
Proceedings of the 2nd ACM International Workshop on FPGAs, Berkeley, CA, Feb. 1994

1

Programming the Hawaii Parallel Computer

Richard Halverson, Jr.

Art Lew

University of Hawaii at Manoa
Honolulu, HI

Abstract

A new application of field programmable gate-arrays is
featured in the prototype of the University of Hawaii
parallel computer (HPC). User programs are compiled
and then executed partly or completely in one or more
field programmable gate-arrays (FPGAs). Some
compile-for-FPGA systems have yet to effectively
implement full high-level language loop constructs. In
this paper we show how the conditional logic used for
generating jump addresses can be consolidated into one
jump address calculation and computed in a FPGA. In
addition, we show how this coprocessing can be easily
added to reduce the number of memory transactions and
cycles it takes to execute a program. An overview of the
HPC shared memory architecture is presented. A
shortest path programming example begins by
describing the steps for automatically generating the
FPGA source code and concludes with the results of a
load-store analysis comparing execution with and
without the FPGA.

1. Introduction

The HPC prototype is a 4” by 6” five slot platform
containing its own microprocessor bus into which
processor/computers can be plugged. The system was
built for demonstration purposes only, at an absolute
minimal cost. One slot is reserved for the main
processor board, which is an Intel MCS-51 8031
microprocessor with bus master logic and an RS-232
port for connecting to a host IBM PC. Subordinate
processors plug in and interface through an expandable
two-port RAM on each processor board, which allows
the system to function like a cache-only shared memory
multiprocessor. Present hardware allows configurations
of up to three parallel 8031 microprocessors and one
XILINX board. The XILINX board contains five
XILINX 3090 FPGAs and five 8K-byte static RAMs.
Parallel programs can be written for execution (a)
exclusively on the 8031 array in SIMD fashion, (b)
exclusively on the XILINX board, and (c) partly on the
8031s and partly on the XILINX board.

One difficulty in executing programs completely in
reprogrammable gate arrays is handling looping. Many
compile-for-FPGA projects have made great progress
towards synthesizing logic from C-like blocks within
loops of user programs but much less progress towards
implementing all varieties of looping mechanisms found
in today’s high level programming languages. Since
FPGAs still offer quite minimal reprogrammable gate
counts, the added parallel processing with the custom
coprocessor approach is still necessarily fine-grained.
One problem with these fine-grained systems is that the
resulting program often requires an increase in the
number of transactions across the system bus because
operands still must be loaded and retrieved between the
coprocessor and the main processor.

For example, the PRISM-II platform contains an
Am29050 main processor with slots for several triple
XILINX 4010 boards for custom coprocessing. So far
from [1], they have reported quite good results on
“single-pass” functions without loops. Single pass
functions pose a problem because the main processor
must transfer the operands and results back and forth
from memory which may increase memory transactions
overall. A goal of PRISM-II is to implement all the
loop constructs of C which will increase the grain size
and surely reduce overall the number of memory
transactions.

A Reconfigurable Processor Unit (RPU) described in
[2] is an array of reprogrammable FPGAs attached to a
memory. Their overall goal of compiling a subset of C
into FPGA code appears similar to PRISM’s but they
instead seem to have focused on implementing specific
parallel models with limited and specialized constructs
for looping. Unlike PRISM, however, it appears that a
RPU is capable of fetching its own data from memory
and writing results back which eliminates any extra load-
store transactions by the main processor. The RPU as
described appears most similar to our XILINX board.

Splash 2 contains one or more boards each with an
array of 16 well connected XILINX 4010 chips [3]. The
architecture does an excellent job supporting pipelined
and SIMD processor configurations. Splash 2, for
example, can be programmed in dbC, which is a superset

IPR2018-01600

EXHIBIT

2071

PATENT OWNER DIRECTSTREAM, LLC
EX. 2085, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 2nd ACM International Workshop on FPGAs, Berkeley, CA, Feb. 1994

2

of C used on other SIMD computers. The dbC
preprocessor produces C that runs on the Sun and VHDL
which define SIMD processors with an instruction set
tailored to the application, one or more of which fit into
each XILINX chip. When the actual program executes,
looping is still handled in the Sun, which transmits
SIMD instructions to the Splash 2 board(s).

An Anyboard [4] is a six XILINX chip highly
configurable board which plugs into an IBM PC. Since
Anyboard is for prototyping hardware, their SOLDER
language (similar to C) does provide if-then constructs
but other program control constructs of C would have
limited value. This is because when programming in
the Anyboard environment, the user thinks in terms of
designing hardware whereas in the other compile-to-
FPGA projects (including ours), the goal is to translate
high level language programs (where the user is thinking
about writing software). Anyboard’s design mapping
tool for partitioning a design across many chips,
however, would be useful in any compile-to-FPGA
project where a compiled function may consume more
than one FPGA.

Chameleon is a workstation [5] based on LSI Logic’s
LR33000 32 bit RISC processor that has a Configurable
Array Logic (CAL) array of more than 6,000 gates
attached to the system bus. The CAL array can be
configured as a coprocessor with its own memory and
I/O. The Debora language used to program the logic
array is C like, but intended for describing the state
transitions of sequential logic. All statements execute in
parallel except those “guarded” using the IF construct.
Except for the IF statement, there are no other traditional
language constructs for defining control flow.

One way to use the XILINX board on a HPC system
is for it to compute jump addresses from the variable
operands of conditional expressions in a program. This
can be performed mechanically by first representing the
program as a decision table. The computations are
boolean in nature and implementing these operations in
an FPGA is straightforward. By connecting the FPGA
directly to the system bus to allow registers to capture
operands as they are written to memory allows operands
to be loaded into the FPGA coprocessor with no extra
loads or stores by the main processor.

This paper describes how the looping control for any
high level language program can be implemented totally
in a reprogrammable FPGA to increase performance and
reduce processor bus transactions. Section 2 begins by
reviewing decision tables. Section 3 describes the HPC
architecture and its execution model. Section 4 explains
the XILINX chip interface to the system bus and how
they are programmed. Section 5 introduces the shortest
path program which we hand compile into MCS-51
processor code and a PALASM definition source file, the
latter of which will be compiled using the XILINX
tools. Section 6 shows the results the XILINX
compilation. Section 7 gives the results of a load-store

analysis comparing optimum processor load-store counts
with and without the FPGA. Section 8 concludes with
our current and future research plans.

2. Decision Tables

The decision table is used as the high-level
programming language to compile because (a) it
simplifies loop address computation for FPGA
implementation, (b) it is in fact more expressive than
conventional imperative languages, and (c) it is general
purpose, in that it has been shown previously that any
computer program can be expressed in a decision table
form [6].

As Figure 1 illustrates, a decision table consists of
four quadrants. The upper left contains condition stubs,
which are expressions that can be evaluated all at once.
The upper right quadrant lists the condition entries,
which define columns of possible expression result
combinations. Multiple ‘T’ entries in a column indicate
logically ANDed condition stubs which must be true for
the “rule” (column) to fire. The lower right quadrant
contains the action entries that indicate row by row with
X’s, which action stub statements (in the lower left
quadrant) are to be executed when the rule fires. Note
that the right half of the table (the entry table) is simply
an AND-OR array, containing boolean inputs and
outputs. The process of translating any program (i.e.,
flowchart) into a decision table is mechanical and
explained in [6].

1. CONDITION STUBS

Execution begins by evaluating

the conditional expressions giving

true/false results

3. ACTION ENTRIES

'X' entries in a rule column

indicates execute statement to

the left.

The ENTRY

TABLE is an

AND-OR array.

Columns define

rules. Condition

results cause rules

to fire, causing

action statements

to execute.

2. CONDITION ENTRIES

'T' or 'F' entries indicate

which results ANDed will

cause rules to fire.

4. ACTION STUBS

Assignment statements execute if

an 'X' action entry appears for the

rule selected

Rules 1 ... n

CONDITON

ENTRIES

ACTION

ENTRIES

ACTION

STUBS

EXECUTION

CONDITION

STUBS

Figure 1. Decision Table

A decision table program executes by first evaluating
all the condition stubs simultaneously. The results feed
the entry table logic which selects a unique rule. This
rule selection will be performed completely in the
FPGA, with no processor intervention. The selection of
the rule defines a program entry point address for the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2085, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 2nd ACM International Workshop on FPGAs, Berkeley, CA, Feb. 1994

3

processor. There, code for all the action stubs in a
selected entry column is executed. The whole process
repeats (starting with the reevaluation of the condition
stubs) until a selected rule causes the program to
terminate. A special loop variable lambda helps manage
the iteration process. An example of a Pascal program
translated into a decision table is shown in Section 5.

3. HPC Architecture

The Hawaii Parallel Computer is a type of cache-only
shared memory multiprocessor. Processors may be
heterogeneous. As shown in Figure 2, the architecture
can consist of p processors, designated µP0 through

µPp–1. Each is attached to a two-port memory, which

can be read and written asynchronously by the main
CPU (µP0) on one side, and the single subordinate

processor on the other.

Main

CPU

and

RAM I/O

µP 0

0...(m–1)

“Shared” Memory

µP p–1

0...(m–1)

µP 1

0...(m–1)

0...(m–1)

2-port

RAM

2-port

RAM

“2-port”

RAM

XILINX
chips

XILINX board selects

next rule(s) to

execute, programmed

using PALASM

boolean equations

0...(m–1)

Rule

Processors

programmed

in MCS-51

processor

code

0...(m–1)

0...(m–1)

0...(m–1)

Figure 2. HPC Architecture

All the RAMs map into the same address space on the
main CPU side (0..m–1) so the data can be written to all
RAMs simultaneously. (Each RAM can also be
addressed separately.) The RAM outputs on the main
CPU side are wire-ORed, so as long as subordinate
processors write to exclusive locations, the main CPU
will be able to read subordinate processor output,
without having to keep track of which processor wrote
it. Although this means that each processor has free
read-write capability to and from the RAM,
interprocessor communication requires intervention by
the main CPU. Before one processor can read what
another one wrote, the main CPU must read and re-write

(i.e., “refresh”) the location, so all RAMs contain the
same information (at that location).

Figure 3 illustrates the HPC decision table execution
model. A rule is provided by the FPGA chip which is
“refreshed” to be visible to all processors. If a processor
has code to execute for that particular rule, it does so,
independently of other processors. When the processor
is complete, it waits for the next rule to be issued.

Rule

0

Rule

1

Rule

n–1

Rule

n

START

Select Rule

EXIT

Computed in

XILINX chip

Executed on one or more 8031s

Figure 3. HPC Execution Model

As the model illustrates, more than one processor can
execute in parallel. This allows the HPC to support
research in adapting this model to shared memory multi-
microprocessor programming. In the shortest path
example below, however, only one processor will be
necessary.

4. XILINX Board Programming

Eventually, the programs which configure the FPGAs
will be produced automatically by compiler from a high-
level programming language, therefore it was best to
select a text based boolean equation method for defining
the FPGA logic. Several hardware description languages
exist for VLSI designs. We chose PALASM because it
is a flexible yet simple language which was originally
developed back in the 1970’s, for designing field
programmable medium scale integrated circuit chips. In
order to provide a standard PALASM program format for
different chip sizes and pin configurations, a FPGA
interface circuit “shell” can be used as illustrated in
Figure 4. This interface circuit contains all the specific
pin assignment details for a particular FPGA part and its
interconnect with the other circuit components. Within
it is defined a PALASM module which contains the
program for latching data when written, computing the
expressions and multiplexing the results out. The
PALASM macro with pins defined as shown uses the
PALASM “.PDS” file format. Address, control, data in
and data out pin names are predefined, in order, using the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2085, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 2nd ACM International Workshop on FPGAs, Berkeley, CA, Feb. 1994

4

same names as in the outer schematic. Following the
EQUATIONS statement appears the compiler generated
boolean equations which define the input registers,
combinational logic for computing the expressions and
output multiplexers for the particular user program.
Tools for programming XILINX chips are described in
more detail in [7].

TITLE XXXXXXX
AUTHOR HPC PROGRAMMER
DATE MMMMM YY, 19ZZ

CHIP XXXXX LCA

;ADDRESS/CONTROL INPUT (18 PINS)
A1 A2 A3 A4 A5 A6 A7
A8 A9 A10 A11 A12 A13 A14 A15
RDC WRLC WRHC ;READ, WRITE LOW, HIGH BYTE

;DATA INPUT (18 PINS)
DI0 DI1 DI2 DI3 DI4 DI5 DI6 DI7
DI8 DI9 DI10 DI11 DI12 DI13 DI14 DI15
GCLK ZERO ;GLOBAL CLOCK, LOGICAL ZERO

;DATA OUTPUT (16 PINS)
; (active low)
DO0 DO1 DO2 DO3 DO4 DO5 DO6 DO7
DO8 DO9 DO10 DO11 DO12 DO13 DO14 DO15

;INTER-FPGA DAISY-CHAIN (2 PINS)
DOEIN ;DATA IN FROM PREVIOUS CHIP
DOE ;DATA OUT TO NEXT CHIP

EQUATIONS

Address select logic

Input registers

Expression logic

Output multiplexers; END

PALASM

.PDS File

FPGA

Data

Out

Daisy-Chain

Addr

Read

Write

Data

In

Daisy-Chain

Viewlogic File

(e.g., XC3090PG175)

PALASM File

Figure 4. Programming the FPGA

5. Example: Shortest Path Program

To illustrate program compilation and execution of a
decision table, a shortest path program which first
appeared in [8] will be used. Figure 5 shows a Pascal

version of a shortest path algorithm for a topologically
sorted graph with distances stored in a two dimensional
array d. As we see, the first two statements after the
begin statement will be executed once. The body of the
outer while loop (including the comparison of i with 1)
will be executed n–1 times. The inner while loop
executes n-1 times by being inside the outer loop, times
n/2 more times. Within the most inner loop, the if test
and the j increment always occurs with the body of the
if-then executing depending on characteristics of the data.

Figure 6 shows an equivalent decision table [6]. Rule
0 executes once at the beginning, which sets lambda=1.
In the second pass, with lambda=1, either Rule 1 or 6
will execute, depending on if i≥1. Rule 1 will execute
n–1 times, each time setting lambda=2. Rule 6 will
execute once at the end. When lambda=2, Rules 2 and 5
compete, depending on if j≤n. Rule 2 executes n(n–1)/2
times while Rule 5 executes n–1 times. If j≤n and
lambda=2, then lambda is set to 3 causing Rule 3 or 4 to
execute next. In the worst case, d[i,j]+f[j]<min causes
Rule 3 to execute n(n–1)/2 times with Rule 4 executing
not at all. In the best case, Rule 3 executes
n(n-1)/2-(n-1) times while Rule 4 executes n-1 times.
These iteration equations for the loops in Pascal and
rules in the decision table will be used for the load store
analysis described in section 7.

6. Compiling

Figure 7 contains the memory map and a flow chart
showing assignment statements which must be compiled
into MCS-51 assembly language. The d array is
allocated starting at location 0000. The f and t arrays are
above that at 3200 and 32A0. The scalar variables are
allocated starting at 3340 with n, followed by i, j, min,
ptr, lambda, Rule•3, “d[i,j]” and “f[j]”. “d[i,j]” and “f[j]”
are specially allocated locations which hold the value of
d[i,j] and f[j] depending on the current values of i and j.
They are required because they are needed in the FPGA
calculation of the rule, as are all variables marked with
an asterisk (*). These variables will be latched in
registers in the FPGA whenever written. The carrot (^)
indicates an output of the FPGA, which in this case is
the selected next rule to execute multiplied by 3, which
will serve as an offset into a jump table in the 8031
program (as LJMP instructions are 3 bytes long).

The 8031 program selects a rule by reading memory
location 334E into the accumulator, which contains the
next rule to execute multiplied by 3. It then performs a
jump into a table of jump instructions to the code for
that rule. When the rule execution is complete, it jumps
to the top to select the next rule. As shown in the
diagram, executing Rule 6 causes the program to
terminate.

Since “d[i,j]” and “f[j]” are only used when lambda=3,
then they need to be updated only when lambda is set
equal to 3. The only time this occurs is in Rule 2, so as

PATENT OWNER DIRECTSTREAM, LLC
EX. 2085, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 2nd ACM International Workshop on FPGAs, Berkeley, CA, Feb. 1994

5

shown in Figure 7, only Rule 2 must contain code to
update “d[i,j]” from d[i,j] and “f[j]” from f[j]. Rule 3
executes when lambda=3 and is the only rule that uses
d[i,j] and f[j], therefore it can use “d[i,j]” and “f[j]” to
save having to compute the address of d[i,j] and f[j] over
again.

begin
 f[n] := 0;
 i := n – 1
 while i >= 1 do
 begin
 min := maxint;
 ptr := n + 1;
 j := i + 1;
 while j <= n do
 begin
 if d[i,j] + f[j] < min then
 begin
 min := d[i,j] + f[j]
 ptr := j
 end; {if}
 j := j + 1
 end; {while j <= n}
 f[i] := min;
 t[i] := ptr;
 i := i – 1
 end; {while i >= 1}
end

Figure 5. Pascal Shortest Path

lambda =
i >= 1
j <= n
d[i,j]+f[j] < min

f[n] := 0
i := n – 1
min := maxint
ptr := n + 1
j := i + 1
min := d[i,j] + f[j]
ptr := j
j := j + 1
f[i] := min
t[i] := ptr
i := i – 1
exit
lambda :=

0 1 2 3 3 2 1
- T - - - - F
- - T - - F -
- - - T F - -

X - - - - - -
X - - - - - -
- X - - - - -
- X - - - - -
- X - - - - -
- - - X - - -
- - - X - - -
- - - X X - -
- - - - - X -
- - - - - X -
- - - - - X -
- - - - - - X
1 2 3 2 2 1 %

Rule: 0 1 2 3 4 5 6

Figure 6. Decision Table Shortest Path

f[n] := 0

i* := n–1

lambda* := 1

8031 PROGRAM

START

SELECT RULE

EXIT

min* := maxint

ptr := n+1

j* := i+1

lambda* := 2

"d[i,j]"* := d[i,j]

"f[j]"* := f[j]

lambda* := 3

min* := "d[i,j]"+"f[j]"

ptr := j

j* := j+1

lambda* := 2

j* := j+1

lambda* := 2

f[i] := min

t[i] := ptr

i* := i–1

lambda* := 1

0

1

2

3

4

5

6

MEMORY MAP

d[80,80]

f[80]

t[80]

n*

i*

j*

min*

ptr

lambda*

Rule•3^

"d[i,j]"*

"f[j]"*

0000

3200

32A0

3340*

3342*

3344*

3358*

334A

334C*

334E^

3350*

3354*

Read Rule•3^

Jump to Rule

Whenever a *

memory location is

written, the datum is

at the same time

captured in a FPGA

register which

automatically causes

Rule•3 to recompute

*

The computed

Rule•3 value is gated

out of the FPGA onto

the data bus when

address 334E is

read. The FPGA

value is ORed with

RAM, which must

contain 00 at this

location.

^

Figure 7. Memory Map and 8031 Program

The calculation of the next rule (and its multiplication
by 3) is performed in the XILINX chip. As Figure 7
indicates, within the chip are allocated registers for
lambda, i, j, n, “d[i,j]”, “f[j]” and min. They are clocked
from the write signal and enabled from address bus
decoders indicating when their respective memory
location is being written by the processor. This means
that the register locations always contain the most up to
date value, without any extra memory transactions being
required of the processor. Whenever a register changes,
Rule•3 is automatically recalculated in combinational
logic.

As Figure 8 suggests, prespecified “operator macros”
are useful for automating the generation of the
PALASM code. U1 is “instantiated” from a generic
8-bit in, 1-bit out “>0” macro. U2’s output says
whether its two inputs are equal. U3’s two inputs sum
to its output, which feeds U4. The single bit outputs of
U1, U2 and U4 are the results of the three condition
stubs in the decision table. These three bits, along with
the L1 and L0 bits of lambda feed U5, which determines
which rule to execute next.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2085, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

