
Homayoun

Reference 20

PATENT OWNER DIRECTSTREAM, LLC
EX. 2132, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CUBE: A 512-FPGA CLUSTER

Oskar Mencer, Kuen Hung Tsoi, Stephen Craimer,
Timothy Todman and Wayne Luk

Dept. of Computing, Imperial College London
{o.mencer,khtsoi,s.craimer,tjt97,wl}@doc.ic.ac.uk

Ming Yee Wong and Philip Heng Wai Leong

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong
{mywong,phwl}@cse.cuhk.edu.hk

ABSTRACT
Cube, a massively-parallel FPGA-based platform is pre-

sented. The machine is made from boards each containing
64 FPGA devices and eight boards can be connected in a
cube structure for a total of 512 FPGA devices. With high
bandwidth systolic inter-FPGA communication and a flex-
ible programming scheme, the result is a low power, high
density and scalable supercomputing machine suitable for
various large scale parallel applications. A RC4 key search
engine was built as an demonstration application. In a fully
implemented Cube, the engine can perform a full search on
the 40-bit key space within 3 minutes, this being 359 times
faster than a multi-threaded software implementation run-
ning on a 2.5GHz Intel Quad-Core Xeon processor.

1. Introduction
Reconfigurable gate array technology has been used in many
areas for both research and industrial applications; examples
include cryptographic systems, architectural exploration, mul-
timedia processing, physical or financial simulation and sys-
tem emulation. The major advantage of reconfigurable plat-
forms over general purpose processors and ASICs is the bal-
ance between circuit level specialization and programming
flexibility.

The available resources in field programmable gate ar-
ray (FPGA) devices increase each year due to Moore’s Law
with the addition of embedded RAM, DSP block and proces-
sor core, but the demand for more programmable resources
is even higher as more sophisticated systems are being im-
plemented. A common solution is to use multiple FPGA
devices for a single design. In such an environment, design
partitioning, data communication and logic configuration be-
come increasingly complicated with the number of devices
employed.

Although research on computing systems with large num-
bers of parallel ICs or large numbers of processing elements
on a single IC has been well studied, studies with large num-
bers of reconfigurable devices have not been fully explored.
Practices applied to systems with small numbers of devices
are not applicable to systems with hundreds of FPGAs. In
particular, issues concerning the clock distribution scheme,
data communication paths, configuration requirements and
the increasing cost of system debugging requires new ideas

and techniques on both hardware construction and develop-
ment flow.

The lack of a cost effective massive FPGA cluster frame-
work has become an obstacle for researchers exploring the
properties and applications on this class of system. In this
paper, we describe a massively-parallel reconfigurable plat-
form designed for both advancing research in the field and
solving real-world applications. The major contributions of
this work include:

• A novel massively-parallel FPGA architecture, called
the Cube, is proposed. The architecture balances scal-
ability, flexibility and fault tolerance, providing a low
cost, high density and versatile research platform for
large scale parallel reconfigurable clusters.

• A Single Configuration Multiple Data (SCMD) pro-
gramming paradigm is used in the Cube for efficient
FPGA configuration. Using SCMD, all 512 FPGAs
can be programmed to the same bitstream in parallel
within a few seconds which is suitable for constructing
large scale systolic processor array.

• A prototype of the Cube platform was built and tested.
The hardware consists of multiple boards each host-
ing 64 Xilinx FPGA devices. The complete system is
a 512-node FPGA systolic array with 3.2 Tbps inter-
FPGA bandwidth. A standard I/O interface and simu-
lation framework are also provided.

• A key search engine was implemented in the Cube
to demonstrate the computing power of the system.
With 49152 independent key search cores, it can fully
search the 40-bit key space of the RC4 encryption al-
gorithm in 3 minutes.

Section 2 reviews previous work on massively-parallel
processing (MPP) platforms. Section 3 details the architec-
ture and design details of Cube platform. Section 4 presents
a fully functional 64-FPGA module, the critical component
of the Cube platform. Section 5 describes and evaluates an
RC4 key search engine for the Cube. Finally, Section 6
presents conclusions and describes future directions of the
Cube project.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2132, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2. Related Work

The basic idea of MPP is to partition the problem into sub-
tasks and distribute them to different nodes called processing
elements (PEs). Total processing time is reduced as compu-
tations in the PEs are in parallel. This section reviews some
contemporary MPP systems.

In 1994, the first prototype of the GRAPE-4 [1] system
for computing the N-body problem in astrophysics was pre-
sented. In 1995, the measured peak performance of a com-
pleted GRAPE-4 system was reported as 1.08 Tflops [2].
The system had 40 modules, each carrying 48 Hermite Ac-
cceleRator Pipeline (HARP) processors. The HARP was
a dedicated ASIC for gravitational force computations run-
ning at 15MHz. All modules in GRAPE-4 were connected
to a central host station through a shared bus. In 2002, the
GRAPE-6 system with 1728 to 2048 processors achieved 64
Tflops [3]. Each processor in GRAPE-6 had 4 independent
force pipelines. The processors were connected in a hierar-
chical network including switch boards and Gigi-bit Ether-
net. In 2005, an SIMD architecture, Network on Chip (NoC)
and other approaches were proposed for the new GRAPE-
DR system [4] which targeted Pflops performance. The cur-
rent GRAPE hardware designs are specialized for gravita-
tional force computations and do not support more general
applications.

The Berkeley Emulation Engine 2 (BEE2) system was
developed for event-driven network simulation in 2004 [5].
In BEE2, five Xilinx Virtex-II Pro 70 FPGAs were hosted on
a single Print Circuit Board (PCB). A star topology was used
to connect the four computational FPGAs in a 64-bit ring
and a control FPGA as the center of the star network. All
connections between FPGAs and on-board memories ran at
200MHz. Computationally intensive tasks ran on the outer
ring while the control FPGA ran a Linux OS and managed
off-board I/Os. The asymmetry between the control FPGA
and computation FPGA complicated the programming model.

In 2006, COPACOBANA, a low cost cryptanalysis sys-
tem using large numbers of FPGAs was described [6]. In the
system, 6 Xilinx Spartan-3-1000 FPGAs were grouped in a
DIMM module. All modules were connected by a shared
64-bit data bus on a DIMM backplane. In a 2007 imple-
mentation [7] the system running at 136MHz can search a
full 56-bit DES key space in 12.8 days. New versions of
the hardware described in 2008 used more powerful Xilinx
Virtex-4 FPGAs. This system is scalable in physical form
but not logically. Users can add more DIMM modules as
needed to expand the system but are limited by the global
shared bus. Unlike cryptanalysis, most applications require
communication between PEs, where the shared bus architec-
ture becomes a bottleneck.

In 2007, Nvidia released their C compiler suite, CUDA,
for Graphic Processing Units (GPU) [8]. Users can use the
standard C language to utilize the massively-parallel thread-

ing feature in GPU for general purposes computation. In a
GPU chip, simple PEs executing linear threads communicate
to each other through shared memory. GPUs are increasingly
attractive to both academia and industry due to ease of pro-
gramming and high-performance floating point units. The
scalability of GPUs is largely limited by their dependency
on a host computer system; data communication overhead
between the host and GPU through a PCIe interface makes
it difficult to integrate large numbers of GPU chips with low
latency over a dedicated high speed network.

3. System Architecture
In this section, the details of the Cube architecture are pre-
sented. Fig. 1 shows the block diagram of a complete Cube
platform. Each FPGA is considered as an individual PE. All
PEs are connected in a systolic chain with identical inter-
faces between them. There are no storage components in the
system except for the PEs’ internal memories. Also, there
are no global wires for data communication and clock distri-
bution. All FPGAs can be configured with the same design
concurrently. Each PE accepts data from the previous one,
processes them and passes them to the next PE. There are
several advantages to this approach.

- Scalability: A centralized shared bus/memory archi-
tecture is not suitable for scaling up to massive amount
of elements due to resource conflicts. The cost of
full point-to-point topologies such as cross-bars in-
creases exponentially with the number of PEs and thus
become prohibitively expensive in systems with hun-
dreds of PEs. In the Cube platform, a linear systolic
interface is used which has cost which is linear with
the number of PEs.

- High Throughput: Synchronizing high frequency clocks
between 64 FPGA devices on a single board or across
multiple boards is difficult. In the Cube system, short
tracks between neighboring FPGA devices for clock
and data distribution can easily achieve over 100MHz
clock rates for inter-PE communication. Also, mini-
mizing the overhead of handshaking and traffic switch-
ing results in low latency and deterministic communi-
cation channels.

- Rapid Development: Design partitioning and work-
load distribution in a large scale FPGA cluster are eased
by a unified interface and by each PE playing a sym-
metric role in the system. All FPGAs can be pro-
grammed to the same configuration making for con-
stant time configuration, rather than having time pro-
portional to the number of PEs.

- Low cost: On-board tracks in the Cube are less ex-
pensive than the high speed switches and backplanes
employed previous systems. Also, the regular layout
in the Cube avoids the expensive and time consuming
processes of testing and verifying the signal integrity

PATENT OWNER DIRECTSTREAM, LLC
EX. 2132, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(7,7)
PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

Board 1To Host/Next Board

From Host/Previous Board

Board 2
Board 3
Board 4
Board 5
Board 6
Board 7
Board 8

PE
Xilinx Spartan 3
XC3S4000
−5
FG676

PE
Xilinx Spartan 3
XC3S4000
−5
FG676

TMS/TCK etc.CCLKDIN

DAT_IN
AUX_IN

64
8

SYS_IN
SYS_CK

4

TDI

64
8

4

CLK_IN

(0, 7)(0, 6)

64
8

4

AUX_OUT
CLK_OUT

SYS_OUT
SYC_CO

TDO

GPIO

32 32

DAT_OUT

OSCFPGA signals
CPLD signals
Configuration Signals

(0,6) (0,7)(0,0) (0,1) (0,2)

(2,0)

(1,7) (1,2) (1,0)

(7,0)

Fig. 1. Cube architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2132, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of the boards.

3.1. The FPGA Systolic Array

Each module in the Cube platform hosts 64 Xilinx FPGAs
(XC3S4000-5-FG676) arranged in an 8 by 8 matrix as shown
in Fig. 1. Each FPGA has a unique ID indicating the logi-
cal X-Y location of the device. Eight FPGAs are grouped
together in a row and have independent configuration inputs
and power supplies. The complete system consists of 8 con-
nected boards in a cabinet forming an 8 × 8 × 8 cluster of
512 FPGAs, and thus named Cube.

There are two systolic buses in the system: the PE bus
is the major data communication channel between PEs and
the SYS bus is used for system control. Each PE has a 64-bit
data bus I/O (DAT), an 8-bit auxiliary bus I/O (AUX) and a
dedicated clock line I/O (CLK), connecting the previous PE
to the next PE. The SYS bus, with 1 dedicated clock line
and 4-bit data I/Os, goes through all PEs and CPLDs. All
these buses connect adjacent PEs only. These short point-to-
point parallel buses significantly simplify the programming
model and higher inter-PE bandwidth is achieved. The re-
quirements on PCB layout and FPGA I/O interface are also
relaxed for this topology compared to gigahertz serial com-
munications in other designs. On the other hand, the sys-
tolic chain enables multiple boards to be cascaded for bet-
ter scalability without reducing the I/O clock rate. The PE
bus was designed to work at 100MHz and thus providing
6.4Gbps data bandwidth between PEs with additional con-
trol and handshaking signals on the AUX bus.

All these buses are freely available for user designs. The
buses are also routed from/to external headers for communi-
cation between host and board or between multiple boards.
In most applications, CLK_IN is driven by previous PE or
external source from headers. The clock is then replicated
for use internally and forwarded to the next PE through a de-
lay locked loop digital clock manager (DCM) in the FPGA.
In the design, the DAT and the AUX buses can easily match
the wire length of the clock line for improved I/O thoughput.

The internal logic of the PE can only be used after the
input clock source is stable. There is a delay between DCM
reset and when the clock output is usable. The long distri-
bution lines of the global reset and the long cascaded chain
of 64 DCMs make it impossible to synchronize the DCM
locking sequence of a 64-FPGA module concurrently. To
solve this problem, the LOCKED output of the current DCM
is used to reset the following DCM. This proceeds in a se-
quential fashion as described in [9]. Global synchronization
of clock signals is feedforward in nature and skew is depen-
dent on the performance of the DLLs. An additional 25MHz
oscillator is provided in each row for increased flexibility.
This clock source is broadcasted to the row and shared by
both FPGAs and the row associated CPLD.

3.2. Configuration of FPGAs

In the Cube platform, different FPGA configuration schemes
are provided under SCMD for minimum configuration time
and maximum flexibility. Considering the number of FPGAs
and the size of the board in our design, commodity program-
ming equipment cannot provide sufficient driving power to
configure all devices concurrently. Thus a CPLD (Xilinx
CoolRunner-II XC2C256-VQ100) is installed in each row
to control and drive the configuration signals. Both JTAG
and Slave Serial (SS) programming modes are supported by
selecting the M1 input to the FPGA through the CPLD. This
can be controlled by on board DIP switches or external host
through the SYS bus. The CPLDs are programmed by a sep-
arated JTAG chain.

Slave serial (SS) mode provides the fastest way to con-
figure all FPGAs in parallel. The SS configuration signals
are sampled and buffered by internal Schmitt triggers in the
CPLDs and thus all associated FPGAs receive clean and syn-
chronized signals. As shown in Fig. 2, there are three output
links from each CPLD for SS configuration. Two of these
links broadcast the signals to FPGAs in the odd and even
position of the row, while the third link sends the SS signal
to the CPLD of the next row. This provides extra flexibil-
ity for enabling user to program different configurations in
odd and even FPGAs. It is also possible to program different
configurations to different rows of FPGAs.

FPGA0 FPGA2

FPGA1

FPGA4 FPGA6

FPGA3 FPGA5 FPGA7

CPLD

SS Signals

CPLD

Fig. 2. Slave Serial Configuration Mode in Cube.

JTAG mode allows users to program individual FPGAs
and read back internal values. Using JTAG in conjunction
with SS mode enables users to configure most FPGAs in par-
allel rapidly and change the contexts of some FPGAs later.
For example, it may be necessary to change the head and tail
of the systolic chain in certain applications.

3.3. External Interface

The first and the last FPGAs in the systolic chain are con-
nected to external headers on the 64-FPGA board. Both the
PE and the SYS buses are available. For both input or out-
put, there are 78 signal lines grouped into three standard IDE
headers which can be connected to external devices or an-
other module in the Cube through standard IDE ribbon ca-
bles.

There are also three pairs of programming headers for
CPLD JTAG, FPGA JTAG and FPGA Slave Serial configu-
ration. By bridging the output headers of the current mod-
ule to the input headers of the next module, a single set of
programming cables can be used to configure 512 FPGAs

PATENT OWNER DIRECTSTREAM, LLC
EX. 2132, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

