
section 4.6 Archltcctura for the Continuum Model-Which Direction? i85

ess of near-neighbor connections, but the utility of such devices is limited to
~he calculations that fit the specific array geometries. Nevertheless, such devices
could be put in high production and swing the cost-performance pendulum to
favor near-neighbor communication. On the other hand, breakthroughs in op
tical transmission and optical switching may swing the balance towards the

erfect shuffle. Such advances would make communication faster over the longer
iterconnections, and reduce the cost of sending data much further than the
nearest neighbor.

Consequently, new advances in architectures for the continuum model are
driven by the advances yet to come in devices and communications.

4.6 Architectures for the Continuum
Model-Which Direction?

The continuum model is a natural model for parallelism. Near-neighbor inter·
actions can be modeled by networks of processors connected together as near
neighbors. The advantage of the near-neighbor structure is very strong for those
problems that are ideally matched to such a structure.

In a broad spectrum of problems, as the fit becomes less ideal, the perfor
mance of near-neighbor connections becomes poorer and poorer, to the extent
that gains due to parallel execution are offset by the inefficient use of hardware.
Here are the basic choices available to the architect:

1. Build a highly specialized, near-neighbor architecture that is very fast and
effective for some class of problems within the continuum model.

2. Build a somewhat more general machine, but maintain high speed for the
continuum model. Provide extra capability through richer interconnections,
such as the perfect shuffle, and through other mechanisms that provide
speed enhancement for problems that fall outside the continuum model.

3. Build a very general parallel machine that has broad applicability, including
the continuum model, although its speed for continuum calculations may
not be as high as for an architecture specialized for the class of problems.

The potential size of the user community increases by one to two orders of
magnitude as you move from the first to the second choice, and again as you
move from the second to the third choice. A large user base tends to provide
cost reductions to each user because they have to support a much smaller share
of the hardware and software development costs.

A large demand also provides greater profit motivation, but if a designer
chooses to serve the large community and produces a fairly general architecture,
the users who absolutely need a machine for the continuum model will ~
unsatisfied if the general architecture is significantly slower than an architecture
specialized for the continuum model. Moreover, this same user group will ques-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 300

Characteristics of Numerical Applications Chapter 4

tion the value to themselves of the hardware and software that support th
more general classes of problems, since this gro~p of us~rs m~y be paying fo:
these aspects of the computer system and yet denve no discernible benefit from

them.
Which community should the architect serve? There is no obvious answe

to this question. The architect should be prepared to build any of the possibl;
machines, from the most specialized to the most general, each optimized for
the best possible cost and performance for that architecture.

Market forces and other priorities will dictate which machine actually gets
built. Some developers will choose the most general approach, and hope to
install many copies of a machine. Some developers will choose to a carve a niche
for their ideas by producing a relatively small number of ~opies of a highly
specialized machine. Yet other developers may choose a design that falls in be-

tween.
Whichever choice is made, the architecture has to be cost-effective for the

user community. For the smaller markets, a significant portion of the challenge
is to keep hardware and software development costs low✓ so that these costs
when amortized over copies actual1y sold are still within reasonable bounds.
Thus; not only must the architect produce a cost -effective design, but the design
process itself must be done efficiently.

One important observation from this chapter is that what appears to be an
ideal architecture for a class of problems may not be ideal at all. An architect
who produces a machine that executes a particular code very efficiently may be
somewhat disappointed when research advances in basic algorithms produce a
new, efficient solution technique not at all suited to the specific architecture. In
such a case the very specialized machine may have difficulty competing with
a less specialized machine that happens to be able to run the more efficient
algorithm.

Breakthroughs do occur from time to time, such as with the formulation of
the fast Fourier transform [Cooley and Tukey 1965]. Prior to their work, the best
algorithm required N2 multiplications and required a particular type of access
to data. The newer; faster algorithm requires only N log N multiplications and
uses a very different data flow. A machine built for the older algorithm would
not serve the newer one well. The more specialized the architecture, the more
susceptible it is to competitive methods when breakthroughs do occur. The
architect of the specialized machine has to assess the risk of a breakthrough.
For the continuum model, the risks are high enough to merit attention.

In recent years, algorithm improvements have changed the basic flow of
data in various solution techniques, have altered the grid structure that models
the continuum, and have even provided for multiple grid spacing. A machine
built specifically for algorithms of 20 years ago would do relatively poorly when
executing some of the new algorithms for the same problems.

As an example of the evolution of parallel algorithms, the fast algorithms

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 301

section 4_6 Architectures for the Conttnuum Model-Which Direction? H7

f r the continuum model described earlier in this chapter may make better use
~ connection patterns like the perfect shuffle than of connection patterns that

~e near-neighbor mes~ connections, but the near-neighbor connections were
the backbone for_ th~ first large-scale computers for the continuum. Another
step in the e~olu?on is represente~ by the Cosmic ~ube described earlier in this
chapter, which 1n a sense comb1~es the near-neighbor interconnections and
the perfect shuffle. It uses_near-~e1ghbor connections in six dimensions, but at
best only three of those dimensions lead to short interconnections in a three
dimensional packaging world. The other three dimensions force interconnec
tions to have relatively long physical lengths.

The six-dimensional connection structure of the Cosmic Cube gives the same
adjacency pattern _achieved by. the ~erfect sh~ffle. The difference is that all
dimensions are ad1acent at all times m a Cosmic Cube, whereas the adjacency
changes in time in a perfect shuffle structure. Because processors that are directly
connected within a Cosmic Cube have indices that differ by a single power of
2, this structure is well suited for recursive doubling, cyclic reduction, Fourier
transforms, and other applications mentioned in this section.

Hoshino [1989], on the other hand, has shown that for the general class of
scientific calculations the overwhelming majority of processor-to-processor in
teractions occur across near-neighbor links on a two-dimensional mesh. The
additional connectivity provided by a hypercube and the greater distances
spanned by the perfect shuffle rarely come into play, and provide only a marginal
decrease in the number of operations while contributing greatly to cost. He
provides a strong case for two-dimensional mesh connections based on extensive
experience in implementing scientific applications. Even though his applications
occasionally force some processors to communicate over long distances, this
happens sufficiently infrequently that it degrades performance only slightly.
Hence, Hoshino's case rests on the fact that the communication constraints
imposed by a two-dimensional mesh do not degrade performance of actual
programs. Indeed, his PAX architecture is a compromise between the ILUAC
JV and Cosmic Cube architectures, incorporating some good features of each
together with some features unique to PAX.

Nevertheless, experience with parallel applications is still rather limited but
growing every year. New techniques and new algorithms are still appearing in
abundance. As these appear, they force us to rethink our conclusions on what
combination of algorithms, architecture, applications and produces an efficient
way to solve problems.

In summary, there is no obvious best design for parallel processors for the
continuum model. The available approaches depend on how specialized the
processing system can be. A processor for the continuum model undoubtedly
will be somewhat specialized-it will probably have an interconnection system
to speed up typical programs for this model. Which approach, if any, becomes
dominant is most likely to depend on the directions of device technology in the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 302

Characteristics of Numerical Applications Chapter 4

coming years, with near-neighbor structures depe:11dent on V~Sl advances and
perfect-shuffle structures dependent on advances m interconnections technology.

Exercises
4.1 The object of this ex·ercise is to explore calculations for the con ti.nu um model. Assume

that you have a square array of points, 9 x 9, and ~hat the value of the potential
function on the boundary is O on the top row, and 1s 10 along all other boundary
points.
a) Initialize the potential function to O on all interior points. Calculate the Poisson

solution for the values of all interior points by replacing each interior point with
the average value of each of its neighboring points . Compute the new values
for all interior points before updating any interior points. Run this simulation
for five iterations and show the answers you obtain at this point. Then run until
no interior point changes by more than 0.1 percent, and count the total number
of iterations until convergence. This method is usually called the Jacobi metltod.
Note: The values on the boundary are fixed and do not change during the
computation.

b) Repeat the process in the previous problem, except update a point as soon as
you have computed the new value and use the new value when you reach a
neighboring point. You should scan the interior points row by row from top to
bottom and from left to right within rows. This method is usually called the
Gauss-Seidel method.

c) The second process seems to converge faster. Give an intuitive explanation of
why this might be the case.

d) How do your findings relate to the interconnection structure of a parallel pro
cessor designed to solve this problem?

4.2 The purpose of this exercise is to show the effect of information propagation within
a calculation. Use the Poisson problem of Exercise 4. l(b) and write a computer
program using the Gauss-Seidel method that iterates until no interior point value
changes by more than 0.1 percent. Let this be the initial state of the problem for
the following exercises.

a) Increase the boundary point on the top row next to the upper left comer to a
new value of 20. Perform five iterations of the Gauss-Seidel Poisson solver and
observe the values obtained. Then run the algorithm until no interior point value
changes by more than 0.1 percent and count the total number of iterations to
reach this point.

b) Now restore the mesh to the initial state for a. Change the program so that, in
effect, the upper left corner is rotated to the bottom right corner. To do this,
scan the rows from right to left instead of left to right and scan from bottom to
top instead of from top to bottom. Perform five iterations of the Poisson solver
and observe the values obtained. Run the program until no interior point changes
by more than 0.1 percent, and count the number of iterations to reach this point.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 303

Exercises 289

c) Both a and b eventually converge to the same solution because the initial data
are the same and the physical process modeled is the same. However, the results
obtained from a and 11 are different after five iterations. Explain why they are
different. Which of the two problems has faster convergence? Why?

4.3 The purpose of this exercise is to examine the cyclic-reduction algorithm. Explore
the solution of a one-dimensional Poisson problem by treating 15 points on a line.
Let the left boundary point, point 0, have the value 10 and the right boundary
point, point 16, have the value 0. Each of the 15 intem1ediate points has a value
that is the average of its immediate neighbors.

a) Write a matrix equation of the form Ax = b that describes this problem.

b) Simulate an iterative process that updates each interior point with the average
of its neighboring points. Obtain the interior values of points for the first three
iterations of the technique previously used, in which each interior point is up•
dated bv the average of its neighbors.

c) Now apply the cyclic-reduction algorithm in the text for three iterations to find
one equation for the point in the middle. Solve this equation and use three
iterations of back substitution to find the remainder of the points. Show your
solution and the equations you obtain after each iteration. (Hint: The first iteration
should produce new equations for points 2, 4, 6, 8, 10, 12, and 14. The second
iteration produces new equations for 4, 8, and 12.)

d) Compare the results produced in band c with respect to the precision obtained.
Count and compare the total number of additions, multiplications, <1.nd divisions
for each algorithm after three iterations .

e) Explain from an intuitive point of view why cycl~c reduction yields high speed
and high precision as compared to the near-neighbor iteration. What implications
can you draw with regard to interconnections for processors for solving the
Poisson problem?

4.4 The purpose of this exercise is to investigate how to implement conditional branches
in an array computer. Program 4.1 does not show instructions that determine if
convergence has been reached. The instructions should determine if every processor
has obtained a satisfactory solution, and, if not, the progr.am should branch back
to the top of the loop .

a) Write the instructions that do this job, inventing the instructions as you need
them. Describe the operation of each instruction that you invent.

b) Redraw the block diagram of the ILLIAC IV computer and describe the data flow
on the block diagram necessary to support the test for termination.

c) Assume that the control processor of the lLLlAC IV can execute its instructions
in parallel with instructions that are broadcast to the 64 numerical processor:..
Can any or all instructions of the termination test be overlapped with the cal
culation of a loop iteration? If so, describe ho\'\' to implement the instructions in
your program and in Program 4.1 to facilitate this overlapped execution.

4.5 The purpose of this exercise is to explore the interconnection structure of a hypercube
computer such as the Cosmic Cube. Assume that you are to cakulate all partial
sums of i items up to the sum of 64 items.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 304

190 Characteristics of Numerical Appllcattons Chapter 4

a) Construct a program for a Cosmic Cilbe computer system that performs th·
operation in a time that grows as O(log N) if the number of processors is ~s
Assume that every node in the computer executes the same program, althouJ h
the program can be slightly different from node to node since the processors~
a Cosmic Cube are independent. Show ex~licitly t~e instructions that send an~
receive data between pr~cessors. Invent mstructions ~s you ~eed them and
describe what the instructions do. In~ude so~e typ_e of m~truchon for synchro
nization that forces a processor to be idle until a ne1ghbonng processor sends
message or a datum that enables computation to continue. a

b) Which communication steps if any in your answer require communications with
processors that are not among the six processors directly connected to a given
processor? How do you propose to implement such communication in software
{assuming that the hardware itself does not provide remote communication as
a basic instruction)?

4.6 The purpose of this exercise is to examine the recursive-doubling solution to a linear
tridiagonal system of equations. Consider the solution of the equation Ax = b,
where A is a tridiagonal equation.

a) Prove that the recurrence in Eq. (4.15) is a correct expression for the major
diagonal of matrix U in an LU decomposition of A.

b) Using recursive doubling, show all of the steps required to factor A into LU and
to solve the equations Ly= band Ux = y. For each major step of the algorithm,
show the basic recurrence solution. Show the mathematical formulation of your
solution and indicate the basic operation in the recursive-doubling iteration.

4.7 Find a recursive-doubling technique for solving Eq. (4.13).

4.8 The purpose of this exercise is to explore some of the properties of the perfect
shuffle interconnection scheme.

a) Consider a processor that has the perfect shuffle and pair-wise exchange con
nections shown in Fig. 4. 16. For an eight~processor system, show that the per
mutation that cyclically shifts the input vector by three positions is realizable by
some setting of the exchange modules. Draw the network unrolled in time to
show the setting that realizes this permutation.

b) Repeat a to show that a cyclical shift of two positions is realizable.

c) Prove that a shuffle-exchange network can realize any cyclical shift in log2 N
iterations for an N-processor system when N is a power of 2.

4.9 Find a means for evaluating a polynomial of degree N - 1 in the variable x in
parallel on an N-processor computer that uses the shuffle-exchange interconnection
pattern. Assume that N is a power of 2.

4.10 Prove that the scheme shown in Fig. 4.18 produces a sorted sequence of length N
from a bitonk sequence of length N. Specifically, prove that after the comparison
and exchange is performed, each sequence of length N/2 is bi tonic and all elements
of one sequence do not exceed the value of any element of the other sequence.

4.11 Consider a tridiagonal linear system such as that described in Section 4.4.4. Assume
that the problem is symmetric about the major diagonal so that ai.i = aj.i· (The indices

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 305

Exercises 291

; and j lie in the range 1 :S i, j s N, where N is a power of 2.) The Sturm polynomials
for the matrix A are the polynomials Q,(x) defined by the recurrence

Q,{x) = (au - r)Qi_ 1(x) - (a;_;_1)2Q;. :?.(x)
Qo(X) = 1

Q1(X) = a1,1 - X

For a very important matrix computation it is necessary to find the number ol
changes of sign for a given value of x in the sequence of values Q0{x), Q1(x), . . . ,

QN-1(X).
a) Assume that you wish to find the number of sign changes for a single value of

x, and you have N processors available to do the calculation in parallel. Work
out a recursive-doubling algorithm for the calculation.

b) Show a block diagram of a connection pattern suitable for this algorithm within
which each processor is connected to a fixed constant number of processors
regardless of the size of N, and for which at each step of the algorithm the data
are accessible in a constant number of steps from neighboring processors, re
gardless of the size of N.

c) Now assume that you wish to find the number of sign changes for N different
values of x. Compare the time taken by running your recursive-doubling algo
rithm N times to the time required to obtain values of the Sturm polynomials
serially for each of the N values of x. Which of the two methods is preferred?

d) Now assume that you wish to compute the number of sign changes for a number
of values of x much larger than the value of N. Which of the two methods is
better?

4.12 Figure 4.15 shows a shuffle-exchange nen-.•ork with a cyclical shift interconnection
pattern superimposed. Show that it is possible to compute the same set of partial
sums computed in the figure without the cyclic-shift pattern, using only the perfect
shuffle and the pair-wise-exchange patterns of Fig. 4.16. Your algorithm will need
to send more than one datum from one cell to a cell in the next column, but the
number of different data transmitted from column to column is a constant that is
independent of N.

4.13 a) Show the switch settings for a shuffle-exchange network as depicted in Fig. 4.16
that send input cell i to output cell 3i mod N for N = 16.

b) For each integer in the range O s i s 15, write the value of i in binary followed
by the value of 3i mod 16 in binary . Start a new row for each integer and align
the binary values to create a table of size 16 rows by 8 columns. Examine row i
for each i. Show that the last four bits in each row are related to the switch
settings from part a. In fact, these bits show the switch settings for input i as it
passes through the neh-vork. (Hint : Use the shift-register analogy.)

4.14 a) Prove that the function that takes i into pi mod N for i ::S N is a permutation
when N is a power of 2 and pis odd. (Hint: The function is a permutation if you
can show that when pi = pj mod N, this implies that i = j.}

b) Apply your reasoning from b of Exercise 4.13 to show that a shuffle-exchange
network has switch settings that realize the permutation that takes i to pi mod
N for every odd value of p.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 306

5
The tucked-up sempstress walks with
hasty strides, Wh!le ~treams run down
her oil' d umbrella s sides.

-Jonathan Swift, 1711

Vector Computers

5.1 A Generic Vector Processor
5.2 Access Patterns for Numerical Algorithms .
5.3 Data-Structuring Techniques for Vector Machines
5.4 Attached Vector-Processors
5.5 Sparse-Matrix Techniques
5.6 The GF-11-A Very High-Speed Vector Processor
5. 7 Final Comments on Vector Computers

The last chapter introduces the idea of building a parallel architecture matched
to a specific class of problems. The discussion there mentions that there are two
major models of numerical processes-a continuum model based on near-neigh
bor interactions and a particle model based on discrete point-to-point interac
tions. The major emphasis of Chapter 4 is the continuum model, together with
the architectures that support processing of near-neighbor interactions for that
model.

This chapter extends the discussion of numerical architectures to vector
computers with the idea that these computers can be used for the majority of
continuum-model problems, as well as for many particle-model problems. The
vector computer has emerged as the most important high-performance archi
tecture for numerical problems. It has the two key qualities of efficiency and
wide applicability.

Most vector computers have a pipelined structure. When one pipeline is not
sufficient to achieve desired performance, designers have occasionally provided

292

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 307

section 5.1 A Generic Vector Processor 293

multiple pipelines. Such processors not only support a streaming mode of data
flow through a single pipeline, they also support fully parallel operation by
allowing multiple pipelines to execute concurrently on independent streams of

data.
By the mid-1980s, more than twenty manufacturers offered vector processors

based on pipeline arithmetic units. They ranged from relatively inexpensive
auxiliary processors attached to microcomputers to high-speed supercomputers
with computation rates from 100 Mflops to rates in excess of 1000 Mflops. (One
Mflops is 106 floating-point op~rations per second.)

The price-performance ratio of these vector processors is rather remarkable
because they yield one to two orders of magnitude increased throughput for
vector computations when compared to serial processors of equal cost. But this
/throughput increase is limited to the problems that fit the architecture-that is,
to problems that can be structured as a sequence of vector operations whose
characteristics make efficient use of the facilities available.

Many of the supercomputers are also high-performance serial processors for
general-purpose problems, but the throughput of these supercomputers on non
vector problems is only a few times greater than the throughput of more con
ventional high-speed serial processors. In fact, although throughput might be
high because of fast device technology, if a vector-structured supercomputer is
used exclusively on nonvector problems, the computational cost may be exces
sive because this cost includes the cost of the vector facilities, which presumably
are left idle by scalar computations.

The purpose of this chapter is to describe the general architecture of vector
machines and then describe how algorithms and architecture can be matched
to each other to obtain efficient processing over large classes of computations.

5.1 A Generic Vector Processor

The basic idea of a vector processor is to combine two vectors, element by
element, to produce an output vector. Thus, if A, B, and C are vectors, each
with N elements, a vector processor can perform the operation

C :=A+ B -
which is in'ff~:ed to mean

ci : = ai + b;, 0 ~ i < N - 1

where the vector C can be written in component form as (co, C1, •.• , cN_1). The
form is similar for vectors A and B.

A very simplified way to implement this operation with a pipelined arith
metic unit is shown in Fig. 5.1. The two streams of data supplied to the arithmetic
unit carry the streams for A and B, respectively. The memory system suppli~s

:-.:, .,..

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 308

294 Vector Computers
Chapter 5

Stream A -
~

Pipelined Adder
Mullipon Stream B

~

Memory ...
System

Stream C :;;;;: A + B

I
~

~

Fig. 5.1 A processor that is capable of adding two vectors by streaming the two vectors
through a pipelined adder.

one element of A and B on every clock cydeJ one element to each input stream.
The arithmetic unit produces one output value during each dock cycle. (Actually,
the input data rate need be only as fast as the output data rate. If the arithmetic
unit can produce results at a rate of one output value every d cycles, then the
input data rate need be only one input value on each stream every d cycles.)

..;, , /;..,.. -2>/ Figure 5.1 shows only the 9ar~st details of the vector processor to indicate
· the general flow of data through the pipelines. The pipelined arithmetic unit 15

discussed in Section 3.4 and that unit is the core of the architecture in Fig. 5.1.
The difficulty, however, is the design of the memory system to sustain a

continuous flow of data from memory to the arithmetic unit and the retuin fiow
of results from the arithmetic unit to memory. The majority of the architectural

(
, • ..i,.- tricks used in vector processors are devo_ted to sustaining that flow of data and - ~,1, ..,.i.....,.,

to scheduling sequences of operations to reduce the flow requirements.
/ {In this example we assume a basic one-cycle rate for the deljv..ery of operands,
production of results, and restoring of the result data into m;mory. This calls
for a memory system that can read two operands and write one operand in a
single cycle}

c,,,'//.,'.;Conventional random-access memories can perform at most one READ or
one WRITE per cycle✓ so the memory system in Fig. 5.1 has at least three times
the bandwidth of a conventional memory system. Of course this ignores any
additional requirement for bandwidth for input/output operations. Also, we
have ignored the bandwidth for instruction fetches✓ but a major advantage of a
vector architecture is that a single instruction fetch can initiate a very long vector
operation. Consequently, the bandwidth required to fetch instructions for a
vector architecture is negligible as compared to the 20 to 50 percent of the
bandwidth used for instruction fetches in conventional architectures.

The major problem f~cing the architect is to design a memory system that
C) ,-_/)/,'/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 309

section 5.1 A Generic Vector Processor 195

can meet the bandwidth requirements i~po~ed by the arithmetic unit. Two
major approaches~-~a~~ e~er _ged in commercial vector machines.

1. Build the necessary bandwidth in main memory by using several indepen
dent memory modules to support concurrent access to independent data;

or

2. Build an intermediate high-speed memory with the necessary bandwidth
and provide a means for high-speed transfers between high-speed memory
and main memory.

The first approach acknowledges that if one memory module can access at most
one datum per access cycle, then to access N independent data in one access

.L-: ... cycle requires N independent memory modules. The second approach produces
higher bandwidth by shortening the access cycle in a small memory. But the
small memory is loaded from a large memory, and the large memory can still
be the ulti~ate b~ttl~I_1-~,ck in the system i_~ ~pite of the high bandwidth of the
small mem'ory - · · · ,.._ ·· · '·

To make best use of the small high-speed memory, we should make multiple
use of operands transferred to this memory. In this way the net demand by the
processor on the large memory is reduced, and bandwidth of the large memory
need not be as)arge as the peak bandwidth required by the processor.

In the latter part of this chapter we see that another use of the high-speed
memory is to provide for access patterns not available in main memory. Thus,
we can move a data structure such as a matrix from main memory to intermediate
memory by using the access patterns supported by main memory.

When the matrix is stored in intermediate memory, we can provide for
efficient access to rows, columns, diagonals, or subarrays of the matrix, not all
of which can be done efficiently when the matrix is stored in main memory.
The second approach has been embelli~hed in some cases by providing more
than one level of intermediate memory, with the size, cost, and performance of.
each level selected to give a good cost-performance ratio of the total memory
system.

5.1.1 Multiple Memory Modules

The first approach is illustrated in Fig. 5.2. In this figure main memory is com
posed of multiple modules. Eight modules are shown; they c~~p~se a system
with eight times the bandwidth of a single module. Each of the three data streams
associated with the arithmetic pipeline has an independent path to the memory
system so that each stream can be active simultaneously, provided that each
individual module serves only one path at a time.

Consider how this system can be used to implement vector arithmetic.(We
/ assume that a basic memory cycle takes two processor cycles, so the bandwidth

required to service the pipeline in Fig. 5.2 is at least six times the bandwidth of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 310

296 Vector Computers
Chapters

I M ---■

-

l M -.
Stream A

:. ~

I . ■ -M - Pipelined Adder
Stream B

I- ...
M ~

I M
Ir,,-

[M
.__ Stream C == A + B

~ -

I M
II---

I M It--

Fig. 5.2 A vector processor with a memory system composed of eight 3-port memory
modules.

a single memory module) Figure 5.3 illustrates an ideal solution to our vector
arithmetic example. The vectors A, B, and C are lajg_~ut in memory so that
they start respectively in Modules 0, 2, and 4, and their successive elements lie
in successive memories at addresses that are easily calculated.

The timing for the activity in this architecture is shown in Fig. 5_.4. Timfl _is
shown on the horizontal axis, and the activity of the memory modules and
pipeline unit is shown on th'€ vertical axis. Note that the arithmetic pipeline has
four stages, thereby producing each output value four units after the corre
sponding input data arrive at the pipeline. The pipeline is busy continuously
after it fills with data.

A busy pipeline stage is indicated by the integer within the cell, which gives
the subscript of the vector element that is being processed at the given time. A
busy memory module is indicated by an R followed by a letter and a digit. The
symbol RAO indicates that the module is reading the element of vector A with
subscript 0. The letter W indicates a WRITE operation in progress to the element
of C whose subscript follows the W.

For this example~ we have purposely allocated the vectors to modules so
that no conflicts occur. To simplify this discussion we ignore the addressing of
items within modules and focus only on which modules are active. At Clock 0,
Modules O and 2 initiate READs to the first elements of vectors A and B. These
elements appear at the pipeline inputs at Clock 2, and the corresponding output
appears at the end of Clock 5.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 311

section 5.1 A Generic Vector Processor 297

Module o [A[O) 8[6) C[4j

Module 1 A[1) 8[7) C!5)

Module 2 A[2] 8(0) C(6]

Module 3 A[3] B[1 l C[?) ''.

Module 4 A[4] 8(2) CIO)

Module 5 A[5) 8[3] C[l]

Module 6 A{6) 8[4) C[2)

Module 7 A[7J BIS] C!3]

Fig. 5.3 The physical layout of three vectors in the modular memory of the pipelined
vector processor of Fig. 5.2.

Meanwhile at Clock 1, Modules 1 and 3 initiate READs to the second ele
ments of the input vectors, and at each subsequent clock cycle, successive mod
ules initiate READs to the next elements of the input vectors. At the end of
Clock 5 the first output value emerges from the arithmetic pipeline.

During the next clock period, Clock 6, Modules 5 and 6 are busy reading
the next elements of the vector A. Module 5 delivers a5 at the beginning of Clock
7, and Module 6 delivers a6 at the beginning of Clock 8. Similarly, Modules 7
and O are busy reading bs and b6, respectively, during Clock 6. Modules 1, 2,
and 3 are u~cueied. Module 4 initiates a WRITE to put away c0 during Clock
6, and during the next clock cycle, Module 5 initiates a WRITE to put away c1.

Note how well the arithmetic and memory operations dovetail in the timing
diagram in Fig. 5.4 so that all operations proceed without a collision. That is the
beauty of pipelined data flow when data flows can be made collision h-ee. But
reality is never as well behaved as ideal examples are.

What happens when we cannot arrange the vectors to begin in the modules
where we want them to begin? For example, the structure of the vector add
prevents the vector C from beginning in Modules 0, 5, 6, or 7 when the input
data are arranged as shown in Fig. 5.3. If C is computed somewhere else in the
program as the sum of D and E, the vectors D and E might well be stored in
memory in a way that prevents C from beginning in Modules 1 through 4.
Hence, we might discover that C is too constrained and cannot be stored in any
manner to support conflict-free memory operations.

Figure 5.5 shows how buffers at the input and output of the arithmetic

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 312

i98

Pipeline Stage 4

Pipeline Stage 3

Pipeline Stage 2

Pipeline Stage 1
Memory 7

Memory 6

Memory 5

Memory 4
Memory 3

Memory 2

Memory 1

Memory O

RBO

RAO

0

RB2

RB1 RB1

RBO AA2

RA1 RA1

RAO

Vector Computers

0 1

0 1 2

0 1 2 3

1 2 3 4

RBS RBS
RB4 R84 AA6

RB3 RB3 AAS RAS
RB2 RA4 RA4 WO

RA3 RA3

RA2

RBS

Chapters

2 3 4 5 6
,.__

7
3 4 5 6 7

,__

4 5 6 7 -
5 6 7 -

RA7 RA7 W3 W3 -
AA6 W2 w2 -
W1 w, -
WO

-
W6

RB7 AB7 ws ws -
RBS W4 W4 -

0 2 3 4 5 6 7 8 9 10 11 12 13

Time (clock periOds) ---

Fig. 5.4 A timing diagram for the addition of two vectors, component by component
in pipeline mode. '

~ ,._,;.~ ,.),~

pipeline can eliminate contention at the memory. Suppose, for example that all
vectors start in Memory 0. The timing diagram in Fig. 5.6 shows how the vector
operation,._proceeds without conflict. The input buffer on the A input is set to
a delay of two docks, and the output buffer is set to a delay of four docks.

In Fig. 5.6 note that A is read before B, so that each element of B reaches
the pipeline exactly two docks after the corresponding element of A emerges
from the memory. By buffering A for two clock cycles, we provide for corre
sponding elements of A and B to reach t.he arithmetic pipeline concurrently.

► r Variable I Stream A
Delay ►

Stream B
Pipelined Adder

-.

A

Variable ~

Stream C = A + B
◄ Delay I

Fig. 5.5 Variable delays in the input and output streams of a pipelined arithmetic unit.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 313

section 5.1 A Generic Vector Processor 299 -~-· ~--

Pipeline Slage 4

Pipeline Slage 3

Pipeline Stage 2

Pipeline Stage 1

Memory 7

Memory 6

Memory 5

Memory 4

Memory 3

Memory 2

Memory 1

Memoiy 0 RAO

RA1

RAO

RA3

RA2 RA2

RA1 ; RBl

ABO RBOJ

0

0 l

AAS
RA4 AA4

AA3 R83

AB2 R82

RB1

I 0

0 1

1 2

2 3

RA7

RA6 RA6

RAS RBS
RB4 ,RB4

RB3

i

I

, 2 3 4 5

2 3 4 5 6

3 4 5 6 7

I 4 5 6 7

RA? RB7 RB7

RB6 RB6

RBS,

l

RA9 RA9 RB9 RB9

,RAS RA8 ABB RBB WO

O 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (clock periods) _ _...,►

Fig. s.6 A timing diagr~m fo~ the addition of two vectors when storage conflicts arise.
After reading, Vector Fig. A is delayed by two clocks, and, before writing, Vector Fig.
c is delayed by four clocks . The first WRITE takes place at Clock 12.

When the first result appears at the output of the pipeline at the end of Clock
7

1
it arrives just when Module O is busy for four dock cycles fetching a8 and b8 •

Hence, the output buffer holds each output for four clock cycles and then
passes the output to the memory system . Thus the first result is stored during
Oock 12, and the total duration of the vector operation is lengthened by six
clock cycles over the timing shown in Fig. 5.4. After the initia l delay, howeverJ
results are produced and stored at the rate one result per dock cycle, which is
the same rate as in Fig. 5.4. The technique of adding buffers to the inputs and
outputs of an arithmetic unit to eliminate memory conflicts is similar in spiri_t

, ,, 1·to the idea of adding buffering in the interior of a pipeline to eliminate internal
~ /" 4- . ,

conflicts, which has been. _~xplored earliei in Section 3.4.4.
One implementation of this idea is shown in block diagram form in Fig. 5.7,

which is intended to represent the structure of the CDC STAR Computer, a
supercomputer produced in the mid-1970s. This diagram shows a variable delay
inserted into one of the operand streams and the result stream. The delays are
set to specific values depending on the location of the first elements of each of
the operands and the result vector. This ensures that the pipeline can run at
full speed after an initialization period during which the operand and result

✓ streams £ill their respective buffers.; Unfortunately, if vectors are short, a rela
tively long buffering delay can have a strongly negative influence on performance.)

Figure 5. 7 shows that several functions can be selected within the arithmetic

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 314

300

I Address
Generator

♦

-.

~

~

MEMORY
SYSTEM

Vector Computers Chapter 5

Instruc1ion --i_____.1 Instruction
Decoder

Vector Con1rol I L L
I -

Select Delay Function Select

.~ , Ir

Variable
Stream A -.

Delay
Pipelined Adder

Stream 8 -..
Select Delay

• Variable Stream C == A + B .
Delay

,

/-

Fig. s. 7 An architecture similar to the CDC STAR. The instruction decoder sets the
variable delays as a function of the starting addresses of the vectors and the throughput
rate of the arithmetic pipeline for the specified operation. The address generator produces
the load and store addresses during the execution of the instruction.

subsystem. The CDC STAR has no capability to overJap two or more vector
operations with each other, so it is reasonable in this architecture to share
common arithmetic functions among different vector operations. Thus the float
ing-point addition and multiplication operations use the same hardware for
exponent add, shift, and mantissa add, which are common to the two functions.
The CDC STAR actually provides for two single-pr~~isi~n operations or one
double-precision operation within one pipeline, where the flexibility is obtained
by special logic inserted in the arithmetic stages that lie in the boundary region
between the two single-precision halves of a double-precision operand. This
logic disables the carries between halves in 32-bit mode and enables the carries
between halves in 64-bit mode. This permits the result rate for single precision
to be double the result rate for double precision, when you measure the result
rate in terms of result operands produced per unit time. However, the number
of physical bits produced per unit time is the same for single and double precision.

The variable delays in Fig. 5.7 are rather interesting entities in themselves
because they can be costly both in dollars and setup time. Even if the dollars
are unimportant, setup time is very important, and we require the delay to be
set quickJy to a particular value.

One possibility is to use a tapped delay line wherein the data stream enters

,__,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 315

section 5.1 A Generic Vector Processor 301

a series of delay stages at a specific input, but a tap control selects a specific
output to serve as the output of the delay line. This is shown in Fig. 5.8. Each
of the N stages in this delay line is a potential network output, but the actual
network output is determined by the output control.

This line can yield any delay from O to N - 1, provided that data can be
clocked in and out of the delay line within a single dock cycle. In some tech
nologies, the logic required to implement the variable delay results in relatively
long access paths that may be too long for the clock cycle of the full system.
This is technology dependent, however, it must be considered by the architect.

An alternative way to achieve the variable delay is shown in Fig. 5.9. This
requires N cells of a special memory. This particular memory can simultaneously
read any cell in the system and write any other. There are two address registers,
one for READ and one for WRITE. The initial value of the WRITE register is O,
and as each da~ -~ arrives at the memory and is written, the WRITE address
increments by 1. '·· 1 . .

To achieve a delay of an arbitrary amount up to N, the initial address of the
READ register is -d, the selected delay. This register is incremented at the rate
of operand arriv~Js, but no data are read until the READ address is 0. At this
point the READs occur at. the same rate ~s the ~T~s, ~nd thus the output
stream is the same as the input stream shifted d umts m time.

The memory in Fig. 5. 9 has exactly N locations, numbered O to N - 1. As
READ and WRITE addresses to memory increment beyond N - 1, they reset
to O and continue incrementing, so the memory operates as a circular queue.
The value of N need only be large enough to provide for the longest delay
required for synchronization. Vector operands can be much longer than N be-

Data Stream

Delay
Amount

7- Delay
Amount
Decode

Tapped Delay Line

Tap Selects

Delayed Output-Stream Bus

Fig. 5.8 A variable delay built from a tapped delay line. The D modules are unit delays.
One tap is gated to the output bus by a tap-select control line produced by decoding the
delay amount.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 316

30! Vector Computers Chapter 5

READ/WAITE registers

I READ Address :1-----,

I WRITE Address ri
----~--~-,

Data Stream In _ ..
(lo WRITE address)

Two-Port Memory
Data Stream Out

---,..
(from READ address)

Fig. 5.9 A variable delay implemented with a two-port memo11'.". The delay is the dif
ference between the READ and WRITE addresses. For O delay, the mput stream is shunted
directly to the output by means of bypass logic not shown in the figure. :,,,~.-::'-

cause the delay memory does not have to store an entire vector at any given
instant of time.

The delay O case is a special situation that can easily be detected because
the READ and WRITE addresses are identical in this case. In this situation the
input data stream must be shunted directly to the output without being stored
in the buffer. Interested readers will find more discussion on variable delays in
Kogge [1981].

The variable delay memory in Fig. 5.9 is capable of delaying a stream any
amount from O to N clock cycles. It has several advantages over the tapped
delay-line because no more than two addresses in Fig. 5.9 change state each
cycle, as compared to changes in potentially all stages of a tapped delay-line.
Each time a cell changes state, there is a change in a physical parameter such
as voltage or current. Each such change usually requires power, and with power
is produced heat and electrical noise. The fewer changes in the memory system
of Fig. 5.9, as compared to the delay memory of Fig. 5.8 in which many cells
change on each clock cycle, lead to potentially fewer transient effects and noise
problems.

5.1.2 Intermediate Memories

We indicate earlier that an alternative to providing high bandwidth in main
memory is to provide one or more intermediate levels of memory to form a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 317

section 5.1 A Generic Vttctor Proc~sor 303

hierarchy of memories, with the highest bandwidth memory placed closest to
the processor. In this architecture, vectors migrate from main memory to the
fastest memory in the hierarchy as they are needed by the processor. Other
memory levels, if they exist, provide intermediate storage points to hold vectors
in transit just before or just after their use in the fastest portion of the hierarchy.

The Cray I, a landmark high-speed architecture, bases its high-speed oper
ations on a hierarchical memory structure. A simplified diagram of the Cray I
appears in_ Fig. 5.10. Its main memo~ (8 M-b~tes) is sep~rated from the pro
cessing uruts by one or two levels of mtermediate memones. For vector oper
ations, the intermediate memory is a set of eight vector registers (the V registers),
each capable of holding a 64-element vector of double-precision numbers. The
vector pipelines obtain data from the vector registers, not from main memory.
similarly, the result vectors from the pipelines are returned to the vector registers.

Scalar operands have two levels of intermediate memory, much like con
ventional cache-based high-performance systems. The fastest level contains eight
64-bit scalar registers (the S registers), which communicate directly wi.th the
pipeline units for sc~lar arith~etic. . _

A slower, but still very high speed, level of mtermed1ate memory is com
posed of 64 scalar registers (the T Registers), each 64 bits in length. The T
register scalar memory has the same purpose as a cache memory in that it is
intended to hold those data that overflow from the high-speed scalar registers.
Such data may become idle temporarily, but should be held close to the processor

8 Vector (VJ Registers
12 Pipelined 64 Operands/Register - Arithmetic

Main - Units
Memory 64 Butter 8 Scalar - (T) Registers (S) Registers -

8 M-bytes
64 Buffer 8 Address -- (A) Registers 64 Modules (B) Registers

256-Register - Instruction H Instruction Register I
Buffer

I I Program Counter I I

Fig. 5.10 The Cray I-an architecture based on hierarchical memories. One to two levels
of high-speed intermediate memories isolate the arithn:tetic and instruction logic from
main memory.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 318

304 Vector Computers

in anticipation of future need rather than moved to the more remote .
. d main memory between periods of use. Also, new ata can be prefetched to the. _

termediate scalar memory from main memory just prior to use in the arithm:~c
unit.

Unlike a cache memory, this inter?1~diate memory is ~ot managed auto
matically. Data must be transferred exphc1tly to and from the intermediate me _
ory by means of ordinary program instructions. The disadvantage of this sche m
over cache memory is that the Cray l intermediate memory has to be manag:~
by the programmer or the compiler. The big advantage of this type of memorv
over cache memory is speed-intermediate memory is accessed by means ~f
physical register addresses, not by a cache lookup. The cache lookup tends to
take longer because a cycle must be long enough to support both the normal
read operation plus an address comparison, whereas the Cray I intermediate
memory does not require the time to compare address tags in a cache.

Cray designs usually provide for short high-speed registers to hold ad.
dresses, and the Cray I foHows this general philosophy. It has eight address
registers (the A registers), each 24 bits in length. These are backed up by an
intermediate level of memory in the form of 64 registers (the B registers), each
24 bits in length. Thus the B registers function as a cache for the A registers,
except that all operations on the B registers are explicitly controlled by program
instructions rather than automatically controlled, as are the registers of a cache
memory.

One more intermediate-level memory appears in the diagram. This is an
instruction buffer that holds portions of the instruction stream that are fetched
just prior to the execution of those instructions. Tight inner loops tend to lie
completely within the instruction buffer and can execute repeatedly without
requiring fetches to main memory. Because many applications written for the
Cray tend to spend the great majority of time in tight loops, instruction fetches
tend to be rather rare events.

Note in Figure 5.10 that every functional portion of the processor has a high
speed memory attached to it. No function is directly attached to main memory,
as is the case for the processor structure shown in Fig. 5.7. Moreover, some of
the high-speed memories are backed up by memory buffers that lie between
main memory and high-speed memory.

The structure of the design clearly shows the major idea of the architecture
keep the processing units busy by keeping their operands close at hand. The
intermediate memories represent a compromise in the sense that they provide
a pool of data readily accessible to the processing units at lower cost than the
cost of storage in the fastest levels of the memory hierarchy.

The performance of the intermediate memories is, however, below the per
formance of the highest-speed memories. To design such a hierarchy involves
comparing the performance trade-offs, with and without intermediate memory,
and the savings attributed to using intermediate memory in place of high-speed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 319

Section 5.1 A Generic Vector Processor 305

registers. Note that the savings is partly due to cost and partly due to decreased
volume and power consumption, which may be the deciding factors in super
computer design.

An intermed_ia_te memory _can also. pro~ide a buffer for reformatting data
structures for efficient processing. The idea 1s that the pipeline is optimized for
access to successive elements from a vector register, but the items to be processed
need not lie in consecutive cells of memory. The operands can be fetched into
an intermediate memory and from there sent to the vector registers. In so doing,
the operands can be reorganized so that the items to be processed next are
moved to contiguous cells of a vector register. Methods for making this trans
formation are covered in more detail in the next section.

The most distinguishing feature of the two architectures described in this
section is in regard to coupling operand memory to the pipeline. The first
architecture relies on ma1n memory to hold pipeline operands, so main memory
must have a bandwidth at least as large as is required by the arithmetic unit.
This forces all of main memory to either be fast or partitioned into many in
dependent memory modules, or both, because the peak bandwidth requirement
of the arithmetic unit is very high.

The second design provides for the very high bandwidth to be supplied by
a register memory much smaller than main memory, and thus, the slower speed
of main memory need not handicap the arithmetic pipeline. Another facet of
the second design is that it provides for the possibility of overlapping pipeline
operations because the gross bandwidth of the high-speed registers can be made
high enough to meet peak processing requirements of several pipelined arith
metic units combined.

The cost of providing extra bandwidth for the registers is the cost of pro
viding extra ports for reading and writing the registers. While this cost can be
relatively high per bit of storage, the high-speed registers have only 10-1 to 105

bits, as compared to the 108 to 1010 bits of main memory. Thus, it is feasible to
supply extra ports to the registers but impractical to do so for main memory.

The Cray I does provide for overlapping pipelined arithmetic operations so
that as many as three independent vector operations can be done concurrently.
A vector operation produced on one output stream can be routed directly to the
input of the next operation. The first architecture has no provision for additional
data streams, so the result stream has to be stored in memory before it can be
rerouted to an arithmetic pipeline for additional processing.

Because the variable delay is shared by all vector operations, the buffer in
the variable delay has to empty before the delay can be reset for the next pipelined
operation. Hence the pipeline must drain between operations, and no overlap
is possible. The Cray I's ability to overlap pipelined operations is strictly due to
its intermediate buffers and high-speed registers.

In our discussion of cache memory, our assumption is that cache memory
is an extremely important architectural feature of high-speed computers. Yet the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 320

306 Vector Computers Chapter 5

Cray I has no cache-organized memory, although it does have several memon
that occupy a place in a memory ~erarchy si~ilar to_ t~e place of ca:he memo;~
The absence of cache is due partially to design dec1s10ns and partially to char
acteristics of vector programs that may differ from the charact~ristics of scalar

programs. . .
The design decision for this class of machine has t_o weigh the cost and

difficulty of programming an intermediate memory that 1s not cache organized
against the performance penalty for a cache access as compared to a register
access. The Cray I is built for performance. Its users are rather sophisticated
and are willing to expend extra effort in software to obtain a performance boost.
This biases design decisions against the use of cache and toward the use of pro
grammable registers.

Moreover, a cache may not work as well for vector operations as it does for
scalar operations, although currently there i~ very little expe_rience on which to
make a judgment. The designer has to consider these questions:

• How large should a cache be on a vector machine?

• Should it be large enough to hold a few full-length vectors?

• Or should it be smaller and instead hold fragments of many different vectors?

These questions are largely unanswered today, but we can expect them to be
explored in the next few years as vector technology becomes more mature and
implementers seek methods for boosting performance of machines built today
without caches.

Serial access to vectors dictates against a cache that uses LRU replacement
because one vector load may flush an entire cache and leave only dead data in
the cache. Perhaps a cache organized to manage vectors may be useful, but this
is still a matter of conjecture and needs further study. Therefore, vector registers
should be organized as program-accessible registers rather than as a cache until
performance studies show how to improve throughput with a vector-organized
cache.

The various intermediate registers, including the T (scalar) registers, the B
(address) registers, and the instruction buffer, are the most obvious candidates
for cache organization. The hit ratio should be comparable to the hit ratio for
conventional serial machines if these registers were cache organized, but inter
locks across the caches to maintain consistent data would be a serious problem.

Several units in the Cray I can modify data. Any such modification has to
be reflected in a cache that holds copies of such data. Cache consistency requires
that each time a new item is modified in cache, a cross check is made at all other
caches to see if the same item is contained there. This could hurt performance
by causing conflicts for cache access.

Although this implementation is not the only way to interlock cache access,
interlocking is almost always accompanied by a reduction in performance and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 321

section 5.2 Access Patterns for Numerical Algorithms 307

possibly by a modest increase in cost. So cache may well be unattractive for a
Cray-type env~ronment.

future designs, however, n~ed not follow the directions of the Cray I. Device
technology can change dramatically, resulting in different available densities,
speeds, and costs of memory. Major changes in any or all of these factors could
produce va:tly differe~t architec~ures. ':s memory becomes smaller, faster, and
Jess expens~ve, there is a pot~~ttal for mtermediate memories of much greater
capacity. Higher power densities, however, may require that volumes be held
small to enable th_e compu~er systems_ to be cooled and may force the designer
to resort to small mtermed1ate memones or elect not to use them in some areas
of the design. A reasonable rule of thumb in the supercomputer area is to build
as much capacity and performance capability as possible, and then look for ways
to reduce volume, power consumption, and total cost without drastically hurting
performa nee.

5.2 Access Pattems for
Numerical Algorithms

High performance requires that the architecture fit the workload. A high-speed
machine must do the job for which it is intended. Although the discussion in
the previous chapter cautioned against structures that are too special purpose,
we must at least understand the requirements for a large class of problems to
make sure that we can solve those problems effectively.

If design compromises are necessary, then we should understand a pure
design with no compromises and then evaluate the compromises separately. In
this section we examine some numerical problems and learn that access patterns
play a critical role in determining the execution speed of the algorithms. We
show how to build machines that support the special access patterns frequently
encountered in large numerical calculations.

Heller's exce1lent review of parallel algorithms for numerical methods [1978]
focuses on linear algebra because most large-scale practical applications of nu
merical methods are expressed in terms of matrices and vectors. This is not
surprising; matrix notation gives a compact way to express enormous amounts
of computation.

Consider two extremes for writing a program that performs 1010 multiplies.
At one extreme, the programmer writes a few hundred or thousand lines of
program statements, many of which are just calls on a library of matrix and
vector functions. At the other extreme, the programmer is faced with solving
an unstructured problem and has to specify each of the 1010 lines individually.

It is quite clear that no one will write the latter code-it takes an extraordinary
amount of time to write. At the rate of one arithmetic operation per second, a
person working full time would need 30 years to write down all of the arithmetic

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 322

308 Vector Computers Chapter 5

expressions that describe the workings of the program. A computer that executes
at 100 Mflops takes only 100 seconds to execute that program.

Obviously, vector and matrix operations ~re very important for a high-speed
architecture because many very large algonthms are expressed succinctly b,
such operations. The demonstrated importance of numerical applications fjr
large-scale computations leads us to treat the world of vector and matrix com
putations in this chapter.

Other notational systems may_ al~o be useful. ~or examp!e, recursively de
fined functions are succinct descriptions of potentially massive computations.
In any case, we are unlikely to generate unstructured large-scale computations
simply because the programming effort to write such applications is unreasonable.

SJt.1 Gaussian Elimination

Heller [19781 covers a number of algorithms for solving linear systems of the
type

Ax= b

where A is an N x N matrix, and x and b are N x 1 column vectors. The
objective is to find x, given A and b. The techniques available depend on the
specific characteristics of the matrix A.

When A is dense, that is, when all or nearly all of the components of A are
nonzero, the solution of the linear system of equations can be found by carrying
out a succession of row and column operations on A, with corresponding changes
made to b during the course of the computation.

One efficient and effective method of solution, Gaussian elimination, factors
A into the product of two triangular matrices, Land U where Lis lower triangular
and U is upper triangular. We see this in the previous chapter for the special
case in which A is tridiagonal, and L and U are bidiagonal. In both the general
and the special case, the factorization must compute the elements of Landu,
and this is possible to do by means of operations on row and column vectors.

Once the factorization produces Land U, the next steps solve the triangular
systems

Ly= b

and

Ux = y

to obtain a value of x that satisfies the original equation since

Ax = LUx = Ly = b

The solutions to the triangular systems are particularly easy to obtain by means
of vector operations on rows of the Land U matrices.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 323

section s.2 Access Pattems for Numerical Algorithms 309

When A is developed from partial differential equations that describe a
problem in the_ contin~um, ~ _is a spar~e, highly regular matrix whose solution
can be deter~med_ qmte eff1~1ently usmg techniques such as cyclic reduction,
which is described m the prev10us chapter. Although we may view such a matrix
A as being composed of a collection of row or column vectors, the nonzero
components of A in problems that arise from continuum formulations tend to
lie only along a few diagonals. Many algorithms approach the solutions of this
type of sparse-matrix problem by treating the matrix as composed of diagonal
vectors, so that vector operations manipulate streams of data fetched from var
ious diagonals of the A matrix.

It is worthwhile to examine in detail one example of a parallel algorithm for
computing the solution to a linear equation. In this case, we look at classical
Gaussian elimination and assume that the basic parallel operation can manip
ulate a row or column of A in equal time. This assumption is not true for all
architectures, and its correctness requires some resourcefulness from both the
computer architect and the numerical programmer. Nevertheless, let us assume
that rows and columns are equally accessible and explore how to create an
algorithm from row and column operations.

The core of the algorithm produces a new column of Land row of U at each
of N iterations. The new data for Land U overwrite corresponding locations of
A and are unchanged for the remainder of the computation. Before producing
the next elements of L and U, the algorithm updates the entire portion of the
A matrix that has not yet been overwritten. The diagonal of L, which is forced
by this algorithm to be all ls, is not stored explicitly. The diagonal of A is
eventually overwritten by the diagonal of U.

At each iteration, one diagonal element of A is overwritten. We call this
element the pivot for that iteration. In the matrix below the pivot is stored the
new column of L, and to the right of the pivot is stored the new row of U.
Figure 5.11 shows the various portions of the data at the start of an iteration.
The Land U denote the columns of Land rows of U that have been computed
up to this point. The P designates the pivot. The L' and U' denote the new data
to be computed during this iteration, and the A denotes the elements of A that
will be transformed during this iteration.

For numerical stability, we should choose as the pivot the element with the
greatest magnitude in the region that includes P, L', U', and A. If this element
is not P, then that element can be brought to position P by a swap of rows and
columns. Most algorithms, however, do not search such a large area for the
new pivot.

The algorithm remains stable, although it has a larger error bound, if the
pivot element is the largest element in the area that includes P and L'. lf the
largest element is not in position P, then by exchanging the row containing
the element and the pivot row, we can move the large element to position P.
Row and column exchanges are permitted because they do not change the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 324

310 Vector Computers Chapter 5

I u

I
p U'

L
L' A

Fig. S.11 The regions of a matrix reve_al~d d~ring a single cycle of an LU-decomposition
algorithm for performing Gaussian elurunahon.

solution to the original system of equations, although the elements in the solution
vector in general will have to be permuted to produce a solution vector whose
elements are ordered correctly in regard to the original problem.

Program 5.1 is a simplified version of an algorithm for Gaussian elimination
that appears in Forsythe and Moler [1967]. This algorithm is expressed in vector
notation, where the notation A[i,j] designates a single element ai,_;, of A, and
A[l ... j - 1,Jl designates a column vector of A. In this case, the subscript range
I ... j - 1 designates all subscript values lying between 1 and j - 1. The single
subscript in the second component designates the jth column. Hence, A[l ...
j - l,jJ is the vector that consists of the first j - 1 elements of the jth column
of A. The same notation holds for rows, except that the subscript range is placed
in the second subscript position.

The important aspects of this example are that:

1. The algorithm as expressed accesses both rows and columns.

2. The majority of the vector operations have either two vector operands or a
scalar and vector operand, and they produce a vector result.

3. The MAX operation on a vector returns the index of the maximum element,
not the value of the maximum element.

4. The length of the vector of items accessed decreases by l for each successive
iteration.

The first point is consistent with our assumption that we need to access both
rows and columns in some algorithms. It turns out in this problem that the
inner loop can be done either by rows or by columns; the choice is up to the
programmer. But the algorithm does require both a column and a row operation
elsewhere, so a vector computer should provide easy access to both rows and
columns, at least, and possibly other interesting forms of access.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 325

section 5.2 Access Patterns for Numerical Algorithms 311

Program 5.1 Gaussian elimination.

FACTOR is a vector algorithm for factoring matrix A into Land u, where A= LU, Lis
lower triangular, and U is upper triangular. The diagonal elements of all matrices are
equal to 1; they are not stored explicitly. L overwrites the lower triangular portion of A.
and U overwrites the diagonal and upper triangular portion of A.

for ; : = 1 to N do
begin {* Search Column for a pivot element. ·}

{" Find the index of the element with the largest absolute value in the pivot
row. "}

imax : = index_of_Max(abs(A[i ... N,il));
t Swap Row imax with Row i. This produces a new row of u. "}
Swap(A[i,i ... N].A[imax,i ... N]);
t Check for singularity, and terminate if so . '}
if A[i,i] = 0 then singular matrix;
{" Find the new column of L, and store it in A. "}
A[i+ 1 ... N,i] : = A[i + 1 ... NJ]! A[i.i];
t Update the remaining part of the A matrix. "}
tor k : = i + 1 to N do

A[k,i + 1 ... NJ : = A[k.i + 1 ... N] - A[k.i] x A[i,i + 1 ... N]:
end; t Outer loop "}

The next point indicates that a vector pipeline should provide a mechanism
to have a scalar serve as one of the operands, and in so doing it should produce
an answer faster or more efficiently than a similar operation that has both op
erands as vectors.

The third point suggests that the pipelined arithmetic unit should provide
some mechanism for producing results that are scalar, such as results produced
by the functions MAX, MIN, and SUM. Note as well that the scalar result might
be an index of an important element in the vector and not necessarily the value
of a vector element or of a combination of vector elements . In our example, the
information required by the algorithm is the index, not the matrix element.

The last point is the most perplexing. The vectors used by this algorithm
shrink with each step, and thus the last step uses vectors of length 1. Pipelined
arithmetic and vector operations have a certain overhead, and we should attempt
to amortize that overhead over many operands by treating long vectors as much
as possible. We have an efficient machine if the overhead for starting a vector
computation is small compared to the amount of useful work it produces. How
ever, if the useful work produced by a vector operation is very small, the over
head may be painfully expensive and drastically reduce the efficiency of the
system. The last point forces us to keep vector overhead as small as possible

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 326

311 Vector Computers Chapter 5

because we inherently must deal with short vectors for some portions of un.
portant computations. . .

The next section illustrates some techruques for solving the access proble
and gives insight into the structure of efficient vector processors. rn

5.3 Data--Structuring Techniques for
Vector Machines

In this section we explore the problem of accessing data in ways that are con
strained by an algorithm. If a data structure such as a matrix is to be accessed
only by rows, we can store rows so t_hat corts~_c~tiv~ elements lie a~ s~ccessive
addresses. If only columns of a matnx are reqmred, we could store the matnx
in a column-oriented fashion, by putting consecutive elements of each column
at consecutive memory addresses. But if both row access and column access
were required, there is no obvious way to meet both ';.9~S!~~ints efficiently.

The problem is illustrated in Fig. 5.12, in which a matrix is stored in a main
memory composed of eight independent memory n10C:ful~s. The modules are
represented as columns. In Fig. 5.12(a), an 8 x 8 matrix is stored so that its row
elements can be accessed in a pipeline fashion. Each successive row element is
stored in the next memory module. .

(If a memory access takes several clock cycles, this memory can still deiiJ:r
/ one row element per dock cycle after an initial delay) To fetch the row vector

for Row 0~ for example, initiate a fetch to the (0,0) element, and before this
element is delivered to the memory bus, initiate a fetch to the (0,1) element on
the next dock cycle. On Oock i, initiate a fetch to element (O,i).

If the memory access time produces a delay...!..between the initial access to
an item and the time at which it appears at the memory output port, then in
our example the element (0,z) can be placed on the memory bus at the end of
Clock i + d. This is the method of overlapped access described at the beginning
of this chapter. If d does not exceed 8, the number of distinct memory modules
in the example, the vector can be arbitrarily long. If dis greater than 8, however,
attempts to access vectors longer than eight result in collisions at some memory
module because the module is asked to initiate a fetch for a new element before
its access to an old element has been completed.

Another way to describe the situation is that the memory bandwidth must
be great enough to support the memory demand. If the delay dis greater than
~, then the ~g_gr:egate bandwidth of the eight memories is less than one item

l,$ per clock period, yet the pipeline demand is for one item per clock period. With
delay d, the aggregate bandwidth is one item per clock period only if there are
at least d independent memory rnodulesr each capable of accessing one item per
d clock periods. If an instruction requires three streams; two for input operands
and one for results, then the aggregate bandwidth of memory must be at]east

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 327

section 5.3 Data-Structuring Techniques for Vector Machines

(0,0) (0,,) {0,2) (0,3) (0,4) (0,5), (0,2)

(1,0) (1 J) (1 ,2) (i ,3) (1,4) (1,S)J (1,6)

(2,0) (2, 1) (2,2) (2,3) (2.4) (2,5) (2,6)

(3,0) (3, 1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,0) (4, 1) (4.2) (4,3) (4.4) (4,5) {4.6)

(5,0) (5.,} (5,2) (5.3) (5,4) (5,5) {5,6)

(6,0) (6, 1) (6,2) (6,3) (6,4) (6,5) (6,6)

(7,0) (7,1) (7,2) (7,3) (7.4) (7,5) (7,6)

(a}

(0,0) (1,0) (2,0) {3,0) (4,0) (5,0) (6,0)

(0, 1} (1, 1) (2, 1) (3, 1) (4, 1) (5,,) (6,,)

(0,2) (1,2) (2.2) (3,2) (4,2) (5,2) (6,2)

(0,3} (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

(0,5) (1,5) {2,5) (3,5) (4.5) (5,5) (6,5)

(0,6) {1,6) (2,6) (3,6) (4,6) (5,6) (6.6}

(0,7) (1, 7) (2,7) (3,7) (4,7) (5,7) (6.7)

(b)

fig. 5.12 Two of several possible storage formats for an 8 x 8 matrix:
(a) Suitable for access to row vectors, but bad for column vectors; ~nd
(b) Suitable for access to column vectors, but bad for row vectors.

313

(0,7)
(1.7)

(2,7)

(3,7)

(4,7)

(5,7)
(6,7)
(7,7}

(7,0)

(7.1)

(7,2)

(7,3}

(7.4)

(7,5)

(7,6)

(7,7)

three items per clock period, so the number of memory modules must be at
least 3d to support a pipeline rate of one result per clock time.

Figure 5.12(a) shows that the memory bandwidth available is not the whole
story. Consider what happens if you need to access columns of the matrix, for
example Column 0. In this figure, Column 0 lies wholly in one memory module.
No matter how many other modules are in the system, access to the elements
of Column 0 is limited by the maximum bandwidth of the single module. In
this case, at most one item can be delivered every d units of time, and it is
impossible to support a rate of one column element accessed per clock period
unless one module by itself can produce data at this rate-that is, unless d is
unity.

In Fig. 5.12(b) we transpose the matrix to give fast access to columns, which
are now stored across the memories, but we give up fast access to rows. The
Gaussian elimination algorithm, as reproduced in the previous section, requires
both row and column access, so neither the storage pattern of Fig. 5.12(a) nor
Fig. 5.12(b) is acceptable. One way to circumvent the problem is to rewrite the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 328

314 Vector Computers Chapters
,.

~
algorithm to use column or row access exclusively. This happens to be possibI
for Gaussian elimination, but it is not always possible to revise an algorithrn t e
live within the access constraints of memory.

0

Another approach is to alter the structur~ of data in memory. Figure 5_13
shows the same matrix stored so that successive rows are skewed with resp
to the previous row. In this case Row O starts in Module 0, Row 1 start/:t
Module 1, .. . , with each row shifted to the right by one column with respe~
to the immediately r~~~eding row. . .

In this storage scheme the address of an item m a system address space i
8 x (local address) + module number, where each individual memory has:
local address-space, and the module numbers range from O to 7. Row elements
lie at successive addresses in the system address-space. Successive column ele
ments lie at addresses that differ by nine in system address space. Note that
successive column elements lie in different memories in this system, and that
they can be accessed in pipeline fashion as efficiently as successive row elements.

Even though the matrix is 8 x 8, we store the matrix as if it were 8 x 9 (8
rows by 9 columns), wasting the memory a~ted to the ninth column. The
extra column provides the cyclical offset of successive rows, so column elements
are spread across all memories just as row elements are.

To use this storage structure in a vector processor similar to those shown
in Figs. 5.7 and 5.10, the vector operand must be specified by four quantities:

1. Starting address;

2. Number of elements;

3. Precision (number of bits per element); and

4. Stride (offset between successive elements).

(0,0) (0, 1) {0,2) (0,3) (0,4) (0,5) (0.6) (0,7}

(1,0) (1, 1} {1,2) (1.3) (1 .4)' (1,5) (1,6)

{1, 7) (2.0) (~.1) (2,2) (2,3)" (2,4) (2.5)
(2,6) (2,7) (3,0) (3, 1) (3,2) (3.3) (3,4)

(3.5) (3,6) (3,7) (4,0) (4, 1) (4,2) (4,3)

(4,4) (4,5) (4,6) (4,7) (5,0) (5, 1) (5,2)
(5,3) (5,4) (5,5) (5,6) (5,7) (6,0) (6, 1)

(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (7,0)

(7, 1} (7,2} (7,3) (7.4) (7,5) (7,6) (7,7)

Fig. 5.13 A data structure that permits access to both rows and columns. Row access
has stride 1. Column a<:cess has stride 9. The blank enbies in the matrix form a dummy
ninth column of the 8 x 8 matrix.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 329

section 5.3 Data-StNcturlng Techniques for Vector Machines 315

The stride for a vector expresses the address increment used to move from one
I element fo the next in a vector access. The stride for row access in Fig. 5.13 is

l, and the stride for column acce~s is 9.(In general, if the stride is relatively
prirne to M, the nu'?~er of mem~nes, then M successive accesses for that stride
are directed to M distinct memones. More generally, for any Mand strides, M
successive accesses of stride s are directed to M/GCD(s, M) different memories,
where GCD is the greatest common divisor function. GCD is equal to unity, by
definition, ~hen its arguments are rel~ti~ely p~me) .

{Since M 1s usually a power of 2, this 1s eqmvalent to saying that any vector
access with an odd stride produces M consecutive accesses to M distinct mem
ories. In Fig. 5.13, one can easily verify that 11 x 11 and 13 x 13 matrices
support row and column access as readily as the 9 x 9 matrix. For column
accesses, address conflicts arise when a matrix has an even number of columns
because even numbers are not relatively prime to M. For example, a 12 x 12
matrix causes problems when d exceeds 2 because column elements 1, 3, S, ... ,
all lie in the same memory module. For a similar reason, 8 x 8 and 24 x 24
matrices lead to the same inefficient access to columns i

(Fortunately, for every even number the next number is odd, so for every
bad value for a number of columns, the next larger number is good. Hence, we

✓ can always add a wasted column to a data structure and provide a storage
structure that is ideally suited to pipelined row and column access.}

If row and column access were the only requirements, our discussion would
end here. But the designer should not limit a design to a small class of problems.
If a few changes can greatly increase the number of problems that can run
efficiently, we must explore those changes and the consequences of making

them.
Kuck's study of parallelism {1976] (see also Budnik and Kuck [19711) suggests

that typical access patterns to matrices include access to:

• Matrix diagonals in the major and minor directions;

• Square subarrays; and

• Rows and columns.

Note that the stride required to access the major diagonal of a matrix is one
greater than the stride required to access a column of a matrix. If M, the number
of memory modules, is a power of 2, then column access and major diagonal
access cannot both be efficient since one stride or the other is not relatively
prime to M. .

Budnik and Kuck [1971] make a startling suggestion-use a number of mem
ories that is not a power of 2. For example, if the number of memories is a prime
p, then all strides less than p are relatively prime top. Therefore, we can store
arrays in a structure that yields equally efficient ~ccess to rows, columns, and
diagonals. Budnik and Kuck explore this ~otj_on in the context of a parallel

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 330

316 Vector Computers
Chapters

computer that is fully parallel in access, rather than pipelined. This notion
developed further by Burroughs in the design of an unusual supercornp ~as
called the BSP (Burroughs

1

Scientific Processor), whose structure is show~ ~r
Fig. 5.14. m

The BSP design provided for 17 memories, rather than 16, to solve th
problem of supporting all interesting ways to access a matrix. Memory is n ~
pipelined in this architecture. Rather, in one memory cycle the memory syste

0

delivers one block of 17 memory lines, each line from a distinct memory. Twnt
networks separate the 17 memories from 16 processors. The input alignmen~

. \.· network shrinks a 17-way access to 16 operands by deleting some operand anct
~ compressing the remaining 16 operands into a contiguous vector. .,._.

This process is shown in Fig. 5.15 in simplified form for compressing a five
way vector read to deliver data to four processors. Figure 5.lS(a) shows access
to a column of a 4 x 4 matrix, and Fig. 5.15(b) shows access to a diagonal of
the same matrix. The output alignment network reverses this process for data
traveling between the arithmetic processors and main memory.

ln Fig. 5.15, note that the 4 X 4 matrix has two dummy columns stored, so
it is stored as a 4 x 6 matrix. In this form, rows are accessed with a stride of
1, columns with a stride of 6, and diagonals with a stride of 7. Since 1, 6, and
7 are relatively prime to 5, in each case there are no memory conflicts when
accessing the particular slice of the array of interest. If the matrix is stored without

17 Memories

17 Inputs
16 Outputs

Input
Alignment
Network

::: ~
Output

Alignment
Networl<

16 Inputs
17 Outputs

16 Processors

______ ::: ~

Fig. 5.14 The data flow and processor/memory structure of the Burroughs Scientific
Processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 331

5ection 5.3 Data-Structuring Techniques for Vector Machlnt:s

Select (0,0) (0,,)
Addresses

(1 .0)

(2.3)
(3,2) (3.3)

READ

Align (0,0) (1,0)

Select (0.0) (0. 1)
Addresses

(1,0)

(2,3)
(3,2) (3,3)

READ

(0,0) (1, 1)

(0,2)
(1, 1)

(2.0)

I (2.0) •

(a)

(0 ,2)

(1, 1)

(2,0)

(2,2)

(b)

(0.3)
(1,2)

(2, 1)

(3.0)

(3,0)

(0.3}

(1,2)

(2.1)

(3.0)

(3,3)

317

(1.3)

(2.2)
(3, 1)

(1,3)

(2,2)

(3.1)

(2,2)

Fig. 5.15 A data structure that supports easy access to rows, columns, and diagonals:
(a) Access to columns with stride 6; and
(b) Access to diagonals with stride 7.

the dummy columns, then the stride to access diagonals is 5, which is equal to
the number of memories and therefore causes a maximum number of conflicts.

The BSP processor was never sold and eventually the project was aban
doned. Although the 17-memory structure solves some problems of access, it
creates others. Addressing is more complex for this struch.lre than for storage
systems in which M is a power of 2. But more important is that the 17-memory
system requires that access to the matrix components be made at the mem
ory system, which is quite far from the processor. Obtaining a row of a matrix
and then a column of the matrix, perhaps at a later time, forces the matrix to
be in main memory and not in a buffer close to the processor. Hence, there is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 332

318 Vector Computers Chapter 5

potentially high traffic to and from main memory just for the purpose of refor.
matting data.

Contrast the 17-memory structure with a Cray-like structure as shown .
Fig. 5.10. The striking difference with respect to_ performance is that the crt
architecture drives the arithmetic units from a h1gh-sp_eed buffer_ memory (th~
vector registers) 1 whereas the 17-me~ory struc:11re dnves the arithmetic units
from a more remote main memory with two alignment networks contributin
to storage delay: The high-spe~d buff~r of the Cray provides for the possibili~
of loading data mto the buffer JUSt pnor to when they are needed.

While data reside in the buffer memory1 they can take part in multiple
operations before being returned to main memory. Moreoverl it is conceivable
to provide a sufficiently large buffer memory so that reasonably large portions
of matrices can be loaded into the buffer using an access pattern such as row
access, that is supported by main memory.

The buffer memory can be structured for access to the various matrix com.
ponents of interest so once a matrix is loaded into the buffer, its elements can
be accessed in any of several ways. A high-speed buffer can be structured to
access the matrix by rows, columns, and diagonals by designing its cycle time
to be equal to one clock cycle. For a one-cycle memory, the stride for pipeline
access to a vector can be arbitrary.

The type of buffer we describe here is very costly when built in some popular
high-speed technologies. A very simple alternative is to reformat matrices when
necessary by transferring them between main memory and the high-speed buffer.
For example, consider an 8 x 8 matrix stored by rows in an eight-module
memory. If the next phase of the algorithm must access columns, we can reformat
the rows from 8 x 8 to 8 x 9 by loading each eight-element row into the high
speed buffer and then storing back a nine-element replacement. The destination
vector can be written to a different region of main memory to prevent overwriting
of the source by destination during the reformatting. Since the row operations
are pipelined, reading an entire row of eight elements takes only a little longer
than reading a single element. After the matrix is restored to memory, it is in a
format in which columns can be accessed with a stride of 9.

The reformatting time is approximately equal to the time required for two
to four vector transfers, depending on the overhead per vector initiated and the
startup time for a vector load or vector store. The reformatted matrix can be
accessed by columns about d times faster than the original matrix, where d, as
you recall, is the memory-access cycle time.

Depending on the value of d and the overhead per vector operation, the
reformatting of the matrix may be the preferred way of gaining access to the
entities needed. The reformatting process might well lead to less performance
degradation than do the alignment networks shown in Fig. 5.15 because refor•
matting degrades performance only when it is needed 1 whereas the alignment
networks tend to increase the latency of every vector fetch and store.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 333

section 5.4 Attached Vcctor•Proc~ssors 319

Architectures with high-speed buffers appear to have several advantages
over architectures whose memory couples directly to an arithmetic unit. Al
though this observation is very dependent on existing technology, the trend
today seems to be toward vector processors that use high-speed buffers to gain
speed, as opposed to architectures that place needed operands far away from
the processor that needs them.

The major design problem for the buffer architecture is building a memory
that is both large enough to hold an interesting amount of data and fast enough
to run at the clock cycle of the arithmetic units. The number of times that a
datum in the buffer can be used in a computation before it is returned to main
memory tends to decrease as buffer size decreases, so a small buffer may yield
little or no savings in the total number of accesses to main memory.

Device technology has a strong influence on how designs will achieve vari
able-stride access in the future. Current trends suggest that the density of high
speed memory is increasing and that high-speed buffers, although very costly
today, will tend to grow larger in the future. Cooling is another problem of
importance because large amounts of high-speed memory packed very densely
lead to potentially high power density per unit volume . The Cray II, for example,
has so high a power density that it is cooled by immersion in liquid.

Technology trends suggest that both the power consumption per bit and
the cost per bit are moving downward, which lends support to the evolution
of high-speed buffers for variable-stride access as opposed to the BSP approach
of handling variable-stride access exclusively in main memory.

5.4 Attached Vector-Processors

An important means for achieving economical high-speed computation is to
provide for customization of each processor to the needs of each user . The idea
is to partition an architecture into building blocks that can be combined in various
ways to achieve different levels of performance with commensurate costs.

Figure 5.16 shows a basic high-speed conventional processor to which is
connected a numerical processor that we call an attached vector-processor. The
basic machine without the attached processor serves a large group of users with
conventional workloads, and the machine with the attached processor satisfies
the needs of the specialized group of users. This tends to reduce the cost to the
specialized user because both the software and hardware of the general-purpose
machine enjoy the advantages of the lower cost of high-volume production.

Some manufacturers of attached processors offer a model that can be con
nected to a variety of different host machines. Attached processors cover a very
broad range of costs and performance, from low-cost units that attach to mi
crocomputers to high-performance systems that attach to high-end commercial
computers. Many commercial manufacturers offer vector attachments of their

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 334

320

I Processor

Main Memory

Vector Computers

I
l

I

Anached
Processor

I
Local Memory

I
High-Speed Bus

(for peripherals and
attached processor)

Chapters

I

fig. 5.16 The structure of a typical computer system with an attached processor.

own or a compatible model with a superset of instructions for vector operations.
These approaches are used by Fujitsu, IBM, Hitachi, and NEC.

Our discussion in this section covers the generic architecture of an attached
processor. We also give some specific details regarding the FPS-164 from Float
ing-Point Systems by way of example to make the details more concrete. Charles
worth and Gustafson [1986] provide interesting background information on this
topic.

We know from prior discussions that vector access to rows and columns,
and possibly to other matrix components, are essential for efficient numerical
computations. This requirement forces the architect to design the memory sys
tem to support such access, but places very few constraints on the design of the
arithmetic processor. The arithmetic unit should also be structured to support
the most common and demanding needs of the users. So let us review a few
of the algorithms encountered earlier in the text.

For most numerical applications, the solution of linear equations of various
forms is the most central requirement. Linear programming requires related
techniques to solve constrained optimization problems. Even for nonlinear prob
lems, linear techniques are very important.

Nonlinear systems of equations are often solved by iterative linear methods.
The idea is that some nonlinear systems behave linearly with respect to small
perturbations about a solution. Consequently, it is possible to produce a full
trajectory for a nonlinear solution from a sequence of solutions to a linear system
that describes the small-perturbation behavior of the nonlinear system. Iterative
techniques are often employed to produce a solution to the full nonlinear system
from the solution obtained by using the linear approximation.

For both linear programming and linear algebra operations, the inner loop
of the computation often takes the general form

a:=a+bxc (5.1)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 335

Section 5.4 Attached Vector-Processors 3i1

where a, b, and care ~calar. I~ a general-purpose structure, the product can be
computed and stored m a register and then added to a sum stored in a different
register.

Since this operation is so common, we can make it a three-operand operation
and provide for both the multiplication and addition to be done in one arithmetic
unit, without requiring an intervening store and load of the product to and from
a high-speed register. The structure commonly used takes the form shown in
fig. 5.17, in which two operands enter a multiplier whose output is tied directly
to an adder, to which a third operand is connected.

Equation (5.1) can be evaluated in several different contexts, depending on
the order in which data are presented to the arithmetic unit. The most efficient
computation occurs when Eq. (5.1) is used to produce a vector of outputs from
a vector of inputs. Using our vector notation, Eq. (5.1) in this context becomes

afl ... N] : == a[l ... N] + b x c[l ... N] (5.2)

An efficient pipeline implementation of this equation provides for loading a
scalar variable to one input of the multiplier and streaming vectors A and C
through the arithmetic unit. The output vector is the updated A vector, which
is returned to the buffer storage area reserved for A.

Another possible context for Eq. (5.1) is one in which two vectors are reduced
to a scalar by an inner-product operation, which produces a single scalar output
from two vector inputs. This form of Eq. (5.1) is

a : = a + b[11 x c[i] (5.3)

where the products of the form b{i] x c[i] are accumulated into the scalar variable
a. The initial value of a is zero when an ordinary inner product is required.
However, some algorithms use Eq. (5.3) in a manner that requires a nonzero
initial value for a.

The difficulty with Eq. (5.3) is that there is an interlock required between
successive iterations since the output variable a for one iteration is an input
variable for the next iteration. If an addition is performed in a pipeline with d
units of delay, the interlock may require as many as d - I idle times between

A
A•B

B Multiplier

____ c ___ .. .,, __ A_d_de_r __ l A·B + C ~

Fig. 5.17 The structure of a multiply-adder.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 336

321 Vector Computers Chapters

successive outputs in order to give the pipeline time to compute a new val
for variable a to be used in th~ next iteration. This is as ~uc~ ~s d times long~:
than the execution time required for Eq. (5.2), and the 1neff 1c1ency arises onl
because of the interlock used. y

A way around this problem is describ~d in Kogge [1981] and is discussed
in Section 3.4.5. The trick is to produced different sums by computing Eq. (5.3)

according to the schedule

a;:;::: a;-d + bi x C; {5.4)

The subscripts in Eq. (5.4) denote the operand that appears at the arithmetic
unit input or output at time. i. Thi_s form of the comp_uta~on. does not require
any interlocks because a;- d 1s available for use at a p1pelme mput just after it
emerges from the output end of the pipeline.

Unfortunately, Eq. (5.4) produces d distinct sums, which is not the intended
result of Eq. (5.3). So at the completion _of the ~alculat_ion described by Eq. (5.4),
it is necessary to sum the d output vanables mto a final result. The final sum
mation requires a small additional time that degrades performance negligibly
when the B and C vectors are long. The, performance degradation cannot be
neglected when the B and C vectors are snort, in which case the methodology
described by Eq. (5.4) should be avoided in favor of an alternate problem for
mulation that makes more efficient use of the architecture.

The FPS-164 processor [Charlesworth and Gustafson 1986] is an example of
an attached processor. Figure 5.18 shows that the vector processor has its own
main memory, high-speed scalar arithmetic, and a variable number of pipelined

Scalar Arithmetic un·ts I

I Scalar Registers I Multiply Pipeline 1 I X set and Y set I

Attached
Processor I

Adder Pipeline l
Main Memory

I Address (A) Registers • I
I I

Host Computer
120 M-bytes I Indirect-Address

Connection

l (T) Registers

I
Vector Processor

■

l I

Vector I Vector Processor I

Registers I I

. .
I

Vector Processor
I

I I

Fig. 5.18 The structure of the FPS-164 attached processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 337

Section 5.4 Attached Vector-Processors 323

vector units. The system has a high-speed connection to a host computer. The
host function is to provide data and programs for the vector processor and to
receive results when they are available. The vector processor is designed spe
cifically for high-speed floating-point operations and has virtually no support
for general applications and utility functions. These are supported by the host.

Note that the scalar processor shown in Fig. 5.18 is built for fast scalar
operations in that it ~as a separate multiplier and adder, two sets of operand
registers (X and Y reg1s:ers), one se~ of address registers (A registers), and a set
of indirect-address registers (T registers). The scalar processor broadcasts in
structions and data to up to 15 vector processors, one of which is shown in
block-diagram form in Fig. 5.19.

The vector processor has two multiply-add units, each capable of producing
one output per cycle. There are h-.10 sets of vector and scalar registers and an
input that receives data broadcast from the scalar processor. To make the best
use of the vector processor, this architecture is designed to have sufficient buffer
space locally in the vector processor to eliminate some loads and stores of vector
data. Consequently, the vector registers are very long, 2K operands long, and
there are four vector registers in each of two sets of registers. Thus one processor
can hold 2 x 4 x 2K = 16K elements from vectors.

The scalar registers are far less numerous. Each of two sets holds four
operands. The reason for having four scalar operands is that, for any given

From
Scalar Unit

Vector Registers
4 x 8 K-bytes

Scalar Registers

Vector Registers
4 x BK-bytes

Multiplier

Adder

Multiplier

I ~---------..,►! Adder b C Scalar Reg;sters •. ~

Fig. 5.19 The structure of an FPS-164 vector processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 338

324 Vector Comput~

vector, up to four diffe~ent scalar mult~ples of that vector can be computed
without the need to obtam new data. This tends to reduce traffic to memory.

d f . ··1ct 10
that each vector can be use up to our times once it 1s oa ed into a vect
processor, and therefore it is not necessary to store and reload the opera:~
vector. So there has been a deliberate effort in t~is de_sign to design the number
of scalar registers and the size of the vector registers m such a way as to reduce
memory traffic.

The operation of this processor is rather interesting. The vector processo . . . rs
act as slaves to the scalar processor. They receive instructions and data from the
scalar processor-individually or in a broadcast mode that transmits data or
instructions to all vector processors simultaneously. In this mode the scala
processor can also read selectively from the registers of any selected vecto:
processor.

The normal mode of operation is to load individual vector registers with
starting data, with this done selectively rather than in broadcast mode. There
after, scalar data and instructions are broadcast, and the processors react syn
chronously, each performing the same step, but operating on different data.

When the scalar processor transmits in selective mode rather than in broad
cast mode, all processors except the receiving processor are idle. Therefore this
mode is used as infrequently as possible. Since the vector registers can hold
collectively as many as 15 x 8 x 2000 = 240,000 operands, two or more matrices
of rather substantial size can be stored within the vector processors. This tends
to reduce the need to store and reload data selectively to and from the vector
registers.

Vector operations can be performed concurrently with scalar operations that
take place in the scalar processor. Hence the architecture provides for overlap
ping the serial computations that constitute loop overhead with the parallel
execution of the prior loop. Earlier in this text, this process has been described
as an essential aspect of efficient processing.

The machine is heavily oriented to typical computations associa ted with
large-scale numerical processing. The benefit of using this approach is that its
users can purchase only what they need, since they can purchase as many or
as few vector processors as they can justify. Moreover, they can use an existing
on-site processor as a host and need not support the design and development
of a distinct host.

We discuss the role of the indirect-address pointers in the next section, which
focuses on techniques for handling sparse matrices.

S.S Sparse-Matrix Techniques

In many matrix problems, relatively few elements of a matrix are nonzero. Such
matrices arise in finite-element problems in which a nonzero entry represents
the interaction of one element of volume with a neighboring volume element.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 339

section 5.5 Sparse-Matrix Techniques

The number of nonz~ro elements is related to the number of neighbors per
volume element and is generally a very small fraction of the total number of
matrix entries.

These matrices are very similar to matrices that describe continuum-model
problems, and indeed th~y shoul~ be, because the finite-element model is a
continuum model. The difference is the irregularity of the surface or volume
that is being model~d .. In modeling the stresses on an airframe, for example,
near-neighbor descnpt10ns of a cylindrical fuselage produce a sparse matrix
whose structure leads to very simple near-neighbor operations. [f the model
extends beyond the fuselage, however, the problem can become very difficult
to solve. If the model includes the wings, for example, then, at the place the
wings are joined to the fuselage, we must include some interactions that explain
the stresses likely to be found there. These interactions give rise to nonzero
elements that lie in the matrix in relatively unpredictable places.

When a sparse matrix is highly structured with no irregularities, it is often
possible to deal with the nonzero elements exclusively. In the continuum-model
problems investig~ted earlier, this is precisely what the programs do. In two
dimensions, a typical code accesses the four nearest neighbors, and no other
accesses are required.

If we move to a finite-element description of an airframe, then near-neighbor
accesses suffice for most interactions, but the remaining interactions, such as
the ones that describe the stresses where the wing joins the fuselage, require
nonlocal accesses. Moreover, the nonlocal accesses need not follow any uniform
or predictable pattern. Hence, to process only the nonzero matrix elements may
require rather rich and expensive interconnections. Moreover, the interconnec
tions may need to be used selectively rather than in parallel because of the
absence of regularity in the distribution of the nonzero elements in the sparse
matrix.

Several approaches have been used in architectures to solve sparse-matrix
problems. An early attempt in the CDC STAR created what was known as sparse
vectors. A sparse vector consists of two vectors-one is a short vector that con
tains just the nonzero elements of a vector, and the other is a bit vector whose
ls indicate where the nonzero elements belong, and whose Os represent the
zeros in the vector. The length of the bit vector is equal to the length of the
sparse vector, but there is a 64-to-1 reduction in the number of bits when
the vector elements are 64-bit operands.

When accessing or storing sparse vectors, the CDC STAR uses the bit vector
to determine whether an access has to be made in a particular index position.
The access is skipped if the bit vector has a O in the corresponding position.
Although the bit vector can reduce the number of memory accesses, the items
that are accessed may lie in conflicting memory modules, which leads to delays
in the pipeline. This can negate some of the performance gain attributed to the
accesses saved by dealing only with the nonzero elements. There is a small

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 340

326 Vector Computers Chapter 5

additional processing overhead per 0 in the bit vector, but not as large a penalty
as a full memory access.

Obviously an architecture of this type can incorporate various other facilities
for sparse vectors, such as the ability to transla_te a vector fr~m ~parse format
into a full vector format and to translate back agam. Also, the p1pehne arithmetic
units can be organized to accept sparse vectors at their inputs and to produce
sparse vectors at their outputs by doing conversions on the fly from sparse to
computational and back to sparse. . .

The major problem with this approach 1s that there 1s only a 64-to-1 reduction
in the information saved since, at best, it still takes a single bit to represent 64
bits. Large sparse matrices are so sparse in many applications that a 64-to-l
improvement is minuscule compared to what is possible. How this basic: ap
proach might be extended is still an ope~ question for ~esea_rch.

An alternative method for representing sparse matrices ts to store only the
nonzero elements, and with each array of elements store a list of indices in the
original matrix. It may be ne~essary as well to in~ert_this structure by mapping
indices to pointers by a hashing scheme that mamtams a compact storage rep
resentation of the inverted list.

If the hash lookup finds an index, then the corresponding element is non
zero, and the hash table contains the storage address of the corresponding
datum. If the hash lookup fails to find an item, the corresponding item has a
zero value. Hashing for access to data is very much like a cache lookup. Just as
a cache lookup can be pipelined, so can hash access, and therefore this method
for dealing with sparse arrays is potentially useful in pipeline computers.

Returning to Fig. 5.18, the T-registers in the scalar processor contain the
indices of nonzero elements of a sparse matrix. When operations need to be
done for nonzero items only, as each new item is accessed, the scalar processor
finds the address of the next nonzero element and fetches that datum instead
of fetching the next sequential datum. The program has to deal with the zero
elements that have been skipped, but the cost of skipping and the additional
performance degradation from memory contention can be very small relative to
the large gains in processing speed due to the elimination of processing the Os
in the sparse matrix.

Apart from methods related to the representation of sparse matrices are
algorithms that perform computations only on nonzero elements of sparse ma
trices. The major difficulty is to develop such algorithms when the sparse matrix
does not have a simple structure. Hoshino [1989] gives an example of how to
treat a sparse problem that is almost tridiagonal, and is an excellent model of a
successful methodology that can be used for sparse problems in which the
majority of the nonzero elements fall into a particular structure. The problem
treated by Hoshino is the solution of a block tridiagonal system of linear equa
tions. The nonzero elements of the A matrix lie exclusively in smaller blocks
that lie on the diagonal or immediately above or below it. The small blocks are

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 341

Section 5.6 The GF-11-A Very Hlsh-Speed Vector Processor 327

themselves tridiagonal matrices. Standard techniques for tridiagonal matrices
can reduce this system to a smaller system of equations, but the reduction cannot
be taken to the full solution of the equations when the original equations are
block tridiagonal. However, the result of the reduction produces a reduced set
of equations that is solvable, in this case by standard tridiagona1 techniques.
for finite-element codes, in particular, sparse techniques reduce the equations
to a much smaller set that may weH be dense or have a sparse structure that
can be exploited. Consequently, there is hope that sparse problems that arise
in actual practice can be solved successfully on a parallel computer with high
efficiency, but as yet this problem area has not been deeply explored.

This completes our discussion of sparse-matrix techniques. In the next sec
tion we take a quick tour of a very high-performance machine somewhat different
from the ones mentioned thus far in the chapter.

S.6 The GF-11-A Very High-Speed
Vector Processor

This chapter has assumed that pipelining techniques are the principle techniques
for vector processors. The FPS-164 example suggests that pipeline processing
may not give enough performance, and that some combination between pipeline
and fully parallel implementation may be useful as well.

In this section we describe a machine architecture developed by IBM that is
yet another combination of pipelined and parallel design, with a much stronger
parallel component than the FPS-164 has. The machine is called the GF-11 IBee
tem, Denneau, and Weingarten 1985], which stems from its peak performance
of 11 Gflops (11000 Mflops).

The general structure of the GF-11 is very much like a richly connected
ILLIAC IV; it appears in Fig. 5.20. The interconnection network is capable of
producing any permutation whatsoever among the 576 processors in the system.
The interconnection network is a three-stage network \\.'1th two shuffles between
the three stages. However, these shuffles lie between 24 x 24 crossbar switches,
as shown in Fig. 5.21, rather than between 2 x 2 switching elements. This
network is sometimes called a Benes network [Benes 1964}, and it is known to
be capable of producing an arbitrary permutation.

Since the GF-11 is a vector processor, it issues vector instructions from a
control unit, and they are obeyed by the 576 processors. The memory per pro
cessor is modest~64 K-bytes of high-speed and 256 K-bytes of slower-speed
memory-but the total memory in the GF-11 is very large because of the mul
tiplier of 576. The slow memo:ry alone accounts for 144 M-bytes. Slow memory
is expandable to 2M per processor as higher density chips become available,
which allows expansion to 1.152 G-bytes in the system.

The processor speed is several times faster than the speed of fast tocal

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 342

318

1024
Network
Settings

Vector Computers

576 Processors
20 Mflops

256 K-bytes
per processor

Fig. 5.20 The structure of the GF-11 research machine.

FULL
PERMUTER
NETWORK

Crapter s

memory. Consequently, each processor has a very high-speed register file that
serves as the fastest level of the memory hierarchy. The arithmetic processor
itself is pipelined to maintain high throughput for floating-point operations.
Hence the pipelining occurs mainly within the arithmetic unit, and the high
replication factor of 576 gives the extraordinary throughput for the system.

The primary purpose for the construction of this processor is to solve a
problem in quantum chromodynamics whose solution can produce the mass of
various elementary particles through lengthy calculations . If the computed mass
is equal to the observed measurements of mass, the predictions of the underlying
theory will be confirmed, thereby lending some evidence that the theory is
correct. If not, the theory needs to be modified or abandoned. Unfortunately,
the computation involves the evaluation of very slowly converging multiple
integrals. At the rate of 11 Gflops, the computation takes about one calendar
year.

The structure of the GF-11 is vector-oriented, with a single broadcast in
struction stream. This structure is used because the quantum chromodynamics
problem calls for repeated summations that must be synchronized across all
processors. The communication requirements of the problem stem from relia
bility considerations. The GF-11 programs are designed for only 512 processors,
and the idea is to use the 64 remaining processors as spares . Should any pro
cessor fail, it can be quickly mapped out of the array, and a spare processor can
be mapped into the array in its place. The machine then needs to be restarted
from the last checkpoint, but it should continue to operate at full speed after it
is res tarted.

The switch permutation is controlled by a collection of bit vectors stored in

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 343

section 5.7

24 lines

24 lines

24 lines

FJnal Comments on Vector Computers

24 X 24
Crossbar
Switch

Switch 0

24 X 24
Crossbar
Switch

Switch 1

1----•-- To Switch 0, Next Stage

- To Switch 23, Next Stage

---•-~ To Switch 0, Next Stage

; To Switch 23~ Next Stage

24 x 24 ..,... __ ,.;. To Switch o, Next Stage
Crossbar
Switch -------•;. To Switch 23, Next Stage ----· Switch 23

329

Fig. S.21 Detailed view of a portion of the GF-11 full permuter switch. The 576 lines pass
through three ranks of switches, one rank of which is shown here . Each switch is con
nected to all 24 switches in the next rank .

the memory called permutation memory in Fig. 5.20. This memory holds 1024 bit
vectors, each selectable by a 10-bit inqex issued from the control unit. To perform
a specific permutation, the controller issues the 10-bit index to the permutation
memory. Then the bit vector produced by this read is loaded into the switch,
and the settings are made. Then data traverses the switch.

The quantum chromodynamics problem uses only 6 of the 1024 possible
settings. In the event of a processor failure, it is relatively straightforward to
compute a new bit vector that maps out the failed processor and replaces it with
a spare. When that bit vector i~ stored in the permutation memory, the com
putation can proceed.

The GF-11 is a research vehicle , not a commercial machine. If it is successful
as a research machine for solving the problem posed, that does not mean that
this architecture is cost-effective for problems in general. However, its rich in
terconnection structure enhances the GF-ll's ability to execute more problems
in general. The major constraint on GF-11 programs is that all processors execute
the same instruction stream.

5. 7 Final Comments on
Vector Computers

It is interesting to contrast and compare the ideas that emerge from the discussion
in this chapter to see their strengths and to identify future t~ends in vector

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 344

330 Vector Computers Chapters

machines. We have explored the pure pipeline structures of the CDC STAR and
Cray r, the combination of pipeline and parallel structure of the FPS-164 and
the GF-11, and in Chapter 4, the purely parallel structure of the ILLIAC IV
These machines span a rather broad set of design choices. The major trench
identified are to:

• Provide vector instructions to take advantage of this approach for numerical
applications;

• Provide facilities to extend the range of applicability of the architecture be
yond vector processing;

• Use multiple levels of memory, particularly high-speed buffers; and

• Mix pipeline and parallel techniques in various degrees to achieve an ac-
ceptable value of price to performance.

On the other hand, the characteristics that differ from processor to processor
concern the specific design choices that trade-off speed against cost and flexi
bility against efficiency. No one de~ign i~ best. Choi 7es were driven in many
cases by available technology, which differed considerably for the designs
described in this text. Had all designers been given the same underlying tech
nology, some individual design choices might be common among several ar
chitectures, but even then it is unlikely that any two designs would be markedly
similar.

The examples we discuss show the final choices of the designers 1 and our
discussion illustrates various aspects of the choices that affect cost and perfor
mance. Unfortunately, we are not able to present the interesting choices that
were investigated along the way and abandoned for various reasons.

The trends listed here are by no means the only ones that exist, nor can we
rule out new trends in the future as technology makes new designs possible.
The future architect should use this discussion as a guide, but not as an ex
haustive treatment of the subject. Examine any attractive idea and be prepared
to develop it into a full-fledged machine design. But be sure to examine it
carefully. Rarely is there a case for building a machine that is handicapped by
some inherent inefficiency.

The major implementation technique for vector machines appears to be
pipelining. We see two basic reasons for this to be true:

1. Pipelining provides a means for coupling a slow memory to a fast arithmetic
unit.

2. Pipelining enables arithmetic units to produce a sequence of results at a rate
much faster than their inherent latency in forming a single result.

If we view the memory system and the arithmetic system as two distinct bot
tlen~cks in a conventional computer system, then we can see that pipelined
archit~cture attempts to relieve both bottlenecks. For memory systems, the rate
at which operands are produced at a memory port is anywhere from 5 to 20

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 345

section 5.7 Flnal Comm~nts on Vector Computers 331

times the rate at which the memory system cycles one memory module. Simi
larly, the rate at which sums and products are produced at the output of an
arithmetic unit is from three to ten times faster for a pipelined structure than
for a conventional serial structure. These are significant speed improvements
whose individual cost is relatively low compared to the cost of a full computer
system. Consequently, we can expect to see the continuation of the trend to
build pipelined arithmetic units driven by pipelined memory systems.

In the last chapter we introduced six technology constraints that have to be
overcome by a high-performance design. In this section we review those con
straints and discuss how a vector architecture deals with them in achieving high
performance.

• Processor bandwidth: Two major ways of boosting processing bandwidth are
discussed here. Pipelined arithmetic is probably the most -widely used method
because of its high performance at relatively low cost. To deliver speeds
beyond those available from pipelined arithmetic alone, replication of arith
metic units into fully parallel systems is the technique of choice.

• Memory bandwidth: For main memory, designers build large memory systems
from multiple independent memory modules. Bandwidth grows with the
number of independent modules. To match the bandwidth of arithmetic
units, one or two levels of high-speed memory are used, most frequently
in the form of addressable registers. The trend is to make the high-speed
buffers very large, offering from 256K to lM of storage currently and larger
storage in the years to come.

• Input/output bandwidth: Although we have not discussed input/output in this
chapter, it is dear that input/output bandwidth can be increased propor
tionally to increases in memory bandwidth if we assume that input/output
operations require a fixed fraction of memory operations. Most high-per
formance systems incorporate 10 to 20 direct memory-access channels whose
speeds are compatible with main memory speed. They rely heavily on
a high-memory bandwidth , usually obtained through the use of multiple
memory modules .

• Communication bandwidth: the majority of the vector architectures discussed
in this chapter do not require processor-to-processor communication. In
formation is distributed among operands within the vector operation itself
by means, for example, of a scalar product that combines information from
all elements in two vectors. Information is also distributed among different
vectors through a common memory. The arithmetic unit can obtain operand
values that are the results of various computations by accessing those values
in main memory. In this case communication bandwidth and memory band
width refer to the same quantity.

The exception in this chapter is the GF-11. It has local memory only,
and computations interact through an interconnection network. This band
width is made very high by disallowing conflicts in the network. The in-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 346

332 Vector Computers Cr.apter s

terconnections are set according to precomputed control data, so they yield
a useful processor-to-processor permu_tahon. The communication band~
width is comparable to memory bandwidth.

• Synchronization: for one pipeline., synchr?nization is ~ccomplished automat
ically because operations are performed m the order m which they enter th
pipeline. For multiple pipelines, the FPS-164 approach is to synchronize be
using a single program to control all pipelines. The GF-11 approach is simil y
in that a single control unit issues a broadcast command to all processor:r
Both the FPS-164 and GF-11 synchronize all processors at each step through
the instruction stream. The Cray architec_tu~e uses pipeline interlocks to
control vector operations so that nonconflicting operations can be done in
parallel, and dependent operations are chained to ~verlap as much as pos
sible, provided that the overlap does not create an incorrect answer.

• Multiple purpose: the vector machines discussed in this chapter tend to be
useful over a large class of vector problems, mainly because they support a
variety of data-access modes and have rich sets of vector instructions. Never
theless, their utility is biased strongly to numerical applications, and it is
not clear that they are efficient for nonnumerical applications.

These characteristics dearly show that the major advantages of a vector archi
tecture are:

• Efficient use of memory bandwidth through pipelined access;

• The excellent cost-performance of pipelined arithmetic; and

• The very simple mechanisms that serve the needs of communication and
synchronization.

These three characteristics yield a combination of high performance and high
efficiency. Unfortunately, they do not yield a system that is well suited to all
purposes. In general, vector processors have a much larger area of applications
than do continuum-model processors with near-neighbor connections. The key
difference is that vector processors can deal with both local and remote operands
by making use of a large random-access main memory to fetch data at arbitrary
locations. Processors with only near-neighbor mesh connections have limited
ability to reach remote data. With a larger realm of application, vector processors
have created an important niche in computing and are far more widely used
than continuum-model processors.

Exercises

5.1 The purpose of this exercise is to explore techniques for implementing the individual
operations of Program 5.1 (in Section 5.2.1). The algorithm scans a column for a
maximum element, pivots by interchanging rows, then updates a partial row, partial

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 347

Exercises 333

column, and a square subarray. Your objective is to work out a pipelined architecture
that can perform each of the processes of scan for maximum, pivot, row update,
column update, and subarray update individually in pipelined fashion without
requiring over~a~ between operations. Your goal is to produce one result per ma
chine cycle w1thm each process, but you are allowed to have periods ben-.•een
processes during w~ch no results are produced. (For the MAX operation, try to
produce one companson per cycle.)

For timing, assume the following total delays per operation:

Memory access
Add
Multiply
Divide

four cycles
two cycles
two cycles
eight cycles

You are constrained to use main memory for vector storage since your arithmetic
subsystem has insufficient register storage to hold vectors or substantial portions
of vectors. In your answer you must show at least:

• The storage format of the array in memory;
• The machine instructions for each of the processes (\.\'1th a clear description

of the action of these instructions);
• A block diagram of the computer system showing the principal elements; and
• A discussion of the way that each of the five processes is handled.

5.2 The object of this exercise is to write programs for a processor designed for vector
operations. Carefully study Program 5.1 in Section 5.2. Assume that it is executed
on a processor similar to the one shown in Fig. 5.1. There are 64 independent
memories, and the matrix is 32 x 32. Memory operations take 12 machine cycles,
and all arithmetic results are delivered by vector instructions at the rate of one per
cycle.

a) Consider operations on a matrix stored with entire columns in individual mem
ories and rows stored across memories. For each major portion of the program,
what speedup is achieved?

b) Consider the matrix stored in skewed format so that rows and columns are each
accessible in a single access. What is the speedup for each major section of the
code? Consider the effects of nonunit stride when calculating the speedup.

c) If variable delays are used to align vectors, what is the maximum length of each
delay required for any vector allocation, assuming that vector access for both
sources and the destination have a stride of 1?

5.3 The purpose of this exercise is to contrast the results obtained for a pipelined
architecture in the previous problem with a parallel vector architecture similar to
the ILLIAC IV. For this problem assume that the 32 x 32 matrix problem of Exercise
5.2 is to be solved on an ILLIAC N architecture that contains 64 processors connected
as an 8 x 8 array. Each processor is connected to four processors whose indices
differ by + 1, -1, + 8, and -8 modulo 64.

a) Let the matrix be stored with columns in individual memories and rows across
memories . For each major portion of the program, what speedup is achieved?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 348

334
Vector Computers Chapt~ 5

b) If th matrix is stored in skewed format so that rows and c?lumns are each
acce:sible in a single access, what is the speedup for each ma1or section of the
code? Assume that deskewing can be done at no cost.

c) lf each unit shift re~uires one cycle, w~at is the speedup for each major section

of code in this version of the program.
d) If you use the interconnections as given to _speed up the deskewing,_ and each

single interconnection takes one cycle, what 1s the speedup for each ma1or section

of code in this version of the program?

5_4 The algorithm for Gaussian eliminati~n used i~ Exe~dse 5.3 accesses bo~- rows and
columns of a matrix. Access in two different d1mens1ons ma! r_educe efficiency, and
it is worthwhile to modify the algorithm to work out a vanati.on that uses column

access only.
a) Consjder how to change the algorithm so that it accesses columns only, yet is

faithful to the intent of the original algorithm and has an efficiency that is com•
petitive with (but possibly poorer tha~) the algori~hm imple~ent~tion of Exercise
5.3. Describe your new algorithm bnefly, then give a detailed discussion of the
portions of the algorithm that differ from the implementation in Exercise 5.3.

b) The new portions of the algorithm may require somewhat different architecture
than that described in Exercise 5.3. Describe an architectural design that is well
suited to implementing those portions of the new version of the algorithm that
differ from the corresponding portions of the old version. Give enough infor•
mation to establish that your implementation is efficient and reasonable.

s.s The purpose of this exercise is to examine vector pipeline techniques. Consider the
recurrence equation, Eq. (4.13), and explore its implementation in a pipelined com•
puter system.
a) To obtain maximum parallelism, Eq. (4.13) should be solved by recursive dou

bling. Find a recursive doubling solution or use the solution obtained in the
answer to Exercise 4.7.

b) Show the block diagram of a specialized pipeline to evaluate one cycle of a
recursive doubling version of the recurrence. This diagram can be broken into
blocks that are addition., subtraction, multiplication., and division. The blocks are
assumed to be multi.cycle floating~point units, each capable of being pipelined
with a rate of completion of one result per cycle.

c) Show how to stream the constant vectors into a processing unit based on your
pipelined design so that the recursive doubling solution is fully pipelined. Use
delays in place of interlocks and attempt to produce results at the rate of one
result per cycle. Use multiple copies of the units designed in b and give the
structure of the full processor by showing how to connect each of the copies
from b with extra delays to produce the answers to the recurrence.

5.6 The purpose of this exercise is to contrast caches with high-speed storage regist~rs
in systems that use vector arithmetic. Reconsider the Gaussian elimination a1gorithm
of Program 5.1, operating on a 64 x 64 matrix. In this exercise, when we refer to
the array-update process, we refer to the innermost loop of that algorithm.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 349

Exercises 335

a) Assume that there are 32 independent memories, each capab]e of a two-cycle
access time. Compare the relative timing for accessing a row versus a column
when accesses are pipelined.

b) Now. c~nside~ the effe': of a cache. The cache consists of 64 sets, two-way
associative, with each line of the cache holding one operand. Assume that a
single vector of length 64 is accessed two consecutive times and no intervening
access is made. For the second vector access, how many misses will there be if
the vector is a row vector? How many if the vector is· a column vector? State
your assumptions on the storage format and the mapping of addresses to cache
lines.

c} In one iteration of the array-update process in the algorithm, how many misses
will there be? (To simplify the calculation, you may assume that all vector accesses
are of length 64, even though the actual length depends on the specific iteration
of the algorithm.) Note that you may completely ignore the other accesses as if
they were not present at all. A miss is defined to be an access to an item that is
not present because it either was not accessed in the previous iteration of the
algorithm or was displaced from the cache because at least two other lines in
the same set were accessed more recently.

d) Now assume that there are two vector registers, each 64 items long. Show how
to load data into the vector registers to reduce the number of data accesses to
memory as much as you can.

e) Use the data you have developed and parameters given to calculate the relative
number of accesses to main memory for the cache-based computer and the
register-based computer when the array-update process is performed.

s. 7 The inner loop of an algorithm performs the foHowing operation:

Sum:= Sum + b x CfiJ/d

Assume that b, C[i], and dare variables that can be streamed into a pipeline from
memory with one cycle access to each variable, so that memory is not a bottleneck
for compu talion. The objective is to perform the operation given to produce the
final sum in minimum time.

a) Design the block diagram and functional behavior of a three-function pipeline
whose operations are multiply, add, and divide. Find the collision vectors for
controlling the system and the fastest possible cycle for the sequence of multi
plication, division, and addition when operating on independent operands. (This
does not account for the interlocking necessary to make sure that the value of
Sum used as an input is derived from the most recent value of Sum as an output.)

b) Now consider the maximum speed attainable when the input to the adder is
interlocked to the output of the adder. \'\/hat is flus maximum speed in your
design?

c) H we want to produce one update of Sum per cyde on the average, how can we
structure the computation to come dose to achieving this rate?

S.8 Consider an architecture similar to the Burroughs' Scientific Processor (BSP) in which
17 items are read from memory, but only 16 are delivered to the arithmetic unit.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 350

336
vector Computers ChaPter s

} F 16 x 16 matrix, consider how to select the elements of a column and
a or a li th ·th . permute them into column order fo~ de very_ to e an metic unit. What are

the selection and permutation operations required to access Column O? Column

3? Column 4? Assume that the matrix rows are stored across the memories.

b) What are the selection and permutation operations required to access Row O?

Row 3? Row 4?
c) What basic permutations would you buil_d i~to this. ~achine to facilitate row

access? What permutations would you build m to facilitate column access?

5_9 Refer to Fig. 4.20 for a visual description of th_e ~ta flow required for a _bitonic sort.
Construct a vector algorithm that does the b1tomc sort of N numbers m O(log W)
vector operations. Assume that you have a vector operator that reads the odd
numbered indices of a vector of length N and compresses them into a dense vector
of length N/2. Use this vector operator to create an inverse perfect shuffle. Construct
the bitonic sorter from inverse perfect shuffles.

s.tO a) Exercise 5.9 describes how to create vector operations that can implement the
inverse perfect shuffle. Describe a vector implementation of an instruction that
operates on two vectors, each of length N/2 and creates a vector of length N that
is the perfect shuffle of those vectors.

b} Consider the implementation of the perfect shuffle as described in part a on a.
computer such as that described in Fig. 5.7 and whose timing diagram is similar
to that shown in Figs. 5.4 and 5.6. Assume that C (of length 16) is the perfect
shuffle of the vectors A an4 B, each of length 8. All three ve<;tors have their first
element in Memory 0. Assume that the memory takes two clocks per access and
that there are g; memories. Construct a tirrung diagram similar to Fig. 5.6 that
describes the shuffle operation applied to A and B.

c) Construct a timing diagram that shows the behavior of the processor on vectors
A and B of length 16.

d) Your pipeline may suffer extra contention after initial st~p. How many cycles
do you lose in part c due to this contention?

S.11 Figure 4.16 shows the structure required to compute an FFT of eight daia points.
Use the perfect-shuffle vector instruction from 5.10 in a program to compute the
FFf of N data points. Assume that the operations at each node are "black box''
computations whose internals are unknown to you and are unimportant. The ob
jective is to show how you achieve the data How required for the FFT by means of
the instructions available.

5.12 The reverse binary vector operation takes the element at index i in a vector whose
length is a power of two, and moves the element to the position whose index in
binary is the reverse of the binary representation of i. Show how to implement a
reverse-binary operation by vector operations that select components of a vector
and write these components in their same relative position in another part of storage.
The selection is made by means a bit vector whose ls denotes which components
to copy and whose Os designate a component that is not copied. Assume that the
len~ of _the vecto~ is a power of 2, and show that the number of vector operations
reqwred 1s proportional to the logarithm of the vector length.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 351

6
Sat cit si sat bene. (It is done
quickly enough if it is done well.]

-Latin proverb

Multi processors

6.1 Background
6.1 Multiprocessor Performance
6.3 Multiprocessor Interconnections
6.4 Cache Coherence in Multiprocessors
6.5 Memory Consistency in Multiprocessors
6.6 Summary

Thus far we have treated methods for speeding up a single instruction stream.
Although there is but a single program in execution, the designs discussed earlier
exploit concurrency within the instruction stream and within individual instruc
tions. In this chapter we turn to the discussion of multiprocessors-computer
systems composed of several independent processors. The motivation for mov
ing toward multiple processors is strictly a matter of performance because device
technology places an upper bound on the speed of any single processor. To
exceed that bound requires multiple processors.

The central themes of this chapter are multiprocessor structures and per
formance. Our objective is to show several interesting techniques for organ
izing multiple processors into highly parallel systems and to give insight into
the potential performance improvements and bottlenecks of such systems.
Chapter 7 treats software strategies for using the available parallelism of these
systems.

337

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 352

338 Multiprocessors Chapter 6

6.1 Background

Our earlier discussions of high-performance machines study two important classe
of parallelism. Pipeline machines produce high performance by placing seve ~
stages of a pipeline in operation simultaneous!~ . Machines for continuum ~~
culations have multiple processors, each executing the same program . In both
cases , a single program is used to operate on vectors or arrays of data. Flyn
(1966) termed this type of parallelism single-instruction stream, multiple-data strea n

. l m (SIMD) para11elism. Recall, for example, an extreme imp ementation of this ide
in the form of the GF-11, in which each of 576 processors executes identica~
instructions broadcast to them by a single control unit.

Another S[MD machine with massive parallelism is the Connect ion Machine
[Hillis 19861 with 64K I-bit processors. The architect is truly fortunate when an
application can be executed on ma~hines that are built .around the lock-step
paraUelism required for SIMD machines because the architecture efficiently ex
ecutes programs well suited to SIMD execution.

High perf?rmance on such ~achines requires rewriting _convent ional algo
rithms to manipulate many data simultaneously by means of instructions broad
cast to all processors. Although programming for these machines can be difficult
in principle, in the ideal case, a serial algorithm can be converted to an SIMD
algorithm by replacing each inner loop with a single broadcast instruction that
implements the complete loop. The fact that an important, but limited, class of
problems fits this model extremely well has provided the impetus for the design
and construction of these machines.

Clearly, some large problems do not lend themselves to efficient execution
in an SIMD architecture . The operations required for such problems cannot easily
be organized into repetitive operations on uniformly structured data. They tend
to be unstructured and unpredictable. Addressing patterns tend to be data
dependent, so the architecture cannot easily preload data by anticipating future
accesses.

The architect who must attain high performance for such problems inevitably
looks for a solution in a muJtiprocessor structure. Such an architecture is com
posed of several independent computers, each capable of executing its own
program . Flynn [1966] calls this type of architecture multiple-instruction stream,
multiple-data stream (MIMD) architecture. The processors of a multiprocessor are
interconnected in some fashion to permit programs to exchange data and syn
chronize actjvities .

A model of such an architecture is shown in Fig. 6.1. In this figure each
processor has registers, arithmetic and logic units, and access to memory and
input/output modules. In Fig. 6. l(a) we show the memory and input/output
systems as separate subsystems shared among all of the processors. Figure 6. l(b)
shows the memory and input/output units attached to individual processors.
No sharing of memory and input/output is permitted in Fig. 6.1 (b). In both

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 353

section 6.1 Background

Processor 1

Processor 2 Interconnection
Network .

'

Processor N

(a)

Processor 1 I I

Memory 110

Processor 2 I I

. Memory 1/0 . .
Processor N I I

Memory 1/0

(b)

fig. 6.1 Two multiprocessor structures:
(a) All memory and l/O are remote and shared; and
(b) All memory and l/O are local and private.

339

Memory

l/0

Memory

l/0

Memory

Interconnection
Network.

cases, because the system contains multiple processors, each capable of exe
cuting an independent program, the system fits Flynn's MIMD model.

In both systems depicted in Fig. 6.1 the processors cooperate by exchanging
data through the interconnection system and by synchronizing activities. The
shared memory in Fig. 6. l(a) provides a convenient means for information in
terchange and synchronization since any pair of processors can communicate
through a shared location. The structure in Fig. 6. l(b) supports communication
through point-to-point exchange of information. Obviously, multiprocessors can
have any reasonable combination of shared global memory or private local mem
ory. Figure 6.1 shows the extremes in the design space, and practical designs
lie at the extremes or anywhere in between.

The main purpose of a high-speed multiprocessor is to complete a job faster

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 354

340 Multiprocessors Chapter 6

by using several machines concurrently than can be done by using a single cop
of the same machin~. I~. some applicatio~s, the main purpose f~r us_ing multipl:
processors is for rehab1lity rather than high performance. The idea 1s that if an,
single processor fails, its workload can be performed by ot~er ~rocessors in th~
system. Since the design principles of such systems are quite different from the
principles that guide the design of high~performance systems, we do not address
design for reliability in this text, but rather we limit our attention to issues related
to performance.

When a multiprocessor is operating at peak performance, all processors are
engaged in useful work. No processor ~sidle, and no p~ocessor is executing an
instruction that would not be executed 1f the same algorithm were executing on
a single processor. In this state of peak performance, all N processors of a
multiprocessor are contributing to effective performance, and the processing
rate is increased by a factor of N.

Peak performance is a very special state that is rarely achievable. There are
several factors that introduce inefficiency. Among the factors are:

• The delays introduced by interprocessor communications;

• The overhead in synchronizing the work of one processor with another;

• Lost efficiency when one or more processors run out of tasks;

• Lost efficiency due to wasted effort by one or more processors; and

• The processing costs for controlling the system and scheduling operations.

Both scheduling and synchronization are sources of overhead on serial machines.
In citing these factors together with the other factors, we are citing how they
degrade multiprocessor performance beyond the effects that may already be
present on individual processors.

A high-performance vector processor is free from many of the problems,
but it does suffer from lost performance because it is unable to keep all of the
processing units busy. This latter problem arises particularly when a computation
is not easily implemented as a sequence of vector operations performed on highly
structured, densely stored data.

The architect who designs and builds a multiprocessor must pay close at
tention to the sources of inefficiency exposed here. They can lead to serious
degradation in performance. For example, if the combined inefficiencies produce
an effective processing rate of only 10 percent of the peak rate, then ten pro
cessors are required in a multiprocessor system just to do the i.vork of a single
processor.

Fortunately, for a small number of processors, careful design can hold the
inefficiency to a low figure, but inefficiencies tend to climb as the number of
processors increase. There is a point where adding additional processors can
lengthen, not shorten, computation time.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 355

section 6.1 Background 341

The fact that inefficiency tends to grow with the number of processors is
the underlying reason why many commercial offerings of multiprocessors have
a small number of processors, such as 4, 8, or 16. The fastest machines are built
from the fastest devices available and have relatively few processors.

Consider, for example, the Cray XMP, a four-processor version of the Cray
I. Another example is the IBM 309X family for which systems with up to six
processors are available. Both of these implementations start with very high
speed devices and use architectural techniques such as cache and pipelining to
produce very high perf~rmance single processors for their respective markets.

Users of these machines may have workloads or individual problems whose
needs exceed the capacity of a single machine. Additional performance is not
readily available from faster versions of the same machine because the machines
are already at the limits imposed by architecture and device technology. An
effective way to attain small multiples of performance improvement is to group
together two or four identical processors.

Some computer architects take note of a cost characteristic mentioned in
Chapter l. The discussion there indicates that high-speed device technology is
much more expensive than lower-speed technology.

Moreover, with today's devices the cost of fast devices tends to grow faster
than the performance benefit of the increased device speed. Hence, the cost per
unit of computing power tends to be greater for high-end machines than for
low-end machines, although this trend is technology dependent and could change
over time. Nevertheless, when lower-speed technology has a cost advantage,
we have an opportunity to create a cost-effective high-performance system by
combining hundreds or thousands of slow-speed processors built with low-cost
devices.

The cost advantage of using low-cost technology is balanced by the degra
dation in efficiency that inevitably occurs as the number of processors increases.
If the degradation due to the large number of processors exceeds the cost ad
vantage of the low-cost technology, then there is no particular advantage to
using hundreds of slow processors over using a few very fast processors.

Moreover, the complexity of programming a machine with hundreds of
processors far exceeds the complexity of programming a single processor or a
computer system with just a few processors. Consequently, although economics
might enhance the attractiveness of a machine with hundreds of low-speed
computers, the advantage of this structure disappears if efficiency is not held
high.

Thus, there is no pa!ticular magic in the parallelism of a multiprocessor.
The parallelism yields a useful benefit when it successfully produces higher
performance. When the parallelism cannot be tapped effectively, it simply adds
to the system cost and complexity. In such a case, the end user is best served
by reducing the parallelism to a point where the parallelism available can be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 356

342 Multiprocessors Chapter 6

used effectively. Whether there are 10, 1000, or 1,000,000 processors, it is bad
practice to squander processing power. The argument that "processors are cheap"
is irrelevant if, by using fewer processors, performance goes up.

1n the next section we a~dress th~ question of effi~iency mo~e carefully,
especially considering the ratio of th~ ti~e sp~nt executing useful instructions
compared to the time spent commumcahng with other processors.

6.t Multiprocessor Performance
The point of this section is to ~nalyze the performance _benefit of multiple pro
cessors ~_the f~ce of overhead m~~ _re~ to create parallelism. The models studied
are variations of models introduced by Indur~hya, Stone, and Xi-Cheng [1986].'
This section shows that performance benefits strongly depend on the ratio
RJC, where R is the length of a run-time qu~tum and C is the length of com
munications overhead produced by that quantum. The ratio expresses how much
overhead is incurred per unit of computation. When the ratio is very low, it
becomes unprofitable to use parallelism. When the ratio is very high, parallelism
is potentially profitable. Note that a large r~tio can be obtained by partitioning
a computing job into relatively few large pieces, and that the amount of par
allelism for such a ratio might be much smaller than the maximum available.

The ratio RIC is a measure of task granularity:

• In coarse-grain parallelism, RJC is relatively high, so each unit of computation
produces a relatively small amount of communication; and

• In fine-grain parallelism, RIC is very low, so there is a relatively large amount
of communication and other overhead per unit of computation.

Coarse-grain parallelism arises when individual tasks are large and overhead
can be am9r.:tized over many computational cycles. Fine-grain parallelism usually
provides opportunities to perform execution on many more processors than can
fruitfully support coarse-grained parallelism. The idea of fine-grain parallelism
is to partition a program into increasingly smaller tasks that can run in parallel.
At the ultimate limit, each individual task may be as small as a single operation.
More commonly, however, a fine-grained task contains a small number of
instructions.

The programmer seeking maximum performance is strongly tempted to
partition a problem into the finest possible granularity to create the maximum
amount of parallelism. But if the maximum parallelism also has the maximum
overhead, it is not clear that maximum parallelism leads to the fastest solution.

The main reason for the presentation of the performance models in this
section is to show the P~!"~sjye role of the RIC ratio on performance. The
discussion that follows shows how a fine-grain partition that happens to have
a low RIC ratio produces poorer performance than a much coarser partition with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 357

section 6.2 Multiprocessor Performance 343

a higher RJC ratio. Hence the much higher parallelism of the fine-grain partition
need not produce higher net speed.

The purpose of presenting a number of different performance models to
make thjs point is that no one model is truly representative of multiprocessors
or of multiprocessor algorithms. We consider a number of different variations
of the basic model to cover a variety of program behaviors and multiprocessor
architectures. In every case, the role of RIC is the same{Srnall ratios lead to poor
performance because of high overhead. Large ratios usually reflect poor ex
ploitation of pa_rallelism. For maximum p~rformance, it is necessary to b~lance
parallelism agamst overhead. The only difference from model to model 1s the
point where the two factors become balanced.

Architects have long de~ated the relative qualities of fine and coarse gran
ularity. For SIMD machines, the GF-11 is a coarse-grained machine whose in
dividual processors can sustain a pea~ rate as high as 20 Mflops. The Connection
Machine (CM-1) is an SIMD machine whose 1-bit processors are better suited
to fine-grained tasks and whose performance stems from the massi, ~~ number
of processors rather than from the computational power of an individual processor.

What reasoning led the architects of one machine to seek such a vastly
different solution than did the architects of the other machine? The range of
applications is the primary motivation for the difference. The Connection Ma
chine is designed to exploit parallelism of tasks such as image analysis, in which
a significant portion of the work is characterized by fine-grained tasks. The
GF-11, which is designed for much larger-grained tasks, would be burdened by
overhead if the tasks carried the additional overhead attributable to fine gran
ularity. Thus the architects of each machine attempted to match granularity to
the applications for the machine.

At one end of the multiprocessor scale are the Cray multiprocessors, such
as the Cray XMP-a four-processor system in which each processor is a Cray I
supercomputer. Under ideal circumstances, communication in this system occurs
only at the end of major phases, which might well be every few million or few
billion instructions.

Smaller granularity is evident on microprocessor-based multiprocessors such
as the Cosmic Cube and a number of commercial versions of this hypercube
based design. These machines typically use 64 to 256 copies of a high-perfor
mance 32-bit microprocessor. The different granularity biases the machines
somewhat to different application programs.

The remainder of this section is devoted to performance models. In each
model, observe how the ratio RJC determines the strategy that achieves the
optimum performance. To simplify the models, we have generally ignored the
effects of synchronization and contention except as crudely approximated by
the models. In practical systems, the effects ignored here tend to lower perfor
mance from that predicted by these models. In most instances, the best way to
compensate for the unmodeled effects is to increase the granularity of tasks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 358

344 Multiprocessors Chapter 6

6.t.1 The Basic Model-Two Processors with Unoverlapped Communications

For the first model, consider an application program that contains M tasks. Our
objective is to execute this program at _maximum spee~ o~ a system with N
processors. For simplicity, we first consider a system with Just two processors
and then let the number of processors increase. To model performance we need
to characterize the combination of execution time and overhead that will be

/ ' ~ incurred . ~·/' (' .,....,. ,). •·-:-·-:- . . .
Let us make the following assumptions to obtam our m1hal results. Sub-":'

sequently we relax the assumptions and see how the performance changes.
Specifically, we assume that

1. Each task executes in R units of time; and

2. Each task communicates with every other task at an overhead cost of C units
of time when the communicating tasks are not on the same processor, and
at np cost when the communicating tasks are cor~sid~nt.

.. f'".

We have various choices of how to execute such an application on a two-processor
system. We can assign all tasks to one processor and ignore the second processor,
which is a solution that minimizes communication overhead but fails to take
advantage of available parallelism, or we can partition the tasks to the hvo
processors in any combination. If the tasks are split across the processors, then
the total execution time is a combination of the time spent in execution and the
time spent ~gaged in overhead activities. Although we use the notation C as
if C were e~cl_usively due to communication, it is co1we_nient to l~mp overhead
from all sources into C. --:---L., -~.,v ·-'

To some extent, overhead can be overlapped with computation, especially
if processors can perform communication through input/output ports while ex
ecuting concurrently. However, not all sources of overhead can be hidden by
overlapping with computation. Processors can con\~nd for shared data or shared
communication paths, and they may be idle durin~g synchronization periods.
ThereforeJ we assume that some portion of overhead operations lengthen total~·
processing time because overhead cannot be fully overlapped with computation. '/'
In this case the equation that describes total processing time is the following:

Execution Time = R Max (M - k, k) + C(M - k)k (6.1)

Equation (6.1) expresses execution time as the sum of two terms, one attributed
to run time and one to communication and other overhead. The run time for
two processors is the larger of the run times experienced and is therefore the
larger of R(M - k) or Rk when k tasks are assigned to one processor and
M - k to the other. The second term models overhead to be proportional to the
number of pair-wise communications that must take place as a function of how
tasks are partitioq~d to the two processors. Note that the first term is a linear
function of k, and ~the second term is a quadratic function of k .

. ()~)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 359

section 6.2 Multiprocessor Performance 345

What is the minimum execution time for Eq. (6.1) as a function of k? That
is, how shall we assign tasks to two processors to produce the minimum exe
cution time? Figure 6.2 shows a graphic way of finding a solution. The answer
for this model is to assign all tasks to one processor if RIC is below M/2, or split

100

90

Q) 80
E
~ 70
c::
.Q 60 :i
~ 50)(

UJ
iu 40
0

30 t-

20

10

0

60

50

~
j:: 40
c;
.Q
s 30 0
(l)
)(

w
a; 20
0
I-

10

0

10

10

Total Time

Run Time

20 30
Partition Parameter k

{a)

Total Time

Run Time

Communications Time

20 30
Partition Parameter k

(b)

Fig. 6.2 Parallel execution time for two different RIC ratios:
'k. (a) Optimum partition parameter k = M/2; and
... (b) Optimum partition parameter k = 0.

•

40 50

M"' 50
RIC= 40

40 50

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 360

Multiprocessors Chapter 6

the tasks evenly between two processors if RIC exceeds that threshold. That is,
either k = o or k = M/2. (If k is odd, then make k a~ close to Ml~ as possible.)

Figure 6.2 shows the two different case~ th_at ans_e fo~ the different values
of the RJC ratio. The first term of Eq. (6.1) 1s p1ece-w~s~ lmear, an~ Fig. 6.2(b)
shows that this term looks like the letter V because 1t 1s syrnmet~c about the
point k = M/2. In this figure, when the pie~e~wise linear term is added to the
quadratic term, the resulting figure has a nummum at~/~.

In Fig. 6.2(a), the minimum occurs at k == 0. The mmunu~ has to be at an
extreme point in the region O < k < M/2 because the quadratic curve k(M _ k)
is con,.,qwe dow~n~~d, and, after adding a linear term t~ this _c~rve, the concavity
is unchanged ::· A curve that is concave downward has its mm1mum at one of its
endpoints. The endpoint of the curve at k = 0 (or at k = M) is the minimum
when RIC < M/2; otherwise the minimum occurs at k = M/2.

6.1.2 Extension to N Processors

Now let's consider what happens when there are N processors. In this case, we
assign k; tasks to the ith processor. The generalization of Eq. (6.1) becomes

C
Execution Time = R Max (ki) + - Lk;(M - ki)

2 i

= R Max (k;) + (~)(M2 - ~k~)
(6.2)

The first term counts the longest running time among the N execution times.
To that time is added the overhead from the second term. That term counts the
number of distinct pair-wise links between ki tasks and M - ki tasks, each of
which contributes an amount C to the total time. The second term in Eq. (6.2)
is quadratic just as in Eq. (6.1).

If the reasoning used to analyze Eq. (6.1) holds for this equation, then we
expect that the minimum value is for an extreme assignment and indeed th~
is the case. Either all tasks are assigned to a single processor, or they are dis
tributed "evenly 0 across all processors. By "evenly," we mean that if M is a
multiple of N, then each processor receives MIN tasks. Otherwise, all but one
processor receives the integer c~iling of MIN tasks, and one processor receives
whatever is left over. This assignment does not necessarily use all N processors.
For example, when there are 19 tasks and six processors, the assignment places
4 tasks on four processors and 3 tasks on a fifth processor , leaving no tasks
assigned to the sixth processor.

To show that the even distribution produces a local minimum, assume that
k1 has the maximum number of tasks assigned to it, and show that an assignment
in whlch two processors receive fewer than k1 tasks can be changed to an as
signment with a . lower cost, as computed by Eq. (6.2).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 361

section 6.2 Multiprocessor Pcrfonnance 347

For example,. assume that both k2 and k3 satisfy k1 > k2 ~ k3 ~ 1. Consider
the assignment that shifts one task from the third processor to the second
processor and examine how the cost changes as per Eq. (6.2). The ffrst term
does not change because the change does not affect the maximum number of
tasks assigned to a processor. The value of the second term is reduced,. however,
by the amount C(k2 - k3 + 1). This assignment produces higher performance,
and we can iterate this improvement process until no more than one processor
has less than the maximum number of tasks assigned to it.

Equation (6.2) has a threshold for an assignment, just as Eq. (6.1) has, and
-by a re!llarkable coinci~sn,ce the t~resholds are identical! We must compare the
even assignment of tasks to the assignment that places all tasks on one processor.
The latter a.ssignment is preferred when RIC is sufficiently small.

The difference in costs of the "even'' distribution to N processors and a
I-processor assignment is given by

T. o·ff RM CM2 CM2
1me 1 erence = N + -

2
- -

2
N - RM (6.3)

where the first three terms form the cost of the even distribution of tasks and
the last term is the cost of assigning all tasks to one processor.

To simplify the analysis, we have ignored values of M that are not exact .
multiples of N. To solve for the threshold value of RJC, we set the value of Eq.
(6.3) to O. By removing a factor of M and then grouping terms by coefficients
Rand C, we can remove another factor of (1 - 1/J\T). This yields the equation

Time Difference = C~ - R = 0 (6.4)

or

R M
- - -
C 2

(6.5)

This model shows that if RIC is greater than the threshold M/2, then an even
distribution of tasks to as many processors as are available will produce the best
ti.me. On the other hand, if RIC is below that thresholdr then no matter how
many processors are available, no assignment produces a faster time than the
assignment that uses only one processor. Here is a situation in which the role
of overhead becomes quite clear.

Unless overhead is kept below a certain percentage of execution time, parallel
execution cannot be beneficial. If this model holds for a parallel algorithm and
architecture, then the control of overhead costs is absolutely essential for par
allelism to be successful.

Although this analysis has looked at performance rather than costs, RIC
determines the point at which parallelism is cost-effective. Even when RIC is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 362

348 Multlproccssors Chapter6

ff . · tl high to warrant parallelism, the performance gain is diminished by
su 1aen y •b bl t 11 1· · the second term of Eq. (6.2). The speedup at!n uta e o para e tsm 1s the ratio
of the time to run on one processor to the time expressed by Eq. (6.2). This is

approximately

R1v1
Speedup= (RM + CM2

_ CM')
N 2 2N

R
= (6.6) (R CM(l - 1/N))

N + 2

RN -
C

= (R M(N - 1))
C + 2

If the first term of the denominator is large compared with the second, then the
speedup is proportional to N. This requires M and N to be small ~nd for RIC to
be large. If parallelism is increased to t11~.J)ftent that the denommator is dom
inated by its second term because N is very large, the speedup is proportional
to RJCM, which does not depend on the number of processors. Hence, as N
increases, the speedup approaches a constant asympto~e.

At this point each processor added to the system bririgs extra cost while
yielding negligible performance benefit. Even though performance can improve
incrementally as processors are addedr the diminishing returns in performance
are not worth the added cost. The number of processors should not be increased
beyond some maximum that is a function of cost and the ratio RIC.

This model is a general picture of how granularity and overhead affect the
performance gain of a multiprocessor, and it gives some indication of the im
portance of minimizing overhead and selecting the right granularity. It is only
one model, however_. and it cannot encoqipass the full spectrum of actual
applications. ,JI.:· ·•·

1

Let us alter the model in various ways and observe how the findings change.
In general, we discover that RIC plays a critical role, regardless of the model.
In some cases, there is the same type of threshold in which the best solutions
are extreme. That is, use all available processors or just one processor, depending
on the value of RIC. In some models, the extreme solutions are not the best.
The best solutions for these models distribute work among several processors,
but do not use all processors because the use of too many leads to performance

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 363

5ection 6.2 Multiprocessor Performance 349

degradation and extra cost. Moreover, in the general case, work need not be
distributed evenly to achieve the optimum performance.

6.1.3 A Stochastic Model

Consider what happens when all tasks are not equal in execution time. The
leading term in Eq. (6.2) is smallest when all processors run for equal lengths
of time, so the objective is to scatter tasks among processors so that all processors
are occupied for equal times. If this is not possible, the maximum running time
among the processors should be as short as possible.

The second term in Eq. (6.2) is smallest when tasks are distributed as un
evenly as possible. Consequently, among all ways of distributing tasks to pro
cessors so that processors have nearly equal running times, find a distribution
in which the number of tasks assigned to each processor is as uneven as possible.
That is, find schemes that assign as few or as many tasks per processor as
possible, subject to the requirement that the total workload on a processor be
equal to a given amount. _

In this model, the best assignment need not be the most evenly distributed
workload. If the workload is slightly uneven, it may become possible to assign
tasks to processors in such a way that overhead is greatly diminished. That is,
a small increase in the linear first term of Eq.(6.2) can be more than balanced
by a large decrease in the quadratic second term.

A stochastic variation of the deterministic model presented here appears in
Indurkhya, Stone, and Xi-Cheng [1986]. Instead of having all execution and
communication times as fixed constants, the model assumes that the times are
independent and identically distributed random variables with a mean R for the
running times and a mean C for the communication times. To solve the model,
Indurkhya et al. appeal to the central limit theorem and the additional assumption
that .,_ ',. .

E[Max {±ri, I r;}] = Max {E[±ri], E[_ f r;]} (6.7)
I I 1·.aJ: ... 1 I I I k+l

The E in Eq. (6.7) denotes the expected value. Equation (6.7) says that the
maximum of a set of expected values of sums of independent and identically
distributed random variables ri, the running times of the tasks, is equal to the
expected value of the maximum of the sums. With these two assumptions, the
model reduces to the deterministic model expressed by Eq. (6.2), and the results
are identical. . ,

The assumption underlying Eq. (6.7) is actually false, as is stated by Indur
khya et al., but the point is that when the equation breaks down, it is close
enough to being correct that the results produced are reasonably accurate. If

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 364

350 Multiprocessors Chapter 6

one of the summations in Eq. (6.7) has many more summands than any other
then almost surely it has the maximum expected value, and its expected valu;
is the value of both sides of Eq. (6.7). If the two summations have almost the
same number of terms, then it is possible for the left-hand side of Eq. (6.7) to
select one summation and the right-hand of Eq. (6.7) to select the other sum
mation, but the values of the summations w~l be fairly dose, so that Eq. (6.7)
is approximately if not exactly correct. Equation (6.2) covers the assignment to
M = 2 processors. It generalizes to M > 2.

Nicol [1989] explored the model more deeply and discovered that the results
reported by Indurkhya et al. can be proved to be true in some instances without
relying on Eq. (6.7). Indeed, the model appears to be ro!?_~st in the sense that
small perturbations in the underlying assumptions do not alter the gross con'.
clusi9nsfrom the model, although specific details in the conclusions may change.

6.2.4 A Model with Linear Communication Costs
<.r _;:, • • ,.l,. 1./ !_,J •' ' i_,;r_y .:J.-../)

Let us examine a model that is less drastic with regard to communication costs
to show a more optimistic result with regard to parallelism. Our first model
assumes that each task communicates with every other task, and, as a conse
· quence, the communications overhead grows quadratically as the number of
processors increases. This is the case when each task sends unique information
to every other task, but such a program structure is very poorly suited for
multiple processors. Some programs may well have this structure, and if so,
our results suggest how much speedup one can expect and at what cost. But
there are surely many other programs better suited for parallel computation on
multiprocessors. We need to know the performance potential for such programs
and how to achieve it. What is rather surprising is that the analysis is remarkably
similar and uncovers a rather similar optimal strategy, although the speedup
available is greater.

For this model, assume that the cost of communication is proportional to
the number of processors, not to the number of tasks assigned remotely. This
model holds if a task has to communicate with all other tasks but sends the
same information to all other tasks. Then the information has to be sent only
once to each processor, and after it reaches a remote processor it can be sent
from task to task within that processor for no charge.

In this model the cost of an assignment on N processors becomes

Execution time = R Max (k;) + CN (6.8)

For each value of N, the first term depends on the assignment but the second
does not. This modei produces the best time by distributing tasks evenly across
all processors to make the first term approximately equal to RMIN. However,
as the value N increases, the increase in the second term eventually becomes

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 365

section 6.2 Multiprocessor Performance 351

larger than the decr~ase in the first t~rn:i, so there is a maximum value of N tor
which performance increases, and this 1s a function of RIC.

Since the best assignment produces a first term of approximately RM!N, the
decrease in time in going from N to N + 1 processors is approximately

Execution time decrease = RM(~ -
1

) - c
N N + 1

RM
= N(N + 1) - C

This decrease is negative, that is, it becomes a time increase when

R N(N + 1) - = ----c M

or equivalently when

(6.9)

(6.10)

The square root function in Eq. (6.10) is a disaster. We expect that M tasks can
be done quickly on M independent processors, but this model says that because
of communication costs,. the effective parallelism is reduced to the square root
of what we anticipated. The bad news is mitigated somewhat by a high RIC
factor, so coarse granularity is desirable here, but its effect is also diminished
by a square root factor.

The news is even more pessimistic if we consider the cost of the extra
processors in relation to their benefit. Given that the time no longer decreases
when we reach the threshold given in Eq. (6.10); long before N becomes that
large, we have reached the point at which the cost of adding an extra processor
is not justified by the benefit gained. Thus a problem with 10,000 tasks that fits
this model may well run faster with up to 100 processors and might be economical
with at most 10 processors.

This model differs from our original model in the second term. In the original
model, Eq. (6.2), the cost of the second term grows quadratically with the con
stant M. Contributions to time vary inversely with N. For large N, execution
time approaches CM2/2, which does not increase as N increases. Because both
the first and second terms grow smaller with N in the original model, execution
time decreases for all N.

In the present modet the second term grows linearly with N, and this
accounts for the threshold for N above which performance degrades. The two
models tell us that the penalty for overhead exists, and it manifests itself by
limiting the effective use of parallelism in some way.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 366

Multiprocessors Chapter 6

~ ... u-',--.

6.2.5 An Opti~i~tlc Model-Fully Overlapped Comm.~nication
' I y' l- -L- ·"

Perhaps the models described th~s'' -far are too pessimistic. After all, they all
incur an overhead penalty for communication since none ~rovides a means for
overlapping overhead wjth useful and necessary computation. We have argued __,,,.:..,
that in practical systems some overhead cannot be_ m~sked because contention.,
finite communications bandwidth, and synchronization each make their own
contributions to e_~apsed computation time, although in t.he best circumstances
some overhead penalties can be successfully overlapped with useful computation
to reduce the overhead penalty. ·

Let us develop an optimistic model in which overhead potentially can go to
zero if overlapped with computation. We simply alter our model in Eq. (6.2) to

permit the overhead in the second term to be overlapped as much as possible
with the first term. The equation becomes

Execution Time = Max f'Max (k,),; ~k,(M - k,)} (6.11)
I ••

For two processors, the situation described by Eq. (6.11) i~ ·d~·pi~;ed in Fig. 6.2.
The piece-wise linear line expresses the contribution of the first term, and the
quadratic curve expresses the contribution of the second term. Their intersection
is the minimum value of the maximum function expressed in Eq. (6.11). At this
point the execution time is just long enough to mask completely the overhead
that is occurring concurrently. ~"";

Trus model is obviously optimistic because it is rather unlikely that overhead
can be fully overlapped with processing. Ne1:~1~eless, we can compute where
the threshold occurs. For two processors, we· seek the point of intersection of
the linear and quadratic curves in Fig. 6.2. This occurs at the point

which occurs at

R(M - k) = C(M - k)k

k = R
C

r· . .. -..=!'· r·'" ~----~

(6.12)

(6.13}

with k restricted to the range 1 < k < M/2. If we substitute Eq. (6.13) into
Eq. (6.11) the computation time becomes R(M - RIC), and the speedup is
1/[(1 _ ~ .R/CM)]. ~ince k is restricted in range for Eq. (6.13), the equivalent
restriction on Rf~ 1s that 1 ~RIC< M/2. For RIC in this range, the speedup for
two processors hes between 1 and 2 and is maximized when FJC = Mi2, the
same value obtained in the first model.

At the_ maximum speedup, the tasks are evenly divided among the proces
so~s, that 1s, k = ~12. As RIC decreases toward 1, the speedup falls off toward
unity, and the optimum task distribution becomes more skewed. Hence, this

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 367

Section 6.2 Multiprocessor Performance 353

model also depends on RJC, b~t it is n:iore optimistic in its performance predic
tions because all or a subst~A9al port10n of overhead can be overlapped with
computation if RIC is high enough.

For N processors, the overlapped-overhead model is easy to analyze because
of the results reported here. For any given maximum value of k-that determines
the co!'tributio~ of execution tim~, .the even distribution of ta~ks to processors

.; as defined earli~r pr_oduces the muumum communication time. Hence, the best
possible execution time for fully overlapped communication occurs when

RM = CM
2 (i _ .!)

N 2 N (6.14)

which for large N occurs roughly when

R NM ' -=-
C 2 (6.15)

In this case, for a minimum total timer the number of processors as a function
of RIC and Mis given by the function

N = 2R
C!v1 (6.16)

and the optimum choice for the number of processors is inversely proportional
to the number of tasks available.

As the available parallelism grows, the best policy is to use increasingly
fewer processors. For small N, we cannot neglect the 1/N term in Eq. (6.14), and
we obtain slightly different but consistent results. For N = 2, Eq. (6.14) produces
a minimum-time solution when A,f/2 = RIC, which is consistent with our previous
findings. ·' ·

The fact that the number of processors decreases with the available paral
lelism in this model is clearly the result of overhead time clim~ing M times faster
than execution time. The effect of overlapping overhead with computation time
is actually more pessimistic than we i~~gined because thjs model makes elapsed
time totally dependent on communication overhead time when run time is
smaJler than communication time. Hence, it is absolutely essential to keep com
munication time no greater than execution time if there is to be speedup.

6.i.6 A Model with Multiple Communication Links

A common assumption in all previous models is that parallelism allows run time
to be overlapped in several processors, but overhead operations accounted by
the term with coefficient Care done sequentially. If the overhead operations are

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 368

354 Multiprocessors Chapter 6

strictly limited to communications costs, then this model holds for systems in
which there is a single communications channel common to all processes. This
is the case when all processors are connected to a single bus or ring or when
all processors access the same shared-memory c~Ll i~ an e~clusive-access manner.

It is perfectly possible to replicate commumca.hons lmks and other architec
tural features that contribute to the overhead b~ttJ~n~c!<, of the second term. In
50 doing, the factor C is not a constant, but itself becomes a function of N. For
example,. consider a model in which every process has to communicate with
every other process. Our original estimate for run time is Eq. (6.2).

If we allow communication links to increase with N so that each processor
has a 4ed_ic~ted link to every other processor, then communication operations
can be overlapped among themselves. However, even with O(l'-J2) links installed
we still cannot support more than O(N) concurrent conversations because each
processor can talk or listen only to one other processor at a time.

In this case, we can divide the second term of Eq. (6.2) by N, and we obtain

C
Execution Time = R Max (k;) + 2N ~k;(M - ki) (6.17)

Equation (6.17) assumes that a processor is_ eit~er computing,. communicating,
or idle, and that the total cost of commumcations decreases inversely with N
because up to N conversations can be held concurrently. The idle time in part
is due to the fact that early finishers have to wait for late finishers.

Both terms of Eq. (6.17) tend to decrease inversely with N. The form of Eq.
(6.17) is very similar to Eq. (6.2) except for a factor of Nin the second term. An
even distribution minimizes the first term but not the second term. It follows
that Eq. (6.17), like Eq. (6.2), is minimized by assigning tasks as evenly as
possible, so that all except possibly one processor are given the maximum num
ber of tasks. Under such an assignment the execution time for Eq. (6.17) becomes

E . r· RM CM2 (1) xecution 1me = N + 2N 1 - N (6.18)

ParaJlelism is useful in this case until execution time fails to decrease as new
processors are added. This occurs when the following equation is negative.

(CM.,)
RM. + CM2 T (2N + 1)

Execution Time Decrease = 2

N(N + 1) [N(N + 1))2
(6.19)

By removing a factor of [M/N(N + 1)] and letting N become very large, Eq. (6.19)
reduces to

Execution Time Decrease = [R + (CM) (1 2
)] (M) 2 - N N(N + 1)

{6.20)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 369

section 6.2 Multiprocessor Performance 355

which is positive for N > 2, and so execution time improves for all N, except
possibly for small N.

To discover if N processors yield a better time than does one processor,
corn.pare Eq. (6.18) with RM, the time for one processor. These times are equal
when

RM
RM=-+

N (CM2)(1)
2N 1 - N

The breakeven point occurs when

R M
-=-
C 2N

(6.21)

(6.22)

In this case the granularity factor RIC and N are inversely related at the breakeven
point. Hence, the larger that N is, the smaller the granularity that we can permit
at the breakeven point. At breakeven, however, the para1lel machine is a gross
failure in terms of cost/performance. Its total performance for N processors is
identical to that of a single processor, yet its cost is higher by a factor of O(N)
for processors and O(N2) for communication links. We never want to operate a
parallel system at breakeven!

The point of this example is that by increasing the bandwidth of the com
munication links, we can permit smaller granularity than is otherwise possible.
However, the smaller granularity comes at an expense that rises faster than the
increase in processing cost. Whether or not the speed obtained by the higher
bandwidth communications is worth the cost depends very strongly on the
technology available for processor-to-processor communications.

To summarize the findings of the models presented in this section, we have
discovered:

1. Multiprocessor architecture produces an overhead cost that is an additional
burden not present in serial processors and vector (or other single instruc
tion-stream) architectures. The overhead cost includes the cost of scheduling,
contention for shared resources, synchronization, and processor-to-proces
sor communications.

2. Although running time for a computational portion of a program tends to
diminish as the number of processors working on that program increases,
the overhead costs tend to grow with the number of processors. In fact, it
is possible for overhead costs to grow faster than linearly in the number of
processors.

3. The ratio RIC is a measure of the amount of program execution (running
time) per unit overhead (communication time), within a program i~ple
mentation on a specific architecture. The larger this ratio, the more efficient
the computation because a relatively smaller proportion of time is devoted

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 370

356 Multiprocessors Chapter6

to overhead as this ratio increases. However, ~f the .ratio is made large by
partitioning a computation into a few large pieces u~ste~d .of many small
pieces, the parallelism available is greatly reduced, which limits the speedup
that can be attained on a multiprocessor.

We clearly have a dilemma. On the one hand, RJC has to be small to create a
large number of potentially concurrent tasks, and on the other hand, RIC has
to be large to prevent the overhead. costs from _becoming e~cessive. Because of
the dilemma, we cannot expect to build fast multiprocessors sun ply by expanding
the number of processors as much as technology allows ..

There is some maximum number of processors that 1s cost-effective, and
that number depends a grea! deal on the _arc~tecture of the machine, on the
underlying technology (espec1a1ly commumcahons technology), and on the char
acteristics of each specific application.

6.2. 7 Multiprocessor Models

The multiprocessor challenges the computer architect and the algorithm designer
somewhat differently. The computer architect must produce a system for which
RIC is acceptably high and provide a number of processors that can be used
effectively at that ratio. The algorithm designer has a different problem.

Given a fixed system with N processors and a ratio RIC that reflects an
achievable ratio of running time per unit overhead, how can an application be
partitioned and executed on the multiprocessor architecture to make the most
effective use of resources? The algorithm designer has to partition the application
across the multiprocessor and must choose a granularity that balances useful
parallel computation against communications and other overhead.

For some applications the most effective solution might not use all of the
processors available. Fewer processors might complete the job earlier or at lower
cost. In essence, we are trying to determine if it is better to plow a field with
one ox, four horses, or 1024 chickens. The solution with the maximum parallelism
is not always the fastest.

Most people take as an act of faith that one might as well use as many
processors as available if there is work to be done. However, some models
discussed in this section show that computation speed can eventually decline
as processors are added. So maximum parallelism is not synonymous with
maximum speed. Moreover, the multiprocessor is somewhat less effective at
producing speed at reasonable cost than are several techniques described earlier
in the text.

For example, cache memory boosts the effective speed of al1 of central mem
ory, yet only a relatively small fraction of memory actually needs to run at cache
memory speed. Hence, there is a performance leverage in using a cache. You
pay for a small fraction of what you obtain.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 371

section 6.2 Multiprocessor Performance 357

Similarly, pip~line co~p1:1ters improve performance in proportion to the
number of stages m the p1pelme. In the best case, an N-stage pipeline achieves
an N-fold speedu~. But the_N-fold spe~dup_does not require an N-fold replication
of hardware. A?am, there 1s leverage m this type of architecture because by less
than an N-fold increase of hardware, one obtains up to an N-fold improvement
in speed.

In both cases the leverage is available because the item replicated is a bot
tleneck that leaves other system resources idle. By breaking the bottleneck the
idle resources become available, and the total gain appears to be greater than
the gain that can be attributed to the fixed bottleneck by itself.

For cache, the bottleneck is memory, specifically the frequently referenced
areas of memory. For pipelines, it is some computational stage or critical register.
Cache replicates memory; pipelines replicate storage cells and arithmetic units.
But multiprocessors do not obviously offer the same leverage as do caches and
pipelines. The component replicated is the full processor, not some critical por
tion of the processor. Moreover, we are likely to obtain less than proportionate
return as we add processors.

Therefore, the design of multiprocessor architecture is far more challenging
than the techniques we describe earlier. One cannot simply lash together 1000
processors and expect to obtain 1000-times improvement. In fact, performance
improvements of only 100 to 200 might be all that could be achieved under
favorable circumstances, and under less favorable circumstances, improvement
might be only around 10 or less.

On the other hand, with a greater understanding of overhead costs, algo
rithms, and design approaches available, it is possible to construct efficient
multiprocessors. Our analyses in this section strongly suggest that efficiency
becomes limited as the number of processors increases. Perhaps an architecture
with 4 to 16 processors can be viewed as "general purpose," but with IK or 64K
processors, almost surely the architecture is limited to applications for which
the inherent parallelism is large and the granularity is in the range for which
the architecture runs well.

Hoshino [1989] has performed a granularity study of programs that are
operational on the PAX machine. The results of his study are consistent with
the predictions of this model. He measured the actual computation time and
communication overhead for various applications from timings taken on a 128-
processor machine. These timings were then scaled for various numbers of
processors, and various amounts of local memory. Because synchronization and
communication tend to be unoverlapped in the PAX architecture, the basic model
introduced early in this section tends to capture the performance of many of
the PAX applications. Hoshino's general conclusion is that the speedup attain
able on a 1000-processor machine is quite reasonable, provided that the gran
ularity ratio RJC is high enough to make the overhead a negligible portion of
the computation. His data indicate for each application how much loca} memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 372

358 Multiprocessors Chapter 6

is required to attain a satisfactory granularity. To maintain high RIC for lOOO
processors

1
it is necessary to scale the size of the problem upwards_ Hence a

1000-processor machine can be as efficient as a 100-processor machine, if the
problem solved by 1000 processors is sufficiently larger than the problem solved

by 100 processors.
Efficiency is clearly a major concern m the design of multiprocessors. A

design that uses 2N processors inefficiently c~nnot co~~te on a cost basis with
a design that uses N identical processors twICe as efftaently. The next section
treats some of the more promising candidate architectures for multiprocessors.

6.3 Multiprocessor Interconnections

This chapter investigates the following leading candidates for multiprocessor
systems:

• Bus-oriented systems;

• Ring networks;

• Crossbar-connected systems;

• Two- and three-dimensional meshes;

• Multilevel switched-neh•vork systems; and

• Hypercubes.

This is not an exhaustive, but rather a representative list of the possibilities. As
we examine low-cost, low-bandwidth communications through high-cost, high
bandwidth communications, the system issues are fairly constant across the
spectrum.

Our major conclusion is that the multiprocessor interconnection structure
is felt most strongly by imposing a saturation point for system communications.
Consequently, peak throughput is limited by the interconnection structure. For
performance below saturation, the interconnection structure affects performance
through the ratio of RIC. A good design is one that runs below saturation for
typical workloads, and at a typical operating point, it produces high throughput
by attaining a large RIC ratio. If for a particular workload, the interconnection
neh-vork of such a design can be modified in some major way without altering
throughput, then there is some flexibility in the set of interconnections that can
be used for that workload. The architect seeks the least costly set of intercon
nections that achieves good performance over a large class of applications.

6 .3.1 Bus lnterconnedions

Our discussion of performance stresses the need for efficiency and shows the
important role of the ratio RIC. The simplest way to construct a multiprocessor

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 373

Section 6.3 Multiprocessor Interconnections 359

that meets the efficiency goals is to connect the processors on a shared bus,
which thereby provides shared global memory to all processors. Figure 6.3
illustrates the block diagram of such a system.

Each processor has access to a common bus. To this bus is attached the
central memory, which is a global resource for all processors. Each processor,
in addition, has a loca) memory and a cache memory. The local memory and
local cache enable the processors to reduce their use of the shared bus and
thereby limit the effects of contention on performance when processors have to
go to shared memory.

If neither cache nor local memory were present, the cost of memory access
would be relatively high, and, moreover, since all processes access memory
frequently under these conditions, there could be severe contention at the bus,
causing arbitration delays that reduce performance. So the long delays due to
remote access coupled with additional delays due to contention effectively in
crease the value of C in the RIC ratio and thereby reduce speedup and the
number of processors for which the scheme is effective.

The objective in using cache and local memory is to shorten the effective
memory cycle and reduce the use of the bus so that one processor does not slow
down another through bus interference. If together the local memory and cache
reduce accesses on the bus by 90 percent (which should be readily achievable),
then 10 times as many processors can share a bus at a given level of contention
than in the system that has no local memory or cache. If the global accesses are
reduced by 95 percent, the factor climbs to 20 times as many processors.

Historically, commercial releases of bus-based multiprocessors supported as
many as 32 microprocessors. Above 32 processors, bus contention leads to de
graded performance. Unfortunately, the present trends in technology tend to

Processor 1

Cache Local 1/0
Memory

Processor 2

Cache Local
GLOBAL
MEMORY Memory

Processor N
. Cache Local 1/0

Memory

Fig. 6.3 A bus-connected multiprocessor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 374

360 MultlprocessOB Chapter 6

reduce the number of processors that can be attached to a bus rather than increase
it. The problem is that the mature interconnection technology available for such
systems uses tnetal conductors, and the maximum clock speed of such buses is
somewhere between 200 MHz and 300 MHz. The limiting factor turns out to be
stray capacitance at the receivers on the bus, which causes reflections to travel
backward toward the transmitters, from where they are again reflected toward
the receivers where they are received as false pulses. The cure for this disease
is to limit the rise-time of the transmitted signals, and therein lies the bandwidth
limitation of the interconnection technology. Another possible cure is to reduce
the physical dimensions ~f ~ll devic~s and c~mponents in order t_o reduce stray
capacitance. Although this 1s effective and 1s used successfully 1n the Cray Ill
computer to support a 1 GHz clock cycle, it is also very costly.

If we restrict attention to Low-cost high-volume technology, then the present
trend is for individual components and processors to become faster every year
while the clock cycle on the bus is fixed at an upper limit because of fundamental
limitations. When processor clock rates were in the 5 MHz region, a 200 MHz
limitation on bus dock rate did not overly constrain multiprocessor structure.
With processor clocks reaching 50 MHz, 100 MHz, and 150 MHz in recent
releases, it becomes clear that just a few active processors can saturate a bus. If
the trend continues and bus technology remains based on metal interconnec~
tions, we are likely to see no increase in the number of processors in bus-based
systems, and may even see a reduction as processors become faster relative to
the bus.

Optical technology provides an alternative implementation of processor-to
processor interconnections. The technology is still developing, and it may be
quite reasonable to use this technology for the backbone of a highly parallel bus
based computer system. Consequently, the future exploitation of bus-based
architecture is intimately tied in the future success of optical buses.

Apart from the physical realization of a bus-based architecture, there are
special issues involved in using caches in this architechlre that we examine later
in this chapter . The problems stem from the need to maintain consistency of
data in all of the caches. If a shared item is changed in one cache and read by
another processor, the second processor must be able to locate the new value
of the shared variable. This forces the cache controllers to follow a protocol that
guarantees that all loads and stores access the correct value of an item, regardless
of whether that item is in local cache, remote cache, or global shared memory.
The bus-based multiprocessor is a natural structure for building an effective
cache-coherence protocol.

Usually such a protocol produces additional operations on the shared bus
whose purpose is to guarantee cache consistency. If caches were not present,
these operations might not be necessary. Hence, a cache architecture reduces
bus accesses when the cache hit ratio is high, but the reduction is partially offset
by additional bus transactions caused by the consistency protocol. \.Yith cache

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 375

Section 6.3 Multiprocessor Interconnections 361

. es large enough to reduce miss ratios to 1 percent, the potential impact on
~:s traffic is to reduce it 100-fold, thereby providing for as much as 100 times
as many processors on ~ b_us_ than could be supported ~ithout a. cac~e. This
alculation is overly optinushc because of the extra traffic to mamtam cache

~oherence. Most of the traffic is required to communicate WRITEs so that all
rocessors see updated data in case they need to have the most recent values

~f shared data. WRITEs account for 15 to 25 percent of memory operations, but
in a cache-based processor that uses a store-in cache policy rather than a write
through cache policy, the percentage of memory operations that have to be
communicated on a bus to other processors may drop to 5 to 10 percent. So
cache may provide only a 10 to 20 times reduction in bus traffic rather than a
tOO-fold reduction, but the improvement from using a cache is a definite ad
vantage in any case.

Technology plays a major role in making a bus-oriented multiprocessor prac-
tical, and, in fact, the bus presents an excellent opportunity for technology
leverage. An N-processor system requires a bus whose bandwidth is on the
order of N times that of a uniprocessor bus. Therefore, the bus bandwidth
constrains the number of processors that can be interconnected as N increases.

If exotic technology is used only for the bus and its interfaces, but ordinary
technology is used in the processors, then the cost of the exotic technology can
be held fairly low, while the gain due to its use is amplified by greatly increasing
the number of processors on the bus. Consequently, it may be feasible to use
bus interconnections that run perhaps 100 times faster than basic processor
technology and are capable of supporting 1000 processors. As we suggested
earlier, a possibility for the future is to use optical links and gallium-arsenide
transmitters and receivers whose information rate is in the 1 GHz to 10 GHz
region.

But exotic technology can also work against the architect. If it can be used
in the communication link, then equivalent technology might well be used
throughout the system, boosting basic throughput in each processor by perhaps
a hundredfold. In this case, perhaps only 10 super-technology processors can
do the work of 1000 low-technology processors with a super-technology bus.
The IO-processor, all-super-technology system might well be more cost-effective
than the 1000-processor system because it is likely to be more efficient and less
complex. The computer architect has to evaluate where and how to use exotic
technology, carefully considering reasonable alternatives rather than committing
arbitrarily to a specific use of the technology in a particular architecture.

Note that the bus is only one potential bottleneck in the bus-oriented mul
tiprocessor . The shared memory is another one. As bus bandwidth increases,
performance is eventually limited by the bandwidth of the shared memory.
Because processors synchronize their activities by reading and writing shared
memory cells, as the number of processors increases, there is a tendency for
some shared cells to receive an increasing proportion of the memory references.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 376

361 Multiprocessors Chapter 6

For example, consider a single memory ce~ that contr~ls the _execution of N
processors by acting as a barrier. Processor~ wait at the b~mer until al1 f:r~~essors
have reached it. Then they are free to continue. The barner cell can be initialized
to the value N, and, as each processor reaches it, the cell is decremented. When
the cell is decremented to 0, all processors are released. .

If the shared cell is accessed by one processor at a time, then dearly the
time required for the barrier to ~o from N to O _is 0(1'.') time: If the proce~sors
executing in parallel are performing ~o~e function that requrres constant time,
then for sufficiently large N the bamer itself becomes a bottleneck of the com.
putation and greatly limits the useful work performed b~ t~e system.

To overcome the bottleneck in the shared memory, 1t 1s necessary to seek
creative solutions in technology, architecturer or algorithms:

• Technology: use very high-speed devices for shared memory or move to an
exotic memory technology that supports multiple simultaneous accesses.

• Architecture: design a system with high-bandwidth architectural support for
sharing and control.

• Algorithms: for specific applications, se~k means to dis~bute control to re-
duce or eliminate bottlenecks at centrahzed control vanables.

All of the approaches are potentially viable. Any one approach may be sufficient
to create a system of the desired performance. Relatively few ideas have been
implemented and evaluated, and many opportunities for advances still exist.

Returning to bus-based interconnections, consider what techniques are avail
able for bus implementation. The highest-speed electrical buses must be very
short. This limitation is strictly a matter of physics because high speed implies
fast changes of voltage and current. Such physical quantities are limited in their
switching speed by capacitance and inductance. To hold these quantities small
requires small physical distances because capacitance and inductance are pro•
portional to conductor length.

Signal fidelity also diminishes when signals are sent over long distances,
and the degradation in fidelity increases the probability of error during trans
mission. Therefore, if a bus is long or has other characteristics that slow trans·
mission or degrade signal quality, the bandwidth of such a bus is lower than
that of a short bus with excellent signal qualities. Yet another problem is crosstalk
noise stemming from mutual interference from adjacent signals. This too grows
with physical distance.

The problem is that as the number of processors tied to a bus increases,
most electrical buses suffer degradation that tends to reduce bandwidth. Hence,
not only does each processor have to share the bus bandwidth with N - 1 other
processors, but as N increases the bandwidth available to share decreases. Bus
technology suitable for small N is probably not feasible for large N, and for N
somewhere in between lies a region where buses change from being effective

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 377

section 6.3 Multiprocessor Interconnections 363

to being unacceptable. T~e ~-act breakpoint is technology dependent and has
t be evaluated for each md1v1dual type of bus and interface technology.
0

One possible way to build a bus with many processors is to build a physicaUy
short bus, as shown in Fig. 6.4, and to tie the processors to the bus through a
longer connection tha~ att_aches to the bus thro~gh a special interface, as shown
. the figure. The obJective of the short bus 1s to provide a medium for the
:terchange of signals with physically acceptable parameters and good signal

uality. It might be only 25 cm long, for example, and provide 100 connection
q oints. The 100 interfaces must be located very dose to the physical bus, which
fs possible for interfaces alone, but may be very difficult to accomplish if all 100

rocessors have to be physically close to the bus.
p The interfaces provide signal buffering that permits the processors to be
located at least far enough away to meet the packaging requirements of the
processor technology. Although Fig. 6.4 suggests that the electrical bus is ex
ternal to the modules that hold processors, the structure in the figure also holds
to some extent for super-VLSI systems with the bus and multiple processors
implemented together, possibly on a whole wafer if not on one chip .

6.3.i Ring Interconnections

Although a bus interconnection has advantages for a small number of processors,
electrical buses are highly constrained by fundamental physical principles. The
goa1 of the architect is to find an interconnection that has the simplicity of the
bus for support of computation✓ but is able to exceed the physical limitations
inherent in buses. One possible solution is to build a logical bus that is physically
something else.

Processor 1

Processor 2

Processor NI~-------~
Bus

Interfaces

Short
High-Speed

Bus

Fig. 6.4 A high-speed bus with a short physical length connecting a collection of pro
cessors. The I-unit is an interface that permits processors to be relatively far from the
bus when compared to the physical length of the bus itself.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 378

364 Multiprocessors
Chapter 6

Figure 6.5 shows a loop arrangement with point-to-point connections betwe
processors and a cyclic interconnection overall. In this system, a transrnitti en
process places a message on the loop, and it is r~peated by each receiver un:~
it returns to the transmitter, which stops the message by failing to repeat it.

There are various ways to operate such a loop, but one protocol that turn
the loop into a logical bus is the IEEE 802.5 token-ring standard. A transmittin s
processor is distinguished from all other processors because it holds a token o1
which one and only one exists among all processors. When the transrnittin
processor sends a message through the token ring, the ring acts like a bus, anl
all other processors listen.

At the end of transmission, the transmitter broadcasts a token, which is a
unique combination of signals that cannot exist in an ordinary message. Each
receiver sees the token in tum, and if a receiver is waiting to be a transmitter
it accepts the token w~tho~t ret~~nsmitting it, ~nd instead tr~nsmits its messag~
on the ring. If no receiver 1s waiting to transmit, the token arculates on the ring
and can subsequently be removed by any processor that needs to transmit.

The advantage of the token ring is that the connections are point to point,
not bus connections. Physical parameters can be more readily kept in control.
In fact, the token ring is ideally suited to very high bandwidth optical fibers,
which are difficult to adapt to bus technology for small numbers of processors
and have not yet been adapted to buses for large numbers of processors.

A major disadvantage of the token ring is that each bus interface adds a
short delay, usually a 1-bit delay, when it repeats an incoming message. As the
number of processors increases, the delay around the ring increases propor
tionately. The bandwidth, however, does not necessarily decrease as it does for
buses when they are heavily loaded.

To take advantage of the token ring, the architect views the token ring as

Processor 1 Processor 2

Processor 8 Processor 3

Processor 7 Processor 4

Processor 6 Processor 5

Fig. 6.5 A multiprocessor based on a loop interconnection.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 379

section 6.3 Multiprocessor Interconnections 365

if it were a pipeline with a short cycle time and long delay. The effective band·
width can be utilized as long as computations keep the pipeline filled. Therefore,
each processor should overlap transmissions with local computations.

Moreover, a protocol for a high-speed ring network ought to provide a me~flS
for a transmitter to pass its token to a new transmitter without having to wait
to receive its own transmission. Such a protocol provides for pipelining messages
on long rings, which is necessary to tap the available bandwidth. If a new
message can be started only if no other message is on the ring, the net effect is
the same as requiring a pipeline to drain between operations, which causes
severe bandwidth degradation as the number of processors on the ring increases.

In today's technology, short electrical buses are limited to run at 100 to 200
MHz, depending on their length and maximum loading. Obviously, the longer
and more heavily loaded buses run at the low end of the speed spectrum. Buses
that are limited to the confines of a single VLSI chip can run in the high end of
the range, and it is conceivable to run such systems at dock rates in excess of
200 MHz. However, if a bus leaves a chip, then maximum clock rates fall back
to the l00·to-200 MHz area, and only denser packaging with special attention
to low capacitance and inductance can increase the speed.

Optical connections for a token ring can run at much higher speeds. Early
commercial installations of optical loops had bandwidths of 100 MHz in 1982,
and by the beginning of the 1990s links running at a dock speed of 400 MHz
were in use commercially. Clock rates exceeding 1 GHz are likely to appear in
the mid-1990s.

6.3.3 Crossbar Interconnections

The bus interconnection offers the simplest topology but has the highest po
tential contention. The crossbar is the antithesis of the bus. It offers the least
contention, but has the highest complexity. We take a brief look at crossbars
here. In the next section we look at interconnections that fall between crossbars
and buses.

Figure 6.6 shows a crossbar that connects N processors with N memories.
Although the number of memories is equal to the number of processors in the
figure, this need not be the case in general. Usually, the number of memories
is at least equal to or a small multiple of the number of processors.

The path between a processor and memory has a delay only at the crosspoint,
so each processor is a unit (one crosspoint) delay from any memory. The com
munications network has no contention. Contention exists only at processors
and memories-that is, if Processor 1 has to access Memory 1, and Processor 2
has to access Memory 2, then both accesses can occur simultaneously in the
crossbar switch. In fact, any number of simultaneous accesses up to N can be
done simultaneously, providing that no two accesses involve the same memory
or processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 380

366 Mui ti processors Chapter 6

Memory 1 Memory 2 Memory N

Processor 1

Processor 2

Processor NI I- --9-+----9r-t--
Fig. 6.6 An N x N crossbar switch in an N-processor multiprocessor. At each crossing
in the network is a switch that permits any processor to connect to any memory.

Contention occurs if two or more accesses are made to the same memory.
Consequently, if both Processor 1 and 2 attempt to access Memory 1 in the same
cycle, one of the processors has to wait for the other to complete.

There are various architectural tricks available to reduce contention. If the
contention occurs because processors are attempting to access different data that
happen to be stored in the same memory module, then one possible solution
is to allocate data so that accesses tend to be more evenly distributed across all
memories rather than clustered to a single memory.

An obvious way to achieve this goal is to allocate blocks of data so that
successive elements lie in successive modules. Similarly, shared program code
should be allocated so that sequentially increasing addresses lie in successive
modules. In either case, when shared data or code is accessed by two or more
processors simultaneously, contention will delay one processor, and thereafter
the later processor will trail the earlier processor without conflict as long as the
two processors continue to access memories sequentially. This same addressing
technique is used in pipelined processors that access vectors of data with a stride
of unity.

If the accesses that cause contention are to a single cell or to a few shared
cells, there is a more fundamental problem that requires a different approach.
Some of the issues are explained in more detail in Chapter 7, but the discussion
here illustrates the problem more clearly.

Consider Program 6.1, which shows the code for a processor that is forming
the sum of local data and then adding the local sum to a global sum. Presumably,
the local data are placed in a memory that is physically dose to a processor and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 381

section 6.3 Multiprocessor Interconnections

Program 6.1 The use of locking to assure correct updating of a shared variable.

procedure Add_to_Sum(var Globaf_Sum: Real, Shared;
GlobaJ_Sum_Lock: Lock, Shared; Local_ Table: array of Real);

var
i: integer;
LocaLSum: real;

begin
Loca/_Sum : = 0.0;
tor ; : : 1 to Max do

LocaLSum := Local_Sum + Local_Table[1l;

367

r The next stateme_nt obtains exclusive access to Global_Sum by some mechanism
built into the architecture. At any given time, only one processor can be executing
statements in the region between LOCK and UNLOCK. ·}

LOCK(Global_Sum_Lock);
Global_Sum : = Globa/_Sum + Locaf_Sum;
UNLOCK(Global_Sum_Lock);

end; t Procedure Add_to_Sum •}

can be accessed without contention. The shared variable Global_Sunz is to con
tain the sum of all elements in the data vectors. The objective is to obtain speedup
by adding the local data in parallel, then tallying the local sums into Global_
Sum. This is much like an election process, where each precinct tallies its ballots
locally, then reports the results to Election Central, where precinct tallies are
summed. The problem is that the tallying at the shared datum can take O(N)
time, and thereby it becomes a serious bottleneck that negates the parallelism
achievable.

In Program 6.1, the local operation computation tallies data into Local_Sum,
and from there Local_Sum is added to Global_Sum. The addition into the shared
variable has to be done very carefully . Therefore, we must provide a mechanism
for that variable to be read and rewritten by a single processor without an
intervening operation occurring.

For example, if Processor 1 has to add the value 10 to Global_Sum, it must
obtain the current value, add 10 to the current value, then write back the new
value. If several processors attempt to do the same process concurrently, the
results of global tallying can be incorrect. For example, consider the following
situation in which the initial value of Global_Sum is 0, and Processors 1 and 2
attempt to add 10 and 15, respectively, to the sum.

1. Processor 1 reads the value 0 from Global_Sum.

2. Processor 2 reads the value 0 from Global_Sum.

3. Processor 1 computes the updated value of Global_Sum to be 15 and writes
this back to Global_Sum.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 382

368 Multiprocessors Chapter 6

4. Processor 2 computes the updated value of Globa/_Sum to be 10 and writes
this back to Globa/_Sum.

5. The final value of Global_Sum is 10.

The error in this process causes the final outcome to miss the tally of 15 computed
by Processor 1. Processor 2 reads the value ~f Global_Sum to ?e O, but the
instantaneous residence location of Global_Sum m shared memory 1s temporarily
incorrect.

The true location of Globaf_Sum has moved to Processor 1, where it is
updated and then restored in shared memory. During the time that Processor
1 "owns'' Global_Sum, access to it in shared memory must be prevented. In
essence, Processor 1 should be able to read, modify, and write Global_Sum as
a single primitive operation without any other processor accessing Global_Sum
in the meantime. In Program 1, this is indicated by the statements LOCK(Glo
bal_Sum_Lock) and UNLOCK(Global-5um_Lock) that surround the READ/
MODIFY/WRITE operation on Global_Sum. The variable Global_Sum_Lock is
a special variable that controls access to Global_Sum.

The LOCK statement permits a processor to pass the statement if the variable
is currently unlocked. Otherwise it forces the processor to wait until the variable
becomes unlocked. A typical implementation of LOCK is to use a O value of a
variable to denote "unlocked" and a 1 value to denote "locked''. A LOCK
statement waits for a lock variable to become unlocked before the processor can
pass. \\Then the LOCK discovers an unlocked variable it immediately locks it,
and then continues. The UNLOCK statement unlocks a variable unconditionally.
The LOCK and UNLOCK statements have to be implemented in such a way
that at most one processor in a multiprocessor at a time can pass a LOCK. The
instant that one processor locks a variable, every other processor will discover
the variable to be locked.

One possible failure mode from improper implementation or incorrect use
is a situation known as deadlock, in which two or more processes mutually block
each other from further progress. Neither process can continue until the other
unlocks a variable, but since they cannot continue, they cannot reach the unlock
point in a program. An erroneous implementation of a LOCK primitive can
cause deadlock if it inadvertently leaves a variable iii a locked state, and no
processor can thereafter unlock that variable.

If a LOCK/UNLOCK is embedded in a program, such as Program 1, then
no matter how the LOCK/UNLOCK is implemented, we have a potential bot
tleneck in a parallel processor. In computers with bus interconnections, the
bottleneck is more likely to be at the bus rather than at the memory. When the
bus is replaced by a crossbar, communications bottlenecks disappear, but per
formance is limited by the next tightest bottleneck, which is likely to be at the
shared memory.

The LOCK/UNLOCK code of Program 6.1 demonstrates a realistic way that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 383

section 6.3 Multiprocessor Interconnections 369

the shared memory bottleneck can arise. Of course, the major reason to move
to a crossbar is to remove a critical bottleneck that causes N simultaneous bus
requests t~ take O(N) time .. The_ crossbar drops this time to 0(1) time, but the
shared-vanable bottleneck 1s still O(N), so all the crossbar brings us is high
performance in some portions of _a program, with other portions of code dom
inating the performance and forcmg the system to operate inefficiently.

These are performance-oriented arguments. We must also look at cost. The
cost of a crossbar is usually proportional to the number of crosspoints, which
grows as N2, whereas the cost of a _bus grows only linearly in N since cost is
proportional to_ the number of bus m!erfaces. For _large N, the crossbar is ex
tremely expensive and may well dominate the entire cost of a multiprocessor.
Large crossbars are feasible only if the cost per crosspoint can be held very low.
The danger in building a crosspoint switch is that the bandwidth available cannot
be used effectively, so the extra cost brings little benefit.

A very interesting example of a crosspoint architecture is the C.mmp com
puter [Mashburn 1982] built and in operation at Carnegie-Mellon University
over a span that ran from the early 1970s to the early 1980s. This architecture
tied 16 PDP-11/40's to 16 memories. It was never intended to be a prototype of
a commercial systemJ but rather served as a proving ground for developing
parallel applications and parallel operating systems. As such, it stimulated a
substantial pool of research results that formed the foundation of the present
knowledge of multiprocessor systems.

Our major thrust is high performance, but that was not the major thrust of
C.mmp. If all 16 PDP-11s could be put together on one problem to obtain a 16-
fold speedup, then the total speed would be much slower than the speed avail
able on high-end uniprocessors, although a 16-way PDP-11 might provide a less
expensive way to attain that type of performance than would the purchase of
a single 16-times-faster machine.

One benefit that the C.mmp did provide is the access to a memory 16 times
larger than was available for a single PDP-11 at that time. Since memory was
relatively expensive, the C.mrnp provided a way of allocating the expensive
resource among several independent processors. This was a cost-effective al
ternative to configuring each of N machines with a fixed amount of unshared
memory. The larger shared memory provided a resource pool that could be
allocated dynamically to individual processors.

The C.mmp also provided a pool of processors that could be allocated flexibly
and dynamically to programs. In theory, all 16 processors could be used on a
single program, or, for example, one program could be assigned five processors,
another program three processors, and so on, until all processors are assigned.

In practice, programs often needed fairly large chunks of memory for in
dividual processes, so fewer than 16 processors could easily exhaust the supply
of memory. Nevertheless, the C.mmp demonstrated the feasibility of multipro
cessors and parallel programming on various types of problems. This demon-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 384

370 Multiprocessors Chapter 6

stration held even though the crossbar interconnection itself may not necessarily
be feasible for large numbers of processors. . . .

One can easily substitute any other connec~1on of suff1c~ent bandwidth for
the crossbar in C.mmp, and there would be virtually no difference in perfor
mance from the crossbar-based C.mmp. The important point is that the replace
ment interconnection structure should be fast_ enough to meet the C.mmp
demands without introducing a new bottleneck mto the system. The new struc
ture does not necessarily have to have a bandwidth equal to a crossbar.

C.mmp illustrates an important principle for the architect of a multiprocessor
system. The total system cost and performance is the factor of major importance;
the interconnection network is but one component of the system. The lesson is
that if the architect expends extra effort to remove a communication bottleneck,
that effort may just move the bottleneck to a different part of the system, and
the cost may not be justifiable.

[n terms of applications, it is most important to determine if an application
can run effectively on a multiprocessor even if the communications subsystem
has infinite bandwidth and is contention-free. If this can be done, then the next
most important consideration is how to provide at reasonable cost a commu.
nications network whose finite bandwidth does not reduce performance below
a reasonable threshold.

6.3.4 Two~ and Threc•Dimensional Meshes

Our discussion of architectures for the continuum model in Chapters 4 and s
indicated that mesh interconnections have excellent characteristics for numerical
problems that arise in scientific contexts. The combination of low cost and high
speed for near-neighbor interactions makes such connections quite attractive for
implementation.

Apart from their advantages, the most serious disadvantage is that they do
not support global communication and synchronization directly. The overall
speed of a parallel calculation on a mesh-based structure will depend on the
proportion of global operations that have to be performed. If a mesh structure
is supported by a second interconnection structure for global operations, the
two structures together can provide a computer system that is well suited to a
broad class of scientific applications.

Hoshino's PAX computer [1989], for example, incorporates a global syn·
chronization bus, a global broadcast bus, and a two-dimensional mesh that
connects near neighbors. Even though this architecture does not have the ca
pacity of a crossbar network with respect to simultaneous communications be•
tween arbitrary pairs of processors, it supports a sufficiently broad spectrum of
the frequently used types of communication to be effective for scientific prob-
lems. Even within this class of applications, there are instances that saturate
PAX interconnections momentarily. However, the degradation due to saturation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 385

Section 6.3 Multiprocessor Interconnections 371

of the interconnection bandwidth can be made quite small for many scientific
applications. If ea:h processor is assig~ed a contiguous square region of a mesh
of points on a lattice, then the caku~ah~ns performed tend to grow as the area
of the region whereas the communication and overhead tends to grow as the
perimeter of the region. So, by assigning a suitably large region of a mesh of
data points to each processor, RIC can be made as large as desired, and thereby
decrease the relative cost of communications that are not directly supported by
near-neighbor mesh connections.

In general, the longest distance travel between two arbitrary nodes in a two
dimensional mesh with N processors is O(v'N). For 1024 processors, the worst
case delay is 32 if the end connections of the mesh are cyclic as each node is
within 16 nodes of every other node on its own row and column. By a combi
nation of row and column moves, a datum can move from any processor to any
other processor. The longest path in a shuffle-exchange network grows only as
O(log N)✓ which appears to be much shorter. However, for 1024 processors, the
path length is 10 stages. So the difference in path length for a mesh and shuffle
exchange network that connect 1024 processors is only a factor of 3. (The nodes
themselves may change the total factor because the delays at the nodes in the
two types of networks may be different.) Consequently, for multiprocessors
with up to 1024 processors, performance degradation due to long paths will not
be much different in a two-dimensional mesh connection as compared to a
shuffle-exchange network, especially if long paths are rarely used in an appli
cation.

6.3.5 The Shuffle-Exchange Interconnection and the Combining Switch

The shuffle-exchange connection described earlier in this text can be used to
interconnect independent multiple processors as well as vector processors, such
as those used for cyclic reduction or recursive doubling. In this section we
consider the shuffle-exchange as an alternative to the shared bus or the crossbar,
since both the bandwidth and cost of the shuffle-exchange lie between those of
the bus and the crossbar.

The shuffle-exchange nehvork offers an important additional function known
as a combining switch, which can reduce contention by performing operations in
parallel within the network that otherwise must be serialized at the memory.
This technique has excellent potential for parallel applications that require pro
cesses to have momentary exclusive access to a shared variable.

The exclusive-access requirement limits the performance of most multipro
cessor architectures, so when access to a shared variable is saturated, no ad
ditional speed improvement is possible no matter how many more processors
are added to the system. However, this limitation does not exist in the original
designs of the RP3 and Ultracomputer systems, described later in this section,
when the exclusive access can be accomplished in part in the communication

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 386

37!1 Multiprocessors Chapter 6

network and in part in the memory. In effect, the exclusive access is done i
parallel, rather than serially, by making use of facilities built into the shuffle~
exchange network.

The conditions under which exclusive access can be supported efficientl
by the network are rather s~~ge~t. For some applica?on~, the combining switc~
satisfies the needs for senahzation, but for others 1t might not. For those a .
plications for which the combining switch is not suitable, either some oth~
mechanism has to be brought into play or such applications may simply not i,;
candidates for parallel execution except possibly on multiprocessors with a small
number of processors.

The shuffle-exchange network depicted in Fig. 6. 7 shows processors at one
side and memories at the other. Although the memories are quite far from the
processors in terms of delay, the processors can have large caches and local
memories to reduce the traffic to remote memories.

The important aspect of the architecture shown in the figure is that it sup
ports the same multiprocessor applications as do the bus and crossbar inter
connections. Its bandwidth is higher than the busJ but lower than the crossbar.
Its cost is O(N log N) as opposed to O(N) for the bus and O(N2) for the crossbar.
The shuffle-exchange network lies at an intermediate point in the spectrum of
possible networks.

The bandwidth for shuffle-exchange is very high for operations that do not
conflict. Lawrie [1975] has shown that if N processors place simultaneous syn
chronized requests so that Processor i req~ests data from ~emory i + c, for any
constant c, the requests can be honored simultaneously without conflict. More-

Fig. 6. 7 A shuffle-exchange network for connecting eight processors to eight memories.
Processors are labeled with P and memories with M.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 387

section 6.3 Multiprocessor Interconnections 373

over, no contention occurs if Pro~essor i requests data from Memory pi + c,
when pis an odd number and N 1s a power of 2.

Although we presume that the processors are independent and need not
be synchronized precisely, man~ applications require processors to synchronize
at certain points before proceedmg. In most multiprocessor implementations of
the fast Fourier transform (FFT), for example, each of the log N iterations is
completed by all processors before the next is begun, so there are synchronization
points at the end of each iteration.

Once processors are synchronized, they launch their new accesses to mem~
ory more or less concurrently. If in a vector architecture a collection of accesses
to a vector has little or no contention, the equivalent accesses will tend to have
low contention after synchronization in a multiprocessor architecture.

6.3.6 The Butterfly Operation and the Reverse-Binary Transformation

For the FFT there are two types of processor-to-processor communications. One
is a butterfly operation, in which pairs of processors exchange data and compute
weighted sums and differences of the items exchanged. The other is a reverse
binary transformation that alters the order of the output data from the ordering
produced by the computations to one that is lexically ascending in the inde
pendent variable.

Cvetanovic [1987) showed that the two operations are incompatible with the
shuffle-exchange operation in the sense that if data are stored among processors
so that the butterfly operation proceeds without conflict, then the reverse-binary
operation results in a m~ximum conflict in the nehvork. Conversely, if the
reverse binary is conflict tree, then the butterfly results in maximum conflicts.

At least one of the two types of operations will cause some problems in
the network. A typical implementation of the FFT uses log N butterfly oper
ations on N-vectors, followed by or preceded by one reverse-binary operation.
Consequently, it is best to organize data across the memories so that the
butterfly is conflict free and then pay the conflict penalty for the reverse binary
operation.

How bad can the conflicts be? The worst possible case is that all N items to
be accessed reside in a single memory at one node of the shuffle-exchange
network. O(N) time is required to obtain the data, as opposed to 0(1) time if
data are ideally stored across the network. However, the conflicts that arise for
the reverse-binary permutation while doing the FFT are not this bad. Since the
butterfly operation is assumed to be able to access N distinct items in a single
operation, those items must be distributed across all memories.

When these same N items are subsequently accessed for a reverse-binary
transformation, contention does not occur at the memories, but rather it occurs
within the communications network. According to Cvetanovic's results, the
worst-case contention for the reverse-binary permutation actually occupies only

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 388

374 Multiprocessors
Chapt~6

O(N 112
) time, not O(N) time, which essentially wastes O(N 112) of the O(N) ba d-

width available. n
For a permutation of data t? be free of conflicts as it passes through a shuffle.

exchange network, at each switch node the two operands at the inputs must b
directed to two distinct outputs. A conflict occurs if the two operands go to the
same destination. e

The bottleneck of the network for a permutation access is the stage (or pa·
of stages) in the center of the network. To see why this is true, consider tr

permutation tha~ ha~ th~ maximum possible con!ention. At the first stage, th:
worst possible situation 1s for each of the N/2 switch nodes to direct both thei
inputs to only one output. This creates a situation at the second stage in whic~
half of the inputs are empty and half have two operands.

The same contention problem can occur at each successive stage up to the
middle of the network, creating 2(log N)/2 operands queued on each of 2(1og N)_12

lines, and with all other lines empty. However, since the operands lie in distinct
memories at the far end of the network, the paths followed by the queued
operands in reaching the far end of the network must di verge, starting at the
bottleneck. Therefore, at each successive stage the queue lengths diminish by
a factor of 2, and twice as many lines become active, until at the far end all Jines
are active and contain one operand. Figure 6.8 shows the reverse-binary trans
formation for a network with 16 processors and 16 memories. For this permu
tation, the target of Processor i is Memory i', where i' is the integer obtained
by reversing the binary digits of i. Thus Processor 2 targets Memory 4 because
the reversal of (0,0, 1,0) = 2 is (0,1,0,0) = 4.

The discussion on contention within the shuffle-exchange network reveals
that there exist algorithms for which we must suffer O(2<10g N)f2) = O(Nl i2) delay
because of communication contention, even when there is no contention at the
memory at all. In a crossbar network, the FFT has neither communication nor
memory contention, and therefore it is potentially faster by a factor of O(Nii2).
The problem is restricted solely to the reverse-binary transformation applied at
the last step, and this step is rarely discussed in the literature in evaluating
parallel execution of the FFT. Cvetanovic' s work has brought the communication
contention issue directly into focus.

Now that we understand the poor performance of the reverse-binary trans•
formation, we can reduce its effects. For example, in some applications, the
processing steps are:

1. Use the FFT to transform from the time domain to the frequency domain.

2. Process in the frequency domain.

3. Use the FFf to transform from the frequency domain back to the time domain.

We need not apply the reverse-binary transformation at the end of the first step
if the frequency-domain operations are ordered compatibly. When the second

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 389

section 6.3 Multiprocessor Interconnections 37S

O ~ 0000

1 ::::: 0001 1 = 0001

2"' 0010 2 = 0010

3 = 0011 3 = 0011

4 = 0100 4 = 0100

5 == 0101 5 = 0101

6 = 0110 6 == 0'10

7 = o, 11 7 = 0111

B .,, 1000 8: 1000

9 = 1001 9 = 1001

10 = 1010 i0 = 1010

11 = 1011 11 = 1011

12=1100 12-= 1100

13= 1101 13= 1101

14=1110 '4=1110

15= 1111 15=1,11

Fig. 6.8 The interconnections used to create a reverse-binary transformation in a shuffle
exchange network. Note that only some of the interconnections are used among the
internal paths of the network.

step receives inputs in reverse-binary order it produces outputs in the same
order. This places the input to the last step in reverse-binary order, rather than
lexical order. For such an input, the FFT without a reverse-binary operation
produces an output that is in lexical order. Hence, no reverse-binary transfor
mation is performed in either the first or the third step, and the bottleneck is
neatly sidestepped .

More generally, it is necessary to locate the contention problems in the
communication network and to take steps to remove the problems if this is
possible. The FFT is an example in which the bottleneck can be removed in the
context given. We cannot promise that this is always possible, but clearly the
bottlenecks have to be discovered if they are to be removed.

The discussion thus far illustrates a potential shortcoming of the shuffle
exchange network. This particular defect occurs for accesses that are balanced
across the outputs of the network. But accesses do not have to be balanced at
the outputs. Algorithms might well bias their accesses to memory, so that on
the whole the accesses are uniformly distributed, but some small fraction of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 390

376 Multiprocessors Chapter 6

accesses is directed to a particular memory module. This might be the case 'f
processors operate on data scattered across all memories, then reference share~
control-variables to synchronize activity with other processors. We are interested
in the effective bandwidth of the switch under these circumstances.

The calculation of effective bandwidth is difficult even for simpler problems
Consider the least-restrictive set of assumptions, namely that accesses are uni~
formJy distributed and uncorrelated. The reason that this becomes difficult to
evaluate is that we do not have a good model of how to deal with internal
conflicts in the network. When two operands collide somewhere, for example
because they both request the same output of a particular switching node, what
happens? The network can

1. Abandon one arbitrarily and pass the other;

2. Queue one request in a local memory and pass the other; and

3. Refuse one request while passing the other, under the assumption that the
request refused is buffered by the sender and will be repeated.

This list of options is representative but not exhaustive in the assumptions that
have been treated in the literature in papers by Dias and Jump (1981], Thana
wastien and Nelson [1981], Chen et al. [1981], Kruskal and Snir [1983], Yew et
al. (1983], and Padmanabhan and Lawrie [1985].

Kruskal and Snir have a very elegant result based on the solution of a
difference equation that describes the number of messages remaining after
conflicting messages are discarded. They found that the effective bandwidth is
O(N/Iog N), so the contention within the network reduces bandwidth by a factor
of O(log N). The other researchers have obtained roughly comparable findings
using queueing analyses and simulations.

The analyses in general do nqt relate the assumed input to the access patterns
of real programs . To what extent is the literature realistic? From Cvetanovic's
work on the FFT we know that the effect of periodic synchronization could be
either beneficial or disastrous. Synchronization tends to cause accesses to the
nenvork to come in clumps . This is beneficial if the accesses are nonconf licting,
so that a large number of accesses can be honored in a short time. It is disastrous
when the accesses are highly conflicting because it causes much higher conten
tion than predicted by statistical methods.

The architect cannot take for granted that average bandwidth will be O(N),
O(N/log N), O(N112), 0(1), or any other function that we have ascribed to the
switching network. The architect has to explore the performance of the network
on realistic applications, if they are available, or on faithful models of the access
patterns of real applications.

This is the problem attacked by Pfister and Norton [1985] in their influential
paper on hot-spot contention in shuffle-exchange networks. They sought the
effective bandwidth of shuffle-exchange networks when accesses are not entirely

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 391

Section 6.3 Multiprocessor Interconnections 377

uniformly distributed across memory. Their model permits a small number of
accesses to b: made to a specific mem~ry and all others to be uniformly dis
tributed. Their results _show that effective bandwidth falls off dramatically as
correlation of accesses increases.

In _the Pfister-No~ton model, a "hot" memory module is referenced with
probability h; otherwise accesses are uniformly distributed . Therefore, when
each of N processors produces r references per cycle to the memory system the
hot memory module receives requests at the rate : '

Requests at hot memory == r(l - h) + rhN (6.23)

The first term accounts for the uniform share of the load, and the second term
accounts for the hot module receiving more than its share of requests from all
processors. .

Since a memory ca_nnot honor more than one request per cycle, the request
rate on the left-hand side of Eq. (6.23) cannot exceed unity. Therefore the max
imum effe~tive rat~ o~ generating requests, R, is the rate at which Eq. (6.23)
reaches uruty and 1s given by:

M . . R 1 ax.imum generation rate = -----
1 + h(N - 1)

(6.24)

This function falls off dramatically with increasing N. The effective bandwidth
of the switching network is N times the generation rate given in Eq. (6.24).

When h is 0, Eq. (6.24) is unity, bandwidth is N, and no degradation due
to nonuniform access is present. As h increases just a little bit, for example to
1 percent, then for 1024 processors the denominator of (6.24) increases to 11,
and bandwidth is down by a factor of 11 from the ideal. Even when hot-spot
probability is tiny, for example 0.1 percent, the impact is an increase in the
denominator to a value of 2, which reduces bandwidth by a factor of 2.

Pfister and Norton confirmed their findings by means of simulations, which
showed that contention caused the network to saturate in tree-like regions,
as shown in Fig. 6.9. This figure assumes that requests are held until they can
be honored. The internal queue at a node can be of any integral length, includ
ing 0.

The hot memory cannot accept new data, so its predecessors become backed
up when those predecessors cannot output their data to the memory. Next, the
predecessors of predecessors saturate, and so on. As nodes saturate, they in
terfere with communication to other nodes in the system, and performance
diminishes rapidly. In Fig. 6.9 the saturated nodes are indicated by shading,
and they form a tree whose root is the hot memory.

A path from a processor to a different memory that has to use a saturated
path becomes blocked, so bandwidth is somewhat lower than predicted by Eq.
(6.24), depending on the size of the tree of saturated nodes. This in tum depends

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 392

378 Multlprocessors Chapter 6

on the amount of queueing available within each node . If the architect wants
to install queues in the network, Fig. 6. 9 suggests that to reduce hot-spot con
tention, the best place to put such queues is in the rank of switches closest to
the memory system. The queues might well be placed elsewhere, perhaps uni
formly through the switching network to make all switches alike, to alleviate

other forms of contention .

6.3. 7 The Combining Network and Fetch-and-Add

Whether queues are added at the hot memory or somewhere within the network
they smooth out the effects of peak loads over longer periods . Queues do no;
alleviate the bottleneck caused by frequent memory accesses. To solve the prob~
lem, the request rate to the hot memory has to be decreased.

Gottlieb et al. [1983] propose a very unusual _solution that involves using
logic within the switch nodes to perform computations whose effect is to reduce
the rate of requests to a shared-memory cell. In essence, two or mor e requests
for access to the same shared cell can be combined into a single access under
certain conditions . This tends to reduce the peak access-rate to a shared cell and
thereby reduces contention and the bandwidth reduction due to contention.

The architectural solution is sometimes called a combining network, and the
functional capability it gives programs is a collection of new instructions, one
of which is called the Fetch-and-Add instruction .

p 1-------1

Pi----~

Fig. 6.9 A "hot" spot in a memory module (indicated by shading) and the switching
m~dules that block as a r~sult. The path from Processor O (the top processor) to Memory
3 1s blocked, although neither Processor O nor Memory 3 is very active.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 393

Section 6.3 Multiprocessor Interconnections 379

To illustrate how the combining switch works, we propose to examine some
subtree of the communication network, namely the tree of shaded nodes that
appears in Fig. 6.9,_ and note that its root is a specific memory module that
eceives more than its share of references. In this example we give a possible

~se for the contention and show how the Fetch-and-Add instruction solves the

problem. . .
The sample problem 1s a queuemg problem in which each of N requestors

attempts to add an item to a queue. In conventional solutions, the queue pointers
cannot be updated by two or more processors concurrently because, if this is
attempted, a pointer update ~ight be done incorrectly for the same reasons that
cause a concurrent summation on a shared variable to fail. Our solution in
Program 6.1 forces the updates to be done sequentially, with each process using
LOCK and UNLOCK operations to obtain exclusive access to a shared variable
while updating that variable.

Our present solution permits all processors or any subset of processors to
update the queue pointer simultaneously. To do so, we make use of Fetch-and
Add as defined here for a single processor.

Definition: Fetch-and-Add (Address, Increment):

Temp : = Memory[Address];
Memory[Address] : = Memory Address + Increment;
Return Temp;

When Fetch-and-Add is used concurrently by M processors, we require the
following conditions:

t. The cell at Memory[Address] is read only once and written only once, rather
than read and written M timesl to satisfy the M concurrent requests.

2. The set of M values returned to the M requestors is the same as some set
of values that would be returned to the M requesters for some ordering of
the requests executed serially with each request having exclusive access to
Memory[Address] during the update of the cell.

The definition is not particularly unusual. Fetch-and-Add acts much like an
Add-to-Memory instruction. The only difference of note is that Fetch-and-Add
returns the prior contents of memory. The first characteristic of concurrent ex
ecution is crucial, for it is this characteristic that reduces contention in
multiprocessors.

As an example of the basic idea, consider three processors that execute Fetch
and-Add concurrently to the same memory cell, SUM. If the initial value of SUM
is 10, the three increments are respectively 2, 5, and 12. Then the network
produces the total of the increments, 19, which is the only number added to
SUM. SUM is fetched once to obtain the value 10, and the new value 29 = 19
+ 10 is the updated value of SUM. Meanwhile the network computes the values

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 394

380 Multiprocessors Chapter 6

to return to the three requestors . One possible set of values that could be returned
is 10, 12, and 17, which are the values that would have been returned had the
increments 2, 5, and 12 been used sequentially in that order.

The trick to the implementation is iJlustrated in Fig. 6.10, where we see how
the ceIJs in the shaded subtree produce the necessary behavior. Each cell com
bines data moving toward memory and does an inverse operation for data
moving away from memory. In this case, each cell detects when two Fetch-and
Add operations for the same shared variable reach its inputs simultaneously .
The two increments are added internally to produce a sum, which is routed to
the memory. Thus, one cell adds 2 and 5 to produce 7, and the second cell adds

7 and 12 to produce 19.
To prepare for the return trip, each cell stores the value of one of the two

increments, in this case the left-hand input. Hence the first cell stores the value
2, and the second one stores the value 7. By storing the value of the left-hand
input, when data traverse the network from memory to processors, the results
returned will be as if the left-hand increment were used before the right-hand
increment to update the shared variable. In this case, on the return trip, the
number IO reaches the cell with the stored value. It places the 10 on the left
hand port, and the sum 17 = 10 + 7 on the right-hand port. The right-hand
port now has a value that would be seen if the value of SUM were 17 just before
the 12 were added to it.

Meanwhile the value 10 travels to the first cell. There the unmodified value

+2
+2

+5 +10
+2

+12

+17
+7

MEMORY

(a) (b)

Fig. 6.10 Two phases of a Fetch-and-Add instruction:
(a) The data flow towards memory when increments of 2, 5, and 12 are applied. The
numbers in the switch cells show the saved datum; and
(b) The dat~ flow away from memory for the return of information to the requesting
processors. The memory returns the value + 10, and the switching ce11s modify the
returned datum as shown before reporting the datum back to the requestor .

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 395

5eetion 6.3 Multiprocessor Interconnections 381

of 10 is reported to the left port, and the sum 12 = 10 + 2 is reported to the
right port. The left port, _therefore, has a value of 10, which would be the value
before the increment 2 1s used to update SUM. The right-hand port has the
value 12, which is the value it would see if SUM were updated by 2 just before
the 5 from the right-hand port is used to update SUM.

F.ach cell in the combining switch has at least the following capabilities:

t. Detect a matching address on left and right inputs.

2_ Add hvo increments.

3• Save one increment.

4. Match a returning value for Fetch-and-Add to a saved increment for the
instruction.

These capabilities in a combining switch are fairly costly, but the combining
switch potentially can jncrease performance due to hot-spot contention by re
moving critical sections for some shared variables. An open question is whether
the cost of the combining network is justified by its impact on performance.

As a concrete example of an extremely important use of Fetch-and-Add,
consider the problem of enqueueing and dequeueing requests in a multipro
cessor. An obvious mechanism for controlling a multiprocessor is to place tasks
on a queue when no processor is available to execute them. As a processor
completes its present work, it inspects the queue and removes a new task for
execution if there is one.

The queue itself is a bottleneck when queue pointers must be locked and
unlocked for safe updating. lf, for example, a queue holds N jndependent tasks,
all ready for immediate execution, and N processors suddenly complete a phase
of activity and become available for new task assignments, ideally we would
like to hand over the tasks in a single cycle so that all processors can start
immediately. However, when pointer updating is serialized, then handing out
the tasks takes O(N) time, which could be quite significant for large N. This
overhead is intolerable if the tasks are short, for example 0(1) time in length.

The basic idea in using the Fetch-and-Add is that each processor attempting
to enqueue an item requests a position in the queue. This can be done with a
statement of the form:

enqueue_position : = Fetch_ancL.Add(Head, 1);

In this case the first argument of Fetch-and-Add is a counter, Head, which gives
the present position in the queue at which an item is to be added. The second
argument is the increment by which Head is increased when a new item is
added to the queue.

When the code is executed serially, the Fetch-and-Add returns the position
of the next item. When the code is executed concurrently by two or more pro
cessors, all Fetch-and-Adds can be done at the same time, yet each processor

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 396

382 Multiprocessors Chapter 6

will receive a unique, valid index into the queue because the values returned
by Fetch-and-Add are the same values that would have been returned for some
serialization of the Fetch-and-Adds. Any serialization of the enqueue requests
yields correct code for sequencing N requests, and the Fetch-and-Add mimics
one such serialization, but it does so with as little as one memory cycle.

We have not treated here the need to make the queue cyclical, nor have we
treated the case of the empty or full queue. Chapter 7 studies these programming
issues more fully. The example has served our purposes sufficiently well to
show the potential use of the Fetch-and-Add instruction. In spite of the potential
improvement offered by Fetch-and-Add, it is uncertain whether it is worthwhile
incorporating into a multiprocessor, and if so, to determine how many processors
must be in the system in order to gain sufficient performance improvement to
offset the cost of the implementation.

In the ideal case, the combining network removes a bottleneck, and the next
bottleneck is at a_ m_uch hig~er le~el of throughput. The value ?f the combining
network is the gain m speed m bemg able to operate at a much higher throughput
rate than permitted without the combining network. However, it is quite possible
to find that the combining n_etwork eliminates~ bottle~eck that i~ only marginally
below the next bottleneck m the system, so its cost 1s hardly Justified in such
circumstances.

An essential element of the Fetch-and-Add instruction is that it returns data
sufficient to serialize a computation. Sullivan et al. [1977] proposed a machine
that reduces bandwidth by combining read accesses to a common address in
memory. If two or more accesses ask for the same item, the shuffle-exchange
network in their architecture has the ability to combine the multiple requests
into a single request and route the resulting data from memory to all requestors.
Thus, the proposal by Sullivan et al. illustrates how to embed a broadcast-like
capability into the shuffle-exchange network to combine multiple read accesses,
and this capability is retained in the Fetch-and-Add implementation. This design
undoubtedly influenced the inventors of the Fetch-and-Add, but it is generally
less useful than is the Fetch-and-Add because of Fetch-and-Add's additional
ability to perform arithmetic as part of the combining process. It is this additional
ability that gives Fetch-and-Add the potential for eliminating hot spots due to
synchronization and queueing traffic.

Can Fetch-and-Add eliminate hot-spot contention as actually observed in
practical applications? A hot memory can be hot if it receives a disproportionate
number of accesses for any reason, but a combining network is effective only if
all those accesses are to the same address. Is this case realistic? Yes, it is if the
reason for the biased distribution of accesses is due to accesses to shared data
such as for synchronization and locking. If the hot-spot contention is for other
reasons, then Fetch-and-Add is of minimal benefit. What is the answer?

A research computer called the RP3 explored this question and other related
ones at IBM in the late 1980s [Pfister et al. 1985]. Its structure is outlined in Fig.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 397

Section 6.3 Multiproce.ssor Interconnections 383

6_ 11. At the left is a processor, one of 64 in the operational configuration, and
at the right is a ne~o_rk of shuffle•exchange stages. The original design of RP3
- corporated two d1stmct networks between processors and memories-one a
imventional shuffle-exchange network designed for low latency and high-band·
width, and the other a combining network that supports the Fetch·and-Add.
The idea of using two netwo_rks is that the noncombinab]e accesses should be
directed to the fast, conventLonal network, and that the combinable accesses

roduced by Fetch-and-Add should be routed through the combining network.
fhe higher latency of the com_bining network is charged on]y to the requests
that might be combined, and thus the majority of the requests are not affected
by the additional latency.

As RP3's design evolved, the combining network was dropped from the
implementation because th: development_ cost was disproportionately high for
the Potential performance improvement m a 64-processor system. The Ultra
computer project at NYU al~o dropped iys planned implementation of Fetch
and-Add. Consequently, no 1mplementatton of a combining net is in progress
at the time of the writing of this text. Thus, the finding so far is that the cost
of hardware combining is high enough to deter its use.

Nevertheless, let us return to the description of the shuffle·exchange net•
work in the RP3, and in particular, to look at an interesting idea embodied in
the implementation. The network in Fig. 6.11 is shown with its inputs and
outputs on the same side. [n effect each processor node of Fig. 6.9 is identical
to the corresponding memory node in that figure. The global memory is spread
among the processors so that each processor has one independent block of
memory, some of which can be used as global memory, and the remainder of
which is used for local data. Between the processor and the network is an address
mapper, a cache, and an interface for routing requests to local or global memory
or to the neh-vorkJ where it can be routed to a remote block of global or local
memory.

Addressing in th:s system is rather novel. To reduce contention, it is ex~

Processor

Cache
Local l Global

Memory : Memory

Switching
Network

Fig. 6.11 The structure of one of 64 processors of the ISM RP3. The switching network
is a shuffle-exchange network with combining logic.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 398

384 Multiprocessors Chapter 6

tremely advantageous to distribute the global address-space evenly across all
memory modules to balance requests across all modules. This is most easily
done by using the least-significant bits of a memory address to specify the
module that has the data. Then references to items close to each other in the
logical address-space are scattered more or less uniformly to all physical mod
ules. Local memory, however, cannot be treated in the same way. Local memory
should be physically close to its associated processor. Local memory should use
the most-significant, not the least-significant, bits to select a physical memory.
Thus, items that lie close to each other in the address space of local memory
should lie in the same physical memory module.

RP3's approach to this dilemma is to use a boundary within the address
space to separate the subspace that has interleaved addresses from the subspace
that has block addressing. If an effective address falls above the boundary, for
example, then the least-significant bits determine the physical module, and the
most-significant bits are the address within module. If an effective address falls
below the boundary, the most-significant bits determine the physical module
and the least-significant bits are the address within the module. In the former
case, the address subspace is used for shared, global data, and in the latter case,
the address subspace is used for local data.

Local data are not private in the sense that it is possible for a processor to
produce an address in the local address space of a remote processor, but the
main objective is to use the local address space for items that are unshared and
frequently accessed and that should be held in close proximity to a processor.
The RP3 has an additional degree of freedom in that the boundary between local
and global subspaces is software controllable. Thus a control program can select
a suitable ratio for the sizes of the subspaces, and this is not fixed in advance
by the hard ware.

6.3.8 Hypercube Interconnections

In our discussion of interconnections we have covered an extensive range of
possibilities that illustrate the variety of trade-offs in cost and performance avail
able in a multiprocessor. The shuffle-exchange network and the two-dimensional
mesh network lie somewhere in the middle of the possible trade-offs, where
buses represent one extreme and crossbars represent the other. Note that both
the shuffle-exchange and the mesh connections have a small permissible fan
in and fan-out per network node. This reduces cost. The network topology
determines performance and link bandwidth per wire.

The low fan-in and fan-out of a shuffle-exchange network can be increased,
and thereby reduce the number of nodes on the longest paths in a network.
Several hypercube computers based on this general principle were introduced
in the mid-1980s, the most parallel being the Connection Machine, with 64K
1-bit processors [Hillis 1986], and the most influential being the Cosmic Cube

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 399

section 6.4 cache Coherence In Multlprocasors 385

[Seitz 1985], that has been ~escribed in ~hapter 4 in greater detail. Fox et al.
[lgS8] analyze the program implementation and performance of a number of

•entific applications on an Intel Hypercube, and bring together a number of
:portant research results that pertain to hypercubes in general.

It is interesting that the Connection Machine implements combining by
eans of software that exploits the topology of the hypercube connections.

:cause the hypercube connection pattern is an extension of the shuffle-exchange
connection, the notion of a combining switch for the shuffle-exchange network
extends to the hypercube network by analogy. The details of the software im-

lementation are in Hillis and Steele [1986].
p In all cases, from bus to crossbar and in between, the ratio RIC determines
how many processors can fruitfully be put to work on a single problem simul
taneously. The bus has the lowest potential value of "RIC, and it is the topology
most likely to be ineffective as the number of processors increases. Note that
the architecture of the RP3 attempts to keep local data and frequently used data
within a processor, thereby increasing the RIC ratio as well as the number of
processors tha~ ~an be used ~ffectively. . . _

At this writing the multiprocessor 1s still m its mfancy m the commerc1a]
world. One dramatic lesson of the experience obtained thus far is that the major
unknown area to explore is software. What are good parallel algorithms for
solving various important problems? The key approach is the ability to partition
the problem into modules that require relatively little intermodule communi
cation. If the partitioning can be done successfully, then communication re
quirements are rather small, and the dependency on the interconnection topology
is greatly diminished. On the other hand, if communication requirements cannot
be made small, then the interconnection topology becomes important, and the
major parameter of interest is the RIC ratio.

6.4 Cache Coherence
in Multiprocessors

The key to using interconnection netvvorks in processors is to send data over
the networks rather rarely. This tends to reduce contention, and, as the use per
processor diminishes, the number of processors that can be served increases.
Obviously, a cache memory provides an effective means for maintaining local
copies of data to reduce the need to traverse a network for remote data.

We point out in the previous section that if a cache misses only 10 percent
of the time, and remote fetches occur only on misses, then the number of
processors supportable on the interconnection network is ten times greater than
for a cacheless processor. The multiplier climbs inversely with the miss ratio,
so the potential parallelism is quite dramatic when the miss ratio is near 0.

Caches in multiprocessors must operate in concert with each other. Specif-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 400

386 Multiprocessors Chapter 6

ically, any datum that can be updated simultaneously by two or more processors
must be treated in a special way so that its value can be updated successfun
regardless of the instantaneous location of the most recent version of the datu:.
The purpose of this section is to explore multiprocessor caches and examine the
control algorithms required for these caches to behave correctly.

First, let us examine the nature of how caches rrright reach inconsistent states.
This will give us some insight into mechanisms suitable for correcting the problem.

We have discussed the special requirement for handling shared variables in
memory, and a similar requirement holds for shared variables in caches. When
a shared variable is resident in memory, we can view the memory cell as being
the current residence of the variable.

Earlier in this chapter we find a problem in trying to update the value of a
variable shared by two processors. What goes wrong with the update process
is that momentarily the current value of the shared variable moves from memory
to the first processor, Processor 1. While Processor 1 holds the current value
and updates that value, Processor 2 accesses shared memory. But the current
value of the variable is no longer there. The variable has moved to Processor 1,
yet Processor 2's request is not redirected. It erroneously goes to the normal
place for storing the shared variable. ·

Our example presumes that Processor 1 updates the shared variable and
immediately returns it to memoryJ but in a cache-based systemJ Processor 1 may
well hold the variable indefinitely in the cache. The failure exhibited in the
example becomes much more likely when caches are present. The failure interval
is not limited to a very brief update period, but can happen for any access to
the variable in shared memory while that variable is held in Processor l's cache.
Whether the failure probability is low or highJ the treatment of shared variables
must be handled correctly. There has to be some solution that has truly zero
probability of failure. Can you imagine the havoc wreaked in a system in which
this were not the case? Programs would almost always work correctly, but would
fail randomly when timing conditions caused the shared variables to be misread.
The failures would be nonrepeatable and extremely difficult to diagnose. They
might well be misdiagnosed as intermittent hardware failures.

There is a related failure mode that also has to be considered. If Processor
1 copies a shared variable to its cache and updates that variable both in cache
and in shared memory, then problems can arise if the values in cache and in
shared memory do not track each other identically afterward.

SupposeJ for example, that Processor 2 updates shared memory. At a later
time Processor 1 requests the value of the variable, but takes that value from its
copy in the cache and ignores altogether the change in the variable from the
update performed by Processor 2. Processor l's access is to a stale copy of the
data held in cache,. and it should be to the fresh data held in shared memory.

Another form of the stale-data problem occurs when a program's footprint
is not flushed completely from cache when that program is moved to a different

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 401

section 6.4 Cache Coherence in Multiprocessors 387

processor and retu~s at a later time. Suppos~ that Processor 1 is running a
program that leaves m cache th~ value 0 for vanable X. Then the program shifts
to a different proce~sor and wntes a new value of 1 for variable X in the cache
of that processor. Finally, the progra~ shifts back to Processor 1 and attempts
to read the current value of X. It obtains the old, stale value of o when it should
have obtained the new, fresh value of 1 for X. Note that X does not have to be
a shared variable for this type of error to occur.

In all f~ilur~ modes discussed here, the common problem is for each pro
cessor to direct 1t.s memo:r:r accesses to the ~urrent active location of any variable
whose true physical loca~on can change. Simple solutions are possible, but they
have performance penalties.

For example, each shared datum can be made noncacheable to eliminate the
difficulty in finding its current location among N caches and main memory. This
can be done, for example, by providing a special range of addresses for non
cacheable data, or by using special LOAD and STORE instructions that do not
access cache at all

To eliminate stale-data problems for cacheable, nonshared data, the proces
sor can flush its cache each time a program leaves a processor. This guarantees
that main memory becomes the current active location for each variable formerly
held in cache.

While these simple solutions have been adopted in some multiprocessors,
the solutions have a negative effect on performance because they reduce the
effective use of cache. We want to explore other solutions that retain a higher
effective use of cache while still guaranteeing that the total system can operate
error free.

The general problem is called the cache-coherence problem, and it has been
studied in the literature by Dubois and Briggs (19821 and Archibald and Baer
[1986]. These articles examine the performance impact of protocols for main
taining consistent caches. Goodman [1983] is an early paper that outlines in
detail a reasonably efficient cache-coherence mechanism. Sweazey and Smith
(1986] explore a variety of cache-coherence protocols and delineate virtually all
the possible variations of the Goodman proposal.

Of the many proposals, our discussion focuses on a single reasonable so
lution to cache coherence and small variations of the basic idea. We examine its
characteristics to determine its performance limitations in a multiprocessor. Ar
chitects should be familiar with the entire spectrum of protocols and with the
relative performance of different solutions as measured on their own workloads
on their own machine environments. We specifically do not recommend any
one approach because the actual choice of the best protocol is quite dependent
on the computer structure and the workload for which it is used.

To understand how to implement cache coherence, let us first describe what
is required. An important notion that solves the problems mentioned is that the
WRITEs to each memory location occur in a serial order, and that all processors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 402

388 Multiprocessors Chapter 6

observe the WRITEs in this order if they access the memory location. This
prevents one processor from observing a sequence of WRITEs to location X to
occur in the order 1, 2, 3 while a second processor sees the WRITEs occur in
the order 1, 3, 2. It does, however, permit a processor to miss an observation
and see the sequence 1, 3 or 2, 3. This form of cache co~er~nce forces arbitration
to take place when two or more processors attempt to wnte into a shared location.
Only one processor can have a write privilege at a time. If that processor, say
Processor A, has a write privilege and has a local copy of the variable in cache
that is writeable, then the current logical location of that variable is the cache
of Processor A.

This description of cache coherence has evolved over time as multiprocessors
with caches have been offered commercially in various configurations. Cache
coherence mechanisms for bus-based multiprocessors automatically serialize all
accesses across machines because processors have to contend for the bus and
the access rights that are granted to one processor at a time. Hence, the mech
anisms proposed to solve coherence problems for bus-based systems implicitly
make use of the serialization inherent in gaining access to the bus. Our definition
makes explicit the requirement to serialize the sequence of WRITEs to each
location because, except for bus-based architectures, serialization is not inherent
in the multiprocessor topology and has to be designed into the architecture. The
definition of coherence used in this discussion follows the description used by
Gharachorloo, et al. [1990]. As we learn in the next section, once we leave the
safety of the serialized bus-based implementation, our troubles are not limited
to coherence problems, and we have to take additional steps to assure correctness
of multiprocessor programs.

Now let us return to the implementation of mechanisms to enforce cache
coherence. Here are the basic operations that must take place:

1. If a READ operation for a shared datum misses in cache, then the READ
operation must be redirected to the current logical residence of the variable.
The variable may be in a cache, in main memory, or copies may be in many
places. The READ operation should receive the most current value of the
datum although by the time the copy reaches the requestor it could be stale.

2. A WRITE operation to a shared datum, whether it is a hit or a miss in cache,
must have a privilege to change the value of the variable. The current logical
home of the variable is at the processor that is granted write privilege, and
only that processor has write privilege. Write privilege is passed sequentially
from one writer to the next, and the sequential order of granting the privilege
determines the serial order of values assumed by the variable.

It is convenient to keep track of write privilege in cache by associating an own
ership bit with each cache line. The processor with write privilege to a line is
deemed to be the owner of a line, and signifies ownership by setting the bit. All

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 403

Section 6.4 Cache Coherence In Multiprocessors 389

other processors that hold copies of the line have their ownership bit reset, and
they must become owners before they are entitled to change the value of the
line jn their respective caches.

Before discussing an implementation of these requirements, note that there
is a potentially. severe performance pen_alty associated with cache-coherence
protocols. The first requirement could be implemented by a broadcast operation
to every processor, and every processor then performs a cache read in response.
This tends to increase network contention and reduces available cache band
width. Since this operation takes place only on read misses, its frequency should
be just a few percent of the READs issued by any single processor.

As the number of processors increases, however, the broadcast READ re
quests from the collection of processors create an enormous amount of com
munications network messages and cache traffic, so that the network or the
caches or both quickly reach their saturation limit. For example, a 1 percent miss
rate on shared data in each of 100 processors of a multiprocessor generates
100 x 0.01 = 1 broadcast request and 1 cache read per clock cycle in each
processor. This much broadcast traffic saturates the communications system and
the individual caches of all processors. A solution other than broadcasting of
messages has to be brought into play.

A suitable alternative is to maintain a distributed directory of current holders
of cache lines, and to have READ requests routed to such directories. Lenoski,
et al., [1990], for example, describe the details of such a scheme for the DASH
multiprocessor. Another scheme is the Scalable Coherent Interface [James et al.
1990], which is designed to permit systems with up to 64K processors to maintain
cache coherence.

Even greater potential degradation can be caused by the second requirement,
if it were to be met with a broadcast on every WRITE to a shared datum while
copies exist elsewhere in the system. The difference between the READ and
WRITE penalties is that immediately after a READ miss occurs, the shared item
becomes available in a local cache, and subsequent READs can be performed
without broadcast. For WRITE operations, however, if two or more processors
attempt to access and modify the same shared variable several times over a brief
period of time, and if the requests by each processor are interleaved in some
order, then the cache-coherence protocol generally causes heavy traffic due to
frequent broadcasts that progressively move the datum from one cache to an
other as the privilege to write the variable transfers back and forth repeatedly.
Although this behavior appears to be Wllikely, it is extremely likely to occur in
multiprocessor systems at barriers in programs and at locks that protect regions
requiring exclusive access.

The basic mechanism for broadcast is best suited for a bus interconnection
because a bus transaction is automatically assured that all receivers are listening
to the bus when the transmitting processor gains access to the bus. Broadcasts
can easily be implemented in shuffle-exchange networks and hypercubes, but

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 404

390 Multiprocessors Chapter 6

!hey suffer from ~he problem that extra bandwidth ~vailable in these networks
1s lost momentarily when a broadcast saturates the interconnection network.

Similarly, a crossbar network is satura~ed by a ~ingle broadcast message,
and that broadcast has to be de]ayed until all receivers are listening, which
causes additional loss of useful bandwidth. Most proposals for cache-coherenc
protocols are therefore based on bus-connected multiprocessors. The RP3, fo:
example, with its combining-switch network does not have a cache-coherence
protocol, but instead caches only nonshareable data. References to shared dat
are routed directly to memory without interrogating cache. a

Given the basic principles of cache coherence, the least complex solution is
to broadcast a READ on every read miss of shared data, and to broadcast a
WRITE on every \vrite to shared data. This is ideally suited to a bus-based system
because the bus is a broadcast _ medium. Goodman (19831 provided the starting
point for research and evaluation of protocols for bus-based systems because of
the inherent efficiency of his protocol for that environment.

In the broadcast environment, ea:h cache listener res~onds to a READ by
interrogating its own cache and reporting back the data. This works fine if there
is only one respondent, or if all respondents have the same data. Then the first
one to respond broadcasts a reply. All other potential respondents observe this
and withdraw their attempts to reply.

Because there could be stale data, not all copies may be identical. To distin
guish the current valid copy from q.ll others, recall that at most one copy held
by a processor has a WRJTE privilege attached to it. The one with WRITE
privilege is deemed to be the current copy of the datum, and the owner of this
datum must be the only respondent. It may happen that no processor has a
copy with WRITE privilege because the item has long since been flushed from
a cache where it once resided. The default situation is that the item is returned
&om main memory when no processor holds a copy of the request; in a bus•
based system (where all copies of a line in various cache are identical) the item
is returned from any processor that holds the cache line.

Let us now look at the execution of a WRITE to shared data in an environment
that supports inexpensive broadcast. vVhen a WRITE request is received by a
processor that holds the copy of the datum in local cache, the processor rec•
ognizes that the local copy is about to become stale. The processor can respond
in one of two ways, depending on the details of the protocol implemented. One
response is to update the local value by replacing it with the value broadcast
with the WRITE request. This maintains the current value locally and assures
that the caches across the system remain coherent. Protocols that use this tech
nique are called write-update protocols. The other alternative is to purge the copy
from local cache. This operation is called a cache invalidation. The protocols that
use this means are called write-invalidate protocols. The decision whether to use
write-update protocols or write-invalidate protocols depends on such factors as

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 405

section 6.4 Cache Coherence In Multlprocnsors 391

the cache size and the likelihood of accessing a shared variable again in the
immediate future.

Note that a WRITE request can result in an operation that looks much like
a READ as well as a WRITE. Th~ response to a WRITE request is a copy of the
current contents of the cache hne from the owner of the line or from main
memory if no processor i~ a curre~t owner. The requester usually writes only
one or two words of data mto the lme, whereas the cache line size may contain
many words. So the part of the line that is not modified by the requester has
to be sent to the requester in order to assure that the requestor has the most
up~to-date version of the cache line. Hence, this part of the transaction acts like
a READ. If the protocol is a write~update protocol, the requestor must also send
out the changes made by the WRITE. Listeners see the full transaction, so that
any processor that participates as an updater receives sufficient information to
create an updated copy of the cache line.

One advantage of maintaining an ownership bit is that it provides a potential
improvement on the basic algorithm by eliminating broadcasts when they are
known to be unnecessary. The idea is to eliminate broadcasts when the owner's
copy is the only copy among processor caches. Then the owner is free to change
the local value without telling other processors of the changes made. So this
variation of the coherence protocol uses a second status bit for each cache line
called the exclusive bit, which is set when no other copies exist in other caches.
The rule for WRITE broadcasts is to broadcast a request unless the cache-line
status indicates that the copy in the local cache is owned exclusively by the
processor.

Most implementations of this variation of the protocol go one step further.
The WRITE broadcasts are implemented as invalidates, rather than as updates.
At the conclusion of such a WRITE update, the owner of the cache line can set
both the exclusive bit and the ownership bit, and thereafter is free to write into
the cache line without broadcasting until a broadcast READ or WRITE for that
line from another processor is received. lf the request received is for a READ,
the local copy must reset its exclusive bit to indicate that copies exist in other
processor caches. If the request is for a WRITE, the local copy has to be inval
idated under the rules of the protocol so that the new requestor will be the
exclusive owner of the cache line.

Although this seems to be a reasonable optimization, in Chapter 7 we show
that for certain kinds of synchronization the write-update is superior. The reason
that write update is superior occasionally is that the shared data ought not to
be removed from a cache when the processor happens to be at a point in the
code where the processor will rerequest a copy of that variable. In anticipation
of the future need of the processor, the better solution would be to use a write
update protocol for that processor and place the new value of the shared data
in the cache in advance of its need.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 406

392 Multlprocasors Chapter 6

The decision between using write·invalidate or write•update can be made
for individual cache lines, and different processors can select arbitrarily between
t~e protocols for the same cache line, provided_ that the exclusive and ownership
bits are correctly set at the end of each operation. If a WRITE request is posted
with a control indicator stating that it is a write invalidate, then all listeners
invalidate their copies. The requestor then can set the state of the cache line to
be owned and exclusive. If the request is indicated to be a write update, the
listeners are free to update or invalidate as they choose, but no listener can also
be an owner of the cache line at the close of the operation.

This discussion has been directed to protocols that support broadcast mes
sages. They are simpJe to understand and easy to implement on a bus topology.
As multiprocessor systems grow to hundreds and thousands of processors, the
bus topology becomes unusable and the excessive cost of broadcasting prohibits
the implementation of protocols as described here. However, the protocols pro
posed and implemented in practice are logically very similar to the solutions
presented here, so this discussion serves as a natural starting point to examine
other implementations. The DASH multiprocessor protocol [Lenoski 1990) is an
interesting place to initiate a study of coherence protocols for systems without
a broadcast bus.

The important points to retain when implementing other protocols are:

1. The protocol has to identify at most one processor as the owner of the cache
line.

2. No processor can write to a cache line unless the processor is the owner of
the line.

3. If an owner writes to a line, the owner must notify the processors that
currently hold copies of the line that the line has been changed.

4. An efficient protocol is one in which the cost of notifying other processors
of changes is small and unobbusive.

Very little is known today about the likely access patterns to shared data in
multiprocessors, so all coherence protocols are worthy of consideration in the
immediate future. As multiprocessors become more widely used, performance
data can be used to evaluate the protocols and identify which one or ones are
best for specific implementations that become available.

6.5 Memory Consistency
in Multiprocessors

In a landmark paper, Dijkstra [1965] described how to control multiprocessors
without the aid of synchronizing instructions. His paper was written before
caches became commonplace so he did not have to worry about problems of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 407

section 6.5
Memory Consistency In Multiprocessors 393

herence or incoherence of the memory system. The correctness of his algorithm
co ts on a fundamental assumption about how multiprocessors work. Namely,
~: processor performs_ WRITE A an~ WRITE B in that o~der, then all other

ocessors see those writes performed m the same order. DlJkstra did not make
f~is assumption explicit in his paper, but his_ proof relies on this principle.

In a later paper, Lamport [1979] made thls observation explicit, and argues
onvincingly that this basic principle must hold within multiprocessors to sirn;Iify programming them. In fact, !~e principle that Lamport described is some

what stronger. Not only do WRITEs by each processor have to be observed to
happen in the same order by all o~her process~rs, but the whole system must
operate as if all READs and WRITEs by the vanous processors are merged into
one sequential ordering, and each processor's operations appear in their order
of execution within that ordering. Lamport calls this sequential consistency.

The reason for requiring sequential consistency becomes clear when you
consider what Program 6.2 produces when sequential consistency is violated.
Assume that the two programs in the example execute in an unknown order,
and look at the final values of the variables. If the execution is sequentially
consistent, the values of A and B cannot both be 0. For example, if the final
value of Bis 0, then Processor 1 must have written B after Processor 2 completed
the execution of both instructions. So the final value of A must be 1. By similar
reasoning, if the final value of A is 0, the final value of B is 1.

For many multiprocessor systems it is perfectly possible to discover that
both A and B have values of zero, which seems to be precluded by the way the
programs are written. The ~xecution aprears as if the ~RITEs o~ one pr~cessor
occur in reverse order. An implementation produces this result 1f there 1s more
than one path between processor and memory, and if the first operation follows
a different, much slower path from processor to memory than the second one
follows. Although Program 6. 2 is an example that does not read shared variables,
Program 6.3 contains both a READ and a WRITE to shared variables A and B,
and it fails to give consistent answers when sequential consistency does not

Program 6.2 ~p example of WRlTEs by a processor that can be observed out of order.

Processor 1 Program
B := 0~
A:= 1;.

Processor 2 Program
A:= O;.
B := 1;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 408

394 Multiprocessors Chapter 6

Program 6.3 An example of a READ and WRITE by a processor that can be observed
out of order. Processor J initializes the variables well before the READ and WRITE section
occurs.

Processor 1 Program
A : = - 1 ; {* Initial values of variables ·}
B : = - 1 ; t Initial values of variables •}

A:= O;
D := 8; .

Processor 2 Program
B:= O;.
C:= A;

hold. A failure occurs when the interleaving of the last two statements shown
for Processor 1 can be perturbed relative to the similar statements executed by
Processor 2. Assume that the initialization of A and B shown in the code for
Processor I is done well in the past. When sequential consistency holds, then
as both Processors 1 and 2 complete their two update statements, the final values
of C and Dare both O or one them is -1 and the other is 0. Variable C is -1 if
Processor 2 finishes both instructions before Processor 1 begins its pair, and D
has the value - 1 if Processor 1 finishes both instructions before Processor 2
begins its pair. Consider what happens if Processor 1 completes its pair in the
order stated but Processor 2 observes the order to be reversed. A possible out
come would be an execution as if the following events occurred in sequence:

1. D := Bon Processor 1. D now is -1.

2. B : == 0 on Processor 2. B now has the value 0.

3. C : = A on Processor 2. C now has the value -1.
4. A : = 0 on Processor 1.

In this case, both C and D recejve the values -1, which is not a possible outcome
for sequentially consistent hardware.

Note that these results do not violate cache coherence because the values
received by each variable in the listed sequence of actions are serialized and the
processors observe the same sequence of changes. The inconsistency in this
example is that the given sequence of steps is not a permitted interleaving of
the pairs of statements of the two programs.

Hence the principle of sequential consistency is different from cache coher
ence, because cache coherence states what must hold for individual locations in

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 409

secnon 6.5 M2mory Consistency in Multiprocessors 395

rnernory but makes no statement about the relative order of READs and WRITEs
to different locations, and th~ order in which they can be observed. Sequential
consistency is easy to assure m a bus-based multiprocessor with a cache-coher-
nce protocol because cache coherence assures that all observations of the se•

:uence of ~alues taken by each variable will be the same, and sequential
consistency 1s assured because the shared READs and WRITEs are serialized by
the bus transaction. READs and WRITEs to privately held data are not serialized
by the bus, but t~e order in whic~ they occur_can be merged consistently into
a total serial ordenng of all transactions, as required by the principle of sequential
consistency.

Parallel programs are sufficiently difficult that it makes little sense to add
to their complexity by building hardware that does not support sequential con
sistency. But sequential consistency incurs a great performance penalty when
implemented in multiprocessors other than bus-based systems. Sequential con
sistency requires that all instructions issued by each processor, say Processor I,
appear to execute in the same orde~ when observed by aU other processors. That
order must be the program execution order on Processor 1. The problem is that
it is usual practice to execute instructions out of order to attain performance
improvement, provided that th_e program behaves on the local processor as if
the instructions were executed m order. For example, the instruction sequence
WRITE A, READ B, can be reordered to take ad\•antage of being able to start
the READ access a little earlier. The processor can continue execution imme
diately after a WRITE is issued, whether or not the WRITE misses. But it usually
suspends execution if a READ misses, waiting for the data to be returned to a
machine register where subsequent instructions can deal with them. By exe
cuting the READ early, if the READ misses while waiting for data from cache,
the WRITE can be executed, and thus some useful work can be done during
time normally left idle.

For this reason, high-performance machines execute some instruction se
quences out of order provided that out-of-order execution does not change the
program correctness in a uniprocessor environment. If the READ and WRITE
instructions that are interchanged access different memory locations and ma
nipulate different registers, then the READ and WRITE can be interchanged.
So the hardware freely makes such changes to obtain performance improve
ments. The hardware need not actually interchange the order of execution but
may have WRITE buffers in one or more places so that events are made visible
to other processors as if they occurred in a different order.

Sequential consistency may force processors to exchange messages in order
to assure that global timing of events remains sequentially consistent. For ex
ample, we mentioned that a sequence of WRITEs can appear to have been
reversed if the first WRITE follows a long path to memory and the second one
follows a short path. To assure that the WRITEs are treated in a correct order,
it may be necessary to wait for the first to complete before launching the second.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 410

396 Multlprocnsors Chapter 6

This implies that the memory returns a message to the processor when a WRITE
is completed. .

What we have learned is that the hardware designer and the software de-
veloper have to agree on a way to assure correctness of parallel programs that
is compatible with high-performance design. The trend today is to build systems
with a special subset of instructio~s des~gnated _for the purpose of synchronizing
events across machines. The ordinary mstruct1ons execute as fast as hardware
permits. They may in themselves appear_ to_ be sequ~ntially inconsistent, but the
special instructions assure that where timing cons1st~n~y of so?1e sort is nec
essary for correctness, the consistency among the speaal mstructions will assure
correctness of the full program.

Program 6.1 gives an example of how to write correct programs under these
conditions. Assume that the primitive instructions that implement LOCK and
UNLOCK are the special instructions, and the instructions inside the critical
sections are ordinary instructions. For program correctness, Program 6.1 requires
that a lock variable be observed in a manner that guarantees that no two pro
cessors can be granted the lock concurrently. The instructions that implement
LOCK may be rather costly in performance because they may need to exchange
messages with some or all processors to determine when a LOCK instruction
has completed. Once a processor enters a critical section, instructions can be
reordered in any way that does not violate the correct execution of a sequential
uniprocessor program. The instructions can be observed externally as happening
in any order produced by such an execution. However, the instructions in the
critical section must not be observed as if they executed before the LOCK at the
beginning and after the UNLOCK at the end. In other words, whatever optimiz
ations take place on the variables in the critical section, they must still leave the
variables protected by the LOCI< and UNLOCK. Likewise, optimizations may
be free]y applied to ordinary instructions executed outside the critical section,
provided that optimizations do not have the effect of moving statements into
the critical section from outside.

A number of techniques that have been proposed to achieve this behavior
are in the literature. An early proposal that has influenced much of the later
work is the paper by Dubois,, Scheurich, and Briggs [1986], which suggested a
scheme known as weak consistency. The basic idea has been expressed above,
but more specifically the proposal is to constrain instructions as foJlows:

1. Special (Synchronizing) instructions are sequentially consistent among them
selves. That is, there is a global ordering of all synchronizing instructions.
The order is some merge of the sequences of synchronizing instructions
issued by individual processors. All processors see the synchronizing in
structions in this order.

2. Ordinary READs and WRITEs that execute after a synchronizing instruction
in a serial program must await the completion of the synchronizing instruc-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 411

section 6.5 Memory Consistency in Multiprocessors 397

tion before they can be initiated. They cannot appear to be executed before
the synchronizing instruction.

3. Ordinary READs and WRITEs that execute before a synchronizing instruc-
tion must complete before the synchronizing instruction can begin.

The idea is that these rules provide enough timing information to assure cor
rectness. Correctness for Program 6.1 requires that the critical section have at
most one active processor. The first rule assures that the LOCK and UNLOCK
can create critical sections, and the second and third rules assure that the in
structions inside the critical section stay inside and those outside stay outside
as observed by any processor.

The details of the implementation of this rule are rather complex because
the rules as stated are vague about what it means for an instruction to "com
plete." On a uniproc_esso~, the idea_ is fairly well defined. But not so on a
multiprocessor. Here 1s a hst of a variety of ways an instruction can complete a
WRITE, and the technical term used by Dubois, Scheurich, and Briggs to describe
each type of event.

1. Processor 1 writes the new value to a store buffer between the processor
and cache. The instruction is said to have completed with respect to Processor
J at this point. If Processor 1 immediately reads from the same address, it
must retrieve the value from the store buffer.

2. The value leaves the store buffer, obtains or discovers ownership of the
cache line, and enters cache. Since we assume cache coherence, the new
value of the variable is the next value in the sequence of values that the
variable attains. At this point the WRITE has completed with respect to storage.

3. The cache coherence algorithm sends messages to other processors to update
or invalidate their local copies of the cache line. Processor i receives the
message and changes the state of the local copy of its cache line. The WRITE
is said to be complete with respect to Processor i at this point.

4. All processors finish updating the copies of their cache lines. The WRITE is
said to be globally complete at this point.

For READs, the possible completion points are slightly different.

t. Processor 1 issues a READ. The request reaches cache memory and is granted
access. At this point, if the item is in cache memory, no other processor can
change the value to be returned by Processor 1. We say the READ is complete
with respect to all other processors.

2. If the item is not in cache, the request is routed to the other processors and
to main memory. When it reaches Processor k there will be a point in time
after which Processor k will no longer be able to change the value returned
to Processor 1. At this point we say the request is complete with respect to
Processor k.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 412

398 Multiprocessors Chapter 6

3. Eventually, no processor is able to change the value of the data returned.
We say the READ is complete with respect to all processors.

4. At a later time, no processor that has issued a READ to the same address
will be able to see an earlier value of the variable. At this time we say that
the READ is globally complete.

Assume that a processor waits for each instruction to complete in some sense
before issuing the next instruction. If that notion of completeness is complete
in storage or complete with respect to the issuing processor, then programs like
Program 6.2 and Program 6.3 will not be seq~entially consistent as we dem
onstrated earlier. If the notion of completeness 1s global completeness, the pro
grams will be sequentially consistent but the processor performance will be
abysmal. If completeness is in respect to some processors but not all processors,
the programs wiIJ not be sequentially consistent.

Weak Consistency assures the correctness of parallel programs by placing
tight restrictions on synchronizing instructions and loose restrictions on ordinary
instructions, with the idea of achieving good performance on ordinary instruc
tions by means of processor optimizations when possible. The protocol is based
on the following principles:

1. Each processor must assure the global completeness of a synchronizing
instruction before initiating the next synchronizing instruction. This is suf
ficient to assure that synchronization instructions satisfy the stringent re
quirements of sequential consistency among themselves.

2. A synchronizing instruction that occurs in an execution sequence after or
dinary READs or WRITEs must wait for the outstanding ordinary READs
and WRITEs to complete with respect to all processors before it can initiate.

3. READs and WR.ITEs that occur in the execution sequence after a synchro
nizing instruction must wait until the synchronizing instruction is complete
with respect to all processors before they can initiate.

The first constraint creates sequential consistency among synchronizing instruc
tions, and the last two constraints safely keep ordinary instructions from leaking
into or out of critical sections that are bounded by synchronizing instructions.

This proposal has a performance advantage over Lamport's proposal because
with weak consistency, ordinary instructions can be executed at a maximum rate
except in the vicinity of synchronizing instructions. Synchronizing instructions
will execute at the slow rate forced by sequential consistency. So performance
on balance may be good, yet the programming model enables developers to
write correct parallel programs and prove their correctness. A serious issue is
the implementation of the tests for global completeness, both for reasons of
performance and cost.

Testing global completeness of WRITEs requires that the issuing processor
receive acknowledgments from the messages sent by the processor to update

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 413

Section 6.5 Memory Consistency in Multiprocessors
399

or invalidate their caches. ~or a bus-based multiprocessor, this occurs during
the WRITE bus cy~le, an~ 1s a negligible performance or cost component. For
other structures, this reqmrement contributes both performance degradation and
extra cost but it is tolerable. Testing global completeness of READs is potentially
more difficult. How can any processor be sure that no other processor can read
an earlier value of a variable? One way to assure this is to halt all activity until
all WRJTEs are globally complete. At this point all changes to memory have
been recorded, so that no processor can see a different value from what is
recorded in memory. This implementation of global completeness is very costly
and leads to severe performance degradation in programs that access shared
variables frequently.

The literature that follow~~ the paper by Dubois, Scheurich, and Briggs
[1986] has sought less constrainmg hardware restrictions to avoid performance
degradation. The propo~~ls seek ways to put in just enough constraints to
provide the tools for wnting corr~ct parall~l programs and proving their cor
rectness. One of the more appeahng solutions proposed is Release Consistency
[Gharachorloo, et al. 19901- This proposal suggests using synchronizing primi
tives RELEASE and ACQUIRE together with ordinary instructions, and in this
sense it follows the spirit of Dubois, Scheurich, and Briggs [1986]. RELEASE
writes a shared variable, ACQUIRE reads a shared variable, and both operations
are synchronizing operations so that special tests are used to determine when
they are complete. They work together in a program to establish ordering when
that ordering is necessary. When a RELEASE on Processor 1 executes before an
ACQUIRE on Processor 2, then all ordinary instructions executed before the
RELEASE on Processor 1 are guaranteed to be completed before any ordinary
instructions are initiated on Processor 2 after the ACQUIRE. Specifically, the
proposal assumes the following implementation:

1. READs and WRITEs preceding a RELEASE must be complete with respect
to all processors.

2. An ACQUIRE that precedes READs and WRITEs must be complete with
respect to all processors before the READs and WRITEs can initiate.

3. Any WRITEs to memory produced from synchronizing instructions issued
by Processor i are observed by other processors in the same order in which
they were generated. However, sequential consistency is not required. The
WRITEs by Processor i and j may appear to be interleaved with each other
in different ways by different processors.

The requirements relax the global completeness conditions of Weak Consistency
in that the completeness condition for READ is simple to check. A processor
that issues a READ deems it to be complete with respect to all processors when
the READ returns a value, because at that point it is too late for any other
processor to change that value. For WRITE operations, global completeness and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 414

400 Multiprocessors Chapter 6

completeness with respect to all processors are the same condition, and both
consistency models use this condition. So for both Weak Consistency and Release
Consistency, a processor that issues a WRITE must wait at a RELEASE until the
result of that WRITE is visible _at all ?ther processors. This may entail waiting
until an acknowledge message 1s received from each processor that holds a copy
of the variable written.

The synchronization instructions fo~ Weak Consistency are two-sided syn
chronizers in that they wait for all previous accesses to complete and prevent
all subsequent accesses from starting. The RELEASE and ACQUIRE operations
are one-sided. RELEASE waits for all previous accesses to complete, and AC
QUIRE holds off alJ subsequent accesses. Neither instruction constrains both
previous and subsequent accesses.

Program 6.4 is a variation of Program 6.1 to show the LOCK statement of
Program 6.1 implemented as a LOCK_AND_ACQUIRE and the UNLOCK
statement of Program 6.1 implemented as a RELEASE_AND_UNLOCK This

Program 6.4 This program uses ACQUIRE and RELEASE primitives to assure program
correctness of a critical section in multiprocessors that do not satisfy sequential consistency
for ordinary accesses. It is similar to Program 6.1, except that the ACQUIRE and RELEASE
primitives constrain the instructions ,.vithin the critical section from executing outside
the critical section when processors are permitted to optimize the order of execution to
obtain higher performance .

Procedure AdLto_Sum(var Globa/_Sum : Real, Shared;
G!oba/_Sum_Lock: Lock, Shared; Local_ Table: array of Real);

var
i: integer;
Local_Sum : real;

begin
Locaf_Sum : = 0.0;
for i : = 1 to Max do

Local_Sum : = Loca/_Sum + Local_ Table[,];
t The next statement waits until the lock can be passed, then performs an ACQUIRE. At

most, one processor in the system can pass an unlocked control variable . The variable
instantly locks, and prevents further access until it is unlocked. At the end of the
critical section, the variable is unlocked immediately after a RELEASE. The RELEASE
assures that th~ actions in the critical section are completed and visible to all
processors before it itself completes. "}
LOCIL.AND__ACQUIAE(G/oba/_Sum_Lock);
Global_Sum : = Global_Sum + Local_Sum;
AELEASE-AND_UNLOCK(G/oba/_Sum_Lock);

end; t Procedure Add_to_Sum "}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 415

section 6.5 Memory Consistency In Multiprocessors
401

makes explicit the s~~chroniz_ation of ACQUIRE and RELEASE. The LOCK
Statement creates a cnhcal section. As we learned earlier only

0 , ne processor at
a time can pass the _Io~k m the_cntical section. The LOCK_AND_ACQUIRE
statement assures hmmg ~ons1stency. It prevents any statements within the
critical section from appearmg to_execute before _the lock is set. Specifically, with
RELEASE and ACQUIRE operations the following conditions hold:

1. On Processor 1, within a critical section the WRITE to Global_Sum is visible
to all processors before the RELEASE_ AND_UNLOCK is completed.

2. The RELEASE_AND_UNLOCK that ends the critical section on Processor
1 is visible to all processors before Processor 2 executes the LOCK_
AND_ACQUIRE that enables Processor 2 to enter the critical section.

3. Within the critic~l section of Processor 2, all memory accesses take place
after the completion of the LOCK_AND_ACQUIRE. Hence, this assures
that the READ of Globa[_Sum in the critical section returns data visible at
the completion of the prior LOCK_AND_ACQUIRE.

Consider what happens wh~n two processors execute Program 6.4 in parallel.
Assume that Processor 1 gams entry to the critical section first, and Processor
2 follows. The actual sequence of events must be the update of Global_Sum on
Processor 1, the RELEASE_ANO_UNLOCK on Processor 1, the LOCK_
AND_ACQUIRE on Processor 2, and the update of Global_Sum on Processor
2. This timing imposes an ordering between the WRITE in the first critical section
and the READ in the second, and guarantees that the WRITE happens before
the READ.

To write correct programs using Release Consistency, Weak Consistency, or
any other consistency model, the first step is to identify all places in the program
where timing variations can produce inconsistent answers. Within any one pro
cessor, we assume that the processor executes programs in a way that appears
to satisfy normal program order. Hence, if the program contains the instruction
sequence WRITE X, READ X, the result of this execution must be that READ
receives the results oi the immediately preceding WRlTE. The processor may
actually reverse the order of execution, producing the order READ X, WRITE X
at an execution stage, but interlocks in the processor must assure the execution
is performed by returning to the READ the value stored by the WRITE.

The timing variations that can cause problems are those where the pro
grammer assumes something about the relative order of READs and WRITEs
issued from different processors to a shared variable. The actual sequence of
accesses by those two processors must be consistent with the assumptions un
derlying the program. To make this clear, Gharachorloo et al. define competing
accesses to be unordered accesses by two or more processors to the same location,
and at least one of the accesses must be a WRITE. By "unordered" they mean
that timing variations could cause the accesses to occur in any order.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 416

402 Multiprocessors Chapter 6

Competing accesses return values that may be unexpected and incorre t
because the answers are unpredictable. A correct program must not depend~~
the outcome of competing accesses.

To write a correct program, one has to find all competing accesses. Presum~
ably this is done mechanicaJiy by an analysis program. By placing RELEASE
and ACQUIREs in the programJ the accesses can be ordered so that they are n s
longer competing. Consider an example in which a READ X on Processor I i~
followed in time by a WRITE X on Processor 2. Due to buffering, the WRITE X
might change the value of X actually returned to Processor 1, even though th
programmer believes that READ X occurred earlier than the WRITE X. Hencee
these two instructions are competing accesses. The analysis program identifie~
the competing access, and the programmer removes the competition by inserting
a RELEASE after the READ X and an ACQUIRE before the WRITE X. When the
RELEASE occurs before the ACQUIRE, the timing of events assures that they
occur in the order READ X, RELEASE, ACQUIRE, WRITE X, and the WRITE X
cannot change the value reported to the READ. To assure that the RELEASE
and ACQUIRE occur in the order shown, the program can use other operations
in conjunction with them such as LOCK and UNLOCK. For Program 6.4, the
ordering of RELEASE and ACQUIRE is done by using a RELEASE-AND_
UNLOCK and LOCK_AND_ACQUIRE.

This ordering of events is sufficient to assure correct operation and to prove
correctness even when sequential consistency does not hold for all instructions.
Thus, programmers can reason about timing in a program by relying on RE
LEASE and ACQUIRE to order things between processors, and to hold off
execution long enough to ensure that events truly take place before the RELEASE
and after the ACQUIRE.

6.6 Summary

This chapter treats multiprocessors from a performance and topological point
of view. The fundamental advantage of the multiprocessor architecture is its
generality. Algorithms for such systems are much less constrained than are
algorithms for vector and continuum-model computations because the individual
processes in execution need not be identical or nearly identical.

The disadvantage of a multiprocessor architecture is that performance relies
strongly on replication of hardware, but replication introduces serious problems
regarding cost and contention. Programming complexity is greatly increased
because of matters regarding synchronization and the correct use of shared data.

The negative factors tend to make multiprocessors most attractive for ar
chitectures with a small number of processors. The problem size is also impor•
tant. To keep overhead low compared to useful computation, multiprocessors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 417

403

are best suited for)arge problems that :=annot easi1y be treated on a single
ocessor. Because of the extra complexity and overhead cost introduced to

pr I · 1 ·
support paralle execution, mu ti_processors bec?me less attractive for dealing
with problems that are solvable ~n reasonable time on a uniprocessor. Break
throughs in langu~ges and opera~ng systems for multiprocessors could enhance
the relative attractiveness of mu1tiprocessors by eliminating the complexity that
now falls on the programmer, but, to tap_ the potential power of the multipro
cessor, the breakt~roughs must necessarily provide high efficiency as well as
complexity reduct10n. . _

For the near funner the likehhood of success in multiprocessor systems is
assured for systems with a small number of processors. Chances for success
diminish rapidly as N approaches 100 t~ 1000. lt will take the efforts of many
talented researchers pushmg at the frontiers of computing research to make the
1000•processor system a cost-effective reality.

Our comments here suggest that overhead and communications costs have
to be held to a minimum to achieve that reality. The hardware and software
technology to keep those costs low is just deve]oping. We expect new ideas for
both multiprocessor hardware and algorithms to emerge in the next few years
to help shape future architectural developments.

Exercises
6.1 Consider the performance model expressed by Eq. (6.1). Suppose the two processors

have unequal speeds and that Processor 1 is a times faster than Processor 2. What
is the optimum distribution of tasks to processors?

6.2 The model expressed by Eq. (6.2) is suitable for a system in which transmission
time is independent of the number of processors. The cost of communication is a
fixed constant C, and the formula multiplies this cost by the number of commu
nication transactions. In a token ring, the time of transmission increases with the
number of processors. Develop a model that reflects this characteristic of token
rings, and find the optimum task allocation for your model.

6.3 The purpose of this exercise is to find a performance model that fits a realistic
program. Consider Program 5.1 (Section 5.2). The innermost pair of loops updates
a rectangular region of a matrix. The outer loop repeats this operation N times. To
answer the questions that follow, ignore the cost of synchronization and count only
the communications costs for data.

a) Partition the problem so that each row of the matrix lies totally within one
processor. Determine the processor-to·processor communication transactions that
have to occur within the algorithm. If there is no broadcast capability, how many
communications occur during the algorithm? Compare this to the number of
times that the innermost loop 1s executed on a serial computer and on the
multiprocessor you are modeling.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 418

404 Multiprocessors Chapter 6

b) If your architecture supports a one-cycle broadcast trans_action in which a trans
mitting processor can send a common message to all hsteners, how does this
facility change your answer to a?

c) Let N = 10, and RJC = 1. What is the optimum distribution of tasks to processors
for your system with a broadcast capability?

6.4 Repeat Exercise 6.3, but this time assign each column of the matrix to lie totally
within one processor. Compare your answers for row and column assignments and
discuss how the storage fonnat affects the optimum way to distribute tasks among

processors.
6.5 The purpose of this exercise is to inv~stigate the effe~ts of synchronization. For the

row-oriented data structure of Exerose 6.3, reexamme Program 5.1 and discover
where synchronization is required. That is, find where processors have to wait for
events in other processors before they can proceed. Alter the performance model
of Exercise 6.3 to account for the synchronization operations required.

6.6 Assume that the matrix of Program 5.1 is stored in N processors with one column
in each processor of a multiprocessor. Let each column be updated in para.Eel when
the subarray is updated. At the end of the updater assume that synchronization is
done by means of a shared semaphore resident in Processor 0. Before an iteration
begins, the variable is initialized to a value equal to the number of active processors
in the forthcoming iteration . As each processor completes its work, the processor
gains exclusive access to the shared variable, decrements the variable, then releases
exclusive access. If a processor produces the value zero after a decrement, it initiates
the next subarray update. Othen-.•ise, processors become idle after decrementing
the shared variable.
a) For N = 16, 32, and 128, determine the values of parameters rand h in Eq. (6.23}

for a multiprocessor based on a crossbar-interconnection scheme. From these
parameters, compute the maximum generation rate for memory requests.

b) Consider the question in a for a multiprocessor based on a bus interconnection.
For this system, the point of contention is the shared bus rather than the memory
system. Extend the model of a to cover a11 sources of bus contention to find a
maximum rate for generating requests similar in intent to Eq. (6.24).

c) Consider the same problem executed on a machine with a shuffle-exchange
network and the capability of performing Fetch-and-Add . Find the maximum
rate for generating requests for this architecture for Program 5.1.

6. 7 The structure of Program 5.1 requires access to both rows and columns of a matrix.
Consider a very simple algorithm that accesses a matrix by two scans of the matrix.
In the first scan, the matrix is accessed by rows. In the second scan, the matrix is
accessed by columns. The matrix is N x N.

a) For a crossbar-based multiprocessor with N processors and memories, show how
to store the matrix to minimize the time for the required forms of access and
state how much time is required to complete the two scans.

b) Repeat a for a bus-based multiprocessor.

6.8 The purpose of this question is to investigate the behavior of a multiprocessor in
the absence of cache coherence.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 419

Exercises
405

a) Assume that a multiprocessor has caches with every p
O

d ·
r cessor an uses a wnte-

through st rategy for all WRITEs, but all REAOs first check the cache for the
presence of a datum . Assume that there is no hardware

5
t f h . upper or cac e co-

herence. Confirm that when two programs attempt to increase the · bl
l · · 'bl same vana e concurrent y, 1t is poss1 e to obtain incorrect results For you d I r program mo e ,

use Program 6.1 with cntical sections removed.

b) The LOCK and UNLOCK statements in Program 6.1 create a critical section in
the program. Assume that these are implemented in a way that guarantees that
at most one program can enter the critical section. Now there is no failure mode
due to concurrent updates of a shared variable . Show how the program fails if
there is stale data in the cache.

c) Write some program instructions that eliminate a stale value of the shared variable
to protect against the failure described in part b. Do your instructions depend
on the number of sets and the associativity of the cache? Comment on the ease
or difficulty of writing such instructions in a high-level language, and of the
portability of the instructions from one type of processor to another.

6.9 The purpose of this exercise is to investigate the failure mode of a cache-coherence
scheme that does not have write ownership.

a) Assume the presence of a write-invalidate cache-coherence mechanism that per
mits multiple concurrent writers. Assume that tv-.•o processes execute Program
6.1 concurrently, and both processes execute the LOCK statement on the same
cycle. Assume that the LOCK statement is implemented by reading the value
of a lock variable, and setting that value to 1 in a single machine cycle. If the
prior value of the variable is 1, the instruction repeats continually until it reaches
a point at which the prior value is 0. The UNLOCK statement sets the value of
the lock variable to O unconditionally. The lock variable can be cached.

Consider the events that take place on the underlying hardware, and consider
the possible outcomes. Among the outcomes, determine if it is possible for both
processes to enter the critical section and if it is possible to set the lock and have
neither program enter the critical section.

b) Repeat part a using a write-update protocol. Does the protocol make a difference?

c) Now assume that the lock variable is noncacheable, so all accesses to the variable
must go to main memory. Show that there is no failure mode if a LOCK statement
can be executed in a single memory cycle in which no intervening accesses by
other processes are permitted . Show that a failure mode is possible if a LOCK
statement requires separate cycles for the READ and WRITE, and intervening
accesses to the lock variable can occur between these.

6.10 Among the cache strategies considered in the text are write-through and write-in
cache strategies that respectively write back new results to main memory imme
diately or hold them in cache indefinitely until they are flushed from cache. For
cache coherence, two strategies studied are write-invalidate and write-update. Show
that all combinations of these strategies can coexist in one system by showing that
each cache line can have status bits that indicate which combination of strategies
to apply.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 420

406 Multiprocessors Ch:ipter 6

a) Describe the status bits in a cache line that control the strategy to apply.

b) Discuss how the various combinations are implemented when a WRITE occurs
and the item is in cache .

c) Discuss how the strategies affect what happens when a line is flushed from

cache.
6.11 The purpose of this exercise is to consider the relative performance oi \vrite-inval

idate and write-update cache coherence protocols.

The difference in performance between write-invalidate and write-update protocols
depends on the number of messages sent from one processor to another to maintain
cache coherence. Assume that for both protocols , a WRITE instruction generates
such a message if the status bit of a cache line shows that another cache may contain
a copy of the line. No message is sent if the status bit shows that the line is held
exclusively by the local processor.
Messages are also sent in conjunction with ownership. In order to issue a WRJTE
instruction, a processor must have write ownership of a line . If it does not have
ownership, the processor must request ownership and obtain the current copy of
the line from the owner, which takes another processor-to -processor message .

a) Consider a multiprocessor system in which processes continually execute Pro
gram 6.1. Assume that the critical section contains 10 instructions, that the LOCK
and UNLOCK statements each are one instruction, and that 1000 instructions
occur behveen critical sections . The LOCK statement causes a processor to ex~
ecute the statement repeatedly until the LOCK can be passed. Both LOCK and
UNLOCK require write ownership. Model the behavior 0£ two processors and
determine the average number of processor-to-processor messages per instruc
tion for both protocols. Note that both processors can conflict at a critical section,
but that after the first conflict, no more conflicts occur. For your analysis, assume
that no conflicts occur at critical sections .

b) Extend your model to analyze the number of messages generated as the number
of processors increase. For what value of N are there enough processors to assure
that two or more processors conflict at a critical section? What is the difference
in the behavior of the two protocols when multiple processors conflict at the
critical section?

c) Modify the implementation of LOCK so that it is tv.ro instructions long. The first
instruction is the conditional branch that reads the lock variable repeatedly until
the value of the variable is 0. The second instruction is the lock instruction used
in part a in which the lock variable is read, tested, and rewritten in a single cycle.
What is the difference in the behavior of the protocols when two or more pro·
cessors conflict at the critical section?

6.12 The purpose of this exercise is to examine the difference in the consistency models.

Consider Program 6.1 when executed on a computer whose interconnections are
based on the shuffle-exchange network or crossbar network, neither of which as
sure sequential consistency. In Program 6.1 the LOCK, UNLOCK, and update of
GlobaLSum are assumed to be the only statements that access global variables.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 421

Exercises 407

a) In order for the execution of the program to be sequentially consistent, each
access to a shared variable has to be serialized according to some global ordering .
Discuss how to achieve a global ordering of all accesses on the computer so that
all processors observe all REAOs and WRITEs in the same order. You should
incorporate extra hardware into your system to implement sequential consis
tency. Assume that sequential consistency must be maintained on all accesses
to shared variables, but that it is not necessary to maintain sequential consistency
on local variables such as Local-5um in Program 6.1. Your scheme should have
a zero or small performance penalty for accesses to local variables.

b) Now consider release consistency instead of sequential consistency. Discuss how
to implement release consistency on your system so that Program 6.4 operates

correctly.
c) Make qualitative comparisons of the cost of implementation of sequential con·

sistency and of release consistency, and compare the performance penalties of
your implementations of Programs 6.1 and 6.4 .

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 422

7
Who depends upon another man's
table often dines late.

-John Ray, 1678

Multiprocessor Algorithms

7.1 Easy Parallelism
7.2 Synchronization Techniques
7.3 Parallel Search-How To Use and Not Use Parallelism
7.4 Transforming Serial Algorithms into Parallel Algorithms
7.5 Final Comments on Multiprocessors

This chapter explores the means for programming multiprocessors for high
performance. A major portion of the chapter is dedicated to efficient mechanisms
for ensuring the correct execution of programs. Our approach is to look at the
easy parallelism first. The obvious ways to execute in parallel produce the bulk
of the gains for most applications.

When one attempts to wrest the ultimate performance from a parallel pro
cess, it becomes necessary to explore more sophisticated notions. This chapter
shows that search algorithms, for example, yield rather poor speedup when the
programmer naively assigns dependent tasks to different processors. This is the
case, for example, if a search terminates when any processor finds a solution,
and the search space is divided among all processors.

We show a different approach that uses parallelism rather efficiently to solve
a classic optimization problem, the Traveling-Salesman Problem, in a time that
on the average grows less than quadratically in the size of the problem. This
may appear to be rather astounding, since the Traveling-Salesman Problem is
one of the so-called hard (NP-complete) problems, and therefore there exists no

408

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 423

5ection 7.1 Easy Parallelism 409

known algorithm that solves this problem in a time that grows less than ex
ponentially in the problem size. But theory covers the worst case and says
nothing about the average case. We cover the average case for a random problem
in this text, and that has a very low complexity.

Correctness of parallel algorithms requires some mechanism for handling
the updates of shared variables. We introduce the performance notion of SYPS
(SYnchronizations Per Second, pronounced "sips"), which is normally measured
in MSYPS (MegaSYPS).

In this chapter we show how the MSYPS capacity of an architecture affects
throughput. Throughput is limited both by its MIPS and MSYPS capacity and
cannot exceed the throughput permitted by the more constraining of the two
measures. Thus a high-MIPS, low-MSYPS machine may be outstanding at nu
merical operations, but can run rather poorly for applications that require a high
volume of synchronizations. The MIPS measure alone suggests a high through
put, but the architectural constraint on MSYPS can prevent the potential MIPS
from being realized.

1. 1 Easy Para11£llsm
Parallelism is best used for programs that require a significant number of cycles.
We have accomplished something worthwhile when we reduce a ten-day exe
cution to one day, whereas the reduction of a ten-minute program to one minute
is an equal but far less interesting speedup. We argue here that long programs
almost surely contain some region of code that accounts for the bulk of the
execution by being executed repeatedly for a massive number of times.

At a dock rate of 100 ns, there are on the order of 1012 dock ticks in a day.
Consider any program that takes a full day to execute and examine where it
spends the bulk of its time. If there is some subroutine or code sequence that
is repeated a large number of times, say a million times, then our thesis is
justified. The alternative is that no program instruction is executed more than
a few times. Consider such a program.

At ten ticks per instruction and as many as ten repetitions of an instruction,
we find that the program must contain about 1010 distinct instructions to execute
for one full day. Such a program would indeed be unusual because of its gigantic
size, and the effort to construct such a program would take thousands of man
years at current rates of software productivity. The program is more :likely to
have only 104 to 106 instructions, therefore requiring an average repetition factor
of roughly 105 to 107

•

With some body of instructions being repeated a million times or more, we
have an opportunity for parallelism if we can spread those million executions
in some way across N processors. This is a simple recipe to achieve parallelism:

1. Analyze the program for a loop or recursion structure;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 424

410 Multiprocessor Algorithms Chapter 7

2. Find the instructions that account for the most time, usually the regions
repeated the greatest number of iterations;

3. Split the instruction execution of these regions across N processors, if this
can be done correctly; and

4. Add synchronization and data-transmission statements as required to create
a correct parallel implementation .

As an example of the application of this idea, consider Program 7.1, which
revisits the Poisson calculation introduced in Chapter 4. Recall from our earlier
discussions that the near-neighbor iteration is usually not the most efficient
way to solve the Poisson problem . Nevertheless, iteration is what appears in
Program 7.1.

Suppose, also, that we know in advance that 10M cycles are required for
the iteration to converge. Program 7.1 shows three nested loops. The outer loop
repeats IOM times to obtain the necessary convergence. (The fixed number of
outer iterations is just a convenience for this example. Most implementations
repeat the outer iteration until some convergence test is satisfied.)

In the two inner loops, each point P[i, j] in a square region is updated once.
The innermost loop updates a line in the region, and the next level of iteration
treats the collection of lines that cover a rectangle. The outermost iteration forces
the rectangle to be updated lOM times.

A purely sequential program updates aJI points in the rectangle one time
before any point in the rectangle is updated a second time. To enforce this

Program 7.1 Poisson so)ver, serial version.

for k : = 1 to 1 o x M do
begin

Notes:

for i : = 1 ,to M do
begin

for j : = 1 to M do
begin

P[iJ] : =
(P[i,j + 1] + P[ij- 1] + P[i + 1,j] + P[i- 1,j])/4;

end;{"' j loop .. }
end; {"' i loop *}

end; {* k loop "}

1. Boundary conditions are held in Rows O and M + l and Columns O and M + 1 of ar
ray P.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 425

section 7.1 Easy Parallelism 411

behavior in a parallel_ program, ~e seek a scheme that uses parallel processors
ffectively as possible for a single update of the rectangular region, and we

as ~orm 10M executions of the parallel update, with the updates occurring one
P::er another, withou! any overlap among them. Figure 7.1 shows a possible
a cution diagram, with the number of processors busy as a function of time
:~~ the outer iteration that they are performing at any given time.

7 .1.1 The do par and do seq Constructions

From a programming point o~ v~ew, _we need the_concept of parallel and serial
embedded in a language to d1stmgu1sh between iterations that can be done in

arallel across many processors and those that have to be done one after another.
~ simple way to extend a Pas~al- or FORTRAN-like language is to introduce
these forms of the do construction:

• do par to execute loop iterations in paraHel; and

• do seq to execute loop iterations sequentially.

Then the form
tor i = 1 to M do seq

begin
Iteration A

end; t do seq "}

produces M serial executions of Iteration A, whereas

tor i = 1 to M do par
begin

Iteration A
end; t do par "}

Iteration 1 - Iteration 2 --
Time---+

Iteration 3 -
. -

Fig. 7.1 Processors busy as a function of time. All available processors are busy until
most of the work for an iteration is done. As an iteration nears completion, some pro
cessors become idle and must wait until a new iteration starts before they can resume
computation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 426

412 Multiprocessor Algorithms Chapt~r 7

causes all M copies of Iteration A to be alive concurrently, and any or all thos
copies can be executed concurrently, depending on scheduling policies and the
resources available. The do par construction creates a separate instance of the
loop body for each value of i in the range of do par. e

To describe our findings regarding the parallel and sequential behavior of
Program 7.1, consider Program 7.2, in which the two inner loops use the do
par construction~ and t~e outer loop uses the do _seq const~uction. During the
course of execution, this program creates M 2 copies of the mner iteration, one
for each (i, j) pair, parcels these out among the processors, then awaits their
completion. When they have completed, the program performs the same process
again and continues repeating it until it is done 10M times.

7.1.2 Barrier Synchronization

Notice the synchronization that is implied by the do seq construction in Program
7.2. A processor ready to begin a new outer iteration has to be informed when
all work for the last outer iteration has been completed.

In essence, the do seq construction has placed a barrier after each of its
iterations. As many processors as can be used effectively can be allocated to a
single iteration of a do seq, but those processors must stop at a barrier at the
end of the iteration. No processor can cross this barrier until a11 processors
performing the loop iteration have reached the barrier.

In Program 7.2, we can have as many as M2 processors executing within a
single iteration of the outer loop, and these processors have to stop and wait at

Program 7.2 Poisson solver, parallel version.

for k : = 1 to 10 x M do seq

Notes:

begin
for i : = 1 to M do par

begin
for j : = 1 to M do par

begin
P(i,j] := (Pli,j+ 1] + P[iJ·-11 + P(i+ 1,j] + P[i-1.j])/4;

end; {* j loop •}
end; {" i loop'"}

end; t k loop "}

1. Boundary conditions are held in Rows O and M + 1 and Columns O and M + 1 of ar
ray P.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 427

section 7.1 Easy Parallellsm 413

the implicit barrier _for all to finish before any one processor can start a new
·teration- We call this type of synchronization barrier synchronization . Although
~t is not used explicitly in Program 7.2, it is implicitly used at the end of each
iteration of the do seq. .

An explicit form of the barrier can be used as shown in Program 7.3 within
the body of a do par construction_ In this case, the body of the loop has three
parts, Steps A th~ough C. The do par creates M instances of the loop body, one
for each value of 1, and parc~ls these tasks t_o as many processors as are available.

In the absence of barners, for any single iteration we are guaranteed to
xecute Step A(1), then B(i), then C(i), in that order. The order in which the

:teps are performed across iterations is rather arbitrary, and anything could
happen. For example, we could see the completion sequence A{l), A(2), 8(2),
C(2), B(l)✓ C(l). We could nots~~ a_sequ~nce in which B(l) completed after C(l)
because a loop body for a spec1f1c iteration has to be executed serially.

Program 7.3 has a barrier inserted after Step B. The effect of the barrier is
to force all iterations to complete Steps A and B before any iteration continues
to Step C. With the barrier in place, the sequence A(l), A{2), B{2), C(2), B(l),
C(l) cannot occur because C(2) completes (and hence must have been started)
before B(l) has been completed. The barrier should be inserted if Step C of each
iteration depends on Steps A and B of prior iterations.

The barrier is a rather strong means for synchronizin~ and it may be more
severe than is actually necessary. It may be possible to use more focused methods
of synchrol)ization that can start Step C in various iterations at much earlier
times. Such methods necessarily have the ability to sense when specific con
ditions are satisfied so that Step C can start, which is more flexible than sensing
the single condition that all processors have reached a barrier.

Program 7.3 Barrier example_

Notes:

tor i : = 1 to M do par
begin

Step A(1)
Step B(i)
Barrier;
Step C(1)

end; t i loop "}

1. The Barrier forces all iterations of A and B to complete before any iteration of C is
started.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 428

414 Multiprocessor Algorithms

7 .1.3 Performance Considerations

Given these basic notions of parallel and sequential execution of loops, let us
examine the performance aspects of the parallel code. For the moment, let u
ignore the specific details of initiating a parallel task at the beginning of a d s
par and of handling a barrier, if any, associated with the do par. Our objecti\,:
is to determine the RIC ratio for a program so that we can relate the results of
Chapter 6 to multiprocessor algorithm development.

[n Program 7.2, a single task corresponds to the one statement of the in
nermost loop. This statement takes roughly six instructions, consisting of a
LOAD, three ADDS, a SHIFT or DIVIDE, and a STORE. Address calculations
might be required as well, but they might be avoidable if the address compu
tations required can be done totally by means of the effective-address mechanism
without requiring additional instructions. We also should include some addi
tional time ~o cha~ge to _the i~eration for the calculatio.n of th~ values of i and j
to use for this particular iteration. In total, roughly ten mstructLOns are necessary
to perform the iteration. This corresponds to R, the run time.

The overhead and communication encompassed by C includes the work
required to generate the task, to enqueue it while waiting for a processor, to
dequeue it when a processor becomes available✓ and to log the completion of
the task so that some barrier can be passed when all tasks are completed.

We may be fortunate enough to avojd an ENQUEUE/DEQUEUE pair, but
there have to be some instructions to generate and terminate the task. A very
low estimate for this overhead is two instructions for each of generation and
termination. A more realistic estimate is hundredsr possibly thousands✓ of
instructions.

The ratio RIC might be as hlgh as 2 or 3, and it could be as low as 1/100 or
1/1000. For most of the models mentioned in Chapter 6, these ratios do not
support a good deal of parallelism. Depending on the arch.itecture and the ratio,
the fastest implementation of Program 7.2 uses only one processor or possibly
just a few processors. But this is still rather optimistic because our earlier models
ignore the effects of synchronization. Synchronization produces further deg
radation that biases the best solution towards fewer processors.

To be more specific .. consider how synchronization affects a single task in
Program 7.2. The task has to be generatedr enqueued, dequeued, and termi
nated. The enqueue, dequeue, and terminate processes are likely to involve
shared variables that have to be updated. The task-generation process might
introduce its own overhead as well if it too, updates shared variables.

Let us count the updating of a shared variable as a basic operation that we
call a synch. Then one task of Program 7.2 requires three synchs (for enqueue/
dequeue/terminate), plus roughly ten instructions for task generate, loop body,
and task terminate. Most multiprocessor architectures are highly constrained in
how synchs are implemented, and the number of synchs that can be performed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 429

section 7.1 Easy Parallelism 415

in p~rallel is t~pically rat_her limited, ~o_metimes as few as one. An exception to
this 15 an architecture with the combmmg switch described in Chapter 6, such
as the IBM RP3 and NYU Ultracomputer architectures.

To understand the synch problem more thoroughly, consider a bus-oriented
multiprocessor that uses a READ/MODIFY!vVRIT~ operation on the bus to per•
form a sy~ch_. ~hen at most one synch per cycle 1s possible. For a cycle time of
lOO ns, tlus hmtts performance to at most 107 SYPS (synchs per second), or 10
MSYPS.

If in one cycle the multiprocessor can execute one instruction in each of N
processors, then the performance of the composite system is 10N MIPS for
instructions, but only 10 MSYPS for synchs. The MIPS rate is N times greater
than the MSYPS rate. Our example program demands roughly two or three
instructions per synch, so that for N greater than 3, the system becomes saturated
at the synchronization interface; othenvise, the system is saturated at the in
struction-execution interface .

A combining switch provides a mechanism for supporting synchs in parallel,
and thereby it provides an fv1SYPS rate more nearly on the order of 10N MSYPS
for a system with a 100 ns clock. The coefficient need not be 10; it may be
considerably less. The point is that the sustainable MSYPS rate grows with N,
and it thereby provides a means for breaking the synch bottleneck.

Architectures that do not have a combining switch or an equivalent mech
anism for executing synchronizations in parallel are subject to a saturation phe·
nomenon depicted in Fig. 7.2. The assumption in this figure is that there is a
fixed maximum MSYPS supportable by the system, independent of the number
of processors. As processors are added, the MIPS rate of the system grows
linearly with the number of processors, but the MSYPS rate is fixed. Eventually
the MSYPS demand reaches the limit, and no additional speedup is possible as
new processors are added.

The figure shows linearly increasing speedup until ten processors are in the
system; thereafter speedup remains at the saturation limit of ten as new pro
cessors are added. Two curves are shown-an idealized piece-wise linear curve
that reflects the bounds on speedup, and a curve that falls below this bound,
which suggests what might be observed in actual situations. The true curve
shows speedup falling off with additional processors because overhead tends
to increase and MSYPS capacity remains at the fixed limit as new processors
are added.

We have reached an interesting challenge for a computer architect. Suppose
that an application such as Program 7.2 is implemented for a multiprocessor,
and performance turns out to be sharply restricted because of an MSYPS bot
tleneck. What avenues are open to the architect to improve performance? Here
are three obvious directions to follow:

1. Increase RIC and thereby do more computation per synch.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 430

416 Multiprocessor Algorithms Chapter 7

40

35

30

25
0.
::::,

MIPS Limit "'O

t 20
0.

(/)

15

10

5

10 20 30 40
Number of Processors

Fig. 7.2 Speedup curves.

2. Balance the system by making architectural or program changes to increase
the MSYPS rate of the architecture.

3. Balance the system by reducing the MIPS rate of the processors.

The first approach is the easiest and most cost-effective. We can substantially
improve performance for essentially no cost in hardware or sofhvare by increas
ing granularity. This is the preferred solution that is discussed at some length
in this section.

As an example of the second approach, the architect can build into the
architecture mechanisms that support a high MSYPS rate. The combining switch
is an approach in which the MSYPS rate increases linearly with the number of
processors, but other techniques that may raise the MSYPS rate high enough
for specific applications are also possible. For example, the architect can incor
porate a high-speed specialized processor for synchronizations that does nothing
but manage locks and the updating of shared data. In a multiprocessor, the
architect might also include a hardware scheduler/dispatcher for task and proces
sor management.

The third approach, reducing the MIPS rate of the processors, corrects sys
tem imbalance but reduces overall throughput. The idea here is that if system
imbalance results in idle processors, one may be able to obtain nearly equal

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 431

section 7.1 Easy Parallellsm 417

speed by using l:ss e~pensive slower processors. This approach attempts to
exploit the cost d~spanty betw:en low-speed and high-speed technology, and
can be success~l if t~~ change m throughput by reducing the speed or number
of processor~ 1s ~uff1aently low co~pare~. to the reduction in the cost of the
system. The_1dea IS to change ~om an mefh_c~ent srstem to a much less expensive
system of slightly lower capaaty by exploiting higher efficiency.

7, 1.4 Increasing Granularity

To continue this discussion, let us see how easy it is to increase RIC for Program

7.2. The granularity assumed in the program is that there is one assignment
statement per task. To increase granularity we can group several statements
together, as sug~es_ted ~y Program 7.4.

Program 7.4 1s identical to Program 7.2 except that the innermost loop con
tains the phrase chunksize 50. This phrase instructs the compiler and operating
system to group 50 successive index values into each task, instead of assigning
one index value to each task. The last task to be assigned receives whatever
index values remain, which may be fewer than 50. With the chunk-size set to
50, RJC is 50 times greater for Program 7.4 than for Program 7.2, and the MSYPS
requirement is reduced by a factor of 50. Of course, the parallelism available is
also reduced by a factor of 50, but the point is that the reduction in parallelism
might be quite tolerable if it were not usable in the first place.

Program 7.4 Poisson solver, parallel version with chunking.

for k : = 1 to 1 o x M do seq

Notes:

begin
for i : = 1 to M do par

begin
for j : = 1 to M do par chunkslze 50;

begin
P[ij] : = (P[i,j+ 1] + P(i,f-1) + P[i+ 1 Jl + P[i-1 jl)/4;

end; t j loop ·}
end; {• i loop ·}

end; t k loop·}

I. Boundary conditions are held in Rows O and M + 1 and Columns O and M + 1 of ar
ray P.

2. The phrase chunksize 50 forces iterations to be parceled out to processors in chunks
of size SO, with each of the iterations in a chunk performed sequentially. Different
chunks can be executed concurrently on different processors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 432

418 Multiprocessor Algorithms Chapter 7

For example, consider the potential for parallelism when Min Programs 7_2
and 7.4 is equal to 100. The two inner loops create 10,000 tasks in Program 7_2_
The number of tasks actually created depends on the program, not on the
architecture. If the architecture has fewer than 10,000 processors available, as is
likely to be the case, then the excess tasks created will probably be enqueued
and dequeued or generated on demand, but in any case will result in 10,000
instances of overhead related to their management. Program 7.4 gives the pro
grammer the ability to reduce the overhead by controlling how many indepen
dent tasks are created, as well as the RIC ratio for those tasks.

For the example we are considering, Program 7.4 creates 200 tasks, which
is appropriate for architectures with 200 or more processors. If the architecture
has fewer than 200 processors, the chunksize should be made even larger✓ and
it is realistic for the chunksize to be computable dynamically to be a function of
the number of the processors actually available for execution of the loop body.

The purpose of a small granularity, after all, is to increase the available
parallelism, but there is no point to increasing parallelism beyond the amount
that can be exploited. Granularity should be set no smaller than the size that
creates enough tasks to fill available processors, and perhaps even this size is
too small if RIC for that granularity is below the break-even point for the pro
cessors available. The point in making the chunksize selectable by the program
mer is that the programmer can experiment with grain size to find some optimum
size for a given application and architecture.

Granularity is only one of several factl,rs that the programmer has to con
sider. We have not addressed the issues regarding local and global storage and
allocation of data to reduce memory contention. V\riien the programmer chooses
a granularity by choosing a chunksize, the programmer is actually binding to
gether various iterations and is thereby creating an environment in which some
data can possibly be reused several times in a local context before being returned
to a global memory. In this environment, the task can be structured as follows:

l. Acquire locks as required for global variables to be updated.

2. Read variables from global memory to local memory.

3. Perform the computation, updating the local variables.

4. Update the global variables from the local copies of the variables.

S. ReJease the locks on the global variables.

While the computation is being executed, contention with other processes is
held to a minimum because all accesses are to local memory. However, locking
and the synchronization overhead required to obtain and release locks can de
grade performance. Much depends on the likelihood that processors will be left
idle while waiting for locks to be released.

In creating a large task by choosing a large chunksize, the programmer

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 433

section 7.1 Easy Parallelism 419

actually has more flexibility than is shown in Program 7 4 Th t a program pro-
vides only for creating tasks by grouping together iterations that fall on a single
row of the square array. T_he program can be reorganized so that chunks fall
instead along columns, or m rectangular or square subarrays.

The structure that forms the best possible chunk has a good granularity and
can operate on the data _for that chunk with minimum interference with proces
sors that operate on _their chunks. The amount of interference expected to occur
depends ~n the architectu~e and the allocation of data to memory modules within
that architecture. The designer of the architecture has to be aware of the control
choices available to the programmer and should create an architecture in which
one or more of those choices leads to efficient execution across a range of
important problems.

The progra:11mer has ~ rather powerful means for controlling the size of
RIC by controllmg chunksize and by selecting which statements are grouped
together within one chunk. If the chunksize is fixed for an architecture, as several
proposals for fine-grained architectures have suggested, the programmer loses
the flexibility to adjust the RIC ratio to obtain maximum performance. First- and
second-generation multiprocessors should leave the ratio in the hands of pro
grammers until sufficient experience is obtained to build machines with optimal
or near-optimal RIC ratios.

The second technique for eliminating an MSYPS bottleneck is to reduce the
cost of a synchronization, or equivalently, to increase the MSYPS rate of the
architecture. This subject is sufficiently complex to warrant its own section within
this chapter. We defer discussion at this point and explore the subject in depth
later.

The last technique achieves balance within a system by slowing down the
processors relative to the synchronization mechanism. Thus, the MIPS rate of
the system is reduced while the MSYPS rate is fixed, and this yields a better
balance if MSYPS are not well matched to the initial value of MIPS.

Figure 7.3 shows speedup as a function of the clock period as the clock is
slowed. Note how speedup in this system increases as the processors become
slower. Recall that speedup is a measure of the speed of an N-processor system
as compared to a system that has one processor identical to any one of the N
processors. Figure 7.3 is plotted for N = 100. Since dock period increases along
the x-axis, the processors at the right-hand side of the figure are slower than
the processors at the left-hand side of the figure.

The figure shows that the speedup obtained from 100 processors is greater
for slow processors than for fast processors. However, speedup is not the same
as performance. The performance from 100 fast processors is greater th~n the
performance available from 100 slow processors, even though speedup is less
for the fast processors. On the left side of the diagram, the fast processors are
not well matched to the slow synchronization mechanism, and many are left

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 434

4to Multiprocessor Algorithms

Communications-Limited System 10.------=~~--------------,

60

50

~ 40

1i
ft 30

20

10

0oL:......----L-----=~----:7~5:::o----=◄-:=ooo 250 500 I

Processor Clock Cycle (ns)

fig. 7.3 Speedup versus clock period.

Chapter 7

idle during a computation. Adding new processors to this system does not
improve performance very much, so speedup is relatively low.

As we move from the left to the right of the figure, the bottleneck in the
system shifts from the synchronization mechanism to the processors themselves.
When the processor performance is the chief component of the bottleneck, then
by adding new processors, the bottleneck is reduced so that speedup tends to
increase. Cvetanovic [1985, 1987] made this observation in regard to her study
of an RP3-like architecture, but the phenomenon holds in general for systems
that have two or more potential bottlenecks.

The lesson to be learned from Fig. 7.3 is that the architect should select a
design point in which bottleneck capacities are dose to being in balance. For
the multiprocessor architecture, the maximum system MIPS and MSYPS rates
should be balanced with respect to each other to match the demands of most
workloads. If the system is out of balance by being on the left side of Fig. 7.3,
the processors are too expensive for the system performance they give. On the
right side of the figure, the processors themselves are the bottleneck, and ad
ditional speed can be obtained by faster processors.

7 .1.5 Initiating Tasks

One topic of importance that we have overlooked thus far concerns the mech
anism for initiating individual tasks. If, in Program 7.2 or Program 7.4, the do

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 435

Section 7.1 Easy Parallelism 421

par construction_ is ~mplem~nted by generating the tasks one by one , then
the task generation 1s a senal overhead that must be added to c in the RIC

ratio.
Progra~ 7.2 depicts a situation ~n which the inner loop requires O(N) in

str1.1ctions 1ust to generate the tasks 1f task generation is done sequentially. Yet
the tasks themselves take only ten or so instructions that are supposedly done
in parallel.

This situation b:co_mes rather comical if you observe a processor executing
the do par and spmmng off 100 tasks by executing 1000 instructions . After
spending _all of this time gen:rating t~e work, w~thin ten more instructions all
the work 1s done. We have simply shifted execution time from doing the main
iteration to the overhead in starting up the processors. Obviously, the RIC ratio
is far too low to be useful, but more fundamental is the fact that we cannot
afford to use sequential_execution to spin off the tasks to be executed concurrently.

A good approach 1s to produce the tasks during compilation, provided that
the value of N is known during compilation. Then the tasks are created once
for all executions of the program . Presumably, once the tasks are created, they
can be loaded in parallel into all processors, and thereby we avoid the serial
time for their initiation.

An alternative approach that has somewhat higher overhead is to generate
the tasks dynamically in O(log N) time by means of a binary task-generation
tree. To generate the tasks for the innermost do par loop of Program 7.1, the
root node of the generation tree generates two subtasks. The first is responsible
for generating the first half of the tasks, and the second is responsible for
generating the second half of the tasks. These in tum split into four subtasks,
each responsible for generating a quarter of the tasks. After O(log N) steps, no
additional subtasks are generated, and the tasks themselves can be generated.

The tree-generation scheme or an equivalent is absolutely essential for dy
namic task-initiation. Any O(N) process for task generation can create sufficient
overhead to severely impair multiprocessor performance.

The task-generation scheme appears to be an obvious requirement. Yet it
has been overlooked repeatedly in the literature in serious proposals for mul
tiprocessors. Halstead [1985] describes an interesting multiprocessor architec
ture called Concert, in which the user has explicit control of task generation.
This paper describes an example of parallel sorting using the well-known quick
sort algorithm, which has an average complexity of M log M for sorting M
items.

The initial phase of the Halstead algorithm is a linear pass over the M items.
This phase generates a collection of tasks that can be executed in parallel. Sub
sequent phases of the algorithm exploit parallelism rather well, but the first
phase does the damage. No matter how many processors are used, the algorithm
cannot run faster than O(M), thereby dooming speedup to O(log M) . Halstead

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 436

411 Multiprocessor Algorithms Chapter 7

reports near linear speedup for a small number of processors, but as the number
of processors grows close to log M, speedup must level off.

The limitation on speedup in this case is not the fault of the architecture
because Concert, like many multiprocessors, supports task-generation trees. The
fault lies in the data representation of the problem. The data to be sorted in this
problem are presented to the algorithm as a_ LISP o~e-way linked lis~. The only
way to inspect the data is to follow the chain of pointers from one item to the
next, taking O(M) time to do so.

Here is a situation in which the data representation from a serial program-
ming language is strongly incompatible with high-performance parallel pro
cessing. Although Halstead's article articulates the strengths of the Concert
architecture, it does not specifically address the weaknesses of a linked-list
structure in the context of the algorithm. The data representation in this case
imposes an inherent inefficiency~~ what othe_rwis_e appear~ to be an interesting
and effective technique for expl01ting parallelism m a multiprocessor.

The key to architectural evaluation is identifying how performance changes
as a function of critical parameters such as the number of processors, RJC, and
the choice of data structure. We have shown how a few simple notions provide
extremely powerful tools for identifying major bottlenecks that are otherwise
hidden from view.

In closing our discussion of easy parallelism, note how the example for this
discussion shows the advantages of the multiprocessor over a near-neighbor
SIMD machine and other various forms of vector machines.

Program 7.2 is ideal for a near-neighbor or a vector machine, as stated, but
real applications are seldom as simple as Program 7.2. The boundary calculations
are often rather complex, and in the more usual case, the region is irregularly
shaped or has internal cavities or other structures that alter the simplicity of the
solution.

Each different type of point within the region of computation requires a
slightly different program. A purely SIMD machine cannot easily deal with such
differences and still retain high efficiency. Each different type of point, in the
worst case, requires its own program execution, done with all other processing
turned off. Thus, an SIMD machine may have to perform successive compu
tations for the points of Region A, Region B, and so on, and thereby reduce the
effective parallelism available in the architecture.

The multiprocessor can produce different programs for each region and
perform the computations for all regions concurrently, thus achieving greater
parallelism than an SIMD architecture can achieve. We presume that the number
of different programs required is a small number, such as 10 to 20, and that the
execution time per iteration is equal to the longest time logged by any of the
different programs. If there are k different programs to execute, then the gain
of the multiprocessor over the SIMD architecture is at most a factor of k.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 437

section 7.2 Synchronlz.atlon Techniques 4!3

7 .t synchronization Techniques

synchroniza~on is pro~a~ly the ~ost difficult and error-p(~ne type of program
ming that exists. Its d1ff1culty anses because it involves the understanding of
the potential simult~neo~s actions of multiple processors. The huge number of
possibiliti_es ~o consider 1s beyond the capability of most people. Moreover,
synchronization also depends on the nature of the interfaces among the mul
tiprocessors. Many schemes have fallen because the programmers have made
false assumptions about how the hardware works . .:_, _ .,_;.

As an example of. this problem, consider the landma ,rk work of Dijkstra
[1965]. At issue at that time was whether or_not processors could be synchronized
with just the standard operators of an or~1~ary programming language such as
ALGOL 60. Dijkstra's solution was the first to show that this is possible for a
reasonable set of assumptions. He states that this is the most difficult program
he has ever written.

The statements in his program made no use of instructions that can perform
uninterruptible READ/MODIFY/WRITE operations because ALGOL did not sup
ply this operation in. any form as ~ p_rimitive op~ration .. But the program did
assume that the multiprocessors satisfied sequential consistency as described in
Section 6.5.

As we learned in Section 6.5, there is a great performance advantage in
giving up sequential consistency in multiprocessors, so that the Dijkstra syn
chronization algorithm fails as will any algorithm that E_~l~.s on sequential con
sistency if the undei:lying system does not support the principle.

Dijkstra's synchronization solution is not important today because almost
all synchronization is done with READ/MODIFY/WRITE operations of some
form. These are the synchronizing instructions that make program correctness
passible on such systems. In the remainder of this section we treat a sequence
of five general methods for synchronizing processes. The progression moves
from the least powerful to the most powerful, and the discussion suggests how
the additional power can be used to obtain enhanced capabilities. The five
methods treated here are

1. Test-and-Set: operate on a single bit.

2. Increment, Decrement: produce sums and differences.

3. Compare-and-Swap: reduce a complex critical section to a single instruction.

4. Reservations for READ/MODIFY/WRITE: let some types of instructions inter-- ·._.
vene during a READ/MODIFY/WRITE sequence.

S. Fetch-and-Add: eliminate critical sections in some cases.

The remainder of this section treats each of the alternatives in order.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 438

v '

MultJproccssor Algorithms Chapter 7

7 .i.1 Synchronization with Test~and-Set

The first synchronizing method uses an instruction called Test-and-Set, which

performs the following operation:
Definition: Test-and-set(address. biL position);

begin . . .
Temp : = Memo,y[address] .b1Lpos1t1on;
Memorrf..address] .biLposition := 1;
Condition_code: = Temp.biLposition;

end; t definition_ ·} . .
• ,._ . .,-/· •. ,._,.cr:1-

The Test-and-Set instruction sets a designated bit of a shared datum to 1, and
returns in the condition code the value of that bit prior to setting it to 1. The
two parameters of the instruction are the address of the shared datum and the
bit-position of the datum at the address that is to be tested. The notation" A.b"
denotes bit position b of datum A.

This instruction has the classic form of READ/MODIFY/WRITE, which is a
key characteristic of synchronizing instructions. i:o ensu~e that it can be _used
successfully for synchronizing, the Test-and-Set 1nstruc~on must be unmter
ruptible. That is, once it is initiated and the READ access 1s completed, no other
access can be made to the operand until the operand is rewritten during the
second step of the Test-and-Set. If an intervening access were permitted, syn
chronization could fail.

Multiprocessors that have cache memories must treat Test-and-Set as a spe-
cial type of instruction. Since Test-and-Set is used to update shared data, shared
data held in cache must be kept consistent across all caches and with respect to
main memory .

One possibility is to force accesses produced by Test-and-Set to go to shared
memory and avoid the cache altogether. The companion operation that resets
bits of shared operands should be implemented in a similar fashion. Another
alternative is to permit shared data to be cached and to build the necessary
synchronization behavior into the cache-co!lsistency protocol.

One possibility here is to use an owi\elrship bit in the cache directory to
indicate which copy of a shared datum resident in one or more caches is the
principal copy. When the READ of the READ/MODIFY /WRITE is performed,
the cache that owns the shared datum passes its current value to the requestor.
All processors except the requester mark the datum as absent. When the datum
is rewritten., it can be rewritten to the local cache, with the datum tag showing
the datum being owned exclusively by the local processor.

Now consider how one might use a Test-and-Set instruction to implement
an elementary update of a shared variable. The sk~let9n for a program is:

(r J.-, '?JI _pv 1

Lock(shared_datum); · ·
Update(shared_datum);
Unlock(shared_datum);

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 439

section 7.2 Synchronization Techn1qun 425

With each shared datum or data structure, we can associate a single bit, called
its semaphore. The Lock and Unlock statements operate on the semaphore of a
datum or data structure rather than on the content of the datum. The semaphore
is the traffic director that tells a proc~ss whether or not to proceed past the
LOCK statement. The sema~hore permits at most one process at a time to execute
the code in the update region of the program. If Process A executes the Lock
statement successfully, then all other processes must b~ batted there until Process
A executes the UNLOCK statement. ..__,_ ·-::---'

The LOCK statement can be implemented in part with a Test-and-Set in
struction. The Test-and-Set forces the semaphore for the shared datum to be
set, whether or not it has been set before the Test-and-Set. To pass the lock, the
process must see 0 returned in the condition code as the value of the semaphore
just prior to the Test-and-Set.

If several processes execute a LOCK on a semaphore concurrently, the re
quests will be serialized and executed_ one by one because of the characteristics
of the READ/MODIFY /WRITE opera hons that force this serial behavior. Given
serial execution of LOCK, no more than one process of a set of concurrent
requestors can observe a zero value of the semaphore and thereby move past
the LOCK to the update. When one process passes the LOCK and reaches the
UNLOCK, the semaphore can be returned to a O state and thereby permit another
process to pass the LOCK statement and update a shared variable.

In terms of MSYPS, the LOCK/UNLOCK pair take at least one instruction
each. The update code protected by the LOCK/UNLOCK requires two or three
instructions and could be 10 to 100 instructions, depending on the nature of the
update. This puts anywhere from 5 to 100 or more instructions in the serial
section.

The number of serial sections executed sequentially in one second gives the
MSYPS rate, which is therefore anywhere from 5 to 100 times slower than .,,·
the MIPS rate of the processor. The MIPS rate is likely to be the bottleneck .!- ·. 1-

if its MSYPS rate is very high, for example, 10 percent or more of the MIPS rate.
The bottleneck shifts to the MSYPS rate if MSYPS is relatively low, for example,
1 percent or less of the MIPS rate, depending on the application.

In multiprocessor systems the peak MIPS rate increases -w:oportionally with
the number of processors assigned to a problem, but the MSYP~te in most
architectures is a fixed limit for a system regardless of how many processors are
actually assigned to a program.

If we focus on the MIPS rate exclusively and ignore the fvlSYPS limit, we
tend to believe that by assigning more processors to a program, we are making
available more machine capacity. But this is not strictly true.

Indeed, as more processors are assigned, a program has more MIPS and
more memory available, but MSYPS may not be increasing at all. If this is the
bottleneck, then additional processors 'Wi.11 not result in faster computation. In
fact, because of contention among processors, the LOCK/UNLOCK and the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 440

4H Multiprocessor Algorithms Chapter 7

update operations on shared data tend to take longer wit~ more processors
active, with the result that computation time may increase mstead of decrease
as more processors are assigned to a computation. .

The MSYPS bottleneck is only one of several potential sources of perfor
mance degradation. For example, consider what happens when a processor is
blocked by a LOCK operation. Perhaps it can be put to use doing other useful
work and continue to expend MIPS f~,i_tJully in spit~ the MSYPS bottleneck.
The Test-and-Set is only half of a lock. The other half is the action taken de
pending on whether the lock has been granted or not. If the Test-and-Set ob
serves a prior semaphore value of 0, then the lock has been granted, and the
processor continues on to the update section. If not, there are at least two
different actions that can be taken:

1. Spin lock: branch backward and reexecute LOCK, repeating the process until
the lock is granted.

2. Enqueue a task: suspend the blocked process, and enqueue its status on a
queue associated with the semaphore. Reassign the processor to other work
currently enqueued and ready for execution.

Neither of these alternatives is particularly attractive. The spin lock wastes com~
puter cycles and causes memory contention aj

0
!he semaphore. When many

processors are waiting at a semaphore, the conte"ntion causes additional cycles
of delay while a process is attempting to release a lock. This tends to decrease
the sustainable MSYPS rate and magn,jfies the effect of the bottleneck at the
semaphore. •~'. 1/ _.,;-

Task enqueueing appears to be efficient because it devotes available cycles
to useful work. However, the overhead for ENQUEUE/DEQUEUE tends to be
very high, which may well be greater in cost than the cost of the cycles lost in
a spin lock. Worse yet, to enqueue a task, a processor has to access and update
a shared queue pointer. This access itself involves a LOCK/UNLOCK of some
kind.

If this lock is not granted, we have come full cycle and face the problem of
enqueueing a task at one queue to enqueue it at another queue. This could
repeat ad infinitum. Obviously, at some levet such as the first or second, we
have to break the chain of events by forcing a LOCK to be implemented by
means of a spin lock rather than by enqueueing a task at a semaphore.

In terms of performance, the two alternatives of spin lock and task enqueue
have opposite effects on MIPS and MSYPS measures. Task enqueueing tends
to increase MIPS available by reassigning idle processors to other useful work.
Spin locks tend to decrease MIPS by dedicating potentially useful machine cycles
to the effort of repeatedly testing a semaphore. The opposite effect occurs with
respect to MSYPS. One effect of task enqueueing is to increase the number and
length of critical sections protected by locks. By increasing the number of critical

V _,'.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 441

section 7.2 Synchronization Techniques 427

sections., the M~~PS de~a nd is ~creased. Since only one processor at a time
can execute a cntical section,_ by mcr_easing the length of critical sections., pre
sumably because of_ the vanous _actions required during an ENQUEUE and
DEQUEUE, the maximum potential MSYPS rate is decreased.

If a parallel pr~cess i~ limite~ mainly by MSYPS rather than by MIPS, then
the effect of changing spm locks mto ENQUEUE/DEQUEUEs will tend to lower
throughput. Conversely, if th~ limitation is a MIPS rather than an MSYPS lim
itation, then a change from sp1:11 Iocks to ENQUEUE/DEQUEUEs may have the
opposite effect. It may lead to higher performance, provided that the ENQUEUE/
DEQUEUE overhead is sufficiently low that the system with ENQUEUE/DE
QUEUE locks i~ still ~1IPS !imited rather_ than MSYPS limited.

Before dosing this section, we descnbe briefly the implementation of UN
LOCK because it is very different depending on whether the corresponding
LOCK is a spin lock or an ENQUEUE lock. To unlock a spin lock, the owner
processor does no more than write a 0 in the semaphore. [t is not necessary to
do a READIMODIFY/VvRITE to unlock the semaphore.

The performance problem that results when N processes are spinning on
one semaphore is that the unlocking process is c_o,111Re:ting with those processes
for access to the semaphore and may be delayed an amount of time proportional
to N while attempting to let another processor pass through the lock. To avoid
this problem, the architect can bias the memory system to give priority to a
WRITE request over a READ/MODIFY!VVRITE request, provided that other rules
of arbitration guarantee that every requestor eventually obtains service. A pro
cess should not loop endlessly at a lock while other processes receive more than
their fair share of service.

If the LOCK operation enqueues idle tasks, then the UNLOCK operation
can dequeue a task waiting for that semaphore. The dequeued task can be started
after the LOCK without having to test the semaphore, provided that the un
locking process dequeues a task instead of unlocking the semaphore, since a
DEQUEUE is the same as an UNLOCK immediately followed by a LOCK. If
the UNLOCK operation does not check the queue of tasks waiting at the sem
aphore, there must be some other mechanism to restart enqueued tasks, for
otherwise tasks could wait indefinitely. The dequeueing form of UNLOCK al
most certainly requires a READ/MODlFYIWRITE operation instead of a simple
WRITE operation because it inspects shared queue pointers, which have to be
protected during concurrent updating.

7 .2.2 Synchronl%atlon with Increment and Decrema,t

The architect can implement selected instructions that perform READ/MODIFY/
WRITE in a way that permits these instructions to perform the same function
as Test-and-Set and possibly yield greater functionality as well. Obvious can-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 442

428 Multiprocessor Algorithms Cr.apter 7

didates for this purpose are Increment Memory and Decrement Memory, which
respectively increment or decrement a designated memory location.

To use these instructions for synchronization, the architect has to implement
them in such a way that each instruction "owns" its designated memory cell
for the duration of its execution. Once the designated memory cell is accessed
by the READJ no other instruction can access that cell until after the modified
contents are rewritten to the cell.

A plain Increment or Decrement instruction simply updates an operand and
need no{perform an uninterruptible READ/MODIFY/WRITE. Such an instruc
tion can be used freely for updating unshared data without regard for correctness
of usage in multiprocessor systems.

Onlv if the instruction is guaranteed to be uninterruptible can it be used as
wel1 to ~pdate shared data. If an uninterruptible version of the instruction is
incorrectly implemented or if a programmer ina.~ertently uses an interruptible
version of the instruction under the mistaken impressi?n that the instruction is
uninterruptible, then the instruction works correctly almost all of the time.
However, in improbably rar~ instances, an access by another processor will

. _p.:..:.~ . .,..,._..., _.__..
occur behieen the READ ·and the WRITE of the Increment/Decrement instruc-
tion, and in these rare instances, a program failure occurs. When used in this
manner, the interruptible Increment instruction might well be called "Increment
Almost Always," because that is its behavior. ':.,I., :,_- :

Extensive debugging and program testing is not likely to reveal the existence
of a timing hazard in the Increment, and a programmer may ,be frn .. / ed into
believing that the program is correct. But a truly correct program musl :nave a
truly zero probability of failure, and this requires synchs to be performed by
uninterruptible READ/MODIFY/WRITE instructions.

For architectures in which Increment and Decrement are uninterruptible
primitive operations, some synchronization functions require fewer instructions
with Increment/Decrement than with Test-and-Set. Test-and-Set returns a single
bit of information. Increment and Decrement can return the full contents of a
memory cell, and the additional bits available can reduce the number of instruc
tions required for synchronization.

For example, consider a shared buffer of length M. Up to M processes can
be adding to that buffer concurrently, provided that they operate on separate
cells. If M processes are actively adding to a buffer, and one more process
requests concurrent access, the M + 1st process has to wait. In essence, we
need a generalization of a semaphore.

A semaphore as implemented with Test-and-Set permits one process to pass
and denies access for subsequent processes until the semaphore is unlocked.
This i~ j!~~tory for controlling a buffer of length 1. The generalized semaphore
permits up to M processes to pass concurrently and denies access to subsequent
processes until one or more processes unlock the semaphore. Each UNLOCK
allows one additional process to pass the semaphore.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 443

section 7.2 Synchronization Techniques 419

A very simple mean_s for using Increment and Decrement to implement this
f rm of the semaphore 15 to start the semaphore with an initial value of M and
:ave each requesting process decreme~t the semaphore. A processor that sees

onnegative number after decrementing has access to the buffer. A processor ::at observes a _negati~e number is blocked from access and should increment
the semaphore immediately to reflect the fact that it is not actively working on
the buffer. Blocked processes can be enqueued or can retest the semaphore, as
discussed earlier f~r Test-and-Set instructions. A_ pr?cessor that has completed
access to a buffer increments the semaphore to md1cate that there is room for
another proces~ at the buff~r. . v , 1) ~~. v ,1, ;~ ,

The n~ve implementation of this form of synchronization exhibits an in
teresting.7failure mode ~nown a: livelock, Program 7.S(a) is a direct implemen
tation of the steps de sen bed pre~1ousl y ~ ~uffer access is protected by a decrement
of the semaphore. If the res~lt 1s n~gative, the ~emaphore is incremented, and

/ the test repeats to make a spm-lock implementation. If the result is nonnegative,
'

1

the processor enters the protected section of the program, and exits by incre
menting the semaphore.

I

Program 7.5 Synchronization with and without livelock.

while decrement(semaphore) < O
do i ncrement(semaphore);

I

Notes:

{* Critical Section··}
increment(semaphore);

(a) With livelock; and

LOOP: while semaphore :s Odo
if decrement(semaphore) < O then

begin
increment(semaphore};
go to LOOP;

end;
t Critical Section *}
increment(semaphore);

(b) Without livelock.

1. Instructions increment and decrement are uninterruptible READ/MODIFY/WRITE
instructions.

2. The parameter semaphore is a semaphore variable that ~ua_rds the critical section .
.__ _1 6'

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 444

430 Multiprocessor Algorithms Chapter 7

The problem is that the system can enter a state in which no useful work
is a_ccof!1plished, yet there are openings available at the buffer-a state of live
lock. The "live" in livelock contrasts this state with deadlock, which occurs
when a cycle of prec~d_ence exists in which A is waiting for B, B is waiting for
C, and so forth, with the last item in the cycle waiting for A. Deadlock is "dead"
becauslthe state is permanent. The processes within the deadlock cycle cannot
end the deadlock unless one or more of them a~rts.

Livelock, however, is not inh3~ently ~';.~~~nt. Process?rs enter a livelock
state because ~A _q~ifk in timing, and they can leave the hvelock state for an
active state if timingof events becomes more fortuitous: ,._;.,;,..,.

To observe livelock in Program 7.S(a), consider what happens if a huge
number of processors issue a decrement to the semaphore immediately after the
semaphore reaches a value of 0. The semaphore will then reach a value of
- HUGE. Will it ever become positive? Not necessarily.

If each of the blocked processors performs an Increment, jump to Retest,
and Decrement without interruption, and then turns the semaphore over to the
next processor, the semaphore will momentarily change value from - HUGE to
- HUGE + 1 and then return to - HUGE. As the M active processors complete,
they will increase the semaphore value to - HUGE + M, but this is still negative
and will not permit other processors to access the buffer. Hence, useful work
is blocked just because of the current order of events. A change in the order of
events could result in the semaphore becoming nonnegative, at which point
useful work is resumed. i:;;.,-; ~;-/"t.,~~if_:,...;._,;,

Program 7.5(b) shows a mechanism for eliminating the livelock in Program
7.5(a). The tJ:i.£~ is to test the semaphore before decrementing. Program 7.S(b)
appears to 7,revent the value of the semaphore from becoming less than -1,
but actually it can become very negative.

In the worst possible case a huge number of processors observe a nonne
gative vaJue of the semaphore and all proceed to decrement the semaphore,
giving it the value of - HUGE. Once the processors have decremented the
semaphore, incremented it, and are preparing to retest it, no further decre
menting is permitted until the value of the semaphore becomes greater than 0.

When the value becomes greater than 0, at least one process is permitted
to pass before the value becomes negative again. Hence, useful work continues
to be done, although in the worst possible (and highly improbable) case, the
average number of active processors_is sharply below the available potential.

u_:->/ r · .::...~
7 .2.l Synchronization with Compare-and-Swap

The Compare-and-Swap instruction produces the maximum possible MSYPS
rate for a conventional processor because jt reduces locked regions of a program
to a single instruction-the Compare-and-Swap instruction. A shared datum is
locked at the beginning of the instruction, updated during the instruction, and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 445

section 7.2 Synchronization Techniques
431

unlocked at the ~nd. Th~s is in cont~ast t~ the prior examples, which create a
critical section of mstructions by manipulating a semaphore before and after the

date to a shared datum. The Compare-and-Swap is useful in a limited number
up · t · 1 ct· of very important c1rcums ances, me u mg the queueing and dequeueing of

tasks. . . ✓"r /' ._,..s, . -• .. :.
The execution of a Compare-and-Swap 1s very mysterious at first glance,

and only after examining its operation in -practi~e does its power become dear.
The Compare-and-Swap operates a~ defmed m Program 7.6. The definition
shows that Compare-and-Swap reqmres two machine registers, one to hold an
Id value of shared datum~ and one to hold a new value . 0

The objective of updating a shared variable with Compare-and-Swap is to
se ordinary instructions to compute the new value of the shared datum without

~eking it. Then, in one uninterrupti~le opera~on, Compare-and-Swap refetches
the shared datum, tests to see that its value 1s unchanged, and if so, performs
n update. If the value has changed, the current value is loaded into the register

~hat holds the old value. At this point, the program can recompute a new value
and attempt an update with another execution of Compare-and-Swap.

A simple example of the use of Compare-and-Swap is shown in Program
7.7. In this case, the program adds a locally computed increment to a shared
variable. Note that the program reads the current value of the variable into

, /

Program 7.6 Compare-and-Swap.

Notes:

Definition: Compare-and-Swap(Address, Reg_ofd_val, Reg_new_val);
temp : = Memory[Address];
if temp = Reg_o/d_ val then

begin
Memory[Address] : = Reg_new_val;
Condition_Code : = 1;

end
else

begin
Reg_o/d_val : = temp;
Condition_Code : = O;

end;

1. Variable Address is a memory address.
2. Reg_old_val and Reg_new_val are machine registers.
3. The instruction is uninterruptible after it is started. _ .
4. The condition code can be tested after execution is completed to determine 1f the

update took place.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 446

432 Multiproce550r Algorithms

Program 7.7 Updating a shared sum with Compare-and-Swap.

Notes:

Local_sum := O;
tor i : = 1 to N do

LocaJ_sum : = LocaJ_sum + X[iJ;
Reg_o/d_vaJ: = Memory[Address];

LOOP: Reg_new_val : = Local_sum + Reg_old_vaf;
Compare-and-Swap(Address, Reg_o/d_vaJ, Reg_new_vaf);
if Condilion_Code = O then go to LOOP; ·

1. Variable Address is the memory address of a global sum .
2. Reg__o/d_val and Reg_new_val are machine registers.

Chap:er 7

3. The program adds the values of N entries of vector X, then adds these to the global
sum.

Reg_old_val, computes the new value in Reg_new_val, and attempts to update
the variable with the Compare-and-Swap .

If no conflicts occur during the computation of the new value, the update
is successful. If not, the program returns to the loop and computes a new updated
vaJue of the sum. Recall from Program 7.6 that Compare-and-Swap loads the
current value of the shared variable into Reg___old_val in this case, so it is not
necessary to read the shared variable again when computing its updated value.

Compare Program 7.7 with our original model of how to update a shared
variable with a sequence of LOCK, READ, MODifY, WRITE, UNLOCK oper
ations. When a LOCK/UNLOCK pair are used, no more than one processor at
a time can execute the instructions that perform READ, MODIFY, WRITE.

In Program 7.7 many processors can execute the instructions of this program
concurrently, arbitrarily interlacing their access and execution patterns. How
ever, the Compare-and-Swap is uninterruptible. Because many processors can
read and write the shared sum, it is possible for the sum to change value between
the time a processor reads it at the beginning of Program 7. 7 and the time that
processor updates it at the Compare-and-Swap. There is no LOCK to prevent
such concurrent access.

The key to ensuring correct program behavior is the test made by the Com
pare-and-Swap. The new value of the shared variable is a function of the old
value, and the test ensures that the old value has not changed. If the old value
is unchanged, then the new value is correct, and it is stored in the shared
variable.

The most valuable application of Compare-and-Swap is for enqueueing and
dequeueing without locking. Because queue pointers are shared variables, typ
ical ENQUEUE/DEQUEUE programs lock the queue pointers b~fore changing

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 447

section 7.2 Synchronization Techniques
433

their values. This creates a multiprocessor bottleneck at th - b
. e queue rou tmes y

limiting the maximum MSYP~ rate of a computer system.
Compare-and-Swap provides a means for concurrent upd t· f . . . a mg o queue

pointer~ by h~t~mg the locked segment of code to a single Compare~and-Swap
instru~tion, s1m1lar to _the way that Program 7.7_ limits the locked segment for
updating a sum to _a smgle Com~are-and-Swap mstruction.

The computer hte_ratu_re on th~s particular application of Compare-and-Swap
is rather sparse cons1dermg the importance of the idea. Sites 11980] describes
the ENQUEUE_ process, but is no~ complete because the DEQUEUE process is
left as an exercise. Hwang and Bnggs [1984] give a rather brief discussion that
serves only as an int~oduction to _C_ompare-and-Swap. Treiber [1986] highlights
Compare-~nd-Swa~ m mor~ deta_1l_ ma_ brief research report. The most complete
source of mformati~n at_ this wntmg 1s the lBM System/370 Principles of Op
erations [1983], which gives several examples of correct applications and also
shows pitfalls of incorrect use of Compare-and-Swap.

In spite of the apparent simplicity of Program 7.7, Compare-and-Swap is
extremely tricky to use correctly. l he problem lies in the potentially large number
of ways that concurrent execution can occur. After all, the idea of Compare
and-Swap is to foster concurrency. However, when many processors execute
the same code concurrently, a variety of events can occur in sequences unfore
seen by the programmer, and synchronization can fail. Compare-and-Swap is
both one of the most valuable tools for multiprocessor software and one of the
most difficult tools to use for that environment.

To show both the power and the danger in the use of Compare-and-Swap,
consider the problem of enqueueing data. Figure7.4 illustrates the data structure
for the queue and shows Compare-and-Swap permits queueing to be done with
high concurrency. Figure 7.4(a) shows a queue represented as a one-way linked
list whose Head pointer designates the first item in the queue, the one to be
removed next. The Tail pointer designates the last item in the queue, the point
at which new items are added .

Our objective for concurrent enqueueing is to do the equivalent of the fol
lowing three-line code segment that places the entry at memory address Item at
the end of the queue:

Memory [ltem].Link : = nU;
Memory [Tail].Link: = Item;
Tail : = Item;

The notation ".Link" denotes a link field of an item in memory. The last two
statements in this example have to be executed without interruption because
Tail is a shared variable that is read, modified, and rewritten.

When the code is executed correctly, the result of inserting one item is as
shown in Fig. 7.4(b). However, if Processor 1 and then Processor 2 re~d the
current value of Tail at the second statement, then Processor 1 and 2 m that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 448

434 Multiprocessor Algorithms Chapter 7

HEAD TAIL

ITEMA •--- I ITEM B I· I • I ITEMC I· t • ITEMD 0

(a)

HEAD TAIL

ITEM B I· I •I ITEM C I· I .. ITEM D •

ITEM 0
(b)

HEAD TAIL

ITEMA •...--• ITEMB I• 1 • I ITEMC i • ~ .. I ITEM D I i I

L1 ITEM 2 I O ~ ITEM 1 0

{c)

Fig. 7.4 Queues:
(a) A linked-list representation of a queue;
(b) A queue after the insertion of a new item; and
(c) A queue after executing two concurrent insertions \.vithout locking. Processor 1 inserts
Item 1, and Processor 2 inserts Item 2, with accesses interlaced as described in the text.

order modify the value of Tail at the third statement, and then one of the items
enqueued will be Jost. The pointer to this item will be overwritten. If the last
statement is executed first by Processor 2 and then by Processor 1, Tail will be
left pointing at an item not on the queue. All subsequent items enqueued will
be unreachable from the Head pointer. This situation is shown in Fig. 7.4(c).

Conventional programming techniques lock this set of statements before
they are executed and unlock them when they are completed. A solution based
on Compare-and-Swap is shown in Program 7.8. This program avoids the pitfall
of an interrupted READIM:ODIFY/WR[TE. Exactly one processor of a group of
concurrently executing processors uses the Compare-and-Swap successfully to
read a value of Tail and write a pointer to Item. This leaves Tail pointing to the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 449

Section 7.2 Synchronization Techniques 435

new Item. The former value of Tail, now in the register Reg_Tail, points to the
fonner end of the queue. The queue is extended by linking that entry to Hem.

If a Compare-and-Swap fails, the processor repeats with the new value of
Tail that was loaded into Reg_Tail by the Compare-and-Swap. The net effect of
Compare-and-Swap is to guarantee that the values stored in Tail and in Mem
ory[Tail].Link are consistent.

By various arguments we can show that Program 7.8 is correct for concurrent
ENQUEUE operations. However, the program as written does not treat empty
lists in full detail, nor is it correct if ENQUEUE operations occur concurrently
with DEQUEUE operations. These additional considerations greatly complicate
matters. Compare-and-Swap is extremely difficult to use corre~tly as complexity
grows, and its use is prone to very subtle errors that may never be detected.

Consider, for example, Program 7.B when execution reaches the Compare
and-Swap. This statement relies on the fact that if Reg_Tail = Tail, then no
other concurrent ENQUEUEs have updated Tail since it was 1ast read from
memory. If we allow concurrent DEQUEUEs as well as concurrent ENQUEUEs,
this may not be the case. A DEQUEUE could have removed the item at Reg_
Tail from the queue, and subsequently, an ENQUEUE could have reached a
Compare-and-Swap to restore this item to the queue. This would leave Tail at
its former value, a value equal to the contents of Reg_Tail, and we have reached
a condition at which two different processors will attempt to update Mem
ory[Tail}.Link with different addresses.

We call this failure mode the "A-B-A problem" because it occurs when a
variable takes on sequence of values such as A, B, then A. A Cornpare-and
Swap tests the value A, and presumes that the value was held continuously if
it is there currently. The Compare-and-Swap is unable to detect that a change

Program 7.8 Enqueueing an item with Compare-and-Swap.

Notes:

Memory[ltem}.Unk := nil;
t Initialize Item for insertion at end of queue ·}

Reg_ Tail:= Tail; e Read Tail to a register·}
LOOP: Compare•and-Swap (Tail, Reg_ Tait, Jtem);

if Condition_Code = o then go to LOOP;
{* Loop back on failure of Compare-and-Swap*}

Memory(Reg_ Tail).Link: = Item;

1. This program is correct for concurrent ENQUEUEs.
2. The program as written here may fail if DEQUEUEs and ENQUEUEs can execute

concurrently.
3. Dequeueing may require additional tests, depending on the handling of empty lists.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 450

436 Multiprocessor Algorithms Chapter 7

of state has occurred. Although the A-8-A problem is unlikely to occur, it is not
impossible.

For Program 7.8 the consequence of the A-B-A problem is program failure.
The fact that Tail equals Reg_Tail is treated as if Tail has not changed since it
was last read. However, this inference is incorrect, and any sequence of events
that leaves Tail in its original state can potentially lead to failure of Program 7.B.
Since concurrent ENQUEUEs by themselves cannot restore the value of Tail
Program 7.8 is safe for concurrent ENQUEUEs. '

A practical solution to improving the safety of Compare-and-Swap is out
lined in the IBM System/370 Principles of Operations [1983]. The idea is to extend
the Compare-and-Swap to deal with two variables rather than one. The two
variables must be contiguous so that they can be fetched and rewritten with
one READ and WRITE.

Program 7.9 illustrates how this extension improves the code reliability. In
this program, Tail is concatenated with a variable Count. The current value of
the Tail/Count pair is copied to local registers. Just prior to the Double Compare
and-Swap, the local copy of Count is incremented and moved to the register
New Count. The Double Compare-and-Swap verifies that the Tail/Count pair has
not changed, and it updates this pair of values with the pair Item/New Count.

Since each successful execution of Compare-and-Swap updates both Tail and

Program 7.9 Enqueueing an item with Double Compare-and-Swap.

Memory{Jtem].Link : = nil;
t Initialize Item for insertion at end of queue •}

Reg_Tail&Reg_Count : = Tai/&Count;
{* Read double-variable Tail and Count to two registers •}

LOOP: New._Count : = Reg_Count + 1;
t Prepare to update Count *}

Double Compare-and-Swap (Tail&Count, Reg_ Tail&Reg_Count, ltem&New_Count);
if Condition_Code = O then go to LOOP;
Memoryf Reg_ Tam.Link : = Item;

Notes:

1. The notation Tail&Count designates two variables stored contiguously or two contig~
uous registers that are accessed by a single double-length operation.

2. Double Compare•and-Swap reads a double-length operand from Memory[Tail], com
pares this to the double-length operand Reg_Tail and Reg_Count, and updates Tail
with the double-length operand Item and New_Count if the equality comparison is
satisfied. Reg_Tail and Reg_Count are updated if the equality comparison fails.

3. The program as written here may fail if Count is incremented a sufficient number of
times to overflow back to its original value, and Tail is left in its original state.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 451

section 7.2 Synchronization Techniques 437

Count, if Tail is changed and restored by concurrent queue operations, then the
new value of Count would show that other queue operations have taken place
or are in progress concurrently. This forces an unsuccessful Compare-and-Swap,
which in turn causes a loop to occur and prevents an erroneous update. An
update takes place only if both T~il _and Count have not changed.

The sustained value of Count 1s intended to signify that no other concurrent
operations are in t~e process of manipulating Tail. In the System/370 architecture,
Count returns to its former value after no sooner than 4 billion operations.
Consequently, Program 7.9 has a highly improbable failure mode in which a
failure occurs if a. process is suspended at a Double Compare-and-Swap while
other processors increment Count 4 billion times and leave Tail in its original
state.

Program 7. 9 does not indicate the proper treatment of concurrent EN
QUEUEs and DEQUEUEs. After a successful update of Tail, the ENQUEUE
process must update the link field of the predecessor of the new item. In Pro
grams 7.8 and 7.9, this is done by a simple assignment statement. To permit
concurrent DEQUEUEs, the update should be done by using a Compare-and
Swap to discover if the prior link were 0, which is the correct condition for the
last item in the queue prior to an insert. If the DEQUEUE process removes the
item before the ENQUEUE process sets the link, we assume that the DEQUEUE
process detects _this con~itio~, and _stores a special nonzero flag in the link field
to indicate speoal handling 1s reqmred. The ENQUEUE should use a Cornpare
and-Swap rather than a simple assignment to update the link in Program 7.9
because a DEQUEUE process may be conditionally storing a special flag con
currently. The precise details of the correct ENQUEUE and DEQUEUE process
provide an interesting challenge to the reader, and is the subject of one of the
exercises in this chapter.

To summarize the characteristics of Compare-and-Swap synchronization, it
is extremely efficient, and highly desirable to use. However, it is very dangerous
and subject to subtle failure modes. It has to be used carefully and by experienced

programmers.

7.1.4 READ/MODIFY/WRITE with Reservations

The Compare-and-Swap instruction can be viewed as the WRITE func~on of a
very long READ/MODIFY/WRITE instruction wh_ose READ oc~rs m~ny ms~c
tions earlier. An atomic READ/MODIFY /WRITE 1s executed with no mtervenmg
operations. When paired with a READ, the Compare-and-Swap is a nonatomic
READ/MODIFY/WRITE. Consider the following sequence of events:

t. READ: X is copied to a register by READ X.
2. MODIFY: An updated value of X is computed and stored in a register as

the value X'.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 452

438 Multiprocessor At9orlthm5 Chapter 7

3. WRITE: A Compare-and-Swap writes ~ack the value of X' into the memory
location X, provided that the value X 1s unchanged.

Other instructions can intervene between the READ and the WRlTE, which is
permitted provided that they do not alter the value of X in memory. (Although
we interp~et success of Compare-and-Swap to indicate that X was unchanged
between the READ and Compare-and-Swap, the Compare-and-Swap succeeds
if x takes on a sequence of values A, B, A between the READ and the Compare
and-Swap as discussed in the previous section.)

The advantage of this approach is that other processors can continue to
perform useful work while a p~oc~s_sor is engaged in the updating of X. If the
process updating X suffers a s1gruhcant delay, say from a page fault or from
being swapped out of memory., other processes_ can still. ~ain acc~ss !o X and
attempt updates that may su~ceed. Compare this to a _cntical section m which
Xis locked during an update. If a process 1s suspended, interrupted, or swapped
out of memory while it holds locks, no other process that needs the locked data
can make progress. Hence., the Compare-and-Swap is an alternative way of
performing an update that takes many instructions without holding a lock on
the shared data while the update is performed.

The A-B-A problem is a significant nuisance for the Compare-and-Swap,
and it would be interesting to consider alternate ways of doing READ/MODIFY/
WRITE nonatomically. But we must guarantee that the \/\TRITE occurs only if
the variable is not modified by another processor or by another process on the
same processor between the READ and the WRITE functions. An approach
based on reservations can be used to solve this problem.

The key idea is that a multiprocessor with a coherent cache has most of
the necessary hardware in place to support this facility. Recall that the cache
coherence protocols require that a potential writer of data have a write privilege.
For each storage location in main memory, there is at most one processor that
has write privilege for that location at any time. We can use this state infor
mation to construct the functions we need for a nonatomic READ/MODIFY/
WRITE.

The READ will be done by an instruction that we call READ_AND_
RESERVE. From the program's point of view it accesses the shared variable. But
it also creates a reservation for the variable. The reservation could be a single
bit set in the cache line, or could be a dedicated machine register to record the
existence of the reservation. The reservation remains active until any processor
writes to the shared variable. The processor must be able to recognize during a
cache access when a variable is reserved, and the processor occasionally must
be able to find and cancel the active reservations that it holds.

The WRITE will be done by an instruction that is a conditional store,
WRITE_.IF---RESERVED. The WRlTIL_IF-RESERVED instruction stores the
contents of a ma~hine register at a _location in memory, if the processor currently
holds a reservation for that location. If the reservation has been abandoned,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 453

section 7.2 Synchronization Techniques 439

then the store fails. The instruction returns a condition code that can be tested
to indicate if the store succeeded or failed.

The idea is that the reservation remains in force between the READ_
AND_RESERVE and the WRITE__IF -RESERVED as long as the reserved vari
able is unchanged. If another processor or process on the same processor alters
the reserved variable, the reservation has to be removed.

All cache-coherence protocols have hardware support to request., transfer,
and abandon write privilege because all protocols assure that at most one pro
cessor has write privilege for any particular memory location. When another
processor needs to upda~e a ~h~red va~abl~, it will request write privilege if it
does not already have this pnvilege or 1t will send out invalidate messages if it
does. Whichever message is sent., the message cancels reservations at the re
ceiving processors. If the reservation is held in a cache in a status bit in the
reserved line, the status bit is reset if the line is updated. If the line is invalidated,
the status bit ceases to exist, which is an indication that no reservation is active.
If the reservation is held in a dedicated register, the register is marked empty.

This is an elegant solution to the A·B-A problem. The simplicity of imple
mentation is due to the reservation approach being quite compatible with the
cache-coherence protocol. The communication for managing write operations
already exists among the processors. If the communication were not there a1-
readyJ the reservation technique would be a costly addition to an architecture.

There is a small amount of additional complexity required to handle access
to a shared variable by several different processes that execute on the same
processor. If one process, say Process A., holds a reservation, and a context swap
shifts to Process B, a process that also holds a current reservation for the same
variable, B may execute a WRITE-1F___RESERVED instruction that succeeds
when in fact the reservation was for the value read by A, not the value read by
B. So the reservations for different processes need to be distinguished somehow,
or we must force processes to abandon all of their pending 1eservations when
a context swap occurs. If the latter approach is used, the processor must be able
to find and remove all pending reservations and to do this as quickly as pos
sible. To cancel quickly, it is advantageous to hold reservations in dedicated

registers.
When reservations are available, all of the READ/MODIFY/WRITE instruc-

tions can be implemented nonatomically with reservations. For example, con-

sider Test-and-Set:

REG[1] := 1;
LOOP

REG[2] : = READ_AND_RESERVE (semaphore_Z);
WRITE-IF _RESERVED (REG[11, semaphore_Z);
if unsuccessful go to LOOP; {" WRITE Failed, try again "}

{• Test prior value of semaphore and return condition code •}
return REG[2l = 0;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 454

440 Multiprocessor Algorithms Chapter 7

We do not expect to go around the loop at all, but rarely the loop may be taken
once, possibly twice. The READ_ and WRIT~ are only one instruction apart,
which makes the loss of a reservation very unlikely. When the READ and WRITE
are separated by many instructions, there is a great~r probability of losing a
reservation in the interval between them. Hence, the interval should be kept as
short as possible to increase the probability of success.

Since both READ_ANQ_RESERVE and WRITE-1F--RESERVED are syn
chronizing instructions, they must be implemented to be compatible with the
consistency model of the computer system. That is, if the model uses release
consistency, the WRITE_lf_RESERVED should behave like a RELEASE and
the READ_AND_RESERVE should behave like an ACQUIRE.

Compare-and-Swap algorithms are greatly simplified when implemented
with reservation instructions since they do not have to contain the additional
code to protect against the A-B-A problem. The reservation system also simplifies
the implementation of the storage subsystem. Conventional machines imple
ment three types of storage operations: READ✓ WRITE, and READ/MODIFY/
WRITE. The latter are sufficiently different to add cost and complexity. By using
reservation instructions to implement the READMODIFY /WRITE functions, the
storage subsystem operations can be reduced to just READ and WRITE. Whether
or not reservation instructions are used, the storage subsystem should also
distinguish between synchronizing instructions and ordinary instructions to
enable programs to remove problems caused by competing accesses.

7.2.5 Synchronization with Fetch-and-Add

The three synchronization methods discussed thus far have in common the
property that they are serial methods. No more than one processor at a time
can execute the READ/MODIFY/WRITE operation embedded in them.

The Fetch-and-Add operation is different-it is truly parallel. Conceivably,
all N processors in a multiprocessor can execute a Fetch-and-Add instruction
simultaneously, provided that all processors update the same variable. Fetch
and-Add operations executed on different variables may have to be done se
quentially if those variables reside in the same memory or share access circuitry
of some other form.

The instruction Fetch-and-Add(Sum, Increment) provides for adding an in
crement to a shared sum, and the addition is done in parallel as explained earlier.
No locking and unlocking is required, nor is a retry test and loop required as
with Compare-and-Swap.

In terms of performance, the Compare-and-Swap is as efficient or more
efficient than the Fetch-and-Add if on the average only one processor at a time
requests an update of Sum. This is because Compare-and-Swap is not burdened
by delays by network access introduced by the hardware implementation of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 455

section 7.2 Synchronization Techniques 441

F tch~and-Add. However, when the update becomes a bottleneck to the extent
~at 10 or 100 requests for access are active concurrently, Fetch-and-Add is far
faster than Compare-and-Swap because it can honor all the requests simul-

taneously.
For systems with relatively few processors, Compare-and-Swap is the better

pproach. As the processors increase, Fetch-and-Add provides potential per
:orrnance improvement not available with Compare-and-Swap. Fetch-and-Add
becomes more attractive as the number of processors increases, but whether or
not Fetch-and-Add is cost-effective is still a matter of research interest. Its im
plementation cost is high, and its potential is limited to simultaneous access of
the same shared variable by all contending processors. It provides no help for
contention produced by concurrent accesses to different variables in the same

memory.
For large values of N, for example 1000 to 10,000, Fetch-and-Add or an

equivalent mechanism for parallel synchronization is a practical necessity. With
out such a mechanism the MSYPS limit will severely impair performance in a
1000-processor system. In 10,000-processor systems, other system bottlenecks
may be so severe that Fetch-and-Add by itself may not be sufficient to produce
acceptable performance.

To show Fetch-and-Add at its best, let us reconsider the problem of en-
queueing and ~equeu.eing items ~n a sh~red queue. The Compare-and-Swap
approach is ~omt:r one~ted, that 1s, the lmks are treated as addresses, and the
algorithm builds hnked hsts.

Fetch-and-Add,. however, is best used for counters rather than pointers,
where counters are variables that are manipulated by addition and subtraction.
The result of a sequence of counting operations is not sensitive to the order in
which increments and decrements are applied, which is desirable for Fetch-and
Add because concurrent executions receive a set of results that represent some
arbitrary ordering of the individual summations. We want to create algorithms
for which all of the arbitrary orderings are consistent with correct execution of
the algorithm. Consequently, the most appropriate implementation of EN
QUEUE with Fetch-and-Add is to use a counter-based implementation.

The basic idea is to use a counter, Tail, that is incremented by ENQUEUE.
The value of Tail is the offset in the queue of the next insertion point. A simple
and incomplete implementation of ENQUEUE with Fetch-and-Add is

Procedure Enqueue(ltem, Queue);
begin Place : = Fetch-and•Add(Tai/, 1);

Queue[PlaceJ : = Item;
end; t Enqueue •}

The Fetch-and-Add increases Tail and returns the value of Tail before the incre
ment. This value is used as the offset in the queue for inserting an item. If the
Fetch-and-Add is executed simultaneously by several processors, Tail receives

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 456

442 Multiprocessor Algorithms Chapter 7

the sum of the increments, and each processor receives a different value for
Place, so each processor has a unique position for queue insertion.

This is the basic idea of enqueueing with Fetch-and-Add, but the full im
plementation becomes very complex because of a variety of conditions that have
to be satisfied. Among the conditions are:

1. The queue should be circular, so Tail should be set to a base value of O when
it exceeds the length of the Queue vector.

2. The total number of active entries in the queue cannot exceed the length of
the queue vector.

3. The DEQUEUE operation should permit parallel removal entries from the
queue.

4. The DEQUEUE operation should not permit a dequeue to succeed on an
empty queue.

5. Both ENQUEUE and DEQUEUE should be safe from livelock.

Two implementations of ENQUEUE/DEQUEUE with Fetch-and-Add appear in
Gottlieb et al. [1983] and Stone [19841. Both solutions are too complex to repro
duce in this text. However, the implementations illustrate general principles
worth discussing here.

If we use variables Tail and Head, respectively, to control the insertion and
deletion points in a queue, then the number of items in a queue is the difference
between Tail and Head. However, because both Tail and Head are reset to O when
they exceed the length of the queue, the difference in their values is the number
of active elements modulo the length of the queue, so finding the number of
active elements from the values of Head and Tail is rather tricky. It is much easier
instead to maintain a separate variable Count that gives the current number of
active elements. ENQUEUE and DEQUEUE operate on this variable with Fetch
and-Add with increments of + 1 and -1, respectively. The value returned by
Fetch-and-Add can be used to control actions on queue overflow and underflow .

To prevent livelock, ENQUEUE should first test Count before incrementing
it, and DEQUEUE should test Count before decrementing it. The queue full and
queue empty conditions that cause processors to loop back to retry their oper
ations should loop back to the test of Count in a manner similar to the way that
livelock is treated with the Increment and Decrement instructions. In this way
processors remain at the outermost test and are prevented from further incre
menting or decrementing until Count reaches a safe value.

To handle the queue circularity, when a Fetch-and-Add increments Head
beyond the end of the queue, the set of processors making concurrent access
to Head will discover its value to be less, equal to, or greater than the queue
length. The processors that receive legal values for Head simply continue. The
processors that discover values beyond the end of the queue abort their activity

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 457

section 7.2 Synchronization Techniques 443

by decrementing Head_ and return to a place_ earlier in the program to request a
spot in the queue agam. Eventually Head w1l~ return to the least illegal value.

The processor that decrements Head to this value decrements Hend again by
the length of t~e queue and t~ereby resets Head to start at the beginning of the
Queue vector. ~1velock prevention_ tests have to protect Head from livelock during
the incrementing and decrementing that occur in this process.

The full algorithm for ENQUEUE/DEQUEUE

• Manipulates Count, Head, and Tail;

• Handles queue circularity, queue empty, queue full; and

• Protects from processing livelock.

Working out the details of the algorithm is very instructive and shows the
complexity of synchronization with Fetch-and-Add.

We stated that Compare-and-Swap is difficult to use correctly, but Fetch
and-Add is far more difficult to use. Compare-and-Swap is subject to subtle
failures from concurrency before and after it is executed. Because it forces serial
behavior when it is executed, some simplification is achieved when verifying
the correctness of Compare-and-Swap algorithms. But Fetch-and-Add supports
all of the concurrency of Compare-and-Swap and more.

The fact that many processors can perform Fetch-and-Add concurrently on
the same datum greatly increases the number of possible outcomes to consider
and makes verification extremely difficult. Obviously, Fetch-and-Add has to be
used very carefully by experienced programmers. Fetch-and-Add synchroniz
ation will probably be used mostly through library calls rather than individually
programmed statements because most programmers are not likely to be able to
create correct, efficient programs based on Fetch-and-Add.

Although Fetch-and-Add points the way to break the MSYPS bottleneck,
the implementation of Fetch-and-Add in a multilevel interconnection is expen
sive and its use in programs is difficult and error-prone. ls there any effective
alternative? Indeed, there are several less powerfut but far less expensive tech
niques to implement the most useful feature of Fetch-and-Add-the ability to
parallelize synchs. These are treated in the next section.

7 .2.6 Other Architectural Support for Parallel Synchronization

This section discusses low-cost implementations of a collection of alternatives
to Fetch-and-Add, none of which has the full power and generality of Fetch
and-Add. The reason for considering alternatives is that Fetch-and-Add does
not make efficient use of the hardware required for its realization. The total
number of nodes in a switching network that can accept N concurrent requests
is at least O(N) if the network is a simple tree, and is O(N log N) if the network
is a full shuffle-exchange network as proposed by Gottlieb et al. (1983]. However,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 458

444 Multiprocessor Algorithms Chapter 7

in actual practice the majority of the combining is performed at the nodes at the
root of the tree centered on a hot spot, and very little combining is performed
at the leaves. Consequently, the cost of the network in components grows at
least linearly in the number of processors, and the delay experienced grows as
the depth of the network times a large constant to reflect the delay_per combining
node in the network. Yet, on the average, only very few nodes m the network
actually do useful work in practical cases.

When a combining network is working at peak capacity, all of its leaves
receive combinable requests simultaneously, and these all combine stage-by
stage to produce a single request at the hot-spot root. [f this behavior were
typical of every machine cycle, then a combining network would produce a
performance commensurate with its cost. What happens in actual practice is
that the combinable requests are received over a period of time. If two combinable
requests enter a node on different inputs in the same cycle, they are combined
into a single request. If they enter on different cycles, they are forwarded se
quentially toward the root of the tree on the same path. Thus, there is a window
of time during which two requests can combine at a node, and if they miss that
window they will not combine there. Each node can include some buffering to
enlarge the window of combination to greater than a single cycle, but the effect
of buffering is to add delay and cost in each node.

In the exercises for this chapter is one that reveals that each request is most
likely to combine with a request at the root of the tree because half of the possible
requests join with it there. Half as many requests join with a request at the
second level in the tree, and half as many in the next level, and so on. When
requests arrive at a combining network over a period of time, with high prob
ability they pass through the first few levels of the tree without combining, and
eventually combine near or at the root if the arrival rate is high enough to produce
one or more requests per cycle at the network inputs. If k out of N requests
arrive on the average per cycle, the requests will tend to saturate the log k levels
of the combining network at the root, and relatively few requests will be com
bined at other levels.

Consequently, the peak rate of combining supportable by a combining net
work is far greater than the actual rate that the network has to support. An
effective compromise for the computer architect is to put full combining only in
a few levels of a combining network, and to make the remainder of the nodes
the same as transmission nodes in a conventional multilevel interconnection
network.

Given that a combining network may be more powerful than what is actually
required, what less powerful functions can be implemented to produce the
capability that we actually need? A good candidate is to implement the syn
chronization functions on a global bus that visits all processors. The reason that
this is attractive is that synchronization by itself does not demand high band-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 459

Section 7.2 Synchronization Techniques 445

. dth. A synchronization message can be as short as one bit. The bit of a
;nchronization_ changes rather slowly in. time, possibly once every 10,000 to
t00,000 inst~ctions. We ca~ afford to dehver_ the bit a few cycles late because
f)ow bandwidth on the dehvery system, provided that the lateness is a constant

~elay or grows very slowly with the number of processors in the system.
We propose a sequence of bus-based synchronization techniques, each more

powerful than its predecessor. They are:

l. Barrier synchronization.

2. Multiple barriers.

3. Find the maximum.

4• Fetch-and-increment.

The first of these, barrier synchr?nization, has been implemented successfully
on the PAX computers by Hoshmo [1989]. Each processor sets a single bit to
indicate when it has arrived at a barrier. The collection of bits is brought to an
AND gate and an OR gate, each of which has one input per processor. The
outputs of both gates are bused to all processors. Thus every processor can
determine when all processors have reached the barrier, when none have reached
it, or when some but not all have reached it. The number of synchs per cycle
in this machine grows almost linearly with N. (fhe growth would be linear if a
change in a bit could be propagated in a single cycle regardless of N. In practice,
the propagation tim~ ?rows slowly as ~ grows, and is O(log N) with a very
small constant coefficient.) The delay m performance caused by a barrier is
measured by the number of cycles after the last processor arrives at the barrier
before the collection of processors can begin new tasks. This is a few machine
cycles at most, even in a multiprocessor with 1000 processors.

A practical implementation of a fast barrier was patented by Thompson
[1985] and is shown in Fig. 7.5. Thompson proposed to use an adder with fast
carry lookahead to implement a barrier. In this case, the adder is capable of
adding two 4-bit numbers and an incoming carry to produce a sum output and
a carry output. The sum output is ignored for the barrier function, and the carry
output is fed back to the four inputs of one 4-bit operand. This configuration
can synchronize five different processors. Each processor is assigned one of the
five available inputs, either one of the four inputs for the 4-bit operand or the
input for the carry in.

We assume that we start in a state in which no processors are at the barrier.
All processors place a O on their respective inputs, and the carry out produced
by the device is 0. The carry out remains at O until all processors reach the
barrier. At this point it becomes 1, and stays at 1 until all processors signify that
they have observed the synchronization by removing their 1 bits. When all
processors have left the barrier, the carry out drops to 0. If each processor uses

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 460

446 Multiprocessor Algorithms Chapter 7

1

7
.....,..... __ Processor Requests

~
P2 P3 P4 PS

Pl II
Carry In ADDER

--~'--- Barrier
Output

Sum (Ignored)

Fig. 7.5 The Thompson barrier.

a rule that it places a 1 on the barrier only if the present barrier value is 0, then
the barrier can be safely reused in a program . Thus, Thompson's barrier supports
both the reuse of the barrier and the fast implementation.

In a 1000-processor multiprocessor, a single barrier is inadequate for syn
chronization. But since many processors use an active barrier, in actual circum
stances perhaps only 32 or 64 distinct barriers are sufficient to support 1000
processors. The technology to build 32 or 64 Thompson barriers with 1000 inputs
each is much less demanding than the technology required to put 1000 proces_sors
and memories together, so that we can conceive of a multiprocessor supported
by a collection of addressable barriers. However, the interconnections to these
barriers present an interesting challenge to the architect .

The scheme illustrated in Fig. 7.6 indicates how one might take advantage
of the low bandwidth on the barriers to reduce the interconnection complexity.
It is based on work by Heidelberger, Rathi, and Stone [1989]. The device shown
in Fig. 7.6 contains all of the addressable barriers for some subset of processors,
and it produces summary data on a few output lines that are forwarded to a
similar chip whose function is to synchronize a different subset of processors.
Each processor is attached to one chip through one input line and to the output
bus, and possibly to one dedicated output line per processor. A processor signals
its intentions to a chip sequentially by giving the address of a barrier and the
value of the bit to set at the barrier. The chip also recognizes special codes for
initialization of a barrier, and for masking in or out the processors that are not
participating at a barrier. Since one barrier chip may be limited by input/output
pins to handling requests from some fixed number of processors, the barrier
chip outputs have to be combined together to produce a single global bus output

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 461

section 7.2 Synchronlzat1on Tedlntqucs

32 32
Aequestors Requestors

~ ~

... . .. l .. ' .. ,~ ,, ,,
-Barrier ... Barrier --Chip ~ Chip - ...
... -

I 1 - Broadcast Bus

Fig. 7.6 A VLSI implementation of a set of barriers.

32
Requestors

~

l . ..
,, 0

---+ Barrier ---+
--+ Chip

I

447

--

that is observed by all processors and by all chips. In general, each chip output
and the global bus output are an indication of the states of the various barriers.
The output bus may have many lines, one for each barrier, if technology provides
this capability at reasonable cost. If this is not feasible, the output bus can signal
when any barrier changes state by signaling the address of the barrier and its
new state. Since state changes of barriers are quite rare, a bus with a single
conductor or a few conductors may have sufficient bandwidth to satisfy the
requirements for a large multiprocessor, and a few conductors should provide
ample bandwidth to meet peak requirements.

Given that metal interconnections are limited in bandwidth, and are bulky
and costly, an all optical barrier may one day be practical and be preferred to a
device based on the Thompson barrier. An optical barrier can be constructed by
using two wavelengths, X.busy and Adone, to signify, respectively, that a processor
is busy before reaching a barrier or has reached the barrier [Green and Stone
1990]. We presume that every processor can produce illumination on one wave
length or the other, and that the illumination can be amplified and bused to all
other processors. Each processor operates two receivers, one sensitive to Abusy

and the other sensitive to A-done· The illumination from all processors is combined
at or before it reaches a receiver, so that each receiver sees a composite signal.
If a receiver detects energy at its tuned wavelength, it concludes that some
processor is in the state associated with that wavelength, either busy or done.
The barrier is unused when no processor is busy and no processor is done. It
is an active barrier when at least one processor is busy. Processors can move
past the barrier when no processor is busy. Before a barrier can be reused, each

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 462

448 Multiprocessor Algorithms Chapter 7

processor must verify that no processor is signaling "d_one." Only when all
processors have left the barrier, can any processor safely signal reuse the barrier
for a new cycle by signaling ''busy." This implementation is an optical analog
of the AND and OR gates used by Hoshino in PAX.

The optical system can support multiple barriers o~ ~ comm~n intercon
nection system by using pairs of wavelengths for each distinct barner. Because
each individual barrier requires so little of the available bandwidth, there is
substantial available bandwidth to multiplex many barriers together on one
optical interconnection system.

Since optical technology for the barner application 1s still m its mfancy, we
cannot claim that the implementation described here is feasible today or will be
the preferred embodiment when and if optical technology can support barriers.
Nevertheless, the discussion indicates how new technology may alter the ap-
proaches that we take to s_olve spe_cific pro~l~ms. . .

The next function of mterest 1s the ability to find the maximum value of
a set of values held in distinct processors. A classic method to find the maximum
is for each processor to gain exclusive access to a single global shared variable,
and to update the variable if the local value is greater than the global value.
Each processor then proceeds to a barrier where it waits until all updates
have been done. Then the global value is known to be the maximum of all
values.

This process is rather inefficient to perform in a highly parallel multipro-
cessor because of the serial bottleneck it creates at the global variable. A FETCH
and-MAX operation is an effective, but costly solution. Recursive doubling as
described in Chapter 4 is also effective, but the delay in the process requires the
latest participating processor to make O(log N) remote comparisons before reach
ing the barrier. This determines how soon the processors can be released from
the barrier as a function of the time when the latest processor initiates its com
putation of the maximum. We may be able to reduce this number, or reduce
the cost of a comparison.

An efficient solution lies in the use of a broadcast bus of low bandwidth
that visits all processors. Each processor attempts to gain access to the broadcast
bus, compare its local value to a global value, update the global value if necessary,
and broadcast the new value of the global variable. If, while a processor's request
for the bus is pending, the processor observes a higher global value, it removes
its request and moves to the barrier. If all processors are vying for the bus when
the latest participating processor requests a bus transaction, approximately O(log
N) bus transactions on the average will take place before all processors reach
the barrier. If only k processors are vying for the bus at this point, then only
O(log k) bus transactions are necessary. This is a small reduction jf all processors
tend to initiate the computation of the maximum in a short interval of time. But
the reduction is quite useful and worthwhile when a few stragglers tend to arrive
very late, in which case, k may be only 1 or 2 in such situations.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 463

section 7.2 SynchroniutJon Techniques 449

What is interesting about this form of solution is the fact that the solution
is compatible with t_he barrier chip sol~tion of Fig. 7.6. The device in that figure
needs to be only shghtly more versatile to support both barriers and the max
unum operation, but the interconnections shown are sufficient to implement
both functions.

The last function of interest is Fetch-and-Increment. This is the same as
Fetch-and-Add except tha~ the va~ue added ~as to be + 1. We can also support
a fetch-and-Decrement with a rnmor embellishment of the basic idea. Thus, a
processor can add or subtract _1 from~ gl~bal co~~ter, and perform this in parallel
with all other processors. This function 1s sufhClent for performing enqueueing
and dequeueing operations without enforcing a strict serialization.

The basic implementation of this idea was discovered independently by
Heidelberger, Rathi, and Stone [1990] and Sohi, Goodman, andJ. E. Smith [1989].
It uses a bus much like the bus described above for computing the global max
imum. All processors that wish to perform Fetch-and-lncrement request access
to a global bus. When any one processor is granted access, all other processors
observe the address that is to be incremented. Then all requestors for that address
respond together with the original requestor in a portion of the same bus cycle
reserved for responses. For N responders, the bus should have N distinct data
conductors. Each responder places a 1 on a conductor dedicated to that re
sponder. If a processor is not an active responder because it does not have a
Fetch-and-Increment pending, then its corresponding conductor carries the logic
value O. Since all processors see all data wires, each processor can tell the total
increment applied to the global variable and each can tell its priority with respect
to all other processors. For example, if Processor 5 sees that Processor 2 and 3
have responded, then Processor S's request is third in line. If the request is for
a queue entry, then Processor 5 can immediately access the third entry of a

queue.
The scheme has to provide a means to update the global variable with the

sum · of the increments of the requestors. A suitable protocol is to assign the
update task to the processor with highest or lowest priority. Also, all requestors
should see the current value of the global variable in order to compute their
local variant of the global value. The current value can be transmitted on the
same bus on a different part of the same cycle. This scheme is also compatible
with the implementation described in Fig. 7 .6, provided that the bus has a
number of wires equal to the number of processors. By multiplexing and coding
responses, it is possible to reduce the number of physical conductors. In order
to achieve the best performance at reasonable cost, the number of distinct con
ductors should be roughly equal to the expected number of active requestors
on any cycle.

This brings us to the end of the discussion of synchronization techniques.
The next section revisits cache coherence and describes why cache coherence
and synchronization are alternative solutions to the same problem.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 464

450 Multiprocessor Algorithms Chapter 7

7 .i. 7 Cache Coherence versus Synchronization

The cache-coherence protocols described in Chapter 6 assure that multiprocessor
programs can synchronize correctly. Consi~er, for example, t~e. ~of~ware im
plementation of a barrier. A simple scheme 1s to use a counter m1halized to N,
and to have each of N processors decrement the counter as they reach the barrier.
If the decrement operation is an uninterruptible READ/MODIFY/WRITE oper
ation, then each processor need do nothing more than decrement the barrier
and test it continually until the barrier reaches zero. No lock, Fetch-and -Add,
or other specialized technique is required to implement the barrier. The cache
coherence protocol assures that each processor will eventually see the zero value
of the barrier variable, and the barrier variable will become zero if and only if
all N processors have reached the barrier.

If this is the case, then why is there a special requirement for synchronization
hardware such as the combining network or the Thompson barrier? The issue
is the implementation of the cache-coherence protocol. Bus-based protocols are
limited to one bus transaction per cycle. If at most one synchronization can be
done per bus transaction, then an MSYPS bottleneck exists . For multiprocessors
with hundreds or thousands of processors, a cache-coherence protocol is not
likely to be bus based, and its implementation is an interesting question in itself.

The point of this section is to illustrate that the synchronization techniques
explored thus far may provide a substantial part of the cache-coherence function,
and conversely, a cache-coherence protocol can provide a reasonable means for
implementing synchronization primitives. For large numbers of processors 1 a
dedicated synchronization subsystem may be preferred, and for a small number
of processors, a bus-based cache coherence protocol may be preferred . These
comments are illustrative of possible choices, and actual decisions must account
for the characteristics of the applications.

We proceed by illustrating how a cache-coherence protocol can assure the
correctness and efficiency of a barrier synchronization. For the barrier, we will
decrement a counter as described above. The cache-coherence protocol is bus
based, and assumes that all processors observe all bus transactions. In Chapter
6, we indicated that we have some choice of protocol. To conserve the use of
the bus, recall that it is not necessary to broadcast the update of a cached variable
if that variable is held exclusively. To obtain a variable exclusively, it is sufficient
to broadcast a cache-invalidate command to all other processors when a pro
cessor with permission to upqate the variable actually performs the update . Let's
call this protocol the Write-Invalidate Protocol.

An alternative protocol is to broadcast the updated value of the variable at
the time of its update. Any other processor that holds that variable in cache,
can overwrite the local value with the updated value. Of course, when this
occursJ the variable is not held exclusively by any processor, and subsequent
updates have to be broadcast. We call this protocol the Write-Update protocol.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 465

section 7.2 Synchronization Techniques 451

Yet another possibility is for each processor to load into its cache the value
of a broadcast u_p~ate, regardless of whether or not it currently has a copy of
that variable. This 1s contr~ry to what seems to be reasonable, but it is worthwhile
to include it for companson purposes. We call this protocol the Write-Load
protocol. . . .

In terms of efficiency, our_ ~xpectat10ns are that the three protocols fall in
the order below from most efficient to least efficient:

1. Write lnvalidate,

2. Write Update,

3, Write Load.

The reasoning behind this ordering is that the Write Invalidate may eliminate
future bus transactions when a local update occurs, but both Write Update and
Write Load must broadcast that a change has occurred whenever it occurs.
Moreover, the Write Load can lower performance by displacing some item from
a remote cache that would be more useful in the near future than the item just
broadcast to the remote cache.

The ordering of efficiency is correct for many kinds of accesses, but it is
undoubtedly in the wrong order for a barrier synchronization. Observe what
happens when N processors attempt to synchronize at a barrier under the Write
Invalidate protocol. As each processor obtains the barrier variable for updating,
the processor places the barrier variable in its local cache. Shortly thereafter
another processor reaches the barrier, requests the current value of the barrier
variable, and invalidates the value in all other caches. Hence, the variable is
invalidated in the cache where it had formerly just been updated, and the
processor that just held that variable is forced to refetch it.

When the Nth processor attempts to update the barrier variable, it has to
contend for the bus with N - 2 other processors that are trying to refetch the
variable. In the worst possible case, the number of bus transactions can grow
quadratically in N, but the growth reduces to only linear in N if all active requests
for a variable are satisfied by one broadcast. Because each update of a variable
invalidates all caches, at least N bus transactions have to take place to satisfy
the barrier. The fact that a processor can determine when it has the exclusive
copy of a variable is not important in this instance because each processor only
updates a barrier variable once. The Write-Invalidate protocol is most useful
when a processor updates a variable several times during one period of cache
residence. Hence, the effectiveness of the Write-Invalidate protocol is wasted
on barrier synchronizations. In fact the Write-Invalidate causes a problem be
cause it forces all processors to rerequest the shared variable at the same time,
and this tends to saturate the bus.

The second protocol, Write Update, is better in the sense that it does not
remove an active variable from remote caches. In fact, it automatically delivers

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 466

45i Multiprocessor Algorithms Chapter 7

a new value for the remote processors to examine. When the barrier is finally
satisfied, the update operation delivers the final value to active processors with
out requiring them to request the value individually. Hence, Write Update is
distinctly better than Write Invalidate for implementing barrier synchronization.

The last protocol is actually slightly better than Write Update because it
sends the current value of the barrier variable to remote caches prior to actual
need. As each processor first comes to a barrier, it normally experiences a cache
miss. [f the first access is a read access, the Write Load protocol turns that access
into a cache hit, and saves the cost of the miss and the cycle required on the
bus. If the first access of a process is a decrement, then Write Load will be
essentially the same as Write Update because under both protocols, the processor
attempting to update the barrier variable must request a bus cycle to obtain
write permission before updating the variable.

Because synchronizations, in general, require close cooperation among sev
eral processors, the Write Load and Write Update protocols will tend to yield
better performance than Write Invalidate when used on synchronization vari
ables. Eggers and Katz [1989] confirmed the findings in this discussion in a
study that evaluated several different protocols by means of trace-driven sim
ulations. They found that a protocol closely related to Write Load gave better
hit ratios than Write Update, and attributed this to its use for synchronization
purposes.

This short example illustrates that synchronization functions require close
cooperation among many processors, and this can be sustained only with the
right kind of information transferred at the right time. For multiprocessors with
very few processors, it is possible to use a bus-based cache-coherence protocol
for synchronization, but that protocol might not be the same one used for other
shared variables. For example, one may choose to use Write Load for barrier
variables and Write Invalidate for other kinds of variables. Because shared vari
ables can be used in different ways, it is essential to match the cache-coherence
protocol to the particular use of a shared variable.

For large-scale multiprocessing with 100 or 1000 processors, cache coherence
may not be feasible to implement if it has to satisfy the needs of both synchro
nization and normal sharing. Consider the cache-coherence traffic in a 1000-
processor system in which the interconnection network between processors has
infinite bandwidth and no delay. If a broadcast invalidate or update is issued
by a processor once every 100 clock cycles, then each processor receives 10
broadcasts per cycle on the average, and could receive up to 999 on any single
cycle. Clearly, the broadcast has to be avoided in such a multiprocessor, yet the
broadcast is the preferred mechanism for synchronization. The protocol has to
be more selective and should not broadcast information to processors that do
not need it. Even this type of protocol produces so many messages that the
caches are kept busier by the cache-coherence protocol than by doing useful
work in support of their local processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 467

Section 7.3 Parallel Search-How To Use and Mot Use Parallelism 453

Because the bul~ of _the load o~ a cache-coherence mechanism may well be
caused by. synchron~zatton operations, a practical way to build such a multi
processor 1s to provide a low-cost subsystem dedicated to synchronization. If
this successfully removes the bulk of the operations that otherwise would be
performed by a cach~-coherence netw_ork and protocol, then the operations that
remain may b: relatively easy to satisfy at reasonable cost. To satisfy a 1000-
processor barrier by means of conventional cache-coherence techniques over
burdens the cache-cohere~ce network, and thereby severely degrades system
performance. Yet a :'ery ~1mp~e low-~~st dedicated network can implement the
1000-processor barner with high efficiency. Clearly, specialized techniques for
synchronization are quite ~ttra~tive in highly parallel multiprocessors and they
may open the way to practical implementations of cache-coherence protocols in
such systems.

This completes the discussion of synchronization and cache coherence. The
following sections return to techniques for writing efficient multiprocessor
algorithms.

7.3 Parallel Search-How to Use and
Not Use Parallelism

One of the most obvious ways to use parallel processors is for searching. Many
researchers report excellent computation speeds in search applications, mainly
based on the number of processors that are busy during the search process.
UnfortunatelyJ there is quite a difference between the number of processors
busy and the true speedup in a multiprocessor since processors need not be
doing useful work.

In this section we describe two different search algorithms. One is a search
for a maximum of a function. For this problem it is rather surprising that the
optimal search strategy yields only an O(log N) speedup. Even more surprising
is the fact that all processors are busy during every step of the algorithm, so the
magnitude of the wasted computing effort is not obvious. The second algorithm
is a more sophisticated search algorithm. It is reproduced here to illustrate where
one might look for useful parallelism.

7 .3.1 Searching for the Maximum of a Unimodal Function

Karp and Miranker [1968] investigated the problem of finding the maximum of
a unimodal function with N processors. A typical function to explore is shown
in Fig. 7.7. By definition a unimodal function has a single mode or maximum
located between its endpoints. Our objective is to find that maximum to within
a unit interval on the x-axis. The search is to be conducted on a multiprocessor
whose processors can evaluate /(x) at any given x between the endpoints of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 468

454 Multlpr0Cfl50r Algorithms Chapter 7

interval. We assume th at the evaluation takes a fixed const ant time so that all
processor s start and finish simultaneously. After evaluating the function , the
processors can exchange information an d determine the next point to eval uate.
This too tak es a fixed con stant time .

The full search algorithm consi sts of a rep etitio n of the processe s that re
spectiv ely eva luate and exchange information. The repetit ion continu es until
the maximu m is p in ned to within a unit interval. Karp and Miranker show that
the optimum stra tegy depends on the parity of the numb er of proce ssors , but
whether that parity is odd or even, the optimum s trategy pr od uces an O(log N)
speed up with resp ect to a single pro cessor.

Wha t is deceptive about this problem is that every proce sso r is busy at every
step, and we in tuitively do not exp ect the final computation time to be so poor
as to yield only an O(log N) impr ovem ent. In fact, with a sufficiently large
number of proces sors we can pin the maximum to a unit interval in a single
step -the ultimate in high speed . But since a single pro cessor can find the
maximum with a binary search in O(log N) steps, it becomes d ear tha t O(log
"!\~ is all th e speedup poss ible.

Figure 7.7 shows a typical situati on during the executi on of the algorithm.
The vertical lines show where sev en simult aneous prob es are execu ted. The
lines are un iformly spaced in this examp le. Karp and Miranker describe where
the probes should be made for the optimum strat egy, bu t the deta ils of the
optimum strategy are not importan t for this discussion.

What is important is the nature of the infor mation reh1rned. From the given

0.09

0.08

0.07

0.06

>< 0.05
~

0.04

0.03

0.02

0.01

00 10 20 30 40 60 70 80
X

Fig. 7.7 Searching a unimoda l function.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 469

5ection 7.3 Paralhtl Search-How To Use and Not Use P1ralleDsm 455

set of probes, we can conc~ude that the maximum must lie somewhere in the
shaded region. The r~ason u~ that we can compute the derivative of the function
by examining ~o ~eighbonng values of t~e function. At the maximum of the
function the _denvative g~es to zero. Only m the shaded regions can the deriv
ative of a unimodal function become zero. Therefore, the next step is to assign
the seven processors to evaluate the function in the shaded region and repeat
the process. .

A little reflection sho~s where the w_asted effort is going. The only infor
mation actually used to guide the search 1s where the derivative changes sign.
The outlying processors work as hard as the middle processors in evaluating
the function, but the results produced by the outlying processors are of no value.

The only information extracted is the derivative of the function, and because
the function is unimodal we know that if the derivative is negative at x, it is
negative at ally> x. Conseq_uently, if_we fi_nd some xwith a negative derivative,
then the processors to the nght of this pomt are wasting their effort. Similarly,
if the derivative is positive at some x, it is positive at all y < x. Processors
operating to the left of a point with a positive derivative are wasting their effort
as well.

Let's examine the problem from the point of the view of the information
available and the information actually used. Each of N processors returns es
sentially one bit of information, namely the sign of the derivative of the function.
Thus in one step of the parallel algorithm we compute N bits of information.
The bits, however, are not independent. In fact, the N processors create N +
1 intervals on the x-axis, producing exactly N possible choices for an adjacent
pair of intervals to se~rch on the_ next step. The amount of information in N
choices is only log N bits, not N bits. Hence we expend the effort to produce N
bits of information and obtain only log N useful bits. In essence, the algorithm
throws away N - log N bits per iteration, which accounts for the wasted effort
in this algorithm.

Is there a way to speed up this search? No, not if the constraints are obeyed.
But there could be a way if other options are available. For example, the pro•
cessors are constrained to evaluate /(x}. This is not satisfactory because it almost
surely forces some evaluations to be useless. If the processors are given a dif
ferent representation of f(x) so that each evaluation gives independent infor
mation, the speedup might be greater. It might be possible, for example, for
each processor to work with a Fourier transform. of f(x), which is helpful because
each point in the transform contains information about all points of the function.

The fact that the function is unimodal forces the derivative information to
be redundant. If the function were multimodal, and we had to find a global
maximum, the work per processor would no longer be redundant because in
formation produced about one region of the function sheds no light about the
function in a different region.

The unimodal function is very important, however, because this is the func-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 470

456 Multiprocessor Algorithms Chapter 7

tion encountered in database searches for lookups by sorted key. When the
search key is compared to a probe key, the difference is computed. The next
point in the search depends on the sign of the difference. The absolute value
of the difference function is unimodal, in this case having a single minimum
instead of a single maximum.

Karp and Miranker's results show that multiple pr~cessors _will not be very
efficient if they are used to perform a search by makmg multiple probes to a
file ordered by a single search key. Instead, multiple processors should be used
to conduct independent searches. Therefore we cannot expect a multiprocessor
to perform any single-key search much faster _than a single pro_cessor can, but
we can expect a multiprocessor to do many different searches m parallel with
high efficiency.

Does the analysis suggest that multiprocessors are not useful for conducting
parallel search for a single key? In some, but not alt cases, parallel search is
indeed doomed to be inefficient and is reasonable for only small numbers of
processors.

When a database is sorted by some key, the distance between the search
key and a probe key is a unimodal function, so this problem definitely fits the
Karp-Miranker model. When database keys are unsorted, we have the equivalent
of a multimodal function, and the Karp-Miranker assumptions do not hold. A
serial search might have to examine the entire database. In this case, a multi
processor search has a potential for excellent speedup.

Therefore, we are tempted to take advantage of multiprocessors for search
by using them on unsorted databases and claiming excellent performance. In
this case, however, the savings from parallelism is not truly the speedup ob
served; it is the savings in the overhead used to sort the database and maintain
that sorted order. If this overhead is smalC then the effectiveness of the paral
lelism is small. If this overhead is large, then the parallelism is potentially ben
eficial. The actual choices available to the user thus are:

1. Use a serial computer, and use sorting or a database index to facilitate fast
searching; or

2. Use a multiprocessor, and avoid the additional cost to sort the database or
to produce an index.

We must compare the cost and performance of these two alternatives in order
to evaluate parallel searching. We should not compare parallel search to ordinary
serial search unless serial search is truly the only other alternative.

In many business applications the cost of sorting or building an index can
be amortized over hundreds or thousands of searches. Rarely in such instances
does it pay to perform parallel search. On the other hand, some problems in
cryptography are essentially enormous searches that are only performed once
per database. The equivalent of building an index (or sorting the database) is
far more costly than searching the database in parallel by using a multiprocessor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 471

5ection 7.3 Parallel Search-How To Use and Not Use Parallelism 457

A comparison of parallel and serial search in the recent Hterature was stim
ulated by an article by Stanfill a~d Kahle [1986] regarding a highly para1lel search
of a large data base. The solution proposed by Stanfill and Kahle involved the
use of a Connection i\-1a~hine ~ith 64,0.00 1-bit processors to search a multigi
gabyte ~ataba~e, but their solution requ~red the entire database to be read from
disk wh1~e d01ng the search. Because dtsk operahons are very slow compared
to operations done at the c~ock speed of a processor, the enormous cost of reading
an entire data base from disk almost ce~ainly cannot be offset by the speed gain
due to parallel searc~. ~oral and DeWitt {l983] brought this fact to light, and
questioned the prachcahty of a parallel database machine until technology can
provide a much faster auxiliary storage.

Nevertheless, St~nf~ll ~nd Kahle implemented a parallel search of the type
that Boral and DeWitt md1cated would not be efficient. The weakness of the
Stanfill-Kahle approach was observed independently by Stone [l987) and Salton
and Buckley _[1988]_. Stone's analysis suggested that just one of the 64,000 pro
cessors working with the same total memory of the Connection Machine could
perform the s_ame task _somewhat faster if it used an index in order to reduce
the total traff 1c from disk. Salton and Buckley's analysis demonstrated that a
low-cost workstation had roughly comparable performance as the Connection
Machine when the workstation used an index. In both studies the gain in per
formance is strictly due to the much smaller volume of data actually read from
disk. An a1gorithm that succeeds in keeping 64,000 processors busy is not nec
essarily a fast algorithm-the processors have to be performing useful work.

The important observation here is that parallelism is only one of many
possible techniques for solving a problem. It may fare badly with respect to
good serial techniques. Performance evaluation is crucial in judging the effec
tiveness of parallel programs. The comparison must always be done by seeking
good serial algorithms against which to compare the parallel algorithms.

The ultimate quality measure of a parallel algorithm is performance per unit
cost, not just performance alone. All algorithms for all processors can be reduced
to this common measure. While it may be interesting to learn that a 1024-
processor search is faster than a serial search: it beco~es far less interesting
when we discover that the speedup over a senal search 1s a factor 10, and that
we can obtain a factor of 5 speedup by using only 32 processors.

7 .3.! Parallel Branch-and-Bound-The Traveting-Salesman Problem

A remarkable algorithm for solving the Traveling-Salesman Problem provides
an excellent example of where and where not to exploit parallelism. The Trav
eling-Salesman Problem is rather deceptive because it is easily de~cribe~ and
simple in concept, but extremely difficult to solve. The problem 1s to hnd a
rrunimum-distance tour of N cities that visits each city exactly once and returns
to the first city on the tour at the end. The problem input is a list of the distances
bet'Y.reen each pair of cities.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 472

458 Multiprocessor Algorithms Chapter 7

It is well known that this problem belongs to the class of hard problems
known as NP-complete, for which the best available algorithms exhibit a worst
case computation time that grows faster than any polynomial function of the
size of the input [see Aho, Hopcroft, and Ullman 1974]. Many researchers believe
that the computation time for NP-complete problems actually grows at least
exponentially with the size of the input, but this question is unanswered at this
writing.

The algorithm we describe is remarkable because its average complexity is
only O(N3 log N) on a class of randomly selected input problems which is less
than quadratic in the size of the problem since the problem size is O(N 2). This
appears to contradict the findings that the problem is NP-hard, but there is no
contradiction.

The algorithm has a low complexity on the av~rage, but its worst case may
require exponential time, even though this event is extremely unlikely. The
algorithm is from D. R. Smith [1984], who proved the results on average time
and demonstrated that these results are consistent with actual running times
on randomly generated sets of problems. The analysis might not hold for a class
of problem instances whose characterjstics are rather skewed and are not ade
quately represented by the more uniform distributions assumed in Smith's
analysis.

The branch-and-bound technique executed on a serial processor is illustrated
in Fig. 7.8. The algorithm depends on a subroutine that can compute the least
cost permutation for visiting N cities. We use the notation (1 2 3) to describe a
route that visits City 1, then City 2, then City 3, and then returns to City 1. We
call such a visit a etJcle because its starting point is the same as its finishing point.
We call a permutation of the cities to be a set of cycles such as (1 2 3)(4 5 6 7),
such that every city appears in exactly one cycle.

A permutation is not necessarily a tour because in this case if you start at
City 1, you return to City 1 after visjting Cities 2 and 3, and without having
visited any of the other cities. A tour has to visit all of the cities exactly once.
Obviously, a tour is a permutation that has but a single cycle, such as the
permutabon (1 2 3 4 5 6 7) for seven cities.

The subroutine that finds the least-cost permutation finds a permutation
whose sum of city-to-city distances is the minimum among all permutations of
the cities. The reason for finding the least-cost permutation is that it gives a
lower bound on the shortest tour. Since a tour is a special kind of permutation,
the shortest tour for a given problem cannot be shorter than the least-cost
permutation.

Finding the shortest tour is extremely difficult, but finding the least-cost
permutation is relatively easy [see Lawler 1976]. This takes only O(N 3) time the
first time we execute the subroutine. On subsequent executions, the input data
will be only marginally different. Only O(N 2) additional work is required to
obtain the solutions for these subroutine calls. Lawler shows that the discovery

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 473

176

I
(1354 7) (26)

176

(13246)(57) a

176

(13246)(57)

~

(123)(4567)

151

1/2 21 3/1

(a)

r::~sT
1/2 J i3 I ~,

1 (1452637)

~ s 6/2

(b)
7/3

(123)(4567)

[151 l
1121 i3 IM

I
(1452637)

~I B 6/2 7
7/3

(1325)(476)

G
(c)

(l 23)(4567)

I 151 I
11212(31311

• (1452637) (14562)(37) a 201
6/2 3/7

(1325)(476)

~
(1354)(726)

~
7/3

(1534726)

6
(d)

Fig. 7.8 Branch-and-bound search for the Traveling·Salesman Problem:
(a) Initial solution of the problem (three subproblems open);
(b) After examining the three subproblems;
(c) After expanding the two leftmost solutions; and
(d) The search after expanding the node for permutation (1 4 5 6 2)(3 7).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 474

460 Multiprocessor Algorithms Chapter 7

of the least-cost permutation, which in his terminology is the assignment problem,
reduces to a minimum-cost, network-flow problem [Ford and Fulkerson 1956],
which is solved by repeated applications of Dijkstra's shortest-path algorithm

[1959].
Figure 7.8 illustrates how the lower bound information is used. In Fig. 7.8(a),

we show a single node of the search tree labeled by the permutation (1 2 3)
(4 5 6 7), with a total distance of 151 shown inside the node. The algorithm
produces this number by running a least-cost permutation algorithm on the
original algorithm. (To prevent solutions with one-city cycles, the original prob
lem has an infinite cost of going from any city to itself.) Since (1 2 3)(4 5 6 7) is
not a tour, the best tour has an equal or higher cost. The least-cost tour must
differ from this permutation on at least one branch of each cycle, so 1,vithout
loss of generality, we examine the shortest cycle, which in this case is (1 2 3).

The least-cost tour differs from this cycle in at least one way, and possibly
in more ways. That is, either the tour does not go from City 1 to City 2, from
City 2 to City 3, or from City 3 to City 1. These three possibilities are shown in
Fig. 7.8(a) as three labeled arcs leaving the original node.

Since at least one of these three roads is not on the least-cost tour, we can
create three new subproblems to investigate. In each of three subproblems we
eliminate the possibility that one of the three roads of interest is in the least
cost permutation. Figure 7.8(b) shows the result of this step.

The leftmost node at the second level shows what happens when the dis
tance from City 1 to City 2 is made infinite. When we call the least-cost per
mutation subroutine with this new condition, it reports back that the least-cost
permutation is (1 3 5 4 7)(2 6), with a cost of 176. Note that the road from City
1 to City 2 is not on this permutation because that road happens to be infinitely
long.

When the road from City 2 to City 3 is infinite, the least-cost permutation
turns out to be a tour with a cost of 284. Although a tour has been produced
by the algorithm, the tour is not necessarily the least-cost tour for the original
problem. Additional work is required to show that this tour is optimal or to find
a lower-cost tour.

When the road from City 3 to City 1 is infinite, the least-cost permutation
is (1 4 5 6 2)(3 7), with a cost of 201. Although we have now discovered a tour
that has a low cost, it might not be the least-cost tour. Both of the other sub
problems are open to the possibility that further exploration of these candidates
could yield tours of cost lower than 284, although we know now that no tour
can have a cost lower than 176.

To investigate the leftmost node, note that the permutation can be broken
at its shortest cycle by opening the road from City 2 to City 6 or by opening the
road from City 6 to City 2. (These roads do not have to be the same road.)

Similarly, the rightmost node can break the cycle that contains City 3 and
City 7 by opening the road either from City 3 to City 7 or City 7 to City 3. Thus

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 475

section 7.3 Parallel Searc;:h-How To Use and Not Use Parallelism 461

there are four search paths that warrant further exploration. The two best can
didates are the descendants of the leftmost node in the figure because this node
has the least bound of any node on the perimeter of the search tree.

figures 7.8(c) an~ (d} show what happens when we follow the four open
subproblems. Searching beneath the node with the lowest bound obtains two
new permutations, whose costs are 323 and 335, respectively. Note, for example,
that the leftmost permutation is (13 246)(5 7), which is the least-cost permutation
for the case in which City 2 does not follow City 1 and City 6 does not follow
City 2.

At this point, the rightmost node has the lowest bound, and the search
branches to that node for further exploration. Examining the two subproblems
of this node produces two new permutations, whose costs are 419 and 406. The
latter permutation happens to be a tour. None of the subproblems yields either
a tour or permutation whose cost is lower than the cost 284 for the least-cost
tour discovered in Fig. 7.8(b) . Hence, the tour (1 4 5 2 6 3 7) is optimal and the
problem has bee~ so_Ived. . .

Although this h1ghly contrived example 1s not necessarily typical of real
problems, the power of the branch-and-bound algorithm is quite dear. By ex
pending O(N2) time at a node, we can find out how expensive a tour might be
if we examined the descendants of that node in the search for a tour. If a bound
is very high, the search path is not promising, and we can abandon the search
from that node.

In Fig. 7.8, there are 6! = 720 distinct tours of the 7 cities, and the bounding
operation eliminates 718 of them from consideration. We do not claim that the
algorithm behaves this efficiently in general. But D. R. Smith [1984} does claim
that the average number of times that a least-cost permutation is generated is
O(N log N) although the proof is not in this article. With a cost of O(N2) time
to generate a least-cost permutation, the total time for the algorithm on the
average is O(N3 log N).

Since Smith's results assume an unbiased distribution of problems, his re
sults may not hold for problem distributions with strong statistical biases. Never
theless, let us assume that Smith's results hold for a particular set of problems
and consider how parallelism can be put to effective use.

The search tree in Fig. 7.8 in general has (N - 1)! leaf nodes, one for each
possible tour, assuming that each tour starts at City 1. Therefore its depth is
Q(N) if the average branching factor is proportional to N, and its depth is
O[log (N!)J = O(N log N) if the average branching factor is not larger than a
constant that does not depend on N. If the depth is O(N), then we can say that
on the average we examine O(log N) parallel paths while visiting O(N log N)
nodes. This suggests that as many as O(log N) paths can be usefully examined
concurrently in a multiprocessor. If we expend O(N) processors to examine the
open subproblems, we would obtain a useful speedup of only O(log N), and
the speedup is similar to the Karp-Miranker problem.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 476

461 Multiprocessor Algorithms Chapter 7

Note in Fig. 7.8(b) that we can commit two processors simultaneously to
the open subproblems for the leftmost node. We can also commit two processors
to the rightmost node. However, if the leftmost node returns tours whose cost
is lower than 201, which is the cost of the rightmost node, then any additional
computation expended on the rightmost node is wasted effort. This situation is
analogous to the wasted effort in the Karp-Miranker search.

If the depth of the search tree turns out to be of O(N log N), then the
possibility of using parallelism effectively to explore multiple paths is rather
unpromising. On the average only one path is actively pursued by a serial search
in this case, and if multiple paths are pursued concurrently, all path computa
tions but one are almost surely wasted.

The obvious way to apply parallelism is to apply all processors to the com
putation at one node to perform the evaluation of the least-cost permutation.
An efficient approach is to examine only the nodes that a purely serial algorithm
examines. This ensures that no effort is wasted examining other nodes.

In the process of examining a node, apply as many processors as can be
applied efficiently to find the least-cost permutation. That number may vary
with the architecture, depending on communications and access to shared
variables.

Dijkstra's shortest-path algorithm can be executed with a speedup of O(NI
log N) on some N-processor parallel architectures, assuming that contention for
shared resources does not produce excessive performance degradation . The
speedup, however, is architecture dependent. If an architecture can produce a
speedup of O(N/log N) or better for Dijkstra's shortest-path algorithm, then this
architecture will produce a very fast, efficient parallel solution of the Traveling
Salesman Problem, provided that the statistical distributions of the problems to
be solved are similar to those assumed by Smith.

In this example, the key observation is that searches along parallel paths
are not independent and can produce wasted effort, whereas there is an op
portunity for parallelism in performing the work along one path. Pick a prom
ising candidate and focus the computing power on this candidate, rather than
spread the computation across several candidates.

7 .3.3 Speedup and Parallel Complexity

We have stressed efficiency in parallel computation, and have used speedup as
a means to express efficiency. While it is an excellent single measure, speedup
measures when used improperly can be misleading.

For exa~ple, consider an FFT algorithm whose serial complexity is
O(N log N) tor N data points. Using a technique such as described by Pease
[1968] we can construct an N-processor computer that computes an N-point FFT
in a time proportional to log N. Thus, the parallel computer achieves a speedup
of N, and the efficiency is excellent.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 477

section 7.3 Parall~I Search-How To Ust and Not Use Parall~llsm 463

Now consider a different problem and perform a similar analysis. Let this
problem be Pro~Iem X for which there exi~ts son:ie ~ery efficient serial algorithm
that solves any mstance of Problem X of s12e Nm time O(N3) in the worst case.
We say that the complexity of the algorithm is O(N 3). Assume that we are very
fortunate, and are able to demonstrate that no algorithm exists that has a tower
complexity. Consequently, we have a serial algorithm against which we can
compare parallel algorithms.

After some careful study, assume that we produce a novel parallel computer
and a suitable algorithm for that machine that work extremely well together to
solve Problem X. The match is so good that an N-processor version of the
computer system can solve any instance of Problem X of size N in a time O(N2)
in the worse-case. In other words, the parallel complexity of the algorithm on
the computer system is O(N 2

). The research community quickly endorses this
as an efficient scheme, and heralds it as having an O(N) speedup.

But some surprises lie ahead. We build a JOO-processor version of the ma
chine, implement the algorithm, and confirm that it is working correctly. Then
we enter real data of size 100. We run the parallel algorithm on the 100-processor
machine and run the same problem on a serial machine that implements the
efficient serial algorithm. The serial and parallel machine use the same level of
device technology. Our expectation is that we achieve a large speed-up, not
necessarily a 100-to-1 because we have not accounted for constant factors, but
nevertheless we expect to see the parallel algorithm running much faster than
the serial algorithm. But we do not achieve any speedup at all. The parallel
implementation seems to run somewhat slower. Where is the N-fold speedup?
Perhaps the constant factors are working against us in this instance.

We explore further. We run many problems and we let the problems grow
and shrink in size. We also vary the number of processors. As the performance
picture becomes clearer we discover that the speedup is not O(N) but only
O(log N). How can this be true?

We have been misled because the problems that we have been using to test
the algorithm are not the same problems that determine the complexity of either
the serial or parallel algorithms. When we say that an algorithm has a complexity
of O(N 3), we are only saying that the most difficult possible input configuration
of size N can be solved in a time that grows as N3• We have presented no
information on other input configurations. These may or may not be as difficult
to solve. Similarly, to say that the parallel complexity is O(N 2) is the same as
saying that the most difficult problem to solve in parallel can be solved in a time
proportional to O(N 2). The most difficult problem to solve in serial need not
even be related to the most difficult problem to solve in parallel.

\i\7hen we attempted to test the parallel program, we happened to select
problems in a way that produces an average serial complexity of O(N2 log N).
For this selection of problems, the parallel algorithm happens to produce only
O(log N) speedup, and runs in a time proportional to O(N 2), which does not

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 478

464 Multiprocessor Algorithms Chapter 7

violate the claim that the parallel complexity is O(N 2
). The constant coefficients

are just different enough to cause the first parallel test to run slower than the
serial algorithm, and the full battery of tests confirmed that true speedup is

O(log N).
Although this example sounds hypothetical, it is illustrative of actual re-

search results reported in the literature. In the case of parallel algorithms for
the F.FT, the speedup measure is accurate because all input configurations run
in the same amount of time. That is, the worst case, the best case, and the
average case are all the same.

In the case of Problem X, the worst case and the average case are far different.
A measure of complexity based on the worst case misleads us when we produce
instances of the average case . Even if we had produced instances of the worst
case parallel input, we may still be in trouble because the worst-case parallel
input is not necessarily the worst-case serial input. Hence, the worst-case parallel
input need not produce the speedup of O(N) . The only sure way to see N-fold
speedup is to select instances of the worst-case serial input. Though we are
promised N-fold speedup for these inputs, the speedup for all other inputs is
totally unknown from the information at hand. The algorithm we treated orig
inally as a breakthrough may be only a useless curiosity, or alternatively may
eventually be shown to meet our original expectations. We cannot tell until we
investigate the behavior of the parallel algorithm on a realistic set of data inputs.

The important lesson is to understand the limitations of the speedup mea
sure. Does the speedup reported for a parallel algorithm hold for all input data,
typical input data, or for some small subset of input data? Unless the measure
holds for all input data, the measure gives an incomplete picture of the efficiency
of an algorithm. To be a useful measure, the measure should report on typical
input data, whereas the tendency in the literature is to report on worst-case
input data. We must be able to define and analyze the typical case, but rarely
can we find the characteristics of the typical case. This is the difficulty that has
led to worst-case studies, and in turn has produced speedup measures whose
hue significance is still unknown.

7 .4 Transforming Serial Algorithms
into Parallel Algorithms

In p~tting multiprocessors to use, a major hurdle is writing programs for such
architectures. In the worst case, every problem has to be studied anew and
solved by an algorithm implementation tuned to a particular architecture. This
technique will certainly be used for the very largest problems, which consume
days or weeks of computation time, because the human effort expended to
optimize the algorithm is paid back by a large reduction in computer time. But

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 479

Section 7.4 Transforming Serial Algorithms Into Parallel Algorithms 465

for more moderate probl:~s, those that take a fraction of an hour, for example,
the huma_n effort_ to optimize the algorith~ might save only a few minutes of
computation, which may not be worthwhile. Therefore, a major objective is to
use prog~ammed transformations to produce reasonably good parallel programs
from senal programs.

One way to automate the production of parallel programs is to construct a
compiler f_or a standard hi?h-leve~ l~nguage to produce output for a multipro
cessor. With sue~ a co~~iler, ex1stmg software libraries can be mapped to a
multiprocess~~ with~ ~m1murn o_f effort. Some fraction of the library undoubt
edly will exh1b1t neghgible parallehsm and will produce rather inefficient parallel
implementations. These programs can be run serially.

The interesting programs are those that yield efficient parallel codes. The
codes need not be as efficient as hand-coded versions of the programs, provided
they come within a factor of 2 to 5 of a hand-coded translation. If the inefficiency
is as high as a factor of 10, the compiler is still useful as a stopgap tool that
provides a fast "":'ay of_ producing programs for a parallel architecture. The in
efficient translations it produces eventually have to be reprogrammed by
hand or by a better compiler to create versions that are satisfactory for produc
tion use.

Creating a high-quality optimizing compiler for a multiprocessor is a for
midable task. An early attempt by Kuck et al. [1972] showed that there is easily
exploitable parallelism on the order of 10 to 100 in many ordinary FORTRAN
programs. The next decade produced far more sophisticated developments that
have been used extensively for real applications.

For vector architectures, leading work by :Miura [1986], a student of Kuck's,
for Fujitsu vector processors and by F. Allen for the IBM 3090 vector processor
produce code that is nearly as efficient as the best programmers can produce
and is much more efficient than can be produced by inexperienced programmers.

Compilers for multiprocessors have lagged behind compilers for vector pro
cessors because the translgtion problem is far more complex for multiprocessors.
Vector compilers find a way to do one operation simultaneously across many
processors; multiprocessor compilers find a way to do many operations across
many processors at unpredictable times. The thread common to the two types
of compilers is that they need to identify dependences from statement to state
ment to determine the order in which events can be scheduled.

For vectorizing compilers, published work by Kuck et al. [1984], J. R. Allen
et al. [1983], J. R. Allen [1983], and Padua and Wolfe [1986) illustrate the un
derlying theory and the directions taken by compiler writers. The actual art of
vectorizing compilers is more advanced than the literature indicates, but the
literature captures the most important and useful transfonnations. Cytron [1984]
and Padua and Wolfe [1986] address the problem of optimizing code for multi
processors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 480

466 Multiprocessor Algorithms Chapter 7

7 .4.1 Dependence Analysis

The most fruitful way to obtain parallelism i~ serial pro?rams is_ by executing
loop iterations across several processors. We_ illustrate th1~ te_chmque earlier in
this chapter, and we also introduce the notion o~ chu~kszze. m Program 7.4 to
show that one processor can execute a group of iterations instead of a single
iteration. Although other forms of parallelism exist and are potentially detectable
by an optimizing compiler, in typical applications t_he bulk of _the s_peedup ob
tained from parallelism is through the parallel execution of loop iterations. There
fore, we focus on ways to perform loop iterations in parallel in this text.

An optimizing multiprocessor compiler ~as the task of detecting_ parallelism,
but the task name is misleading. The compiler actually detects senal behavior,
and, by default, everything left is potentiall~ executable in parallel. To produce
parallel code for a loop iteration, the compiler has to detect when successive
iterations have to be executed serially. As an example of dependence analysis,
consider the loop:

For ; : = 1 to N do
begin

A[i] : = A[i - 1] IB[i];
end; t do loop •}

As written, each iteration depends directly on the prior iteration because a
variable written in the prior iteration is read by this iteration. This is WRITE/
READ dependence. Other dependences possible are READ/WRITE and WRITE/
WRITE. The READ/WRITE dependence requires the variable to be read by a
prior iteration before it is \-vritten by this one, and the WRITE/WRITE dependence
forces the value of the variable to be written last by the present iteration rather
than by a prior iteration.

The dependence in the example is very easy for a compiler to detect because
it is forced by a single variable. Other examples lead to more complex cases,
such as an iteration with the following statement:

A[i) := A[C[i]];

In this case, the dependence is READ/WRITE if C[i] is less than i and WRITE/
READ if C[i] is greater than i. Moreover, if the values in Care computed during
execution, the compiler cannot determine which dependence exists and therefore
cannot optimize the code. Therefore, the compiler can detect loop-to-loop de
pendences only when all subscript expressions in an iteration and the loop
increment have values known to the compiler. Optimizing compilers are forced
to assume that the dependences are present if index variables depend on exe
cution-time program behavior. Otherwise, the optimization process is likely to
produce a translated program that runs incorrectly.

A general procedure for detecting dependences is to list the names of the
variables read and written in a loop iteration. If a name appears on both lists,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 481

Section 7.4 Transforming Serial Algorithms Into Parallel Algorithms 467

it potentiaIIr leads to a REA~tWRITE or WRITE/READ dependence. All variables
that are wntten are potentially WRITE/WRITE dependences. The compiler has
to examine each case further to determine if an actual dependence exists.

For the WRITE!WRITE dependence to exist, one variable has to be written
by two different loop iterations. This situation usually has two distinct statements
in the loop, such as

A[i) : = B{i]/1 O;
A[i - 1) := C[i) + B[tl;

With both statements present in one iteration, it becomes clear that the prior
iteration, using the value i - 1 as an index value, writes A[i - ll and
A[i - 2], leading to the WRITE/WRITE dependence for variable A(i - l]. Note
that we assume that the loop index is increased by 1 during each iteration. If
the loop index is increased by 2, then there is no dependence caused by writing
two successive values into A. READ/WRITE and WRITE/READ dependences are
equally easy to detect as WRITE/READ dependences.

7 .4.2 Exploiting Parallelism Across Iterations

In this section we show how to use dependence information to guide the trans
lation of serial programs into multiprocessor programs. There are just a few
techniques given here, but they are widely useful and produce the bulk of the
speedup obtainable in typical programs. However, there are many other tech
niques not discussed in this section that are also of value, especially techniques
designed for specific classes of programs. Interested readers will find J. R. Allen
[1983], Cytron [1984], and Padua and Wolfe [1986) useful in-depth treatments
of the topic.

Our objective for a multiprocessor is to split apart iterations that are inde
pendent. This boosts speedup, provided that independent iterations have a
sufficiently high RIC ratio. We also want to chunk iterations together into larger
tasks to boost efficiency by improving the RIC ratio when this also boosts per·
formance, even if it reduces parallelism. The ideal situation is to chunk depen
dent iterations together into large tasks in a way that creates a collection of
independent large tasks.

As an example of this idea, consider Program 7.10. The program is shown
as it would probably be found in a program for a conventional serial machine.
We assume that the program uses neither do seq nor do par phrases, described
earlier in this chapter, because it is written specifically for serial execution.

A straightforward dependence analysis shows that Column 0 of matrix A is
the cause of the dependences. There is a WRITE/READ dependence from iter
ation (i, j) to iteration (i, j + 1) because A[i, 0] is both read and written for these
iterations. This suggests that successive iterations in the serial program have to
be executed serially .

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 482

468 Multiprocessor Algorithms

Program 7.10 Computing row sums of a matrix.

tor i : = 1 to N do
begin

A[i,O] : = 0.0;
for j : = 1 to N do

A[i,O] : = A[i,O] + A [i,j];
end; {" i loop*}

Notes:
1. Matrix A is N x N, with indices running from 1 to N.
2. The sum of Row i is computed and stored in A[i,O].

Chapter 7

A sophisticated compiler should detect that there are no dependences due
to the i index, so the i and j loops can be interchanged, as shown in Program
7.11. The inner loop satisfies the READIWRIJ'E dependence on the index i. To
ensure that Column O is properly initialized, it is initialized separately in an
earlier loop. Note that successive serial executions of the inner loop can be
chunked together into a single task that does all N iterations for one value of i.
Each of these large tasks is independent and can be executed concurrently.

It is also possible to obtain greater parallelism by observing that the inner
loop can be chunked into several medium-size tasks, for example, k of them,
so that each form the sum of Nik row elements . For a particular value of i, the
variable A[i, O] is a variable shared across k tasks, which forces serialization of
the tasks because of a READ/WRITE conflict.

A clever compiler can detect that the summation into the row sum can be
done in any order and can change strictly serial execution of the k tasks into
parallel execution, with each task computing a local sum that is added to the
shared variable at the end of the chunk. The addition at the end is controlled
by a LOCK/UNLOCK, Compare-and-Swap, Fetch-and-Add, or other similar
means. The value of k should be selected to reflect the available parallelism and
the best choice for the RIC ratio.

The key idea illustrated by this example is to observe the essential depen
dences exhibited by the algorithm. The order of execution is free to be changed,
provided that the dependences are satisfied. In the example, the order of in
dexing of the loops is changed, which is a common situation among algorithms.
By changing the order, the transformed program structure has N parallel tasks
(or kN if chunking is used), instead of N2 serial iterations. Not only is the
transformed program more parallel, but its RIC ratio can be adjusted to minimize
synchronization inefficiency.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 483

section 7.4 Transfonnlns Serial Algorithms Into Parallel Algorithms

Program 7.11 Computing row sums of a matrix, transformed version.

for i : = 1 to N do
A[i,O] : = 0.0;

for j : = 1 to N do
begin

for ; : = 1 to N do
A[i,O] : = A[i,O] + A{ij];

end;<-j loop'"}

Notes:
1. Matrix A is N x N, with indices running from 1 to N.
2. The sum of Row i is computed and stored in A[i,OJ.

469

3. For a multiprocessor, the loop on i can be chunked together to make larger tasks
which improves RIC.

As a second example, let us return to the familiar example of the inner loop
of a Poisson solver. In Program 7.1, the item updated depends on its north,
east, south, and west neighbor. No matter how we choose the iterations, by
row or by column, ascending or descending, we will have READ/WRITE and
WRITE/READ conflicts. Therefore interchanging the iterations is not particularly
helpful for this program.

There is, however, a parallel structure that can be exploited here. If the cells
of the matrix are laid out on a checkerboard, then the iteration in Program 7.1
shows how to update a black square by averaging the values in its neighboring
red squares, and similarly, how to update a red square by updating the values
in its neighboring black squares. The red and black squares form two indepen
dent sets of variables, since no red square depends directly on a red square, no
black square depends directly on a black square.

Therefore, a possible approach is to create a task that updates red squares
from black ones, and another task that updates black squares from red ones.
The two tasks can be divided into smaller tasks by chunking indices, and the
chunksize should be chosen to reflect available parallelism and RIC. The iteration
of Program 7.1 can be done by updating the black squares, then updating the
red squares, with each update done across the available processors. Barrier
synchronization is required at the end of an update of each color.

The parallel computation using red and black squares produces an iteration
that is not quite identical to the iteration given in Program 7.1. Note that as each
point is updated, two of its four neighbors have already been updated. For
example, at Row i, Row i - 1 has new data already, but Row i + 1 has not
been updated. So the north and west neighbors of each point are new, and the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 484

470 Multiprocessor Algorithms Chapter 7

south and east neighbors are old. This iteration is called the Gauss-Seidel iteration
[see Varga 1962].

Another possible technique is to compute the updated data for the entire
matrix before making any update. Such a scheme, called the Jacobi iteration,
uses old data for all neighbors. T~e re~-bla~ scheme is equivalent to selecting
new data for all neighbors. In typical situations, all three schemes converge to
the same solution at different rates. The red-black scheme converges the fastest
because it uses new data more quickly than do the other two schemes. The
slowest convergence occurs for the Jacobi iteration.

In general, iterative calculations such as the one illustrated in Program 7.1
may converge or diverge, or they may oscillate while neither converging nor
diverging. If the numerical conditions are such that convergence occurs, then
in general, the more new data used in an iteration, the faster the convergence
will be. Thus, the transformation of Program 7.1 to one that uses a red-black
ordering and executes in parallel on a multiprocessor is likely to be an effective
transformation. If this is done automatically, the program should produce a
warning that the iterative method has been altered in the transformation.

The red-black scheme for Program 7.1 is ideal for multiprocessor use. Be
cause half of the points in a mesh can be executed in parallel, the program can
be split across any reasonable number of processors, and the chunksize can be
set large enough to keep synchronization overhead small. In a multiprocessor,
irregular boundaries and special regions within the mesh are treated easily and
far more efficiently than in a vector architecture that broadcasts one instruction
to all processors.

Is it reasonable to assume that an optimizing compiler is clever enough to
change an iteration from one form to another? If the optimizing compiler is used
for general-purpose computation, the answer is no. There are literally hundreds
of useful transformations that could be applied, which is far too many to in
corporate in a compiler.

However, if the compiler is dedicated to a specific class of computations,
such as partial differential equations, it is quite reasonable to incorporate within
the compiler the most useful transformations that occur in practical problems.
In this case, the transformation of the Gauss-Seidel iteration in Program 7 .1 to
a red-black iteration is frequently done by hand, and it should be known to the
compiler writer.

Optimizing compilers may be viewed as programs that have a repertoire of
tricks to apply, and they do their work by searching through their bag of tricks
for the most appropriate ones to apply. A clever researcher might discover a
new trick, such as the red-black transformation, which no compiler can discover
on its own. Once the trick is known and published widely, the compiler writer
can add the new trick to the compiler's repertoire. The compiler might not be
very good when it is first completed, but as the bag of tricks grows, the compiler
may be able to produce better parallel code than can most programmers.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 485

section 7.4 Transforming Serial Algorithms Into Parallel Algorithms 471

Nevertheless, we may insist that any program transformation must leave
the iteration unchanged. If this is the case for Program 7.1, we need a parallel
program that does the Ga~ss-~eidel i_terati~n. Lamport [1974] observes that a
diagonal scheme, as shown m Fig. 7. 9, 1s equivalent to the Gauss-Seidel iteration.
In Lamport's scheme, the matrix is not scanned by rows or columns, but
by diagonals. Along any_ diago_nal, all the points depend on the previous and
next diagonals. The previous diagonal holds the north and west neighbors; the
next diagonal holds the south and east neighbors. Since each diagonal sees new
data from the prior diagonal and old data on the next diagonal, the iteration
that marches from diagonal to diagonal is a Gauss-Seidel iteration. Lamport
shows that the transformation of a program written in the form of Program 7.1
into a diagonal scan can be incorporated into a compiler and fully automated.

The diagonal scheme has a serious disadvantage because some diagonals
are very short and severely limit parallel execution. Recall that there has to be
Barrier synchronization along a diagonal to ensure that one diagonal is com
pletely updat:d before t~e next di~gonal is started. Lamp~rt, however, sh~ws
that it is possible to combine two diagonals N apart, to obtam a total of N pomts
to update, lying on two different diagonals that can be updated simultaneously.
In the first pass across the diagonals, this algorithm updates Diagonals 1 through
N, one at a time. When Diagonal N + 1 (of length N - 1) is reached, it is paired
with the second iteration of Diagonal 1, to produce work for N points. Next,

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 ,
3 4 5 6 7 8 , 2

4 5 6 7 8 1 2 3

5 6 7 8 1 2 3 4

6 7 8 , 2 3 4 5

7 8 1 2 3 4 5 6

8 , 2 3 4 5 6 7

Fig. 7.9 Lamport's diagonal sweep for the Poisson problem on a square. The number
within each cell identifies the iteration in which the cell is updated. This algorithm is
equivalent to the Gauss-Seidel iteration because the north and west neighbors have new
data, and the south and east neighbors have old data. By scanning two diagonals con
currently, the number of data treated in each operation is constant.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 486

47! Multiprocessor Algorithms Chapter 7

Diagonal N + 2 is paired with Diagonal 2 to produce another set of N points
for updating. This continues through the last iteration, during which it is not
necessary to update the first N diagonals. Although aU N points along the two
diagonals can be updated independently on N processors, they can be chunked
together arbitrarily to match the parallelism to the architecture and raise the
RIC ratio, if necessary. If the number of processors available exceeds N, it is
possible to update odd-numbered and then even-numbered diagonals in parallel
and obtain greater use of parallelism.

7 .4.3 The Effects of Scheduling on Parallelism

The last topic we consider in this section is from Cytron [1984], who considered
the effects of scheduling on parallelism. The idea is to schedule dependent tasks
so that dependences are satisfied, and yet tasks are executed at least partially
in parallel.

As an example of the use of scheduling, consider any loop body in which
there is a WRITE/READ dependence from one iteration to a later iteration. A
typical loop of this type has statements of the form

A[i] := B[i - 1)
B[i] : = C[i);

In this example, Iteration i cannot begin until the prior iteration has written the
value of B[i - 1). If these two statements form the entire iteration, then Iteration
i cannot start until Iteration i - 1 has ended. This is how we expect iterations
to execute when dependences are discovered. But Cytron points out that lengthy
iterations can be partially overlapped.

In our example, the 2 statements could be the first of 20 statements, rather
than the only statements in the iteration. If so, and if no other dependences
exist from iteration to iteration, then Iteration i can begin while Iteration i - 1
is executing, provided that Iteration i waits until B[i - IJ has been computed.

The overlapping of iterations is analogous to pipelined execution of vector
operations, except that the operations within one iteration can be arbitrarily
complex, and the delay between initiations of successive iterations has to be
long enough to satisfy the dependence constraint.

A compiler that exploits this form of parallelism has to be able to control
execution-time scheduling in some way. In the compiled code it can produce
an interrupt, message, or other form of control information at the point that a
dependence is satisfied. The control information should be transmitted to a
scheduler or equivalent task to force the release of a task waiting for the update
to complete. The added overhead of the control information has to be low enough
to make concurrent execution worthwhile. There is no point in seeking con
current operation if the control required is extensive enough to create its own
bottleneck.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 487

Section 7.5 Final Comments on Multiprocessors
473

7.5 Final Comments
on Multiprocessors

This_ brings us to the close of this. chapter. We have only presented a small
portion of the current state of multiprocessor architecture but we b 1· th t

h . hl. h d" d . h' , e 1eve a
the 1g ig ts iscusse m t LS d)i:ipter give an accurate picture of the otential
and pitfalls of multiprocessors. P

Probl~ms of o~er_head a_nd eff~ctive parallelism are serious problems, and
they are likely to lirrut multiprocessors to relatively few processors in practical
systems. The l?OO-processo:r system can become a reality in years to come, but
much _res_earch 1s ne~essary m the interim to solve problems related to efficiency.
Exploitation of multiprocessors depends strongly on finding ways to:

• Eliminate the MSYPS bottleneck;

• Reduce overhead for scheduling tasks;

• Solve the cache-coherence problem or to find an alternate means of providing
fast local memory;

• Map serial programs to parallel programs; and

• Identify useful parallelism, as opposed to parallelism that leads to wasted
effort.

As progress is made on these fronts, the multiprocessor becomes more attractive
and eventually could be the architecture of choice for high-performance systems.

In earlier chapters we discuss six technology constraints that have to be
overcome in an architecture. Some of the constraints are included in the problems
preceding list. Overall, the comparison is as follows:

1. Processor bandwidth: processor bandwidth is extremely satisfactory for the
multiprocessor because each distinct processor in the architecture has the
potential to supply the full processor bandwidth to a problem. This facet of
the archi~ecture is one of its strengths.

2. Memory bandwidth: available memory bandwidth depends strongly on the
mechanism for multiple accesses to memory. If no memory is shared, gross
bandwidth is very high since it is N times the bandwidth of a single pro
cessor. But effective bandwidth is lower because access to remote memories
requires passing messages between one or more intermediate nodes.

If shared memory is available, the bandwidth depends strongly on the
implementation of shared access. A variety of implementations, ranging
from a shared bus to a full crossbar, provide a spectrum of performance and
cost for the architect to consider. The bus is best suited to systems with few
processors, and the shuffle-exchange network, or other similar multilayer
interconnection, is an attractive mechanism to use for larger systems because

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 488

474 Multiprocasor Algorithms Chapter 7

it offers increased performance over the sh_ared bus at a cost that is likely
to be commensurate with the performance 1mprove~ent.

Cache is potentially useful for multiprocessors with a small number of
processors. As the number grows to 8, 16, 32, and larger, the cache-coher
e e problem becomes difficult to solve at reasonable cost. Consequently,
c:~hes are likely to be limited in their use to local vari~bl~s _and inst~uctions
or in other ways that eJiminate the problem of_ mamta1~ng cons1s~ency.
Accesses to uncacheable items tend to occupy a d1sproporhonate fraction of
memory bandwidth of shared memory and are one of the limiting factors

in performance. _ _ ,, ,, . _
Bandwidth is also hm1ted by hot spots, regions of memory that receive

more than their share of accesses. A combining switch reduces the effect of
hot spots by reducing the physical data traffi~ ~equir~d f~r concurrent ac
cesses to shared data. Whether or not the combmmg switch 1s a cost-effective
means for dealing with hot spots is still a matter of intense research, and
the outcome of that study may have a profound impact on the future of
multiprocessors with hundreds of processors.

3. Input/output bandwidth: the multiprocessor provides input/output bandwidth
that grows proportionally to the number of processors. To tap the full band
width potential, it may be necessary to store data externally in unusual ways.
One individual file should be partitioned into multiple segments that can
be accessed concurrently by multiple processors, one processor per segment.
In general, the multiprocessor offers excellent input/output bandwidth, pro
vided that each processor has independent input/output capability.

4. Communication bandwidth: communication bandwidth available within a mul
tiprocessor is strictly a function of the interconnection structure. Bandwidth
available through ring and bus interconnections is low in cost, but suitable
for systems with up to only 8 or 16 processors. As the number of processors
increases above this amount, contention at the communications network
tends to degrade performance. To support hundreds or thousands of pro
cessors requires a more sophisticated interconnection structure to tie pro
cessors to the memory system and to each other.

5. Synchronization: multiprocessors without combining networks or the equiv
alent have a maximum MSYPS rate that is independent of the number of
processors, and therefore the maximum sustainable MSYPS rate becomes a
serious bottleneck for systems with a moderate to large number of processors.

The combining switch or the synchronization bus may provide a means
for the maximum sustainable MSYPS rate to increase proportionally with
the number of processors in a system. The synchronization bus is more
attracti~e b7ca~se of its lower cost. However, research is still in progress to
deterrrune if either or both solutions are cost-effective and practical to
implement.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 489

Exercises 475

6. Multiple purpose: the most versatile parallel processors are multiprocessors
because ea_ch froce~sor can operate independently of all other processors if
this behavior 1s desrrable and all constraints can be satisfied.

This list shows the strengths and weaknesses of multiprocessors. The strengths
for multiprocessors are high processing and input/output bandwidths and great
flexibility. The weaknesses are synchronization limitations, memory bandwidth,
and communication bandwidth. These three areas provide a great challenge for
the computer architect because, in an era of fast technological change, new
approaches become feasible almost overnight, and old approaches become ob
solete as quickly.

Multiprocessors are not as well understood as are vector processors, mainly
because their development lagged behind the development of vector processors
by more than a decade. In speculating about the future of multiprocessors, we
expect to see many systems with a small number of processors. Whether or not
the 1000-processor system becomes widely used is only conjectural today and
depends strongly on how well new technology can be adapted to the needs of
multiprocessors.

Exercises
7.1 The inner loop of an iteration has the following form:

A{i] : = B[i];
C[i] : = A[i] + B[i - 1];
O{i] := A[i + 1];

a) Find the precedence constraints among t~ree successive iterations . of :h_is loop
which statements depend directly on which statements? Are the md1v1dual it-
erations executable in parallel?

b) Let the middle equation be changed so that Bli - 1] becomes B[i]. Repeat a.

c) Let the middle equation be changed so that B(i - 11 becomes B[i + 1]. Repeat

a.
7 .2 The inner loop of a program is the following :

A[i, jl : = A[i + 1, j - 1];

a) Let this statement be nested within two loops, the outer loop on_; and ~he i~ner

1 · Give an example of loop-control statements that pemut the iterations iir t~n ~~ chunked together and the iterations on i to be independent processes

that can be executed in parallel.
b) Give an example of loop-control statements that do not permit independent

execution of iterations on j that are chunked together.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 490

476 Multiprocessor Algorithms Chapter 7

7.3 The purpose of this exercise is to explore architectural support for the do par phrase.
Consider a do par loop that is to be repeated N times.

a) Assume a multiprocessor that has access to shared and local memory. Before
the do par is reached, all program instructions and data are resident in shared
memory. Assume that the iterations are truly independent in that there are no
READ/WRITE, WRITE/WRITE, or WRITE/READ conflicts . Show a scheme for
initializing the iterations so that each iteration can execute concurrently with
other iterations, and one copy of the program in shared memory is used for all
iterations. Let the index variable for the loop be i and assume that the loop
references vector elements A(i] and B[i]. To achieve maximum performance, how
do you decide whether a datum should be moved to local memory or left in
global memory during a loop iteration?

b) The process of initializing and initiating loop iterations can be done sequentially
in O(N) time or in parallel in O(log N) time. Write a brief program suitable for
execution in a multiprocessor computer that is capable of initiating 128 iterations
of a do par loop and has a complexity of O(log N) . Assume the shared and local
memory structure used in a, and assume that the processes can be initiated
immediately and need not be queued while waiting for a processor to become
available.

c) Devise some architectural support for the process of b to simplify its program
ming. The support should consist of one or more machine instructions specific
to this process. Describe each instruction and the operands that it requires.
Describe any other facilities in a multiprocessor architecture required by these
instructions to facilitate the initiation process.

7.4 Exercise 7.3 ignores the problem of queueing tasks if processors are unavailable.
Assume an O(log f'.l) task-generation process and consider how to implement task
queueing if no processors are available.

a) Assume that the multiprocessor shared memory is accessed via a crossbar switch
and that pending tasks are queued on a single-task queue. Develop a performance
model that estimates the cost of task queueing and dequeueing under the con
dition that the number of iterations to run concurrently is tv.•ice the number of
available processors. How does this change when the number of iterations to
run is 1024 times the number of available processors?

b) What specialized instructions for task queueing can assist the process in n? De
scribe what each such instruction does and the operands that it requires. To
demonstrate their use, show a program fragment for task queueing that uses
these instructions. Include a mechanism for determining whether or not a task
has to be queued.

c) Consider an architecture that supports Fetch-and-Add. Repeat a.

7.5 The purpose of this exercise is to consider the implementation of the Barrier op
eration. Assume a multiprocessor with shared memory accessed by means of a
crossbar switch.

a) Show a sequence of machine instructions that implements the Barrier operation.
Estimate the machine performance of your code when N processors attempt to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 491

Exercises
477

execute the code concurrently Describe ,.,h d
• · n V vour co e works correctly · concurrent-execution environment. · · · . m a

b) Repeat a for a multiprocessor based on a bus interconnection.

c) Repeat a for a multiprocessor based on an interconnectio tw k h
Fetch-and-Add. n ne or t at supports

7.6 The purpose of this exercise is to compare different svnch · t· h ·
b. · f h . . 1 ron1za 10n tee mques.

Theo 1ective o t e exercise 1s to create a circular buffer of I n th N 1·h
. e g J • ere are two

subrou~mes, Put and Get, that control input and output to the buffer. The im le-
mentation has to be free of deadlock and livelock. p

a) S~ow an im~lementation of Put and Get that uses Test-and-Set for synchroniz-
ation. Use a h1gh-level language plus Test-and-Set to describe your implementation.

b) Repeat a using Increment and Decrement instead of Test-and-Set.

c) Repeat a using Compare-and-Swap instead of Test-and-Set.

d) Repeat a using Fetch-and-Add instead of Test-and-Set.

7.7 The. purpose of ~his ex~rcise is to explore the use of Compare-and-Swap on linked
list 1mplementat1ons ot queues.

a) Consider a queue implemented as a linked list with Head and Tai/ pointers as
described in the body of the chapter. Assume that DEQUEUEs cannot run con
currently with ENQUEUEs and that as many as N ENQUEUEs can run concur
rently. Give an implementation of ENQUEUE with Compare-and-Swap that works
correctly under these conditions, including the ability to add an item to an empty
queue.

b) Construct an implementation of DEQUEUE with Compare-and-Swap. How does
your implementation handle the special case in which DEQUEUE produces an
empty queue? Does your implementation work correctly if run concurrently with
ENQUEUE from the first part?

7.8 The purpose of this exercise is to take the reader through the details of a complete
and correct implementation of Compare-and-Sv,·ap.

a) Examine the skeleton of ENQUEUE as shown in Program 7.9. Note that part of
the program is missing. The program does not specify what happens when it
tries to place a new value in a link field and discovers that the link field has
changed to nonzero. Study this carefully and write a corresponding DEQUEUE
program. In your DEQUEUE program you should remove an item from the
queue by copying the item in its link field to the Head pointer. Note that the
instant the Head pointer is updated with a O value marks an instant in which the
ENQUEUE must alter the outcome of its test on the value of Head. Your program
should install a new link value in a link field of the item deleted that takes on
a special value that signifies "Deleted." You should consider writing the DE
QUEUE program in either of two ways-one way that modifies the Head pointer
and then modifies the link field with the "Deleted" value, and the other way
that reverses the order.

b) In your DEQUEUE program insert the code that tests for a~ ~mpty queue, an~
attempt to set Tail to O to indicate this condition. Before Tail 1s set to 0, what is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 492

478 Multiprocessor Algorithms Chapter 7

the value that should be in this variable if no ENQUEUEs are active? If anv
ENQUEUES are active, what should be the action of DEQUEUE? •

c) Now consider the missing code from Program 7.9 for ENQUEUE . When EN
QUEUE discovers a link with a nonzero value that expects to have the value o,
under what condition can this happen? In that case, what code should be exe
cuted for ENQUEUE to exit correctly?

d) In either your ENQUEUE or DEQUEUE programs, you may have written a loop
that repeatedly tests some variable waiting for another program to alter it. Al
though this is correct in a technical sense, it is not necessarily a preferred solution.
Examine any such loop you have written and determine what function has to
be performed after the loop that cannot be performed until the second program
takes some action. If the looping program were to exit immediately, the function
could be performed instead by the program whose unfinished execution caused
the loop to occur. Find a means to eliminate the loop by moving the function to
be performed after the loop from one program to another.

e) Reexamine the Compare-and-Swaps in your program. Some or all of them may
have to be double Compare-and-Swaps in which one o{ two items is a counte;,
as shown in Program 7.9, in order to detect the occurrence of a sequence of
events that leaves Head or Tail or some other variable in a final state that is the
same as the initial state. Determine which Compare-and-Swaps must be double
(shared variable and a counter variable) and which can be single (no counter
variable).

7.9 The purpose of this exercise is to investigate the performance of Dijkstra's shortest
path algorithm [1959] on various multiprocessors. The objective is to find the length
of the shortest path from Node I to Node x for an arbitrarily specified node x in a
graph. Dijkstra's algorithm accepts as input N2 point-to-point distances among N
nodes. Let the distances be given in the matrix D[i, j]. The matrix is symmetric and
all entries are nonnegative. The algorithm is a node-labeling algorithm in which
nodes are initially given temporary labels that give an upper bound on the shortest
path to each node. At the end of each major iteration, some temporary label becomes
permanent and never changes again in the course of the algorithm. Eventually all
labels are made permanent, at which point the algorithm has found the length of
the shortest path from Node 1 to any other node in the graph. Labels are held in
the array L.

Write a parallel code for the following algorithm and find its complexity.

a) Give Node 1 the permanent label 0, that is, set L[l] to 0.

b) Label Nodes 2 through N with temporary labels such that L[iJ, the label for Node
i, receives the value D[l, i]. (The distance to Node i is not greater than D[l, i].)

c) Among the temporary labels, find the node with the smallest label, breaking ties
arbitrarily. Let this be Node j. Make this label permanent.

d) For each node with a temporary label, such as Node k, change its label to L[j]
+ D[j, k] if that is less than its current label. (The shortest path to Node j,
followed by the direct path from Node j to Node k, is shorter than the best path
to Node k found thus far.)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 493

Exercises 479

7, 10 QuickSort is a very fast sorting algorithm that can be described succinctly by the
following Pascal-like program .

Procedure QuickSort (Low: integer, High: Integer, var A array of real):
{• Sort the array A for the range starting at Low and ending at High·}
begin

var Pivot: integer;
Procedure Parlition{Low,High,A,Pivof);

t Partition guesses the median of the numbers in the array between Low and
High, then ~oves data ~ro~nd in the array so that A[Pivot] contains its guess
for the median, and the 1nd1ces between Low and Pivot - 1 contain smaller
values than A[Pivot], and the indices between Pivot + 1 and High contain
larger values than A{Pivot]. •}
begin

end; {" of Partition "}
if Pivot - Low> 1 then QuickSort(Low,Pivot - 1,A);
if High - Pivot> 1 then QuickSort(Pivot + 1,High,A);

end;

We wish to run this program on a multiprocessor.

a) Modify the algorithm in some fashion to exploit multiprocessing. Use a high
level language to describe your multiprocessing version of the algorithm, and
explain in English how your algorithm functions.

b) Describe the architecture of a multiprocessor that executes your algorithm. If
your architecture passes messages among processors when a parallel procedure
is invoked, indicate how much information is passed for a call on QuickSort. If
your processor has a shared memory, describe how many references occur to
shared memory at the point of calling a parallel procedure, and count these
references for the case of a call to QuickSort.

c) Hand simulate the execution of QuickSort on your architecture for a small ex
ample. In this example, what are the bottlenecks for a multiprocessor imple
mentation?

d) Assume that Partition fortuitously always finds the median in its assigned region
of an array, and that it does so in time proportional to the size of that portion
of the array. Then what is the asymptotic complexity of the QuickSort problem
on your architecture? Show your derivation.

7.11 The intent of this question is to explore the effectiveness of parallel search in an
AND/OR search tree.
a) Consider a very simple OR search tree that consists of M alternatives, any one

of which might lead to a satisfactory solution for a search. Assume that each
aJternative has a probability p of being satisfactory, and q for being unsatisfactory,
and the alternatives are independent. A serial search of this tree completes the
exploration of one alternative during a single step, and halts when the first
success is discovered or when all alternatives are exhausted.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 494

480 Multiprocessor Algorithms Chapter 7

If N processors are used to search the tree in parallel, they take a single step to
search N of the possible alterna .tives, assuming that N s M . What.is the speedup
for p = 0.1? For p = 0.9? Why 1s the speedup dependent on p? Give an intuitive
explanation for your answer .

b) Repeat the first part for a similar tree whose root node is an AND node instead
of an OR node. That is, the tree search is successful only if all alternatives succeed
otherwise it is unsuccessful. A serial search terminates when the first unsuc~
cessful alternative is found, or if the entire tree is searched and all alternatives
are successful.

c) Consider a two-level tree whose root node is a two-alternative AND node and
whose nodes at the next level are two-alternative OR nodes. Let p be the prob
ability of success of an OR-node alternative. For smalJ values of p, what is the
potential speedup of a parallel search and how do you schedule processors to
achieve this speedup? For large values of p, what is the potential speedup, and
how do you schedule processors to achieve this speedup?

d) Finally, consider multilevel trees, with all nodes having two successors, and with
nodes at successive levels alternating between OR nodes and AND nodes. (The
top node is an AND node; its offspring are OR nodes; their offspring are AND
nodes, ...). If the tree has M levels, each node with two offspring, then the
number of leaf nodes is 2M. The potential parallelism thus is 2M. If p is the
probability of success of a leaf node, show that the best possible parallelism is
O(VM) for large and small p. What happens for p that are near the center of the
range?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 495

References

Agarwal, A ., J. Hennessy, and M. Horowitz. '' An analytical cache model." ACM Trans
actions on Computer Systems, 7, no. 2, 184-215, May 1989.

Agerwala, T., and J. Cocke. "High performance reduced instruction set processors." IBM
Research Division Report RC 12434, March 31, 1987.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo
rithms. Reading, Mass.: Addison-Wesley, 1974.

Allen, J. R. Dependence Analysis for Subscripted Variables and its Application to Program Trans
formation, Ph.D. thesis, Rice University , 1983.

Allen, J. R., K. Kennedy, C. Porterfield, and J. Warren. "Conversion of control depen
dence to data dependence ." Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Tex., January 1983.

Amdahl, G. M., G. A . Blaauw, and F. P. Brooks, Jr. "Architecture of the IBM System/
360." IBM Journal of Research and Development, 8, no. 2, 87-101, April 1964.

Archibald, J., and J.-L. Baer. "Cache coherence protocols: Evaluation using a multipro
cessor simulation model." ACM Transaction on Computers, 4, no. 4, 273-298, Novem
ber 1986.

Baer, J.-L. Computer Systems Architecture. Potomac, Md.: Computer Science Press, 1980.

Batcher, K. E. "Sorting networks and their applications." AFIPS Conference Proceedings,
1968 SJCC, 32, Washington, D.C.: Thompson Books, 307-314, 1968.

Beetem, J., M. Oenneau, and D. Weingarten. "The GF-11 supercomputer ." Proceedings
of the 1985 International Conference on Parallel Processing, IEEE Cat. No. 85CH2140·2,
108-115, August 1985.

481

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 496

482 References

Belady, L. "A study of replacement algorithms for a virtual-store computer." IBM Systems
Journal, 5, no. 2, 78- 101, 1966.

Bell, C. G., and A. Newell. Computer Structures: Rendings and Examples. New York: McGraw.
Hill, 1971.

Benes, V. "Optimal rearrangeable multistage connecting networks." Bell System Teclznical
Journal, 43, no. 4, 1641-1656, July 1964.

Booth, A. D . "A signed binary multiplication technique ." Quarterly Journal of Mech. Appl.
Math., 4, part 2, 1951.

Boral, H., and D. J. DeWitt. "Database machines: An idea whose time has passed? A
critique of the future of database machines." In Database Machines, edited by H. o.
Leilich and M. Missikoff, Berlin: Springer Verlag, 166-187, 1983.

Brunk, H. D. An Introduction to Mathematic.al Statistics. Boston: Ginn and Co., 1960.

Budnik, P. P., and D. J. Kuck. "The organization and use of parallel memories." IEEE
Transactions on Computers, C-20, no. 12, 1566-1569, 1971.

Burks, A. W., H . H . Goldstine, and J. von Neumann. "Preliminary discussion of the
logical design of an electronic computing instrument." U. S. Army Ordnance Depart
ment Report, 1946. Reprinted in Bell and Newell [1971], 92-119.

Buzbee, B. L., G. H. Golub, and C. W. Nielson. "On direct methods for solving Poisson's
equation." SIAM Journal of Numerical Analysis, 7, 627-656, 1970.

Charlesworttt, A. E., and J. L. Gustafson . "Introducing replicated VLSI to supercom
puting: the FPS-164/MAX scientific computer." Computer, 19, no. 3, 10-23, March
1986.

Chen, P. Y., D. H. Lawrie, P. C. Yew, and D. A. Padua. "Interconnection networks using
shuffles ." Computer, 14, no. 12, 55-64, December 1981.

"v Chen, T. C. "ParaJJelism, pipelining, and computer efficiency." Computer Design, 69-74,
January 1971.

Chen, T. C. "Overlap and pipeline processing." Chapter 9 of Introduction to Computer
·-...._ Architecture, edited by H. Stone, Chicago: Science Research Assoc ., 427-486, 1980.

Chu, W. W., and H. Opderbeck. "Program behavior and the page-fault-frequency re
placement algorithm." Computer, 9, no. 11, 29-38, November 1976.

Clark, D. W, andJ. S. Erner . "Performance of the VAX-11/780 translation buffer: simulation
and measurement." ACM Transactions on Computer Systems, 3, no. 1, 31-62, February
1985.

Cocke, J., and V. Markstein. "The evolution of RISC technology at IBM." IBM fournal of
Research and Development, 34, no . 1, 4-11, January 1990.

Coffman, E. G., Jr., and P. J. Denning. Operating Systems Theory. Englewood Cliffs, N.J. :
Prentice-Hall, 1973.

Colwt:IJ, R. P., et al. "Computers, complexity, and controversy." Computer, 18, no . 9, 8-
19, September 1985.

Cooley, J. W., and J. W. Tukey. "An algorithm for the machine calculation of complex
Fourier series." Mathematics of Computation, 191 297-301, April 1965.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 497

References 483

Coonen, J. T. "An implementation guide to a proposed standard for floating-point arith
metic." Computer, 13, no. 1, 68-79, January 1980.

Crowther, ~-, et al._ "Performan:e measu~ements on a 128-node butterfly parallel pro
cessor. Proceedmgs of the 198:, International Confl?rence on Parallel Processing, IEEE Cat.
No. 85CH2140-2, 531-540, August 1985.

Cvetanovic, Z. Performance Analysis of Multiple-Processor Systems, Ph.D. thesis, ECE De
partment, University of Massachusetts, 1985.

Cvetanovic, Z. "Performance analysis of the FFr algorithm on a shared-memory parallel
architecture ." IBM Journal of Research and Development, 31, no. 4, 435-451, July 1987.

Cytron, R. G. Compile-Time Scheduling and OptimiZ1Jtion for Asynchronous Machines, Ph.D.
thesis, Univ. of Illinois, 1984.

Davidson, E. S. ''The design and control of pipelined function generators." Proceedings
of the 1971 International Conference on Systems, Networks, and Computers, Oaxtepec,
Mexico, 19-21, January 1971.

Denning, P. J. [1968a}. "Thrashing: Its causes and prevention." AFIPS Conference Pro
ceedings, 1968 FJCC, 33, Washington, D.C.: Thompson Books, 915-922, 1968.

Denning, P. J. [1968b]. "The working-set model for program behavior." Communications
of the ACM, 11, no. 5, 323-333, May 1968.

Denning, P. J., J. E. Savage, and J. R. Spim. "Models for locality in program behavior."
Department of Electrical Engineering, Princeton Univ., Princeton, New Jersey Com
puter Science Report TR-107, April 1972.

Dias, D. M., and J. R. Jump. "Packet switching interconnection networks for modular
systems." Computer, 14, no. 12, 43-54, December 1981.

Dijkstra, E. W. "A note on two problems in connexion with graphs." Numerishce Math
ematik, 1, 269-271, 1959.

Dijkstra, E. W. "Solution of a problem in concurrent programming." Communications of
the ACM, 8, 569-570, September 1965.

Ditzel, D. R., and H. R. Mclellan. "Branch folding in the CRISP microprocessor: Reducing
branch delay to zero." Proceedings of the 14th lntemational Symposium on Computer
Architecture, IEEE Cat No. 87CH2420-8, Pittsburgh, Pa., 2-9, June 1987.

Dubois, M., and F. A. Briggs. "Effects of cache coherency in multiprocessor systems."
IEEE Transactions on Computers, C-31, no. 11, 1083-99, November 1982.

Dubois, M., C. Scheurich, and F. Briggs. "Memory access buffering in multiprocessors."
Proceedings of the 13th International Symposium on Computer Architecture, Tokyo, Japan,
434-442, June 1986.

Eck.house, R. H., Jr., and H. M. Levy. Computer Programming and Architecture: The VAX-
11. Bedford, Mass.: Digital Press, 1980.

Eggers, S. J ., and R. H. Katz. "Evaluating the performance of four snooping cache
coherency protocols." Proceedings of the 16th International Symposium on Computer Ar
chitecture, IEEE Catalog Number 89CH2705-2, 2-15, June 1989.

Flynn, M. J. "Very high-speed computers." Proceedings of the IEEE, 54, 1901-1909, De
cember 1966.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 498

484 Rderences

Ford, L. R.,Jr., and 0. R. Fulkerson. "Maximal flow through a network." Canadian Journal
of Mathematics, 8, 399-404, 1956.

Forsythe, G., and C. B. Moler. Computer Solution of Linear Algebraic Systems. Englewood
Cliffs, N .J.: Prentice-Hall, 1967.

Fox, G., et al. Solving Problems on Concurrent Processors, Vol. 1, General Techniques and Regular
Problems. Englewood Cliffs, N .J.: Prentice-Hall, 1988.

Ghanem, M. z. "Dynamic partitioning of the main memory using the working set con
cept." IBM Journal of Research and Developme11t, 19, no. 5, 445-450, September 1975.

Gharachorloo, K., et al. "Memory consistency and event ordering in scalable shared
memory multiprocessors." Proceedings of the 17th International Symposium on Computer
Architecture, IEEE Cat No. 90CH2887-8, Seattle, Wash., 16-26, May 1990.

Goodman, J. "Using cache memory to reduce proces~or-memory traffic." Proceedings of
the 10th Jntenzational Symposium on Computer Architecture, Stockholm, Sweden, 124-
131, June 1983.

Gottlieb, A., et al. "The NYU Ultracomputer-Designing an MIMD shared-memory par
allel computer." IEEE Transactions on Computers, C-32, no. 2, 175-189, February
1983.

Grohoski, G. F. "Machine organization of the IBM RISC System/6000 processor." IBM
Journal of Research and Development, 34 no. 1, 37-58, January 1990.

Green, P., Jr., and H. S. Stone. "The implementation of a barrier for multiprocessors by
means of an optical bus." IBM Technical Disclosure Bulletin, 33, no . 1 B, 291-292,
2 June 1990.

Halstead, R. "Multilisp: An overview and working example." ACM Transactions 011 Pro
grammilzg Languages and Systems, 7, no. 4, 501-538, October 1985 .

..... _,. Hayes, J. P. Computer Architecture and Organization. New York: McGraw-Hill, 1978.

Heidelberger, P., B. D. Rathi, and H . S. Stone. "A low-cost contention-free barrier syn
chronization." IBM Technical Disclosure Bulletin, 31, no. 11, 328-329, 2 April 1989.

Heidelberger, P., B. D. Rathi, and H. S. Stone. "A device for performing efficient task
distribution with a bus connection." IBM Technical Disclosure Bulletin, 32, no. 9A,
360-362, 2 January 1990.

Heller, D. E. "Some aspects of the cyclic reduction algorithm for block tridiagonal linear
systems." SIAM Journal of Numerical Analysis, 13, 484-496, 1976.

Heller, D. E. "A survey of parallel algorithms in numerical linear algebra." SIAM Re-view,
20, no. 4, 740-777, 1978.

Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitative Approach, San
...... ,,,. Mateo, Calif.: Morgan Kaufmann, 1990.

Hill, M., et al. "Design decisions in SPUR." Computer, 19, no. 11, 8-22, November 1986.

Hill, M., and A. Smith. "Evaluating associativity in CPU Caches." IEEE Transactions on
Computers, 38, no. 12, 1612-1630, December 1989.

Hillis, W. D. The Connection Mad1ine. Cambridge, Mass.: MIT Press, 1986.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 499

References
485

Hillis, W. D ., and G . L. Steele, Jr. "Data parallel algorithms" C • .
29, no. 12, 1170-1184, December 1986. . ommumcat1011s of the ACM,

Hoshino, T. "Invitation to the world of 'PAX'." Compufor 19
5 68 79

M
• , , no. , - , av 1986.

Hoshino, T. PAX Computer: High-Speed Pnra/lel Proccssino a d 5 · t ·t · c · ' .
M Add . u, I 1989 · ~, 11 ne,r r ,c om111,tmo, Readmg ass .: 1son-nesey, . ,, ·

Hwang, K. Computer Arithmetic: Principles, Architcctrire and Design. New York: Wiley,
1978.

Hwang, K., an~ F. A. Briggs . Computer Architecture and Parallel Processing. New y
0

k-
McGraw-H1ll, 1984. r •

IBM System/370 Principles of Operation, GA22-7000-9, File No . S370-01 T th Ed. ·
1983. , en 1t1on,

IEEE. IEEE Sta11dard 754-1985 for Binary Floating-Point Arithmetic, Order No. CN953, 1985.

Indurkhya, ~ -, ~- S. Stone, and,~- Xi-Cheng. "?ptimal partitioning of randomly gen
erated d1stnbuted programs. IEEE Transactions ori Software Engineering, SE-12, no.
3, 483-495, March 1986.

James, D . V., et al. "Scalable coherent interface." Computer, 23, no. 6, 74-77, June 1990.

Jouppi, ~ - P. "The nonuniform dist
1

~ibution of instruction-level and machine parallelism
and its effect on performance. IEEE Transactions 011 Computers, 38, no. 12, 1645-
1658, December 1989.

Karp, R. M ., and W. L. Miranker. "Parallel minimax search for a maximum." Journal of
Combinatorial Theory, 4, no. 1, 19-39, 1968.

Kilburn, T. D ., R. B. Payne, and D. J. Howarth. "One-level storage system." IRE Trans
actions on Electronic Computers, EC-11, no . 2, 223-235, April 1962.

Kobayashi, M., and M. H. MacDougall. ''The stack growth function: cache line reference
models.'' IEEE Transactions on Computers, C-38, no. 6, 798-804, June, 1989.

Kogge, P. M. The Architecture of Pipelined Computers. New York: McGraw-Hill, 1981.

Kogge, P. M., and H. S. Stone. "A parallel algorithm for the efficient solution of a general
class of recurrence equations." IEEE Transactions on Computers, C-22, 786-93, 1973.

Kruskal, C. P., and M. Snir. "The performance of multistage interconnection networks
for multiprocessors." IEEE Transactions on Computers, C-32, 1091-1098, December
1983.

Kuck, D . J. "Parallel processing in ordinary programs." In Advances in Computers, 15,
edited by Rubinoff and Yovits, New York: Academic Press, 119-179, 1976.

Kuck, D. J., R. H. Kuhn, B. Leasure, and M. Wolf. "The structure of an advanced
vectorizer for pipelined programs." ln Tutorial on Supercomputers: Designs and Appli
cations, edited by K. Hwang, New York: IEEE Press EH0219-6, 163-178, 1984.

Kuck, D. J., Y. Muraoka, and S.-C. Chen . "On the number of operations simultaneously
executable in FORTRAN-like programs and their resulting speedup." IEEE Trans
actions on Computers, C-21, no . 12, 1293-1310, December 1972.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 500

486 References

Kung, H. T., and C. E. Leiserson. "Systolic arrays (for VLSI)." In 1978 Symposium on
Sparse Matrix Computations and Their Applications, edited by I. S. Duff and G. W.
Stewart, 48-53, 1978.

Laha, S., J. H. Patel, and R. K. Iyer. "Accurate low-cost methods for performance eval
uation of cache memory systems." IEEE Transactions on Computers, C•37, no. 11,
1325-1336, November 1988.

Lamport, L. "The parallel execution of DO loops." Communications of the ACM, 17, no.

2, 83-93, February 1974.
Lamport, L. "How to make a multiprocessor computer that correctly executes multi

process programs." IEEE Transactions on Computers, C-28, no. 9, 690-691, September
1979.

Lawler, E. L. Combinatorial Optimi~tion: Networks and Matroids, New York: Holt, Rinehart,
and Winston, 1976.

Lawrie, D. H. "Access and alignment of data in an array processor." IEEE Transactions
on Computers, C-24, 496-503, December 1975.

Lenoski, D., et al. "The directory-based cache coherence protocol for the DASH multi•
processor." Proceedings of the 17th International Symposium on Computer Architecture,
IEEE Cat No. 90CH2887-8, Seattle, Wash., 149-159, May 1990.

Losq, J. J., G. S. Rao, and H. E. Sachar. "Decode history table for conditional branch
instructions." U. S. Patent No. 4,477,872, October 1984.

Mashburn, H. H. "The C.mmp/Hydra project: an architectural overview." Chapter 22 of
Computer Structures: Principles and Examples. D. P. Siewiorek, C. G. Bell, and A.
Newell, New York: McGraw-Hill, 350-370, 1982.

Mattson, R. L., J. Gecsei, 0. R. Stutz, and I. L. Traiger. "Evaluation techniques for storage
hierarchies." IBM Systems Journal, 9, 78-117, 1970.

Mead C., and L. Conway. Introduction to VLSI Systems. Reading, Mass.: Addison-Wesley,
1980.

Miura, K. "Vectorization of phase space Monte Carlo code in FACOM vector processor
VP-200." Proceedings of the 1985 Conference on Computing in High Energy Physics, edited
by L. 0. Hertzberger and W. Hoogland, Amsterdam: North-Holland, Elsevier, 401-
408, 1986.

Nicol, D. M. "Optimum partitioning of random programs across two processors." IEEE
Transactions on Software Engineering, SE-15, no. 2, 134-141, February 1989.

Organick, E. I. The Multics System: An Examination of Its Structure. Cambridge, Mass.: MIT
Press, 1972.

Organick, E. I. Computer System Organization: the B5700/B6700 Series, New York: Academic
Press, 1973.

Padmanabhan, K., and D. H. Lawrie. "Performance analysis of redundant-path networks
for multiprocessor systems." ACM Transactions on Computer Systems, 3, no. 2, 117-
144, May 1985.

Padua, D. A., and M. J. Wolfe. "Advanced compiler optimizations for supercomputers."
Communications of the ACM, 29, no. 12, 1184-1201, December 1986.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 501

References
487

Patel, J. H., and E. S. Davidson. "Improving the throughput of • r b . .
f d] " p d · f ti Tl · a plpe me y mserhon

o e ays. rocee mgs O le 11rd Annual Computer Architecture Svmposium IEEE N
76CH 0143-SC, 159-163, 1976. - , · o.

Patt,_Y., W.-~. H,~•u, and M. Shebanow. "HPS, a new microarchitecture: Rationale and
mtroduchon. Proceedings of the 18th Annual Workshop

O
M. · IEEE

S . ri ?Croprogrammmg
Computer ot1ety Press, 103-108, December 1985. '

Patterson, D . A. "Reduced instruction set computers." Commm,ications of the ACM
28 no. 1, 8-21, January 1985. ' '

Patterson, D. A., and C.H. Sequin. "A VLSI RISC." Comp1.der 15 no 9 8 21 5 t b , , . , - , ep em er 1982.

Pease, M. C. "An adaptation of the fast Fourier transform for parallel processing.'' Jormra/
of the ACM, 15, 252-264, 1968.

Pfister, G., et al. "The IBM Research Parallel Prototype (RP3): Introduction and architec
ture ." Proceedings o.f the 1985 International Conference on Parallel Proccssin~, IEEE Cat.
No. 85CH2140-2, 764-771, August 1985. ..

Pfister, G., and _v. A. Norto~: " 'Hot _Spot' contention and combining in multistage
interconnection networks . Proceedmgs of the 1985 International Conference 011 Parallel
Processing, IEEE Cat. No. 85CH2140-2, 790-795, August 1985. ·

Pomerene, J ., T. R. Puzak, R. Rechtschaffen, and F. Sparacio. "Prefetching mechanism
for a high-speed buffer store." Patent Pending, 1984.

Preparata, F., and J. Vuillemin . "The cube-connected cycles: A versatile network for
parallel computation." Communications of the ACM, 25, 300-309, 1981.

Puzak, T. R. Cache-Memory Design, Ph.D. thesis, ECE Department, University of Mas
sachusetts, 1985.

Radin, G. "The 801 minicomputer." Proceedings of the Symposium for Programming Languages
and Operating Systems Support, 39-47, 1982.

Salton, G., and C. Buckley. "Parallel text search methods." Communications of the ACM,
31, no. 2, 202-215, February 1988.

Scheurich, C., and M. DuBois. "Correct memory operation of cache-based multiproces
sors." Proceedings of the 14th lntenwtionnl Symposium on Computer Architecture, IEEE
Cat No. 87CH2420-8, Pittsburgh, Pa., 234-243, June 1987.

Seitz, C . L. "The Cosmic Cube." Comm1mications of the ACM, 28, no. 1, 22-33, January
1985.

Shar, L. E., ap.d E. S. Davidson. "A multiminiprocessor system implemented through
pipelining." Computer, 7, no. 2, 42-51, February 1974.

Shemer, J. E., and S. C. Gupta. "On the design of Bayesian storage aHocation algorithms
for paging and segmentation." IEEE Transactions on Computers, C-18, no . 7, 644-651,
July 1969.

Shemer, J. E., and B. Shippey. "Statistical analysis of paged and segmented computer
systems." IEEE Transactions on Electronic Computers, EC-15, no. 6, 855-863, December

1966.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 502

488 References

Siewiorek, D. P., C. G. BeH, and A. Newell. Computer Structures: Principles and Examples.
New York: McGraw-Hill, 1982.

Singh, J. P., H. S. Stone, and D. F. Thiebaut. "An analytical model for fully associative
cache memories." IEEE Transactions on Computers, 41, no. 7, 811-825, July 1992.

Singleton, R. C. "On computing the fast Fourier transform.'' Communications of the ACM,
10, 647-654, 1967.

Sites, R. "Operating systems and computer architecture." Chapter 12 of Introduction to
Computer Architecture, 2nd ed., edited by H. S. Stone, Chicago: Science Research
Associates, 1980.

Slotnick, D. L., W. C. Borek, and R. C. McReynolds. "The SOLOMON computer." AFIPS
1962 Fall Joint Computer Conference, 22, Washington, D.C.: Spartan Books, 97-107,
1962.

Smith, A. "Cache memories." ACM Computing Surveys, 14, no. 3, 473-530, September
1982.

Smith, A. "Cache evaluation and the impact of workload choice." Proceedings of the 12th
Annual Computer Architecture Symposium, IEEE No. 85CH2 144-4, 64-75, June 1985.

Smith, A. "Line (block) size choice for CPU cache memories." IEEE Transactions on Com
puters, C-36, no. 9, 1063-1075, September 1987.

Smith, D. R. "Random trees and the analysis of branch and bound procedures." journal
of the ACM, 31, no. 1, 163-188, January 1984.

Smith, J. E., and J. R. Goodman. "Instruction cache replacement policies and organi
zations." IEEE Transactions on Computers, C·34, no. 3, 234-241, March 1985.

Sohi, G. S., J. E. Smith, and J. R. Goodman. "Restricted Fetch & cl> Operations for parallel
processing." Proceedings of the 3rd International Conference on Supercomputing, Crete,
Greece, 410-416, June, 1989.

Sterbenz, P. H. Floating-Point Computation. Englewood Cliffs, N .J.: Prentice-Hall, 1974.

Stanfill, C., and B. Kahle. "Parallel free-text search on the Connection Machine system."
Communications of the ACM, 29, no. 12, 1229-1239, December 1986.

Stone, H. S. "Parallel processing with the perfect shuffle." IEEE Transactions on Computers,
C-20, 153-161, 1971.

Stone, H. S. "An efficient parallel algorithm for the solution of a tridiagonal linear system
of equations." Journal of the ACM, 20, 27-38, January 1973.

Stone, H. 5. "Database applications of the Fetch-and-Add instruction." IEEE Transactions
on Computers, C-33, no. 7, 604-612, July 1984. ·

Stone, H. S. "Parallel querying of large databases: A case study ." Computer, 20, no. 10,
11-21, October 1987. ·

Stone, H. S., ed. Introduction to Computer Architecture. Chicago, Ill.: Science Research
Associates, 1974.

Stone, H. S., ed. Introduction to Computer Architecture, 2nd ed. Chicago, Ill.: Science
Research Associates, 1980.

Stone, H. S., J. L. Wolf, and J. Turek. "Optimal partitioning of cache memory." IEEE
Transactions on Computers, 41, no. 1054-1068, 1992.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 503

References 489

Strecker, W. D. "Transient behavior of cache memories" ACM T f . C
Systems, 1, no. 4, 281-293, November 1983. . ransac ,on~ on omputer

Sullivan, H., T. Bashko:"', ~~d D. Klappholtz. "A large-scale homogeneous fully distrib
uted parallel machine. Proceedings of tl1e Fourth Annual Symposium 011 Computer Ar
chitecture, 105-124, 1977.

Sussenguth, E. "Instruction sequence control." U. S. Patent No. 3 559 183 J 26
1971. , , , anuary ,

Sweazer P., and A. J. Smit~. "A class ~~ compatible cache-consistency protocols and
their support by :he IEEE Futurebus. Proceedings of the 13th International Symposium
on Computer Architecture, Tokyo, Japan, 414-423, June 1986.

Tanenbaum, A. S. Structured Computer Organization. Englewood Cliffs, N.J.: Prentice
Hall, 1976.

Thanawastien, S., and V. P. Nelson. "Interference analysis of shuffle/exchange net
works." IEEE Transactions on Computers, C-30, 545-556, August 1981.

Thiebaut, D. F. "On the fractal dimension of computer programs and its application to
the prediction of the cache miss ratio." IEEE Transactions 011 Computers, C-38, no. 7,
1012-1026, July 1989.

Thiebaut, D. F., and H. S. Stone . "Footprints in the cache.'' ACM Transactions 011 Computer
Systems, 5, no. 4, 305-329, November 1987.

Thiebaut, D . F., H. S. Stone, and J. L. Wolf. "Improving disk cache hiHatios.through
cache partitioning." JEEE Transactions on Computers, 41, no. 6, 665-676, June 1992.

Thompson, D. "~ulti-device apparatus synchronized to the slov-,rest device ." U.S. Patent
No. 4, 493,053, January 8, 1985.

Thompson, J. G., and A. J. Smith. "Efficient (stack) algorithms for analysis of write-back
and sector memories." ACM Transactions on Computer Systems, 7, no. 1, 78-116,
February 1989.

Thornton, J.E. Design of a Computer: The Control Data 6600, Glenview, Ill: Scott, Foresman,
1970.

Tomasulo, R. M. "An efficient algorithm for exploiting multiple arithmetic units.'' IBM
Journal of Research and Development, 11, no. 1, 25-33, January 1967.

Treiber, R. K. "Systems programming: Coping with parallelism." IBM Research Report
RJ 5118, IBM T. J. Watson Research Center, April 1986.

Trivedi, K. S. Probability and Statistics with Reliability, Queueing, and Computer Science Ap
plications. Englewood Cliffs, N .J.: Prentice-Hall, 1982.

Varga, R. S. Matrix Iterative Analysis. Englewood Cliffs, N.J.: Prentice-Hall, 1962.

Voldman, J ., and L. W. Hoevel. ''The software-cache connection." IBM Journal of Research
and Development, 25, no. 6, 877-893, November 1981.

Voldman, J., et al. "Fractal nature of software-cache interaction." IBM Journal of Research
and Development, 27, no. 2, 164-170, March 1983.

Wallace, c. c. "A suggestion for a fast multiplier." IEEE Transactions on Electronic Com

puters, EC-13, 14-17, 1964.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 504

490 References

Wang, W.-H., and J .-L. Baer. "Efficient trace-driven simulation methods for cache per
formance analysis ." ACM Transactions on Computer Systems, 9, no. 3, 222-241, August
1991.

Waser, S., and M. J. flynn. Introduction to Arithmetic for Digital Systems Designers. New
York: CBS College Publishing, 1982.

Wilkes, M. V. "Slave memories and dynamic storage allocation ." IEEE Transactions an
Electronic Computers, EC-14, no . 2, 270-271, 1965.

Yew, P.-C., D. A. Padua, and D. H. Lawrie. "Stochastic properties of a multiple-layer
single-stage shuffle-exchange network in a message-switching environment." Jounial
of Digital Systems, VI, no. 4, 387-410, 1983.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 505

Index and Glossary

Access A memory operation that is either
a READ or a WRITE; 26

Access patterns The statistical behavior of
a sequence of memory operations; 307-
312

Access sequence The sequence of mem
ory addresses produced during the ex
ecution of a program; 28-31

Acquire A synchronizing instruction that
delays the execution of following in
structions until it completes, thus pre
venting following instructions from
being initiated earlier than its comple
tion; 399-402

Action at a distance A physical force ex
erted at a point due to the influence of
a remote source of the force; 240, 255

Adder, 445-446
Address generation During the execution

of an instruction, the cycle in which an
effective address is calculated by means
of indexing or indirect addressing; 145-
146, 149

Address mapper The device that trans
forms a virtual address to a physical

(real) address; 103-104, 107-115, 205-
209

See also Virtual memory, mapping
Address-reference stream The sequence

of memory addresses accessed during
the execution of a program; 45-46

See also Address trace
Address trace A recorded sequence of the

memory addresses visited during the
execution of a program; 44-70, 131-
133, 135

Agarwal, A., 56-57
Agerwala, T., 210, 228
Aho, A. E., 458
ALGOL 60,423
Algorithm (interaction with architecture),

19-21
Alignment network A network that se

lects a subset of items read simulta
neously from memory and pennutes
them to permit them to be manipulated
in parallel; 316-318

Allen, F., 465
Allen, J. R., 465, 467
ALU (Arithmetic-logic unit) The portion

491

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 506

492 Index and Glossary

of a processor that performs arithmetic
and logic operations on data; 210-212

Amdahl Corporation, 44, 210
Amdahl, G. M., 21-22, 162
Amdahl's Law A model of parallel com

putation that predicts that computa
tion speedup approaches a constant
limit as computational parallelism
grows without limit when applied to a
problem of fixed size; 162

AND A boolean operation; 262, 445, 448,
479-480

Archibald, J., 387
Architecture. See Computer architecture
Arithmetic pipeline A multistage arith-

metic unit that is capable of starting a
new operation while one or more op
erations are currently in execution, with
the time interval between successive
outputs less than the total time re
quired to produce a single output; 295-
302

Array processor A parallel computer,
usually with near-neighbor connec
tions between processors and capable
of executing a single stream of instruc
tions broadcast simultaneously to all
processors; 157-161

Artificial Intelligence The study of com
putational techniques for solving dif
ficult problems for which humanlike
approaches are required in their solu
tions; 13

Assignment problem A combinatorial
problem whose solution assigns N tasks
to N workers such that each worker is
assigned a single task and such that
the sum of the values of the worker
task assignments is maximized; 460

Associative access A memory access in
which the access is made to an item
whose key matches an access key rather
than making the access to an item at a
specific address in memory; 36

See also Set associative
Associative memory A memory whose

contents are accessed by key rather than
by address; 36

Atlas computer, 28-29, 104
Attached vector-processor A processor

specialized for vector computations that
is designed to be connected to a general
purpose host processor, which sup
plies input/output functions, a file sys
tem, and other aspects of a computing
system environment, 319-324

Auxiliary memory A bulk memory that is
usuaJly large, slow, and inexpensive,
often a rotating magnetic or optical
memory, whose main function is to
store large volumes of data and pro
grams that are not currently being ac
cessed by a processor; 104-106, 118,
125-129

Baer, J. L., 23, 63, 67, 387
Balance (of a computer system's compo

nents) A state in which the processor
bandwidth matches closely the band
widths of the memory, interconnection
netvvork, and input/output system so
that no specific component strongly
limits the system throughput; 416

Bandwidth The number of bits per second
that can be processed by a memory,
arithmetic unit, input/output proces
sor, or communication system; 25, 156,
205-206

of combining switch, 444-445
of communication system, 243, 249, 259,

331-332, 359-360, 373-374, 474
of input/output system, 243, 249, 331, 474
of memory, 25, 232, 242-243, 249, 294-

295, 303, 305, 312-313, 331, 473-474
of processor, 232, 243, 249, 294-295, 305,

331, 473
of synchronizer, 243, 249, 332, 445, 448

Bank (of memory) A module of memory
that can sustain a single access to one
physical cell of memory per memory
cycle; 156

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 507

Index and Glossary 493

Barrier synchronization A means for syn
chronizing a set of processors in a
multiprocessor system by halting pro
cessors in that set at a specified barrier
point in a program until every proces
sor in the set reaches the barrier ; 361-
362, 370, 412-413, 445-453, 471

Base address (of a page) The physical ad-
dress of the start of a page; 107-113

Batcher, K. E., 273, 281
BBN Butterfly, 284
Beetern, J., 327
Belady, L., 70, 117-118
Bell, C. G., 22
Benes, V., 327
Benes network A switching network pro

posed by V. Benes that is capable of
producing an arbitrary permutation of
its inputs at its outputs; 327, 329

Berkeley RISC, 214, 216-217
Bernoulli bound (on trace length), 50-54
Bernoulli process A random process in

which a random variable is selected
with a probability of success p and a
probability of failure q = 1 - p. Suc
cessive selections are independent of
each other; 50-51, 80

Bidiagonal system of equations A linear
system in which the only nonzero coef
ficients lie on the major diagonal and
on one diagonal immediately below or
above the major diagonal; 265-266

Binary search A search algorithm in which
the region to be searched shrinks by
half at each step; 454

Binomial distribution The probability dis
tribution that describes independent
tosses of a fair coin; 79-82

See also Bernoulli process
Bitonic sequence A sequence of numbers

that is the concatenation of an ascend
ing and a descending sequence, or is
a cyclic shift of such a sequence; 281-
282, 290

Bitonic sorter A sorting network whose
subnetworks sort bitonic subsequen-

ces into fully sorted subsequences; 281-
282, 290

Block (of a cache), 35
See also line

Bolt, Beranek, and Newman. See BBN
Booth, A. 0., 226
Booth's algorithm An efficient algorithm

for integer multiplication; 226
Boral, H., 457
Bottleneck,24, 142,357, 362,369,374-378,

415-416, 419-420, 432-433, 441, 473
Branch-and-bound search A search tech

nique in which the search eliminates
large numbers of cases by determining
that the solutions eliminated fall above
a computed bound; 457-462

Branch-history table A hardware device
that saves the recent history of con
ditional branches so that this informa
tion can be used for branch prediction;
192, 195-197, 213

Branch prediction The use of history, sta
tistical methods, or heuristic rules to
predict the outcome of conditional
branches; 192, 194-197

Breakeven point The number of proces
sors in a multiprocessor system whose
combined throughput is equal to that
of a single processor of the same power;
355

Briggs, F. A., 387, 396-397, 433
Broadcast A form of communication in

which one transmitter sends one mes
sage simultaneously to many receiv
ers; 257-258, 388-390

Brunk, H. D., 50
Buckley, C., 457
Budnik, P. P., 315
Buffer effects (in virtual memory) A phe

nomenon that causes a fraction of real
memory to serve as a buffer for pages
flowing to and from auxiliary memory;
125-129

Bunernan, 0., 265
Burks, A. W., 143
Burroughs' B5700, 227

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 508

494 Index and Glossary

Burroughs' B6700, 227
Burroughs' Scientific Processor (BSP),

316-318, 335-336
Bus (interconnection) An interconnection

in which all transmitters and receivers
are directly connected to a common set
of interconnection lines that comprise
the bus; 358-363, 368, 384, 392, 473-
474

Butterfly operation The core operation of
a Fast Fourier Transform that consists
of forming the weighted sum and dif
ference of two operands; 373-376

Buzbee, B. L., 265

C.mmp multiprocessor~ 369-370
Cable density, 284
Cache A small capacity, high-speed buffer

memory;25,32-102, 156,207-210,303-
306, 356-357, 360-361, 385-386

for bus-based multiprocessors, 360-361,
450-453

coherence, 385-392, 450-453, 473-474
for data, 156
design ot 129-139
for instructions, 156
miss ratio, 46-57, 65, 85, 98, 113-114, 353
performance model, 90-102
replacement policy, 59, 70-76
set of data in, 36-44
simulation of, 47-57
structure of, 36-44
tag (in directory), 33, 37-38, 40, 47-48,

65-66, 75, 129
techniques for analysis of, 44-70
two-level, 44
vector operands stored in, 334-335
writing to, 84-90

Cache coherence The protocol among
multiprocessors with private caches
that assures that each variable in the
shared memory space receives WRITEs
in a serial order, and no processor sees
that sequence of values in any other
order; 385-392, 405-407

Cache directory The collection of tags in

a cache that are used for associative
access to cached data; 37, 84-86

Cache hit A cache access that successfullv
finds in the cache the data requested;
34, 43, 64-75

Cache miss A cache access that fails to
find in the cache the data requested;
32, 41-42, 64-86, 129-133, 135-141, 156,
213

Cache-reload transient The cache misses
that occur when a program formerly in
execution is restarted after other pro
grams have used the cache; 76-84

Carnegie-Mellon University, 369
Carry-lookahead adder An adder in which

special logic propagates carries with a
delay that grows logarithmically in the
number of adder stages rather than lin
early in the number of adder stages;
445-446

CDC 6600, 143, 150-156, 203-206, 227
CDC STAR, 166, 299-300, 325, 330
Central Limit Theorem The theorem that

states that the distribution of the sum
of identical and independently distrib
uted random variables asymptotically
approaches a normal distribution; 349

Chaining (of computations) The tech
nique in which an output stream of
vector results is directed to the input
of another vector operation without
being returned to intermediate storage
between operations; 166-167

Charlesworth, A. E., 320, 322
Checkerboard ordering (for a mesh calcu

lation) An ordering of operations in
which an iterative calculation is per
formed first on the "red" nodes and
then on the "black" nodes in the mesh;
469-471

Cheetah (project), 228
Chen, P. Y., 376
Chen, T. C., 157, 162
Chickens, 356
Chu, W. W., 121-122
Chunksize The number of iterations to be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 509

Index and Glossary
495

grouped together as a single task in
order to increase task granularity; 417-
420, .t66, 469, 475

CISC (Complex Instruction-Set Computer)
A computer ...,.ith an instruction set that
includes complex (multicvcle) instruc-
tions; 214-217 -

Clark, D. W., 113-115
CMOS (Complementary Metal-Oxide

Semiconductor), 17

Coarse•grain parallelism Parallel execu
tion in which the amount of compu
tation per task is several times larger
than the overhead and communication
expended per task; 342- 358

Cocke, John, 210, 227-228
Coffman, E. G., Jr., 46, 120, 124
Coherence (of cache) . See Cache coherence
Collision An event in vvhich two or more

different operations require the use of
the same pipeline stage at the same
dock cycle; 175-179

Collision vector A binary control-vector
whose bits indicate when an operation
can be initiated safely in a pipeline
computer; 174-182, 229

Column access A concurrent memory ac
cess to all elements of a column of a
matrix; 310, 312-319, 332-334, 404

Colwell, R. P., 217
Combining switch A switching element

of an interconnection neru.•ork that has
the ability to combine certain types of
requests into one request, and to pro
duce a response that mimics serial ex
ecution of the requests; 371-373, 378-
384, 415-417, 444, 474

Common data-bus A hardware mecha
nism for transmitting results produced
by a collection of arithmetic units to
machine registers and reservation sta
tions; 204-205

Communication cost, 342-358
Compare-and•Swap An instruction that

is used for processor synchronization;
423, 430-437, 468,477

Compatibility, 22
Compiler optimization, 464--l72
Completion (of an instruction), 397-398
Complex instruction-set computer. See CISC
Computer architecture The studv of com-

puter structures, their applications, and
their performance; 1-2, 13-14

cost of, 8-10
evaluation of. 8-10, 20-21
performance of, 8-12
special purpose vs. all purpose, 14
and technology, 2
textbooks, 22-23

Computer vision, 13
Concert multiprocessor, 421
Conditional branch A computer instruc

tion that alters the sequence of exe
cution if a condition is true, and
otherwise falls through to the next in
struction in sequence; 146-147, 153,
213, 232, 257-258

in a pipeline, 192-197, 213
Confidence interval An interval based on

statistical samphng that shows where
an t-xpected value of a random variable
lies to within a specified level of con
fidence; 50-55, 67-68

Conflict A situation in which two or more
operations require the same resource,
forcing one operation to wait for the
other to complete; 153-155, 182-190,
198, 373-376, 432, 466-469, 472,476

in a network, 373-376
in a pipeline, 153-155, 182-190, 198
See also Contention, READ/WRITE con

flict, WRITE/READ conflict, WRITE/
WRITE conflict

Connection Machine, 338, 343, 385-386,
457

Consistency. See Memory consistency, Re
lease consistency, Weak consistency

Contention The interference among tasks
caused by tasks competing for shared
resources, thereby forcing one or more
tasks to become idle momentarily while
waiting for resources to become avail-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 510

496 Index and Glossary

able; 92-94, 365-366, 373-378, 417-420,
473-474

Context switch The process of saving the
state of one task and restoring the state
of a second task to enable a computer
system to change execution from one
program to another; 76-77, 83, 114

Continuum model A model of physical
systems in which continuous quan
tities are modeled at discrete points and
physical interactions are modeled as
interactions among neighboring mesh
points; 238-242, 244-268, 285-288, 292,
332

Cooley, J. W., 286
Coon en, J. T., 227
Cosmic Cube, 252-254, 261, 269, 287, 289-

290, 343, 384-385
Cost, 4-19

of development, 5-8
per-unit, 5-8

Cost-performance ratio, 11-12, 17-18, 286,
355

CPI (Cycles per instruction) A measure of
architecture efficiency equal to the
average number of machine cycles
elapsed per instruction executed; 91-
94, 140-141, 213

Cray I, 166, 303-307, 318, 330,332,341, 343
Cray II, 166-167, 319
Cray III, 360
Cray XMP, 341, 343
Critical section A section of a program

that can be executed by at most one
process at a time; 368, 371, 378-379,
381-382, 423-449

Crossbar (interconnection) An intercon
nection in which each input is con
nected to each output through a path
that contains a single switching node;
365-370, 374, 384, 404

Crosspoint A switching node in a cross
bar that connects a single input to a
single output; 365-366

Crowther, W., 284
Cvetanovic, Z., 373-376, 420
Cycle (of computer clock) An electronic

signal that counts a single unit of time
within a computer; 18, 192, 210, 213,
294-302, 312, 360-361, 365, 419-420,
444-445, 452

Cycle (of a permutation), 458
Cycle (in reduced state-diagram) A path

in a reduced state-diagram that speci
fies a steady-state schedule for intro
ducing operations to a pipeline; 181-
182, 229

Cycle time The length of a single cycle of
a computer function such as a memory
cycle or processor cycle; 26-27, 32, 34,
43

effective, 34, 43
Cycles per instruction. See CPI
Cyclic reduction An algorithm used to

solve linear systems that have a par
ticular structure; 265-268, 289

Cytron, R. G., 465, 467, 472

DASH (multiprocessor), 389, 392
Data cache A cache that holds data, but

does not hold instructions; 91, 140, 156,
210-213

Data flow (analysis of requirements) The
sequence of processes and data trans
missions that are performed on a col
lection of data during a computation;
254-259

Database system, 13, 456-457
Davidson, E. S., 169, 173, 177, 182
Dead line A line of a cache that will be

discarded from cache before it will be
the target of a cache access; 73

Deadlock The state in which two or more
processes are deferred indefinitely be
cause each process is awaiting another
process to make progress, and no proc
ess is able to make progress; 368, 430,
477

DEC PDP-11 1 23, 369
DEC VAX, 23, 110-114, 116-117, 214, 217
Decode-history table A small cache-like

memory that saves the recent history
of decoding information for condi
tional-branch instructions so that this

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 511

Index and Glossary 497

information can be used by a branch
prediction mechanism; 196-197

Decrement (for synchronization), 352-355,
427-430

de Koening, W., 3-4
Delay (in pipeline) A logic device used to

store and synchronize data in a pipe
line; 182-190, 297-302

Delayed branch A branch instruction that
defers altering the flow of control until
one or more instructions that follow it
have completed execution; 192-194

Denneau, M., 327
Denning, P. J ., 46, 118-120, 124
Dependence analysis An analysis that re-

veals which portions of a program de
pend on the prior completion of other
portions of the program; 466-472, 476

DEQUEUE A high-level function that re
moves an item from a queue; 426-427,
432-437, 442-443, 477-478

Development cost, 5-6
DeWitt, D. J., 457
Dias, D. M., 376
Digital communications The transmis

sion of information between two sep
arate points by means of digitally
quantized signals; 15-16

Digital Equipment Corporation. See DEC
Dijkstra, E. M., 392, 423, 460, 462, 478
Direct mapping A cache that has a set

associativity of one. Each item has a
unique place in the cache at which it
can be stored; 39, 48-49

Directory (of a cache) The portion of a
cache that holds the access keys that
support associative access; 37, 61-62,
74-75

See also Cache, tag
Disk buffer A high-speed buffer memory

resident \·Vithin a disk controller that is
used as a private cache for the disk
system; 125-129, 134-135

Disk cache. See Disk buffer
Disk memory, 125-129

See also Auxiliary memory
Ditzel, D. R., 213

Division, 215

do par A program statement that permits
the iterations of a loop to be executed
in parallel; 411-413, 417, 420-421, 476

do seq A program statement that forces
the iterations of a loop to be executed
sequentially, 411-413, 417

Dubois, M., 387, 396-397

ECL (Emitter-coupled logic), 17
Efficiency

of array computer, 158-161
of multiprocessor computer, 340-358,

369-370, 414-417, 453-464
of pipeline computer, 162-165

Eggers, S. J., 452
Erner, J. S., 113-115
ENQUEUE A high-level function that

adds an item to a queue; 426-427, 432-
437, 441-443; 477-478

Exchange. See Pair-wise exchange, Shuffle
exchange

Exclusive access A state in which some
single process is granted the right to
read, modify, and write a shared da
tum, and no other processor can access
the datum while the first program has
exclusive access to the shared datum;
368, 371, 378-379, 381-382, 423-449

See also Critical section
Execute stage The stage in a pipelined

processor at which an instruction is ex
ecuted; 146-149, 151-152, 199-202, 206,
221-222, 224

Exponent, 169-174

Fan-in The number of logic signals that
directly drive a given logic gate; 257

Fan-out The number of logic gates driven
by a specific logic gate; 257

Feedback path A path from the output of
a functional unit to an input of the same
unit; 171

Fetch-and-Add A computer instruction
that updates a memory operand, re
turns the value of the operand before
the update, and if executed concur-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 512

498 Index and Glossary

rently by several processors simulta
neously, produces a set of results as if
the processors executed in some serial
order;378-384,423,440-443,449,468,
476

Fetch-and-Decrement form, 449
Fetch-and-Increment form, 445, 449
Fetch-and-MAX form, 448

Fiber optics A transmission medium for
telecommunications consisting of glass
fibers that carry modulated light sig
nals; 16

Finite-cache effect The performance de
crease measured in cycles per instruc
tion due to the use of a finite cache in
place of an ideal infinite cache; 92-93,
213

FFT (Fast Fourier Transform). See Fourier
transform

Fine-grain parallelism A form of parallel
execution in which the amount of com
putational work per task is small com
pared to the amount of work per task
required for communication and over
head; 342-358

Finite-element method A numerical tech
nique in which physical systems are
analyzed mathematically by modeling
the system at the nodes of a mesh of
data points; 13, 325

Floating-point arithmetic, 169-179, 215-
217, 219-221, 224-225, 235-236

addition, 161-179
multiplication, 169-171, 174-179
multiply-add, 221, 320-322

Fluid flow, 13
Flynn, M. J., 227, 338-339
Footprint The distinct lines of a process

held in an infinite cache that are
touched during the execution of the
process; 76-84, 96-102, 118, 135-136

Footprint size The number of lines of a
process footprint held in a cache; 78

Forbidden cell A cell of a reservation ta
ble for one operation that cannot be
used by another operation because of
a timing conflict; 184-190

Ford, L. R., Jr., 460
Forsythe, G., 228, 310-311
FORTRAN, 237-238, 465
Forwarding register A register that is

temporarily assigned the role of a dif
ferent register; 199

See also Internal forwarding, Register
renaming

Fourier transform, 255-256, 273, 286-287 ,
336, 373-375, 455, 462-464

Fox, G., 385
FPS-164, 320-324, 327, 330, 332
Free pool A collection of registers avail

able for use as forwarding registers;
199-203

Freeable The state of a forwarding reg
ister after its contents have been used
and the register can be returned to the
free pool; 201, 203

Fujitsu Corporation, 210, 320, 465
Fulkerson, D. R., 460
Full-information function A multi-output

function each of whose outputs de
pends on every input; 254-257

Fully associative A cache structure in
which every tag in the cache is com
pared to the tag of the datum being
accessed; 39, 96-97

Gauss-Seidel iteration An iterative
scheme for solving linear equations in
which each interior point is updated
with two neighboring values from the
present iteration and two neighboring
values from the prior iteration; 288, 469-
472

Gaussian elimination A method for solv
ing linear systems of equations; 228-
229, 265-268, 308-314 , 332-334, 403-
404

GCD (Greatest Common Divisor), 315
GF-11. See IBM GF-11
Gflops (Gigaflops) A computation rate of

one billion floating-point operations per
second; 326-328

Gallium arsenide, 17
Ghanem, M. Z., 123

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 513

Index and Glossary 499

Gharachor1oo, K., 388
Gigaflops. See Gflops
Global memory A memory directly ac

cessible by every processor in a mul
tiprocessor; 359, 418-419, 423-453

See also Shared memory
Golub, G. H., 265
Goodman, J. R., 48, 54, 387, 390, 449
Gottlieb, A., 378, 442, 443
Granularity A measure of the size of an

individual task to be executed on a par
allel processor; 342-359, 417-420

Gravitation, 240
Greatest common divisor (GCD), 315
Greedy strategy A strategy that initiates

a new pipeline operation at the earliest
opportunity; 180-182

Green, P. E., Jr., 447
Grohoski, G. F., 221
Grosch's Law An empirical rule that says

that the cost of computer systems in
creases as the square root of the com
putational power of the systems; 14

Gupta, S. C., 46
Gustafson, J. L., 320, 322

Halstead, R., 421
Hash lookup A search technique in which

the search key is transformed to an ad
dress at which the search begins; 326

Hayes, J. P., 23
Heidelberger, P., 446, 449
HeUer, D. E., 268, 308
Hennessy, J., 23, 56-57, 228
Hierarchy (of memory system) A multi

level memory structure in which suc
cessive levels are progressively larger,
slower, and less costly; 25, 28, 100-101,
137

High-speed buffer memory A memory
that holds data en route between a large
main memory and the registers of a
high-speed processor; 318

See also Intermediate memory
Hill, M., 60, 99, 101, 216
Hillis, W. D., 338, 384, 385
Hit. See Cache hit

Hit ratio The ratio of the number of cache
hits to the total number of cache ac
cesses; 34, 43, 114

Hitachi Corporation, 44, 320
Hoevel, L. W., 76
Hopcrof t, J. E., 458
Horowitz, M . 56-57
Hoshino, T., 236, 238, 253, 287, 357, 370,

445, 448
Hot-spot contention An interference phe

nomenon observed in multiprocessors
due to memory access statistics being
slightly skewed from a uniform distri
bution to favor a specific memory
module; 376-378, 381-382, 444, 474

HP Spectrum, 214
Hwang, K., 227, 433
Hwu, W.-M., 228
Hypercube A parallel processor whose

interconnection structure treats indi
vidual processors as the nodes of a
multidimensional cube and intercon
nects two processors if the correspond
ing nodes of the cube are neighbors;
252, 384-385

See also Cosmic Cube

IBM Corporation, 210, 320
IBM GF-11, 327-329, 338, 343
IBM RP3, 284, 371, 382-384, 415, 420
IBM RS/6000, 220-225
IBM STRETCH, 143
IBM System 360/91, 204-206
IBM System 360-370, 22, 96, 433, 436
IBM 3090, 197, 341, 465
IBM 801, 210, 227
IEEE 802.5 Token-Ring Standard, 364
IEEE Standard for Floating-Point Arith-

metic, 227
ILLIAC IV, 164-165, 237, 247-253, 257-259,

287, 289, 330, 333
Image processing A computation per

formed on a digitized representation of
an image whose purpose is to enhance
the image or to extract information
about the image; 13

Inclusion principle The property that a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 514

500 Index and Glossary

cache with high associativity contains
within it the contents of caches of lower
associativity; 59-61

Increment (for synchronization), 352-355,
427-430

lndurkhya, B., 342, 349-350
Inferencing system A programming sys

tem that produces results by following
a logical chain of inferences; 13

Initialization (of cache simulation), 47-55
Inner product The sum of the compo

nent-by-component products of the
elements of two vectors; 190-191, 321

Input/output overlap The act of perform-
ing input/output processing concur
rently with other processing; 143

Input/output processor Processor whose
function is specialized to input/output
processing; 84-87, 130-132

Instruction buffer A small high-speed
memory that holds instructions re
cently executed or about to be exe
cuted; 304

Instruction cache A cache memory dedi
cated to the storage of instructions; 91,
140, 156, 211, 213-216, 219-221

Instruction decode The machine cycle
during which an instruction is exam
ined and the control signals required
for the execution of the instruction are
produced; 145-146, 149,151, 198-199,
211, 213, 219-221, 223-225

Instruction fetch The machine cycle ded
icated to the access and retrieval of the
next instruction to execute; 145-147,
149, 151, 156, 198-199, 215, 220-221,
223-225

Instruction set The repertoire of instruc
tions executable by a computer; 2

See also CISC, RISC
Intel 8080, 95
Intel 8086, 95, 143, 252
Intel 8087, 252
Intel 808X, 22
Intel 80X86, 95
Intel i860, 219-220

Interconnection network The system of
logic and conductors that connects to
gether the processors in a parallel com
puter system; 257-259, 268-285, 338-
339

See also Bus, Crossbar, Hypercube, Mesh
interconnection, Near-neighbor in
terconnection, Perfect shuffle, Ring,
Shuffle-exchange

Interlock A control device or signal that
defers the execution of one function
until a conflicting function has com
pleted execution; 147, 154, 190-192,
198-199, 203, 321-322

elimination of, 190-192
Intermediate memory, 302-307

See also High-speed buffer memory
Internal forwarding An execution tech

nique in which special registers are
temporarily assigned the function of
physical machine registers to hold op
erands while awaiting execution in or
der to reduce conflicts for machine
resources that otherwise would occur;
198-206, 224, 229

See also Register renaming
Interprocessor communication The data

and control information that passes
among the processors of a paraUel
computer during the execution of a
parallel program; 340

Interrupt A temporary suspension of the
normal sequence of program execution
to perform a function that has been
initiated by an external event or by an
internal trap or monitor function; 77,
431-432,

Interrupt-driven program A program im
plementation that initiates execution of
the program in response to an inter
rupt caused by an external event; 77,
83

Invalidate The act that removes a cache
entry by changing its directory entry
into an empty entry; 86, 390-392, 405-
406, 451-452

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 515

Index and Glossary 501

Inverse mapper A device that computes
a virtual address from a physical (real)
address; 208

Inverse perfect shuffle. See Perfect shuffle,
inverse of

Iyer, R. K., 49, 55, 77

Jacobi iteration An iterative method for
solving linear equations that updates
each point in a new iteration only after
all points have been updated for the
prior iteration; 288, 470

James, D. V., 389
Jouppi, N., 218
Jump, J. R., 376

Kahle, B., 457
Karp, R. M., 453-456, 462
Katz, R. H., 452
Kilburn, T., 28
Knowledge base A collection of rules and

data used by inferencing programs
during computations; 13

Kobayashi, M. 96, 98, 101
Kogge, P. M., 169, 182, 190, 263, 302, 322
Kruskal, C. P., 376
Kuck, D. J., 315, 465
Kung, H. T., 284

Laha, S., 49, 55, 77
Lamport, L., 393, 471-472
Latch A one-bit storage device that saves

the contents of its input at the instant
a clock signal changes state; 152

Latency The delay between the request
for information and the time the in
formation is supplied to the requester;
91-92, 104-106, 127

See also Leading-edge effect
Lawler, E. L., 458
Lawrie, D. H., 372, 376
Leading-edge effect (of a cache) The per

formance degradation due to the delay
between the occurrence of a cache miss
and the arrival of the first portion of
that cache line; 90, 92-93

See also Trailing-edge effect

Least-recently used. See LRU
Leiserson, C. E., 284
Length (of a trace). See Trace length
Lenoski, 0., 389, 392
Line (of a cache) A collection of contig

uous data that are treated as a single
entity of cache storage; 35

Line size The number of bytes in a cache
line; 39, 64-69

Linear equation An equation that de
pends on its variables only through the
addition of a multiple of each variable,
320

Linear-equation solver An algorithm for
solving linear equations; 228-229

linear programming An optimization
technique for solving constrained
problems in which behavior equations
and constraint equations are linear
functions of the variables; 320

Linear recurrence A recurrence relation
in which each successive result is a lin
ear function of past results; 259-263

LISP, 421
Livelock A state in which actions taken

by concurrently executing processes
prevent computation from proceeding,
but computation can proceed if some
processes alter their execution behav
ior; 429-430, 442-443, 477

Local memory The private memory di
rectly connected to a processor in a
parallel computer; 359, 383-384, 418

Locality (of memory references) The
characteristic tendency for programs to
access regions in the near future that
were accessed in the recent past; 29-
31, 99, 115-117

See also Serial correlation, Spatial locality,
Temporal locality

Lock A primitive operation that grants a
process the exclusive right to continue
execution only if no other processor
currently holds that exclusive right; 368,
379,396-402,416,418,425-427,432,468

See also Unlock

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 516

502 Index and Glossary

Loop interconnection. See Ring
Losq, J. J., 196
LRU (Least-Recently Used) replacement

policy A memory management strat
egy that purges the least recently used
candidate from memory, while retain
ing candidates used more recentJy; 58-
59, 61-62, 70-76, 80-82, l 18, 129, 139,
306

LU decomposition A method for solving
linear equations based on Gaussian
elimination;228-229,265-268,290,330-
331, 403-404

MacOougall, M. H., 96, 98, 101
Mclellan, H. R., 213
Mantissa The significant-bit field of a

floating-point operand; 169-175
Mapper. See Address mapper
Markstein, V., 227
Mashburn, H. H., 369
Mattson, R. L., 58-63, 70, 88
MAX, 262,445, 448-449
Maximum (computation of), 445, 448-449
Maximum compatible set A set of inte-

gers, no two of which are incompatible
and to which no other compatible in
teger can appended; 189-190

Megaflops. See Mflops
Memory, 24-129

access patterns, 29-31
bandwidth, 25
bottleneck, 24, 142, 369, 414-416
cycle time, 26-27, 32, 34
hierarchy, 25, 28, 100-101, 137; see also

Hierarchy
random access, 26-27, 28, 37, 40
sequential access, 27
structure for a pipeline computer, 145-

151
See also Virtual memory

Memory access, 28-31, 307-319
See also Access

Memory address The unique location for
each item in a memory by which that
item is accessed; 26-27

Memory consistency (in a multiproces-

sor) The state of memory in which all
processors have observed changes to
memory occur in the same order; 392-
402

Memory hierarchy, 25, 28, 100-101, 137
See also Hierarchy

Memory management The process of
controlling the flow of data among the
levels of memory hierarchy; 102-107,
115-129

Mesh calculation, 165, 236-237, 245-249,
288-289

See also Continuum model, Finite-ele
ment method

Mesh interconnection, 370-371
Mflops (Megaflops) An execution rate

equal one million floating-point in
structions per second; 293, 307-308

MIMD (Multiple Instruction-stream, Mul
tiple Data-stream) A parallel com
puter structure composed of multiple
independent processors; 338

See also Multiprocessor, SIMD
MIN, 262
MIPS (Millions of Instructions per Sec

ond) A measure of the maximum
computation rate of a computer; 16-
18, 90-91, 409, 419-420, 425

Miranker, W. L., 453-456, 462
Miss ratio The ratio of cache misses to

total cache accesses; 46-57, 76, 99-101,
114, 385

steady-state, 76-77
See also Cache miss, Hit ratio

MIT Multics, 227
Miura, K., 465
Model (of cache behavior), 46, 56-57, 90-

102
Model (of multiprocessor performance),

342-356, 403-404, 414-422
See also Performance model

Moler, C. B., 228, 310-311
Monte Carlo simulation A computational

method in which physical calculations
are performed by simulating the sta
tistical behavior of elementary com
ponents of a physical system; 13

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 517

Index and Glossary 503

MOS (Metal-Oxide Semiconductor), 17
Motorola 680XX, 22, 214, 217
MSYPS (Millions of SYnchronizations Per

Second) A measure of the maximum
rate at which a multiprocessor can per
form synchronizations among its proc
essors; 409, 415,420,425-427,450 , 473

Multics, 227
Multiple instruction-stream, multiple data

stream. See MIMD
Multiple-purpose architecture A com

puter structure that can perform a broad
variety of computations; 243-244, 250,
332, 475

Multiplier tree, 226
Multiprocessor A parallel computer com

posed of multiple independent proc
essors and the facilities for controlling
their interaction and cooperation; 337-
403

cache coherence in, 385-392, 473-47 4
compiler optimization for, 464-472
efficiency of, 340-358, 369-370, 414-417,

453-464
interconnections, 358-385, 415-417
memory consistency in, 392-402, 474
parallel execution of, 409-420, 453-464
parallel search in, 453-464
performance of, 342-358, 414-417, 453-

464
synchronization of, 414-416, 423-453
task initiation, 420-422, 476
See also MIMD

Multiprogramming A technique for exe
cuting more than one program at a time
in a single processor by periodically
changing the program currently being
executed by the processor; 104-105

Near-neighbor interconnection An inter
connection structure for a parallel
processor in which each processor is
connected directly to its near neigh
bors; 241-242~ 256, 259, 285-287, 292,
332

NEC (Nippon Electric Corporation), 320
Nelson, V. P., 376

Newell, A., 22
Nicol , D. M., 350
Nielson, C. W., 265
NMOS Negatively doped MOS (Metal

oxide semiconductor); 17
Nonlinear systems of equations A sys

tem of equations in which the variables
are linked by one or more nonlinear
relatiqns; 320

Normal distribution The statistical distri
bution whose probability density fol
lows a bell-shaped curve; 82

Normalization The process that trans
forms a floating-point number into a
representation such that the leading
digit of a nonzero mantissa is nonzero;
170-175

Norton, V. A., 376-377
NP-complete A class of problems for

which there exists no current algo
rithm that can solve any problem in the
class in a time guaranteed to be less
than exponential in the size of the
problem; 408-409, 458

NYU Ultracomputer, 371, 415

Offset A small integer whose value spec
ifies the relative displacement between
an address at which an access is to be
made and a base address of a region
containing the address; 107-111

One-level store A multilevel memory hi
erarchy that functions as if there were
a single level in the memory hierarchy;
28

Opderbeck, H., 121-122
Operand fetch The machine cycle dedi

cated to the access and retrieval of an
operand; 145-147, 149, 156, 198-205,
210-213

OPT A nonrealizable optimum replace
ment policy for cache and virtual mem
ory; 70-76

Optical transmission, 16, 285, 360, 365, 447-
448

OR, 262, 445, 448, 479-480
Organick, E. I., 227

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 518

504 Index and Glossary

Overflow The state in which a numerical
value exceeds the maximum repre
sentable numerical value; 170-174, 227

Overlap The ability to perform two or
more functions concurrently; 164-167,
342-358

Overlay, 28

Padmanabhan, K., 376
Padua, D. A., 465, 467
Page A contiguous region of memory that

is treated as the smallest allocatable unit
1 by a virtual-memory manager; 28

Page fault An access to a page that is not
resident in main memory; 29, 32, 105-
106, 108-111, 117-126

Page-fault frequency replacement An al
gorithm for managing a virtual mem
ory that increases the number of pages
assigned to a process when page faults
occur at a rate above a fixed threshold;
121-124, 133-134

Page number The field of a virtual ad
dress that identifies the page to be ac
cessed; 109-1 l 1

Page replacement The process that deter
mines which page to move from main
memory to auxiliary memory to make
room for a new page in main memory;
84-90, 92

Page size The number of bytes in a page;
31

Page table A table used by a page mapper
in a virtual memory system that con
tains the physical (real) address for each
page, and is accessed by page number;
107-108

Pair-wise exchange An interconnection
switch that swaps data between adja
cent processors; 278-280

Parallel architecture, 20-21
Parallel computation, 12-13, 157-165, 237,

247-251, 258-268, 285-288, 408-413,
475-480

Parallel time The elapsed execution time
for a parallel computation; 161, 462-
464

Partial differential equation An equation
that expresses the relations among
variables and their partial derivatives;
238-239, 245-247

Particle model A computational process
in which physical behavior is modeled
through the simulation of discrete par
ticles acted upon by physical forces
produced remotely; 240-242, 292

See also Monte Carlo simulation
Partitioning (of programs to pages or seg

ments) The process of grouping re
lated portions of programs together to
force them to reside in contiguous re
gions of memory so that they tend to
be transferred together among the lev
els of a memory hierarchy; 115-117

Patel, J. H., 49, 55, 77, 169, 182
Patt, Y., 228
Patterson, D . A., 23, 214, 216, 227, 228
PAX Computer, 250, 253-254, 287,357,370,

445, 448
PDP-11. See DEC PDP-11
Pease, M. C., 273, 276, 462
Per-unit cost The manufacturing cost of

one additional item; 5-6
Perfect-shuffle interconnection An inter

connection structure that connects
processors according to a permutation
that corresponds to a perfect shuffle of
a deck of cards; 268-285, 287-288, 290-
291, 327-328, 336, 371-384, 443-444

inverse of, 276-277, 336
Performance model An idealized mathe

matical model that is useful for pre
dicting the performance of a computer
system; 344-358

cache behavior, 46, 56-57, 87-102
fully overlapped communication, 352-353
linear communication costs, 350-351
multiple communication links, 353-356
N processors with overlapped commu-

nication, 346-349
stochastic, 349-350
two processors with overlapped corn

munica tion, 344-346
Permutation A one-to-one mapping from

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 519

lnd~x and Glossary 505

a set of objects onto the same set of
objects; 459-462

Permutation memory {in the GF-11) A
memory that stores the control settings
for a collection of permutations, each
of which is to be used for routing
information among processors and
memories; 328- 329

PFF. See Page-fault frequency
Pfister, G., 284, 376-377, 382
Physical address The address of an item

in physical (real) memory; 103-104,
107-114, 207-210

Pipeline {in a computer system) A struc
ture that consists of a sequence of stages
through which a computation flows
with the property that new operations
can be initiated at the start of the pipe
line while other operations are in prog
ress through the pipeline; 143-228, 293-
307, 321-324

adding delays to, 182-190
arithmetic units, 321-324
conditional branches in, 192-197
conflicts in, 153-155
control of, 169-192, 174-176, 229
design of, 143-155
maximum performance of, 180-182
performance of, 157-169, 298
in RISC computer, 210-216
streaming operation of, 293-307, 334-335
in superscalar computer, 217-226
in vector computer, 293-294

Pivot (in Gaussian elimination) The larg
est element in a region of an array,
which is chosen to serve as the element
around which a transformatio _n of a
subarray is performed; 309-31 f, 333

Poisson's equation An equation that de
scribes physical potential as a function
of charge density; 245-249, 256, 281,
288-289, 410-411, 469-472

Polynomial, 290, 291
Pomerene, J., 74
Port (of a memory) An interface to a mem

ory system that supplies up to one op·
eration per memory cycle; 212, 301-302

Sec also Two-port memory
Power Law, 96, 99, 102, 130
Preparata, F., 283
Primed set (in a cache memory) A set of

lines of a set-associative cache that has
received a sufficient number of refer•
ences during a cache simulation to in
itialize all en tries in the set; 49

Process tag (in a cache memory) A field
that gives the identity of the specific
process that created a particular line in
the cache; 114

Program partition'ing, 28
See also Partitioning

Propagation effects Physical effects that
tend to degrade signal quality and to
increase propagation delays; 284

Protocol A set of rules or conventions that
govern how processors communicate,
synchronize, or maintain coherent in
formation in caches or in local mem
ories; 385-402, 450-453

Purge (of cache and TLB) The process that
removes all entries in a cache or cache
like memory that are associated with a
process when that process has relin
quished its use of a processor; 114

Puzak, T. R., 63-68

Quantum chromodynamics A branch of
theoretical physics concerned with the
behavior and properties of elementary
particles; 328

Queue (for shared access), 377-378, 414-
416, 426-427, 435-437, 441-443, 477

RIC ratio The ratio of a task's running time
to its overhead and communications
time; a measure of task granularity; 342-
359, 385, 414-419, 467-468, 472

Radin, G., 210
RAM. See Random-Access Memory
Random-access memory (RAM) A mem•

ory in which the time required to ac
cess an item is independent of the past
history of accesses; 26-27, 105-106, 100,
137

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 520

506 Index and Glossary

Rao, G. S., 196
Rathi, B. D., 446, 449
Ray tracing An algorithm used to render

Hfelike graphic images by tracing the
path of rays of light from a source to
an illuminated object; 13

READ/MODIFY/WRITE A noninterrup
tible sequence of operations required
for operations that synchronize access
to shared variables; 368, 415, 423-429,
434, 437-440

READ/WRITE conflict, 153-155, 198, 203,
466-469, 476

See also Conflict
Real address. See Physical address
Real time, 13
Rechtschaffen, R., 487
Recurrence relation A relation that ex

presses the next item of a sequence as
a function of the earlier items in the
sequence;231-232, 259-265, 290-291

Recursive doubling A technique for par
allel execution that at each stage dou
bles the number of variables that
influence the partial results at that stage
of the computation; 265-268, 287, 290,
334, 448

Red-black ordering (for a mesh calcula
tion), 469-471

See also Checkerboard ordering
Reduced instruction-set computer. See RISC
Reduced state-diagram A diagram that

describes the possible sequences of ini
tiation of operations in a pipelined
processing unit; 180-182, 229

Reformatting (of data structures) The
process of transforming a data struc
ture from one storage representation
to another to facilitate parallel access
to substructures of the data structure;
318-319

See also Column access, Row access
Register renaming A technique used in

processor design that assigns idle reg
isters to serve in the place of program
specified registers in order to avoid

conflicts that could stall pipeline flow
momentarily; 199, 225, 233

See also Internal forwarding
Register windows A processor mecha

nism in which sets of registers auto
matically change their function when
procedures are entered and exited; 216-
217

Release A synchronizing instruction that
delays its completion until all out
standing READs and WRITEs from the
same processor have been completed;
399-402

Release consistency A memory consis
tency implementation in which the rel
ative global order of READs and
WRITEs is established through their
relative order with respect to Release
and Acquire synchronizing instruc
tions; 399-402, 406-407

Remote effects Physical effects caused by
interactions that are not near-neighbor
interactions; 240-242

See also Action at a distance
Replacement policy A policy that gov

erns which items are to be removed
from one level of a memory hierarchy
when new items are put there; 58-63,
70-76, 107, 117-124, 127

See also LRU, OPT
Reservation (in READ_AND_RESERVE

instruction) A means by which a
processor records the intent to modify
a shared variable, which can be tested
at the time of the attempted update of
the shared variable to determine if the
update can be done correctly; 438-440

Reservation station A collection of hard
ware registers that hold data or res
ervations for data to be used in a future
operation; 201-203, 205

Reservation table A table that describes
which resources are needed at each step
of a pipelined computation; 173-175,
183-190, 222-223, 229

Reverse-binary operation A permutation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 521

lnd£x and Glossary 507

that maps Item i to the item whose
index is obtained by reversing the bits
in the binary representation of i; 336,
373-375

Ring (interconnection) An interconnec
tion structure in which nodes are con
nected in a loop structure; 363-365, 403

RISC (Reduced instruction-set computer)
A computer in which all instructions
are simple instructions that take one
cycle to execute, except possibly for de
lays introduced by conditional branches
and cache misses; 95, 193-194, 210-
217, 222, 227-228

Routing register In ILLIAC IV, a register
used for exchanging data among
neighboring processors; 248-249

Row access A concurrent memory access
to all elements of a row of a matrix;
310, 312-319, 332-334, 404

RP3. See IBM RP3

Sachar, H. E-~ 196
Salton, G., 457
Savage, J. E., 46
Scalable coherent interface (SCI), 389
Scalar arithmetic Arithmetic operations

that manipulate individual data as op
posed to arithmetic operations in which
one operation manipulates an entire
vector or matrix; 303, 322-323

Scalar operation Any operation per
formed on individual data; 236, 303,
322-323

Scalar processor A processor whose basic
operations manipulate individual data
elements rather than vectors or mat
rices; 303, 322-324

Scalar register A register whose function
is to hold scalar operands; 303-304, 322-
324

Scheduling, 340, 473
Scheu rich, C., 396-397
SCI. See Scalable coherent interface
Scoreboard A hardware device that main-

tains the state of machine resources to

enable instructions to execute without
conflict at the earliest opportunity to
do so; 154-155, 203-206

Search techniques, 453-464
Segment A method for partitioning data

into variable-length blocks of memory
so that items grouped together are log
ically related; 109-113, 115-117

Segment number The field of a virtual ad
dress that specifies which segment of
a program is to be accessed; 109, 112

Segment table The table in a virtual
memory system that is used to trans
late segment references in a virtual ad
dress to physical (real) addresses in
main memory; 109-113

Segmented memory A virtual memory
system whose address space is parti
tioned into a disjoint collection of re
gions known as segments; 115-117

Seitz, C. L., 252, 384-385
Selection field (in algorithm for cache anal

ysis) A field of bits within an address
that determines how a set is to be
treated in an N-set cache, 2N-set cache,
4.i\/-set cache, etc.; 60-63

Semaphore A variable that is used to con
trol access to shared data; 425-429, 439

Sequential-access memory A memory
system such as a magnetic tape mem
ory in which items must be accessed
sequentially, and in which the access
time to a random item depends on
which item in memory was accessed
immediately prior to the given access;
26-27

Sequential consistency (in a multiproces
sor) A multiprocessor memory irn•
plementation in which all processors
observe actions as if they were merged
into a particular global sequential or
der, and all observations are consistent
with that order; 393-402

Sequin, C. H., 214, 216
Serial access. See Sequential access
Serial correlation The statistical correla-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 522

508 Index and Glossary

tion among the addresses in a se
quence of addresses in an address trace
from which it is possible to predict fu
ture accesses; 29-32

See also Locality, Temporal locality, Spa
tial locality

Serial time The time it takes to execute
an efficient version of an algorithm on
a serial computer; 161, 462-464

Serialization The process that forces a
collection of complex tasks to take place
one at a time rather than in parallel;
319, 321

Set. See Cache, set
Set associative A cache structure in which

all tags in a particular set are compared
with an access key in order to access
an item in cache. The set may have as
few as one element or as many ele
ments as there are lines in the full cache;
36-44, 49, 58-70, 101, 113, 129-133

Set sampling. See Statistical sampling
Shadow directory A cache directory that

contains cache tags only, and no data;
74-76

Shadow miss A cache miss for which an
entry exists in a shadow directory; 64

Shar, L. E., 169
Shared memory, 359-360, 385-402, 418-419,

423-453
See also Global memory

Shared page A page of a virtual memory
system that is shared by two or more
programs; 112-113

Shared segment A segment of a virtual
memory system that is shared by two
or more programs; 116-117

Shebanow, M., 228
Shemer, J. E., 46
Shift-register analogy A method for pre

dicting the trajectory of an item in a
perfect-shuffle network by observing
the successive states of a cyclic shift
register; 273-275, 279-280

Shift-register controller (for a pipeline),
177-179

See also Collision vector

Shippey, B., 46
Shortest-path problem A problem that

requires the discovery of the shortest
path between two nodes of a graph;
460, 462, 478

Shuffle-exchange (interconnection) An
interconnection network that consists
of perfect shuffles and pair-wise ex
changes; 279-280, 291, 336, 371-384

Siewiorek, D. P., 22
SIMD (Single Instruction-stream, Multiple

Data-stream) A processor structure
in which a single instruction manipu
lates an entire data structure; 338, 422

See also Array processor, Connection Ma
chine, Vector Processor

Singh, J. P., 46, 98-99, 102
Single instruction-stream, multiple data-

stream. See SIMD
Singleton, R. C., 273, 276
Sites, R., 433
Skewed storage A technique for storing

matrices to facilitate parallel access to
rows and columns; 313-314

Slave memory Cache memory, 32
Slotnick, D. L., 247, 253
Smith, A. J., 42, 60, 88-89, 99, 101, 387
Smith, D. R., 458, 461-462
Smith, J. E., 48, 54, 449
Snir, M., 376
Sohi, G. S., 449
SOLOMON, 250-251
Sorting, 255-256, 273, 281-283, 478-479
SPARC processor, 216, 227
Sparse matrix A matrix whose elements

are mostly zeros; 13, 309, 324-327
Sparse vector A technique used in the

CDC STAR for representing vectors
whose elements are mostly zeros; 325-
326

Spatial locality The tendency for refer
ences to a particular item in memory
to be clustered together with refer
ences to nearby items; 99

See also Locality, Serial correlation, Tem
poral locality

Speech recognition, 13

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 523

Index and Glossary 509

Speedup The ratio of the time to execute
an efficient serial program for a cal
culation to the time to execute a par
allel program for the same calculation
on N processors identical to the serial
processor; 148, 160-161, 251,263, 267-
268, 348, 353, 357-358, 408, 415-416,
419-420, 454-455, 461-462

Spin lock An implementation of the
LOCK primitive that causes a proces
sor to retest a semaphore continuously
until the semaphore changes value; 427

Spirn, J. R. , 46
Stable (numerically) An algorithm that

produces small changes in the numer
ical answers in response to small
changes in input data; 265, 309

Stack-replacement policy A memory
replacement policy for which items that
are retained in a small memory are a
subset of the items retained if the
memory size is increased; 59-60

Stage (of a pipeline), 146, 150-153
Stale data Data that remain in a cache

when a process is moved to a different
processor; 387

Standard deviation A measure of the
likely deviation from the mean of a ran
dom variable, 50-53

See also Variance
Stanfill, C., 457
Startup transient The period immediately

after the initiation of a vector instruc
tion during which a pipeline produces
no results or produces results at a low
rate; 156

Statistical sampling A trace-reduction
technique that predicts full cache per
formance by sampling the perform
ance on a small number of cache sets;
67-68, 132

See also Trace reduction
Steele, G. L., Jr., 385
Sterbenz, P. H., 227
Stone, H. S., 23, 46, 77, 98-99, 123, 263,

265, 273, 274, 342, 349, 442, 446, 447,
449

Stream (of data) A set of successive data
presented to a pipelined arithmetic
unit, 295-302, 334

Strecker, W. D., 76-77
Stride The constant difference between

successive addresses in a stream of data
generated by a vector access; 314-315

Sturm polynomial, 291
Sullivan, H. T., 382
Superpipelined A variant of superscalar

computer architecture in which multiple
scalar instructions are decoded in each
clock cycle by decoding the instructions
one per supercycle, where the clock fre
quency of a supercyde is a multiple of
the main clock frequency; 218

Superscalar A computer architecture in
which multiple scalar instructions are
decoded in each clock cycle so that the
instructions completed per cycle ex
ceeds 1.0; 217-226

Sussenguth, E., 195
Sweazey, P., 387
Synch An elementary synchronization

operation; 414
Synchronization An operation in which

two or more processors exchange in
formation to coordinate their activity;
243, 249, 253, 332, 340, 361-362, 409-
417, 423-453, 474

Synchronizing instructions Special in
structions in a multiprocessor that are
globally ordered when they are exe
cuted so that sequential constraints on
the execution of other instructions can
be imposed relative to the sequential
ordering imposed by synchronizing in
structions; 396-397

Synonym (in a cache) A situation in which
two different items have the same
physical address but reside at different
virtual addresses; 208-209

Synthetic workload, 107
SYPS (SYnchronizations Per Second) A

processing rate of one synchronization
per second; 409, 415

See also MSYPS

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 524

510 Index and Glossary

Systolic array A parallel computer with a
highly structured, iterative intercon
nection pattern; 284

Tag. See Cache, tag
Tanenbaum, A. S., 23
Tapped delay-line A device whose taps

produce delayed versions of the input
data with each tap associated with a
different delay, 301-302

Temporal locality The tendency for ref
erences to a particular item in memory
to be clustered together in time; 99

See also Locality, SeriaJ correlation, Spa
tial locality

Telecommunications The transmission of
information between two separate
points, 15-16

Test-and-Set A primitive instruction that
performs a READ/MODIFY/WRITE
operation for synchronization of proc
essors; 423-427, 477

Thanawastien, S., 376
Thiebaut, D., 46, 77, 96-102, 123
Thirty-percent rule, 42-43, 56-57, 98
Thompson, D., 445-446
Thompson, J. G., 88-89
Thornton, J. E., 152, 203-204, '227
Thrashing A state in which multiple pro-

grams compete for real memory and
no program is able to obtain enough
memory to reduce its fault rate to a low
value; 118-119

Three•address instruction format An in
struction format with two fields for in
put operands and one field for a result
operand; 154, 205

Threshold (for page-fault frequency), 121-
122

Threshold phenomenon For some phys
ical systems, the situation in which be
havior changes dramatically when a
parameter crosses a threshold; 82

TLB. See Translation-lookaside buffer
Token A unique data symbol used to con

trol transmission for a parallel com-

puter system connected as a ring; 364-
365

Token ring. See Ring interconnection
Tomasulo, R. M., 204-205
Tour A path on a graph that visits every

node exactly once and terminates at
the starting node; 45.7-462

Trace-driven analysis A performance anal
ysis technique based on simulating the
behavior of a computer system re
sponding to stimuli obtained from a
program trace; 44-70, 95, 114,. 131-133

Trace filtering. See Trace reduction
Trace length, 44-57, 68-69
Trace reduction A technique for reducing

the number of address references on
an address trace while retaining the
ability to use the trace to analyze cache
performance; 63-70, 95, 131-133

Trace stripping. See Trace reduction
Trailing-edge effect (of a cache) The per

formance degradation due to the delay
between the arrival of the first portion
of a cache line and the arrival of sub
sequent portions of that line when the
line is reloaded in response to a cache
miss; 90, 92-93

See also Leading-edge effect
Transaction system, 13
Transient {of cache simulation) The misses

that occur during the beginning of a
cache simulation due to incorrect ini
tialization of the cache; 47-48, 54-57,
68-69

Transient miss (in shadow directory) A
cache miss that occurs both in a main
cache directory and in a shadow di
rectory. The miss in the shadow direc
tory indicates that the address reference
has not been observed for a very long
time; 75

Translation-lookaside buffer (TLB) A
cache-like memory that holds recently
used mappings of virtual addresses to
physical (real) addresses; 108-109, 113-
115

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 525

lnd~x and Glossary 511

Traveling Salesman Problem A problem
whose solution is the shortest path
among N cities such that the path be
gins and ends at City 1 and no city is
visited twice; 408-409, 457-462

Treiber, R. K., 433
Triangular matrix A matrix whose non

zero elements lie on the major diagonal
and in a triangular region that lies either
above or below the major diagonal; 308-
312

Tridiagonal matrix A matrix whose non. -
zero elements lie on the major diagonal
and on the diagonals immediately
above and below the major diagonal;
264-268, 289-291, 308-312

Tridiagonal system of equations A linear
system whose defining matrix is a tri
diagonal matrix; 264-268, 289-291, 308-
312

Trivedi, K., 46
Tukey, J. W., 286
Turek, J. J., 123
Two-address inshu.ction format An in

struction format in which one field
specifies an operand and a second field
specifies an operand that also receives
the result of the operation; 205, 229

Two•level mapping A mapping from vir
tual addresses to physical (real) ad
dresses that requires two successive
table accesses; 108-112

Two-port memory A memory system that
supports two simultaneous accesses
such as READ and WRITE; 212, 301-
302

See also Port

Ullman, J. D., 458
Ultracomputer. See NYU Ultracomputer
Underflow A state in which a nonzero

number becomes too small to be rep
resented in a number system; 227

Unimodal Having a single mode (maxi
mum or minimum); 453

University of Manchester, 28

Unlock A primitive operation that per
forms the inverse of a lock by granting
processors access to a critical section;
368, 379, 396-402, 425-427, 432, 468

Varga, R. S., 247, 470
Variance The square of the standard de

viation of a probability density; 50-52
Vector A data structure that consists of an

ordered set of elements; 157
Vector arithmetic Arithmetic operations

whose operands are vectors of data;
293-295

Vector computer A computer whose in
structions include instructions for vec
tor arithmetic; 292-332

generic, 293-307
Vector instruction An instruction whose

operands are vectors; 32, 236, 293-294,
332-336

Vector processor A computing device, not
necessarily a full computer, capable of
operating on vectors as basic data
structures; 322-324, 340

attached to host computer, 319-324
data-structuring techniques for, 312-319

Vector register A high-speed register in a
vector processor that holds a vector op
erand; 303-304

Very large-scale integration. See VLSI
Very long instruction-word. See VLIW
Video {digitial applications involving), 16
Virtual address The address of an item as

produced by a program before the ad
dress is mapped into physical (real)
memory; 103-104, 107-115, 207-210

Virtual memory A memory system in
which addresses produced by pro
grams lie in an address space that is
not the address space of physical (real)
memory so that all such addresses must
be translated to physical addresses prior
to access. In such a system, portions
of programs and data can be freely
moved among the levels of a hier
archical memory, and brought into

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 526

51i Index and Glossary

physical memory only when actually
needed; 25, 29-30, 103-129, 130-131,
133-134, 136, 165-168

buffering effects, 125-129
evaluation of, 106-107
locality, 115-117
management of, 103-106, 115-129
mapping, 107-115, 130-131
replacement policy, 117-124

VLIW (Very Large Instruction-Word) A
computer architecture in which in
structions are encoded with many bits
and control a large number of com
putational facilities concurrently; 218

VLSI (Very Large-Scale Integration) A
manufacturing process that uses a fixed
number of manufacturing steps to pro
duce all components and interconnec
tions for hundreds of devices each with
millions of transistors; 3, 6-7, 14-16,
22, 95, 206, 216, 284, 288, 363, 365

Voldman,]., 52, 76
von Neumann, J., 24, 143
von Neumann bottleneck The notion that

the data path between the processor
and memory of a von Neumann com
puter is the facet that most constrains
performance of such a computer; 24

Yuillemin, J., 283

Wallace, C. C., 226
Wang, W.-H., 63, 67
Waser, S., 227
Weak consistency A memory consistency

model weaker than sequential consis
tency in that only its synchronizing in
structions are sequentially consistent
and other instructions are ordered rel
ative the synchronizing instructions;
398

Weather modeling, 13
Weingarten, D., 327
Wilkes, M. V., 32
Window (of working set) The time period

during which accesses made by a pro
gram are said to belong to the working
set of the program; 120, 124

Wolf, J. L., 123
Wolfe, M. J ., 465, 467
Working set A model of program behav

ior that says that the future references
made by a program with high proba
bility belong to a set of addresses re
cently referenced; 99, 118-121, 124, 126,
134

Workload,42,45-46,96, 98, 101-102, 106-
107, 238

Write-back cache. See write-in cache
Write-in cache A cache in which WRITEs

to memory are stored in cache and
written to memory only when a re
written item is removed from cache;
86-89, 140-141, 405-406

Write Invalidate A cache-coherence pro
tocol in which information in remote
caches is invalidated by a writer; 390-
392, 405-406, 451-452

See also Cache, coherence
Write Load A cache-coherence protocol

in which information is forced into re
mote caches whether or not a remote
cache holds an earlier version of the
information; 451-452

See also Cache, coherence
WRITE/READ conflict, 153-155, 198, 203,

466-467, 469, 472, 476
See also Conflict

Write-through cache A cache in which
WRITEs to memory are recorded con
currently both in cache and in main
memory; 86-88, 140-141, 405

Write Update A cache-coherence protocol
in which information in remote caches
is updated by a writer; 390-392, 405,
451-452

See also Cache, coherence .
WRITE/WRITE conflict, 153-155, 198,203,

466-467, '476
See also Conflict

Xi-Cheng, L., 342, 349
XOR (Exclusive OR operation), 262

Yew, P.C., 376

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 527

