
IPR2018-01600

EXHIBIT

2065

I ACC’961

On the Viability of FPGA-Based Integrated Coprocessors
Osama T. Albaharnar, Peter Y. K. Cheung, and Thomas J. Clarke

Information Engineering Section
Department of Electrical and Electronic Engineering

Imperial College of Science. Technology and Medicine
Exhibition Road, London. SW7-2BT, UK

Abstract The adaptive coprocessor model challenges the more established general purpose techniques that exploit fine- grain instruction level concurrency. We ask, Under what
architectural conditions can the integration of a core
CPU and an FPGA-based coprocessor on a single die outperform the possible alternative of using a Very Long Instruction Word engine (VLIW) on that same die area?

This paper addresses this question through four stages. First, in Section 2. the cost and performance bounds of both computational models, the VLIW and the FPGA coprocessing, are examined and a set of critical parameters
is determined, Section 3 describes the experimental methodology used to establish the characteristics of arithmetic computation on FPGAs and Section 4 summarises the results of this investigation. In Section 5,
we explore the implications of these results on the achievable cost and performance limits of FPGA-based coprocessors. Finally, in Section 6 we apply the ideas and conclusions presented in earlier section to a typical computational example to determine its suitability for
FPGA-based adaptive coprocessor implementation.

This paper examines the viability of using integrated
programmable logic as a coprocessor to support a host
CPU core. This adaptive coprocessor is compared to a
VLIW machine in term of both die area occupied and
performance. The parametric bounds necessary to justify
the adoption of an FPGA-based coprocessor are established. Art abstract Field Programmable Gate Array
model is used to investigate the area and delay
characteristics of arithmetic circuits implemented on
FPGA architectures to determine the potential speedup of FPGA-based coprocessors.

Our analysis shows that integrated FPGA arrays are
suitable as coprocessor platforms for realising algorithms
that require only limited numbers of multiplication
instructions. Inherent FPGA characteristics limit the
data-path widths that can be supported efficiently for these
applications. An FPGA-based adaptive coprocessor
requires a large minimum die area before any advantage over a VUW machine of a comparable size can be
realised.

1. Introduction 2. Computational Models
An adaptive coprocessor uses silicon real-estate to integrate more programmable logic. This can then be used to implement larger custom circuits or exploit more concurrency. On the other hand, a VLIW machine will use this same die area to increase the number of ALUs and execute more instructions per cycle. In this section, we examine the cost and performance of implementing an algorithm on both computational models organised as in Figure 1.

Tne ever increasing spare transistor capacity has only been absorbed so far into a limited number of architectural
features. Integrated programmable logic has emerged as one of the very few novel architectural ideas with the potential to exploit this abundant resource. A custom coprocessor can directly exploit the concurrency available in applications, algorithms, and code segments. An FPGA-based coprocessor can further adapt to any demands for special-purpose hardware by mapping an algorithm onto run-time configurable logic.

■‘adaptive" coprocessors can be used to augment the instruction set of a core CPU or as special purpose custom computing engines Real-time applications can also swap multiple functions and subroutines directly onto the reconfigurable hardware during execution U)-[5).

These versatile
l-<*Chr

Core p.P

CoproceMor
(FPGA <x VUW)D-oche

c mull aosansa&'ic.ac uk
hup ifwww ee.ic.ac uk/rc«-'arch/inrormjiiorVw*v./3osaniy3osama luml Figure 1. Target coprocessor system organisation

2060-8186-7548 9/96 $05 00 © 1996 IEEE

PATENT OWNER DIRECTSTREAM, LLC
EX. 2079, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

issuance of Sj ihai Sj can begin execuiion. The number of
lime units it takes to execute a cycle within a dependency
graph (5,), given maximum resources, is the sum of all
nodes along this cycle path. The number of iterations (K)
it takes the pattern in a cycle to repeat execution is the sum
of all iteration distances along this cycle's dependency
path. Therefore NMJk, repetitions of a given cycle will be
executed requiring 8C x (N.uJK) cycles.

The minimum time to execute the whole loop is
max|61(WWl.Ajr'w,~] = where p,„, is the
critical iteration period bound. Using software pipelining
[7] and other advanced compiler transformations, it is
possible to overlap the execution of several different
iterations of the loop. If /cWl. iteration can be unrolled and
then scheduled, the iteration interval r,„ is the time units
needed to execute an entire iteration of k unrolled loops. It
must satisfy both types of data dependencies as well as
resources dependencies. If q\ is the number of operations
a resource of type i must be used in kMw iterations we can
estimate lower bounds on the iteration interval and the
maximum VLIW performance as follows:

xf,v*+c5ljx/w,w

fill - tTtax[r('(sources), (dependence)]

2.1 FPGA-based coprocessor organisation

To achieve a high coprocessor throughput, we assume a
pipelined implementation of all algorithms. This means
that the performance of the FPGA-based coprocessor
depend on the cycle time of the pipeline the number
of iterations the circuit is used (W/j>jo). the number of
concurrent copies of the circuit mapped onto the FPGA

and the number of cycles needed to fill the pipeline
(c'yj.jo). The total number of cycles is then

T,r,=

The area cost is the sum of the areas for all arithmetic
nodes in a design. We assume integer nodes and floating
point nodes are used. All other operator nodes are
expressed as a percentage (cfr)0) of the area. If is the
area of node type i and the number of nodes of type t
used in the circuit, the cost of a circuit implemented on an
adaptive coprocessor can be expressed as.

AcrcuU = (l + C/pKll)x k Irt*
T- _ N vl,w
I vtiV - —

_ v/ov

Lin«-j /p-i

tiik {resources) 2 max|]

t,,! (dcptntUnce) > max[(8C/XC)]

2.2 VLIW machine organisation
We assume the VLIW utilises integer and floating-point
ALU units rather than single operation functional modules
and that they constitute most of its area. All other area is
expressed as a percentage (c,*,) of the total area. If a\i,w is
the area of a function node of type i and the number
of nodes of type i used, the cost of a VLIW machine can be
expressed as.

Although the problem of finding an optimal schedule
using software pipelining is NP-complete, it has been
shown that near optimal results can often be obtained for
loops with both intra- and inter-iteration data
dependencies. It has also been shown that hierarchical
reduction allows software pipelining to be applied to
complex loops containing conditional statements. Program
restructuring using loop transformations and optimising
data locality using space tiling techniques can also be
applied to increase both the fine-grain and coarse-grain
parallelism available in nested loops.

Avi,» = (/ + Cvii»)

x xrt:L“'i+Wrx

In addition to available resources, the performance of a
VLIW machine is limited by two types of dependencies |6].
The data dependencies within an iteration and the ones
between iterations. A VLIW program can be viewed as a
dependence graph, as in Figure 4, which must be repeated
A',,,, times.

2.3 Effects of memory access

The power of a custom circuit often lies in its use of a
custom address generator to reduce explicit address
calculation instructions. This option can be successfully
exploited by both coprocessor models, the FPGA-based and
the VLIW.

Data and iteration dependencies are
represented by the bold and dashed edges respectively.
Since our VLIW processor model uses piplined ALUs,
each node, or operation, in the graph takes a single time
unit to execute The iteration distance, attached to Furthermore, both models can gain from

customising memory access to fit the data bit width. Wedashed edges, is the number of loop iterations after

207

PATENT OWNER DIRECTSTREAM, LLC
EX. 2079, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

expeci these and other memory access optimisation
techniques to produce equivalent benefits for both models
and are therefore not directly included in the analysis.

characteristics of the implementation platform (FPGA in
this case) and limit its maximum achievable speedup. To
sense how much speedup an adaptive coprocessor can
deliver for a given fixed area and whether an algorithm has
the necessary criterion that would make it suitable for
adaptive coprocessor implementation, we need to estimate
the minimum value of for arithmetic circuits
implemented on FPGA platforms.

2.4 Best-case comparative analysis

We can now compare the performance of both models,
neglecting the pipeline fill cycles, by determining the
speedup:

Tvliw _ k/pga ^ ^ lh;w k./pla ;c t/it
T /ppj k viiw

3. Experimental Methodologysu/P„ = Eq(l)
lC/pta ktfiw 4 To examine how efficiently FPGAs implement

arithmetic circuits we need to eliminate technology and
design variations and create an "even level" for
comparison. This section describes how this even playing
field is established. We first describe the cell architecture
that is used throughout this paper and detail our models for
estimating the area and delay of any FPGA cell. Then, our
choices for arithmetic test circuits and implementation
procedure are explained. In all discussion to follow, we
consider only SRAM programmable FPGAs since only
they provide the flexible platform necessary for field re
programmability.

The speedup is effected by the number of concurrent
copies of the circuit (k/Plc) mapped onto the FPGA. Since
the areas of both models have to be the same, we can
determine k/pla in term of the equivalent number of integer
ALUs as follows:

inl-otii +axnvC'“
kjpga I(iT"'X4£) + I (oxn/f-X4;')

ini-I Jp-i

ini-i

— n*-‘
a viiw

U ,andO =Ip-uh'
Ovhw

ial-alu
0 vliw

3.1 FPGA cell architecture

We examined 15 different FPGA cell architectures that
span the range of current research and commercial arrays.
The function generators included a 2-input HAND gate, a
2-input Universal Logic Module (ULM.2) capable of
implementing any of 16 2-input Boolean logic functions
[8] , look-up tables (LUT) of input sizes 3, 4, 5, and 6, and
finally, the cell architectures of both the Altera FLEX-8000
[9] and the Xilinx XC5000 [10] which include specialised
hardware to speedup carry propagation and wide gate
implementation. All cells also incorporated D-typc flip-
flops (FF). The cells interconnection capabilities examined
included extensive neighbour connections with 8, 12, and
16 possible neighbours, channelled 2D arrays with 4-
neighbour connections, or channelled arrays with fully, or
partially, connected clusters of cells similar to the Altera
FLEX-8000 and the Xilinx XC5000 array architectures.

Of all these cell types, the 3-input LUT cell proved the
best overall for arithmetic circuit implementations. We
elect to use it and a 2D channelled array architecture for
communication as the example cell throughout this paper.
A neighbour interconnection only array may also be used
and will give similar numerical results. The chosen cell is
based on a look-up table design similar in functionality to
other look-up table model proposals [II]. It incorporates
4-nearest neighbour connections as a vital way to reduce
delay and improve routability. Figure 2 gives a conceptual

Using tiafresources), tmfdependencc), and the speedup
equation we can determine the conditions for which an
FPGA-based coprocessor is virtually guaranteed to have
better performance than a VLIW engine:

p 2 k X A Eq(2)
/Pti

vLC ^ JCvhw_ x £
kjpgu

Eq(3)max mi-o!u
rtviiw

We can further simplify Eq(l), Eq(2), and Eq(3) by
considering integer arithmetic only and substituting kfptc to

lni-u/« .
SU — *|l* x ^

Uw nz x a

get:

Eq(4)

Z.(" /punp„„>q:,',xax Eq(5)x* vliw^ini-a/u
nvhw

a £&xAx2\4£ Eq(6)

We refer to G and A as the area and delay overheads,
respectively, of a particular circuit implementation
compared to an ALU’s area and delay. They are inherent

208

PATENT OWNER DIRECTSTREAM, LLC
EX. 2079, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

\

Figure 3a is a representative model of the total cell area
showing also the routing pitch between the physical
channel tracks. We assume that the Routing Configuration
Memory (RCM) bits used for the channels' switch and
connection boxes are distributed between the channel
tracks as shown in Figure 2b. It is therefore reasonable to
assume that a„ equals a,. Other similar models also
assume a distributed RCM [11]. The number of memory
bits distributed within the channels depend on the
connection and switch boxes. The connection box
flexibility Fc is defined as the number of channel tracks
each input and output can be connected to. The switch box
flexibility Fs is defined as the number of possible tracks
each incoming track can be connected to.

diagram of this cell. The routing channel width, IV, is
assumed to be the same for both the vertical and the
horizontal channels. For LUTs with 3. 4, 5, and 6 inputs,
the average minimum channel widths necessary for routing
has been observed to be 9. 11, 11. and 12 respectively [I I],
We therefore adopt a channel width of 9 for this model cell
although the actual channel width should probably be
slightly higher.

)-uipwu
Look-up

T.bl* Ur+D Q
3 ' Vdd

->clr 2x1
T1 r* mux

Mol .
Boi

Figure 3. A represenuiion of the total area of an
FPGA. (a) Area model showing the vertical
and horizontal tracks, (b) The Routing
Configuration Memory bits (RCM) are
distributed between the channel tracks.

Fiofli «
fttl/.hbOlO

Enable To 4 neirhboun

hope

I/O

w/
Rouiing* j< «SthT|
Pitching\ Logic and its

Configuration
Memory

A/tm ♦ A/cm

+ A,i„

Connection mmSwitch Box.Box

Figure 2. FPGA cell model with a 3-inputs look-up table as a function
generator, direct north, south, easu and west neighbour connections,
and global horizontal and vertical channel routing.

(b) - ID- mIIv

Horizontal /
Tracks

(a) I/O Connection Box
Limitations. We do not account for all the factors
effecling the implementation and performance.
Specifically, we leave issues such as external access,
programming, testability, clock and control signals
distribution, clock skew, and power consumption for future
work. Of the global programming logic and network we
only include the cost of the communication channel
network and the number of SRAM configuration bits
within a cell as part of the cost of the cell. These
limitations bias fl in favour of the FPGA-bascd
coprocessor model.

Swiich Box —1

It has been show [12] that Fc has to be greater than half
the number of tracks for 100% routing completion to be
possible. Additionally, only a small Fs value is needed to
achieve a 100% routing completion. In our model, we
choose Fc = 0.75W and Fs = 3. The routing pitch is
determined by a five-transistor SRAM bit (om) and a single
pass-transistor PIP (aP) and is defined as

rp„,i, = %/a.- (a„ + <2P) = ~j6a.
3.2 Area measurement

The area of an FPGA cell is approximated using a
transistor density coefficient metric (a) in pmVtransistor.
This density coefficient is deperdent on the fabrication
process technology, layout methodology, and the circuit
logic structure used. It is obtained by averaging layout area
per transistor over all cells available in a library or over
samples or real designs. We assume a normalised function
generator logic density coefficient of ct/, a configuration
memory normalised density coefficient of a„, and a
routing pitch normalised density coefficient of a,.

The FPGA cell is modelled as a square die area having
the following characteristics:

Acrtl - A/unc + Amem + Aroutr
Aiuk = 0./x(n !S„ + N rtm)

Ament = ((X.n ‘ On) * fen * N rent)

Aentu. = [(/••;,„» • W* • W..)] + [rptteh (X W* + K ■ IV.)]

('»“* •Wk)

Acnmm = (cX/ ’ A/r/m)+ (cXm Om Nrem) + A
whrrt X Y • A• A-.- und X * = v •

route

209

PATENT OWNER DIRECTSTREAM, LLC
EX. 2079, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

where, cells is accounied for by ihc cxplicii loading on ihai cell’s
oulput. The rouling delay beiween non-neighbouring cells
in a channelled array is more difficull lo estimate specially
without knowledge of the exact placement and routing
information and the capacitive loading on each level due to
the programmable routing switches along the path. The
total execution time of a circuit, in r units, can be
determined as the sum of all delays along the longest path
as follows:

Ac,a = the area of an FPGA cell
A/urr = logic area used for function generation
A„,„ = memory area used for configuration
A,o*t, = the area of the routing channels within a cell
A„„„ = the area of the cell used for communication
N/,„ = # of transistors used for function generation
N,i„ = “ of transistors used for routing logic & muxs
N/rm = # of memory bits for LUTs and control
N,c„ = # of mem. bits used for routing configuration

= # of transistors in a memory bit = 5
M's = # of routing tracks in each horizontal channel
Wv = # of routing tracks in each vertical channel

Tcircuit ~ X [dab^ d route]
1W

where <tab is the delay, in t units, between input node a
and output node h of a cell at circuit depth level r, and
if,cut, is the routing delay, in T units as well, between the
output of the cell at level i and the input of another cell at
level /+/. In this investigation, we will assume ct
zero. This assumption will bias A in favor of the FPGA-
based coprocessor model.

The total area of a circuit implementation depends on
how the mapping from logic equations to FPGA ceil
functions is performed and how they are placed onto the
cell array. If N„u is the number of FPGA cells used to
implement the circuits, the total circuit area is

Atiraul = N cell x Acdl •

to beroule

3.4 Implementation Procedure
We determine the number of ceils needed to implement

a circuit (Ndi,) and the depth of the implementation
(A'*,,),) by a structure preserving direct hand mapping from
the original circuit designs. Automated mapping and
routing results vary significantly with different tools and
for different optimisation criterion. They also significantly
alter the overall high level organisation resulting in low
area utilisation even for regular circuits structures. We can
also assume that with improved FPGA cell architectures,
mapping, placement, and routing technologies, the routing
structure is sufficient to complete the mapped network
interconnections and give a very high array utilisation.

The results will therefore provide a lower bound on the
cost and performance of different implementations which
is exactly what we are looking for. Different designs are
compared based on their implementation efficiency defined
as the area times delay product ’AT’, or cost'performance,
for that circuit. The less ’AT’ is, the more efficient is the
implementation.

3.3 Delay measurement
The delay of an FPGA cell is approximated using the

method of "logical effort" proposed by Sutherland and
Sproull [13] [14], The method is based on a simple RC
model for transistors and provide a first order
approximation of a circuit delay. It defines t as the actual
time, for a fabrication process, that corresponds to a delay
unit. The value of r can be measured from the frequency
of oscillation of a ring oscillator. For each type of logic
gate, the method assigns delay unit values based on the
topology of the circuit element, the difficulty that an
element has in driving capacitive loads, and the parasitic
capacitance exhibited by the gate. The delay of an ideal
inverter that drives another identical inverter is the sum of
a single unit delay (1) and the parasitic delay value PM.
Typically, for 3u CMOS process, t = 0.5ns and P,„ = 0.6r,
while for 0.5u CMOS process, x = 0.1ns and Pm, = 0.5x.
All other gate delays are measured relative lo that of an
ideal inverter.

Logical effort is used to arrive at delay value for each
type of FPGA cell. Separate values are determined for
each cell input to oulput, the set-up time, and the
synchronous clock to output delay for each cell type. These
delays also include the effects of internal fan-outs.

After a circuit is mapped onto an array, its delay
depends on the number of cells along the longest
path from an input to an output as well as the routing delay
between these cells. The routing delay between neighbour

3.5 Choice of arithmetic circuits
We mapped 10 different integer addition circuit designs

representing several delay and area optimisation
techniques. They included, serial, carry-ripple, carry-skip,
several one-level and two-levels carry-lookahead,
conditional-sum, carry-select, and pyramid adders. For
integer multipliers, we only considered 2’s complement
multipliers with l-bit Booth recoding. We also mapped 6

210

PATENT OWNER DIRECTSTREAM, LLC
EX. 2079, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

