Memory Systems Cache, DRAM, Disk

Bruce Jacob University of Maryland at College Park

Spencer W. Ng Hitachi Global Storage Technologies

> David T. Wang MetaRAM

With Contributions By

Samuel Rodriguez Advanced Micro Devices

AMSTERDAM • BOSTON • HEIDELBERG LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Morgan Kaufmann is an imprint of Elsevier

Publisher	Denise E.M. Penrose
Acquisitions Editor	Chuck Glaser
Publishing Services Manager	George Morrison
Senior Production Editor	Paul Gottehrer
Developmental Editor	Nate McFadden
Assistant Editor	Kimberlee Honjo
Cover Design	Joanne Blank
Text Design	Dennis Schaefer
Composition	diacriTech
Interior printer	Maple-Vail Book Manufacturing Group
Cover printer	Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data Application submitted

ISBN: 978-0-12-379751-3

For information on all Morgan Kaufmann publications, visit our Web site at *www.mkp.com* or *www.books.elsevier.com* Printed in the United States of America

08 09 10 11 12 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

DRAM Memory System Organization

Previous chapters examine the basic building blocks of DRAM devices and signaling issues that constrain the transmission and subsequent storage of data into the DRAM devices. In this chapter, basic terminologies and building blocks of DRAM memory systems are described. Using the building blocks described in the previous chapters, the text in this chapter examines the construction, organization, and operation of multiple DRAM devices in a larger memory system. This chapter covers the terminologies and topology, as well as the organization of various types of memory modules.

10.1 Conventional Memory System

The number of storage bits contained in a given DRAM device is constrained by the manufacturing process technology, the cell size, the array efficiency, and the effectiveness of the defect-cell remapping mechanism for yield enhancement. As the manufacturing process technology advances in line with Moore's Law, the number of storage bits contained in a given DRAM device doubles every few years. However, the unspoken corollary to Moore's Law states that software written by software companies in the Pacific Northwest and elsewhere will automatically expand to fill available memory in a given system. Consequently, the number of storage bits contained in a single DRAM device at any given instance in time has been and will continue to be inadequate to serve as the main memory for most computing platforms with the exception of specialty embedded systems.

DOCKE

In the past few decades, the growth rate of DRAM device storage capacity has roughly paralleled the growth rate of the size of memory systems for desk-top computers, workstations, and servers. The parallel growth rates have dictated system designs in that multiple DRAM devices must be connected together to form memory systems in most computing platforms. In this chapter, the organization of different multi-chip DRAM memory systems and different interconnection strategies deployed for cost and performance concerns are explored.

In Figure 10.1, multiple DRAM devices are interconnected together to form a single memory system that is managed by a single memory controller. In modern computer systems, one or more DRAM memory controllers (DMCs) may be contained in the processor package or integrated into a system controller that resides outside of the processor package. Regardless of the location of the DRAM memory controller, its functionality is to accept read and write requests to a given address in memory, translate the request to one or more commands to the memory system, issue those commands to the DRAM devices in the proper sequence and proper timing, and retrieve or store data on behalf of the processor or I/O devices in the system. The internal structures of a system controller are examined in a separate chapter. This chapter focuses on the organization of DRAM devices in the context of multi-device memory systems.

10.2 Basic Nomenclature

The organization of multiple DRAM devices into a memory system can impact the performance of the

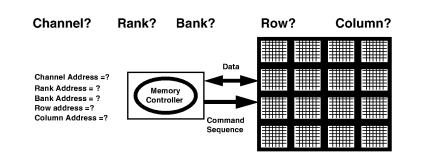


FIGURE 10.1: Multiple DRAM devices connected to a processor through a DRAM memory controller.

memory system in terms of system storage capacity, operating data rates, access latency, and sustainable bandwidth characteristics. It is therefore of great importance that the organization of multiple DRAM devices into larger memory systems be examined in detail. However, the absence of commonly accepted nomenclature has hindered the examination of DRAM memory-system organizations. Without a common basis of well-defined nomenclature, technical articles and data sheets sometimes succeed in introducing confusion rather than clarity into discussions on DRAM memory systems. In one example, a technical data sheet for a system controller used the word bank in two bulleted items on the same page to mean two different things. In this data sheet, one bulleted item proclaimed that the system controller could support 6 banks (of DRAM devices). Then, several bulleted items later, the same data sheet stated that the same system controller could support SDRAM devices with 4 banks. In a second example, an article in a wellrespected technical journal examined the then-new i875P system controller from Intel and proceeded to discuss the performance advantage of the system controller due to the fact that the i875P system controller could control 2 banks of DRAM devices (it can control two entire channels).

In these two examples, the word *bank* was used to mean three different things. While the meaning

of the word *bank* can be inferred from the context in each case, the overloading and repeated use of the word introduces unnecessary confusion into discussions about DRAM memory systems. In this section, the usage of channel, rank, bank, row, and column is defined, and discussions in this and subsequent chapters will conform to the usage in this chapter.

10.2.1 Channel

Figure 10.2 shows three different system controllers with slightly different configurations of the DRAM memory system. In Figure 10.2, each system controller has a single DRAM memory controller (DMC), and each DRAM memory controller controls a single channel of memory. In the example labelled as the typical system controller, the system controller controls a single 64-bit-wide channel. In modern DRAM memory systems, commodity DRAM memory modules are standardized with 64-bit-wide data busses, and the 64-bit data bus width of the memory module matches the data bus width of the typical personal computer system controller.¹ In the example labelled as Intel i875P system controller, the system controller connects to a single channel of DRAM with a 128-bit-wide data bus. However, since commodity DRAM modules have 64-bit-wide data busses,

¹Commodity memory modules designed for error correcting memory systems are standardized with a 72-bit-wide data bus.

the i875P system controller requires matching pairs of 64-bit wide memory modules to operate with the 128-bit-wide data bus. The paired-memory module configuration of the i875P is often referred to as a *dual channel* configuration. However, since there is only one memory controller, and since both memory modules operate in lockstep to store and retrieve data through the 128-bit-wide data bus, the pairedmemory module configuration is, logically, a 128-bitwide single channel memory system. Also, similar to SDRAM and DDR SDRAM memory systems, standard Direct RDRAM memory modules are designed with 16-bit-wide data busses, and high-performance system controllers that use Direct RDRAM, such as the Intel i850 system controller, use matched pairs of Direct RDRAM memory modules to form a 32-bitwide channel that operates in lockstep across the two physical channels of memory.

In contrast to system controllers that use a single DRAM memory controller to control the entire memory system, Figure 10.3 shows that the Alpha EV7 processor and the Intel i925x system controller each have

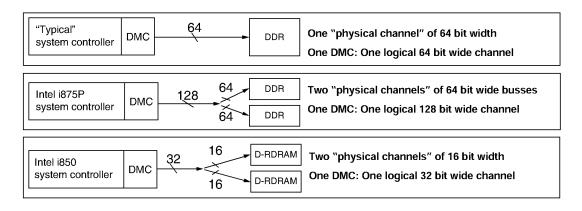


FIGURE 10.2: Systems with a single memory controller and different data bus widths.

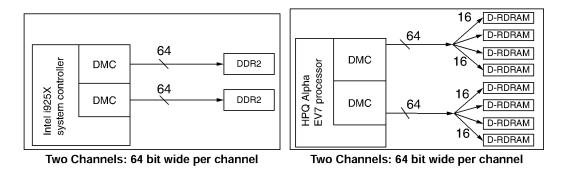


FIGURE 10.3: Systems with two independent memory controllers and two logical channels of memory.

DOCKE

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.