
Homayoun

Reference 23

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 1

Third Edition

High-Performance
Computer Architecture

Harold s. Stone
IBM T.J. Watson
Research Center
and
Courant Institute
New York University

,.4., Addison ... wcsley Publishing Company

Reading, Massachusetts
Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England
Amsterdam • Bonn • Sydney • Singapore
Tokyo • Madrid • San Juan • Milan • Paris

,.-. ~~

- ~

~ - V
"

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 2

This book is in the Addison-Wesley Series in Electrical and· Computer Engineering

Libnry of Congress Cataloging-in-Publication Data

Stone, Harold S.
High-performance computer architecture/ Harold S. Stone.-3rd

ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-52688-3
L Computer architecture. I. Title.

QA76.9.A73S76 199.3 ,'J t·\: 0
004.2'2-dc20 · • ►., _i , .· ' 92-32243

CIP

Copyright@ 1993 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, rttording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.

1 2 3 4 5 6 7 8 9 10-HA-95949392

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 3

To]an-colleague and companion

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 4

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 5

PATENT OWNER DIRECTSTREAM, LLC

EX. 2135, p. 5

reface
..

Teaching computer architecture is an interesting challenge for the instructor
because the field is in constant flux. What the architect does depends strongly
on the devices available, and the devices have been changing every two to three
years, with major breakthroughs once or twice a decade. Within the brief life
of the first edition of this textbook a whole generation of processor and memory
chips were first offered for sale, appeared in popular computers, and then
gradually disappeared from the marketplace as their successors took their places.
The particular features and strengths of those devices have given way to other
features in various new combinations and new relative costs. Design practices
are evolving to exploit the new devices for a new generation of machines. And
they will evolve again as the next wave of devices appears in the coming years.

What then should be taught to prepare students for what lies ahead? What
information win remain important over the technical career of a student, and
what information will soon become obsolete, of historical interest only? This
text stresses design ideas embodied in many machines and the techniques for
evaluating those ideas. The ideas and the evaluation techniques are the principles
that will survive. The specific implementations of machines that one might
choose in 1995 2000, or 2005 reflect the basic principles described here as applied
to the device technology currently prevailing. Effective designs are those that
use technology cleverly and achieve balanced, efficient structures matched well
to the class of problems they attack. This text stresses the means to achieve
balance and efficiency in the context of any device technology.

vii

p

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 6

viii Preface

We use a multifaceted approach to teaching the reader how to prepare for
the future. The major features are the following:

1. Each topic is a general architectural approach-memory designs, pipeline
techniques, and a variety of parallel structures.

2. Within each topic the focus is on fundamenta] bottlenecks-memory band
width, processing band-.vidth, communications, anq synchronization-and
how to overcome these bottlenecks for each topic area.

3. The materiaJ addresses evaluation techniques to help the reader isolate as
pects that are highly efficient from those that are not.

4. A few machines whose structure is of historical interest are described to
illustrate how the concepts can be implemented.

5. Where appropriate, the text draws on examples of real applications and their
architectural requirements.

6. Exercises at the end of chapters give the reader an opportunity to sketch
out designs and perform .evaluation under a variety of technology-oriented
constraints.

The exercises are particularly important. They help the reader master the material
by integrating a number of different ideas, often by working through a paper
design that must satisfy some unusual set of constraints. In several exercises,
the student is asked to produce a series of designs1 each reflecting a different
set of underlying devices. This helps the student gain experience in adapting
basic techniques to new situations.

The text is intended for the advanced undergraduate and first-year graduate
students. It assumes the student has had a course in machine organization so
that the basic operation of a processor is well understood. Some experience with
assembly language is helpful, but not essential. Programming in a high-level
language such as Pascal, however, is necessary to understand the applications
used as examples. Mathematical background in probability is helpful for Chap
ter 2, linear systems or numerical methods for Chapters 4 and 5, and some
exposure to operating systems will assist understanding of Chapter 7. In no case
is the material absolutely required because the text contains sufficient discussion
and references to source material to support the presentation.

The text purposely avoids detailed descriptions of popular machines because
in time the machines so described will inevitably be obsolete. In future years,
a reader of such material may be led to think that the specific details of a
successful machine represent good design decisions for the future as well as for
the period in which the design was actually done. A better approach is for the
individual instructor to discuss one or two current machines while using the
text, with the notion that current machines can change each year at the discretion
of the instructor. It is also possible to use the text.without such supplementary
material because the design exercises provide challenges that represent tech
nology through the 1990s.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 7

P_rcfacc ix

We jokingly teJl students that the subject matter enjoys a positive benefit
from the rapid change in technology. The instructor need not create new ex
ercises and examinations for each new class. The questions may be the same
each year, but the answers will be different.

A number of teaching aids are available with this edition. The exercises in
Chapter 2 make use of traces of instruction execution for which a floppy disk
with sample traces is available from the publisher for course adopters. The disk
is in IBM-compatible format and can be accessed by programs written in a variety
of programming languages.

Prior to the publication of this text thorough studies of cache behavior
required main-frame computers for ana1ysis due to the maSS\Ve amounts of data
to process. The techniques described in Chapter 2 show how to reduce the
processing by as much as two orders of magnitude and make possib]e the use
of a personal computer as the primary analysis tool. The analysis techniques
were first made widely available in the first edition of this text., and have now
become standard among computer architects. The exercises for Chapter 2 give
the student ample opportunity to practice cache analysis on the sample traces
and to practice evaluating design alternatives.

An instructor's guide with solutions to selected exercises is also available
from the publisher to course adopters. Among the solutions in the manual are
sample solutions to some of the design exercises. The instructor shou]d bear in
mind that the design exercises can be satisfied by many different designs, and
that the sample solutions are illustrative of good approaches, but are definitely
not the only acceptable solutions. What is important is the reasoning used by
the student to establish that a particular design meets the constraints imposed
and is both efficient and effective in solving the given design problem.

Three sets of video-taped lectures provide instructional aid in a different
form. A set of eight lectures that cover the highlights of the entire text can be
ordered by writing to Addison-Wesley, Reading, MA 01867., Attn: Engineering
Editor. A set of three lectures on the topics of multiprocessor cache coherence
and synchronization is available from the IEEE Computer Society Press, 10662
Los Vaqueros Circle, Los Alamitos, CA 90720. Another set of three lectures on
advanced topics in cache behavior and cache analysis is available from the Na
tional Technological University, 700 Centre Ave., Ft. Collins, CO 80526, Attn:
Richard Soderberg. The videotapes focus on central issues, and describe these
topics visually and orally in a way that cannot be done in writing. Students and
instructors will find the video tapes very useful for intensive study in short
courses or self-paced instruction. The video medium is an effective means for
fast transfer of informationJ and it is a useful supplement to a slower paced
program of classroom lecture and intensive reading that encourages deeper
understanding.

Instructors familiar with the first edition will find new material on program
behavior models, RISC architectureJ and parallel synchronization. The material

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 8

X Preface

on program behavior has been introduced because machines have changed so
quickly in recent years that designers are forced to produce new generations of
processors without the benefit of traces of workloads for those processors. In
such cases, the evaluation techniques described in Chapter 2 cannot be brought
into play. The next best tool is to produce estimates of program behavior that
can be used as input to design evaluations. We have incorporated some inter
esting new developments in program modeling that appeared after the publi
cation of the first edition.

Similarly, RISC architecture and parallel synchronization have been devel
oping very quickly in recent years and demanded additional space in the new
edition. Beyond these topics, small incremental changes in the remaining topics
have helped bring them up to date and streamlined their presentation.

The material in the text is structured in a modular fashion,. with each chapter
reasonably independent of every other chapter. The instructor can put together
a course by selecting individual chapters and individual sections according to
the background of the students, the prerequisites available, and the successor
courses in the curriculum.

Chapters 2 and 3 form the core material. Cache memories and pipeline
structures are widely used today, and they are likely to be effective in the
technologies that will emerge in the next several years. These chapters should
be taught in all course offerings.

For courses in which students have a good background in nu merical meth
ods, Chapters 4 and 5 show how parallel computer architectures are matched
to problem domains. Students unfamiliar with the underlying mathematical
applications will gain an understanding of computational methods in wide use
from these chapters, and all readers will appreciate how data flow and syn
chronization of math ematical actions in an algorithm are directly supported by
architectural features. The chapters are biased toward supercomputers and large
scale computations, but the material is useful as well for general purpose
computers.

Chapters 6 and 7 treat multiprocessors, which are more general purpose
than the machines of Chapters 4 and 5. Multiprocessors were almost exclusively
research vehicles in the 1970s, and were in commercial use in niche areas in the
1980s. The 1990s will find a much broader use of multiprocessors as the speed
of individual processors reaches the limit of metal interconnections. The highest
sustainable clock rate for metal interconnections is roughly 200 to 250 MHz for
a typical conductor geometry, although the dock rate can be boosted even higher
at great expense by reducing the dimensions of all components and conductors.
Computers in all dasses from microprocessors to high-end machines started the
1990s within one to two generations of this clock limit. To sustain increases in
perf?rmance through the decade, the industry must embrace multiprocessing
m Virtually all computers, or must abandon metal interconnection technology
for another technology such as optical fiber or optical waveguide technology.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 9

Prdacc xi

In this text, we cxplqre the use of multiprocessors and leave the topic of
optical interconnections for another time and another text. The multiprocessor
discussion is oriented to where to seek performance improvement by using
resources efficiently. The interplay of multiple disciplines is central to this dis
cussion. Each specialist on a design team should have a broad shallow knowledge
of the full scope of a design, including hardware, software, architecture, and
applications, while enjoying a much deeper knowledge of a specialty area. Chap
ters 6 and 7 give a broad view of multiprocessors and delve deeply into particular
topics such as algorithm design and performance models that are relevant to all
specialties. These chapters are recommended especially for curricula that em
phasize systems programming and computer engineering.

In one semester, it is reasonable to complete selected sections of all chapters,
or to cover Chapters 2 and 3 and two other chapters in depth. Chapter 1, which
has no exercises, is to be used as background reading to set the tone of the
exposition. The text can easily satisfy the needs of a two-quarter or two-semester
sequence if the instructor chooses to use the full material.

No matter which portion of the text is covered, working the exercises is
critical for a thorough appreciation of the material. The design-oriented exercises
can be rather frustrating at first because there is no clear indication of a correct
answer. The reader wants to see exercises that can be answered quickly by
jotting down a simple answer after a small amount of thought. \'\That a pleasure
to crank through a calculation and find the answer is 17.5. The design exercises
are nothing like this. In a sense an answer is correct if it meets the constraints
of the design. The reality is that the answer should be more than correct-it
must be competitive.

The point of working such exercises is not the final design, but rather the
process of arriving at the final design. What alternatives were considered? How
does the final design overcome basic problems? Did the student consider a
reasonable set of alternatives or was there a valid approach missed that should
have been considered? Is the evaluation of the design reasonable? For what
assumptions concerning technology factors and workload characteristics is the
given design an efficient one?

After working through such problems the reader becomes familiar with the

thought processes of the designer and gains both experience and insight into

architectural design. Many exercises seem to capture real situations, and this is

as intended. As in real situations, the reader may discover that there is no good

solution, and a compromise has to be invented. Or there may be several rea

sonable solutions, and the reader has to pick one, possibly on the basis of

characteristics that are secondary in importance because all solutions available

have satisfactory primary characteristics. Many exercises have been drawn from

design problems faced by the author, with constraints updated for the present

and future.
The preparation of this text represents the fruits of labor of many parties.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 10

xii Preface

The author's students, Tom Puzak, Zarka Cvetanovic, Dominique Thiebaut, and
John Turek contributed a number of ideas to the text and exercises. They also
offered helpful comments and criticisms as the project progressed. Kevin Don
ovan, David Epstein, and Robert Hinkley produced high-quality solutions to
the exercises that appear in the instructor's guide. Other reviewers whose com
ments are reflected in these pages are WilJiam F. Applebe, Georgia Institute of
Technology; Richard A. Erdrich, Unisys Corporation; John L Hennessy, Stan
ford University; K. C. Murphy, Advanced Micro Devices; PauJ Pederson, New

York University; Richard L. Sites, Digital Equipment Corporation; Henry Levy,
University of 'v\Tashington; Glen Langdon, University of California at Santa Cruz;
Peter Hsu, Sun Microcomputers, and Phil Emma, Jeff Lee, K. S. Natarajan,
Howard Sachar, and Marc Surette, all with IBM. Collective)y and individually,
their work has aided greatly the process of developing material to make it easily
accessible to the intended audience. The publication crew at Addison-Wesley
did a remarkable job in putting the project together. Patsy DuMou1in, Bette
Aaronson, and Karen Myer demonstrated that they know pipelining in practice
better than the author does in theory, smoothly flowing the chapters through
the tedious process of markup, text editing, and page composition in a remark
able example of proficiency in high-performance publishing. To Tom Robbins,
we offer gratitude for support and encouragement in the project from its incep
tion to its completion.

Clmppaqua, New York H. S.S.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 11

Contents

1 Introduction

1.1 Technology and Architecture
1.2 But Is It Art?

1.2.1 The Cost Factor
1.2.2 Hardware Considerations

1.3 High-Performance Techniques
1.3.1 Measuring Costs
1.3.2 The Role of Applications
1.3.3 The Impact of VLSI
1.3.4 The Impact of Digital Communications
1.3.5 The Effect of Technological Change on Cost
1.3.6 Algorithms and Architecture

1.4 Historical References

Memory-System Design

1

1
3
4
8

10
11
12
14
15
16
19
21

24

2.1 Exploiting Program Characteristics 26
2.2 Cache Memory 32

2.2.1 Basic Cache Structure 32
2.2.2 Cache Design 36
2.2.3 Cache Analysis: Trace Generation and Trace Length 44
2. 2.4 Efficient Cache Analysis 57
2.2.5 Replacement Policies 70
2.2.6 Footprints in the Cache 76

Xiii

2

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 12

3

4

Contents

2.2.7 Writing to the Cache
2.2.8 Other Cache Metrics
2.2.9 Modeling System Performance

2.2.10 Modeling Cache Behavior

2.3 Virtual Memory
2.3.1 Virtual-Memory Structure
2.3.2 Virtual-Memory Mapping
2.3.3 Improving Program Locality

2.3.4 Replacement Algorithms
2.3.5 Buffering Effects in Virtual-Memory Systems

Exercises

Pipeline Design Techniques

84
87
90

95
102

103
107
115
118
125
129

142

3.1 Principles of Pipeline Design 143
3.2 Memory Structures in Pipeline Computers 155
3.3 Performance of Pipelined Computers 157
3.4 Control of Pipeline Stages 169

3.4.1 Design of a Multi-Function Pipeline 169
3.4.2 The Collision Vector and Pipeline Control 174
3.4.3 Maximum Performance Pipelines 180
3.4.4 Using Delays to Increase Performance 182
3.4.5 Interlock Elimination 190

3.5 Exploiting Pipeline Techniques 192
3.5.1 Conditional Branches 192
3.5.2 Internal Forwarding and Deferred Instructions 197
3.5.3 Machines with Both Cache and Virtual Memory 207
3.5.4 RISC Architectures 210
3.5.5 Superscalar Architectures 218

3.6 Historical References 227
Exercises 228

Characteristics of Numerical Applications

4.1 Classification of Large-Scale Numerical Problems
4.1.1 Continuum Models
4.1.2 Particle Models

4.2 Design Constraints for High-Performance Machines
4.3 Architectures for the Continuum Model
4.4 Algorithms for the Continuum Model

4.4.1 The Cosmic Cube versus the ILLIAC IV
4.4.2 Data-Flow Requirements
4.4.3 Parallel Solutions
4. 4. 4 Recursive Doubling and Cyclic Reduction

235

236

238
240
242
244
251
252
254
259
265

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 13

5

6

4.5

4.6

Contents

The Perfect Shuffle
4.5.1 The Perfect-Shuffle Interconnection Pattern
4.5.2 Applications of the Perfect Shuffle
Architectures for the Continuum Model-Which Direction?

Exercises

Vector Computers

5.1 A Generic Vector Processor
5.1.1 Multiple Memory Modules
5.1.2 Intermediate Memories

5.2 Access Patterns for Numerical Algorithms
5.2.1 Gaussian Elimination

5.3 Data-Structuring Techniques for Vector Machines
5.4 Attached Vector-Processors
5.5 Sparse-Matrix Techniques
5.6 The GF-11-A Very High-Speed Vector Processor
5.7 Final Comments on Vector Computers
Exercises

Multiprocessors

6.1 Background
6.2 Multiprocessor Performance

6.2.1 The Basic Model-Two Processors with
Unoverlapped Communications

6.2.2 Extension to N Processors
6.2.3 A Stochastic Model
6.2.4 A Model with Linear Communication Costs
6.2.5 An Optimistic Model-Fully Overlapped

Communication
6.2.6 A Model with Multiple Communication Links
6.2.7 Multiprocessor Models

6.3 Multiprocessor Interconnections
6.3.1 Bus Interconnections
6.3.2 Ring Interconnections
6.3.3 Crossbar Interconnections
6.3.4 Two- and Three-Dimensional Meshes
6.3.5 The Shuffle-Exchange Interconnection and the

Combining Switch
6.3.6 The Butterfly Operation and the Reverse-Binary

Transformation
6.3.7 The Combining Network and Fetch-and-Add
6.3.8 Hypercube Interconnections

xv

268

269

275
285

288

292

293

295

302

307

308

312
319
324

327

329

332

337

338

342

344

346

349

350

352

353
356

358

358
363

365

370

371

373

378

384

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 14

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 15

PATENT OWNER DIRECTSTREAM, LLC

EX. 2135, p. 15

1
Architecture is preeminently the art
of significant forms in space-that is,
forms significant of their functions.
-Claude Bragdonr 1931

Introduction

1.1 Technology and Architecture
1.t But Is It Art?
1.3 High-Performance Techniques
1.4 Historical References

This text is devoted to the study of the architecture of high-speed computer
systems, with emphasis on design and analysis. We view a computer system
as being constructed from a variety of functional modules such as processors,
memories, input/output channels, and switching networks. By architecture, we
mean the shucture of the modules as they are organized in a computer system.
The architectural design of a computer system involves selecting various func
tional modules such as processors and memories and organizing them into a
system by designing the interconnections that tie them together. This is anal
ogous to the architectural design of buildings, which involves selecting materials
and fitting the pieces together to form a viable structure.

1.1 Technology and Architecture

Computer architecture is driven by technology. Every year brings new devices,
new functions, and new possibilities. An imaginative and effective architecture
for today could be a klunker for tomorrow, and likewise, a ridiculous proposal

1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 16

Introduction Chapte,. 1

for today may be ideal for tomorrow. There are no absolute rules that say that
one architecture is better than another.

The key to learning about computer architecture is learning how to evaluate
architecture in the context of the technology available. It is as important to know
if a computer system makes effective use of processor cycles, memory capacity,
and Lnput/output bandwidth as it is to know its raw computational speed. The
objective is to look at both cost and performance, not performance alone, in
evaluating architectures. Because of changes in technology, relative costs among
modules as well as absolute costs change dramatically every few years, so the
best proportion of different types of modules in a cost-effective design changes
with technology.

This text takes the approach that it is methodology, not conclusions, that
needs to be taught. We present a menu of possibilities, some reasonable today
and some not. We show how to construct high-performance systems by making
selections from the menus, and we evaluate the systems produced in terms of
technology that exists at the start of the 1990s. The conclusions reached by these
evaluations are probably reasonable through the middle of the decade, but in
no way do we claim that the architectures that look strongest today will be the
best as we turn to a new millennium.

The methodology,. however, is timeless. From time to time the computer
architect needs to construct a new menu of design choices. With that menu and
the design and evaluation techniques described in this text, the architect should
be able to produce high-quality systems in any decade for the technology at that
time.

Performance analysis should be based on the architecture of the total system.
Design and analysis of high-performance systems is very complex, however,
and is best approached by breaking the large system into a hierarchy of functional
blocks, each with an architecture that can be analyzed in isolation. If any sing1e
function is very complicated, it too can be further refined into a collection of
more primitive functions. Processor architecture, for example✓ involves putting
together registers, arithmetic units., and control logic to create processors-the
computational elements of a computer system.

An important facet of processor architecture is the design of the instruction
set for the processor. In years past, there were controversies raging over whether
instruction sets should be very simple or very complex. The controversies were
not settled with a single solution; instruction sets continue to evolve with dif
ferent underlying philosophies. But as part of the evolution, each different
approach is influenced by the others, and incorporates advantages of other
approaches where possible. We illuminate the factors that determine the quality
of an instruction set, and in any technology an architect can measure those
factors for a new design to guide the design process.

Computer architecture is sometimes confused with the design of computer

2

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 17

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 18

PATENT OWNER DIRECTSTREAM, LLC

EX. 2135, p. 18

4 Introduction Chapter 1

aesthetics, for which we have no absolute measures. We have no absolute test
to conclude whether the work is a masterpiece or a piece of junk. If the art world
agrees that it is a masterpiece, then it is a mast�rpi:ce.

Computer architecture, too, has an aesthetic side, but 1t 1s quite different
from the arts. We can evaluate the quality of an architecture in terms of maximum
number of results per cycle, program and data capacity, and cost, as well as
other measures that tend to be important in various contexts. We need never
debate a question such as, "but is it fast?"

Architectures can be compared on critical measures when choices must be
made. The challenge comes because technology gives us new choices each year,
and the decisions from last year may not hold this year. Not only must the
architect understand the best decision for today, but the architect must factor
in the effects of expected changes in technology over the life of a design. There
fore, not only do evaluation techniques play a crucial role in individual decisions,
but by using these techniques over a period of years, the architect gains expe
rience in understanding the impact of technological developments on new ar
chitectures and is able to judge trends for several years in the future.

Here are the principal criteria for judging an architecture:

• Performance;

• Cost; and

• Maximum program and data size.

There are a dozen or more other criteria, such as weight, power consumption,
volume, and ease of programming, that may have relatively high significance
in particular cases, but the three listed here are important in all applications and
critical in most of them.

1.2.1 The Cost Factor

The cost criterion deserves a bit more explanation because so many people are
confused about what it means. The cost of a computer system to a user is the
money that the user pays for the system, namely its price. To the designer, cost
is not so clearly defined. In most cases, cost is the cost of manufacturing, in
cluding a fair amortization of the cost of development and capital tools for
construction. All too often we see comparisons of architectures that compare
the parts cost of System A with the purchase price of System B, where System
A is a novel architecture that is being proposed as an innovation, and System
B represents a model in commercial production.

Another fallacious comparison is often made when relating hardware to
software. In the early years of computing, software was often bundled free of
charge with hardware, but, as the industry matured, software itself became a
commodity of value to be sold.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 19

Section 1.2 But Is It M'l 5

We now discover that what was once a free good now commands a signif
icant portion of a computing budget. The trends that people quote are depicted
in Fig. 1.1, where we see the cost of software steadily rising with inflation and
complexity, and with apparently little relief from advances in software tools.
Plotted on the same curve is the general trend for hardware in the same period
of time. Hardware components appear to be diminishing in cost at an unbe
lievable rate. If we project these trends forw'ard ten to twenty years, we may
believe that hardware might be bund1ed with software, given free with the
purchase of the software that runs on it. But this view is rather naive.

Software and hardware costs each have two components:

1. A one-time development costj and

2. A per-unit manufacturing cost.

The actual cost of a product, be it software or hardware, is shown in Fig. 1.2 as
a function of the volume of production of a product. Note that the cost of the
first unit is equal to the cost of the development. The cost curve moves upward
with volume, but the slope tends to diminish with very high volumes because
of manufacturing experience that tends to reduce per-unit costs over large vol
umes of production. The curve in Fig. 1.2 shows accumulated cost of the total
volume of a product. The price of the product is the cost shown on the curve
divided by the volume, plus a markup for profit. So price is very sensitive to
volume when development costs are high.

When software was essentially free, the development costs were either bun-

�

9......---------------------,

8

7

o Software

■ Hardware (log of normalized cost)

E 4
0

z

3

2

10--�--'----....J"----_,__ _ __._ ___ _ __._ ___ _ _.

1950 1955 1960 1965 1970 1975 1980 1985 1990

Fig. 1.1 A naive view of computer-cost trends.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 20

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 21

PATENT OWNER DIRECTSTREAM, LLC

EX. 2135, p. 21

Section 1.2 But Is It Art? 1

of the database-management software may be sold. This alone can account for
a factor-of-ten difference in price.

Our analysis also shows why in years to come hardware costs will still prove
to be significant compared to software costs. At issue here is the cost of man�
ufacturing. Software manufacturing costs are near zero today and can only go
lower, so that softv,:are pricing in a competitive market mainly reflects the am
ortization of development costs.

Hardware manufacturing costs, while small on a per-chip basis, are many
times more than software manufacturing costs. It is far less costly today to
replicate accurate copies of software than it is to replicate hardware. Hardware
requires assembly and testing to make sure that each copy is a faithful copy of
the original design. This is far more complex today than the quality assurance
on a software manufacturing line that simply has to compare each bit of infor
mation in software to see if it agrees with the original program.

Figure ·1.2 suggests a strategy for the development and pricing of VLSI chips,
hardware, and software. Development costs have to be amortized over the
volume of units sold. The price of a unit is a strong factor in determining the
ultimate volume sold. Manufacturers occasionally take a risk by setting an initial
price that is profitable for a high-sales volume, but unprofitable for a lower
volume. Another pricing strategy is to set an initial price somewhat higher in
order to recover development costs on a lower-sales volume, with the price
dropping as the product ages.

For example, memory chips have been quadrupling capacity every two to
three years. The manufacturing cost per chip is usually constant per chip, re
gardless of the memory capacity of the chip. When a new memory chip that
has four times the capacity of its predecessor is introduced, a typical strategy is
to sell it initially at four or five times the price of its predecessor. Although the
price per bit is about equal for new and old technologies, the newer technology .
leads to less expensive systems because of having only one fourth the number
of memory chips.

During the initial life of the new memory technology, the manufacturer
hopes to sell enough chips at the premium price to recover all of the development
costs. The price will gradually diminish by a factor of four or five as it approaches
a price that recovers only the production cost plus profit. The cycle begins again
as the next generation of memory chips comes to market.

The profitability to the manufacturer in this scenario depends on how long
the manufacturer can maintain a premium price. U competition forces prices to
be lowered too soon, the manufacturer may never recoup the development cost.

Software pricing reflects development costs to a much greater extent than
does hardware pricing. If a software publisher has a popular product with little
direct competition, the manufacturer can recoup development cost within a short
time by setting the price at a high premium over production costs. After re-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 22

8 Introduction Chapter 1

covering development costs, the publisher can gradually drop the price to gen
erate a reasonabie profit given current production costs, but too low to recoup
additional profits to offset development costs. At this price, a new competitor
cannot enter the market with an essentially identical product because the com
petitor's price cannot be high enough to recover product development costs. A
competitor has to offer an enhanced product with new functions and new ca
pabilities in order to compete.

Software and hardware pricing are starting to show some similarities, par
ticularly in the personal computer market. The least expensive personal com
puters have relatively few parts because their functions have become well
understood and standardized. A few VLSI chips are sufficient to implement a
computer that formerly required several hundred chips. Hence, system man
ufacturing costs are diminishing, and a greater fraction of cost can be attributed
to the development costs of the system and of the underlying VLSI chips.
Nevertheless, there is still a greater production cost associated with the hardware
than with software because the fabrication of hardware is more costly, and the
testing of each finished unit requires substantially more effort for hardware than
for software. To test computer hardware, one has to test to see if all the functions
can be performed. To test software., one only has to verify that the bit pattern
on the storage medium is a faithful replica of original software.

Because of the extra complexity in manufacturing hardware, in a competitive
market it is very unlikely that computers of moderate or high performance will
be given away to purchasers of the accompanying software.

1.2.i Hardware Considerations

Another fallacious argument about new designs for the future concerns the lavish
use of hardware components in a system. The architects state convincingly that
with current trends in force, the cost of hardware will be negligible, so that we
can afford to build systems of much greater hardware complexity in the future
than we can today. Clearly, there is truth in this argument to the extent that
future systems will surely be more powerful and complex at equal cost to today's
systems. But the argument must be used with care because it does not excuse
gross waste of hardware.

In the future, given System A, with 100 times the logic as present systems,
and System B, whose performance is essentially identical to A's but has only 10
or 20 times the logic as present systems, System A will be at a serious competitive
disadvantage. For a few hundred or a few thousand copies of System A sold,
System A may be priced competitively with System B. For higher volumes of
production, however, the inefficiency of the architecture of System A will force
its price higher than System B's for equal system value. Of cowse, this presumes
that both System A and System B are built from components of the same gen
eration of technology. If A's chips are 10 times as dense as B's chips and therefore

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 23

Section 1.2 But Is It Art? 9

10 times less costly per device, then the argument changes, and device tech
nology, not architecture is the determining factor in the price of the system.

Throughout this text we explore the study of architecture by considering
innovations of the future that depend on low-cost components. But we shall
always heed the efficiency of the architectures we examine to be sure that we
are using our building blocks well.

Consider, for example, a multiprocessor system in which there exists no
shared memory, and suppose that we want to run a parallel program in which
each processor executes the same program. Obviously, we can load identical
copies of the program in all processors. When the program is small or the number
of processors is rather modest, the memory consumed by the multiple copies
may be quite tolerable.

But what if the program is a megabyte in size, and what if we plan to use
1000 processors in our system? Then the copies of the program account for a
gigabyte of storager which need not be present if there were some way to share
one copy of code across all processors.

lf System A uses multiple copies of programs, and System B through a clever
deslgn achieves nearly equal performance with a single copy, then the extra
gigabyte of memory required by System A could well make System A totally
uncompetitive with System B, unless the cost of storage becomes so insignificant
that a gigabyte of memory accounts for a paltry fraction of the cost of a system.
System A's architect hopes that the cost per bit of memory will tumble in the
future, but System A requires 10 10 more bits, and this is an enormous multiplier.
If current historical trends continue, a drop in cost per bit to offset an inefficiency
of this magnitude would probably take 20 to 30 years.

In the example just presented, the architect of System A has to be aware of
other approaches that could overcome a basic flaw in System A for the particular
application. System A might be totally effective for other applications in which
each processor requires a different program. But in the given context, Sys
tem B ha s a tremendous, probably insurmountable advantage. The architect
should measure the quality of the architecture across a number of applications
that characterize how an architecture is to be used. The effectiveness may vary
considerably from application to application, and such measurements should
reveal where the architecture is truly beneficial to the user and where other
approaches are superior.

A computer architecture might well have some minor but costly inherent
flaws that escape the scrutiny of its designer. A different designer who can build
essentially the same architecture with those flaws repaired can produce a more
effective, and therefore more competitive, machine. Architects cannot hide inef
ficiency by arguing that hardware costs nothing.

As a simple example of this rule, consider an architecture with a rather large
number of processors, such as 16,000, and assume that the processors are to be
used in an application where the speedup attributed to N processors is pro-

.'

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 24

10 Introduction Chapter 1

portional to log2 N. (As astonishing as this sounds, such proposals have been
made.) The 16,000 processors yield only a speedup of 14x for some constant x.

The architect argues cogently that the 16,000 processors are so inexpensive that
we can ignore their cost. The important fact is that the application runs 14.x
times faster than it runs on a single processor, and the speed increase is worth
the small extra cost for the processors.

In this competitive world, the gross inefficiency of the architecture cannot
escape notice for long. Soon there appears a System B to compete with this
System A. System B's architecture is identical to A's in this case, except that it
is a rather scaled-down version. In fact, System B has only 128 processors, not
16,000, so it runs only 7x times faster than a single processor.

System A is over 100 times more complex than System B, and yet Sys
tem A runs only twice as fast. The cost of hardware would have to be near zero
for System B to fail to compete with System A. For the next decade at least, it
appears to be unjustifiable on a cost basis to double performance by replicating
hardware one-hundred-fold.

The arguments in this section have taught us:

• We can evaluate architectures by their cost and performance;
• The effectiveness of an architecture must be measured on workloads for

which the architecture is intended; and

• An architecture that is inefficient because of wasted resources will compete
poorly against a simpler but more efficient architecrure.

lf computer architecture were purely an art, and aesthetics alone determined
the quality of an architectural design, we would not have a basis for technical
advances. Computer architecture combines the art of design with insight derived
from careful analysis to create new forms of computer systems that yield ever
greater service to their users.

1.3 High-Performance Techniques

Of the criteria discussed in the preceding section, this text emphasizes high
performance. Our objective is to describe many different ways to improve system
performance and give some additional information for evaluating those tech
niques. The menu of available techniques is rather extensive today, and each
new generation of technology brings new ideas to the fore.

This text covers the highlights of the existing menu of design choices, but
is by no means complete as of its publication date. Therefore we explore the
design methodology-identify the critical design problems, generate solutions
to these problems, evaluate, and select the best or most reasonable solution.

Although we emphasize performance, a thorough evaluation should con
sider all the criteria for comparing architectures. We simply place a greater weight

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 25

Section 1.3 High-Performance Techniques 11

on performance. For the majority of the design space, cost and performance are
treated together as a single parameter, the cost-perfonnance ratio. The ratio is
appropriate because it stays constant as you increase performance and cost by
equal factors.

We would like to believe that users are willing to pay 10 percent more for
a machine that is 10 percent faster, that is, a machine whose cost-performance
ratio is equal to their current one. If a machine yields 20 percent higher perfor
mance for 10 percent higher cost, the users may see a genuine benefit in moving
to the new machine, and indeed it has a lower cost-performance ratio reflecting
a lower cost per computation. In most cases, users would not be interested in
a machine that yields only 5 percent higher performance at 10 percent higher
cost because their cost per computation goes up, not down, if they move to the
new machine.

The exceptional cases occur when the present facilities are saturated, and
the user absolutely must have greater capacity. Now the cost-performance ratio
does not tell the whole story because the total benefit of greater capacity for the
user may be much greater than the cost to achieve that capacity. The fact that
the user is actually paying a higher cost per computation to obtain that capacity
is incidental to the value in being able to do computations that could not be
done before. However, if the user has a choice in how to obtain the necessary
capacity, the user may still pick a solution based on the lowest cost-performance
ratio, even though all possible solutions have higher ratios than the ratio for
the user's current system.

1.J.1 Measuring costs

We have been careful to give examples based on small changes in performance
and cost. The cost-performance ratio is a good indicator of relative quality for
small changes, but its usefulness breaks down when costs and performance vary
by large factors.

It would be very deceptive, for example, to measure the cost-performance
ratio of a small computer, such as an 8-bit video-game system, and to compare
this to a much more powerful system, such as a workstation for computer-aided
design. Although both systems are used to display images and interact with the
images in real time, the video game probably has a much better cost-performance
ratio than the workstation, assuming we can find some way of measuring relative
performance. The problem is that the relative costs 0£ the systems vary by a
factor of up to 1000 to l, and similarly, the relative performance factor is very
large, although probably not as large as the relative cost.

The video game cannot do the same job as the workstation. Moreover, if
you put enough copies of the video game together to have a performance equal
to the workstation, the cost would be less than the workstation cost, but the
collection of video games still could not do the same job. So just to be sure that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 26

12 Introduction Chapter 1

comparisons based on cost-performance ratios are valid, one should be careful
to make the comparisons between computers that are similar in function and
relatively dose in performance.

This discussion points to two important ways to make architectural advances:

1. Make small perturbations in cost and performance that yield lower cost
performance ratios; and

2. Boost absolute performance to make new computations feasible at reasonable
cost.

By "small" changes, we mean roughly a factor of 10 or less. Changes larger
than this are surely welcome., but the cost-performance ratio cannot be trusted
as a measure to evaluate the change. For the second point, the cost-performance
ratio can actually increase, provided that the additional cost can be absorbed by
the user, because the benefit of the greater capacity exceeds the cost to attain
the capacity. We use both of these criteria throughout the text as informal ways
to evaluate ideas.

Because absolute cost measured in currency is changing every year, it is
more useful to define cost in terms of other parameters that influence cost.
These parameters include the physical parameters, such as pin count, chip area,
chip count, board area, and power consumption, derived from an implemen
tation of an architecture. The parameters also include factors associated with
development, such as elapsed design time., amount of associated software to be
written, and size of development team required.

This text <:annot easily account for all the factors that affect cost, but it can
isolate the most important ones, especially when comparing two closely related
architectures whose differences are limited to a few critical design choices. The
intent is to focus on the differences and discuss the ways they affect the cost
factors. Each different approach has its own advantages and disadvantages, and
they in tum affect the cost of the approach. We cannot give absolute costs, but
we can show the influence of the design decision on the cost parameters. The
reader can then apply the prevailing cost functions to complete the evaluation.

1.3.2 Th£ Role of Applications

With dramatic changes in technology ahead, how do we approach the problem
of high-perfonnance architecture design? For example, the new technology makes
feasible massive parallelism. How much additional effort should be invested in
increasing the performance of a single processor before we seek higher levels
of performance by replicating processors? There is no simple answer to these
questions. We need a combination of solutions,. and what we choose almost
certainly will be application dependent.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 27

Section 1.3 High-Performance Techniques 13

The role of applications is critical in the high-performance arena because
costs tend to be very high to wring the greatest possible throughput from an
architecture. Inefficiency is especially costly in this context because inefficiency
adds greatly to already high cost, while contributing less than its fair share to
performance. If the application area is heavily biased to some well-identified
workload., then it becomes possible to design the architecture for that type of
workload. The result is that the architecture can be stripped clean of irrelevant
functions that might otherwise be necessary for genera] purposes. It can then
be heavily armed with functions pertinent to the particular workload.

The objective then is to reduce inefficiency by making sure that all the
functional components of the architecture contribute effectively to achieving high
performance. If it were possible to build a general-purpose machine that would
be equally effective for all high-performance applications, the industry would
do so. And we cannot rule out this possibility in years to come. However, for
the next decade, specific problem areas are so demanding of computational
cycles that it is fruitful to design architectures specialized for these problem
areas.

Among the important problem areas that have evolved are:

• Highly structured numeric computations-weather modeling, fluid flows,
finite-element analysis;

• Unstructured numeric computations-Monte Carlo simulations, sparse matrix
problems;

• Real-time multifaceted problems-speech recognition, image processing, and
computer vision;

• Large-memory and input/output-intensive problems-database systems, trans
action systems;

• Graphics and design systems-computer-aided design; and

• Artificial intelligence-knowledge-base-oriented systems, inferencing systems.

Obviously, the numerical areas call for sophisticated floating-point processors
in the architecture, and the more demanding applications may require hundreds
of such processors. The graphics systems may be more strongly oriented to
fixed-point computations to provide the mathematical support required for win
dowing and perspective viewing. Floating point, however, plays an important
role in some graphics applications, such as those that require smooth-curve
rendering and ray-tracing calculations. The artificial-intelligence systems may
require very little arithmetic capability, but they are usually heavily endowed
with memory.

A high-performance architecture that meets the needs of all the areas men
tioned must. carry a burden of inefficiency for each problem area because a
substantial portion of its capability would not be useful for individual applica-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 28

14 Introduction Chapter 1

tions. If the inefficiency is high enough for any one application area, then an
efficient specialized machine for that area is more attractive than a general
purpose machine because the specialized machine should cost less to manufacture.

The cost advantage depends on having a large enough market for the spe•
cialized machine so that the cost of development can be spread across many
copies produced. The advantage is lost if only a few copies are sold. Conse•
quently, even the specialized high-performance machines should be as general
purpose as possible within their problem domains so that the fixed costs can
be amortized over as large a base as possible.

As special-purpose architectures are extended to broaden their problem do
mains, their potential market increases, but at the same time they tend to make
less efficient use of their hardware. So the architect faces a trade-off. The idea
is to balance the efficiency of the special-purpose architecture against the broad
market base of the general-purpose architecture.

The architect has to find a place in the spectrum between single-purpose
and all-purpose architecture for which a new design yields high performance
at competitive cost. Design decisions are changing in time because they depend
both on development costs and per-unit production costs, both of which are
changing drama ticaBy as the underlying technology advances.

1.3 .. 3 The Impact of VLSI

There have been dramatic changes in the cost structure of high-performance
architecture because of the development of VLSI. In the 1950s, when hardware
was so expensive that one user could not afford to purchase a IM-byte machine,
users shared the costs of large-scale computers and ran their programs concur
rently on a single machine, thereby reducing the time that the memory, pro
cessor, and peripherals were idle. There seemed to be some economy by going
to increasingly larger machines. The number of users served tended to grow
linearly with computational power, but the price of the machines tended to grow
more slowly.

Grosch' s law was a popularly believed rule-of-thumb that stated that the cost
of computational power grows at the rate of the square root of computational
power. Although a great deal of evidence supported Grosch' s law through the
early 1960s, it is not clear whether the law reflected a fundamental notion about
cost/performance or merely the prices being charged for computers.

In the 1980s, VLSI changed the economics of computers dramatically. Instead
of paying a manufacturing cost per logic gate or interconnection wire, VLSI
production costs are incurred per chip. All gates and interconnections on a chip
are created in a batch by a fixed number of production steps that does not
depend on the number of components. Hence, as more and more logic gates
are packed onto a single chip, the cheaper the cost per gate becomes. As the
density of gates increased over the years✓ VLSI led to a steady reduction in the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 29

Section 1.3 High-Performance Techniques 15

manufactured cost per gate of digital components. The steady improvement in
cost performance in computer technology has been continuing since the begin
ning of the computer industry in the 1950s, and has been fueled by VLSI since
the early l 970s. Over four decades, the cost-performance ratio has improved by
about six orders of magnitude. This much improvement over that span of time
is unparalleled in the history of civilization.

With performance so inexpensive, we no longer try to put to use every last
cycle from a 1 M-byte machine, and it is common to find such machines lying
idle for most of a 24-hour day. So, for the huge number o(small computations,
the user buys a machine big enough to get the job done, and maybe a little
bigger than that to have some reserve capacity. It is not particularly economical
to buy enormously big machines, then gain access to the machine cycles by
sharing the cycles among many users.

Strictly from a performance point of view, we do not see an economy of
scale that drives all users to larger machines regardless of their needs, as once
appeared to be the case. Rather, to describe the situation in simplistic terms,
we see small jobs run on small machines, and large jobs run on large machines.
The "small" machine of today has about the same computational power as the
"large" machine of 25 years ago, so the machine former1y shared by 100 users,
is now owned outright by one user.

The need to access shared data complicates the arguments here somewhat.
We discover that large machines or networks of smaller machines support many
concurrent users today because the need to access shared data, as opposed to
the need to share machine cycles, is the driving force. And we still see the
supercomputers shared among many users because these machine cycles are
very expensive for any single user.

1.3.4 The Impact of Digital Communlcattons

Having lived with continuous improvement from VLSI technology for over 20
years, the computer architect has learned to plan the next generation of machines
by scaling the number of gates per design, the processing rate, the access time
of memory,. and the cost of components according to historic trends. The design
exercise tends to be one of putting new components together to produce a more
effective machine for today's workload.

Meanwhile in the sister industry of telecommunications, another technology
has taken hold that has a profound future impact on computers. Fiber optics
and high-bandwidth electronics together have enabled telecommunications to
shift from a technology designed for 10 kHz signals to one designed for 1 GHz
signals, and to achieve the new bandwidth at low cost. The cost of delivering
conventional voice channels using the .new technology may be 1000 times less
expensive than when delivered by the o)d technology. Moreover, the new tech
nology is available virtually overnight, so that we should be able to reap these

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 30

16 Introduction Chapter 1

benefits in a few years instead of in a few decades. Just as computing technology
has achieved an astounding advance over a short period of time, the rate of
advance in communications technology is even greater.

What will be the impact on computers when we have access to multi-GHz
fiber-optic networks? If we do business as usual, we will feel the impact mainly
through lowered cost to operate computers in a network and a higher bandwidth
within the network. But why do business as usual? Digital communications
networks are much more likely to create new product opportunities. Systems
that formerly interchanged characters and documents can be supplanted by
systems that interchange individual images and video sequences. Starting with
this premise, the role of the computer evolves from a processing center to an
information server. The computer can be the window to a digital Library of
Congress and then instantly switch roles to become a video telephone. Our
printed output of former years becomes a multimedia presentation with sound
and animation.

The architect in this scenario has to shift focus from processing of data within
a computer to the movement of data into and out of the computer. The architect
must synchronize low-speed audio and high-speed video data streams. The data
streams have to be processed at tightly constrained rates in order to produce
intelligible conversation and realistic animation.
· ' These are new requirements. To meet such reqµirements requires designs

that can handle proportionally greater input/output traffic relative to processing
power than today'·s computers can handle, with the ratio increasing by one to
two orders of magnitude. The architect has traditionally focused on the low
latency, heavily reused traffic between processor and memory. The new re
quirements call for the support of data streams with little or no reuse and
controlled latency. This is a new challenge for the architect.

Consequently, a major change of underlying technology is driving computer
architecture in totally new directions. In this case, the technology change is in
a closely related field, and the impact overflows from that field onto computers.
With VLSI, the architect has lived with change for several generations of designs.
The changes are continuous and to a certain extent they can be incorporated
into design plans. The change in digital communications is more difficult to
absorb because it is massive and abruptly introduced.

1.3.5 The Effect of Technological Change on Cost

If we look at the underlying technology at any given time, we see curves that
look something like the curve in Fig. 1.3. This figure shows performance mea
sured in millions of instructions per second (MIPS). It shows a rough picture of
relative cost per MIPS as a function of MIPS of performance. The figure is
intentionally imprecise because the data on which it is based is highly volatile.
The idea is that the curve consists of several plateaus. The lowest plateau rep-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 31

Section 1.3 High-Performance Techniques

Cost/MIPS Technology 2

Technology 3

MIPS of Performance

Fig. 1.3 Cost/performance as a function of performance.

17

Technology 1

resents the cost per MIPS for computers that use the dominant technology for
that plateau.

In the 1980s, the dominant technology for low-performance machines was
metal-oxide semiconductor (MOS), mostly NMOS (MOS devices with negatively
doped channels) in the early 1980s, with CMOS (complementary MOS, devices
with both negatively and positively doped channels) becoming prevalent in the
later 1980s. At any given time, the cost per MIPS is fairly constant for all machines
made from this technology.

The next plateau is the next level of technology, presumably a bipolar tech
nology such as emitter-coupled logic (ECL). The cost per MIPS is nearly constant
for all machines of this technology as well.

The third plateau is a more exotic device technology fabricated especially
for peak performance. Gallium-arsenide devices appear in this plateau. This
technology has the highest cost because of cooling requirements, manufacturing
difficulties, lower chip density, or other similar factors. This plateau too has
almost constant cost per MIPS for all machines produced from the technology.

Although the graph in Fig. 1.3 is imprecise, it is intended to show how a
device technology influences the cost-performance relationship. The devices
dictate the basic cycle time of the computer. A rough measure of processing
power is the width of the address and data paths times the clock frequency; this
is an upper bound on the information-transfer rate of a computer system.

For a given technology, most high-speed designs adopt a maximum or near
maximum dock frequency that is usually dependent on the technology and
fairly consistent for all designs that use that technology. Consequently, the most
appropriate way to improve performance is to move from 8-bit to 16-bit to 32-
bit data paths, with a corresponding increase in memory capacity to support

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 32

18 lntrodudion Chapter 1

higher levels of performance. This produces a performance gain that grows
linearly with the bus width, but the cost tends to grow linearly as well in bus
width, so that as bus widths increase, the additional performance produced is
achieved at a constant cost per MIPS.

The assumption that cost grows linearly in bus width is certainly true in
regard to the cost of data paths, drivers, and physical wires on the data paths,
but the cost of memory need not grow linearly with bus width. The critical
assumption that produces the plateau-like curve in Fig. 1.3 is that memory size
tends to increase linearly with performance. That is, a typical configuration for
a system rated at 2 MIPS might be 4 M-bytes, and faster versions of the same
system that run at 4 MIPS and 8 MIPS would be configured at 8 M- and 16 M
bytes, respectively. [f indeed this growth rate is true, then Fig. 1.3 is quite
reasonable.

The main conclusion to draw from Fig. 1.3 is that if the curves are truly flat,
then within a device technology there is no particular economy of scale. Worse
yet, if an architecture's performance exceeds the capabilities of Qne device tech
nology, then the move to the next higher plateau of technology may result in a
higher cost per MIPS. This is directly contrary to the principle of economy of
scale. At the very highest levels of performance, the device technology may be
quite exotic, raising the cost per MIPS well over the cost per MIPS of less powerful
systems.

If Fig. 1.3 is accurate as drawn for the beginning of the 1990s, one would
conclude that once a device technology for an architecture implementation is
selected, the cost-performance ratio is not strongly influenced by the absolute
performance of a system, so there is no particular bias to produce high- or low
performance machines for that technology. If Fig. 1.3 is not accurate, and there
exists an economy of scale, then the cost-performance ratio improves as per
formance goes up, and there is a strong bias toward building the highest possible
performance for each different device technology. No matter what is true at the
time this text is written, a future version of Fig. 1.3 may be totally different,
and the architect has to take the shape of the curve into account in machine
design.

Now let us reflect on the variables that the architect can control in creating
a high-performance machine. By measuring performance in MIPS, we can write

MIPS � (instructions/cycle)(cycles/second) · 10- 6

The first factor is a function of the architecture, which is controlled by the
architect. The second factor is determined by the devices, which are controlled
by the technology.

Actually, the dichotomy between architecture and device technology is not
as sharp as we depict it because the second factor, the clock speed, is partially
dependent on architectural factors such as the complexity of instruction decod
ing. Nevertheless, to a first approximation we can affect performance by con-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 33

Section 1.3 Hlgh-Performanc� Techntqucs 19

centrating on the first factor, the number of instructions executed per machine
cycle. What are the alternatives available?

• Reduce the number of instructions to execute. By using better algorithms, it may
be possible to do equal work with fewer instructions.

• Build hardware assists into the architecture to improve the architecture's efficiency.
Advances in architecture such as cache memory can increase the number of
instructions executed per cycle. Another possibility is to create higher-level
instructions such as SORT and SEARCH that have been optimized for par
ticular purposes.

• Execute many instructions concurrently. Use paralJel hardware in some fashion
to increase the number of instructions that can be executed in a single cycle.

It is strange to see the first item in this list in a text on architecture. One might
assume that the computer architect does not dabble with algorithms. Quite to
the contrary. Since the goal is high performance as measured on some set of
applications, how that goal is achieved is important because of its impact on
system cost, but there are no constraints that force the solution to be architectural
only. In fact algorithmic improvements may be the most cost effective of any
of the approaches mentioned previously because copies of algorithms can be
manufactured for essentially zero cost as compared to the cost of hardware
intensive solutions.

1.3.6 .Algorithms and Architecture

The architect has to look carefully at algorithms to decide how to achieve high
performance in an architecture. Applications that are limited by the speed of
floating-point division, by internal sorting, or by the ability to interpret bit
mapped representations of visual data may require extensive study by the
architect. Changes to the original algorithmsi sometimes simple changes and
sometimes totally new approaches, n1ay transform an application from one for
which high-performance architectures are poorly suited to one that can easily
be enhanced by some inexpensive hardware assists.

An algorithmic breakthrough might even eliminate the need for high
performance architectures for a particular application. Floating-point division
and sorting are each reasonably well understood areas for which major changes
to existing algorithms are unlikely to be developed, but many new areas are
emerging for which the current crop of algorithms represents the early, immature
efforts to solve the problems. Additional study of the algorithms may well
produce much greater performance.

Although we cannot expect a computer architect to step into an application
area and produce a breakthrough in algorithms for that area, it is possible for
an architect to recast basic algorithms into forms more suitable for processing.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 34

10 Introduction Chapter 1

The architect may partition a problem in new ways to reduce the size of working
memory or the number of high-speed registers required. Or the architect may
find a way to structure the problem so that it fits well on a parallel architecture.

The architect actually has control of both the algorithm and the architecture.
The objective is to manipulate both to create an algorithm and architecture that
mutually constitute an effective solution. Usually a class of algorithms., rather
than a single algorithm, must be considered, and the more difficult objective is
to create a single architecture that is good for all the problems in the class.

The second solution technique involves changes to the basic architecture.
In the past we have seen many different techniques used to improve perfor
mance. Such things as instruction buffers, cache memories, and pipelined ex
ecution have appeared in many commercial machine implementations. We have
seen complex instructions installed in machines to reduce the number of in
struction fetches, and we have seen complex instructions eliminated from in
struction sets to reduce the basic instruction-cycle ti.me for a machine.

The architect needs to know where bottlenecks may exist in a system, and
then, if possible, take steps to remove those bottlenecks. At peak performance
a well-designed system has many different components near saturation. A poorly
designed system has some single bottleneck when running at maximum speed,
and all other functional units are underutilized. By eliminating some excess
capacity, this kind of system may be made less expensive at no loss of perfor
mance. Or by dealing with the bottleneck exclusively, it may be possible to
improve performance relatively inexpensively.

The last choice on the list is parallelism. This is usually the most costly way
to achieve high speed, but VLSI technology has changed the economics so
dramatically that parallel hardware has become a viable alternative. Returning
to Fig. 1.3, we see that there is some advantage in using inexpensive technology
in seeking high performance. Figure 1.3 suggests that each device technology
is most effective over some range of performance.

Parallel architectures, however, provide a way of using the inexpensive
device technology at much higher performance ranges. An architect can attempt
to exploit the plateau structure of Fig. 1.3 to create an efficient parallel machine
out of low-cost devices. The objective is to increase MIPS by adding performance
in a way that performance grows proportionally with cost. If this can be accom
plished., the architect stays on the flat plateau of the low-cost technology while
moving performance into the region dominated by high-cost technology. Cer
tainly, this is one of the attractions of moving to parallel architectures., although
the gains achieved through less-expensive device technology are negated in part
by a lower efficiency in executing a program in parallel rather than on a serial
machine. In fact, because of the inefficiency of parallelism the cost per MIPS
grows with the number of processors in a complex of parallel processors. The
challenge is to keep this growth small enough so that a parallel machine built

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 35

Section 1.4 Historical References 21

with low-cost devices is less costly than a serial machine of equal speed built
with high-cost devices.

These three techniques for making improvements are important, but not
exhaustive. All opportunities are worth investigating. Because the real world
does not follow the highly idealized world of design presumed in this text,
pressures that exist in the real world might lead to u.nbalanced configurations
that are difficult to justify on the merits of cost and performance.

Consider a situation in which System A has 256 K-bytes of a cache memory,
and System B competes with System A by offering 512 K-bytes or 1 M-byte to
gain a competitive edge through larger numbers, even when other factors cannot
justify the larger cache memory. If not cache, then main memory size might be
offered at 4 G-bytes instead of at 1 G-byte; or 32 processors in place of eight
processors. Consequently, competitive pressures could easily cause an architect
to configure poorly balanced systems.

Over a period of years, however, cost and performance measures prevail.
If systems are unbalanced at first release, the cost to the user or to the system
producer will be too high for the performance ievels actually realized. Eventually
configurations are altered to bring them back into a reasonable range of cost
and performance. Designing for the shorter-term view by playing a numbers
game may be a fact of life, but quality, efficiency, and effectiveness dictate that
a sound architectural approach drives computer design over the long term.

In dosing this section, we summarize by saying that all three of the ap
proaches-algorithms, architectural assists; and parallel architectures-must be
considered by the architect. High performance may require a combination of all
three approaches in any given system.

In each new design lies a significant challenge for the architect because
the rules of the game change continuously. The factors that influenced the de
sign decisions last year may no longer hold this year. The architect has new
devices to use as building blocksJ and new organizations that are feasible to
implement. And the applications have changed, too, with totally new problem
areas becoming targets of computing technology. In addition, the older areas
are increasing in scope and scale. The constant in architectural design is the
methodology for putting together the various components available to create
effective solutions for application areas.

1.4 Historical Rderences

We use the term computer architecture in a broader sense than it was used when
it was first introduced by Amdahl et al. [1964]. Their definition of computer
architecture is the computer as seen by the programmer, which is essentially
the instruction set plus a model of the execution of the instruction set. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 36

II lntrodudlon Chapter 1

importance of this notion is that a family of computers can have an identical
architecture, yet span a large range of performance and capacity. Programs that
execute on different models in one family give identical results. Different mem
bers of a family are different in implementation and may have varying degrees
of hardware, microcode, and software embedded within them to support the
execution of instructions defined for the family.

This narrow sense of computer architecture proved to be invaluable for
defining the characteristics of a family without committing to particular imple
mentations of architectural characteristics. The concept has been crucial in the
development of the IBM 360 and 370 families, the PDP-11 and VAX families,
and in recent microprocessor families such as the Motorola 680XX and the Intel
80X86 families.

Changes in. technology have made the architectural definition offered by
Amdahl et al. somewhat obsolete. The original reason for defining the architec
ture with the instruction-set definition was to ensure compatible execution of a
program on any member of the family large enough to run the program.

Instruction-level compatibility is not sufficient in itself since program exe
cution can depend on libraries, operating system facilities, local configurat ion,
and other factors that are not part of this narrow sense of architecture. This has
led to the standardization at other levels of interfaces, such as the operating
system interface or the source language.

Meanwhile, the rapid development of VLSI and the changing cost structure
of digital components forced some computer families to bring out new instruction
sets. The 24-bit address of System 360 and 370 of 1964 vintage evolved to a 31-
bit address in System 370 XA in 1982 and within a few years evolved again to
a 44-bit address in the System 370 ESA architecture in 1988. The 16-bit address
of the PDP-11 family (first offered in 1968) eventually became a 32-bit address
in the VAX family in 1978.

With new devices to use in designs and the flexibility to change instruction
sets, the computer designer of today faces a set of constraints somewhat different
from those faced in decades past. Hence, we have enlarged the definition of
computer architecture to include the design of a computer system from its in
struction set and structure down to functional modules. Many topics treated in
this text are issues of implementation that are not within the scope of the narrow
definition of computer architecture as defined in Amdahl et al.

Readers interested in the historical development of computer architecture
and in prerequisite material will find a wealth of information in Bell and Newell
{1971) and Siewiorek, Bell, and Newell [1982). Both books reprint a collection
of historically important papers in computer architecture and include authors'
commentary, which serves to organize the material and fill voids not covered
in the literature.

Textbooks in the area appeared rather late in the development of computers,
with Stone [1974] being among the early offerings. This is a colJection of original

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 37

Section 1.4 Historical References 23

contributions structured as a textbook. Hayes [I 978] and Baer [1980] are both
high-quality texts that brought updated material into the classroom. Tanenbaum
[19761 covers an interesting combination of computer architecture and operating
systems, an interface of h-vo subject areas that has become increasingly important
as the operating-system level has begun to displace the instruction-set level as
the standard interface for applications. Stone's second edition [1980) includes
material on operating systems as well as an evolution of the architecture-based
material from the first edition.

Many texts covering both specialized and general aspects of computer ar
chitecture started appearing early in the 1980s. They are too numerous to list
here, but books that are useful supplements for specific topic areas covered in
this book are cited in the appropriate place in the text. The overwhelming trend
in texts has been to take a descriptive view. That is, the texts tend to discuss
techniques by means of machine examples that have embodied those techniques.
While it is useful to present historical information on computers, knowledge of
history alone is insufficient to prepare for the future. The text by Hennessy
and Patterson [1990] takes a different approach in that it includes the results
of quantitative analyses that are helpful in evaluating alternative approaches.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 38

2
I know of no way of judging the
future but by the past.

-Patrick Henry, 1775

Memory-System Design

2.1 Exploiting Program Characteristics
i.t Cache Memory
2.3 Virtual Memory

Some architecture researchers have called the memory system of a computer
Uthe von Neumann bottleneck0 because of the critical role it plays in affecting
peak throughput. The design of the memory system is our starting point in this
text, and it is frequently the starting point in machine designs. The central
problem is to:

• Bring the input data from the outside world into memory;
• Buffer the data there until they can be passed to a processor;
• Compute the output data and buffer them in memory until they can be

delivered outside the computer; and

• Transmit the output data from memory to the outside world.

The bandwidth between memory and the outside world limits how fast we can
obtain input and deliver output. The memory system also limits how fast input
data can be delivered to a processor and how fast the results can be received
from the processor. Since instructions are also stored in memory, the architect
must provide for concurrent demands on memory for data to process, instruc
tions to execute, and input/output transfers between memory and the external
world.

"

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 39

Chapter 2 Memory-System Design

ln this chapter we examine the use of c,ad1e and virtual memory to produce
very efficient hierarchical memory systems. These systems are composed of a
mix of memory devices that range in performance and cost. A well-designed
memory system of this type tends to perform as if the entire memory were
composed of the fastest devices in its structure, yet its cost tends to be dictated
by slower, less expensive devices.

We explore the basic principles of the hierarchy here, but because the best
possible memory design depends on workload and the available technology,
we cannot give a concise formula for a good design. We do, however, present
some powerful techniques for evaluating designs that will enable both the profes
sional architect and the student to explore a range of memory designs with
simple programs running on personal computers.

Why is memory so critical to performance? The major constraint imposed
by high-speed memory in a von Neumann architecture is:

.

A single memory module of conventional design can access no more than one word
during each cycle of the memory dock.

The bandwidth of memory is the measure of the number of bits per second that
can be accessed. If our memory system has a 100 ns cycle time and accesses 64
bits (8 bytes) per cycle, its bandwidth is 640 M-bits (80 �[-bytes) per second.

If we absolutely must increase memory bandwidth to increase performance,
then there are several choices available to the memory designer:

• Reduce the cycle time.

• Increase the word size of memory by accessing more bits per cycle.

• Replicate the memory modules and access two or more of them concurrently.
(This is one way of increasing the word size of memory.)

The designer may also explore unconventional schemes, such as parallel-search
memories✓ "intelligent" memories with internal sorting and searching capability,
or hierarchical memories with a variety of speeds and functional capabilities. If
an unconventional design proves to be an effective design, it will be incorporated
in many computer systems, and eventually it will become conventional.

Advances in hardware technology have made available larger and faster
memories at an almost unbelievable rate, and the trend is likely to continue
through the 1990s. The designer can tap the new technology in a variety of
ways, including brute-force techniques that have an inefficiency that would have
been totally unacceptable in former years. For example, to increase memory
bandwidth, a machine architect today can choose a very long word and wide
bus, such as 256 bytes, even though there is a strong probability that many of
the bytes accessed over the bus will never be used.

Inefficient techniques abound, and new technology may provide the means
for using such techniques at acceptable cost. But efficient techniques are much

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 40

Memory-5ystem Dalgn Chapter 2

more difficult to invent and analyze, a:nd they will always have an advantage
over the inefficient ones. Therefore, this chapter dwells on some efficient tech
niques that have proved to be useful in the last few years and presents new
too1s for evaluating these techniques.

2.1 Exploiting Program Characteristics

The basic building block of central memory is mndom-access memonJ (RAM). Figure
2.1 shows a diagram of the structure of a typical memory module. Note the h-vo
registers1 ADDRESS and DATA. During a READ cycle, the memory accesses the
item at the location given by the contents of ADDRESS and places a copy of the
item in DATA. During a WRITE cycle, the memoiy also accesses the item as
indicated by the contents of ADDRESS, but in this case the contents of DATA
are copied to the location in memory.

The term access refers to the physical actions that occur in the memory module
during a READ or WRITE cycle. What happens is that there is a logical path set
up between the selected location and DATA. The direction that data flows along
this path depends on whether the operation is READ or WRITE, but in either
case, to access a location the memory system uses the contents of the address
register to enable or disable internal gates in such a way that for each address
value, exactly one location becomes logically connected to the DATA register.

The name random access conveys the idea that each access to any location in
memory takes a fixed amount of time, independent of what sequence of accesses
occur. Suppose, for example, a READ to Location 20 takes 10 ns, and the READ
is followed by a WRITE to Location 347. For a random-access memory, the WRITE
also takes 10 ns because all cycles are 10 ns, no matter what location is accessed.

r._1 _ ___.11+-----
MEMoRv BUS

{
� DATA REGISTER

(To/from--------

Processor)
ADDRESS REGISTER 0 1-------------

1
2

1------------1

1----------1
.

■

.

Z=��l:::::::::::::::::�I
ADDRESSES MEMORY CELLS

Fig. 2.1 The structure of a random-access memory (RAM).

I I

31--I --------I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 41

Section 2.1 Exploiting Progrem Characteristics 17

Contrast this random-access behavior with sequential access. If a memory were
organized as a shift-register or as a continuous magnetic tape, then access times
would depend on the sequence of addresses issued to memory. An access to
Location 11 immediately after an access to Location 10 would take, for example,
10 ns if this were the time required to access consecutive items. But, by this
reasoning, an access to Location 17 that immediately follows an access to Location
10 would take 70 ns. To access Location 17 after accessing Location 10, the
memory cycles through Locations 11 to 17, with each location requiring 10 ns
to process. Access time is potentially very large in a sequential memory when
items are far apart.

Obviously, there is a tremendous performance advantage for random-access
memories over sequential-access memories, but the cost per bit of sequential
access memory is usually quite low compared to random-access memory.

The trade-off between cost and performance for these two types of mem
ory is but one example of the design choices open to the computer architect.
Suppose, for example, the architect can exploit the low cost of a sequential
access memory without necessarily incurring a performance penalty if the pro
grams to be run on the computer system can be organized so that the bulk of
their accesses is sequential. Then nonsequential accesses must be either negli
gible or executed inexpensively, perhaps by means of a small random-access
memory.

If a particular site has a workload that does not directly use a sequential
access memory, then the users must convert their workload in order to capture
the cost-performance benefit of the hypothetical sequential-access machine. The
users may have to alter the applications programs by hand, or, better yet, they
might produce a translator to alter the existing programs automatically.

A translator that minimizes access time may be quite feasible to write for
this particular example, but in general there is no guarantee that program con
version will be successful, and the cost of conversion may be very high. There
fore, the decision to use a sequential memory in addition to random-access
memory requires careful consideration of many related factors regarding how
the software can make effective use of the new facilities. Consequently, the cost
benefits of the new architecture are less apparent to the user who must invest
in a conversion with its cost, risk, and delay.

All advances, whether they are in device technology or architecture, result
in the same considerations by the user community as the advances compete
with existing technology for wide acceptance. If a new architecture is incom
patible with existing technology, then its cost-performance benefits must be great
enough and visible enough to motivate the users to convert to the new archi
tecture. If a new architecture is compatible with existing technology to the extent
that conversion can be done quickly and at low cost, it just has to be better than
existing alternatives, not ne cessarily much better.

As we look at the history of virtual memory and cache memory, we can see
how these concepts permitted systems to make use of rotating magnetic memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 42

Memory-System Design Chapter 2

for bulk store while performing most execution from high-speed random-access
memory. The success of the idea is due both to the cost-pe�formance ?enefit
and to the fact that it is immediately useful for all programs without forcrng the
programs to be rewritten.

The development of virtual memory and cache memory was stimulated by
a need to use magnetic tape with purely sequential access as the storage medium
for bulk data. In the 1950s, computers had small central memories (usually 128
K-bytes or less) and could not contain the larger programs and their associated
data. So programmers were forced to partition their programs into separate
overlays, each of which was small enough to fit into central memory. Program
execution moved from overlay to overlay, with a memory load required each
time one overlay reached a point at which it invoked a new overlay.

The partitioning process was tedious and error-prone, but necessary for pro
grams that were otherwise too large to fit into memory. Loading overlays from
magnetic tape was very time consuming,. so programmers took extra care to
assure that as few overlays as possible occurred during the execution of a
program.

This crude way of managing large programs eventually revealed program
characteristics that can easily be exploited to create very high-performance sys
tems at relatively low cost. The cache memories and virtual-memory systems
that are widely used today have been developed largely because of the obser
vations of program behavior that revealed the strong tendency for memory
accesses to be clustered in small regions of memory during any short period of
time.

The historical development of this technique received a major boost at the
University of Manchester in the course of the design of the Atlas computer
[Kilburn et al. 1962) shown in Fig. 2.2. The approach used by this design team
was called one-level store to indicate that programs viewed memory as made up
of one level of homogeneous devices., as if it were one la,;ge random-access
memory. Actually, there were two levels in the memory hierarchy, a small
random-access main memory with 16K words, and a much larger magnetic
drum memory, with 96K words., that held the bulk of the program and data.

The user programmed the Atlas machine as if the size of memory were the
size of drum memory. The Atlas had special hardware that treated memory as
composed of individual pages of 512 words each and automatically loaded main
memory with 32 pages of the program and data. If the Atlas requested an item
from a page not resident in main memory, the requested page would be brought
into main memory, and some other resident page would be written back to
drum.

The Atlas used a "learning program" that attempted to retain the most useful
pages in main memory. All of the swapping between drum and main memory
was totally invisible to the user. The user did not have to specify when to bring
data from drum to main memory or when to move it back again. The user had

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 43

Section 2.1 Exploiting Program Characteristics 19

I 2 x 4K x 50 bits •· Iii

REA0-ONL Y MEMORY +-+[128 x 24 bits]

•
REGISTERS

I 1 K x 50 bits
+-+! i

�

WORKING MEMORY
(for ROM programs) ARITHMETIC UNIT

PROCESSOR

MAIN MEMORY I
(core) • Iii -

- I
II

4 x 4 K x so bits
CONTROL

ANO

MEMORY MAPPER
AUXILIARY MEMORY

(4 drums) • ►

4 x 24 K x 50 bits

Fig. 2.2 The block diagram of the Atlas computer.

the convenience of programming with a large memory the size of the drum,
whose apparent cycle time was closer to the cycle time of the central memory.

Because the Atlas made main memory appear to be much larger than it
actually was, the name virtual memory was eventually applied to this general
scheme, and the term one-level store, used by Kilburn et al., is seldom used today.
Drum memory on the Atlas had a long average latency of between 2 and 14 ms
to obtain the first word of a page, and the sequential access to successive words
in the page occurred at the rate of about 4 µs per word. The cycle time for a
random access to main memory was about 2 µ.s per word.

As long as the required pages were resident in main memory, computations
proceeded at maximum computation rate. A missing page caused a tremendous
penalty in time, since access to an item in a missing page took about 500 times
longer than access to the same item when it was resident in main memory.

In current terminology the attempt to access a missing page is called a page

fault. It is clear that maintaining a very low rate of page faults is critical to the
success of a virtual-memory system. As the page-fault rate increases, the ap
parent cycle time of memory grows much larger than the cycle time of the faster
memory, and instead approaches the cycle time of the slower memory. Perfor
mance at high fault rates is disastrously low.

The characteristic that drove the invention of virtual memory on the Atlas
machine is called locality. Program references tend to be locally clustered in time.
That is, there is a strong tendency for future patterns of access to be similar to
access patterns that occurred in the near past. If an instruction stream truly

~1-i------
._______.l-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 44

30 Memory-System Dalgn Chapter 2

shows no sequential correlation so that the item accessed on any cycle is in
dependent of the history of accesses, then for any given cycle .. all items in the
program are equally likely to be accessed. If this were the case, a small high
speed memory would be of marginal benefit. But if there is significant serial
correlation, then the history of accesses can be used to predict the accesses that
will occur in the future. With such predictions, the computer system can move
pages between low- and high-speed memory in a way that tends to reduce
faults.

There are really two questions here:

1. ls there a significant sequential correlation in typical streams of address
references?

2. If there is a serial correlation, how can it be exploited?

The first question has been studied jn depth. The answers obtained over a broad
dass of programs running on almost every possible machine consistently report
a very strong sequential correlation. The findings suggest that at any given
moment of time, the probability distribution for what might be referenced next
looks something like the graph shown in Fig. 2.3. This figure shows the prob
ability of access as a function of memory address (in virtual memory). Note that
a few regions are highly probable, a few other regions have a low-to-moderate
probability, and the remainder of the address space is very unlikely to be accessed
in the near future. Note also that the regions with the highest probability of
access are scattered throughout virtual memory.

One region that has a high probability is the one that contains the present
program counter because it is likely to execute the next instruction in sequence.

0

n

Address of Reference ---

Fig. 2.3 The instantaneous value of the probability of a reference as a function of the
address of the reference.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 45

Section 2.1 Exploiting Program Characteristics 31

Other regions contain active datar the instructions for subroutines that might
be entered, and the return point to a subroutine that called the presently exe
cuting subroutine. If the executing program were written in a block-structured
language such as Pascal, then the present stack frame for local variables and
parameters is another area with a high probability of access.

Another possible model for the probability distribution is shown in Fig. 2.4.
In this model, the probability of access falls off with the distance from the
currently executing instruction, where distance is defined to be the absolute
difference of two memory addresses. This model is not a good characterization
of the characteristics of programs that execute on the machines most commonly
used today, but it too displays sequentia] correlation.

This type of correlation is easily exploited because the computer system
would attempt to retain in main memory those items whose addresses are closest
to the address of the executing instruction. Moreover, this model suggests that
it is a good idea to make pages fairly large because once an item on a page is
referenced, the probability is very high that other items on the same page will
be referenced.

Early designs of virtual-memory systems occasionally made the assumption
that memory references were characterized better by Fig. 2.4 than by Fig. 2.3,
with the result that these systems tended to use too large a page size and had
more traffic between low- and high-speed memory than was necessary. The
large page size resulted in many words being transferred to high-speed memory
that were never accessed while resident in high-speed memory. That portion of
high-speed memory would have been better used for other regions of memory1

and a small page size would have made more high-speed memory available.

Q)
0
C
Q)
...

Q)

Q)
a:

Address of Reference __,

Fig. 2.4 A possible, but unrealistic, model of address•reference probability.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 46

32 Mc111ory-System Design Chapter 2

Although Fig. 2.3 is a more accurate characterization of streams of address
references than is Fig. 2.4, there is always the possibility that a designer can
bias the statistics of accesses through same unusual characteristics of a design.
For examplei compilers and loaders may attempt to place subrout ines together
on the same page if there is evidence that the subroutines work together in
some way. Or through a combination of instruction-set design and compiler
design, it may be possible to reduce branches to far away regions.

Machines with vector instructions may behave more nearly like Fig. 2.4 than
Fig. 2.3. Nevertheless, no matter what the details of the correlation are, there
is overwhelming evidence that streams of address references exhibit strong
sequential correlation. Hence there is an opportunity to exploit this correlation
through schemes such as the one-level store of Atlas.

In the next two sections we examine cache memory and then virtual memory
as we seek ways to reduce the memory bottleneck.

l.t Cache Memory

t.2.1 Basic Cache Structure

Two years after the publication of the paper that described the Atlas one-level
store, there appeared a brief article by Wilkes [1965] that describes an evolution
of this idea to a different level of the memory hier archy. Wilkes describes a
system that contains two kinds of main memory. One kind is conventional; the
other is a high-speed unconventional memory that Wilkes calls a slave memory.

Present terminology calls such memories cache memories.

The idea of cache memories is similar to virtual memory in that some active
portion of a low-speed memory is stored in duplicate in a higher-speed cache
memory. When a memory request is generated, the request is first presented
to the cache memory .. and if the cache cannot respond, the request is then pre
sented to main memory.

The difference between cache and virtual memory is a matter of implemen
tation; the hvo notions are conceptually the same because they both rely on the
conelation properties observed in sequences of address references.

Cache implementations are totally different from virtual memory implemen
tations becaus e of the speed requirements of cache. If we as sume that c ache
memory has an access time of one machine cycle, then main memory typically
has an access time anywhere from 4 to 20 times longer, not 500 times longer ,
which we cited previously for the delay due to page faults.

Earlier we defined a page fault to be a reference to a page in virtual memory
that is not resident in main memory. The corresponding concept for cache mem
ories is an access to an item that is not resident in cache, but is resident in main
memory. This is called a cache miss to distinguish it from a page fault.

For cache misses, the fast memory is cache and the slow memory is main

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 47

Section 2.2 cache Memory 33

memory. For page faults the fast memory is main memory, and the slow memory
is auxiliary memory, the next level of the memory hierarchy. In many virtual
memory systems of the 1980s and 1990s, auxiliary memory is high-speed disk,
but in the higher performance systems, auxiliary memory is itself a buffer mem
ory for disk memory at the next level of the memory hierarchy. Regardless of
the implementation of auxiliary memory, its access time is longer, possibly much
longer, than the access time to main memory. Although misses are still rather
costly for cache-based systems, they are not nearly as costly as page faults are,
and we can afford to sustain cache misses more frequently than we can sustain
page faults.

The time available for updating the status of a cache during a cache miss is
minuscule compared to the time available during a page fault. Consequently,
caches are controlled by hard1Nare algorithms that can process cache misses
automatically within the constraints dictated by the time available during a cache
miss.

In the following material we describe in detail the operation of a cache and
then consider practical cache designs. Then we examine efficient ways to use
traces of programs to evaluate different designs.

Figure 2.5 shows the structure of a typical cache memory. Each reference to
a cell in memory is presented to the cache. The cache searches its directory of
address tags shown in the figure to see if the item is in the cache. If the item
is not in the cache, a miss occurs. In the figure, the reference to address 01173
matches the tag 0117X, where the X designates any octal digit from Oto 7. Since
there is a match, the item sought is in the cache. The data associated with tag
0117X have addresses 01170 through 01177, so the access must be made to the
fourth item, whose address is 01173. This datum, which has the value 30, is

TAGS DATA

0117X 35, 72. 55, 30, 64, 23, 16, 14

7620X 11, 31, 26, 22, 55,

3656X 71, 72, 44, 50,
.

.

.

174iX 33, 35, 07, 65, I

01173 30

ADDRESS DATA

Fig. 2.5 A cache-memory reference. The tag 0117X matches address 01173, so the cache
returns the item in the position X = 3 of the matched line.

--- I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 48

34 Mcmory•�tcm Design Chapter 2

copied to the data register of the cache. A reference to address 01163 produces
a miss for the tags shown since no tag matches this address.

For READ operations that cause a cache miss, the item is retrieved from
main memory and copied into the cache. During the short period available before
the main-memory operation is complete, some other item in cache is removed
from the cache to make room for the new item.

The cache-replacement decision is critical; a good replacement algorithm can
yield somewhat higher performance than can a bad replacement algorithm. The
effective cyde-time of a cache memory is the average of cache-memory cycle
time and main-memory cycle time, where the probabilities in the averaging
process are the probabilities of hits and misses.

If we consider only READ operations, then a formula for the average cycle
time is:

teff = fcache + {l - h) lmain {2.1)

where h is the probability of a cache hit (sometimes called the hit ratio), and the
time fcache and tmain are the respective cycle times of cache and main memory.
The quantity (1 - /J), which is the probability of a miss, is known as the miss

ratio.

Equation (2.1) is a convenient tool for estimating performance changes due
to cache. A very crude approximation for processing time for a particular work
load is the sum of the time required to access memory. The change in the effective
cycle time produced by using cache gives an estimate of performance improve
ment. This change has to be weighed against the cost of the cache. The user is
interested in the ratio of cost to performance and is willing to pay extra if the
performance achieved is worthwhile.

Cache is an efficient technique for improving the cost-performance ratio.
For example, if main memory is 10 times slower than cache, then a decrease in
the hit ratio from 0.99 to 0.98 (roughly 1 percent fewer hits) results in an increase
in fc-ff of roughly 10 percent. Thus, small changes in the hit ratio are amplified
by the ratio of main-memory cycle time to cache-memory cycle time and the

resulting average cycle time is very sensitive to small changes in the hit ratio.
A 10-percent decrease in the hit ratio from 0. 99 to 0.89 almost doubles the

effective cycle time and halves net performance when the cycle-time ratio is 10.
If the cycle-time ratio is 20, that same 10-percent decrease in hit ratio increases
the effective cycle time by more than a factor of 2.5. It is clear that we must
have as high a hit ratio as possible, and that under many circumstances tech
niques that result in marginal improvements of the hit ratio, such as just 1 or 2
percent, may yield substantial performance improvement.

This leverage explains why cache is effective on the performance side of the
ratio, but it is also effective on the cost side of the ratio. The cost of cache is a
small fraction of the total system. The cost component of the cost-performance
ratio is the total system cost, not the cost of cache aJone. If a designer elects to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 49

Seetion 2.2 cache Memory 35

quadruple cache size in a new generation of machines, and the cost for the new
cache is 50 percent higher than the cost of the prior cache, the system cost in
the cost-performance ratio will be only 5 percent higher, not 50 percent higher,
if the cost of cache was originally 10 percent of system cost and becomes 15
percent of system cost in the new design.

For our discussion in this chapter, we will use Eq. {2.1) as a rough measure
of performance, and will measure the cost of cache by counting the number of
bits in cache. Equation (2.1) is an exact measure of performance if the memory
system is busy continuously satisfying one reference at a time generated by the
processor. But, the formula is only an approximation to the true performance
because

1. systems composed of independent random-access memories can satisfy more
than one access at a time,

2. a processor need not generate a memory reference on every machine cycle,
particularly if the processor is waiting for input /output, and

3. memory cycles can take longer than stated in the formula because some
requests can arrive at memory while memory is busy honoring earlier pro
cessor requests or requests generated by the input/output system.

Hence, the model underlying Eq. {2.1) should be viewed as a useful way to
estimate the impact of cache on performance, but a detailed performance model
of a processor and its accompanying memory system is required for more ac
curate and more credible data.

Continuing with the discussion of the details of cache organization, in Fig.
2.5 we show an item in the cache surrounded by nearby items, all of which are
moved into and out of the cache together. This group of cache data corresponds
to the memory page for virtual-memory systems. For cache memories, we call
such a group of data a line of the cache, although some papers refer to this group
as a block of the cache. The smallest a line can possibly be is a single addressable
item, which is anywhere from 1 byte to 4 bytes for the most popular computer
systems. If items are as small as possible, however, then the cache directory
becomes larger because there is a cache directory entry for each item in the
cache. Doubling the size of a cache line while holding the number of bytes in
the cache fixed reduces the size of the directory by a factor of 2 because two
items in the same line share the same directory entry.

The cache in Fig. 2.5 requires the directory to behave associatively; that is,
the cache directory retrieves information by key rather than by address. To
determine if a candidate address is in the cache, the directory uses the tag bits
from the candidate address as a key and compares this key to all tags now in
the cache directory. To maintain high speed, this operation must be done as
quickly as possible, which should be within one machine cycle.

A parallel memory that has the search capability just described is called an

.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 50

36 Memory-System Deslsn Chapter 2

associative memory. An associative memory, however, has a longer cycle than a
random-access memory built from identical technology. This is strictly a con
sequence of the need to propagate signals through a larger number of gates in
the associative memory than in a random-access memory of equal size. If we
attempt to speed up the associative memory by adding more gates, the effect
generally is to introduce additional delays that partially offset the gains attrib
utable to the additional hardware. So, for practical reasons, the associative mem
ory is less attractive than is an implementation that uses ordinary random-access
memory technology.

�.!J.2 cache Design

Figure 2.6 shows a conceptual implementation of a cache memory. This system
is called set associative because the cache is partitioned into distinct sets of lines,
and each set contains a small fixed number of lines. The sets are represented
by the rows in the figure. In this casel the cache has N sets, and each set contains
four lines. When an access occurs to this cache, the cache controller does not
search the entire cache looking for a match. Instead, the controller maps the
address to a particular set of the cache and searches only that set for a match.

If the line is in the cache, it is guaranteed to be in the set that is searched.

ASSOCIATIVITY

1 2 3 4

Set O

Set 1

Set 2

Set3

Set4

Set5

.

Set N-2

Set N-1

Fig. 2.6 The logical organization of a four-way set-associative cache.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 51

Section 2.2 Cache Memory 37

Hence, jf the line is not in that set, the line is not present in the cache, and the
cache controller searches no further. Because the search is conducted over four
Jines, the cache is said to be four-way set associative or, equivalently, to have an
associativity of four. For machines built at the beginning of the 1990s, the number
of lines per set is as few as one and as many as 16.

The number of sets in commercial caches grows every year, and depends if
the cache is on-chip with a processor where room is limited, or is off-chip where
room is less constrained and the cache can be larger. A typical size for an on
chip cache in the late 1980s was 2K bytes arranged as 16 bytes by 64 sets by
two-way set associative. A typical off-chip in the same era was 32K bytes ar
ranged as 64--byte lines by 128 sets by four-way set associative. In the early 1990s
cache sizes climbed to 16K on chip and 512K off chip, and the growth continues
as memory technology supports increased density at lower cost per bit.

Figure 2.7 shows a physical implementation of a four-way set-associative
cache. The implementation is organized around conventional random-access
memories to take advantage of fast and effective lookup by means of address
decoding. The mapping from requested address to cache set is a very simple
operation on the reference address. The reference address, 03261 in the figure,
is partitioned into two pieces, one piece called a tag consisting of the leading
digits 0326, and the remaining portion, the digit 1 in this example, used as an
address for the cache lookup.

The cache in Fig. 2.7 is composed of eight conventional random-access mem
ories ganged together to operate as a single memory. The address tags are stored
in the memory modules shown in the left-hand side of the figure. This region
of the cache is often called the cache directory. The remainder of the cache modules
hold the cache data lines. In typica] caches, the number of bytes expended on
an address tag is a small fraction of the total number of bytes of the line it
identifies. An address tag may occupy two to four bytes, whereas typical line
sizes run from 8 to 128 bytes.

Figure 2. 7 shows a cache reference mapped to Set 1. Since there are N sets
in the cache, the portion of the address that identifies the set to access must be
able to take on any of N values. Hence, the single digit in Fig. 2. 7 represents
what is often implemented as a field of bits with a nominal size of 10 to 12 bits,
but possibly has more or less than nominal. The four tags and four lines of data
that comprise Set 1 are the contents of address 1 in each of the eight memory
modules. Similarly, Set 17 is composed of the entries at address 17 in each of
the modules. Each set is distributed across the eight memories rather than
concentrated in a single memory. Since each memory can access at most one
item in one cyde1 by distributing each set across all modules, all of the com
ponents of the set can be accessed in a single cycle.

The cache access proceeds by reading simultaneously all four directory en
tries. Also, the data lines in the set are read concurrently so they will be available
at the end of the READ cycle. If a cache line is larger in size than the size of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 52

38 Memory-System Design

SET
NUMBER TAGS LINES

0

I I 1 0326 34125

..
-

N-1

0

I f I1 3411 41423

ADDRESS

0326 1 N-1

0

I I1 2262 66021
-

-

N-1

0

� I1 0173 34714

N-1

SELECT

SELECT

0326
34125

SELECT
34125

IF NONE 34125
MISS

Fig. 2. 7 An implementation of a four-way set-associative cache with N sets.

Chapter 2

DATA
OUT

:

E=_
-

: !-:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 53

Section 2.2 Cache Memory 39

the data bus to the processor, then only the portions of a cache line that will be

sent to the processor are read from the cache.
At the end of the READ operation, all four tags in the directory are compared

to the tag of the address reference. If a match is found, then the corresponding
data line of the cache is gated to the cache output-data buffer, and from there
it is transmitted to the processor.

The timing of the cache activity is such that all reads from the memory occur
as early as possible to allow maximum time for the comparison to take place.
At least three of the four items accessed, and possibly all four, are discarded at
the end of the cycle. Which line to use, if any, is decided late in the cache cycle,
but at that time the data required have reached high-speed registers, so the
data can be gated to the processor very quickly after the cache comparison-logic
discovers a match.

Now let us reexamine Fig. 2. 7 to see which parameters describe the cache
design. This cache has:

1. L bytes per line;

2. K lines per set; and

3. N sets.

The total number of bytes in the cache is the product LKN. A cache in which
the directory search covers all lines in the cache is said to be fully associative. In
this case, N = 1, and the number of bytes in the cache is the product LK. For
reasons mentioned earlier, fully associative caches are less attractive to build
than are set-associative caches. The logic to compare two, four., or eight directory
entries concurrently can be made sufficiently fast that the comparison and sub
sequent line selection can be completed without a significant impact on the
machine cycle-time. But as the number of entries to compare increases to 16,
32, and above, cycle time starts to climb and the advantage of the larger set
associativity is negated by the longer cycle time.

At the other end of the spectrum is the case for which K = 1, that is, the
case in which there is only one line per set. Here, for any given candidate
address, there is only one line in the cache that may contain the address ref
erence. The cache in this case consists of one ordinary random-access memory
with a simple comparator for the directory check. This special case is called direct
mapping because address references map directly to a unique place in the cache.

There are several questions regarding cache design that are suggested by
Fig. 2.7. The figure shows a possible mechanism for mapping address references
into cache references.

Figure 2.8 provides more detail on this mapping. The address shown in this
figure is a physical address M bits long that will be sent to main memory if the
item is not in the cache. In this case, we assume that each byte in memory has

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 54

40 Memory.System Dai9n

ADDRESS OF DATUM

I- log N ---I+- log L ---:

ADDRESS IN LINE
(1 of L)

---- SET NUMBER
(1 ot W)

Fig. 2.8 Address partitioning for a cache search.

Crapter 2

a unique address. Since all L bytes within one line are present or absent as a
group, to determine if that line is present, we must strip off the least significant
log2 L bits of the address to prepare to interrogate the cache. The remaining
address bits are common to all members of a single cache line, and these are
the bits that we must check when looking for a hit.

The next facet of the mapping operation is to determine which of N sets to
interrogate. We must find some way of mapping the remaining address bits
into log2 N bits, which are then used to select among N different sets in the
cache directory. The method used most frequently is to use the least significant
log2 N bits of the remaining address bits, which has the effect of scattering lines
with successive addresses to successive sets of the cache. This tends to randomize
address references through the cache and reduce clustering by mapping con
tiguous active regions in main memory across many sets of the cache, thereby
making for the best use of the cache.

Figure 2.8 shows the low-order log2 L bits of the address reference being
stripped away to account for the number of bytes per line, and then shows the
next low-order Jog2 N bits being used as the address for access to a conventional
random-access memory. From this memory, we read all K tags simultaneously.
Also, the required data from the lines in the cache are read from random-access
memories that hold the cache data.

The latter memories use the Iog2 N bits together with some of the log2 L bits
to access specific regions within a line in case the processor cannot accept the
entire cache line. Portions of all Klines in a set are accessed, and the greater
the number of bits from the L field used to address the lines, the smaller will
be the size of the data fields read from memory.

In making the directory comparison, note that it is necessary to store only
the leading bits of the address reference, M - log2 N - log2 L bits in this case.
All lines stored in a set have the same values for the set number, so it is not
necessary to store the log2 N bits that identify the set number.

In Fig. 2.7, the set number 1 is stripped from the address 03261 to create a

I I C

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 55

section 2.2 Cache Memory 41

tag of 0326 for comparisons. The bottom tag shown in the same set has a value
0173, so the corresponding memory address is 01731.

The parameters mentioned thus far give us at least three degrees of freedom
in designing a cache, and there are more choices yet to be discussed. Let us
reflect a moment on the choices at hand to see what trade-offs are available and
what guidance we have to complete our design.

Figure 2. 9 shows the general form of the curves that describe cache behavior
as a function of some single parameter choice. The x-axis plots caches of in
creasing size, but the curve does not indicate the structure of the successively
larger caches. For the moment it is not important which of the parameters L, K,

or N increases in this figure. The y-axis plots the relative number of misses
against cache size, with the number of misses for a cache of size 0 normalized
to unity. Note that the curve drops sharply at first and then bends and drops
less steeply as the cache size increases.

Most of the improvement in this graph is obtained by the initial small changes
in X. As X increases beyond the knee of the curve, relatively little additional
benefit is obtained. Hence, a good design point is a value of X around the knee

of the curve.
One problem that cache designers face is that the data available are not

nearly as clean as the data in Fig. 2. 9. The data are often at best sketchy and
are highly dependent on the method in which they were gathered. So the
designer has to make critical choices using a combination of hunches, skill, and
experience to supplement the meager information at hand.

Cl.I Je
Cl.I
Cl)

j
ci 0.6
.

CD

..c
E
::::.
z 0.4
CD

.?

iii
Q;

0.2� a:

00 10 20 30 40 50
Cache Sii:e

Fig. 2.9 Cache performance-the number of misses versus cache size.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 56

Chapter 2

Good engineering sometimes requires a small degree of overdesign and
inefficiency to protect against unusual cases. For the data in Fig. 2.9, the sma1lest
cache that operates well is a cache of size 8 (relative misses = 0.24) or possibly
size 16 (relative misses ;;;; 0.17). A cache of size 32 (relative misses = 0.11) would
be difficult to justify because the performance change is small considering that
the cost of cache is doubled to obtain this change. Nevertheless, a reasonable
cache design may well incorporate a cache of size 32 or even size 64 as an
intentional strategy to assure a low number of misses over a wide range of
workloads. In this case, the designer is protecting against workloads whose
characteristics are quite different from those in Fig. 2. 9.

How can we be sure that all workloads are accurately modeled by Fig. 2.9?
In fact, we cannot. Some workloads might have a much sha1lower slope and
exhibit a knee at larger values of cache size. If we design a cache that just barely
runs a workload of the type characterized in Fig. 2. 9 at an acceptable perfor
mance, that cache may deliver unacceptably poor performance for more stringent
workloads. If we overdesign for the workload in Fig. 2.9, we can still run ac
ceptably well on some workloads that demand larger caches.

The designer has to obtain the most useful performance data possible and
then use good judgment to estimate the characteristics of other important types
of workloads that are not reflected in the data available to decide how much
the architecture should be overdesigned. The idea is to examine the cost of the
excess capacity against the possibility that the capacity will be necessary and
beneficial. Decisions of this type are usually driven by cost considerations be
cause the cost has a major impact on the competitive marketing of the machine,
whereas the value of the excess capacity is more difficult to assess if it does not
contribute identifiably to higher performance on normal workloads.

Returning to the problem of cache design, how can we develop data that
will enable us to select a cache size as well as the values of the cache-structure
parameters K, L, and N? To answer this question, we need to develop data, as
shown in Fig. 2.9, that plot cache misses against cache size.

Because a cache of a given size may be organized in various ways through
different choices for K, L, and N, we suggest that K and L be fixed and N varied
when this study is conducted. That is, the set associativity and the line size
should be fixed while the number of sets is varied. What is typically observed
is that the number of misses decreases, as shown in Fig. 2.9, and the knee of
the curve will be at a point that is dependent on the particular processor and
the workload.

Extensive data on the subject has appeared in the literature. Specifically,
A. Smith {1982, 1985, 1987] has excellent collections of typical results. Empirical
observations of typical programs turned up a simple rule of thumb: each
doubling of the size of the cache reduces misses by roughly 30 percent. Fig
ure 2.9 shows this characteristic and demonstrates what is often observed in
real systems.

Mcmo.ry-Systan Design

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 57

Section 2.2 Cache Memory 43

The 30-percent rule is useful for rough estimates, but should not be used
when accurate data are needed. Specific programs and processors do not obey
this rule. The reader should establish a similar formula when designing a cache
for a particular architecture and workload and use the new formula to evaluate
various cache designs.

Given a total size of cache, how should the cache be organized? We rec
ommend choosing line size L next and then the set associativity factor K, al
though they could be chosen in the opposite order. To find the cache performance
as a function of line size, fix the parameter K to a value that is likely to be its
final value.

From experience with other cache designs, we intuitively know that the set
associativity will be a small number, and it will probably not be 1. So we set
K ::=: 2 and examine cache behavior as a function of line size. Note that we have
fixed the total size of cache, so that as line size doubles, we must reduce N, the
number of sets, by a factor of 2 to keep the product LKN constant.

The best performance is obtained with L = 1 because each individual address
is cached independently. But in this case, the directory may be enormous and
rather costly. When L is maximum, N = 1, and there is but a single set in the
cache. This has the worst performance, but it is the least expensive to build.

By plotting L along the x-axis in Fig. 2.9, with misses on the y-axis, we obtain
the knee of the curve for some value of L. Note that to obtain the shape of the
curve shown in the figure, fix N and let L increase. Then produce a family of
curves, each for a different value of N.

Since the size of the directory depends on the value of L, the selected value
of L may be very small and require too large a directory to be practical. Con
sequently, for a fixed cache size, it may be necessary to increase L while reducing
N to obtain a practical directory size. The cost of this change is greater bus traffic
per miss.

The final step is to choose the set-associativity factor K. This too can be
accomplished by plotting a curve similar to the one in Fig. 2. 9. In this case we
perform cache analyses that hold the line size L and number of sets N fixed
while varying set associativity K. The resulting curve should have the shape of
the curve in Fig. 2.9 when K is plotted along the·x-axis, increasing to the right,
and with misses plo tted on the y-axis.

If the study suggests that a better choice for K is 8 instead of 2, then we
should restudy the effect of line size on performance, but use the new value of
K in place of K = 2.

Eventually we can find a collection of values for K, L, and N that represent
a satisfactory trade-off between cost and performance. Generally speaking, we
obtain better performance as we increase the absolute size of cache. We estimate
that performance by estimating the average memory-cycle time

teff = tcache + (1 - h) tmain (2.2)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 58

Chapter 2

where h is the hit-ratio for the given cache. Then we factor in the effect of
technology. How much does that extra performance cost? If we are willing to
pay for the performance, then we use larger caches. If the cost is very high
too high for the performance gained-then we use a smaller cache.

The cache-parameter values used in commercial systems have tended to
increase in time as technology has made it possible to build larger caches at
reasonable expense. High-performance minicomputers were produced with
caches as small as 2 K-bytes at the start of the 1970s and moved to larger caches
that reached 8 K-bytes in one decade and 256 K-bytes in two decades. In that
same tirneframe, cache memories for high-end machines evolved from 16 K

bytes to 64 K-bytes to 1 M-bytes.
Although we expect the trend toward larger caches to continue, it is certainly

not clear that they will increase in size in the future at the same rate as they
have increased in the past. As main memory capacity increases from 107 bytes
to 108 and 109 bytes, there is a strong possibility that cache memory need not
grow linearly with main memory. Instead, it may grow as some slowly growing
function that reflects the growth of the active areas of memory as a fraction of
the total size of memory. In fact, several manufacturers such as Amdahl and
Hitachi have produced machines with two levels of cache memory, with the
first level very fast, very expensive, and relatively small, and the second-level
cache much less expensive, but still costly compared to main memory.

The second-level cache may be the architectural feature that grows larger
with new generations of device technology. The first-level cache captures most
of the hits. As cache size grows and the performance curve bends around a
knee, the additional hits obtained are rather infrequent. These should be fielded
in the second-level cache., whose cost is relatively low compared to first-level
cache, but whose performance is much better than main memory.

Two levels of cache further complicate the design picture. Now we have to
consider three different memory costs and two different cache structures. The
design possibilities are very rich, but rather ovenvhelming in their number ..
making thorough analysis of alternative designs very costly to perform. The
next two sections treat the efficient use of address traces for exp1oring the design
space.

i.2.3 Cache Analysis: Trace Generation and Trace Length

In the previous section we glibly assumed that the reader can construct curves
such as those in Fig. 2.9 from data on hand. Thls is hardly the case. Cache
analysis input data usually consist of extremely lengthy address-reference sequen
ces obtained through great effort. The fastest way to obtain such information is
through special hardware attached to an operational machine. The special hard
ware monitors memory requests and logs each individual reference on a tape
for later use by a cache-evaluation program.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 59

Section 2.2 CacheMcmory 45

Although this method is very fast, if the operational machine happens to

be a very high-performance machine, then the specialized hardware must run

several times faster than the high-performance machine to keep up with it. Such

hardware monitors are costly, and are difficult or impossible to build for the

fastest machines. They are quite useful, however, for studies involving slower
machines.

By far the most popular means for generating an address•reference stream
for studying cache performance is the machine simulator. This is a program that
simulates the instruction execution of a computer under study. The input to the
simulator is a typical workload. As each instruction is executed by the simulator,
the simulator writes to an external file the sequence of address references gen
erated during the simulation.

Some processor architectures have the capability of trapping to the operating
system after the execution of each instruction. On such architectures, simulation
can be done very efficiently because each instruction is executed at full machine
speed. Software in the operating system is required only to determine what
addresses were generated by the instruction and to transmit these addresses to
the output file.

Since we presume that cache design is to be done by examining the perfor
mance of various design alternatives on address traces, we have to be sure that
the address trace is representative and does not have particular biases that could
produce misleading evaluations. Actually there are three distinct problems.

1. The workload on the trace may not be representative of the actual workload
for which the machine is to be used;

2. The initialization transient during which the cache is filled with relevant
data may grossly affect the evaluation; and

3. The trace may be too short to obtain an accurate measure of the miss ratio.

The first problem is particularly nasty. Because simulations run 10,000 to 1,000,000
times slower than real time, it is not feasible to create traces that cover long
periods of real time. Typical simulations cover hundreds of milliseconds at most,
which raises a question about the fidelity with which the simulation captures
the characteristics of the workload.

High-performance machines specialized to particular applications typically
spend the bulk of their time in predictable ways, which should account for the
majority of an address trace for such machines. But a representative fraction of
the address trace· should also be devoted to other activities, such as input/output
and loop initialization.

General•purpose machines present a much more difficult problem because
their workloads are not easily characterized. Moreover, any user may choose to
dedicate a computer to an unusual function whose characteristics are vastly
different from normal uses of the same computer. So the cache designer can at

.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 60

46 Memory-System Design Chapter 2

best evaluate a cache for some good estimate of the workload. Individual users
may experience performance that deviates from the e xpected performance if
their workload has dramatically different characteristics from the workload used
for cache design.

Various models of address references have been postulated with the idea
that the models can be used in place of traces for cache evaluation. Trivedi [1982,
pp. 305-3081, for example, describes a statistical model that captures the notion
of locality of references in a way that is useful for designing an operating system
for a virtual-memory system. This model in turn is a refinement of the models
of Coffman and Denning [1973, pp. 275-278); Denning, Savage, and Spim {1972];
Shemer and Gupta [1969); and Shemer and Shippey {1966]. Later in this section
we describe a useful model that captures the 30-percent rule depicted in Fig.
2. 9, and is due to Thiebaut [1989] with refinements by Singh, Stone, and Thiebaut
(1992).

Such models give insight into the characteristics of address-reference strings,
but because cache design is so critical and so much is at stake, cache designs
have to be validated by testing them on the address references produced by a
real workload when this is possible. So the use of actual address tra ces for
eva luating cache designs will continue to be the primary tool for cache analysis.
For la rge caches, the length of traces required to yield accurate data becomes
prohibitive, and models of program behavior become an acceptable alternative.
When designing caches for machines with new instruction sets, workloads do
not exist, so that a combination of analytical models and data from caches for
similar architectures may be required.

Apart from the fidelity of a trace in capturing workload behavior, there are
two problems related to the accuracy of the results obtained for a particular
trace. The first problem is that data are corrupted by an initializ.ation transient,
but fortunately the corrupted data can be removed as indicated below. The
second problem is more serious. The trace has to be long enough to capture
enough misses to produce an accurate measure of the miss ratio. Unfortunately,
the trace length required grows roughly as the cache size raised to the 1. 5 power.
For each quadrupling of cache size, the trace length increases by roughly a factor
of 8. For 2 M-byte caches, trace lengths required for moderate precision can
exceed 100 million references.

When miss ratios are so small that extremely long traces are required to
measure them, they are also relatively unimportant factors in the overall per
formance model of a machine, and other factors tend to be more important. The
other factors may be cache related, and may include the bus traffic generated
by processor \VRITEs to the cache, as well as traffic to and from the cache due
to input/output and interaction with other processors in a multiprocessor system.
These other factors are often measured by trace simulation in much the same
way that hit ratios are measured, but the traces need not be as long because the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 61

Section 2.2 Cach£ Memory 47

events of. interest occur more frequently. In any case, the cache designer can
rely heavily on detail�d trace information in order to evaluate performance as
a function of cache size and structure, but the designer should rely on the
techniques that follow to remove bias in the data and to determine what con
fidence should be placed on the interpretation of the data.

The problem of cache initialization is that during a cache simulation, the
first reference to each line in the cache will generate a miss, whereas in a real
environment the corresponding reference may have been a hit because in the
real environment the cache would have been holding a recently used item. The
cache simulator cannot preload the environment so that it cannot generate a hit

where the actual cache it simulates produces a hit.
One may argue that the beginning of a cache simulation is something like

the behavior of the real computer at a context swap. In that situation a new
process takes control and generates cache misses until it loads itself into the
cache. In this way the cache simulator captures not only the steady-state effect
but the cache-reload transient as well. The problem is that the two effects are
combined in a fashion determined by the total length of the trace. This is rather
arbitrary, and may not reflect the true ratio of transient reload effects to steady
state effects. Moreover, when caches of different sizes are simulated with a trace
of fixed length, the larger caches use a larger portion of the trace to initialize
the state of the cache, and thus the transient contributes a greater proportion
of the simulated miss ratio for the larger caches than for the smaller caches. To
the extent that the transient effect is a distortion of reality, the larger caches
suffer a larger distortion in their simulated data. As we shall see in this section,
the distortion is so bad on large caches that most published data on simulated
miss ratios of large caches report effects almost entirely due to the initialization
transient and the steady-state miss ratio is totally lost in the transient.

We recommend an approach that measures the steady-state miss ratio in
isolation, and then factors in the reload transient by a means described later in
this chapter. To do so, it is essential to remove the bias introduced by misses
attributed to the cache initialization. Such misses are quite easy to recognize
and can be factored out with a minimum of effort.

The cache-simulator program can easily be modified to record which misses
are true misses and which are artifacts of the initial state of the cache. Simply
initialize the cache with address tags that are illegal. Since address tags of a
physical cache are several bits shorter than a full address, and since a cache
simulator program can manipulate data as wide as a full address, we can write
the cache simulator to store address tags that are wider than actual tags. Con
sequently, we can initialize the values of address tags to some illegal value, for
example, by setting the sign bit, if we know that while simulating the cache no
valid tag can be generated with a sign bit set.

The value of initializing tags in this way is that we can examine the address

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 62

48 Chapter 2

tag of each line that is removed from the cache. If the tag is invalid, then the
line removed is one that was placed there during cache initialization, and in a
real environment it might have produced a hit.

Now that we can recognize a miss due to cache initialization, what action
should we take? Focus attention on any one of the N sets in the cache. The ad
dresses that can be stored in this set are disjoint from the remainder of the
addresses. In essence, this set is a small cache that operates on 1/Nth of the
address space of the computer. If the cache is direct mapped (K = 1), the cache
contains one entry. The first reference to this set produces a miss due to ini
tialization. If we simply ignore the first reference, then this set is properly
initialized for subsequent simulation. That is, we do not count the first reference,
a miss, to a set. The trace length is effectively shortened by one address per set
referenced. (If our intent is to measure the transient together with the steady
state miss ratio, then we should record both the reference and the miss.)

Thus when simulating a direct mapped cache with N sets, when the ini
tialization transient is factored out, the trace length is reduced by N references,
and N misses are removed (assuming that all N sets are touched during the
trace). The impact on total trace length is negligible, but the miss ratio may be
greatly affected, depending on how many additional misses are on the remainder
of the trace.

As an example of how initialization misses can dominate steady-state misses,
we draw data from a study by J. E .. Smith and J. R. Goodman [1985}. Smith and
Goodman study a model in which the cache-reload transient is present and can
impact performance. Their goal is to measure the impact of that transient, and
their experiment indeed produced a large reload transient. For example, their
data includes a table entry with a hit ratio of 0.994 for an 8 K-byte direct-mapped
cache with a line size of 16. The trace length used for this simulation is 100,000.
This cache has 512 lines and there are 600 misses recorded for this trace. Although
we do not know how many of these 600 misses are due to cache-initialization
misses, at one extreme all 512 lines in the cache could have suffered one ini
tialization miss. In this extreme case, the miss ratio reported would be produced
by 512 initialization misses and 88 steady-state misses. Their hit-ratio data for
2K-line cache structures with 4-byte line size approaches the asymptote of 0.985,
which is about 1500 misses per 100,000 references or about 0.75 misses per line,
which is not enough to initialize the full cache. If the cache simulations did not
specifically remove the initialization misses, then the reported data on the large
caches are due largely to the initialization of the cache rather than to the steady
state misses. For the smaller caches, the initialization effects are much less
dominant in the data. It is clear that for their parameters the treatment of ini
tialization data can make very large changes in the relative size of the measured
miss ratio, and this is consistent with their conclusions regarding the effect of
the cache-reload transient. Had their traces been longer, their miss ratios for the

Memory-System Dulgn

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 63

section 2.2 Cache Memory 49

8 K-byte caches would be lower to the extent that the initialization effect becomes

small relative to the remainder of the trace.

We have argued that the initialization of direct-mapped caches can be treated

very simply with minimal shortening of the trace lengths. Set-associative caches
can be treated equally easilyJ but the effect is to shorten the trace length more
dramatically than for direct-mapped caches. When creating traces, the short
ening phenomenon caused by cache initialization has to be considered, and thus
requires the trace lengths to be somewhat longer than the length estimates
produced by statistical considerations. For set-associative caches, the rule is to
treat each of the N sets independently. After K misses are recorded to one set
of a K-way associative cache, the statistics for that set can be recorded. Until
that point, no statistics on that set are kept. The reason for this rule is that until
the set has been fully initialized, the set is acting as if it were smaller than its
true size. For exampleJ after one miss is recorded in a four-way set, one line
holds a valid datum and the other three hold uninitialized data. At this point
in the simulation, the effect of having only one initialized entry in the set is the
same as if the set were one-way associative. It experiences a miss somewhat
sooner than expected for a four-way cache. If the references were recorded at
this point for that cache, the next three misses to the set produce a higher than
average miss ratio and influence the final data of the simulation. Consequently,
all references to that set should be ignored until the set is fully initialized, and
then the recording can begin for that set. This notion first appeared in Laha,
Patel, and Iyer [1988] where they introduce the term primed set for a set that has
its initial contents purged.

A variety of techniques for dealing with the initialization transient have been
reported in the literature. Some researchers "warm" the cache by running a
fixed number of references through it. This technique works to the extent that
it removes the transient. However, it may not remove all of the transient, or
even may remove very little, depending on the size and structure of the cache.
Moreover, if the length of the trace for initialization is fixed for all caches rather
than dependent on the cache structure, then as a variety of structures are sim
ulated, the transient effects will contribute differently to different cache struc
tures, and the data obtained will not be comparable across the various caches.
To be absolutely certain that the transient is absent and to use the fewest possible
references for initialization, we recommend beginning a simulation on each dis
tinct set when the set is fully initialized.

The next question is how long should a trace be? We cannot give a precise
answer because the statistical behavior of cache misses is not well understood.
But we can model the cache misses by a different, but understood process that
enables us to obtain a length estimate. This length estimate is a lower bound
on what is required for the cache-miss process. At this writing, we do not know
how much longer than the lower bound the traces should be. The lower bound

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 64

50 Mcmory•Systcm Design Chapter 2

is very long for large caches, which casts doubt on the practicality of producing
statistically accurate measures of miss ratios of large caches.

To obtain a bound on trace length, we assume that the cache-miss process
is a Bernoulli process. That is, each address reference has a probability h of
being a hit and m ::::; 1 - h of being a miss. Each reference is generated inde
pendently in time. This is equivalent to flipping a coin whose_ pro_bability of
coming up tails is m. We know that the independence assumption 1s false for
the process that produces cache misses. Misses tend to cluster in time and occur
in bursts rather than as predicted by a Bernoulli process. To measure the average
of clustered references over long periods of time requires more observations
than the measurement of the average of statistically independent references. In
the following paragraph we use the independence assumption to produce trace
Jengths, but we recognize that the lengths produced are only lower bounds on
the actual lengths required.

Let a trace contain T references. Then the mean number of misses, M, is
m T and the variance in Mis m Th = M h. The estimate of the miss ratio is Ml

T and the variance in the estimate is Mh/T2
::::; mh/T. This is true because given

a random variable X with variance V, the variance of the random variable cX,
for constant c, is c2V. The true miss ratio of the underlying process is not nec
essarily equal to the estimate, but it lies dose to the estimate. In fact, the standard
deviation, which is the square root of the variance, gives us an estimate of how
far away the true mean lies from the observed mean. For Bernoulli processes,
we know with over 95 percent confidence that the true mean lies within two
standard deviations of the observed mean [cf., Brunk, 1960]. To obtain the 95
percent confidence interval for small miss ratios, we can safely approximate the
hit ratio h by 1. This yields

True Mean Miss-Ratio = m ± 2 ft (2.3)

Figure 2.10 shows typical hypothetical confidence intervals based on Eq. (2.3)
for a trace of fixed length starting with fully initialized caches. The central curve
is the 30-percent rule plotted in Fig. 2.9. The trace length is assumed to be 10
milli�n �eferences af�er a� ca:hes are fully initialized. The caches are 4-way set
assoaative and the lme size 1s 64. The number of T references in the standard
d��ation term is the number of references per set, which is the trace length
divided by the number of sets. The large confidence interval around this curve
�s the 95 percent confidence interval for which Eq. (2.3) holds. The inner interval
1s a ':lot of the 90 percent confidence interval for which the multiplier in Eq.
(�.3) 1s reduced from 2 to approximately 1.65. Note that we have greater con
fidence when we bound the �rue miss ratio to within a larger region. The curves
plotted are for the Bernoulli model, and the actual confidence intervals will

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 65

Section 2.2 cache Memory 51

0.10,-----------------�---------.

D

·;:;
I'll
a:

CIII
II)

:i

0.01

Miss Ratio

90% Confidence - - -

0.001 95% Confidence

� \
:. \

: \ . \
'

: \
. \
. \

\
•

I

• l
• I
•

l
. \

I
•

l

: I

0.0001 �---'----:-'::--�-�:'::--_____j-·;;.__• --=-�'-----lL_ _ ___J_ __ _j_ _ ___,

256 1 K 4K 16K 64K 256K

Cache Size

Fig. :Z.10 Confidence intervals for miss-rate measures for the Bernoulli model. This does
not include initialization effects.

probably be much greater than those shown when statistical dependencies are
taken into account.

As a numerical exampler let the miss ratio be on the order of 1 percent., and
find the size of T that produces a confidence interval of 20 percent of the miss
ratio. The standard deviation term is 2 vmFf and we require this to be less than
0.002. Equivalently, we require T to be greater than 10,000 form = 0.01. Note
that we bound the relative size of the confidence interval about the mean by
forcing the standard deviation to be a fixed percentage of the mean, say J3 times
the mean. To achieve this bound we increase the length of the trace T until twice
the standard deviation decreases to that percentage of the mean. For a specified
p, the confidence interval is within two standard deviations of the measured
mean when 2 s '3 v[,nff. Since this inequality involves the product of m and
T, for a fixed value of�, T grows inversely with m. As the hit ratio falls away
from unity.,

the approximation used here for the variance becomes inaccurate,

.. -... -~

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 66

51 Memory-System Design Chapter 2

and it becomes necessary to use the factor h in the variance expression in order
to improve accuracy. In terms of M, the number of misses observed, a little
manipulation of the formulas shows that M � 4/(32

• To double the relative pre
cision of an estimate by reducing fl by a factor of 2, the number of misses observed
must quadruple.

This calculation suggests that by observing as few as 10,000 references, the
calculated values of miss ratios lie within 20 percent of the actual values. This
assumes all of the references lie in a single set. What happens if those references
are distributed across N sets? For the Bernoulli process, the variance per set
increases by a factor of N when the number of observations per set is reduced
by a factor of N, but the average of N independent observations across the N

different sets decreases the variance by a factor of NI so that there is no net
change in the size of the confidence interval.

Unfortunately, the cache-miss process has highly clustered references as
reported by Voldman et al. (1983]. The activity across N sets has very high
correlation, and thus the distribution of references across N sets does not reduce
the variance in the estimated variance as predicted. When one set experiences
misses, many sets experience misses. \'\Then a reference stream produces a rel•
atively long miss-free period, all of the sets see a proportion of that long miss
free period. If the correlation across sets is near unity, then observations of the
activity in N sets produces ve-ry little additional accuracy than the observation
of a single set.

More specifically, assume that the variance in the number of misses per
set is V, for each set, and that the correlation coefficient between any pair of
sets is p. Then for N sets, the variance in the average number of misses per set
is equal to (V/N)(l + (N - l)p). When the correlation coefficient is zero, N
observations reduce the variance by a factor of N and the standard deviation by
a factor of \IN". When the correlation coefficient is unity, the variance in the
observed mean for N observations is the same as the variance in a single ob
servation, so that the additional observations do not reduce the confidence
interval.

Figure 2.11 illustrates the potential reduction for a drop in confidence in
terval. Figure 2.1 l(a) shows a data point surrounded by its confidence interval
based on 10 independent observations. The interval size happens to be 32 percent
of the size of the variable, and thus we have the value of the variable pinned
within a precision of approximately plus or minus 16 percent. Figure 2.ll(b)
shows what happens when we increase the number of observations to 160
independent obseJVations. Since the number of observations has increased by
a factor of 16, the confidence interval has been reduced by a factor of 4. We now
have a bound on the variable to within plus or minus 4 percent.

If the additional observations are not independent of the original variables1

the bound does not decrease and the effort to obtain the additional variables is
lost. Polls prior to presidential elections take this into consideration when seeking

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 67

Section 2.2

0.8

Fig. 2.11 Confidence intervals for
(a) 10 samples of an event, and
(b) 160 samples of an event.

cache Memory 53

1.2

(al

lb}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 68

54 Memory-System Design Chapter 2

opinions of voters. Pollsters seek samples across a representative slice of voting
population. Geographic location tends to be a correlation factor, and thus polling
many residents who live in the same community is less effective in reducing
the confidence interval of the sample than is obtaining the same number of data
points spread out geographically in some proportion to the voting population
where the samples are taken.

Because of the potential for high correlation of activity among different sets,
it is essential to record enough misses per set to obtain reasonably tight confi
dence intervals for one set rather than rely on the averaging of the misses across
many sets to reduce the confidence interval to acceptable accuracy. Ultimately
we are attempting to measure the average length of an interval between two
events. We must record at least two events per set to obtain a rate of occurrence,
and ideally we should have many events to obtain an accurate measure of that
rate.

When caches are sufficiently large, the miss ratios may drop to a region
where high relative accuracy is not important. At miss ratios of 0.005 or below,
we may be satisfied with a relative accuracy of ± 100 percent. The BernouHi
bound requires only four misses per set in this case, or about a factor of 25 less
than is required for a confidence interval five times tighter. Traces too short to
produce at least four misses per set yield confidence intervals on a per set basis
that are larger than the observed mean. Because of the clustering in the cache
miss process, we do not know what the overall confidence interval on the ob
served mean may actually be, but when the misses per set drop below four,
there may be a problem in the precision of the answers obtained. The designer
must be cautious in using the results of the trace data, and should seek inde
pendent means of estimating or measuring the miss ratios of a prospective design
to confirm the results of trace simulation.

To give some idea of the potential lack of precision of cache measurements,
recall the data reported by Smith and Goodman (1985] mentioned earlier. The
number of misses observed for the cache with 512 lines is on the order of 600
misses, or just over 1 miss per set out of roughly 200 references per set. For one
set, the Bernoulli bound on the 95 percent confidence interval is 0.006 + 0.011.
For the caches with 2K lines, the number of misses observed were fewer than
1500, or about 0. 75 misses per set out of roughly 50 references per set. The
Bernoulli bound on the confidence interval for a single set of this collection of
caches is 0.015 + 0.0346. For both the 512-line and 2K-line caches the uncertainty
in the size of the mean in one direction is about twice the size of the mean.
Also, the interval includes negative miss ratios, which is not meaningful. By
taking the measurements over many sets, the confidence interval of the overall
mean is smaller than that of a single set, but the true size of the interval is
unknown because of the high correlation of the activity of the sets. For these
caches, Smith and Goodman appear to have too few misses per set to produce

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 69

section 2.2 Cache M�mory 55

trustworthy me�sures of _
miss ratios. To be sure of the data, it is necessary to

repeat the expenments with longer traces to obtain tighter confidence intervals.
The bounds on the :onfidence intervals for the smaller caches studied by Smith
and Goodman are tighter and useful, so that the uncertainty in their data shows
up mainly in

_
th� extrem_e points in their study.

Given this mformahon we can develop some estimates for trace lengths
required to evaluate caches. Let's start with a design point of a cache of size 32
K-bytes, with four-way set associativity, and 16-byte lines. This cache has 512
sets. Assuming a nominal miss ratio of 1 percent, to achieve 4 misses per set,
we require 400 hits per set or about 200,000 references after initialization. For
higher precision, a trace length of 5 million references produces 100 misses per
set, which should yield satisfactory accuracy. A cache four times as big has
roughly half the miss ratio and four times the number of sets. To achieve the
same number of misses per set for this cache, the length o[the trace must increase
by a factor of 8, or, equivalently, the trace length grows roughly as the cache
size raised to the 1.5 power under these assumptions. Hence, by this approxi
mation, to obtain only 4 misses per set, we need a trace of 1.6 M references for
a 128 K-byte cache, 12.8 M for a 512 K-byte cache, and 102 M for a 2 M-byte
cache after initialization. If we insist on 100 misses per set, the trace for the 2
M-byte cache reaches a length of 2.5 billion, which is prohibitively large. These
are a11 nominal estimates and must be calculated more carefully when doing
cache designs by using miss-ratio data for the architecture or for related ma
chines. What may be devastating is the effect of initialization misses. For four
way set associative caches we need 4 misses per set before we record data, and
we need to simulate long enough to record at least another 4 misses per set.
For direct mapped caches, the additional trace length required is negligible. For
four-way set associative caches, the additional trace length for initialization is
considerable and may be from 25 percent to 50 percent of the trace length needed

for simulation. Note that in this case both the initialization and the simulation
portions of the trace produce four misses per set, but the initialization trace is
shorter because it has a higher miss ratio.

Laha, Patet and Iyer fl 988] report a successful technique for higher miss
ratios in which they average 35 trace samples taken at different points in time.
Each sample is large enough to initialize all sets, and still have a sufficient number
of misses per set to obtain meaningful information. The effect of using 35 dif
ferent samples is to obtain a better estimate of the overall miss ratio than can
be obtained by a long continuous observation. Although this scheme is useful
for larger miss ratios, at very low miss ratios the number of references used for
initialization of the sets becomes excessive. The cost of 34 additional initializa
tions negates some or all of the gain in shortening the trace by sampling in time.
The only foolproof way to obtain accurate estimates of the rate of rare events is
to observe many of them.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 70

56 Memory-System Design Chapter 2

This analysis suggests that very long traces are required to analyze the
behavior of large caches, and traces of such lengths are much larger than lengths
actually used in the literature. Can we trust the data in the literature? An in
teresting study by Agarwal, Hennessy, and Horowitz [1989] produces a model
of cache behavior that matches closely with cache simulation data. The largest
caches studied in this paper are of size 256 K-bytes. These are large enough to
require longer traces than used by Agarwal et al. in their study, and thus the
question of the accuracy of the measurements arises.

Figure 2.12 illustrates the approximate shape of the simulated data and the
predicted data produced by the model. Note how the model tracks the simulated
data reasonably closely. Both curves flatten out horizontally at an asymptote
that is equal to the initialization transient for the trace. This is equal to the
number of distinct lines in the trace divided by the length of the trace. So their
model explicitly incorporates the initialization transient and the cache simulation
captures the same transient. The trend line in the figure shows an extrapolation
of the straight portion of the data. The extrapolation follows the rule that each
doubling of cache size reduces the miss ratio by a constant percentager and is
essentially the 30-percent rule for a different percentage. The curve that veers

.2

a:

(I)
LG

�

0.25

0.10

0.075

0.050

0.025

0.01

0.0075

0.0050

1K

---------------------,�, -----

Model Asymptote / i ',,,,

4K

Trend for l Log/Log ::., ...
64K Working Set � Trend

16K
Cache Size

I

I

64K 256K

fig. 2.12 The cache-miss ratio model of Agarwal, Hennessy, and Horowitz.

Measured
Data

~/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 71

Section 2.2 Cache Memory 57

downward vertically at 64K shows what we expect to be the case for a workload
that fits entirely within a 64 K-byte cache.

In analyzing the data in the figure, note that at 64K the miss ratio is dose
to 1 percent. This 64K cache has 4K lines, and at that miss ratio requires roughly
400K references to produce enough misses to fill the cache. Although they used
many traces for their analysis, the longest trace was only SOOK. Hence the longest
of their traces barely filled the 64K cache in the initialization period before it
ended and other traces may not have filled the cache completely prior to com
pletion. For the 256K cache, at most 25 percent of the cache was initialized by
any one trace. Because the miss-ratio during initialization is higher than the
steady-state miss ratio, the data give us very little indication of what the steady
state miss ratio might be for a 256K cache.

Because their model specifically estimates the initialization misses, Agarwal
et al. correctly conclude in their paper that the observed miss ratios for the caches
larger than 64K are almost totally due to the initialization transient. Many other
studies similar to the one conducted by Agaiwal et al. produce curves with the
same flattening of the miss ratio for large caches, but Agarwal et al. produce
along with the data a correct explanation of the phenomenon. It is interesting
that the vertical trend is what we expect to see when caches are sufficiently
large, but published data tend to show a horizontal trend rather than a vertical
trend because the traces are generally too short to eliminate the initialization
effects.

2.2.4 Efficient Cache Analysis

At this point we presume that the cache designer has a collection of traces
available for cache studies. Our earlier remarks suggest that the designer will
try to evaluate many different caches, and therefore may have to use one address
trace several different times. This could be extremely time consuming and costly.
A trace with 5 million references may contain 4 bytes per reference, for a total
of 20 million bytes. Processing this trace may require an hour of computer time
on a high-speed computer. To evaluate 100 variations of cache designs on sep
arate passes of the trace would be an enormous computational burden for an
analysis that is conceptually very simple. The remainder of this section treats a
set of techniques that together reduce processing requirements by as much as
a factor of 1000.

We use three different techniques to reduce processing requirements:

1. Multiple analyses per run;
2. Elimination of hits to the most recently used line; and

3. Set sampling.

The following sections trea t each of these in turn.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 72

58 Memory-System Design Chapter 2

Multiple Analyses per Run The idea of examining several different caches in
one pass of a trace is due originally to Mattson et al. [1970]. The idea is that a
single simulation run for one pass of a trace can produce data for several cache
evaluations. However, this result depends on the replacement policy that spec
ifies what line to remove when a new line enters the cache. We describe the
work of Mattson et al. by example in the context of cache analysis, and explore
more fully the impact of replacement policies later in this section.

Figure 2.13 illustrates a situation in which an eight-way set-associative cache
is being analyzed. We shall see that we can obtain analyses for K-way set
associative caches for each K less than eight while performing the analysis for
the eight-way cache. Figure 2.13 shows the directory for one of N sets in a cache.
Note that this directory has eight positions because the cache is eight•way set
associative.

Let us examine a typical sequence of address references to this set and
observe the effects of a particular replacement policy. Suppose the set initially
contains the addresses A through H as shown in Fig. 2.13(a}. If the next ad
dress reference to this set is a miss, the new item is brought into the cache and
entered into the set. But which item is displaced to make room for the new
item? A policy that is jmplemented almost universally is the least-recently used
(LRU) policy, which says that the item displaced is the least-recently used item
in the set.

If the addresses in Fig. 2.13(a) are arranged in order of their last reference
so that A is the most-recently used item and H is the least-recently used item,
then the new state of the set will be as shown in Fig. 2.13(b), which shows the
new reference Z at the top of the set, references A through G moved down one

A

8

C

D

E

F

G

H

(a)

Most
Recent

Least

Recent

z

A

B

C

D

E

F

G

(b)

Most
Recent

Least
Recent

C

z

A

8

D

E

F

G

(c)

Most
Recent

Least

Recent

Fig. 2.13 An eight-way cache directory maintained with an LRU policy :
(a) Initial state;
(b) After reference to Line Z; and
(c) After reference to Line C.

I

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 73

5eetion 2.2 Cache Memory 59

cell in the set, and reference H discarded from the bottom. Suppose in this state

that the next reference is to address C, a hit in the set. Then the next state
should be as shown in Fig. 2.13(c), which places Cat the top of the set, pushes
down z, A, and B, and leaves other items unchanged. Even though no item is
removed from the set when a hit occurs, the contents of the set should be
reordered because we must be able to locate the least-recently used item at any
given time. The reordering maintains the set in the order from most- to least
recently used item.

The key idea contributed by Mattson et al. is that for the LRU replacement
policy the cont�nts of a set for � K:way set-associative cache contains the contents
of sets for all K -way set-associative caches for each K' less than K. This is called
the inclusion principle. In Fig. 2.13, the eight-way set contains the contents of
one-way, two-way, and so on up to seven-way set-associative caches whose
number of sets and line size are equal to the number of sets and line size for
the e1ght-way cache. In fact, if we look at the behavior of a seven-way set
associative cache, we discover that the items held in that cache occupy the first
seven positions of the sets for an eight-way cache.

To keep track of the performance of stacks with one-way to eight-way set
associativity, we simply have to note the position of each hit in the stack. For
example, the reference to item C in Fig. 2.13(b) touches C lying in position 4.
This is a hit in a four-way cache, but a miss in a three-way cache. In fact, this
is a hit in a K-way cache if and only if K > 3.

Let us keep track of the position of a cache hit in a vector of counts that we
call HIT(]), where I runs &om 1 to 8. The HIT vector is initialized to 0. If a hit
occurs at position I, then we increment HIT(I). At the end of the cache evalu
ation, if we want to know how many hits there will be for an eight-way cache,
we simply sum HIT(J) for I == 1 to 8.

To find the hits for a four-way cache, we compute the sum of HIT(I) for
I = 1 to 4. Since HIT(S) counts the number of hits at Position 5 in the set, none
of those hits are hits in a set with four or fewer lines. Hence, the contents of
HIT(S) must be excluded from the hit count for a four-way set-associative cache.
Similarly, we can reason that the count for HIT(3) must be included in the hit
count for a four-element set because hits in a three-way cache are also hits in a
four-way cache under the LRU-replacement policy. That is why the number of
hits for a K-way cache can be found by summing HIT(I) for I = 1 to K.

Mattson et al. (1970] treat other replacement algorithms in addition to LRU
replacement. Some of the replacement strategies have the same property that
LRU has. That is, as you increase the size of a set, all of the hits of a K' -way
set-associative cache are hits in a K-way set-associative cache for all K' < K. But
some of the replacement strategies do not have this property. In particular, if
you select the item to be replaced at random, then it is perfectly possible, for
example, for a miss in a three-way cache to hit in a two-way cache.

A replacement policy that exploits the inclusion principle is called a stack-

-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 74

60 Memory-System Design Chapter 2

replacement policy because the candidates to be replaced can be placed in a push
down stack as shown in Fig. 2.13. The stacks for K-way set•associative caches
nest one inside the other as K increases. As a general rule, when evaluating
stack-replacement policies, one can simulate many different caches during one
pass of the trace. This technique could reduce evaluation effort by as much as
a factor of 10 over the process of performing separate passes of the input data
for each set size evaluated.

Hill and Smith [1989] exploited the algorithm of Mattson et al. by generalizing
it to analyze in one pass of a trace caches that differ in the number of sets per
cache as well as in their associativity. The algorithm is remarkably simple to
implement, and it is a very effective tool to have available. Figure 2.14 shows a
collection of sets from caches of various sizes, and illustrates how the algorithm
keeps track of all caches concurrently. At the left in the figure is a set from a
two-way set-associative cache of size N. To its right are shown two different
sets from a two-way set-associative cache of size 2N, and to their right are four
sets from a two-way set•associative cache of size 4N. The sets have the property
that the addresses that map into the four sets shown for the 4N-set cache all
map to same set in the N-set cache. The upper pair of sets of the 4N-set cache
map into the upper set of the 2N-set cache as depicted in the figure. That set
in turn maps to the upper set of the N-set cache.

In Fig. 2.14, since the sets on the right are from a cache with four times as
many sets as the one on the left, the sets on the right are selected by decoding
two more address bits than those on the left. The decoded values of the two
additional bits are shown with the sets on the right. These values are called the
selection fields of the addresses. The top set of two lines has a selection field with
the value 00. The lines in this set map to a set in the middle cache whose selection
field uses one fewer bit of the address for selection. The bit drops off from the
more significant end of the selection field according to the decoding scheme
shown in Fig. 2.8. Hence, the selection field of the set in the middle cache has
the value XO, where the X represents a bit that does not participate in selection.
The other set from the right-hand cache that maps into the top set of the middle
cache has the selection field 10.

Figure 2.15 shows the eight entries from the right hand sets of Fig. 2.14.
They are tabulated in order from most recently used to least recently used, and
each entry carries with it the corresponding selection field shown in Fig. 2.14.
The interesting point of this figure is that the selection field with each entry
plus its position in the table when considered together are sufficient to determine
where each entry lies in all three caches. To find the entries in the set with
selection field 00 in the right-hand cache, scan the table from most recently used
entry to least recently used entry for the occurrence of field 00. The first one
encountered will be the most recently used entry in the set selected by field 00
and the next one will be the second most recently used in that set. In the figure,
these two entries are A and Bin that order.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 75

section 2.2 cache Memory 61

C
XO }-fl C j

10}
A LI D]

C I xx

�

{:

A I
E I

01 }
x1}-t

E l
F l l F l

fig. 2.14 A diagram of the relation between sets of caches derived by doubling the number
of sets per cache. Two sets of the 2N-set cache map into one set of the N-set cache. The
value of the selection field is shown with each set.

To determine the contents of a set in the middle cache, say set XO, scan the
table from most recently used entry to least recently used entry for the first two
entries that match the tag XO. These are C and A in that order. S-ince the table
in Fig. 2.15 contains sufficient information to determine the contents of all three
caches, it follows that we can also determine if a reference is a cache hit or cache
miss in each of the three caches. In this example, a table 8 dee_p for each of
N sets is used to evaluate two-way associative caches with up to 4N sets. In
general, to evaluate K-way associative caches for caches with a number of sets
ranging from N to M N, the algorithm uses N tables of size K M.

By keeping track of LRU depth using the algorithm of Mattson et al., all
caches with associativities from 1 to K can be evaluated in the same sweep of
the table. The algorithm works as follows:

1. Map the reference address to one of N tables by extracting the set-field for
an N-set cache from the reference address.

2, Extract the additional bits in the selection field from the address.

[65 °0 }

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 76

Memory-System Design

G

E

F

C

A

H

B

11

01

01

,o

00

11

00

Most

Recent

D 10
Leasl

Recent

Address Selection

Reference Field

Chapter2

Fig. 2.15 A table of cache entries for simulating several cache directories concurrently.
The entries are arranged from most recently used to least recently used.

3. Scan the table entries in succession starting at the most recently used entry.

4. Each table entry represents the contents of one line of several different
caches. If the table entry matches the reference address, it is a hit in all of
the caches to which the entry maps. If the table entry does not match the
address reference, it is a miss in those caches for which the table entry and
address reference map into the same set. For the remaining caches to which
the address reference maps, the entry is neither a hit nor a miss. In this
step, the algorithm determines for which caches the entry is a hit or a miss.

If the address matches the address in the table, it is a hit in each of the
caches to which it maps. For a selection field of 00, the hit is recorded for
set XX of an N set cache., for set XO of a 2N set cache, and for set 00 of a 4N
set cache. If the selection field of table entry is the ith field that matched
position XO, then the hit occurs at LRU depth i in the 2N-set cache. By this
reasoning, the algorithm can record the LRU depth of a hit in each cache

1

and thereby preserve enough information to calculate miss rates for all as
sociativities less than the highest associativity among the caches analyzed.

If the address does not match the table entry, it is a miss in some of the
sets represented by the table entry. There is a miss in the N-set cache whose
selection field is XX .. X. To determine which other sets and which caches
should log a miss., compare the selection field of the table entry to the
selection field of the address bit by bit, starting at the rightmost bit of the
selection field. Move to the left and stop at the first bit that does not match.
For each bit that matches., log a miss in the set that corresponds to the
matched bits of the selection field. For example, consider an address with
selection field 1001 and a table entry with selection field 1101. The algorithm

·-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 77

Section 2.2 cache Mcm0ty

logs a miss in an N-set cache in set XXXX, in a 2N-set cache in set XXXl,
and in a 4N-set cache in set XX0l. Since the next bit of the selection field
of the reference address and the table entry do not match each other, no
additional misses are logged.

s. If a table entry produces a hit, the scan of the table terminates. The entry
at the hit position becomes the most recently used entry in the table, and
the entries that were formerly ahead of it are moved down one position.

If a table entry is the K-th miss in a cache with the maximum number
of sets (a cache with no X's in its selection field), the scan of the table stops
at this entry. This entry is cast out of the table, the entries above it are moved
down one, and the new address becomes the most recently used entry in
the table.

Wang and Baer [1991] extended these ideas further to encompass techniques for
simulating caches in multiprocessor systems. Their reasoning relies on the in
clusion property to enable multiple analyses to be carried out during a single
pass of the input data.

Trace Stripping: Filtering Puzak [1985] discovered two techniques for reducing
traces that together can reduce effort by two orders of magnitude. The first,
trace filtering, introduces no error in counting misses, and is the subject of this
section. The second, set sampling, is statistical by nature, and produces a sam
pling error in the final data. It is discussed in the following section. By using
both techniques, an analyst can reduce a trace with 100 million references to a
trace length of only 1,000,000 references, yet the reduced trace can give extremely
accurate estimates of the miss and hit ratios of J:he cache.

The shorter length of a filtered trace permits extensive cache analysis to be
done with microcomputers, whereas an analysis of the full trace would be far
too large a task to be done in reasonable time on a microcomputer. Both of
Puzak' s techniques rely on stripping from the address trace a large number of
references that do not affect the final results. The first stripping technique, trace

filtering, is the fallowing:

Assume that a set of analyses is to be done for caches with a fixed line size L and
at least N sets. Then prepare a reduced address trace by simulating a one-way
associative cache with N sets and line size L operating on the full trace. Output a
reduced trace that contains only the addresses that produce misses in the N-set, one
way set-associative cache.

The trace produced by this simulation process throws away all hits to a one
way associative cache with N sets. That is, it throws away all address references
to a line in a set that was the most recently referenced line in that set. What
remains on the reduced trace are just the misses experienced by the N-set, one-

63

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 78

64 Memory-System Design Chapter 2

way set-associative cache. Typically, a cache of reasonable size with this structure
should have a miss ratio of 10 percent or less, so that the trace reduction should
produce a new trace that is about 10 percent of the original length.

When the reduced trace is used to evaluate the same cache that produced
the reduced trace, the number of misses will be identical to the number obtained
from the unreduced trace. Of course, the number of hits will be different, so
the observed hit and miss ratios will also be different for the reduced trace. If
we know the original length of the address trace, however, then from the ab
solute number of misses observed we can compute the number of hits and the
hit and miss ratios. So all information relevant for a cache analysis is still available
on the reduced trace, provided that we know the length of the original trace.

What makes this technique more interesting is that we can use the reduced
trace to evaluate many different cache structures in a single pass and still obtain
exact or near-exact values of the hit and miss ratios. Puzak proved the following
result:

Create a reduced trace by simulating a one-way cache ¼rith N sets and line size L,
retaining on the reduced trace only the addresses that produce cache misses. Simulate
a K-way set-associative cache with N sets and line size L on the original trace and
the reduced trace. The two simulations produce the same number of cache misses.

Puzak's proof of this statement is a modification of the argument of Mattson et
al., which says that as you increase the stack depth (in this case K), the contents
of stacks for smaller Kare subsets of the contents of the stack for larger K. The
key idea in the proof is that each miss on the reduced trace is a miss on the full
trace, and conversely, each miss on the full trace is a miss on the reduced trace.

The process of producing a reduced trace by discarding cache hits for the
one-way cache discards no misses for the K-way cache. Because of the stack
algorithm property developed by Mattson et al., no misses for the K-way cache
are discarded either. The misses for the K-way cache are a subset of the misses
of the one-way cache and will appear in the reduced trace. Moreover, the ref
erences discarded from the full trace to produce the reduced trace are hits to
the most-recently used set in a one-way cache, but each of these is a hit to the
most-recently used set of a K-way cache, and each such hit does not result in a
reordering of the K lines within a K-way set. When such references are removed
from a trace, the number of misses observed does not change. From this ar
gument we conclude that the reduced trace and the full trace yield an identical
number of misses for any K-way cache with N sets and line size L.

Not only can you vary set associativity on a reduced trace, but you can also
study the effects of varying N. Puzak showed that the following result is true:

Let N be a power of 2. Prepare a reduced trace by simulating an N-set, one-way set
associative cache with a line size L, and retain on the reduced trace only those address
references that produce cache misses. Simulate a one-way set-associative cache with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 79

Section 2.2 Cache Memory 65

2N sets and line size Lon the full trace and on the reduced trace. The two simulations
produce the same number of misses.

To prove this statement it is sufficient to show that any cache miss on the full
trace is a miss on the reduced trace, and conversely, any miss on the reduced
trace is a miss on the full trace.

To illustrate the proof, consider Fig. 2.14 which shows how sets of 2N-set
and 4N-set caches map into sets of an N-set cache. When we double the number
of sets from N to 2N, we do so by increasing the set field by one bit. The effect
is to split into two groups the addresses that map into one set of an N-set cache.
Each group maps into distinct sets of the 2N-set cache as shown in the figure.

For example, consider an address for a cache with 2N sets and line size
L. Let us break up the left-most field of the address shown in Fig. 2.8 into two
fields, one of which contains only the rightmost bit of the field, and the other
of which contains the remaining bits on the left.

This produces a total of four fields in the address, which we denote as (T,
B, s, L) for tag, bit, set, and line. The L field gives an address within line and
is ignored by the cache when matching addresses. The S field gives a set number
for an N-way cache and is log2 N bits long. The B field has a length of 1, and
the B field concatenated with the S field gives the set number for a cache with
2N sets. The B-bit for this example is the selection field shown in Fig. 2.14. The
r field is the tag field for a cache with 2N sets, and the T field concatenated
with the /3 field is the tag field for a cache with N sets.

When a cache lookup is in progress, a K-way cache uses the set number to
initiate a read in each of K memories and compares the tag stored there to the
tag derived from the address. Hence, when an address (T, B, S, L) is used by
an N-set cache, the tag is (T, B), and the set number is S. When that same
address is used by a 2N-set cache, the tag is T, and the set number is (B, S).
Since B is a single bit, the set number is either (0, S) or (1, S). Consequently,
any address that is in Set S of an N-set cache falls in either Set (0, S) or (1, S)
of a 2N-set cache. . .

We will simulate a 2N-set one-way cache to show why each miss on the full
trace appears as an address on the reduced trace and yielg.s a miss there as well.
Without loss of generality, let us focus on a particular set, Set (0, S), of the 2N
set cache and observe an address sequence that produces a miss. Suppose that
the address (Ti , 0, S, L) produces a miss on the full trace. The prior reference
to Set (0, S) in the 2N-set cache must have a different tag in order for the present
reference to be a miss. Consequently, the prior reference must be an address of
the form (T0, 0, S, L) where tags T0 and T1 are not equal, and the values of the
L field for the two addresses do not matter. Is (Ti , 0, S, L) on the reduced trace?
Yes it is, because this reference produces a miss in an N-set cache.

On the full trace, the prior reference to the Set (S) of an N-set cache is either
the reference (To, 0, S, L) or a reference of the form (T, 1, S, L) for some tag

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 80

66 Memory-System Design Chapter 2

field T. If the prior reference were (T, 1, S, L), this reference would appear
between (To, 0, S, L) and (T1 , 0, S, L), and it would be treated as a reference to
Set (1, S), not (0, S), when simulating the 2N-set cache.

Since the prior reference to Set S for the N-set simulation has either tag (T
0

,

O) or tag (T, 1), neither of which is equal to tag (T1, 0), the reference to (T1 , O,
S, L) is a miss on the full trace and does appear on the reduced trace. This
reference is a miss on the reduced trace because of the rule used in discarding
addresses to produce a reduced trace. We can discard address reference (T1 , O,
S, L) from the full trace only if the prior reference on the full tape to Set S in
an N-set cache has tag (T1 , 0). But this was not the case, since the preceding
discussion indicates that the prior reference to Set (0, S) in a 2N-set cache must
have a tag different from T1 .

To prove that during the simulation of a 2N-set cache every miss observed
on the reduced trace is a miss on the full trace, we use a similar argument. Now
we assume that the address reference (T1, 0, S, L) on the reduced trace produces
a miss when simulating a cache with 2N sets. On the reduced trace the prior
reference to Set (0, S) must have a different tag, so it must be an address of the
form (T0, 0, S, L) where T0 and T1 are unequal., and the values of the L fields
are immaterial. Both of these references must occur in sequence on the full trace.
Between these references there may be other references to Set (0, S) that do not
appear on the reduced trace, but all such references are eliminated from the full
trace only if they are hits to Set Sof a one-way N-set cache. They must be address
references of the form (To, 0, S, L) because the tag must be of the form (T, 0),
and the latest reference to Set S with a tag of this form is the reference to (T0,

0, S, L).
We have now shown that when we simulate a one-way 2N-set cache on the

full and reduced traces we obtain the same number of misses. Puzak actually
used the proof technique given here to prove the following statement:

Let N be a power of 2, and let M be a power of 2 no less than N. Create a reduced
trace by simulating a one-way N•set associative cache with line size L. Retain on the
reduced trace only those addresses that produce misses. Now simulate a K-way
M-set cache for any K > 0 on both the full and reduced traces. The number of misses
observed during the two simulations will be equa1.

This statement says that a reduced trace can be used to simulate caches with
any combination of set associativity and number of sets, provided that

• The line size L for the simulated cache is equal to the line size of the cache
used for the trace reduction;

• The simulated cache uses at least as many bits in the set-number field as
the cache uses for the trace reduction; and

• The set associativity is arbitrary.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 81

Section 2.2 67

Given that trace reduction is useful for studying caches with increased values
of set associativity and number of sets, is it also useful for studying caches wjth
•ncreased values of line size? The answer is a qualified yes. When a trace reduced
�y simulating a �ache with line size L is used to eval�ate_ a ca�he with line size
2L, we quickly discover that the sets for the cache with hne s12e L do not have
a direct relation to the sets for the cache with line size 2L.

Wang and Baer [1991] made an interesting discovery that permits a single
trace to be used to simulate caches with different line sizes at perfect fidelity.
The idea is based on the observation that a reference that is a hit to a cache with
a certain line size is probably also a hit to a cache of equal or larger size whose
line size is different. Where Puzak recommends producing a stripped trace for
each different line size, Wang and Baer produce a single stripped trace that
contains the union of the references of Puzak's stripped traces. To create such
a trace from a full trace, use the full trace as input to a set of cache simulators.
Simultaneously simulate the smallest one-way set associative cache of each line
size of interest. Record on the stripped trace a reference if it is a miss in any
simulated cache. In other words, cast out hits only if they hit in every simulated
cache. Because so many references hit in all the caches, the trace reduction is
effective. Wang and Baer report that it increases the length of a single trace by
a percentage that was observed as high as 40 to 48 percent for capturing data
for five line sizes, but it removes the necessity for creating a single trace for
each different line size, and thereby substantially reduces the volume of data
saved. The trace reducti ons they obtained even with this additional burden were
factors of 7 to 20.

Trace Stripping: Set Sampling Having reduced the original trace by roughly 90
percent, lefs explore how to make a second reduction that again reduces the
reduced trace by 90 percent. The trick here is to observe that each of the N sets
behaves statistically like any other set, so that the performance of the full cache
can be estimated by observing only one set. In fact, as we mentioned earlier,
the references across sets are highly correlated. The measurement of miss ratios
by using all sets does not increase the accuracy of the estimate of the miss ratio
by as much as it would if the references were independent. Hence some effort
can be saved without a severe loss of accuracy by restricting attention to only
a fraction of all the sets in the cache.

In most designs, N is fairly large, usually 64 to 1024, so the opportunity for
reducing effort by a factor of N has a high payoff. There is some danger in
selecting a single set, however, because it might just happen to be an unusual
set whose statistics are not representative. To be safe, the designer can use two,
three, or more sets, with accuracy increasing as the number of sets increases,
but at the cost of additional processing time. The idea is to select a few sets and
examine their behavior characteristics.

Using standard statistical techniques, one can obtain confidence intervals

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 82

68 Memory•Systcm Design Chapter 2

on the evaluation measures produced from a few sets, where the confidence
intervals give an estimate of the error introduced by sampling a few sets instead
of using all of them. Similar techniques are used for quality control and for
predicting the outcome of elections. In both of these instances, the sampling
process is used on a small population to determine the characteristics of a much
larger population.

Puzak discovered that selecting 6 of 64 sets was sufficient to reduce the 95-
percent confidence interval to less than 1 percent of the measured data. That
is, the data obtained from 6 sets would be within 1 percent of the data values
for the full trace in 95 percent of the experiments that sample random populations
with similar statistical distributions. Hence, the reduced trace can be stripped
again to retain the references from some small number of sets. The number of
sets to use does depend on the variance in the observed data, so we cannot give
a specific number that holds for all cases. Puzak's experience indicates that for
reasonable data, retaining only 10 percent of the sets is sufficient.

To summarize how the various techniques described in this section can be
put to use, consider the design of a cache that nominally has from 128 K-bytes
to 1 M-byte. The designer has to determine how this cache can be organized.
Here is one typical sequence of steps that might be followed:

1. Pick a candidate line size for the 128K cache. This is usually determined by
the width of the path between main memory and the processor. The line
size can be a multiple of this width, but should not be smaller than the
width. In the running example, we assume that the path width is 16 bytes,
but we choose to have a line size of at least 32 bytes to reduce the number
of directory entries in the cache.

2. Determine what cache structures are to be studied. In our case we want to
examine caches with at least two-way set associativity. Hence, the 128K
caches of interest are 2 by 2048, 4 by 1024, and so on, and larger caches are
obtained by doubling and quadrupling the number of sets. If we choose to
examine larger line sizes, we halve the number of sets for each doubling of
the line size.

3. The largest number of lines among the caches under consideration occurs
for the 1 M-byte cache with 32-byte lines. The number of lines in this cache
is 32K lines. Assuming a miss ratio during initialization of about 1 percent,
it takes about 3.2 million references to fill this cache initially. To produce
accurate estimates of hit ratios, we must find the trace length required for
measuring misses after cache initialization. To obtain good precision, we
would like at least 16 misses per set. Since the associativity is at least two
way among all of the caches studied, the 32K lines of the largest cache fall
into 16K sets. Hence, we need to produce at least 256K misses from a trace
in order to obtain sufficient precision. If the steady-state miss ratio is ap-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 83

Section 2.2 69

proximately 0.~5 perc~nt, we require more than 100 million references to
produce a confidence mterval of no less than 50 percent of the miss ratio.
If either the initialization miss ratio or steady-state miss ratio are Jower than
estimated, the trace has to be longer. To give some additional margin of
safety1 we choose to make the traces 200 million references in length.

4. Prepare a collection of programs that comprises a representative workload.
Prepare an address trace from these programs of a length of at least 200
million addresses. The proJ?~rtion of the trace devoted to each type of pro
gram should reflect the anticipated workload, and the transients caused by
changing from one program to another should also reflect the expected
frequency of such transients.

s. Prepare a reduced trace by stripping from the full trace all hits to a cache
with line size 32, set associativity 1, and 1024 sets. If other line sizes are of
interest, simulate 128K direct-mapped caches with those line sizes as well
Retain an address in the stripped trace if it is a miss in any cache. Also,
select some fraction of the sets at random, for example, 12.5 percent, and
strip out all references in the trace to sets other than the selected sets. During
the stripping process, observe the total miss ratio, the miss ratio on each of
selected sets, and the composite miss ratio for the collection of selected sets.
If the composite miss ratio differs significantly from the actual miss ratio,
use the data obtained from the individual sets to find a sample variance for
the observed miss ratio. From this, estimate how many sets are actually
required to reduce the sampling error to a tolerable amount. If more sets
are needed, obtain them from the original trace by repeating the process
given here.

6. With the reduced trace as input data, simulate the following caches in one
pass of the trace using the algorithm of Hill and Smith [1989): 32-byte line
size, 2K and 4K sets with associativities 2, 41 and 8; 8K sets with associativities
of 2 and 4; 16K sets with an associativity of 2.

7. Calculate the miss-rate for each cache and estimate the cost of each cache.
Use the miss-rate data to estimate relative performance for each cache. Es
timate the relative system cost for each cache. Determine the most reasonable
trade-off of performance and cost.

Note that some of the data collected is for caches larger than the design point.
This gives additional information on the merits of moving to a larger cache in
the future and should be useful if there is some need to plan for the larger cache
in present designs.

Together the methods described in this section should make cache-memory
analysis accessible to all designers. It becomes feasible to use personal work
stations to conduct such studies that formerly taxed the facilities of the largest
computers. In closing, we make one additional observation that greatly simplifies

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 84

70 Memory-System Design Chapter 2

the collection of the data. It is quite feasible to strip the trace while collecting
address references. Simply record only those addresses that are misses to a few
selected sets of an N-set one-way set associative cache. If we randomly select
three bits from the set field and record only the misses to the sets for which
these bits have a specific value, for example, {0, 0, 0), then we will be recording
references to 12.5 percent (one-eighth) of the sets, and only the misses to those
sets.

Because this scheme selects only one address in a hundred for output, the
address references can easily be gathered in real-time, even for very fast ma
chines. However, it is necessary to have a buffer that can accept references at
very high instantaneous data rates because the cache misses that are captured
do not necessarily occur uniformly through a simulation, but rather may bunch
together in small regions of the simulation. Nevertheless, the almost 100-to-l
reduction in the volume and data rate of the data to capture makes this technique
very attractive.

2.i.5 Replacement Policies

In this section we look into the replacement policies and their impact on cache
performance. Nearly all caches in commercial production use least-recently used
(LRU) policies to manage the lines in a set. Recent work by Puzak [1985] points
out ways to obtain improvements over LRU repJacement at reasonable cost. This
section explores the characteristics of LRU and compares them with an optimal
(but nonrealizable) replacement policy to conjecture how one might design a
realizable, near-optimal replacement policy for a cache.

The main objective of a replacement policy is to retain the lines likely to be
referenced in the near future and discard lines that are no longer useful or whose
next access is in the more distant future. We <:an easily evaluate any replacement
policy by comparing it to an optimum policy that has perfect knowledge of the
future. Belady [1966] described such a policy in the context of virtual-memory
systems. The same algorithm holds for cache memories. The characterization of
this algorithm described here first appeared in Mattson et al. [1970].

Assume that a cache has perfect knowledge of the future: What should its
replacement policy be? In fact, the optimal replacement policy (OPT) is identical
to an LRU replacement policy that operates on the reference stream reversed in
time. More specifically:

The optimal replacement policy (0P11 discards the line of a set whose next reference
is furthest in the future of any other line in the same set.

Figure 2.16 shows the OPT policy in action. Figure 2.16(a) shows a set of lines
ordered so that the line at the top is the next of the set to be referenced, and
the remaining lines appear in the order in which their next reference appears
in the address-reference stream. We assume that the future reference stream is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 85

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 86

PATENT OWNER DIRECTSTREAM, LLC

EX. 2135, p. 86

72 Chapter 2

OPT has a miss, OPT must at some earlier time produce a hit when the other
policy produces a miss. In fact, OPT has at least one hit for every hit of the
other policy, and it may have more .

It is rather interesting that LRU, which looks only backward, works wen
compared to OPT, which looks only forward. The recent past appears to be a
good estimate of the near future. Perhaps this is due to the nested structure of
programs, which leads to the characteristic that the recent past is a reversal of
the near future. Consider, for example, a series of nested loops.

for i = 1 to N do
for j = 1 to M do

fork= 1toLdo
(body of inner loop)
end; {· k loop "}

end; {" j loop ·}
end; {9 i loop ·}

In this nesting the indices are incremented and tested on a last-in, first-out basis.
In the loop body the index that is next to be touched is the last to have been
touched, and similarly, the index to be touched furthest in the future is the
index touched furthest in the past. The !ast-in, first-out data access characteristic
associated with nested loops, nested subroutine calls, and nested interrupts
accounts for the future being similar to the past.

If this were the only characteristic of programs, then LRU would almost
always closely mimic OPT. But other characteristics of programs strongly inter
fere with cache management. One problem with the LRU replacement policy is
that it does not anticipate the future well when sequential or cyclical activity is
in progress. In either of these cases, once an item has been processed, it can be
removed from the cache. If it is to be used again, the next access occurs further
in the future than the access to other items available in the same cycle.

Consider, for example, the difference between LRU and OPT when each
processes a cycle of references of length 6. Let the reference string be A, B, C,
D, E, F, A, B, C, ... , F, A, ... , F, ... , and observe how LRU manages this cycle
in a set of size 2. LRU retains the last two references and misses on each new
reference. But OPT obtains two hits in the cycle of six references because the
two entries in its cache will be retained to obtain hits on those entries.

Assume for a moment that the cache contains A and B and the references
to these entries have just been processed to produce hits.

The next reference is to C. OPT looks ahead in the future and sees that A
and B will be referenced before C, so that OPT chooses to retain A and B in the
cache rather than bring in C after experiencing the miss on C. LRU always brings
in the most recently used item, but in this example, the most recently used item
is discarded in favor of the present contents of the cache. And as a result OPT

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 87

5ectiO('I 2.2 Cache Memory 73

is able to outperform LRU. In _r~alit~, the safe be~ i~ that the most recently used
item will be re~~ed soon, and 1t 1~ ":se to hold this m cache. But when a process
touches a suff1aent number of distinct references to exceed cache capacity, the
afe bet is no longer the best bet.

5
Therefore, to create a replacement policy that performs nearly as well as

OPT we must do some replacements that are not LRU replacements, and we
should try to do these when references are sequential or cyclical or in some
other pattern th_at. is poorly handle~ by LRU. From the preceding description
of the charactenstics of OPT, we discover the following interesting fact about

OPT:

For any set-associativity size K. OPT considers only one of two lines for replacement.
One candidate is the line most recently used, the other is the line referenced furthest
in the future.

LRU has only one possible candidate for replacement, the line least recently
used. It never replaces the line most recently used unless the set-associativity
factor K is 1. Presumably, LRU does as well as it does because the least-recently
used line is frequently the line to be referenced furthest in the future.

Puzak's analysis [1985} of OPT and LRU policies turned up another inter
esting characteristic of LRU replacements. Consider a situation in which a set
managed by an LRU policy happens to contain exactly the same lines that OPT
would retain. Now assume that LRU elects to replace a line of the cache that
OPT elects to keep, and conversely, OPT replaces a line, Line A, that LRU elects
to retain.

Puzak notes that Line A is a dead line in the LRU cache and that it must
leave the cache before it is touched again. If this were not the case, then OPT
would have retained Line A and cast out some other line. Since Line A is dead,
the set associativity is effectively reduced by one until Line A is swept from the
cache by an LRU replacement decision. If Line A happens to be the most-recently
referenced item when OPT disposes of it, then in a K-way set-associative cache
managed with LRU, references to K - l distinct lines must occur before Line
A is replaced. Many of these references are likely to be misses. As each of the
K - 1 distinct references occurs, Line A moves down one position in the set,
until at last it reaches the least-recently used position from where it is removed
from the cache. Here is an opportunity for a better policy!

For example, if a cache-management algorithm were clever enough to pre
fetch data in anticipation of future references, the obvious place to store the
new data is in place of dead lines because these lines will not be referenced
again. If we replace lines that are not dead, then each such replacement might
change a future hit to a future miss. Therefore, there is some risk in replacing
live lines, and no risk in replacing dead lines.

Quite apart from prefetching, there is a great deal that can be done just to
improve LRU replacement. For the cache parameters he studied, Puzak found

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 88

74 Memory-System Daign Chapter 2

that OPT's performance for a cache with M lines is approximately the same as
LRU's performance for a cache with 2.1v1. Jines. The actual performance difference
is not a factor of two. Although the cache sizes differ by a factor of 2, OPT
repJacement produces only about 30 percent fewer misses than does LRU replace
ment.

These data are strictly empirical and depend on the architecture, the work
load, and the ranges of cache parameters. There is no reason to believe that
his observations hold in general. Cache designers should make their own ob
servations based on their specific context and then compare their results with
Puzak's.

In any case, by comparing LRU with OPT we can obtain an estimate of the
improvement available. Although we can try to improve the cache as much as
possible, in reality., we are like1y to gain only from 10 to 30 percent of the available
improvement because the hardware cannot have perfect knowledge of the future.

Here is a description of one scheme for improving LRU that is based on
work by Pomerene et al. [1984J. The objective is to distinguish between transient
lines that must be flushed from cache quickly and lines that become active after
long periods of inactivity.

Pomerene et al. propose to use a shadow directory, as shown in Fig. 2.17. On
the left side of Fig. 2.17 is an ordinary cache divided into a directory and data
area. Let us presume that this is a K-way associative cache. To the right in the
figure is a duplicate of the cache✓ except that the duplicate contains only the di
rectory and no data area. This part of the cache is the shadow directory. The

MAIN
DIRECTORY

0

2
3

. . .

N-2
N-1

Klines
per set

CACHE
DATA LINES

0

SHADOW
DIRECTORY

1 ~-----

2
3

N-2
N-1

1-------<

Klines
per set

Fig. 2.17 The organization of a cache with a shadow directory. The main cache has N
sets, Klines per set. The shadow directory has only the directory entries for an additional
K lines per set.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 89

Section 2.2 Cache Memory 75

cache is generall~ ~anage~ as if it were a 2K-way set associative cache, except
that a directory hit m the nght half of the cache produces no data, just directory
information.

When a new item is brought into the main cache, one of K items in the same
set is discarded from that cache. The discarded item is entered in the shadow
directory, displacin~ one of K items_ from the corresponding set in that directory.
If in each case, the item removed 1s the least recently used item of the K in its
set in the respective directories, the effect of this strategy is to create a cache
that is 2K-way set associative, managed by LRU replacement. There is usually
plenty of time ava_ilable to upda_te the cache and both directories because the
update occurs durmg a cache miss, when cache activity essentially comes to a
standstill.

The key to the cache's operation is that there are two kinds of misses:

• A transient miss, in which the datum is not in the cache, and there is no
entry in the shadow directory; and

• A shadow miss, in which the datum is not in the cache, but there is an entry
for the datum in the shadow directory.

A shadow miss is a miss to line that was used in the distant past and is being
used again. There is some likelihood that it will repeat the same behavior in the
future by having a lengthy period between two successive accesses.

As each new item is loaded into the cache, a bit is set to indicate whether
the item was a transient miss or a shadow miss. That information is used to
control replacement. When a replacement decision occurs, the cache manager
can examine how lines entered the cache. It can tend to retain the lines that
were in the shadow in favor of the lines that were transient misses, and in this
way it will tend to flush transients from the cache more quickly than an LRU
algorithm will flush them.

As the replacement algorithm chooses lines closer and closer to the most
recently used line, however, the risk becomes greater that the replacement
algorithm will make a mistake and cast out a line that should be retained for a
future hit. Puzak discovered that it is effective to place a limit on the region of
the cache over which the cache manager can give preference to shadow misses
over transient misses. For a four-way cache, a reasonable policy is to limit non
LRU decisions to the bottom two cells, that is, the LRU and next-to-LRU entries.

In terms of cost, the shadow directory is surprisingly inexpensive. Most of
the cost of a cache is in the data memory. For example, for a line size of 16 bytes
and an address-tag size of 4 bytes, a data memory will have four times the
number of bytes as has a cache directory. For larger line sizes, such as 64 bytes,
the shadow directory will have less than 10 percent of the storage capacity of
the data memory.

Since the directory also has comparators, the costs are not in storage alone,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 90

16 Memory-System Design Chapter 2

but the storage ratio of data memory to directory does give some idea of relative
costs. Consequently, it is conceivable to put 10-percent additional cost into a
shadow directory to obtain 5- to IO-percent performance improvement. From a
cost-performance view, such improvement could be better than doubling the
size of the cache. Note that the improvement range for performance corresponds
to a very small absolute change in the miss ratio, roughly 0.5 to 1 percent. The
percentage reduction in the number of misses is somewhat larger, possibly 10
to 30 percent. The point is that the shadow directory does not have to be ex
tremely accurate to achieve the improvement we seek.

The shadow directory also avoids a serious problem that develops as caches
become larger. Generally, the larger a cache, the slower the cache cycle becomes.
Since the shadow directory is not accompanied by a data memory, the volume
and power consumed by the data memory is avoided, which is a tremendous
advantage for high-speed systems.

Moreover, the shadow directory need not increase the cache-cycle time since
the shadow does not have to be consulted on every memory access. The only
time it needs to be consulted is on a cache miss, and at this point there are
many cycles available to handle updating and replacement. To conserve on
power and cooling, it is feasible to build the shadow directory with logic slower
than that used in the main cache. The shadow can be included fairly inexpen•
sively to obtain a small, but worthwhile, increase in performance.

2.i.6 Footprints in the Cache

In this section, we expand upon some of the ideas of the shadow directory to
derive a simple and useful model of transient misses in a cache. Voldman and
Hoevel [1981) and Voldman et al. [19831 conducted empirical studies of misses
in caches. Their data show that cache misses are not distributed uniformly
through an address trace, but instead tend to be clustered into clumps. Between
the dumps are relatively long periods of time during which cache misses are
rare.

Attempts to model this behavior statistically have not been very successful
because the distributions that best characterize the behavior do not have finite
variance. Voldman et al. (1983J showed a characterization based on fractals,
which is helpful for explaining an empirically observed sequence of misses, but
is not directly useful in predicting the effects of cache parameters on miss ratios.

The importance of the transient effect on cache performance led Strecker
[1983] to develop a model of miss ratios for the case when two or more processes
compete alternately for a cache. Strecker observed that as each process takes
control, it expends its initial references reloading the cache. As the cache becomes
partially loaded, the misses decline, and eventually the miss ratio reaches the
long-term steady-state miss ratio. Strecker's model estimates the average miss
ratio for a process over an interval of time that includes the transient period

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 91

section 2.2 Cache Memory 77

when the process is reloading the cache. Although the model is fairly complex,
Strecker showed that it gives reasonably accurate results for the specific pro
cesses he modeled. The value of the method is limited because it relies on fitting
a curve at two points to calculate the values of two parameters that define the
curve. If you have the data to fit the two points, you probably have the data
for the rema~der ~f the poi!1ts. The ob~ective is to determine the transient using
as little additional information as possible. Another interesting study of note is
by Laha, Patel, and I~er [1988J :w~o show that reasonable estimates of the reload
transient can be obtained by p1ecmg together many different small segments of
a larger trace.

Both of the studies cited here attempt to explore the reload transient in
conjunction with the steady-state miss process. The material in this section
shows how to calculate the reload transient in isolation. This permits the tran
sient to be combined with the steady-state miss ratio in various ways to reflect
the true cache reload transients that take place in a computer system. The trick
is to count the number of lines that have to be reloaded without attempting to
measure instantaneous miss rates. Since each cache miss carries a penalty, and
for many architectures the penalty is a fixed cost, the model can give the total
cost penalty of a reload transient. The penalty drops off for larger caches in a
predictable way, and the predictions have been confirmed by experiment. The
work described here is by Thiebaut and Stone [1987).

The model for determining how different processes compete for the cache
is illustrated in Fig. 2.18. Figure 2.18(a) shows Process A and Process B running
alternately in time. These two processes may be quite independent, as is the
case if Process A is an interrupt-driven program servicing some input/output
device, and Process B is a compute-bound main program. Or the processes could
be quite dependent on each other, as is the case if Process A invokes Process B
repeatedly because of a call on B placed within a loop in A.

In a cache-based architecture, what actually happens is shown in Fig. 2.18(b),
where we see a reload transient at the beginning of the second iteration of
Process A. Before calling Process B, Process A fills the cache with various in
structions and data that were referenced frequent]y and will be referenced fre
quently again. When Process B runs, it displaces many of A's data and instructions
in the cache with data and instructions that belong to B. When Process A rein
itiates, it spends some time reloading the cache while displacing B's lines. The
shaded area shown in the figure represents this transient.

We show the transient occurring at the beginning of A's second cycle. Ac
tually it occurs throughout the cycle, with the initial miss-ratio quite heavy but
gradually diminishing until the transient is over, or until Process Bis reinvoked,
whichever occurs first. The miss-ratio may be as high as 40 or 50 percent at the
beginning of the transient and eventually falls off to a steady state of 1 or 2
percent.

The average miss-ratio over the period of Process A's activity depends on

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 92

78 Memory-System Design

Process A Process A

I I
Process B -----.J I

nme
(a)

Process A Process A

I I
Process 8 -----,I I l

Time
(b)

Fig. 2.18 Execution profile of two processes that share one processor:
(a) Ideal execution profile; and

ChaPter 2

(b) Actual execution profile of Process A when it contends for the cache with Process B.
The shaded area denotes lost time from a cache reload when lines of A are displaced
by B.

the relative size of the transient as compared to the length of the reference string
for Process A. A similar transient not shown in Fig. 2.18 occurs for Process B.
In fact, the lines belonging to A discarded by B are those that are reloaded by
A when A takes control, so that the number of misses in B's transient due to
Process A is equal to the number of misses in A's transient due to Process B.

The key to measuring the size of a transient is the notion of a footprint, as
illustrated in Fig. 2.19. Figure 2.19 shows an N-set cache with potentially infinite
associativity. The lines in the cache marked with an A are the lines that Process
A touches when it runs in isolation. We call this set of lines the footprint of
Process A, and the number of such lines is the footprint size. For fixed line size
L, footprint size is fixed. That is, we can double or halve the value of N in Fig.
2.19, and the lines marked A will redistribute in the infinite cache accordingly,
but no lines will disappear. The footprint shape changes with cache structure,
but the footprint size is independent of N.

The double vertical lines in Fig. 2.19 isolate the four left-hand columns from
the remainder of the cache, and show Process A's footprint in a finite cache
with set associativity 4. Note that some sets (rows) of the footprint contain more
than four entries, and therefore these sets do not fit into the finite cache. When
A runs by itself, these sets cause cache misses at a rate that depends on the
frequency and exact sequence of references to those sets.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 93

section 2.2

Set 0

Set 1

Set 2

Set3

Set4

Sets

Set 6

Set?

A

A

A

A

A

A

A
A

Cache Memory

Set Associativi1y
2 3 4
A A

A A A

A A A

A

A A A

A A

A

A

A

79

A

Fig. 2.19 The footprint of ~rocess A in an eight:s~t potentially infinite set-associative
cache. Three lines fall outside a 4-way set-assoaative cache and produce steady-state

cache misses.

The model of cache behavior is very simple to state. We assume that Process
A runs first and firmly implants its footprint in the cache. Then Process Bruns.
If Process B is agile enough to step around Process A's footprint, then many
lines of Process A will be resident when A restarts after B finishes. [f Process B
steps on part or all of Process A's footprint, those lines from Process A will be
displaced from the cache and will have to be reloaded when A restarts. How
many lines will have to be reloaded? The relevant parameters are the footprint
sizes of A and Band the cache size and structure. We show here how to estimate
the number of lines to reload using statistical assumptions that tum out to be
very good.

If the cache is very large compared to the footprint sizes of A and B, then
with very high probability Processes A and B can run together without inter
ference, just as two mice can ramble in a football stadium without bumping into
each other. But if the cache is small relative to the footprint sizes, B's footprint
will land directly on A's, and most or all of Process A will have to be reloaded.

The size of the footprint that Process A actually occupies in the finite cache
is equal to the number of entries posted in the first four columns on the cache
shown in the figure. How big is this footprint? We can estimate its size rather
easily for a K-way cache by considering the probability of having more than K
lines per set in Process A's footprint for an infinite cache.

If we assume that the lines are distributed uniformly to the sets of the cache
so that each set is equally likely to be the target of any line in the footprint, then
the probability that the first line referenced by Process A falls into a set, such
as Set 1, is p """ 1/N, since there are N sets, each equally likely to receive this

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 94

80 Memory-System Dalgn Chapter 2

line. The probability of not falling into this set is q ; 1 - P = 1 - 1/N. Let the
size of Process A's footprint in an infinite cache be SA.

The model developed here is a binomial probability model in which we toss
a coin with a probability p = 1/N of landing head's up, which represents a line
falling into Set 1. We flip the coin SA times, once for each line in the footprint,
and count the number of heads . The probability distribution of heads tells us
the probability distribution of lines to Set 1. In an infinite cache, the distribution
is given by the formula

Pr[i lines of Process A in a set] = (
5t)p;(l - p)5

•-; (2.4)

[f the cache is finite, with only K-way set associativity, then Eq. (2.4) holds for
i < K, and the probability of having K entries in a set is obtained by summing
the probabilities in the tail of the binomial distribution. Thus we have,

Pr[i lines of Process A in a set] = (5t)p;(l - p)5
•-• for i < K

(2.5)

;; f (S~)pi(l - p)S,..-j for i = K
j ~K }

This is the probability distribution that we use in the re~ainder of the derivation.
Process B is governed by a similar probability distribution, except that its

footprint size is S8• For example, the equation corresponding to Eq. (2.5) for
i = K is

Pr[i lines of Process B in a set] = ~ (5.8)pi(1 - p)59-; for i = K (2.6)
J'"'K]

Now we can estimate the cache reload transient. Figure 2.20 shows two possible
states of the cache with both footprints resident. Figure 2.20(a) shows the cache
in the state that exists when Process A runs first, then Process B, and we are
about to reload Process A. The entries within a set (shown as a row in the figure)
are ordered so that the most-recently used items appear on the left, and the
least-recently used items appear on the right. All B's in this cache are to the left
of all A's because Process B's references are more recent than Process A's.

Figure 2.20(b) shows the same cache in a state in which Process Bruns first,
then Process A, and we are about to reload Process B. In Fig. 2.20(a) the A's
that appear in Columns 0-3 are lines that do not have to be reloaded when A
is restarted. The A's in the other columns represent lines that are reloaded during
the reload transient, and the number of such A's is the size of the transient. ln
Fig. 2.20(b), the reload transient for Process Bis equal to the number of B's that
appear outside of Columns 0-3.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 95

section 2.2

Set O

Set 1

Set 2

Set 3

Se1 4

Set 5

Set 6

Set 7

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

!
l

B

B

8

B

B

B

B

8

A

A

A

A

A

A

A

A

Cache MefflOly

Set Associativity

2 3 4

8 A A A

B B A A A A
A A A A A

B B B A A
A A A A A A
B B A

B A A A

B B e A A

la}

Set Associativity

2 3 4

A A B B

A A A B B 8

A A A A B

A B B 8 B

A A A A A B

B B B

A A 8 8

A B
I

B B B

(b)

Fig. 2,20 The footprints of two processes that compete for the cache:

81

(a) An eight-set, four-way set-associative cache in a state obtained by running Process
A, then Process B (the A's to the right of Column 3 are the lines that form the reload
transient);
(b) The same cache in a state obtained by running Process B, then Process A.

The binomial probability model makes the computation of the size of the
transient quite straightforward. Let us focus attention on Set 1, since all sets are
assumed to behave the same. There are three related random variables of interest
to us for this set:

• X is the number of lines of Process A's full footprint in this set;

• Y is the number of lines from Process 13' s full footprint in this set; and

• Z = X + Y is the total number of lines in this set.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 96

82 Memory-System Design Chapter 2

If 2 does not exceed K, then Set 1 contributes nothing to the reload transient
The probability of this event is the probability ·

K (K-i)
Pr[Z ~ K] = ~ Pr[X = i]

1
~ Pr[Y = j] (2.7)

If X and Y are binomially distributed, both with probability p = 1/N, then z is
also binomially distributed. That is, Eq. (2.7) is the probability of having Kor
fewer heads among SA + 58 coin flips. Hence, Eq. (2.7) is the area under the
tail of a binomial density. For values of p near 0.5, Eq. (2.7) is closely approxi
mated by a normal distribution. For the values of p of interest to us, however
Eq. (2.7) is only crudely approximated by a normal distribution, although th;
general shape of the curve is the same.

The interesting situation occurs when Z exceeds K. Let W be the number of
lines of Process A that are overwritten by Bin Fig. 2.20(a). Then the probability
that exactly i lines of Process A are overwritten is given by

K

Pr[W = ij ;:: ~Pr[X = JlPr[Y = K + i - Jl for 1 ~ i :5 K (2.8)
)"I

Each term in the summation of Eq. (2.8) accounts for a case in which precisely
i lines of Process B fall on i lines of Process A in a K-way cache. Note that the
first and last terms of the summation involve summations from Eqs. (2.5) and
(2.6).

To compute the cache-reload transient from Eq. (2.8), we note that the
transient to reload Process A is SA minus the number of lines of Process A left
in the cache when A resumes. This number is given by

Cache-Reload Transient =" S" - N(E[X] - E[WJ) (2.9)

The term in parentheses is the expected number of lines from Process A re
maining in each set of the cache. The tennis equal to the number of lines in
the full footprint reduced by the number of lines overlaid by Process B.

Figure 2.21 shows an example of the cache-reload transient for caches of
various sizes and structures. This figure is based on actual data, and the curves
produced by the model have been confirmed in practice up to the ability to
determine which misses are part of the reload transient and which are not.

The shape of the curve is rather interesting because it is similar to the
appearance of the area under the tail of a normal density function. We would
obtain that curve exactly if the binomial parameter p = 1/N were not so smaU,
and if the only lines in Fig. 2.20(a) that lie outside the first K columns belonged
to Process A.

Note that, for a fixed cache size, the curve becomes steeper as set associativity
increases. There is a threshold phenomenon displayed here. If the cache is
sufficiently large to hold Processes A and B concurrently, the ·reload transient
is very small. If the cache cannot hold both processes comfortably, they conflict

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 97

Section 2.2 Cache Memory

1.9,~~~,------------------,
1.8
1.7
1.6
1.5
1.4~
1.3

~ 1.2
en -
-~ ~ 1.1
:ii ~ ,.o
0 g: 0 9
... 0 -

_8 ~ 0.8
§-of
z 0 .6

0.5
0.4
0.3
0.2
0.1

OL------;:;-;-----::=::-..=;::=:====--..=::::::=,._---=:=:::1
24K

Cache Size NK

83

fig. 2.21 The cache-reload transient (Program A footprint = 1900; Program B footprint
= 7900).

with each other. When a cache is smaller than the footprint of Process B, when
Process B reloads the cache it tends to displace Process A almost completely,
and the displacement is greater as the associativity becomes greater.

This particular model has been successfully used to select a cache size for a
computer system in which an interrupt-driven process had to remain cache
resident between interrupts. The interrupt-driven process had to execute its task
in real time, and could not pay a large cache~reload penalty. The objective was
satisfied by making the cache large enough to hold both the interrupt-driver
and the background process so that both could run with the full benefit of cache.

The probabilistic model gives better answers than does a deterministic model
because the probabilistic model shows the effects of different background pro
cesses on the reload transient. With this model we can obtain fairly accurate
estimates of the reload transient under the most adverse conditions likely to be
encountered, as well as for typical conditions, and thereby have a very good
estimate of the real-time performance of the interrupt-driver.

The model is also useful for explaining cache behavior in ordinary programs.
Processes A and Bin Fig. 2.20 might well be two processes within one program
that are executed alternately. Figure 2.21 shows that the benefit of a large cache
falls off fairly rapidly when the cache is big enough to hold contending processes.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 98

84 Memory-System Design Chapter2

The _cache-design question centers on how lar~e to make the cache so that
contendmg processes do not step on each other. Smee the footprint size is th
critical parameter, the distribution of footprint sizes of processes ¥.rithin pro~
grams gives valuable information regarding how large to make caches. Th
architect should measure footprints for a variety of subroutines,. inner loopse
and other identifiable processes, especially processes that are invoked frequently. '

We also need to know the cumulative sum of the footprint sizes of processes
invoked bernreen successive runs of a given process. With such information the
architect can develop a model for cache transients that gives an estimate of total
performance as a function of cache size. This can be used for gross estimates
before detailed estimates are produced from simulation experiments on Jong
traces. ·

t.2. 7 Writing to the Cache

The discussion up to this point has not mentioned any special actions to take
for WRITE operations, whether they hit or miss in the cache. Handling the
WRITE operations is somewhat tricky because of the interaction of the cache
with the input/output system. Figure 2.22 shows typical organizations of pro
cessor, cache, and input/output processor.

Figure 2.22(a) shows an organization in which all references, whether from
the input/output processor or the central processor, go through the cache. This
scheme is seriously flawed because there is too much activity in the cache. The
two ports to the cache require interlocks and arbitration, which tend to affect
performance adversely.

The scheme shown in Fig. 2.22(b) is definitely preferable to that of Fig.
2.22(a) because the central processor and the input/output processor do not
conflict with each other on the majority of the accesses. The central processor
operates mostly with the cache memory,. and independently, the input/output
processor operates mostly with main memory.

Although the latter scheme is good from a performance view, it is not good
from the view of logical consistency unless we embellish the scheme in some
way. The problem is that each item has two places where it may be resident
main memory or cache memory. If the item is in both places, the two values
must be identical. If ever the values are not identical, then we can have a situation
in which the processor accesses the cache to find one value for the item,. while
the input/output processor accesses main memory and discovers a totally dif
ferent value. We must forbid this situation from happening,. and, in so doin~
some designers have opted to implement the organization of Fig. 2.22(a), which
solves the problem directly.

Figure 2.23 shows one way to approach the problem. The idea is to have
two copies of the cache directory~ one read by the central processor and the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 99

section 2.2

PROCESSOR

PROCESSOR

cache Memory

CACHE
MEMORY

110
PROCESSOR

(a)

CACHE
MEMORY

(b)

CENTRAL
MEMORY

CENTRAL
MEMORY

110
PROCESSOR

85

Fig. 2.22 Two possible ways of organizing a cache memory with respect to an UO system:
(a) The cache multiplexes requests from the VO processor and central processor; and
(b) The UO processor has a direct path to memory. This scheme requires interlocks
between the cache and the VO system.

PROCESSOR ---

DIRECTORY

CACHE
DIRECTORY

COPY
1/0

PROCESSOR

Fig. 2.23 A system organized with a direct route to memory for the 1/0 processor. All
changes to the cache directory are maintained in a copy in the I/0 processor. The UO
processor invalidates entries in the cache directory when the entries are updated by an
lfO operation to central memory.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 100

86 Memory.System Design Chapter 2

other read by the input/output processor. With two separate copies, each pro
cessor can read the directory without interfering with the other processor.

Figure 2.23 shows the directories resident in two physically separate regions
of the computer system, but they obviously can both be resident in the cache.
The cache directory is read for every READ or WRITE operation, but the directory
is changed only when a miss occurs. Since this happens rather rarely, roughly
every 25 to 100 memory operations, there is very little overhead from contention
between the central processor and the input/output processor. The key idea is
to make sure that the input/output processor always reads the correct datum,
and that every datum written by the input/output processor to main memory
is made available to the central processor.

Let's consider the details of operation of Fig. 2.23. WRITE operations are
tricky to handle in this structure; READ operations depend on how WRITEs are
implemented. If the input/output processor writes an item to main memory, it
must also check to see if the item is also in the cache. If so, the input/output
processor should invalidate the cache entry to be sure that the central processor
will access main memory when that item is next requested. Otherwise, the
central processor might discover an out-of-date value for the item if the processor
happens to find the item in the cache. Thus the input/output processor invali
dates the cache entry for each cache hit it observes while writing new data in
main memory.

Another possible strategy is to rewrite the new data to the cache instead of
invalidating the data. For most systems, however, the probability of that update
leading to a cache hit for the processor is rather low and does not justify the
update of the cache.

The central processor actually has two different ways of handling WRITE
operations, both of which have been implemented in commercial machines. One
method is called write-through, in which every WRITE operation to the cache is
accompanied by a write of the same data to main memory. If this is implemented,
then the input/output processor need not consult the cache directory when it
reads memory, since the state of main memory is an accurate reflection of the
state of the cache as updated by the central processor. Although this scheme
simplifies the accesses for the input/output processor, it does result in fairly
high traffic between central processor and memory, and the high traffic tends
to degrade input/output performance.

A different scheme is sometimes called write-back or write-in cache. In this
scheme the central processor updates the cache during a write, but the actual
updating of memory is deferred until the line that has been changed is discarded
from the cache. At that point the changed data are written back to main memory.

The advantage of the write-back policy is that updates of main memory can
be avoided completely whenever a cache line experiences a WRITE hit. The
disadvantage is that an entire line is written back from cache to main memory
when the line is eventually replaced, but a write-through policy usuaily writes

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 101

Section 2.2 Cache Memory
87

only the bytes within a line that are addressed by the WRITE . u,h
· · l h t . operatwn. n en

a line s1ze 1s ong enoug o require several bus cycles a sin l ·t h h
·11 · l b d •d - , g e wn e-t roug

operation w1 regmre ess an w1 th than the bandwidth required to write back
a fu]l line. We expect that the reduction in the number of u d t d h

. . . p a es un er t e
write-through pohcy ts much greater than the extra bandw.tdth • d t

. . require o up-
date a full c~che lme. But this assumption has to be examined carefull for
designs that mvolve small caches or large line sizes. y

Be~ause_ the inpu~output processor must be informed of WRITEs to the
cache, JUSt m case an mpi.:t/output_ operation has to move such data from the
computer_ system to an extem~I device, the input/output processor must consult
a cache-_directory copy when 1t reads an ite~ from main memory. If there is a
hit, the mputloutput processor requests the item from the cache. Note that it is
not necessary to update the cache directory read by the input/output processor
on every WRITE b~ the centr~J processor; it is sufficient to change this directory
only when the mam cache directory changes, which occurs on every miss, not
on every WRITE.

i.t.8 Other Cache Mdrics

The connection between main memory and processor is by means of a high
speed bus. Because the bandwidth is finite and because it may at any given
time have to respond to competing requests, there is a possible performance de
gradation due to contention on this bus. For example, in the previous section
we learned that WRITEs to caches can be treated in different ways. In this sectfon
we examine schemes for evaluating performance degradation due to bus traffic
caused by WRITEs and by multiple bus cycles when line size is a multiple of
bus width.

The two possible ways to treat WRlTEs in cache raise a question of evaluating
the impact of these alternatives on system performance, and the main difference
is attributed to the difference in bus traffic produced by the two schemes. The
finite bandwidth of the bus also produces degradation on READ misses because
the various components of a long cache line arrive at cache from main memory
in a sequence of cycles. It is possible to generate a series of misses to the same
cache line in such circumstances when our model to this point predicts that after
the first miss the subsequent references to the same line wilJ generate hits. This
section considers the mechanisms that impact performance, and indicates how
the cache simulation techniques can be extended to measure their effects.

The effect of the WRITE policy is the starting point of this disrussion. What
is the difference in the WRITE traffic generated by a write-through policy as
compared to that generated by a write-in cache policy? Every item in cache that
has been altered whi1e resident there must be rewritten to main memory before
the item is removed from cache. The write•through policy copies the item to
main memory as early as possible and. the write-in cache copies the item as late

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 102

88 Mcmory~Systcm Dalgn Chapter 2

as possible. The latter policy avoids some traffic when it modifies items in cache
multiple times before they leave cache. The earlier modifications need not be
reported to main memory. But the write-in policy requires more cycles per
individual update because it updates a full line of memory rather than just the
part of the line modified by a WRITE.

The difference in the traffic produced by the two policies can be computed
by answering the following questions:

1. What is the WRITE rate of the workloadr measured in the number of bus
cycles per instruction devoted to modifying data?

2. What is the rate at which 'WRITEs hit modified data in the cache, measured
in the number of bus cycles per instruction required to rewrite modified
data hits?

The first measure is the bus traffic generated by writes in a write-through cache
policy. The second measure counts the reduction in the number of bus cycles
of write traffic that are available from a write-in cache policy. To capture the
first set of performance data, a simulator counts bus cycles of write traffic for
each instruction simulated. If a reduced trace is used for input to the simulator,
then as part of the trace reduction process when a sequence of references is
removed from the full trace, a special record that contains the sum of the write
bus-cycles produced by the discarded references is written in its place. Since
these are hits in a one-way set-associative cache, the sums of such records con
tribute to the measures for both tqe cycles expended for write-through policy
and the cycles deducted from that measure for the write-in policy.

To capture the second set of performance data, it is not immediately clear
that one-way, two-way, and four-way caches can be simulated on one pass of
the trace as suggested by the method of Mattson et al. {1970]. A little reflection
shows that the basic algorithm of Mattson et al. is not sufficient. Suppose, for
example, that a modified item is read and a hit is recorded in a four-way cache,
but not in a cache with less associativity. The one-way and two-way caches will
not contain the item so that they will retrieve a clean copy of it and put it in the
most recently used position of the cache. But the four-way cache produces a hit
and moves the modified item to the most-recently used position of the cache.
A subsequent write to the item that produces a hit cannot tell if the item is
modified (moved from the four-way cache on a hit) or unmodified (copied from
main memory on a miss in a one-way or two-way cache). Thus it is not dear r.
how to account for bus cycles saved by writing to a modified item.

The problem was neatly so]ved by Thompson and Smith [1989] who show
that it is sufficient to keep track of the stack depth at which· an item is written.
In the preceding example, if a modified item is the target of a read hit for a
stack depth of 4 (four-way cache), place the number 4 wit11 the item as a reminder
of where it came from. Then when the subsequent write-hit occurs, we know

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 103

section 2.2 cache Memory 89

that bus cycles are saved for four-way caches but not for caches with less as
sociativity. To treat all cases correctly/ the tag stored with a modified item is set
to 1 when the item is_ \\rritten. ~h~ 1 signifies that caches with an associativity
of 1 or more must wnte back this item ~hen it l~aves cache . Otherwise the tag
is made equal to th~ ~tack depth at which the item is hit by a read hit if the
stack depth of the hit 1s greater than the current tag stored with the item. This
signifies that caches with an associativity as large as the tag retrieve a rn.odified
version of the item from the cache, and that the item has to be written back to
storage when it is flushed eventu~lly. Caches with an associativity Jess than the
stored tag value suffer a cache nuss and reload clean copies of the item that do
not have to be rewritten to memory. When a write hit finds an item, assume
that the value of the tag it contains is k before the tag is updated. Then the bus
cycles ca~sed by. a ~te modification a_re av~ided by a _write-in policy for all
caches with assoaativity ~ or more. The sunulation maintains a vector of running
sums and updates the item at position k in this vector. At the dose of the
simulation, the number of cycles saved in a k-way cache is the sum of the
components with indices k or larger. This is another application of the stack
replacement technique discovered by Mattson et al.

Having discussed the need for measuring the bus cycles produced by 'NRITEs,
we recognize that we cannot strip WRITEs arbitrarily from traces. Do we have
to retain all WRITE hits on traces, or are we permitted to strip some during the
process of preparing tapes for simulation? Wang and Baer (1991] discovered that
the filter can strip out all WRITE hits except those that modify data in cache for
the first time. This depends on the fact that the cache used to filter out references
from the stripped trace is a direct-mapped cache. No other WRITEs that hit in
the direct-mapped cache change the value of the tag required by the Thompson
Smith algorithm., so that they can be discarded without changing either the
number of misses or the number of cache writebacks experienced during a cache
simulation.

Apart from the rate at which bus requests are issued., there is an additional
performance concern regarding the time required to reload a cache line from
main memory. The line size of a cache line need not be identical to the bus
width between main memory and cache. It is usually a multiple of the bus
width, and varies from one to eight times the bus v..ridth in practice, but could
be larger in principle. Consider an extreme example in which the factor is eight
so that at least seven additional bus cycles elapse after the first part of the line
reaches cacher and before the Jast part of the line reaches cache. Assuming that
instruction execution suspends momentarily on a cache miss and restarts when
the first part of a cache line reaches c.ache, during the next seven cycles it is
quite likely for another reference to the same line to occur, possibly to a part of
the line that has not yet reached the cache. Such a reference also causes a
processor idle period, but the idle period lasts only until the missing line ele
ments reach the cache. Since the access to those elements is in progress, the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 104

90 Memory-System Design Chapter 2

wait is not as long as the wait for the first part of line. We distinguish the
performance degradation due to the two kinds of misses by calling the wait
associated with a normal miss the leading-edge effect and the wait due to line
transfers in progress the trailing-edge effect.

With very little additional work we can compute the additional degradation
due to the trailing edge effect, which we have ignored up until now, while
computing the leading edge effect, which has been the primary subject of the
discussion. The trick here is to produce a stripped trace with sufficient additional
information to compute the trailing edge effect for a variety of bus widths. We
record on the stripped trace, not just the misses to a one-way set-associative
cache, but we also record summary information for the references that have
been stripped from the trace. For each miss, the cache simulator stores with the
miss the simulated time of the miss. Any subsequent hit to that line that occurs
within a fixed period of time might result in a delay that contributes to the
trailing edge fact. So when such a hit is detected the simulator writes summary
information to the stripped trace. When the stripped trace is used as an input
trace for cache evaluation, the summary information should be detailed enough
to compute the additional performance degradation due to the trailing edge
effect.

The trailing-edge effect and the bus traffic for the write-in cache policy are
just tv.•o of several fine details of processor performance that merit attention.
From the discussions in this chapter regarding techniques for measuring per
formance1 the reader should have no difficulty adapting these techniques or
developing similar new techniques to other aspects of performance not covered
in this text.

i.t.9 Modeling System Performance

With the various techniques described thus far at our disposal, how do we put
them to use in the design of high-performance systems? Ultimately, the goal is
to compare on the basis of cost and performance. We can estimate the cost of
cache fairly easily because it is proportional to the total number of bytes in cache.
The proportionality constant is a function of the device technology used in the
cache design. Performance is somewhat trickier to measure in the context of
complex systems. This section describes how to construct a performance model
of a computer system that helps to quantify the effect of cache behavior on total
system performance.

The usual starting point for a performance measure for computer systems
is MIPS, Millions of Instructions Per Second of computer execution. To relate
MlPS to cache performance, we have to make assumptions regarding memory
accesses. Let's suppose that we analyze a number of benchmark programs for
a computer system and discover that each instruction produces 1.85 memory
accesses on the average. To a first approximation, the number of MIPS for the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 105

section 2.2 cache Memory 91

system is the number of memory references p~r second_ divided by 1.85 . 106.
The number of memory ref:re~ces per _second 1s the reciprocal of the effective
cycle time given at the beginning of this chapter in Eq. (2.1). Hence, the bulk
of the effect of cache is wrapped up in a very simple formula. But there are
everal other factors that require some deeper investigation. 5

A major perturbation to this model is a processor design that uses two caches,
one for instructions and one for data. Figure 2.24 depicts this type of structure.
It is very common in current processors. The two caches are independent, and
each can respond to one request per cycle. As long as the processor generates
one instruction request and one data request each cycle, the memory system
produces two results per cycle. Equation (2.1) expresses the average time per
memory request and has to be modified to reflect that there are two requests
completed per cycle, not just one. The completion of two requests per cycle
reduces effective cycle time by a factor of 2, and doubles the MIPS rate of the
processor. This is the actual effective cycle time in the absence of misses, and
can be viewed as the performance rate for a machine that has an infinite cache
and no input/output overhead. Finite cache size produces misses, and misses
slow the processing rate. Input/output occupies some bandwidth of main mem
ory, which in turn produces a likelihood of contention between a processor and
an input/output controller as the processor seeks access to main memory.

It is convenient to cast a performance model into one in which the various
effects that lower performance enter the model through simple additive terms.
A popular approach is to measure performance in CPI (Cycles Per Instruction).
This is independent of clock speed, so it is a fairer measure of the architectural
component of a processor than is MIPS. Recall from Chapter 1 that the relation
definition of MIPS as a product of two factors:

MIPS =: (instructions) (cycles) . 10_6 (2.lO)
cycle second

PROCESSOR CACHES

CONTROL
INSTRUCTIONS

MAIN ---------- MEMORY

ARITHMETIC DATA

Fig. 2.24 A computer system with separate caches for data and instructions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 106

Memory-System Design Chap~, 2

The factor "cycles per second" is a measure of the clock speed, and the factor
"instructions per cycle" is 1/CPI. CPI in turn is computed by measuring the
value under an ideal set of conditions and adding to this the effects of finite
cache size and finite memory bandwidth. We can express CPI as

CPI = CPlldC!al + CPIFmite uche + CPITri1iling Edge + CPlcontention (2.11)

At this point we present approximate models for each of the other terms. These
are generic and are intended to be representative, but the models need to be
fitted and refined to reflect the actual characteristics of specific designs. This
discussion raises the issues that need to be addressed by the performance models,
but we are unable to produce a universal formula because there is no single
model that fits all designs. The designer has to build a model with each design
to express the ideal CPI and the various increments to CPI from different sources
of performance degradation.

The ideal case assumes a cache hit on every memory access. The finite cache
term charges an access delay for each miss. Measure the miss rate on typical
workloads, and examine the architecture to find the penalty per miss. The miss
rate has to be normalized to misses per instruction to be valid in this performance
model. For example, a miss rate of 1 percent per memory access is a 2 percent
miss rate per instruction in an architecture that produces n-vo memory references
per instruction. For a miss penalty of 10 cycles per miss, this term adds 0.2 cy
cles per instruction to the CPI.

Suppose those two references per instruction are done concurrently because
the architecture has separate instruction and data caches, and supports a ref
erence to each in each machine cycle . The miss penalty per miss may be different
if both references miss in the same cycle, than if one records a miss while the
other records a hit. [f both miss in the same cycle, it may be possible to restart
the processor before paying an access time delay for two misses. Then instead
of charging a fixed penalty for each miss, the penalty is reduced for those cases
in which the instruction fetch and the data access both miss in the same cycle.
The frequency of this occurrence can be measured from detailed processor sim
ulations of trace data, or through measurements made in real-time on machines
in execution.

This discussion points out that the additive terms in the CPI formula are
not necessarily additive in reality. The underlying assumption for the use of
additive terms is that the delays associated with different components of CPI
cannot be overlapped. If two or more of the delays occur concurrently, then
they may be fully or partially overlapped, and the degradation is less than the
figure produced by the CPI equation.

The access delay between the occurrence of a cache miss and the retrieval
of the data from main memocy is the leading-edge effect. There is also a trailing
edge effect when the line size is a multiple of the memory-bus width. In this
case, the line is transmitted by breaking it into pieces, each of which is trans-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 107

5ection 2.2 Cache Memory 93

·ued in one bus cycle. When the first portion of a line arrives at the processor,
~• bytes that arrive are those bytes within the line that were requested by the
~ \ruction that missed. This a1lows the processor to restart without waiting for
105 · Tl . . b · the entire line to arnve. ,e remammg ytes amve closely spaced in time on
subsequent cycles. . .

If the processor tne~ to. a~cess an_other_ byt: m _the line, it will experience
another miss if that byte 1s still m transit._ Th1s miss will be resolved fairly quickly
because the byte has been already retneved from storage and is currently in
some buffer or on its way to th~ ~~ocessor. The additional delay experienced
for these data is much less than 1mttal delay accounted for by the leading-edge

effect.
To compute the penalty due to the trailing edge effect, use a detailed sim-

ulation of typical workloads, find how many extra cycles are expended waiting
for the trailing edge of a line to arrive, and then determine the frequency of
delays due to this effect. For example, assume that the average penalty is 4
cycles per event, ~nd the event o~c_urs at the rate ~f 1 per thousand instructions.
Then the CPI attributed to the tra1lmg-edge effect 1s 0.004 cycles per instruction.
As line size of a cache increases, the trailing effect increases for at least two
reasons. The penalty is greater because it takes more cycles to]oad a line when
the line size increases and the bus size remains fixed. The probability of expe
riencing a trailing-edge delay is higher because more instructions are executed
during the time a line is in transit since the length of the transit time is longer.
Detailed simulations need to look carefully at this problem when line sizes are
sufficiently long to require eight or more clock cycles to transfer a line between
main memory and cache memory.

The CPI penalty due to contention accounts for the increase in access time
to main memory caused by contention between processor requests and input/
output requests at main memory. A processor request that attempts to access
main memory while an input/output operation is active will reach a point where
the processor request has to be queued pending the completion of the input/
output operation. The delay experienced while the request is queued increases
the CPI if the processor cannot continue until the memory request has been
completed. This is the usual situation for READ misses. A processor need not
wait for WRITE misses, so that memory contention experienced while satisfying
WRITE misses does not directly impact processor performance, but the conten
tion can interfere with input/output performance. The processor can be delayed
by contention on WRITEs when they are delayed sufficiently long to cause in
ternal processor buffers to fill and prevent further activity until the WRITE com
pletes and breaks the data logjam.

To find the CPI penalty for contention, one follows the familiar pattern
mentioned above. That is, run detailed simulations that keep track of all pertinent
factors and obtain the data from the simulations. In this case the simulation has
to keep track of input/output operations and the memory traffic that they gen-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 108

94 Memo,y•Systcm Design Chapter 2

erate. An alternative method is to monitor a system in execution and obtain the
values of the parameters from measurements made in real time. Find the average
number of cycles lost per contention event, and find the average number of
contention events per instruction. If measurements reveal 250 instructions per
contention event, and each contention event contributes an average off ive cycles
of additional delay, then the increment to CPI is 5/250, or about 0.02 cycles per
instruction.

All of the preceding example data are exemplary but are not necessarily
typical of any system. A workload oriented to visual data, graphics, animation,
and to communications-intensive applications, in general, experiences a great
deal more contention than a workload that is engaged in extensive floating
point arithmetic operations on data that fit into cache memory.

Systems with large line sizes tend to experience greater contention delays
than systems with short line sizes. For a design with large line sizes, cache data
transfers occupy a greater proportion of available memory bandwidth because
the cache line transfers take more cycles than for systems with short line sizes.
With greater fraction of memory bandwidth devoted to cache reloads, input/
output operations are forced to fit within a smaller fraction of the cycles available,
and hence it becomes more likely for the processor to experience contention
with an input/output operation in progress.

When a designer wishes to explore several different alternatives, the de
signer can calculate a CPI for each design. If the cycle rate for all alternatives is
equal, the CPI by itself gives the relative performance of the several alternatives.
If some alternatives support a faster clock (more cycles per second), this has to
be weighed into the evaluation. The designer has to have good cost·estimates
for the alternatives, and from there can compute relative cost-performance for
each possible choice. The process of performing a detailed comparison of alter
natives is conceptually simple, but it is far from simple to carry out.

The hardest step to take is the step that involves measuring typical workloads
to obtain values for unknown model parameters. What is a typical workload
today? Is that workload typical of future workloads? If you design a machine
based on data from today's workloads you should be able to produce a machine
capable of performing well on todays workloads, but how well will it do on
work.loads of the future? For example,. the future evolution of digital commu
nications, image manipulation, multimedia, and digital video will place vastly
different demands on machines than the workloads characteristic of the past.
Can machines designed for today work efficiently in such environments? New
generations of old machines can completely miss new markets if their designers
fail to address the next generation of applications.

The comm.on thread to performance evaluation so far has been the use of
traces of real workJoads. The next section addresses what to do in the absence
of such traces.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 109

section 2.2 Cache Memory 95

1.i.10 Modeling Cache Behavior

One important trend produced by the development of VLSI technology is the
reduction in the number of different processors in wide use. When a single chip
contained only a few logic gates or registers, designers put them together in a
variety of ways to form different kinds of processors with different instruction
sets. VLSI changed the design rules somewhat by offering computer architects
entire processors on a single chip to use as building blocks in their designs. More
over, the cost of those processors drops very low when the volume of production
is very high, so that there is an incentive to incorporate widely used processors
in a design. Another advantage is that a widely used processor usually has a large
base of applications and systems software already in place. Hence, the cost
performance and marketplace trends are driving toward a state in which rela
tively few different processor types are used in the majority of computers sold.

In spite of this trend, there is also an incentive to produce novel machines
that incorporate advances in some form or other. The appearance of reduced
instruction-set computer (RISC) architecture with its potential reduction in cycle
time resulted in the development of very high speed processor chips from each
of several manufacturers. Meanwhile, more conventional processors evolved in
an orderly fashion that brought along enormous changes in the typical workload
on such processors. The greatest impact in workload change has been caused
by the increase in address space and basic processor speed. For example, in the
Intel family of microprocessors, the 2 MHz 8080 became the 5 MHz 8086, the
10 Wiz 80286, the 20 MHz 80386, and the 40 MHz 80486 in successive gener
ations. A significant change between the 8080 and the 8086 was the increase of
the memory address from 16 bits to 20 bits, and an even more dramatic change
was the increase to the 32-bit address of the 80286 and 80386. Even though the
8080 ancestry is quite evident in an 80486, there is very little in common in the
typical workloads of an 8080 and 80486. The differences between two successive
generations may be very large, as indicated in this example by the differences
between an 8086 and an 80286. When such differences exist, work.loads for the
present generation are not likely to capture the features of workloads likely for
the next generation, and thus cache designs based on present workloads may
not perform as predicted on the workloads of the next generation.

Most RISC processors and the later chips in the 80X86 family are designed
to work with caches. Many RISC processors and the 80486 processor have caches
on-chip, and provide for larger second-level caches off-chip. No real workloads
existed for these chips during their design. How were the caches for these
processors designed? They were not designed by the trace-driven techniques
presented earlier in this chapter. They had to be designed by estimating the
performance of various cache structures on the projected workload. What can
you do to estimate performance when you cannot perform detailed simulation?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 110

96 Memory-System Design Chapter 2

We would like to have in hand a general method for estimating miss ratios
as a function of cache size and structure on which we can rely for crude but
close estimates of performance in the absence of precise data. Figure 2.25 illus
trates a model due to Thiebaut [19891 that can answer many of the questions
posed. Recall that the footprint of a process is the number of unique cache lines
touched by the process. The function plotted in Fig. 2.25(a) is the footprint
function for a workload as a function of time. The first time that each line is
accessed, it increases the footprint function by one. The function is essentially
the number of misses in an infinite cache as a function of time.

Figure 2.25(a) is plotted on a log/log scale. Notice that it is composed of two
straight lines-an initial line with a steep slope and a steady-state line with a
gentler slope. Thiebaut observed this behavior when analyzing a number of
different processes on a number of different machines. Independently the same
observation was made by Kobayashi and MacDougall [1989] for seven different
workloads on a 370 architecture. The dotted line at the right end of the curve
shows a trend in the data of Kobayashi and MacDougall where the footprint
function tapers off. Their data may cover just the initialization part of the curve
plotted by Thiebaut, and it may be possible that the dotted line shown in Fig.
2.25(a) itself has a long-term straight trend, but the paper does not give sufficient
information to determine if this is the case.

In Fig. 2.25(a) in the regions where the footprint function is approximated
by straight lines the footprint function u(t) (for unique references) obeys the power
law

u(t) = At8 (2.12)

for some constants A and B. B determines the slope of the curve and A determines
the y-intercept. Thiebaut's model indicates that ~he footprint function can be
used to predict miss ratios of fully associative caches.

The idea behind the model is illustrated in Fig. 2.25(b) where the same
function is plotted on linear axes to show the curve of the power-law function.
Thiebaut claims that the miss rate of a fully associative cache of size C lines is
the derivative of the footprint function (measured in lines) evaluated where the
footprint function takes on the value C. The reason as shown in the figure is
that at this point in time a fully associative cache with C lines has just filled.
When the next unique reference appears, this cache will experience a miss.
Hence, the instantaneous miss rate at this point in time is the slope of the foot
print function.

Now consider the future. At any time in the future, the fully associative
cache with C lines produces a hit if a new reference is among the lines in the
cache and otherwise produces a miss. The miss rate in the future is assumed
to be a function only of the size of the cache. Consequently, the future miss
rate of the cache is equal on the average to the instantaneous miss rate at the
point it first fills since it depends only on the fact that C lines are in the cache

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 111

section 2.2 Cache Memory

Unique References versus Time
1M...---------------------------.

100K

10K

1000

100

Change 1n
Trend

10~...,.....__ _._ __ ...____........_._..___._ _.....__._..........,_.....____.__.___,L.._.........__.____._,

10 100 1000 10K 100K

Time (in references)

{a)

1M

Calculation of Miss Rate from Derivative of u(t)

10M

24 ..----------------------,,.-----,

l
Cl)
.Q

22

20

18

,s
O<ii
Ill "'C 14
~c
~ ~ 12 u(t) = C !~ 1~ _L_ ___ _
:::,
C'" ·c
::)

6

4

I
I
I

Slope = Miss Rate ,,..-
for Cache of Size C ~.,.,,./

,-!:

/.
/.

/

/ .,.
/

/
/

/
/

/

:...-- Time at Which Cache
1 of Size C Fills

2 :
I

,,
/

/

0 &..I....L..L.L..J,_.L.1..J......L.LI..L..L..L...L..L..L..L-I....L-1..L..L.._._L.....L...L...L....J....L..._._......_..L.....L..£.-4-........ .L....L-.._._.._,
0 100,000 200,000 300,000 400.000 500,000

Time (in references)

(b)

Fig. 2.25 (a) The footprint function as a function of time plotted on a log/log ·scale.

97

(b) The same footprint function plotted on linear axes to illustrate its relation to miss
ratio.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 112

98 Memory-System Design Chapter 2

memory. When you work through the calculus, you discover that the miss rate
of a cache of size C is:

Miss Rate(C) = BA 11BC1 -
11

B (2.13)

for a footprint function given by Eq. (2.12). The power law in Eq. (2.13) is the
general form of the 30-percent rule we have informally used throughout this
chapter. Specifically, the 30-percent rule holds when B has the value 0.6603, at
which point the exponent of C in Eq. (2.13) has the value -0.5146. When cache
size C doubles to 2C the number of misses is multiplied by 2-0

-5146 = 0.700, for
a 30 percent reduction in miss rate. Thiebaut reports values of B (the reciprocal
of his coefficient 0) that range from 0.484 to 0.544, and produce, respectively,
a 52 percent and 44 percent reduction in cache misses for each doubling of cache
size for his sample workloads. Although Thiebaut' s workloads show greater
locality than indicated by the 30-percent rule,. Kobayashi and MacDougall's val
ues of B range from 0.43 for scientific workloads to 0.75 for supervisor workloads,
which is a somewhat larger variation than observed by Thiebaut. These expo
nents produce, respectively, 60 percent and 21 percent reduction in miss ratios
for each doubling of cache size. This range of reductions brackets the 30-percent
rule and the observations of Thiebaut.

In essence, the slope of the curve of the footprint function is a measure of
the locality of references of the workload. If the slope is steep, the workload
touches many new items per unit time. If the slope is shallow .. the workload
tends to touch a greater proportion of items seen in the past. The coefficient of
0.43 for scientific work.loads is very shallow and indicates that cache is very
effective for such applications.

Since Fig. 2.2S(a) shows the footprint curve to be composed of two different
straight lines, the derivative of the footprint curve plotted on log/log axes also
consists of two straight lines as indicated in Fig. 2.26. For small caches, the
process has a high miss rate that is not strongly affected by cache size. As the
cache becomes large, the slope steepens, and the miss rate changes more rapidly
with cache size. This exemplifies the working-set model described later in this
chapter, and is originally due to Denning [1968b]. The working set of a process
is some minimal set of lines that have to be resident in fast memory in order
for the process to execute mostly out of fast memory. Until the full working set
is resident in fast memory1 the process experiences a high miss rate. The miss
rate drops quickly when the full working set resides in cache. If this is the case,
then the intersection point in Fig. 2.25(a) of the straight lines occurs when the
number of unique lines in the footprint function approximates the working set
size.

Singh, Stone, and Thiebaut [1992] refined the model further to show how
miss rate depends on line size as well as cache size. Figure 2.27 shows the
general form of the curves they derived. The footprint functions plotted in Fig.
2.27(a) show the footprint functions for different line sizes plotted as a function

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 113

section 2.2 Cache Memory 99

Q_25

o.10r
0.075

0 ·-; 0.050

a:
"' Ill 0.025 ~

O.o1

0 .0075

0.0050

1K 4K 16K 64K 256K

Cache Size

Fig. 2.26 The time derivative of a footprint function plotted on a log/log scale.

of time. Note that each footprint function has a straight-line trend on the log/
log scale. The slopes of the footprint functions as a function of line size are
related in a way that makes the footprint function a power function of both time
and line size. That is, in addition to satisfying Eq. (2.12), the footprint function
satisfies an equation of the form

u(L) "" DLE (2.14)

for line size L and constants D and E. Putting Eq. (2.12) and Eq. (2.14) together
yields the most general composite function of this type which is:

u(t,L) = WU· t" dlog J. log 1 (2.15)

where W is a measure of working-set size, a is a measure of spatial locality, b is
a measure of temporal locality, and d is a measure of the interaction between
spatial and temporal locality. Temporal locality is the tendency for references to
duster together in time and reflects the probability of referencing something
that has recently been referenced. Spatial locality is a measure of the probability
of referencing something located near to an item recently referenced. The two
locality measures are not independent, and their interaction is reflected in the
coefficient d. The derivative of this function gives an estimate of the miss ratio
of a fully associative cache. It is plotted in Fig. 2.27(b) for a variety of line and
cache sizes. Hill and Smith (1989] suggest how to change this to the miss ratio

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 114

100

0

~
a:

Memory-System Design

Unique References versus Time and Line Size
1M----------------------------.

100K

10K

1000

,oo

Line Size

8-------~
16----------

32----

Initialization Region

1QL-----1...----lL..L.J___J,_.l......L-L...___J_......_....a...._L--_.._....__.._~........__...,___._--L..J

rn 100 1000 10K 100K

Time (in references)

(a)

Miss Ratio 11ersus Cache Size

1M

1--------------------------,

0.1

Initialization Region

u:i 0.01
Cl)

~

0_001

Chapter 2

0.000, ~_j-..J_.____j____J'-..J._~___Jl.-J..._-..l...-1...-..L.--...l..--1----'--.........L---'

256 1K 4K 16K 64K 256K 1M 4M
Cache Size (bytes)

(b)

Fig. 2.27 (a) The footprint function model as a function of time and line-size, plotted on
a log/log scale.
(b) The miss-rate function model as a function of line size and cache size.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 115

section 2.2 Cache Memory 101

of a set-associative cache. Although fully associative caches have better miss
ratios than four-way set associative caches of equal size, the miss ratios are fairly
close, and the fully associative cache can serve as an approximate model to the
four-way set-associative cache or Hill and Smith's techniques can be used for
specific cache structures.

There are a number of concepts from this model that are useful to the cache
designer. Here are the major ones:

1. The power-law function indicates that there is a law of diminishing returns.
Each successive doubling of cache size to exploit tempora] locality gives less
absolute improvement in miss ratio for double the expenditure of hardware.
Each doubling of line size gives Jess absolute improvement in miss ratio for
double the expenditure in bus traffic per miss. Very large caches can cost
more than their performance justifies.

2. No cache size and structure is characterized by one miss ratio. The cache
performance depends strongly on the workload. Miss rates are low if the
working set of the workload fits in cache, and they are high otherwise.

3. The size of a cache should be large enough to contain the full working set
of the majority of the workloads to be run on the cache. Although, in general,
performance improves with increasing cache size, the most performance
gain per change in cache size is in the region where the cache reaches and
exceeds the working set of most typical workloads. If the cache is too small,
the performance of larger workloads is compromised. If the cache is too
large, the machine will be priced higher than its performance justifies. It is
probably best to produce too large a cache than too small a cache because
the working-set size of applications tends to increase in time as new appli
cations with large working-sets are released. Consequently, excess cache
size will be put to use eventually.

4. To estimate the cache size needed for a new processor design, estimate the
working-set size of typical programs. This tends to be much larger in large
address spaces than in small address spaces.

S. Steady-state miss-rate functions depend on the nature of the workload but
all workloads are likely to have exponents in Eq. (2.12) that lie between
0.400 and 0.700. Pick sample exponents in this interval, and model cache
behavior for such exponents. The smaller exponents tend to be associated
with scientific or numerically intensive applications and the larger ones tend
to be associated with less structured applications such as operating systems,
database management, and artificial intelligence.

6. The line-size effects are also work.load dependent. Kobayashi and Mac
Dougall [1989] have a limited amount of data on line-size effects as a function
of workload type, and A. Smith (1987J has extensive data on line-size effects

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 116

102 Mcmory•Systcm Design Chapter 2

independent of workload. Both of these studies provide typical data that
are useful in the absence of simulation data.

The cache designer can explore the impact of workload parameters
through Eq. (2.15). Singh et al. [1992] give values to a, b, and din Eq. (2.15)
of 0.0333, 0.827, and 0.740, respectively, for a general workload that includes
operating system functions and user applications. Scientific applications can
be expected to have greater spatial locality than the workload used in the
study, which can be modeled by decreasing the co.efficients a and din com-
bination.

Cache design is considered again later in this text when we discuss cache
design for multiprocessor systems. The important principles of cache design
are:

1. Cache memories retain needed information physically close to the central
processor where the information is quickly accessible. As a general rule for
high-performance systems, the data most frequently accessed should be
physically close to where it is used.

2. The traffic density between the central processor and main memory is any
where from 10 to 30 times lower than the traffic density between central
processor and cache. An important goal in high-performance systems is to
keep traffic density low on long interconnections and on shared intercon
nections.

3. The cache mechanism works only because programs exhibit particular be
havior that can be exploited by the cache. If programs behaved differently,
caches as we know them could fail badly. Programs are not forced to work
the way they do; they just happen to do so. Other facets of programs might
be exploitable to attain high performance, especially if processors are de
signed for particular applications.

4. The cache mechanism adapts to execution streams by learning what items
have been used and favoring recently used items over items that have not
been used recently. It is possible to incorporate other kinds of hardware into
a system that help the system adapt to observed behavior in an execution
stream. The question is open as to where and what kind of hardware to
use, and whether or not the cost of the extra hardware is justified by the
performance gained.

1.3 Virtual Memory

The designers of the Atlas computer gambled heavily on program characteristics
that tend to keep the active pages in high-speed memory. The cache memories
described in the previous section are successful because address references show

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 117

section 2.3 Virtual Memory 103

strong sequential locality, and cache management easily exploits such character-

istics. .
Virtual-memory systems, as they exist today, fulfill a role similar to cache

memories, except that virtual-memory systems manage a different portion of
the memory hierarchy. Cache-management algorithms attempt to make opti
mum use of a high-speed memory for which main memory serves as a backup
buffer. Active items tend to move from main memory to cache, and inactive
·terns tend to migrate back to main memory.
1

Virtual-memory systems attempt to make optimum use of main memory,
while using an auxiliary memory, usually a rotating magnetic disk memory, for
backup. Therefore, to the first order of approximation, the high-speed buffer
memory of a cache system corresponds to main memory of a virtual-memory
system, and the main memory ot a cache system corresponds to an auxiliary
memory of a virtual-memory system. The principles that govern the behavior
of cache and virtual-memory systems are largely the same. Namely,

1. Keep active items in the memory that has the higher speed;

2. As items become inactive, migrate them back to the lower-speed memory;
and

3. If the management algorithms are successful, the performance will tend to
be close to the performance of the higher-speed memory, and the cost will
tend to be dose to the cost per bit of the lower-speed memory.

We have learned some implementation techniques for cache memories in the
previous section, so one might believe that those implementation techniques
carry over to virtual-memory systems. Unfortunately, they do not carry over
directly because the details of costs and timing are dramatically different when
you move from cache memories to virtual memories.

Effective designs are driven by details of performance and costs. Because
cache and virtual memory are dramatically different in such details, implemen
tations of the two memory-management schemes may be quite different. In this
section we examine a very simple virtual-memory system to identify the design
parameters. Then we look more closely at available implementation techniques
to satisfy the needs of the design.

t.3.1 Virtual-Memory StNcture

A simplified view of virtual memory is illustrated in Fig. 2.28. In this figure the
address produced by the processor, which is called a virtual address, is mapped
by hardware to a physical location in central memory if the item is located in
main memory. If not, the result is a page fault that moves the page containing
the item being moved to main memory. The size of the virtual address-space
that contains the addresses produced by the processor need not bear any relation

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 118

104

From Processor

Memory-System Design

Virtual Address

ADDRESS
MAPPER

........ _,. PAGE FAULT
(if page is not present)

Physical Address

To Memory

Fig. 2.28 The structure of a virtual-memory mapper.

Chapter2

to the size of the physical address-space that contains the addresses in central
memory produced by the mapper shown in the figure.

We tend to view virtual memory as the Atlas designers originally viewed
it. That is, virtual memory is much larger than physical memory, and the ob
jective of the virtual-memory system is to produce a large memory with high
performance and low cost per byte. But the mapping scheme has been used
successfully in situations in which virtual memory is much smaller than physical
memory, although such uses are becoming rarer. The applications in question
arose because of technological changes that led to large, central memories whose
costs were dramatically lower than the costs of prior generations:

Some computer families had been designed with relatively small address
spaces, which cannot be changed because of compatibility requirements. De
signers can create a machine whose physical memory is many times larger than
the addressable memory available in the family, and then use virtual-memory
mapping to permit software to run unchanged in the large physical memory.
To make effective use of the large physical memory, the systems run several
independent ~pplications concurrently in a time-shared mode of operation fre
quently called multiprogramming.

In the early 1970s, for example, a limitation of 16 bits for addresses \.'las
natural, and, therefore, the typical virtual-memory space in minicomputers was
64K. When a memory of size lM became available, then approximately 16 in
dependent programs, each of maximum size 64K, could be run concurrently in
the one physica] memory of size lM. Moreover, if the memory manager were
successful in retaining the active pages in main memory and returning inactive
pages to auxiliary memory, perhaps the main memory used per program could

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 119

section 2.3
Virtual Memory 105

dro from 64K to something less, s~ch as 32K. Then the number of independent
P ms that can run concurrently mcreases to about 32 programs, which makes

phrogryastem reasonably cost-effective per user program.
t e 5 I . th. 1 . . 1 I The use of virtua memory m 1s examp e remams attractive on y as ong

·t is necessary to run the software developed for the 16-bit address space.
~e~ programs should be written to take full advantage of the larger address

ce when the extra memory can be put to good use.
spa In the late 1970s the first machines with 32-bit addresses appeared, and by
the mid-1980s, the multigigabyte virtual-address space was firmly entrenched
. machines that ranged in size from engineering workstation to the high-end
JJl ainframe computer. Even with this large virtual address, it is just a matter of
:ne before it becomes economical to deliver physical memories larger than four

·gabytes. In recognition of this possibility, some architectures evolved to 64-
~t virtUal addresses in the early 1990s. Nevertheless, for any 32-bit architecture
that does not evolve to a larger virtual address, in the present and immediate
future the virtual-memory system maps a large address space into a smalJer one.
When technology can provide gigabyte memories at an economical price for the
prevailing 32-bit environr:nent, these sa~e systems are likely to be redesigned
to map the virtual space mto larger physical spaces.

A significant difference between virtual-memory and cache-memory systems
lies in the relative penalty of a page fault and a cache miss. In present technology,
a cache miss is 4 to 20 times as costly as a cache hit, but a page fault is 1000 to
10,000 times as costly as a page hit. Rotating memory has a latency time fixed
by mechanical limitations. Although electronic random-access memory has had
speed improvements on the order of 1000 to 1 over the last t¾"o decades, the
latency of mechanical memories has not improved by more than a factor of 10.
Moreover, the mechanical limitations inherent in the design of rotating memories
suggest that disks will not spin 1000 times faster, nor are they likely to have
1000 heads, which exhaust the two obvious ways to reduce latency.

For the near future, we are more likely to see the relative cost of a page fault
increase as semiconductor memories continue to improve performance, while
no significant improvements reduce disk latency. Over a longer period, we may
see a new memory technology filling the gap betvveen semiconductors and ro
tating mechanical memories. Such a technology would have a profound impact
on virtual-memory implementation as we know it today.

The huge cost of page faults results in very different strategies for cache and
virtual-memory management. During a cache miss, the processor becomes idle
while waiting for data to arrive from main memory. Some activity pertaining to
table maintenance may take place during the miss, but there is insufficient time
available for other processes to do useful work on the processor. Hence, a cache
miss is not accompanied by a change in task for the duration of the cache miss.

In a virtual-memory system, relatively large amounts of unused time are
available while awaiting a page transfer from auxiliary memory. This time is so

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 120

106 Memory-System Design Chapter 2

long that it is reasonable to put the processor to work on other tasks during the
latency period attributed to a page fault. In typical systems, the latency expe.
rienced is from 1 to 100 ms, and a lO·MIPS processor can execute somewhere
between 10,000 and 1,000,000 instructions of other programs during this period.

The earliest commercial implementations of virtual memory attempted to
improve efficiency by turning the processor over to other pending tasks. The
processor costs made the processor cycles a precious resource that should be
conserved, if possible. Consequently, virtual memory was implemented in sev.
eral different multiprogramming systems and in remote-access time-sharing sys.
terns. The idea was to create queues of pending tasks by amalgamating many
users on a single system. When one user was delayed by a page fault, the
processor could be dispatched with a second user's task in the interim.

The sharing of the processor is a natural solution when processor cycles are
expensive. But sharing has its own negative factors. As processor utilization
goes up and approaches 100 percent, each user sees a longer response time
because the time to process a job depends on how long the job takes when
running without contention and how long it spends in queues waiting for other
users to terminate. Increased efficiency in the use of a processor generally is
accompanied by increased waiting time for each job because of contention with
other jobs for access to the processor.

As the cost per machine cycle has become very small, a new alternative has
become possible. Instead of turning over control to a different job while waiting
for a page from auxiliary memory, it is reasonable in some circumstances to
retain the processor and simply wait for the new page to arrive. In such cases,
the performance gain due to lack of contention for the processor is more valuable
than the loss due to cycles lost by the processor during page faults.

There is another major negative impact on system design if a virtual-memory
manager forces an application to relinquish the processor on a page fault. The
policy interferes greatly with the ability to evaluate designs by using address
traces. Each page fault is accompanied by the execution of 10,000 to 1,000,000
new instructions that would not be executed if the processor were not reassigned
during a page fault. If a simulation run is used to evaluate the effects of a new
control strategy, then what should be simulated during page faults?

In essence, the attempt to evaluate new policies inevitably increases or de
creases the page faults observed. But there is no convenient mechanism for
modifying a trace dynamically to obtain an accurate description of the execution
that actually takes place during page faults.

We have no difficulty evaluating cache designs from trace tapes, but we
have a great difficulty evaluating virtual-memory designs the same way. More
over1 we can simulate a few seconds of processor time to obtain thousands of
cache missesJ but the same simulation produces only tens or hundreds of page
faults, so trace data are subject to large statistical errors.

Consequently, virtual-memory evaluation is best performed in real time with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 121

section 2.3 Virtual Memory
107

hardware ?r software m~asurements of activity. To obtain repeatability and to
evaluate different strategies on a common workload, the architect must rely at
least in part on a synt~etic w~rkload.

There are three maJor design considerations described in the next sections:

1. The mapping mechanism;

2. Partitioning for locality; and

3_ The replacement strategy.

As these topics are presented, bear in mind how different the approaches are
from approaches that address similar functions for cache memories. The differ
ences are all attributable to the ~ifference in the values of performance and cost
figures. This clearly_ ~hows the tmpact of specific values of design parameters
on architectural dec1s1ons and suggests how major technological advances that
alter these values will affect designs.

t.3.2 Virtual-Memory Mapping

The mapping device shown in Fig. 2.28 is grossly simplified for purposes of
exposition. Let us consider the requirements for a mapper and then discover
what additional complexity is required to make an effective mapper.

The basic function is to map a large address space into a much smaller one,
so that we may view the virtual-memory mapper as performing the function
shown in Fig. 2.29, where some large field of bits in a virtual address is replaced
by a smaller field of bits to create a physical address. In Fig. 2.29, the displace
ment field describes the offset from the base of a page. The displacement is not
changed by the mapper because the offset within a page is the same for a virtual
address as it is for a physical address. 'vVe need to know only where the page
begins in physical memory, and by adding the offset to this address, we can
find the physical address of any item. Hence, the mapper uses the virtual
address bits other than the offset bits as it transforms addresses.

What makes the problem challenging is the very large number of pages in
the virtual address. Consider the difference in the mapping problem for a virtual
memory with 64K addresses (16 bits) as compared to a virtual memory with 4G
addresses (32 bits). For purposes of comparisonl in both cases we assume that
the page size is lK (10 bits).

ln the smaller memory, there are only 6 bits, or 64 pages permitted in a
program of maximum size. It is perfectly reasonable to store the translation table
in a set of 64 registers and consult the translation table on each reference.

The larger memory system permits programs to grow to as large as 4M
pages. A translation table with 4M entries is far too large to place in a set of
dedicated registers, and it is costly by present standards to store in memory,
although this is a possible solution in the future.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 122

108 Manery-System Design

VIRTUAL ADDRESS Address
---~...:...=.:..:.=...:.--=...:=--,------,. within Page

Page Number Displacement

PAGE MAP

Base Address of Page

PAGE (in Memory)

Fig. 2.29 A typical virtual-address translation.

i

Chapter 2

How do you deal with such a large translation table? To reduce the memory
demands for storing the translation tableJ most solutions in use today break up
the one-level translation into two translations. The effect of having two levels
could be disastrous on performance because each access then becomes three
accesses, and worse yet, each of the two accesses into the translation table could
generate its own page faults before the access to the requested page has occurred.
So performance could be dramatically poorer just because of the overhead of
the mapping process.

The overhead of mapping is reduced by means of an artifice called a trans
lation-lookaside buffer (TLB), which is a cache for holding recently used mappings.
Figure 2.30 gives the general structure of a virtual-memory mapper. We examine
the details of the pieces in the following discussion.

In Fig. 2.30, a virtual address is broken into two fields, one for the offset
and one that identifies a virtual page. The virtual-page field is presented to the
translation-lookaside buffer, which checks its cache-like memory to see if a recent
translation for that page took place. If so, the translation-lookaside buffer returns
the base address of the page, and the mapping is completed. Just from our
knowledge of cache behavior, we would expect almost all refer~nces to be sat
isfied by the lookaside buffer.

If an address misses in the lookaside bufferJ the two-level mapping is per
formed. We describe the details later in this section. A miss in the two-level
mapping is a page fault, and the virtual-memory manager must intervene to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 123

5eetion 2.3
Virtual Manory

VIRTUAL ADDRESS Address
.----------.----

17
---. within Page

Page Number Displacement

~:f~ TRANSLATION
~--,.. LOOKASI0E

BUFFER

Miss in TLB

Slow
Path

PAGE MAP

Page O
Base Address Page 1

of Page 1 1----~-----111

Item from Page 1. Page N-l
Otfset 17

._ -"""'~1111"!"'11111111111_1•------....i
DATA REGISTER MAIN MEMORY

109

Fig. 2.30 A virtual-address translation with a translation-loo.kaside buffer (TLB) for fast

operation.

correct it. Otherwise, the mapping produces the base address of a physical page
that can be added to the offset to obtain the full physical address.

In the last operation, if we force pages to begin on addresses that are mul
tiples of the page size, then we can save an addition operation in the mapping
transformation. In this case, since the low-order bits of the full base address are
known to be zero, the page offset can be concatenated to a shortened base
address rather than be added to the full base address.

One possible two-level mapping is shown in Fig. 2.3l(a). The idea is to break
up the large field into two smaller fields. Common terminology is to designate
the high-order field as a segment number and the next field as a page number,
although the term segment is used to denote other concepts related to virtual
memory.

In this example, the 22 bits remaining after stripping off the 10-bit offset are
broken into an 11-bit segment number and 11-bit page number. The segment
number is used in the first level of the transformation as the index to a Segment
Table. From the Segment Table we obtain the base address of a page table. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 124

110 Memory-System Design

VIRTUAL ADDRESS

11 bits 11 bits 10 bits

Segment Number Page Number Displacement

Base of Segment Table

~ I i I
2047

..
I I
SEGMENT TABLE

Base Address
of Page Table

•
0

1 I -:
2047 ~--... --...

PAGE TABLE

Base Address
of Page

Base + O 1----------t1

Base + 1
~--------ti

Base+ 1023 .._J _______ i
PAGE (in Memory)

(a}

Fig. 2.31 Two-level mappings:
(a) A typical two-level mapping; and
(b) A two-level mapping used in the VAX architecture.

Crapter 2

Address
within Page

page number is combined with this base address to consult a page-table entry
that has the base address of the page itself.

The effect of using two levels is to reduce the page-table number from 22
bits to two indices, each of which is no more than 11 bits, so that no single table
needs to be larger than 2048 entries. What has happened in the two-level map
ping is that a very large page table has been broken into many pieces, each of
which is no larger than 2048 entries. The smaller tables need not reside in main

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 125

section 2.3

2
bits

Page-Table Entry
(Vir1ual Address)

Segment-Table Entry
(Physical Address)

Fig. 2.31 continued

Virtual Memory

VIRTUAL ADDRESS

21 bits 9 bits

•---- Base Address of
User Page Entry

21 bits

G)+---- Base Address of
-+ Segment Table

31 bits

SEGMENT TABLE

I

(b)

PAGE OF
PAGE TABLE

PAGE OF
USER MEMORY

111

memory if they are not in active use. Hence, we need have in memory only the
portions of the page table that are active.

The penalty for the two-level mapping is the second level of lookup. More
over, both levels can have page faults during a lookup, although the Segment
Table rarely faults because it is accessed relatively frequently. If we had a choice,
we would prefer not to pay the penalty for the second access, but the enormous
size of the resulting page table makes the alternative one-level mapping im-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 126

111 Mcmory•Systcm Design Chapter 2

practical under most cost measures. The scheme becomes practical only when
the cost of tables of size 4M can be ignored.

There is a problem with the scheme in Fig. 2.3l(a), resolved by the scheme
shown in Fig. 2.31(b). The problem pertains to shared pages that are accessed
by independent programs. Each program in a shared page produces virtual
addresses that must be mapped to physical addresses. The virtual addresses
produced by shared code may conflict with the virtual addresses selected by
users or by other shared programs that are linked to run as part of the same
job. It is necessary to ensure that shared programs generate virtual addresses
that do not conflict with each other or with user addresses.

The scheme shown in Fig. 2.31(b) models the address-transformation mech
anism used on the VAX architecture. In this scheme, virtual memory is divided
into two regions, each with 2G bytes (31-bit addresses). The scheme uses two
levels of mapping for addresses that lie in user virtual memory, but only one
level of mapping for virtual addresses that lie in system virtual memory. The
leading 2 bits of a 32-bit address uniquely identifies the virtual address as be
longing to one of two user regions or to one of two system regions. Shared
system programs reside in one of the system regions. The leading 2 bits of a
virtual address thus determine which of four possible tables are to be used during
the address mapping.

The VAX implementation treats the entire 21-bit field of an address with
the leading 2 bits and 9-bit offset removed as a page number to be used in an
address transformation. A page number is converted into an address by adding
to it the contents of a base register identified as the User Page Table base address
in Fig. 2.31(b). (The page number is multiplied by four before doing the addition
to account for the length of each entry in the VAX-11 page tables, but this is
not shown explicitly in the figure.)

The address produced by this transformation is a virtual address, not a
physical address, which is one key difference between Fig. 2.31(a) and (b). This
virtual address lies in system space, so that only one level of access is required '
to change it into a physical address of a page-table entry. After that transfor
mation is completed, the physical address of the page-table entry goes through
one additional level of access to produce the final physical address that com~-
sponds to the original user virtual address. ·

To map the virtual address of the page-table entry, the processor extracts a
21-bit page number from the page-table entry address, anq. adds this to the base
address of a table in system space to produce a true physical address. The system
table in this case is identified in the figure as the Segment Table to be consistent
with Fig. 2.3l(a), but the VAX architecture documentation uses the name System
Page Table for this table [Eckhouse and Levy 1980]. The physical address ob
tained from this mapping is an address in the Segment Table. The first memory
access in the mapping process occurs at that address.

The Segment Table lookup produces the higher-order bits of the base address

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 127

section 2.3 Virtual Memory 113

of a page in the user page table. These bits, when concatenated \Vith the 9-bit
displacement field _of the virtual address of the page-table entry produce a phys
ical address of a single page-table entry, and the next access occurs at this lo
cation. From the page-table entry, the process finds the higher order bits of the
base address of the user page. To these bits the processor concatenates the 9-
bit displacement field of the original virtual address and produces the physical
address of the item sought. -

The two base addresses, User Page Table and Segment Table, both reside
in processor registers. No memory access is required to obtain these base ad
dresses, so the first access to physical memory is the access to the Segment
Table.

References to shared pages of system programs are handled by placing the
shared pages in system space, not in user space. System-space addresses are
transformed to physical addresses by just a single level of mapping, as shown
in the figure, and only the Segment Table is used for this mapping.

Hence the page table used to access shared pages is the Segment Table,
which is shared among all processes, whereas the page table used to access
unshared user-pages resides in user memory and is private to each process. In
this way, user addresses are distinct from addresses produced by shared pro
grams, and shared programs can produce addresses without contention pro
vided that they occupy disjoint regions of the system virtual memory.

Obviously, the system virtual memory must be large enough to accommo
date all shared pages in distinct areas, which is possible only for large virtual
memories. Although 2G bytes available for the VAX is very large by some stan
dards, even this may not be enough for all possible shared programs. In actual
practice, VAX uses both the scheme described here for sharing system functions,
and conventional schemes for sharing other items in user memory by pointing
to the shared items through user page tables. Thus, the commonly shared items
are handled efficiently through a one-level mapping ivhile the less commonly
shared items require two levels of mapping.

Let us return momentarily to the translation-lookaside buffer that appears
in Fig. 2.30. We described it as functionally similar to a cache memory, and
indeed its design is very close to that of a cache. Clark and Erner [1985j describe
the analysis of a translation-lookaside buffer for the VAX-11/780 architecture,
and their paper is a model of the classic design and analysis techniques for
cache. They use a trace-driven approach to simulate a variety of structures
varying from 64 to 512 sets and with both one-way and two-way set associativity.
Some aspects of their paper are different from cache studies and are worth
commenting on here.

The Clark-Erner data suggest that misses occur in the translation-lookaside
buffer at the rate of between 0.5 to 3.0 per 100 ~nstructions. This is not the same
as the miss and hit ratios described earlier because the ratios for cache references
are developed on a per-reference basis, whereas the Clark-Erner data are on a per-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 128

114 Memory-System Design Chapter 2

instruction basis. Since one instruction produces several references, including
instruction fetch, indirect address fetch~ operand fetch, and operand store, the
equivalent miss ratio for translation lookaside buffers is probably a factor of 3
or 4 smaller than the misses per 100 instructions. So, indeed, misses in the
translation-lookaside buffer are rather rare.

The penalty for a miss in the buffer is also quite different from the penalty
for _a c~che miss. The cache miss is foll~wed by an access to main memory,
which 1s perhaps ten times slower than 1s the cache. But the cost of a buffer
miss is an access to the cache, which is somewhat faster than an access to main
memory.

Clark and Erner report a surprisingly small hit rate to the cache to retrieve
items that miss in the lookaside buffer. The hit rate is only about 40 percent.
Perhaps this is the case because the lookaside buffer may be very successful in
handling most references to page table entries-so successful in fact that such
references are quickly purged from cache once they are placed there.

If eventually a miss occurs in the lookaside buffer, then the likelihood of
finding that reference in the cache apparently is very low, only 40 percent as
opposed to over 90 percent for other references. Another possible explanation
for the high miss rate is that a miss in the lookaside buffer occurs most frequently
when a program changes its activity or a total change of process takes plac~.
But these times are precisely the saine times when a cache produces the bulk
of its misses.

Another aspect of the lookaside buffer that is different from the cache is
that the translation mapping is dependent on the process running. The lookaside
buffer sees virtual addresses, not physical addresses. These addresses are not
unique, so there must be some mechanism for identifying which virtual ad
dresses go with which process in the lookaside buffer. This mechanism does
not need to exist for a cache memory that stores physical addresses in its directory
because physical addresses are unique.

One way to handle the problem of associating the correct mapping with an
address reference is to place a process tag in the lookaside buffer with each
entry. Then a match occurs only if the process tag in the buffer matches the
process tag of the running process.

The approach used in the V AX-11/780 lookaside buffer is to flush the look
aside buffer of entries for private (per-process) mappings when a context switch
occurs. This could be a fairly expensive process depending on the size of the
lookaside buffer, the time it takes to purge the entries, and the frequency of
context switches. Instead of selectively purging just the entries for private map·
pingsr it may be faster to purge the entire buffer., and thereby purge the entries
for shared as well as private mappings. In this case there is a penalty paid later
for reloading the shared mappings.

We do not have specific advice on which approach is better because there

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 129

section 2.3 Virtual Memory 115

is no absolute a~swer. H_ere is a case in which the designer should perform a
thorough analysis following the model of Clark and Erner to determine which
approach yields both the best cost /performance for the technology to be used
and the presumed workload for the architecture.

2.3.3 Improving Program Locality

The mapping transformations described thus far have presumed that large pro
grams are broken into equal-sized pages, and the pages are managed by a virtual
memory operatin? system. The pages are arbitrary and need not have any
relation to the logical structure of the program. Since the page is the atom to be
used by the virtual-memory manager, a reference to any single item on a page
results in the entire page being present in main memory.

If the contents of a single page are logically related, then bringing in a page
when any item on that page 1s accessed makes available inexpensive accesses
to the other related items. If the items on a page are unrelated, the page fetch
may bring in unwanted items, resulting in poor use of both available memory
bandwidth and resident memory.

Structuring programs so that related items are packed together on relatively
few pages is definitely advantageous. In essence, this postulates a new structure
in which programs and data are grouped together according to their logical
relations rather than because of arbitrary factors. Virtual-memory systems that
attempt to account for logical relationships within programs are sometimes called
segmented-memory systems, as opposed to paged-memory systems. A segment is
a collection of related programs and data that forms a subprogram unit. Segments
can invoke other segments, and some commonly used segments can be shared
among many users.

What makes segments different from pages is that segments are not fixed
in size. They can be as large or small as the programmer chooses to make them.
Because segments are not uniform in size, memory management is far more
complex than for pages of a fixed, uniform size.

Although various techniques have been developed for memory allocation
of variable-length structures, it is also possible to combine paging and segmen
tation in a single virtual-memory system. The idea here is to use segmentation
to produce logical structures of program and data, and then move portions of
segments in and out of memory by breaking segments into pages of fixed size.
Techniques for paged virtual memories carry over directly to this scheme, and
no significant added difficulty for handling variable-sized segments is imposed.

There are a few differences between segmented and paged systems, how
ever, that should be brought to light. One difference is in the structures of a
segmented-address space and a paged-address space. A paged-address space
is a one-dimensional space in which all addresses lie in one contiguous region

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 130

116 Mcmory•System Design Chapter 2

in virtual memory. Given any address (except possibly the last address) in this
memory, you obtain the address of the next item by increasing the current ad~
dress by one.

A segmented memory is a two-dimensional space. Each address consists of
two fields, a segment number and an offset within the segment. All addresses
within a segment lie in one contiguous area of vir~a~ memory. However, seg
ments are not contiguous to each other; they are d1stmct.

When you increment the highest possible address of a segment, you do not
obtain the address of an element in a new segment. You create a condition that
is recognized as an attempt to access an out-of-bounds address.

For example, consider a virtual memory system with 48-bit addresses, of
which 24 bits indicate an offset within a segment, and 24 bits indicate a segment
number. In this system, a program can create references to up to 16M different
segments, each of which has up to 16M addressable locations. [f a program
attempts to reference an item in Segment i and calculates an address whose
offset exceeds 16M, the virtual address produced will not increment the segment
portion of the address field when the offset overflows. Hence, the reference
continues to be to Segment i, except that the overflow from the offset field is
detected and produces a program exception.

Given this structure, we have an interesting problem in handling shared
memory. Suppose a segment is shared by two programs, Program A and Pro
gram B. Shall we impose the restriction that both programs designate this seg
ment as Segment 10? Or will we permit Program A to designate the segment as
Segment 2, while Program B designates it as Segment 11? To restrict all shared
segments to unique numbers is similar in spirit to the handling of shared seg
ments in the VAX virtual memory, as we discussed earlier. This method makes
sense for sharing system programs that are available essentially at all times.

In a more general context✓ however, we may want all segments to be share
able, or we may have a huge colJection of shared segments that exceeds the
number of unique segment numbers available. So for one reason or another,
we want to let Program A and Program B refer to a shared segment by their
own respective indices for this segment.

One possible way to provide access to the shared data under this stipulation
is to provide a segment table with each process. The segment table provides
the information to translate a segment reference from Process A or from Pro
cess B into the correct physical reference to a shared segment. Figure 2.32 shows
this scheme. Note that the shared segment is Segment 1 for A but is Segment
2 for B.

In this scheme, the virtual addresses for referring to the shared segment
depend on which segment has issued the address. Then each process has a
private segment tabJe for accessing shared segments~ as opposed to the common
table used for the VAX architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 131

section 2.3 Vlrtual Memory 117

0 . . .
2

3
4

SEGMENT
TABLE

SEGMENT A
(for A)

0
1
3 SHARED SEGME NT
4

SEGMENT
TABLE

SEGMENT B
(for B)

Fig. 2.32 Access to a shared segment through private segment tables.

Moreover, the addresses produced by the shared segments have to be mapped
correctly for each context in which they operate. Thus, it may be necessary to
force a shared segment to access a variable in Process A at Segment 10, but
when running in a different context, that same access is made to a shared variable
in Process Bat Segment 15.

The segment number of a reference produced by a shared program in general
is dependent on the context in which it runs, and the ability to produce segment
numbers that depend on the context may have to be incorporated into the
architecture. The VAX solution to sharing avoids the complication of the general
solution and is satisfactory for shared system programs.

To eliminate the burden of consulting the segment table on each reference
to an external segment, designers usually incorporate a translation-lookaside
buffer or the equivalent to catch the majority of references without accessing
the segment table. As control passes from one segment to another, it is rather
important to purge the lookaside buffer so that its translation is correct for each
context.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 132

118 Memory-System Design Chapter 2

2 .. 3.4 Replacement Algorithms

The obvious way to manage virtual memory is to manage it in the same way
that cache is managed. In fact, Beladys work {1966] on optimal replacement
strategies (cited in our cache discussion) was done in the context of virtual
memory systems. But, in general, virtual-memory systems are sufficiently dif
ferent from cache memories as to require dramatically different techniques for
management. The principal differences between virtual memory and cache mem
ory are:

1. Page faults are very costly. There is a greater relative savings in reducing
page faults than there is in cache misses.

2. While responding to a page fault, there is substantial time available for
memory-management functions that might reduce future faults.

3. Virtual-memory systems may run competing programs when a program
reaches a page fault. The competing programs may interfere with mem
ory management and could grossly impair performance. No competing pro
grams are run during the processing of cache misses.

Early implementations of virtual-memory systems examined various replace
ment policies, and soon the strengths of least-recently used replacement in
predicting the future were recognized. However, when LRU replacement and
other similar policies were implemented in early commercial virtual-memory
systems, the systems occasionally entered periods of instability during which
almost all machine cycles were devoted to handling page traffic and essentially
no useful work could be accomplished. The problem was not the fault of the
replacement policy per se, but rather a lack of understanding of the dynamics
of a virtual-memory system. Detailed studies revealed that some critical factors
had been overlooked.

One problem stemmed from trying to accomplish too much in a single
virtual-memory system. The instabilities occurred at high loads; otherwise per
formance was acceptable.

Denning [1968a] termed the instability thrashing because the prime charac,
teristic was a very high traffic between main memory and auxiliary memory of
frequently used pages. A page might be brought to main memory, used a few
times, then returned to auxiliary memory, only to be recalled to main memory.

Another related mode of instability occurred when a process lost some critical
pages from main memory, but eventually recovered those pages, only to have
lost other critical pages in the interim. Every program enters phases during
which some subset of pages is used frequently. Denning [1968b] called this subset
the working set of pages.

The working set is in essence the footprint of a program execution over a
short period of time. If a program has its entire working set in main memory,
it will have a very low page-fault rate as computation progresses. Page faults

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 133

section 2.3 Virtual Memory 119

·ncrease dramatically when portions of the working set are not available. So one
~ey principle is . to run programs_ by striving to have the full working set in
memory at the time. the pr~gram 1s ru~.

A corollary of this pnnc1ple recognizes that it is unrealistic to move an entire
working set from memory to disk and back again between successive time slots
allocated for progr~m- execution in a m~lti_p:ogrammed, virtual-memory system.
In fact, it is unreahsttc t~ mov~ any s1gruf1cant portion of a working set out of
main memory and back m ~gam under the same conditions.

In essence, if a program 1s to run effectively, its working set must be resident
and must stay resident in main memory until the program terminates. This rule
can be relaxed somewhat for programs that interact with humans because some
displacement of the w?rking se~ can be tolerated during the time that the human
is thinking and reacting to pnor output. Otherwise, as a general rule, main
memory must hold the working sets of the active programs.

If the working sets exceed in total size the area reserved for them, then the
system is ~ikely to_ beco:11e unstable. _Figure 2.21 t:nds to confirm the need to
hold workmg sets m mam memory. Virtual memones tend to behave like caches
with large K (set-associativity) values. The figure shows a sharp drop in the
reload transient as cache size increases. This drop occurs at the point where the
cache is big enough to hold both footprints. If the cache is smaller than this
critical size, the reload transient is very large, which means that one program
completely overlays the other as they successively take control of the processor
and cache.

Therefore, to eliminate thrashing, a reasonable approach is to estimate the
size and content of working sets, and to load into main memory a collection of
complete working sets whose total size does not exceed the memory available.
Any additional requests for machine cycles should be deferred until some process
or processes terminate and make sufficient memory available to hold the working
set of the new process.

If this principle is to be used to manage memory, then we need a way to
calcuJate the working set dynamically during program execution. Denning [1968b}
provides some guidance by describing a mechanism for discovering the working
set. He defines the function W(t, w), the working set at time t for window w.
This is the set of pages referenced in the last w seconds at time t.

A memory manager based on the notion of the working set attempts to
hold in memory only those pages that belong to the working set because
references are most likely to be made to the working set and are very unlikely
to be made to pages outside the working set, except during periods when the
working set is changing because the program is moving into a new phase.
Therefore the memory manager brings in a new page when a page fault occurs
and adds the new page to the working set. The memory manager deletes from
the working set those pages that have not been referenced within the last w
seconds.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 134

110 Memory.System Design Chapter 2

Here is one possible memory-management policy that takes advantage of
the properties of the working set.

1. When a page fault occurs, add the new page to working set.

2. From the set of pages not referenced within a window of w seconds im
mediately prior to the page fault, select the least-recently used page, and
discard it. If all pages have been referenced within the working-set window,
then discard no page, and let the working set grow.

3. If two or more pages have not been referenced within the working-set win
dow, then discard the two least-recently used pages.

Note that there must be some rule that diminishes the number of pages allocated·
I

otherwise the size of memory allocated to a process grows until no free memory
is available for references to new pages. That is the purpose of the thi.rd rule.
This set of rules is slightly different but similar in intent to the rules proposed
by Coffman and Denning [1973, p. 299].

It is very important that the working-set window be measured in virtual
time, by counting clock ticks only while the process is executing. No clock ticks
are counted during page faults or during other periods when the given process
is inactive.

The size of the window can be determined experimentally. If it is too large,
some pages will tend to be retained too long. If the window is too small, it may
not span the times of references to the actual working set. The optimum window
size is just large enough to cover the working sets of all programs. It is better
to err by using too large a window than too small a window because the con
sequences of using the wrong window size are less severe when the window
is too large.

The working-set concept is an intuitively appealing way of handling page
replacement, but measuring the working set is somewhat difficult, even with
special hardware. One possible way to approximate the working set is to identify
which pages are accessed during the brief execution of a program in a system
that grants the processor in round-robin fashion to a collection of programs.

We assume that each program is granted some fixed quantum of time during
which the processor executes that program. Before the quantum begins, access
tables are initialized to show that no page has been touched. These tables are
best kept in hardware such as a translation-lookaside buffer or a special memory
devoted to tracking page accesses. As ea:·ch page is touched, the hardware au
tomatically sets an activity bit in the access table to record this occurrence. At
the completion of the quantum, the wqrking set is deemed to be the pages
whose activity bits have been set, and ·the remaining pages may be removed
from main memory.

This form of the memory-management algorithm is quite workable if sup
ported by hardware that can turn off all activity bits for a process and can turn
them on selectively on access. Other sol~tions are possible as well, and the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 135

section 2.3 Virtual Memory 121

architect has a _gre~t deal of freedo~ in trading off the cost of implementation
against approximations to the working set. The working set itself is an approx
imation to a perfect predictor of the future.

Chu and Opderbeck [1976] proposed an alternative approach to the working
set approach that has the advantage of using directly measurable variables for
guiding the replacement decision. The method is called the page-fault-frequency
method. It exhibits different policies when the frequency of page faults is above
or below a fixed threshold. The reasoning behind this method is that programs
tend to operate in phases, accessing one working set consistently while in one
phase, and then moving to a new working set in the next phase. The page faults
tend to occur during a change of phase.

Our earlier discussion of the cache-reload transient examines the corre
sponding phenomenon fo_r cache. memories. A high frequency of page faults is
a signal that the program 1s entenng a new phase and that the current working
set may have to be replaced. It is clear that as new pages are touched, they
should enter the new working set. All pages in the former working set are can
didates for replacement.

One way of implementing a replacement policy based on the notion of page
fauJt frequency is the following, which is similar to the method proposed by
Chu and Opderbeck.

1. Assume a threshold 0 for page-fault frequencies.

2. When a page fault occurs, estimate the page-fault frequency for the given
program. A crude estimate is l/(t1 - t0), where t1 is the virtual time of the
present fault, and t0 is the virtual time of the last fault. A better estimate is
an average taken over the last few faults.

3. If the estimated frequency exceeds 8, then assume that the program has
entered a transient phase or that there is presently insufficient memory
allocated to the process to hold its full working set. Add the newly referenced
page to the working set and increase the amount of memory allocated to
the program by one page.

4. If the estimated frequency does not exceed 0, then assume that the program
is in a stable pattern of memory references. Add the new page to the working
set and remove some page not referenced since the last page fault, preferably
the least-recently used page.

5. If the estimated frequency does not exceed 8 over some fixed time period
then assume that the program has entered a stable phase and that it may
have some dead pages within its present allocation. If there are pages that
are currently allocated to the program and that have not been referenced
recently, then decrease the number of pages allocated to the program and
discard a corresponding number of unreferenced pages. We presume that
the pages are discarded in the order of least-recently used, if this is possible.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 136

111 Memory-System ~lgn Chapter 2

The role of the last rule is to provide a means for decreasing the allocation of
pages to a process. Without this rule, the number of pages allocated would grow
until no memory remained for allocation to new pages. Another way to imple
ment this rule is to establish a different lower threshold on page-fault frequency,
below which a process has pages removed from its working set.

One can easily measure the frequency of page faults by means of a process
timer that is normally present in an architecture. The memory manager takes
note of the length of execution time between faults each time a page fault occurs.
This is easy for the memory manager to do because it is invoked when a fault
occurs and has access to the process timer.

If recent history for a process shows that faults are occurring at a rate that
exceeds a system threshold, the memory manager increases the allocation of
pages for the program,, using a decision criterion similar to the working-set
criterion. If the fault rate is below the threshold, the memory manager either
performs a one-for-one replacement or reduces the allocation by discarding one
or more pages that have not been referenced recently, in addition to performing
one-for-one replacement. The latter strategy may occasionally produce costly
page faults if too much is discarded, but the strategy may be useful to invoke
when the pages used to hold active working sets occupy nearly all available
memory. Also, by attempting to replace pages when page faults are low, the
probability of finding a dead page is somewhat higher than when page faults
are high.

An interesting question regarding memory allocation is the question of what
is an optimal allocation? An optimal allocation of memory to processes is one
that produces the least page-fault rate. Assume that each process has a fault
rate that is a function only of the number of pages of the current memory al
location, and let the fault rate for Process i be R1(x;), where xi is the memory
allocation for process i. The allocation that produces the least fault rate globally
over all processes is the one that makes all the fault rate derivatives equal in the
following sense:

dR1{x)

dx
= dR;(x)

dx
(2.16)

:c· :Cj

Equation (2.16) says that the optimum is reached by adjusting the allocation of
each process so that the fault rates of each process for their respective allocations
are equal. There is a simple intuitive explanation of the formula. When a page
fault occurs, and a page is taken away from some process, and given to another,
how much does the global fault-rate change? If Process i loses a page, its fault
rate increases by R; (xi-1) - R,. (x;). The increase is approximately equal to the
negative of the derivative of the fault-rate function. If Process j is the process
that produces the fault, then its fault rate decreases by R; (x;- 1) - R1 (xj) when

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 137

sectiot1 2.3 Virtual Memory

·t receives room to add a new page to its memory allocation. Again, this is a
1

gative of a derivative function. There is a net improvement if the increase in
nf e lt rate for the process that loses a page is smaller than the improvement in
au h .

fault rate for the process t at gams a page. The replacement policy should take
away a pag~ from the process tha~ has ~e smallest fault-rate derivative. W~en
this pohcy 1s followed over a ~no? of time, the system reaches an allocation
tate in which all fault-rate denvatlves are equal and no further improvement

:an be made. This is a state in which the global fault rate is minimal.
Equation (2.16) assumes that all processes are executed equally often. If not,

then the derivatives have to be multiplied by a weighting factor equal to the
fraction of execution of time allocated to a process. If, for example, Process i
receives 60 percent of processor cycles and Process j receives the remaining
cycles, then the weigh~_ng factor th~t multiplies Process i's derivative is 0.6 and
the factor for Process J is 0.4. Equation (2.16) can be derived by expressing the
global fault rate as the sum of weighted fault rates of individual processes. To
find an optimum point, take the derivative of the global fault rate with respect
to memory allocation and set the resulting function equal to zero. Ghanem [1975]
derived this equation in the context of virtual memory systems. lt has also been
used to explore allocation of cache memory in processors [Stone, Turek, Wolf,
1992] and in disk caches (Thiebaut, Stone, Wolf, 1992].

Because the optimum allocation depends on fault-rate derivatives, not on
the fault rates themselves, it is clear the page-fault frequency replacement policy
is not optimum. At an optimum allocation the fault rates of the various processes
need not be equal. But the page-fault frequency policy attempts to produce fault
rates that are all close to each other. In reality, if all processes have similar fault
rate functions, then the allocation that produces equal fault rates for all processes
will also produce approximately equal fault-rate derivatives. If the fault-rate
functions differ drastically from process to process, page-fault frequency could
be quite far from optimal.

Optimal replacement is not easy to implement because the fault-rate deriv
atives are difficult to obtain. Ease of implementation is a strength of page-fault
frequency replacement because the fault rates are directly measurable. To mea
sure the fault-rate derivative, an operating system can✓ in principleJ construct a
table of fault rates as a function of memory allocation for each process. The
derivative is the difference between adjacent entries. Derivative data collected
this way tend to be very noisy, and require smoothing over multiple observations
to be useful.

Another challenge in implementing an optimal allocation scheme is the
problem of finding derivatives of fault rates for allocations larger than the present
allocation. One might believe that the operating system has to allocate more
memory than desirable in order to discover that the fault-rate derivatives for
those greater allocations are too small. In fact, a shadow directory for pages will
help obtain that information without requiring the allocation to be made. As

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 138

124 Memory-System Design Chapter 2

each page is removed from a process, its identity is retained in a shadow directory
of recently removed pages. When a fault occurs, the operating system can consult
the shadow directory to look for a match. If there is a match, say five page
replacements earlier, then the operating system can infer that the page fault
would not have occurred if there were five additional pages allocated. At that
allocation the page-fault rate is reduced to the lower fault rate obtained by ig
noring the last five faults.

The working-set and page-fault frequency algorithms ultimately retain only
the pages in the working set while programs are executing continuously in one
phase of computation. There is a difference in the behavior of these algorithms
during transients. The page-fault frequency algorithm anchors its observation
point at a page fault, and by doing so, the memory manager can fix its obser
vation at a time when a transient appears to have begun. Then the manager
can observe all of the pages touched since that fixed time.

In a sense, this is a working-set algorithm in which the window size varies
dynamically, depending on the observed fault rate. It provides for narrowing
that window during transients and widening the window when transients have
ended. This will tend to discard old pages when they are no longer needed. A
pure working-set algorithm has a fixed window size, but this is very difficult
to implement. In reality, the working-set window used by typical memory man
agers begins each time the memory manager takes control.

We have purposely avoided a detailed specification of the page-fault
frequency and working-set-replacement algorithms because an implementer is
free to adjust and modify a replacement algorithm to fit the characteristics of
the architecture and the workload. There is no single implementation of either
algorithm that is preferred or standard. The general idea behind the algorithms
is what is important.

The working-set concept is based on the assumption that the immediate
future will be something like the recent past. The page-fault-frequency algorithm
is based on the notion that a transient between two program phases is signaled
by a higher-than-normal page-fault rate.

The working-set algorithm in its purest form is difficult to implement because
a sliding window of fixed size is not easily incorporated into hardware or soft
ware. The page-fault-frequency algorithm provides for policies that depend on
more readily observable quantities and on hardware logging of accesses, which
is easier to implement than is a working-set window.

In spite of these apparent differences, the practical implementations of
working-set-replacement policies use the same hardware and the same obser
vations as the page-fault-frequency algorithms, and the actual replacement policy
for a working-set algorithm may be implemented almost identically to a page
fault-frequency algorithm. In fact, Coffman and Denning [1973, p. 289] describe
a working-set-replacement policy that is essentially a page-fault-frequency model
as we have described previously.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 139

section 2.3 Virtual Memory 125

1.3.S Buffering Effects In Vlrtual~Memory Systems

The preceding section describes how to exploit the characteristic reference pat
terns of almost all programs to hold the frequently used data in the fastest
memory. This section de~cribes another characteristic of virtual-memory systems
that is not widely recogmzed. The characteristic is that a certain amount of space
must be allocated permanently to buffering disk operations, and the amount of
space to use grows proportionally with the access delay to disk data. We examine
the implications o~ t~is characteristic and suggest that the amount of buffer space
in future systems 1s hkely to grow because access delays are likely to be relatively
longer.

We indicated earlier that accesses to data on rotating memories suffer a delay
anywhere from 10 to 100 ms or more. If we break this access delay into com
ponents, part is due to ~e time required for a read/write head to position itself
over the track that contams the data requested. An additional delay stems from
the rotational delay while waiting for an item to reach the read/write head. Yet
another delay is the time required to transmit data from the auxiliary memory
through an input/output port to main memory. The rotational delay averages a
half revolution when access requests are honored in a first-come, first-serve
order and the requests are randomly generated. By batching requests and care
fully reordering them to reduce waiting time, the average delay due to rotational
latency can be reduced, but this is partially offset by an increase in the average
time due to time lost by reordering or other aspects of contention for disk
resources.

Obviously, mechanical limitations prevent the rotational speed of disk drives
to be so fast that the average rotational latency is comparable to the time needed
to access random-access memory. Moreover, very large memories will inevitably
suffer from access delays to individual data, regardless of the storage technology,
simply because an effective means to reduce the cost per bit of large memories
is to share access circuitry over many bits.

In present technology, the single read/write mechanism of a disk drive is
shared by all bits on the disk, and it takes mechanical motion to position the
read/write mechanism over any designated position on the disk. In future tech
nologies, the motion might be nonmechanical by, for example, deflecting a laser
beam to a particular physical position on a storage surface. Nevertheless, the
time required to redirect a laser beam may be long compared to the cycle times
of very high speed memory devices, even though the time is much shorter than
the time would be if mechanical motion were required.

Now consider how a long latency time affects a computer system. In virtual
memory systems, the long latency experienced after a page fault requires that
the system be used for other purposes. There is typically a queue of processes
ready to use the machine when a running process faults. Let us assume mo
mentarily that we have as much capacity as required in available memory and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 140

1i6 Memory-System Design Chapter 2

input/output bandwidth to ensure a large queue of ready processes. Under these
conditions disk latency does not necessarily lead to idle processor time, although
in actual practice these ideal conditions are not realized, and latency could lead
to substantial idle time.

Consider what happens when a program experiences a page fault. The
portion of the program resident in main memory remains inactive in main mem
ory while the missing page is retrieved. The longer the access time to the missing
page, the longer that the resident program occupies main memory without doing
useful work. The effect of latency is to create certain regions in memory that
are inactive. In a sense, they have become buffer regions awaiting pages arriving
from the disk and holding pages awaiting transfer back to the disk.

If latency is truly very large, then it may be reasonable to remove inactive
data from main memory when a page fault occurs and reload them at a later
time. Even so, some physical pages of main memory are still being used as
buffer memory. These pages buffer the data moving out of main memory im
mediately after a page fault. They also buffer the data of a new process being
moved into main memory. Once a new process becomes resident, it can become
active, and the physical pages are again activated after being used solely for
buffering.

To give some idea how much memory has to be dedicated to buffering in
a steady state, consider a simple model of a program that experiences page
faults. Suppose that on the average a program with a working-set size of W
pages can execute for N seconds between faults. Let the delay due to disk latency
be D seconds. Then for D seconds out of every N + D seconds, the working
set is idle, and we have in a sense a buffer of an average size WD/(N + D) if
the program executes without any other programs in memory.

Since we assume that the processor is to be fully utilized by other programs
waiting to run, we need to determine how many such programs should be
available. The given program has to wait D seconds when it faults, and during
this time we can run roughly DIN other programs, each faulting after N seconds,
to use up a total of D seconds. At the end of D seconds, the original page fault
should be cleared, and the initial program can be restarted. Since this ideal
system has (N + D)IN programs running concurrently, each of which is acting
like a buffer with an effective size of WD!(N + D), the total buffer storage is
something on the order of WDIN. Hence, the amount of main memory dedicated
to buffering page faults increases linearly with D.

In this analysis we have been counting the space occupied by programs as
buffer space, but the space is quite distinct from the regions that are set aside
as disk buffers. These regions, too, must grow in size in proportion to latency.

When a record or a page is transmitted to a buffer to await transfer to a
disk, the relative time spent in that buffer is a function of the latency. Together,
the memory requirements for input/output buffers and programs delayed by
page faults must grow proportionately to disk latency. Since the timing factors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 141

section 2.3 Virtual Memory 127

are relative, we discover that the growth must take place if we hold disk latency
fixed and double processor performance. This particular event happens to be a
likely one in an era when advances in semiconductors improve processor per
formance by l~rger f~~tors than a_dvances in mechanical technology can reduce
access delays m auxiliary memories.

There are se~eral implications ~f this observation. Suppose, for example,
that we have a h1gh-performan~e virtual-memory system with 100 M-bytes of
main memory, and the system 1s very efficient in its current implementation.
Now suppose that we obtain a new disk with double the capacity of the present
disk, but with twice the average access time. When the new disk replaces the
old disk, we should also increase the size of main memory to compensate for
longer access time or reduce the number of concurrently running processes by
a factor of 2. lf we do not compensate for the longer access times, the longer
latency will degrade performance .

A second implication is that the page-replacement algorithms are somewhat
sensitive to the physical characteristics of the rotating memory. As the amount
of memory dedicated to buffering disk operations increases, the amount of
memory left available to hold working sets decreases. In other words, the page
replacement algorithm must relate disk latency to the amount of memory that
can be allocated among requesting programs. If new disks replace old ones, the
page-replacement policy has to alter its estimate of memory available for user
programs.

A third imp]ication is that it becomes reasonable to consider where that
buffer should be located. In fact, the buffer might well be located in the auxiliary
memory rather than in the main processor. Such a scheme is shown in Fig. 2.33.
The disk buffers (sometimes called disk caches) first appeared in volume in the
mid-1970s as the costs of memory diminished.

When memory is very expensive, one can argue that the wisest way to
design a memory system is to place all the memory in one unit, the central

. processor, so that it can be allocated freely as necessary. As memory costs
decrease, the need to conserve memory by using a single pool is diminished.
Other factors dictate that there are benefits to breaking memory into two or
more pools that are preallocated to specific purposes.

Figure 2.33 shows a system with a disk buffer contained within the disk
system that is distinct from the memory associated within the central processor.
The disk buffer is dedicated to disk operations and cannot be used as executable
memory.

The purpose of the disk buffer is, in effect, to create one more level in the
memory hierarchy. The disk buffer acts as an auxiliary memory with a very
short latency, thereby reducing the buffer requirements in main memory.

In essence, the buffers that we have observed earlier have been moved out
of main memory and now reside at the other end of the input/output channel.
There will still be some buffering of pages in main memory because latency is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 142

1U Memory-System Design Chapter 2

- .I I+--+ DISK ~1

1/0 CHANNEL
BUFFER
(CACHE)

PROCESSOR PHYSICAL
STORAGE
DEVICES

MAIN MEMORY

Fig. 2.33 A storage system with a disk buffer.

small but nonzero because of transmission delays in the input/output channel
and page faults in the disk buffer. If the system of Fig. 2.33 is well designed,
the page faults will occur mostly in the disk buffer and seldom in main memory.

There are several performance gains that can be achieved by moving the
buffer to the disk. One advantage is that the data-management algorithms for
the buffer can be optimized to the specific characteristics of the disk system.
Thus, when a disk system is replaced with a new system, the memory-man
agement algorithms in the central processor need not be altered because the
device-dependent characteristics are being treated within the disk system. The
disk buffer creates an auxiliary memory whose performance characteristics as
seen by the central processor tend to be independent of the true physical char
acteristics of the disk.

Earlier we discussed how changes in latency result in changes in the amount
of memory serving as a buffer for pages. In the configuration of Fig. 2.33, almost
all effects of latency can be absorbed within the disk-system buffer., making such
changes completely invisible to the central processor memory-management al
gorithm. Thus, when new equipment imposes a need for additional buffer ca
pacity, that buffer capacity can be added in the disk subsystem where it is of
direct use.

To obtain full benefit of the disk buffer., the buffer controller must have
information regarding the requests for data because various types of requests
have different management algorithms that work best. We have been discussing
page traffic, and for such requests a memory-management algorithm should
attempt to identify current working sets.

The disk system also receives requests for data files, and for such requests
the type of access is a major consideration. For example, the manager should
prefetch records associated with sequential files and deallocate space for se
quential records immediately after their first use. Database management treats
indices differently from data records, so a disk-buffer manager should manage

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 143

Exercises 129

indices differently than records. Therefore, the disk buffer in Fig. 2.33 is ideally
irnplemented as an "intelligent" disk buffer that can manage the buffer memory
in a manner that takes best advantage of each identifiable type of access .

There is a performance benefit in Fig. 2.33 over a system that has no disk
buffer. The performance . enhanc~ment is due to the ability to hold data in fast
memory without burdening the mput/output channel. The disk buffer may ac
tually access and hold many records that are never requested if the buffer
management algorithms attempt to bring data that are likely to be accessed into
the buffer memory. This incurs the costs of wasted accesses and additional
hardware for the buffer memory to hold the unused requests, but it does not
load the input/output channel.

There are situations in which the input/output channel is the primary bot
tleneck, and the disk system has spare capacity to read data into its buffer.
Under these conditions, the ability to have new data in the buffer can reduce
average access time without contributing to the channel overload.

Exercises
2. t The object of this exercise is to work through the design of a cache.

a) The instruction set for your architecture has 44-bit addresses, with each address
able item being a byte. You elect to design a four-way set associative cache with
each of the four lines in a set containing 64 bytes. Assume that you have 256
sets in the cache. Show how the 44-bit physical address is treated in perfonning
a cache reference.

b) Consider the following sequence of addresses. (All are hex numbers.)

0ElBOlAA0S0 0E1B01AA073 0E1B2FE3057 0E1B4FFD85F 0E1B01AA04E

In your cache, what will be the tags in the set(s) that contain these references
at the end of the sequence? Assume some initial state. Show the initial and final
states.

c) The cost of your cache is roughly proportional to the number of bits of storage
required. The purpose of this question is to determine how many bits are used
for each function.

How many bits are required to hold the cache data? How did you get this number?

How many bits are required to store address tags? How did you get this number?

The cache is four-way set associative. What is the fewest number of bits per set
required to keep track of which line to replace in the set when replacement is
LRU? How did you get this number?

d) We can construct a cache with the identical number of data bytes by doubling
the line size and by reducing set associativity to 2. How does this change the
cost of the cache as measured in total bits?

2.2 This problem asks you to consider the performance effects of doubling the line size
of a cache as compared to doubling the number of sets in a cache.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 144

130 Memory-System Design Chapter 2

Suppose you have a basic cache design such as that given in the first problem. You
wish to increase the size of the cache because memory prices have dropped since
the last design was completed. You have two options-double the line size of the
cache or double the number of sets. You want to estimate the perfonnance difference
of the two designs. Make any assumptions that you wish about the basic design.

a) Find a sequence of address references that produces more misses in the cache
with longer line size than in the cache with more sets.

b) Find a sequence of address references that produces more misses in the cache
with more sets than in the cache with longer line size.

c) Produce a sequence of references to data in a scientific program that performs
a matrix multiply of two matrices. Neither matrix fits in the cache. Show your
matrix multiply algorithm in a high-level language, then show the sequence of
data references it produces to the two operand matrices and to the result matrix.
Then describe which of the two means of doubling cache produces fewer misses
and explain why. You may ignore instruction accesses and focus attention solel;
on data fetches when answering this question.

d) Given your answers to the prior parts of this question, describe qualitatively the
characteristics of an address trace that determine which of the two ways to double
cache size will perform better.

2.3 After some careful experimentation, you discover that each time you double the
size of a cache, you reduce the absolute number of cache misses by a factor of 1 -
k where k < 1. That is,

Misses(2N) = k Misses(N)

Find a general solution to this recurrence equation in the form

Misses(N) = A N8

where A and B are constants.

2.4 The object of this exercise is to work through the design of a cache together with
a virtual memory mapping.

a) The instruction set for your architecture has a virtual address 32 bits long, and
the virtual address is mapped into a physical address that is 28 bits long. Suppose
pages have P bytes, and suppose pis the base 2 logarithm of P. Then the page
mapping is done by stripping the page displacement (the least-significant p bits
of the address) from the full virtual address, using the remaining bits as the
index of a very large page table. The page table produces 28- p bits, which are
concatenated with the p-bit page displacement to form a physical address of 28
bits. This is used for the cache reference.

Suppose that p = 11. Work out a scheme that permits you to overlap in time as
much as possible the virtual-memory function and the cache lookup. Explain
your scheme and show the relative timing of the operations. Explain how you
selected the number of sets in the cache to enable the overlapping of operations.

b) Suppose that p = 10. Explain how you can modify the scheme for p = 11 to
continue to permit the maximum amount of overlapping of cache lookup and
virtual-address mapping in this case.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 145

Exercises 131

d Now let p = 12. Indicate how you can modify the cache scheme for p = 11 for
this case.

d) What can you say is the gen_eral rule that you should use for the re]ationship of
page size and the cache design parameters?

?.S The object of this exercise is t? practice ca~~e an~lysis. This exercise and the ones
that follow refer to the trace files on the diSK available from the publisher as sup
plementary material for adopters of the text. If you do not have access to these files,
you are invited to obtain traces from any source available to you, and to repeat the
experiments on those traces.

a) Simulate a cache with 32 sets, one-way set associativity, and 8-byte line size on
TRACEl, and verify that there are no hits on the trace. This is the size of the
cache on which the original trace was stripped.

b) Write your cache simulator so that you can detect the first miss of each line of
the cache that you simulate. Let the first miss for each line be called a "simulation
transient-miss." Simulate the following caches, and record the total number of
misses observed (including simulation transient-misses}, the number of misses
if all simulation transient-misses are treated as hits, and the estimate for the
number of misses if the simulation transient accesses had the same hit ratio as
the other accesses on the trace. Also record at the end of the simulation the
number of sets that are fully initialized.

Simulate using both TRACEl and TRACE2 the following cache structures:
i) one-way associative: 32, 64, 128, 256, and 512 sets.

ill two-way associative: 32, 64, 128, 256, and 512 sets.
iii} four-way associative: 32, 64, 128, 256, and 512 sets.

c) Plot the log (base 2) of the estimated number of misses as a function of the log
(base 2) of the cache size in bytes. Plot three different curves on the same graph,
one each for one-way, two-way, and four-way associativity. Do you see any
regularity in this graph? Comment on what you see.

d) You can double the size of the cache by doubling the number of sets, doubling
the set associativity, or doubling the line size. Your data does not give you
information on the effect of doubling the line size. However, for this trace, it
gives a great deal of information on the relative performance attained from
doubling the number of sets versus doubling set associativity. What do you
observe?

2.6 The purpose of this question is to explore cost-performance trade•offs in regard to
the structure of caches.

a) The stripped trace TRACEl on the floppy disk containing trace information is
assumed to be exactly 10 percent of the length of the original trace for the
purposes of this question. Cache access time is one cycle. Main memory access
time is four cycles. Each instruction causes exactly one instruction fetch and one
operand fetch or store. Compute the cost-performance ratio for each of the 15
caches studied in Exercise 2.5, using the best estimate for your hit ratios and
your cost estimates from Exercise 2.1 for costs.

b) Which cache structure (or structures) are most reasonable to build, according to
your interpretation of the cost-performance data?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 146

132 Memory-System Design Chapter 2

2. 7 The purpose of this exercise is to explore how to do set sampling and to examine
its accuracy. For this exercise use the traces supplied on the floppy disk, or use a
source of traces available to you. Also use your simulation program that was created
in Exercise 2.5.

a) Alter your cache simulator to examine only the addresses whose set number
ends with the 3-bit pattern (0 1 0). This should cause your simulator to sample
exactly 12.5 percent of the sets. Then with sampling in place, simulate the caches
that you simulated in Exercise 2.5 on TRACEl and TRACE2 data.

b) From your data, estimate as closely as you can how many misses would be
observed on the full trace. Compare your estimates with the answers in Exercise
2.5. Calculate the relative error in the estimate of performance produced by set
sampling as compared to performance as calculated in Exercise 2.6. The relative
error is defined to be

Rel error = abs(sampling answer - true answer)/sampling answer

Plot the relative error in percent as a function of cache size, using 3 curves, one
each for set associativity of 1, 2, and 4.

c) From the plots of relative error, comment on the ranges of cache parameters for
which the sampling technique is accurate enough to be useful.

2.8 This problem concerns the theory behind trace stripping.

a) Suppose you produce an address trace for a computer system, and you process
that trace in the following way. You simulate the behavior of a cache with 64
sets, one-way set associativity (direct mapping), and lines of size 32 bytes. Ad
dresses are byte addresses. As you process the trace, you produce an output
trace that contains just the addresses of the cache misses.

Now suppose that you use the output trace as the input trace to a cache simulator.
Assume that the cache you simulate has 64 sets, one-way set associativity, and
64-byte lines. Will this trace generate more, equal, or fewer cache misses than
the original trace? Prove that your answer is correct.

b) Assume that you use the same reduced trace and use it as input for the simulation
of a cache with 32 sets, one-way set associativity, and 32-byte lines. Will this
trace generate more, equal, or fewer cache misses than the original trace? Prove
that your answer is correct.

2.9 The object of this exercise is to explore trace stripping more deeply.

a) The chapter states that if a trace is stripped by simulating an N-set, one-way set
associative cache, the stripped trace can be used for any cache with a multiple
of N sets and K-way set associativity for any K greater than or equal to 1. Consider
such a trace and prove that it can be used to evaluate a 2N-set four-way cache.
Specifically, prove that every miss on the full trace is a miss on the reduced trace
for the new cache, and conversely, every miss on the reduced trace is a miss on
the full trace for the new cache.

b) Suppose that a trace is stripped by simulating an N-set four-way cache. The
reduced trace contains just the misses produced by this cache. Prove or disprove
the following statement:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 147

Exercises 133

If a 2N-set cache is simulated on the full trace and on the reduced trace, the
number of misses observed in both cases is equal.

2_1o The object of this exercise is to work through the design of a virtual-memory system.
In this problem, you are given four sets of design parameters and are asked to
design a virtual-memory system to meet each specification. There are many possible
designs for each set of constraints. As you explore the design options, your main
goal is to estimate the cost and performance of competing alternatives. [n considering
performance, the number of levels of mapping is the main criterion. Fewer levels
give better performance, and one level is best. In considering cost, determine how
much memory space is committed to tables for mapping each level. You should be
able to narrow the design choices to a few different possibilities, and you wi11
probably not be able to select a best design from the alternatives with the information
given. If you can narrow the choices to one, do so, and if not select a range of
satisfactory designs. Discuss your selections and why you chose them.

a) Consider the design of a mapping device that maps virtual-memory addresses
into physical addresses. The size of physical memory is 64K bytes, virtual ad
dresses are 24 bits, and the working-set size of processes for which this machine
is designed is approximately 40 K-bytes. Work out the design parameters for a
virtual-memory mapper, including a translation-lookaside buffer. Discuss your
reasoning that led you to select a particular design or set of designs.

b) Repeat a for a physical memory of size 64 M-bytes, a virtual address of 36 bits,
and a typical working-set size of 4 M-bytes.

c) Repeat a for a physical memory of size 1 M-bytes, a virtual address of 22 bits,
and a typical working-set size of 64K bytes.

d) Repeat a for a physical memory of size 512 M-bytes, a virtual address of 48 bits,
and a typical working-set size of 32 M-bytes.

2.11 This problem concerns replacement algorithms for virtual-memory systems.

a) Page-fault-frequency (PFF) and working-set-replacement algorithms have similar
behavior except during the transient as a program changes from one phase to
another and thereby changes its working set. Assume that if a working set is
entirely resident within main memory, the expected fault rate is about one fault
per 1000 instructions, and the number of instructions between faults increases
by ten percent for each additional page in main memory over and above the
pages that hold the working set.

If the working set is not contained in memory, the fault rate is one fault per 25
instructions, and this improves by 25 instructions between faults for every page
of the working set that is added, up to the point that the working set of 20 pages
is resident in main memory. Given this information, what is the threshold that
you would set for PFF, how many faults would occur, and what would be the
maximum number of pages resident as you change from one phase of the pro
gram to another phase of the program with identical page-fault characteristics?
Discuss how you selected the threshold and show how you amved at your
answers.

b) Repeat the first part of this exercise for the case in which the replacement al-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 148

134 Memory-System Design Chapter2

gorithm is working set, but in this case indicate how you selected the working
set window instead of explaining the choice of a threshold.

c) Describe a practical mechanism for determining whether or not a page is in a
working set for a program. Your mechanism does not have to use Denning's
definition exactly as stated in the text, but it should yield a reasonable approx
imation to the working set. What aspect of your solution, if any, is the most
costly in time expended? What aspect is likely to be the most costly to implement
assuming current cost conditions?

2.12 The object of this exercise is to examine performance characteristics of virtual memory.

· a) Consider a physical disk system that is capable of performing an average of 50
accesses per second. Assume that an average working set is 50 K-bytes, that the
mean number of instructions between page faults is 100 when less than the full
working set is present in memory and is 5000 when the SOK working set is wholly
contained in memory, and the page-fault rate drops off by 30 percent for each
doubling of the number of pages in memory in excess of SOK. Assume that each
instruction takes 1 1,1.s on the average to execute. Plot the throughput (completed
instructions per second) as a function of memory size for a single program being
executed.

b) Repeat the first part of this exercise for the case in which two programs share
memory equally.

c.) How should you partition memory to obtain maximum throughput for the sta
tistics given when memory contains SOK-bytes? 100 K-bytes? 250 K-bytes? An
arbitrarily large number of bytes? Describe how you obtained these answers.

2.13 Modem disks incorporate disk cache, which is a high-speed semiconductor memory
that buffers disk accesses. Assume that the disk controller understands how data
are being requested from disk and that it has the ability to treat executable programs,
sequential files, and pages of virtual memory that have been swapped out of main
memory. Describe how you would manage the memory in the disk cache to do a
reasonable job of avoiding accesses to the rotating physical disk. Make reasonable
assumptions concerning the frequency of accesses, the size of disk cache, and the
fault rate as a function of data size.

2.14 This problem concerns buffer requirements for virtual-memory systems. Assume
the performance data for programs given in Exercise 2.12. For the 250K memory
example at maximum performance, how much of the memory system for your
answer to Exercise 2.12 is serving as buffer memory on the average? Show how you
obtained this answer. Assume that the disk-access time increases by a factor of 2,
and you want to obtain equal throughput as for a system with the faster disk-access
time. Determine how to obtain increased throughput by adding additional memory,
using as little extra memory as possible. How will you allocate memory in the new
system to achieve the necessary throughput? How much of the memory on the
average is serving as buffer?

2.15 This problem addresses the design of a disk cache.

a) Assume that a program has to access a sequential file. What should the disk
cache do in managing the records in this file? Describe the commands and replies

PATENT OWNER DIRECTSTREAM, LLC
EX. 2135, p. 149

