Homayoun

Reference 17

https://www.docketalarm.com/

Microsoft Technical Report MSR TR-2005-183 (November 2005, revised March 2006)

GPUTeraSort: High Performance Graphics Co-processor
Sorting for Large Database Management

Naga K. Govindaraju * Jim Gray 1

Ritesh Kumar * Dinesh Manocha *

{naga,ritesh,dm}@cs.unc.edu, Jim.Gray@microsoft.com
http://gamma.cs.unc.edu/ GPUTERASORT

ABSTRACT

We present a new algorithm, GPUTeraSort, to sort billion-
record wide-key databases using a graphics processing unit
(GPU) Our algorithm uses the data and task parallelism
on the GPU to perform memory-intensive and compute-
intensive tasks while the CPU is used to perform I/O and
resource management. We therefore exploit both the high-
bandwidth GPU memory interface and the lower-bandwidth
CPU main memory interface and achieve higher memory
bandwidth than purely CPU-based algorithms. GPUTera-
Sort is a two-phase task pipeline: (1) read disk, build keys,
sort using the GPU, generate runs, write disk, and (2) read,
merge, write. It also pipelines disk transfers and achieves
near-peak I/O performance. We have tested the perfor-
mance of GPUTeraSort on billion-record files using the stan-
dard Sort benchmark. In practice, a 3 GHz Pentium IV
PC with $265 NVIDIA 7800 GT GPU is significantly faster
than optimized CPU-based algorithms on much faster pro-
cessors, sorting 60GB for a penny; the best reported Pen-
nySort price-performance. These results suggest that a GPU
co-processor can significantly improve performance on large
data processing tasks.

1. INTRODUCTION

Huge sort tasks arise in many different applications in-
cluding web indexing engines, geographic information sys-
tems, data mining, and supercomputing. Sorting is also
a proxy for any sequential I/O intensive database work-
load. This article considers the problem of sorting very large
datasets consisting of billions of records with wide keys.

The problem of external memory sorting has been stud-
ied for more than five decades, starting with Friend [16].
The dramatic improvements in the speed of sorting algo-
rithms are largely due to advances in computer architec-
ture and software parallelism. Recent algorithms utilize
simultaneous multi-threading, symmetric multi-processors,

*University of North Carolina at Chapel Hill
TMicrosoft Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

DOCKET

_ ARM

advanced memory units, and multi-processors to improve
sorting performance. The current Indy PennySort record
benchmark?, sorts a 40 GB database in 1541 seconds on a
$614 Linux/AMD system.

However, current external memory sort performance is
limited by the traditional Von Neumann style architecture
of the CPU. Computer architects use data caches to amelio-
rate the CPU and the main memory bottleneck; but, CPU-
based sorting algorithms incur significant cache misses on
large datasets.

This article shows how to use a commodity graphics pro-
cessing unit (GPU) as a co-processor to sort large datasets.
GPUs are programmable parallel architectures designed for
real-time rasterization of geometric primitives - but they
are also highly parallel vector co-processors. Current GPUs
have 10x higher main memory bandwidth and use data par-
allelism to achieve 10x more operations per second than
CPUs. Furthermore, GPU performance has improved faster
than Moore’s Law over the last decade - so the GPU-CPU
performance gap is widening. GPUs have recently been used
for different scientific, geometric and database applications,
as well as in-memory sorting [20, 22, 35]. However, previ-
ous GPU-based sorting algorithms were not able to handle
gigabyte-sized databases with wide keys and could not keep
up with modern disk IO systems.

Main Results: We present GPUTeraSort that uses a GPU
as a co-processor to sort databases with billions of records.
Our algorithm is general and can handle long records with
wide keys. This hybrid sorting architecture offloads compute-
intensive and memory-intensive tasks to the GPU to achieve
higher I/O performance and better main memory perfor-
mance. We map a bitonic sorting network to GPU rasteriza-
tion operations and use the GPU’s programmable hardware
and high bandwidth memory interface. Our novel data rep-
resentation improves GPU cache efficiency and minimizes
data transfers between the CPU and the GPU. In practice,
we achieve nearly 50 giga-byte per second memory band-
width and 14 giga-operations per second on a current GPU.
These numbers are 10x what we can achieve on the CPU.
We implemented GPUTeraSort on an inexpensive 3 GHz
Pentium IV EE CPU with a $265 NVIDIA 7800 GT GPU.
GPUTeraSort running the SortBenchmark on this inexpen-
sive computer has performance comparable to an “expen-
sive” $2,200 3.6 GHz Dual Xeon server. Our experimental
results show a 4 times performance improvement over the
2005 Daytona PennySort benchmark record and 1.4 times

Thttp://research.microsoft.com/barc/SortBenchmark

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Microsoft Technical Report MSR TR-2005-183 (November 2005, revised March 2006)

improvement over the 2003 Indy PennySort benchmark record.

Some of the novel contributions of our work include:

An external sorting architecture that distributes the
work between the CPU and GPU.

e An in-memory GPU-based sorting algorithm which is
up to 10 times faster than prior CPU-based and GPU-
based in-memory sorting algorithms.

Peak 1/0 performance on an inexpensive PC and near
peak memory bandwidth on the GPU.

A scalable approach to sorting massive databases by
efficiently sorting large data partitions.

In combination, these features allow an inexpensive PC
with a mid-range GPU to outperform much more expen-
sive CPU-only PennySort systems. The rest of the paper
is organized as follows. Section 2 reviews related work on
sorting, hardware accelerated database queries, and GPU-
based algorithms. Section 3 highlights some of the limita-
tions of CPU-based external sorting algorithms and gives an
overview of GPUTeraSort. Section 4 presents the GPUTera-
Sort algorithm and Section 5 describes its implementation.
Section 6 compares its performance with prior CPU-based
algorithms.

2. RELATED WORK

This section briefly surveys related work in sorting and the
use of GPUs to accelerate data management computations.

2.1 Sorting

Sorting is a key problem in database and scientific ap-
plications. It has also been well studied in the theory of
algorithms [23]. Many optimized sorting algorithms, such
as quicksort, are widely available and many variants have
been described in the database literature [2]. However, the
CPU performance of sorting algorithms is governed by cache
misses [17, 24, 32| and instruction dependencies [45].
address these memory and CPU limits, many parallel al-
gorithms and sorting systems have been proposed in the
database and high performance computing literature [11,
14, 25, 38, 44].

The Sort Benchmark, introduced in 1985 was commonly
used to evaluate the sorting algorithms [15]. As the original
benchmark became trivial, it evolved to the MinuteSort [32]
and the PennySort benchmarks [33]. Nyberg et al. [32] use a
combination of quicksort and selection-tree mergesort in the
AlphaSort algorithm. In practice, AlphaSort’s performance
varied considerably based on the cache sizes. The NOW-
SORT algorithm [8] used a cluster of workstations to sort
large databases. Recently, Garcia and Korth [17] used fea-
tures of SMT (simultaneous multi-threading) to accelerate
in-memory sort performance.

2.2 Optimizing Multi-Level Memory Accesses

Many algorithms have been proposed to improve the per-
formance of database operations using multi-level memory
hierarchies that include disks, main memories, and several
levels of processor caches. Ailamaki gives a recent survey on
these techniques [4]. Over the last few years, database archi-
tectures have used massive main memory to reduce or elim-
inate I/O; but the resulting applications still have very high

DOCKET

_ ARM

clocks per instruction (CPI). Memory stalls due to cache
misses can lead to increased query execution times [6, 27].
There is considerable recent work on redesigning database
and data mining algorithms to make full use of hardware
resources and minimize the memory stalls and branch mis-
predictions. These techniques can also improve the perfor-
mance of sorting algorithms [5, 12, 26, 28, 36, 37, 39, 45].

2.3 GPUs and Data Parallelism

Many special processor architectures have been proposed
that employ data parallelism for data intensive computa-
tions. Graphics processing units (GPUs) are common ex-
amples of this, but there are many others. The Clear-
Speed CSX600 processor [1] is an embedded, low power,
data parallel co-processor that provides up to 25 GFLOPS
of floating point performance. The Physics Processing Unit
(PPU) uses data parallelism and high memory bandwidth
in order to achieve high throughput for Physical simulation.
Many other co-processors accelerate performance through
data parallelism.

This paper focuses on using a GPU as a co-processor for

sorting, because GPUs are commodity processors. A high
performance mid-range GPU costs less than $300. Current
GPUs have about 10x the memory bandwidth and process-
ing power of the CPU and this gap is widening. Commodity
GPUs are increasingly used for different applications includ-
ing numerical linear algebra, scientific, and geometric com-
putations [34]. GPUs have also been used as co-processors to
speedup database queries [9, 18, 19, 40] and data streaming
[20, 29, 41].
Sorting on GPUs: Many researchers have proposed GPU-
based sorting algorithms. Purcell et al. [35] describe a
bitonic sort using a fragment program where each stage of
the sorting algorithm is performed as one rendering pass.
Kipfer et al. [22] improve bitonic sort by simplifying the
fragment program; but the algorithm still requires ~ 10
fragment instructions. Govindaraju et al. [20] present a
sorting algorithm based on a periodic balanced sorting net-
work (PBSN) and use texture mapping and blending oper-
ations. However, prior GPU-based algorithms have certain
limitations for large databases. These include:

Previous algorithms were limited to
512MB on

e Database size:
databases that fit in GPU memory (i.e.
current GPUs).

e Limit on key size: The sort keys were limited to 32-bit
floating point operands.

e FEfficiency: Previous algorithms were not fast enough
to match the disk array 10 bandwidth.

Our GPUTeraSort algorithm uses the GPU as a co-processor
in ways that overcome these limitations.

3. OVERVIEW

This section reviews external memory sorting algorithms,
analyzing how these algorithms use processors, caches, mem-
ory interfaces, and input/output (I/O) devices. Then we
present our GPUTeraSort algorithm.

3.1 External Memory Sorting

External memory sorting algorithms are used to reorga-
nize large datasets. They typically perform two phases. The

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Microsoft Technical Report MSR TR-2005-183 (November 2005, revised March 2006)

first phase produces a set of files; the second phase processes
these files to produce a totally ordered permutation of the
input data file. External memory sorting algorithms can be
classified into two broad categories [42]:

e Distribution-Based Sorting: The first phase par-
titions the input data file using (S-1) partition keys
and generates S disjoint buckets such that the elements
in one bucket precede the elements in the remaining
buckets [23]. In the second phase, each bucket is sorted
independently. The concatenated sorted buckets are
the output file.

Merge-Based Sorting: The first phase partitions
the input data into data chunks of approximately equal
size, sorts these data chunks in main memory and
writes the “runs” to disk. The second phase merges
the runs in main memory and writes the sorted output
to the disk.

External memory sorting performance is often limited by
I/0 performance. Disk I/O bandwidth is significantly lower
than main memory bandwidth. Therefore, it is important to
minimize the amount of data written to and read from disks.
Large files will not fit in RAM so we must sort the data in at
least two passes but two passes are enough to sort huge files.
Each pass reads and writes to the disk. Hence, the two-pass
sort throughput is at most i the throughput of the disks.
For example, a PC with 8 SATA disks each with a peak I/O
bandwidth of 50 MBps per disk can achieve at most 400
MBps disk bandwidth. So a p-pass algorithm will have a
throughput of - 400 since each pass must read as well as write
the data. In partlcular7 a two-pass sort achieves at most 100
MBps throughput on this PC. Single pass algorithms only
work on databases that fit entirely in main memory.

External memory sort algorithms can operate in two passes
if the Phase 1 partitions fit in main memory. The parallel
disk model (PDM) [43] captures disk system performance
properties. PDM models the number of I/O operations, disk
usage and CPU time. Vitter [42] analyzed the practical ap-
plicability of PDM model to common I/O operations such
as scanning the items in a file, sorting a file, etc. In this
model, the average and worst case I/O performance of ex-
ternal memory sorting algorithms is ~ %logmn where n is
the input size, m is the internal memory size, D is the num-
ber of disks and logmn denotes the number of passes when
the data partition size in the Phase 1 is & m [3, 30]. Based
on the PDM model, an external memory sorting algorithm
can achieve good I/O performance on large databases when
the data partition sizes are comparable to the main mem-
ory size. Salzberg et al. [38] present a similar analysis of
merge based sorting memory requirements. The analysis
is as follows. If N is the file size, M is the main memory
size and R is the run size in phase 1 then typically: (1)
R~ % because of the memory required to simultaneously
pipeline reading the input, sorting, and writing the output.
The number of runs generated in phase 1 is runs ~ %. If
T is the I/O read size per run in phase 2, and then since
at least one buffer for each run must fit in memory and a
few more buffers are needed for prefetch and postwrite: (2)
M ~T x runs =T x 4. Combining equations (1) and (2)
gives (3) M? ~ T x % or, ignoring the constant term (4)
M ~+/TN.

Since a two-pass sort’s RAM requirements (M) increase

DOCKET

_ ARM

300

1 L
250 1 \Total Time (in Sec)

\ Phase Il
200 - \ 1/0 Bandwidth (MB/s)

150 -

100 4

50 -

0 200 400 600 800 1000 1200
Partition Size (in KB)

Figure 1: Performance of an optimized merge-based
external memory sorting algorithm on a Dual 3.6
GHz Xeon processor system. Observe that the
speed of Phase 2 increases nearly linearly with the
partition size. As the data partition sizes in Phase
I fit well in the L2 cache sizes, the Phase 1 time
remains nearly constant.

as the square root of the input file size, multi-GB RAM ma-
chines can two-pass sort terabyte files. In particular, if T=2
MB to reduce disk seek overhead, and N is 100 GB, then
R ~ 230 MB. In practice, phase 1 partitions are hundreds
of megabytes on current PCs. However, current algorithms
running on commodity CPUs, referred to as CPU-based al-
gorithms, cannot achieve high sorting performance on such
large partitions because:

e Cache Misses: CPU-based sorting algorithms incur
significant cache misses on data sets that do not fit
in the L1, L2 or L3 data caches [32]. Therefore, it is
not efficient to sort partitions comparable to the size
of main memory. This results in a tradeoff between
disk I/O performance (as described above) and CPU
computation time spent in sorting the partitions. For
example, in merge-based external sorting algorithms,
the time spent in Phase 1 can be reduced by choosing
run sizes comparable to the CPU cache sizes. However,
this choice increases the time spent in Phase 2 to merge
a large number of small runs. Figure 1 illustrates the
performance of an optimized commercial CPU based
algorithm [31] on a dual Xeon configuration for varying
Phase 1 run sizes. Observe that the elapsed time de-
creases as the run size increases. However, increasing
the run size beyond the CPU data cache sizes can de-
grade the sorting performance during Phase 1 [24]. As
explained in Section 4, GPUs have a high bandwidth
memory interface that can achieve higher performance
on larger runs.

e I/O Performance: I/O operations have relatively
low CPU overhead. However, CPU-based sorting al-
gorithms can be compute-intensive [24] and may not
be able to achieve high I/O performance. Figure 13
highlights the I/O performance of Nsort [31] on sys-
tems with a peak I/O throughput of 200 MBps. The
I/0 throughput obtained by the CPU-based sorting al-
gorithm is around 147 MBps for a single processor and

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Microsoft Technical Report MSR TR-2005-183 (November 2005, revised March 2006)

Figure 2: This figure highlights the high data par-
allelism and memory bandwidth inside a GPU.
GPUTeraSort uses the vector processing function-
alities to implement a highly parallel bitonic sort-
ing network. It outperforms prior CPU-based and
GPU-based algorithms by 3-10 times.

around 200 MBps with a dual processor. This suggests
that the overall I/O performance can be improved by
offloading computation to an additional processor or
CO-ProCcessor.

e Memory Interfaces: Some recent external sorting
algorithms use simultaneous multi-threading (SMT)
and chip multi-processor (CMP) architectures to im-
prove performance. However, the interface to main
memory on current SMT and CMP architectures sig-
nificantly limits the memory bandwidth available to
each thread when data does not fit in processor caches
[17]. Tt is possible to achieve higher performance by
running the sorting algorithm on co-processors with
dedicated memory interfaces.

3.2 Sorting with a Graphics Processor

This section gives a brief overview of graphics processors
(GPUs) highlighting features that make them useful for ex-
ternal memory sorting. GPUs are designed to execute geo-
metric transformations on a rectangular pixel array. Each
transformation generates a data stream of display pixels.
Each incoming data element has a color and a set of texture
coordinates that reference a 2D texture array. The data
stream is processed by a user specified program executing
on multiple fragment processors. The output is written to
the memory. GPUs have the following capabilities useful for
data-intensive computations.

e Data Parallelism: GPUs are highly data parallel
- both partition parallelism and pipeline parallelism.
They use many fragment processors for partition par-
allelism. Each fragment processor is a pipeline-parallel
vector processor that performs four concurrent vector
operations such as multiply-and-add (MAD) instruc-
tions on the texture coordinates or the color compo-
nents of the incoming data stream. Current CPUs of-
fer similar data parallelism using instructions such as
SSE2 on Intel processors or AltiVec operations on Pow-
erPC processors. However, CPU data parallelism is

DOCKET

_ ARM

relatively modest by comparison. In case of sorting, a
high-end Pentium IV processor can execute four SSE2
comparisons per clock cycle while a NVIDIA GeForce
7800 GTX GPU-based sorting algorithm can perform
96 comparisons per clock cycle.

e Instruction-level Parallelism: In addition to the
SIMD and vector processing capabilities, each frag-
ment processor can also exploit instruction-level paral-
lelism, evaluating multiple instructions simultaneously
using different ALUs. As a result, GPUs can achieve
higher performance than CPUs. For example, the peak
computational performance of a high-end dual core
Pentium IV processor is 25.6 GFLOPS, whereas the
peak performance of NVIDIA GeForce 7800 GTX is
313 GFLOPS. GPU instruction-level parallelism sig-
nificantly improves sort performance, overlapping sort-
key comparisons operations while fetching the pointers
associated with the keys to achieve near-peak compu-
tational performance.

e Dedicated Memory Interface: The GPU’s mem-

ory controller is designed for high bandwidth data stream-

ing between main memory and the GPU’s onboard
memory. GPUs have a wider memory interface than
the CPU. For example, current high-end PCs have
8-byte main memory interface with a peak memory
bandwidth of 6.4 GB per second, whereas, a NVIDIA
7900 GTX has a 64-byte memory interface to the GPU
video memory and can achieve a peak memory band-
width of 56 GB per second.

e Low Memory Latency: GPUs have lower computa-
tional clock rates (~ 690M Hz) than memory clock
rates (~ 1.8 GHz) but reduce the memory latency
by accessing the data sequentially thereby allowing
prefetch and pipelining. In contrast, CPUs have higher
computational clock rates (~ 4 GHz) than main mem-
ory speeds (~ 533 MHz) but suffer from memory stalls
both because the memory bandwidth is inadequate
and because they lack a data-stream approach to data
access.

Many GPU-based sorting algorithms have been designed
to exploit one or more of these capabilities [20, 22, 35].
However, those algorithms do not handle large, wide-key
databases and have other limitations, highlighted in Section
2.

In summary, GPUs offer 10x more memory bandwidth
and processing power than CPUs; and this gap is widening.
GPUs present an opportunity for anyone who can use them
for tasks beyond graphics [34].

3.3 Hybrid Sorting Architecture

This section gives an overview of GPUTeraSort. The next
section describes the use of the GPU in detail. Our goal is to
design a sorting architecture to efficiently utilize the compu-
tational processors, I/O and memory resources. GPUTera-
Sort has five stages that can be executed sequentially; but,
some stages can be executed using multi-buffered pipeline-
parallel independent threads:

e Reader: The reader asynchronously reads the input
file into a (approximately 100 MB) main memory buffer
(zero-copy direct 10). Read bandwidth is improved by

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

