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ness of near-neighbor connections, but the utility of such devices is limited to
the calculations that fit the specific array geometries. Nevertheless, such devices
could be put in high production and swing the cost-performance pendulum to
favor near-neighbor communication. On the other hand, breakthroughs in op-
tical transmission and optical switching may swing the balance towards the
erfect shuffle. Such advances would make communication faster over the longer
interconnections, and reduce the cost of sending data much further than the
nearest neighbor.
Consequently, new advances in architectures for the continuum model are
driven by the advances yet to come in devices and communications.

3.6 Architectures for the Continuum
model—Which Direction?

e

The continuum model is a natural model for parallelism. Near-neighbor inter-
actions can be modeled by networks of processors connected together as near-
neighbors. The advantage of the near-neighbor structure is very strong for those
problems that are ideally matched to such a structure.

In a broad spectrum of problems, as the fit becomes less ideal, the perfor-
mance of near-neighbor connections becomes poorer and poorer, to the extent
that gains due to parallel execution are offset by the inefficient use of hardware.
Here are the basic choices available to the architect:

1. Build a highly specialized, near-neighbor architecture that is very fast and
effective for some class of problems within the continuum medel.

2. Build a somewhat more general machine, but maintain high speed for the
continuum model. Provide extra capability through richer interconnections,
such as the perfect shuffle, and through other mechanisms that provide
speed enhancement for problems that fall outside the continuum model.

3. Build a very general parallel machine that has broad applicability, including
the continuum model, although its speed for continuum calculations may
not be as high as for an architecture specialized for the class of problems.

The potential size of the user community increases by one to two orders of
magnitude as you move from the first to the second choice, and again as you
move from the second to the third choice. A large user base tends to provide
cost reductions to each user because they have to support a much smaller share
of the hardware and software development costs.

A large demand also provides greater profit motivation, but if a designer
chooses to serve the large community and produces a fairly general architecture,
the users who absolutely need a machine for the continuum model will be
unsatisfied if the general architecture is significantly slower than an architecture
specialized for the continuum model. Moreover, this same user group will ques-
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tion the value to themselves of the hardware and software that support the
more general classes of problems, since this group of users may be paying for
these aspects of the computer system and yet derive no discernible benefit fropy,
them. . .

Which community should the architect serve? There' is no obvious answey
to this question. The architect should be prepared to build any of the possibje
machines, from the most specialized to the most ggneral, each optimized for
the best possible cost and performance for that architecture.

Market forces and other priorities will dictate which machine actually gets
built. Some developers will choose the most generftl approach, and hope to
install many copies of a machine. Some developers will choose to a carve a niche
for their ideas by producing a relatively small number of copies of a highly
specialized machine. Yet other developers may choose a design that falls in be.
twe‘ifl\}hio:hever choice is made, the architecture has to be cost-effective for the
user community. For the smaller markets, a significant portion of the challenge
is to keep hardware and software development costs low, so that these costs
when amortized over copies actually sold are still within reasonable bounds,
Thus, not only must the architect produce a cost-effective design, but the design
process itself must be done efficiently. ‘

One important observation from this chapter is tha_tt what appears to be an
ideal architecture for a class of problems may not be ideal at all. An architect
who produces a machine that executes a particular code very efficiently may be
somewhat disappointed when research advances in basic algorithms produce a
new, efficient solution technique not at all suited to the specific architecture. In
such a case the very specialized machine may have difficulty competing with
a less specialized machine that happens to be able to run the more efficient
algorithm.

Breakthroughs do occur from time to time, such as with the formulation of
the fast Fourier transform [Cooley and Tukey 1965]. Prior to their work, the best
algorithm required N? multiplications and required a particular type of access
to data. The newer, faster algorithm requires only N log N multiplications and
uses a very different data flow. A machine built for the older algorithm would
not serve the newer one well. The more specialized the architecture, the more
susceptible it is to competitive methods when breakthroughs do occur. The
architect of the specialized machine has to assess the risk of a breakthrough.
For the continuum model, the risks are high enough to merit attention.

In recent years, algorithm improvements have changed the basic flow of
data in various solution techniques, have altered the grid structure that models
the continuum, and have even provided for multiple grid spacing. A machine
built specifically for algorithms of 20 years ago would do relatively poorly when
executing some of the new algorithms for the same problems.

As an example of the evolution of parallel algorithms, the fast algorithms
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for the continuum modgl described earlier in this chapter may make better use
of connection patterns like the perfect shuffle than of connection patterns that
are near-neighbor mesh connections, but the near-neighbor connections were
the backbone for. the first large-scale computers for the continuum. Another
step in the ew_,-olu'hon is represente_d by the Cosmic Cube described earlier in this
chapter, which in a sense comblr}es the near-neighbor interconnections and
the perfect shuffle. It uses.near-pelghbor connections in six dimensions, but at
pest only three of those dimensions lead to short interconnections in a three-
dimensional packaging world. The other three dimensions force interconnec-
tions to have relatively long physical lengths.

The six-dimensional connection structure of the Cosmic Cube gives the same
adjacency pattern achieved by the perfect shuffle. The difference is that all
dimensions are adjacent at all times in a Cosmic Cube, whereas the adjacency
changes in time in a perfect shuffle structure. Because processors that are directly
connected within a Cosmic Cube have indices that differ by a single power of
2, this structure is well suited for recursive doubling, cyclic reduction, Fourier
transforms, and other applications mentioned in this section.

Hoshino [1989], on the other hand, has shown that for the general class of
scientific calculations the overwhelming majority of processor-to-processor in-
teractions occur across near-neighbor links on a two-dimensional mesh. The
additional connectivity provided by a hypercube and the greater distances
spanned by the perfect shuffle rarely come inte play, and provide only a marginal
decrease in the number of operations while contributing greatly to cost. He
provides a strong case for two-dimensional mesh connections based on extensive
experience in implementing scientific applications. Even though his applications
occasionally force some processors to communicate over long distances, this
happens sufficiently infrequently that it degrades performance only slightly.
Hence, Hoshino's case rests on the fact that the communication constraints
imposed by a two-dimensional mesh do not degrade performance of actual
programs. Indeed, his PAX architecture is a compromise between the ILLIAC
IV and Cosmic Cube architectures, incorporating some good features of each
together with some features unique to PAX.

Nevertheless, experience with parallel applications is still rather limited but
growing every year. New techniques and new algorithms are still appearing in
abundance. As these appear, they force us to rethink our conclusions on what
combination of algorithms, architecture, applications and produces an efficient
way to solve problems.

In summary, there is no obvious best design for parallel processors for the
continuum model. The available approaches depend on how specialized the
processing system can be. A processor for the continuum model undoubtedly
will be somewhat specialized—it will probably have an interconnection system
to speed up typical programs for this model. Which approach, if any, becomes
dominant is most likely to depend on the directions of device technology in the
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coming years, with near-neighbor structures dependent on VLSI advanceg and
perfect-shuffle structures dependent on advances in interconnections technology_

Exercises
e ——

4.1 The object of this exercise is to explore calculations for the continuum model. Assume
that you have a square array of points, 9 x 9, and that the value of the potentiy)
function on the boundary is 0 on the top row, and is 10 along all other b0unda,}.
points.

a) Initialize the potential function to 0 on all interior points. Calculate the Pojsgop
solution for the values of all interior points by replacing each interior point with
the average value of each of its neighboring points. Compute the new valyes
for all interior points before updating any interior points. Run this simulation
for five iterations and show the answers you obtain at this point. Then run ung)
no interior point changes by more than 0.1 percent, and count the total number
of iterations until convergence. This method is usually called the Jacobi methoq,
Note: The values on the boundary are fixed and do not change during the
computation.

b) Repeat the process in the previous problem, except update a point as soon ag
you have computed the new value and use the new value when you reach a
neighboring point. You should scan the interior points row by row from top to
bottom and from left to right within rows. This method is usually called the
Gauss-Seidel method.

¢) The second process seems to converge faster. Give an intuitive explanation of
why this might be the case.

d) How do your findings relate to the interconnection structure of a parallel pro-
cessor designed to solve this problem?

4.2 The purpose of this exercise is to show the effect of information propagation within
a calculation. Use the Poisson problem of Exercise 4.1(b) and write a computer
program using the Gauss-Seidel method that iterates until no interior point value
changes by more than 0.1 percent. Let this be the initial state of the problem for
the following exercises.

a) Increase the boundary point on the top row next to the upper left corner to a
new value of 20, Perform five iterations of the Gauss-Seidel Poisson solver and
observe the values obtained. Then run the algorithm until no interior point value
changes by more than 0.1 percent and count the total number of iterations to
reach this point.

b) Now restore the mesh to the initial state for a. Change the program so that, in
effect, the upper left corner is rotated to the bottom right corner. To do this,
scan the rows from right tc left instead of left to right and scan from bottom to
top instead of from top to bottom. Perform five iterations of the Poisson solver
and observe the values obtained. Run the program until no interior point changes
by more than 0.1 percent, and count the number of iterations to reach this point.
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¢) Both 2 and b eventually converge to the same solution because the initial data
are the same and the physical process modeled is the same. However, the results
obtained from @ and b are different after five iterations. Explain why thev are
different. Which of the two problems has faster convergence? Why?

4.3 The purpose of this exercise is to examine the cyclic-reduction algorithm. Explore
the solution of a one-dimensional Poisson problem by treating 15 points on a line.
Let the left boundary point, point 0, have the value 10 and the right boundary
point, point 16, havg the value 0. Each of the 15 intermediate points has a value
that is the average of its immediate neighbors,

a) Write a matrix equation of the form Ax = b that describes this problem.

b) Simulate an iterative process that updates each interior point with the average
of its neighboring points. Obtain the interior values of points for the first three
iterations of the technique previously used, in which each interior point is up-
dated by the average of its neighbors.

o) Now apply the cyclic-reduction algorithm in the text for three iterations to find
one equation for the point in the middle. Solve this equation and use three
iterations of back substitution to find the remainder of the points. Show your
solution and the equations you obtain after each iteration. (Hint: The first iteration
should produce new equations for points 2, 4, 6, 8, 10, 12, and 14. The second
iteration produces new equations for 4, 8, and 12.)

d) Compare the results produced in b and ¢ with respect Lo the precision obtained.
Count and compare the total number of additions, multiplications, and divisions
for each algorithm after three ilerations.

e) Explain from an intuitive point of view why cyclic reduction vieids high speed
and high precision as compared to the near-neighbor iteration. What implications
can you draw with regard to interconnections for processors for solving the
Poisson problem?

4.4 The purpose of this exercise is to investigate how to implement conditional branches
in an array computer. Program 4.1 does not show instructions that determine if
convergence has been reached. The instructions should determine if every processor
has obtained a satisfactory solution, and, if not, the program should branch back
to the top of the loop.

a) Write the instructions that do this job, inventing the instructions as vou need
them. Describe the operation of each instruction that yvou invent.

b) Redraw the block diagram of the ILLIAC IV computer and describe the data flow
on the block diagram necessary to support the test for termination.

¢) Assume that the control processor of the ILLIAC IV can execute its instructions
in parallel with instructions that are broadcast to the 64 numerical processors.
Can any or all instructions of the termination test be overlapped with the cal-
culation of a loop iteration? If so, describe how to implement the instructions in
your program and in Program 4.1 to facilitate this overlapped execution.

4.5 The purpose of this exercise is to explore the interconnection structure of a hypercube
computer such as the Cosmic Cube. Assume that you are to calculate all partial
sums of i items up to the sum of 64 items.
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a) Construct a program for a Cosmic Cube computer system that performs this
operation in a time that grows as O(log N) if the number of processors i N
Assume that every node in the computer executes the san.\e program, a]thoug};
the program can be slightly different from node to no_de since the processorg in
a Cosmic Cube are independent. Show explicitly the instructions that sepd and
receive data between processors. Invent instructions as you need them and
describe what the instructions do. Include some type of instruction for synchy,.
nization that forces a processor to be idle until a neighboring processor sends 3
message or a datum that enables computation to continue.

b} Which communication steps if any in your answer require communications with
processors that are not among the six processors directly connected to a given
processor? How do you propose to implement sun?h communication in software
{assuming that the hardware itself does not provide remote communication 3
a basic instruction)?

4.6 The purpose of this exercise is to examine the recursive-doubling solution {0 a lineay
tridiagonal system of equations. Consider the solution of the equation Ax =,
where A is a tridiagonal equation.

a) Prove that the recurrence in Eq. (4.15) is a correct expression for the major
diagonal of matrix U in an LU decomposition of A.

b) Using recursive doubling, show all of the steps required to factor A into LU and
to solve the equations Ly = b and Ux = y. For each major step of the algorithm,
show the basic recurrence solution. Show the mathematical formulation of your
solution and indicate the basic operation in the recursive-doubling iteration.

4.7 Find a recursive-doubling technique for solving Eq. (4.13).

4.8 The purpose of this exercise is to explore some of the properties of the perfect-
shuffle interconnection scheme.

a) Consider a processor that has the perfect shuffle and pair-wise exchange con-
nections shown in Fig. 4.16. For an eight-processor system, show that the per-
mutation that cyclically shifts the input vector by three positions is realizable by
some setting of the exchange modules. Draw the network unrolied in time to
show the setting that realizes this permutation.

b) Repeat a to show that a cyclical shift of two positions is realizable.

¢) Prove that a shuffle-exchange network can realize any cyclical shift in log, N
iterations for an N-processor system when N is a power of 2.

4.9 Find a means for evaluating a polynomial of degree N ~ 1 in the variable x in
parallel on an N-processor computer that uses the shuffle-exchange interconnection
pattern. Assume that N is a power of 2.

4,10 Prove that the scheme shown in Fig. 4.18 produces a sorted sequence of length N
from a bitonic sequence of length N. Specifically, prove that after the comparison
and exchange is performed, each sequence of length N2 is bitonic and all elements
of one sequence do not exceed the value of any element of the other sequence.

4.11 Consider a tridiagonal linear system such as that described in Section 4.4.4. Assume
that the problem is symmetric about the major diagonal so that a;; = a; ;. (The indices
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iand j lie in the range 1 =<, j = N, where N is a power of 2.) The Sturm polynomials
for the matrix A are the polynomials Q/(x) defined by the recurrence

Q4x) = (@i — )Qia(®) ~ (2:i-1)*Q;.a(x)
Qo(x) = 1
Qu(x) = a;,—x

For a very important matrix computation it is necessary to find the number of
changes of sign for a given value of x in the sequence of values Qux), Qi(x), . . . ,
Qn-1(x).

a) Assume that you wish to find the number of sign changes for a single value of

x, and you have N processors available to do the calculation in parallel. Work
out a recursive-doubling algorithm for the calculation.

b) Show a block diagram of a connection pattern suitable for this algorithm within
which each processor is connected to a fixed constant number of processors
regardless of the size of N, and for which at each step of the algorithm the data
are accessible in a constant number of steps from neighboring processors, re-
gardless of the size of N.

c) Now assume that you wish to find the number of sign changes for N different
values of x. Compare the time taken by running your recursive-doubling algo-
rithm N times to the time required to obtain values of the Sturm polynomials
serially for each of the N values of x. Which of the two methods is preferred?

d) Now assume that ycu wish to compute the number of sign changes for a number

of values of x much larger than the value of N. Which of the two methods is
better?

4.12 Figure 4.15 shows a shuffle-exchange network with a cyclical shift interconnection
pattern superimposed. Show that it is possible to compute the same set of partial
sums computed in the figure without the cyclic-shift pattern, using only the perfect-
shuffle and the pair-wise-exchange patterns of Fig. 4.16. Your algorithm will need
to send more than one datum from one cell to a cell in the next column, but the
number of different data transmitted from column to column is a constant that is
independent of N.

4.13 a) Show the switch settings for a shuffle-exchange network as depicted in Fig. 4.16
that send input cell i to output cell 3i mod N for N = 16.

b) For each integer in the range 0 < i < 15, write the value of i in binary followed
by the value of 3i mod 16 in binary. Start a new row for each integer and align
the binary values to create a table of size 16 rows by 8 columns. Examine row i
for each i. Show that the last four bits in each row are related to the switch
settings from part a. In fact, these bits show the switch settings for input i as it
passes through the network. (Hint: Use the shift-register analogy.)
414 a) Prove that the function that takes i into pi mod N for i = N is a permutation
when N is a power of 2 and p is odd. (Hint: The function is 2 permutation if you
can show that when pi = pj mod N, this implies that i = j.)

b) Apply your reasoning from b of Exercise 4.13 to show that a shuffle-exchange
network has switch settings that realize the permutation that takes i to pi mod
N for every odd value of p.
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The tucked-up sempstress walks with

hasty strides, While streams run down
her oil'd umbrella’s sides.

—Jonathan Swift, 1711

Vector Computers

1 A Generic Vector Processor

.9 Access Patterns for Numerical Algorithms

5.3 Data-Structuring Techniques for Vector Machines
5.4 Attached Vector-Processors
5.5 Sparse-Matrix Techniques
5.6
5.7

5.
5

.6 The GF-11—A Very High-Speed Vector Processor
Final Comments on Vector Computers

The last chapter introduces the idea of building a parallel architecture matched
to a specific class of problems. The discussion there mentions that there are two
major models of numerical processes—a continuum model based on near-neigh-
bor interactions and a particle model based on discrete point-to-point interac-
tions. The major emphasis of Chapter 4 is the continuum model, together with
the architectures that support processing of near-neighbor interactions for that
model.

This chapter extends the discussion of numerical architectures to vector
computers with the idea that these computers can be used for the majority of
continuum-mode] problems, as well as for many particle-model problems. The
vector computer has emerged as the most important high-performance archi-
tecture for numerical problems. It has the two key qualities of efficiency and
wide applicability.

Most vector computers have a pipelined structure. When one pipeline is not
sufficient to achieve desired performance, designers have occasionally provided

292
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section 5.1 A Generic Yector Processor 293

multiple pipelines. Such processors not only support a streaming mode of data
flow through a single pipeline, they also support fully paralle] operation by
sllowing multiple pipelines to execute concurrently on independent streams of
data.

By the mid-1980s, more than twenty manufacturers offered vector processors
pased on pipeline arithmetic units. They ranged from relatively inexpensive
auxiliary processors attached to microcomputers to high-speed supercomputers
with computation rates from 100 Mflops to rates in excess of 1000 Mflops. (One
Mflops is 106 floating-point operations per second.)

The price-performance ratio of these vector processors is rather remarkable
pecause they yield one to two orders of magnitude increased throughput for
vector computations when compared to serial processors of equal cost. But this
fthroughput increase is limited to the problems that fit the architecture—that is,
to problems that can be structured as a sequence of vector operations whose
characteristics make efficient use of the facilities available.

Many of the supercomputers are also high-performance serial processors for
general-purpose problems, but the throughput of these supercomputers on non-
vector problems is only a few times greater than the throughput of more con-
ventional high-speed serial processors. In fact, although throughput might be
high because of fast device technology, if a vector-structured supercomputer is
used exclusively on nonvector problems, the computational cost may be exces-
sive because this cost includes the cost of the vector facilities, which presumably
are left idle by scalar computations.

The purpose of this chapter is to describe the general architecture of vector
machines and then describe how algorithms and architecture can be matched
to each other to obtain efficient processing over large classes of computations.

5.1 A Generic Yector Processor

The basic idea of a vector processor is to combine two vectors, element by
element, to produce an output vector. Thus, if A, B, and C are vectors, each
with N elements, a vector processor can perform the operation

. C:=A+8B
P
which is in{rpf'eted to mean
c,~:=a,'+b,-,05i:=.N—1

where the vector C can be written in component form as (cq, ¢1, ... , tv-1). The
form is similar for vectors A and B.

A very simplified way to implement this operation with a pipelined arith-
metic unit is shown in Fig. 5.1. The two streams of data supplied to the arithmetic
unit carry the streams for A and B, respectively. The memory system supplies

1.
—-

s
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Vector Computers

Multipon
Memory
System

Stream A

Stream 8

¥

Pipelined Adder

StreamC =A + B

'y

Chaprer 5

Fig. 5.1 A processor that is capable of adding two vectors by streaming the two vectors
through a pipelined adder.

one element of A and B on every clock cycle, one element to each input streap
The arithmetic unit produces one output value during each clock cycle. (Actually,
the input data rate need be only as fast as the output data rate. If the arithmetic
unit can produce results at a rate of one output value every d cycles, then the
input data rate need be only one input value on each stream every 4 cycles.)

‘.J‘/ L’ -~y

Figure 5.1 shows only the barest details of the vector processor to indicate
the general flow of data through the pipelines. The pipelined arithmetic unit is

discussed in Section 3.4 and that unit is the core of the architecture in Fig. 5.1.

The difficulty, however, is the design of the memory system to sustain a
continuous flow of data from memory to the arithmetic unit and the return flow

of results from the arithmetic unit to memory. The majority of the architectural

s« s tricks used in vector processors are devoted to sustaining that flow of data and

to scheduling sequences of operatlons fo reduce the flow requirements.

/ {In this example we assume a basic one-cycle rate for the delivery of operands,
production of results, and restoring of the result data into memory This calls
for a memory system that can read two operands and write one operand ina

single cycle)

2,2 Conventional random-access memories can perform at most one READ or
one WRITE per cycle, so the memory system in Fig. 5.1 has at least three times
the bandwidth of a conventional memory system. Of course this ignores any
additional requirement for bandwidth for input/output operations. Also, we
have ignored the bandwidth for instruction fetches, but a major advantage of a
vector architecture is that a single instruction fetch can initiate a very long vector
operation. Consequently, the bandwidth required to fetch instructions for a
vector architecture is negligible as compared to the 20 to 50 percent of the

bandwidth used for instruction fetches in conventional architectures.

The major problem facing the architect is to design a memory system that

c)u;/;;
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can meet the bandwidth requirements imf50§ed by the arithmetic unit. Two
major approaches have emerged in commercial vector machines.

1. Build the necessary bandwidth in main memory by using several indepen-
dent memory modules to support concurrent access to independent data;
or

2, Build an intermediate high-speed memory with the necessary bandwidth
and provide a means for high-speed transfers between high-speed memory
and main memory.

The first approach acknowledges that if one memory module can access at most
one datum per access cycle, then to access N independent data in one access
4! " cycle requires N independent memory modules. The second approach produces
higher bandwidth by shortening the access cycle in a small memory. But the
small memory is loaded from a large memory, and the large memory can still
be the ultimate bottleneck in the system in spite of the high bandwidth of the

e

small menfory. - -

To make best use of the small high-speed memory, we should make multiple
use of operands transferred to this memory. In this way the net demand by the
processor on the large memory is reduced, and bandwidth of the large memory
need not be as Jarge as the peak bandwidth required by the processor.

In the latter part of this chapter we see that another use of the high-speed
memory is to provide for access patterns not available in main memory. Thus,
we can move a data structure such as a matrix from main memory to intermediate
memory by using the access patterns supported by main memory.

When the matrix is stored in intermediate memory, we can provide for
efficient access to rows, columns, diagonals, or subarrays of the matrix, not all
of which can be done efficiently when the matrix is stored in main memory.
The second approach has been embellished in some cases by providing more
than one level of intermediate memory, with the size, cost, and performance of -
each level selected to give a good cost-performance ratio of the total memory
system.

5.1.1 Multiple Memory Modules

The first approach is illustrated in Fig. 5.2. In this figure main memory is com-
posed of multiple modules. Eight modules are shown; they comprise a system
with eight times the bandwidth of a single module. Each of the thrée data streams
associated with the arithmetic pipeline has an independent path to the memory
system so that each stream can be active simultaneously, provided that each
individual module serves only one path at a time. .
Consider how this system can be used to implement vector arithmetic.{We
v/ assume that a basic memory cycle takes two processor cycles, so the bandwidth
required to service the pipeline in Fig. 5.2 is at least six times the bandwidth of
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Fig. 5.2 A vector processor with a memory system composed of eight 3-port memory
modules.

a single memory module) Figure 5.3 illustrates an ideal solution to our vector
arithmetic example. The vectors A, B, and C are lald out in memory so that
they start respectively in Modules 0, 2, and 4, and thur successive elements lie
in successive memories at addresses that are easily calculated.

The timing for the activity in this architecture is shown in Fig. 5.4. Time | is
shown on the horizontal axis, and the activity of the memory modules and
pipeline unit is shown on thé vertical axis. Note that the arithmetic pipeline has
four stages, thereby producing each output value four units after the corre-
sponding input data arrive at the pipeline. The pipeline is busy continuously
after it fills with data.

A busy pipeline stage is indicated by the integer within the cell, which gives
the subscript of the vector element that is being processed at the given time. A
busy memory module is indicated by an R followed by a letter and a digit. The
symbol RAO indicates that the module is reading the element of vector A with
subscript 0. The letter W indicates a WRITE operation in progress to the element
of C whose subscript follows the W. '

For this example, we have purposely allocated the vectors to modules so
that no conflicts occur. To simplify this discussion we ignore the addressing of
items within modules and focus only on which modules are active. At Clock 0,
Modules 0 and 2 initiate READ:s to the first elements of vectors A and B. These
elements appear at the pipeline inputs at Clock 2, and the corresponding output
appears at the end of Clock 5.
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Module 0 [ A0 | I T Jecu]
Moduet [A ] [B ] T Tcisl]
Module 2 [ A[2] | B[0) | 1] | ce) |
Module 3 | A[3] | B{1) | [ 1 | cin |
Module 4 [ Al4] | B[2) | | | cloy | |
Module 5 [ A[5] | B[3] | [ Tenmr] [ -
Module 8 | A[6) | B[4) | I Te@a] i
Modue7 [ A7) [ 8151 1 [ [ cRrl] |

Fig. 5.3 The physical layout of three vectors in the modular memory of the pipelined
vector processor of Fig. 5.2.

Meanwhile at Clock 1, Moduies 1 and 3 initiate READs to the second ele-
ments of the input vectors, and at each subsequent clock cycle, successive mod-
ules initiate READs to the next elements of the input vectors. At the end of
Clock 5 the first output value emerges from the arithmetic pipeline.

During the next clock period, Clock 6, Modules 5 and 6 are busy reading
the next elements of the vector A. Module 5 delivers a5 at the beginning of Clock
7, and Module 6 delivers a; at the beginning of Clock 8. Similarly, Modules 7
and 0 are busy reading bs and bg, respectively, during Clock 6. Modules 1, 2,
and 3 are unoccupied. Module 4 initiates a WRITE to put away ¢, during Clock
6, and during the next clock cycle, Module 5 initiates a WRITE to put away ¢;.

Note how well the arithmetic and memory operations dovetail in the timing
diagram in Fig. 5.4 so that all operations proceed without a collision. That is the
beauty of pipelined data flow when data flows can be made collision free. But
reality is never as well behaved as ideal examples are.

What happens when we cannot arrange the vectors to begin in the modules
where we want them to begin? For example, the structure of the vector add
prevents the vector C from beginning in Modules 0, 5, 6, or 7 when the input
data are arranged as shown in Fig. 5.3. If C is computed somewhere else in the
program as the sum of D and E, the vectors D and E might well be stored in
memory in a way that prevents C from beginning in Modules 1 through 4.
Hence, we might discover that C is too constrained and cannot be stored in any
manner to support conflict-free memory operations.

Figure 5.5 shows how buffers at the input and output of the arithmetic
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Memory 3 RB1|RB1|RA3|RA3 T
Memory 2 RBO |RBO | RA2 [RA2 me
Memoary 1 RA1|RA1 RB7 |RB? Ws lws 1
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6 1 2 3 4 5 6 7 8 9 10

Fig. 5.4 A timing diagram for the addition of two vectors, component by com
in pipeline mode.

Time (clock periods) ———»

" 12 43

ponent,

L :
pipeline can eliminate contention at the memory. Suppose, for example that a|
vectors start in Memory 0. The timing diagram in Fig. 5.6 shows how the vector
operation _proceeds without conflict. The input buffer on the A input is set to
a delay of two clocks, and the output buffer is set to a delay of four clocks.

In Fig. 5.6 note that A is read before B, so that each element of B reaches
the pipeline exactly two clocks after the corresponding element of A emerges
from the memory. By buffering A for two clock cycles, we provide for corre-
sponding elements of A and B to reach the arithmetic pipeline concurrently.

Rt

Pipelined Adder

Variable Stream A -
’ Delay v
Stream B8 R
Variable P SteamC=A+ 8
¢ Delay -

Fig. 5.5 Variable delays in the input and output streams of a pipelined arithmetic unit.
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pipeline Stage 4| o1 ]2]a]a4 s
pipeline Stage 3 | ojt1 |23 |4 |58
Pipeline Stage 2 0 |1|2]3)a|5]86 7
pipeline Slage 1 oltvi2|a j4|s5]e6]7
Memory 7 RA7 |RA7|RB7|RB?

Memary 6 RAG {RA6 | RB6 |RB6

Memory 5 RAS [RAS | RBS [ RBS

Memory 4 . |RA4|RA4[RR4.RB4

Memory 3 RA3|AA3|RB3|RB3

Memory 2 RA2 [RA2 |RB2 RB2

Memory 1 RA1|RA1  RB1[RB1 RA9|RAQ |RB9 | RBSI
memory C RAC [ RAO|RBO |RBO | ~ 'rAa8|RA8|RBS |RBB | WO

o 1 2 3 4 5 6 7 8 8 10 11 12 13
Time (clock periods) ~——»

Fig. 5.6 A timing diagram for the addition of two vectors when storage conflicts arise.
After reading, Vector Fig. A is delayed by two clocks, and, before writing, Vector Fig.
C is delayed by four clocks. The first WRITE takes place at Clock 12.

When the first result appears at the output of the pipeline at the end of Clock
7, it arrives just when Module 0 is busy for four clock cycles fetching a5 and bs.
Hence, the output buffer holds each output for four clock cycles and then
sses the output to the memory system. Thus the first result is stored during
Clock 12, and the total duration of the vector operation is lengthened by six
dock cycles over the timing shown in Fig. 5.4. After the initial delay, however,
results are produced and stored at the rate one result per clock cycle, which is
the same rate as in Fig. 5.4. The technique of adding buffers to the inputs and
outputs of an arithmetic unit to eliminate memory conflicts is similar in spirit
jfto the idea of adding buffering in the interior of a pipeline to eliminate internal
conflicts, which has been explored earlier in Section 3.4.4.

One implementation of this idea is shown in block diagram form in Fig. 5.7,
which is intended to represent the structure of the CDC STAR Computer, a
supercomputer produced in the mid-1970s. This diagram shows a variable delay
inserted into one of the operand streams and the result stream. The delays are
set to specific values depending on the location of the first elements of each of
the operands and the result vector. This ensures that the pipeline can run at
full speed after an initialization period during which the operand and result
streams fill their respective buffers.; Unfortunately, if vectors are short, a rela-

d tively long buffering delay can have a strongly negative influence on performance}

Figure 5.7 shows that several functions can be selected within the arithmetic
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Fig. 5.7 An architecture similar to the CDC STAR. The instruction decoder sets the

variable delays as a function of the starting addresses of the vectors and the throughput
rate of the arithmetic pipeline for the specified operation. The address generator produces
the load and store addresses during the execution of the instruction.

subsystem. The CDC STAR has no capability to overlap two or more vector
operations with each other, so it is reasonable in this architecture to share
common arithmetic functions among different vector operations. Thus the float-
ing-point addition and multiplication operations use the same hardware for
exponent add, shift, and mantissa add, which are common to the two functions.
The CDC STAR actually provides for two single-precision operations or one
double-precision operation within one pipeline, where the flexibility is obtained
by special logic inserted in the arithmetic stages that lie in the boundary region
between the two single-precision halves of a double-precision operand. This
logic disables the carries between halves in 32-bit mode and enables the carries
between halves in 64-bit mode. This permits the result rate for single precision
to be double the result rate for double precision, when you measure the result
rate in terms of result operands produced per unit time. However, the number
of physical bits produced per unit time is the same for single and double precision.

The variable delays in Fig. 5.7 are rather interesting entities in themselves
because they can be costly both in dollars and setup time. Even if the dollars
are unimportant, setup time is very important, and we require the delay to be
set quickly to a particular value.

One possibility is to use a tapped delay line wherein the data stream enters

YA [FE

ZL;/'/:"
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a series of delay stages at a specific input, but a tap control selects a specific
output to serve as the output of the delay line. This is shown in Fig. 5.8. Each
of the N stages in this delay line is a potential network output, but the actual
network output is determined by the output control.

This line can yield any delay from 0 to N — 1, provided that data can be
clocked in and out of the delay line within a single clock cycle. In some tech-
nologies, the logic required to implement the variable delay results in relatively
long access paths that may be too long for the clock cycle of the full system.
This is technology dependent, however, it must be considered by the architect.

An alternative way to achieve the variable delay is shown in Fig. 5.9. This
requires N cells of a special memory. This particular memory can simultaneously
read any cell in the system and write any other. There are two address registers,
one for READ and one for WRITE. The initial value of the WRITE register is 0,
and as each datum arrives at the memory and is written, the WRITE address
increments by 1. o

To achieve a delay of an arbitrary amount up to N, the initial address of the
READ register is —d, the selected delay. This register is incremented at the rate
of operand arriv_.}!s, but no data are read until the READ address is 0. At this
point the READs occur at the same rate as the WRITEs, and thus the output
stream is the same as the input stream shifted d units in time.

The memory in Fig. 5.9 has exactly N locations, numbered 0 to N — 1. As
READ and WRITE addresses to memory increment beyond N — 1, they reset
to 0 and continue incrementing, so the memory operates as a circular queue.
The value of N need only be large enough to provide for the longest delay
required for synchronization. Vector operands can be much longer than N be-

Tapped Delay Line

Data Stream NIE D D 5
Delay l
t

Amoun AND ANDh ANDlH _|AND

Delay ——I—’ r 1

—p{  Amount
Decode
Tap Selects
. ‘ b .

Delayed Output-Stream Bus

Fig. 5.8 A variable delay built from a tapped delay line. The D modules are unit delays.

One tap is gated to the output bus by a tap-select control line produced by decoding the
delay amount.
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READ/WRITE registers

[ READ Address }——1
[ WRITE Address |
1

Data Stream Qut
(from READ address)

Data Stream In__ | .. 5ot Memory

>

(to WRITE address)

Fig. 5.9 A variable delay impiemented with a two-port memory. The delay is the djf.
ference between the READ and WRITE addresses. For 0 delay, the input stream is shunted
directly to the output by means of bypass logic not shown in the figure. aﬂ:i—,.-g/d'

—

cause the delay memory does not have to store an entire vector at any given

instant of time. '
The delay O case is a special situation that can easily be detected because

the READ and WRITE addresses are identical in this case. In this situation the
input data stream must be shunted directly to the output without being stored
in the buffer. Interested readers will find more discussion on variable delays in
Kogge [1981].

The variable delay memory in Fig. 5.9 is capable of delaying a stream any
amount from 0 to N clock cycles. It has several advantages over the tapped
delay-line because no more than two addresses in Fig. 5.9 change state each
cycle, as compared to changes in potentially all stages of a tapped delay-line.
Each time a cell changes state, there is a change in a physical parameter such
as voltage or current. Each such change usually requires power, and with power
is produced heat and electrical noise. The fewer changes in the memory system
of Fig. 5.9, as compared to the delay memory of Fig. 5.8 in which many cells
change on each clock cycle, lead to potentially fewer transient effects and noise

problems.

5.1.2 Intermediate Memories

We indicate earlier that an alternative to providing high bandwidth in main
memory is to provide one or more intermediate levels of memory to form a
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hierarchy of memories, with the highest bandwidth memory placed closest to
the processor. In this architecture, vectors migrate from main memory to the
fastest memory in the hierarchy as they are needed by the processor. Other
memory levels, if they exist, provide intermediate storage points to hold vectors
in transit just before or just after their use in the fastest portion of the hierarchy.

The Cray I, a landmark high-speed architecture, bases its high-speed ope’r-
ations on a hierarchical memory structure. A simplified diagram of the Cray I
appears in Fig. 5.10. Its main memory (8 M-bytes) is separated from the p-ro—
cessing units by one or two levels of intermediate memories. For vector oper-
ations, the intermediate memory is a set of eight vector registers (the V registers),
each capable of holding a 64-element vector of double-precision numbers. The
vector pipelines obtain data from the vector registers, not from main memory.
Similarly, the result vectors from the pipelines are returned to the vector registers.

Scalar operands have two levels of intermediate memory, much like con-
ventional cache-based high-performance systems. The fastest level contains eight
p4-bit scalar registers (the S registers), which communicate directly with the
pipeline units for scalar arithmetic.

A slower, but still very high speed, level of intermediate memory is com-
posed of 64 scalar registers (the T Registers), each 64 bits in length. The T-
register scalar memory has the same purpose as a cache memory in that it is
intended to hold those data that overflow from the high-speed scalar registers.
Such data may become idle temporarily, but should be held close to the processor

256-Register

Instruction
Buffer

|

—{  Instruction Register |

main memory.

|_—Fprogram Counter |

Fig. 5.10 The Cray I—an architecture based on hierarchical memories. One to two levels
of high-speed intermediate memories isolate the arithmetic and instruction logic from

8 Vector (V) Registers -
‘ 64 Operands/Register 12 Pipelined
Arithmetic
Main Units
Memory 64 Buffer 8 Scalar ‘
(T) Registers (S) Registers
8 M-byles
Y 64 Buffer 8 Address |
84 Modules (B) Registers (A) Registers
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in anticipation of future need rather than moved to the more remote Main
memory between periods of use. Also, new data can be prefetched to the in-
termediate scalar memory from main memory just prior to use in the arithmetj,
unit.

Unlike a cache memory, this intermediate memory is not managed ay,.
matically. Data must be transferred explicitly to and from the intermediate Mmem.
ory by means of ordinary program instructions. The disadvantage of this scheme
over cache memory is that the Cray ] intermediate memory has to be Managed
by the programmer or the compiler. The big advantage of this type of memory
over cache memory is speed—intermediate memaory is accessed by meang of
physical register addresses, not by a cache lookup. The cache lookup tends to
take longer because a cycle must be long enough to support both the norma)
read operation plus an address comparison, whereas the Cray ] intermediate
memory does not require the time to compare address tags in a cache.

Cray designs usually provide for short high-speed registers to hold aq.
dresses, and the Cray I follows this general philosophy. It has eight addresg
registers (the A registers), each 24 bits in length. These are backed up by an
intermediate level of memory in the form of 64 registers (the B registers), each
24 bits in length. Thus the B registers function as a cache for the A registers,
except that all operations on the B registers are explicitly controlled by program
instructions rather than automatically controlled, as are the registers of a cache
memory.

One more intermediate-level memory appears in the diagram. This is an
instruction buffer that holds portions of the instruction stream that are fetched
just prior to the execution of those instructions. Tight inner loops tend to lie
completely within the instruction buffer and can execute repeatedly without
requiring fetches to main memory. Because many applications written for the
Cray tend to spend the great majority of time in tight loops, instruction fetches
tend to be rather rare events.

Note in Figure 5.10 that every functional portion of the processor has a high-
speed memory attached to it. No function is directly attached to main memory,
as is the case for the processor structure shown in Fig. 5.7. Moreover, some of
the high-speed memories are backed up by memory buffers that lie between
main memory and high-speed memory.

The structure of the design clearly shows the major idea of the architecture—
keep the processing units busy by keeping their operands close at hand. The
intermediate memories represent a compromise in the sense that they provide
a pooi of data readily accessible to the processing units at lower cost than the
cost of storage in the fastest levels of the memory hierarchy.

The performance of the intermediate memories is, however, below the per-
formance of the highest-speed memories. To design such a hierarchy involves
comparing the performance trade-offs, with and without intermediate memeory,
and the savings attributed to using intermediate memory in place of high-speed
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registers. Note that the savings is partly due to cost and partly due to decreased
volume and power consumption, which may be the deciding factors in super-
computer design.

An intermediate memory can also provide a buffer for reformatting data
structures for efficient processing. The idea is that the pipeline is optimized for
access to successive elements from a vector register, but the items to be processed
need not lie in consecutive cells of memory. The operands can be fetched into
an intermediate memory and from there sent to the vector registers. In so doing,
the operands can be reorganized so that the items to be processed next are
moved to contiguous cells of a vector register. Methods for making this trans-
formation are covered in more detail in the next section.

The most distinguishing feature of the two architectures described in this
section is in regard to coupling operand memory to the pipeline. The first
architecture relies on main memory to hold pipeline operands, sc main memory
must have a bandwidth at least as large as is required by the arithmetic unit.
This forces all of main memory to either be fast or partitioned into many in-
dependent memory modules, or both, because the peak bandwidth requirement
of the arithmetic unit is very high.

The second design provides for the very high bandwidth to be supplied by
a register memory much smaller than main memory, and thus, the slower speed
of main memory need not handicap the arithmetic pipeline. Another facet of
the second design is that it provides for the possibility of overlapping pipeline
operations because the gross bandwidth of the high-speed registers can be made
high enough to meet peak processing requirements of several pipelined arith-
metic units combined.

The cost of providing extra bandwidth for the registers is the cost of pro-
viding extra ports for reading and writing the registers. While this cost can be
relatively high per bit of storage, the high-speed registers have only 10* to 105
bits, as compared to the 10% to 10 bits of main memory. Thus, it is feasible to
supply extra ports to the registers but impractical to do so for main memory.

The Cray I does provide for overlapping pipelined arithmetic operations so
that as many as three independent vector operations can be done concurrently.
A vector operation produced on one output stream can be routed directly to the
input of the next operation. The first architecture has no provision for additional
data streams, so the result stream has to be stored in memory before it can be
rerouted to an arithmetic pipeline for additional processing.

Because the variable delay is shared by all vector operations, the buffer in
the variable delay has to empty before the delay can be reset for the next pipelined
operation. Hence the pipeline must drain between operations, and no overlap
is possible. The Cray I's ability to overlap pipelined operations is strictly due to
its intermediate buffers and high-speed registers.

In our discussion of cache memory, our assumption is that cache memory
is an extremely important architectural feature of high-speed computers. Yet the
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Cray I has no cache-organized memory, althpu'gh it does have several Memories
that occupy a place in a memory hierarchy sqmlar to t}ne place of Cac.he memory,
The absence of cache is due partially to design decisions and partially to chyy.
acteristics of vector programs that may differ from the characteristics of scaj,,
ms.
Prof';['rta:e design decision for this class of machine has to weigh the cost apg
difficulty of programming an intermediate memory that is not cache organizeq
against the performance penalty for a cache access as compared to a register
access. The Cray [ is built for performance. Its users are rather sophisticateq
and are willing to expend extra effort in software to obtain a performance boggt
This biases design decisions against the use of cache and toward the use of pro-
grammable registers. . .
Moreover, a cache may not work as well for veC_tor operations as it does for
scalar operations, although currently there i§ very little expe.rience on which tp
make a judgment. The designer has to consider these questions:

+ How large should a cache be on a vector machine?
e Should it be large enough to hold a few full-length vectors?
¢ Orshould it be smaller and instead hold fragments of many different vectors?

These questions are largely unanswered today, but we can expect them to be
explored in the next few years as vector technology becomes more mature and
implementers seek methods for boosting performance of machines built today
without caches.

Serial access to vectors dictates against a cache that uses LRU replacement
because one vector load may flush an entire cache and leave only dead data in
the cache. Perhaps a cache organized to manage vectors may be useful, but this
is still a matter of conjecture and needs further study. Therefore, vector registers
should be organized as program-accessible registers rather than as a cache until
performance studies show how to improve throughput with a vector-organized
cache.

The various intermediate registers, including the T (scalar) registers, the B
(address) registers, and the instruction buffer, are the most obvious candidates
for cache organization. The hit ratio should be comparable to the hit ratio for
conventional serial machines if these registers were cache organized, but inter-
locks across the caches to maintain consistent data would be a serious problem.

Several units in the Cray [ can modify data. Any such modification has to
be reflected in a cache that holds copies of such data. Cache consistency requires
that each time a new item is modified in cache, a cross check is made at all other
caches to see if the same item is contained there. This could hurt performance
by causing conflicts for cache access.

Although this implementation is not the only way to interlock cache access,
interlocking is almost always accompanied by a reduction in performance and
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possibly by a modest increase in cost. So cache may well be unattractive for a
Cray-type environment.

Future designs, however, need not follow the directions of the Cray L. Device
technology can change dramatically, resulting in different available densities,
speeds, and costs of memory. Major changes in any or all of these factors could
produce vastly d1ffere'nt architectures. As memory becomes smaller, faster, and
less expensive, there is a potential for intermediate memories of much greater
capacity- Higher power densities, however, may require that volumes be held
small to enable the computer systems to be cooled and may force the designer
to resort to small intermediate memories or elect not to use them in some areas
of the design. A reasonable rule of thumb in the supercomputer area is to build
as much capacity and performance capability as possible, and then look for ways
to reduce volume, power consumption, and total cost without drastically hurting
performance.

5.2 Access Patterns for
Numerical Algorithms

High performance requires that the architecture fit the workload. A high-speed
machine must do the job for which it is intended. Although the discussion in
the previous chapter cautioned against structures that are too special purpose,
we must at least understand the requirements for a large class of problems to
make sure that we can solve those problems effectively.

If design compromises are necessary, ther we should understand a pure
design with no compromises and then evaluate the compromises separately. In
this section we examine some numerical problems and learn that access patterns
play a critical role in determining the execution speed of the algorithms. We
show how to build machines that support the special access patterns frequently
encountered in large numerical calculations.

Heller’s excellent review of parallel algorithms for numerical methods [1978]
focuses on linear algebra because most large-scale practical applications of nu-
merical methods are expressed in terms of matrices and vectors. This is not
surprising; matrix notation gives a compact way to express enormous amounts
of computation.

Consider two extremes for writing a program that performs 10'° multiplies.
At one extreme, the programmer writes a few hundred or thousand lines of
program statements, many of which are just calls on a library of matrix and
vector functions. At the other extreme, the programmer is faced with solving
an unstructured problem and has to specify each of the 10! lines individually.

Itis quite clear that no one will write the latter code—it takes an extraordinary
amount of time to write. At the rate of one arithmetic operation per second, a
person working full time would need 30 years to write down all of the arithmetic
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expressions that describe the workings of the program. A computer that execuytes
at 100 Mflops takes only 100 seconds to execute that program.

Obviously, vector and matrix operations are very important for a high-speeq
architecture because many very large algorithms are expressed succinctly by
such operations. The demonstrated importance of numerical applicationg for
large-scale computations leads us to treat the world of vector and matrix com-
putations in this chapter.

Other notational systems may also be useful. For example, recursively de.
fined functions are succinct descriptions of potentially massive Computationg,
In any case, we are unlikely to generate unstructured large-scale computations
simply because the programming effort to write such applications is unreasonable,

5.2.1 Gaussian Elimination
Heller [1978] covers a number of algorithms for solving linear systems of the

type
Ax =Db

where A is an N x N matrix, and x and b are N X 1 column vectors. The
objective is to find x, given A and b. The techniques available depend on the
specific characteristics of the matrix A.

When A is dense, that is, when all or nearly all of the components of A are
nonzero, the solution of the linear system of equations can be found by carrying
out a succession of row and column operations on A, with corresponding changes
made to b during the course of the computation.

One efficient and effective method of solution, Gaussian elimination, factors
A into the product of two triangular matrices, L and U where L is lower triangular
and U is upper triangular. We see this in the previous chapter for the special
case in which A is tridiagonal, and L and U are bidiagonal. In both the general
and the special case, the factorization must compute the elements of L and U,
and this is possible to do by means of operations on row and column vectors.

Once the factorization produces L and U, the next steps solve the triangular

systems
b

Ly
and
Ux =y
to obtain a value of x that satisfies the original equation since
Ax =LUx =Ly =b

The solutions to the triangular systems are particularly easy to obtain by means
of vector operations on rows of the L and U matrices.
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When A is dew{eloped from partial differential equations that describe a
problem in the_ contmgum, A ‘is a sparse, highly regular matrix whose solution
can be determined quite eff1c1ently using techniques such as cyclic reduction,
which is described in the previous chapter. Although we may view such a matrix
A as being composed of a collection of row or column vectors, the nonzero
components of A in problems that arise from continuum formulations tend to
Jie only along a few_diagonals. Many algorithms approach the solutions of this
type of sparse-matrix problem by treating the matrix as composed of diagonal
vectors, so that vector operations manipulate streams of data fetched from var-
jous diagonals of the A matrix.

It is worthwhile to examine in detail one example of a parallel algorithm for
computing the solution to a linear equation. In this case, we look at classical
Gaussian elimination and assume that the basic parallel operation can manip-
ulate a row or column of A in equal time. This assumption is not true for all
architectures, and its correctness requires some resourcefulness from both the
computer architect and the numerical programmer. Nevertheless, let us assume
that rows and columns are equally accessible and explore how to create an
algorithm from row and column operations.

The core of the algorithm produces a new column of L and row of U at each
of N iterations. The new data for L and U overwrite corresponding locations of
A and are unchanged for the remainder of the computation. Before producing
the next elements of L and U, the algorithm updates the entire portion of the
A matrix that has not yet been overwritten. The diagonal of L, which is forced
by this algorithm to be all 1s, is not stored explicitly. The diagonal of A is
eventually overwritten by the diagonal of U.

At each iteration, one diagonal element of A is overwritten. We call this
element the pivot for that iteration. In the matrix below the pivot is stored the
new column of L, and to the right of the pivot is stored the new row of U.
Figure 5.11 shows the various portions of the data at the start of an iteration.
The L and U denote the columns of L and rows of U that have been computed
up to this point. The P designates the pivot. The L’ and U’ denote the new data
to be computed during this iteration, and the A denotes the elements of A that
will be transformed during this iteration. '

For numerical stability, we should choose as the pivot the element with the
greatest magnitude in the region that includes P, L', U’, and A. If this element
is not P, then that element can be brought to position P by a swap of rows and
columns. Most algorithms, however, do not search such a large area for the
new pivot.

The algorithm remains stable, although it has a larger error bound, if the
pivot element is the largest element in the area that includes P and L. If the
largest element is not in position P, then by exchanging the row containing
the element and the pivot row, we can move the large element to position P.
Row and column exchanges are permitted because they do not change the
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Fig. 5.11 The regions of a matrix revealed during a single cycle of an LU-decompositig,
algorithm for performing Gaussian elimination.

————

solution to the original system of equations, although the elements in the solution
vector in general will have to be permuted to produce a solution vector whose
elements are ordered correctly in regard to the original problem.

Program 5.1 is a simplified version of an algorithm for 'Gaussian elimination
that appears in Forsythe and Moler [1967]. This a]gprithm is expressed in vector
notation, where the notation A[i,j] designates a single element 4;, of A, and
A[l ... j — 1,j] designates a column vector of A. In this case, the subscript range
1 ... j — 1 designates all subscript values lying between 1 and j — 1. The single
subscript in the second component designates the jth column. Hence, A[1 ...
j — 1,j] is the vector that consists of the first j — 1 elements of the jth column
of A. The same notation holds for rows, except that the subscript range is placed
in the second subscript position.

The important aspects of this example are that:

1. The algorithm as expressed accesses both rows and columns.

2. The majority of the vector operations have either two vector operands or a
scalar and vector operand, and they produce a vector result.

3. The MAX operation on a vector returns the index of the maximum element,
not the value of the maximum element.

4. The length of the vector of items accessed decreases by 1 for each successive
iteration.

The first point is consistent with our assumption that we need to access both
rows and columns in some algorithms. It turns out in this problem that the
inner loop can be done either by rows or by columns; the choice is up to the
programmer. But the algorithm does require both a column and a row operation
elsewhere, so a vector computer should provide easy access to both rows and
columns, at least, and possibly other interesting forms of access.
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Program 5.1 Gaussian elimination.

FACTOR is a vector algorithm for factoring matrix A into L and U, where A=LU, L is
jower triangular, and U is upper triangular. The diagonal elements of all matrices are

equal to 1; they are not stored explicitly. L overwrites the fower triangular portion of A,
and U overwrites the diagonal and upper triangular portion of A.

fori:= 1toNdo
begin {* Search Coiumn for a pivot element. *}
{" Find the index of the element with the largest absolute value in the pivot
row. "}
imax = index__of _Max(abs(A[i ... N,i)));
{* Swap Row imax with Row i. This produces a new row of U. *}
Swap(Alii ... N Alimax.i ... N]);
{* Check for singularity, and terminate if so. *}
if A[i.i] = O then singular matrix;
{* Find the new column of L, and store it in A. ")
A+ 1 . NJL = AU+ L NAYALD;
{* Update the remaining part of the A matrix. *}
fork:= i+1toNdo
Alki+1 .. Nl 1= Alki+1 .. N] - Alki] x Ali+1 .. N};
end; {" Outer loop °}

The next point indicates that a vector pipeline should provide a mechanism
to have a scalar serve as one of the operands, and in so doing it should produce
an answer faster or more efficiently than a similar operation that has both op-
erands as vectors.

The third point suggests that the pipelined arithmetic unit should provide
some mechanism for producing results that are scalar, such as results produced
by the functions MAX, MIN, and SUM. Note as well that the scalar result might
be an index of an important element in the vector and not necessarily the value
of a vector element or of a combination of vector elements. In our example, the
information required by the algorithm is the index, not the matrix element.

The last point is the most perplexing. The vectors used by this algorithm
shrink with each step, and thus the last step uses vectors of length 1. Pipelined
arithmetic and vector operations have a certain overhead, and we should attempt
to amortize that overhead over many operands by treating long vectors as much
as possible. We have an efficient machine if the overhead for starting a vector
computation is small compared to the amount of useful work it produces. How-
ever, if the useful work produced by a vector operation is very small, the over-
head may be painfully expensive and drastically reduce the efficiency of the
system. The last point forces us to keep vector overhead as small as possible
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because we inherently must deal with short vectors for some portions of im.
portant computations. . ‘

The next section illustrates some techniques for solving the access Problem
and gives insight into the structure of efficient vector processors.

5.3 Data-Structuring Techniques for
Vector Machines

- . R
In this section we explore the problem of accessing data in ways that are cop.
strained by an algorithm. If a data structure such'as a matrix is to be accesseq
only by rows, we can store rows so that cgnsggl_tgg elements lie at successive
addresses. If only columns of a matrix are required, we could store the matyy
in a column-oriented fashion, by putting consecutive elements of each columy,
at consecutive memory addresses. But if both row access and column accegg
were required, there is no obvious way to meet both canstraints efficiently.

The problem is illustrated in Fig. 5.12, in which a matrix is stored in a main
memory composed of eight independent memory modules. The modules are
represented as columns. In Fig. 5.12(a), an 8 x 8 matrix is stored so that its row
elements can be accessed in a pipeline fashion. Each successive row element js
stored in the next memory module. o

{ 1f a memory access takes several clock cycles, this memory can still deliver

’/ one row element per clock cycle after an initial delay) To fetch the row vector

for Row 0, for example, initiate a fetch to the (0,0} element, and before this

element is delivered to the memory bus, initiate a fetch to the (0,1) element on
the next clock cycle. On Clock i, initiate a fetch to element (0,1).

If the memory access time produces a delay __g} between the initial access tg
an item and the time at which it appears at the memory output port, then in
our example the element (0,i) can be placed on the memory bus at the end of
Clock i + d. This is the method of overlapped access described at the beginning
of this chapter. If d does not exceed 8, the number of distinct memory modules
in the example, the vector can be arbitrarily long. If 4 is greater than 8, however,
attempts to access vectors longer than eight result in collisions at some memory
module because the module is asked to initiate a fetch for a new element before
its access to an old element has been completed.

Another way to describe the situation is that the memory bandwidth must
be great enough to support the memory demand. If the delay 4 is greater than
8, then the aggregate bandwidth of the eight memories is less than one item

¢ per clock period, yet the pipeline demand is for one item per clock period. With
delay 4, the aggregate bandwidth is one item per clock period only if there are
at least d independent memory modules, each capable of accessing one item per
d clock periods. If an instruction requires three streams, two for input operands
and one for results, then the aggregate bandwidth of memory must be at Jeast
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Fig. 5.12 Two of several possible storage formats for an 8 x 8 matrix:
(a) Suitable for access to row vectors, but bad for column vectors; and
(b) Suitable for access to column vectors, but bad for row vectors.

three items per clock period, so the number of memory modules must be at
least 3d to support a pipeline rate of one result per clock time.

Figure 5.12(a) shows that the memory bandwidth available is not the whole
story. Consider what happens if you need to access columns of the matrix, for
example Column 0. In this figure, Column 0 lies wholly in cne memory module.
No matter how many other modules are in the system, access to the elements
of Column 0 is limited by the maximum bandwidth of the single module. In
- this case, at most one item can be delivered every d units of time, and it is
impossible to support a rate of one column element accessed per clock period
unless one module by itself can produce data at this rate—that is, unless d is
unity.
In Fig. 5.12(b) we transpose the matrix to give fast access to columns, which
are now stored across the memories, but we give up fast access to rows. The
Gaussian elimination algorithm, as reproduced in the previous section, requires
both row and column access, so neither the storage pattern of Fig. 5.12(a) nor
Fig. 5.12(b) is acceptable. One way to circumvent the problem is to rewrite the
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-

algorithm to use column or row access exclusively. This happens to be POssib]
for Gaussian elimination, but it is not always possible to revise an algorithy, ts
live within the access constraints of memory.

Another approach is to alter the structure of data in memory. Figure 5,13
shows the same matrix stored so that successive rows are skewed with rESp-ect
to the previous row. In this case Row 0 starts in Module 0, Row 1 starts i
Module 1, ... , with each row shifted to the right by one column with Tespect
to the immediately preceding row.

In this storage scheme the address of an item in a system address Space is
8 x (local address) + module number, where each individual memory has 5
local address-space, and the module numbers range from 0 to 7. Row elementg
lie at successive addresses in the system address-space. Successive colump ele-
ments lie at addresses that differ by nine in system address space. Note that
successive column elements lie in different memories in this system, anq that
they can be accessed in pipeline fashion as efficiently as successive row elements,

Even though the matrix is 8 X 8, we store the matrix as if it were 8 x 9 @8
rows by 9 columns), wasting the memory allocated to the ninth column. The
extra column provides the cyclical offset of successive rows, so column elements
are spread across all memories just as row elements are.

"To use this storage structure in a vector processor similar to those shown
in Figs. 5.7 and 5.10, the vector operand must be specified by four quantities;

1. Starting address;

2. Number of elements;

3. Precision (number of bits per element); and
4, Stride (offset between successive elements).

(0.0) (0,1) 0,2 (0,3) {0.4) (0.5) (0.6) 07

(1.0) (AR} {1.2) (1.3) (1.4) (1.5) {1,6)
(1.7 (2.0) (2.1) (2,2) (2.3) (2.4) (2.5)
(2.6) (2.7) (3.0) (3.1) (3.2) 3.3) (3.4)
(3.5) (3.6) 3.7) (4.0 (4.1) {4.2) 4.3)
(4.,4) (4,5) {4.6) 4.7 (5.0 (5.1) (5.2)
(5.3) (5,4) (5,5) (5.6) (57) (6,0) (6.1
(6.2) (6.3) (6.4) (6.5) (6.6) (6,7 (7.0)

[(7.1) [(7.2) (7.3) (7.4) (7.5) (7.6) (7.7)

Fig. 5.13 A data structure that permits access to both rows and columns. Row access
has stride 1. Column access has stride 9. The blank entries in the matrix form a dummy
ninth column of the 8 x 8 matrix.
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The stride for a vector expresses the address increment used to move from one
element to the next in a vector access. The stride for row access in Fig. 5.13 is
1, and the stride for column access is 9.(In general, if the stride is relatively

rime to M, the number of memories, then M successive accesses for that stride
are directed to M distinct memories. More generally, for any M and stride s, M
successive accesses of stride s are directed to M/GCD(s, M) different memories,
where GCD is the greatest common divisor function. GCD is equal to unity, by
definition, when its arguments are relatively prime.

{Since M is usually a power of 2, this is equivalent to saying that any vector
access with an odd stride produces M consecutive accesses to M distinct mem-
ories. [n Fig. 5.13, one can easily verify that 11 x 11 and 13 X 13 matrices
support row and column access as readily as the 9 x 9 matrix. For column
accesses, address conflicts arise when a matrix has an even number of columns
because even numbers are not relatively prime to M. For example, a 12 x 12
matrix causes problems when d exceeds 2 because column elements 1, 3, 5, ...,
a1l lie in the same memory module. For a similar reason, 8 X 8 and 24 x 24
matrices lead to the same inefficient access to columns:

( Fortunately, for every even number the next number is odd, so for every
pad value for a number of columns, the next larger number is good. Hence, we
can always add a wasted column to a data structure and provide a storage
siructure that is ideally suited to pipelined row and column access)

If row and column access were the only requirements, our discussion would
end here. But the designer should not limit a design to a small class of problems.
If a few changes can greatly increase the number of problems that can run
efficiently, we must explore those changes and the consequences of making
them.

Kuck’s study of parallelism [1976] (see also Budnik and Kuck [1971]) suggests
that typical access patterns to matrices include access to:

¢ Matrix diagonals in the major and minor directions;
* Square subarrays; and
¢ Rows and columns.

Note that the stride required to access the major diagonal of a matrix is one
greater than the stride required to access a column of a matrix. If M, the number
of memory modules, is a power of 2, then column access and major diagonal
access cannot both be efficient since one stride or the other is not relatively
prime to M. .

Budnik and Kuck [1971] make a startling suggestion—use a number of mem-
_ ories that is not a power of 2. For example, if the number of memories is a prime
p, then all strides less than p are relatively prime to p. Therefore, we can store
arrays in a structure that yields equally efficient access to rows, columns, and
diagonals. Budnik and Kuck explore this notion in the context of a parallel
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computer that is fully parallel in access, rather than pipelined. This no
developed further by Burroughs in the design of an unusual supercq
called the BSP (Burroughs” Scientific Processor), whose structure is g
Fig, 5.14.

The BSP design provided for 17 memories, rather than 16, to solye the
problem of supporting all interesting ways to access a matrix. Memory js Rot
pipelined in this architecture. Rather, in one memory cycle the memory system
delivers one block of 17 memory lines, each line from a distinct memory, Ty,
networks separate the 17 memories from 16 processors. The input alignment

- network shrinks a 17-way access to 16 operands by deleting some operand ang
compressing the remaining 16 operands into a contiguous vector. |

This process is shown in Fig. 5.15 in simplified form for compressi}fg a five-
way vector read to deliver data to four processors. Figure 5.15(a) shows accegs
to a column of a 4 X 4 matrix, and Fig. 5.15(b) shows access to a diagonal of
the same matrix. The output alignment network reverses this process for dat,
traveling between the arithmetic processors and main memory.

In Fig. 5.15, note that the 4 X 4 matrix has two dummy columns stored, s
it is stored as a 4 X 6 matrix. In this form, rows are accessed with a stride of
1, columns with a stride of 6, and diagonals with a stride of 7. Since 1, 6, anq
7 are relatively prime to 5, in each case there are no memory conflicts whep
accessing the particular slice of the array of interest. If the matrix is stored withoyt

on Was
Mputer
hown i,

17 Inputs
16 Qutputs
Input
- Alignment
Network

17 | Memories 16 | Processors
3 @ @ -

Qutput
Alignment
Network

16 Inputs
17 Outputs

Fig. 5.14 The data flow and processor/memory structure of the Burroughs Scientific
Processor.
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Select — (0.0)

Addresses 0.1) (0.2) (©.3)
{1.0) (1.1 (1,2) (1.3)
(2.0) (2.1) (2.2)
(2.3) —»! (3.0) @31
3.2) (3.3)
READ (0,0 (1.0) {2.0) (3.0)
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(a)
Select ‘
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-3
(2.2) (3]
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Fig. 5.15 A data structure that supports easy access to rows, columns, and diagonals:
(a) Access to columns with stride 6; and
(b) Access to diagonals with stride 7.

the dummy columns, then the stride to access diagonals is 5, which is equal to
the number of memories and therefore causes a maximum number of conflicts.

The BSP processor was never sold and eventually the project was aban-
doned. Although the 17-memory structure solves some problems of access, it
creates others. Addressing is more complex for this structure than for storage
systems in which M is a power of 2. But more important is that the 17-memory
system requires that access to the matrix components be made at the mem-
ory system, which is quite far from the processor. Obtaining a row of a matrix
and then a column of the matrix, perhaps at a later time, forces the matrix to
be in main memory and not in a buffer close to the processor. Hence, there is
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potentially high traffic to and from main memory just for the purpose of refor.
matting data.

Contrast the 17-memory structure with a Cray-like structure as shown iy
Fig. 5.10. The striking difference with respect to performance is that the Cra
architecture drives the arithmetic units from a high-speed buffer TMemory (the
vector registers), whereas the 17-memory structure drives the arithmetic Units
from a more remote main memory with two alignment networks contributin,
to storage delay. The high-speed buffer of the Cray provides for the POossibility
of loading data into the buffer just prior to when they are needed.

While data reside in the buffer memory, they can take part in multiple
operations before being returned to main memory. Moreover, it is conceivabje
to provide a sufficiently large buffer memory so that reasonably large portiong
of matrices can be loaded into the buffer using an access pattern such as row
access, that is supported by main memory.

The buffer memory can be structured for access to the various matrix com.
ponents of interest, so once a matrix is loaded into the buffer, its elements cap
be accessed in any of several ways. A high-speed buffer can be structured to
access the matrix by rows, columns, and diagonals by designing its cycle time

to be equal to one clock cycle. For a one-cycle memory, the stride for pipeline
access to a vector can be arbitrary.

The type of buffer we describe here is very costly when built in some popular
high-speed technologies. A very simple alternative is to reformat matrices when
necessary by transferring them between main memory and the high-speed buffer,
For example, consider an 8 X 8 matrix stored by rows in an eight-module
memory. If the next phase of the algorithm must access columns, we can reformat
the rows from 8 X 8 to 8 x 9 by loading each eight-element row into the high-
speed buffer and then storing back a nine-element replacement. The destination
vector can be written to a different region of main memory to prevent overwriting
of the source by destination during the reformatting. Since the row operations
are pipelined, reading an entire row of eight elements takes only a little longer
than reading a single element. After the matrix is restored to memory, itisina
format in which columns can be accessed with a stride of 9.

The reformatting time is approximately equal to the time required for two
to four vector transfers, depending on the overhead per vector initiated and the
startup time for a vector load or vector store. The reformatted matrix can be
accessed by columns about d times faster than the original matrix, where d, as
you recall, is the memory-access cycle time.

Depending on the value of d and the overhead per vector operation, the
reformatting of the matrix may be the preferred way of gaining access to the
entities needed. The reformatting process might well lead to less performance
degradation than do the alignment networks shown in Fig. 5.15 because refor-
matting degrades performance only when it is needed, whereas the alignment
networks tend to increase the latency of every vector fetch and store.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 333



section 5.4 Attached Yector-Processors 319

Architectures with high-speed buffers appear to have several advantages
over architectures whose memory couples directly to an arithmetic unit. Al-
though this observation is very dependent on existing technology, the trend
today seems to be toward vector processors that use high-speed buffers to gain
speedr as opposed to architectures that place needed operands far away from
the processor that needs them.

The major design problem for the buffer architecture is building a memory
that is both large enough to hold an interesting amount of data and fast enough
to run at the clock cycle of the arithmetic units. The number of times that a
datum in the buffer can be used in a computation before it is returned to main
memory tends to decrease as buffer size decreases, so a small buffer may yield
little or no savings in the total number of accesses to main memory.

Device technology has a strong influence on how designs will achieve vari-
able-stride access in the future. Current trends suggest that the density of high-
speed memory is increasing and that high-speed buffers, although very costly
today, will tend to grow larger in the future. Cooling is another problem of
importance because large amounts of high-speed memory packed very densely
lead to potentially high power density per unit volume. The Cray 11, for example,
has so high a power density that it is cooled by immersion in liquid.

Technology trends suggest that both the power consumption per bit and
the cost per bit are moving downward, which lends support to the evolution
of high-speed bulffers for variable-stride access as opposed to the BSP approach
of handling variable-stride access exclusively in main memaory.

5.4 Attached Yector-Processors

An important means for achieving economical high-speed computation is to
provide for customization of each processor to the needs of each user. The idea
is to partition an architecture into building blocks that can be combined in various
ways to achieve different levels of performance with commensurate costs.
Figure 5.16 shows a basic high-speed conventional processor to which is
connected a numerical processor that we call an attached vector-processor. The
basic machine without the attached processor serves a large group of users with
conventional workloads, and the machine with the attached processor satisfies
the needs of the specialized group of users. This tends to reduce the cost to the
specialized user because both the software and hardware of the general-purpose
machine enjoy the advantages of the lower cost of high-volume production.
Some manufacturers of attached processors offer a model that can be con-
nected to a variety of different host machines. Attached processors cover a very
broad range of costs and performance, from low-cost units that attach to mi-
crocomputers to high-performance systems that attach to high-end commercial
computers. Many commercial manufacturers offer vector attachments of their
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Fig. 5.16 The structure of a typical computer system with an attached processor,

——————

own or a compatible model with a superset of instructions for vector operations,
These approaches are used by Fujitsu, IBM, Hitachi, and NEC.

Our discussion in this section covers the generic architecture of an attached
processor. We also give some specific details regarding the FPS-164 from Float.
ing-Point Systems by way of example to make the details more concrete. Charles.
worth and Gustafson {1986] provide interesting background information on thjs
topic.

We know from prior discussions that vector access to rows and columns,
and possibly to other matrix components, are essential for efficient numerica|
computations. This requirement forces the architect to design the memory sys-
tem to support such access, but places very few constraints on the design of the
arithmetic processor. The arithmetic unit should also be structured to support
the most common and demanding needs of the users. So let us review a few
of the algorithms encountered earlier in the text.

For most numerical applications, the solution of linear equations of various
forms is the most central requirement. Linear programming requires related
techniques to solve constrained optimization problems. Even for nonlinear prob-
lems, linear techniques are very important.

Nonlinear systems of equations are often solved by iterative linear methods.
The idea is that some nonlinear systems behave linearly with respect to small
perturbations about a solution. Consequently, it is possible to produce a full
trajectory for a nonlinear solution from a sequence of solutions to a linear system
that describes the small-perturbation behavior of the nonlinear system. Iterative
techniques are often employed to produce a solution to the full nontinear system
from the solution obtained by using the linear approximation.

For both linear programming and linear algebra operations, the inner loop
of the computation often takes the general form

a:=a+bxXc (5.1)
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where 4, b, and ¢ are scalar. In a general-purpose structure, the product can be
computed and stored in a register and then added to a sum stored in a different
register.

Since this operation is 50 common, we can make it a three-operand operation
and provide for both the multiplication and addition to be done in one arithmetic
unit, without requiring an intervening store and load of the product to and from
a high-speed register. The structure commonly used takes the form shown in
Fig. 5.17, in which two operands enter a multiplier whose output is tied directly
to an adder, to which a third operand is connected.

Equation (5.1) can be evaluated in several different contexts, depending on
the order in which data are presented to the arithmetic unit. The most efficient
computation occurs when Eq. (5.1) is used to produce a vector of outputs from
a vector of inputs. Using our vector notation, Eq. (5.1) in this context becomes

all ...N]:=a[l.. N]+bxcl..N] (5.2)

An efficient pipeline implementation of this equation provides for loading a
scalar variable to one input of the multiplier and streaming vectors A and C
through the arithmetic unit. The output vector is the updated A vector, which
is returned to the buffer storage area reserved for A.

Another possible context for Eq. (5.1) is one in which two vectors are reduced
to a scalar by an inner-product operation, which produces a single scalar output
from two vector inputs. This form of Eq. (5.1) is

a:=a + b[i} x i} (5.3)

where the products of the form b[i] X c[] are accumulated into the scalar variable
a. The initial value of a is zero when an ordinary inner product is required.
However, some algorithms use Eq. (5.3) in a manner that requires a nonzero
initial value for a.

The difficulty with Eq. (5.3) is that there is an interlock required between
successive iterations since the output variable a for one iteration is an input
variable for the next iteration. If an addition is performed in a pipeline with d
units of delay, the interlock may require as many as 4 — 1 idle times between

Multiplier

o T} AB+C
c » Adder }———»

Fig. 5.17 The structure of a multiply-adder.
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successive outputs in order to give the pipeline.th.ne to compute a new vajye
for variable a to be used in the next iteration. This is as r.nuch as d times longer
than the execution time required for Eq. (5.2), and the inefficiency arises only
because of the interlock used. _

A way around this problem is described in Kogge [1981] and is discusseq
in Section 3.4.5. The trick is to produce d different sums by computing Eq. (5, 3
according to the schedule

a;:= aj_4 t+ b; X ¢ (54)

The subscripts in Eq. (5.4) denote the operand that appears at the arithmetic
unit input or output at time i. This form of the computation does not require
any interlocks because a; — 4 is available fqr use at a pipeline input just after j
emerges from the output end of the pipeline. o

Unfortunately, Eq. (5.4) produces d distinct SumS,'WhICh is not the intendeqd
result of Eq. (5.3). So at the completion of the calculat_lon described by Eq. (5.4),
it is necessary to sum the 4 output variables into a final result. The final sum.
mation requires a small additional time that degrades performance negligibly
when the B and C vectors are long. The performance degradation cannot be
neglected when the B and C vectors are short, in which case the methodolo
described by Eq. (5.4) should be avoided in favor of an alternate problem for-
mulation that makes more efficient use of the architecture.

The FPS-164 processor [Charlesworth and Gustafson 1986] is an example of
an attached processor. Figure 5.18 shows that the vector processor has its own
main memory, high-speed scalar arithmetic, and a variable number of pipelined

Scalar Arithmetic Units

Scalar Registers [ - ——
X set and ¥ set 1 Multiply Pipeline _I

Attached

Processor _ | Adder Pipeline |}
Main Memory ~ |—] Address (A) Registers  |—— |- ipetine
| Host Computer

indirect-Address Connection
(T) Registers

——  Vector Processor _]-—
Vector
Registers '—-'1 Vector Processor _l—

_{ Vector Processor l—

Fig. 5.18 The structure of the FP5-164 attached processor.

120 M-bytes
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vector units. The system has a high-speed connection to a host computer. The
host function is to provide data and programs for the vector processor and to
receive results when they are available. The vector processor is designed spe-
cifically for high-speed floating-point operations and has virtually no support
for general applications and utility functions. These are supported by the host.

Note that the scalar processor shown in Fig. 5.18 is built for fast scalar
operations in that it has a separate multiplier and adder, two sets of operand
registers (X and Y registers), one set of address registers (A registers), and a set ‘
of indirect-address registers (T registers). The scalar processor broadcasts in-
structions and data to up to 15 vector processors, one of which is shown in
block-diagram form in Fig. 5.19.

The vector processor has two multiply-add units, each capable of producing
one output per cycle. There are two sets of vector and scalar registers and an
input that receives data broadcast from the scalar processor. To make the best
use of the vector processor, this architecture is designed to have sufficient buffer
space locally in the vector processor to eliminate some loads and stores of vector
data. Consequently, the vector registers are very long, 2K operands long, and
there are four vector registers in each of two sets of registers. Thus one processor '
can hold 2 X 4 X 2K = 16K elements from vectors.

The scalar registers are far less numerous. Each of two sets holds four
operands. The reason for having four scalar operands is that, for any given
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Fig. 5.19 The structure of an FPS-164 vector processor.
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vector, up to four different scalar multiples of that vector can be computed
without the need to obtain new data. This tends to reduce traffic to memory in
that each vector can be used up to four times once it is loaded into a vector
processor, and therefore it is not necessary to store and reload the Operand
vector. So there has been a deliberate effort in this design to design the Number
of scalar registers and the size of the vector registers in such a way as to redyce
memory traffic.

The operation of this processor is rather interesting. The vector processors
act as slaves to the scalar processor. They receive instructions and data from the
scalar processor—individually or in a broadcast mode that transmits data or
instructions to all vector processors simultaneously. In this mode the Scalar
processor can also read selectively from the registers of any selected vector
processor.

The normal mode of operation is to load individual vector registers with
starting data, with this done selectively rather than in broadcast mode. There.
after, scalar data and instructions are broadcast, and the processors react syn-
chronously, each performing the same step, but operating on different data,

When the scalar processor transmits in selective mode rather than in broad-
cast mode, all processors except the recetving processor are idle. Therefore this
mode is used as infrequently as possible. Since the vector registers can holg
collectively as many as 15 x 8 x 2000 = 240,000 operands, two or more matrices
of rather substantial size can be stored within the vector processors. This tends
to reduce the need to store and reload data selectively to and from the vector
registers.

Vector operations can be performed concurrently with scalar operations that
take place in the scalar processor. Hence the architecture provides for overlap-
ping the serial computations that constitute loop overhead with the parallej
execution of the prior loop. Earlier in this text, this process has been described
as an essential aspect of efficient processing.

The machine is heavily oriented to typical computations associated with
large-scale numerical processing. The benefit of using this approach is that its
users can purchase only what they need, since they can purchase as many or
as few vector processors as they can justify. Moreover, they can use an existing
on-site processor as a host and need not support the design and development
of a distinct host.

We discuss the role of the indirect-address pointers in the next section, which
focuses on techniques for handling sparse matrices.

5.5 Sparse-Matrix Techniques

In many matrix problems, relatively few elements of a matrix are nonzero. Such
matrices arise in finite-element problems in which a nonzero entry represents
the interaction of one element of volume with a neighboring vclume element.
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The number of nonzero elements is related to the number of neighbors per
volume ele{nent and is generally a very small fraction of the total number of
matrix entries.

These matriFes are very similar to matrices that describe continuum-model
problems, and indeed th?y should be, because the finite-element model is a
continuum model. The difference is the irregularity of the surface or volume
that is being modeled. In modeling the stresses on an airframe, for example
near-neighbor descriptions of a cylindrical fuselage produce a sparse matri):
whose structure leads to very simple near-neighbor operations. If the model
extends beyond the fuselage, however, the problem can become very difficult
to solve. If the model includes the wings, for example, then, at the place the
wings are joined to the fuselage, we must include some interactions that explain
the stresses likely to be found there. These interactions give rise to nonzero
elements that lie in the matrix in relatively unpredictable places.

When a sparse matrix is highly structured with no irregularities, it is often
possible to deal with the nonzero elements exclusively. In the continuum-model
problems investigated earlier, this is precisely what the programs do. In two
dimensions, a typical code accesses the four nearest neighbors, and no other
accesses are required.

1f we move to a finite-element description of an airframe, then near-neighbor
accesses suffice for most interactions, but the remaining interactions, such as
the ones that describe the stresses where the wing joins the fuselage, require
nonlocal accesses. Moreover, the nonlocal accesses need not follow any uniform
or predictable pattern. Hence, to process only the nonzero matrix elements may
require rather rich and expensive interconnections. Moreover, the interconnec-
tions may need to be used selectively rather than in paraliel because of the
absence of regularity in the distribution of the nonzero elements in the sparse
matrix.

Several approaches have been used in architectures to solve sparse-matrix
problems. An early attempt in the CDC STAR created what was known as sparse
vectors. A sparse vector consists of two vectors—one is a short vector that con-
tains just the nonzero elements of a vector, and the other is a bit vector whose
1s indicate where the nonzero elements belong, and whose Us represent the
zeros in the vector. The length of the bit vector is equal to the length of the
sparse vector, but there is a 64-to-1 reduction in the number of bits when
the vector elements are 64-bit operands.

When accessing or storing sparse vectors, the CDC STAR uses the bit vector
to determine whether an access has to be made in a particular index position.
The access is skipped if the bit vector has a 0 in the corresponding position.
Although the bit vector can reduce the number of memory accesses, the items
that are accessed may lie in conflicting memory modules, which leads to delays
in the pipeline. This can negate some of the performance gain attributed to the
accesses saved by dealing only with the nonzeroc elements. There is a small
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additional processing overhead per 0 in the bit vector, but not as large a Penalty
as a full memory access. ) )

Obviously an architecture of this type can incorporate various other facilitjes
for sparse vectors, such as the ability to transla.te a vector fr«?m sparse format
into a full vector format and to translate back again. Als_o, .the pipeline arithmet;c
units can be organized to accept sparse vectors a}t their inputs and to produce
sparse vectors at their outputs by doing conversions on the fly from sparse 4
computational and back to sparse. . )

The major problem with this approach is that there is only a 64-to-1 reduction
in the information saved since, at best, it still takes a single bit to represent 64
bits. Large sparse matrices are SO sparse in many ap‘plications the.1t a 64-to-]
improvement is minuscule compared to what is possible. How this basic ap-
proach might be extended is still an open question for r'esea.rch.

An alternative method for representing sparse matrices is to store only the
nonzero elements, and with each array of elements store a list of indices in the
original matrix. It may be necessary as well to inyert-this structure by mapping
indices to pointers by a hashing scheme that maintains a compact storage rep-
resentation of the inverted list.

If the hash lookup finds an index, then the corresponding element is non-
zero, and the hash table contains the storage address of the corresponding
datum. If the hash lookup fails to find an item, the corresponding item has a
zero value. Hashing for access to data is very much like a cache lookup. Just as
a cache lookup can be pipelined, so can hash access, and therefore this method
for dealing with sparse arrays is potentially useful in pipeline computers.

Returning to Fig. 5.18, the T-registers in the scalar processor contain the
indices of nonzero elements of a sparse matrix. When operations need to be
done for nonzero items only, as each new item is accessed, the scalar processor
finds the address of the next nonzero element and fetches that datum instead
of fetching the next sequential datum. The program has to deal with the zero
elements that have been skipped, but the cost of skipping and the additional
performance degradation from memory contention can be very small relative to
the large gains in processing speed due to the elimination of processing the 0s
in the sparse matrix.

Apart from methods related to the representation of sparse matrices are
algorithms that perform computations only on nonzero elements of sparse ma-
trices. The major difficulty is to develop such algorithms when the sparse matrix
does not have a simple structure. Hoshino [1989] gives an example of how to
treat a sparse problem that is almost tridiagonal, and is an excellent model of a
successful methodology that can be used for sparse problems in which the

majority of the nonzero elements fall into a particular structure. The problem
treated by Hoshino is the solution of a block tridiagonal system of linear equa-
tions. The nonzero elements of the A matrix lie exclusively in smaller blocks
that lie on the diagonal or immediately above or below it. The small blocks are
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themselves tridiagonal matrices. Standard techniques for tridiagonal matrices
can reduce this system to a smaller system of equations, but the reduction cannot
be taken to the full solution of the equations when the original equations are
block tridiagonal. However, the result of the reduction produces a reduced set
of equations that is solvable, in this case by standard tridiagonal techniques.
For finite-element codes, in particular, sparse techniques reduce the equations
to a much smaller set that may well be dense or have a sparse structure that
can be exploited. Consequently, there is hope that sparse problems that arise
in actual practice can be solved successfully on a parallel computer with high
efficiency, but as yet this problem area has not been deeply explored.

This completes our discussion of sparse-matrix techniques. In the next sec-
tion we take a quick tour of a very high-performance machine somewhat different
from the ones mentioned thus far in the chapter.

5.6 The GF-11—A Very High-Speed
Vector Processor

This chapter has assumed that pipelining techniques are the principle techniques
for vector processors. The FPS-164 example suggests that pipeline processing
may not give enough performance, and that some combination between pipeline
and fully parallel implementation may be useful as well.

In this section we describe a machine architecture developed by IBM that is
yet another combination of pipelined and parallel design, with a much stronger
parallel component than the FP5-164 has. The machine is called the GF-11 [Bee-
tem, Denneau, and Weingarten 1985], which stems from its peak performance
of 11 Gflops (11000 Mflops).

The general structure of the GF-11 is very much like a richly connected
ILLIAC IV; it appears in Fig. 5.20. The interconnection network is capable of
producing any permutation whatsoever among the 576 processors in the system.
The interconnection network is a three-stage network with two shuffles between
the three stages. However, these shuffles lie between 24 X 24 crossbar switches,
as shown in Fig. 5.21, rather than between 2 X 2 switching elements. This
network is sometimes called a Benes network [Benes 1964], and it is known to
be capable of producing an arbitrary permutation.

Since the GF-11 is a vector processor, it issues vector instructions from a
control unit, and they are obeyed by the 576 processors. The memory per pro-
cessor is modest—64 K-bytes of high-speed and 256 K-bytes of slower-speed
memory—but the total memory in the GF-11 is very large because of the mul-
tiplier of 576. The slow memory alone accounts for 144 M-bytes. Slow memory
is expandable to 2M per processor as higher density chips become available,
which allows expansion to 1.152 G-bytes in the system.

The processor speed is several times faster than the speed of fast local
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Fig. 5.20 The structure of the GF-11 research machine.
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memory. Consequently, each processor has a very high-speed register file that
serves as the fastest level of the memory hierarchy. The arithmetic processor
itself is pipelined to maintain high throughput fc_n' floa_ting-}:';oint operations.
Hence the pipelining occurs mainly within the arithmetic unit, and the high-
replication factor of 576 gives the extraordinary throughput for the system.
The primary purpose for the construction of this processor is to solve
problem in quantum chromodynamics whose solution can produce the mass of
various elementary particles through lengthy calculations. If the computed mass
is equal to the observed measurements of mass, the predictions of the underlying
theory will be confirmed, thereby lending some evidence that the theory is
correct. If not, the theory needs to be modified or abandoned. Unfortunately,
the computation involves the evaluation of very slowly converging multiple
integrals. At the rate of 11 Gflops, the computation takes about one calendar
ear. ‘
¢ The structure of the GF-11 is vector-oriented, with a single broadcast in-
struction stream. This structure is used because the quantum chromodynamics
problem calls for répeated summations that must be synchronized across all
processors. The communication requirements of the problem stem from relia-
bility considerations. The GF-11 programs are designed for only 512 processors,
and the idea is to use the 64 remaining processors as spares. Should any pro-
cessor fail, it can be quickly mapped out of the array, and a spare processor can
be mapped into the array in its place. The machine then needs to be restarted
from the last checkpoint, but it should continue to operate at full speed after it

is restarted.
The switch permutation is controlled by a collection of bit vectors stored in
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24lines | 24 X 24 L ———9 To Swilch 0, Nexi Slage
—————  Crossbar

? |
Switch = To Switch 23, Next Stage
Switch 0

24lines | 24x24 L —— 3 To Switch 0, Next Stage
———— Crossbar

Switch ~ f——— To Swilch 23, Next Stage
Switch 1

24 lines | 24X 24 L———.p T0o Swilch 0, Nex1 Stage
——— Crossbar
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Switch  f—— To Swilch 23, Next Stage
Swilch 23

Fig. 5.21 Detailed view of a portion of the GF-11 full permuter switch. The 576 lines pass
through three ranks of switches, one rank of which is shown here. Each switch is con-
nected to all 24 switches in the next rank.

the memory called permutation memory in Fig. 5.20. This memory holds 1024 bit
vectors, each selectable by a 10-bit index issued from the control unit. To perform
a specific permutation, the controller issues the 10-bit index to the permutation
memory. Then the bit vector produced by this read is loaded into the switch,
and the settings are made. Then data traverses the switch.

The quantum chromodynamics problem uses only 6 of the 1024 possible
settings