
Homayoun

Reference 8

PATENT OWNER DIRECTSTREAM, LLC
EX. 2120, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2120, p. 2

Asymmetric Multi-Processor Architecture for
Reconfigurable System-on-Chip and Operating

System Abstractions

Xin Xie, John Williams, Neil Bergmann
School of Information Technology and Electrical Engineering,

The University of Queensland
Brisbane, Australia

{xxie; jwilliams; n.bergmann}@itee.uq.edu.au

Abstral1- We propose an asymmetric multi-processor
reconfigurable SoC arch.itccture comprised of a master CPU
running embedded Linux and loosely-coupled slave CP Us
executing dedicated software processes. The slave processes are
mapped into the host OS as ghost p rocesses, and are able to
communicate with each other and the master via standard
operating system communication abstractions. Custom
hardware accelerators can be also added to the slave or master
CPUs. We describe an architectural case study of an MP3
decoding application of 12 different single and multi-CPU
configurations, with and without custom hardware. Analysis of
system perto rmance under master CPU load (computation and
10), and a Time-Arca cost model reveals the counter-intuitive
result that multiple CPUs and appropriate software partitioning
can lead to more efficient and load-resilient architecture than a
single CPU with custom hardware offload capabili ties, at a lower
design cost.

I. INTRODUCTION

Modem embedded systems are increasingly required to
meet the competing requirements of real-time or near real-time
perfonnance, while satisfying tight time-to-market and
interoperability requirements. Real-time performance is
typically offered by dedicated custom hardware acceleration or
microprocessor running specific firmware or microkemel, but
the rapid development and interoperability requirements are
more readily provided by commonly available operating
systems (OS) such as embedded Linux.

One approach to meet these requirements is to virtualize
t11e OS by running it as a low priority process on top of a real
time kernel. This approach is complicated, error-prone and
requires an ongoing maintenance and porting effort. Another is
to use custom hardware to accelerate critical sections of an
application. Custom hardware design increases non-recurring
costs and software/hardware co-desif,'11 complexity.

Instead of multiplexing multiple software environments
onto a single CPU or using custom hardware, we propose an
asymmetric, reconfigurable System-on-Chip (SoC) multi
processor architecture, implemented on commodity FPGA
resources. The proposed approach employs multiple CPUs,
dual-port on-chip memory and FIFO type communication
links. This architecture is expected to achieve t11e low memory
latency environment for parallel processes execution, in a
generic platform suitable for a wide variety of applications.

1-4244-1472-5/07/$25.00 © 2007 IEEE

The major challenge of implementing asymmetric
mul tiprocessor architecture (ASMP) suitable for SoC is the
programming model - how can t11e hardware resources be
exposed to t11e developer in a productive way without
compromising perfonnance? Our approach is to represent
processes running on slave CPUs as processes in the central
(master) operating system. Communication between ghost
processes and oilier software processes on t11e master CPU is
achieved transparently by extending t11e standard Unix/Linux
process FIFO/pipe Inter-Process Communication (IPC)
concept.

The main contribution of this research is to provide a
sof1ware framework based on existing OS suitable for FPGA
based multiprocessor architecture. This paper presents a
detailed description of the operating system integration model,
as well as a comprehensive architectural case study. The
reconfigurability of FPGAs is not used in a run-time sense, but
rat11er as a flexible implementa tion fabric allowing t11e system
architectu re to be readily mapped to the application at hand.

The paper is organised as follows: a review of existing
multi-processor SoC related research and techniques is
presented in Section II, Section III describes t11e hardware
subsystems and t11eir interconnection, while Section IV
introduces the OS integration model. Section V is a
comprehensive case study of the architecture applied to an
MP3 decoding application which is accompanied by analysis
and discussions. Lastly, Section VI presents our conclusions
and future research plan.

II. B ACKGROUND

A. Acceleration techniques/or FPGA based SoC
One technique to improve perfonnance on FPGA based

SoC is to use customized processor cores, e.g. adding a
reactive Instruction Set Architecture (ISA) and direct signal
lines to existing CPUs [I]. However tltis technique requires
modifications to t11e compiler to recognize t11e new features. It
is also rare that a sufficiently large portion of the task can be
mapped into a limited custom opcode set with fixed instruction
format, to escape t11e implications of Amdahl' s law.

A more common approach in t11e FPGA community is to
design a custom hardware core to replace t11e critical section of
a specific application, wltile t11e CPU carries oilier less-critical

FPT 2007

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2120, p. 3

sections. However, this approach requires significant efforts in
hardware/software co-design. At the same time, there is
generally no kernel level OS support for the custom hardware,
which can result in portability and programmability problems
on tlie platfonns other llian llie one initially implemented.

From llie software perspective, a real-time OS or
microkernel can be used on an FPGA based SoC, which offers
guarantees on metrics such as interrupt latency. Operating
systems such as Linux do not offer such hard real-time
perfonnance natively, but instead require significant
modifications or extensions. Examples of this approach
include RTLinux [2] and RTAl [3]. Porting such microkernel
OS attracts non-trivial software development cost which can
be unsuitable and unworthy especially in tl1e case of hardware
platfonn changes in the future.

B. Multiprocessors on FPGAs
The most common multiple processor implementations are

based on a Symmetric Multi-Processor (SMP) architecture as
widely used in workstation and server environments for High
Performance Computation (HPC). Similar to tlie conventional
SMP system, embedded SMP systems require OS integration
[4] and hardware cache management (5]; both can be costly
for an embedded system. Coherent caches are particularly
expensive to implement in conunodity FPGA architectures. In
real tenns llie performance improvement in SMP is Likely to be
marginal due to OS associated overhead and the growing gap
between processor speeds and memory latency [6, 7].

SMP is a one-size-fits-all approach, appropriate for fixed
silicon when a designer must hedge llieir bets against all
possible future uses of llie architecture. FPGAs on llie oilier
hand achieve llieir potential only when llie system architecture
is created to match the application. ASMP systems can
dedicate the required computing resources to computing
intensive tasks, and distributed memories for each CPU avoid
memory and bus bandwidth scalability issues. Existing (single
CPU) operating systems can be used on ASMP system with
less OS kernel changes (avoiding issues in IRQ/load
balancing, cache coherence etc.)

A related asymmetric system was proposed with a master
CPU and up-lo eight co-processors connected with FIFOs [8].
The OS level integration of the hardware FIFO was
inspirational for this research. However llie co-processor is an
8-bit microcontroller programmed in assembly language, and
its performance was such lliat llie architecture was better
suited to real time control applications than high speed data
processing.

C. MicroBlaze and Linux
The hardware is based on primarily vendor-provided IPs

including the Xilinx MicroBlaze soft-core CPU, hardware
FIFO and on-chip dual-port memory primitives. MicroBlaze is
a 32 bit RlSC type soft-core CPU from Xilinx and takes on tlie
role as boili master and slave CPUs in tlie proposed
architecture. The CPUs can be customized in different areas,
including bus interfaces, cache size and hardware multiplier
support [9]. At llie same time, it has lliree different bus
interfaces: Local Memory Bus (LMB) for llie fast on-chip
memory accessing, On-chip Peripheral Bus (OPB) for the

various shared on-chip peripheral, and the Fast Simplex Bus
(FSL) for the direct connection to the peripherals or processors

uCLinux (1 0] is used as the OS on llie master CPU. uClinux
refers to a configuration of the regular Linux kernel that
supports CPU architectures lacking hardware memory
management support (such as tlie MicroBlaze). Many existing
application are available from Linux that is readily available
for the development enviromnent. Running conventional OS
on FPGA based SoC is a realistic approach that can utilize
existing software melliodology while retaining the advantage
of the custom computing platform.

III. HARDWARE ARCHITECTURE FOR FPGA BASED ASMP

This section contains an overview of the hardware
architecture, while more complete details can be found in our
earlier work [11]. The architecture is designed witl1 generality,
ease of use and perfonnance as its primary objectives. Figure
l shows an overview.

A. Master CPU subsystem
The Master CPU subsystem (left-most region of Fig. I) is a

fairly typical Linux-capable MicroBlaze system. Off-chip
memory is required due to tlie memory footprint of the Linux
kernel and tlie file system, which implies tlie use of CPU
caches to achieve reasonable perfonnance.

The master CPU communicates with slave CPUs through
the specific FIFO connections to support tlie intended
applications. In addition, the master CPU can also control the
running state of tlie slave CPUs and reprogram tlie slave CPUs
at nm time as described in Section 111.

B. Slave CPU subsystem

The primary motivation of having multiple slave CPUs is
to benefit from parallel process execution, and to provide a
dedicated environment for those computing intensive process.
Typical SoC systems running applications inside llie OS have
tlie bottleneck of operating system overheads and non
detenninistic memory caches. By giving slave CPUs their own
low-latency local memory busses and running an exclusive
single process, we can avoid llie cost of an operating system
for iliese tasks. The basic structure of the slave CPU
subsystems is illustrated in tl1e lower-right region of Fig. l.

We utilize MicroBlaze's Harvard architecture and attach
separate dual-port memories lo the instruction and data
memory interfaces. The oilier port of each dual-port memory
is connected to the global bus which can be accessed from
master MicroBlaze. By keeping llie main data transport on tlie
application-specific FIFO network, and only infrequent code
updates on the shared global bus, bus traffic is sign.ificantly
reduced.

By executing from fast on-chip memory, slave CPUs do
not require instmction or data caches. ln contrast to llie 7-10
cycles required for ex1ernal memory accesses, slave CPUs
have fast (l-2 cycle) and predictable memory accesses, ideal
for real-time tasks.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2120, p. 4

Custom Hardw ares

•

• • •

Standalone Slave CPUs

: Legencf :

: <1---C> Fast Simple.-.: Link (FSL) Data Local Memory Bus (LMB) :
I <=¢, On~hip Peripherals Bus (OPB) ~ Instruction Local Memory Bus (LMB):
I . I

L - - - Off Chip Connection --- 1

Fig. I. FPGA base ASMP architecture

A total of eight slave CPUs can be connected to master
CPU directly, a limitation imposed by the number of FSL
ports on the MicroBlaze architecture. However, if not all slave
CPUs require a direct data connection to tl1e master, then tlie
number of CPUs is limited primarily by the available logic
resources. Table I shows tl1e resource usage for a single slave
CPU with 8KB each of on-chip instruction and data memory
(Xilinx Virtex4 LX25 device). This on-chip memory is
potentially the strongest limiting factor, however, the amount
of memory allocated to each CPU can be carefulJy tuned to
match tlle execution process tl1at is will host.

The software environment of the slave CPUs is kept
deliberately simple, witl1 no support for multitlireading or
making master OS system calls. The current intention is to
offload primarily computational tasks, with high speed data IO
requirements.

C. Integration of slave CPUs lo master CPU

An application-specific architecture is created by using tl1e
connecting these CPUs with hardware FIFOs in a network
topology that matches the data flow requirements of the
application (upper right, Fig. I). The Xilinx FSL bus is ideal
for tllis purpose. To send data to anotl1er CPU, it is written out
on tl1e appropriate FSL port. FSL is also used to attach any

TABLE I. SLAVE MICRO BLAZE FPGA RESOURCES USAGE

Selected Device: Virtex-4 LX25
Number of Slices: 1332 out of 10752
Number of Slice Flip Flops: 724 out 21504
Number of 4 input LUTs: 1822 out 21504
Number of BRAMs•: 8 out of72
*used as 8kB+8kB 1/D memorv for aoolication

12,1<.
3%
9%

20%

hardware accelerator tmits to CPUs tJ1at require tJ1em.

To reprogram a slave CPU, the master can write directly
into its code and data memories. However, for predictable
systems tJ1e ability to halt and reset tJ1ese slaves is required. A
controller (not shown in Fig. I) was created for that purpose,
which can manage up to 32 slave CPUs. Reprogramming a
slave CPU is achieved by the following steps: (I) master CPU
transmit a halt signal to the slave CPU, (2) t.ransfer the slave
CPU prof,'Taln code into the corresponding slave CPU's data
and instruction memory from the external storage device, and
(3) clear the halt signal of the slave CPU.

IV. OS INTEGRATION FOR FPGA BASED ASMP

The software abstraction of communications channel in the
proposed FPGA based ASMP is critical to tJ1e system
progranunability and performance. The approach adopted is to
extend the Unix/Linux software FIFO implementation to the
ASMP conununication channel.

A. Utilities/or Slave CPU control

Section III. C described tJ1e metl1ods used to reprogr'<lln and

TABLE II. UTILITY SOFTIVARE

Pause shwe C PU
slave control - oause s]ave l
Sta11 slave C PU
slave control - start slave I
Read back the sh1\'C CPU memory and Sm'C it to an output
memory imaee
slave control - read slave l > slavel image
\\'rite back the sla,•e C PU me mory from an input me.mo1-y imaee
slave_control - write slave I < slavel_ image

Create the sla, •e CPUs memory imaee from the execution fiJe
slave_control - create slave l < slave l.exe > slavel _image

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PATENT OWNER DIRECTSTREAM, LLC
EX. 2120, p. 5

User
Space

Kernel
Space

Hardwar
Space

INTR handler INTR handler
("") (RO)

--p Q""
,, .. , '

IRO
Signll

fa input

FSl
Input 2

I Legend J l Q ::;:~---,.. Unu~~=rnel~~!are ~ FSL Oaraj

Fig. 2. lnterrupt based FSL driver for Linux

control the Slave CPUs. These methods were implemented in
a utility program ('slave_control') to perfonn the various
actions. Table II describes the usage of th.is program.

B. FSL FIFO driver for Linux

FSL is the hardware channel for the master-to-slave and
slave-to-slave c01mnunication. On the slave side, the blocking
versions of the native MicroBlaze FSL instructions can be
used, since there is only a single process of execution.
However on tl1e master side, such blocking read/write
operation can cause the system to freeze or stutter by causing
tJ1e entire OS, including intem1pts, to be stalled tmtil tJ1e FSL
transaction is complete. Operating system design principles
forbid direct access to hardware by application software,
motivating the use of a device driver to mediate this access.
Finally, a device driver can implement buffering which
improves overall tliroughput by preventing applications from
blocking when tJ1e relatively small hardware FIFO channels
are full .

We kept tlie general design and structme of the original
FSL FIFO driver (8], and ell.1ended it to operate in an interrupt
driven ratl1er tl1an polled mode. This gives much better
perfonnance when tl1e master CPU is under heavy load and
reduces overall kernel overhead.

Fig. 2 illustrates the simplified FSL driver internals
including tJ1e read/write interface, kernel buffer and tlie
intermpt handler. It only illustrates a single charmel pair - in
reality all 8 FSL charmel pairs are managed by tJ1e same
driver. With these changes the FSL driver is capable of
sending/receiving multiple channels of FSL data with
coherence and high perfonnance under different user-kernel
space system loads. The driver presents a standard Li.nm,
character device interface, supporting standard system calls
such as openO, readO, writeO and closeo.

C. Ghost process and pipe redirection

A co1mnon multiprocessing metl10dology in Unix/Linux is
to split an application into multi ple independent processes,
connected by software based FIFO channels, called pipes.

Master CPU

Master CPU
,, .. --.... ,
' ' t, P2g)

................ ~.":.~!::'.~ ..

(Legend ~
Jc:::::J Linux user space -t-- Linux data (user& kernel space) i
1c:::::J Linux kernel -.pace ----t,, FSL .data

1
l~ SingleCPUstartdalone Q 1No<king Process 1 !L ___ : Hardware FSL c.onnection () Ghost Process } .. ______________ _______________ ,

Fig. 3. Ghost process pipe redirection

Similarly, the slave processors can be connected to the master
processor ' s process tlirough an agent process inside tJ1e Linllx
user space. This metJ1odology can provide a process model
that supports additional slave processors inside the same
operating system, including support for co1mnonly used Linux
inter-process communication metJ1odologies. We call tltis
process model "ghost process', and tJ1e details are described as
follows.

For clarify and brevity, the following examples use
conventional c01mnand line shell script syntax and constructs
for process and pipe creation. However, tJ1e system
progra1mn.ing calls such as forkO, execO and mkfifoO could
also be used in a controlling (master CPU) application to
achieve the same effect. Consider tliree processes Pl, P2 and
P3 connected by the pipes, executed by the following
command line:

#Pl < i nput I P2 I P3 > output

ln the event that the P2 process workload must be migrated
into the slave CPU, a ghost process called P28 is created inside
tJ1e user-space representing the agent for tJ1e slave CPU
execution. The command line execution of the Ghost Process
is similar to the previous command, where the difference is
P2g, the ghost process, replaces the original P2:

#Pl< input I P29 I P3 > output

Using tltis approach, P28 will not do any real computation
work, instead just transfer the data to and from the slave
CPU's Pl llirough the FSL device driver. The slave CPU will
execute tJ1e actual process P2, and P 1 and P3 are still entirely
if,'11oran.t of the fact tliat P2 is now being executed on a

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

