The timelines in Fig. 6.2 suggest that all the work that 
can be accelerated occurs in one large chunk, when in reality it is usually partitioned in a sequence of 
chunks, each controlled by some amount of overhead work, as shown in Fig. 6.4. 

As seen in the top sequential (nonaccelerated) timeline of Fig. 6.4, the fraction of the computation 
that can be accelerated is broken into n = 4 partitions, which together make up the fraction/ of the total 
work that can be accelerated. If this were the only difference, with a bit of manipulation the formu
lation of speedup would remain the same as that originally derived. However, for each partition of code 
to be accelerated, there is hopefully only a small amount of overhead work added to the critical path of 
execution time. Unfortunately, the size of the overhead is usually relatively constant independent of the 
granularity of the parallelized useful work parts. Further, the more partitions, n, into which the work is 

start 11-f=------1~--'1-end 
tF T tF tF tF ________ y___ _______ _ 

"'" r I +-tj-+++ 1 :::i '"' 
FIGURE 6.4 

Timelines for nonaccelerated (T0) and accelerated (TA) executions, similar to Fig. 6.2 but including overhead, v. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 221



6.4 PROCESSOR CORE ARCHITECTURE 199 

10 

VITO 0.00 --

~ 
8 VITO 0.01 

VITO 0.02 
II VITO 0.05 
Cl 6 VITO 0.10 

g_ VITO 0.20 · 
VITO 0.50 

a. 
:::, 4 
al a. 
(I) 

2 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 6.5 

The speedup for various overhead ratios as a function of the fraction of code that can be accelerated for a fixed 
gain (g = IO). 

divided, the more the additional overhead. By considering this overhead, a new extended version of 
Amdahl's law is derived in Eqs. (6.7)-(6.9). 

TA = (1 - f) *To+ .[_*To+ n * v (6.7) 
g 

To 
f 

( 1 - f) * To + - * To + n * v 
g 

S= f 
(1 -!) + -+ 

g 

(6.8) 

(6.9) 

where v is the overhead of an accelerated work segment and Vis total overhead for the total accelerated 
work, r:,7 v;. 

Using the new equation for speedup given in Eq. (6.9), there is a new ratio added to the denom
inator that is proportional to the overhead v and the number of partitions, n. If there is no overhead 
(v = 0), the results are the same as the original formulation of Amdahl's law. If there is only a single 
large fraction of the code to be accelerated (n = 1), the result is almost the same. But as the parallelism 
is increased in the number of separate components, the overhead has an increasingly degrading effect. 
This is shown in Fig. 6.5. 

As in Fig. 6.3, the abscissa axis in Fig. 6.5 is the fraction of code that can be accelerated, f. but g 
here is constant for all curves. A new independent variable, overhead v, is added to the plot, while To is 
constant. As the overhead increases, performance gain, S, is reduced. 

6.4 PROCESSOR CORE ARCHITECTURE 
The modem multi core processor, sometimes called a "socket", consists of a number of cores, a 
potentially complex cache hierarchy, one or more interfaces to external main memory and 1/0 buses, 
and ancillary logic. While differing in details, most common processors can be characterized by a 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 222



200 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

Table 6.2 Characterization of Several SMP Processors 

. . n,p Pr.ocess . .. 
,· <Caehll$ (per ~~ Cores . :_1u1d JJte:> Pc>wer , 
.Proc~or . c;iloek kate, . Core) Core)·· Per Chip Site .·· (W:L 

. 

AMD 2.5 GHz LIi: 32 KB 4 FPops/ 16 32nm, I 15 
Opteron (3.4GHz LID: 16KB cycle 316 mm2 

6380 turbo) L2: 1MB 4 intops/ 
L3: 16 MB total cycle 

IBM Power8 3.126 GHz LIi: 64KB 16 12 22nm, 190/247 
(3.625 GHz LID: 32 KB FPops/ 650mm2 

turbo) L2: 512 KB cycle 
L3: 8MB 
L4: 64 MB total 

Intel Xeon 2.4 GHz LIi: 32 KB 16 24 14nm 165 
E7-8894V4 (3.4 GHz LID: 32 KB FPops/ 

turbo) L2: 256 KB cycle 
L3: 60 MB total 

shared set of parameters, shown in Table 6.2. Among these are the number of cores per socket, the size 
and interconnectivity of the cache levels (usually two or three levels), the clock rate of the core, the 
number and type of arithmetic logic units per core (ILP), the die size (between one and four square 
centimeters), the feature size, and the delivered performance for one or more standardized bench
marks. For the application programmer many of the details may not matter, but the rate at which 
instructions are issued, the number of operations performed per instruction issue, the average time per 
memory access, and the delays due to 1/0 requests are principal in determining the delivered per
formance. In this section the major structures of the processor core are described and how they 
contribute to achieved performance. Section 6.5 examines the memory and cache hierarchy in depth to 
understand the role of locality in reducing average memory access time. 

6.4. 1 EXECUTION PIPELINE 
The earliest generation of sequential computers issued and completed one instruction at a time using 
the oft-quoted "fetch-execute-writeback" cycle. With the low clock rates possible in early vacuum
tube and transistor technologies, this was satisfactory. But as clock rates improved with advanced 
technologies (e.g., small- and medium-scale integration), this straightforward approach became un
tenable. The complexity of the full issue to completion of instructions required too many layers of 
logic, with the resulting latency bounding the feasible clock rate. 

A pipelined structure was adopted to partition the full compute operation into a sequence of 
microoperations which together achieved the same functionality. The time from instruction issue to 
completion would actually be longer than for a single logical function of the same purpose, but each 
stage of the pipeline would take much less time. As the clock rate was limited by the instruction issue 
cycle time, which was itself determined by the propagation delay through the longest stage of the 
pipeline, an execution pipeline with as many stages as possible each of the same delay allowed the 
clock rate to be increased appreciably. Early execution pipelines with four or five stages were even
tually superseded by much longer pipelines. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 223



6.4 PROCESSOR CORE ARCHITECTURE 201 

As discussed in Chapter 2, pipeline logic structure is a general way of exploiting a form of very 
fine-grain parallelism, as each pipeline stage operates simultaneously. Ideally, the parallelism of a 
functional pipeline is equal to the number of stages of which the total pipeline is formed. Execution 
pipelines benefited from both the reduction in clock cycle times and the parallelism of their constituent 
stages. But a number of other factors imposed limits on the degree of pipelining that could be 
effectively employed. Among these are: 

1. The size of the total function limited the number of logic layers that were required and thus the 
maximum number of stages into which the pipeline could be divided. 

2. Imbalance in the number of logic layers in each stage made some stages slightly longer than others 
and therefore slowed down the rate at which signals could propagate through the execution pipeline. 

3. The overhead of the interface between successive stages of the pipeline added additional 
propagation delay to each stage, bounding how fast the signals could proceed through the 
execution pipeline. 

4. Not all execution functions were the same, and they did not necessarily require the same number 
of function stages. Those requiring more stages would waste some of the hardware when other 
execution cycles required fewer stages. 

5. Intermediate values of one operation might be required for a following operation, but would be 
unavailable in time for the succeeding operation to be issued at its earliest opportunity. 
Alternatively, it would stall waiting for the results of the earlier operation to complete. 

6. Conditional operations complicate the efficient use of an execution pipeline. Their function is to 
perform a branch to a noncontiguous instruction location, but to do so only if a predicate value is 
true, which must also be determined. This extends the number of microaction sequences, 
disrupting the flow within the execution pipeline and causing delays or "bubbles" to be inserted, 
thus slowing down execution. 

To speed up execution despite these inhibiting factors, the core architecture has evolved in a 
number of forms and functions, briefly described in the following subsections. 

6.4.2 INSTRUCTION-LEVEL PARALLELISM 
Superscalar architectures enable multiple operations to be launched by a single instruction issue. This 
is achieved through the incorporation of multiple arithmetic logic units (ALUs), including both 
floating-point and integer/logical functional units, among others. Additional single-instruction mul
tiple data units may be included to perform the same operations on multiple data values from the same 
instruction. Known as ILP, this provides among the finest-grain parallelism available to a processor 
core, and for special cases it can have a dramatic impact on total throughput. Unfortunately, experience 
over more than two decades shows that in general such peak capabilities are rarely exhibited while still 
adding complexity, overhead, and power demand to the advanced designs. 

6.4.3 BRANCH PREDICTION 
The problem with conditional branch instructions is discussed in Section 6.4.1. To eliminate bubbles 
caused by the delay between determining the Boolean value of the predicate and committing the virtual 
address of the next instruction to be executed, a statistical approach known as "branch prediction" is 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 224



202 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

employed. As the name implies, upon a branch instruction being issued, the hardware makes a guess as 
to which of the two alternative instructions that may be followed will be issued. There is a long history 
of techniques to do this, and further reading on this topic is found in the bibliography [2-6]. But for 
this discussion the key idea is that depending on the role of the particular branch prediction, one of the 
two paths is more likely. For example, if a branch is used at the bottom of a loop, it is far more likely 
that the predicate will redirect the execution flow to the top of the loop rather than immediately 
continuing on. If a branch is associated with error handling, it is highly unlikely that this path will be 
pursued and more likely that the next instruction to be issued will be part of the regular computation 
stream. There will always be cases where the wrong choice is made, so the hardware architecture has to 
be capable of rolling back the computation to take the other path; this itself is a large body of ar
chitecture lore. Some codes, like system software, are very heavy with branches, and in such cases 
branch prediction architecture support can go a long way in improving efficiency. 

6.4.4 FORWARDING 
Key to the concept of the execution pipeline is that the time to issue successive instructions is potentially 
far shorter than the time to completion through the many stages of the pipeline. It is possible that two 
succeeding instructions may impose one or more precedence constraints, such that the second instruction 
requires as arguments the result value of the preceding (first) instruction issued. Usually an instruction 
will acquire its operands from the core's register set. But in the condition described there will not have 
been enough time for the resulting value of the first instruction to be calculated and written back into the 
register bank before the second instruction would ordinarily read the same value from the register in 
which this intermediate value resides. The solution is "forwarding". Forwarding means added data 
transfer channels that move data from downstream execution pipeline segments to the appropriate up
stream segment, making the argument value available in time for the instructions to follow more closely 
in succession. Combined with compiler reordering where necessary gaps can be filled with one or more 
unrelated instructions, pipeline stages can be filled and bubbles eliminated through forwarding. 

6.4.5 RESERVATION STATIONS 
Different operations take different amounts of time to complete, and the execution pipeline becomes 
multipath with shorter links in a simple Boolean logic operation than for a floating-point multiply. If 
strict ordering were preserved, i.e., the order of completion was forced to be identical to the order of 
issue, the rate of instruction processing would be constrained by the slowest operations with repeated 
stalls of backstream instructions. This problem is addressed by reservation stations, a concept dating 
back to the late 1960s, and the ideas of data flow in the 1970s. A reservation station is a special-purpose 
buffer register, invisible to the user, which temporarily holds a previous result value. Its special feature is 
that it "knows" what follow-on instructions require the captured value, and those instructions know the 
corresponding reservation station(s) from which to acquire their argument values. If the instruction tries 
to get the operand value before it is available in the designated reservation station, the instruction will be 
delayed at the reservation station but will not impede the progress of the execution pipeline. There are 
many alternative architecture methods by which this complex out-of-order scheduling mechanism can be 
achieved ( often referred to as the "Tomasulo algorithm"), but in every case the use of reservation stations 
permits substantial flexibility in operation of the execution pipeline and greater efficiency. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 225



6.4 PROCESSOR CORE ARCHITECTURE 203 

6.4.6 MULTITHREADING 
So far the discussion of the processor core's execution pipeline assumes a single stream of instructions, 
each with one or more associated operations. While these can prove complex in detail, they still are based 
on the original von Neumann concept of a single program counter (or instruction pointer) that is incre
mented for each instruction issue except for branch instructions. This is a clean and elegant approach but 

suffers from a number of edge conditions, such as those previously discussed. Many of these problems are 
due to the interrelationships among adjacent orneighboring instructions of a single instruction stream. One 
way to address this challenge in a single processor core was introduced by Burton Smith in the 1980s: the 
concept of "multithreading". In its simplest version, multithreading incorporates multiple instruction 
streams or threads routed through sets of multiple instruction pointers and their associated register sets. 
The rest of the execution pipeline is shared, and a round-robin instruction issue scheduler selects each 
successive instruction fetch from different threads. This hides the latency of the execution pipeline and, if 
sufficient threads are employed, the latencies to main memory as well. 

BURTON SMITH AND THE MTA 

Photo by Dimitri} Krepis via Wikimedia Commons 

Burton Smith is a leading computer architect and is considered the father of multithreading architecture, for which he 

was awarded the Eckert-Mauchly Award and the Seymour Cray Award. As a cofounder of Denelcor and later the founder of 

Tera Computer Company Smith led the commercialization of multi threaded architecture. In 2000 Tera became Cray, with 

the merger of the Cray Research business unit of Silicon Graphics. Burton Smith was the ch ief architect of the Tera MTA 

(multithreaded architecture), a breakthrough design that continues to inform high perfom1ance computer development. 

Burton Smith became a technical fellow of Microsoft in 2005, where he remains to this day advancing future technologies 

and computing concepts. 
The MTA-1 was deployed at the San Diego Supercomputer Center; the initial system was unique in that it was 

implemented using very high-speed logic based on gallium arsenide. This architecture incorporated four processors each 

with 128 independent register sets and program counters, permitting a total of 512 threads to be executed simultaneously. 

Each processor integrated a high-speed arithmetic processing unit to which its local threads could apply operations to be 

performed. thus sharing the ALU for maximum utili zation, efficiency, and performance. The MTA's strength was in its 

ability to hide memory access latencies from the arithmetic units and adjust to asynchronies of operation. This eliminated 

the needs for data caches, precluding the complexities and costs of achieving consistency among them. Empty/full bits on 

every word and a use of tagged memory enabled fine-grain synchronization. Other tags made possible control semantics 

such as futures, among others. The MTA-1 prototype was followed by a much less expensive and more densely packed 

CMOS version, the MTA-2, with further advances leading to the Cray XMT System in 2009. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 226



204 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

6.5 MEMORY HIERARCHY 
The "memory wall", alternatively termed the "von Neumann bottleneck", recognizes the mismatch 
between the peak demand rate of the processor socket for data access and the possible delivered 
throughput and latency of the main memory technology, principally semiconductor DRAM. As 
demonstrated in Fig. 6.6, performance gain for processors increased on average by 60%/year, while that 
of main memory experienced only about a 9%/year improvement. Over time this has led to a two order 
of magnitude difference between processor speeds and memory speeds. To address this challenge, and 
indeed move even further into the domain of secondary storage and beyond, computer architecture in 
general and SMP architecture in particular have evolved a hierarchical structure of a sequence of layers 
of storage components with increasing density and capacity in one direction of the hierarchy, and greater 
access speed including higher bandwidth and lower latency in the other direction. 

6.5. 1 DATA REUSE AND LOCALITY 
Fundamental to the success of this memory architecture is the strategy of data reuse through locality. If 
a value of a variable is used by a program repeatedly and frequently, storing it in a very high-speed 
memory device very close to the processor core will deliver near-peak performance. This is "tem
poral locality", which reflects the property of data that associates the probability of usage with recent 
prior usage. High temporal locality suggests that a particular variable is accessed frequently in a 
moderate period of time. Low temporal locality indicates that a variable is probably only used once or 
a couple of times in the moderate contiguous period, if accessed at all. A second form of locality often 
exploited is "spatial", which indicates an association of locality among adjacent or near neighbors in 
contiguous address space. High spatial locality suggests that the probability of a variable (virtually 
addressed value) being accessed is higher if one· of its adjacent or neighboring variables has been 
recently accessed. These two forms of locality concerning the reuse patterns of virtually addressed 

N 
100000 a, 

a, 
..-I 

~ 10000 C: 
'iii 

'i: 
QI 1000 
E 
~ e 100 
Q. 

.E 
QI 10 I.I 
C: 
ro 
E 

~ 1 
QI 1990 
Q. 

FIGURE 6.6 

Processor--Memory Gap 

2000 2010 
Time 

I,-,~·•"=-••-.. ,~ 
-Peak.FLOPS 

·•·Memory Bandwidth 

2020 

Performance gains for processors increased by four orders of magnitude while main memory experienced an 
improvement of only two orders of magnitude during the same period of time. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 227



6.5 MEMORY HIERARCHY 205 

variables provide the foundations for the structure and operation of the memory hierarchy to mitigate 
the effects of the discrepancies between bandwidths and latencies of processor and memory 
technologies. 

The second factor of practical concern is the tradeoff relationships between the characteristics of 
storage capacity per unit area, cycle time of access, and power consumption. In Chapter 17, it is shown 
that diverse on enabling technologies it is shown that diverse data storage technologies vary in terms of 
these parameters. In general, faster memory technologies take up more room on a semiconductor die or 
other medium for the same amount of storage while consuming greater power. It is impractical to 
create a main memory layer that is big enough to hold all the software and data required for a given 
user application while running fast enough to keep the processor cores fully utilized at their peak 
instruction issue throughput. 

6.5.2 MEMORY HIERARCHY 
The conventional way for modem computing architectures, including SMP systems, to address these 
tradeoffs through exploitation of data locality is in the structure of the memory hierarchy, also known 
as the memory stack. 

As shown in Fig. 6.7, the memory hierarchy or stack consists of layers of memory storage tech
nology, each with different tradeoffs between memory capacity, costs, and cycle times, which reflect 
bandwidths and latencies. By far the slowest but also the highest capacity is the use of tape archival 
storage, often consisting of possibly thousands of tape modules physically stored in a robotic library 
with total capacities approaching exabytes. But in an unloaded system access to stored data could take 
upwards of a minute, even though the cost of a megabyte is a fraction of a cent. Tape robots provide 
part of mass storage called "tertiary storage"; another part of mass storage is secondary storage made 
up of hard-disk drives (HDDs). Disks, like tapes, use a magnetic storage medium. But unlike tapes, 
which present one long serial stream of storage that can take a long time to go from one end to the 
other, data on disks are laid out in concentric rings (called "cylinders") that spin on an axis. A radial 
arm moving in and out across the spinning disk selects the appropriate cylinder and waits for the 
required data to come around to be detected by the arm's head. A typical disk drive may hold several 
terabytes, deliver data at a peak streaming rate of 300 MB/s, and impose an overall access time of 
around 10 ms. While this is 100,000 times longer than access to main memory, it may hold 1000 times 
as much stored data and exhibit a latency 10,000 times shorter than tape drives. A third technology 
recently introduced commercially, nonvolatile random access memory, is increasingly being employed 
as a partial replacement for disk drives for much faster response than disks but slower than main 
memory. Mass storage is usually presented to the user in the form of logical data modules called files, 
and directories that hold files as well as other directories. 

At the other (top) end of the memory hierarchy are the processor core registers that operate at the 
speed of the clock rate and support multiple access ports allowing multiple reads and writes into/out of 
the register banks in each instruction cycle. While operating at native processor speeds, registers take 
up a lot of room and consume significant energy per cycle. Registers also exhibit their own address 
space not associated with the memory address namespace. The instruction-set architecture (ISA) is 
logically structured such that data explicitly moves between identified registers and the variables in the 
main memory. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 228



206 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

FIGURE 6.7 

Level 
Capacity 

Access latency 

Registers 
100s of bytes 

< O.Sns 

Instruction operands (1-8 bytes each, compiler managed) 

Ll and L2 Cache 
Tens - thousands KBs 

Few ns 

$10/MB 

(8-128 bytes each, cache controller managed) -----------.. 

HDD/SSD 
Hundreds - thousands GBs 

Tenths - tens of ms 

$10/GB 

$0.03/GB (HDD) 
$0.5/GB (SSD) 

$10/TB 

The memory hierarchy delineated by memory capacity, cost, and cycle times. 
Courtesy David A. Patterson 

The main memory is provided by DRAM semiconductor devices. Many such components are 
mounted on personal computer cards plugged into sockets compliant with industry-standard interfaces. 
As much as 4 gigabytes of memory per processor core for an SMP is often provided, although this can 
drop to as low as I gigabyte per core depending on the number of cores per socket. But access times 
from register to DRAM can be between 100 and 200 clock cycles, far too much for effective computing. 

Between processor core registers and SMP main memory modules is a cache system to impedance 
match between these two extremes in timing and bandwidth. Logically the cache system is transparent 
to the user, in that it is not separately addressable but instead accepts memory access requests. If the 
variable address requested by a core has a copy of the variable value somewhere within its cache, the 
cache provides that value in the case of a load operation to the designated core register. If a copy does 
not exist, the cache system automatically passes the request to the main memory to perform the data 
access. Where data locality applies, a cache "hit" is likely and the access time will be that of high
speed cache rather than the slower main memory, which can be as much as two orders of magni
tude faster. 

In a modem SMP the cache is usually not a single layer of higher-speed memory, but rather 
multiple layers to find an optimal balance of speed and size. Typically there are three layers: LI, L2, 
and L3. LI is the fastest and smallest, and usually consists of two separate caches: one for data and the 
other for instructions to provide enough peak bandwidth. L2 is slower but much larger, and like LI is 
made from SRAM circuits. The L3 cache is much larger than the lower-layer caches, but is slower. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 229



6.5 MEMORY HIERARCHY 207 

Unlike the first two, L3 is usually a separate chip of DRAM rather than SRAM circuits to achieve the 
greatest density. 

A simple hierarchical structure would provide each core with its own separate LI, L2, and L3 
caches. However, often multiple cores are working on the same set of data, and the maximum amount 
of data in a layer could be increased by allowing more than one core to share at least some of the cache. 
Typically the L 1 cache is not shared due to the need for maximum individual bandwidth. Also typically 
the L3 cache is shared among the processor cores or some subset of them. L2 caches may be either 
dedicated to a single core or shared among two or more cores. Part of the tradeoff is about bandwidth 
and possible contention for cache access among sharing cores. 

6.5.3 MEMORY SYSTEM PERFORMANCE 
It is clear that the time to access a value from a specified variable in the memory system will vary 
dramatically depending on a number of factors, most specifically where the closest copy of the value is 
in the memory hierarchy. While analyzing such a complex memory architecture can be very 
complicated due to the number of levels, the overheads involved, issues of contention, and so forth, a 
simplified version of the problem still exposes the principal tradeoffs and shows how dramatically the 
average memory access time can change depending on the hit rates to cache as a consequence of 
locality. For this purpose, the cache is assumed to be a single intermediate layer between processor 
core registers and main memory. Without a detailed queuing analysis or similar in-depth model, 
operational metrics are adopted to capture the specific properties of the architecture and application 
memory access profile, plus a quality metric of performance. An analytical model is derived to show 
the sensitivity between delivered performance and the effectiveness of caching. 

The quality metric of choice in this case is CPI or cycles per instruction. Time to solution, T, is 
proportional to cycle time, Tcvcle, and the number of instructions to be executed for a user task, Icounr• 
Because the purpose of this analysis is to expose the implications of memory behavior, the instruction 
count is partitioned between those instructions associated with the number of register-to-register ALU 
instructions, /ALU, and the number of memory access instructions, IMEM• For each of these two classes 
of instructions there is a separate measure of cycles per instruction, one for the register-to-register ALU 
operation, CPIALU, and one for the memory instructions, CPIMEM· The total value for time, !count, and 
CPI can be derived from the breakdown between ALU and memory operations according to Eqs. 
(6.10)-(6.12). 

T = !count * CPI * Tcycle 

fcount = IALU + IMEM 

IAw IMEM 
CPI = -- * CPIALU + -- * CPIMEM 

f count f count 

The full set of parameters is defined as: 

(6.10) 

(6.11) 

(6.12) 

T, total execution time; Tcyc/e, time for a single processor cycle; Icounr, total number of instructions; 
/Aw, number of ALU instructions (e.g., register to register); IMEM, number of memory access 
instructions (e.g., load, store); CPI, average cycles per instruction; CPIAw, average cycles per ALU 
instruction; CPIMEM, average cycles per memory instruction; r miss, cache miss rate; rhit, cache hit 
rate; CPIMEM-Mtss, cycles per cache miss; CPIMEM-Hm cycles per cache hit; MAw, instruction mix 
for ALU instructions; and MMEM, instruction mix for memory access instructions. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 230



208 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

The idea of an instruction mix simplifies representation of this distinction between ALU and 
memory operations, providing ratios of each with respect to the total instruction count. 

In addition, the parameter that expresses the effect of data reuse is defined as the hit rate, rhit, which 
establishes the percentage of time that a memory request is found in the cache. The opposite of this 
parameter can be useful: rmiss = (1 - rhu). One last distinction is made for CPIMEM depending on 
whether a hit or a miss occurred. These represent the costs, measured in number of cycles of memory 
instruction access times, depending on whether there was a hit or a miss at the cache. CPIMEM-Hiris a 
fixed value of the number of cycles required for an access that is served by the cache, and CPIMEM-MISS 
is the cost in cycles of going all the way to main memory to get a memory request serviced in the case 
of a cache miss. The relationships among these distinguishing parameters are demonstrated in Eqs. 
(6.13)-(6.17), associating them with the definition of full execution time. 

Instruction mix: 

MALU = 
IAw 

fcount 

MMEM= 
IMEM 

fcount 

Time to solution: 

CPI = (MAw * CPI Aw) + (MMEM * CPIMEM) 

T = fcount * [ (MAw * CPIAw) + (MMEM * CPIMEM)] * Tcycle 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

Finally, the values for CPJMEM and Tas functions of rmiss are presented in Eqs. (6.18) and (6.19). It 
may appear peculiar that the coefficient of CPIMEM-HIT is not rJ,it· This is because the cost of getting 
data from or to the cache occurs whether or not a miss occurs. 

CPIMEM = CPIMEM-HIT + rmiss * CPIMEM-MISS (6.18) 

T = fcount *[(MAW* CPIAw) +MMEM * (CPIMEM-HIT + rmiss * CPIMEM-M!Ss)] * Tcycle (6.19) 

This shows the effect of the application-driven properties, including fcount, MMEM, and rmiss· 

Architecture-driven properties are reflected as Tcyc/e, CPIMEM-MISS, and CPIMEM-HITin determining the 
final time to solution, T. · 

Example 
As a case study, a system and computation are described in terms of the set of parameters presented 

above. Typical values are assigned to these to represent conventional practices, architectures, and 
applications. These are shown below. 

fcounl =1£11 

IMEM =2£10 

CP/Aw =I 

Tcyc/e =0.5 ns 

CP/MEM-MISS =100 

CP/MEM-HIT =I 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 231



6.6 PCI BUS 209 

The intermediate values for instruction mix are computed as follows: 

IALU = fcount - IMEM = 8E10 

IAw 8EIO 
MALU =-- = lEll = 0.8 

fcount 

IMEM 2E10 
MMEM = fcount = lEl 1 = 0.2 

This example shows the impact of the cache hit rate on the total execution time, which can prove to 
be one of the most important determining factors of application time to solution and one of which the 
user has to be aware as data layout is considered. Two alternative computations are considered. The 
first is favorable to a cache hierarchy (this example simplifies, with only one layer) with a hit rate of 
90%. With this value established, the time to solution can be determined as shown in Eqs. 
(6.20)-(6.22). 

rhitA = 0.9 

CPIMEM A = CPIMEM-HIT + rMISS A * CPIMEM-MISS = 1 + ( 1 - 0.9) * 100 = 11 

TA= lEll * [(0.8 * 1) + (0.2 * 11)] * 5£10 = 150 s 

(6.20) 

(6.21) 

(6.22) 

But if the cache hit rate is lower, in this case 50%, a recalculation with this new value shows a 
dramatic reduction of performance, as shown in Eqs. (6.23)-(6.25). 

rhitA = 0.5 

CPIMEM B = CPIMEM-HIT + rMISS B * CPIMEM-MISS = l + (1 - 0.5) * 100 = 51 

TB= lEI 1 * [(0.8 * 1) + (0.2 * 51)] * 5£10 = 550 s 

(6.23) 

(6.24) 

(6.25) 

The difference is more than a factor of 3 x performance degradation, just because of the change in 
the cache hit rate. 

6.6 PCI BUS 
The explosion of the personal computer market initiated in the late 1970s created a growing need for 
high performance industry-standard interfaces that would enable portability, reusability, and up
gradeability of peripherals and custom expansion boards. While initially this void was filled by IBM's 
industry-standard architecture (ISA) bus, the bulkiness of its connector, low data bandwidth, poor 
expandability (limited number of interrupts and direct memory access channels), and cumbersome 
configurability forced the manufacturers to look for improved solutions. IBM's follow-up to ISA, the 
Micro Channel Architecture, did not gain widespread popularity due to being a proprietary standard 
that required licensing fees. Broad industry response resulted in the development of stopgap imple
mentations such as extended ISA and Video Electronics Standards Association local bus, the latter of 
which was primarily used to satisfy the bandwidth requirements of newer graphics cards. The true 
breakthrough was the work of Intel's Architecture Development Laboratory that resulted in the 
specification of Peripheral Component Interconnect (PCI) in 1992 [7]. The PCI bus in somewhat 
modified form may still be found on some motherboards manufactured today. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 232



210 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

The PCI bus operates independently from a processor's native memory bus and requires a bridge 
circuit to provide memory-mapped access from the CPU, as shown in Fig. 6.8. More than one bus 
may be supported via additional bridges. PCI originated as a parallel multidrop 32-bit bus in which 
multiple devices connect electrically to the single instance of control and data lines. Its signaling, 
timing, transaction protocol, mechanical connector properties, and power management have been 
defined and extended in a series of specifications, the last of which was version 3.0 released in 2004. 
The clocking frequency was originally set at 33 MHz for a peak bandwidth of 132 MB/s. Subsequent 
standard releases permitted a faster 66 MHz clock and added a 64-bit data bus option for peak 
data bandwidth of 533 MB/s. The signal levels were also reduced from 5 V to 3.3 V to reflect 
the prevailing trends in chip 1/0 standards and lower the required bus driver power levels. Extended 
PCI, later introduced to optimize certain aspects of PCI functionality in servers, increased the 
clock to 266 and 533 MHz, resulting in a maximum transfer rate of 4266 MB/s. To prevent 
potential card damage by using an incompatible implementation, these options were tied to 
differently keyed connectors (Fig. 6.9). A short-lived variant of PCI with a dedicated CPU-to-GPU 
(graphics processing unit) bus was called the Accelerated Graphics Port and featured its own 
connector type, incompatible with PCI. 

To address several shortcomings of the conventional PCI bus architecture (poor scaling in a number 
of devices, interrupt sharing, an explosion in the number of pins, poor power characteristics of single
ended 1/0, limited bandwidth scalability, and access synchronization issues), the PCI Special Interest 
Group, including among others Intel, Hewlett-Packard, Dell, and IBM, adopted in 2002 a new design 
called PCI Express (PCie ), with the system schematic shown in Fig. 6.10. Electrically, PCie is a 
descendant of Intel's 3GIO (third-generation 1/0) initiative that utilized multiple serial links operating 

PCI to PCI Bridge 

Network 
Other 1/0 

FIGURE 6.8 

Layout of a system equipped with multiple PCI buses. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 233



6.6 PC! BUS 211 

PCIBrackei: PCIBracket 

I Componenl S!de Factng Up I 

3.3V 32-bit PCI Card 

Universal (3.3V & 5V) 64-bit PCI Card 

3.3V 32-bit PCI Slot 3.3V 64-bit PCI Slot 

1-
5V 32-bit PCI Slot SV 64-bit PCI Slot -

FIGURE 6.9 

Connectors supporting different PCI variants. 

Image via Wikimedia Commons 

at 2.5 Gbps each. The links use low-voltage differential signaling, giving them very good noise im
munity and reducing their electromagnetic interference (EMI) levels compared to single-ended 
operation. High bandwidth of a single link brings a much-needed reduction in the number of 
required pins: full-duplex connection requires only a pair of wires for transmit and another pair for the 

PCle 
'~ 

PCI/PCI-X~----1 

FIGURE 6.10 

Diagram of a PCie-equipped system. 
By Mliu92 via Wikimedia Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 234



212 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

receive function. Scaling to the desired bandwidth is accomplished by adding more links, called 
"lanes" in PCie vernacular. Specifications pennit up to 32 lanes per card slot, although practical 
implementations rarely exceed 16 lanes. 

Three major revisions of PCie specifications were released. The first defined operation at nominal 
2.5 Gbps with 8 b/10 b encoding (each 8 bits of input data is converted into a 10-bit symbol on wire) 
for an effective peak of 250 MB/s per link. PCie 2.0 increased the signaling rate to 5 Gbps per link, 
doubling the peak data bandwidth. Version 3.0 improved the encoding efficiency by using a 128 b/ 
130 b scheme and further increased the wire rate to 8 Gbps, thus yielding 984.6 MB/s peak per lane, or 
15.754 GB/s in aggregate when using a 16-lane device. Unlike conventional PCI, PCie slots of 
different generations are backwards compatible, thus enabling the use of older cards in newer ma
chines. PCie permits plugging cards with fewer lanes into connectors providing more lanes; the inverse 
is also true as long as the connector can physically accept a card. It is also capable of sustaining the 
operation (at reduced bandwidth) even when some of the physical links fail. Fig. 6.11 compares sizes 
of PCie connectors in various configurations. 

PCie connectors provide 12 Vand 3.3 V supply voltages that may be used to power the connected 
cards. Slot-powered operation limits the power draw to only 25 W per board, which is insufficient to 
sustain the functioning of more demanding devices, such as GPU s. Such devices instead incorporate 
dedicated six-pin and eight-pin power connectors that plug into power supply harnesses to provide 
additional 75 Wand 150 W circuits, respectively. 

In terms of the protocol, PCie inherits many properties of the original PCI. The communication is 
packet based. Each packet is either a posted request (writes data to target space), a nonposted request 
(initiates a read from the target), completion (carries the data read from the target space), or a 

FIGURE 6.11 

Comparison of PCie slots with different lane counts (from the top: x4, x I 6, x I, x I 6) with a conventional PCI 
connector (bottom). 

Via Wikimedia Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 235



6.7 EXTERNAL 1/0 INTERFACES 213 

message that signals a specific event or supports a vendor-defined function. The elementary unit of 
transfer is a double word of 32bits. The transaction layer uses three or four double-word-long headers 
followed by the payload, which may contain up to 1024 double words (4 KB) of data. Larger data 
transfers must be split into multiple packets. The data-link layer wraps the transaction data with the 
packet sequence number and cyclic redundancy code sum used by the receiver to verify the packet 
integrity. The packets act on memory and I/0 spaces (each can be independently configured to use 
32- or 64-bit addresses) or the dedicated configuration space. PCie devices may define up to six 
distinct read-write memory or 1/0 regions (fewer if 64-bit addressing is used) with different 
aperture (active address range) sizes, and a separate optional expansion read-only memory (ROM) 
space. The latter is used to provide device-specific information or, on compatible Intel platforms, to 
store additional boot code. 

Today, PCie is a dominant standard for attaching and high performance communication with 
expansion boards on different machines that may use a processor architecture other than the original 
Intel x 86 variant. The PCle specifications are continuously updated and refined to reflect modern 
technological trends. The next revision of the standard, version 4.0, is expected to be finalized in 2017. 

6.7 EXTERNAL VO INTERFACES 
The key I/0 interfaces of an SMP are the network interface controllers, including Ethernet and IB, 
SATA for mass storage devices, JTAG for low-level hardware interface, and USB for connecting 
peripheral devices like keyboards. This section explores each in detail. 

6. 7 .1 NETWORK INTERFACE CONTROLLERS 
The two most common network interface controllers appearing in clusters in the Top 500 list of June 
2016 were Ethernet and IB. The following subsections give a brief overview of these network interface 
controllers. 

6. 7. 1. 1 Ethernet 
Named after a supposed medium for light propagation that was incorrectly thought to exist by many 
19th century scientists, Ethernet is a standardized computer networking technology originally 
developed at Xerox's Palo Alto Research Center in 1973 by Robert Metcalfe, David Boggs, Chuck 
Thacker, and Butler Lampson [8]; it has since become ubiquitous. The Institute of Electrical and 
Electronics Engineers (IEEE) produced the official Ethernet standard 802.3 in 1983 and the tech
nology continues to develop, reaching bandwidths of 100 Gbps. 

Ethernet operates by breaking a stream of data into frames, with a preamble and start frame 
delimiter and ending with a frame check sequence. In the standard IEEE 802.3 Ethernet specification, 
the minimum frame size was 64 bytes and the maximum was 1518 bytes (since expanded to 
1522 bytes). The preamble consists of7 bytes followed by a single byte as a start frame delineator. The 
frame itself has a header containing the destination and source encoded in 48-bit addresses known as 
media access control (MAC) addresses. The frame data follows this header and is terminated by the 
frame check sequence. On Gigabit Ethernet networks jumbo frames of up to 8960 bytes can be used 
which bypass the standard Ethernet maximum of 1522 bytes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 236



214 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

FIGURE 6.12 

A Gigabit Ethernet network interface card. 
By Dsimic via Wikimedia Commons 

The state of the art for Ethernet is currently 100 Gbps. In the June 2017 Top 500 list of super
computers, Gigabit Ethernet is featured in 207 systems and is the most common internal system 
interconnect technology in the list [9]. Examples of Gigabit Ethernet cards and switches are shown in 
Figs. 6.12 and 6.13. 

FIGURE 6.13 

The internals of a Gigabit Ethernet switch. 

By Dsimic via Wikimedia Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 237



6.7 EXTERNAL 1/0 INTERFACES 215 

6. 7. 1.2 lnfiniBand 
IB is an alternative to Ethernet for computer networking technology and originated in 1999. Unlike 
Ethernet, IB does not need to run networking protocols on the CPU; these are handled directly on the 
IB adapters. IB also supports remote direct memory access between nodes of a supercomputer without 
requiring a system call, thereby reducing overhead. IB hardware is produced by Mellanox and Intel, 
with IB software developed through the OpenFabrics Open Source Alliance [10]. 

The state of the ait for IB transfer rates is the same as the fastest transfer rate supported by the PCie 
bus (25 Gbps for enhanced data rate). In the June 2017 Top 500 list of supercomputers, IB technology 
is the second most-used internal system interconnect technology, appearing in 178 systems [9]. Ex
amples of IB cards and a port are shown in Figs. 6.14 and 6.15. 

6.7.2 SERIAL ADVANCED TECHNOLOGY ATTACHMENT 
SAIA is a computer interface and communication protocol introduced in 2003. Its specifications are 
currently developed by the independent, nonprofit Serial ATA International Organization led by 
multiple industry partners, including dominant computing systems and storage manufacturers. It is 
used primarily to provide connectivity to mass-storage devices. SAIA replaces the older parallel ATA 
(PATA) technology that was characterized by lower data transfer bandwidths, bulky ribbon cables 
frequently obstructing air flow in the node's case, and lack of proper support for hot-swapping of 1/0 

FIGURE 6.14 

Mellanox IB cards. 
Image courtesy Mellanox Technologies 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 238



216 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

FIGURE 6.15 

InfiniBand port. 
By i':l t;;: l! It,$~ via Wikimedia Commons 

devices. SATA interfaces may be found on most modem internal (i.e., housed inside the computer 
enclosure and therefore nonportable) HDDs, SSDs, and optical drives (CD-ROM, DVD-ROM, BD
ROM and their data-writer equivalents). 

SATA supports only point-to-point topology between storage devices and controllers or port 
multipliers. SATA data connectors, shown in Fig. 6.16, contain only 7 pins compared to 40 mandated 
by PATA: one pair of wires for data transmission, a second pair of wires for data reception, and three 
ground connections. Data transmission is performed over high-speed serial links that use similar 
technology to PCie and share many of the same quality characteristics with it. Serial links also take 
advantage of matched impedance cables, guaranteeing signal integrity over distances of at least I m. 
The power connectors utilize a 15-pin arrangement that provides ground reference and the 3.3, 5, and 
12 V supply voltages needed by most of the attached devices to operate, and may also control 

(A) (B) 

D ~ ~ 
I 

'fl. 
0 

1;; 
;. <3 

- ; i 

I I lg 1 i I:: 1 i ~· ~ 
t 

G fildr ~ f 
I .. 

alllllll111111111~111~ 
FIGURE 6.16 

SATA connectors: (A) data (left, shorter) and power (right, longer) headers located on a 2.5" solid-state drive, and 
(B) older Parallel ATA cabling (left) contrasted with SATA (right). 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 239



6.7 EXTERNAL 1/0 INTERFACES 217 

staggered spin-up functionality. The latter is particularly useful in storage nodes populated with 
potentially dozens of disk drives, as enabling all of them at once would put a considerable strain on 
power supply during the power-up cycle, possibly reducing its useful lifetime. Both types of con
nectors use a two-phase mating sequence to ensure that the ground connection is made first and 
eliminate the possibility of unpredictable floating potentials during drive removal or insertion when the 
system is powered up. Most of the computer motherboards manufactured today support multiple SATA 
data ports (typically two to eight), while common power supplies provide multiple SATA-compatible 
hookups. 

The first revision of SATA specifications supported a 1.5 Gbps signaling rate, resulting in a 
maximum peak data transfer rate of 150 MB/s. With the increases in HDD media speeds and the 
introduction of solid-state storage, this proved to be a serious performance bottleneck, and the next 
revisions, SATA 2.0 and 3.0, increased the raw signal rate to 3 and 6 Gbps, respectively. Modem 
chipsets are capable of detecting device speeds through autonegotiation and are backwards 
compatible with older drives. Early SATA 2.0 implementations, however, may require that the device 
is explicitly configured to the correct interface speed by setting a jumper on configuration pins and in 
some cases also by forcing proper basic input/output system settings. The newer SATA revisions also 
support native command queueing (NCQ), which may drastically improve the performance of I/0-
intensive multitasking workloads by reordering the requests at physical block level, resulting in an 
overall shorter travel distance for the disk head. Other extensions included introduction of 
isochronous quality of service for periodically scheduled data accesses, host-side support for NCQ 
processing, and better power management. The specifications have been twice revised since (version 
3.1 in 2011 and 3.2 in 2013), and defined additional interfaces, capabilities, and power management 
functions: 

• mSATA interface for mobile devices 
• M.2 small form factor standard 
• microSSD standard for connectorless single-chip embedded storage 
• "zero-power" state for idling optical drives 
• TRIM command for SSDs that optimizes allocation of no longer used blocks on the device 
• universal storage module for cable-free docking of portable storage modules 
• required link power management, DevSleep, and transitional energy reporting for additional 

power savings 
• rebuild assist that speeds up data reconstruction in redundant arrays of independent disks 
• performance optimizations for solid-state hybrid drives 
• signaling speed increase to 16 Gbps with a corresponding peak data rate of nearly 2 GB/s. 

Besides the originally defined SATA data ports for internal I/0 devices, several other form factors 
specified by the standard are already in widespread use or gaining popularity. The external SATA 
(eSATA) connector shown in Fig. 6.17 has been developed to provide connectivity to external 
storage devices. It features more robust connector and permits longer cables (up to 2 m) thanks to 
changes in required signal voltage levels. It is also shielded to reduce EMI emissions. eSATAp, or 
powered SATA, attempts to solve one of main shortcoming of eSATA, namely the necessity to 
provide a separate power source (and therefore an additional cable) to the external device. While not 
fully standardized yet, it aims to provide 5 and 12 V supply voltages as well as SATA and USB 2.0 
data lines. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 240



218 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

(A) (B) 

FIGURE 6.17 

SATA interface variants: (A) eSATA compared to SATA; (B) mSATA (left) and M.2 (right) devices. 
(8) Photo by Anand Lal Shimpi via Wikimedia Commons 

Mini-SATA (mSATA) and its next revision, M.2 interfaces (Fig. 6.17B), are used where preser
vation of small form factor is important. They find applications in settop boxes and ultrathin laptops, 
but typically require a properly designed system board that is equipped with the con-ect connector and 
allows sufficient installation space. 

A companion specification to SATA is the Advanced Host Controller Interface (AHCI) developed 
by Intel (currently at revision 1.3.1 ). It describes an implementation-independent, register-level 
interface between the host controller hardware and system software. The specification allows sys
tem programmers to support correctly additional hardware features such as NCQ and hot-swapping of 
I/0 devices. AHCI is supported by default by many popular operating systems, such as Windows, Mac 
OS, and Linux. 

6.7.3 JTAG 
JTAG is a low-level hardware interface specified by IEEE Standard 1149 [11]. It takes its name from 
the Joint Test Action Group, which in the mid-l 980s set out to develop verification and test methods 
for electronic circuits . While most casual computer users are never likely to have an opp01tunity to use 
JTAG directly, it is broadly adopted by the industry for postproduction printed circuit board testing 
(detection of shorts, mismatched and detached pins, "stuck" bits, in-silicon logic defects, and so on). 
As the density of integrated circuits increased, it quickly became uneconomical to provide explicit test 
points on board for all supported features. Additionally, JTAG permits in-circuit debugging of 
embedded applications by being able to access most if not all of the device register state, including the 
status of I/0 pins. Coupled with the built-in self-test functionality commonly implemented by man
ufacturers in most large-scale integration and VLSI logic circuits, JTAG may identify many chip 
failure modes before allowing them to enter the supply chain. Since it can directly manipulate the 
device hardware state, JTAG is also occasionally used to perform firmware updates in cases when more 
user-friendly options may not be available or desirable. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 241



TCK 
TMS 

TDI 

~ TCK 
~ TMS 

ICl 
TDI TDO 

6.7 EXTERNAL 1/0 INTERFACES 219 

~ TCK TCK 
~ 

TMS IC2 TMs ICn 

- TDI TDO - TDI 

TDO------------------
TDOJ 

FIGURE 6.18 

JTAG chain with n devices. Integrated circuit (IC) blocks represent individual integrated circuits that may be 
located on single or multiple printed circuit boards. 

JTAG functionality relies on the presence of four signals: TCK (test clock), TDI (test data in), TDO 
(test data out), and TMS (test mode select). Optionally the interface may also contain a TRST (test 
reset) signal to perform reset of the test logic. To lower the required pin count, multiple JTAG
equipped devices may be daisy-chained as illustrated in Fig. 6.18. The test data and instructions are 
clocked in serially through the TDI line and output via TDO at the rising edge of the TCK (clock) 
signal. Beyond a few standard mandated exceptions, instruction semantics are implementation 
dependent. The level of the TMS pin influences the performed control function depending on the 
internal control state. Neither the JTAG connector nor its clock frequency is standardized; the latter 
may range from single to multiple I Os of MHz. The host may enable a bypass operation in any device 
on a chain, thus avoiding full communication with it if not required. A variant of JTAG permits a two
wire interface using only the TCK and TMSC (test serial data) signals, as described by the IEEE 
1149.7 revision of the standard. The update addresses one of the common problems of the daisy
chained JTAG: to operate, all devices in the chain have to be powered up. IEEE 1149.7 also per
mits a star topology to be realized. 

All JTAG implementations must support the test access port (TAP) with the TCK, TMS, TDI, and 
TDO pins, TAP controller, at least a two-bit wide instruction register, a one-bit bypass register, and a 
boundary scan register (one bit or more). Optionally, a 32-bit long IDCode register may also be 
exposed so that individual devices in the chain may be identified by the host. The instruction and data 
registers form parallel data paths that share the data input TDI as well as the output TDO. The TAP 
controller embeds a predefined state machine with 16 states. The transitions between states are per
formed in accordance with the TMS value during active clock edge. Individual states may force normal 
operation, invoke test functions defined by the contents of the instruction register, pause testing, and 
perform capture, update, or logical shift of instruction or data register contents. The required in
structions for all implementations include device bypass and boundary scan support (state sampling, 
register load, and internal and external test execution). 

Practical implementations frequently extend the basic JTAG instruction set and test range using 
custom chip-specific logic. For this reason vendors provide specialized software tools (command line 
and GUI based) that directly support native capabilities of the implementation without requiring the 
hardware engineer or system programmer to be familiar with the low-level details. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 242



220 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

6.7.4 UNIVERSAL SERIAL BUS 
Besides high perfonnance components, computers need to communicate with relatively low-speed 
attached peripheral devices such as keyboards and printers. While these needs have been addressed 
in the past by a number of both specialized (such as IBM's PS/2 connector for mouse and keyboard) 
and industry-standard (e.g., serial and parallel communication ports) interfaces, their usefulness was 
limited when new types of attached devices became available. Among the shortcomings of previous 
solutions were bulky connectors, reduced interchangeability and interoperability, lack of an option to 
provide power to the attached devices, minimal or no ability to retrieve the type and operating pa
rameters of connected peripherals, limited support for automatic configuration, no straightforward way 
to expand the number of available access ports, and, in some cases, insufficient communication speeds. 

The USB standard [12] introduced in the mid-1990s successfully resolved these issues. It is 
currently guided by USB Implementers Forum Inc., a nonprofit corporation involving representatives 
of 894 hardware and software companies, including among others Intel, Hewlett-Packard, NEC, 
Renesas, Samsung, ST Microelectronics, Infineon, Philips, Sony, Apple, and Microsoft. The standard 
has been designed with low cost and simplicity as the primary features. The USB standard defines the 
architecture, data-flow model, mechanical and electrical properties of connectors and cables, signaling 
and physical layer, power supply and management, and transaction protocols. It is currently imple
mented in many categories of peripheral devices, including keyboards, mice, printers, scanners, 
cameras, mobile phones, media players, mass storage, modems, network adapters, game controllers, 
and more. The standard underwent updates in three major revisions that successively increased the 
communication bandwidth, detailed new connector types, defined multihost communication mode 
(USB On-The-Go), and specified additional power management and battery-charging protocols. The 
most recent version 3.1 was released in 2013. 

USB provides a bidirectional communication link that originally operated at 1.5 Mbps ("low-speed") 
and 12 Mbps ("full-speed") signaling rates. Due to only one differential pair of wires dedicated to data 
transfer (the other two pins being ground and +5 V supply rail), the communication only supported half
duplex mode. The USB 2.0 update in 2000 increased the raw data rate to 480 Mbps ("hi-speed" mode), 
but due to protocol overheads the sustained data rate achieved was only 25-40 MB/s, i.e., less than 70% 
of the peak. USB 3.0 introduced "superspeed" of up to 5 Gbps, signified by blue-colored receptacles. 
Some USB 3.0 connectors are backwards compatible with USB 2.0, and the increased data rates are 
achieved by using an additional four pins (two differential line pairs for transmit and receive, thus 
pennitting full-duplex operation) on the opposite side of the connector. In USB 3.1, doubling the 
maximal signal rate to 10 Gbps required introduction of an entirely new connector fonnat, Type-C. An 
overview of various USB connectors and receptacles is presented in Fig. 6.19. The specification limits 
the cable length of low-speed devices to 5 m, full-speed devices to 3 m, and 5 m for hi-speed devices. 
USB 3.0 currently does not impose cable length constraints. 

USB uses a tiered star topology with a single host at the top level, shown in Fig. 6.20. To 
overcome the limited number of host ports, multiple hubs may be inserted to add additional tier 
levels for up to seven tiers total and a maximum of 127 USB devices. Functionally, each USB device 
confonns to the same organizational scheme. Individual logical subdevices are called functions and 
communicate with the host via pipes. Pipes are logical channels that connect the host with an 
endpoint of a specific subdevice. A maximum of 16 input and 16 output endpoints per device are 
permitted. Endpoints are initialized in a process called enumeration (perfonned right after device 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 243



6.7 EXTERNAL 1/0 INTERFACES 221 

Type-A 

FIGURE 6.19 

Type-B Mini-B Micro-B 

Comparison of common USB connector types (plugs on top, receptacles on bottom) . 

FIGURE 6.20 

.------------ .................. _______ - .. 
i Tier 1 

! Tier 2 

l 
! Tier 3 

i 
! Tier4 

! 
i 
': Tier 5 
I 

i 

fl Host root hub 

j Tier 6 

1---i -----,-~~ _ub 7 ~,,· : Tier? 

j 
----------------------------------------------j 

USB devices connected in multitiered topology. 

Type-C 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 244



222 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

power-up) and stay assigned as long as the device is connected. Pipes convey messages and streams: 
the first are relatively short commands that generate status response, while the latter are unidirec
tional and support isochronous (repeated communication with guaranteed bandwidth), interrupt 
(bounded latency communication), or bulk (asynchronous communication that may use the 
remaining link bandwidth) transfers. USB distinguishes several device classes, such as printer or 
mass storage, to facilitate loading the appropriate driver software on the host. Common features 
shared by devices in the same class are frequently supported by the operating system without the 
need for device-specific manufacturer software. 

USB makes provisions for powering or charging peripheral devices through the same socket that 
facilitates the data transfer. Separate 5 V power and ground lines are included for that purpose. 
Nominally the current draw has to be negotiated with the host, and is limited to 100 mA for low-power 
devices (0.5 W) and 500 mA for high-power devices (2.5 W). These limits have been raised for 
superspeed devices to 150 and 900 mA, respectively. Unfortunately, not all devices comply with the 
specifications and draw more current than permitted, which on occasion may lead to their erratic 
behavior. The proliferation of mobile gadgets prompted the creation of a new port type, a charging 
port, which must deliver at least 1.5 A of current. It exists in a version that supports data communi
cation (charging downstream port) and one that does not (dedicated charging port). A separate 
specification, USB Power Delivery, intends to extend this support to other devices such as laptops or 
hard drives by providing six power profiles to supply up to 100 W at three voltage levels using a 
dedicated power configuration protocol. 

6.8 SUMMARY AND OUTCOMES OF CHAPTER 6 
• The most widely used form of a high performance computer is the symmetric multiprocessor 

(SMP) architecture. 
• SMPs are also referred to as shared-memory (SM) machines or cache-coherent computers. 
• SMP architecture integrates a number of processor cores with a single shared main memory 

system by means of a common interconnection network. 
• The symmetric multiprocessing attribute requires that copies of main memory data values that are 

held in caches for fast access must be consistent (cache coherency). 
• Every SMP has multiple 1/0 channels that communicate with external devices (outside the SMP), 

user interfaces, data storage, system area networks, local area networks, and wide area networks, 
among others. 

• A fundamental consequence of Amdahl's law is that independent of the size of the accelerator's 
peak performance gain, g, the sustained performance is bounded by the fraction,!, of the original 
code that can be accelerated. 

• Defining characteristics of processors include the number of cores per socket, the size and 
interconnectivity of the cache levels (usually two or three levels), the clock rate of the core, the 
number and type of arithmetic logic units per core (ILP), the die size (between one and four 
square centimeters), the feature size, and the delivered performance for one or more standardized 
benchmarks. 

• The pipeline logic structure is a general way of exploiting a form of very fine-grain parallelism, as 
each of the pipeline stages is operating simultaneously. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 245



6.9 QUESTIONS AND EXERCISES 223 

• Multithreading incorporates multiple instruction streams or threads, through sets of multiple 
instruction pointers and their associated register sets. 

• The "memory wall" recognizes the mismatch between the peak demand rate of the processor 
socket for data access and the possible delivered throughput and latency of the main memory 
technology, principally semiconductor DRAM. 

• The memory hierarchy or stack consists of layers of memory storage technology, each with 
different tradeoffs between memory capacity, costs, and cycle times which reflect bandwidths and 
latencies. 

• In a modern SMP the cache is usually not a single layer of higher-speed memory but rather 
multiple layers to create an optimal balance of speed and size. 

• PCI Express is a dominant standard for attaching and high performance communication with 
expansion boards on different machines that may use processor architecture other than the 
original Intel x 86 variant. 

• The two most ubiquitous network interface controllers are Gigabit Ethernet and IB. 
• SATA is used primarily to provide connectivity to mass-storage devices. 
• JTAG is broadly adopted by the industry for postproduction printed circuit board testing. 
• The USB standard provides a relatively low-speed method for communication with attached 

peripheral devices. 

6.9 QUESTIONS AND EXERCISES 
1. List and describe the components of an SMP node. Where applicable, name their most significant 

operational parameters and the units in which they are measured. Give approximate values these 
parameters may assume in common server hardware. 

2. Expand and define each of the following acronyms. What are their application domains? 
• SMP 
• ILP 
• CPI 
• MAC 
• PCie 
• SATA 
• USB 

3. Why is standardization of 1/0 and expansion buses important? Provide examples. 
4. You are an IT specialist at a small computational research institution. The scientists require a peak 

100 Tflops machine to conduct their studies. The approved vendor offers two units rack-mount 
nodes with two CPU sockets that may accommodate either 12-core processors clocked at 3.4 GHz 
or 20-core processors operating at 2.5 GHz frequency. Each core can perform four floating-point 
operations per clock cycle. Given that there is 32U space for nodes available in each rack, answer 

the fo\\owing. . 
\\l\..'. c ould you recommend to minimize the floor space occupied by 

\_ ~~ n\Cfi \yQe Ol processor w 

rac1<s? k e needed to reach the required peak throughput? . 
b. H~w many rkac filslard what is the final peak computational throughput of the machme'I 
c. With all rac s e , 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 246



224 CHAPTER 6 SYMMETRIC MULTIPROCESSOR ARCHITECTURE 

5. A sequential version of a simulation takes 90 min to compute 10,000 iterations. Each iteration can 
be accelerated using multiple threads of execution, but the overhead of assigning work to the 
threads is 100 ms. If the sequential setup of the application takes 10 min regardless of the number 
of iterations subsequently executed, how many cores are needed to bring the execution of a 
program performing 1000 iterations down to 12 min? What maximum speedup is possible 
assuming unlimited execution resources? 

6. Execution of a 1,000,000-instruction program takes 2.5 ms on a 2.5 GHz core. The hardware 
monitor reports a cache miss ratio of 6% for the application. Main memory access takes on 
average 80 ns, while cache access has a latency of 800 ps. Given that all ALU instructions are 
executed effectively in a single clock cycle, calculate the following. 
a. The fraction of application instructions that performed ALU operations. 
b. If the core has a 16 KB cache and doubling the cache size decreases the miss rate by 1 % for 

that particular application, what would be the required cache size (in powers of 2) to cut the 
execution time in half? 

c. What would the program runtime and resulting speedup be if all accessed data fits in the 
cache? 

REFERENCES 
[I] M.S. Papamarcos, J.H. Patel, A low-overhead coherence solution for multiprocessors with private cache 

memories, in: ISCA '84 Proceedings of the 11th Annual International Symposium on Computer Architec
ture, 1984. 

[2] J. Wu, J.R. Larus, Static branch frequency and program profile analysis, in: MICRO 27 Proceedings of the 
27th Annual International Symposium on Microarchitecture, 1994. 

[3] T.-Y. Yeh, Y.N. Patt, Two-level adaptive training branch prediction, in: MICRO 24 Proceedings of the 24th 
Annual International Symposium on Microarchitecture, 1991. 

[4] C.-C. Lee, 1.-C.K. Chen, T.N. Mudge, The bi-mode branch predictor, in: MICRO 30 Proceedings of the 30th 
Annual ACM/IEEE International Symposium on Microarchitecture, 1997. 

[5] S. McFarling, Combining Branch Predictors, 1993. WRL Technical Note TN-36. 
[6] D.A. Jimenez, C. Lin, Neural methods for dynamic branch prediction, ACM Transactions on Computer 

Systems (TOCS) 20 (4) (2002) 369-397. 
[7] PCI-sig Specifications, 2017 [Online]. Available: http://pcisig.com/specifications/. 
[8] R.M. Metcalfe, D.R. Boggs, Ethernet: distributed packet switching for local computer networks, Commu

nications of the ACM 19 (7) (1976) 395-404. 
[9] TOP500 Highlights - June 2017, 2017 [Online]. Available: https://www.top500.org/lists/2017/06/ 

highlights/. 
[IO] OpenFabrics Alliance, 2017 [Online]. Available: https://www.openfabrics.org/. 
[1 IJ IEEE Standards Association, 1149.1-2013-IEEE Standard for Test Access Port and Boundary-scan Archi

tecture, 2013 [Online]. Available: http://standards.ieee.org/findstds/standard/l 149.1-2013.html. 
[ 12] USB-IF, Universal Serial Bus Revision 3.1 Specification, July 26, 2013 [Online]. Available: http://www.usb. 

org/developers/docs/usb_31_0627 l 7.zip. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 247



THE ESSENTIAL OPENMP 7 
CHAPTER OUTLINE 

7 .1 Introduction ................................................................................................................................. 225 
7 .2 Overview of OpenMP Programming Model ...................................................................................... 226 

7.2.1 Thread Parallelism ................................................................................................... 226 
7.2.2 Thread Variables ...................................................................................................... 228 
7.2.3 Runtime Library and Environment Variables ................................................................ 228 

7.2.3.1 Environment Variables ......................................................................................... 229 
7.2.3.2 Runtime Library Routines .................................................................................... 230 
7.2.3.3 Directives ............................................................................................................ 230 

7.3 Parallel Threads and Loops ........................................................................................................... 231 
7.3.1 Parallel Threads ................................................ .-...................................................... 231 
7.3.2 Private .................................................................................................................... 232 
7.3.3 Parallel "For" ........................................................................................................... 233 
7 .3.4 Sections .................................................................................................................. 239 

7 .4 Synchronization ........................................................................................................................... 241 
7.4.1 Critical Synchronization Directive .............................................................................. 242 
7 .4.2 The Master Directive ................................................................................................. 242 
7.4.3 The Barrier Directive ................................................................................................. 243 
7.4.4 The Single Directive ................................................................................................. 243 

7 .5 Reduction .................................................................................................................................... 244 
7 .6 Summary and Outcomes of Chapter 7 ............................................................................................. 245 
7.7 Questions and Problems ................................................................................................................ 246 
Reference ............................................................................................................................................ 247 

7 .1 INTRODUCTION 
OpenMP is an application programming interface (API) to support the shared-memory multiple-thread 
form of parallel application development. "OpenMP" stands for "open multiprocessing" [1). It greatly 
simplifies the development of multiple-threaded parallel programming compared to, for example, low
level operating system (OS) support services for threads and shared memory. OpenMP incorporates 
separate sets of bindings for the sequential programming languages Fortran, C, and c++. It gives easy 

High Performance Computing. https://dol.org/l0.1016/B978-0-l2•420158-3.00007-I 
Copyright© 2018 Elsevier Inc. All rights reserved. 

225 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 248



226 CHAPTER 7 THE ESSENTIAL OPENMP 

access to the resources of the general class of symmetric multiprocessor (SMP) computers for parallel 
applications. 

This chapter describes the syntax constructs related to the C programming language bindings. For 
those unfamiliar with C programming, a tutorial, "The Essential C", is offered in the appendix of this 
textbook. OpenMP provides extensions to C in the form of compiler directives, environment variables, 
and runtime library routines to expose and execute parallel threads in the context of shared memory. A 
principle of the design philosophy is to permit incremental changes to sequential C code for ease of use 
and natural migration from initial C-based applications to parallel programs. In so doing it provides a 
practical and powerful means of parallel computing, admittedly within the scalability limits of the 
SMP class of parallel computers. 

OpenMP is among the most widely used parallel programming APis. However, it is limited in scal
ability to hardware system architectures providing near uniform memory access (UMA) to shared 
memory. This chapter provides an introductory treatment to the essentials of OpenMP and how to program 
in parallel with it. Although it is an initial coverage assuming no prior experience with parallel pro
gramming, this chapter provides all the necessary concepts and semantic constructs to enable the devel
opment of useful real-world applications. This presentation is primarily focused on release 2.5, which is 
core to later releases and is probably the most widely used version as well as most broadly supported. 

Shared-memory parallel architectures were first developed in the 1980s and a number of APis were 
devised to assist in programming these. The OpenMP specification standard process began in 1997 
based on this prior work and an early draft of such an interface, ANSI X3H5, was released in 1994. 
OpenMP evolution is overseen by the OpenMP Architecture Review Board, consisting of industry and 
government partners. The first C-based specification, CIC++ 1.0, was released in 1998, followed by 
CIC++ 2.0 in 2002. C and Fortran specifications have been released together since 2005, with 
OpenMP 2.5, 3.0, and 3.1 released in 2005, 2008, and 2011, respectively. The most recent version 4.5, 
released in 2015. 

7 .2 OVERVIEW OF OPENMP PROGRAMMING MODEL 
OpenMP provides a shared-memory multiple-threads programming model. It assumes underlying 
hardware support for efficient management of shared memory, including virtual addresses and cache 
coherency among processor cores and across multiple sockets. This is the principal defining facet of 
the SMP class of parallel computers. All processor cores have direct access to all memory shared 
within the system. A simple but illustrative representation of the class of parallel computers suitable 
for OpenMP programming is shown in Fig. 7. I. The key elements are the processor cores, P, that 
perform the concurrent threaded computing, the memory banks, M, that are equally accessible by the 
threads, and the connectivity between both P and M elements that enables the shared-memory ar
chitecture and execution models. 

7.2.1 THREAD PARALLELISM 
Threads are the principal means of providing parallelism of computation. A thread is an indepen
dently schedulable sequence of instructions combined with its private variables and internal control. 
Usually there are as many threads allocated to the user computation as there are processor cores 
assigned to the computation. However, this is not required. Threads are divided among the master 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 249



7.2 OVERVIEW OF OPENMP PROGRAMMING MODEL 227 

FIGURE 7.1 

Shared-memory multiprocessor. 

thread and the worker threads. The single master thread exists for the lifetime of the computation, 
from its initiation to its termination. Sometimes the master thread is the only thread being performed 
at one time. The worker threads provide additional paths of concurrency of execution for perfor
mance gain. Worker threads are controlled by the master thread and are delineated by OpenMP 
directives. Like the number of threads, how the threads are scheduled is determined by environment 
variables and can be static or dynamic. 

OpenMP supports the fork-join model of parallel computing. At particular points in the execution 
the master thread spawns a number of threads and with them performs part of the program in parallel. 
The point of initiation of multiple worker threads is referred to as the fork. Usually all these threads 
perform their calculations separately, and when they reach completion they wait for the other threads 
to finish as well. This is the join of the parallel threads, and the default at the join is an implicit barrier 
synchronization. All the threads must complete before computation is continued beyond that point of 
control. An OpenMP parallel program mostly consists of a sequence of such fork-join worker and 
master thread parallel segments separated by lone sequential master thread segments, as shown in 
Fig. 7 .2. Segments of concurrent master/worker threads often have all the threads the same, differ
entiated only by the values of their private variables. This is the single-program, multiple data (SPMD) 
model. Alternatively, the concurrent threads may each execute different code blocks, separately 
delineated by appropriate directives. In either case, join synchronization at the end of the concurrent 
threads is enforced unless explicitly avoided through added directives for this purpose. The figure 
illustrates this parallel control flow. The horizontal axis represents time from left to right, while the 
vertical access shows work in terms of one or more concurrent threads. The single lowest line is the 
master thread that continues from the beginning to the end of the OpenMP program. At key fork points 
multiple threads are launched for work that can be performed concurrently. These threads may be 
somewhat irregular, in that they do not execute exactly the same work even if their code is the same. 
When all the concurrent threads have completed at the join synchronization point, the computation can 
proceed; in each case by the master thread alone until the next thread fork is encountered. 

OpenMP permits the representation of nested parallelism, such that inner fork-join segments of 
parallel threads can themselves be embedded into threads of outer parallel thread segments. However, 
while the syntax is supported and will execute correctly, not all implementations will take advantage of 
this additional parallelism and may treat it as sequential code, one inner thread after another. An 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 250



228 CHAPTER 7 THE ESSENTIAL OPENMP 

MASTER THREAD 

FIGURE 7.2 

fork 

Fork-join model of master/worker threads. 

join 

example of nested parallelism is illustrated in Fig. 7 .3. Again, the lower horizontal line represents the 
master thread, with time increasing from left to right. First a set of worker threads is created when the 
master thread encounters a forking point of parallelism; this is the outer fork. Each of these outer 
threads then separately encounters its own inner fork to create a second level of parallel threads, giving 
more concurrency for scalability. The inner threads of each outer thread then synchronize with their 
respective matching inner join, after which the outer thread proceeds until it encounters the outer join 
synchronization point with the other outer threads. The OpenMP scheduler uses this added parallelism 
to improve performance when possible. 

7 .2.2 THREAD VARIABLES 
OpenMP is a shared-memory model allowing direct access to global variables by all threads of a user 
process. To support the SPMD modality of control where all concurrent threads run the same code block 
simultaneously, OpenMP also provides private variables. These have the same syntactical names, but 
their scoping is limited to the thread in which they are used. Private variables of the same name have 
different values in each thread in which they occur. A frequently occurring example is the use of index 
variables accessing elements of a vector or array. While all threads will use the same index variable 
name, typically "i", when accessing an element of the shared vector, perhaps "x[i]", the range of values 
of the index variable will differ for the separate concurrent threads. For this to be possible, the index 
variable has to be private rather than shared. In fact this particular idiom is so common that the default 
for such variable usage is private, although for most common variables the default is shared. Directive 
clauses are available for explicit setting of these properties of variables by users. Another variant on how 
variables may be used relates to reduction operators such as sum or product. In this specialized case the 
reduction variable is a mix of private and global, as discussed in detail in Section 7.5. 

7 .2.3 RUNTIME LIBRARY AND ENVIRONMENT VARIABLES 
An OpenMP parallel application program consists of the syntax of the core language (i.e., Fortran, C, 
C++) with additional constructs to guide parallel threaded execution and set specific operational 
properties. These include environment variables, compiler directives, and runtime libraries. Envi
ronment variables define operational conditions and policies under which the executing OpenMP 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 251



7.2 OVERVIEW OF OPENMP PROGRAMMING MODEL 229 

OUTER 
WORKER 
THREADS 

::G c:: 
0 
I.I.. 
c:: 
WJ 
[-
::::i 
0 

MA 

FIGURE 7.3 

STER THREAD 

Nested parallel threads. 

~ ~ 
0 Q 
C.l. 

c:: c:: 
WJ WJ 

~ 
z 
2:: 

z 
s;l 

NESTED WORKER c:: 
THREADS 

~ 
0 

program will run. Their values can be set at the system shell through OS user interface commands; 
from within the program they can be accessed through runtime library routines. Compiler directives 
appear as comments, but through the OpenMP extensions, pragmas, are treated as commands to guide 
parallel execution. Additional functionality is provided through runtime library routines that help 
manage parallel programs. Many runtime library routines have corresponding environment variables 
that can be controlled by users. Examples include detennining the number of threads and processors, 
scheduling policies to be used, and portable wallclock timing. 

7.2.3. 1 Environment Variables 
OpenMP provides environment variables for controlling execution of parallel codes. These can be 
set from the OS command line or equivalent prior to execution of the application program, using 
export or setenv commands depending on the user shell. These variables have default settings, so 
they only have to be set explicitly if an optional value is required. There are four main environment 
variables. 

OMP _NUM_THREADS controls the parallelism of the OpenMP application by specifying the 
number of threads to be used by the user program. This normally determines the number of cores 
allocated to the user program, but not always. When more threads are requested than available, they 
may be associated with OS Pthreads, requiring the OS to context switch adding additional overheads to 
the computing. The default option is system dependent. To set the value of this environment variable to 
8 use the following bash command: 

export OMP_NUM_THREADS=B 

OMP _DYNAMIC enables dynamic adjustment of the number of threads for execution of parallel 
regions. Under certain conditions this provides a level of adaptability that makes optimal use of task 
granularity to minimize the effects of overhead and irregularity. However, it also incurs additional 
overhead within the runtime system and may not always improve performance. The default value for 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 252



230 CHAPTER 7 THE ESSENTIAL OPENMP 

this environment variable is FALSE, which implies that the number of threads employed remains fixed 

at the value set in the environment variable OMP _NUM_ THREADS. To change this to enable dy

namic thread allocation, use the following bash command: 

export OMP_DYNAMIC=TRUE 

OMP _SCHEDULE manages the load distribution in loops such as the parallel for pragmas 

(discussed in Section 7.3.3). This environment variable sets the schedule type and chunk size for all 

such loops. The chunk size can be provided as an integer number. The default value for OMP _

SCHEDULE is 1. To set this two-tuple variable use the following form: 

export OMP_SCHEDULE=schedule,chunk 

OMP _NESTED permits nested parallelism in OpenMP applications. This may give the opportunity 

for more parallelism, which may increase scalability, but at the risk of finer granularity in the presence 

of fixed overheads, which may reduce efficiency. The default value for this Boolean environment value 
is FALSE, permitting only the top level of fork-join parallelism to be used. To set this environment 

variable to support multilevel parallelism, use the following form: 

export OMP_NESTED=TRUE 

7.2.3.2 Runtime Library Routines 
Runtime library routines help manage parallel application execution, including accessing and using 

environment variables such as those above. Prior to using these routines in the code, the following 
include statement must be added: 

#include <omp.h> 

Two important routines allow the program to know how many threads are operating concurrently 
and identify a unique rank for each thread among the total set. The first function, 

omp_get_num_threads() 

returns the total number of threads currently in the group executing the parallel block from where it 
is called. Usually, this is a direct reflection of the environment variable OMP _NUM_THREADS. 

The second important runtime routine, 

omp_get_thread_num(J 

returns a value to each thread executing the parallel code block that is unique to that thread and can 

be used as a kind of identifier in its calculations. When the master thread calls this function, the value 
of O is always returned, identifying its special role in the computation. A call to this routine by a worker 
thread will return a value between I and the environment variable value OMP _NUM_ THREADS -1. 

7.2.3.3 Directives 
OpenMP directives are a principal class of constructs used to convert initially sequential codes 

incrementally to parallel programs. They serve a multitude of purposes, primarily about controlling 

parallelism through delineation and synchronization. The following sections describe in detail the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 253



7.3 PARALLEL THREADS AND LOOPS 231 

directives for parallelism, mutual exclusion of shared variables through synchronization, and reduction 
calculations. All directives take the following form: 

#pragma omp <directive> <clauses> <statement/code block> 

As shown in the examples, such directives may be treated one at a time in a nested organization, or 
in many cases combined to simplify textual presentation. The clauses permit optional conditions to be 
satisfied, like declaring the scope of a variable (e.g., private). 

7 .3 PARALLEL THREADS AND LOOPS 
7 .3. 1 PARALLEL THREADS 
In the tradition of C programming and the teaching thereof, the first program to present is "Hello 
World". Using OpenMP, a very simple parallel program can be constructed to print this statement by 
multiple threads. It requires only one OpenMP command, 

#pragma omp parallel 

to tum the classic sequential C code to a parallel code. This simplicity of transformation from serial 
to parallel is one of the hallmark strengths of OpenMP. Parallel Hello World is written as follows. 

#include <stdio.h> 
lfinclude <omp.h> 

int main() { 
#pragma omp parallel 
{ 

printf("Hello World \n"); 

return O; 

Code 7.1. Parallel Hello World example. 

Hello World 
Hello World 
Hello World 
Hello World 

Output 1. The result from Code 7. I when setting the environment OMP _NUM_ THREADS to be 4. 

That's it! When compiled and run, the result will be a succession of printed lines of text: Hello 
World. The number of such lines is determined by the environment variable OMP _THREAD_NUM. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 254



232 CHAPTER 7 THE ESSENTIAL OPENMP 

The only difference between this and the conventional C version of this code is that in the parallel 
version is the single OpenMP directive: #pragma omp parallel is added. The effect of the parallel 
pragma is to fork the number of allocated threads, and for each such thread to execute the designated 
block of code. As a result every thread executes the printf statement once, each printing "Hello World". 
This admittedly rather useless code demonstrates the use and power of the parallel pragma, perhaps the 
most important directive in OpenMP. It creates the forks and subsequent joins of parallel threads 
throughout the program. 

7 .3.2 PRIVATE 
In the simple version of Hello World, above, there is nothing to differentiate between the separate 
executed threads. For threads to become useful they need to support distinct work even if the code 
block is the same. Some local state for each thread is usually required, although there are some special 
cases (like reduction variables). The private clause within directives is the principal means of 
achieving this. It declares a variable within the code block to be local to each thread. By this means 
each thread has its own copy of the named variable, permitting each thread to have its own value, 
independent of the other threads executing the same code block. 

#include <stdio.h> 
1h ncl ude <omp. h> 
int main() { 

int num_threads, thread_id; 
#pragma omp para 11 el private ( num_threads, thread_ id) 
{ 

thread_id = omp_get_thread_num(); 
printf("HelloWorld. This thread is: %d\n", thread_id); 
if (thread_id = OJ { 
num_threads = omp_get_num_threads(); 
pri ntf( "Total# of threads is: %d\n", num_threads): 
I 

return O; 

Code 7 .2. An example hello world code where each OMP thread prints out its thread id. 

Hello World. This thread is: 0 
Total# of threads is: 4 
Hello World. This thread is: 3 
Hello World. This thread is: 1 
Hello World, This thread is: 2 

Output 2. The output from Code 7.2 with the environment OMP _NUM_THREADS set to be 4. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 255



7.3 PARALLEL THREADS AND LOOPS 233 

There are two variables, num_threads and thread_id, that are declared as private, and therefore 
separate copies of both are provided for each and every thread with the values potentially different. In 
this case num_threads is only used by the master thread, thread 0. The omp_get_num_threads runtime 
function is called only by the master thread. Each thread has its own copy of thread_i d. The runtime 
function omp_get_thread_num() will return a different and unique value to each thread for the 
respective version of thread-id. 

7 .3.3 PARALLEL "FOR" 
Among the most useful sources of parallelism is the distribution of loops among threads. In C, loops 
are defined by the "for" construct specifying the number of iterations of a code block through a 
designated range of an index variable local to that loop code. Here is a sequential code block to add two 
arrays together. 

1 1/include<stdio.h> 
2 Iii ncl ude <stdl i b. h> 
3 
4 i n t ma i n ( i n t a r g c • ch a r * a r g v [ J ) 
5 { 
6 constintN=20; 
7 int nth reads. threadi d. i; 
8 double a[NJ. b[NJ. result[NJ; 
9 

10 // Initialize 
11 for ( i =0: i < N; i ++) l 
12 a [ i J = 1. o* i ; 
13 b [ i J = 2 . 0* i ; 
14 
15 
16 for ( i =0 ; i < N ; i ++) { 

17 result[iJ=a[iJ+b[iJ; 
18 
19 
20 pri ntf (" TEST result [ 19] = %g\n". result [19 J l: 
21 
22 return 0; 
23 

Code 7.3. Serial example of adding two arrays together. 

TEST result[19] = 57 

Output 3. The output from Code 7.3. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 256



234 CHAPTER 7 THE ESSENTIAL OPENMP 

This program has three parts, like many real-world programs: initialization, calculation, and 
output. In this simple program most of the lines of text are dedicated to the declaration and initiali
zation of program variables. Here these include integers N, nthreads, threadid, and i, as well as the 
double vectors a, b, and result. A for-loop is included to initialize the vector elements to (admittedly 
gratuitous) double values. The output of the computation is given by the single printf statement that 
sends the last element of the result vector to standard inout/output (usually the screen or a file). 

This program can be readily converted to be executed in parallel to increase computational per
formance and reduce the time to solution. Three additions are required to transform the above program 
to parallel. 

1. Include the OpenMP header. 
2. Delineate the code block to be made parallel. 
3. Specify the loop to be distributed among the concurrent threads. 

The first two of these semantic constructs have already been discussed. The OpenMP libraries are 
incorporated through the command: 

#include <omp.h> 

The parallel code block is established through the directive: 

#pragma omp parallel 
! 

The new construct is the par a 11 e 1 for instruction. This directive enables work sharing, where the 
total work of a loop is divided among the assigned threads. The effect is to divide the range of the 
private index variable of the for-loop into subranges, preferably of equal span, with one assigned to 
each of the parallel threads. Thus each thread is responsible for part of the total work of the loop; with 
all the threads working on their respective parts separately but at the same time, parallel computing is 
performed. Optimally, the speedup would be equal to the number of threads being used, but for a 
number of reasons (discussed later) it is infrequent that this level of scaling is fully realized. The 
par a 11 e 1 for directive is given as the following: 

#pragma omp for 

The parallel version of the vector addition example is presented in Code 7.4 with the additional 
OpenMP directive in lines 1, 17, and 20: 

1 #include <omp.h> 
2 #include <stdio.h> 
3 1fainclude<stdlib.h> 
4 

int main (int argc, char *argv[J) 
6 { 
7 constintN=20: 
8 inti: 
9 double a[NJ. b[NJ, result[NJ: 

10 
11 // Initialize 
12 for ( i =0 : i < N : i ++ ) ! 
13 a[iJ=l.O*i: 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 257



7.3 PARALLEL THREADS AND LOOPS 235 

14 b[i]=2.0*i; 
15 
16 
17 #pragma amp parallel 
18 {//fork 
19 
20 /fopragma amp for 
21 for (i=O; i<N; i++) { 
22 result[i]=a[i]+b[i]; 
23 
24 
25 }//join 
26 
27 printf(" TEST result[19J =%g\n",result[19]); 
28 
29 return O; 
30 

Code 7.4. OpenMP parallel for version of Code 7.3. OpenMP additions are seen in lines 1, I 7, and 20. 
The output of Code 7.4 is the same as Code 7.3, shown in Output 3. 

While correct, the code above is a bit verbose. OpenMP allows some compression of code text by 
merging different directives where it makes sense. For example, the parallel and for directives can be 
combined into a single statement, as shown in Code 7.5: 

/{include <omp.h> 
2 #include <stdio. h> 
3 #include <stdl i b. h> 
4 
5 int main (int argc, char*argv[J) 

{ 

constintN=20; 
8 int i; 

double a[NJ. b[NJ, result[NJ; 
10 
11 // Initialize 
12 fo r ( i =O ; i < N ; i ++) { 
13 a [ i J = 1. o* i ; 
14 b[iJ=2.0*i; 
15 
16 
17 #pragma amp parallel for 
18 for(i=O;i<N;i++){ 
19 result[iJ=a[iJ+b[iJ: 
20 I 

21 
22 printf(" TEST result[19J = %g\n" ,result[19J); 
23 
24 return O; 
25 

Code 7.5. Combining the parallel and for directives into a single statement in Code 7.4 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 258



236 CHAPTER 7 THE ESSENTIAL OPENMP 

Notice that the braces are not required because a single statement now makes up the code block. To 
find out which thread executes which index of the vector addition, some additional statements are 
needed, as shown in Code 7.6. 

#include <omp. h> 
#include <stdio. h> 

3 #include<stdlib.h> 
4 
5 int main (int argc, char *argv[Jl 
6 [ 
7 const int N = 20; 
8 int nth reads. threadi d. i; 
9 double a[NJ, b[NJ, result[NJ; 

10 
11 // Initialize 
12 for ( i =0; i < N; i ++) { 
13 a[i]=l.0*i; 
14 b[i]=2.0*i; 
15 
16 
17 #pragma omp parallel private(threadid) 
18 {//fork 
19 threadid = omp_get_thread_num(); 
20 
21 #pragma omp for 
22 for (i=0; i<N; i++) { 
23 result[i]=a[i]+b[i]; 
24 pri ntf(" Thread id: %ct working on index %d\n", threadi d, i); 
25 
26 
27 ///join 
28 
29 pri ntf(" TEST result[l9J = %g\n", result[l9J); 
30 
31 . return 0; 
32 

Code 7.6. In this example of vector addition, the identity of the thread performing the operation for 
each index is printed to screen. 

In Code 7.6 a new variable is introduced: threadid. It contains the OpenMP thread index and is 
initialized inside the OpenMP parallel region. Because it is declared outside the scope of the parallel 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 259



7.3 PARALLEL THREADS AND LOOPS 237 

region, it would by default be considered a global variable by OpenMP. Thus it is necessary to declare 
it as private in the clause following the OpenMP parallel pragma in line 17. 

Thread id: 0 working on index 0 
Thread id: 0 working on index 1 
Thread id: 0 working on index 2 
Thread id: 0 working on index 3 
Thread id: 0 working on index 4 
Thread id: 0 working on index 5 
Thread id: 0 working on index 6 
Thread id: 1 working on index 7 
Thread id: 1 working on index a 
Thread id: 1 working on index 9 
Thread id: 1 working on index 10 
Thread id: 1 working on index 11 
Thread id: 1 working on index 12 
Thread id: 1 working on index 13 
Thread id: 2 working on index 14 
Thread id: 2 working on index 15 
Thread id: 2 working on index 16 
Thread id: 2 working on index 17 
Thread id: 2 working on index 18 
Thread id: 2 working on index 19 
TEST result [19] = 57 

Output 4. The output from Code 7.6 when using 0MP_NUM_THREADS=3. The default thread scheduler in 
0penMP will break the for-loop roughly into three equal pieces: thread O works on array indices O through 6, 
thread I works on array indices 7 through 13, and thread 2 works on array indices 14 through 19. 

The behavior controlling which thread works on which index can be altered by using the schedule 
clause, as noted in Section 7.2.3.1. This is illustrated in Code 7.7. 

1 #include <omp. h> 
2 #include<stdio.h> 
3 1finclude<stdlib.h> 
4 
5 int main (int argc, char *argv[J) 
6 { 
7 const int N = 20; 
8 intnthreads,threadid,i; 
9 double a[NJ, b[NJ, result[NJ; 

10 
11 // Initialize 
12 for(i=0;i<N;i++){ 
13 a[iJ=l.0*i; 
14 b[i J = 2.0*i; 
15 
16 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 260



238 CHAPTER 7 THE ESSENTIAL OPENMP 

17 int chunk= 5; 
18 
19 #pragma omp parallel private(threadid) 
20 {//fork 
21 threadid = omp_get_thread_num(); 
22 
23 #pragma omp for schedule(static,chunk) 
2 4 for ( i =0 ; i < N ; i ++) I 
25 result[i]=a[i]+b[i]; 
26 printf("Threadid:%dworkingonindex%d\n",threadid,i); 
27 
28 
29 l // join 
30 
31 pri ntf(" TEST resul t[l9] = %g\n". resul t[l9]); 
32 
33 return 0; 
34 l 

Code 7.7. An example of the schedule clause. Work in the for-loop will be statically divided into 
chunks of size 5. 

Thread id: 0 working on index 0 
Thread id: 0 working on index 1 
Thread id: 0 working on index 2 
Thread id: 0 working on index 3 
Thread id: 0 working on index 4 
Thread id: 0 working on index 15 
Thread id: 0 working on index 16 
Thread id: 0 working on index 17 
Thread id: 0 working on index 18 
Thread id: 0 working on index 19 
Thread id: 1 working on index 5 
Thread id: 1 working on index 6 
Thread id: 1 working on index 7 
Thread id: 1 working on index 8 
Thread id: 1 working on index 9 
Thread id: 2 working on index 10 
Thread id: 2 working on index 11 
Thread id: 2 working on index 12 
Thread id: 2 working on index 13 
Thread id: 2 working on index 14 
TEST result [19] = 57 

Output 5. Output from Code 7.7 when run using OMP_NUM_THREADS=3. The for-loop is statically divided 
into chunks of size 5 among three threads. Hence thread 0 operates on array indices 0-4 and 15-19, thread 1 
operates on array indices 5-9, and thread 2 operates on array indices 10-14. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 261



7.3 PARALLEL THREADS AND LOOPS 239 

7 .3.4 SECTIONS 
OpenMP provides a second powerful method for specifying work sharing among parallel code blocks. 
The sect i on s directive describes separate code blocks, each containing a different sequence of in
structions, which may be performed concurrently. One thread is allocated to each code block: The full 
set of parallel blocks is initiated with the following directive: 

#pragma omp sections 
{ ... } 

Within this structure is the set of nested code blocks, each begun by the directive: 

#pragma omp section 
{ <code block> l 

with the exception of the first code block that does not require its own sections pragma (the sections 
pragma serves this second duty) heading. A simple example of a sections code block structure could 
look like this: 

1 #pragma omp parallel 
2 { 
3 #pragma omp sections 
4 { 

{ 

<1st parallel code block> 
7 } 

8 #pragma omp section 
9 { 

10 <2nd parallel code block> 
11 ) 

12 #pragma omp section 
13 { 

14 <3rd parallel code block> 
15 } 

16 ) 

17 l 

This nested structure of code blocks can be extended to represent as many distinct and concurrent 
blocks as necessary. But depending on the number of threads specified by the environment variable, 
not all of these may be executed simultaneously. 

The example in Code 8 demonstrates the use of the sections and nested section directives to specify 
three separate code blocks to be executed concurrently. The three calculations determine statistics 
about a set of integer values, x. The first determines the minimum and maximum values of the set. The 
second computes the mean. The third computes the mean of the square of the values, which is used 
later to provide the variance. 

11tinclude<stdio.h> 
21/include<stdlib.h> 
3 Hinclude<omp.h> 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 262



240 CHAPTER 7 THE ESSENTIAL OPENMP 

3 
4 int main () 
5 ( 

6 const int N = 100; 
7 intx[NJ. i, sum.sum2; 
8 int upper, lower; 
9 int divide= 20; 

10 sum= 0; 
11 sum2 = 0; 
12 
13 /fpragma omp parallel for 
14 for(i =0; i < N; i++) { 
15 x[ i J = i; 
16 
17 
18 
19 /fpragma omp parallel private(i) shared(x) 
20 ( 
21 
22 I I Fork several different threads 
23 /fpragma omp sections 
24 { 
25 
26 
27 
28 
29 

for(i =0; i < N; i++) ( 
if (x[i J >divide) upper++; 
if (x[i J <= divide) lower++; 

30 print f ( "The number of points at or below %d in x is %d \n", divide, lower); 
31 pri ntf ( "The number of points above %d in x is %d\n", di vi de, upper); 
32 
33 /fpragma omp section 
34 I IICalculatethesumofx 
35 for(i=0;i<N;i++) 
36 sum=sum+x[i]; 
37 printf("Sum of x = %d\n" ,sum); 
38 
39 /fpragma omp section 
40 ( 
41 
42 
43 
44 

II Calculate the sum of the squares of x 
for(i =0; i < N; i++) 

sum2 = sum2 + x[i hx[i J; 

45 printf("Sum2ofx=%d\n",sum2); 
46 
47 } 
48 } 
49 return 0; 
50 

Code 7.8. Example of sections in OpenMP. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 263



7.4 SYNCHRONIZATION 241 

7.4 SYNCHRONIZATION 
One strength of OpenMP is the sharing of global data among multiple concurrent threads. This 
"shared-memory" model presents a view of program data similar to that experienced with the use of 
conventional sequential programming interfaces like the C language. This is distinguished from 
"distributed-memory" models where special send-receive message-passing semantics are required to 
exchange values among concurrent processes, such as found in the message-passing interface pro
gramming libraries. But with this ease of use comes a serious challenge: control of the order of access 
to shared variables. This problem in a different form was encountered when the distinction between 
private and shared variables was made. By designating a variable as private, it was possible to avoid the 
out-of-order problem among multiple threads; here, copies of a named variable disassociated the 
accesses of separate threads. However, communication between or among threads through shared 
memory is a frequent and efficient means of computation cooperation, if appropriately coordinated. 
OpenMP incorporates semantic constructs to enable coordination in the shared use of global memory 
for the class of SMP parallel architectures. 

On a shared-memory system communication between threads is mainly through read and write 
operations to shared variables. Where two threads are both reading the value of a shared variable, 
previously set, the order of accessing the variable by the threads is irrelevant; either thread can perform 
the read first, followed by the second thread. But if one thread is responsible for setting the value 
through a global write for the other thread to read and use, then clearly the order of access is important 
and failing to ensure proper order will likely result in an error. This can become more complex when 
more than two threads are involved. 

Synchronization defines the mechanisms to help in coordinating execution of multiple parallel 
threads that use a shared context (shared memory) in a parallel program. Without synchronization, 
multiple threads accessing a shared-memory location may cause conflicts. This can occur by two or 
more threads attempting to modify the same location concurrently. It can also happen if one thread is 
attempting to read a memory location while another thread is updating the same location. Without 
strict control of ordering, a race condition may make the result of these actions nondeterminant; the 
result cannot be guaranteed always to produce the same answer. Synchronization helps to prevent such 
races and access conflicts by providing explicit coordination among multiple threads. These include 
implicit event synchronization and explicit protection synchronization directives. 

Implicit synchronization determines the occurrence of an event across multiple threads. Barriers 
are a simple form of event synchronization in OpenMP to coordinate multiple threads such that they 
are aligned in time. A barrier establishes a point in a parallel program where each thread waits for all 
the other like threads to reach the same point in their respective execution. This ensures that all the 
computing threads have completed their computation prior to that specific instruction. Only after all 
threads have reached the barrier can any of them proceed. 

Explicit synchronization directly controls access to a specific shared variable. This guarantees that 
access to the identified data location is limited to one thread at a time. This is particularly important 
when the thread needs to perform a compound atomic sequence of operations, such as a read
modify-write, on a data element without intrusion of another thread. While this does not fix the order 
of access, it does protect a variable until any one thread's activity associated with the variable has been 
completed without conflict. This class of synchronization constructs provides mutual exclusion. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 264



242 CHAPTER 7 THE ESSENTIAL OPENMP 

7 .4.1 CRITICAL SYNCHRONIZATION DIRECTIVE 
The OpenMP pragma critical provides mutual exclusion for access to shared variables by multiple 
threads. It provides protection against race conditions and the minimum performance degradation in 
the case when all likely accesses to a given shared variable are from multiple concurrent threads of the 
same code sequence. The critical directive delineates a block of code that only one thread is 
permitted to execute at a time. Any global variable that is accessed within that sequence of instructions 
is protected from attempts by multiple concurrent executing threads of the same code block. Once one 
thread enters the critical region, the other threads have to wait until it has exited the region. The order 
in which the different threads perform the critical code block is undetermined; only the limit of one 
thread at a time entering and completing the specified code is guaranteed. The c r i ti cal pragma 
permits atomic read-modify-write operation sequences to be safely conducted on a shared variable. 

The c r i ti cal pragma has the form: 

#pragma omp critical 
{ 

An example of its use to perform compound atomic operations safely is the following: 

int n; 
n = O; 

#pragma omp parallel shared(nl 
{ 

#pragma omp critical/* delineate critical region*/ 
n = n + 1; /* increment n atomically*/ 

I /* parallel end*/ 

This simple code allows many threads to increment the shared variable n without the possibility of 
a race among them corrupting the resulting value. Independent of the order in which the critical regions 
of the separate threads are performed, the resulting value of n will be the same. 

7.4.2 THE MASTER DIRECTIVE 
The master directive provides another, and perhaps more simple, way of protecting a shared variable 
among threads to avoid races and possible corruption of result values. As the name implies, the 
directive gives total control to the master thread for a specified code block. Such a code block 
delineated by the master pragma is executed by only one thread, the master thread. When the master 
thread encounters the master directive, it proceeds to perform it like any other code. But when any 
thread other than the master thread (all the worker threads) reaches a master block, it does not execute 
it and skips over this part of the code. Thus this particular code block is only performed once, by the 
master thread. There is no possibility of a race condition because only one thread is allowed to access 
the global shared variables referred to within the master code block. There is no barrier implied by the 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 265



7.4 SYNCHRONIZATION 243 

master region. The worker threads that do not perform this code go right past it and continue without 
any delay caused by the master region. The master directive takes the following syntactical form: 

#pragma amp master 
I 
... I* protected code block*/ 
} 

7.4.3 THE BARRIER DIRECTIVE 
The barrier pragma puts the computation in a known control state. It synchronizes all the concurrent 
threads. When encountering a given barrier directive, all threads halt at that location in the code until 
all other threads have reached the same point of execution. Only when all the threads have reached the 
barrier can any of them proceed beyond it. Once all the threads have performed the barrier operation, 
they all continue with the computation after it. 

The barrier operation is used to ensure that all the threads have completed the preceding com
putations no matter what order they are scheduled in or at what rate they are executing. An important 
purpose of this idiom is to implement the bulk synchronous parallel protocol, a very common form of 
parallel computation. With this approach, a set of threads reads from shared memory and performs the 
necessary arithmetic on their values. Then a barrier is performed. Only when all the threads have 
completed their computation and reached the barrier can they go ahead and write the resulting values 
back to the shared variables. In one form (there are several), after writing to shared memory every 
thread encounters a second barrier and again waits for all the other threads to complete their shared
memory write-back operation as well. Having safely performed all the writes, the threads can repeat 
the next step of the parallel calculation safely by reading the newly updated shared variables guar
anteed to be correct because of the barriers. The barrier directive is: 

#pragma amp barrier 

7.4.4 THE SINGLE DIRECTIVE 
The single directive combines a form of dynamic scheduling with synchronization. It expands the 
master pragma to permit any thread to perform the action, and combines this with an implicit barrier at 
the end. The delineated code block is executed by only one thread, like the master directive; but unlike 
master the executing thread can be any of the running threads, but only one of them. The first thread to 
reach the single pragma construct in its sequence of instructions will perform the designated code 
block. The remaining threads will not perform that code. But all the threads will encounter a barrier 
that blocks them from proceeding past the end of the single pragma code block until all of them have 
reached that point in their execution. Only after the thread executing the code designated by the single 
pragma has completed and exited that code can all the other threads continue. The single directive is: 

#pragma amp single 
( 

... /* protected code executed by only one thread*/ 
) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 266



244 CHAPTER 7 THE ESSENTIAL OPENMP 

7 .5 REDUCTION 
Reduction operators are a means of bringing together a large number of values to produce a single 
result value. Familiar examples are numeric (integer or real) summation and logical OR over a range of 
variables. While this can be achieved through functions of more primitive operations, OpenMP (like 
other programming interfaces) provides a convenient way to accomplish reductions and in some cases 
to do so in parallel for performance speedup (over sequential implementations). The reduction pragma 
may take the following form: 

#pragma omp reduction(op : result_variablel 
{ 

resul t_vari able= resul t_vari able op expression 
) 

The reduction operator, op, is one of the following: 

+, *. - . I. &, -. I 

The result_variable is of a scalar value, with one such element as a private variable for every 
thread. 

1 #include <stdio. h> 
2 #include <omp.h> 
3 
4 int main( l { 
5 inti,n,chunk; 
6 fl oat a[16]. b[l6J. result; 
7 n = 16; 
8 chunk=4; 
9 result=0.0; 

10 
11 
12 for ( i = 0; i < n; i ++) 

13 a[i]=i*l.0; 
14 b[i]=i *2,0; 
15 
16 
17 #pragma omp parallel for default(sharedl private(i) schedule(static, chunk)\ 
18 reduction(+: result) 
19 for ( i =0; i < n; i ++) 

20 result=result+(a[i]*b[i]l: 
21 
22 pri ntf( "Result= %f\n". result); 
23 return 0; 
24 ) 

Code 7.9. Example of reduction. 

Result= 2480,000000 
Output 5. Output from Code 7.9. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 267



7.6 SUMMARY AND OUTCOMES OF CHAPTER 7 245 

7 .6 SUMMARY AND OUTCOMES OF CHAPTER 7 
• "OpenMP" stands for "open multiprocessing". 
• OpenMP is an API for parallel computing that has bindings to programming languages such as 

Fortran and C. 
• OpenMP supports programming of shared-memory multiprocessors, including SMP and 

distributed shared-memory classes of parallel computer systems. 
• OpenMP supports the fork-join model of parallel computing. At particular points in the 

execution the master thread spawns a number of threads and with them performs a part of the 
program in parallel. The point of multiple worker thread initiation is referred to as the fork. 
Usually all these threads perform their calculations separately, and when they come to their 
respective completion they wait for the other threads to finish at the join of the parallel threads. 

• OpenMP provides environment variables for controlling execution of parallel codes. These can be 
set from the OS command line or equivalent prior to execution of the application program. 

• Runtime library routines help manage parallel application execution, including accessing and 
using environment variables such as those above. The library routines are provided in the omp.h 
file and must be included (/h nc 1 ude <amp. h>) prior to using any of these routines. 

• Threads are the principal means of providing parallelism of computation. A thread is an 
independently schedulable sequence of instructions combined with its private variables and 
internal control. Usually there are as many threads allocated to the user computation as there are 
processor cores assigned to the computation, although this is not required. 

• omp_get_num_threads () returns the total number of threads currently in the group executing the 
parallel block from where it is called. 

• omp_get_thread_num() returns a value to each thread executing the parallel code block that is 
unique to that thread and can be used as a kind of identifier in its calculations. When the master 
thread calls this function, the value of O is always returned, identifying its special role in the 
computation. 

• OpenMP directives are a principal class of constructs used to convert initially sequential codes 
incrementally to parallel programs. They serve a multitude of purposes, primarily about 
controlling parallelism through delineation and synchronization. 

• The parallel directive delineates a block of code that will be executed separately by each of the 
computing threads. 

• The parallel for directive permits work sharing of an iterative loop among the executing threads, 
with one or more iterations performed by each thread. 

• The private clause in a directive establishes that each thread has its own copy of a variable, and 
when accessing that designated variable will read or write its own private copy rather than a 
shared variable. 

• The sections directive describes separate code blocks, each of a different sequence of instructions, 
which may be performed concurrently. There is one thread allocated to each code block. 

• Synchronization directives define the mechanisms that help in coordinating execution of multiple 
parallel threads that use a shared context (shared memory) in a parallel program to preclude race 
conditions. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 268



246 CHAPTER 7 THE ESSENTIAL OPENMP 

• The critical directive provides mutual exclusion of access to shared variables by permitting only 
one thread at a time to perform a given code block. When a thread enters the critical code section, 
all other threads that attempt to do so are deferred until the thread doing it has completed. Other 
threads are then free to execute the critical section of code themselves, but only one at a time. 

• The master directive delineates a block of code that is only executed by the master thread, with all 
other threads skipping over it. 

• The single directive delineates a block of code that is performed by only a single thread, but it can 
be any of the executing threads-whichever one gets to that code block first. All threads wait until 
the thread completing that code executes it. 

• The barrier directive is a form of synchronization. When encountering a given barrier directive, 
all threads halt at that location in the code until all other threads have reached the same point of 
execution. Only when all the threads have reached the barrier can any of them proceed beyond it. 
Once all the threads have performed the barrier operation, they all continue with the computation 
after it. 

• Reduction operators combine a large number of values to produce a single result value. A number 
of operations can be used for this purpose, such as + and I among others. 

7. 7 QUESTIONS AND PROBLEMS 
1. Can you spot any mistakes in the following code? Please correct them. 

1 #include <stdio.h> 
2 #include <omp.h> 
3 

4 I I compute the dot product of two vectors 
5 
6 int main ( J [ 

7 int con st N=lOO; 
8 inti, k; 
9 double a[NJ, b[NJ; 

10 double dot_prod = 0.0; 
11 
12 II Arbitrarily initialize vectors a and b 
13 for(i=O;i<N;i++){ 
14 a[iJ=3.14; 
15 b[iJ=6.67; 
16 
17 
18 #pragma amp paral 1 el 
19 { 

20 #pragma amp for 
21 for(i=O;i<N;i++) 
22 dot_prod = dot_prod + a[i J * b[i J; I I sum up the element-wise product of the two 

arrays 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 269



23 
24 
25 pri ntf( "Dot product of the two vectors is %g\n", dot_prod); 
26 
27 return O; 
28 l 

REFERENCE 247 

2. In line 23 of Code 7 in Section 7.3.3 the static scheduler was demonstrated. How would the output 
of this code change if the dynamic scheduler were used instead? 

3. In Code 8 of Section 7.3.4 the sections pragma was introduced. What would happen to Code 8 if 
the number of OpenMP threads were fewer than the number of sections? 

4. Write a matrix-vector multiply and parallelize with OpenMP directives. 

REFERENCE 
1. OpenMP, The OpenMP API Specification. [Online] http://www.openmp.org/specifications/. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 270



THE ESSENTIAL MPI 8 
CHAPTER OUTLINE 

8.1 Introduction ............................................................................................................................... 250 
8.2 Message-Passing Interface Standards ......................................................................................... 251 
8.3 Message-Passing Interface Basics .............................................................................................. 253 

8.3.1 mpi.h .................................................................................................................... 253 
8.3.2 MPl_lnit ................................................................................................................ 253 
8.3.3 MPI_Finalize .......................................................................................................... 254 
8.3.4 Message-Passing Interface Example-Hello World ..................................................... 254 

8.4 Communicators .......................................................................................................................... 255 
8.4.1 Size ....................................................................................................................... 256 
8.4.2 Rank ..................................................................................................................... 256 
8.4.3 Example ................................................................................................................ 257 

8.5 Point-to-Point Messages ............................................................................................................. 258 
8.5.1 MPI Send .............................................................................................................. 259 
8.5.2 Message-Passing Interface Data Types ..................................................................... 259 
8.5.3 MPI Recv ............................................................................................................... 259 
8.5.4 Example ................................................................................................................ 260 

8.6 Synchronization Collectives ........................................................................................................ 262 
8.6.1 Overview of Collective Calls ..................................................................................... 262 
8.6.2 Barrier Synchronization ........................................................................................... 263 
8.6.3 Example ................................................................................................................ 264 

8.7 Communication Collectives ......................................................................................................... 265 
8. 7 .1 Collective Data Movement ....................................................................................... 265 
8.7.2 Broadcast .............................................................................................................. 268 
8. 7 .3 Scatter .................................................................................................................. 269 
8.7.4 Gather ................................................................................................................... 271 
8.7.5 Allgather ................................................................................................................ 272 
8.7.6 Reduction Operations ............................................................................................. 274 
8.7.7 Alltoall .................................................................................................................. 277 

8.8 Nonblocking Point-to-Point Communication .................................................................................. 279 
8.9 User-Defined Data Types ............................................................................................................. 281 

8.1 O Summary and Outcomes of Chapter 8 ........................................................................................... 283 
8.11 Exercises ................................................................................................................................... 283 
References .......................................................................................................................................... 284 

High Performance Computing. hllps://dol.org/10.1016/B978-0•l2-420158-3.00008-3 
Copyright © 2018 Elsevier Inc. All rights reserved. 

249 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 271



250 CHAPTER 8 THE ESSENTIAL MPI 

8.1 INTRODUCTION 
A major form of high performance computing (HPC) systems that enables scalability is the 
distributed-memory multiprocessor. Both massively parallel processors (MPPs) and commodity 
clusters are examples of system-level architectures of this form. The distinguishing property of this 
important class of supercomputer is that the main memory of the system is partitioned into fragmented 
components, each associated with one or more processor cores and ancillary components that together 
comprise what has become casually referred to as a "node". Multiple nodes integrated by means of one 
or more interconnect networks constitute the full high performance computer. A distributed-memory 
system is such that a processor core is able to access the memory intrinsic to its resident node directly, 
but not the memory or the external nodes making up the total system. Exchange of data, cooperation 
and coordination of the tasks running on the separate nodes, and overall operation of the system as a 
single entity are achieved through the transfer of messages between nodes by means of the system area 
network tying all the pieces together. Logically this is achieved through the passing of messages 
between pair-wise executing processes, or sometimes among more than two processes at a time. The 
major advantage of the distributed-memory multiprocessor is its scalability. Within the constraints of 
power and cost, essentially any number of nodes can be incorporated within a single supercomputer. A 
somewhat more nuanced value is that the programmer is forced and therefore motivated to manage the 
program locality explicitly, making pieces of work fit within the confines of an individual node. This 
has resulted in a generation of scalable application software and libraries that has achieved a million 
times greater throughput performance than previous-generation computing models and architecture 
classes. How to use this successful class of high performance computer is the subject of this chapter, 
and the topic and means of doing so is the message-passing interface (MPI). 

Over as many as 3 decades there have been many software application programming interfaces and 
implementation libraries that supported the communicating sequential processes model of computa
tion, casually referred to as the "message-passing model". These were developed by industry, within 
academia, and from national labs and centers, among others. But by far the most significant has been 
MPI [l]. MPI was, and in its most recent versions still is, a community-driven specification. Starting in 
late 1992, representatives of industry, government, and academia began a community-led process to 
develop a standard programming interface based on principles first laid out by Anthony Hoare in the 
mid-1970s. The strength of this approach to community building was the ready acceptance of the result 
and the rapid development of useful applications. The weakness was that to achieve an agreed-upon 
initial standard, many more controversial semantics, constructs, and mechanisms were initially dis
carded for the sake of unity, resulting in a more simplistic and admittedly limited interface. However, 
in spite of such sacrifices of sophistication, this proved to be the right path for evolutionary progress 
that was much needed at the time. At the risk of hyperbole, there was probably no greater achievement 
of practical utility for the advancement of HPC than the development of MPI. Even in its most basic 
form, MPI has proven a powerful, flexible, and usable programming interface. With its hundreds of 
commands it deals with a rich and diverse set of circumstances, yet a very small subset of these is 
sufficient to write a wide array of parallel applications. This chapter presents only a small subset of the 
total set of possible commands, but in doing so gives the student a powerful set of tools for harnessing 
distributed-memory supercomputers and empowering the solution of computational end-user 
problems. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 272



8.2 MESSAGE-PASSING INTERFACE STANDARDS 251 

8.2 MESSAGE-PASSING INTERFACE STANDARDS 

William D. Gropp. Photo Courtesy NCSA 

William "Bill" Gropp is an American scientist who helped develop the MPI message-passing standard. He is also coauthor 

of the MPICH implementation of MPI. Apart from contributing to two very influential books. "Using MP!" and "Using MP! 
2", he is also a designer of the widely used Portable, Extensible Toolkit for Scientific Computation library discussed in this 

textbook. Among his many honors. William Gropp received the IEEE Sidney Fembach Award in 2008 "for outstanding 

contributions to the development of domain decomposition algorithms, scalable tools for the parallel numerical solution of 

partial differential equations (PDEs), and the dominant HPC communications interface". 

From 1992 to 1994 a community representing both vendors and users decided to create a standard 
interface for message-passing calls in the context of distributed-memory parallel computers, princi
pally early MPPs like the Intel Touchstone Paragon. MPI-1 was the result. From the very beginning it 
was "just" an application programming interface (API), not a language. This was achieved by adding 
constructs for parallelism, data exchange communication, synchronization, and collectives through 
bindings to existing conventional sequential programming languages-initially Fortran 77 and C. 

Language bindings permit the semantics and syntax of existing languages to be exploited from the 
frameworks of libraries for concurrency management. These bindings allowed the widest possible use 
of existing application kernels, compilers, and user skill sets while augmenting them with the needed 
concepts of communication frameworks for coordination, cooperation, and concurrency. The MPI 
standard can be found online [1]. 

Probably equally as important as the community-derived API was for the MPI was the first 
reduction to practice: the first reference implementation, called "MPI over CHameleon (MPICH)" and 
developed at Argonne National Laboratory [2]. This was delivered in I 995 and served as the template 
for the many other implementations of MPI to come afterwards. Led by William Gropp, the MPICH 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 273



252 CHAPTER 8 THE ESSENTIAL MPI 

project provided both impmtant experience in the implementation of MPI and a platform upon which 
the earliest practical applications were developed and nm on the MPP systems of the time, such as the 
CM-5 (see Fig. 8.1 ). 

Many lessons were learned about correctness, performance, portability, and user productivity. 
Another value of the MPI standard was that it provided a strong unifying formalism throughout the 
HPC community but permitted distinguishing opportunities for individual vendors like Cray, IBM, and 
Hewlett-Packard. Vendors were able to keep their own internals and optimizations behind the 
interface. 

Since then MPI has matured and evolved. MPI-1.1 fixed bugs that were revealed in early expe
rience and clarified issues where subtleties and ambiguities of semantics were exposed. This continued 
again through MPI-1.2 and new rewrites of MPICH to improve its efficiency and scalability vastly. 
MPI-2 was a new standard that significantly extended the utility and richness of MPI, including new 
datatype constructors, one-sided communication, a strong input/output (l/0) package, and dynamic 
processes. Additional bindings beyond the original ones were developed, including to Fortran 90 and 
to c++. Since then the MPI semantics have been yet again extended, in some cases extensively for the 
release of MPI-3, with MPI-4 actively under development in 2017. While tremendous advances have 
been made since the early formulation of MPl-1, the constructs comprising the foundations of MPI still 

FIGURE 8.1 

A connection machine 5 (CM-5) with 512 nodes and a theoretical maximum capability of 65.5 GF!ops, opera
tional between 1991 and I 997. 

Photo by Austin Mills via Wikimedia Commons 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 274



8.3 MESSAGE-PASSING INTERFACE BASICS 253 

provide a base-level set of interrelated concepts and constructs upon which to establish the means for 
parallel programming. It is from this initial starting point that this first tutorial in MPI programming is 
offered. 

8.3 MESSAGE-PASSING INTERFACE BASICS 
While the latest versions of MPI include literally hundreds of commands, a simple parallel program 
can be created using only three basic commands. This section describes how to do that. The bindings 
all assume the use of the C programming language, with which all examples and descriptions are 
presented. 

8.3.1 MPI.H 
Every MPI program must contain the preprocessor directive: 

It/include <mpi .h> I 
The mpi.h file contains the definitions and declarations necessary for compiling an MPI program. 

mpi.h is usually found in the "include" directory of most MPI installations. This directive can be 
positioned in any order with other directives, but must precede the beginning of the program with the 
main() call. 

8.3.2 MPI_INIT 
The part of the user application code that will contain function calls for MPI program constructs must 
begin with the single call to MPl_lnit and expects arguments of the following form, returning an 
integer error value: 

I int MPL..Init(int *argc,char ***argv) I 

MPl_lnit initializes the execution environment for MPI. This command has to be called before any 
other MPI call is made, and it is an error to call it more than a single time within the program. The 
number of arguments passed internally to all the parallel processes is pointed to by argc. The vector of 
the arguments' list is pointed to by argv, as is consistent with the C language and command-line 
argument variables passing. Every process launched by MPl_lnit inherits copies of these two pro
gram argument variables and is achieved by the call: 

I MPI_Init(&argc,&argv); I 
prior to any of the other MPI calls within the application. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 275



254 CHAPTER 8 THE ESSENTIAL MPI 

8.3.3 MPI_FINALIZE 
In a sense, the other bookend to MPl_lnit is the MPI_Finalize command. MPI_Finalize cleans up all 
the extraneous mess that was first put into place by MPl_lnit. It brings to an end the computing 
environment for MPI. There are no arguments to this MPI service call, which has the following simple 
syntax: 

I MPI_Finalize(); I 
This does not have to be the end of the entire program. Many other C statements can follow it. Also, 

its exact position in the code sequence is not particularly important as long as it comes after any other 
MPI commands in the program. 

8.3.4 MESSAGE-PASSING INTERFACE EXAMPLE-HELLO WORLD 
Somewhat sadly, there is a rite of passage that every neophyte programmer in just about any pro
gramming language has to go through: writing "Hello, World", a most trivial program first sketched 
out by Kernighan and Ritchie in their original book on C [3]. This is the most minimalist program one 
can imagine that actually works. Getting this far is a major milestone for a student, crossing the line 
from never having successfully written an actual computer program in the language of choice to being 
a programmer (sort of). So for the sake of tradition and with a justified nod to those giants who 
preceded us, here is "Hello, World" in MPI with C bindings. 

1 ftinclude <stdio.h> 
2 ftinclude <mpi .h> 
3 
4 intmain(intargc,char**argv) 
5 I 
6 MPI_Init(&argc,&argv); 
7 printf(" Hello, World!\n"); 
8 MPI_Finalize(); 
9 return O; 

10 

Code 8.1. A trivial example of "Hello, World" using MPI. 

The example in Code 8.1 is compiled and run using the MPICH implementation of MPI on a 
Beowulf-class cluster, as follows. 

> mpicc codel.c -o codel 
> mpirun -np 4 ./codel 

Hello, World! 
Hello, World! 
Hello, World! 
Hello, World! 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 276



8.4 COMMUNICATORS 255 

The mpicc compiler wrapper links in the appropriate MPI libraries and gives the path to the file 
location of the mpi.h header. mpirun -np 4 launches four instances of the code executable in the runtime 
environment. While using mpicc and mpirun to compile and launch MPI applications is very common, 
they are not part of the MPI standard and the specific compile and launching approach may differ for 
different machines. For example, on a Cray XE6 MPP, Code 8.1 is compiled and launched as follows: 

> cc codel.c -o codel 
> aprun -n 4 ./codel 

Hello. World! 
Hello, World! 
Hello, Wo.rld! 
Hello. World! 

In this MPP case, the cc compiler wrapper links in the appropriate MPI libraries and finds the 
appropriate headers while the launch script aprun launches the four instances of the executable in the 
runtime environment. 

The only work performed by Code 8.1, of course, is to print the character stream "Hello, World!" 
on the standard 1/0 device, which is the user's terminal screen. But unlike the equivalent sequential 
version of this simple program, this string will be printed multiple times; in fact, it will print out as 
many times as there are processes running under MPI at the same time. Although all output lines look 
the same (note that the "-n character in line 7 of Code 8.1 causes a new line), the actual order in which 
they are output is unspecified. A later example is more revealing of this nondeterminacy. The resulting 
parallelism is a consequence of the pairing of the MPl_lnit and MPI_Finalize calls. There is no 
interaction among the separate processes in this example, however. To get the different processes to 
interact, the concept of communicators is needed. 

8.4 COMMUNICATORS 
The "Hello, World" example in Code 8.1 is very simple. But it represents a broad range of parallel 
computing known as "throughput" computing, where every hardware node is running the same pro
gram but on different local data. This can be scaled to a very large degree, and additional examples are 
demonstrated in succeeding chapters. But the principal weakness of this limited form of processing is 
that the processes on different nodes run entirely independent of each other. It is a "share nothing" 
modality in which the outcome of any one of the concurrent processes can in no way be influenced by 
the intermediate results of any of the other processes. Without interprocess interaction, this type of 
computing only supports pure weak scaling or capacity computing, as described earlier. It cannot 
enable capability or coordinated computing, both of which are far richer in parallel computational 
forms and functions. Key to this advance is the means by which the concurrent processes can interact. 
And this is achieved through the concept and implementation of "communicators". 

MPI programs are made up of concurrent processes executing at the same time that in almost all 
cases are also communicating with each other. To do this, an object called the "communicator" is 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 277



256 CHAPTER 8 THE ESSENTIAL MPI 

provided by MPI. A communicator has its own address space and various properties. In particular, it 
encompasses a set of MPI processes as well as specific attributes. It is through the communicator that 
the processes of which MPI consists can communicate with other processes. A communicator consists 
of multiple coexisting MPI processes, so a process may be associated with more than one commu
nicator at the same time. Thus the user may specify any number of communicators within an MPI 
program, each with its own set of processes. However, all versions of MPI provide one common 
communicator, "MPI_COMM_ WORLD". This communicator contains all the concurrent processes 
making up an MPI program and does not have to be explicitly created by the programmer. For 
simplicity and ease of understanding, almost all examples presented in this book take advantage of 
MPI_COMM_ WORLD, as it manages the communications between concurrent processes. 

8.4.1 SIZE 
A communicator embodies a number of attributes, many of which may be referenced by the user 
program. Among those most widely used is "size". This property, as its name implies, indicates some 
aspect of a communicator's scale, specifically related to processes. The size of a communicator is the 
number of processes that makes up the particular communicator. The following function call provides 
the value of the number of processes of the specified communicator: 

int MPI_Comm_size(MPLComm comm. int *size) 

The function name is "MPI_Comm_size", required to return the number of processes; comm is the 
argument provided to designate the communicator, recognizing that any process may be part of more 
than one communicator. The resulting value is returned to size within the process context. A typical 
statement for this purpose could be: 

int size: 
MP I_Comm_s i ze ( MP l_C0MM_W0RLD, &size) ; 

This will put the total number of processes in the MPI_COMM_ WORLD communicator in the 
variable size of the process data context. As this is the same for all processes of the communicator, 
their respective copies of the variable size will receive the same value. 

8.4.2 RANK 
A second widely used attribute of a communicator is identification of each of the processes within the 
communicator. Every process within the communicator has a unique ID referred to as its "rank". The 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 278



8.4 COMMUNICATORS 257 

MPI system automatically and arbitrarily assigns a unique positive integer value, starting with 0, to all 
the processes within the communicator. The MPI command to determine the process rank is: 

int MPI_Cornrn_rank (MPI_Conim comm, int •rank) 

The function call "MPI_Comm_rank" indicates that the rank value of the calling process is to be 
returned to the process. The first argument, "comm", indicates the communicator to which the process 
belongs within which it requires its rank. The second argument, "rank", is the variable that will assume 
the value returned by the command. A typical statement for this purpose could be: 

int nink; . 
MPI_Cornm_size(MPI_CbMM_WORLD,&rank); 

In the case of the MPI_COMM_ WORLD communicator, all the processes of the application will 
have a unique value of rank returned. Each process within this communicator when calling this 
function will receive a different value in its copy of the variable rank. 

8.4.3 EXAMPLE 
As a trivial case that nonetheless demonstrates the functionality of communicators and these simple 
but powerful commands, the following example is offered. This is a minor elaboration of the earlier 
and iconic "Hello, World" problem. 

The purpose of this application program is for every process that exists within the 
MPI_COMM_ WORLD communicator to identify itself by printing a statement to the standard output. 
The structure of this parallel program is the same as the previous, with the potentially interprocess 
communicating part of the code delimited by the pair of MPl_lnit and MPI_Finalize commands. 
Between these two statements are the working parts of the program, such as the printf construct 
shown before. But added here are also the two service calls associated with the communicator: 
MPI_Comm_rank and MPI_Comm_size. The complete MPI code is given in Code 8.2. 

1 #include<stdio.h> 
2 1h ncl ude <mpi. h> 

3 
4 int main(int argc,char **argv) 
5 { 
6 int rank.size: 
7 MPI_Init(&argc,&argv); 
8 MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
9 MPI_Comm_size(MPI_COMM_WORLD,&size); 

10 pri ntf (" Hello from rank %d out of %d processes in MPI_COMM_WORLD\n", rank, size): 
11 MPI_Finalize(); 

12 return O; 

13 

Code 8.2. Example where each process prints its rank and the MPI_COMM_ WORLD communicator 
size. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 279



258 CHAPTER 8 THE ESSENTIAL MPI 

This code is compiled and executed on a Beowulf-class cluster as follows: 

> mpicc code2,c -o code2 
> mpirun -np 4 ./code2 

Hello from rank O out of 4 processes in MPI_COMM_WORLD 
Hello from rank 2 out of 4 processes in MPI_COMM_WORLD 
Hello from rank 3 out of 4 processes in MPI_COMM_WORLD 
Hello from rank 1 out of 4 processes in MP I_COMM_WORLD 

Code 8.2 illustrates the use of the two most common calls related to communicators. The two 
commands bracket by MPI_Init and MPI_Finalize are the MPI_Comm_rank (line 8), which de
termines the ID of the process, and the MPI_Comm_size (line 9), which finds the number of processes. 
In both cases they refer to the MPI_COMM_ WORLD communicator as specified as the first operand 
in each of the two calling sequences. The second argument in each case indicates the process variable 
in which the related integer value is put. The printf l/O service call not only outputs the string "Hello" 
but also prints out two integers, one for the process rank which is unique for each process and the other 
giving the size of the MPI_COMM_ WORLD communicator in terms of the number of processes it 
contains. The size for all processes is the same. The order of printing the output is undetermined, as 
mentioned before. With each process uniquely identified within the communicator, it is now possible 
to begin sending messages between processes. 

8.5 POINT-TO-POINT MESSAGES 
Among its most important functionalities, MPI manages the exchange of data between processes 
within a selected communicator. The medium of this exchange is referred to as messages. Messages 
provide point-to-point communication from a source process to a corresponding destination process, 
each with its own unique rank by which it is identified. In its simplest form, two commands are 
required to achieve the passing of a message. The sending of the message from the source process is 
accomplished by a send command. The receiving of the message by the corresponding destination 
process is accomplished by a recv command. Messages are matched between the two commands. 
While there are a number of variants of both the send family and the recv family of commands, the 
most basic of these are MPI_Send and MPI_Recv. 

The message specification can be considered as a combination of the connection and the data of the 
message. The connection describes the points forming the communication. These include the 
following. 

1 . The source process rank. 
2. The destination process rank. 
3. The communicator of which both processes are a part. 
4. The tag, which is a user-controlled value that can be used to discriminate among a set of possible 

messages between the same two processes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 280



8.5 POINT-TO-POINT MESSAGES 259 

8.5. 1 MPI SEND 
The send function is used by the source process to define the data and establish the connection of the 
message. The send construct has the following syntax: 

int MPI_5end (void *message, int count, MPI_Datatype datatype, int dest, int tag., 
MPI_Comm comm) 

There are six arguments to the MPI_Send call to provide this information. The first three operands 
establish the data to be transferred between the source and destination processes. The first argument 
points to the message content itself, which may be a simple scalar or a group of data. The message data 
content is described by the next two arguments. The second operand specifies the number of data 
elements of which the message is composed. These are all the same in form. The third operand in
dicates the data type of the elements that make up the message (see next subsection). These three 
values give the data to be moved by the message. The connection of the message is established by the 
second three operands: the rank of the destination process, the user-defined tag field, and the 
communicator in which the source and destination processes reside and for which their respective 
ranks are defined. 

8.5.2 MESSAGE-PASSING INTERFACE DATA TYPES 
MPI defines its own data types. This might appear redundant, as programming languages like C 
explicitly define data types as well. But for the sake of robustness where different processes may be 
written in different languages or run on different kinds of processor architectures, MPI makes explicit 
what is intended. Like other interfaces, MPI provides a set of primitive data types. More complex 
structured data types can be user defined, as is shown in a later subsection. The most common primitive 
data types are presented in Table 8.1, along with the C data type equivalents. 

8.5.3 MPI RECV 
The MPI_Recv command mirrors the MPI_Recv command to establish a connection between the 
source and destination processes within the specified communicator. Like the send command 
(MPI_Send), the receive command (MPI_Recv) describes both the data to be transferred and the 
connection to be established. The MPI_Recv construct is structured as follows: 

int MPI_Recv (void *message, int count, MPI_Qatatype datatype, int source •. int tag, 
MP I_Comm comm, MPI_Status *status) 

The information provided to describe the data to be exchanged is represented in a form similar to 
the operands of the MPI_Send command. The message itself is placed in a buffer variable, designated 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 281



260 CHAPTER 8 THE ESSENTIAL MPI 

Table 8.1 Some of the Basic MPI Data Types and Their C Data Type Equivalent 

MJ.)I 1>11. ~ C Data Type. ~VJll.t!)it .·, 

MPI_CHAR signed char 

MPI SHORT signed short int 

MPI INT signed int 

MPILONG signed long int 

MPI UNSIGNED CHAR unsigned char 

MPI UNSIGNED SHORT unsigned short int 

MPI UNSIGNED unsigned int 

MPI UNSIGNED LONG unsigned long int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

MPI_BYTE No direct equivalent but like unsigned char; just I byte 

here as "message". The number of data elements making up the full message is given by the integer 
count. The data type of the element of the message is one of the MPI data types defined in the previous 
subsection or a user-defined data type (described later). 

The connection information of the MPI_Recv command is similar but not identical to that of the 
MPI_Send command. The source field designates the rank of the process sending the message. As 
before, a tag variable is given for a user-defined integer that is provided in the Send command and 
can be extracted for user code manipulation by the receiving process. As in all cases, the commu
nicator in which both processes reside is specified. A final argument variable, "status", is included as 
the final operand of MPI_Recv. This is a record of two fields about the actual message received: the 
first indicates the process rank from which the message was actually received, and the second field 
provides the tag. 

8.5.4 EXAMPLE 
Code 8.3 presents a third example based on "Hello, World" to illustrate MPI commands, in this case 
the send and receive commands. This example expands our experience in three important ways. 

1. It shows the syntactical details for setting up the information, including declarations for the MPI 
commands to be used. 

2. It illustrates an important idiom related to how to control concurrent execution and the idea of the 
manager-worker form of computing using MPI. 

3. It solves the problem of the previous examples that we have seen with the nonsequential printf 
commands. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 282



#include <stdio.h> 
#include <stdl i b. h> 

3 #include <mpi. h> 
4 /hnclude <string.h> 
5 
6 int main(int argc,char **argv) 
7 { 
8 
9 

10 
11 
12 

int rank, size: 
MPl_lnit(&argc,&argv): 
MPI_Comm_rank(MPI_COMM_WORLO,&rank); 
MPI_Comm_size(MPI_COMM_WORLO,&size): 

8.5 POINT-TO-POINT MESSAGES 261 

13 int message[2]: I I buffer for sending and receiving messages 
14 int dest, src: II destination and source process variables 
15 inttag=O; 
16 MPI_Status status: 
17 
18 I I This example has to be run on more than one process 
19 if( size=l) { 
20 print f (" This example requires more than one process to execute \n"); 
21 MPI_Finalize(); 
22 exit(O); 
23 I 
24 
25 if ( rank != 0 ) { 
26 I I If not rank 0, send message to rank 0 
27 message[ □ ]= rank; 
28 message[l]=size; 
29 dest = 0; / / send all messages to rank 0 
30 MPI_Send(message, 2,MPI_INT,dest,tag,MPI_COMM_WORLD); 
31 )else{ 
32 I I If rank D. receive messages from everybody else 
33 for (src=l:src<size:src++) { 
34 MPI_Recv(message,2,MPI_INT,src,MPI_ANY_TAG,MPI_COMM_WORLD,&status); 
35 // this prints the message just received. Notice it will print in rank 
36 II order since the loop is in rank order. 
37 printf( "Hel 1 o from process %d of %d\n" ,message[ □] ,message[l]): 
38 l 
39 l 
40 
41 MPI_Finalize(); 
42 return O; 
43 

Code 8.3. "Hello" example where all processes with ranks greater than O send their rank and size to the 
process with rank O for printing. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 283



262 CHAPTER 8 THE ESSENTIAL MPI 

> mpicc code3.c -o code3 
> mpirun -np 4 ./code3 

Hello from process 1 of 4 
Hello from process 2 of 4 
Hello from process 3 of 4 

Much of this example is similar to the previous ones shown in this chapter. Commands such as 
MPI_Init, MPI_Finalize, MPI_Comm_rank, and MPI_Comm_size are all the same in their usage. And 
as in the other examples, the communicator used is MPI_COMM_ WORLD. But at this point the 
similarities end. 

The biggest difference is the important idiom of manager-worker organization, in which one 
process, the manager, coordinates the execution of the other processes, the workers. Sometimes the 
manager is referred to as the "root" process. All processes, whether root or worker, receive and execute 
the same process code (procedure). Thus it is within the user code itself that the distinction between 
manager and worker has to be prescribed. In this example, the manager is assumed to be of rank = 0 
and the workers are identified as 1 < rank < size - 1. Hence the code is separated between manager and 
workers by the conditional on line 24. If true, a message array of size 2 is populated with the rank and 
size variables. The message is then sent using the MPI_Send command to the destination process (line 
28), which is always rank O in this case. 

The magic occurs in the body of code executed by the root process within the otherwise bounded 
sequence in line 30. The ordered iterative loop embodied by the for block (line 32) accepts messages 
using the MPI_Send command in rank-ordered fashion and prints them out in that order, guaranteeing 
the sequence of outputs. The control by the root process makes certain that the output information from 
the worker processes is presented in a deterministic form, i.e., a rank-ordered list. This is an important 
idiom of control in MPI using the manager-worker paradigm. Because only one message is sent from 
each nonroot process, the MPI_Recv command is told to ignore the tag with the useful MPI_ 
ANY_TAG field (line 33). 

8.6 SYNCHRONIZATION COLLECTIVES 
While point-to-point communication is the backbone ofMPI management of data exchange, additional 
communication constructs that involve more processes at one time are a powerful addition to 
simplifying MPI programming and improving performance efficiency. These are referred to as 
"collective operations" or simply "collectives". 

8.6.1 OVERVIEW OF COLLECTIVE CALLS 
A communication pattern that encompasses all processes within a communicator is known as "col
lective communication". One of the important aspects of a communicator is the set of processes within 
an MPI program to which the programmer wants to apply collective operators, and this may not be all 
the processes used by the program as a whole. MPI has several collective communication calls. The 
most frequently used are synchronization collectives, communication collectives, and reduction col
lective operators. Synchronization collective operations bring all the processes of a communicator up 
to a known place in the control flow even though their separate processes are executing asynchro
nously, some further ahead than others. Communication collectives exchange data in different patterns 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 284



8.6 SYNCHRONIZATION COLLECTIVES 263 

among more than two (point-to-point) processes within a communicator. Reduction collective oper
ators act as a common communicative operator across versions of the same variable of all the pro
cesses. The next subsection briefly describes the simplest of synchronization collectives, the global 
barrier. 

8.6.2 BARRIER SYNCHRONIZATION 
The MPI_Barrier command creates, as the name implies, a point of barrier synchronization among all 
the processes of the specified communicator. This command has a simple syntax of a single operand: 

i nt MPI_B ar rier (MPI_Comm communi cat or) 

The commun i cator is the communicator of the processes engaged in the synchronization. The barrier 
requires that all the processes reach that point in their respective code, and then wait for all the other 
processes of the communicator to do the same before proceeding with their separate computations. 
Thus all processes block at the point of the barrier until they determine that all other processes are there 
as well. 
Fig. 8.2 illustrates the barrier operation. 

PO 
Running 

r 

" ·.: 

~ Waitina 

~ 
Resume Running 

Pl Running a. Waiting Resume Running 

P2 
Running 

j 
Waiting Resume Running 

j 

P3 Running )3•:. l i:J Resume Running 

:---------
Time 

FIGURE 8.2 

An illustration of the MPI_Barricr operation. Processes PO through P3 enter the point of barrier synchronization at 
different times and potentially in unpredictable order. None of the processes proceeds beyond this point in the 
computation until all the processes reach this point. Only then do the four processes continue on to their next 
operations. In this way, all processes can be assured that the others have completed the necessary work. This can 
be an important condition to avoiding a number of different failure modes resulting from the uncertainty imposed 
by asynchronous operation. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 285



264 CHAPTER 8 THE ESSENTIAL MPI 

8.6.3 EXAMPLE 
A somewhat artificial example of the use of the MPI_Barrier collective command is presented below to 
demonstrate it syntax. This is an extension of the "Hello, World" example. It is also an opportunity to 
introduce another occasionally useful MPI instruction, MPI_Get_processor_name, which gives access 
to the actual hardware for purposes of identification. Depending on the MPI implementation, this 
might simply be the output from gethostname or may be something more detailed. 

> 

1 I/include <stdio.h> 
2 Iii ncl ude <mpi. h> 
3 
4 int main(int argc,char **argvl 
5 { 
6 

8 
9 

int rank, size, len; 
MPI_Init(&argc,&argvl; 
char name[MPI_MAX_PROCESSOR_NAMEJ; 

10 MPI_Barrier(MPI_COMM_WORLOl; 
11 
12 MPI_Comm_rank(MPI_COMM_WORLD,&rankl; 
13 MPI_Comm_size(MPI_COMM_WORLD,&sizel; 
14 MP!_Get_processor_name(name,&len); 
15 
16 MPI_Barrier(MPI_COMM_WORLO); 
17 
18 print f ( " He 11 o, world! P roe es s %d of %d on %s \ n" , rank, size, name l ; 
19 
20 MPI_Finalize(); 
21 return O; 
22 

Code 8.4. Example of MPI_Barrier and MPI_Get_processor_name. 

mpicc code4.c -o code4 
> mpirun -np 4 ./code4 

Hello, world! Process 2 of 4 on cutterOl 
Hello, world! Process 3 of 4 on cutterOl 
Hello. world! Process O of 4 on cutterOl 
Hello, world! Process 1 of 4 on cutterOl 

The example code above inserts two synchronization points with the two highlighted instances of 
the MPI_Barrier command. The first is just before the conventional MPI commands getting the size of 
the MPI_COMM_ WORLD communicator and the unique rank identifiers of the individual process 
within that communicator. The second barrier is just after the newly introduced MPI_Get_pro
cessor_name command. Every process is blocked at both points until all processes have arrived at the 
respective barrier. 

The MPI_Get_processor_name reminds the student that there is a difference between the 
abstraction of the executing process and the physical processor core resource upon which the process is 
computing. This command, as the name implies, acquires the character string that MPI uses to 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 286



8.7 COMMUNICATION COLLECTIVES 265 

represent each processor core uniquely. In the example above, this character string is simply the output 
from gethostname which was cutterOJ, the name of the compute node on which the example was run. 
MPI has a lot of special constants that describe key values of its operation. Here one is used to specify 
the greatest possible length of the character string representing the processor name. This constant is 
MPI_MAX_PROCESSOR_NAME, and is referred to near the beginning of the code where the var
iable "name" is declared as a character buffer. 

8.7 COMMUNICATION COLLECTIVES 
Communication collective operations can dramatically expand interprocess communication from 
point-to-point to n-way or all-way data exchanges. These commands can greatly simplify user pro
gramming and provide the opportunity for greater execution efficiency by telling MPI what one 
actually wants to happen. Communication collective operations are among the most powerful 
contributing capabilities of MPI for weaving many individual processes into a single scalable 
computation. While there are many variants of communication collectives, a few are very widely 
employed in support of parallel algorithms and are described in this section. 

8. 7. 1 COLLECTIVE DATA MOVEMENT 
Collective data movement relates to different patterns by which compound data may be exchanged 
among concurrent processes within a specific communicator. The requirements for these data distribu
tions are a function of the parallel algorithms being employed and the degree to which intennediate results 
of any process need to be shared with one or more other processes to continue the evolving distributed 
computation. Such patterns can be diverse, but four basic patterns satisfy most algorithmic requirements 
of data exchange: broadcast, scatter, gather, and allgather. These are illustrated in Figs. 8.3-8.6. 

Pre-Broadcast: Root Process O Post-Broadcast 

FIGURE 8.3 

The broadcast operation. Broadcast shares a value or structure that exists within the context of one process with all 
the other processes of a communicator. In this example the root process, 0, shares the integer array A of length 4 
with all the other processes. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 287



Pre-Scatter: Root process 0 Post-Scatter 

FIGURE 8.4 

The scatter operation. The scatter collective communication pattern, like broadcast, shares data of one process (the 
root) with all the other processes of a communicator. But in this case it partitions a set of data of the root process 
into subsets and sends one subset to each of the processes. To be clear, each receiving process gets a different 
subset, and there are as many subsets as there are processes. In this example the send array is A and the receive 
array is B. B is initialized to 0. The root process (process O here) partitions the data into subsets of length 1 and 
sends each subset to a separate process. 

Pre-Gather: Root process O Post-Gather 

Process O 

FIGURE 8.5 

The gather operation. The gather collective communication pattern is, in a sense, the opposite of the scatter 
collective. In the case of the gather, as the name suggests, data from all the processes is sent to the root process, 
which is gathering up the data from the other processes. Of course, it is actually each process sending its respective 
designated data to the consumer process which organizes all the separate data partitions into one cumulative 
structure. In this example A is the send array and B is the receive array. B is initialized to O prior to the gather. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 288



B.? COMMUNICATION COLLECTIVES 

Pre-Alf gather 
Post-Allgather 

FIGURE 8.6 

The allgather operation. This operation is equivalent to a gather operation followed by a broadcast of the array so 

that each process contains an identical receive array. In this example the A array is the send array and the B array is 
the receive array. B is initialized to 0. 

267 

Broadcast, illustrated in Fig. 8.3, shares a value or structure that exists within the context of one 
process with all the other processes of a communicator. As shown in the first diagram, the values in the 
A integer array in process 0 are copied to the equivalent arrays in all the other processes so they all 
have the same information. Broadcast, like other collective communications, provides the means by 
which the intermediate results of any one process are efficiently shared with all the other processes. 

The scatter collective communication pattern, illustrated in Fig. 8.4, like broadcast shares data of 
one process with all the other processes of a communicator. But in this case it partitions a set of data of 
one process into subsets, and sends one subset to each of the processes. Each receiving process gets a 
different subset and there are as many subsets as there are processes. The process 0 has a set of data that 
is partitioned, in this case into four distinct partitions, A[0], A[l], A[2], and A[3], which is equal to the 
number of processes, processes 0 through 3 of the communicator. The first partition is returned to the 
source process, process 0. Data partition A[l] is sent to the second process, process I. Partition A[2] is 
sent to process 2, and so on. In this way the original data in process 0 is distributed equally among all 
the processes of the communicator. 

The gather collective communication pattern, illustrated in Fig. 8.5 is in a sense the opposite of the 
scatter collective. In the case of the gather, data from all the processes is sent to a particular process 
which is gathering up the data from the other processes. Of course, it is actually each process sending 
its respective designated data to the consumer process which organizes all the separate data partitions 
into one cumulative structure. 

The extension of gather that makes it possible for all processes to use the results across the entire 
communicator is the allgather illustrated in Fig. 8.6. This is equivalent to first performing a gather of 
data from all the processes to a single receiving process and then b:oadcasting the accumulated data 
back to all the processes so that all processes have all of the resultmg data. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 289



268 CHAPTER 8 THE ESSENTIAL MPI 

8.7.2 BROADCAST 
The broadcast communication collective operation is perhaps the simplest of the collectives, and 
among the most important as well. As described above, it permits a message incorporating data from a 
source process to be shared with all processes of a communicator. The syntax of the broadcast 
operation takes the following form: 

Int MPI...,Bcast (void *shared_data, int number. MP I_Datatype datatype. 
int source_process. MPI_Comm communicator) 

The broadcast operation is achieved through the MPI_Bcast command in MPI. The operands define 
the form and source of the data to be sent to all the processes. The broadcast is performed within the 
scope of a communicator specified by the last argument, or the "communicator" of type MPI_Comm, 
and the broadcast data are sent to all the processes within it. The data come from a single process 
identified by its rank within the communicator by source_process (or root process), which is the 
penultimate argument of MPI_Bcast. Like many other message-passing commands, the data to be sent 
is determined by the first three arguments: the name of the variable pointing to the data buffer, here 
"shared_data" in the first argument, the type of data elements of which it is composed, here "datatype" 
of type MPI_Datatype in the third argument, and the "number" of elements of data type making up the 
data to be broadcast. 

The equivalent MPI code to the broadcast illustrated in Fig. 8.3 is given in Code 8.5. 

1 fhnclude<stdio.h> 
2 #include <mpi. h> 
3 

4 int main( int argc,char **argv) 
5 I 
6 intrank,size,i; 
7 MPI_Initl&argc,&argv); 
8 MPI_Comm_rank(MPI_C0MM_W0RL0,&rank); 
9 MPI_Comm_size(MPI_C0MM_W0RL0,&size); 

10 
11 int A[4]; 
12 
13 // Initialize array 
14 for (i=0:i<4:i++) f 
15 A[i]=0; 
16 
17 
18 int root= 0; I! Define a root process 
19 
20 if (rank== root J f 

21 // Initialize array A 
22 A[0]=3: 
23 A[lJ=5; 
24 A[2]=4; 
25 A[3J=l; 
26 ) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 290



8.7 COMMUNICATION COLLECTIVES 269 

27 
28 MPI_Bcast(A,4,MPI_INT,root,MPI_COMM_WORLD); 
29 
30 printf(" Rank %d A[OJ = %d A[l] = %d A[2] = %d A[3] = %d\n", 
31 rank,A[OJ ,A[l] ,A[2] ,A[3]): 
32 
33 MP!_Finalize(): 
34 return O; 
35 

Code 8.5. An example of MPI_Bcast that corresponds to the illustration in Fig. 8.3. 

> mpirun -np 4 ,/code5 
Rank O A[OJ = 3 A[l] = 5 A[2]= 4 A[3] = 1 
Rank 2 A[O] = 3 A[l] = 5 A[2J = 4 A[3J = 1 
Rank 1 .AtOJ = 3 A[l] = 5 At2l = 4 A[3J = 1 
Rank 3 A[OJ = 3 A[l] = 5 A[2J == 4. A[3J = 1 

8. 7 .3 SCATTER 
The communication collective operation "scatter" distributes data of one process in separate parts to 
all the processes (including itself) within the scope of a communicator. The communicator of size 
processes disseminates the data of the source process in size-equal partitions. The distribution is in 
rank order across the set of processes and the linear dimension of the dataset. This is a particularly 
important construct for scalable matrices across a distributed-memory system. 

The scatter operation is performed by means of the MPI_Scatter command. The operands define 
the form and source of the data to be sent. No destination identifier is required, as all processes are 
implicitly included as receiving part of the distributed data. The syntax of the scatter operation takes 
the following form: 

int MPI_Scatter (void *sehd_data, int send-"-numbe.r, MPt_Datatype data type, 
void *PUt_data, int put_nuniber, int source_rank. MPI_Comm communicator) 

The scatter is performed within the scope of a communicator specified by the last argument, here 
"communicator" of type MPI_Comm, and the data is sent to all the processes within it. The data comes 
from a single process identified by its rank within the communicator by source_rank which is the 
penultimate argument of MPI_Scatter(). Like many other message-passing commands, the data to be 
sent is determined by the first three arguments: the name of the data, here "shared_data" in the first 
argument, the type of data elements of which it is composed, here "datatype" of type MPI_Datatype in 
the third argument, and the "send_number" of elements of data type making up the data to be 
distributed. Where the data is to be put at the receive processes is specified by put_data and the size of 
the data of the data type is given by the integer put_number. The equivalent MPI code to the scatter 
operation illustrated in Fig. 8.4 is given in Code 8.6. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 291



270 CHAPTER 8 THE ESSENTIAL MPI 

1 #include<stdio.h> 
2 #include <stdl i b. h> 
3 #include <mpi. h> 
4 
5 int main(int argc,char **argv) 
6 { 

int rank. size. i; 
8 MPI_lnit(&argc,&argv); 
9 MPI_Comm_rank(MPI_COMM_WORLO,&rank); 

10 MPI_Comm_size(MPI_COMM_WORLD,&size); 
11 
12 if ( size ! = 4 ) ( 
13 printf(" Example is designed for 4 processes\n"); 
14 MPI_Finalize(); 
15 exit(O); 
16 l 
17 
18 / / Ai s the sendbuffer and 8 is the receive buffer 
19 intA[4],8[4); 
20 
21 // Initialize array 
22 for (i=O;i<4;i++) ( 
23 A[i]=O; 
24 8[i]=O; 
25 
26 
27 int root= 0; / / Define a root process 
28 
29 if (rank= root ) ( 
30 // Initialize array A 
31 A[OJ=3; 
32 A[1]=5; 
33 A[2] =4; 
34 A[3J=l; 
35 
36 
37 MPI_Scatter(A,l,MPI_INT,8,1,MPI_INT,root,MPI_COMM_WORLD); 
38 
39 printf(" Rank %ct 8[0] = %d 8[1] = %ct 8[2] = %ct 8[3] = %d\n". 
40 rank,8[0],8[1).8[2).8[3]); 
41 
42 MP!_Finalize(); 
43 returnO; 
44 

Code 8.6. An example of MPI_Scatter that corresponds to the illustration in Fig. 8.4. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 292



8.7 COMMUNICATION COLLECTIVES 271 

> mpirun .-np 4 ./code6 
Rank O 8{0] • 3 8[1] = 0 8[2] = 0 8[3) = 0 
Ra~k 2 8[0] = 4 8[1] = 0 8[2] = 0 8[3] = 0 
Rank 1 B[OJ = 5 8[1] = 0 8[2] = 0 8[3] • 0 
Rank 3 8[0] = 1 8[1] = 0 8[2] = 0 8[3] = 0 

8.7.4 GATHER 
The communication collective operation "gather" is in some senses the opposite of the scatter oper
ation described above. In this case every process of a given communicator sends its respective 
designated dataset to the same specified process. The syntax of the gather operation takes the following 
form: 

int MP I:_Gather (void .. send_data, int send_number, MP.CDatatype send_datatype, 
void *PUt_data. int put_number, MPI_Datatype put_datatype ,. int dest i nati on_rank, 
MPI_Comm communicator) · 

The gather operation is done through the MPI_Gather command in MPI. The operands define the 
form and source of the data to be sent to the single receiving process and the form and destination of 
the data being received. The gather is performed within the scope of a communicator specified by the 
last argument, here "communicator" of type MPI_Comm, and the data is sent from all the processes 
within it to the single receiving process. The data comes from every process within the communicator. 
As before, the data to be sent is determined by the first three arguments: the name of the data, here 
"send_data" in the first argument, the type of the data elements of which it is composed, here 
"send_datatype" of type MPI_Datatype in the third argument, and the "send_number" of elements of 
data type making up the data to be distributed. Where the data is to be put at the receive process is 
specified by "put_data" of type "put_datatype", and the size of the data of data type is given by the 
integer "put_number". The process to which all the data across the processes is accumulated in the 
communicator is specified by the integer argument "destination_rank", which is the seventh operand. 
The equivalent MPI code to the gather operation illustrated in Fig. 8.5 is shown in Code 8.7. 

1 #include <stdio.h> 
2 #include <stdlib.h> 
3 #include <mpi .h> 
4 
5 int main(int argc,char **argv) 
6 { 
7 intrank,size,i; 
8 MP!_lnit(&argc,&argv); 
9 MP l_Comm_ran k ( MP l_COMM_WORLD, & rank); 

10 MPI_Comm_s i ze ( MP l_COMM_WORLD, &size); 
11 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 293



272 CHAPTER 8 THE ESSENTIAL MPI 

12 if(size!=4J{ 
13 printf(" Example is designed for 4 processes\n"l: 
14 MPI_Finalize(): 
15 exit(Ol: 
16 l 
17 
18 //Ai s the sendbuffer and Bis the receive buffer 
19 int A[4J ,B[4J: 
20 
21 // Initialize array 
22 for (i=O:i<4:i++) { 
23 A[iJ=O; 
24 B[i]=O: 
25 J 

26 A[OJ=rank: 
27 
28 int root= 0: //Define a root process 
29 
30 MPI_Gather (A, 1, MPI_INT, B, 1, MP l_INT, root, MPI_COMM_WORLD l; 
31 
32 pri ntf(" Rank %ct B[OJ = %d B[1] = %ct B[2] = %ct B[3] = %d\n", 
33 rank,B[OJ ,B[1] ,B[2] ,B[3Jl: 
34 
35 MPI_Finalize(); 
36 return O: 
37 J 

Code 8.7. An example of MPI_Gather that corresponds to the illustration in Fig. 8.5. 

> mpirun -np 4 ./code? 
Rank 1 8[0] = 0 8[1] • 0 8[2] = 0 8[3] = 0 
Rank 2 8[0] = 0 8(1] = 0 8(2] = 0 8(3] = 0 
Rank 3 8[0] = 0 8[1] = 0 8[2] = 0 8[3] = 0 
Ra~k O 8[0] = 0 8{1] = 1 8(2] = 2 8[3] = 3 

8. 7 .5 ALLGATHER 
The syntax of the MPI Allgather operation is nearly identical to that of the MPI gather operation, 
except that there is no longer any need to provide a destination rank because of the broadcast implicit 
in the allgather operation. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 294



8.7 COMMUNICATION COLLECTIVES 273 

int MP I_Al l gather. (void .send_data, fnt send,..number; MPI_Qatatype send ... dat.atype. 
void *PUt_data, int put_number, MPLOatatype put_datcltype, MPI..:..Comm.communicator) 

The equivalent MPI code to the allgather operation illustrated in Fig. 8.6 is shown in Code 8.8. 

1 #include <stdio.h> 
2 #include <stdlib.h> 
3 #include <mpi .h> 
4 
5 int main(int argc,char **argv) 
6 ( 
7 intrank,size,i; 
8 MPl_lnit(&argc,&argv); 
9 MPI_Comm_rank(MP!_COMM_WORLO,&rank); 

10 MPI_Comm_size(MPI_COMM_WORLD,&size); 
11 
12 if(size!=4J( 
13 pri ntf(" Example is designed for 4 processes\n" J; 
14 MPI_Finalize(); 
15 exit(Ol: 
16 l 
17 
18 I I Ai s the sendbuffer and Bis the receive buffer 
19 int A[4] ,B[4]; 
20 
21 II Initialize array 
2 2 for ( i =O ; i < 4 ; i ++) ( 

23 A[i]=O; 
24 B[iJ=O; 
25 
26 A[OJ =rank; 
27 
28 int root= 0; I I Define a root process 
29 
30 MPI_Allgather(A,l,MPI_INT,B,l,MPI_INT,MPI_COMM_WORLD); 
31 
32 printf(" Rank %ct B[OJ = %ct B[l] = %ct B[2J = %d B[3] = %d\n", 
33 rank,B[OJ,B[lJ,B[2J,B[3J); 
34 
35 MPI_Finalize(); 
36 return O; 
37 

Code 8.8. An example of MPI_Allgather that corresponds to the illustration in Fig. 8.6. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 295



274 CHAPTER 8 THE ESSENTIAL MPI 

> mpirun -np 4 ./codes 
Rank O 8[0] = 0 8(1] = 1 8[2] = 2 8(3] = 3 
Rank 1 8[0] = 0 811] = 1 8[2] = 2 8[3] = 3 
Rank 2 8(0] = 0 B[l] = 1 8[2] = 2 Bt3J = 3 
Rank 3 B[OJ = 0 8[1] = 1 8[2] = 2 8(3] = 3 

8.7.6 REDUCTION OPERATIONS 
Reduction collectives are similar to gather, but perform some sort of reducing operation on the 
gathered data such as calculating a sum, finding a maximum value, or performing some user-defined 
operation. Predefined reduction operations in MPI are given in Table 8.2. 

The syntax for the reduction operation in MPI is as follows. 

int MPI_Reduce (const void *send_data, void *Put_data, int send_number, 
MPI~Datatype datatype, MPI_OP operation.int destination_rank, MPI_Comm communicator) 

The first two arguments are the data sent to the reduction operation by each process and the location at 
the destination rank is specified by "put_data", both of type "datatype". The size of the data sent is 
given by the "send_number". The reduction operation is either one of those listed in Table 8.2 or user 
defined. An example of MPI_Reduce in a vector dot product calculation is presented in Code 8.9. 

Table 8.2 Predefined Reduction Operations in MPI and Supported Predefined MPI Data Types 

PrejJ¢fuied. lteducijo:q 
Ol)ei,;11ation l\WINanit , SUi!JIO~ 'J:ype 

Maximum MPI_MAX MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, 
MPI_DOUBLE 

Minimum MPI_MIN MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, 
MPI DOUBLE 

Summation MPI_SUM MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT. 
MPI DOUBLE 

Product MPI_PROD MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT. 
MPI DOUBLE 

Logical AND MPI_LAND MPI INT, MPI LONG, MPI_SHORT 

Bit-wise AND MPI_BAND MPI_INT, MPI_LONG, MPI_SHORT, MPI_BYTE 

Logical OR MPI LOR MPI INT, MPI LONG, MPI SHORT 

Bit-wise OR MPI BOR MPI INT, MPI LONG, MPI SHORT, MPI BYTE 

Logical XOR MPI LXOR MPI INT, MPI LONG, MPI SHORT 

Bit-wise XOR MPI_BXOR MPI_INT, MPI_LONG, MPI_SHORT, MPI_BYTE 

Maximum value and MPI_MAXLOC Pair data types: MPI_DOUBLE_INT (a double and an int), 
location MPI 2INT (two ints) 

Minimum value and MPI_MINLOC Pair datatypes: MPI_DOUBLE_INT (a double and an int), 
location MPl_2INT (two ints) 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 296



1 #include <stdlib.h> 
2 #include <stdio.h> 
3 1ti ncl ude <mpi. h> 
4 

int main(int argc,char **argv) 
6 MPl_lnit(&argc,&argv); 
7 intrank,p,i, root=0; 

8.7 COMMUNICATION COLLECTIVES 275 

8 MPI_Comm_rank(MPI_C0MM_W0RLD,&rank); 
9 MPI_Comm_size(MPI_C0MM_W0RLD,&p); 

10 
11 // Make the local vector size constant 
12 int local_vector_size=l00; 
13 
14 / / compute the global vector size 
15 int n=p*local_vector_size; 
16 
17 //initializethevectors 
18 double *a, *b; 
19 a=(double*)malloc( 
20 local_vector_size•sizeof(double)); 
21 b=(double*)malloc( 
22 local_vector_size*sizeof(double)); 
23 for (i=0;i<local_vector_size;i++) { 
24 a[iJ=3.14Hank; 
25 b[i]=6.67Hank; 
26 
27 
28 II compute the 1 oca l dot product 
29 doublepartial_sum=0.0; 
30 for (i=0;i<local_vector_size;i++) { 
31 partial_sum+=a[iJ.b[iJ; 
32 
33 
34 doublesum=0; 
35 MPI_Reduce(&parti al_sum,&sum, l, 
36 MPI_D0UBLE,MPI_SUM,root,MPI_C0MM_W0RLD); 
37 
38 if(rank=root){ 
39 printf( "The dot product is %g\n" ,sum); 
40 l 
41 
42 free(a); 
43 free(b); 
44 MPI_Finalize(): 
45 return 0; 
46 l 

Code 8.9. Example of MPI Reduce which computes the dot product of two vectors. The two vectors 
here, a and b, are initialized arbitrarily (lines 23-26). The local dot product is computed in lines 29-32, 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 297



276 CHAPTER 8 THE ESSENTIAL MPI 

and then the partial sum of the dot product from each process is summed using MPI_Reduce in lines 
35-36. Note that the global vector sizes change as a function of the number of processes used, while the 
size of the vector segments local to the process remains constant as is done in w~ak scaling tests. 

The companion to MPI_Reduce is MPI_Allreduce, which behaves the same as MPI_Reduce except 
that the result of the reduction is broadcast to all processes in the communicator. As such, the syntax for 
usage is nearly identical except that no "destination rank" input is needed since all ranks receive the result. 

int MPI_Allreduce (canst void *send_data, void *PUt_data, int send_number, 
MPt .. Datatype datatype, MPI_OP operation, MPI_Comm communicator) 

#include <stdio.h> 
2 #include <mpi.h> 

4 int main(int argc,char **argv) 

MPI_Init(&argc,&argv); 
7 int rank; 
8 MPI_Comm_rank(MPI_COMM_WORLD ,&rank); // identify the rank 
9 

10 intinput=O; 
11 if(rank==O){ 
12 input=2; 
13 } else if ( rank== 1) { 
14 input= 7; 
15 l else if ( rank==2) { 
16 input=l; 
17 l 
18 int output; 
19 
20 MPI_Allreduce(&input,&output,l,MPI_INT,MPI_SUM,MPI_COMM_WORLD); 
21 
22 printf("Theresultis%drank%d\n",output,rank); 
23 
24 MPI_Finalize(); 
25 
26 return O; 
27 

Code 8.10. An example of MPI_Allreduce. The sum of the input variable is computed and 
broadcast to all processes. If run on three processes or more, each process should have as output the 
value 10. 

> mpirun -np 4 ./codelO 
The result is 10 rank 0 
The result is 10 rank 1 
The result is 10 rank 2 
The re.sul t is 10 rank 3 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 298



8.7 COMMUNICATION COLLECTIVES 277 

8.7.7 ALLTOALL 
There is an important extension to the MPI_Allgather pattern that frequently appears in scientific 
computations: the alltoall communication pattern. In this pattern, distinct data is sent to each of the 
receivers and each sender is also a receiver. When displayed as a matrix with rows representing 
processes and columns representing data partitions, the alltoall communication pattern looks exactly 
like the matrix transpose illustrated in Fig. 8.7. 

The MPI_Alltoall operation has the following syntax: 

int MPI_Alltoall (void *send_data, int send_number, MPI_Datatype send_datatype. 
void *PUt_data. int put_number. MPI_Datatype put_datatype, MPLComm COfllmunicatorJ 

As an extension to MPI_Allgather, MPI_Alltoall takes the exact same arguments as MPI_allgather 
although the communication pattern is different, as illustrated in Fig. 8.7. The'MPI version of the 
operation illustrated in Fig. 8.7 is shown in Code 8.11. 

Pre Alltoall Post Alltoall 
Data partition Data partition 

0 0 

0 1 2 3 4 1 5 9 13 

5 6 7 8 2 6 10 14 

Process Process 

9 10 11 12 3 7 11 15 

13 14 15 16 4 8 12 16 

FIGURE 8.7 

The alltoall communication pattern extends allgather, where distinct data is sent to each receiver and each sender 
is also a receiver. The ith data partition is sent to the jth process. The communication pattern looks like a matrix 
transpose when listing the data in each process in rows and the data partitions on each process as the columns. In 
this example, each data partition on each process only contains a single integer and the number of processes has 
been limited to four to see the alltoall communication pattern better. 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 299



278 CHAPTER 8 THE ESSENTIAL MPI 

1 Hinclude <stdio.h> 
2 /!include <stdlib.h> 
3 /!include <mpi .h> 
4 
5 int main(int argc,char **argv) ! 
6 
7 MPI_Init(&argc,&argv); 
8 intrank,size,i; 
9 MPI_Comm_rank(MPI_C0MM_W0RLD,&rank); 

10 MPI_Comm_size(MPI_C0MM_W0RLD, &size); 
11 
12 if(size!=4l! 
13 pri ntf(" This example is designed for 4 proceses\n"); 
14 MPI_Finalize(); 
15 exit(0); 
16 l 
17 
18 intA[4],8[4J; 
19 
20 for (i=0;i<4;i++l I 

21 A[i J = i+l + 4Hank; 
22 
23 
24 II Note that the send number and receive number are both one. 
25 II This reflects that fact that the send size and receive size 
26 II refer to the distinct data size sent to each process. 
27 MPI_Alltoall(A,l,MPI_INT,8,1,MPI_INT,MPI_C0MM_W0RLD); 
28 
29 printf( "Rank: %ct 8: %ct %ct %ct %d\n" ,rank,8[0] ,8[1] ,8[2] ,8[3]); 
30 
31 MPI_Finalize(); 
32 
33 return 0; 
34 } 

Code 8.11. The MPI example that corresponds to the illustration in Fig. 8.7. 

> mpirun -np 4 ./codell 
Rank: OB: 1 5 9 13 
Rank: 1 B: 2 6 10 14 
Rank: 2 B1 3 7 1115 
Rank: 3 B: 4 8 12 16 

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2136, p. 300




