
FIELD-PROGRAMMABLE GATE
ARRAY TECHNOLOGY

IPR2018-01600

EXHIBIT

2063

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 1

FIELD-PROGRAMMABLE GATE
ARRAY TECHNOLOGY

edited by

Stephen M. Trimberger
Xilinx

with contributions by

Stephen M. Trimberger
Xilinx

Dennis McCarty
Telle Whitney

Actel

and
The Technical Staff of Altera Corporation

edited by
Robert Hartmann

~.

" SPRINGER. SCIENCE+BUSINESS MEDIA, LLC

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 2

Library of Congress Cataloglng-In-Publlcatlon Data

Field -programmable gate array technology / edited by Stephen M.
Trimberger.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4613-6183-1 ISBN 978-1-4615-2742-8 (eBook)
DOI 10.1007/978-1-4615-2742-8

1. Gate array circuits. 2. Programmable logic devices.
3. Programmable array logic. 1. Trimberger, Stephen, 1955 -
TK7895.G36F54 1994
621.39'5--dc20 93-39703

CIP

Copyright © 1994 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1994
Softcover reprint of the hardcover Ist edition 1994
AII rights reserved. No part ofthis publication may be reproduced, stored in a retrieval
system or transmitted in any form orby any means, mechanical, photo-copying, record ing,
or otherwise, without the prior written permission of the publisher,
Springer Science+Business Media, LLC.

Printed an acid-free pa per.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 3

to ross

who had a vision

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 4

Contents

Preface

Chapter 1. Introduction

1.1. Logic Implementation Options

1.2. What is an FPGA?

1.3. Advantages of FPGAs
Low Tooling Costs
Rapid Turnaround
Low Risk
Effective Design Verification
Low Testing Costs
Standard-Product Advantages
Life Cycle Advantages

1.4. Disadvantages of FPGAs
Chip Size and Cost
Speed of Circuitry
Design Methodology

1.5. Technology Trends
Density
Speed
Architecture

1.6. Designing for FPGAs
Design Migration

1.7. Outline of Subsequent Chapters
1. Introduction
2. Programming Technology
3. Device Architecture
4. Software
5. The Future
6. Design Applications
7. Acknowledgments
8. References

1.8. References

xi

1

1

2

4
4
4
5
6
6
7
8

8
8
9
9

10
10
10
11

11
11

12
12
13
13
13
13
13
13
13

13

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 5

viii

Chapter 2. SRAM Programmable FPGAs

2.1. Introduction

2.2. Programming Technology
SRAM Programming
Advantages and Disadvantages of SRAM Programming

2.3. Device Architecture
Simple SRAM-Programmable FPGA Architecture
Design Trade-offs
The Xilinx XC2000 Architecture
The Xilinx XC3000 Architecture
The Xilinx XC4000 Architecture
Programming the FPGA

2.4. Software
Automated Design Implementation
Technology-Specific Synthesis
Manual Design

2.5. The Future
Programming Technology
Architecture
Software
Partitioning in Space and Time
Design Methodology

FPGA Tecbnology

15

15

15
15
17

19
19
23
29
35
43
52

53
54
63
63

65
65
66
66
67
67

2.6. Design Applications 68
General Design Issues 68
Counter Examples 70
Efficient Multiplication by a Constant in an Artificial Neural Network 75
Distributed Arithmetic for Signal Processing 77
Applications of Reprogramming 79
A Fast Video Controller 83
A Position Tracker For a Robot Manipulator 84
A Fast DMA Controller 85
Custom Computing Applications 87

2.7. Acknowledgments 90

2.8. References 91

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 6

Contents

Chapter 3. Antifuse Programmed FPGAs

3.1 Introduction

3.2 Programming Technology

3.3 Device Architecture
Principles of Programmable Routing

Routing Architecture of the Actel FPGAs
Actl Architecture
Act2 Architecture
Act3 Architecture
Programming and Testing
Capacity
Perfonnance

3.4 Software

3.5 The Future

3.6 Design Applications
Designing with ACT! and ACT2 FPGAs
Designing with ACT FPGAs: A 1TL Perspective
Migrating PLD Designs to FPGAs
Synthesis Design Flow
Designing Counters with ACT Devices
Designing Adders and Accumulators with the ACT Architecture
State Machine Design
Using FPGAs for Digital PLLs
Customer Design Examples

3.7 Acknowledgments

3.8 References

Chapter 4. Erasable Programmable Logic Devices

4.1. Introduction

4.2. Programming Technology
Logic Structures Using EPROM Transistors

97

97

99

103
103
108
110
113
117
118
124
127

128

132

133
133
137
140
143
144
153
160
164
167

168

168

171

171

173
175

ix

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 7

x FPGA Technology

4.3. Device Architecture 179
Basic Concepts 179
Macrocell Architecture 180
Logic Array 180
Programmable Flip-Flops 181
Programmable Clock 182
110 Control Block 182
Design Security 182
Functional Testing 183
Operating Requirements for EPLDs 183
Architectural Evolution in Array-Based PLDs 184
4.3.1 - The "Classic" Family of PLDs 184
Functional Description of the EP 1810 184
4.3.2 - The MAX (Multiple Array matriX) Product Family 187
4.3.3 - MAX 7000 195
4.3.4 - MPLDs: Mask-Programmed Logic Devices 200

4.4. Software 204

4.5. The Future 218

4.6. Design Applications 224
4.6.1 MAX 5000 Timing 224
4.6.2 Using Expanders to Build Registered Logic in MAX EPLDs 228
4.6.3 Simulating Internal Buses in General-Purpose EPLDs 233
4.6.4 Fast Bus Controllers with the EPM5016 238
4.6.5 Micro Channel Bus Master and SDP Logic with the EPM5032

EPLD 240
4.6.6 FIFO Controller Using an EPM7096 243
4.6.7 Integrating an Intelligent 110 Subsystem with a Single EPM5130

EPLD 246
4.6.8 Controlling Complex CCD Imaging Systems with the EPS464

EPLD 247

4.7. References 250

Index 253

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 8

Preface

A Field Programmable Gate Array (FPGA) is a programmable logic device that
implements multi-level logic. FPGAs resemble traditional mask-programmed gate
arrays by their modular, extensible structure that includes both logic and interconnect.
but differ in that their programming is done by end users at their site. No masking
steps are required. In this respect. FPGAs resemble PLDs. FPGAs offer low risk, low
incremental cost and fast prototyping advantages.

FPGAs are revolutionizing the way systems designers implement logic. By radically
reducing the development costs and the turnaround time for implementing thousands
of gates of logic, FPGAs provide a new capability that affects the semiconductor
industry and the CAE industry. They may also change the way digital systems will be
designed in the future.

The Scope of the Book

The field of FPGAs is varied and dynamic. Many different kinds of FPGAs exist. with
different programming technologies, different architectures and different software.
This book describes the major FPGA architectures available today, covering the three
programming technologies that are in use and the major architectures built on those
programming technologies. The goal is to introduce the reader to concepts relevant to

the entire field of FPGAs using popular devices as examples, without trying to
enumerate every commercially-available product.

This book includes discussions of FPGA integrated circuit manufacturing, circuit
design and logic design. It describes the way logic and interconnect are implemented
in various kinds of FPGAs. It covers particular problems with design for FPGAs and
future possibilities for new architectures and software. This book compares CAD for
FPGAs with CAD for traditional gate arrays. It describes algorithms for placement.
routing and optimization of FPGAs.

The FPGA device descriptions in this book include specifications of capacity and
speed. These numbers are continually being debated by manufacturers. This book
does not attempt to enter the debate; there was no attempt to reconcile device
specifications from different vendors.

FPGA devices and technology are improving rapidly, so specific numbers for gate
counts and device speeds may already be obsolete. However, the general concepts,

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 9

xii FPGA Technology

such as programming methods, architectural constraints due to programming
technologies, device scaling and preferred design methods will remain relevant long
after the specific devices in this book have only historical interest.

Intended Audience

This book is intended to describe all aspects of FPGA design and development. For
this reason, it covers a significant amount of material. An extremely detailed
discussion of all these areas would make this book prohibitively long. Our intent is to
make each section clear to readers with general technical expertise in digital design
and design tools. Readers with significant experience in one of these areas may find
the discussions superficial in that area, but useful in others.

This book assumes the reader has an understanding of the fundamentals of digital
electronics design. Experience designing or using ASIC gate arrays and software will
make much of this book much easier to read, since many of the comparisons are with
respect to gate arrays.

Potential developers of FPGAs will benefit primarily from the FPGA architecture and
software discussion. Electronics systems designers and ASIC users will find this book
gives them a background on different types of FPGAs and shows applications of their
use, which are useful for deciding when an FPGA is appropriate for an application.

This book may be useful in a university setting where it can be used in support of a
comparative FPGA architectures course, as background reading for a digital design
course with FPGAs as the target implementation, or as supplemental reading for a
Computer-Aided Design course for tools targeted to FPGA design automation.

This book is not intended as a product specification for any integrated circuit or
software product.

Organization of the Book

Chapter 1 introduces the FPGA in comparison with other logic implementation
techniques. It defines the term FPGA in a form that is both general enough to include
all types of devices currently being offered, and specific enough to be a guide for
evaluating other devices that may appear. The bulk of chapter 1 is a comparison of
FPGAs with mask programmed gate arrays, showing the FPGA advantages and
disadvantages.

The following three chapters describe three very different FPGA architectures and
software. Chapter 2 describes Xilinx SRAM-based FPGAs, chapter 3 describes Actel
antifuse-based FPGAs and chapter 4 describes Altera EEPROM-based FPGAs. The
three architectures were chosen because they were the most common FPGAs
currently in use and because they are very different in their approaches to field
programmable logic. They have different programming technologies, different

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 10

Preface xiii

methods of implementing logic and different interconnection strategies. Each of these
chapters includes a discussion of an FPGA family, its architecture, software, and
applications.

Each chapter was written by an expert in that particular type of architecture. Each
author expresses the concepts in the terminology familiar to developers and users of
that architecture. To facilitate comparison of the different FPGAs, the chapters follow
a common outline, described in chapter 1. In addition, the reader may use the index as
a glossary, as terms with similar meanings are correlated there.

Acknowledgments

I would like to thank all those who contributed directly and indirectly to the success
of this book, especially the good folks at Xilinx who allowed me the time for this
project, especially Bernie Vonderschmitt, Wes Patterson, Gary Leive and Bill Carter. I
wish also to thank the authors of the architecture sections, whose effort and endurance
were vital to the completion of this project.

Stephen Trimberger
San Jose, CA

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 11

xiv FPGA Technology

Trademarks

Xilinx, XACT, XC2064, XC3090, XC4005, and XC-DS50l are registered trademarks of Xilinx. All XC
prefix product designations, XACT-Performance, XAPP, X-BLOX, XSI, XChecker, XDM, XEPLD, XFf,
XAPp, XSI, BITA, Dual Block, FastCLK, HardWire, LCA, Logic Cell, PLUSASM and UIM are
trademarks of Xilinx. The Programmable Logic Company is a service mark of Xilinx.

Act is a trademark and Actel, Action Logic, Activator, Actionprobe and PLICE are registered trademarks
of Actel Corporation.

Altera. MAX, and MAX+PLUS are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, FastTrack, FLEX, AHDL, MPLD, MAX 5000. MAX
7000, FLEX 8000, Classic, STG, PLS-FLEX, PLDS-HPS, PLDS-MAX, PLS-WS/sN, PLS-WSIHP, PLS
EDIE Product design elements and mnemonics are Altera Corporation copyright.

ABEL is a trademark of Data VO Corporation.

Viewlogic is a registered trademark of Viewlogic Systems, Incorporated.

OrCAD is a trademark of OrCAD Systems Corporation.

IBM and AT are registered trademarks and IBM pc, XT, PS/2 and Micro Channel are trademarks of
International Business Machines Corporation.

Windows is a trademark of Microsoft Corporation.

Sun is a trademark of Sun Microsystems, Incorporated.

PAL and PALASM are registered trademarks of Advanced Micro Devices, Incorporated.

Synopsys and Design Compiler are trademarks of Synopsys, Inc.

Radius is a trademark and Pivot is a registered trademarks of Radius, Inc.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Quickturn and RPM Logic Emulator are a trademarks of Quickturn Design Systems.

All trademarks are the property of their respecti ve owners.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 12

FIELD-PROGRAMMABLE GATE
ARRAY TECHNOLOGY

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 13

Chapter 1
Introduction

1.1. Logic Implementation Options

An electronic system designer has several options for implementing digital logic.
These options include discrete logic devices, often called Small-Scale Integrated cir
cuits, or SSI; programmable devices such as Programmable Array Logic (PALs or
PLDs); masked-programmed Gate Arrays or Cell-Based ASICs; and Field Program
mable Gate Arrays (FPGAs).

Small amounts of logic can be implemented easily with discrete devices. Each SSI
cbip contains a few identical gates of a specific type. Designers choose the logic they
want from the selection of available chip types. SSI logic is often referred-to as
"7400-series," in reference to the widely-used Texas Instruments logic family.

A simple Programmable Logic Device (PLD) is a general-purpose device capable of
implementing the logic of tens or hundreds of SSI packages. Pioneered by MMI, a
PLD implements logic as wide fan-in two-level sum-of-products of its inputs. It may
have optional flip-flops or other logic on the outputs of the sum-of-products array. The
best-known PLD is the "22VlO", with 22 inputs and 10 outputs, developed by AMD
and copied by numerous others. A PLD is programmed by users at their site using
inexpensive programming hardware. Power consumption and delay limit the size of
the simple sum of products structure to dozens of product terms. Large designs
require a multi-level logic implementation.

To implement designs with thousands or tens of thousands of gates, designers can use
a Mask Programmed Gate Array (MPGA), commonly called a gate array. An MPGA
can implement tens of thousands or even hundreds of thousands of gates of logic on a
single IC in multi-level logic with wiring between logic stages. An MPGA consists of
a base of pre-designed transistors with customized wiring for each design. The wiring
is built during the manufacturing process, so each design requires custom masks for
the wiring. The mask-making charges make low-volume MPGAs expensive. Typical
turnaround times for MPGAs are four to six weeks.

Field Programmable Gate Arrays offer the benefits of both programmable logic arrays
and gate arrays. Like MPGAs, FPGAs implement thousands of gates of logic in a sin
gle integrated circuit. Like PLDs, FPGAs are programmable by designers at their site,

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 14

2 FPGA Technology

30000

5000

1989 1990 1991 1992 1993

Figure 1.1. Number of Designs Implemented as MPGA Versus
FPGA (source: Dataquest, 1991 and Xilinx, 1992)

eliminating the long delays and tooling costs. These advantages have made FPGAs
very popular (figure 1.1).

1.2. What is an FPGA?

An FPGA is a general-purpose, multi-level programmable logic device that is cus
tomized in the package by the end users. FPGAs are composed of blocks of logic con
nected with programmable interconnect. The programmable interconnect between
blocks allows users to implement multi-level logic, removing many of the size limita-

20000

15000

Gates 10000

5000

1 000

100 ••• !!~~

100 1 000 10000 100000

Units
Figure 1.2. Preferred Implementation Options in the Design

Space (Source: Xilinx).

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 15

Introduction 3

tions of the PLO-derived two-level logic structure. This extensible architecture can
currently support thousands of gates of logic at system speeds in the tens of mega
hertz.

The size. structure and number of blocks; and the amount and connectivity of the
interconnect vary considerably among FPGA architectures. This difference in archi
tectures is driven by different programming technologies and different target applica
tions of the parts. An architectural organization that worlcs well with a particular
programming technology typically does not work with another. The segmentation by
programming style and hence architecture is the basis of the taxonomy in figure 1.3.
FPGAs fall into four groups: island-style and cellular SRAM-programmed devices;
channeled, antifuse-programmed devices; and array-style EPROM or EEPROM-pro
grammed devices.

SRAM-programmed island-style FPGAs include all three Xilinx LCA families. the
AT&T Orca and Altera Flex, as well as U1FPGAI [Chow 1991]. Cellular-style
FPGAs include Toshiba. Plessey's ERA, Atmel's (formerly Concurrent Logic) CLi
family, the Algotronix CAL, as well as Triptych [Ebeling 1991]. Antifuse-based
channelled gate arrays include Actel's ACT-I and ACT-2, Quicklogic's pASIC and
Crosspoint's CP20K Series FPGA. EPROM-programmed array-like devices resemble
a collection of PALs with a central interconnection mechanism. Devices of this type
are Altera's MAX 5000 and MAX 7000, AMO's Mach and Xilinx's EPLO, among
others.

This definition of FPGA is similar to the Complex PLO (CPLO) definition used by
the Oataquest market research company. They divide CPLOs into "Programmable
Multi-level Devices" (PMOs), which are simple PLO arrays with a programmable

I FPGA I
I I

SRAM-Programmed Antifuse-Programmed
Channeled

EPROM-Programmed
Array

I
I I

Island I ~ Cellular

Figure 1.3. Taxonomy of FPGAs.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 16

4 FPGA Technology

interconnection structure; and "FPGAs", which consists of all other multi-level field
programmable devices. The Dataquest "FPGA" classification covers those devices in
the SRAM-Programmed and Antifuse-Programmed boxes in figure 1.3. In this book,
we use the broader definition of FPGAs, which is equivalent to the Dataquest
"CPLD" classification.

Currently-available FPGAs implement digital logic, but this is not a fundamental lim
itation. FPGAs composed of analog blocks with programmable interconnect have
been proposed and built [Lee 1991], but they are not commercially available. This
book does not describe analog or hybrid FPGAs. The reader is directed to the refer
ences for further information on analog FPGAs, also called Field-Programmable Ana
log Arrays (FPAAs).

1.3. Advantages of FPGAs

Figure 1.4 compares MPGA and FPGA design and manufacturing steps. Design entry
and verification are similar for both technologies, but there are significant differences
late in the design cycle. Instead of customizing the part by custom manufacturing
steps, FPGAs are customized by electrical modification of a packaged part. By elimi
nating the customization during manufacturing, FPGAs eliminate each design's cus
tom mask-making, test pattern generation, wafer fabrication, packaging and testing.
The electrical modification takes milliseconds or minutes, depending on the program
ming technology and size of the part, compared to weeks for the MPGA steps. FPGA
programming is done by simple, inexpensive programming devices.

System Design

Logic Design

Place and Route

Timing Simulation

Test Pattern Generation

Mask Making

Wafer Fabrication

Packaging

Testing

System Integration

System Design

Logic Design

Place and Route

Timing Simulation

Download I programming

System Integration

Figure 1.4. Design Steps For MPGA versus FPGA

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 17

Introduction

Percentage
of Design
Starts

<5 5-10 10-20 20-100 >100
Thousands of Units

Figure 1.5. MOS Gate Array Design Starts by Unit Volume
(source: Dataquest 1991).

Low Tooling Costs

5

Every design to be implemented in an MPGA requires custom masks to build the cus
tom wiring patterns. Each mask costs several thousand dollars and the cost is amor
tized over the total number of units manufactured. The more units built, the lower the
impact of the masking charges. However, comparatively few designs require more
than tens of thousands of units (figure 1.5), so, for most MPGA designs, the masking
charges are significant. There is no custom tooling required for an FPGA, so there are
no associated tooling costs, making FPGAs cost effective for most logic designs.

Rapid Turnaround

The MPGA manufacturing process takes several weeks from the completion of the
design to the delivery of the finished parts. An FPGA can be programmed in minutes
by the user of the part. On an FPGA, a modification to correct a design flaw or to
address a late specification change can be made quickly and cheaply. Faster design
turnaround leads to faster product development and shorter time-to-market for new
FPGA products. Reinertsen [1983] determined that in a high-technology environ
ment, a six-month delay in product delivery cut the lifetime profits of a product by
thirty-three percent.

Low Risk

The benefits of low initial Non-Recurring Engineering (NRE) charges and rapid turn
around means that a design iteration due to an error incurs neither a large expense nor
a long delay. Low costs encourage early system integration and prototyping. The low
cost of error also encourages more aggressive logic design, which may yield better

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 18

6 FPGA Technology

performance and more cost effective designs.

Effective Design Verification

Because of substantial NRE costs and manufacturing delays, MPGA users verify their
designs by extensive simulation before manufacture. Simulation has an inherent
speed/accuracy trade-off: highly accurate simulators are slow, fast simulators are
inaccurate. To verify the functionality of the design in a system, large amounts of time
must be simulated. Proper verification requires that the environment of the design be
simulated as well. Week-long simulation runs are not uncommon. An MPGA design,
verified by simulation, may include errors due to inaccuracies or over-simplifications
in the simulation model.

FPGAs avoid these problems. Instead of simulating large amounts of time, FPGA
users may choose to use in-circuit verification. Designers can implement the design
and use a functioning part as a prototype. The prototype operates at full speed and
with excellent timing accuracy. A prototype can be inserted into the system to verify
functionality of the system as a whole, eliminating a class of system errors early.

Low Testing Costs

All ICs must be tested to verify proper manufacturing and packaging. This test is dif
ferent for each design. Designs implemented in an MPGA incur three costs associated
with testing: on-chip logic to facilitate testing, generation of the test program and test
ing the parts when manufacturing is complete. FPGAs address all these costs.

Good test programs are hard to write, and schedule pressures tend to abbreviate test
program generation for MPGAs. The poor coverage of MPGA test programs allows
some bad chips to pass the testing. These defective parts may not be discovered until
they fail in a system where the cost of repair is high.

In contrast, the test program for FPGAs is the same for all designs and tests the FPGA
for all users of the part. Because there is only one test program, it is reasonable to
invest a considerable amount of effort in it, and it can be continually improved over
the lifetime of the FPGA. The resulting test program achieves excellent test coverage,
leading to high-quality les.

In the case of reprogrammable parts, the manufacturer can reprogram all programma
ble points during testing to verify that the part will work properly after programming.
For one-time-programmable parts, the FPGAs generally include test circuitry to catch
most failures during manufacture. Manufacturer-supplied hardware and software ver
ify post-programming functionality. Those parts that fail to pass the post-program
ming test are rejected on the programming device. The percentage of successfully
programmed devices is termed programming yield.

The manufacturer's test program verifies that every FPGA will be functional for all
possible designs that may be implemented on it. FPGA users are not required to write

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 19

Introduction 7

design-specific tests for their designs. Therefore, designers need not build the testabil
ity into the design, eliminating "design for testability" and the design effort and over
head associated with it

Standard-Product Advantages

New, denser integrated circuit technologies drive microelectronic advances. New pro
cessing technologies have finer geometries with smaller transistors and wires. The
speed and cost of a chip are related to these dimensions, so a smaller chip is both
cheaper and faster.

Moving an MPGA design to a new process incurs additional NRE charges for new
masks and test program verification, so it is rarely done. Because FPGAs are standard
products, only the FPGA manufacturer incurs the cost of moving the chip to a new
process technology. FPGAs on the new process are available to all customers without
additional NRE cost. From the point of view of a user, the FPGA manufacturer lowers
the price and improves the speed of the parts over time. A user of MPGAs does not
get these improvements without paying the additional NRE charges.

Normal variations in the integrated circuit manufacturing process leads to a distribu
tion of performance of integrated circuits. In an MPGA, the customer must design to
worst-case process characteristics. The chips that meet "typical" specifications rather
than "worst-case" specifications are approximately twenty percent faster. FPGA man
ufacturers can separate the fast parts from the slow ones in a process called speed bin
ning. Slower parts sell for lower price. Faster parts allow designers to design to the
high-end of the process variation, giving FPGA users a price/performance trade-off
that MPGA designers do not have.

Volume

Unplanned
Upside

Time

Figure l.6. Generic Product Life Cycle (source: Xilinx).

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 20

8 FPGA Technology

Life Cycle Advantages

The life of a product does not end when the design of a chip inside it is finished. Fig
ure 1.6 shows a typical product life cycle plotted as volume versus time. When the
design is complete, there is a ramp-up into production. This ramp-up may include a
few prototypes or larger pilot manufacturing runs. During production, a design may
have periods of increased or decreased sales. At the end of a product lifetime, produc
tion tapers off.

MPGA are only cost effective when ordered in volume, and the volume must be
decided months in advance of delivery due to long manufacturing cycle times. An
MPGA user must maintain a sufficient inventory to handle upturns, and is left with
excess inventory should sales fail to meet expectations. At the end of a product life
time, MPGA users are faced with a last-purchase decision that must be made months
in advance of the end-of-product date. If they order too many parts, they are left with
unusable parts in inventory, if they order too few, they may not have enough parts to
build the last few systems.

The cost-effectiveness of FPGAs in low volume and the flexibility provided by field
programmability provide advantages over all phases of product lifetime. When intro
ducing a product, an FPGA user may order a few parts at a time while testing the
design for functionality and the product for market viability. During production, the
FPGA user can accommodate rapid changes in sales easily because long lead times
are not required. An FPGA user can make product enhancements by shipping an
upgraded design on the same FPGA device. This upgrade requires no inventory
changes, no new hardware and does not interrupt production.

1.4. Disadvantages of FPGAs

FPGAs have on-chip programming overhead circuitry that manages the programming
of the part. The area of the programming overhead cannot be used by customers, and
lowers the FPGA gate density. The programmable switches and options in an FPGA
are larger than the mask programming that can be built in an MPGA. The programma
ble switches also increase signal delay by adding resistance and capacitance to inter
connect paths. As a result, FPGAs are larger and slower than equivalent MPGAs.

Chip Size and Cost

The area penalty for field-programmability is significant. Current FPGAs are about
ten times larger for the same gate capacity as the equivalent MPGA, and are corre
spondingly more expensive on a per-chip basis.

Because of the overhead of field programmability, current-generation FPGAs are lim
ited to tens of thousands of gates of capacity, while the largest MPGAs are hundreds
of thousands of gates. For large designs, designers must either split the design into
several FPGAs or they must move the design to an MPGA. Multiple-chip partitioning

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 21

Introduction

Total
Project
Cost

MPGA t NRE L-__________ ~ __________ _L_

10k 20k

Project Volume

Figure 1.7. Cost Versus Volume for MPGAs vs. FPGAs (source:
Xilinx).

for FPGA designs is available, but still relatively immature.

9

Figure l.7 shows a cost comparison of MPGAs against FPGAs over a range of vol
ume for the parts. At some point the initial cost savings from the lack of NRE charge
with FPGAs is consumed by the increased per-chip costs. That crossover point for a
five-thousand-gate part is currently above ten thousand units. Designs with greater
volume are more cost effective using an MPGA, despite the greater start-up costs.

Speed of Circuitry

The connection paths in an FPGA are slowed by the programming circuitry. Program
mable interconnection points along a wiring path add resistance to the path. All pro
gramming points in the interconnect add capacitance to the internal paths. Finally,
since more area is required for the same amount of logic, interconnect lines between
logic are longer. Longer lines have greater resistance and capacitance, further slowing
the resulting circuitry. Current FPGAs are two to three times slower than MPGAs and
it is unlikely that they will ever equal MPGA performance on the same manufacturing
process.

Design Methodology

FPGAs have been criticized because they are too easy to use, thereby encouraging a
"try-it-and-see-what-happens" methodology for logic design. If these "sloppy" design
practices result in poor-quality designs, the resulting products will be inferior.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 22

10 FPGA Technology

1.5. Technology 'fiends

This section examines the relative performance of FPGAs and MPGAs in the context
of advancing process technology.

Density

In ASIC terminology, density is the amount of logic that can fit on a chip. The pro
gramming overhead of FPGAs dictates that, for the same amount of logic, FPGAs
will always be larger and therefore more expensive than MPGAs. However, many
MPGA designs are pad limited -- the size of the die is dictated not by the number of
gates that can be placed in the area, but by the number of I/O pads that surround those
gates. Since I/O pads are placed on the periphery, they scale linearly with feature size
as a result of improved IC manufacturing processes, while the core of the array scales
quadratically. Since some fraction of the core of the chip is wasted in a pad-limited
MPGA deSign, the use of that area by FPGAs for field programmability would not
increase the area of the resulting part. At some point FPGA and MPGA size for a
given number of gates will be dictated by the I/O count, so FPGA and MPGA silicon
cost and capacity will be the same.

FPGAs have a fundamental advantage in manufacturing efficiency. Since all parts are
identical and all test programs are the same, FPGAs require less equipment and less
handling to produce the same number of good parts. This efficiency drives down the
cost of FPGAs relative to MPGAs for the same die size.

Speed

Despite being smaller and slower than MPGAs, FPGA size and speed are adequate
for most applications. Because field programmability slows down the parts, FPGAs
will always be slower than the equivalent MPGA for the same application, but there is
reason to believe that FPGAs will reduce the gap in performance.

An application typically has a small amount of logic that dictates its overall speed.
Dedicated architectural features of FPGAs can eliminate unneeded programmability
in speed-critical paths. These features include high-fan-in decoding logic and special
purpose arithmetic logic. Since there is no extra programming circuitry in the path to
slow it down, it runs as fast as custom logic. Since it was designed with the intent to
produce a high-speed path, it may even run faster than the mask-programmed gen
eral-purpose circuitry in an MPGA.

FPGA manufacturers move their FPGAs to faster processes as they become available,
allowing a user to speed up the application simply by buying the faster device. In con
trast, an MPGA manufacturer will not automatically upgrade an existing MPGA
design to a new process, absorbing the expense of the new mask set. The result is that
although the MPGA manufacturer has an improved process, the MPGA user cannot
access to it with the old design.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 23

Introduction 11

Architecture

Most importantly, though, is the relative immaturity of FPGA architectures. MPGAs
trace their lineage to IBM's Master Slice of the late 1960s. They have been refined
over the years to an efficient structure that merges logic and interconnect. and serves
as an easy target for design automation software. In contrast, the first FPGAs were
introduced in 1984, and FPGA architectures are still undergoing significant change.
More than any other change, these architectural innovations should serve to close the
gap with MPGAs as FPGAs mature.

1.6. Designing for FPGAs

The design flow for FPGAs varies among the different types of FPGAs. This section
gives an overview of the problems associated with designing with FPGAs and dis
cusses some common issues. Design tools and methodology will be covered in more
detail in the following sections, with emphasis on the design flow for the particular
FPGA.

FPGA designs can be made with the same tools and techniques used to design
MPGAs (figure 1.8). Schematic entry, logic synthesis and equation-based entry are all
available from FPGA manufacturers and CAE vendors. Some FPGAs can be pro
grammed with a very low-level device-dependent design editor, for maximum utiliza
tion of the device.

FPGA manufacturers and CAE software vendors supply software for optimizing the
logic for an FPGA architecture, for mapping the logic into the FPGA efficiently, and
for routing the connections through the configurable interconnect. The result of the
implementation step is a programming file that can be loaded into the FPGA or used
to control the FPGA programmer to customize the part.

The current generation of ASIC design tools was developed to support MPGAs and
standard-cell chips. Since MPGAs and standard cell chips are typically made by inter
connecting standard gates in custom patterns, the tools retain this bias. This bias is
particularly evident in logic optimization and technology mapping, where the soft
ware attempts to optimize the design to a gate-like architecture. This optimization
may not produce a good result on an FPGA that does not follow the MPGA model.
Different FPGA vendors address this problem differently. Some have chosen to
address software compatibility as a fundamental issue, others have chosen to adopt a
more MPGA-like "synthesis friendly" FPGA architecture. These software and archi
tecture issues will be addressed independently for each architecture.

Design Migration

FPGAs provide cost-effective design and implementation, while MPGAs provide
low-cost volume production. A designer can have the best of both worlds by proto
typing a design on an FPGA, then switching to an MPGA for production. An FPGA

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 24

12 FPGA Technology

Equat~ Hf/hematic Capture

Netlist

+
FPGA Fitting,

Placement and
Routing

FPGA Program
File

Figure 1.8. FPGA Design System Overview

netlist can be re-targeted to an MPGA by library translation followed by re-verifica
tion of all timing paths. The re-verification is difficult if the target MPGA logic does
not have the same relative performance as the FPGA logic. Someday, re-targeting
software in logic synthesis systems may be able to correct the timing differences, but
at present this problem requires manual intervention.

To address this design migration problem, some FPGA vendors offer mask-pro
grammed versions of their field programmable parts with compatible logic structures
and delays. The coupling of FPGAs and their mask-programmed equivalent parts
give FPGA users the advantages of both implementation methods.

1.7. Outline of Subsequent Chapters

This remainder of this book contains three chapters, each of which addresses a single
commercial FPGA architecture and software. Chapter 2 describes the Xilinx SRAM
based architectures, chapter 3 describes the Actel antifuse-based architectures, and
chapter 4 describes the Altera EPROM-based architectures.

Each chapter stands as a complete presentation, but the three chapters share a com
mon outline, so readers may make comparisons between the different FPGA architec
tures and software. The common outline is this:

1. Introduction

This section contains background information on the architecture.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 25

Introduction 13

2. Programming Technology

Each of the FPGAs described in this book has a ditIerent method of programming.
This section describes the manufacturing process and circuit design that provide field
programmability.

3. Device Architecture

This section describes the organization of an FPGA, the way it implements logic and
the way the logic blocks are connected. This section also addresses density and speed
limits of the parts and architectural design trade-otIs.

4. Software

Design methodology and flows differ among different FPGA architectures. Architec
tural decisions may alleviate or emphasize different aspects of the software. This sec
tion describes not only the tools needed, but the algorithms those tools use.

5. The Future

Technology trends indicate how the capabilities of these FPGAs will change relative
to one another in the future. In addition, this section identifies open areas of research.

6. Design Applications

The advantages and disadvantages of each architecture can be made most apparent
with design examples. The example designs in this section show the interaction
between the FPGA architecture and the design software.

7. Acknowledgments

8. References

References for each type of FPGA are listed separately for each chapter. A single ref
erence may appear in more than one chapter.

1.S. References

D.G. Reinertsen, "Whodunit? The search for the new-product killers," Electronic
Business, July 1983.

P.G. Smith, D.G. Reinertsen, Developing Products in Half the TIme, Van Nostrand
Reinhold, New York, 1991.

C. Ebeling, G. Borriello, S.A. Hauck, D. Song, E. Walkup, "TRIPTYCH: A New
FPGA Architecture", in FPGAs, W. Moore and W. Luk, ed., Abingdon Press, Oxford,
UK,1991.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 26

14 FPGA Technology

E.K.F. Lee, P.G. Gulak, "A CMOS Field-Programmable Analog Array", 1991 IEEE
International Solid-State Circuits Conference Digest of Technical Papers, IEEE,
1991.

P. Chow, S.O. Seo, D. Au, T. Choy, B. Fallah, D. Lewis, C. Li, J. Rose, "A l.2um
CMOS FPGA using Cascaded Logic Blocks and Segmented Routing", in FPGAs, W.
Moore and W. Luk, ed., Abingdon Press, Oxford, UK, 1991.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 27

Chapter 2

SRAM Programmable FPGAs

Steve Trimberger, Xilinx, Inc.

2.1. Introduction

Since their introduction, SRAM-programmable FPGAs have become very popular.
Carter [1986], Hsieh [1987, 1990], Kean [1989], Furtek [1990], Hastie [1990],
Kawana [1990], Muroga [1991], Ebeling [1991], Chow [1991], Hauck [1992], Hill
and Britton [Hill 1992][Britton 1993] and Cliff [1993] have all proposed SRAM
programmable FPGAs.

This chapter focuses on the three Xilinx families of FPGAs [Carter 1986] [Hsieh
1987] [Hsieh 1990] as representatives of the class of SRAM-programmable FPGAs
with mature software. These three FPGA families share a common structure: an array
of configurable logic blocks surrounded by configurable interconnect. The three
families differ in the details of the logic and interconnect structures. Members of a
family have identical block and wiring structure, but differ in the size of the array.
This chapter begins with an overview of the programming technology, it covers
device architectures for the three devices, software and design applications.

2.2. Programming Technology

SRAM Programming

An SRAM-programmable FPGA is programmed by loading configuration memory
cells from an external source. The configuration memory cells control the logic and
interconnect that perform the application function of the FPGA. There is no separate
RAM area on the chip, the memory cells are distributed among the logic they control.

The configuration memory is written only once for each application so, unlike
commercial static RAM memory chips, high-speed read and write is not important.
Stability and density are primary concerns. Figure 2.2.la shows the CMOS five
transistor memory cell used in Xilinx FPGAs. The ReadlWrite pass transistor (RIW),
is used both to load the cell and to read back the programming. During normal
operation it is off, and the cell holds its programming.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 28

16

a

b

c

BIT
LINE

BIT
LINE

BIT
LINE

Five Transistor RAM Cell

WORD LINE

- - __ I

A B

Four Transistor RAM Cell

WORDUNE

----,
Vee I -vec-'

I
I
I
I

B

Six Transistor RAM Cell

----,
Vee I

I

WORDUNE

I
I
.. - - __ I

B

FPGA Technology

X3713

BIT
LINE

BIT
LINE

X4011

Figure 2.2.1. a) Xilinx Five-Transistor Configuration Memory Cell. b) Four
Transistor Memory Cell. c) Six-Transistor Memory Cell.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 29

SRAM Programmable FPGAs 17

The six-transistor memory cell used in CMOS memories uses the data bit in both the
true and complement form (figure 2.2.1c), providing fast read and write times at the
cost of another transistor. The four-transistor memory cell often used in high-density
SRAMs (figure 2.2.1b) has polysilicon resistors instead of the P-channel pullup
transistors. These giga-ohm resistive paths increase sensitivity to soft errors such as
alpha-particle upsets. The internal signals in the memory cell in figure 2.2.1a are
always connected to one of the two power supplies with a low-resistance path, so the
cell is very stable. Alpha particle sensitivity tests of the five-transistor memory cell
show the expected mean time between failure due to alpha particle upsets to be nearly
one million years [Lyons 1985] [Xilinx SMTO 1991].

Advantages and Disadvantages of SRAM Programming

Volatility

SRAM programming has an obvious dmwback -- volatility. When the power is turned
off, the IC loses its programming, so an SRAM FPGA must be reprogrammed each
time power is applied. SRAM FPGAs include logic to sense power-on and to
automatically initialize themselves, providing "virtual non-volatility," provided the
application can wait the 2ms-3Oms required to program the FPGA. This is usually not
a problem because system start-up times are usually longer than this. For systems that
need active logic during power-up, the initialization time for an SRAM-programmed
part must be considered in the power-up sequence.

External Memory

A related disadvantage of SRAM programming is that it requires an external memory
for permanent storage of the program. Although multiple FPGAs can share a single
external memory, this multiple-chip solution may be inappropriate where board space
is crucial. However, many systems already have significant amounts of storage in
initialization microcode, bootstrap PROMs or disks. Many users of reprogrammable
FPGAs are able to share the permanent memory used to initialize other components
of the system.

Reprogrammability

The disadvantage of volatility provides the advantage of reprogrammability.
Reprogrammability makes SRAM-programmable FPGAs ideal for prototype
development. Since the FPGA can be reprogrammed without cost. a designer can load
a design into the part, try it at-speed in the system and debug the design. If necessary,
a modified version of the design can be loaded into the FPGA and tried in the system
without removing the chip. One-time-programmable FPGAs require that the defective
prototype part be removed and a new part programmed and inserted into the system to
make the change.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 30

18 FPGA Technology

A reprogrammable FPGA can be time-shared to replace logic amounting to many
times its maximum capacity. If a system can be divided into pieces that are not
required simultaneously, the pieces can be designed into separate configurations of
the FPGA, and the FPGA time-shared between them by repeated reprogramming.

A common use of reprogrammability is for board-level test. As part of the test
sequence, the FPGA is configured as a test generator/checker to verify the board or
components on the board. Mter board-level test is finished, the FPGA is re
configured with the application logic. This design saves the additional hardware that
would have been needed for system-level test. Other uses allow a system to interface
to multiple different external devices, selectable by the programming of the FPGA.

A system built with reprogrammable logic can be updated after delivery to a customer
by modifying the programming of the FPGA. The new programming bitstream can
come from a new PROM or from memory in some other part of the system. This
feature has been used for soft-hardware field upgrades, replacing the FPGA
programming from a floppy disk or even from a remote computer over a modem.
Applications of reprogramming are discussed in more detail in the Applications
section of this chapter.

Quality

Indirectly, reprogrammability leads to very high quality parts because each part can
be fully tested at the factory without destroying it. Every programming point and
every path is tested. SRAM FPGA tests cover all the typical stuck-at faults as well as
many other pattern faults that ASIC test generators might miss. These faults include
stuck-open faults and bridging faults that result from layout proximity. SRAM FPGAs
can also be tested for speed and binned accordingly, so users can choose only the
fastest parts for performance-critical applications.

Programming yield for SRAM FPGAs is always 100%. There is no separate
programming step, and no removal and re-insertion for programming. The handling
associated with programming antifuse and EPROM-programmed devices damages
the package pins, causing problems for board assembly.

Process Leadership

The SRAM process used to build FPGAs is the same CMOS process used to make
ASICs and is very similar to the process used for CMOS memories, so SRAM
programmable FPGAs are among the first logic products to take advantage of process
improvements driven by semiconductor memories. Since improved processes are
both denser and faster than older ones, those advantages apply to SRAM
programmed FPGAs as well.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 31

SRAM Programmable FPGAs 19

Low Power

SRAM-based FPGAs implement logic in static gates, so SRAM programmable
FPGAs have low power consumption even for very large amounts of logic and have
zero standby current. In contrast, EPLD-style FPGAs have passive pullup and sense
amplifier circuitry that leads to prohibitively-high static power dissipation for high
capacity or high-speed parts.

2.3. Device Architecture

All three Xilinx FPGA families consist of an array of Configurable Logic Blocks
(CLBs) embedded in a configurable interconnect structure and surrounded by
configurable I/O blocks (figure 2.3.1). Each family architecture was driven by a
different set of assumptions and a different model of use. These different design
pressures led to different block, I/O and wiring architectures, as well as other unique
features of each FPGA. Family members differ in their number of blocks and I/Os,
with CLB array sizes ranging from 8x8 to 24x24 blocks. These chips support designs
in excess of ten thousand gates, with system clock speeds in the tens of megahertz.

LOGIC BLOCKS

Figure 2.3.1. Island-Style SRAM-Programmable FPGA Architecture.

Simple SRAM-Programmable FPGA Architecture

This section contains a bottom-up description of a simple SRAM-programmable
FPGA followed by a discussion of architectural trade-offs. Rather than try to describe
a commercial FPGA architecture, the intent is to give the reader an understanding of
the underlying programming technology and design methodology without the detail
of a particular implementation. Following sections describe commercial architectures
and how they address the design trade-offs.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 32

20 FPGA Technology

a b c

Figure 2.3.2. Three Important Pieces. a) Lookup Table. b) Pip. c) Multiplexer
Controlled by a Configuration Memory Cell.

Building Blocks

Lookup Table. Figure 2.3.2a shows a four-input lookup table (abbreviated LUn or
function generator, a basic unit of configurable logic. A lookup table implements

combinational logic as a 2nx 1 memory composed of configuration memory cells.
The memory is used as a lookup table, addressed by the n inputs. A lookup table can

implement any of the 22ft functions of its inputs. When the FPGA is programmed, the
memory is loaded with the bit pattern corresponding to the truth table of the function
[Horowitz and Hill 1989]. For example, if all configuration bits in the 16-bit lookup
table in figure 2.3.2a are 0 except the high-order bit (address 15), the output of the
lookup table will be zero unless all inputs are high (binary address 1111): a 4-input
AND. To implement functions of fewer inputs, the unused inputs are held low or the
subset of the truth table entries is duplicated to make the output the same regardless of
the value of the unused input.

The inputs to the lookup table are logically equivalent -- any signal can be connected
to any input pin of the lookup table. Changing the pin to which a signal is connected
requires a straightforward rearrangement of the bits in the lookup table. All functions
of a lookup table have the same timing: the access time of the memory. Placement and
routing software can take advantage of the logically-equivalent pins, choosing which
input connects to which pin to optimize routing.

Programmable Interconnect Point. The second building block is called a
programmable interconnect point, (Pip). Some authors use the term "configurable
interconnect point" (cip). Pips control the connection of wiring segments in the
programmable interconnect. The pip, shown schematically in figure 2.3.2b, is a pass

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 33

SRAM Programmable FPGAs 21

transistor controlled by a configuration memory cell. Wife segments on each side of
the transistor are connected or not depending on the value in the memory cell. A pip is
the basic unit of configurable wiring.

The pip switches the signal with a pass transistor, not a full CMOS transmission gate.
The transmission gate requires three more transistors: one for the transmission gate
and two for the inverter that negates the control signal. A full CMOS transmission
gate requires two transistors connected to each wiring segment for each pip, adding
diffusion capacitance to the segment. slowing down the interconnect. The drawback
of the single pass transistor design is threshold drop: signals in the interconnect are
not pulled all the way up to the high voltage, so all logic inputs must either dissipate
power due to lowered high-voltage on the P-channel pull up, drive the P-channel
destination with a restored signal, or include a CMOS P-channel pullup with a lower
threshold to restore the signal logic.

Multiplexer. The third building block is a multiplexer controlled by a configuration
memory cell (figure 2.3.2c). The multiplexer is a special-case, one-directional routing
structure. It may be of any width, with more configuration bits for wider multiplexers.
Switches built with multiplexers reduce the number of memory cells required for
controlling the switch, giving an area savings for large switches.

-
-
-
-
-
I-

I-

I-
l
I-

Figure 2.3.3. An FPGA Tile.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 34

22 FPGA Technology

The Logic Block

Figure 2.3.3 shows the building blocks from figure 2.3.2 combined into a single tile,
shown outlined, composed of a configurable logic block (CLB) and wiring. The CLB
in figure 2.3.3 contains a single four-input lookup table. The CLB is surrounded by
wiring channels. Each wiring channel contains several wiring segments. Segments in
the left side channel have multiplexers on them to make connections to the CLB. The
CLB output is connected to the wiring segments at the right through pips. For
simplicity, pips are shown as diagonal lines at the intersections of the segments in the
channels and between segments in the switchbox. If the block is unused, the output
pips are all turned off, so the block does not drive its signal onto any segment. and the
segment may be used to connect other signals on the chip.

Where the wiring channels intersect. their connections are made by a pattern of pips
in a switchbox. For routability considerations, a crossbar switch in the switchbox is
ideal, but a full crossbar switch connecting n wires requires n2 pips, so it is
prohibitively large. In practice, the switchbox contains only a few of the possible
connections between segments in intersecting channels. A signal may be routed
through pips in switchboxes to other blocks or back to the same block. Each segment
in the switchbox in figure 2.3.3 has three pips, one to a segment on each of the other
three sides of the switch box. The number and pattern of connections in the switchbox
has a significant effect on the routability and performance of the FPGA, as will be
discussed later.

The tile in figure 2.3.3 can implement sequential logic as well as combinational logic.
To build a latch, the lookup table is configured as shown in figure 2.3.4, and the
output is routed back to the input. The first and second inputs to the lookup table are
configured for the reset and set signals. A clocked latch can use the fourth input for
the clock. Latches can be combined to implement other kinds of sequential elements,
such as D-type or T-type flip flops.

The Chip

Figure 2.3.5 shows a chip composed by building an array of CLB tiles, then
surrounding the array with configurable I/O Blocks (lOBs). An lOB allows signals to
be driven off-chip or optionally brought onto the chip onto interconnect segments.
The lOB may perform other functions, such as three-state outputs and registering
incoming or out-going signals.

Different family members in a common architecture are constructed by assembling
different-sized arrays of the tile and surrounding that array with different numbers of
lOBs.

The FPGA must include circuitry to load the configuration bitstream or program into
configuration memory where the memory cells produce logic functions in lookup
tables and control interconnect in pips and multiplexers. Typically, the bits in the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 35

SRAM Programmable FPGAs 23

~
""""

=1\ R ~
~ ==1\ s fI

10 0
,...... =t' 0 ,

-
~ ==1\

-
-
-
-
-

Figure 2.3.4. The TIle Configured as a Latch.

program are loaded serially, and the programming of the FPGA can be considered to
be a single, long programming word.

Design Trade-oft's

Density and Speed

Density is the amount of usable logic per unit of chip area. Density has two
components: the size of the structures that implement logic and the logic capacity of
those structures. The size of components in an SRAM FPGA correlates fairly well
with the number of memory cells required to build and control them. The capacity of
the structures depends on how well software can map logic from typical designs into
the structures the FPGA implements. More general structures are preferred, since
more logic can be put into them and they require simpler design automation software.
However, more general connections usually require more controlling logic, so they
take more area.

The area dedicated to interconnect does not contribute to logic capacity, so an FPGA
with minimal interconnect may appear to have excellent logic density. However,
much of the logic will be inaccessible to designs built on the FPGA because of the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 36

24

o o
o o
o
o

DO DO DO DO
Figure 2.3.5. An FPGA as an Array of TIles.

FPGA Technology

o
o
o
o
o
o

X3712

inadequate wmng resources. As a result, the wiring-poor FPGA will have
comparatively little usable logic.

The speed of an FPGA is a measure of the delay required to implement a function and
to propagate signals to neighboring functions. The speed of the logic part of the block
is the sum of the delays from the input selection multiplexers, the lookup table and the
output drivers. For complex blocks, the delays of different paths through the block
may be different.

The fraction of delay incurred due to interconnect in an FPGA is significantly greater
than that in an MPGA because configurable interconnect is inherently much slower
than mask-programmed interconnect. In an MPGA, wiring is implemented on metal
runs that have low capacitance and low resistance. While an SRAM-programmable
FPGA also uses low-resistance metal for interconnect, a signal passes through a
transistor at each pip (figure 2.3.6). The channel resistance of the transistor that makes
up the pip and the capacitance due the source/drain diffusions of all pips on the
segment determine the speed that signals propagate through the interconnect. In
figure 2.3.6, a signal from output A to input B sees the resistance of the pip after the
output buffer, the loading on segment s4, the resistance of the pip to segment s I,
another segment load and finally the input multiplexer. The equivalent schematic of
the path is shown in figure 2.3.6b, where Cs is the segment loading capacitance, equal
to the capacitance of all the pips on the segment plus the capacitance of the metal

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 37

SRAM Programmable FPGAs

AY~ p
Q ~ Q ~ T Q ~

a ~ 54 ~ 51 Ys ~

b

Figure 2.3.6. Interconnect Segment Detail. a) Architecture-Level. b) Electrical
Equivalent.

25

segment, and Rp is the resistance of a pip. Signals that travel longer distances have
additional resistance and capacitance stages.

It is the task of both the architecture and the software to limit signal delay and to
provide buffering for long wires. The architecture may provide buffering in the
interconnect, or the routing software may be required to route signals that need
buffering through unused CLBs. Both options have been employed in SRAM FPGAs,
and they will be discussed with the individual FPGA architectures.

Speed and density must be traded off against one another. Faster output buffers are
larger. CLBs with a large number of inputs can make high-fanin logic faster, but each
input multiplexer costs area and hence reduces density.

Size versus Routability

An architecture with more pips provides more options to the router, simplifying
routing, but each pip includes a memory cell, adding measurably to the size of the
FPGA. Rose and Brown [1991] investigated the routability of lookup-table-based
FPGAs under differing numbers of pips in the switchbox and in the routing channel.
They placed and routed a set of designs on a simple FPGA architecture, varying the
number of tracks in the channels, the number of pips from CLBs to tracks and the
number of pips between tracks in switch boxes. They report the number of tracks in
excess of the channel density required to route the set of designs over a range of pip
distributions. Their results show that, for a high probability of complete routing, the
architecture must have good connectivity in the channel, with at least seventy percent

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 38

26 FPGA Technology

of the channel segments connectable to the CLB; but connections in the switchbox
may be sparse, with as few as three or four connections from each segment in a
switchbox.

Speed versus Routability

Every segment of configurable interconnect is capacitively loaded by the pass
transistors of all potential connections that can be made from that segment, as shown
in figure 2.3.6. When a signal is routed through a pass transistor to another segment,
the net includes the resistance of the transistor. The delay of a net is the time required
to charge or discharge the distributed capacitance of all segments through the
resistances of all pips and the CLB output driver. The additional delay on a net from
adding a routing segment grows quadratically with the number of pips on the net, due
to the distributed resistance of the pips and the capacitance of the segments. This is
the same delay behavior observed in a lossy transmission line. To improve
performance, the resistance of a pip can be reduced by making the pass transistor
wider. However, wider transistors load the segment with more capacitance. In
practice, interconnect delays are about the same as the block delays, but for
pathological cases, they can be much larger.

Because signal delay is more dependent on the number of pips through which a signal
is routed than on the distance covered, FPGAs typically have interconnect wiring
segments in a variety of lengths. This can be done by replacing some "straight-ahead"
pips (such as pip P in figure 2.3.6a) with a wired metal connections. This saves the
area of the pips, and eliminates the series resistance of the pips along the wiring track.
The capacitance of a segment is larger because the one segment still has all the
branching pips. By eliminating many switchbox pips, we can make a channel with
wiring segments of many different lengths. The result has been called a "segmented
routing channel" [Greene 1990].

If a signal travels the full length of a multiple-length segment in a segmented routing
channel, it reaches its destination in less time than it would if it were routed on single
length lines. However, if the signal is not required to travel the whole length of the
segment, the delay may be greater due to the larger capacitance of the longer segment.
Further, if much of the long segmented routes are wasted, the overall routability of the
chip is degmded. Therefore segmented channels require more tracks than channels
with only single-length lines.

Another architectural option is to include direct connections from the output of a
block to the inputs of nearest-neighbor blocks, bypassing both the series resistance of
the pips and the capacitive loading of the segments. These connections provide high
speed paths for simple connections. This technique has also been called "cascade."
Finally, an FPGA may also have longer-distance connections or special facilities for
long-distance or high-fanout connections.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 39

SRAM Programmable FPGAs 27

Block Size and Structure

A lookup table is not the only way to implement logic. For example, instead of a
lookup table, we can implement logic with a non-programmable four-input NAND
gate. The NAND gate requires a fraction of the transistors of the lookup table and
runs somewhat faster, although several NAND gates may be required to implement a
function that would fit into a single lookup table. For more generality, one could
implement a few different functions of the inputs in a logic block and select the one
desired function with a programmable multiplexer. This solution still requires some
control circuitry: memory cells to control the selection of the function of the block
from the set of implemented functions.

Simple blocks, such as NAND gates or two-input lookup tables, are conceptually
elegant, and design software can usually use them efficiently. Further, a large block
may not always be fully utilized, leading to lower logic capacity.

When considering size and performance trade-offs, one must consider not only the
logic element, but also the interconnect segments, pips and multiplexers required to
connect the elements. Because the lookup table can implement any function of its
inputs, a single lookup table replaces several simple gates as well as the delay and
area-intensive interconnect between them. In practice, implementing logic in a lookup
table produces a smaller, faster FPGA because the lookup table efficiently combines
versatile logic implementation with the programming overhead of the memory cells.

This trade-off can be illustrated with a consideration of lookup table widths. A four
input lookup table has sixteen memory cells, a three-input lookup table has only eight.
If the logic being implemented in 4-input lookup tables breaks naturally into three
input gates, half of every 4-input lookup table area will be wasted, leading to an
inefficient implementation on the FPGA. On the other hand, if the logic tends to break
into four-input pieces and we implement it in 3-input lookup tables, each 4-input
function will need three three-input lookup tables plus the associated interconnect.
The resulting logic is not only slower, but also larger than the four-input version.

Rose, et. al. [1990] investigated a range of lookup table sizes and their effect on the
overall chip area, including both CLB area and routing area. They mapped logic from
a number of designs into lookup tables and estimated the size of the chips that would
have been required to implement those designs. Their estimate used total memory cell
count and wiring cost estimates. They performed their analysis for a range of lookup
table sizes and programming cell sizes. Their results show that a three-input or four
input lookup table gives the best density for a wide range of programming cell sizes.
Larger lookup table sizes were preferred for a high-speed architecture.

This type of trade-off analysis applies to sequential logic elements as well as
combinational logic. Figure 2.3.7 shows a dedicated flip-flop in the logic block with a
control multiplexer to select either the lookup table or the flip-flop output. The
dedicated flip-flop, when used, saves two lookup tables and their associated wiring.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 40

28 FPGA Technology

Figure 2.3.7. A CLB with Registered Output.

Although the fiip-flop area is wasted when the combinational output is desired, the
area savings over all designs for using the flip-flop exceeds the waste when it is
unused [Rose 1990]. In addition, the dedicated flip-flop provides predictable setup
time, hold time and metastability parameters. If a latch is built from a lookup table
and interconnect, as shown in figure 2.3.4, the D connection from the output to its
non-feedback destination loads the feedback path, making the timing of the latch
dependent on its wiring. Buffering the signal requires an additional lookup table,
doubling the size of the latch.

The determination of the desirability of a dedicated function in the FPGA architecture
can be generalized into a pair of design rules.

l. A dedicated function improves the density of an FPGA if, over all designs, the
area wasted when the function is unused is less than the total area saved when it is
used.

2. A dedicated function improves the performance of an FPGA if, over all designs,
the delay along the critical path added by the feature is less than the delay reduction
along the critical path due to the feature.

The value of a dedicated feature is also dependent on the ability of design software to
use it and on the "general applicability" of the feature. A feature that is unused by
design software can not improve the quality of implementation. A feature that
improves the FPGA for some designs and degrades it for others will be of limited
value.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 41

SRAM Programmable FPGAs 29

Capacity Estimation

FPGAs have three kinds of resources: logic, I/O and routing. To determine if a design
fits into a particular FPGA, the design must fit within all three resource limits. The
difficulty of this estimation is a function of the architecture and of the software used
for mapping the logic into the FPGA. FPGA logic and interconnect capacity are
difficult to estimate. Traditional measures of gate count and product terms are not
accurate estimates of lookup-table capacity. Two designs that appear to be of equal
size in terms of MPGA gate count or number of PLD product terms may use CLBs
with different efficiency, requiring very different numbers of CLBs. Logic
optimization algorithms may also significantly change the size and performance of
the design.

Complex blocks implement complex functions efficiently, but when the function to be
implemented does not fit into the block efficiently, some fraction of the block is
unusable, and is wasted. The wasted fractions of blocks cause a gap between the peak
capacity of the FPGA and the capacity in a given application. An accurate capacity
and performance estimate requires that the design be mapped into the FPGA.
Fortunately, fast mapping heuristics can give a good estimate of logic capacity.

Routing requirements are more difficult to estimate. The problem of statistical
wirability estimation has been addressed by Heller [1978], Donath [1979] and
EIGamal [1981], but the techniques and results are not accurate enough for capacity
estimation. MPGA designs address this problem by providing significantly more
interconnect than is needed by most designs. This solution in impractical in FPGAs
because unused FPGA interconnect degrades performance and density too severely.
FPGA design systems include high-speed placement and routing for routability
estimation and timing-driven routing to meet delay requirements.

The Xilinx XC2000 Architecture

The Xilinx XC2000 family [Carter 1986] was the first commercially-available FPGA.
Introduced in 1985 and still used today, the XC2000 architecture was developed
without supporting software to verify logic density or capacity. The block structure
was derived from a general understanding of the way logic is decomposed in typical
applications and from manual implementations of existing MPGA designs. A crucial
concern in the design of the XC2000 family was to build a chip that was small enough
to be manufacturable with the Ie process available at the time. Therefore, a smaller,
slower cell was preferred to a larger, faster cell.

The XC2000 CLB

The XC2000 CLB combinational logic section (figure 2.3.8) consists of two three
input lookup tables producing the F and G signals. The two lookup table outputs can
be multiplexed together to produce any function of the four inputs on both outputs.
Hill [1991] describes this arrangement as a single four-input lookup table with two

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 42

30

A -~--~>-I

INPUTS ~ --f-------.H

o -"*""_--f
COMB.
LOGIC

G

F

K
CLOCK

Figure 2.3.8. The XC2000 CLB.

FPGA Tecbnology

x

OUTPUTS

y

a

X-4259

outputs. The CLB includes a single storage element that can be configured as an edge
sensitive D-type flip-flop or as a level sensitive D-type latch. The data input to the
storage element comes from the output of the F lookup table. The clock input can
come from the G lookup table, the C input to the CLB or from a separate clock input,
K.

Either of the CLB outputs can be configured to be the result of the F lookup table, the
G lookup table or the sequential result, Q. The output of the flip-flop can be recycled
directly to the inputs of the lookup table, providing an efficient method of generating
state machines and counters.

The designers of XC2000 architecture determined that four-input lookup tables
efficiently implemented most logic and that a dedicated flip-flop was generally
applicable. This implied an architecture much like figure 2.3.7. However, they did not
want to lose half the lookup table for related functions of three or fewer inputs, such
as the sum and carry in a full adder. Therefore the XC2000 CLB has two outputs. For
a full adder, it can implement the sum in one lookup table and the carry in the other.
The sum can be stored in the CLB flip-flop to build an accumulator efficiently.

The XC2000 IO Block

Figure 2.3.9 shows the XC2000 110 block structure. All chip outputs can be three
stated and bidirectional. The three-state control can be fixed in the configuration
bitstrearn to make the block input-only or output-only, or it can come from a signal in
the FPGA interconnect, so on-chip logic can control the direction of the 110 pads. The
input signal can be latched in the lOB, reducing hold times for latched inputs that
would otherwise have to be wired to a CLB flip-flop.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 43

SRAM Programmable FPGAs 31

OFF

TS (OUTPUT ENABLE)

ON

OUT

IN

VOCLOCK

Figure 2.3.9. The XC2000 lOB.

o~"" "":
. . I.. . .•

X4291

Figure 2.3.10. XC2000 Interconnect Structure.

sharbour@jvllp.com

31SRAM Programmable FPGAs

___ | OFFc TS (OUTPUT ENABLE)

ON
%

4 OUT
PIN

L—>
IN

D Q

I/O CLOCK

Figure 2.3.9. The XC2000IOB.

I

CLB CLB

TX: c□ SWITCH ±
MATRIX T

■
mmM

A

B — XC — CLB CLB
K — 7^

D□ cSWITCH
MATRIX

r

CLBCLB

n X4291

Figure 2.3.10. XC2000 Interconnect Structure.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 44

32 FPGA Technology

Wiring Architecture

The XC2000 includes four horizontal and five vertical general-purpose interconnect
segments between switchboxes in the array (figure 2.3.10). The switchbox pips
connect the segments in pairs, with the fifth vertical segment making connections to
some of the adjoining segments (figure 2.3.11). The segments can be grouped into
channels in which each segment is part of a track.

A net routed on general interconnect shows a distributed RC delay. Sizing all drivers
to overcome the worst-case load across the chip is impractical. Instead, the XC2000
provides repowering buffers in the interconnect to speed up long-distance
connections. The array of tiles is divided into nine sections in a grid arrangement
(figure 2.3.12) with general interconnect signals re-powered every time the signal
crosses from one section into the next. Local signals within a grid section are not
repowered.

~ 0. ~ ~ 8 3 8 3 8 3 8 3

7 4 7 4 7 4 7 4

6 5 6 5 6 5 6 5

~ ~ ~ ~
8 3 8 3 8 3 8 3

7 4 7 4 7 4 7 4

6 5 6 5 6 5 6 5

Figure 2.3.11. XC2000 Switchbox Connections.

The XC2000 wmng includes direct connections to horizontally and vertically
adjacent blocks. These connections are at the ends of the bold lines in figure 2.3.13. A
direct connection provides a bigh-speed dedicated interconnect path to two adjacent
CLBs through a single multiplexer input, avoiding the general-purpose interconnect.
It is useful for those cases where a signal has a single speed-critical destination and
that destination can be placed next to the source. If this ideal placement cannot be
made, the connection can still be made by routing through general-purpose
interconnect.

The XC2000 wiring includes two vertical long lines and one horizontal long line. A
long line is a single metal segment that spans the entire width or height of the array of
tiles, bypassing all switchboxes. Signals are buffered onto the long lines, so that they

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 45

SRAM Programmable FPGAs 33

D

il 0 0 0 0 fr

goo 0 0 g
g~o~O~+-~~~O~~~_g
il ~ ~ ~ 0 fr
il fr & 0 0 0 0 g
il fr
il fr
il fr
il fr
il fr

D D
D 00 t;::Jc;l t;::Jc;l 00 0 t;::Jc;l 00 t;::Jc;l LX'l D

X4013

Figure 2.3.12. XC2000 Repowering Buffer Pattern.

can be distributed over a long distance and to a large number of destinations quickly
and with low skew.

To further support high-fanout. low-skew signals, the XC2000 FPGA includes two
high-drive buffers with dedicated global interconnect to all CLBs in the whole chip.
These buffers are intended to be used for clocks or other synchronizing signals. This
global interconnect reduces the need for a user of the FPGA to do complicated
special-purpose clock routing or simulation, as is required in an MPGA to guarantee
low-skew clocking paths.

Block-to-Interconnect Connections

The connections to the CLB are distributed around the four sides of the block, with
inputs on the bottom, left and top; and outputs on the right (figure 2.3.14). This
asymmetry encourages the implementation of a design where signals flow from left to
right and top to bottom across the chip. Input multiplexers in the figure, shown as
boxes, appear as independent pips to improve the clarity of the drawing. Because
equivalent lookup table inputs come from different channels, the router has the
flexibility to swap pins.

The outputs of the CLB can connect to only half the segments in the channel. Since
CLB inputs can come from any segment, and since signals can switch tracks in the
switchboxes, the limited number of output connections is not a serious routability

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 46

34 FPGA Technology

X4262

Figure 2.3.13. XC2000 Direct Interconnect.

problem. During routing, if an output must connect to a segment to which it does not
connect directly, the router can swap the outputs of the CLB. Output swapping
involves exchanging the lookup table contents of F and G and corresponding input
selection multiplexers, thereby swapping the signals on the output pins.

XC2000 Family Members

The XC2000 family consists of two members, the XC2064 and the XC2018 (see
table). The maximum gate capacity number is a rough estimate that assumes full
utilization of all CLBs on the chip. No one design will use all the logic capacity of
every CLB, so the typical gate capacity is lower than the maximum.

The XC2000 architecture has not changed since 1985, but improvements in the
design and processing have improved the performance of the parts significantly over
that period. XC2000 FPGAs operate at flip-flop toggle frequencies up to 100 MHz.
The toggle frequency is the speed path from a CLB flip-flop, back through the lookup
table and into the flip-flop. It is a measurable maximum frequency at which the part is

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 47

SRAM Programmable FPGAs 35

I ,
A

BelS
c x

K H
D Y

It r
I T I I I

Figure 2.3.14. XC2000 Block-to-Interconnect Connections.

Table 1: XC2000 Family Members

Member CLB Array lOs Gate Capacity
Size

max typical

XC2064 8x8 58 1200 800

XC2018 lOx 10 74 1800 1200

guaranteed to operate. More complex functions require inputs from other sources, and
since those inputs must come through the interconnect, they will be slower. Typical
worst-case system frequencies depend on the number of lookup tables and on the
wiring in the critical speed path. Typical system clock speeds for the XC2000 are
about one-third to one-fourth the maximum toggle frequency.

The Xilinx XC3000 Architecture

The XC3000 family of FPGAs is the most widely used FPGA family, with offerings
from Xilinx, Seiko and AT&T. The XC3000 architecture includes enhancements to
the XC2000 architecture to improve performance, density and usability. The result is
a powerful collection of logic capability in a cost-effective package. Key to the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 48

36 FPGA Technology

popularity of the XC3000 family is the capacity of the parts, reaching well into the
thousands of gates.

The XC3000 architecture was developed with manual tools for design
implementation, and the architecture shows a bias toward manual design. This bias is
exhibited primarily in the patterns of connectivity in the interconnect. These patterns
are usable by a human designer, but provide a difficult set of constraints for software
design automation.

The XC3000 CLB

The XC3000 CLB (figure 2.3.15) is substantially larger than the XC2000 CLB. Each
of the lookup tables has four inputs rather than three, hence requires sixteen bits of
configuration memory rather than eight. The two lookup tables can be combined with
a multiplexer to produce any function of five inputs and some functions of up to seven
inputs. The wider functions of the CLB extract only a slight delay penalty, and they
allow the XC3000 architecture to implement faster logic, since speed critical paths
can be implemented with fewer CLBs in series.

The XC3000 CLB has two flip-flops, to ensure that all combinational logic can be
followed by a pipelining flip-flop. As in the XC2000, the flip-flop outputs can be fed
back internally in the CLB to serve as inputs to the lookup tables. This register-rich

DATA N -+-"".d,-i --------,

ax .a

LOGlCiE==3
VARIABlES :+1::==1 FUNCTIOII

av

ENABLE CLOCK -+-""'--------------1
.,. (ENABLE) -----l

QOCX~A-------~

RESET DflECT +.!.IL ________ ----j

"O'(NHOlIT) ----1

(GLOBAlAESET) -------'

Figure 2.3.15. The XC3000 CLB.

.x

a...sOUTPllTS

.y

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 49

SRAM Programmable FPGAs 37

cell lets the XC3000 implement state-intensive applications and heavily pipelined
designs efficiently.

The XC3000 IO Block

The XC3000 lOB, shown in figure 2.3.16, is significantly more complex than the
XC2000 lOB. The most important addition is a flip-flop in the output path. By
registering data in the lOB, the c1ock-to-out time does not include interconnect
delays. The result is a fast, predictable clocked output. The XC3000 lOB also
includes a programmable pullup, optional output inversion and selectable slew rate. A
slower 110 slew rate for low-speed signals reduces power surges, simplifying board
level design.

Inputs from the pad can be brought into the interior of the chip either directly or
registered or both. By allowing both, the 110 block can de-mUltiplex external signals
such as address/data busses, storing the address in the 10 flip-flop and feeding the
data directly into the wiring.

Wiring Architecture

The XC3000 interconnect structure shown in figure 2.3.17 has five general
interconnect lines both vertically and horizontally. In addition, each CLB has direct
connections to adjacent CLBs both vertically and horizontally.

ruT -t"---IL~

DIRECT IN -..:..:.----f-------,

REGISTERED IN -+"'----+---1

'---........ ------ (GLOIIAL RESET)

Figure 2.3.16. The XC3000 lOB.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 50

38

GRID OF GENERAL INTERCONNECT
METAL SEGMENTS

a

b

FPGA Tecbnology

. r·.:. . 1""'. ~. . t
···0·····0······ ::-.: ,,:" . .::- . ", :" . .::-.:
.. ~ . +- .. ~

. . . .

r3 :.,::.
.

.. t5C :-:": • ,'1'
. ' .' t-·.:

.fs[l ...
W":'
.' 1- .. ~ .

Figure 2.3.17. XC3000 Wiring.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 51

SRAM Programmable FPGAs 39

~ r ~ ~ ~
2 3 4 5

gz~ FZ~ ~ - I" I; ~= Q IIII
6 7 8 9 10

~ Jf-~ ~ (?= = 1111::
11 12 13 14 15

~~ =~ ~~ e III e
16 17 18 19 20 -

C

Figure 2.3.17 continued. XC3000 Wuing.

The switchbox connections in the XC3000 are more uniform across the segments,
with the interconnect pattern including all wiring tracks. This additional flexibility
gives the XC3000 router the ability to avoid blockages by moving signals from one
track to another as they are routed across the chip.

Since the XC3000 tile was intended to be built into larger arrays than the XC2()()(), it
includes more long interconnect. There are three vertical and two horizontal long
lines. As in the XC2000, signals are always buffered when driving long lines.

Two of the horizontal long lines are driven by three-state buffers, distributed along the
long line, one set per CLB. These buffers give users the ability to build on-chip
busses. The busses allow implementation of datapaths without the wiring congestion
of the wide multiplexers that would be required if three-state busses were not
available. Each horizontal long line includes an optional pullup resistor to pull the
long line high if none of the buffers is driving it. Configuring the three-state buffers
open-drain, connecting the same signal to the input and control of the three-state
buffer, and activating the pull up resistor creates a distributed wired-AND.

The three-state buffers on the long line are simple to implement because they are
made up of programming features that are already present in the chip. All long line
buffers are necessarily three state buffers, because only one signal drives the long line

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 52

40 FPGA Technology

in standard use. In the XC2000 the three-state control is connected to a programming
cell only. The XC3000 includes an optional alternate connection to the three-state
driver that comes from the interconnect (figure 2.3.18).

XC2000

IJ_I----i]
XC3000

Figure 2.3.18. XC2000 Long Line Buffer and XC3000 Three-State Long Line
Buffer Circuitry.

Experience with the XC2000 repowering buffers showed them to be difficult to use
effectively. Signals should be buffered after they pass through several switchboxes,
but the XC2000 architecture re-drives signals whenever they cross the grid boundary,
regardless of the distance they have travelled. A signal to be connected to an adjacent
CLB is buffered if it happens to fall at the edge of the grid pattern, whereas a signal
that travels a long distance wholly within one of the squares of the grid will not be
buffered at all. In both cases, the signal is slower than it would be with intelligent
buffering. The XC3000 solves this problem with a combination of hardware and
software. The XC3000 interconnect contains redrive buffers scattered among wiring
segments. The redrive buffers can be configured to drive a signal from either direction
along a general interconnect line. A timing-sensitive router selects buffered and
unbuffered segments as appropriate to improve the performance of the net.

Block-to-Interconnect Connections

As shown in figure 2.3.19, the XC3000 architecture has a complex interconnection
scheme from the wiring channels to the CLB inputs. Rather than group all
connections in a single channel as in the XC2000, the inputs are connected to
segments in two wiring channels, and each input pin connects to a fraction of the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 53

SRAM Programmable FPGAs 41

segments in the channel. A net routed in either channel can be connected to the input
pin, provided it is on the proper track in the channel. Similarly, as shown in figure
2.3.20, outputs from CLBs can be connected to two different channels. The channels
are at the ends of the fixed output wires shown in the figure. The output channels are
not both adjacent to the CLB. This enlarges the immediate neighborhood for high
speed connections between CLBs, since a signal can skip a switchbox in two of the
four directions .

. : ... EJ: ::<: . ':"eJ ::~;: . ·: .. a ':·'·0
t·.~ (.: .' t- .. ~ .' t-·. ~. . t·.~. t-

O ·· 0" ····0···· 0" ,,:" .. <:-.: " :'",:-.: " :" . .::- ',:" ::>.: ::::
+- .. ' : .. +-.' . .. ~- .. ' : . +- .. ' : .. +-'

':. .. EJ: .:=:= ':. '·15
t·.~ .: .' t- .. :. . t-·. ~. t·.~.:.· t-

0 ······0······0 ···0······· ,','. '. ,',, . "

+- +- .. "J' ~- .. :.': \. +-":' +-:.

CLB CONTROL INPUTS CLB LOGIC INPUTS

Figure 2.3.19. Input Pips in XC3000.

Both of these complexities cause placement problems. The placement software
measures the quality of the placement using an estimate of routability and
performance. For the XC3000, the pins are accessible from more than one channel,
but there is no guarantee that the signal can be connected to the pin in any channel.
Therefore, the routability depends on which channel the placer expects the router to
use to route to the pin and on the ability of the router to bring the signal into the
channel on the correct track.

The XC3000 Family Members

The XC3000 family consists of six members, covering more than a factor of six in
capacity (see table 2). Devices are available in a variety of packages, including pin
grid arrays, quad flat-packs and thin flat packs for PC-MCIA applications. Many
members are available in common packages with identical footprints so designs can
be migrated to higher or lower density parts without any board changes.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 54

42 FPGA Technology

0:.:- ::::,CLcr~·T\.::.:, c].~":~:~~\·.·:: 0'. :" :.::.:: :::
~. .. . : .. ~ .. ' : . +- .. ' : .~. ~.":'

~ .. 01.. a
• • : :. " I '" '1 " .. E • :.':' • :.':' y •

to.': ,.' . r':':' . ,., . ;-.:':. "., t·.':···· t-o .. :.···:·:: 0 .. :.···:·:: D·.':.· .:.: 0 .. ·· .. :.: '.
~o •• :' "': .': .. ' ~ •• :' ' •• : ••••• +- .. ' '.. . .. :: .• _ ::' .':::' ~:-:

.. fQ :.'. ··ffl: .'. ..jFG}: .'. ..jfq . >w ::;: . :"W ::;: . :·u :::: . :·u
Figure 2.3.20. Output Pips in XC3ooo.

Table 2: XC3000 Family Members

CLB Array Gate Capacity
Member lOs

Size
typical max

XC3020 8x8 64 2000 1200

XC3030 lOx 10 80 3000 1800

XC3042 12x12 96 4200 2500

XC3064 16x14 120 6400 3800

XC3090 16x20 144 9000 5500

XC3195 22x22 168 13000 7500

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 55

SRAM Programmable FPGAs 43

Since its introduction in 1987, the speed of XC3000 FPGAs has increased with
process migration from 1.2J..U1l to 0.8J..U1l feature size, and with circuit improvements
to speed-critical paths. Performance of the XC3000 FPGAs over time is plotted in
figure 2.3.21. Currently, the highest-speed parts are the compatible XC3100-3 (for
3ns CLB delay). This speed permits system clock frequencies around 100 MHz,
although some designers have reported achieving speeds even faster than that on
pipelined designs with careful partitioning, placement and routing.

240

210

180
N
I 150 :::!:
Q)

iii 120
a:
Q)

C> 90
Cl
0
f-

60

30

0
1/'85 '87 '89 '91 '93

X3711

Figure 2.3 .21. Historical Performance of XC3000 Parts.

Additional enhancements to the XC3000 speed and density came as a result of
software improvements. These improvements do not change the maximum gate
capacity, nor do they change the maximum toggle frequency, but they do increase the
typical capacity and narrow the difference between the toggle frequency and the
automatically-achievable system clock frequency. Software has improved the speed
of automatically placed and routed designs by about 50% since the introduction of the
family.

The Xilinx XC4000 Architecture

The XC4000 architecture [Hsieh 1990] [Trimberger 1991] was designed to improve
performance and gate density for large designs. Several dedicated features were
added to the general-purpose logic features of the XC3000, yielding an interesting
combination of special-purpose and general-purpose functions. The XC4000 family
was designed using placement and routing tools to evaluate architectural decisions.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 56

44 FPGA Technology

Architectural features were designed to interact efficiently witb an automated design
metbodology.

The XC4000 CLB

The XC4000 CLB (figure 2.3.22) is similar to tbe XC3000 CLB. It contains three
lookup tables and two flip-flops. The two primary lookup tables, labelled F and G,
each implement any function of four variables. These two results can be brought out
of tbe block independently or tbey can be combined witb anotber input in tbe H
lookup table to make any function of five inputs or some functions of up to nine
inputs. This allows functions such as nine-input AND, OR, exclusive-OR (parity) or
address decode to be done at high speed in one block. The flip-flops can take tbeir
inputs independently from tbe lookup tables or from external signals, but tbey share
control signals. Unlike tbe XC2000 and XC3000, flip-flop outputs are not recirculated
internally. A registered feedback signal in tbe XC4000 must be routed in tbe general
interconnect back to a CLB input pin.

The XC3000 can implement aritbmetic witb sum in one lookup table and carry in tbe
otber. The XC4000 CLB can implement aritbmetic tbis way also, but since tbe speed
of aritbmetic operations is dominated by tbe speed of tbe carry chain, tbe XC4000
CLB includes dedicated high-speed carry logic. Figure 2.3.23a shows a configuration
of tbe CLB in aritbmetic mode. The F and G lookup tables compute two sums while
dedicated logic calculates tbe carries. The dedicated carry logic in tbe XC4000
substantially speeds up aritbmetic while doubling its density.

C2 C3 C4

G'

G3 lOOC
FUIIg;KN G'H-j----h--I

Gl..Q~

G,

"
lOOC

Fu-Ig.J1CJ.I P 1-+-----+
Fl-F4

K----------~
(CLOCK]

Figure 2.3.22. The XC4000 CLB.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 57

SRAM Programmable FPGAs

+I.-~-I

81+1-....... -1
Al+l---I

+I.
8j_ -I

AI---I
F

a

Ci+2

I---t--- 51+1

1---f---5 j

Cj

CTL

A 0 .. 3

o WE

A 0 .. 3
I-----oj

b

Figure 2.3.23. Special Configurations of the XC4000 CLB. a) Arithmetic.
b) Memory.

45

Small, fast memory is an important component of many digital systems, appearing
frequently as registers and FIFOs. The F and G lookup tables in the XC4000 CLB can
be configured as 16xl static memories. To write into the lookup table memory, the
lookup table inputs address the memory cell to be written. Additional inputs to the
CLB are write enable (WE) and data (D) (figure 2.3.23b). Reading from a memory is
the same as evaluating a function. One CLB can implement 32 bits of memory,
configured either as l6x2 or 32xl. On-chip memory makes FPGAs a reasonable
implementation target for register-intensive digital systems. Since the memories are
traded off against logic, unused memory is not wasted.

The XC4000 IO Block

Figure 2.3.24 shows the details of the XC4000 lOB. Signals to be output from the
chip can be registered before output and enabled by a separate control signal. Outputs
can be optionally pulled up or down, and the output driver can be configured with
either fast or slow slew-rate. Inputs from the pad can be brought into the interior of
the chip directly, registered or both to facilitate multiplexed bus interfaces.
Furthermore, inputs can drive dedicated decoders, built into the edge interconnect, for
fast recognition of addresses.

The XC4000 lOB includes boundary scan logic compatible with the ANSI IEEE
1149.1 (JTAG) boundary scan standard [IEEE 1989] [Maunder 1990]. The logic is
not shown in figure 2.3.24. Boundary scan can check internal logic or external logic.
Scan operations can take place before or after the FPGA is programmed and do not
interfere with the operation of the part. The scan path and control signals are available

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 58

46 FPGA Technology

OUT-+-+-~

11-+--~

12+----l

INPUT
CLOCK -+---1

""'"

Figure 2.3.24. The XC4000 lOB.

internally in the FPGA, so additional test paths and registers can be implemented on
the FPGA to make customized tests.

Wiring Architecture

Figure 2.3.25 shows an overview of the general-purpose interconnect in the XC4000.
This wiring includes single-length general-purpose interconnect, like the XC2000
and XC3000, and double-length lines that bypass alternate switchboxes. Since signal
delay is more dependent on the number of pips through which a signal passes than on
the length of the segments, the double-length lines allow a signal to travel twice the
distance in the same amount of time, or to travel a given distance in half the time.

The switchbox connections in the XC4000 are significantly fewer than those in the
XC2000 and XC3000. Inside the switch box, each segment can connect to three
others, one on each of the other three sides of the switchbox (figure 2.3.26). Fewer
pips means less load and faster interconnect. The drawback of fewer pips is that
wiring may be more difficult. As a result, the XC4000 has more interconnect
segments in the channel than an equivalent XC3000 would have.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 59

SRAM Programmable FPGAs

I L11I11

:: SWITCH = MATRIX -

J LIlli

SWITCH
MATRIX

--+~~>---iGl4 l4 l41..2G~;;II~~Gl4 lA l4 -t t---tC1 C1
-+f~~--t K CLB G3 K CLB
-t t---t F1 C3 F1
-++++++++-T""'i F F3 F

= SWITCH
~ MATRIX

IIIIII

01 F2 C2 G2 01 F2 C2

SWITCH
MATRIX

1111111 + PROGRAMMABLE INTERCONNECT POINT X1146

&' ICLBI
X

• -'"

ICLBI CLB

•
'"

X4001

Figure 2.3.25. XC4000 Interconnect.

47

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 60

48 FPGA Technology

....
'-

Figure 2.3.26. The XC4000 Switchbox Connections.

The XC4000 interconnect includes more long lines and global lines than were
available in the XC2000 and XC3000 for high fanout and high-speed wiring. Two of
the long lines in each row can be configured as three-state busses. The XC4000 long
lines can be broken in the center of the chip to provide two half-long lines to improve
routability. The half-long line has half the capacitance of the complete long line, thus
decreasing the delay.

Four of the vertical long lines in figure 2.3.27 are the global long lines. Signals on
global long lines can originate on-chip or off-chip. They are driven by dedicated high-

"-.r-'
"Global"

Long Lines

F4
G1

C1

K

F1

F
01

C4 G4

CLB

F2 C2

02

G2

G

G3

C3

F3

"-.r-'
"Giobar

Lona Lines

Figure 2.3.27. XC4000 Long Distance Interconnect.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 61

SRAM Programmable FPGAs

-(,) CD
C
C
o
(,) ...
CD -C

High Range

Array Size X3697

Figure 2.3.28. Interconnect Requirements Versus Array Size.

49

drive clock buffers and wired through the core of the chip to all CLBs to minimize
clock skew.

Large arrays of blocks require proportionally more interconnect than small arrays.
Therefore, the XC4000 family has three different size ranges of interconnect (see
figure 2.3.28). The middle range, designed to support 14x14 to 22x22 arrays of CLBs,
has eight single-length lines, four double lines and six long lines in each channel
horizontally and vertically. It has four additional clock lines per column. The
interconnect resources for the smaller range of parts has four single-length lines, four
double lines and four long lines in each channel. The channel description for the
larger parts has not been announced, but wirability estimates suggest that the
differences may be significant. Using Heller's [1978] techniques, approximately 24
tracks are needed to successfully route a 25x25 array consistently.

Unlike its predecessors, the XC4000 has no redrive buffers in the interconnect.
Instead, a signal requiring a repoweriog buffer must be routed through a CLB, either
through an unused lookup table or through a repoweriog path that uses a CLB control
input and sequential output. This design eliminates some of the complexity of the
interconnect, at the cost of requiring timing-driven placement and routing software to
make the trade-off between routability and performance of signals.

High-Level System Support

The array of CLBs naturally divides into two-bit slices for datapath operations (figure
2.3.29). The logic blocks contain carry logic to support two bits of addition or
subtraction per block, or two 16xl memories and two flip-flops per block. There are

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 62

50 FPGA Tecbnology

03

0 0 0 D 0

0 0 0 D 0
02

01 Carry

0 0 0 D 0

0 0 0 D 0
00

3-State VO 16-Word Memory AddlSubtract Logic Plus Register
Address
Decoding

X3709

Figure 2.3.29. Bitslices in the XC4000.

two three-state bus lines per row in the array. These bus lines connect to two 110
blocks per row. 110 blocks can be configured to continue the three-state bus off-chip.
Interfaces to external systems are simplified by bus-de-multiplexers, on-chip address
decoders and low-skew on-chip clocking.

As a result, the XC4000 architecture conveniently supports bus-oriented datapaths,
bit-sliced horizontally, two bits per row. Datapaths can contain arithmetic, memory or
any other function implementable in a lookup table or a collection of lookup tables.
This functionality is available in addition to the ability to build random logic,
interconnected in whatever fashion is needed, using lookup tables and flip-flops.

Block-to-Interconnect Connections

The XC4000 block-to-interconnect connections are very similar to those in the
XC2000. Block inputs connect to all interconnect segments in the channel, but
outputs connect to only half the segments (figure 2.3.25). As in the XC3000, the CLB
outputs drive signals in two different channels, but both those channels are adjacent to
the block, simplifying the placement wirability estimation. The XC4000 inputs and
outputs are distributed around all four sides of the CLB, eliminating the directionality
bias of the XC2000 and XC3000.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 63

SRAM Programmable FPGAs 51

The control signals to the XC4000 CLB are connected to wiring channels on all four
sides. Configuration circuitry allows any of the control pins to drive any of the
internal control signals, DI, CE, INIT or H 1. The design software recognizes these
control signals as logically equivalent, and uses pin swapping to improve delay and
routability.

The XC4000 Family Members

The XC4000 family consists of ten members, covering a wide range of logic capacity
(see table). Smaller parts (XC4002A through XC4005A) are available with less
interconnect, and hence a smaller die. Two parts, XC4003H and XC4005H are
available with increased 110 capacity.

The XC4000 CLB delay is 4.5 ns, comparable to an XC3000 toggle rate of about 180
MHz. In this architecture, systems in the 50 MHz to 60 MHz range are practical, and
much faster systems are possible.

Table 3: XC4000 Family Members

Member CLB Array lOs Gate Capacity
Size

max typical

XC4002A 8x8 64 3000 2000

XC4003A lOxlO 80 4500 3000

XC4003H lOx 10 160 4500 3000

XC4004A 12x12 96 6000 4000

XC4005/5A 14xl4 112 7500 5000

XC4005H 14x14 192 7500 5000

XC4006 16x16 128 9000 6000

XC4008 18x18 144 12000 8000

XC4010 20x20 160 15000 10000

XC4013 24x24 192 20000 13000

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 64

52 FPGA Technology

Programming the FPGA

Configuration

Configuration is the process of loading the program into the FPGA. The program of
an SRAM-programmable FPGA is stored in an array of memory cells that make up
the lookup tables and control the pips and multiplexers. The program is loaded into
the FPGA serially to minimize the number of pins required for configuration and to
reduce the complexity of the interface to external memory. Internally, the
configuration memory is arranged as a two-dimensional array. The program is shifted
into the FPGA and assembled into a long word that is then loaded in parallel into the
configuration memory. During programming, all internal drivers are disabled to avoid
potential contention in the interconnect. Contention, even momentary contention,
causes power surges, and the high current can damage internal metal traces.

All Xilinx FPGAs include the circuitry necessary to load the program from external
memory. Essentially, every FPGA includes its programmer. The FPGAs can be
configured in a number of different ways, depending on the application (figure
2.3.30). Configuration can be initiated by the chip itself when it senses power-up. In
this "master" mode, the FPGA uses a simple 4-wire interface. The chip generates
clock and chip enable signals to extract data from a small-footprint serial
PROM which produces the program serially on the da ta line. In a system, the FPGA
may be permanently mounted on the board, with the programming bitstream stored in
the replaceable PROM. If the designer prefers to use an external clock to control
programming, the chip can be configured in slave mode, where an external source
generates the clock and data signals. The FPGA can emulate a simple processor
peripheral for configuration, accepting an external clock, peripheral select and byte
wide data. In all modes, many chips may be connected in a daisy-chain fashion, with
the first chip in the chain generating control signals and passing data to following
chips. All configuration flows through the first chip and all chips become active
simultaneously when programming is complete.

Besides configuring on power-up, SRAM FPGAs can be re-configured on command
while residing in the circuit. This feature allows a designer to create a system in
which the FPGA's program may change during operation.

Readback

Another powerful feature of the FPGA is readback, the ability to read out of the chip
the program and also the contents of internal flip-flops, latches and memories. A
working part can be stopped and its state recovered. In systems, readback is used for
design verification and debugging. During manufacturing test, configuration and
readback allow direct test access to observe and control internal nodes, greatly
simplifying test program generation.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 65

SRAM Programmable FPGAs 53

_ Address

--Memory Control LeA
Data """ -
Data """
Write -
Select LeA

Ready

.- Address Data ..

-- Control Memory .I LeA LeA LeA
Data Clock r - ,

X3708

Figure 2.3.30. Configuration Patterns.

Security

The programming bitstream includes a security bit to prevent readback, so a design
can be delivered without the ability to unload it from the part. In an application where
secrecy is paramount, a user may configure the SRAM FPGA before shipping, and
keep the part powered with a battery. The user may then remove the programming
source and ship the system in which the FPGA resides. In low-power standby mode, a
battery can hold the FPGA programming for years. This capability allows users the
ultimate in security because there is no way to reverse-engineer the logic on the part.
Programming makes no physical modification to the chip, so it cannot be recovered.
If the chip is removed from the battery or power supply, the programming is erased.

2.4. Software

The design process for SRAM-based FPGAs is similar to that for MPGAs. The
design process has three parts: design entry, implementation and verification (figure
2.4.1). Design entry tools used for MPGA design can also be used for FPGA design.
These tools include schematic editors, state-machine generators, and synthesis tools.
The interface to the FPGA design implementation system is a netlist plus
implementation constraints, such as timing requirements and pad placement
Implementation tools partition the logic to fit into the FPGA, find a good placement

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 66

54 FPGA Technology

for the logic and route signals between the logic blocks. The implementation system
generates back-annotated netlists with routing delays for timing analysis and other
verification steps. Like MPGAs, FPGA designs can be verified by simulation, and
reprogrammable FPGAs make in-circuit verification an attractive alternative to
extensive simulation.

Automated Design Implementation

Logic implementation on the Xilinx-style FPGAs consists of three steps, partitioning,
placement and routing. This section describes the three steps and the techniques that
have been used to address them.

Partitioning

The partitioning task, also called FPGA mapping, is the mapping of the logic
represented by the incoming netlist into the physical primitives implemented on the
chip. Typical MPGA design implementation flow does not include partitioning.
Instead, MPGA vendors provide a library of gates for schematic entry and the
corresponding hard-wired cells for the physical implementation of those gates. The
incoming netlist must contain only cells from that library. The cells are mapped one-

Design Entry

Implementation

Figure 2.4.1. FPGA Design Flow.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 67

SRAM Programmable FPGAs 55

to-one onto structures on the MPGA. While entering the logic design, the designer
explicitly maps logic into the MPGA logic resources.

FPGA blocks are designed for logic density, so efficient manual mapping may be
difficult. Each 4-input lookup table can represent 216 functions. Each XC4000 CLB
can represent approximately 1015 different functional patterns. Obviously, it is not
reasonable to enumerate this library. Instead, the manufacturer supplies a smaller
library of functions, called the "design library," and provides partitioning software to
automatically map the logic in the design library into the structures on the FPGA that
implement the logic. The Xilinx implementation system accepts a design in the form
of a netlist of MPGA-like gates, and partitions the netlist, grouping gates into legal
CLBs and lOBs for placement.

Many attempts to address this problem begin with technology mapping from logic
optimization. Technology mapping is the translation of "technology-independent"
logic, perhaps in the form of NAND gates, into an efficient set of gates in a target
library. Several authors have reported work on mapping logic into lookup tables.
Murgai [1990] uses Roth-Karp decomposition and kernel extraction in MIS-II to
bound the number of inputs to nodes, then uses binate covering to group nodes into
CLBs efficiently. Subsequent work [Murgai 1991] added additional covering
techniques and cofactoring. Addressing performance of the resulting circuits, Murgai
[1991b] decomposes the network and uses routing estimation and critical-path
packing to reduce delay. Francis [1990, 1991a] decomposes the netlist into fanout
free trees that are then mapped using dynamic covering and bin packing. Additional
improvements include checks for reconvergent fanout. Further work [Francis 1991b]
optimized for performance by minimizing the depth of trees rather than number of
lookup tables. Karplus [1991] transforms a netlist into an if-then-else directed acyclic
graph (DAG), a generalization of a binary decision diagram. The DAG is then
mapped using a simple marking process to achieve good results. Woo [1991]
partitions a design into pieces of manageable size, then exhaustively enumerates cases
to find which nets should be subsumed into lookup tables. Sawkar [1992] casts the
problem as clique partitioning of the netlist. Cong [1991] [1992] decomposes the
network into two-input gates and assigns a topological level (depth) starting at the
primary inputs, increasing the level when the number of inputs exceeds the size of the
lookup table. A backward mapping then constructs lookup tables, potentially
duplicating logic to minimize network depth.

All these techniques address mapping logic into lookup tables, but do not handle the
larger problem of mapping logic and flip-flops into CLBs. This problem is interesting
because there is both a logical and physical component to the partitioning. The
connections within a CLB are somewhat constrained, but the quality of the resulting
partitioning depends on the quality of the subsequent placement, so physically-related
logic should be partitioned together.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 68

56 FPGA Technology

Xilinx uses two partitioning algorithms, targeted to different families of parts. The
different algorithms result from the different types of intra-block constraints in the
FPGA architectures.

Xnfmap is a partitioner targeted to the Xilinx XC2000 and XC3000 families. Xnfmap
is driven primarily by logical constraints -- finding groups of logic that fit into a single
CLB. Secondarily, Xnfmap attempts to maximize the number of nets collapsed into
lookup tables and CLBs. Since collapsed nets require no interconnect, the more there
are, the easier the task of routing the remainder.

Xnfmap distinguishes between combinational logic gates, which will be mapped into
lookup tables, and all other logic elements, which are implemented directly by
resources on the FPGA. These other logic elements include flip-flops, 110 pads and
three-state buffers. Xnfmap builds groups of combinational logic by tracing back
from the nets on the inputs of non-combinational-Iogic gates. Xnfmap adds the gate
that sources the net, and recursively groups the inputs of the gate it found. The
recursion stops if the net is not sourced by a combinational logic gate or if it fans-out
to multiple destinations and therefore must be routed in the interconnect between
CLBs. This is the case for the output of gate A in figure 2.4.2. In this way, Xnfmap
groups all combinational logic into "cones" of logic that can be implemented in a
lookup table.

FF

FF

Figure 2.4.2. Cones of Combinational Logic Feeding Flip Flops.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 69

SRAM Programmable FPGAs 57

After constructing logic groups, Xnfmap breaks up groups that are too big to fit into a
single lookup table. It examines every possible division of the combinational logic to
find the one that collapses the most nets, minimizes the number of groups or
maximizes the use of CLB internal feedback paths. A single group may be broken
several times before all of its pieces are small enough to fit into CLBs. At this point,
each flip-flop is bound to the group of combinational logic that drives it.

Xnfmap then examines every possible legal pairing of flip-flops and logic blocks to
find those that can be merged into a single CLB. Legal pairings are determined by the
CLB architecture and are constrained by the number of outputs, the number of inputs,
the number of flip-flops and the pattern of connections among them. Merging of legal
pairs is greedy, taking those pairs that share the most inputs, thereby minimizing the
number of connections for the router. Ties are broken by logical locality.

The XC4000 CLB has weaker coupling among CLB elements than the XC2000 and
XC3000 architectures. Each XC4000 lookup table can be wired independently, and
the outputs of the combinational and sequential elements can be routed out separately.
This reduction in constraints means the XC4000 partitioner, Blkmake, can partition
based primarily upon routability criteria rather upon than the architecture of the CLB
[Trimberger and Chene 1992].

Blkmake has four steps: mapping combinational logic into lookup tables, grouping
pieces of logic with pattern-matching, generating a placement-driven preferred
partitioning of lookup tables and other logic, and completing the partitioning based on
interconnect constraints inside the CLB. This combination of physical and logical
partitioning makes a high-quality, legal partitioning.

Mapping combinational logic into lookup tables is done with a modification of
Francis's Chortle technology mapper [Francis 1990]. Chortle breaks combinational
logic into fanout-free trees. Since a lookup table has only a single output, the output
of a fanout-free tree must be a lookup-table output. The Chortle mapper scans from
logic inputs to the output using a dynamic program with variables of number of
lookup tables and number of lookup table inputs used. Each step in the dynamic
program finds the minimum number of lookup tables required to map the logic gate
using different numbers of inputs to the lookup table that generates the gate's output.
The chosen result is the one that requires the fewest number of lookup tables.

Blkmake's enhanced version of the Chortle algorithm uses support-based mapping for
greater compression of reconvergent-fanout logic. It identifies lookup tables that meet
the constraints for the H lookup table and preferentially accepts them during the
dynamic program, increasing the number of lookup tables, but decreasing the number
of CLBs required to implement those lookup tables and decreasing the delay of
combinational logic.

Finally, BIkmake selectively duplicates logic to eliminate fanout nodes, when the
duplicated logic improves density and performance. Gate A in figure 2.4.3a may be

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 70

58

w

x
y

z

X370S

A

J)) >----<

a

J -

-1

FPGA Tecbnology

w --~---..--r~
x _~_"'_
y -.--tt--II.~

b

Figure 2.4.3. Duplicated Logic to Improve PeIfonnance and Density. a) Original
Logic with Fanout. b) Duplicated Logic.

duplicated as shown in figure 2.4.3b, since the logic can then be implemented in two
lookup tables rather than three. This logic duplication also decreases the path delay
from two lookup tables with a connection between them to one lookup table with no
interconnect.

Following lookup-table-mapping is a pattern-matching step to group logic that
matches particularly-constrained structures in the CLB. Figure 2.4.4 shows a few of
the groups that are built by pattern matching. Each group of logic is treated as a unit
in subsequent placement-based optimization. The final step of pattern-matching
groups lookup tables that share inputs. The grouping is greedy, grouping lookup
tables with maximal sharing first.

At this point, the netlist consists of block elements: lookup tables, flip-flops, three
state buffers, 110 pads, clock buffers and other logical elements that correspond to
physical resources on the FPGA. Some of these block elements may be grouped. The
third step of partitioning uses mincut [Breuer 1977] [Fiduccia 1982] to generate a
preferred placement for the block elements. B1kmake's mincut uses simple terminal
propagation [Dunlop 1985] [Hartoog 1986] and a derivative of Sechen's crossing-

F

H

G

X370"

Figure 2.4.4. Pattern Matching Groups.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 71

SRAM Programmable FPGAs 59

based cost function [Sechen 1988]. Mincut preserves the groups built by pattem
matching.

An important addition to the standard mincut algorithm is the preservation of the
horizontal alignment of three-state buffer nets. The three-state buffers in the Xilinx
XC3000 and XC4000 are aligned horizontally on the chip and drive a common
horizontal line. Each CLB has two associated three-state buffers on two different nets.
To ensure that the resulting CLBs contain matchable pairs of three-state buffers,
Blkmake groups all three-state buffers that drive a common net, and treats the group
as a single wide block. When the three-state buffer block no longer fits into a
partition, it is locked into place. Blkmake makes a single, wide partition for the three
state bus line that contains only the three-state bus drivers and any logic that has been
grouped with them. It continues to divide these new partitions, but only with vertical
cut lines. Blkmake continues to partition the non-three-state logic with both vertical
and horizontal cut lines.

Blkmake's mincut partitions the logic with some knowledge of the underlying FPGA
architecture. It may divide the logic into uneven partitions, but maintains and
manages constraints on the resources required by each of the partitions and moves the
dividing line between partitions accordingly. Blkmake's mincut terminates when
every partition represents a single CLB at a specific location on the target chip.
However, it may not be possible to combine all the elements in the partition into a
single legal CLB.

The final partitioning step is the construction of a legal CLB for the block elements in
each partition. The construction is a multiple-pass greedy method that pushes
overflows into adjoining CLBs. The construction is run many times from different
random starting points, keeping the best result. The constructed CLB is placed at the
location at which mincut placed the original partition.

Placement

The placement step accepts the partitioned design in terms of CLBs and lOBs and
determines a good placement for the blocks in the FPGA array. Many MPGA
placement algorithms are applicable to FPGAs with minor modifications. Most
MPGA placers optimize with respect to a cost function that is based on the total
expected length of all nets in the design. Net length is a reasonable measure because a
shorter net length implies less interconnect area for interconnect and less capacitive
load on nets. The result is that total net length correlates well with both routability and
performance. However, in an architecture where the wiring can come in a few fixed
lengths, as it does on all three Xilinx architectures, net length does not necessarily
correlate well with either routability or performance.

Placement software recognizes two classes of constraints on placement due to the
FPGA architecture: legality constraints which must be met to build proper
functionality, and quality constraints that are preferred to take advantage of FPGA

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 72

60 FPGA Technology

features. Legality constraints are enforced in the move set. Quality constraints are
handled in the cost function.

Legality constraints in the XC3000 and XC4000 dictate that three-state buffers
driving the same bus must be horizontally aligned. If they are not, the three-state
buffer outputs cannot drive the same net, so the placement is unroutable. In contrast, a
quality constraint states that high-fanout and low-skew nets should be routed on long
lines. The buffered long line delivers a signal with lower resource cost and lower
delay than a solution with shorter total wire length that uses general-purpose
interconnect. The placer attempts to align instances on these nets vertically or
horizontally. If the instances cannot be aligned, the design is still routable, so the
placer does not rigidly enforce this constraint.

Simulated annealing [Kitkpatrick 1983] has been used in many MPGA placement
systems ([Sechen 1985 and 1988] and others) and is applicable to FPGA placement as
well. Although simulated annealing is slow compared to constructive methods, it
produces a good result regardless of the initial placement, and produces a good
solution with complex, varying and possibly-conflicting constraints. The simulated
annealing cost function for FPGAs contains two components for different kinds of
constraints, wire length and alignment. The wire length component reduces the
overall routing resource requirement, alignment allows efficient use of long lines.
During placement, high-fanout nets are scored using a request/grant mechanism for
long lines. The annealing cost function bases the cost for a net on whether or not it
expects the net to be routed on a long line. As placement progresses, some nets may
become misaligned and others more aligned, changing the placer's routing
expectation which changes the way the placer calculates the cost of the nets. When
placement finishes, the placer passes its routing expectation to the router as a guide to
ensure agreement between the two pieces of software.

Placement for the XC2000 and XC3000 families addresses the asymmetry of the
blocks by measuring wire length from the channels into which the pins connect,
rather than from the blocks themselves. For those pins that connect into multiple
channels, a single representative channel is used as the basis of wire length and
alignment estimation.

As described earlier, Blkmake generates an initial placement for partitioned logic for
the XC4000. This initial placement is improved using a Generalized Force-Directed
Relaxation (GFDR) algorithm [Goto 1981]. As with simulated annealing, the GFDR
cost function prefers aligned nets, boosting the effectiveness of long and double
length lines. Since moves are rejected much less often, GFDR is much faster than
simulated annealing. Therefore it is run exhaustively, iterating until no improvement
is found. The placement results are of comparable quality to simulated annealing, but
are achieved with much less execution time.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 73

SRAM Programmable FPGAs 61

Routing

Traditional MPGA global routing and cbannel routing algorithms do not work well
with the FPGA architectures described in this cbapter. Global routers assume that the
routing problem can be decomposed spatially so that after global routing, the detailed
routing of eacb cbannel can be done without interfering with other cbannels. This
model does not work with FPGAs because the limited connections in the switcbbox
constrain the assignment of segments in one cbannel based on their assignment in
other cbannels. For example, in figure 2.4.5, a snapsbot of the XC4000 interconnect.
if a net is routed on the bottom track in the lower cbannel, then because of the limited
connections in the switcb box, it can only be routed on the left-most tracks in the rigbt
and left cbannels and the bottom track in the upper cbannel. A global router that
ignores these constraints will not correctly decompose the routing problem for a
detailed router, and the detailed route will fail.

B
X3703

Figure 2.4.5. Routing Constraints Imposed by the Switcbbox.

Cbannel routers assume that two non-interfering wmng layers are available for
routing and that a net in a cbannel can cbange tracks wben the route is infeasible due
to cyclic vertical constraints [Soukup 1981]. It is possible in the arcbitecture to
provide a model of as many non-interfering wiring layers as needed. It is also possible
to construct cbannels in wbicb there cannot be cyclic vertical constraints. However,
the limited connections in the switcbbox and the limited connections from the CLBs
to the interconnect channels prevent channels from being routed independently, and
since the entire problem cannot be described as a single channel, channel routing is
not applicable.

As a result, routing is done with an A* maze router on a grapb [Nilsson 1971]. Grapb
nodes represent segments, and arcs represent pips and paths througb CLBs. Routing
proceeds from logic outputs to inputs. When searching for an input, any input to a
lookup table is accepted and input pin swapping is performed. For combinational
logic outputs, the router starts the maze searcb from both lookup tables in the CLB if

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 74

62 FPGA Technology

they are available, to perform output pin-swapping. This ability to swap logically
equivalent pins significantly improves the routability of designs.

The router has a detailed timing model of the FPGA, including block delays, wire
segment capacitances and pip resistances. The router keeps this information in an
interconnect delay model based on Penfield and Rubenstein's work [1981]. It uses an
incremental method of recomputing delays during wavefront expansion to measure
and to reduce delay and skew while routing. This timing-driven feature is used in the
XC3000 and XC4000 to determine when to route a signal through a redrive buffer or
through the repowering path in a CLB.

The FPGA router includes a rip-up and re-route pass that is used both to complete
routing and to reduce delay and skew on routed nets. After routing, the
implementation system may re-place and re-route the design if the routed design does
not meet all timing requirements.

Path delays, not net delays, dictate the performance of circuits. FrankIe [1992]
described the limit-bumping algorithm (LEA), a timing-optimization method using
slack allocation among source-to-Ioad connections in the design. Required path
delays are specified between flip-flops, from 1I0s to flip-flops, from flip-flops to 1I0s
and between 1I0s. Required signal times are propagated back from path destinations
to net destinations. Actual signal times are propagated forward from the path sources
to each net destination. The difference between required time and actual time for a
connection is called the slack of that connection. A single connection may be on
several paths, so its slack is the minimum slack calculated over all paths. These
propagations can be done in O(c) time, where c is the number of connections in the
design.

The LBA distributes a fraction of the slack on a connection to that connection. The
fraction is pre-calculated as the ratio of the connection weight to the maximum weight
of all connections on any path through the connection. The weight of a connection
can be simply one, or it can be a function of netlist parameters such as net fanout. As
long as the calculation of the fraction is based on the netlist it need not be recalculated
during routing.

The LBA uses minimum delays for each connection as an initial lower bound and
calculates slacks for all paths. It iterates using the fractional distribution algorithm
above to allocate the slacks on paths to allowed connection delays until all slacks are
near zero. At that point, the timing-driven router routes all connections to meet their
delay constraints.

If delay constraints are not met by the router, the allowable delays are increased, and
slacks allocated based on the new slacks introduced by the adjustment. If timing
constraints are met, and we wish to produce a faster design, timing constraints are
tightened using the same iterative method. The negative slacks are allocated to
connections using an "approach fraction", which is proportional to the difference

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 75

SRAM Programmable FPGAs 63

between the routed delay and the lower bound. The assumption is that a connection
delay that is close to its lower bound cannot improve much, and so is not required to
absorb as much of the negative slack.

The LBA has been applied to FPGA routing, with the measurement that it improves
system performance by about 15% compared to connection-based timing-driven
routing, and is within about 15% of optimum.

Technology-Specific Synthesis

The structured architecture of FPGAs implies preferred methods of implementing
functions, particularly multi-bit functions. A schematic that is designed with the
FPGA architecture in mind can be twice the density and speed as one that was
designed without regard to the architecture.

Logic synthesis techniques address re-mapping random logic to a new architecture,
but they do not address larger functions, such as memories and data path elements. A
separate tool, called X-BLOX performs this function.

X-BLOX accepts a design as a netlist which includes variable-width multi-bit
primitives. Users can specify data types: the width of busses and their encoding (such
as two's complement or unsigned binary). X-BLOX determines the sizes of busses
between primitives and the sizes of the primitives themselves if their widths and
encodings are not specified, and checks compatibility of data types. It eliminates
redundant logic and generates macros of the proper size for each of the operations.
The macro generation is both technology-dependent and die-dependent. Different
architectures prefer different implementations of the functions and different parts
within a family have different numbers of clustered resources (such as column
aligned carry logic in the XC4000). X-BLOX generates its output accordingly,
making optimized macros for each family member.

X-BLOX includes several other optimization steps related to the FPGA architecture.
It moves flip flops from CLBs into lOBs where possible, assigns nets to global high
speed buffers if the device has them available.

A design using X-BLOX is simpler and faster to specify than one specified with a
netlist of simple gates, because the desired functionality can be expressed in higher
level symbols. This high-level specification allows X-BLOX to optimize the high
level function to the target FPGA, so efficient design does not incur a density or
performance penalty. X-BLOX can be used directly in a schematic or driven from
high-level synthesis through a netlist.

Manual Design

MPGA and FPGA design systems allow manual intervention in the implementation to
varying degrees. Typically, a designer can constrain placement to force signals to
package pins. Additionally, a system designer can label nets as time-critical or assign

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 76

64 FPGA Tecbnology

nets and paths with maximum delay values. These constraints can be provided as
annotation in the schematic or in a separate design constraints file.

Manual intervention in FPGA partitioning can take the form of a CLBMAP, a
schematic-level constraint that forces the partitioner to accept a user-defined mapping
for part of the logic. The CLBMAP is a cell in the library that a designer connects in
parallel with the logic it is mapping. The CLBMAP represents no logic, but its
connections are used to guide the partitioner to implement the mapped logic in a
single CLB. A designer can go further, designing in terms of CLBs with their
programming.

The XACT Design Editor (XDE) (figure 2.4.6) is an interactive graphical editor
similar in concept to MPGA wiring editors. XDE contains both the logical and
physical descriptions of the design. Users modify both descriptions simultaneously as
they design the circuit. A designer can use XDE to pre-place and route CLBs or to do
post-placement and routing fixup. XDE can also be used as a complete design system,
allowing a designer to map the logic manually onto the device. XDE can accept a
netlist as input. or a design can be created and implemented completely in XDE.

Figure 2.4.6. XDE Screen.

XDE includes the checking and editing functions required for manual design,
including a design rules checker, a timing verifier and a router. XDE allows a designer
to turn on or off individual pips in the interconnect, to set the functionality of function
tables, and to control the functions in CLBs and lOBs.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 77

SRAM Programmable FPGAs 65

XDE provides the front-end interface to the debugging system as well, allowing
simple modifications of the design. It includes commands to generate probe points,
internal signals routed out to unused pads to allow external access to internal nodes
for debugging a design. The probe modifications are incorporated into a debugging
version of the design that is then loaded into the FPGA for testing. XDE stores the
probe points separately from the base design, so they can be eliminated easily when
prototype debugging is complete.

2.5. The Future

FPGAs are similar to MPGAs in many respects, so there is a large body of knowledge
that a researcher can draw upon to apply in this area. However, the space of FPGA
architecture is large and relatively unexplored, providing many profitable areas for
research. These unexplored areas may eventually yield significantly better FPGAs in
terms of density and performance. Since software depends on the architecture, many
software questions will opened or re-opened by FPGA architecture innovation.

Programming Technology

The CPLD-style array architectures, built with EPROM or EEPROM transistors,
cannot be scaled beyond thousands of gates of logic. The array of transistors scales
quadratically, as does static power consumption, while delays increase. All large
capacity EPROM devices show significantly degraded speed relative to smaller
devices, as well as massive power requirements. Managing the size and power
consumption requires a multi-level logic organization, such as the island-style
architectures described in this chapter. EPROM transistors are only efficient when
built in large arrays, so they become inefficient in these architectures. Recent attempts
to extend EPROM-based architectures to large devices have separated the EPROM
section into a straightforward memory array, and placed it next to an SRAM-based
FPGA, basically building an SRAM FPGA with a monolithic PROM.

Large antifuse-programmed devices rely on very high reliability of the antifuses
themselves. A single ten-thousand-gate antifuse-based FPGA may have over a
million antifuses. Although only a few percent will actually be used by a design, the
architecture relies on those few percent being correct. If they are not correct, the
FPGA will fail to program correctly, and must be discarded. Discarding devices that
fail to program is not a serious issue with small devices, where the parts cost ten
dollars and programming yield is above 99 percent; but on large devices, the parts
cost hundreds of dollars and the programming yield may be 80 percent. It is unlikely
that customers will accept discarding 20% of their $500 FPGAs. The quality of
antifuse manufacture limits the size of anti fuse-based devices.

SRAM-programmed devices have none of these drawbacks. They scale well with
technology improvements and have very low power consumption. They can be built
with very high quality and fully tested at the factory. For these reasons, the capacity of

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 78

66 FPGA Technology

SRAM-based FPGAs will exceed the capacity of FPGAs based on other
programming technologies.

Architecture

The FPGA architectures described in this chapter were developed in an attempt to
balance density, performance, cost and ease-of-use goals. If one were to emphasize
one or more of these goals at the expense of the others, a significantly better
architecture might result. For example, wider lookup tables would allow faster
functions of more variables, but increase the size of the chip, decreasing density and
increasing cost. Narrower lookup tables reduce lookup table area, but would increase
the number of lookup tables and associated interconnect needed to implement a
function.

:FPGA interconnect is comparatively expensive, both in terms of delay and area. An
architecture that includes more long-distance connections would have faster
interconnect. but the resulting chips might require more area for interconnect.
reducing their logic capacity. Architectures with minimal interconnect resources will
appear denser, but might be difficult to route. Architectures must address both
integrated circuit and software goals.

The true capacity and speed of an FPGA is measured by the ability of design
automation software to exploit the architecture. FPGA architectures and software
must be developed simultaneously.

Software

The CAE industry has focused on the MPGA problem and has adopted a gate-like
implementation model based on MPGA features. Many of the current software issues
with FPGAs are a result of their non-gate-like implementation structure. This
disagreement is most evident in the schematic entry library, which is a collection of
gate-level primitives. The netlist generated from a schematic preserves the gate-like
structure. The non-gate-like FPGA structure requires a partitioning step before the
placement and routing process. Related problems in design automation have been
addressed either as placement. considering only the physical constraints; or as
technology mapping, considering only the logical constraints. Both sets of constraints
must be solved simultaneously in order to produce implementations that are
simultaneously dense and fast.

The partitioning problem is aggravated by the use of logic optimization algorithms
originally designed for gate-like implementations. They often produce results that
reduce speed and density rather than improve them. The reasons are varied, but
traditional algorithms tend to factor logic aggressively, making more small gates; they
ignore the ability of lookup tables to subsume larger amounts of logic. They also
ignore routability considerations, which are of vital importance to FPGAs. New
optimization algorithms are needed for lookup-table based FPGA architectures.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 79

SRAM Programmable FPGAs 67

High-level synthesis and logic synthesis systems must target the high-level
architectural features of FPGAs to gain the performance and density advantages they
provide. The Library of Parameterized Macros (LPM) [Holley 1991] is an industry
sponsored standardization effort to develop an intermediate form that includes these
high-level constructs. It may provide the appropriate interface between high level
synthesis systems and systems-oriented FPGAs.

Placement and routing of FPGAs provides new challenges. The relatively slow FPGA
interconnect structure demands true timing-driven placement and routing algorithms.
Although these algorithms have been proposed for MPGA design automation, their
usefulness for MPGA designs has not been great, and their adoption for FPGAs
seems to be happening more quickly.

Partitioning in Space and Time

Because of the limited capacity of FPGAs, and their applicability to prototyping,
FPGAs have re-kindled interest in multi-chip partitioning. There are several
important problems that must be addressed, including FPGA resource estimation
(logic, I/O and routing), timing and partitioning into dissimilar parts.

A farther-reaching problem is the issue of partitioning a design in time: identifying
parts of a design that can be time-shared onto the FPGA, and generating separate
FPGA configurations for them. At present, not only are there no algorithms, but the
current design representations appear to be lacking in essential timing information.
An elegant solution to this problem will allow true time-shared hardware and usher in
a new era in hardware implementation.

Design Methodology

In an environment where the cost of prototyping is high, designers must rely on
simulation to verify their designs. Highly-accurate simulators are very slow, while
fast simulators gain speed at the expense of accuracy. An FPGA designer can replace
extensive simulation with prototyping.

Reprograrnmable FPGAs can be designed with a software-like iterative
implementation methodology (figure 2.5.1). The path from design to FPGA prototype
is as short as a few minutes, allowing a designer to verify operation over a wide range
of conditions more quickly and with more accuracy than simulation allows. Because
the SRAM-based FPGA is reusable, there is no hardware cost for prototyping. The
final prototype can become the production chip.

The tools and techniques required to support a prototyping-driven methodology are
interesting areas of current work. Some of these tools exist already: the internal state
of the SRAM-based FPGAs can be read back for verification. Design system features
allow a designer to insert soft probes into the FPGA to examine internal nodes of a
prototype during operation. The placement and routing algorithms can run in an

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 80

68 FPGA Technology

incremental mode, adding logic with minimal impact on already-routed logic.
Additional features may significantly improve the utility of the incremental design
methodology.

Logic Design

~
Place and

Route

~
Configure

1
Prototype

Debug

Figure 2.5.1. IncrementaVPrototyping Methodology Design Flow.

2.6. Design Applications

This section begins with a discussion of general design principles that take advantage
of the capabilities of SRAM FPGAs and shows how these principles are applied to
canonical design examples such as state machines and counters. The discussion then
covers design techniques that exploit the capabilities of FPGAs. The latter part of this
section describes several designs and the techniques used to implement them. The
designs demonstrate particularly effective use of SRAM FPGAs, especially with
regard to the lookup tables and programmability.

General Design Issues

Design automation tools provide the designer with the ability to use an FPGA without
knowing the details of the architecture. However, as with any implementation target,
better understanding of the implementation and the operation of the software leads to
more effective designs. This section describes some of the techniques that designers
and design optimization software use to make effective use of SRAM-based FPGAs.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 81

SRAM Programmable FPGAs

w

x
y

z

A

J) .J t--

a

-J

-1

W --~----a-~r-,
X ----ff-1r""',
y

b

69

Figure 2.6.1. Logic and Partitioning (a) Before and (b) After Logic Duplication.

Duplicated Logic

Lookup tables have limited fan-in, but they implement any function of their inputs. A
lookup table implements a four-input function with the same area and delay as a two
input function. A designer can take advantage of this capability by duplicating logic
on the critical path. In figure 2.6.1, the shaded outlines indicate the logic that is
mapped into a single lookup table. Since each lookup table has only one output, the A
function must be in a separate lookup table from its destinations. In this example,
duplicated logic reduces both the total number of lookup tables in the result and
reduces the number of lookup tables along the path from inputs to outputs. The
resulting logic is both denser and faster than the original.

One-Hot State Machines

In traditional discrete logic design, flip-flops are expensive. This is not true in the
Xilinx FPGA architectures in which all combinational logic is followed by a flip-flop.
The large number of flip-flops encourages one-hot encoding of state machines. In
one-hot encoding, each state is represented by a separate flip-flop. A state machine
with 16 states requires sixteen flip-flops, while a fully-encoded state machine requires
only four. In PLD applications, where flip-flops are comparatively rare and there is no
penalty for routing all state variables to all next-state calculations, this
implementation would be woefully inefficient. consuming large numbers of
macrocells for the flip-flops. However in an FPGA implementation, where lookup
tables have limited fan-in, and where a flip-flop can follow any lookup table, the one
hot encoding often leads to a faster and smaller state machine.

One-hot encoding simplifies the next-state calculation because the states are already
fully decoded. The decoded state can be gated with the transition equation for the next
state in a single lookup table in one level of logic. In contrast, a complicated state
encoding might require one level of logic to decode the state and a second to AND the
state with the transition equation. The one-hot encoding saves one level of logic.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 82

70 FPGA Technology

In addition, since the state bits connect only between states with transitions between
them, and because state transitions tend to be localized, the routing of the state bits
tends to be localized. The localized interconnect leads to shorter routes for the state
bits, so interconnect delays are reduced.

Clock Enable

Gated clocks are known to cause problems in digital design because race conditions
into the gate on the clock cannot be resolved before routing because precise delay
estimates require knowledge of the routing paths of all signals. Xilinx provides clock
enable signals on all flip-flops to remove the need for gated clocks. Rather than
separate clocks, the design should include a single clock with the gating signal used
as the clock enable on the flip-flop. This design eliminates potential glitches and
allows the software to put the single clock on the dedicated global clock interconnect,
which minimizes clock skew.

Performance Considerations

Since flip-flops on the FPGA are plentiful, pipelining has low cost. High-performance
designs can be pipelined in single-function-generator stages that are followed by fiip
flops. These techniques have resulted in designs in the XC3000 family that run at over
100 MHz, about 75% of the flip-flop toggle rate.

It is important to design at a high enough level to allow the FPGA to implement the
logic effectively. The XC4000 architecture can implement a counter using the bigh
speed arithmetic support, but only if it is designed as a counter, not if it is designed as
logic that implements the counter.

Iterative Design Methodology

Reprogrammability allows designers to experiment with the implementation
technology with less effort and less expense than that required by board-level or
MPGA prototypes. Designers can take advantage of reprogrammability by
implementing the design one piece at a time. An effective design technique is to
identify and implement performance-critical parts of a design first., lock that part in
place and proceed to implement less-critical parts.

Counter Examples

This section describes different kinds of counters implemented in the XC3000/
XC3100 to show a variety of density/performance points. These designs trade off
counter features and density for speed. The addition or deletion of a single counter
feature, such as parallel-load, can have a significant effect on the performance or
density of the counter in the FPGA.

The counter designs in this section are shown at the gate level for descriptive
purposes. In use, it is not necessary for an FPGA user to design counters at this level

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 83

SRAM Programmable FPGAs 71

of detail. To incorporate a preferred kind of counter in a design, he or she may select
the desired counter from a library.

The most straightforward way to build a counter is as a ripple-carry adder, one bit per
XC3000 CLB (figure 2.6.2a). One lookup table implements the sum and the other
implements carry. The counter value is stored in one of the flip-flops in the CLB. The
carry chain passes through n CLBs in an n-bit counter.

A faster ripple-carry counter can be built with the same number of CLBs, but with the
carry chain passing through nl2 CLBs. In this counter, the basic cell consists of two
CLBs, shown in figure 2.6.2b. The first CLB implements two T-type flip-flops with
independent data input for pre-load. The second CLB implements two bits of the
ripple carry chain. Performance can be optimized by placement that allows the carry
chain to use high-speed direct connect. A 16-bit counter using this design operates at
41 MHz in an XC31()()-3 device

It is possible to build a non-Ioadable binary counter using less than one CLB per bit
by segmenting the counter into three-bit pieces (figure 2.6.3). The least-significant tri
bit piece uses two CLBs to implement the first three bits of the counter as toggle flip
flops. One lookup table in the second CLB generates a parallel clock enable signal for
the subsequent bits. The second tri-bit is also implemented in a pair of CLBs.
Subsequent tri-bits require three CLBs since they use the parallel clock enable
signals. A 16-bit counter using this design requires only 14 CLBs and can operate at
102 MHz.

A very fast non-Ioadable binary counter can be built by distributing the least
significant bit with a shift register (figure 2.6.4). One CLB implements a one-bit "pre
scaler," halving the effective clock rate to the rest of the counter. Unlike traditional
pre-scaling techniques, the clock signal is the same to all bits of the counter. A second
CLB implements a two-bit counter that generates a parallel clock enable signal,
CEP2, every eight clock cycles. Ripple carry can be used for the remainder of the
counter. The Qo pre-calculation allows two clock cycles to distribute CEP2, which is
adequate if it is distributed on a long line.

In order to distribute Qo quickly, it is replicated once for every bit in the counter. The
copies are stored in CLB flip flops that are connected in a serial chain. When the
counter starts, n cycles are required to initialize the chain of Qo copies. The
duplication of the flip flops in the CLBs allows high-speed vertical direct connections
to pass the value to the next CLB in the chain and horizontal direct connections to
pass the counter bits. A 16-bit counter using this design takes 24 CLBs and operates
at 204 MHz.

This section dealt with binary counters. For applications that can use non-binary
counters, even faster designs are possible because they eliminate carry chain delays.
These counters can be implemented in devices besides the XC3000, although
dedicated carry logic in the XC4000 provides a superior method of implementing

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 84

72 FPGA Technology

J

4>- A

)})--

-> - -;.-

-
X3701

a

~I--~C:~~:=:=~~:=~---'
~~--~~~--~~

CEO

~--+-4----------------------~

b

Figure 2.6.2. Ripple-Carry Counters. a) Simple Ripple-Carry Counter Built with One
Bit per CLB. b) Faster Ripple-Carry Counter with One Bit per CLB.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 85

SRAM Programmable FPGAs 73

Figure 2.6.3. A Fast Binary Counter That Requires Less than One CLB Per Bit.

Table 4: Summary of 16-bit Counter Examples In an XC3100-3 Part

Type Size (CLBs) Speed (MHz) Comments

Simple Ripple 16 23 loadable

Faster Ripple 17 41 loadable,
up/down

Condensed 14 102 non-loadable

High-Speed 24 204 non-loadable
initialization
required

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 86

74 FPGA Technology

~-+-----.. __ O,

02

05r·~'~

I 1

r-·~

i +--1>-10

~

Figure 2.6.4. A Very Fast Synchronous Counter.

sharbour@jvllp.com

74 FPGA Technology

n»»»»»»»»»»»:<«»»>»»-
I Qj, -Q,QD

>
£

Oo
QD

>

iii QXO, :• i .q2QD QD

i> >
s

GI QYO CEP21 xIQO QD

|OHii > >
i

WAW«V.V.V«V.WIrtV^AVAWAVA

1r
ST' I^l!QD x f •03QDiT> >

I 11 $ ii ikD-qyo2 tQD
QD *

f> > i
%%V.*.%V.*.V.*.*.*.*.W.*.W.***A%*.%*A*A*.%%*A*A%WA*.*.**#X

■1

h^4-^QX03 :j QDQD f I$ i>> i5 iI ,,,5i,,,.

X17M

Figure 2.6.4. A Very Fast Synchronous Counter.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 87

SRAM Programmable FPGAs 75

Input layer Hidden layer Output layer

xl

x2

x3

x4

x12

Figure 2.6.5. Ganglion Feed Forward Network (source Cox [1991]).

full-featured counters in that family. These techniques can be used to build faster
counters with limited features. In the XC4000-5 speed parts, the high-speed counter
runs at 111 MHz.

Efficient Multiplication by a Constant in an Artificial Neural Network

In an artificial neural network, the output of a neuron is calculated from the sum of its
inputs multiplied by their respective weights. Cox [1991] used several XC3090
FPGAs to implement Ganglion, an artificial neural network for pattern matching. The
Ganglion processor, shown in figure 2.6.5, implements a three-layer feed-forward
artificial network. The first layer, the input layer, buffers the data from the twelve
inputs. The second layer, the "hidden" layer, consists of fourteen units (neurons), each
of which computes a weighted sum of the twelve inputs. The output layer computes a
weighted sum of the fourteen units in the hidden layer.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 88

76 FPGA Technology

Inputs are 8-bit unsigned values and the weights are 8-bit signed values. At each input
to a unit, these two numbers are multiplied to produce a sixteen-bit product. The
products are summed with a bias to produce a twenty-bit value which is scaled to
eleven bits and passed to a large lookup table. The lookup-table implements the
activation function, an arbitrary function of its input. The output of the lookup table is
an eight-bit input to the next stage.

Each line connecting layers in figure 2.6.5 represents a multiplication of two eight-bit
numbers. Clearly, an efficient implementation of this multiplication is crucial to the
efficiency of this application. Since one of the numbers (the weight) is a constant,
multiplication can be significantly simplified.

In the Ganglion design, the input eight-bit value is divided into two four-bit pieces, as
shown in figure 2.6.6. Multiplication of a four-bit number by an eight bit constant
produces a twelve-bit result. Each bit of the result can be expressed as a constant
function of the four variable inputs bits. Therefore, each bit can be calculated in a
single four-input lookup table in a single lookup-table delay. The twelve-bit result can
be calculated with twelve four-input lookup tables. The two halves of the
multiplication can be done in parallel, each in twelve lookup tables. The resulting
partial products must then be added (with the high-order part offset by four bits). The
eight overlap bits require eight full adders, the high-order four bits require four half
adders to propagate the carry. The entire multiplication can be performed in thirty-two
XC3000 CLBs.

In the Ganglion application, the multiplication constants may change from time to
time as the network is re-trained to match new patterns. When this happens, the
modification to the design is simple because only the lookup table contents change,

8

. t
8-blt constant

Half adder

Full adder
Low-order
partial product

Figure 2.6.6. Multiplication by a Constant.

16

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 89

SRAM Programmable FPGAs 77

the interconnect does not change. The Ganglion design inserts new multiplication
constants by modification of the lookup table contents in the configuration bitstream.

Distributed Arithmetic for Signal Processing

Distributed arithmetic is a method for implementing the sum-of-products that is the
basis for many digital signal processing algorithms. Distributed arithmetic takes
advantage of lookup tables and avoids a direct implementation of a multiplier, which
would require a considerable amount of logic. This derivation is due to Mintzer
[1992].

The basic sum-of-products expression for a digital filter is this:

where K is the number of taps in the filter, the number of terms in the equation; and Y,
A and X are multi-bit numerical values. The Ak are constants. Writing X as a sum of
bits in fractional two's complement form, we get:

B

Xk = -xkO + L xkiTi

i = 1

where xki represents the i th bit of the ,0h number. If we substitute this expression for X
into the filter function, expand the summations and re-group by powers of two, we get
the following equations:

K B

Y = L Ak (-XkO + L XkiTi)
k=l i=l

K K B

= - L A0kO + L L XkiA k2-i

k=l k=li=l

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 90

78 FPGA Technology

Expanding the summations and distributing the multiplication across the bits, we
express the same function as follows:

Written this way, the multiplications are all single-bit multiplications where the xki

bits selectively include the Ak constants. This multiplication could be implemented as
iterative selective addition, but Mintzer implemented it as a table lookup. Because the
A values are constants, a table of multiple-bit entries can be pre-built so the
summation of each row can be done in one lookup operation.

The lookup table has 2K entries, one entry for each of the 2K possible sums of the Ak.

The value stored in the /h location in the table is the sum of the Ak for those bits that
are 1 in the bit pattern of j. Each entry in the table consists of Blog2K bits to preserve
accuracy. The table is indexed by the xki for all k for one value of i. The table lookup
implements the calculation in parentheses in the equation above. If K is small (for
example, 4), the lookup table can be implemented in the lookup tables in the FPGA.
The lookup table for large K requires external memory.

The final step in the distributed arithmetic calculation is the summation of the partial
results, each offset by one bit position. This can be done serially, re-using the lookup
table for all bit calculations, as shown in figure 2.6.7. The input variables, xk are
loaded in parallel into parallel-load shift registers (PLSR). The individual bits of the
variables are shifted out and used as addresses for the lookup table in sequence (for
subsequent values of i). As the bits are shifted, the same lookup table calculates the
partial products for successive bit positions. The lookup table results are summed
serially with one-bit shift on each cycle to offset the partial products. For signed
arithmetic, the partial product from the sign bit is subtracted from the total.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 91

SRAM Programmable FPGAs 79

In a DSP application, only the first register need be a parallel-load register, the others
can be loaded serially from the output of previous stage.The serial paths are shown by
the broken lines in figure 2.6.7.

Xl '
; --_.-... -....... _ '
~--

X2 :
,_ -.. -... -.-
, 2k word

lookup
table

R
EJ---r-~
G

Figure 2.6.7. Distributed Arithmetic Sum-of-Products (source: Mintzer [1992]).

Mintzer built an 8-tap FIR filter using this technique. The 8-bit inputs are serialized
and shifted as inputs to the lookup table. The lookup table contains only 16 6-bit
words instead of 256 because of the symmetry of the filter response. The resulting
filter uses 58 CLBs in an XC3042, and runs at a 1.4MHz data sample data rate.

Applications of Reprogramming

Xilinx FPGAs can be reprogrammed in 2ms to 3Oms, depending on the part type. In
most applications, the FPGA initiates its own programming automatically on power
up, and the application does not rely the reprogrammability of the parts. However,
reprogrammability provides remarkably simple solutions to some common systems
design problems.

Reprogramming/or Board-Level Test

The most common system use of reprogramming is for board-level test and diagnostic
circuitry. Since FPGAs are commonly used for logic integration, they naturally have
connections to major subsystems and chips on the board. This puts the FPGA in an
ideal location to provide system-level test access to major subsystems. The
"operating" logic and the "test" logic need not operate simultaneously, so they can
share the same FPGA, eliminating special-purpose test logic on the board. The system
designer makes one configuration of the FPGA for nonnal operation and a separate
configuration for test mode. The test configuration can be shipped with the board, so

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 92

80 FPGA Technology

the test mode can also be invoked as a diagnostic after delivery without requiring
external logic.

Rosendahl [1991] exploited reprogrammability for testing a bus interface built with a
reprogrammable FPGA. One configuration of the FPGA is the "operating" logic, a
bus interface; several additional configurations implement test circuitry. Test
configurations of the FPGA include an IEEE 1149.1 boundary scan Test Access Port
(TAP) for the board [Maunder 1990]. Specific tests are loaded with the TAP, including
a I3N pattern test generator for on-board RAM. The RAM tester generates addresses
and patterns, captures and compares the results and keeps an error vector for later
analysis.

Another test configuration of the same FPGA performs parametric tests. The test
logic on the FPGA loads the external memory with a known value, then sends a read
signal and address to the memory. It then samples the memory data lines after several
different delays following the read strobe. The earliest match between the read data
and the expected pattern gives the speed of the memory subsystem, which can be
saved to become part of the system configuration. The resolution of the delay
measurement can be the logic delay on chip, currently about 3ns, or it can be tuned
with interconnect delays to be as fine as Ins. Without a reprogrammable FPGA, the
test and parameter measurement logic would have required thousands of additional
gates of on-board logic as well as a significantly more complex board layout.

Configurable Interfaces

Test and diagnostic circuitry is a special case of a more general rule for the
applicability of reprogramming: if a piece of logic can be split into multiple pieces
that are not used simultaneously, then one FPGA can be time-shared to replace logic
amounting to many times its maximum capacity. The system designer develops a
separate FPGA program for each piece of logic, and builds the system to re-program
the FPGA to switch between the pieces of logic as they are needed. This capability is
especially useful in space-critical or weight-critical applications.

An opportunity to take advantage of reprogrammability occurs in interface design
where a single system is required to interface with several different protocols. While
any user of the system will use only one, the system manufacturer may wish to avoid
the expense and complication of building a different piece of hardware for each
protocol. The interface can be implemented in an FPGA which stores its
programming in a PROM. A single PROM can contain multiple programs, and the
choice of program selected during manufacturing or by the end user. This technique
was used in Tellabs' channel interface card for the Crossnet 440 Tl multiplexer
[Fawcett 1988]. The interface is implemented in an XC3030 FPGA, which can be
configured to implement a Data Service Unit (DSU), Office Channel Unit (OCU) or
secondary-mode OCU (see figure 2.6.8). Each T1 multiplexer system consists of four
identical cards that can be configured independently. The end user selects the protocol

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 93

SRAM Programmable FPGAs

8051
pt"ocessor

8051 r-pt"ocessor

8051
pt"ocessor

r"
Parallel-to 8-bitself-
serial SIR centering FIFO

t--

serial-to- 8-bit self-
parallel SIR centering FIFO

FPGA configured in DSU mode

o~polar
Parallel-to violation ----. serial SIR ~ generator

".

-

Oock

Data

Oock

Data

return-to-zero
generator

serial-to- 4- transparent data and .- 3-bit
.. parallel Sf ~ control code generator FIFO

FPGA configured in oeu mode

Parallel-to .. return-to-zero
serial SIR ~ generator

• I Irame 01t I I
generator

- I Irame sync Jj
recovery

... serial-to- - 3-bit
parallel Sf4 FIFO

FPGA configured in Secondary oeu mode

! ..
:-
J ,'"

:;;;,

, ..
:-
' .. ,'"

81

Data+

Data-

Data+
Data
Oock

Data+

Data-

Data+
Data
Clock

Figure 2.6.8. Channel Interface Card with Different Interfaces Implemented in
theFPGA.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 94

82 FPGA Technology

for each card, and that selection detennines the configuration that is loaded into the
FPGA.

A similar technique was used by the Freeland Medical Division of Good
Technologies in a video frame grabber for a PC-compatible computer. Seven FPGAs
can be programmed to accept anyone of the video formats used by different medical
equipment. New video formats are easily added as new configurations for the FPGAs.

Hillen [1990] used an XC2018 FPGA to drive the printer interface of the Tektronix
PhaserCard printer controller. The FPGA controls the flow of data from an external
FIFO to the printer, formats the data. and handles signalling to the printer. Different
configuration patterns for the FPGA allow the PhaserCard to control several different
kinds of printers, including monochrome laser printers, ink-jet color printers, and
wax-transfer color printers with parallel or serial interfaces.

When the board is idle and the printer is not printing, the FPGA is automatically
reconfigured with logic to check printer status. An additional diagnostic configuration
facilitates field testing.

Reconfiguration in Tape Drives

A tape drive cannot be reading and writing at the same time, so the logic for reading
and writing can be implemented in the same FPGA. Liehe [1986] implemented the
error correcting circuitry for a tape drive as two pieces: one for generating the error
correction code when writing, one for checking the error correction codes when
reading. The system reconfigures the FPGA when the tape drive switches modes. In
another tape drive application [Fawcett 1993], seven FPGAs format data for different
tape densities. Rather than supply different logic for each formatting style, the system
programs the FPGAs to perform the proper formatting when the tape density is
changed.

In this application, the FPGAs provided a second advantage: the system was
originally shipped supporting only the most popular densities: 1600 and 6250 bpi.
Later, the 800 and 3200 bpi formats were added and existing customers were updated
in the field via floppy disk.

Reprogrammable Logic in a Configurable Display Device

The Radius Pivot monitor is a Macintosh-compatible display device that can display
data either in portrait mode, preferred for word processing; or landscape mode,
preferred for spreadsheets. A user of the display manually rotates the display to select
the display style. Because the scan direction in the monitor is the same regardless of
the orientation of the display, the display hardware must change the order of
presentation of bits to the display to maintain Macintosh software compatibility.

The display interface board contains the frame buffers in video RAM, a Xilinx FPGA
and the digital-to-analog converter for preparing the signal for display [Tan-Nguyen

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 95

SRAM Programmable FPGAs 83

or

Figure 2.6.9. Pivot Display Structure.

1990] (figure 2.6.9). Part of the bitstream rotation is done when the pixels are stored
in the display memory, part is done when the pixels are sent to the monitor. The data
is scanned out of the video memory differently for portrait and landscape orientation.
Therefore, the VRAM addresses generated by the FPGA are different in the different
display modes. The final video stream goes to the monitor at 50 MHz.

The Pivot display actually has six formatting modes: one, two or four bits per pixel,
with the display aligned either vertically or horizontally. These modes are all mutually
exclusive, so one reprogrammable XC2018-100 FPGA with six different programs
implements all six options. When the pivoting display orientation changes, an
orientation-sensitive switch in the cabinet selects the correct program from a single
PROM that contains all six programs and starts the reconfiguration process. Although
XC2018 maximum capacity is 1800 gates, reprogrammability allows this part to
replace about six thousand gates of logic.

A Fast Video Controller

Figure 2.6.10 shows a block diagram of a video controller for a full-page high
resolution display. The FPGA is required to control access to the video RAM, format
the video data and generate control signals for the video monitor. Due to the high
resolution, the system is required to run at a 70 MHz rate. The high throughput is

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 96

84 FPGA Technology

S ync

Video
Control

A
RA

RAS
ClK I

I CAS
VRAM

Mode --- Control
BUS C TL

Video

Video
Blank

Generator SOE SO
X3699

Figure 2.6.10. Seventy Megahertz Video Controller.

achieved by heavy pipelining, which is supported by the XC3000 CLB structure in
which every logic block is followed by a flip-flop. To achieve the high perfonnance,
the logic was partitioned manually then placed and routed automatically. The
placement and routing were done incrementally, with the few speed-critical paths
placed and routed first and locked in place, before less speed critical paths were
placed and routed.

This application was designed and debugged as successive prototypes in an XC3030
device, then put into production in an XC3020 device. The additional space in the
XC3030 prototype device contained on-chip debugging logic, electronic
"scaffolding."

A Position Tracker For a Robot Manipulator

Robot manipulator positions are tracked by counting the number of times an indicator
has passed in front of a sensor. A manipulator with many degrees of freedom requires
many sensors and position counters. The counters need not run fast, but they must be

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 97

SRAM Programmable FPGAs 85

load[8] read[8] up[8] down[8]

X3700

Figure 2.6.11. Robot Manipulator Position Tracker.

loadable; they must be able to count both up and down; and the system must be able
to set and read the counts, the position of the manipulator, without interrupting the
count.

The system in figure 2.6.11 controls a high-precision robot manipulator with 16
degrees of freedom. The range of motion of the ann and the position resolution
require a 32-bit position register and counter for each degree of freedom. The design
was implemented in two XC3090 FPGAs, each one implementing eight 32-bit
loadable up/down counters. The position registers are in the XC3090's flip-flops, and
the counters are implemented in lookup tables. Horizontal three-state lines give
access to the position count registers. The position registers can be independently
addressed to be read and written by the robot controller at a 30 MHz data rate. Each
counter has its own up/down count signals and can count at 8 MHz. Each of the
XC3090s contains over eight thousand gates of logic.

A Fast DMA Controller

Figure 2.6.12 shows a block diagram of a 16-channel DMA controller. The controller
supports round-robin or priority channel selection with pipelined channel arbitration.
It works with byte, word or long word transfers with separate 32-bit transfer count
and address registers for each channel. The controller interfaces to 16-bit or 32-bit
data busses and supports 20 million transfers per second, up to 80 MB/sec.

Figure 2.6.13 shows the block diagram of the DMA controller in an XC4008 FPGA.
Registers and internal buffers use the CLB RAM configuration. Data and address
sequencers use the high-speed arithmetic. Wide data busses run horizontally across
the chip on three-state lines. The control logic for sequencing and DRAM interface is
implemented as random logic on the same Ie. The DMA controller represents
approximately 7000 gates of logic and is implemented in about 200 CLBs,

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 98

86

Pr0C86&Or 16/32
Data Bus

DMA
Request

DMA
Grant

32

Pri
Ene

Addr
Reg

Dala
Reg

Grant
~--------------~

FPGA Tecbnology

IneJ
Dec

1----+-__ ---=3~2L---Addr ...

Doc by
1/2/4

Control

Block End

Bus Requeat
Bus Ack
ALE
ReadJWrite
Data Strobe

RAS
CAS
MUX

Figure 2.6.12. High-Speed DMA Controller Block Diagram.

X3714

,,--Uata Count Input

Count Register

Count Decrementer

Adder Input

Adder Register

I ncrernenterl
Decrementer

Required Mask

Required Register

Figure 2.6.13. High-Speed DMA Controller Layout.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 99

SRAM Programmable FPGAs 87

approximately two-thirds of the 18x18 array of CLBs in the XC4008 IC. The
remaining area of the FPGA is available for other functions. A chained block scatter!
gather option takes another 30 CLBs. If the DRAM is on the same board, the DRAM
address multiplexer can be integrated on the XC4008 as well.

If the full functionality of this DMA controller is not needed, a simple 16-channeI32-
bit DMA controller fits in only 72 XC4000 CLBs, and still runs at 20MHz.

Custom Computing Applications

SRAM-programmable FPGAs provide the opportunity to build a large-scale general
purpose system that can be reconfigured for new applications much like general
purpose microprocessors can be re-programmed with software to perform new
functions. These systems have been classified as FPGAs for Custom Computing
Machines, and are the subject of increasing interest as an alternative to
supercomputers. This section gives an overview of a few of these systems and their
innovative use of SRAM FPGAs.

The Quickturn Logic Emulator

Quickturn Design Systems, Inc. addressed the problem of prototyping large-scale
ASICs and systems in the RPM Logic Emulator by using an array of Xilinx FPGAs
[Walters 1990]. The RPM hardware includes a SCSI or Ethernet connection to a
control processor, several emulation boards and external component adapters (figure

Control Processor

Logic Analyzer!
Pattern Generator

Emulation Modules

000000
000000
000000
000000
000000
000000

=== === ===
10

~----+---------------------~ Com~nMt
Adapters

Figure 2.6.14. The RPM Emulation System.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 100

88 FPGA Technology

2.6.14). Each emulation board includes an array of XC3090 FPGAs connected in a
hypercube arrangement with fixed interconnects at the board level.

The external component adapters allow a designer to interface with external logic,
either ICs or complete systems. The system includes configurable signal analyzers
and generators, built with XC3090 FPGAs, that allow users to monitor the running
system just as they would a simulation

The RPM software accepts a netlist of hundreds of thousands of gates, partitions the
gates into FPGAs to optimize interconnection and density, places and routes designs
on the FPGAs, and finally inserts buffers to adjust the signal timing to preserve the
relative timing of the emulation with respect to the original netlist. The partitioner
limits each FPGA to a small fraction of its logic capacity to ensure that enough
interconnect remains in each FPGA to connect signals that pass through the design
and to speed up the FPGA placement and routing that follows. Small changes are
handled incrementally across all FPGAs in the system, limiting re-implementation
times to minutes.

When partitioned and loaded on the emulator boards, an emulated design executes up
to a million times faster than simulation.

Prototyping Hardware/Software Algorithms

Perle-O [Shand 1989] is a platform for experimentation with logic and architectures
for highly-parallel computation. The board consists of a 5x5 array of reconfigurable
XC3020 FPGAs with local memory and VME bus interface circuitry to connect to a
host processor. The FPGAs are connected in a two-dimensional array. Configuration
for the entire array of chips is about four hundred thousand bits, with a download time
of about 5Oms. The array can implement functions up to about fifty thousand gates.

Perle-O and its successor Perle-I, a 4x4 array of XC3090 FPGAs with 32 megabytes
of RAM, have been programmed to perform a variety of algorithms, including image
filtering, very-Iong-word-size arithmetic and RSA encryption. The time to implement
the solutions to these problems is approximately the same as the time to implement a
highly-optimized software solution to them. An algorithm is initially coded in a
programming language for the host computer. The performance-critical part is re
coded into a model called a Programmable Active Memory (PAM), then the PAM
model is mapped into the FPGAs. Changes in the algorithm may take weeks to
describe and optimize, and design iterations can take several days. Compared to
turnaround times for custom ASICs, these times are short, there are no tooling
charges, and the hardware can be re-used.

Because the designers can continually improve their algorithms, Perle-O and Perle-l
have achieved performance on several problems superior to the best custom IC
solutions [Bertin 1992]. These include RSA encryption on 512-bit keys at 1500 bits
per second and RSA decoding at 200 kbitls, ten times faster than the fastest reported

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 101

SRAM Programmable FPGAs 89

Figure 2.6.15. Splash 32-Stage Linear Array.

custom IC solution. A Perle-l implementation of a finite difference method of
computing solutions of the Heat and Laplace equations achieves performance
comparable to a 25000 MIPS serial processor. A neural network emulator built on
Perle-l operates at 500 meg asynapses per second.

Another example of this kind of application is the Splash processor [Gokbale 1991]
[Lopresti 1991]. Splash consists of a linear array of function units (figure 2.6.15).
Each function unit consists ofaXilinx XC3090 FPGA with a 128K byte external
memory. The Splash processor is targeted to one-dimensional systolic problems and
has been used for pattern matching DNA sequences. The general-purpose Splash
board out-performs a Cray supercomputer on this problem by as much as a factor of
300 and out-performs a custom single-chip integrated circuit by a factor of 45.

Key to attaining high-quality designs in custom computing machines is the ability to
repeatedly prototype the implementation, generating successively faster embedded
designs, in much the same way that a software developer refines an algorithm by
testing and monitoring. Since custom IC designers must eventually stop development
and build the hard-wired design, they cannot continue to improve the algorithm.

A second advantage of reconfigurable systems is the ability to bring to bear large
amounts of reusable hardware. Since the hardware is not dedicated to the application,
is it cost-effective to bring dozens or even hundreds of FPGAs to bear on a single
problem. This practice is prohibitively expensive when dealing with supercomputers,
and custom ICs are typically not built to be scalable to multiple-chip solutions.

Custom computer designers build features into their systems to facilitate debugging
and optimization of their highly-parallel designs. These debugging features access the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 102

90 FPGA Technology

readback facilities on the FPGAs to observe internal nodes. In some cases, readback
is also used to read out the results of computations, saving the need to generate extra
upload logic in the FPGA array.

There have been many different methods used to program custom computers. The
programming methods are related to the intended applications. The RPM engine is
programmed with a gate-level netlist that is partitioned among the FPGAs in the
array. The Perle-board application developers use the XACT Design Editor and other
editing tools for the PAM model. The Splash board uses VHDL [IEEE 1988] as its
programming language. Other programming languages have been suggested, most
notably a slightly-augmented C [Thomae 1991] [Van den Bout 1992].

A Flexible Processor

Wolfe and Shen [Wolfe 1988] used several reprogrammable FPGAs to implement a
"flexible processor." Eight reconfigurable FPGAs are used to implement instruction
decoding, address generation and datapath operations in a single-board computer.
They can be configured to implement a wide variety of virtual processor architectures
with different instruction sets, addressing mechanisms, pipelining schemes and ALU
operations. Wolfe and Shen used the flexible processor to prototype processor
architectures to solve systems of linear equations.

Custom computing machines and flexible processors may change our definition of
algorithmic complexity. For example, a searching algorithm that requires O(n2)

operations on a standard processor may require only O(n) time on a flexible
processor configured with an array of comparators. The optimal choice of processor
configuration may be dynamic and problem-size dependent. The processor
configuration may even change during operation.

Reprogrammability gives a system designer new capabilities: reconfigurable
hardware or even virtual hardware, similar to virtual memory in computer systems.
Eventually such virtual hardware may be overlaid or time-shared in a manner
analogous to multiple-process-management in computer systems, employing a
software-like operational methodology as well as a software-like design
methodology.

In a system with tight integration between the host and the custom processor, the host
processor becomes redundant. If ever one is needed, the custom computer can
emulate one.

2.7. Acknowledgments

I would like to thank all those whose work and innovations are described in this
chapter. You are the ones who are pushing back the frontiers of knowledge. I would
also like to thank Eddie Gutierrez and Jessica Fabula for their work with drawings;
Lani Sutherland for research; and Bill Carter, Peter Altke, Bernie New, Brad Fawcett,

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 103

SRAM Programmable FPGAs 91

Philip Freidin, Mon-Ren Chene, Jon FrankIe, Erich Goetting, Danesh Tavana, Lee
Salutos, Steve Kelem, Kerry Pierce, Laura Smith, Samiha Mourad and John Oldfield
for reviews, suggestions and assistance with technical data.

2.8. References

P. Bertin, D. Roncin, J. Vuillemin, "Programmable Active Memories: Performance
Measurements," FPGA '92. First International ACMISIGDA Workshop on Field
Programmable Gate Arrays, 1992.

M.A. Breuer, "Min-Cut Placement," Journal of Design Automation and Fault
Tolerant Computing, October, 1977.

B.K. Britton, D.D. Hill, W. Oswald, N.-S. Woo, S. Singh, "Optimized Reconfigurable
Cell Array Architecture for High-Performance Field Programmable Gate Arrays,"
IEEE 1993 Custom Integrated Circuits Conference, 1993.

W. Carter, K. Duong, RH. Freeman, H.C. Hsieh, J.Y. Ja, J.E. Mahoney, L.T. Ngo,
S.L. Sze, "A User Programmable Reconfigurable Gate Array," IEEE 1986 Custom
Integrated Circuits Conference, 1986.

R Cliff, B. Ahanin, L.T. Cope, F. Heile, R. Ho, J. Huang, C. Lytle, S. Mashruwala, B.
Pedersen, R Raman, S. Reddy, V. Singhal, C.K. Sung, K. Veenstra, A. Gupta, "A
Dual Granularity and Globally Interconnected Architecture for a Programmable
Logic Device," IEEE 1993 Custom Integrated Circuits Conference, 1993.

P. Chow, S.O. Seo, D. Au, T. Choy, B. Fallah, D. Lewis, C. Li, 1. Rose, "A 1.2 11m
CMOS FPGA using Cascaded Logic Blocks," Proceedings of the O>iford 1991
International Workshop on Field Programmable Logic and Applications, W.R. Moore
and W. Luk, ed., Abingdon EE&CS Books, 1991.

C.E. Cox and W.E. Blanz, "Ganglion, A Fast Hardware Implementation of a
Connectionist Classifier", Proceedings of the Custom 1ntegrated Circuits Conference,
1991.

M.M. Denneau, "The Yorktown Simulation Engine," Proceedings of the 19th Design
Automation Conference, 1982.

W.E. Donath, "Placement and Average Interconnection Lengths of Computer Logic",
IEEE Transactions on Circuits and Systems, April 1979.

A.E. Dunlop, B.W. Kernighan, "A Procedure for Placement of Standard-Cell VLSI
Circuits," IEEE Transactions on CAD, vol CAD-4, January, 1985.

C. Ebeling, G. Borriello, S.A. Hauck, D. Song and E.A. Walkup, "TRIPTYCH: a
New FPGA Architecture," Proceedings of the O>iford 1991 International Workshop
on Field Programmable Logic and Applications, W.R Moore and W. Luk, ed.,
Abingdon EE&CS Books, 1991.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 104

92 FPGA Technology

A. EI Gamal, "Two-Dimensional Stochastic Model for Interconnections in Master
Slice Integrated Circuits," IEEE Transactions on Circuit sand Systems, vol. CAS-28,
no. 2, February, 1981, pp 127-138.

B. Fawcett, "Taking Advantage of Reconfigurable Logic," High Performance
Systems Programmable Logic Guide, 1989. See also [Xilinx 1992].

C.M. Fiduccia, R.M. Mattheyses, "A Linear-Time Heuristic for Improving Network
Partitions," Proceedings of the 19th Design Automation Conference, 1982.

R.1. Francis, J. Rose, K. Chung, "Chortle: A Technology Mapping Program for
Lookup Table-Based Field-Programmable Gate Arrays," Proceedings of the 27th
Design Automation Conference, 1990.

R.1. Francis, J. Rose, Z. Vranisec, "Chortle-crf: Fast Technology Mapping for Lookup
Table-Based Field-Programmable Gate Arrays," Proceedings of the 28th Design
Automation Conference, 1991. a.

R.1. Francis, J. Rose, Z. Vranisec, "Technology Mapping of Lookup Table-Based
FPGAs for Performance," IEEE International Conference on Computer-Aided
Design, 1991. b.

J. Frankle, "Iterative and Adaptive Slack Allocation for Performance-driven Layout
and FPGA Routing", Proceedings of the 29th Design Automation Conference, 1992.

F. Furtek, G. Stone, 1. Jones, "Labyrinth: A Homogeneous Computational Medium,"
IEEE 1990 Custom Integrated Circuits Conference, 1990.

M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D.
Lopresti, "Building and Using a Highly Parallel Programmable Logic Array,"
Computer, January 1991.

S. Goto, "An Efficient Algorithm for the Two-Dimension Placement Problem in
Electrical Circuit Layout," IEEE Transactions on Circuits and Systems, January,
1981.

J. Greene, V. Roychowdhury, S. Kaptanoglu, A. ElGamal, "Segmented Channel
Routing," Proceedings of the 27th Design Automation Conference, 1990.

M. Hartoog, "Analysis of Placement Procedures for VLSI Standard Cell Layout",
Proceedings of the 23rd Design Automation Conference, 1986, pp 314-319.

N. Hastie, R. Cliff, "The Implementation of Hardware Subroutines on Field
Programmable Gate Arrays," IEEE 1990 Custom Integrated Circuits Conference,
1990.

S. Hauck, G. Borriello, S. Burns, C. Ebeling, "Montage: An FPGA for Synchronous
and Asynchronous Circuits," 2nd International Workshop on Field-Programmable
Logic and Applications, 1992.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 105

SRAM Programmable FPGAs 93

W.R Heller, W.E Mikhail, W.E. Donath, "Prediction of Wiring Space Requirements
for LSI," Journal of Design Automation and Fault Tolerant Computing, May 1978.

D. Hill and N-S. Woo, "The Benefits of Flexibility in Look-up Table FPGAs,"
Proceedings of the O>ford 1991 International Workshop on Field Programmable
Logic and Applications, W.R. Moore and W. Luk, ed., Abingdon EE&CS Books,
1991.

D.D. Hill, B.K. Britton, B. Oswald, N.-S. Woo, S. Singh, T. Poon, B. Krambeck, "A
New Architecture for High-Performance FPGAs", 2nd International Workshop on
Field-Programmable Logic and Applications, IFIP, 1992.

K. Hillen, B. Fawcett, "Build Reconfigurable Peripheral Controllers", Electronic
Design, March 6, 1990.

M. Holley, C. Kaplinsky, "Streamline programmable-logic design with the proposed
LPM standard," Electronic Design, v 39, no 21, November 7,1991, pp 89-96.

P. Horowitz and W. Hill, The Art of Electronics, Second Edition, Cambridge
University Press, 1989.

H.C. Hsieh, K. Duong, J.Y. Ja, R. Kanazawa, L.T. Ngo, L.G. Tinkey, W.S. Carter,
R.H. Freeman, "A Second Generation User-Programmable Gate Array", IEEE 1987
Custom Integrated Circuits Conference, 1987.

H.C. Hsieh, K. Duong, J.Y. Ja, R. Kanazawa, L.T. Ngo, L.G. Tinkey, W.S. Carter,
RH. Freeman, "A 9000-Gate User-Programmable Gate Array", IEEE 1988 Custom
Integrated Circuits Conference, 1988.

H.C. Hsieh, W.S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin, L.
Tinkey, R Kanazawa, "Third Generation Architecture Boosts Speed and Density of
FPGAs", IEEE 1990 Custom Integrated Circuits Conference, 1990.

IEEE, IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076-1987,
1988.

IEEE Computer Society Test Technology Technical Committee, IEEE Std.]]49.1-
1990. Standard Test Access Port and Boundary-Scan Architecture, IEEE, New York,
1990.

K. Karplus, "Xmap: A Technology Mapper for Table-lookup Field-Programmable
Gate Arrays," Proceedings of the 28th Design Automation Conference, 1991.

K. Kawana, H. Keida, M. Sakamoto, K. Shibata, 1. Moriyama, "An Efficient Logic
Block Interconnect Architecture for User-Reprogram mabIe Gate Array," IEEE 1990
Custom Integrated Circuits Conference, 1990.

T. Kean, Configurable Logic: A Dynamically Programmable Cellular Architecture
and its VL5I Implementation, Ph.D. Dissertation, University of Edinburgh,
Department of Computer Science, CST-62-89, 1989.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 106

94 FPGA Technology

S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, "Optimization by Simulated Annealing,"
Science, 13 May 1983.

T. Liehe, "Two, Two, Two Chips in One," Electronic Engineering Times, November
17,1986.

D. Lopresti, Rapid Implementation of a Genetic Sequence Comparator Using Field
Programmable Logic Arrays, Advanced Research in VLSI: Proceedings of the 1991
University of California Santa Cruz Conference, The MIT Press, 1991.

K. Lyons, "A Comparison of CMOS Static Random-Access-Memory Cells,"
Electronic Engineering Times, August 5, 1985.

C.M. Maunder, R.E. Tulloss, The Test Access Port and Boundary-Scan Architecture,
IEEE Computer Science Press, 1990.

L. Mintzer, "FIR Filters with the Xilinx FPGA" , First International ACMISIGDA
Workshop on Field Programmable Gate Arrays, 1992.

R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton, A Sangiovanni-Vincentelli,
"Logic Synthesis for Programmable Gate Arrays," Proceedings of the 27th Design
Automation Conference, 1990.

R. Murgai, N. Shenoy, R.K. Brayton, A Sangiovanni-Vincentelli, "Improved Logic
Synthesis Algorithms for Table Look-Up Architectures," IEEE International
Conference on Computer-Aided Design, 1991. a.

R. Murgai, N. Shenoy, R.K. Brayton, "Performance-Directed Synthesis for TAble
Look Up Programmable Gate Arrays," IEEE International Conference on Computer
Aided Design, 1991. b.

H. Muroga, H. Murata, Y. Saeki, T. Hibi, Y. Ohashi, "A Large Scale FPGA with 10K
Core Cells with CMOS 0.8 /J.m 3-Layered Metal Process," IEEE 1991 Custom
Integrated Circuits Conference, 1991.

N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, 1971.

P. Penfield, Jr., J. Rubenstein, "Signal Delay in RC Tree Networks," Proceedings of
the 18th Design Automation Conference, 1981.

J. Rose, R.J. Francis, D. Lewis, P. Chow, "Architecture of Field Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency," IEEE Journal
of Solid-State Circuits, vol. 25, no. 5, October 1990.

J. Rose, S. Brown, "Flexibility of Interconnection Structures for Field-Programmable
Gate Arrays," IEEE Journal of Solid-State Circuits, vol. 26, no. 3, March 1991, pp
277-282

G. Rosendahl, T. Paille, D. Freiling, R. McLeod, "In System Reprogrammable LCAs
Provide a Versatile Interface for a DSP Based Parallel Machine," Proceedings of the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 107

SRAM Programmable FPGAs 95

Oxford 1991 International Workshop on Field Programmable Logic and
Applications, W.R. Moore and W. Luk, ed., Abingdon EE&CS Books, 1991.

P. Sawkar and D. Thomas, "Area and Delay Mapping for Table-Look-Up Based Field
Programmable Gate Arrays," Proceedings of the 29th Design Automation
Conference, 1992.

C. Sechen, A. Sangiovanni-Vincentelli, "The TimberWolf Placement and Routing
Package," IEEE Journal Solid State Circuits, 20:510-522, 1985.

C. Sechen, "Chip-planning, Placement, and Global Routing for Macro/Custom Cell
Integrated Circuits Using Simulated Annealing," Proceedings of the 25th Design
Automation Conference, pages 73-80,1988.

C. Sechen and D. Chen, "An Improved Objective Function for Mincut Circuit
Partitioning," IEEE International Conference on Computer-Aided Design, 1988.

M. Shand, P. Bertin, J. Vuillemin, "Resource tradeoffs in fast long integer
multiplication", Proceedings of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, 1990.

J. Soukup, "Circuit Layout," Proceedings of the IEEE, October 1981.

J. Tan-Nguyen, T. Oyama, N. Moss, "Pivoting Monitor Increases Versatility of
Workstations," Computer Technology Review, November 1990.

D. Thomae, T. Petersen and D. Van den Bout, "The Anyboard Rapid Prototyping
Environment," Advanced Research in VLSI: Proceedings of the 1991 University of
California Santa Cruz Conference, The MIT Press, 1991.

S. Trimberger, "Beyond Logic -- FPGAs for Digital Systems," Proceedings of the
Oxford 1991 International Workshop on Field Programmable Logic and
Applications, W.R. Moore and W. Luk, ed., Abingdon EE&CS Books, 1991.

S. Trimberger, "A Small, Complete Mapping Library for Lookup Table-Based
FPGAs," 2nd International Workshop on Field-Programmable Logic and
Applications, 1992.

S. Trimberger, "A Reprogrammable Gate Array and Applications," Proceedings of
the IEEE, July 1993.

S. Trimberger, M.-R. Chene, "Placement-Based Partitioning for Lookup-Table-Based
FPGAs," Proceedings of ICCD '92 International Conference on Computer Design,
VLSI in Computers and Processors, 1992.

D. Van den Bout, J. Morris, D. Thomae, S. Labrozzi, S. Wingo, and D. Hallman,
"Anyboard: An FPGA-based, reconfigurable system," IEEE Design and Test of
Computers, September 1992.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 108

96 FPGA Technology

S. Walters, "Reprogram mabIe Hardware Emulation Automates System-Level ASIC
Validation", Wesconl90 Conference Record, 1990.

A. Wolfe and J.P. Shen, "Aexible Processors: A promising application-specific
processor design approach", Technical Report, Carnegie-Mellon University, 1988.

N.-S. Woo, "A Heuristic Method for FPGA Technology Mapping Based on Edge
Visibility," Proceedings of the 28th Design Automation Conference, 1991.

Xilinx, The Programmable Gate Array Data Book, Xilinx, 1989, 1991, 1992, 1993.

Xilinx SMTO, "Static Memory Technology Overview,", Xilinx Technical Brief,
Xilinx, 1991.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 109

Chapter 3
Antifuse Programmed FPGAs

Dennis McCarty and Telle Whitney, Actel Corporation

3.1 Introduction

The architecture of an FPGA is determined, in large part, by the programmable switch
tecbnology used to configure it. Many such technologies have been considered for use
in FPGAs, including laser programming [Smith] [Allen], pass transistors controlled
by SRAM [Hsieh] [Carter] or EPROM cells [Wong] and antifuses [Gerzberg]
[Hamdy] [Whitten].

This chapter describes the architecture, technology and use of FPGAs based on an
electrically programmable two-terminal device known as an antifuse [Hamdy]. An
antifuse device irreversibly changes from a high to a low resistance when a
programming voltage is applied across its terminals. Antifuses offer several unique
features for FPGAs, most notably their low on resistance of 100 to 600 ohms, and
their small size. The layout area of an antifuse cell is generally smaller than the pitch
of the metal lines it connects. It is about the same size as a via used to connect metal
lines in a mask programmed array. More than 1,()()(),()()() antifuses can now be
integrated on a single FPGA, facilitating the development of routing architectures
approaching the flexibility and scaling potential of conventional gate arrays. Current
antifuse FPGAs offer complexity equivalent to an 1O,()()()-gate conventional gate
array and typical system clock speeds of up to 75 MHz.

While the focus here is on the Actel FPGA families similar principles will likely
apply to other antifuse-based FPGAs now emerging. These developments include
both new antifuse process technology and new FPGA architectures. The
Act1[EIAyat] [EIGamall] family ranges from 1200-2000 gates, the Act2 [Ahrens]
family from 2500-8000 gates, and the Act3 [Schlageter] [Whitney] family ranges
form 1500-10,000 gates.

Figure 3.1.1 shows a simplified block diagram of an ACT FPGA. Rows of logic
modules are interspersed with horizontal routing channels containing predefined
wiring segments of various lengths and offsets. Other wiring segments run vertically
through the modules and across the channels. Each logic module computes a single
output function of several inputs. Each module input is connected to a dedicated

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 110

98

Logic
Module

Input

Input

Programmed
Antifuses

Segment ________ __

FPGA Technology

Logic Module
'-..... Output

ROWSO~=~~~~~~~~~~~~~~~~~~~
Logic

Modules- ... ' ____ _"'--.................. 1

Figure 3.1.1. Actel Architecture

vertical wiring segment spanning either the channel just above or below the module.
Each output signal appears on a dedicated vertical wiring segment of somewhat
longer length. An antifuse is provided at each intersection of a horizontal and vertical
segment, permitting them to be connected. The output of the driver, Module 3, in the
figure, is connected to the Module 2 input by programmed antifuses to horizontal
segments which, in tum, are connected to input segments. In the top channel, an
antifuse is used to link two adjacent horizontal segments end-to-end, making it
possible to reach an input of Module 1.

The central array of modules and channels is surrounded by input/output pads and
buffers. Each 10 buffer may be connected to the internal logic through a special
module in an outer row or column of the array.

Succeeding sections of this chapter will consider the various factors that determine

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 111

Antifuse Programmed FPGAs 99

the speed, cost and ease of use of anti fuse-based FPGAs. Section 3.2 describes the
antifuse device, including its physical structure, manufactureability and reliability.
Section 3.3 explains some basic principles of programmable routing applicable to
any programmable switch technology, the segmented routing channel model Actel's
routing architecture, and the basic architecture of Actl, Act2, and Act3. Section 3.4
describes the design flow and the design automation tools. Section 3.5 summarizes
how antifuse FPGAs are expected to evolve in the future. Finally Section 3.6
includes some design applications.

3.2 Programming Technology

The programming element is the key to an FPGA architecture. The characteristics of
the programming element influences in many fundamental ways the viable
architecture of the FPGAs. The requirements of a programmable interconnect switch
for a high-performance FPGA include an element that has a small area and low
parasitic resistance and capacitance, as well as a switch technology that is
manufacturable and reliable.

Laser-programmed switches [Allen] [Smith] offer decent performance, but require
costly equipment that must have direct access to the un-packaged die in order to
program the part. Although the switch itself is small, it often requires a surrounding
buffer zone to protect adjacent structures from being damaged by the laser. There are
also significant programming time and yield considemtions which reduce production
viability.

Early PROMs and PLDs employed electrically progmmmed fuses made of such
materials as polysilicon, platinum silicide, tungsten-titanium, and nickel-chrome.
These materials have proven to be both difficult to manufacture and program reliably
for integrated circuits. The most common difficulty is that a programmed fuse can
grow back, or reconnect over time if it was not progmmmed with an adequate current.

More recent architectures have used transistors as interconnect switches [Carter].
Although this approach is widely used, it has some significant costs. The appreciable
resistance and capacitance of the switch transistor, and the large area of the SRAM or
EPROM cell controlling it constrain the design of the routing architecture and the
performance of the circuit.

Actel architectures employ a one-time programmable element the size of a via called
an antifuse. An antifuse switch technology offers the following advantages for
FPGAs:

• Antifuses have a significantly lower on resistance and parasitic capacitance than
switch transistors, reducing RC delays in the routing.

• Antifuses are small, typically the size of via, and sit at the intersection of the hor
izontal and vertical routing wires.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 112

100 FPGA Technology

Antifuses are off devices in an unprogrammed state. Their size allows the use of
simple and flexible routing architectures with 1,000,000 antifuses on a 14100 (10,000
gate) device. Only a small fraction of the total number of antifuses need to be
programmed, about 2% for a typical application. Antifuses fall into two categories:
amorphous silicon and dielectric.

A layer of amorphous silicon placed between two metal layers undergoes a phase
change when current is passed through it. becoming conductive. Devices based on
this principle have been the subject of research for many years [Gerzberg] [Whitten]
[Roesner] [Holmberg] [Lim] [Stopper], and were considered for an early FPGA
design[Graham]. Their use has been hampered by two difficulties. First, application
of a reverse current can return the amorphous silicon in a programmed antifuse to a
nonconductive state. Second, even unprogrammed devices pass a small but significant
current, termed leakage current. In a memory, where only a few bits must be active
simultaneously, the problems can be avoided by careful design. The problems are
more significant in an FPGA since the supply voltage is present across about half the
antifuses at any given time.

Recent efforts at developing an amorphous silicon antifuse for FPGAs report the
following results. Resistance is inversely proportional to the programming current.
and is 50-110 ohms with a mode of 80 ohms at a programming current above lOrnA
[Birkner]. The capacitance contributed by each antifuse is 1.3 femtofarads in a 1.0
micron CMOS process [Birkner]. (This number does not account for the capacitance
of the metal lines themselves, which contribute several times this amount per
antifuse.) Pre-programming leakage current is under 10 nanoamperes at 5.5 volts
[Whitten].

Dielectric antifuse consist of a single or multi layer of dielectric material placed
between N+ diffusion and polysilicon. Upon application of sufficient voltage, the
dielectrics breaks down. Early dielectric antifuses used a single-layer oxide dielectric.
The remainder of this section focuses on the Programmable Low Impedance Circuit
Element (PUCE), a multi-layer oxide-nitride-oxide (ONO) dielectric anti fuse
developed for use in FPGAs [Hamdy]. The PUCE is small enough that the area of a
switch array is limited by the pitch of the metal wires rather than the size of the
anti fuse itself.

In the unprogrammed state the PUCE has a resistance over 100 giga-ohm. The
PUCE can be programmed in one millisecond by applying 16 volts across its
terminals. This programming pulse melts the dielectric, creating a conductive link of
polycrystalline silicon between the electrodes. Typically, a single link is observed.
The radius of the link increases with programming current. hence lowering the
resistance. As the programming current flows, dopant atoms flow from both
electrodes into the link, providing a controllable low resistance.

For a minimal area PUCE programmed with SmA, the resistance is distributed
around 600 ohms as shown in Figure 3.2.1 The resistance distribution is significantly

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 113

Antifuse Programmed FPGAs

Antifuse Resistance (Kohms)

1.21 \

\
\

1 ' \

0.8

0.6 i

0.4 ,

I
0.2

0 __ I ________ 1 _

0 2 4 5 6 8 10 12 14

PROGRAMMING CURRENT (rna)

Figure 3.2.1. Resistance of Programmed Antifuse versus Pro
gramming Current

16

101

20

tighter than obtained with simple oxide dielectrics. With a larger cell layout that
reduces the parasitic resistance to the electrodes, and higher programming currents of
14 rnA, the distribution moves down to about 100 ohms, providing an area-delay
trade-off. Use of ONO also improves both the yield and the reliability compared to
oxide antifuses [Chiang1]. Capacitance is 6 femtofarads per antifuse in a 0.8 micron
CMOS process; this includes the contribution of the polysilicon and diffusion
electrodes and the metal lines used to connect them [Chen]. An unprogrammed
PUCE has a leakage current of about one femtoampere, so even for the largest
FPGAs the total leakage is negligible.

Use of the PUCE adds three masks to a conventional double-metal CMOS process. It
can be fabricated in a typical CMOS facility using standard material, processing
equipment and techniques.

A PUCE consists of an oxide-nitride-oxide structure sandwiched between N+
diffusion and N+ polysilicon gate, as shown in Figure 3.2.2 . A thin layer of oxide is
thermally grown on top of the N+ surface, followed by LPCVD nitride and the
reoxidized top oxide. Finally, the top polysilicon electrode is implanted with arsenic.

Antifuse reliability must be considered for both the unprogrammed and programmed

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 114

102 FPGA Technology

PLiCE Poly

Field Oxide PLiCE Dielectric

PLiCE Diffusion

Figure 3.2.2. PLICE Cross Section

states. For an unprogrammed antifuse, with ONO less than lOnm thick, time
dependent dielectric breakdown (1DDB) reliability time is an important
consideration. Ordinary accelerated testing using electrical field and temperature
stress was done in order to extrapolate the dielectric's lifetime under normal operating
conditions. Figure 3.2.3 shows a plot of the time-to-breakdown vs. the reciprocal of
the electric field applied to the dielectric, which has been shown to be an appropriate
model [Chiang 1]. Based on this data, one may extrapolate a lifetime for an ONO
antifuse of well over 40 years of normal operation at 5.5V and 125C.

It is equally important that the resistance of a programmed antifuse remain low during
the life of the part. Single-layer oxide dielectrics are known to be susceptible to self
healing where resistance increases over time. Such increases do not occur for ONO
dielectrics. Temperature-accelerated measurements reveal no intrinsic failure
mechanism; the programmed antifuse resistance remains unchanged in all cases. The
true lifetime of a programmed antifuse has yet to be determined since normal CMOS
electromigration failures destroy the test structure first.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 115

Antifuse Programmed FPGAs

TDDB (sec)
1.0E+18 -------------
1.0E+17 -

1.0E +16 - - - - - -- - -- - - - - - - - -- - - - - - - _ - I
1.0E+15 I
1.0E+14 I
1.0E+13 I
1.0E+12 :
1.0E+11
1.0E+10
1.0E+09
1.0E+08
1.0E+07
1.0E+06
1.0E+05
1.0E+04
1.0E+03
1.0E+02
1.0E+0 1
1.0E+00
1.0E-01 :
1.0E-02

40 y.a,.

a.av. Oil! ONO

103

1.0E - 03 '--'---'---''----'---'----'---'---'---'-+--'---''-~
5 6 7 8 9 10 11 12 13 14 15 16 17 18

100/E (cm/MV)

Figure 3.2.3. ONO Reliability, lIE Model (95% Confidence Intervals)

Of course, the reliability of the FPGA is affected by the reliability of the base CMOS
process as well as the PUCE. PUCE-based FPGA product reliability studies show
the same failure levels encountered with nonnal CMOS circuits [Chiang2]. The ONO
dielectric is highly radiation resistant. Initial results show that products containing
ONO antifuses can withstand 1.5 million rads.

3.3 Device Architecture

This section describes in detail the Actel anti fuse FPGA architecture. The first section
is an overview of the architecture. Subsequent sections describe ActI, Act2 and Act3
focusing on their differences.

Principles of Programmable Routing

A routing architecture for an FPGA must meet two criteria: routability and speed.
Routability refers to the adaptability of the wiring segments to accommodate all the
nets of a wide variety of applications. Only the switches connecting the wiring

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 116

104 FPGA Technology

segments may be customized (by programming) for a specific application, not the
numbers, lengths or locations of the wiring segments themselves. While sufficient
wiring segments for good routability must be provided, excess wiring segments waste
chip area. One of the important architectural considerations is that the routing of an
application can be determined by an automatic routing program with little or no
manual intervention required.

Propagation delay through the routing is the other major factor in FPGA performance.
In any gate array architecture, whether mask or field programmable, it is inevitable
that some nets require longer routings than others. After routing, the exact parasitic
resistance and capacitance of the wiring are known and the delay on each net can be
computed accordingly. The resulting post-layout net delays will vary according to
some statistical distribution. If the average of this distribution is high, it will limit the
performance of the design. If the distribution is too broad. a user will have difficulty
estimating delays for the application.

The delay distribution for mask-programmed arrays is narrow from the low
interconnection impedance so that variation isn't a major difficulty for the designer.
The problem is more challenging for FPGA architectures. Any programmable switch
(EPROM, MOS pass device, or antifuse) has a significant resistance and capacitance
product (RC). Each time a signal passes through a programmable switch, another RC
stage is added to the propagation path. For a fixed R and C, the propagation delay
mounts quadratically with the number of RC stages in series. This increases the
average of the net delays and broadens the post-layout delay distribution. The use of a
low resistance switch, such as the antifuse, limits RC to keep the average delay low
and its distribution tight.

Of equal significance to the performance advantages of the antifuse is optimization of
the routing architecture that it affords. Some of the trade-offs between the length of
wiring segments in a channel, the area required by the segments, and the resistance
and capacitance of the switch are illustrated in Figure 3.3.1 .

Figure 3.3.1 (a) illustrates a set of nets routed in a conventional masked device
channel. With the complete freedom to configure the wiring afforded by mask
programming, the positions and lengths of the horizontal wires may be customized
for the particular set of nets. The left edge algorithm [Hashimoto] shows how to do
the customizing using a number of tracks equal to the channel density. The channel
density is defined as the maximum number of nets passing through any cut across the
channel [Lorenzetti]. This figure assumes there are no vertical constraints
[Lorenzetti], since they do not occur in FPGAs where each signal enters or leaves the
channel on its own vertical segment.

In an FPGA, achieving the freedom of an unconstrained channel would require
switches at every cross point, as shown in Figure 3.3.1 (b). These switches between
adjacent cross points along a track allows the track to be subdivided into segments of
arbitrary length. Since the number of RC stages encountered by a net is proportional

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 117

Antifuse Programmed FPGAs 105

1 21 33244

lLo--t..1 -:::::.' __ LJ_~I LJ
(a) routing in unconstrained channel.

1 21 33244

t±t:t±t:i±ti
(b) routing in fully segmented channel.

1 2 1 3 3 2 4 4

(c) routing in non-segmented channel.

1 21 33244

! t t t t tit t t
(d) segmented for 1-segment routing.

(e) segmented for 2-segment routing.

Figure 3.3.1. Illustration of Antifuse Routing

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 118

106 FPGA Technology

to its length, the delay of long nets becomes unacceptable.

Another alternative would be to provide a number of full length continuous tracks
large enough to accommodate all nets, as shown in Figure 3.3.1 (c). This approach is
used in the switch arrays of many types of programmable logic arrays and certain
programmable logic devices (e.g. [Wong] [Marr]). The advantages of this model are
that only two RC stages are encountered on any net, and that the delays of the nets are
identical and predictable. However, even short nets incur the capacitance of a full
track length. Furthermore, the area required is excessive and grows quadratically with
the number of nets.

A segmented routing channel offers an intermediate approach. The tracks are divided
into segments of varying lengths (Figure 3.3.1 (d», allowing each net to be routed
using a single segment of the appropriate size. Greater routing flexibility is obtained
by allowing multiple adjacent segments in the same track to be joined end-to-end by
switches (Figure 3.3.1 (e». Enforcement by the software of simple limits on the
number of segments joined or their total length guarantees that the delay will not be
unduly increased by joining segments.

The problem of routing a segmented channel, or assigning a segment s to each unique
net, is solvable in linear time for single-segment routing, Single-segment routing is
illustrated by the model of Figure 3.3.1 (d). When a net is allowed to use multiple
segments, as illustrated in Figure 3.3.1 (e), the general routing problem becomes
more difficult (in particular it is NP-complete [EIGama12]). However, many important
special cases can be solved in polynomial time, and practical applications can be
routed in a few minutes on a personal computer using heuristic methods. Reference
[EIGamal2] gives a more thorough review of algorithms for segmented channel
routing.

How does one design a segmented channel? In a conventional masked device channel
the number of tracks, or channel width, must be chosen to accommodate most
applications. Statistical models have been developed to estimate the required channel
width (e.g. [EIGamal3]). In a segmented channel device, both the channel width and
the segment lengths and offsets must be chosen carefully to suit the statistics of
anticipated applications. Remember these applications are varied, and may have quite
different routing requirements. Analytical solutions to the problem are as yet
unknown, but experience indicates that even channels designed in an ad-hoc manner
can be quite efficient (with limited use of multiple-segment routing).

Surprisingly, a well-designed segmented channel does not require many more tracks
than would be needed in a conventional channel. It is an interesting finding, given the
considerable restrictions segmented routing imposes, but it is supported both
experimentally and analytically. A distribution giving the probability of occurrence of
a connection as a function of length and starting point was derived from placements
of 510 channels from 34 applications. Two segmentations were designed for a
channel with 32 tracks: one intended for routing using exactly one horizontal segment

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 119

Antifuse Programmed FPGAs 107

per net, the other for routing using one or two horizontal segments per net Sets of
nets with various densities were chosen randomly from the distribution, and an
attempt was made to route each set in both channels.

The results of this test may be seen in Figure 3.3.2 . In a conventional channel any

'0 30

.~ 20
:0
~ 10
e
a.

• conventional unconstrained routing

• 2-segment routing

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Density of Connections

Figure 3.3.2. Results of Routing of 520 channels from 34 applications

design containing routing channels with density equal to 32 or less can always be
routed. Allowing two-segment routing provides results only a little worse than the
unconstrained case. A high probability of routing is observed when the density is only
three or four below the number of tracks. (Further details of this study are given in
[Greene!]).

An asymptotic analysis [EIGamal2] has confirmed that the number of tracks required
in a segmented channel grows linearly with the expected channel density, just as with

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 120

108 FPGA Technology

conventional channels. This is true even for single-segment routing.

Routing Architecture of the Actel FPGAs

We now describe in detail how segmented routing is applied in the ACT FPGA
routing architecture. This section presents a general view of the Actel architecture and
is followed by sections describing ActI, Act2, and Act3 Figure 3.3.3 shows a

,-------------------------;------------------------: , , ,
: J: : , , , , , , , , , , , , L___ ____ _ _ ______ _ _ j_.~). ______ ____ ___ _!

-.-__ ~_~_D_~_D_~ __ -_~Dr~~-~HB-~":--~-~~~~~-~--i--~ Chmmel
, ,

-+- Module...d -I- : __ --- Module
: Output: ~ , , ,
: ... ________ • _____ .. ___ J) ... _______________ .:

;--- --- ---- ----- T -, -- --::- --- -----.--::) a..nnel , ,

L ____ ~~~~~_: ___ .1. ____________________ 1 ~~~ent
Output ~ %mmitted
Segments LVTs

Figure 3.3.3. Simplified View of an Actel Module and Routing Segments

simplified schematic view of a module and the adjacent wmng segments and
antifuses. Two segmented routing channels extend horizontally above and below the
module. The input segments each span only one channel in order to minimize their
capacitance and the total wiring area. Each input segment can be connected to any of
the uncommitted horizontal segments in its channel through an antifuse. Other
antifuses connect horizontal segments end- to-end to support multiple-segment

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 121

Antifuse Programmed FPGAs 109

routing. Each channel also contains one full length segment that is grounded and
another tied high so that any input can be programmed to logical 0 or I. The figure
shows six inputs per module, but the actual number varies according to the module
function; it is typically eight for a basic logic module.

Output segments span two channels above and two channels below the module.
Segments reaching the top or bottom channel may be slightly longer or shorter.
Additional uncommitted vertical segments of varying lengths are also provided. They
may also be joined end-to-end to form vertical segmented channels. (In the actual
layout of the device all vertical segments pass over the modules and the term channel
refers only to the region occupied by the horizontal segments.)

In Act2 and Act3 devices, a module output may also access the uncommitted vertical
segments directly through one antifuse, called an F antifuse, outside the channel.
Each module has access to the uncommitted segments on either of its sides allowing
two modules to share the same set of Long Vertical Tracks (LVT).

The routing shown in Figure 3.1.1 is typical of most nets. In order to minimize the
number of series RC stages, each channel's horizontal segments are driven directly by
the dedicated output segment. This style of global routing is classified as a Steiner
Tree with Trunk. [Preas].

Although the favorable routing of Figure 3.1.1 ,can be assured for speed critical nets,
some 5-10% of the other nets must be placed with a module input in some channel
beyond the reach of the dedicated output segment In this case, a suitable
uncommitted vertical segment is selected to provide an alternate trunk for the
channels not reached by the output. The vertical segment is driven directly from the
output through an F antifuse, as shown in Figure 3.3.4 . Since this antifuse may be
called upon to drive nearly the whole capacitive load of a widely dispersed net, the
delay is very sensitive to its resistance. By programming these antifuses with higher
than normal currents and providing them with additional strapping contacts their
resistance is reduced to about 100 ohms, compared to the 500 ohms of a typical
antifuse. The F antifuses thus require greater layout area but since there are few of
them the cost is negligible.

In the rare instance where an uncommitted vertical segment is needed, but none is
directly accessible to the module output, a segment from some other column must be
used. In this case the uncommitted segment is driven through one of the horizontal
channels spanning itself as well as the module output as shown in Figure 3.3.5 . The
route involves an extra RC stage, so it is reserved for nets whose speed is not critical.
Assignment of uncommitted segments in each horizontal and vertical channel to those
nets that need them constitutes the segmented channel routing problem. Algorithms
for solving these are discussed in [ElGamal2].

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 122

110 FPGA Technology

~ Horizontal Segment
~----~ I~I ------~

L..-_--+--+ ___ ---'1 1 ___ ---'
F Antifuse

'--_--+--+ ___ -..11 ... 1 ----..I

Figure 3.3.4. Routing Using Long Vertical Track (LVn

Actl Architecture

FPGA architectures can be characterized by the complexity or granularity of their
basic logic module. A simpler module has lower internal delay and, since modules
require less area, more of them can be provided on the chip. Furthermore, a fine
grained architecture tends to be more flexible. For example, a wide variety of
functions may be built with equal efficiency out of two-input NAND gates, but eight
input NAND gates are much better at some functions than others. With simple
modules there are also often more ways to implement a function allowing beneficial
trade-offs between area and delay to be made.

On the other hand, using a module that is too simple can overburden the routing
network. If a function that could be put into a few complex modules must instead be
distributed among many simple modules, more connections must be made through
the programmable routing network.

As a rule of thumb then, an FPGA should be as fine-grained as possible while
maintaining good routability and routing delay for the given routing technology. The
module should be chosen to implement a wide variety of functions efficiently, yet
have minimum layout area and delay.

The approach used to select the Actl modules was to employ macro usage statistics
from masked gate array applications to evaluate candidate modules. This approach is

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 123

Antifuse Programmed FPGAs

L...-___ II-I ___ --" L-+----+

Output~
Segment

Input Segment

~ Uncommitted
Vertical Segment

Figure 3.3.5. Routing Using LVTs in another Column

111

similar to that used to define the instruction set of a RISC microprocessor; choose a
module that is most efficient for the most commonly used macros.

Given the parameters of antifuse routing, the effort focused on modules similar in
complexity to a typical gate array macro. Statistics from designs targeted for
implementation in a masked gate array were considered valid designs targeted at a
candidate module. Only simple local optimizations (such as relocating inversions or
combining a macro with a subsequent D flip-flop) influenced the module selection.

The Act1 family uses one general-purpose logic module [EIGarnall], shown in Figure
3.3.6 . Various macro functions (e.g. gates, flip-flops) can be implemented by
applying input signals to the appropriate module input(s) and connecting other
module inputs to logic 0 or 1. The module can implement any combinatorial function
of two inputs, any function of three inputs (except the three-input NAND and
exclusivity functions), many functions of four inputs, and other functions of up to
eight inputs. Versions of AND gates and OR gates are implemented with all
combinations of inverted and non-inverted inputs. In all, 702 distinct combinatorial
macros are possible.

Any sequential macro can be configured from one or more modules using appropriate
feedback routings. Over a range of designs, each module implements approximately
3.22 gates of logic; regardless of the ratio of combinational to sequential logic in the
design.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 124

112 FPGA Technology

AO 0

Z

Al 1
0 S

AB Z Out

1 BO 0 S

Z

BI 1
S

SB

SO

Sl

Figure 3.3.6. Actl Logic Module

Each 10 pad has an adjacent bidirectional buffer which connects to the array through
an 10 module. These modules are located in the outer columns and rows of the array
next to the logic modules and interface to the routing channels in the same way as the
logic modules. Each 10 module has inputs for outgoing data and a three-state enable,
and an output for incoming data which is driven from the pad. The 10 module can be
programmed to provide input, output, three-state or bidirectional capability.

The Actl array is regular consisting of alternating rows of logic modules and routing
channels, as shown in Figure 3.1.1 . The perimeter of the array includes 10 modules.
These modules connect the internal logic module signals to the pads. Each 10 module
has two inputs, data and enable, and an output. The data and enable signals are sent to
the output buffer of the associated bonding pad, and the module's output comes from
the input buffer of the pad. Thus the 10 module can be configured to provide input,
output, tristate, or bidirectional capability.

Clock signals present unusual requirements: they have high fanout and are required to
have minimal delay and skew. Act! devices meet the clock requirements with a
dedicated clock network. Each network may be driven directly from an input pad for
high speed. The signal passes through a buffer tree, and appears on a dedicated full
length horizontal track in each channel. Thus the network reaches every logic and 10

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 125

Antifuse Programmed FPGAs 113

module in the array.

Actl Architecture

Statistical indications that most of the nets driving the data input of a flip-flop have no
other destinations motivated the selection of two specialized modules for the Act2
family. The Combinatorial (C-module) shown in Figure 3.3.7 is similar to the Act!

DOO

DOl z OUT
DIO

D11

Sl SO

Al BI AO BO

Figure 3.3.7. The Act2 Combinational Module (C-Module)

module. It was changed to better accommodate high fan-in combinational functions.
It can implement 16 of the 20 four- input gates in the library. whereas the Actl
module implements eight. and some five-input AND and OR gates. The module
modifications caused some loss in the ability to build sequential functions with C
modules. The module implements a total of 766 distinct combinational functions,
including 13% more four-input and 12% more five-input macros than the Actl
module.

The Sequential module (S-module) consists of a front end equivalent to the C-Module
followed by a sequential block built around two latches. Figure 3.3.8 gives a
functional block diagram. The sequential block can be used as a rising- or falling
edge D flip-flop, or a transparent high or -low latch, by tying the Cl and C2 inputs to
a clock signal, logical zero or logical one in various combinations. For example, tying
Cl to 0 and clocking C2 implements a rising-edge D flip-flop. The block can also be
set permanently transparent by tying Cl to 1 and C2 to 0, making the S-module

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 126

114 FPGA Technology

1 1
DOO

OUT
DOl

z o o
s s

Figure 3.3.8. The Act2 Sequential Module (S-Module)

equivalent to a simple C-module with a small additional delay.

Figure 3.3.9 shows the functions that can be implemented using the S-module. Note
that the latch with clear, a relatively rare macro, consumes part of the combinational
logic to implement the clear; leaving a four-input function available in the C-Module.
Toggle or enabled flip-flops can be made by using the logic in front of the D flip-flop.
Other less commonly used flip-flops, such as JK or set/reset are not supported by the
sequential block but may be configured from one or more C-Modules using external
feedback connections as with the Act! module.

A device with an equal mixture of C- and S-Modules provides a sufficient number of
flip-flops for most designs with a margin to allow flexibility in placement Over a
range of designs, the Act2 modules provide about 1.4 to 2.0 times the logic capacity
of Actl. As may be expected, the improvement is greatest for designs with a large
proportion of flip-flops and wide gates.

Figure 3.3.10 shows a typical critical path in a state machine implemented with four
C-modules and one S-module. The ability to fit a five-input gate in one C-module
saves one routed net compared to the Actl module implementation. The use of the S
module allows both the last combinatorial stage and the flip-flop to be combined into

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 127

Antifuse Programmed FPGAs

a single module.

OUT

D-fIip-f1op with clear

OUT

Latch with clear

00
01

OUT

Transparent (same as C module)

Figure 3.3.9. Act2 Sequential Module Configurations

115

OUT

OUT

The choice of module also greatly influences the routability of designs. Because each
input is accessible from only one of the two channels adjacent to a module, one might
think that routability is worse relative to a conventional gate array cell, where a signal
may enter from either channel. The impact of single channel accessibility, however, is
not great because there is nearly always more than one way to imp(ement a macro.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 128

116 FPGA Technology

,.""""""""'"","",'"'"'"" .. ,, ... ,.,,, .. ,,,,,
! ~

~: : V-+---', :
~. ' =VI---------' 0",,,,,,,,,,, •. ,,.,,,,,,,,,.,,,,.,,,,,,. "".,,'''/

elK

Figure 3.3.10. Act2 High Fan In Example

For an N-input macro there may be as many as 2N different assignments of the input
signals to the two channels. This corresponds to full double-entry symmetry. Even if
not all of the 2N assignments are possible, a sophisticated router can take advantage of
implementation flexibility.

For the C-module, a given signal can be routed from either side of the module an
average of 70 percent of the time. This number, weighted by macro usage, is quite
sufficient for good routability. This figure is affected by both the module function and
the assignment of a side to each module input. It is another important criterion in
selecting a module function.

The module architecture of Act2 consists of alternating pairs of C-modules and S
modules. This provides the capability of implementing many macros that use pairs of
combinational modules.

The Act2 family minimizes clock-to-output delay with a dedicated transparent-high
latch in each pad, which can also be used as the slave stage of a flip-flop. The latch is
controlled by a gate input to the 10 module. If flow-through operation is desired, the
gate is simply tied high to make the latch transparent. A dedicated transparent-low
latch is provided on each input path. The polarities of the input and output latches are

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 129

Antifuse Programmed FPGAs 117

chosen so they can be combined with each other, or with other internal latches or flip
flops, to form a chain of rising-edge flip-flops.

Clock signals present unusual requirements: they have high fanout and are required to
have minimal delay and skew. Act2 devices meet the clock requirements with two
dedicated clock networks. Act2 also provides the option to drive the clock network
from user-defined internal logic as well as an input pad.

To minimize the capacitive load on the clock network on Act2 devices, antifuses are
only provided to connect the clock track to certain module inputs, specifically the
clock inputs of the S and 10 modules and a subset of the combinational inputs on all
the logic modules. Skew may be further reduced by having the automatic placement
program attempt to balance the loading on each branch of the distribution tree.

Like other inputs, the clock inputs to the S-module, may be connected to the normal
horizontal segments. This accommodates designs with several local asynchronous
clocks. As with any technology, using asynchronous clocks with ACT FPGAs can
cause race conditions and the designer must be alert to avoid them.

Act3 Architecture

The Act3 architecture is actually a twist on Act2, with key features added that
optimizes the part for speed and flexibility. The Act3 logic module is very similar to
Act2, in fact only two changes were made to the logic module, both targeted to
increase flexibility and sequential system speed. The first change was to add a clear
input to the sequential module, thus making the combinational portion of the
sequential module completely independent from the sequential logic. There is a direct
area cost to adding an input, but this addition provides a more uniform module for
synthesis, and therefore increases the Actel flexibility as shown in Figure 3.3.11 . A
user of the Actel array benefits greatly by being able to map more logic functions into
the combinational portion of an S-Module. This aspect of the S-Module is called
combinable, and is significantly better in Act3 over Act2. Figure 3.3.12 is a diagram
of the S-Module, a C-Module corresponds to the Combinational block.

The other significant change in the Logic Module Architecture is the addition of a fast
clock. This clock is not routed, and is significantly faster than its routed counterparts.
The clock select, in Figure 3.3.12 , allows the selection between the high speed clock
network, and the more flexible routed clocks.

Figure 3.3.11 illustrates the additional combinable logic functions available in the
Act3 sequential logic module, as compared to Act2.

The other significant change in Act3 is the 10 architecture. The Act3 is 10 module
rich, with flip-flops available on both the input and output paths. Figure 3.3.13
shows the 10 Module. The 10 module incorporates a separate fast 10 clock.
SynChronous enable signal for the flip-flops are also available as well as an output
register feedback signal. This 10 architecture is targeted for speed, and supports a

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 130

118 FPGA Tecbnology

Logic Functions

350

300

250

200

150

100

50

1 2 3 4 5 6 7 8
Number of Variables

Figure 3.3.11. S-Module Combinatorial Logic Functions

significantly faster cIock-to-Q, currently measured at 10 nanoseconds.

Programming and Testing

One of the great puzzles in the development of antifuse FPGAs was to find an
efficient way to uniquely address each of the two-terminal programming devices.
Diodes in series with each antifuse would allow unique addressing, but block signal
flow. Early schemes required the use of an individual control line for each routing
track, doubling the number of lines required in each direction [Graham]. Methods for
programming and testing antifuse FPGAs that use only a few control lines for an
entire channel were developed for ACT devices [ElGamal] [Ahrens]. Although a full
description is beyond the scope of this text, the following explanation conveys the
basic concepts.

Consider an array of antifuses at the intersection of some horizontal and vertical
segments, as shown in Figure 3.3.14 . An antifuse is programmed by applying a
programming voltage Vpp across it. This is done by precharging all segments to an
intermediate voltage of about Vpp/2. Then a selected vertical segment is grounded
and a selected horizontal segment is driven to Vpp. Other segments are left floating at
Vpp/2. Only the single antifuse at the intersection of the selected segments sees the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 131

Antifuse Programmed FPGAs

Combinational Block Sequential Block

I---+-~D Q

Cl C2HCLKEn

Routed CIOC~ ~ Fast Clock

Figure 3.3.12. The Act3 Sequential Module

Output -+'-~D QI-r'----I

Output --+---fE E
Reg
Enable

Input

Input
Reg
Enable

E

Output Buffer
Enable

Figure 3.3.13. Act3 10 Module

119

10 Pin

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 132

120 FPGA Technology

full Vpp.

Gnd Vpp/2

----11~---4!~- Vpp/2

--=ilt----.&--Vpp
Antifuse ,/f
Programmed

Figure 3.3.14. Programming an Antifuse

Only the unique antifuse with the full Vpp potential across it is programmed. Figure
3.3.15 illustrates the series pass transistor addressing method. The structure is similar
to that of Figure 3.3.3 with the modules removed for clarity. Each pair of adjacent
segments in the same horizontal track is connected by a pass transistor. In tracks
containing uncommitted segments, there is an antifuse present between the two
segments, and so the transistor is connected in parallel with the antifuse.These
transistors are used only for programming and testing and are shut off during normal
operation of the programmed part. The transistors in each row of modules are gated
by a control line, marked as Row Control Line in the figure, and the transistors in each
column of modules are gated by a control line, also marked in the figure. These lines
are driven, in turn, by programming logic present at the array periphery. Note that
only one control line per row or column is required, regardless of the number of
tracks.

Figure 3.3.16 illustrate the circuitry used to program an antifuse at the intersection of
a horizontal and vertical segment. The vertical track containing the antifuse is driven
from one end to ground by the programming logic present at the array periphery. The
pass transistors in all rows between the driving periphery and the antifuse are turned
on. The horizontal track is driven to Vpp as shown in the figure. A fuse between two
adjacent segments in the same track is programmed in a similar manner. All columns
of pass transistors except the one bypassing the antifuse are turned on, and the track is
grounded at one end and driven to Vpp at the opposite end.

Figure 3.3.17 illustrates direct addressing circuitry, which is some cases offers a
favorable alternative to series pass transistors. Column voltage supply lines run
vertically through the array. Each segment along a track may be connected through its
own addressing transistor to a supply line. These transistors are gated by a horizontal

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 133

Antifuse Programmed FPGAs 121

Row
Control
Line ~ r ,r- ,r- ... ,r- 1 r ,r- ,r- .r- ,r I

n..: rI. I\, IL 'L 'L IL IL

g
v

£~

£""

/
Column Control Line

Figure 3.3.15. Antifuse NetWork

select line. Each select line serves all the segments in a group of one or more adjacent
tracks in the same channel. Activating one vertical supply line and one horizontal
select line uniquely addresses a particular horizontal segment. The number of
segments in a channel that can be addressed is limited by the number of supply lines
times the number of group select lines. It follows from this that the ratio of tracks to
select lines is at most the average segment length. An antifuse between two adjacent
segments may be programmed by activating the control line for both segments and
two supply lines, one for each segment. Since only one transistor lies between a
segment and the supply, the programming current is independent of the position of the
segment and the segmentation of its track. Thus the direct address method is most
efficient for irregular channels with long segments.

Actl devices used only the pass transistor method. Act2 and Act3 devices use the
pass transistor method for the vertical tracks, which contain many short input
segments, and the direct address method for the horizontal tracks.

In either scheme, some care is required to assure that a unique anti fuse is addressed
once other antifuses have already been programmed. Figure 3.3.18 provides an

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 134

122 FPGA Technology

Gnd

Vpp

Figure 3.3.16. Antifuse Progranuning Example

------~~------~~_c~--_4~-----

.....-:;Group 1
tracks

Group 1
select

"--------+-~------~~_c~----_+_----- _Group 2
______ ~~------~__+_------......j.....----- ,/ tracks

Figure 3.3 .17 .Direct Addressing Of Fuses

Group 2
select

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 135

Antifuse Programmed FPGAs 123

Gnd

onl onl

on I

Vpp

off I

Figure 3.3.18. Programming Sneak Path

example of how improper addressing allows programming current to divert along a
. sneak path. The previously programmed antifuses F3 and F 4' cause the programming
of antifuse Fl instead of the intended antifuse F2. Unlike PROMs, FPGA
programming does not involve an arbitrary pattern of antifuses. For example, it is not
necessary to program a pattern connecting two outputs together since this does not
form a useful net. For the relevant patterns, it may be shown that there is always an
order in which the antifuses may be programmed with no chance of a sneak path
occurring.

Special care is also required to protect the module circuitry from the voltages present
on the segments during programming. Transistors that are in contact with the routing
segments must be designed to withstand to the programming voltage.

Device testing takes place in three phases: before, during and after programming. Pre
programming tests check for shorted or open segments, shorted or even relatively low
resistance antifuses, and proper module and 10 operation. Continuity of the segments
is easily tested by turning on all pass transistors and using the peripheral circuits to
drive the segment at one end of a track and read the segment at the other end. Testing
for the absence of shorts between segments in adjacent tracks is done similarly by
applying a pattern of alternating zeros and ones. Weak antifuses may be screened out
by applying the proper stress voltage (higher than normal operating voltage but lower

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 136

124 FPGA Technology

than Vpp) across groups of antifuses in parallel using the programming circuits.
Breakdown of an antifuse is detected by passage of excessive current through it.

To verify the functionality of the modules we need to apply test vectors to their inputs
and read their outputs. A vector may be applied simultaneously to an entire row of
modules by turning on all vertical pass transistors except those in the row being
tested. Data are applied to the inputs in the channel above the row from the top
periphery and to the inputs in the channel below the row from the bottom. A simple
row-select and column-sense scheme conveys the output of each module in turn to an
output pad for monitoring.

Proper closure of the programmed antifuses is verified during programming by
sensing the passage of programming current. A complete test for unintended
connections between any two segments can be done after programming using the
programming circuitry to precharge, drive, and read the segments. This is true despite
the fact that it is no longer possible to uniquely address each individual antifuse once
programming commences. The reason is that detection of shorts, but not the location,
may be accomplished simultaneously for many antifuses in parallel. Taken together,
the tests described insure correct and complete functioning of the programmed part.

Capacity

Determining the capacity of FPGAs is a complex task with many considerations.
ACT device capacities are specified in terms of masked device gates. Masked gate
arrays are specified to contain a number of two-input NAND gates. Utilization of the
gates is a measure of the percentage of the total number of gates on the device that a
typical design may use before running out of routing resources.

In an FPGA there are two utilization questions: how many of the modules can be
placed and routed, and how many gates are obtained per module. ACT devices have a
small logic module with the low granularity of a gate array as well as sufficient
routing resources to achieve high module utilization. The module utilization of ACT
devices is guaranteed to be 85% or greater with many designs achieving utilizations
over 95%.

Both Act! and Act2 devices have been tested for capacity using four well-known
benchmarks. The results appear in Table 5 . Customer designs have also been used to
analyze Act! module gate utilizations. On average, Act! modules implement 3.22
gates per module for all types of logic. The mixture of gates to flip-flops in a design
does not affect the gate utilization of Actl devices.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 137

Antifuse Programmed FPGAs 125

Table 5: Benchmark Capacity Results

Device Benchmark Gates Instances Total Gates

AlO20 Data Path 157 12 1884

Tuner/ 248 6 1488
Counter

State 153 9 1377
Machine

Arithmetic 295 6 1770

Average 1630

A1280 Data Path 157 54 8478

Timer/ 248 26 6448
Counter

State 153 37 5661
Machine

Arithmetic 295 18 53lO

Average 6474

Table 6 summarizes results for a variety of designs in the Al280 and AI240 FPGAs.
The designs were placed and routed automatically with no manual intervention. For
this reason, the table includes the number of routed pins per logic module as a
measure of design complexity. Nearly all designs with module utilization under 85%,
most designs with utilization under 95%, and many with utilization up to 100%, route
completely.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 138

126 FPGA Technology

Table 6: Capacity Benchmarks

1280FPGA
Logic Pins Per

1232 Logic Modules
Module Logic

Utilization Module

Design done in an 8K Tl Gate Array 99.5% 4.28

32 Bit Data Path, 16X16 Mult., State 99.4 4.30
Machine

2901 ALU (X4) 98.1 4.57

DMA Controller (X3) 97.1 3.99

Asynchronous Serial ECC 97.0 4.78

Pipelined Fixed Point Mult, Div, Sqrt 94.5 3.37

State Machine, Multi Add, Datapath, Counter 92.7 4.34

Color CRT Controller (X3) 87.3 3.83

32 Bit Datapath with Sum, Compare (X3) 86.8 5.25

40 Bit FLoating Point AdderlSubtractor 86.7 4.33

1240FPGA
Logic Pins Per

649 Logic Modules
Module Logic

Utilization Module

16 Bit Datapath, 16X16 Mult., State 98.1 4.86
Machine

2901 (X2) 93.2 4.68

DRAM, DMA and SCSI Controllers, UART 92.6 4.73

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 139

Antifuse Programmed FPGAs 127

Performance

Like capacity, perfonnance measurements of FPGAs is problematical. Specifications
such as maximum clock frequency or module propagation delay are insufficient
indicators for estimating the perfonnance of a given design. Like masked devices, the
propagation delay of FPGAs is routing and fanout dependent. The ACT databook
gives numbers for propagation delay based on device characterization for various
fanouts.

Figure 3.3.19 shows the cumulative distribution for the routing delay to each input
pin for various ranges of net fanout. The histogram includes all nets in the design.
Pins on nets identified by the user as speed critical would generally be among the
fastest 30%, and nearly always among the fastest 90%. The routing delay
distributions are reasonably tight, especially for low fanouts and critical nets.

Table 7 shows results from tests on some typical circuits. The table shows the
measured performance for the Act2 1240-2 and the Act3 1425, as of June 1993.

Table 7: Performance Benchmarks

Speed
Example (MHz)

Act21240-2

16 bit counter 58

16 bit accumulator 36

state machine 39

Act3 1425

16 bit counter 68

16 bit accumulator 40

state machine 46

The Act3 architecture is specifically targeted for speed. The measured on-chip
perfonnance is 125 MHz with 10 ns clock-to-out. Worst case perfonnance
benchmarks show 40 MHz 24-bit accumulators, 75 MHz 24-bit loadable counters,
125 MHz 24-bit pre-scaled loadable counters, 125 MHz shift registers, and 80 Mhz
chip-to-chip speeds.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 140

128

10

10

10

tiO

to

'0

FPGA Technology

.210_%.'_ -,

I ~~=.;;;a.a -
".'2,.;'-- I -,-------
~ /

..... //\/ /"
ill J l I j

/'
/

if,! j /
If i I

i if j I
1/ i

iT, ! /
III! / !

IV / ,/ ~_~~-----",--...'f)../'. ,
'0 .5 25

Figure 3.3.19. Cumulative Percentage ofInput Pins Versus Delay

I '

. ,.,.,..-:.

3.4 Software

Figure 3.4.1 diagrams the process of embedding a design in an Actel FPGA. This
process begins with capture of the design in a computer readable format. Currently
most users enter their designs as schematics built of macros from a library. Any of
several standard schematic capture programs can be used. Since the Act! and C
modules have the same complexity as a typical gate array library macro, the problem
of selecting which groups of macros should share one module is avoided; each macro
is typically assigned its own module. The larger capabilities of the S-module are
bandIed by software that automatically combines a flip-flop and a preceding
combinational macro into one S-module where possible. This process is transparent
to the user and does not require modifying the schematic.

Another increaSingly popular alternative is to enter designs in terms of Boolean
equations, state machine descriptions, or functional (rather than structural)
schematics. Different portions of a design can be described in different ways,
compiled separately and the results merged according to a top-level hierarchical

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 141

Antifuse Programmed FPGAs

-...-....

Figure 3.4.1. FPGA Design Flow

schematic. Various industry standard fonnats are supported.

129

High-level synthesis tools such as MIS-II [Brayton] or Synopsys [Rudell] can be used
with Actel FPGAs by providing a suitable library. These tools can either encompass
only the standard schematic library macros, or include the larger set of all 700
functions embeddable in the typical Actel module. Recent research has investigated
other more efficient ways to allow synthesis tools access to the full flexibility of the
module. A method for rapid searching of libraries using Boolean matching is given in
[Mailhot]. Other approaches take advantage of the multiplexor structure of the
module, using either binary decision diagrams [Murgai] or if-then-else DAGs
[Karplus].

Several guidelines are suggested for reliable logic design with FPGAs. The general
goal is to make proper circuit function independent of shifts in timing from one part to
the next.

• Use synchronous logic design where possible.

• Avoid gated clocks, using enabled flip-flops instead.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 142

130 FPGA Technology

• Avoid race conditions.

• Limit fanout by buffering.

These guidelines are the same as those for users of mask programmed gate arrays
[LSI]. In addition, designs for Actel FPGAs must use multiplexers rather than tristate
drivers since internal tristate is not supported.

Once the design has been entered it may be simulated either functionally or using pre
layout delay estimates before entering the ALS system. ALS provides for the
selection of a device, package before the netlist is checked by a validation program
for problems such as un driven nets, outputs shorted together, excessive fanout, etc.

A good pin assignment is key since it can impact the design's use of routing
resources. Pin assignment may be done manually, or by the software, which bases its
assignments on an analysis of the design.

The next step is to map the netlist into the Actel architecture. The placement problem,
or selecting a module for each macro, is similar to that of a conventional gate array.
Since macro placement effects all aspects of the design, including its speed and the
number of gates used, there are a number of different placement options available.
Automatic placement used algorithms similar to gate array programs, with a few
additional considerations such as fixed power and programming pins. Incremental
placement, as shown in Figure 3.4.2 , takes a netlist that has been modified slightly
and updates the current placement slightly. Incremental placement is useful because it
maintains similar net delays for subsequent placement runs.

Since the key is ensuring that critical nets meet speed requirements, another desirable
alternative is Timing Driven Placement. Such a program performs placement based
on timing constraints on speed critical paths. Current research suggests that definite
improvements in routing delays can be made by applying these techniques.

Routing, described at length in "Principles of Programmable Routing" in section 3.3,
is the next step. Routing congestion within each horizontal or vertical channel must
be limited. Whenever possible, the dedicated output segments should be used in
preference to the uncommitted vertical segments, especially for nets identified by the
user as speed critical. Routing of the segmented channels is done as previously
described. On Act2 devices, macros must be placed in modules of the appropriate
type (C or S). Time for complete placement and routing of an 8000-gate AI280
FPGA is about 30-40 minutes on a 486.

Once placement and routing are completed, the propagation delay to each input pin is
calculated based on device characterization data. The calculation accounts for the
module internal delay as well as the delay through each RC stage in the routed net.
The estimates can approach the accuracy of a SPICE circuit simulation. The delays
may be back- annotated to a simulator, or checked with a static timing analyzer. In
either case, timing data may cause an iteration in the design. At some point the design

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 143

Antifuse Programmed FPGAs 131

Inillal Design Enhanced Design

Logic Block A Logic Block A

ALS (Incremenlal paR OFF) .v ALS l .. ~-- I

U --------- ~
Place and Route Ale New Place and Route Ale

Figure 3.4.2. Incremental Placement Design Flow

meets whatever criteria the user is targeting, and it is time to program the FPGA part.

A list of antifuses to be programmed is generated and downloaded to a programming
station which also holds the FPGA. Programming time is about 5-10 minutes,
depending on the size of the FPGA and the design. The Actel Activator2 station
allows up to four chips to be programmed simultaneously. The standard tests applied
before, during and after programming, described in section 3.3 assure correct
implementation of the programmed part. No design-specific test vectors are required
from the user.

The programming system can access the test circuitry inside the programmed FPGA
allowing it to sense the value of any pair of selected module outputs and present them
on an external pin in real time. This unique probe feature, called the debugger, can be
used as a debugging tool for the device while it is operating at speed in the system.
The probe provides a useful back-up when simulation is difficult or impossible, such
as for highly asynchronous designs or when the design must accommodate a poorly
documented interface. Debugger software is also provided to enable the programmer
to be used as a functional tester, presenting stimuli at the FPGA's pins and reading
data back via the probe and the pins. Figure 3.4.3 illustrates the Actel design system.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 144

132

Schematlca

CD:D

~
c::r::t:IJ

Auto Pin Place I
Aulgnment Rout.

Synthes ..

FPGA Tecbnology

OO",A+8+C

Q'.ASTf"AST
Equation.

Delay a.ck Annotation

::::::x:: AZJ
TIming Programming Verification

Analy.l. I Debug

Figure 3.4.3. The Actel Design System.

3.5 The Future

How will the speed, density and cost of antifuse FPGAs evolve? Antifuse FPGAs will
directly benefit from anticipated improvements in the underlying CMOS tecbnology.
In addition, it is likely that further improvements will be made in the antifuse itself.
Changes that reduce the resistance, capacitance, or programming voltage would be
beneficial and could significantly benefit architecture possibilities. On the architecture
front, better logic modules and improved methods of designing segmented routing
channels may be developed.

Antifuse technology provide the opportunity of developing sea of module (SOM)
architectures, unlike other FPGA technologies. Just as gate array architectures placed
the routing channels over the modules, the antifuse based channeled architecture has
the same potential. A sea of module architecture can reduce the die area by up to half
of the array size. Current process technologies have the promise of being able to place
the antifuse on top of the logic modules.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 145

Antifuse Programmed FPGAs 133

3.6 Design Applications

Designing with ACTl and ACT2 FPGAs

The advantages of using FPGAs over discreet devices are well known. In order to
maximize the benefits of high integration and low power, it is important for the
designer to understand how applications are mapped into the architecture, and trade
offs in applications. It is up to the designer to understand how to select components
from the library so as to take best advantage of the logic modules. While it is not
required to understand the architecture of Actel FPGAs to implement designs with
them, there are architectural considerations that would aid designers if they kept them
in mind when entering a design. Some considerations apply to all Actel devices,
others are architecture specific. The differences between ActI, Act2 and Act3 devices
also suggest some differences in the design considerations for using each of the
families of devices. The applications in this section use Act! and Act2. The Act3
applications are similar to Act2 only faster.

In order to take best advantage of the logic integration capability of an FPGA, designs
that target such devices should implement functions using the fewest number of logic
modules possible. The issue of capacity is closely related to that of efficiency. It also
relates to performance. Sometimes the fastest design is also the smallest. In other
cases using parallel logic increases the module count, but improves performances by
reducing the number of logic levels.

An efficient implementation is one that uses the fewest number of logic modules to
implement as many equivalent gates as possible. An inverter would be a very
inefficient use of an Actel module while a single-bubbled input AND-EXOR
(equivalent to 4.5 two-input NAND gates) would be very efficient.

Inverters or other library cells that are inefficient should be avoided. In most cases
bubbled inputs on macros are available to implement inversions at no cost in
modules. Two-level cells (e.g. AND-OR) are advantageous from both a capacity and
performance perspective. Such cells compress logic to reduce delays and increase the
number of gates per module.

Performance

The performance of logic is variable, so it is important to optimize designs. There are
four criteria that influence performance of logic in FPGA designs. They are listed
below in descending order of importance:

• Levels of Logic The fewer number of combinatorial logic levels between flip
flops the faster the logic.

• Fan-out Propagation delays in FPGAs are sensitive to fan-out. Limiting fan-out
on individual nets improves performance.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 146

134 FPGA Technology

• Fan-in Measures the number of nets connected to a logic module's inputs. Library
functions with heavy fan-in efficiently utilize the logic of the module and aren't a
problem when used sparingly. Too many high fan-in macros, however, can con
gest routing and reduce performance.

• Number of modules Fewer logic modules allow them to be placed closer to each
other. Shorter distances between modules speeds the connection paths.

Chip Level Design Considerations

While each of the above considerations is important in itself, it must be remembered
that they are interrelated and an improvement in one may cause a degradation in
another. For example, limiting the number of logic levels tends to increase fan-in. If
the design has a significant number of high fan-in macros, use of additional high fan
in macros in a counter may cause routing congestion. A balance must be found among
them so than none becomes a drag on performance. The optimal solution to a design
may only be found after some iterations that adjust for such things as fan-out and
criticality. The ALS tools such as the Validator and automatic Place and Route can
rapidly provide answers to questions about design capacity and routability.

Actl

The multiplexor-based logic module is highly efficient in multiplexor
implementations allowing versions of both 2: 1 and 4: 1 to be implemented in one
module. The Actl library contains all bubbled input permutations of AND, OR,
NAND, and NOR gates. All two-input and virtually all three-input gates are
configured from a single module.

Eight of the twenty four-input gates offered require one module while the rest use two
modules. Using the single module gates saves module resources and may be done by
matching bubbled driver outputs with bubbled gate inputs as shown in Figure 3.6.1 .
When a two-module gate is required, the delay penalty is not as great as two levels of
gating because the two modules of the macro must be placed adjacent to one another.

Many highly efficient multi-gate macros are available in the Actl library. They
include AND-OR, OR-AND, and AND-EXOR functions. Designers should become
familiar with the library so they can make the best use logic resources on the device.

A single Act! module can be used as a latch, while flip-flops require two modules.
Latches should be used whenever the design allows it. When flip-flops are required
you should use those that the highest number of gates for the modules. There are
several enabled and multiplexed flip-flops available in the library.

A flip-flop enable can be used in place of an AND gate driving the data input. The
two-input multiplexor on a flip-flop can be used as a multiplexor or it may be used as
a gate by tying one of the multiplexor inputs to a rail. The possible configurations are
shown in Figure 3.6.2.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 147

Antifuse Programmed FPGAs 135

~)-~ Net4

Standard Logic

ACT Array Logic

y Net 1 A _r---.
B
c

Figure 3.6.1. Reducing Logic Complexity

Act2

Before proceeding to a detailed description of design considerations it would be
useful to review some fundamentals of the Act2 architecture. The Act2 architecture
features two types of modules. Combinatorial modules (C-modules) are used to
implement any combinatorial function in the Act2 library. Sequential modules (S
modules) can be used for either sequential functions (e.g. flip-flops) or combinatorial
functions or both. When the S-module is used to implement both a sequential and a
combinatorial function (e.g. a gate followed by a flip-flop) it is being used in the most
efficient way. The ALS software will automatically combine a flip-flop and a
preceding combinational macro into one S module where possible and perform other
simple local optimizations such as eliminating unused modules in soft macros.
Whenever a flip-flop and the combinatorial function driving it are combinable, and
the net between them drives no other macros, then both will be combined into an S
module.

The module types exist in roughly equal numbers on Act2 devices and the place and
route software will automatically select the appropriate module for each library
component in the schematic.

The Act2 library is compatible with the Act! library. Because the Act2 C-module is
more powerful than Act! modules it can implement more functions in a single

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 148

136 FPGA Technology

RIQ

DFM
5

Equivalent IChematlc Of • DFM macro GNDR A I

• DFM
B 5

BR GND a 0

• DFM
A 5

AR vee I 0

• DFM
B 5

=R B a

• DFM
A 5

Figure 3.6.2. Compacting Logic

module. All the three-input gates and all but four of the four-input gates are single
module macros. There are also four five-input gates that require only one module.

Because about half of the modules on Act2 devices contain dedicated flip-flops, the
function is inexpensive in terms of resource requirements compared to Act!. The
abundance of flip-flops coupled with their high performance means that they are more
attractive as a sequential element than latches.

Flip-flops may be implemented using an S-module, an S-module and a C-module, or

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 149

Antifuse Programmed FPGAs 137

(as in Actl) two C-modules depending on functionality. The ALS documentation
describes how each function is done and whether it is combinable.

The Act2 device has a built-in latch on each 10 pad. The latches can be used as
storage element for inputs, outputs, or bidirectional lOs. An 10 latch may be used
with an internal latch to make an 10 flip-flop.

Designing with ACT FPGAs: A TTL Perspective

Actel FPGAs offer many advantages over traditional technologies such as TIL. The
advantages include greater reliability and reduced board space and power from the
ability of FPGAs to integrate large amounts of logic into one device. For example a
single AI280 FPGA holds the equivalent of 165 MSI TIL devices (assuming 40
gateslMSI device). That means not only a smaller PCB, but a simpler one since most
of the designs connections are made inside the FPGA by the 100% automatic place
and route software.

Designers who are used to using TIL components may see some of the advantages of
using Actel FPGAs in their designs and not realize how easy it is to begin using them.
It's not necessary to know anything about the architecture of the FPGA. In fact, the
schematic entry and simulation process is the same as it was with TIL. The
placement and routing are done by software tools that are analogous to PCB software.

Actel provides a library with the system for popular schematic design tools. The
library contains both hard macros and soft macros. Hard macros are similar to SSI
components. They form the basic functional building blocks such as gates and flip
flops. Many Actel hard macros are identical in function to TIL parts though they
have different names. The Actel databook contains a cross reference guide showing
the names of hard macro components that match functionally to TIL.

Soft macros are more complex functions that are built from some number of hard
macros. They include counters, decoders, and adders of various sizes. Some of the
soft macros in the library have identical functions to MSI TIL parts. These may be
identified by their name beginning with TA instead of 74. The rest of the name
matches that of the TIL name. Other soft macros offer generic logic functions.

All soft macros are easily copied and modified, and there is no limit to the number of
custom soft macros you may add to the library. Should you need a TIL function for
which there is no near equivalent in the library it is easy to build from scratch. Simply
copy the schematic as shown in the TIL databook using components such as gates
and flip-flops from the Actel hard macro library.

As you gain familiarity with the Actel hard macros you will find instances where you
can do a more efficient design than that found in the TIL databook. For example, if
the book shows an AND gate driving an OR gate you may find a single hard macro
containing both the AND and OR functions. Using such multifunction macros is very
efficient because you get more and faster logic from the macro. Compare the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 150

138 FPGA Technology

74AS161 counter schematic from a TIL databook with the TA161 from the Actel
library in Figure 3.6.3 . The Actl version of the function uses only 18 modules, or
3.3% of an A1020.

:J ~ 1 ao r
.

:I--J>!- c~))", y

3 I I I
CLK
CLR

"- 0' ~Y . 1

GJ B
Y

~
CLk

... a. ~ c 1
B ;::. .. B - Y

E=fJ
C >- CLK

CLk

'-- '~o~ ~
0 1

B -"

5J cr" Y

f-..-E.f LK
CLR

A
B ao

a.
c...t-· Y ~ .. L...E.f

Figure 3.6.3. TA161 from the Actel Library

Many TIL parts have three-state outputs allowing them to be connected to a common
bus. Three-state functions don't work well with ASICs or FPGAs because they tend
to be slow and inefficient.

You don't have to give up using busses in your designs. Simply implement them
using multiplexors as shown in Figure 3.6.4 . Multiplexors are very efficient on Actel
parts. For example, you can create an eight-bit bus with four possible drivers using
less than 3% of an AI01O.

If you use a soft macro, but don't need all the outputs, you don't need to modify the
macro. The Actel software contains a program called the gobbler which will

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 151

Antifuse Programmed FPGAs

A[O]

B[O]

Discrete Technology Implementation

A [0]

B[O]

C[O]

D[O]

Actel FPGA Implementation

C[O]

D[O]

Figure 3.6.4. Least Significant Bit of a Bus with Four Possible Drivers

139

automatically eliminate any unused modules before the design is placed and routed.

If you use a soft macro or hard macro that has inputs you don't need the situation is
different. The software won't allow inputs to be left unconnected, so some designers
simply tie unused inputs to VCC or GND. That is permitted, but a better solution
would be to select a hard macro that only has inputs you need or modify the soft
macro to eliminate the unused function.

For example, the TA161 counter has a load function and four data inputs. Rather than
tieing off those pins, a better solution would be to make a copy of the counter and
modify it as shown in Figure 3.6.5 That will allow the wiring resources on the chip to
be used for things other than power and ground connections.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 152

140

A

B

C

o

TA161

RCO

OA

OB

QC

QO

-0 CLA

- ENT

- ENP

- ~ClK

FPGA Technology

NEW161

RCO t---

OA t---

OB t---

QC ---
QO -

Figure 3.6.5. Old and New Versions of the TA161 Counter

Migrating PLD Designs to FPGAs

Designers who have been using discreet technology want a seamless method to
convert old designs to Field Programmable Gate Arrays. They also want to have a
way to enter new designs using tools and techniques they are familiar with. Tools are
available that allow designers to take advantage of the logic integration capabilities of
FPGAs (with the concomitant benefits of low power and high reliability) while
retaining familiar design methods. The tools allow for migrations of PLD designs to
be done rapidly using PLD logic description files and without drawing a schematic
rendition of the design.

While the PLD migration tools can insure functional compatibility with the PLD
version of the logic, designers rightly wonder about such issues as performance,
efficient use of FPGA resources, and integration of the PLD logic with other functions
now on the FPGA.

We'll explore some of the issues and provide a design flow for migrating PLD designs
to FPGAs using the Actel synthesis tool AC1MAP which accepts a PALASM file as
input and produces a netlist of Actel library components. This particular synthesis
example is used for illustration only, Actel supports many different synthesis tools,
and the results of each will vary, but the basic approach to synthesis is similar.

Unlike PLDs, the performance of a function implemented in an FPGA can vary.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 153

Antifuse Programmed FPGAs 141

Variations come from differences in fan-out and placement of logic modules. While it
is not possible to know precisely what the performance of a function such as a state
machine will be prior to placing and routing a design, pre-route estimates are
reasonably accurate. Performance requirements for the PLD design on an FPGA can
be stipulated to synthesis tools.

In order to take advantage of the logic integration capability of an FPGA, synthesis
tools that target such devices should implement functions using the fewest number of
logic modules possible. Sometimes the fastest design is also the smallest in terms of
number of modules used. In other cases, the synthesis software can introduce parallel
logic to reduce the number of logic levels and improve performance.

One of the keys to good synthesis software, and one of the most difficult to achieve
optimally is the efficient use of logic modules in synthesizing logic. Tools must be
capable of searching a library of cells and select those that provide the highest number
of gates per logic module. The ability to conduct such a search depends on the
algorithms the synthesizer software employs.

In a discreet PLD, all the lOs connect to other devices via PCB traces. When the PLD
logic is incorporated into an FPGA as part of a larger design, most of the lOs are
connections internal to the device. Typically the PLD design is a state machine or
counter whose outputs drive controls of data path logic such as multiplexors or
registers which are also implemented in the FPGA.

Actel devices use multiplexors rather than three-states when a design requires
multiple drivers for a line. There is a slight difference in migrating PLD designs to an
FPGA depending on whether the three-state in the PLD was used or not. If the PLD
three-state control is a pin and was not used in the original design, simply changing
the pin's name in the pin list to NC will signal the Actel synthesis tool to ignore the
unused PLD three-state functionality. The synthesized logic outputs can drive other
logic in the FPGA. If the design requires that the synthesized logic outputs drive a
three- state 10 pad, simply assign a signal name to the three-state pin position in the
pin list.

For PLDs with internal three-state control, such as the 22VlO, the situation is
analogous to a three-state control pin. The logic controlling the three-state pin on the
PLD can be synthesized to drive a three-state 10 pad on the FPGA, or to be an
internal output to control a multiplexor select line.

Multiple PLD outputs can be used to drive a line if the internal three-state control
lines are activated by mutually exclusive logic functions. An example of such an
application may be seen in Figure 3.6.6 where an equation defines the three-state
output enable logic. Like the other logic in the PLD, the three-state output enable
control is entered in a sum-of-products fonnat and implemented in the PLD AND-OR
array.

When migrating a discreet logic design which includes PLDs to an FPGA all the logic

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 154

142

C

A

PldA

L

FPGA Technology

c=x*y +Z

PldB

B

Figure 3.6.6. PLD Three State Output Enable Logic

is typically in a single device. Internal three-state functions may not be available, but
even if available they tend to be slow.

An alternative to the internal three-state would be to use a multiplexor as shown in
Figure 3.6.7 . A logic synthesizer can replace the three-states with the multiplexor
and synthesize the output enable control logic to drive the multiplexor select line.

S
B 0

A
L

1

Figure 3.6.7. FPGA Multiplexor Alternative

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 155

Antifuse Progranuned FPGAs 143

Synthesis Design Flow

The design flow for the Actel Synthesis is shown in Figure 3.6.8 The designer may

Top Level Schematic

Netlist
Compiler

Actel Netlist

(

Text
Editor

Palasm
File

Actel Netlist

Figure 3.6.8. AClMAP Design Flow

use any design entry tool that can output a PALASM-format file. Popular tools that
can output the format include ABEL, CUPL, PLDesigner, and LOG/iC. Alternatively,
a PALASM file may be written using a text editor.

After taking the input file, the synthesizer will generate a suboptimal netlist and
proceed to optimize it. The user may influence the optimization process by using
command line arguments to optimize for minimal capacity or maximum performance.
The latter argument stipulates a performance goal that the tool tries to meet.

Since the actual delays for the complete design aren't known, the synthesizer assumes
a typical routed delay value. If it cannot meet the criteria, it will report the
performance it did achieve. The resulting netlist is in the Actel ADL format and
resides in a separate directory.

The designer must create a symbol to be instantiated in the schematic that represents

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 156

144 FPGA Technology

the synthesized netlist. The symbol lOs correspond to those defined in the PALASM
file. It is marked with a property indicating that the netlist was synthesized and is to
be found in a separate directory. When the top-level design is compiled, the schematic
and the synthesized netlists will be integrated into a single file.

The ACTMAP tool also generates a netlist in the format of the users CAE tools which
may be used to simulate and verify the synthesized logic either alone or interacting
with other logic in the design. Schematic generators may be used to view the
synthesis results.

Designing Counters with ACT Devices

Perhaps the most common digital logic function used is the synchronous binary
counter. Regardless of the technology employed to implement counters, they are
found in every type of application. The following describes some of the techniques
for designing counters, or modifying a counters in the Act! and Act2 soft macro
libraries.

The functional requirements of the counter determine the approach to be taken in its
design. Most applications minimally require synchronous counters with an
asynchronous reset.

A simple binary counter with reset is shown in Figure 3.6.9 . The least significant bit
uses an inverting flip-flop so it toggles without additional logic. Whenever counter
output polarity is flexible, or parallel flip-flops are warranted by fan-out or
performance considerations, it allows the design to take maximal advantage of macro
bubbled lOs to reduce module count and levels of logic.

In the simple counter, as in most types of counters, the biggest design concern is
propagating flip-flop outputs to higher bits. For Actl-based designs like the simple
counter example, bits higher than eight require another level of combinatorial logic.
Combinatorial levels required for the simple counter are: two for up to nine bits, three
for ten to 33 bits.

A loadable counter appears in Figure 3.6.10 . The multiplexor flip-flip is used where
one input provides the loaded data and the other the count data. The multiplexor
select line is controlled by the counter load line.

The Act2 modules offer more logic integration than Act1 modules. In the sample
design of Figure 3.6.11 you can see how to construct a six-bit loadable counter with
only one level of combinatorial logic between flip-flops. (In the counter design
described below a ten-bit counter with one level of combinatorial logic may be built
using a multiplexed flip-flop with a gated select input.) The design has a 4: 1
multiplexor driving the data input of each flip-flop. The multiplexor macro and the
flip-flop are combinable into a single S-module by the ALS software providing good
integration and performance.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 157

Antifuse Programmed FPGAs 145

03 A. Y
Y B

~ _____________________________ co

04

00

01

02

03

04

00

01

02

03

00

01

02

01

00

00

BAM."

y
0

CLK
CLR

0

CLK
CLR

Y 0

CLK
CLR

----------------~B~~·~y~--~r__P 0

CLK
CLR

ON

CLK

CLK __ ------------------------------~
CLR

RST

Figure 3.6.9. Actl Five Bit Binary Counter

04

03

02

01

00

The select lines on the multiplexor are operated by the load control (S 1) and by the
count enable and carry from the lower order bits (SO). The multiplexor data inputs are
used for data to be loaded, held, or incremented. The fourth multiplexor data input
can be used as a second data input, or a synchronous set or clear.

Large counter design considerations should be evaluated from the perspective of the
device-level design and how the counter is used in it. For example, if some counter
outputs may be active low or if additional modules are used for redundant logic (e.g.
some bits have both an active-high and an active-low output), then larger counters
may be designed without additional logic levels using five-input gates. Such decisions
should consider the implications for module count and fan-out as detailed below.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 158

146

CE

O.

Q'

Q30 A

04

04

04

O.

O'
00

01

CE

04

CE

O'

O'

O'

00

01

CE

O.

O'

O'
00

01

CE

01

01

00

CE

01

00

CE

LE

CLI<

lOST

FPGA Technology

O'

04

O'

Y O'

01

B

C

00

Figure 3.6.10. Actl Loadable Counter

The sample design for a 16-bit synchronous loadable binary counter with a count
enable will serve to illustrate some of the considerations designers should be aware of
when designing large counters in Act2 FPGA designs. The functional description for

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 159

Antifuse Programmed FPGAs 147

the counter appears in Table 8

Table 8: Counter Function

Counter
Reset Load Enable Clock Q

0 X X X 0

1 1 X Rising D

I 0 1 X Q

1 0 0 Rising Q+l

LD

co:
a:a B y
a1 C

a2 0

ao A

a. B
y

e1 ••

as C
DS

as
a..-___ .as

CLI<
CLK

.. aT

Figure 3.6.11. Act2 Six-Bit Loadable Counter Example

The counter design makes extensive use (bits 0 through 5) of a 4: 1 multiplexor
driving a flip-flop as depicted in Figure 3.6.12 . C-modules are used as AND-EXORs
and for ANDs to qualify the count function. The AND function is also used to bring
the count enable (eE) to the multiplexor via the select line in bits Q3 and above.
Using both the select inputs as well as the data inputs to AND lower order bits allows
for more paralleling resulting in fewer levels of logic.

For the bits Q6 through Q15, an S-module macro with both a 4:1 multiplexor and an
OR gate driving one select line is used to allow for more parallel propagation of the
lower bits. Figure 3.6.13 shows the implementation of the most significant bit of the

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 160

F
ig

ur
e

3.
6.

l2
.

C
ou

nt
er

 E
xa

m
pl

e
U

si
ng

 M
ul

ti
pl

ex
or

 A
nd

 F
1i

p-
F1

op
s

sharbour@jvllp.com

* <
3 v

x«
w

X
X

M

M
&s

r
M

T
.

iE
M

'x
:

C
O

c
a

«
a

*.
«

z
a

x
a

A
^

•c
o

^
—

ro
^

T
T

T
O

o
a

o
o

'o
a

■
^

3
-1

M
T

D
^

<1
s

A~
^

p"
x

C
S

T
M

O

o
a

an
r

•
5:

Or >
n

:

^Ei
p:

X
,o

»
o

"^
aH

S
•e

[«
■

•o 4
.0 "^

C
g
di

i
X J

«
T

i

iJ
-■

•o
"
•«

o
J?

r
«

o
»

^
 ■

—
^

=
5
::

c
c

-*
4-

]
M

T3
C

X
#•

a
c

a
4.

0
»e

z
a

O
*

x
in

»
X

M
B

x
a

'r<
sct

=Z
i

o
a

.
?l

••*
"

rf
^f

5
S”

7v
^

1 ■
«q

^-

■-

=

Fi
gu

re
 3

.6.
12

. C
ou

nt
er

 E
xa

m
pl

e U
sin

g
M

ul
tip

lex
or

 A
nd

 R
ip

-H
op

s

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 161

Antifuse Programmed FPGAs

Q1. A

Q1l1

Q1:1

Q11

QO ..

Qa

QS

Q4

CO:

QlI

Q2

Q1

-
-

counter.

B
AIm.

Y
C

0

A

B
cAlm. Y

Dr-

J\.
B
C _ Y

o r---/
Po..
B_
c-;:\.Y

0..-/

A ___

aJ
y "...,.--- c -./ W.~ _

1 Q
Q1S- :I D1S II

} c

CLIt Lit

.. aT T

Figure 3.6.13. Counter Most Significant Bit

149

Q1S -

The S-module OR gate is used as a two-input NAND with active-low inputs which
are, in turn, driven by NAND gates to propagate the lower bits and the count enable.
The active-low output of the built-in two-input gate (OR used as a NAND) is adjusted
for by shifting the position of the multiplexor data inputs.

Most four-input gates are implemented with a single C-module, but a four-input
NAND with no bubbled inputs requires two modules. The limitation is avoided by
using a NAND with a bubbled input. The count enable is active low, so it may be used
to drive a bubbled input on a gate. Active-low counter bits are used to drive other
bubbled gate inputs.

As may be seen in the schematic of Figure 3.6.12 , two bits (QO and Q6) use
inverters. The QO inversion toggles the flip-flop. A toggle flip-flop could have been
used instead of a D flip-flop, but it could not have been combined with the
multiplexor into a single S-module. Moreover, the inverter output is available as a
resource to share the fan-out load with the flip-flop and to allow the use of bubbled
inputs on gates whenever it is desirable.

It could be argued that the use of the inverted output to drive gates causes the lower
level bits to use two levels of combinatorial logic when it is not necessary. For a
design of ten bits or less the point would be valid because no path requires more than
one combinatorial level. In the example design, however, two levels are already
required by the upper bits and the improvement in fan-out from the use of the inverter
output at no additional cost in module count makes the practice worthwhile.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 162

150 FPGA Technology

The paths in the design that are most likely to limit performance are those with the
largest number of logic levels and the highest fan-out. In general, when fan-outs
exceed nine on a critical path, using redundant logic is often clearly called for. For
lower fan-outs the decision to use redundant logic is problematical and must be
balanced by considering both the cost in additional logic modules as well as the fan
out to the outputs driving the redundant logic.

In the sample design, two redundant modules were added to illustrate the concept.
One is an XNOR gate whose output is the inversion of Q 1. The other is a four-input
NAND gate which propagates flip-flop outputs. No fan-out in the design exceeds
seven and the worst-case path is the redundant gate whose inputs are driven pins with
fan-outs of seven, six, six, and five; and whose output fan-out is four. A total of 48
modules were used in the design.

Pre-scaled Counter Design

An important realization in designing high-performance counters is the fact that the
least significant bits of the counter change the most frequently, and higher order bits
change much less often. This fact can be used to optimize counter performance by
making sure the least significant bits propagate up at the fastest rate. Higher order bits
have a longer time to propagate through the logic. Lets consider the design of a
loadable six-bit counter using the technique. It will be a down counter, suitable for
timing or address generation.

The counter needs to have a least significant bit which can toggle at the highest
possible rate. In the Act2 family the sequential logic module allows a 4-input
multiplexer with gated select lines and a D-type flip-flop to be implemented in a
single level of logic. The logic module can be used to construct a least significant
counter bit with clear, load and count enable as shown in the upper portion of Figure
3.6.14.

Data can be loaded into the register when the load enable (LD) signal is high. The
count enable signal (CNT) is used to toggle QO when it is active and hold QO when
inactive. The circuit implements a least significant bit which needs only a single level
of logic to operate.

Figure 3.6.14 shows the implementation of Ql using the Act2 module. It is similar to
the LSB except Ql is inverted to toggle the flip-flop. Since Ql can only toggle when
QO is a zero (in a down counter), we will have an extra clock cycle for the inversion to
propagate for Ql's next state. That allows the slower IQl time to settle, insuring fully
synchronous operation. The basis of the design technique will be to have slower
signals gated off until they have had sufficient time to settle and they are needed to
compute the toggle of the associated counter bit.

Added to QO and Q 1 are three registers to source CNT, ICNT and ill as shown in the
lower part of Figure 3.6.14 .The complete schematic illustrated Figure 3.6.14 show a

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 163

Antifuse Programmed FPGAs

.It. CL
CL

.,,-CL
eL ..::

PO

PO -

.,

P1

eNT

T /CNT

it OND

LD

-
Ib~
~i

.leNT LD t
CNT

~ /eNT ,...-= F-- _ .•
GND

..
LD Ii-

Ilhr ..
.leNT LD __

i-
COUNT __ - ... --1'

LOA

1 00
~

-1
I 01

I 00

I
T 01

.leNT

LD

Figure 3.6.14. Act2 Pre-scaled Counter

151

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 164

152 FPGA Technology

2-bit pre-scaler (later referred to as CNT2P) for fast counters.

A four-bit macro for the MSBs of the six-bit counter is shown in Figure 3.6.15 . It

CT' _--,
~;:::E~

o

eLI< CLR

CT1_--,

RCI~~n-l 00 ;:::::c

LD

eLK eLf'.

CT'_--,

RCI~~~ 00

01

eLK CLR

CT'_---,

RCI~~~ 00
0'
02

OO~ g~ ~ eTO

ReI CNT

LD

l~co
eLK CLR

Figure 3.6.15. Four Bit Counter Macro

2

3

uses the LSB from the CNT2P macro (connected to CTO) and CNT to enable the
multiplexer inputs used for toggling. The next LSB (Ql) from CNT2P is connected to
cn along with the counter bits in the macro (QO-Q2) to gate the input to the XOR
determining the next count. A ripple carry input (RCI) is also used to allow results
from previous stages to participate. This technique allows the MSBs four clock cycles
(the time for the LSBs to transition from 0 through 3) to develop the input to the
associated bits in the counter. The complete six-bit counter is shown in Figure 3.6.16

By replicating the pre-scaler, fan-out limited counters can be constructed. As an
example, an 18-bit counter implemented with the above macros is shown in Figure
3.6.17 . The limiting frequency for the counter is determined similarly to the six-bit

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 165

Antifuse Programmed FPGAs

COUNT

CLEAR

LOAD

DO

~

CNT2P
COUNT

LEAR
OAD

CNT

CLR

CLK LD

0 00
OJ. -- 1nJ. OJ.

CLOCK --
CNT4C

Y leNT
L-...(FLR

0

c-TO

TJ.
CLK

GND '~:r CO

02 0 00
03 -- J. OJ.
04 - 2 02
05 - 3 03 -

Figure 3.6.16. Six Bit Counter

example.

P-

Designing Adders and Accumulators with the ACT Architecture

02

03
_04

- 0 5 -

00
01

153

Many designers implement adders using carry-propagation techniques. The
multiplexed-based Act1 and Act2 combinatorial module (C-module) allows for the
more efficient carry-select design. This method partitions the add function into blocks
that perform two additions simultaneously on a number of bits of the two operands.

The two additions are performed simultaneously except that one assumes a carry-in
and one has no carry-in. The two sums are input to a 2: 1 multiplexors, one for each bit
pair. The carry line, from the low bits to the high bits, is used to select the appropriate
sum for each block.

The ACT architecture lends itself well to implementing adders of various sizes using

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 166

154 FPGA Technology

Figure 3.6.17. 18-Bit Counter, Fanout Reduced Design

the carry-select technique. A sample design for a 16-bit adder, as shown in Figure
3.6.18, will be used to illustrate adder design.

The method for obtaining optimal performance from a carry select adder is to design
it such that the number of levels of logic required for the carry chain equals the
number for the largest sum block as closely as possible. When they are the same
number of levels, the sum bits arrive at the data pins and the carry arrives at the select
pins of the output multiplexing stage simultaneously.

The way to balance the levels of logic modules for the sum blocks with the carry is to
partition the sum blocks. This partition is based on the logic levels required for the
sums and the levels for the carry between sums. The size of the partitions varies with
width of the data. The Act2 library contains some powerful hard macros that are used
to shorten the levels of logic required for generating sums and carries. The description
of the sample design will illustrate the use of the macros.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 167

Antifuse Programmed FPGAs 155

.r-.1-.: co

. .r-

.1-.: .. "
~ . .r-

II, .1- . "'4
A'" y m .r-- M'

N .n .. - J-.: •• 3
N

.
::&L5Y' ..

..2

• :T
~ · . •••

~

II
:

A.2
.. ~"\Q' y N. - M' - ... N' .. .- ·0

N ... · :~ ·
>-;::;I
• 1-.: ...

~ Ir~
>-;::;I

A.
.. ~. .a . -.. ... - M' - ... ~ .. .• r- . - . .7

N ...
N' . .

,dJPl
...c- ...

~ "T."""';;_

A" - .::- - _.
~ N 4 .. -- ...
• ..1

N •
. ~ .. ,,,,

~
- ...

"3 .. -N ...
82

Al~ r::::Or.. ••

0) I AD .. 0 8,. A[15.

0) -
Figure 3.6.18. Act2 Cany-Select Adder Example

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 168

156 FPGA Technology

For the 16-bit adder, the optimal organization is to perfonn two two-bit additions on
the least four significant bits with the remaining higher order bits broken into four
sections of three bits each. In the top-level schematic the addition logic of the two
least significant bits is visible. The other additions are perfonned in lower levels of
the design hierarchy described in the next section.

The Act2 library includes two two-level carry hard macros. One macro generates a
carry for the two bit pairs assuming the carry-in is true and the other assumes it is
false. The latter macro may be seen at the bottom of Figure 3.6.18 making the carry
for the least two bits.

The carry macro output drives the select line for the 2: 1 multiplexors for sum bits two
and three. It also drives the select line on the cascade multiplexor. The cascade
multiplexor is a special Act2 hard macro that can propagate two levels of carry. The
macro is depicted in Figure 3.6.19 and has five inputs. The top multiplexor inputs

Figure 3.6.19. Cascade Multiplexor Macro

select the most significant sum or carry. The lower three inputs drive logic that
implements a simplified fonn of a 2: 1 multiplexor.

A fully implemented 2: 1 cascade multiplexor does not map into the Act2 module
efficiently, but the full functionality is not required in a carry select adder. A
simplified version of the cascade multiplexor that maps into a C-module or that can be
combined with a flip-flop in an S-module is available.

The simple version has logic driving the select for the upper level multiplexor
consisting of only a two-input OR driving one input of a two-input AND. The two OR
gate inputs are driven by the carry output from the next lower sum block assuming no

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 169

Antifuse Programmed FPGAs 157

carry-in and the carry in from the rest of the lower bits of the adder. The remaining
AND input is the carry from the sum block which assumes a carry-in.

The logic is correct for a carry select adder because if the assume-no-carry-in input is
true (meaning that a carry was generated within that sum block), then the assume
carry-in is always true (since it equals the false plus one) which completes the AND
function.

If the carry from the lower bits is true (meaning a carry is propagated to the sum
block), then we complete the AND if the assume-carry is true.

The schematic for the three-bit adder block appears in Figure 3.6.20 The adder

.--+---t--t-----"A"-l' Y -+--+--f--Hf---..!!.~O e .. :_!-'-___ -+--, A
.-~_+-~_+---~AO '-~.n~~~

__ --+-_+~-~-+_.---------_+~-~Bl~~ . Y
c Lf'-

1 ...
B }) .. _- Y

Figure 3.6.20. Three Bit Adder Block

requires thirteen logic modules to generate the three sum and carry pairs. All the
output paths are two levels of logic or less. The two carries for the three bits come
from two-level carry hard macros driving a three-bit majority macro. All the sums are
generated from exclusive OR or NOR gates.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 170

158 FPGA Technology

The optimal design for a carry select adder depends on the number bits to be added.
As mentioned previously, the number of bits in a block is a function of the overall
adder size. For Act2 adders of two and three bits, the design shown in Figure 3.6.20
is attractive because the two-level carry macro allows for delays to be two levels or
less.

An example for another design for an adder block is shown in Figure 3.6.21 . This

Figure 3.6.21. Another Adder Example

design uses ACT library single bit two-module hard macros. The Actel library
contains several such two-module adder macros with both a sum and a carry output.
The carry output goes through one module delay and the sum output two module
delays. The carry propagates through the chain in four levels in the example so that all
the sum bits are stable when the carry ripple is complete.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 171

Antifuse Programmed FPGAs 159

A three bit adder block has one level of delay more than that of Figure 3.6.20 , but
requires one less module. For Act! adder blocks and Act2 blocks greater than three
bits, the carry chain design is most efficient.

Accumulator

All the sum and carry outputs of the adder macro are combinable into a single Act2
sequential module (S-module). This combinability feature means that if the data
inputs of a 16-bit register are schematically connected to an adder's outputs, the ALS
software will automatically put the adder output macros (2: 1 multiplexors or cascade
multiplexors) into their respective flip-flop in the register.

The registered-output adder will suffer no degradation in performance from the
combining because the delay through the combinatorial part of the S-module is less
than that of an uncombined macro. Tieing the register output back into the inputs will
make the circuit into an accumulator. A sample design for an accumulator made from
an adder and a register may be seen in Figure 3.6.22.

aa01.

~
c
CLK

FADD16

co i>- OD.SIO]

a(1510] (1 •• 0)

A(1510) [.,15.01

Figure 3.6.22. 16 Bit Accumulator

Design Results

The sample design uses 82 Act2 modules for either the adder or the accumulator. The
slowest path in a function is usually the one with the most levels of logic. In this case
it is the carry chain which has four levels of logic. As mentioned previously, all other
paths have fan-outs of three or less.

The modules in the chain have fan-outs of three, four, seven, and four. Criticality may
be used to optimize the path performance. Criticality works best when fan-out is low.
When the fan-out of a speed-sensitive net exceeds seven, performance can usually be
most improved by adding redundant logic. For fan-outs of less than seven, adding

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 172

160 FPGA Technology

redundant modules may not bring any improvement. Using redundant logic for fan
outs of seven should be considered on an individual basis. Adding a redundant
module to the carry path would change its fan-outs to three, five, three, and four. The
expense of one module may be justified by the performance improvement from
lowering the fan-out.

It is also possible to improve performance by pipelining an adder. Since all of the
combinatorial functions used in the adder are combinable (if the function's output
drives a flip-flop ALS will put both in a single S-module), designers may pipe the
adder at the points that provide the best performance at no cost in additional modules.

The carry select architecture is extensible to adders of any size. Adders of eight to
fifteen bits may be designed using the technique in three levels of logic. Adders from
16 to 24 bits can be done in four levels. When adapting the adder design to other
operand sizes remember to re-partition the sum block sizes to match the logic levels
of sums and carries.

State Machine Design

The traditional methodology for designing state machines has been to draw a state
diagram, map the states into the minimum number of register bits needed to encode
them and determine the minimal next state function. The method results in a
minimum number of registers, but often requires wide gating to determine the next
state bit because all the register outputs are feedback to each transition term.

PLDs are register lean but can do wide gating, so their architecture fits into the above
methodology easily. FPGAs however offer designers a different set of resources. The
style of implementation of the state machine output coding should consider how best
to take advantage of the resources.

On Act! devices flip-flops use two modules and are relatively expensive compared to
gates. For these devices, encoded outputs are often most efficient. On Act2 devices,
registers are abundant and gating is optimized for more narrow functions. A state
machine designed to take advantage of the large number of registers available on an
Act2 FPGA may be more efficient than the PLD implementation. A sample state
machine illustrated in Figure 3.6.23 will be used to contrast the encoded state method
with the Bit-Per-State (BPS) technique which uses a single register for each state.
We'll use the encoded method to implement the design using the Actl library and
repeat the process using BPS.

The example contains six states, seven inputs, and five outputs. The traditional
approach would encode the states into three state bits by making state assignments.
The schematic in Figure 3.6.24 shows one possible implementation. The logic
required to implement the state machine consumes 29 Act! modules. The longest
path is through four levels of delay.

With register rich ACf devices BPS becomes more attractive. State assignment is

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 173

Antifuse Programmed FPGAs 161

Figure 3.6.23. Example State Diagram from 4-Channel DMA Controller

trivial if a register is used for each state bit and the design will directly implement the
transition terms. The schematic of Figure 3.6.25 exemplifies the results of the BPS
method. It uses 19 Actl modules and only requires two levels of delay.

Note that the state bits are inverted to make the states active low and the single

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 174

162 FPGA Technology

C2~ C1' /PBREC co

C1~ C2· /CLD
co

C2~ C1· /CNTLD
co

• /CMJUCC
C1
co • C2

C2~ C1' /CE
co

CLK:::::::::::::::::::~ RESET

Figure 3.6.24. Act! State Machine Schematic

module OA2A and OA2 are used to create the transition terms. The reset signal sets
all states except StateD which is preset since it is the initial state for the machine. If
active high state bits are required they can be used by clearing them on initialization
and detecting the active high state for transition purposes.

Larger state machines may also be implemented using this technique by distributing
control to several smaller machines and using a single master machine to coordinate
activities. This usually results in a higher performance design since control signals
will be located near the logic they affect. minimizing routing delays. In addition,
typically it is easier to design and debug since each machine can be more easily
understood and interactions between operations are minimized.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 175

Antifuse Programmed FPGAs 163

A-
S 'ft
C
o

PBGNT.-------~==;r~·~~~H-~
/PBREQ

MACK .-------+-;:~=(r?~_++_~ -'t-1Hr-~~~~==~~~ /CMREQ •• /CNTLD

/CE

/CLD

RESET.--HHr----------~__,

/ss

CLK __ --t:::::::::::~_===~

Figure 3.6.25. Act2 State Machine Implementation

A summary of the methodology is as follows:

1. Write state transition equations for each state.

2. Assign each state to a separate register. Where possible state bits should be made
active low to make it easier to construct transition terms in a single ACT 1 mod
ule.

3. Take output signals directly from state outputs where possible. If the output signal
must be active high, the state bit associated with it can be made to correspond by
inverting its driving logic, and inverting its inputs to any other transition term.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 176

164 FPGA Technology

4. All active high state bits are reset on machine initialization and active low states
are preset on initialization. The initial state is must be activated on initialization so
it should be cleared if active low or preset if active high.

Using FPGAs for Digital PLLs

In addition to purely digital applications, many designs use FPGAs for Digital Signal
Processing (DSPs). We'll examine one such application, digital PLLs, to show two
ways of implementing PLL designs using FPGAs.

Pulse Steal PU

In telecommunications applications it is often desirable to generate a digital signal
which is locked to an incoming signal and is some multiple of its frequency. A
drawing of a pulse steal PLL which is a simple way generate such a signal may be
seen in Figure 3.6.26 . Note that the design contains an ordinary oscillator, but no
veo. Except for the crystal, the entire design will operate in an FPGA.

REFERENCE
OSCILLATOR

INPUT

DIVIDE DETECT

BY K OIVIDE B

BY M

ENABLE

STEAL PULSE

DIVIDE

BY N

Figure 3.6.26. Pulse Steal PLL

OUTPUT

DEGLITCH

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 177

Antifuse Programmed FPGAs 165

Note the frequency relationship that holds at points A and B in the figure where:

OSC/(K*M) = INPUT/N = COMPARISON FREQUENCY (EQ 1)

This technique is based on selecting a reference oscillator frequency that is slightly
higher than OSC. This frequency (OSC+) should be chosen so that:

l/COMPARISON FREQ. - (K*M)I(OSC+) = .5 * (l/OSC) (EQ2)

The right side of EQN. 2 equals one half the period of the reference oscillator.

The reference oscillator frequency delta will cause point B (the detector flip-flop D
input) to begin to precede point A (the detector flip-flop clock input) by half a period.
When the edge of the D input is sufficient the detector will clock true and begin a
pulse train through the two de-glitching flip-flops. The output of the second of these
clears all three flip-flops and steals a pulse by disabling the divide by K output.
Stealing the pulse puts point B behind A until the reference oscillator delta can move
it ahead by one period repeating the cycle. Points A and B are always within one half
a cycle of each other.

The circuit allows the frequency of the output signal to be selected simply be
adjusting the values of the dividers K and M. The lock range of the loop is given by
the following:

Lock Range = +- (OSC+/osc)I1NPUT (EQ3)

Jitter Bounded PLL

Another technique [Walters] for generating a wide variety of synchronized clock
frequencies with low jitter employs an accumulator Digital Controlled Oscillator
(DCO) and phase and frequency comparators. The system, shown in Figure 3.6.27 ,
can lock to any division of a reference frequency (Fref)' as selected by the data loaded
into frequency divider counters.

The Successive Approximation Register (SAR) and its controller serves as a low-pass
filter supplying the DCO with frequency and phase correction data. Among the three
inputs to the SAR controller is the Fref divided by a factor Q to form Fq-

The other two inputs come from the phase and frequency (zero) comparators. The
frequency comparator output is the DCO frequency divided by P to form Fp. When
the system is in lock the following equation is true:

Fdco = (P/Q) * F ref· (EQ4)

The heart of the system is the accumulator DCO which determines the ability to lock
to a frequency and the amount of jitter allowed. The DCO consists of a four-bit
accumulator whose input is fed by the SAR. The DCO input value is determined from

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 178

166

REFERENCF.

FREQUENCY

'----_to Deo OUT POT - MSB

Figure 3.6.27. Jitter Bounded Digital PLL

FPGA Technology

the phase and frequency comparison feedback loops. The most significant bit of the
accumulator output is the DCO output signal. It is generated by successively adding
the SAR value to itself at the high- frequency system clock rate. The frequency
comparator uses the value of P to divide the DCO frequency. If the frequency is out of
lock during a period of Fref., the comparator asserts greater-than-zero or less-than
zero to the SAR controller to modify the value of the register. If the P counter output
is zero, the DCO has the correct frequency.

The DCO latch acts as a phase register indicating the phase of the DCO with respect
to Fref. The DCO phase is calculated by the N most significant accumulator output
bits. When the DCO is out of phase the jitter, or phase difference, is detected by the
phase comparator and accumulates with time until it equals one period. The feedback

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 179

Antifuse Programmed FPGAs 167

loops then cause the SAR register controller to load a correcting value into the
register or to clear the accumulator with a synchronizing pulse.

The Jitter-Bounded DPLL may be implemented entirely on an ACT FPGA. The
resource requirements vary with the relationships of the system input and output
frequencies, but for any F ref, system clock. and desired output frequency the design
is easily accommodated on an ACT FPGA.

Customer Design Examples

Example 1: Functional Prototyping

A multi-processor file server for a PC network is under development. The system
employs multiple 80486 microprocessors, banks of DRAM, and multiple 64- and 32-
bit busses. Several 1280s FPGAs are used to prototype the system which will
ultimately be implemented with gate arrays. Since the logic was composed of clearly
defined sub-blocks, principally state machines and simple data paths, partitioning of
the logic among the FPGAs was not difficult. For this complex system, the design
process is incremental and somewhat experimental. The logic in each FPGA may be
modified or extended several times, so a fast design flow is necessary.

The logic for each FPGA is synthesized with the Synopsys hardware description
language (HDL) compiler using an Actel macro library, and then checked with an
HDL simulator. Each design is automatically placed and routed, and re-simulated
with post-layout delays. Although the system will ultimately operate at a high speed,
use of synchronous logic design allows the prototype to operate at a speed within the
capability of the FPGAs. Software is developed and tested on the prototype
concurrently with the completion of the logic design and conversion to conventional
gate arrays.

Example 2: At-Speed Prototyping and Pilot Production

A digital video signal processing system in high volume production for the consumer
market. Four 1020 FPGAs were used to integrate registers, multipliers, adders and
digital phase- locked-loops. The pipelined data paths are 12 to 16 bits wide and
operate at a l6MHz clock rate. For production the four FPGAs were replaced by a
single 8000 gate masked gate array. It is estimated that the use of FPGAs for
prototyping and pilot production saved two to three months in product development
time.

As many as half of masked gate array designs never reach high-volume production.
The reasons include short product lifetimes, required new features or other changes,
or simple lack of demand for the product. In such cases use of FPGAs for production
saves the NRE costs associated with developing a mask programmed gate array.

For very large volumes, the design may be transferred to a conventional gate array.
Due to the small granularity of the module, an FPGA design can be efficiently

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 180

168 FPGA Technology

converted to a gate array. Test vectors can often be generated automatically. Several
vendors support this conversion path.

3.7 Acknowledgments

This chapter includes information compiled by many people. In particular Jonathan
Greene and Esmat Hamdy contributed portions of this chapter. Sam Bea1, Warren
Miller and Jeff Schlageter both contributed material and made suggestions about the
presentation.

3.8 References

[Ahrens] M. Ahrens, et. al., An FPGA Architecture Optimized for High Densities and
Reduced Routing Delay, Proceedings Custom Integrated Circuits Conference,
July 1990.

[Allen] D. Allen, R. Goldenberg, Design Aids and Test Results for Laser
Programmable Logic Arrays, Proceedings. International Conference. on Computer
Design, 1990, pp. 386-390.

[Birkner] J. Birkner et al., A Very High-Speed FIeld Programmable Gate Array Using
Metal-to-Metal Antifuse Programming Elements, Proceedings Custom Integrated
Circuits Conference, May 1991.

[Brayton] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang. MIS: A
Multiple-Level Logic Optimization System. IEEE Transactions on CAD, Nov. 1987.

[Carter] w. Carter et al, A User Programmable Reconfigurable Gate Array, in
Proceedings of Custom Integrated Circuits Conference, pp. 233-235, 1986.

[Chen] J. Chen et al, A Modular 0.8 um Technology for High Performance Dieletric
Antifuse Field Programmable Gate Arrays, International Symposium on VLSI
Technology, Systems, and Applications, May 1993, pp. 160-164.

[Chiangl] S. Chiang, R. Wang, J. Chen, K. Hayes, J. McCollum, E. Hamdy, C. Hu.
Oxide-Nitride-Oxide Antifuse Reliability, International Reliability Physics
Symposium., March 1990, pp.186-192.

[Chiang2] S. Chiang, K. Hayes. Act 101011020 Reliability Report. Actel Corporation,
Sunnyvale, CA, April 1990.

[ElAyat] K. El Ayat, et. al. A CMOS Electrically Configurable Gate Array. IEEE J.
Solid-State Circuits, Vol. 24, No.3, June, 1989, pp. 752-762.

[ElGamall] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat, and A.
Mohsen. An Architecture for Electrically Configurable Gate Arrays. IEEE J. Solid
State Circuits, Vol. 24, No.2, April, 1989, pp. 394-398.

[ElGamal2] A. El Gamal, J. Greene, V. Roychowdhury. Segmented Channel Routing

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 181

Antifuse Programmed FPGAs 169

is Nearly as Efficient as Clulnnel Routing (and Just as Hard). Proceedings. VLSI
Conference, Santa Cruz, CA, March 1991.

[EIGamal3] A. El Gamal. Two Dimensional Stoclulstic Model for Interconnections in
Master Slice Integrated Circuits. IEEE Trans. on Circuits and Systems, CAS-28, 127-
138, Feb. 1981.

[Gerzberg] L. Gerzberg. U.S. Patent 4,590,589, 1986.

[Graham] H. Graham, D. Seltz. Electronically Programmable Gate Array Having
Programmable Interconnect Lines, U.S. Patent 4,786,904, Nov. 22,1988.

[Greene] J. Greene, V. Roychowdhury, S. Kaptanoglu, A. EI Gamal, Segmented
Channel Routing, Proceedings. Design Automation Conference., Orlando, Florida.
Association. for Computing Machinery, June 1990.

[Hamdy] E. Hamdy, J. McCollum, S. Chen, S. Chiang, S. Eltoukhy, J. Chang, T.
Speers,. Mohsen. Dielectric Based Antifuses for Logic and Memory ICs, IEDM Tech.
Digest, pp. 786-789, 1988.

[Hashimoto] A. Hashimoto, J. Stevens. Wire Routing by Optimizing Channel
Assignment within Large Apertures. Proceedings. 8th IEEE Design Automation
Workshop, 1971.

[Holmberg], et al. U.S. Patents 4,499,557, 1985 and 4,599,705, 1986.

[Hsieh] H. Hsieh, et. al., Third-Generation Architecture Boosts Speed and Density of
Field-Programmable Gate Arrays, Proceedings. 1990 Custom Integrated Circuits
Conference., May 1990, pp. 31.2.1-32.2.7.

[Karplus] K. Karplus, AMAP: a Technology Mapper for Selector-based Field
Programmable Gate Arrays, Proceedings of the 28th Design Automation Conference,
June 1991, pp. 244-247.

[Lim] Lim et al. U.S. Patent 4,569,121, 1986. Stacy et al. U.S. Patent 4,569,120.
1986.

[Lorenzetti] M. Lorenzetti, D. Baeder. Routing. Chapter 5 in Physical Design
Automation of VLSI Systems, B. Preas and M. Lorenzetti, eds., Benjamin
Cummings, 1988.

[LSI] HCMOS Gate Array Databook and Design Manual, LSI Logic Corporation,
October 1986.

[Mailhot] F. Mailhot, G. De Micheli. Technology Mapping Using Boolean Matching
and Don't Care Sets. preprint, 1990.

[Marr] C. Marr, Logic Array Beats Development Time Blues, Electronic System
Design Magazine., Nov. 1989, pp. 38-42.

[Murgai] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, A. Sangiovanni-

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 182

170 FPGA Technology

Vincentelli. Logic Synthesis for Programmable Gate Arrays. Proceedings. 27th
ACMlIEEE Design Automation Conference., 1990.

[Preas] B. Preas, P. Karger. Placement, Assignment and Floorplanning. Cbapter 4 in
Pbysical Design Automation of VLSI Systems, B. Preas and M. Lorenzetti, eds.,
Benjamin Cummings, 198.

[Roesner] B. Roesner. U.S. Patents 4,424,579 and 4,442,507, 1984.

[Rose] J. Rose, R. Francis, D. Lewis, P. Cbow. Architecture of Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency. IEEE Journal of
Solid State Circuits, Vol. 25, No.5, pp. 1217-1225, October 1990.

[Rudell] R. Rudell, R. Segal. Logic Synthesis Can Help in Exploring Design Choices,
1989 Semi-custom Design Guide, CMP Publications, Manbasset, NY.

[Scblageter] J. Scblageter et all, An Advanced Sub-Micron Architecture for IO
Intensive Applications, Proceeding of the 1993 Compcon conference, 1993, pp. 362-
366.

[Singb] S. Singb, J. Rose, D. Lewis, K. Cbung, P. Chow, Optimization of Field
Programmable Gate Array Logic Block Architecture for Speed, Proceedings of the
1991 CICC Conference, 1991, pp. 6.1.1-6.1.6.

[Smith] J. F. Smith, et. al., Laser-Induced Personalization and Alterations of LSI and
VLSI Circuits, Proceedings of. 1st International Laser Processing Conference.,
Anaheim, Calif., Laser Institute of America, Nov. 16, 1981.

[Stopper] H. Stopper, et al. U.S. Patent 4,847,732, 1989.

[Walters] Walters, S., Troudet. T.; Digital Phase-Locked Loop with Jitter Bounded.,
IEEE Transactions on Circuits and Systems, VOL. 36, NO.7, July 1989.

[Whitney] T. Whitney and J. Scblageter, A New High Performance Field
Programmable Gate Array Family, Proceedings of 1993 International Conference on
Computer Design, October 1993.

[Whitten] R. Whitten, R. Becbtel, M. Thomas, H.T. Cbua, A. Cban, J. Birkner,
European Patent Application No. 90309731.9, May 9, 1990.

[Wong] S. Wong, H. So, J. Ou, J Costello, A 5000-Gate CMOS EPW with Multiple
Logic and Interconnect Arrays, Proceedings. 1989 Custom Integrated Circuits
Conference., May 1989, pp. 5.8.1-5.8.4.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 183

Chapter 4
Erasable Programmable Logic Devices

The Technical Staff of Altera Corporation

Edited by Robert Hartmann

4.1. Introduction

Various acronyms are used to describe programmable logic, such as FPGA, GAL,
PAL, EPLD, FPLA. Several of these acronyms have come to imply a particular
architecture. EPLD, for example, is usually identified with array-based (AND-OR)
programmable logic. This structure is particularly well-suited for implementing wide
fan-in logic functions. These array-based structures were popularized in several
families of bipolar, fuse-programmable logic devices but most particularly the PAL
[Birkner 1978] which was introduced by MMI (Monolithic Memories, Inc. which was
later acquired by Advanced Micro Devices.)

While these PAL devices were low in complexity by today's standards, they allowed
the integration of several SSI and MSI components into one device. This integration
advantage combined with high speed. flexibility to do both combinational and
sequential functions, reasonable cost and the availability of software tools made these
devices extremely popular. But, there were also drawbacks. The two most significant
problems were high power dissipation and fuse programmability which meant that
incorrectly programmed devices could not be salvaged. These disadvantages
ultimately limited the logic complexity to a few hundred gates.

The EPLD (Erasable Programmable Logic Devices) developed by AHera overcame
the limitations of bipolar fuse-programmed PALs by using CMOS technology in
conjunction with floating-gate programmable transistors. This technology opened the
way for reprogrammable circuits with much higher logic capacity and much lower
power.

Altera's first architecture, known as Classic, was introduced in 1984 and offered chips
ranging from 8 to 48 macrocells (see P. 7), which roughly translates to 300 to 2,000
gates [Hartmann 1984]. The Company's second architecture, introduced in 1988 and
designated the MAX 5000 family, provides from 32 to 192 macrocells or 600 to 7,500
gates. In 1991 a third-generation architecture, called the MAX 7000 family, was
introduced. The first member, the EPM7256, has 256 macrocells (approximately

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 184

172 FPGA Technology

10,000 gates). Devices with as many as 1,000 macrocells are planned. Each new
generation has provided faster performance and greater gate density than preceding
generations.

Proprietary software tools that make the use of EPLDs quick and simple were also
developed. These software tools improve the productivity of the engineer, and can be
used repeatedly by multiple users for different designs on an ongoing basis.

An EPLD logic design for a particular end use is achieved in three steps: design entry,
design compilation, and design verification.

Design entry is accomplished using either the integrated software editors that are part
of Altera's software, or -- if the customer prefers -- with tools provided by EDA
vendors. Designs can be expressed as schematic diagrams, a text-based hardware
description language, logic equations, state machines, truth tables, waveforms, or a
combination of any of the above.

Design compilation of the design is performed by software that first "synthesizes" the
logic specified during design entry so that the minimum number of logic cells
(sometimes referred to as macrocells) are used. The software then arranges and
interconnects these logic cells in the most compact manner possible (this is
commonly called "fitting"). With early PLDs, logic synthesis was nothing more than
factoring Boolean equations into the minimum number of product terms. If that
number of generated product terms was less than or equal to the number available,
then the "synthesis" was complete. If not, the user had to restructure the logic and try
again.

Logic may be described in a variety of ways (gates, logic equations, hardware
description language, etc.), all of which may be intermingled in the software
environment. The job of logic synthesis is to take the logic and reduce it in such a way
that it uses the minimum of a given device's resources. The synthesizer must have
knowledge of the device's architecture and a set of minimization techniques in order
to accomplish the task. In the Altera software, as many as eighteen minimization
methods will be tried, with the result of the trials compared before the best
implementation is selected. The proprietary algorithms that perform this function
require minimal intervention from the user and offer highly-automated. "push-button"
results.

Finally, in design verification, the designer confirms the logic functions performed by
the EPLD and checks the timing of critical logic paths. Designs are verified using the
static Timing Analyzer, Delay Predictor, and logic Simulator (which has detailed
timing models for all of the internal EPLD elements), all of which are part of the
design software tool kit.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 185

Erasable Programmable Logic Devices 173

4.2. Programming Technology

Prior to the introduction of the EPLD, the only technology used for Programmable
Logic Devices (PLDs) was bipolar and fuse-based. The active elements on these
devices were bipolar transistors with arrays of fuses providing programmable
interconnect structures. These fuse elements consisted of a variety of exotic metal
alloys and/or polysilicon structures, but all relied on the physical destruction of fuses
to open connections by passing large currents through their small geometries.

The melting process in bipolar PLD fuses was difficult to control and often resulted in
unacceptable programming yields. Since the process was irreversible, guaranteed
results were impossible. The power-hungry bipolar technology also severely limited
integration levels. With the advent of the EPLD, CMOS technology replaced bipolar
technology, and fuses were replaced by reprogram mabie EPROM or EEPROM
transistors (EPLD bits). ll1ese EPLD bits were much smaller than fuses, electrically
programmable, and erasable. Since the programming step was reversable, EPLDs
were fully factory-tested, guaranteeing 100% programming yield at the customer site.
The lower power required of CMOS technology allowed higher integration levels.

The EPROM cells operate via floating-gate charge injection [Wolf 1990]. The
programming process consists of placing sufficient voltage (typically >12V) on the
drain and gate of the transistor to create a strong electric field and energize electrons
to jump from the drain region to the floating gate. Electrons attracted to the floating
gate become trapped when the high voltage bias is removed. If the drain terminal is
held at a low voltage during programming, electrons are not available to be attracted
to the floating gate and the floating gate remains uncharged. Trapped charge changes
the threshold of the EPROM cell from a relatively low value with no charge present
("erased") to a higher value when programmed. Figure 4.2.1 shows a basic cross
section of the EPROM cell technology.

The topographical view of a single EPROM cell is shown in Figure 4.2.2. The "Poly
Select Line" in Figure 4.2.2 corresponds to the terminal "GATE" in Figure 4.2.1; the
"Contact Area" and "Ground Diffusion" correspond to the "Drain" and "Source"
regions of the EPROM transistor respectively.

P-Substrale

P"""",,neI N-Channel EPAC».4

Figure 4.2.1 Cross Section of CMOS EPROM Die

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 186

174

Floating
Gate

Contact
Area

- Poly
~'l--tl---''-+--+-I Select Line

Ground Di'usion

FPGA Technology

Figure 4.2.2 Top View of Single EPROM Transistor

Not
Programmed

(t)
Programmed

(0)

VT 1 (Not Programmed) VT 0 (Programmed)

\k)ltage {Vee! on Gate of Cell

Figure 4.2.3 V-I Characteristic of EPROM Transistor

The EPROM transistor has two states, erased (unprogrammed) and programmed. The
V-I characteristics for these two states is shown in Figure 4.2.3.

If it is assumed that the floating gate in the structure is initially unprogrammed, then
the transistor works much like a normal N channel transistor. Whenever a positive
voltage greater than the threshold voltage (VTl) is applied to the control gate, a
channel is induced under the gate region which allows current to flow between the
drain region and the source region. In a typical N channel floating gate device, VT is
approximately 1.0 volts. The signals which are applied to the control gate are
typically between 0 volts and 5 volts.

The effective threshold of the transistor can be changed as explained previously. After
programming, charges remain trapped on the floating gate and cause the effective
threshold of the EPROM transistor to be increased to a value greater than the voltage
which would be applied to the control gate during Nonnal Operation. The application
of the high voltages and the subsequent charge trapping on the floating gate is called
programming.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 187

Erasable Programmable Logic Devices 175

After the transistor has been programmed, if a 5 volt signal is applied to the control
gate, no channel will be created between the source and drain and no current will
flow. This two layer transistor can be thought of as a programmable switch. In the
unprogrammed state, the switch opens and closes in response to the application of 0
volts or 5 volts to the control gate. In the programmed state, the switch is always open
regardless of whether 0 or 5 volts is applied to the control gate.

Schematic Diagram

+V

INo-t~OUT
Logic Diagram

IN o-{>c>-o OUT

Truth Table

IN OUT

+V 0
0 +V

(a)

IN1
+V
0
X

+V

~ OUT

IN7f

Floating =
Gate

Floating
Gate

IN+OUT

Floating Gate OUT

Unprogrammed 0
Unprogrammed +V
Programmed +V

(X means either 0 or +V)

(b)

Figure 4.2.4 Use of an EPROM Transistor in a Programmable
Inverter

Logic Structures Using EPROM Transistors

In the diagrams shown in Figure 4.2.4, an inverter is shown in part (a) using a
standard N-channel transistor as the switching device and, in part (b) a floating gate
transistor is shown as the switching element. Below each schematic diagram, a logic
gate representation and the corresponding truth table is shown. The truth table for the
EPROM inverter in the unprogrammed state, gives the same result as the normal N
channel inverter. However, when the floating gate is programmed, the output is
always pulled high, independent of the input. Thus, a logic function (an inverter in
this case) can be created wherein the input variable can be "programmed out" by
programming the floating gate to which the input is connected.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 188

176

+V

OUT

IN1 0-0-........ -1

IN2o-

INn 0-

FPGA Tecbnology

Represents Floating
Gate Associated

~
ith Each Input

INl
IN2
INn

Schematic Diagram Logic Diagram

Truth Table

IN1 IN2 INn OUT
Note: P in the Truth Table means

0 0 0 1 that the EPROM transistor at that
X X 1 0 site is programmed. X means
X 1 X 0 either 1 or O.
1 X X 0

~~~~ 
0 0 1 
1 X 0 IN1 Gate is programmed 

X(P X 1 0 
0 

~~~~ 
0 1

1 X 0 IN2 Gate is programmed
X 1 0
0 0 ~~~~ 1
1 X 0 INn Gate is programmed
X 1 X(P) 0

Figure 4.2.5 Programmable NOR Gate Using
EPROM or EEPROM Transistors

In part (a) of Figure 4.2.5 a NOR gate circuit using EPROM elements is illustrated. In
this circuit. the output is only a function of the inputs corresponding to floating gates
left in the erased state. In part (b), the corresponding logic diagram is shown, and in
part (c) the truth table for the circuit is shown.

This circuit is a one dimensional array of EPROM elements which forms a NOR gate,
the elements of which are selectively programmable. By extending this concept to a
two dimensional array and then collecting the programmable NOR outputs in another
set of NOR gates, electrically programmable logic arrays such as illustrated in Figure
4.2.6 can be formed.

Any combinational logic function, however complex, can be expressed as a Boolean

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 189

Erasable Programmable Logic Devices

r··· .. :~ .. .
! NOR Gating

i
!
i
!
!

---.~-+---.OUT

L __ I
I
I
I

11 ~~~~-.I--~-I_--~-I---~
I

12 O---+-+--...L....f---'---II--I

I I •
I I • I. I.. . In ~IW.-fi---~--

L--C>o-'-~~I--~ - - - --
- - -

Array I
~i~~its I ':" pr~rammable':" NOR (AND) A~y !

,•••..•.... .1 ...••...•••............••.••••..••••••••••.•.••.....•...•..•••..•••••...•...........••. :

Figure 4.2.6 Programmable NOR Array

177

equation. Furthennore, any Boolean equation can be expressed in sum-of-products
fonn. The logic expression is of the fonn f=Pl+P2+P3+ ... where f is some Boolean
variable and PI, P2, etc. are product tenns. Product tenns can be expressed as P =
Al * A2* A3 That is, product tenns are the logical AND of literals. The hardware
realization consists of an array (whose inputs are the true and complement of the
literals) which generates the product tenns and another array (or sometimes a simple
OR gate) which generates the sum-of-product expression. Sequential functions are
accommodated by adding a register (such as a D flip-flop). The input to the register is
fed by the sum array output and the output of the register is fed back as an input to the
product tenn array.

The NOR array shown in Figure 4.2.5 can be thought of as a product tenn generator
and the sum-of-products can be generated by a structure like that shown in Figure

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 190

178 FPGA Technology

4.2.6. The connection from a particular input variable to a product term is a function
of the state of the EPROM transistors.

Initially all of the EPROM transistors in the array are erased and are therefore
connected to all of the product terms. By selectively programming these EPROM
transistors, certain of the inputs are disconnected, leaving only those variables which
are needed by a particular logic expression.

Each EPLD contains one or more AND arrays that provide product terms. A product
term is simply an n-input AND gate, where n is the number of variables. EPLD
schematics use a shorthand AND-array notation to represent large AND gates with
common inputs. Figure 4.2.7 shows three different representations of the same logic
function. Circuit A is presented in classic logic notation; Circuit B has been modified
to a sum-of-products notation; and Circuit C is written in AND-array notation. A dot
represents a connection between an input (vertical wire) and one of the 8-input AND
gates. No dot implies no connection. Unused AND gate inputs float to a logic 1.

Even the rather simple 2X8 AND-array of Circuit C can produce all one and two
variable functions, most three variable and some four variable functions. The table
below shows the number of possible functions of one, two, three and four variables

11

12-----i

13

11---r-"'\
14----L-~

11 12 13 14

11 12 13 14

• =AND
+=OR

11 • 12 • 113 + 11 • 14

11 • 12 • 113 + 11 • 14

11 • 12./13 + 11 • 14

Figure 4.2.7 AND-Array Notation

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 191

Erasable Programmable Logic Devices 179

and the ability of a two product-term AND-OR structure to synthesize these
functions.

Number of Number of

Variables Functions Possible

1

2

3

4

4

16

256

65,536

Number of (1)

Unique Functions

2

4

14

222

Coverage

(2 product

terms)

All

All

90f14

18 of 222

(1) Allows for inversions and reorderings of inputs and inversion of the output.

4.3. Device Architecture

Up to this point we have been discussing EPLDs at the level of transistors, EPROMs
and product terms in order to provide the reader with some of the basic fundamentals.
However, the use of software tools can eliminate the necessity of understanding any
of the circuit-level complexities of EPLD architectures. The user may then work with
familiar design entry tools (e.g., TIL macrofunctions or a high-level design
language), and the software can automatically translate the design into the format
required to fit the EPLD architecture.

Logic Array Register Options 110 Control

~
.--... --.... ,

i I OUTPUT
i !
'-........ -...... ;

Figure 4.3.1 Basic Logic Resources of an EPLD

Basic Concepts

The heart of the EPLD is the logic array as discussed previously. In addition, general
purpose EPLDs contain a number of other resources, such as dedicated input pins,
user-configurable 110 pins, and programmable flip-flop and clock options that
maximize flexibility for integrating random logic functions. Figure 4.3.1 depicts a
logic designer's view of the logic resources of a typical EPLD.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 192

180 FPGA Technology

Input variables to the logic array come from the input and 110 pins and from the
output of macrocells. The logic array outputs drive output pins and inputs to the flip
flops.

Macrocell Architecture

The fundamental logic building block of an EPLD is the macrocell. Each macrocell
consists of three parts:

• The logic array which implements all combinational logic functions.

• The programmable register which can be configured to provide D, T, JK, or SR
options (the register can also be bypassed).

• Programmable 110. Each 110 pin can be configured as a dedicated output, a
dedicated input, or as a bidirectional pin.

from frun from
Inp.lls vo MlUoceis

VOPin

Figure 4.3.2 Typical EPLD Macrocell Logic Diagram

Logic Array

Figure 4.3.2 is a diagram of a typical EPLD macrocell.

The logic array is a programmable-AND/fixed-OR programmable logic array. The
inputs to the AND array come from dedicated input pins, 110 pins, and from
macrocell feedback paths. Typically, both true and complement versions of any of
these signals are available as inputs to the programmable AND gates.

The macrocell shown in Figure 4.3.2 contains product tenns that can be used for both
combinational and sequential functions. Connections between the array inputs and the
product tenns are created during the programming process. One may think of a

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 193

Erasable Programmable Logic Devices 181

product term as an AND gate with many possible true/complement input signal pairs.
Any product term may be connected to the true or complement (or both or neither) of
any array input signal. If both the true and complement of any input signal are left
intact, a logical false results on the output of the product term. If both the true and
complement connections of any input signal are open, a logical "don't care" results
for that input. If all inputs for the product term are programmed open, a logical true
results on the output of the product term.

Several product terms feed a fixed OR whose output connects to an exclusive-OR
(XOR) gate. The second input to the XOR function is controlled by a programmable
resource (usually a product term) that allows the logic array output to be inverted.
Software products which support this architecture can take advantage of this XOR
function to implement active-high or active-low logic, complex mutually exclusive
and arithmetic functions, or to reduce the number of product terms needed to
implement a function (by applying De Morgan's inversion). Figure 4.3.3 illustrates an
example of an OR function that requires six product terms in its original form. By
using the "programmable" XOR gate and De Morgan's inversion, the OR function
can be transformed into a NAND function:

A+B+C+D+E+F= I (/A*IB*/C*ID*IE*IF)

This inversion from OR to AND allows the equation to be implemented in a single
product term.

De Morgan'. : h
-'I:;,;;nv8.:,;. ... :;,;on.:.:...- •• ; r

A-,..;~
B

C

o

Figure 4.3.3 Product Term Reduction Using De Morgan's Inversion

Programmable Flip-Flops

Programmable flip-flops are used to create a variety of logic functions that use a
minimum of EPLD resources. Each flip-flop can be progmmmed to provide a
conventional D, T, JK, or SR function. In some devices, the macrocell flip-flops can

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 194

182 FPGA Technology

also be configured as flow-through latches. Macrocell flip-flops may also have an
asynchronous Clear and Preset capability which allows complete emulation of many
commonly used TIL macrofunctions.

Programmable Clock

In many PLD architectures, the clock source for the macrocell flip-flop is
programmable. Each flip-flop may be clocked from a dedicated device input pin (also
known as a synchronous or global clock), or from any input or 110 pin, or any internal
logic function (via a product term). The product term clock source is often called the
array clock. A clock selection circuit associated with each flip-flop is programmed to
make the desired choice. Flip-flops can thus be clocked independently or in user
defined groups. Macrocell flip-flops are typically positive-edge-triggered with data
transitions that occur on the rising edge of the clock. Array clocks allow positive or
negative edge triggered clocks, gated-clocks and clock-enable logic to be
implemented. However, global clock signals have faster clock-to-output delay times
than internally-generated product term clock signals.

110 Control Block

Figure 4.3.4 illustrates the resources associated with a typical 110 pin. The 110 block
contains a tri-state buffer whose data input comes from a macrocell. The tri-state
function is controlled by a macrocell product term. 110 pins may be configured as
dedicated outputs, as bidirectional outputs, or as additional dedicated inputs. In most
PAL architectures (pAL 16R8 or 22VlO, for example) there is a physical coupling of
110 pins to macrocells. In such architectures, when an 110 pin is used as an input, the
macrocell associated with that pin cannot be used because the macrocell feedback
path is used by the 110 input signal. This is a waste of a valuable resource. More
recent architecture (e.g., MAX 5000 and MAX 7000) have "dual feedback", whereby
the macrocell feedback is decoupled from the 110 pin feedback. Dual feedback makes
it possible to implement a "buried" function in the macrocell while the 110 pin is used
simultaneously as a dedicated input. Applications that require many buried flip-flops
such as counters, shift registers, and state machines, or bus-oriented functions are
more easily accommodated by this type of programmable 110 block.

Design Security

All EPLDs contain a programmable Security Bit that controls access to the data
programmed into the device. If this feature is used, a proprietary design implemented
in the device cannot be copied or retrieved. ll1is feature provides a high level of
design security, since progranlffied data within EPROM or EEPROM cells is
invisible. The Security Bit that controls this function, as well as all other program
data, is reset by erasing tl1e EPLD.

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC
EX. 2077, p. 195

Erasable Programmable Logic Devices

from Macrocell OEControl

from Macrocell I/O Pin
~~~~----------~--;~>---.-----~~~ 

1 
Macrocell 
Feedback 

110 Pin 
Feedback 

Figure 4.3.4 EPLD I/O Pin with Dual Feedback 

Functional Testing 

183 

Because they are erasable and reprogrammable, EPLDs may be fully tested, and 
conformance to specification may be guaranteed. Complete testing of each 
programmable EPLD bit and all internal logic elements ensures 100% programming 
yield. Test programs may be used and then erased during early stages of the 
production flow. This facility to use application-independent, general-purpose tests, 
called generic testing, is unique to reprogrammable user-configurable logic devices. 
EPLDs also contain on-board logic test circuitry to allow verification of function and 
AC specifications of devices in windowless packages. 

Operating Requirements for EPLDs 

Most devices operate at a nominal power supply voltage of 5 volts (some 3.3 volt 
parts are also available). Input levels and output drive characteristics are consistent 
with TIL family characteristics. 

Certain precautions are required for trouble-free operation. Unused inputs must be 
tied to VCC or GND. Unused I/O pins should also be tied to VCC or GND. Each set 
of VCC and GND pins must be decoupled directly at the device. 

Whenever many output pins are switching simultaneously, system noise can be 
generated. This noise is usually seen on the Vcc supply or on adjacent quiescent 
outputs. In severe cases, this noise can cause unwanted triggering of flip-flops, either 
on the device itself or on other devices in the system. Evolving circuit design 
techniques have done much to eliminate the problem. However, faster slew rate 
outputs and higher drive capability of new devices make the circuit design problem 
ever more difficult. As a general precaution whenever a design allows eight or more 
outputs to switch simultaneously, special precautions in PC board design are 
recommended. Among these are: use of embedded V cc and GND planes, scrupulous 
use of decoupling capacitors, restriction of signal trace length to eight inches or less, 
and use of small series resistors (10 ohms to 30 ohms) on long traces or those with 
highly capacitive loads. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 196



184 FPGA Technology 

Architectural Evolution in Array-Based PLDs 

In the preceding sections the general features of array-based architectures have been 
discussed. The evolution began with the basic programmable AND array whose 
outputs feed either a fixed OR (the PAL structure) or a programmable OR (the FPLA 
structure) to produce sum-of-products logic implementation. Hip-flops were added to 
this structure to allow implementation of sequential functions. Many ancillary 
functions were then added to provide for better utilization of the parts. More flexible 
110 structures, programmable flip-flop clock control, programmable flip-flop types 
(e.g., D, 1-K, T) are examples of these enhancements. However, these early parts 
beginning with the PAL (MMI) and continuing through the 22VlO (AMD), the EPxxx 
series (Altera) and the GAL (Lattice) all were single array, globally connected parts. 
"Globally connected" means that the output signal(s) of every macrocell is fed back 
as an input to the logic array. 

A fundamental problem with simple expansion of macrocell-based PLDs is that as the 
number of macrocells grows by N, the programmable elements (e.g., EPROM or 
EEPROM bits) in the array which feeds those macrocells grows by N-squared [Wong 
1989]. There are two problems with increasing the bit count: first, the yield suffers 
because of the larger die size, and second, the delay through the array increases. Much 
of the architectural work that has gone on in array-based PLDs has been directed at 
breaking the N-squared array growth relationship to increasing complexity. It has 
been a primary focus of research at Altera, AMD, Lattice and others. In the sections 
that follow, we will explore the architectural evolution using three generations of 
products developed at Altera. As we look at each product, we will try to point out the 
problems that existed and the architectural solution that was implemented. While this 
treatment is not exhaustive, the discussion of these product architectures will provide 
a good basis for understanding the product architectures of other vendors. 

4.3.1 - The "Classic" Family of PLDs 

The original family of Altera EPLDs are grouped into what is known as the "Classic" 
family. The largest member of this family is the EP18 10. The architecture used in the 
EP1810 is an early attempt at breaking single, large, globally-connected arrays into a 
number of smaller "local" arrays with a connection structure between these local 
arrays. An understanding of the EP1810 architecture provides a good foundation for 
understanding the more complex MAX 5000 and MAX 7000 products to be described 
in a later section. 

Functional Description of the EP1810 

Figure 4.3.1.1 shows the complete block diagram of an EP1810 EPLD. The EP18 10 
device has four identical quadrants, each containing 12 macrocells. Internal bus 
structures in these EPLDs feed input signals into the macrocells. Macrocell outputs 
drive the external pins and internal buses. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 197



Erasable Programmable Logic Devices 

2(Fl) 110 

3(132) I/O 

'(131) 110 

5(H21110 

81H', tlO 

1(.12)110 

8(Jl) 110 

"11(1)110 

10(K2l llO 

lI(L2JI/O 

1211(3)110 

13(1..3)110 

,,(1<,) '''''''T 
15(U) ,,,,,,,T 
18(1(5) '''''''T 
17(\.5) INPUY,CLKI 

'D(LS) INPUTICLK2 

2O(K1l 

21(1..7) 

22(1(8) 

l3(LB) 110 

2'(KtI) lIO 

25(LO) 110 

26 (lIO) 110 

'''''''T 
'''''''T 
,,,,,,,T 

'Z1(Kl0) ,,I() ~r~..:::::~~-.r-., 

29lKl1) 110 ~J=t:::§~E=j;:;j 2D~'O) 110 lSi 
30 (Jll) 110 ~r~...:::::~~-.r-., 

31 (Hl0) 110 ~J=t:~~~=j;:~ 32 (H!') 110 ca 
33 (Ql0) 110 ~~t:~~~=~~-.J:;::: aA(Gl1J 110 IS 

Qua~anlD 

l/O.lEI) 

IIOQ(E2) 

110 88101) 

11085(02) 

1/0114(01) 

110 83(C2) 

110 82{Bl) 

1108'(62) 

1I080(A2) 

IK)SO(A3) 

UO sa1,'(3) 

IIO!i1CA') 

56(51) 

55(A5) 

INPUTICLK4 531"6) 

INPUTfCLK3 51(A7) 

SOte7) 

INPUT ""(All) 

C Giroal Maaocells 

D local MacfOCeiS 

.8(86) 

Figure 4.3.1.1 EP1810 Block Diagram 

185 

EP1810 EPLDs use CMOS EPROM cells to configure intemallogic functions. The 
architecture is 100% user-configurable, accommodating a variety of independent 
logic functions. Figures 4.3.1.2 and 4.3.1.3 depict the detailed macrocell architecture 
used in this device. 

EP1810 EPLDs have 48 macrocells, 16 dedicated data inputs, 4 global Clock inputs, 
and 48 I/O pins that can be individually configured for input, output, or bidirectional 
operation on a macrocell-by-rnacrocell basis. Each rnacrocell contains 10 product 
terms for the following functions: 8 product terms are dedicated to logic 
implementation; 1 product term is used for Clear control of the internal register; and 1 
product term implements either Output Enable or an array Clock. 

Of the 48 rnacrocells, 32 are local (see Figure 4.3.1.2) and 16 are global rnacrocells 
(see Figure 4.3.1.3). Local macrocells offer a multiplexed feedback path (with pin or 
rnacrocell feedback) and drive the local bus in their quadrant. Global macrocells 
feature two dedicated feedback paths: one feeds the local bus; the other feeds the 
global bus. This arrangement, called "dual feedback," allows global macrocells to 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 198



186 

OEJQK 

~ 2 .. 
~ 5 

ClEAR 

OEfQK 

~ 2 
.. 3 

~ " £. 5 

CLEAR 

Qualtanl 
GkbaiBus Local Bus Globat Qod( OEfQK 

~ •• 
.~ OE 

CU< 

~l-

-r 
-r 
-r ----r va 

Archilecture 
~ Cmlrol 
_l-

-.r 

... ... ... -D- Fee<back Select 

'---r---' U ~ 
Glroal Quadanl Quachnl 

Dedicaled Inptjs A. B, C, 0 lccal FeedJack 
(16 inpt.ts) Gklbal Feedlack (12 MacroceUs) 

(16 Macfooe .. s) 

n-
(j 

Figure 4.3.1.2 EP1810 Local Macrocell 

Gleba! Bus Lccal Bus 
Quad-ani 

Global aod< 

FPGA Technology 

va . 

r-K:!I 

~ ~ II 

.~. cu< OE 

,......, G 

H 
H 
H r-r va vOP r---r- Archilecture """ r-r Cmlrol r-r 
cJ-

-r>-... ... ... Lccal Bus 

Global8tJs 

L-r-----' L-r-----' '---r---' 
Global Duad-anl Ouaaani 

Dedicated InpulS A, B, C, 0 local Feecback 
(16 ~s) Global FeedJack (12 Macrocetls) 

(16 MacroceUs) 

Figure 4.3.1.3 EPl810 Global Macrocell 

implement buried logic functions while the associated 110 pin is used as an input. 
Dual feedback ensures maximum 110 flexibility. 

Each macrocell consists of a logic array, a tri-state 110 buffer, and a selectable register 
element that can be programmed for D, T, 11K, or SIR operation, or bypassed for 
combinational functions. Each macrocell also has programmable output polarity. The 
logic array has a sum-of-products (AND/OR) structure. The 88 inputs to the 
programmable-AND array come from true and complement signals of the 16 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 199



Erasable Programmable Logic Devices 187 

dedicated data inputs, the 12 local feedback signals, and the 16 global feedback 
signals. The EP1810 EPLD has a total of 480 product terms distributed among 48 
macrocells. Each product term represents an 88-input AND gate. 

Clock Options 

Each internal flip-flop in EP1810 EPLDs can be clocked independently or in user
defined groups. Each internal register may select its clock source from a dedicated 
global clock pin or a product term within the macrocell. Any input or internal logic 
function can be used as a clock. 

Four dedicated global clocks (CLKI to CLK4) also provide global clock signals to 
the flip-flops. One global clock is located in each quadrant; each of which is 
connected directly to an EP1810 external pin. Global clocks provide clock-to-output 
delay times that are faster than internally generated clock signals. Array clocks 
provide individual clocking on a macrocell-by-macrocell basis, either directly from 
pins or through internal logic. Array clock signals allow flip-flops to be configured for 
positive- or negative-edge-triggered operation. When global clocks are used, the flip
flops are triggered by the positive edge, i.e., data transitions occur on the rising edge 
of the clock. 

Segmentation 

The EP1810 was constructed using 4 quadrants, each containing 12 macrocells. These 
"clusters" of macrocells are called Logic Array Blocks, or LABs. 

N2 growth in the EP1810 was curtailed by going to a four quadrant (LAB) 
architecture. This arrangement provided local feedback to each LAB from the 12 
local macrocells and global connectivity to the other LABs from 4 of the 12 
macrocells in each LAB. 

This architectural concept is effective because logic can be partitioned into functions 
whose internal connectivity is high but whose external connectivity to other 
functional units is limited. The intra-connectivity of signals in the LAB is very rich 
(every macrocell output feeds every macrocell within the LAB), while the inter
connectivity between LABs is more limited (restricted to signals generated by the 
global macrocells). The concept of the LAB for local functions and global lines which 
allow communication between modules was significantly improved in the MAX SOOO 
series which will be discussed next. 

4.3.2 - The MAX (Multiple Array matriX) Product Family 

General Description 

The MAX SOOO family of EPLDs represent a significant step in the architectural 
evolution of programmable logic. Improvements in architecture, process technology 
and design result in significant increases in logic density, flexibility, and speed. The 
largest member of the family, the EPMSI92, replaces over 100 7400-series SSI and 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 200



188 

Macrocells 16 
Maximum Flip-Flops 21 
Maximum Latches 32 
Pins 20 

32 
42 
64 
28 

EPM5064 

64 
84 
128 
44 

EPM5130 
EPM5128 

0 0 
0 0 
0 0 
0 0 

128 
168 
256 

100/84/68 

Figure 4.3.2.1 MAX 5000 Family 

FPGA Technology 

EPM5192 

00 
0 0 
0 0 
0 0 
0 0 
0 0 

192 
252 
384 

100/84 

MSI packages, allowing integration of complete subsystems into a single package, 
saving board area, and reducing power consumption. 

The MAX 5000 EPLDs range in density from 16 to 192 macrocells (see Figure 
4.3.2.1). They are divided into two groups: high-speed EPLDs (EPM5016 and 
EPM5032) and high-density EPLDs (EPM5064, EPM5128, EPM5130, and 
EPM5192). The high-speed devices achieve system clock frequencies of 66 MHz, 
and are capable of attaining counter (of up to 32 bits) frequencies of 100 MHz, while 
the high-density parts achieve system clock frequencies of 35 MHz and counter 
frequencies of 62.5 MHz. 

The modular architecture of MAX 5000 EPLDs provides integration solutions over a 
wide range of logic densities. Because of the uniformity of the architecture, migration 
from one type of device to another is easy. For example, the EPM5128 and EPM5130 
EPLDs have the same logic capacity, but have packages optimized to handle different 
110 requirements. The EPM5128 comes in a 68-lead package, has eight dedicated 
inputs and 52 110 pins, while the EPM5130 comes in a l00-lead package and has 20 
dedicated inputs and 64 110 pins. Over the entire family, a wide range of packaging 
options for both through-hole and surface-mount applications is available. 

Logic Array Block 

The EPM5016 and EPM5032 EPLDs have a single Logic Array Block (LAB). The 
EPM5064, EPM5128, EPM5130, and EPM5192 EPLDs contain multiple LABs. 
Each LAB contains a macrocell array, an expander product term array, and a 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 201



Erasable Programmable Logic Devices 189 

decoupled 110 block (Figure 4.3.2.2). Expander product telTI1S (expanders) are 
unallocated, inverted product terms that can be used and shared by all macrocells in 
the LAB. In the higher-density devices (EPM5064 and larger), macrocell output 
signals are routed between multiple LABs by a Programmable Interconnect Array 
(PIA) that ensures 100% routability. This multiple array architecture enables MAX 
5000 EPLDs to offer the speed of smaller arrays (tMAX up to 62.5 MHz within the 
LAB of a EPM5192) with the integration density of larger arrays. 

11 

I 
N 
P 
u 
T 
S 

v...... 

11 

P 
I 
A 

,-------------
I 

1 Macrocell =r> 
110 

I Array Block 

1 
1 
1 

~ 

11: J 1 ... 
Expander 

I Product Term 

------, 
110 Pins 

~ 
~~ 

~ 
• • • 

lJIr-v 
Array 

I 

'-..--v 
1 ______ --------

Figure 4.3.2.2 MAX 5000 Logic Array Block 

MAX 5000 EPLDs contain from 1 to 12 Logic Array Blocks (LABs). Macrocells are 
the primary resource for logic implementation, but if needed, expanders can be used 
to supplement the capabilities of any macrocell. Flexible macrocells and allocatable 
expanders facilitate variable product term designs without the waste associated with 
fixed product term architectures. The outputs of the macrocells feed the decoupled 
110 block, which consists of a group of programmable tri-state buffers and 110 pins. 
In the EPM5064, EPM5128, EPM5130, and EPM5192 EPLDs, multiple LABs are 
connected by a Programmable Interconnect Array (PIA). All macrocell outputs are 
globally routed within a LAB and also feed the PIA to provide efficient routing of 
signal-intensive designs. 

Macrocells 

The MAX 5000 macrocell, shown in Figure 4.3.2.3, consists of a programmable logic 
array and an independently configurable register. This register may be programmed 
for D, T, JK, or SR operation; or as a flow-through latch; or bypassed for purely 
combinational operation. Combinational logic is implemented in the programmable 
logic array, which consists of three product terms ORed together that feed one input 
of an XOR gate. The second input to the XOR gate is also controlled by a product 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 202



190 FPGA Technology 

term. The output of the XOR gate feeds the programmable register. Expanders can be 
allocated to enhance the capability of the logic array. 

Additional product terms, called secondary product terms, are used for output enable, 
preset, clear, and clock logic. Preset and clear product terms drive the active-low 
asynchronous preset and asynchronous clear inputs to the configurable flip-flop. The 
clock product term allows each register to have an independent clock and supports 
positive- and negative-edge-triggered operation. Macrocells that drive an output pin 
may use the output enable product term to control the active-high tri-state buffer in 
the I/O control block. These secondary product terms allow 7400-series TIL 
functions to be emulated exactly. 

8t020 
Dedicated 

Inputs 

~:. ~~ 

Programmable 32 to 64 
Interconnect Expander 

Silinals Product li!rms 

Output Enable ~,.. Global Clock 

Preset 

~ 
Programmable 
Register 

r~!ri5-tnr ~~ I 
Array Clock r--

~ 
Clear 

... 
Macrocell and 1/0 Feedbacks 

Note: One 
global Clock 
per LAB 

Figure 4.3.2.3 MAX 5000 Macrocell 

Expander product terms 

to 1/0 
Control 
Block 

In programmable AND, fixed OR structures the chip architect must decide how many 
product terms is "enough" -- a typical choice has been eight. In some architectures 
[Kitson 1984] up to 16 product terms feed some OR gates. In most applications, eight 
product terms are more than enough, but are insufficient in some particular cases. 
This is consistent with the data published by Munoz [1987] which indicates that 
approximately 70% of all combinatorial functions require three (or less) product 
terms. Further, a substantial minority of functions require more than eight with the tail 
of the distribution exceeding 16. 

This presents a significant dilemma for the chip architect. The choice of a high 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 203



Erasable Programmable Logic Devices 191 

number of product terms per OR (e.g., eight or higher) will result in a larger, slower 
chip where many of the resources will typically be wasted. The choice of a low 
number of product terms per OR (e.g., three) can result in difficulty implementing 
more complex functions. 

The MAX 5000 architecture has three product terms per OR gate, which then feeds 
one input of an XOR gate, plus a fourth product term which feeds the other input of 
the XOR gate. 

This allows implementation of all three product term functions and many four product 
term functions in a single pass through the array. Expanders were added to 
accommodate more complex logic expressions. When expanders are used the 
architecture becomes more like a programmable-AND, programmable-OR structure, 
allowing implementation of the most complex functions. However, an additional 
delay (the expander delay) is incurred. 

The expander product term array (Figure 4.3.2.4) can be used and shared by all 
product terms in the LAB. Wherever extra logic is needed (including register control 
functions), expanders can be used to implement the logic. These expanders provide 
the flexibility to implement both register and product-term-intensive designs. 

Expanders are fed by all signals in the LAB. One expander may feed all macrocells in 
the LAB or multiple product terms in the same macrocell. Since expanders also feed 
the secondary product terms of each macrocell, complex register control and output 
enable logic functions can be implemented without using additional macrocells. 
Expanders can also be cross-coupled to build additional flip-flops or latches [Altera 
AB761990]. 

Clock Options 

Each LAB has two clocking modes: array and global. If array mode is chosen, each 
flip-flop is clocked by a product term. Thus, any input or intemallogic function may 
be used as a clock. This allows systems that require multiple clocks to be easily 
integrated. 

Global clocking is provided by a dedicated clock signal (eLK) from a single device 
pin. This direct connection provides shorter clock-to-output delay times. Each LAB 
has one global clock line which can be connected (programmably) to the global clock 
signal. If connected, all flip-flops within the LAB are positive-edge-triggered from the 
eLK pin. If the global clock is not connected to a particular LAB, then the flip-flops 
within the LAB are clocked by the individual array clock product terms associated 
with each flip-flop. If the eLK pin is not used as a global clock, it may be used as a 
dedicated input. 

I/O Control Block 

Each LAB has an 110 control block (Figure 4.3.2.5) that consists of a user
configurable I/O control function for each IJO pin. The IJO control block is fed by the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 204



192 

Lil' ~ il' 

8 to 20 Programmable 32 to 64 
Dedicated Interconnect Expander 

Inputs Signals Product lerms 

FPGA Technology 

to MacrclCell Array and 
Expander Product-Term Array 

~ il' ~ ~ ~~ 

A 

Macrocell and I/O Feedba cks 

Figure 4.3.2.4 MAX 5000 Expander Product Tenns 

from Macrocell OEControl 

from Macrocell Array 

Macrocell 
Feedback 

"0 Pin 
Feedback 

110 Pin 

Figure 4.3.2.5 MAX 5000 110 Control Block 

macrocell array. The tri-state buffer is controlled by a dedicated macrocell product 
tenn, and drives the 110 pad. 

Dual feedback -- a feedback path both before and after the tri-state buffer -- is 
employed for every 110 pin. This structure effectively decouples the 110 pins from the 
macrocells so that all macrocells within the LAB can be "buried." Thus, 110 pins can 
be configured as dedicated input, output, or bidirectional pins. In multi-LAB devices, 
110 pins feed the PIA. 

Programmable Interconnect Array 

The higher-density MAX 5000 devices (EPM5064, EPM5128, EPM5130, and 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 205



Erasable Progranunable Logic Devices 193 

EPM5192) use a Programmable Interconnect Array (PIA) to route signals between 
the various LABs. The PIA in the MAX 5000 devices is a fully populated cross-point 
switch. All 110 inputs and all macrocell outputs are inputs to the switch. There are 24 
output lines per LAB. Switch connections are made by programming EPLD bits at the 
intersection of each unwanted crosspoint. With this PIA structure, any macrocell 
output signal, or any 110 input signal, may be routed to any other macrocell input 
without the chance of being blocked. The only routing limitation is the 24 signal fan
in limitation. The PIA has a fixed, path independent, delay, which makes timing 
performance easy to predict. 

Multl-LAB EPLDs 

va Pin 

~ 

Single-LAB EPLDs 

VQPin 

~ 

Figure 4.3.2.6 MAX 5000 Timing Model 

Timing Model 

Timing within multi-array parts can be determined in software, either with a Static 
Timing Analyzer tool, or with models as shown in Figure 4.3.2.6. Fixed internal 
delays allow the user to determine the worst-case timing delays for any design. 

The timing models shown in Figure 4.3.2.6 may be used together with the internal 
timing parameters for a particular EPLD to derive timing information. External 
timing parameters are derived from a sum of internal parameters and represent pin-to
pin timing delays. Figure 4.3.2.7 shows the internal timing waveforms for these 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 206



194 

Input Pin 

110 Pin 

Expander Array 
Delay 

Logic Array 
Input 

Logic Array 
Output 

Output Pin 

Clock Pin 

Clock into 
Logic Array 

Clock from 
Logic Array 

Datafrorn 
Logic Array 

Register Output to 
local LAB Logic Array 

Register Output 
to ano1her LAB 

FPGA Technology 

Input Mode 

==x i I , 

!"--t --.! ==X c , 

------~i~---+i--------------
~tLAC. tLAD~! 

------------~x~----_+i-------
tCOMG-..i :.-

--------------------~i~l------__________________________________________ ~~~Ioo~~*======= 

Array Clock Mode 

tFl-1 i+--t"CH---+i i+--'",CL---+j tF -+! f--
J '~ V 
~ 

i V 

\,--1 ______ __ 

\'-----~I \'-----
i.-- tIC-----+! 

----------~V~---,--~\~----~I 
~tSU~tH__.z 

----~t i ir-------x,'-____ _ 
tRO' t4TCH~ !~tFD--+! i..-taR' tPRE--+! i+-'ro 

--------------~'--~t~------~t== 

! . 
~tp~~i ____________ ~xr------

Global Clock Mode 

tA ..... 1 !+--tCH-----+! i+--'CL-----+! tF-1 f-t-
Global !J q 'V; 

Clock Pin ----f , \! . 
: t"", 

\J,-' ______ __ 

G~~~!~~ n Vl"s \\.. __________ -JI,..--------"'\ 
i,'su,i. IH .' - '-----

Dat&from ~.' • l. __ ----------------------------------------
Logic Array ~ 

Clock from 
Logic Array 

Data from 
Logic Array 

Output Pin 

Output Mode 

\'----------'1 \'---__ _ 

Figure 4.3.2.7 MAX 5000 Switching Wavefonns 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 207



Erasable Programmable Logic Devices 195 

devices. Refer to Section 4.6 for further infonnation. 

4.3.3 - MAX 7000 

General Description 

The MAX 7000 family of EPLDs is a third generation architecture from Altera. The 
major goals of the MAX 7000 family are higher speed, lower power, lower cost, 
greater logic capability and more I/O for a given logic density. EEPROM technology 
is employed as the programmable element, allowing reprogrammability in non
windowed plastic packages. 

10 12 '" 
,. ,. 20 

Typical Gate Density· 
(in 1housan"'1 

Figure 4.3.3.1 MAX 7000 Pin Count Versus Gate Density 

MAX 7000 EPLDs use a multi-array style architecture to build devices with logic 
densities up to 10,000 gates. This family of EPLDs (shown in Figure 4.3.3.1) supports 
lO-ns pin-to-pin logic delays and 100-MHz system clock frequencies. Devices are 
housed in J-Iead chip carrier (JLCC and PLCC), pin-grid array (PGA), and quad fiat 
pack (QFP) packages, providing 44 to 288 pins. 

MAX 7000 EPLDs are the first programmable logic devices with progranunable 
speed/power optimization. Speed-critical sections of the design can run at high speed, 
requiring full power, while the non-speed critical sections can run at reduced speed 
while dissipating less than one-half of the power of full-speed operation. 

The multiple-array architectural concept, pioneered in the MAX 5000 family, has 
been studied extensively at Altera. For example, LABs of 4,8, 16 and 32 macrocells, 
both with and without expanders, have been considered. Fan-in to the LABs from the 
PIA was also varied. Each architecture variant was tested using a data base of over 
100 design files and evaluated for utility (how many designs fit), speed, and cost (die 
size). 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 208



196 FPGA Technology 

The MAX 7000 devices build on the information learned from this research. While 
the basic architectural choices such as LAB logic capability (e.g., 16 macrocells); 
global routing within the LAB; and a progranunable interconnect array are carried 
over to the MAX 7000 family, some significant changes have been made. The key 
architectural changes are described below. 

• A re-vamped PIA structure which provides significantly faster routing in the 
PIA. 

• Product term selection matrix in the LAB to more efficiently use the product 
term resources. 

• Ability to accommodate wide input OR functions (called parallel expanders) 
by borrowing unused product terms from adjacent macrocells. 

• Progranunable power saver mode. Each macrocell can be individually 
programmed to dissipate less power if lower speed performance is acceptable. 

• Substantial increase in pin-to-Iogic ratio in order to accommodate 1/0-
intensive data path applications and 32-bit microprocessor support logic. 

EnIlaneedmarrOCfl' 
proltdessl/alTrl 
pjaC8m6n1a1IOglcfrx 
OP!l'llllnSPQ8d1Jlld 

""'" 

1.18dlftllOlllflVO 
COU1Jffl8l1/saWidEl 
'lIf199oiaWicaJOO 

-" 

E,chLABallfNlSAJI 
flmulal,onoiTn. 
1unc1!o.r. 

PIA prol100S f!xf1d 
chIIaysbel~en,' 
/Q!1cr8S0IJ"CIlS 

Figure 4.3.3.2 MAX 7000 Block Diagram 

Functional Description 

The MAX 7000 architecture (shown in Fig. 4.3.3.2) includes the following five basic 
elements: 

• Logic Array Blocks 

• Macrocells 
• Logic expanders (shared and parallel) 
• Enhanced progranunable interconnect array 

• 110 control blocks 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 209



Erasable Programmable Logic Devices 

•• a ••••••••••••••••••••••••••••••••••• _____ •••••••••••• __ ...... __ • ____ •••• _______ ••••••••••• · . · . · . 

l_:f:~~l__~~~~:~ .. 

I PIA I'"" 
~------------------------------~ 

Figure 4.3.3.3 MAX 7000 Logic Array Block 

Logic Array Blocks 

110 
Control 
Block 

197 

The MAX 7000 Logic Array Block is shown in Figure 4.3.3.3. Each LAB contains 16 
macrocells, and up to 16 shared logic expanders. Shared expanders can provide 
additional logic resources to any of the macrocells in an LAB. Furthennore, since all 
macrocells within an LAB share logic inputs, if one macrocell uses a specific logic 
input or a shared logic expander, it is also available to all other macrocells within that 
LAB. 

Each LAB is fed by 36 inputs from the PIA, providing sufficient fan-in for the 16 
macrocells to implement a wide range of typical logic functions. If more inputs are 
needed (for example in very wide data paths) several LABs can be used in parallel. 

MacroceUs 

Macrocells within the LAB provide both sequential and combinational logic 
capability, thus ensuring the most efficient implementation of a wide range of logic 
functions. The MAX 7000 macrocell is shown in Figure 4.3.3.4. 

Each macrocell has one flip-flop that can be programmed for D, T, JK, or SR 
operation with programmable clock control, individually configured for each 
macrocell. If necessary, the flip-flops can be bypassed for combinational operation. 

Along with a programmable flip-flop, each macrocell also contains five basic product 
tenns. These product tenns can be allocated by a Product-Tenn-Select Matrix as 
primary inputs for combinational functions; as secondary inputs for individual Clear, 
Preset, Clock, and Clock Enable logic functions for the flip-flops; or as logic 
expanders to assist the generation of complex logic functions. 

In addition, global Clock, Clear, and Output Enable control signals come in directly 
from device pins, eliminating the logic array delay and minimizing control-function 
delays. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 210



198 

Lc9c Array (···_···············_···i 
-tt--tt---+-+-H!. I Paralel Logic 

: _ ! Expanders 

1· 1=:::) 
-tt--tt---+-+-HL. ............ _ .... 1 

Oodt 

GIob.1 Global 
Oear Oodc: 

Clear 

! LH.r---~~~~ 
i •• • ! Shared logic 
i ! ExPlVlderS 
'-......................................... : 

Programm able 16 Expander 
Interconnect Product 

Signals Terms 

Figure 4.3.3.4 MAX 7000 Macrocell 

FPGA Technology 

10 VOBiock 

The Clock Enable function allows flip-flops to be controlled by the logic array, even 
when they are clocked from the fast global Clock. This feature facilitates the 
implementation of high-speed synchronous designs. The Clock Enable function also 
allows each macrocell register to be clocked individually. 

Logic Expanders 

Whereas most logic can be implemented with the five basic product terms in each 
macrocell, some logic functions are more complex and require more product terms. 
Instead of using another macrocell to supply the additional logic resources, expanders 
are available to provide additional product terms directly to any macrocell. Unlike 
MAX 5000 EPLDs, which have only shared expanders, MAX 7000 EPLDs have both 
shared logic expanders and parallel logic expanders (see Figure 4.3.3.4). 

The 16 shared logic expanders in each LAB can be viewed as a pool of uncommitted 
single product terms with inverting outputs that feed back into the LAB. Use of 
shared logic expanders enables PLA-like flexibility by allowing each shared logic 
expander output to be shared across all the macrocells in an LAB. Shared logic 
expanders can also be used to build additional register functions such as input latches. 

Parallel logic expanders, on the other hand, utilize unused product terms which may 
be borrowed from one macrocell and assigned to an adjacent macrocell in the LAB to 
construct fast, complex logic. Parallel logic expanders are connected by the product
term-select-matrix in parallel with the five basic product terms in the borrowing 
macrocell. An additional delay of I to 3 nsec is incurred for this more complex logic 
function. 

The ability to allocate additional product terms to any macrocell means that logic can 
be synthesized with the fewest logic resources at the fastest possible speed. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 211



Erasable Programmable Logic Devices 199 

Programmable Interconnect Array 

The MAX 7000 enhanced PIA is a programmable wiring path between 110 pins and 
LABs and from one LAB to other LABs. The PIA allows any 110 or LAB signal 
source to reach any destination on the device. Although it is fed by all macrocell and 
110 pin feedbacks, this fast, low-skew PIA routes only those signals required to 
implement logic in each LAB. 

The MAX 7000 PIA, shown in Figure 4.3.3.5, introduces a very short, uniform logic 
delay (less than 3 nsec) into the logic signal path. This has been achieved through the 
use of a series of two-input AND gates that feed an OR function. An EPLD bit 
controls one input of the AND gate and regulates the selection of the PIA signal to the 
LAB. 

........................ _ •• e •• e ......................... u .......................... __ .............. ___ ••• _ ••• 

'----'----"<J-- to LAB 

~. -_ ....... - -.................. -....................................................................... . 

PIA Signals 

Figure 4.3.3.5 MAX 7000 Programmable Interconnect Array 

I/O Control Blocks 

As with other Altera architectures discussed thus far, the MAX 7000 architecture 
decouples 110 pins and macrocelliogic resources. If an 110 pin is used as a dedicated 
input, the macrocell can still be used for buried logic because an independent 
feedback path into the logic array is provided for both the 110 pin and the macrocell. 

MAX 7000 EPLDs provide two dedicated pins which can be used as global Output 
Enable signals. The choice of using a global Output Enable from a pin (as opposed to 
using a product term as was done on the MAX 5000 family) was to get maximum 
speed. Either OE pin can control the enable function of any output driver. The output 
driver can also be permanently enabled or disabled, in which case neither of the 
global OE signals is used. The OE input pins can also be used as general purpose 
logic inputs. 

Routing: MAX VS. FPGAs 

The ability to interconnect all points in the MAX 7000 architecture via the PIA 
ensures rapid, automatic design completion. Typical MAX 7000 designs can be 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 212



200 FPGA Technology 

automatically routed in minutes. Furthermore, MAX 7000 EPLDs provide a single, 
short uniform delay between any signal source and all signal destinations. In contrast, 
some programmable gate array architectures require significant manual intervention 
and can take hours to route. Furthermore, incremental, additive delays between 
various points can cause skew and glitch problems making additional iterations of the 
design necessary. 

Programmable Speed/Power Control 

The MAX 7000 family offers a progranunable speed/power tradeoff that supports 
reduced-power operation across selected signal paths or the entire device. Other PLDs 
(including PALs and some members of the Altera Classic family) offer half-power or 
quarter-power operation across the entire device usually at the cost of reduced speed 
across the entire device. In the MAX 7000 family, each macrocell can be programmed 
by the designer for either high-speed or low-power operation. The small (less than 5 
ns) speed penalty for (approximately) quarter-power operation applies only to those 
macrocells selected for low power. As a result, speed-critical portions of the design 
can run at high speed while the remainder of the design can operate at lower-power. 
Since only a small fraction of all gates operate at maximum frequency in most logic 
applications, this feature allows typical power savings of up to 50% when compared 
to standard PLD implementations. 

4.3.4 - MPLDs: Mask-Programmed Logic Devices 

General Description 

Mask-Progranuned Logic Devices (MPLDs) provide a masked alternative to EPLD 
designs. By using a generic CMOS process and removing all EPROM cells, 
considerable die cost savings can be achieved. MPLDs are appropriate for designs 
which are no longer likely to change and for which high volume is anticipated. A 
combination of EPLDs for proto typing and production ramp-up and MPLDs for high 
volume production provide both fast time-ta-market and low cost and low risk. See 
Figure 4.3.4.1. 

The EPLD-to-MPLD conversion requires no redesign effort. The MPLD is 
guaranteed to meet the worst-case AC and DC parameters of the original EPLD 
design. Test vectors are automatically generated as part of the conversion process. 

EPWIMPW Compatibility 

A MPLD is guaranteed to be pin-, function-, and timing-compatible with the original 
EPLD design. This guarantee ensures that the MPLD can replace the EPLD without 
interrupting production of the end system. 

Pin compatibility guarantees that both the pin-out and DC specifications of the MPLD 
match those of the original EPLD design. In addition, the MPLD typically will 
consume less than one-tenth of the power of the equivalent EPLD, depending on the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 213



Erasable Programmable Logic Devices 

Waveform 

Enter 
Design 

Figure 4.3 .4.1 EPLDIMPLD Development Flow 

design and operating conditions. 

201 

Functional compatibility of the MPLD is ensured by directly mapping the primitives 
within the EPLD (product terms, programmable flip-flops, etc.) to specially designed 
elements within the MPLD. A proprietary logic synthesis program that uses the 
Simulator Netlist File (SNF) generated by MAX+PLUS II software is employed in 
the conversion process. The SNF reflects the final synthesis, placement, routing and 
signal timing of the original EPLD design. The conversion process pays special 
attention to the wide fan-in product terms and the wide fan-out of macrocells 
commonly found in EPLD applications. 

MPLDs are guaranteed to meet the worst-case data sheet timing parameters of the 
corresponding EPLD. If the design engineer performs worst-case analysis of the 
EPLD, the same analysis will hold for the MPLD. Therefore, the timing of the 
original design and the overall system is maintained when the EPLD is replaced with 
an MPLD. 

Design/or Testability 

Test vector generation is one of the most time-consuming tasks required for ASIC 
design. A significant advantage of EPLDs over ASICs is that they are fully tested 
before they are shipped. The pattern programmed into the device is also verified at 
programming time. Application specific test vectors are not required. 

MPLD designs include a partial scan-testing structure that parallels the testability 
available in EPLDs. The partial-scan structure allows creation of test vectors with 
over 95% fault coverage for all stuck-at and open faults. This high fault coverage is 
maintained regardless of whether synchronous or asynchronous design techniques are 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 214



202 FPGA Technology 

used. [Ahanin 1992] 

The built-in design-for-testability frees the design engineer from the burden of 
creating a testable design and test vectors. In addition, customer-provided simulation 
vectors are optional and can be appended to the test vectors generated during the 
conversion process. 

N-to-J Conversion Option 

Many applications use multiple EPLDs on a single board for both prototyping and 
production. In some applications it may be desirable to perform prototyping with 
multiple EPLDs, and then convert the design to a single-device for high-volume 
production (see Figure 4.3.4.1). The EPLD-to-MPLD conversion program provides 
this capability with the "N-to-l" conversion option, which offers the benefits of 
developing with EPLDs even when production constraints require a high-density 
single-device solution. 

The N-to-l option allows a multi-EPLD design to be converted into a single MPLD 
that is function- and timing-compatible with the original multi-EPLD solution. The 
package and pin-out is determined by the application's requirements. A wide range of 
package options is available. 

Quick, Seamless Conversion 

One of the principal objectives of the EPLD-to-MPLD conversion program is to 
minimize the design engineer's involvement in the conversion. With an automated 
conversion process, the engineer is free to begin developing the next-generation 
project. 

The MPLD design flow chart (see Figure 4.3.4.2) shows how an EPLD is converted 
to an MPLD. The design engineer submits a "design packet" consisting of design files 
and design checklists from which a quotation is generated. Next, an engineer reviews 
the design and submits a Final Design Sign-off Form for customer approval. This 
form describes the specifications of the MPLD in detail. Following customer 
approval, the design conversion takes place. 

The design conversion includes netlist translation, logic synthesis, testability 
insertion, Automatic Test Vector Generation (ATVG), fault grading, timing analysis, 
place-and-route, post-route timing analysis, design validation, and the manufacture of 
the prototypes. The entire conversion, from final design sign-off to prototype delivery, 
takes less than 5 weeks (6 weeks for N-to-l conversion). Production quantities are 
delivered 10 to 12 weeks after the customer returns the Prototype Sign-off Form. 

Summary 

Two important design goals faced by engineers today are reducing time-to-market 
and system cost. Figure 4.3.4.3 illustrates that a combination of EPLDs and MPLDs 
can provide a solution that achieves these goals. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 215



Erasable Programmable Logic Devices 

Customer 

Submij Design 
Packet 

Final Design Sign-Off 

Prototype Sign-Oil 

Altera 

Ship MPLDs 

Evaluation 

Review 

Conversion 
(5 weeks; 
6 weeks for 
N-to-1 MPLDs) 

Prototype 
Evaluation 

Production 
(10 to 12 weeks) 

Figure 4.3.4.2 MPLD Design Flow Chart 

203 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 216



204 FPGA Technology 

Cost 

Product Life Cycle 

Figure 4.3.4.3 EPLDIMPLD Cost Versus Volume 

4.4. Software 

In previous sections the architectures of three EPLD product families were discussed 
in some detail. However, the philosophy of most PLD suppliers is that a logic 
designer need not understand the inner complexities of EPLD architectures. The user 
may work with familiar design entry tools (e.g., TTL functions or a high-level design 
language), and software should automatically translate design intent into the format 
required to fit the chosen EPLD architecture. 

For optimum results, software products are developed together with and impose a 
significant influence on the EPLD architectures. Software tools that support familiar 
design entry methods and rapid design completion are the desired result. In this 
environment a user can take a logic circuit from design entry to device programming 
in a matter of hours (see Fig. 4.4.1). Design processing is typically completed in 
minutes, allowing many design iterations to be completed in a single day. 

Typically, software is available for X86 PCs and Sun, HP, DEC and other workstation 
computers. Many design entry options are available: hierarchical schematic capture 
(with basic gate and complete TTL libraries), the hardware description language 
(AHDL, VHDL and Verilog), Boolean equation, truth table, netlist. and waveform 
entry. (See Figure 10.2) Design entry methods may be freely combined to create a 
single EPLD design. Design compilers perform minimization and logic synthesis, 
design fitting (analogous to automatic place-and-route), and generate programming 
data. Design verification via functional simulation, timing simulation, and delay 
prediction for speed-critical paths is also available. Hardware for programming 
EPLDs is offered by Altera and many PLD programmer manufacturers. Software 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 217



Erasable Programmable Logic Devices 205 

intetfaces to other design tools are provided by translators, and via industry-standard 
EDIF [ANSI 1988] [Datta 1991] netlists. Many third-party compilers also support 
EPLDs directly. 

less than 
1 hour 

5 seconds 
to 

30 minutes 

2 
hours 

less than 
2 

minutes 

Figure 4.4.1 EPLD Design Methodology 

Design Entry Design Compilation 

S<:h&maic CaptLre I MAX.PLUS III I MAX.PLUS I 
AHDL 

Waveform 

I I I SAM.PLUS I A+PLUS 
Boolean Equation 

Slate Machine 

Truth Table 

Aswrnbly Language 

Third-Party Design Entry 
(Partial List) 

I Cadence I 
I Menb' Graphics I EDIF EDIF 

I Viewlogic ~ 
Figure 4.4.2 Altera Design Environment 

MAX + PLUS II 

Design Verification 

I F\.Ilctionai Simulaion ~ 

I Timing Simulation I 
I Timing Analysi& I 
I Functicnal TeAng ~ 

Third-Party Simulation 
(Partial List) 

I C_nco I 
I Ment>r Graphic:& I 
I Viewlogic ~ 

AItera's current generation of PC-based CAE tools, MAX+PLUS II, runs in the 
Windows environment on PCs and in the Motif environment on workstations. The 
key features ofMAX+PLUS II are listed below. 

MAX+PLUS II Features 

• Single, unified development system providing support for AItera's Classic, 
MAX 5000 and MAX 7000 EPLDs. 

• Runs under Microsoft Windows. 

• intuitive graphical user interface 

• efficient memory management 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 218



206 FPGA Tecbnology 

• multi-tasking capability 

• extensive printer/plotter support. 

• Hierarchical graphic, text. and waveform design entry: 

• Graphic Editor for schematic-based designs 

• Text Editor for high-level textual descriptions 

• Waveform Editor for design entry and editing/viewing simulation results 

• Applications run concurrently, allowing multiple editors to be active 
simultaneously, while simulations or compilations run in the background. 

• Automatic error location is provided in the Graphic, Text, and Waveform 
Editors. 

• Partitioning automatically divides large designs into multiple EPLDs. 

• VHDL, Verilog and AHDL support. 

• Logic synthesis and minimization. 

• Functional simulation for detailed functional debugging. 

• Interactive timing simulator supports multi-EPLD designs and probes for 
viewing internal nodes. 

• Bidirectional Electronic Design Interchange Format (EDIF 2 0 0) nellist 
interface. 

• On-line, context-sensitive help. 

General Description 

MAX+PLUS II includes design entry, compilation, multi-chip partitioning, timing 
simulation, and device programming support. Figure 4.4.3 shows a block diagram of 
MAX+PLUS II. 

MAX+PLUS II supports three hierarchical design entry mechanisms: (1) schematic 
designs are entered with the Graphic Editor; (2) text descriptions using AHDL or 
EDIF 2 0 0 netlists are entered with the Text Editor; and (3) waveforms are entered 
with the Waveform Editor. All editors can be used concurrently, with multiple files 
open at a time. A library of over 300 7400-series TTL and custom macrofunctions for 
both schematic and text designs is included. 

The Compiler synthesizes and optimizes designs using advanced logic synthesis and 
minimization techniques together with heuristic fitting rules to efficiently place and 
route the design within an EPLD. A programming file is created by the Compiler to 
program the EPLDs. 

The multi-device partitioning automatically splits large designs (beyond the capacity 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 219



Erasable Programmable Logic Devices 207 

Design Entry Project Processing 

MAX+PLUSII MAX+PLUS II MAX+PLUS II Compiler 

ilxt Edrtor Graphic Edrtor COf11liler Netlist 0 III Database I Logic 
ExtractorlEDIF NellIS! 8 Old S th ° 

Reader UI er yn eslZer 

I Design Doctor II Partrtioner II Fitter I MAX+PLUSII MAX+PLUSII J 
FunctionallTiming ! I ~EDIFlVerilog I B Wavehrm Edrtor Symbol Edrtor 

Simulator NeHist File Nellist Asserrbler 
Extractor Wrtter 

I MAX+PLUSII 

ProjectVer~ication 

\ Message :rocessor 

Hierarchy Display 
J Device Programming 

MAX+PLUS II MAX+PLUSI 
Simulator Waveform Edrtor T ..... MAX+PLUS II 

Programmer 

MAX+PLUSII 
Timing Analyzer 

Figure 4.4.3 MAX+PLUS II Block Diagram 

of a single EPLD) into multiple EPLDs, allowing the user to create large system-level 
designs. 

The Simulator performs event-driven timing simulation. It supports multi-EPLD 
simulations and interactively displays timing results in the Waveform Editor. With the 
Waveform Editor, the user can enter, modify, and group input vectors; view 
simulation errors; and compare simulation runs. 

The Compiler reports any design errors to the Message Processor, which 
automatically highlights the source of an error in the Graphic, Text, or Waveform 
Editor. MAX+PLUS II is fully integrated with the Windows Clipboard. The designer 
uses the Clipboard to quickly copy design information from one editor to another, 
while extensive on-line help provides instant information on all aspects of the system. 
The Hierarchy Display lets the designer move between hierarchical design files by 
simply selecting an icon. 

Design Entry 

Design entry files - graphic, text, and waveform - can be mixed freely. In addition to 
VHDL, Verilog and AHDL Text Design Files, MAX+PLUS II also accepts EDIF 2 0 
o netlists produced by CAE tools from vendors such as Cadence, Data 110, Mentor 
Graphics, orCAD, Synopsys and Viewlogic. 

The Graphic, Symbol, Text, and Waveform Editors can open windows on several files 
at the same time. For example, a Waveform Editor window can display simulation 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 220



208 FPGA Technology 

results, while the Text Editor shows an AHDL description. At the same time, the user 
can open two windows of the Graphic Editor that display different levels of a design's 
hierarchy, or even show different areas of the same design file. If one design is 
displayed in two windows of an editor, any edits made in one window are 
automatically reflected in the other. 

Graphic & Symbol Editors 

The Graphic Editor (Figure 4.4.4) provides a convenient tool for schematic design 
entry. Designers can enter probes into the schematic to trace a specific signal (e.g., 
flip-flops, logic outputs) during simulation. Tag-and-drag editing can be used to 
quickly move individual symbols, groups of items, or entire areas. During a move, a 
net can be broken or connections can be preserved with orthogonal rubberbanding. 
Other Graphic Editor features include the ability to group nodes into buses, locate the 
source and destination of nets, and make quick net name changes with the search-and
replace feature. 

The Compiler automatically generates a symbol that represents a design file, which 
can then be used in a higher-level schematic. The designer can use the Symbol Editor 
to modify input and output pin placement or to customize the appearance of an 
automatically created symbol. 

To 
18· . 
1-.-.-' . ....,.10" .. : .............. : .. 
i= 

~ 
~ 
• 

18 

D • ". " .. 
~ .. 
~. 

H H aN 

" .. ~ •• OOUT 

•• UP' ~ •• UP 

"C"I'III ~ .IE .... 
DL ... ~ DL". 

Figure 4.4.4 MAX+PLUS II Graphic Editor 

Text Editor & AHDL 

". 
u .. .. ... 
u 
..UT 

• • 

The Text Editor lets the user view and edit any ASCII text file in the MAX+PLUS II 
environment, including AHDL Text Design Files, Vector Files, Report Files, and 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 221



Erasable Programmable Logic Devices 209 

EDIF netlists. A Text Editor window that contains a Text Design File is shown in 
Figure 4.4.5. The AHDL language syntax supports arithmetic and relational 
operations such as addition, subtraction, equality, and magnitude comparisons. 
Standard Boolean functions, e.g., AND, OR, NAND, NOR, XOR, and XNOR, are 
also included. Since AHDL supports groups, operations can be performed on a byte
or word-wide basis as well as on single variables. AHDL also allows the designer to 
specify the location of nodes within Altera EPLDs. Together, these features make it 
easy to implement complex designs in a concise, high-level description. 

-J lAAX+Jllus 11- d:\m8X2wor\c\tutorial\llme I:nt- e)(! Editor - time cnt.tdfl . . T 

-I MAX+plus II [ile Edit Assign Utilities ~tions Window Help; 
SUBDESIGN ti __ cnt. 

+ 
( 

enable. elk INPUT. 
ti .... [7 .. DI : OUTPUT; 

) 
VARIABLE 

==t[7 .. 01 : DFF; 
BEGIII 

==t[].clk • elk; 
ti .... [ ] • count [ I; 

IF enable THEN 
count[ ) • count.!) .. 1; 

ELSE 
count[ ) 

END IF;I 
• count!]; 

EIID; 

I 

+ 
Unc 16 ICol 12 INS + • 

Figure 4.4.5 MAX+PLUS II AHDL Environment 

Waveform Editor 

The Waveform Editor (Figure 4.4.6) is used to create and edit waveform designs. In 
addition, the Waveform Editor functions as a logic analyzer that allows the designer 
to view and edit simulation results. 

Designs that generate timing signals are best described with waveforms. The 
Compiler's waveform synthesis algorithms automatically generate logic from user
defined input and output waveforms. 

Registered and combinational logic as well as state machines can be described with 
waveforms. The Compiler determines the optimal number of state bits and state 
variable assignments. 

The Waveform Editor includes features to define and modify Waveform Design Files 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 222



210 FPGA Technology 

and input vectors for simulation. The designer can: 

• copy, cut, paste, repeat, and stretch waveforms; 

• add or delete internal nodes, flip-flops, and state machines; 

• combine waveforms into binary, octal, decimal, or hexadecimal buses; 

• compare the differences between two simulations by simulating a design, 
editing the input vectors, and then simulating the design again. The Waveform 
Editor superimposes the output waveforms for easy comparison. 

-I MAX.plu8 11- d:\ma>C2worlt\lutorlal\clliptrip -/Waveform Editor - speed eIl.wdll I· • 
-I MAX+plus II file f:dlt l/Iew !!lode Assign Ydlltles Opdons Wlnd_ Help; 

iiiElao:a:Un 

I~~:T I 0 I r 1 r 1 m: • 
"".et INPUT o I 
a3c1k lIT .. 
CDpeed -I Enb:rNad" 

~ct_dcla:t .!!lode Name: 1 
~ 

I r----
Default !lalue: 1 X 

10 
UOIypc-

~ O!nput PIn 
o OlltputPln 1 ~Dncel I 
~ Elurled NDd" 

FDrWlIVelorm Design Ale /WDF) Only 

Nodelvp"- Secondary Inp uta 

o etn Input Cloclc: 1 10 o Beglstered 
f\c.set: 1 10 o Combin .. orial 

./ilac:hlnc Prel!et:1 10 r----g 
Q nme: 10.Ons I !:tEl Ref:lO.Ona II:!EI Interval: 10.Ona I • • • 

Figure 4.4.6 MAX+PLUS II Waveform Editor 

Hierarchy Display 

The Hierarchy Display shows the current project hierarchy - including all lower-level 
design files - which can be a mixture of graphic, text, and waveform files. The user 
selects one or more files, and MAX+PLUS II then opens the appropriate editor to 
display the design. This "context-sensitive editing" feature makes it easy to move 
around the project hierarchy. 

Clipboard 

The Windows 3.0 Clipboard is a temporary storage location that allows users to pass 
design information between editors. Text from a Text Editor file can be copied into 
the Graphic, Symbol, and Waveform Editors. Schematics can be copied between 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 223



Erasable Programmable Logic Devices 211 

Graphic Editor files, and waveforms can be pasted from one Waveform Editor file to 
another. Information can also be pasted into other Wmdows 3.0 applications. 

Macrofunction Library 

The MacroFunction Library contains over 300 7400-series TIL, bus, and EPLD
optimized functions. All have been optimized for speed and device utilization, and all 
perform true TIL emulation. Table 1 lists some of the macrofunctions currently 
available. 

Table 1. Partial List of MAX +PLUS II Macrofunctions 

Type 

Adder 
ALU 
AND-OR Gate 
Comparator 
Code Converter 
Counter 

Decoder 

Encoder 
Frequency Divider 
Latch 

Multiplier 
Multiplexer 
Parity Generator 
Register 

Shift Register 

SSI Gate 

EDIF Support 

Macrofunctions 

8FADD, 7480, 7482, 7483, 74183, 74283, 74385 
74181, 74182, 74381, 74382 
7452 
8MCOMP, 7485, 74518, 74684, 74686, 74688 
74184, 74185 
4COUNT, 8 COUNT, 16CUDSLR, GRAY4, UNICNT, 7493, 
74160, 74161, 74162, 74163, 74190, 74191, 74192, 74193, 
74393 ... 
7442, 7443, 7444, 7445, 7446, 7447, 7448, 7449, 74138, 
74139, 74154, 74155, 74156 ... 
74147, 74148 
FREQDIV, 7456, 7457 
INPLTCH, NANDLTCH, NORLTCH, 7475, 7477, 74116, 
74259, 74279, 74373 ... 
MULT2, MULT4, MULT24, 74261... 
21MUX, 74151, 74153, 74157, 74158, 74298 ... 
74180, 74280 
7470, 7471, 7472, 7473, 7474, 7476, 7478, 74173, 74174, 
74175,74178,74273,74374 ... 
BARRELST, 7491, 7494 ,7496, 7499, 74164, 74165, 74166, 
74179,74194,74198 ... 
CBUF, INHB, 7400, 7402, 7404, 7408, 7410, 7411, 7420, 
7421 

MAX+PLUS II has a built-in bidirectional EDIF 2 0 0 netlist interface, providing a 
convenient bridge to popular CAE schematic capture, synthesis and simulation tools. 
Any CAE software package that produces EDIF 2 0 0 netlists can export designs to 
MAX+PLUS II with Library Mapping Files (.LMF) that convert vendor CAE 
functions to equivalent Altera primitives and macrofunctions. Altera provides a 
number of ready-made LMFs for popular software packages from vendors such as 
Mentor GraphiCS, Cadence, and Viewlogic, but users can also create their own LMFs 
to map any CAE software library. MAX+PLUS II then automatically generates a 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 224



212 FPGA Technology 

symbol from a translated EOIF file, so that the file can be directly incorporated into a 
schematic or AHDL design. 

EDIF netlists can also be exported from MAX+PLUS II to third-party CAE tools, 
allowing the user to simulate EPLO designs on the workstation of choice. Output 
Mapping Files can convert Altera primitives and macrofunctions to equivalent 
workstation functions. 

Design Processing 

The MAX+PLUS II Compiler processes designs for all Altera general-purpose 
EPLOs, including the Classic, MAX 5000. MAX 7000, and STG EPLOs (see Figure 
4.4.7). 

-

----------c~-------------I 

Cem .. l .. 

1 
1 

-I 

I 
_J 

. -
1a=:J~~BB~B =.!.. 6ui~er ab ~ fHta" :!"actw .... ~.Wer 

i£ ~ 

I' Z! "j 
~ ~ 

Figure 4.4.7 MAX+PLUS II Compiler 

Compiler options simplify design processing and analysis. The user can specify the 
degree of detail of the Report File that shows how an EPLO has been utilized. The 
user can also specify the target EPLO family for the design, and whether or not the 
Compiler should extract a Simulator Netlist File for simulation within MAX+PLUS II 
and an EOIF Output File for third-party simulators. 

The first module of the compiler, the Compiler Netlist Extractor, extracts the netlist 
used to define the design. This module also contains a built-in EOIF Netlist Reader. 
The Compiler Netlist Extractor checks design rules for any errors. If errors are found, 
they are passed to the Message Processor, which can then locate them in the 
appropriate editor. A successfully extracted design is built into a database and passed 
to the Logic Synthesizer. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 225



Erasable Programmable Logic Devices 213 

The Logic Synthesizer module invokes algorithms that translate and optimize the 
user-defined logic to make the most efficient use of the resources of the target 
architecture. The Logic Synthesizer uses expert synthesis rules based on the target 
architecture (Classic, MAX 5000, MAX 7000, or STG ) to factor and map logic 
within the chosen EPLD structure. 

For simple PLD architectures, the conventional logic synthesis algorithm has been to 
expand the designer's logic to a sum-of-products form and then minimize the sum of 
products to arrive at an expression containing a minimum of product terms. If the 
final expression is within the product term limit for the target device, then the 
algorithm is successful. If not, the user must change the design and try again. 

MAX-family EPLDs incorporate XOR gates and sharable, multi-level expander 
product terms that can be allocated wherever additional combinational logic is 
needed. Figure 4.3.2.3 shows a diagram of the architecture of a MAX EPLD. 

The Logic Synthesizer simultaneously applies several techniques to implement 
design logic in the targeted device. It keeps track of the method(s) that use the fewest 
resources (i.e., expander product terms), and keeps only the results of the best 
method. The synthesis algorithm uses all combinations of techniques that are 
applicable in a given situation. Techniques that take advantage of the XOR gate are 
applied in combination with those that use the expander product terms to arrive at the 
best synthesis. 

Eight of these logic synthesis techniques are summarized below. 

1. Expansion to and Minimization of the Sum of Products 

The design logic is expanded to a sum-of-products form, after which the 
minimization algorithm calculates the sum-of-product form with the minimum 
number of product terms. 

2. Fitting Directly 

If the logic can be expressed in a sum-of-products form without using more product 
terms than are available in the device, then the logic is placed directly on the product 
terms. Therefore, in MAX EPLDs, if the expression has three or fewer product terms, 
it is placed directly on the three product-term inputs of the XOR gate. (See Fig. 
4.3.2.3.) 

3. DeMorgan's Inversion 

The Logic Synthesizer also tries both the original form and the complemented form of 
the design logic, in an attempt to use fewer product terms (the second input of the 
XOR gate is used to reinvert the logic). DeMorgan's inversion and techniques #1 and 
#2 above are essentially the only logic synthesis methods used in the previous 
generation of programmable logic compilers. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 226



214 FPGA Tecbnology 

4. Fitting on Expanders 

If an expression has too many product terms to fit directly, each of the product terms 
can be placed on an expander product term that is essentially a NAND gate. All of 
these expander product terms are then ANDed together on one of the product terms of 
the XOR gate, while the other input is used to invert the final result. (See Figures 
4.3.2.3 and 4.3.2.4.) This is a straightforward NAND-NAND implementation that can 
always be used, no matter how many product terms there are in the sum-of-products 
expansion of the design logic. 

5. Using XOR Gates in the Design 

Instead of immediately expanding the design logic to a sum-of-products form, the 
Logic Synthesizer first checks whether the design uses an XOR gate as the first gate 
of the network of combinatorial gates. It then tries all possible ways to fit the inputs of 
the design's XOR gate onto the inputs of an XOR gate in a macrocell. Thus if P and Q 
are the inputs to the User's XOR gate, the Logic Synthesizer will try all four valid 
ways of placing P, Q, not P, and not Q on the "3 and 1" product term inputs of the 
macrocell's XOR gate (i.e., try XOR (Q, P), XOR (P, Q), XOR (not Q, not P) and 
XOR (not P, not Q) ). 

6. Factoring 

The Logic Synthesizer also tries to factor a sum-of-products expression into a multi
level sum of products of sums which can be implemented on the expander product 
terms using NAND-AND-OR logic. The algorithm finds subsets of product terms that 
differ by only a single factor. These subsets are then factored into a sum of single 
factors ANDed with the remainder of the products. This sum is then factored out and 
treated as a single factor for the rest of the analysis, which continues to search for 
additional factorable subsets. 

For example, the following sum-of-products form would naively (by technique #4) 
require six product terms. It can be transformed as shown below to use only two 
expander product terms (* is the AND operator, + is the OR operator, $ is the XOR 
operator, and / is the prefix inversion operator): 

z =a*b*c*p*x 
+a*b*c*p*y 
+a*b*c*q*x 
+a*b*c*q*y 
+a*b*c*r*x 
+ a * b * c * r * y; 

after factoring once: 
z = a * b * c * (x + y) * p 

+ a * b * c * (x + y) * q 
+ a * b * c * (x + y) * r; 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 227



Erasable Programmable Logic Devices 

after factoring again: 

z = a * b * c * (x + y) * (p + q + r); 

and after converting to NAND for the expander product terms: 

z =a*b*c 
* I(lx * Iy) 
* I( Ip * Iq * Ir ); 

215 

Thus the final expression uses only one product term and two expander product terms 
(the expressions in parentheses are implemented on expander product terms). 

7. Finding Co-sets 

This method begins with an algorithm that divides a sum-of-products expression into 
two subsets of product terms, such that whenever one of the subsets is true, the other 
is false. If two such sets are found, they are implemented on the XOR gate (when only 
one input is true at any given time, the XOR will function as an OR gate). The 
algorithm used to find two cosets of product terms starts by considering all possible 
pairs of product terms. If a pair of product terms has a common factor that is used in 
opposite polarity, then they are considered as potential seeds of the two cosets of 
product terms. After a pair is found, the remaining product terms are examined 
individually to determine whether they fit into the coset with the first or second 
product term. If a product term cannot go into either set, the original seed pair is 
discarded and another is tried until two cosets are found or until all pairs have been 
tried. 

A 4-to-l multiplexer provides a good example of this technique: 

Q =A*X*Y 
+B*X*/y 
+C*IX*Y 
+D * IX * /Y; 

The multiplexer fits on the XOR gate as follows (using NO expander product terms): 

Q =(A*X*Y 
+B*X*/y 
+C*IX*Y) 
$ ( D * IX * /Y); 

8. Using the XOR as Expansion Logic 

If the expression to be synthesized is the inverse of a sum of some number (N) of 
product terms (where N is greater than three for a MAX macrocell), this technique 
can always fit the logic using N-3 expander product terms. This technique relies on 
the following identity: 

if 

Q = IC Ai + _ Bj ); 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 228



216 FPGA Technology 

then 

Q = ( C Ai ) * _lBj ) $ ClBj ); 

which becomes evident when it is shown that Q is true if and only if all Ai and all Bj 

are false in both expressions. (Ai and Bj represent product terms.) 

For example, the following inverted expression (which naively would require five 
expander product terms by technique #4 above): 

Q = / ( A * B * C + D * E + F * G + H * I + J * K ); 

becomes a "3 and I" product term expression using the XOR: 

Q = ( ( A * B * C + D * E + F * G) * IX * IY ) $ ( IX * IY ); 

and only two expanders: 

X=H * I; 
Y=J * K; 

For large system-level designs, the Partitioner is invoked. The Partitioner uses a 
sophisticated "Min-Cut" algorithm [Kernighan 1970] [Fiduccia 1982] to separate the 
logic design into multiple EPLDs from the same family, relieving the designer of the 
time-consuming task of manually splitting a large design into smaller designs. The 
user can control the design's partitioning by entering specific chip assignments for 
flip-flops and pins in the source design files. 

After partitioning, the Fitter applies heuristic rules to optimally place the synthesized 
design into one or more chosen EPLDs. In devices wilh PIA structures - i.e., larger 
MAX 5000 and MAX 7000 EPLDs - or with local/global bus structures such as the 
EP1810 EPLD, the Fitter also automatically routes signals across this interconnect to 
relieve the designer of tedious place-and-route tasks. The Report File issued by the 
Fitter shows design implementations as well as any unused resources in the EPLDs. 

The Simulator Netlist Extractor generates a netlist from the compiled design if the 
user desires simulation or timing analysis data. 

The EDIF Netlist Extractor can produce an EDIF 2 0 0 netlist that contains all post
synthesis function and delay information for the completed design, so that it can be 
integrated into a workstation environment [Altera 1991]. 

Finally, the Assembler module creates one or more Programmer Object Files (POF) 
and/or JEDEC Files from the compiled design. The MAX+PLUS II Programmer uses 
these files and standard Altera hardware to program the desired EPLDs. 

Message Processor 

The MAX+PLUS II Message Processor is the clearinghouse for all messages 
generated during compilation, simulation, timing analysis, and programming. For 
example, if an error occurs during compilation, the Message Processor displays a 
brief description of the error. The user then selects the error message, chooses the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 229



Erasable Programmable Logic Devices 217 

Locate button, and the troublesome logic is highlighted in the appropriate editor. Or, 
if a set-up time violation occurs during simulation, the Message Processor invokes 
not only the Waveform Editor to highlight the portion of the simulation waveform 
where the violation occurred, but also the appropriate editor to show the specific flip
flop location. 

Functional Simulation 

Functional simulation (Figure 4.4.8) allows the user to test the logical operation of a 
design before compilation is completed. The designer can quickly identify and correct 
logical errors in a design without first having to synthesize, partition, and fit the logic 
into an EPLD. Functional simulation is performed in the MAX+PLUS II Simulator. 
The Waveform Editor displays the results of functional simulation and provides easy 
access to all nodes in a design, including combinational functions. 

-I Simuilltor: Timing Simuilltion 1·1· 
Simuilltion TIme: O.Ons 

StArt TIme: I O.On 8 1 f.nd Time: 1200.0ns 1 
DYse Device D Oscillation 1 1 
D SetupJl-lolJl 

D Glitch 1 1 o ~hcct Outputs 

1
10 

~ 1001 1 

I ~tart I 1 P.~lu(ie 1 1 S~(lp 1 

Figure 4.4.8 The MAX+PLUS II Simulator 

TIming Simulation 

The designer either defines input stimuli with a straightforward vector input language, 
or draws waveforms directly with the Waveform Editor. Simulation results can be 
viewed in the Waveform Editor, or printed out as table and waveform files. 

The Simulator uses the Simulator Netlist File extracted from a compiled design to 
perform timing simulation with O.1-ns resolution. The user can specify commands 
either interactively or in a batch file to perform a variety of tasks, such as halting the 
simulation when user-defined conditions are met or forcing flip-flops high or low. 

If flip-flop setup or hold times have been violated, the Simulator warns the user, 
sending the information about where and when the problem occurred to the Message 
Processor. Also, if the user-defined minimum pulse width and period of oscillation are 
violated during simulation, the Message Processor locates the offending node in the 
original design file, and displays the time at which the problem took place in the 
Waveform Editor. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 230



218 FPGA Technology 

Differences between two simulations are viewed in the Waveform Editor, where the 
simulation results can be superimposed for easy comparison. 

Timing Analysis 

MAX+PLUS II software includes analysis tools for analyzing the timing of a 
completed design. The user simply tags start and end points in the Graphic, Text, or 
Waveform Editor to enable the Timing Analyzer to determine the shortest and longest 
propagation delays. The Timing Analyzer also determines setup and hold 
requirements at device pins, as well as maximum clock frequency. Critical paths 
identified by the Timing Analyzer can be highlighted in the editors. 

Device Programming 

All hardware and software necessary for programming, verifying and functionally 
testing EPLDs is available from Altera. The programming hardware includes an add
on card (for IBM PC-AT, PS/2, or compatibles) that drives the Master Programming 
Unit (MPU). The MPU supports functional testing, so that vectors developed during 
simulation can be applied to the EPLD at programming time to verify the 
functionality of the device. The MPU also performs continuity checking to ensure 
adequate electrical contact between the programming adapter and the EPLD. 

In addition, Data I/O and a variety of PLD programmer manufacturers provide 
programming support for Altera EPLDs. 

4.5. The Future 

In the preceding sections we have traced the evolution of the EPLD beginning with 
the multi-array EP1800 and continuing through to the present day EPM7000 E
squared devices. One of the common architectural treads has been the multi-array 
style of architecture consisting of groups of logic elements (macrocells) which we 
called LABs, interconnected with a programmable routing structure which we called 
the PIA (programmable interconnect array). The use of EPROM technology allowed 
high-density, richly interconnected devices to be produced. The use of EEPROM 
technology allows for such devices to be programmed either off-line (as bas 
traditionally been the case) or while in the end system. Thus, one can envision 
systems of EEPLDs which can be modified while in the system in the same way as is 
possible for SRAM programmable FPGAs. 

At the same time, other programming elements, such as anti-fuses and SRAM bits, 
can be brought to bear on essentially LABIPIA style architectures. One example of a 
new architecture currently emerging is the FLEX (Flexible Logic Element MatriX) 
product family from Altera. This family of devices contains many of the architectural 
characteristics of their predecessor EPLDs but are built on a standard CMOS 
technology. The programming elements for these devices are SRAM bits. A brief 
description of the FLEX architecture follows. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 231



Erasable Programmable Logic Devices 219 

4.5.1 Functional Description 

The FLEX architecture (Figure 4.5.1) incorporates a matrix of logic building blocks 
called logic elements (LEs). Each LE contains a four-input look-up-table (LUT) that 
provides combinatorial logic capability and a programmable register that offers 
sequential logic capability. Eight LEs are grouped together to form a Logic Array 
Block (LAB). LABs are arranged in rows and columns across the chip. 110 elements 
(lOEs) are located at the ends of rows and columns. Each IOE contains a bi
directional 110 buffer and a flip-flop that can be used as either an input or output 
register. Signal interconnections between LABs and to-and-from device pins are 
provided by an interconnect structure (called "FastTrack") made up of continuous 
metal lines that run the entire length and width of the device. In addition, the eight 
logic elements that make up a LAB communicate with each other through their own 
local interconnect structure without affecting the routability from one LAB to another. 

Logic Elements 

WEIWMnI_ IDE IDE 

L:A~ {r§ 
Blod{L48) 18 

KlE 

.... ~ 
----~ 

F,uTfICt 
InI,tr:omfCI 

.... -----".~ 
----~ 

Figure 4.5.1 FLEX Device Block Diagram 

In addition to the LUT, each LE contains a programmable flip-flop, a carry chain, and 
a cascade chain. Figure 4.5.2 shows a block diagram of the LE. The programmable 
flip-flop in the LE can be configured for D, T, JK, or SR operation. The Clock, Clear, 
and Preset control signals on the flip-flop can be driven by dedicated input pins, 
general-purpose 110 pins, or any intemallogic. For purely combinatorial functions, 
the flip-flop is bypassed, and the output of the LUT goes directly to the output of the 
LE. 

Two fast data paths, the carry and cascade chains, connect adjacent LEs without using 
local interconnect paths. The carry chain provides a fast (less than 1 ns) carry-forward 
function between LEs. The carry from a lower-order bit moves forward into the 
higher-order bit via the carry chain, and feeds into both the LUT and the next portion 
of the carry chain. This feature allows the FLEX architecture to implement high-

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 232



220 

Figure 4.5.2 FLEX Logic Element (LE) 

speed counters and adders of arbitrary width. 

FPGA Technology 

Figure 4.5.3 shows how an n-bit full adder can be implemented in n+l LEs by using 
the carry chain. One portion of the LUT generates the sum of two bits using the input 
signals and the carry input; the sum is routed to the output of the LE. The register is 
typically bypassed for simple adders, but can be used for an accumulator function. 
Another portion of the LUT and the carry chain logic generate the carry, which is 
routed directly to the carry input of the next-higher-order bit. The final carry out is 
routed to an LE, where it can be used as a general-purpose signal. 

The cascade chain provides for implementation of functions that have a very wide 
fan-in. The cascade chain uses a logical AND or logical OR to connect the outputs of 
adjacent LEs. Each additional LE provides four more inputs to the effective width of a 
function, with a delay of approximately 1 ns per LE. Figure 4.5.4 shows how the 

Figure 4.5.3 Carry Chain Operation 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 233



Erasable Programmable Logic Devices 221 

AIIJCI._a.1I OR Caa. C"'. 

D!1.n-I!'In-I"~I.n-I'In-1 

Figure 4.5.4 Cascade Chain Operation 

cascade function can connect adjacent LEs to form functions with a wide fan-in. lIDs 
example shows a function of 4n variables implemented with n LEs. 

Logic Array Block 

A Logic Array Block (LAB) consists of eight LEs, their associated carry and cascade 
chains, LAB control signals, and the LAB local interconnect. The LAB provides the 
coarse-grained structure of the FLEX architecture for efficient routing with high 
device utilization and high performance. Figure 4.5.5 shows a block diagram of the 
FLEX LAB. 

Data signals enter the LAB local interconnect from either the row interconnect or the 
dedicated inputs. The outputs of all eight LEs are also driven back into the LAB local 

~ 
WLoal 
/nltlalMtCI 
(32t111f1'11 

::-
IS) 

"""' ... Rot/llnl.rronntct ... , f16BdlII'IfIIlS) 

£4 4 ~ 

~ C.ry-In, CMeD-1n 

"~L"'r" LAB 
Control 
SIgnals 4 2 • 

· f-Io LEt 

· r--- LE' 

· r--- LEO 

· r--- L" 

· f-i LEO 

· r--- LEt 

· ......... LE7 

· ....... LEO 

'-r , t!... C.ry-CU& C_o.ru 
tolABOflRtgII: 

"'" 

"'" 
"' 

""" 

D 
Cal 

'"" 
C 
In" 

0Itmt 
""","" 

In/S) (I6d11 

Figure 4.5.5 Logic Array Block (LAB) 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 234



222 FPGA Technology 

interconnect via local feedback lines. Each LE in the LAB can drive signals out to the 
rest of the device via a row or column FastTrack interconnect path. 

Each LAB provides four control signals that can be used by all eight LEs. Two of 
these signals can be used as Clocks, the other two as Clears. One Clear signal can also 
be used as a Preset. The LAB control signals can be driven directly from a dedicated 
input pin, an 110 pin, or any internal signal via the LAB local interconnect. The 
dedicated inputs are typically used for global Clock, Clear, or Preset signals because 
they provide synchronous control with very low skew across the device. If logic is 
required on a control signal, it can be generated in one or more LEs in any LAB and 
driven into the local interconnect of the target LAB. Programmable inversion is also 
available for all four LAB control signals. 

FastTrack Interconnect 

Connections between LEs and device 110 pins are provided by the FastTrack 
interconnect, a series of continuous horizontal and vertical routing paths that traverse 
the entire FLEX device. This device-wide routing structure provides predictable 
performance even in complex designs. In contrast, the typical routing structure of 
FPGAs consist of line segments stitched together through switch boxes, resulting in 
increased delays between logic resources. 

Each row of LABs has a dedicated row interconnect that routes signals both into and 
out of the LABs in the row. The row interconnect can then drive 110 pins or feed other 
LABs in the device. Each column of LABs has a dedicated column interconnect that 
routes signals out of the LABs in the column. The column interconnect can then drive 
110 pins or feed into the row interconnect to route the signals to other LABs in the 
device. A signal from the column interconnect, which can be either the output of an 
LE or an input from an 110 pin, must transfer to the row interconnect before it can 
enter an LAB. Figure 4.5.6 shows the interconnect of four adjacent LABs, with row, 
column, and local interconnects, as well as the associated cascade and carry chains. 

::::=Hl 

::::=Hl 

Carry Cham li ~i i C""d.. ., 

KJEKJE M 
Figure 4.5.6 FLEX Interconnect Resources 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 235



Erasable Programmable Logic Devices 

UOElement 

110 Control, 

lrom RoworColurnn 
Inl.roomed 

Figure 4.5.7 YO Element (IOE) 

223 

Figure 4.5.7 shows the YO element (IOE) block design. Signals enter the FLEX 
device from either the YO pins that provide general-purpose input capability or the 
four dedicated inputs that are typically used for fast. global control signals. The IOEs 
are located at the ends of the row and column interconnect. 

YO pins can be used as input. output. or bidirectional pins. Each YO pin has a register 
that can be used either as an input register for data that requires fast set-up times, or as 
an output register for data that requires fast clock-to-output performance. Each IOE 
has an adjustable output slew rate that can be configured for very low-noise or very 
high-speed performance. Designers can specify the slew rate on a pin-by-pin basis 
during design entry or assign a slew rate to all pins on a global basis. 

The Clock, Clear, and Output Enable controls for the IOEs are provided by a network 
of six YO control signals. These signals can be supplied by either the dedicated input 
pins or intemallogic. The IOE control-signal sources are buffered to minimize skew 
across the device. 

4.5.2 Configuration 

The process of physically loading the SRAM programming data into the device is 
called configuration. Initialization occurs immediately after configuration. The 
initialization procedure resets registers, enables YO pins, and causes the device to 
begin operating as a logic device. The configuration and initialization processes 
together are called "command mode;" nonnal device operation is called "user mode." 

Configuration typically occurs immediately after the device is powered up but may 
also occur upon command. Real-time reconfiguration is perfonned by forcing the 
device into command mode with a device pin, loading different programming data, 
re-initializing the device, and resuming user-mode operation. The entire 
reconfiguration process requires less than 100 ms and can be used to dynamically 
reconfigure an entire system. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 236



224 

4.6. Design Applications 

4.6.1 MAX 5000 Timing 

Introduction 

FPGA Technology 

This section discusses internal delay paths, their relationships to AC specifications 
(shown in the MAX 5000 data sheets), and the calculated timing delays generated by 
MAX+PLUS II. T1llling models for analyzing delays calculated by MAX+PLUS II, 
and equations that are used to calculate the delays are discussed. 

EPW Delay Parameters 

Internal delays within an EPLD are described by a number of AC parameters (called 
microparameters) that refer to the actual internal delay within the device. Figure 
4.6.1.1 shows the timing model for multiple-LAB devices. The following is a list of 
these microparameters and examples of how to predict timing delays with equations 
that use these microparameters as variables. 

Expander 1-' Delay 

'EXP 

r--- Logic Array 

+ INPUT Cont~1 Delay ~ 
Input LAC 'PRE 

Delay Logic Array ~ Register Output 

',N Delay Delay Delay .~ I LAD 'H 100 I-<r-+ 100 ........... 
ICOOIS Ixz 

~ 01-. Clod< Delay I IC" 'UTCH Izx 

---+ PIA 
Clock 

~ Delay Delay 

r~ 
IIC 

I Feedback I 
I 

Delay 

I I 1/0 l 'FD 

Delay 

I I/O I 

Figure 4.6.1.1 T1llling Model for Multiple-LAB EPLDs 

tIN Input pad and buffer delay. This delay directs the true and complement input 
signals from the dedicated input pin into the LAB. Within the LAB, the signals may 
propagate to any of four arrays: expander product-term array, logic array, logic array 
control, and clock array. 

tIO I/O input pad and buffer delay for I/O pins used as inputs. When an I/O pin is 
used as an input, the tIO delay value must be added to tPIA to obtain the total delay 
from the I/O pin to the LAB. 

tEXP Expander product-term array delay. This is the delay through the AND-NOT 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 237



Erasable Programmable Logic Devices 225 

structure of the expander product-term array. It is added to the delay already present 
in the four arrays when expanders are used, or added to itself when an expander feeds 
another expander. 

tLAC Logic array control delay. This is the delay through the AND array by Clear, 
Preset, and Output Enable signals, representing the time required to propagate 
through the AND array to the CLRN and PRN inputs to the register, and the OE 
signal to the tri-state buffer. 

tCLR Asynchronous register clear time, which represents the time required to reset 
a register output to a logical low. It is the time the register CLRN input is asserted low 
to the time the register output stabilizes at logical low. 

tPRE Asynchronous register preset time. This delay represents the amount of time 
required to set a register output to a logical high. It is the time the register PRN input 
is asserted low to the time the register output stabilizes at logical high. 

tLAD Logic array delay. This is the time a signal requires to propagate through a 
macrocell's AND array, the three-input OR gate, and the two-input XOR gate. 

tiCS System clock delay. This is the delay from the dedicated clock pin to a 
register's clock input. 

tiC Clock delay. This is the delay through a macrocell's clock product term to 
the register clock input. 

tFD Feedback delay. This delay is the propagation time from a macrocell output 
to any of the LAB's arrays, or the propagation time from a macrocell output to a PIA 
input or other macrocells in the LAB. 

tSU Setup time required for a signal to be stable at the register input before the 
clock's rising edge. 

tH Hold time required at the register input after the register clock's rising edge 
to ensure that the register stores the input data. 

tRD Delay from the register clock's rising edge to the time that output appears at 
the register output. 

tCOMB Combinational buffer delay, which is used only for combinational logic. This 
is the delay from the time the logic array's XOR output bypasses the programmable 
register to the time it becomes available for the macrocell output. 

tLATCHPropagation delay through the latch from latch input to output. 

tOD Output pad and buffer propagation delay from the macrocell output through 
the tri-state output buffer to the output pin. 

tXZ Delay required for high impedance to appear at the output pin after the 
output buffer's active-high enable control is asserted low. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 238



226 FPGA Technology 

tZX Delay required for the macrocell output to appear at the output pin after the 
output buffer's active-high enable control is asserted high. 

tPIA Programmable Interconnect Array delay for multiple-LAB devices. This 
delay is used for designs that use the PIA for routing. The PIA delay path starts where 
the macrocell feedback or IJO delay path ends, and ends where it enters the LAB and 
reaches any of its four arrays. 

Critical pin-to-pin delay calculations are shown in Figures 4.6.1.2. The calculations 
used to derive these values from the microparameters listed in the MAX EPLD data 
sheets are shown for each path. These calculations assume that a dedicated input pin 
is used. 

If the input comes from an IJO pin, tIO is substituted for the tIN value. For multiple
LAB EPLDs that use an IJO pin as an input, tIO + tPIA is substituted for the tIN 
value. If an expander is used in the path at any time, the tEXP value must also be 
added to the total delay path. 

Example: 4-Bit Counter 

Figure 4.6.1.3 depicts a synchronous 4-bit counter. The counter has one clock input 
(CLK) and the following outputs: RCO, QD, QC, QB, and QA. In addition, it has five 
inherent delays associated with registered logic (clock delay, input delay, array delay, 
feedback delay, and output delay) as well as setup time and hold time requirements 
for each register. 

The propagation delay from CLK input pin to the clock input of the registers is tIN+ 
tIC (see Figure 4.6.1.3). If an IJO pin is used for input, the propagation delay from the 
IJO pin to the register's clock input is tIO + tIC, or tIO + tPIA + tIC for MAX EPLDs 
with multiple LABs. Since the delay from register to output pin is tRD + tOD, the 
total clock to output delay is tIN + tIC + tRD + tOD for dedicated input to output; tIO 
+ tIC + tRD + tOD for IJO pin to output for MAX 5000-series EPLDs with one LAB; 
or tIO + tPIA + tRD + tOD for IJO pin to output for MAX 5000-series EPLDs with 
multiple LABs. 

In addition, data input to the register must meet both setup and hold time 
requirements. The internal setup time is the time needed for the input data to stabilize 
before the triggering edge of the clock appears at the register input. The external setup 
time is the algebraic difference between the sum of the input, logic array, and setup 
time, and the sum of the input and clock delay: (tIN + tLAD) - (tIN + tIC) + tSU. 
When expanders are used, tEXP must be added, and when IJO pins are used, tIO or 
(tIO + tPIA) must be added. As long as the external setup time is met at the inputs, the 
counter functions properly. 

The maximum internal counter frequency (fCNT) is the inverse of tCNT , which is 
the worst-case delay for internal feedback. This frequency is the minimum internal 
clock period at which the counter can operate correctly. tCNT is the sum of delay 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 239



Erasable Programmable Logic Devices 

I~-I-I---l~>---t:> 
MAX 5000 tPOI t/N+ tUD+ tCOMB+ too 

t/O+tp/A+tUD+ tCOMB+ too (muHHAB) tPOl 

MAX 5000 

MAX 5000 

MAX 5000 

(t/N+ tUD ) -(t/N+ tes) + tsu 

(t/N+ tes) -(t/N+ tUD) + tH 

t/N+ tes + tRO+too 

~ L,J ~ L,J 
MAX 5000 

MAX 5000 

MAX 5000 

MAX 5000 

tASU = (t/N+ tUD) - (t/N+ tel + tsu 

tAH = (t/N+ te)- (t/N+ tUD) + tH 

tACO! = t/N+ te+ tRD+ too 

Figure 4.6.l.2 Critical Pin-to-Pin Delay Calculations 

227 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 240



228 

CtK 

r" 

LON 

eLI>< 

ENP 

ENT 

FPGA Technology 

Figure 4.6.1.3 TIming Analysis of 74161 Counter 

paths that the register feedback must traverse before reaching a register input and 
meeting the internal setup time: (tRD + tFD + tLAD + tSU). Once the clock triggers 
QB, data takes tRD delay prior to appearing at the register output. The signal feeds 
back (tFD) and flows through the logic array (tLAD). Finally, the signal reaches the 
register QC and meets the setup time of the register (tSU). 

When expanders are used, tEXP must be added as the signal passes through the 
expander array before reaching the logic array. The tCNT delay represents only 
internal circuit delays, while a circuit that depends on external and internal signals 
must also account for input and I/O delays. For example, the internal path (tCNT) is 
20 nsec for EPM5128-1, while the external path (tSU + tCO) is 29 nsec. 

4.6.2 Using Expanders to Build Registered Logic in MAX EPLDs 

Introduction 

Each EPLD macrocell contains one register that can be programmed for registered 
functions or bypassed for combinational functions. However, some applications 
require more registers than are available in the macrocells. These extra registers can 
be built with expander product terms (expanders). This section explains how and 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 241



Erasable Programmable Logic Devices 229 

when to use expander latches and registers. and describes timing considerations. 
specifically for an SR latch. a transparent D latch. and a synchronous register. 

Expander product terms 

Expanders are unallocated product terms with inverted outputs that feed the logic 
array. Each expander is fed by the same inputs that feed the macrocell: a global bus. 
macrocell feedbacks. other expanders. and 110 feedbacks. Since expanders feed 
themselves. they can be used to build latches and registers. Two expanders (EXP 
primitives) can be cross-coupled to generate an SR latch. three can be used to build a 
transparent D latch. and six can be used to build a synchronous D flip-flop with 
asynchronous Preset and Clear. The expander circuits described here have been built 
into macrofunctions to optimize performance. Each function is built with AND gates 
and EXP primitives to optimize fitting. 

INPUT 
IS c:::>------;---... 

r---~~-~--~~O 

EXPlll 
OUTPUT 

OUTPUT 
IR c:>-I_NP~U~T __ Lj----{>O--""---c:> 10 

Figure 4.6.2.1 SR Latch Implemented with Expanders 

Asynchronous SR Latch 

Figure 4.6.2.1 shows an asynchronous SR latch implemented with two expanders. 
Since expanders are product terms with inverted outputs. the latch is a NAND 
implementation with the Set and Reset terms active low. If both inputs are 
simultaneously low. both outputs will become logic high until either of the inputs 
goes high. 

The functional output of an SR latch is shown in Table 1. To implement the latch with 
active-high inputs. as in a NOR latch. the inputs are inverted with NOT primitives. 
Asynchronous SR latches are often used to debounce input-switching circuits or to 
detect edges in switching circuits. 

Table 1 
IS IR 
H H 
L H 
H L 

L L 

Q 
QO 
H 

L 

H (1) 

Note: (1) IS and IR low causes both Q and IQ to be high. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 242



230 FPGA Technology 

SR Latch TIming 

Each expander has a timing delay defined as tEXP. The hold time for the SR latch 
shown in Figure 4.6.2.2 is given as tH = 2* tEXP. A low signal at the S input must 
remain low long enough to propagate through Expander 1 and Expander 2 to latch the 
input. The propagation delay from the latch input to the latch output is given as teO = 
2* tEXP. A low at the S input must travel through Expander 1 and Expander 2 before 
the outputs Q and IQ become valid. 

IS c::::~I!!!NP~U!!.T __ --r-E;;;;;;;-1 
I--.....-'=';';c..::...r:::::> a 

IR c:;,.:I:..::NP...::U:..:..T __ --1 

Figure 4.6.2.2 SR Latch Timing Model 

INPUT 
EN~--~-.---1~-~J 

INPUT 
D 

OUTPUT 
)--f:>c)--........ ---{:::> a 

Figure 4.6.2.3 Transparent D Latch Implemented with Expanders 

Transparent D Latch 

The transparent asynchronous D latch with EN (Enable) is implemented with three 
expanders, as shown in Figure 4.6.2.3. This latch is functionally comparable to a 
74LS373. The latch is transparent when EN signal is logic high. When EN goes low, 
the input is latched. This latch is especially applicable for latching inputs from a bus. 
The functional output of this latch is shown in Table 2. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 243



Erasable Programmable Logic Devices 231 

Table 2 

EN D Q 
L L QO 
L H QO 
H L L 

H H H 

Transparent D Latch TIming 

The delay paths for the transparent asynchronous D latch are shown in Figure 4.6.2.4. 
The tH value for this circuit is 0 ns because the paths from the D input and the EN 
input have delays equal to those of Expander 3, which latches the result. Both the set 
up time tSU and the enable to output time teO is given as two expander delays. The 
setup time, tSu, requires the D input to go through Expander 2 and Expander 3 to 
reach Expander 1 before it can be latched. teO is the delay through Expander 2 and 
Expander 3 to the output from the rising edge of EN. 

INPUT 
EN c::>----..----t 

o INPUT 

Expander 
t = t£J(P, 

Expander 
t = t£J(P3 

OUTPUT 
1--1~--C::> /Q 

Figure 4.6.2.4 Transparent D Latch T1Illing Model 

Synchronous D Register 

The function outputs for the synchronous D register are shown in Table 3. A 
synchronous D register with asynchronous Preset and Clear (IP and Ie) can be built 
with six expanders, as shown in Figure 4.6.2.5. 

Figure 4.6.2.5 Synchronous D Register with Preset and Clear 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 244



232 FPGA Technology 

Table 3 

IP IC 0 CLK Q IQ 
H H L U L H 

H H H U H L 

H H X H QO IQO 
H H X L QO IQO 
L H X X H L 

H L X X L H 
L L X X H H 

The state at the 0 input is clocked into the latch with a rising edge at the clock input. 
Both the true and complement signals are available at the output. This output remains 
latched until the next rising edge clock or until the Preset or Clear is asserted low. The 
Preset and Clear can be made active high by placing NOT primitives in front of the 
two signals. Using expanders as registers increases the total register count in a given 
MAX 5000 device by 31%. For example, the EPM5192 can have up to 60 registers 
implemented with expanders, which gives it a total capacity of 252 registers. 
However, the speed of these expander registers will be slower than the macrocell 
registers. 

Figure 4.6.2.6 TIming Model for Synchronous 0 Register 

Synchronous D Register Timing 

The timing paths for the synchronous 0 register are shown in Figure 4.6.2.6. Two 
different timing paths exist for the 0 input, depending on whether the 0 input is high 
or low. The worst-case path is described here. The worst case th is one expander delay 
through Expander 3. The worst case for tsu is the path through Expander 4 and 
Expander 1 to the input of Expander 2. The worst case clock-to-output (called tool) 
path is through Expander 3, Expander 6, and Expander 5 for both Q and IQ to produce 
valid outputs. Both tclr and tpre have a delay path through Expander 5 and Expander 
6 to produce a valid output. tent is the minimum recirculation time for the register 
which is tool + tsu or five expander delays. The inverse of tcnt is fent or the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 245



Erasable Programmable Logic Devices 233 

maximum toggle frequency. 

Fitting Expanders Into MAX Designs 

Latches and registers built using expanders can provide valuable additional resources. 
Their use, however, must be carefully analyzed to ensure correct setup time, hold time 
and tco. These expander latches and registers are particularly useful for latching input 
signals. They should not be used when the 0 input is a complex function because 
other expanders are the only source of this logic. Instead, registers driven by complex 
logic should be placed in macrocells. On the other hand, if additional logic is required 
after the register, expander registers should be used, since the output feeds directly 
into the logic within the macrocells. 

4.6.3 Simulating Internal Buses in General-Purpose EPLDs 

Introduction 

Altera's EPLDs allow internal buses to be emulated by using logic to replace tri-state 
functions. A series of simple multiplexers can create buses with several sets of input 
signals. Multiplexing also saves device resources and helps to eliminate timing and 
loading problems. This section describes how to use multiplexers for different bus 
configurations and explains the benefits of this approach. 

Using multiplexing to emulate tri-state functions saves macrocells and 110 pins for 
applications that would otherwise require a bus external to the EPLD. Figure 4.6.3.7 
shows a 4-to-l multiplexer in a single macrocell that emulates a bus line with four 
sources. With conventional tri-stating techniques, the same function requires four 
macrocells and 110 pins, as shown in Figure 4.6.3.8. Multiplexing saves three 
macrocells and 110 pins if the switching functions are implemented with the product 
terms inside the macrocell, instead of with tri-state buffers and 110 pins external to the 
macrocell. 

Two-Source Bus Configurations 

Figure 4.6.3.1 shows the simplest bus configuration, a one-bit bus created by 
connecting the outputs of two tri-state buffers to a single line. The function table 
shows the possible states of the bus. When tri-state buffer A is enabled, the input to 

BusUne 
INA DEA INB DEB BUS UNE 

OEA--..., X 0 X 0 Z or 1 

INA X 0 0 1 0 

X 0 1 1 1 
OEB--..., 

0 1 X 0 0 

INB 1 1 X 0 1 

Figure 4.6.3.1 One-Bit Bus 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 246



234 FPGA Tecbnology 

Bus Uno 

SIlA 
(DEA) 

dr>t "'A 

SElB 
(DEB) 

"'B 

IIA SELA liB SEIB BUS LIIE 

X 0 X 0 0 

X 0 0 1 0 

X 0 1 1 1 

0 1 X 0 0 

1 1 X 0 1 

Figure 4.6.3.2 AND/OR Logic Emulating Tri-State Functions 

that buffer (INA) appears on the bus. When tri-state buffer B is enabled, the input to 
that buffer (INB) appears on the bus. If neither buffer is enabled, the bus is in a high
impedance, or floating, state. Such buses are often tied high with a pull-up resistor to 
prevent them from floating. 

Figure 4.6.3.2 shows two AND gates and an OR gate that emulate the tri-state 
functions of Figure 1. Each AND gate has a data input (INA or INB), and a select 
input (SELA or SELB) that represents the original Output Enable control. The 
function table shows that the AND/OR logic exactly emulates the original tri-state 
functions, if one of the two outputs is always selected. If neither output is selected. the 
output of the AND/OR logic is low. 

The select controls are mutually exclusive, since only one input is ever enabled onto a 
bus at any given time. Therefore, they can be encoded into a single input by making 
SELA the common select input, and then feeding the inverse of this signal into the 
previous SELB input as shown in Figure 4.6.3.3. 

~ -~-ND-T-r--"' OUTPUT 

IIA liB SEL OUTPUT 

X 0 0 0 

X 1 0 1 

0 X 1 0 

1 X 1 1 

Figure 4.6.3.3 Multiplexer Created with AND/OR Logic and Select Controls 

Additional 2-to-1 multiplexers, all controlled by a common select signal, can create 
wider buses. One multiplexer is necessary for each bit of the bus. For example, Figure 
4.6.3.4 shows eight 2-to-1 multiplexers emulating a byte-wide bus. 

Buses with Three or More Sources 

Larger multiplexers with multiple select inputs can emulate buses with more than two 
sources. Figure 4.6.3.5 shows how a 4-to-1 multiplexer can create a bus with up to 
four sources. Figure 4.6.3.5 also includes a truth table with the proper encoding for 
the select inputs. This type of multiplexer can also implement buses with two or three 
sources. 

Additional multiplexers with shared select lines can create buses with nearly any 
width. For example, five 4-to-1 multiplexers can create a 5-bit-wide bus with two, 
three, or four sets of inputs. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 247



Erasable Programmable Logic Devices 

21MUX 
I~O------~A~~~ 
INBO -------I B Y 
SEL C 

Muh~xer 

1~1--~--~~~~ 
INB1 --+----1 

I~ ::i=::rt:.c=;;.;.;....~ INB2 

1~3--~--~~~~ 
INB3 --+----l 

1~4::i=::rt~~~ INB4 

I~S --~--lA=~l 
INBS --+----l 

1NA6 :::±==rt:..:.:.::;~~ INB6 

1~7--~--~~~~ 
INB7 --+----1 

OUTO 

0UT1 

0UT2 

OUT3 

OUT4 

OUTS 

OUTS 

oun 

Figure 4.6.3.4 Eight 2-to-l Multiplexers Emulating a Byte-Wide Bus 

Implementing Bus Functions with Hardware Description Language 

235 

Hardware Description Languages, such as Verilog, VHDL (VHSIC Hardware 
Description Language), or AHDL [Altera AN22 1990] provide a quick alternative to 
graphic schematic entry for implementing bus functions with multiplexing. HDLs can 
be used to describe buses with nearly any number of inputs and of nearly any width. 

For example, Figure 4.6.3.6 (next page) shows the AHDL code required to create an 
eight-bit bus with three sources. The data inputs are A7 to AO, B7 to BO, and C7 to 
CO. The two select inputs, SELl and SEL2, can be treated as an encoded group in 
AHDL. These select lines control which set of input signals is connected to the 
outputs through a series of simple IF-TIIEN statements. 

By adding data inputs (e.g., D[7 .. 0)), this file can be easily modified to create a bus 
with more sources. For multiplexers with more than four data inputs, one more bit 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 248



236 FPGA Technology 

......... -......................................................... .. 

INA 

INS 
OUTPUT 

INC 

INO 
NOT 

SEL 1 -!--4O-+--l 

NOT 

SEL2 --<>--+-1:)0----' 

4-10-1 MuHiplexer 

INA INB INC INO SEL2 SEL1 OUTPUT 

X X X 0 0 0 0 

X X X 1 0 0 1 

X X 0 X 0 1 0 

X X 1 X 0 1 1 

X 0 X X 1 0 0 

X 1 X X 1 0 1 

0 X X X 1 1 0 

1 X X X 1 1 1 

Figure 4.6.3.5 Four-to-One Multiplexer Implementing a Bus with up to Four 
Sources 

SUBDESIGN BUSMUX 
A[7 .. 01, 
B [7 .. 01, 
C [7 .. 0], 
SEL[l .. 0]: INPUTi 
OUT[7 .. 0]: OUTPUTi 

BEGIN 
IF (SEL[]==O) THEN OUT[]=A[]i END IFi 
IF (SEL[]==l) THEN OUT[]=B[]i END IFi 
IF (SEL[]==2) THEN OUT[]=C[]i END IFi 

ENDi 

Figure 4.6.3.6 AHDL Implementation of Eight-Bit Bus with Three Sources 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 249



Erasable Programmable Logic Devices 237 

must also be added to the SEL group (e.g., SEL[2 .. 0]) for each factor-of-two increase 
in the number of data inputs. For example, a seven-input multiplexer requires three 
select bits. 

The width of the bus can be varied by changing the input and output group widths. 
For example, the declaration A[5 .. 0] creates a 5-bit wide set of A inputs. 

PROs and CONs 

Emulating tri-stated buses with logic eliminates timing hazards such as bus 
contention, which occurs when two or more tri-state outputs are simultaneously 
enabled onto a single bus line. This condition (usually unintended) can cause an 
unpredictable logic level to propagate if multiple buffers are driving high and low at 
the same time. The select controls for simple AND/OR logic (shown in Figure 
4.6.3.2) can both be enabled at the same time, but the result will be a known logic 
level. The select controls can never be enabled at the same time if they are encoded, 
as in the true multiplexer configurations (Figure 4.6.3.3) . 

. ------... -._-............. _--_ .. _---_._--_ .. ---_. __ ... --_ .. _._._._ ...... -.. 

INA INA4:1 MUX Macrocell 1.' 

INS INS 

~ ~~ o~,~ O"~"' i 
........... ------...... _-_ ...... _-_ .......................................... ! 

Figure 4.6.3.7 Four-to-One Multiplexer in a Single Macrocell 

External 
,.................................................... Bus Line 
i OEA Macrocell i 
: ---:mil~ .. ~~ .. ~ i 
iINA~A:!---. 
l ... __ .. ________ . __ ......... ___ .. ___ . __ . ____ ..... __ .! 
[·~·~·~··························· .. M~~;;;;~ii] 

: ---:mil~ .. ~~ .. ~ i i INB ~B:!---. 
t __ . __ .. __ .... __ .......... _ .. ____ . ____ ...... __ ..... j 
r··································M~~;;;;~iil 

io~ : i ------;:Ril _ .. __ .. _ i 
iINC~C:I----. 
: : 
'!. •••• _---------_ ............. __ •• _-_. __ •••• --------_: 

r··································M~~~;;;;~iii 

: OED : : ------;:Ril _ .. __ .. _ : 
iIND~D!-:--
... _--_ .... _-----_._--- ........ __ .. _-_._-_._------.. __ : 

Figure 4.6.3.8 Four-to-One Multiplexer Implemented with Traditional Tri-State Logic 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 250



238 FPGA Technology 

A potential timing hazard for a multiplexer configuration is output glitching caused 
by input signal skew. EPLD architecture minimizes skew difficulties and glitching is 
seldom a problem in actual designs. However, the designer must exercise care when 
driving edge-sensitive logic from multiplexer outputs. A potential disadvantage of 
replacing tri-state buses with multiplexers is that all signals must be routed to the 
single multiplexer location. If the function can be implemented in a single EPLD, this 
is usually not a problem. If the tri-state function is spread across several chips, then 
signal routing is a more serious problem. 

Replacing tri-stated buses with logic reduces capacitive loading limitations. High fan
outs to traditional buses create high capacitive loads that reduce bus bandwidth. 
Macrocells and feedback paths in EPLDs have constant delays, regardless of the 
number of signals entering the macrocell. If control logic is implemented with 
multiplexers, internal loading is not a problem. 

4.6.4 Fast Bus Controllers with the EPMS016 

Today's advanced microprocessors are capable of running in systems with clock 
speeds greater than 33 MHz. To realize the performance potential of these 
microprocessors, their memory interfaces must be equally fast. High-performance 
memory devices, however, are expensive. Cost can be decreased with little impact on 
performance by using a combination of fast and slow memories. To accommodate the 
slower memories, wait states are added into the microprocessor bus cycle. A bus 
controller which contains the wait-state and bus-control logic for a 80386 system can 
be integrated into an Altera EPM5016 MAX EPLD. The EPM5016 has a propagation 
delay of 15 ns and can support a system clock rate of 66 MHz. With a specified output 
drive of 24 rnA, it can be directly connected to buses. 

Figure 4.6.4.1 shows a block diagram of an 80386 microsystem that incorporates 
peripheral logic, memory, and an 8259A interrupt controller. The EPM5016, shown in 
the center of the diagram, serves as the system bus controller. The EPM5016 decodes 
the 80386 status signals to control the peripheral logic, the data transceiver, interrupt 
controller, and other external logic. It also extends bus cycles by adding wait states to 
interface to slower peripherals and memory devices. 

The 80386 halts processing to allow wait states to be added into the bus cycle when 
the signal !READY is high. (Note that the slash (I) is used to indicate an active-low 
signal.) The EPM5016 bus controller tracks each bus cycle operation and causes 
!READY to go high when wait states are needed. For example, read operations from 
2oo-ns EPROM memory in 33-MHz systems require 14 wait states. 

The EPM5016 also decodes the bus control signals lORD (I/O read), 10WR (I/O 
write), and INTA (interrupt acknowledge). The 24-mA output drivers on the 
EPM5016 eliminate the need to buffer these bus signals externally. 

The 16 data signals originating from the 80386 are isolated from the system data bus 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 251



Erasable Programmable Logic Devices 

ClocIc&_ """ ~'n Gener_ ..... cT[J-if I+-82_ 
RESEl CLK2 -c::>-

11 .. - EPM5018 'NTA - *"1 .g... lORD 
"OS IC,_ ... 
""" IIuo 'N" ..... Contrdlor .P< 
A3' 

~ 80388 """" .. " 
(33MHJj *EArN 

U "ri 
Alt·t71 Ad:lr_Bu. I -Y .. + I 7"'373 EN~~,", .1 27256,\ ~ ClND 

OIR i£N Latd1_x2 II I EPROMx2 
c •• Bus 
DlOllil I 7.,,2.5 .~ 1 Tran.ceiver x 2 

Figure 4.6.4.1 80386 Subsystem Block Diagram 

-

.. -
,..., 

'"" 

.. 
DoIa ... 

239 

with two 7424S 8-bit transceivers. The tri-state control on the transceivers is provided 
by the signallDEN from the EPMSOI6. The direction signal is controlled directly by 
the Read-Write signal (WIR). 

Two 74373s (8-bit latches) are used to latch the 80386 address signals at the 
beginning of the bus cycle to maintain a valid address throughout the cycle. The 
latches are controlled by the 80386 signal lADS. The high perfonnance of the 
EPMS016 easily supports the 33-MHz bus cycles. In fact, a 66-MHz (2 x 33-MHz) 
clock is used to clock the design for two reasons. First, I ADS can be connected 
directly to the address latches since the EPMS016 control signals for the peripheral 
logic are active before the end of the first bus cycle. Second, the wait-state generator 
offers finer granularity with IS-ns cycles than with 30-ns cycles. 

The design for the bus controller circuit requires 9 inputs: all 8 dedicated inputs of the 
EPMS016 and 1 YO pin. Five of the 9 inputs to the EPMS016 are signals from the 
80386 microprocessor. The functions of these S signals are given in Table 1. The 
other inputs are described subsequently. 

Table 1. EPMS016 Input Functions 

Input Function 

MIlO Memory or YO 

WIR Read or Write status 

D/C Data or Control status 

A31 Address bit 31 for memory mapping of the EPROM 

I ADS Address data strobe indicating the beginning of the bus cycle 

Systems that have functions set up for pipelining require extemallogic to generate the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 252



240 FPGA Technology 

signal INA (next address). INA feeds both the 80386 and the EPM5016 bus controller. 
When INA is activated, the 80386 places the next address on the address bus so that it 
may be latcbed. Applications that require wait states receive minimal benefit from 
pipelining. In sucb cases, the INA signal is used simply to disable the EPM5016. 

IDRAMRDY is an externally generated signal that, wben bigb, balts the 80386 by 
causing the /READY signal to be bigh. When IDRAMRDY goes low, the 80386 
continues processing. 

The 66-MHz clock (CLK2) feeds a toggle flip-flop in the EPM5016 to generate a 
divide-by-two signal (CLK) that matcbes the 33-MHz system clock signal. CLK 
tracks the microprocessor clock pbase. 

The last input signal, RESET, is connected directly to the reset signal of the 
microprocessor. RESET feeds the preset or reset of eacb register to set the EPM5016 
to the correct start-up state. 

Figure 4.6.4.2 shows the flow diagram for the bus controller. First, the 80386 causes 
I ADS to go low, indicating that a bus cycle bas begun. I ADS then causes BUS_1RCK 
to activate the signal BUS_ACTIVE, wbicb indicates that the processor is in an active 
bus cycle. BUS_ACTIVE feeds the functions DECODE and 
1RAN_CTL.1RAN_CTL then scans the 80386 control signals and enables the data 
transceiver buffers wben they are required. DECODE also scans the 80386 control 
signals and decodes them into specific control signals (lORD, IOWR, EPRD, and 
INTA) that drive the peripberal logic and the block function, 
WAIT_CNT.WAIT_CNT is a loadable 4-bit counter that counts the required number 
of wait states for bus cycles. When WAIT _ CNT finisbes the wait -state count, it causes 
the TIME_DELAY to go low, enabling DECODE to release the /READY signal and 
finisb the bus cycle. 

4.6.5 Micro Channel Bus Master and SDP Logic with the EPM5032 EPLD 

This section describes a Micro Cbannel bus master interface with streaming data 
transfer capability. A data transfer rate of 80 Mbyteslsec can be achieved by using full 
32-bit address and data buses in the interface design. The essential bus master and 
streaming data functions are implemented in an Altera EPM5032 MAX EPLD using 
thirteen inputs and seven outputs. The logic is implemented as a synchronous state 
macbine timed by a 20-MHz clock. The EPM5032 works together with the Altera 
EPB2001 and EPB2002A EPLDs to provide a complete Micro Channel bus master 
interface. The features of this implementation are listed below. 

• Bus control logic for basic and streaming data transfer 
• Support for basic transfer cycles 

• -Default (200-ns cycle) 
• -Synchronous extended (300-ns cycle) 
• -Asynchronous extended (>300-ns cycle) 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 253



Erasable Programmable Logic Devices 241 

IREADY( .... iYe) 

+------_._-_ . ., 

I 

Figure 4.6.4.2 Bus Controller Flow Diagram 

• Support for streaming data enable function (external POS bit) 

• Support for streaming data cycles; (16-, 32-, and 64-bit) 
• -Deferred streaming cycles 

• -Data pacing 
• -All modes of streaming data cycle termination 

• Clock signal generation to track -SD SlROBE during data pacing 
• Bus master and SDP logic implementation as a synchronous state machine 

timed by a 20-MHz clock 
• User-defined pin assignments allowed (except VCC and GND) and input 

polarities 

• Available in 28-pin DIP, SOIC, or JLCC packages 

Figure 4.6.5.1 illustrates the Micro Channel interface implemented with the 
EPB2001, EPB2002A, and EPM5032 EPLDs. The application-specific address 
control, address generation, and data steering functions are left to the designer for 
greater flexibility. The EPB2001 provides the 110 or memory-slave interface, and the 
EPB2002A provides DMA arbitration functions. The EPM5032 implements bus 
master control logic with SDP capability. 

When the EPB2002A signals to the EPM5032 that the bus has been won, the 
EPM5032 generates the essential bus control signals. If streaming data capability is 
enabled (via any user-configurable POS register bit from an EPB2001 POS 110 pin) 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 254



242 

AjO.ttJ 

Dl031) 

!AleJo Cham .. (lAC) Bus 

loUCBus 

-so,,, 

FPGA Technology 

Panl'fEnabie 
POSBlC_J 

-DSlI!r.J2RTN 

co",*"", _H 

Figure 4.6.5.1 Micro Channel Bus Master Interface 

the EPM5032 detects whether the slave can perform streaming operations and, if so, 
generates the -SD SlROBE signal and DATA_CLK output. The DATA_CLK output 
tracks the -SD SlROBE signal. It uses the RDYR1N signal to provide a "stretched 
out" clock for internal use on the board (e.g., for use by an address increment 
counter). 

Bus control for burst transfers is indicated to the EPM5032 by the EPB2002A signals 
BUSGNT and -BRSlREQ. BUSGNT is an EPB2002A output which signals that the 
bus has been won. An active -BRSlREQ input to the EPB2002A indicates that the 
bus was requested by the adapter for burst transfers. 

The -ADS input is required to determine when addresses are valid on the address bus. 
It is similar to the -ADS signal on the 80386 processor, which indicates the start of the 
cycle, and is used by the EPM5032 to latch the state of the WR/-RD and MEMlIO 
signals. After these signals are latched, the EPM5032 drives the -SO, -Sl, M1-IO, -
ADL, and -CMD signals. The -SO and -S 1 status signals are decoded from the state of 
the WR/-RD signal; M1-IO is decoded from the state of the MEMIIO input. 

The bus master and streaming data logic are implemented in AHDL as a synchronous 
state machine. Figure 4.6.5.2 shows a diagram of this state machine. It is timed by a 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 255



Erasable Programmable Logic Devices 

ROYRrN==l 
RDYRrN=1; 
BASlREQ=~ 
8lJSGNT=1; 
S£PEN=1; 
sa:to. SORl :::0 

cuoo 

Figure 4.6.5.2 Bus Master SDP Controller State Machine 

243 

20-MHz clock fed on the CLK_20 input pin. Outputs of the state machine are 
decoded as functions of the present state. The next state is detennined by the current 
state and inputs. 

4.6.6 FIFO Controller Using an EPM7096 

Interacting digital subsystems often consume and produce data at different rates and 
times. A First InlFirst Out (FIFO) buffer in a data path can bridge this rate and time 
mismatch so systems can function correctly. With the appropriate FIFO buffer, data 
written into the FIFO can be read in the order it was entered, but at an independent 
rate. This section describes how to use the 96-macrocell EPM7096 to design an 8 K x 
16 bit FIFO. 

Two types of FIFO buffers are available: shift FIFOs and pointer FIFOs. Shift FIFOs 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 256



244 FPGA Technology 

are typically constructed from a linear array of registers, where the number of 
registers is the same as the number of bits in the data word. Data to be stored in the 
FIFO is written to the first location in the register array. This data then "bubbles" to 
the last empty location nearest the output. When data has shifted to the last location of 
the register array, it can be read. The major drawback of shift FIFOs is fall-through 
time delay, which is the time required for valid data to propagate from the input to the 
output of an empty FIFO. 

In contrast. pointer FIFOs do not have this fall-through time delay. Data is stored in a 
Random Access Memory (RAM) array. Read pointers store the next address to be 
read from this array; write pointers store the next address to be written to this array. If 
these pointers are made up of counters that roll over (i.e., restart at 0) at a value equal 
to the size of the FIFO, the FIFO structure becomes a circle. See Figure 4.6.6.1. 

Input 

N·1 + N 

Output 

o 

3 

Wr~e-Read 

n 
IFE IEF IFF 

FIFO empty full 
empty flag flag 

Figure 4.6.6.1 Circular Pointer FIFO 

I 
I 

IHF 

half-full 
flag 

To enable the designer to detennine whether the FIFO is full, empty, or at any point in 
between, the following Up/Down counter can be added to the design: 

amount of data = (number of writes) - (number of reads) 

Pointer FIFOs are available in a single package that contains read and write pointers 
and a RAM array. With this option, however, the size of the RAM arrays and the type 
of control functions available are limited. A designer can get around this limitation by 
using a standard static RAM device and implementing the control logic in an EPLD to 
maximize buffer-size options and meet custom interface-control requirements. The 
EPLDIRAM solution also significantly reduces cost. An 8 K x 16 bit FIFO 
implemented with RAMs and an EPLD costs less than half the price of a comparable 
off-the-shelf solution with two 8 K x 8 bit FIFOs. 

Figure 4.6.6.2 shows a typical application of a pointer FIFO buffer implemented with 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 257



Erasable Programmable Logic Devices 245 

RESET 
EPM7096 

~~==========~ 
PEAIlf-ERAl 

FIFOCNTL 

A.1JOAI12 0111--------, 
""-

SRA1A 

,.,.'" 8-t<bytex8-bi1 

"'1120) 

SRAM 

"1 12 01 

Figure 4.6.6.2 EPM7096 FIFO Application 

an EPM7096 and two 8 K x 8 SRAMs. The input to the FIFO is a lO-MHz 80286 
microprocessor. The FIFO controller interfaces to the /MRDC, IMWTC, MIlO, and 
ALE signals from the 80286 and 82288 bus controllers. Chip select is generated by 
decoding the address lines AO and A23. 

The microprocessor can read the FIFO status from the four active-low tri-stated lines 
that are connected directly to the microprocessor's data bus: IEF (empty flag), /HF 
(half full), IFF (full flag), and IPBUSY (peripheral busy). The microprocessor bus and 
the peripheral bus are isolated by a pair of 74240 octal buffers controlled by the !WE 
output of the EPM7096 FIFO controller. 

In this example, an arbitrary peripheral is connected to the output of the FIFO. This 
peripheral selects the FIFO with the PSEL (peripheral select) line and strobes data out 
of the FIFO with the PWRITE (peripheral write) line. The peripheral detennines the 
status of the FIFO by reading /FE (FIFO empty) and /MPBUSY (microprocessor 
busy) signals. 

The two 8 K x 8 bit static RAM devices store up to 8192 16-bit data words (the same 
number of bits as the 80286 microprocessor's data bus). The EPM7096 FIFO 
controller provides the RAM with all required control and address lines, including 
JOE (output enable), /CS (chip select), !WE (write enable), and address lines AO to 
A12. 

Figure 4.6.6.3 shows the block diagram for the EPM7096 FIFO controller. Two 13-bit 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 258



246 

AlST 
ALE 

,f.4WTC 

>MRDC 

MIlO 

AO 

A23 

PSEL 

PWRITE 

REA,[flNT 

eu< 
ClRN 0(12-0) 

_ GN 
WU .. TIPLEXER 

'NFlITEPNT 0(12..0] AI'2.01
1 13.JOCTA ""2.01 

SELECT 
-eu< 

eu< - CLAN 0(12..0) 

- ClRN 01'201- r GN 

rc~ TAI..J.. 

~ TAI..J.. 

0(12. 0] 

I TAI..J.. 

I I""TiOJ. 
Control III . Logic 

I 

Figure 4.6.6.3 EPM7096 FIFO Controller 

FPGA Technology 

AI'2 .. 01 

IFF 

IEF 

M1JSY 

IFE 

>MPlJJSY 

.cS 

JOE 

!WE 

counters provide the read and write pointers for the EPM7096. The read pointer 
counter contains the address where the next read data is stored; the write pointer 
counter contains the address where the next write data is stored. A third 13-bit 
counter, 13UDCTA, detennines FIFO status (13 bits define 8192 unique addresses). 

When a FIFO read or write operation is required, a 26- to 13-bit address-pointer 
multiplexer selects the read or write pointer outputs and presents them to the RAM 
address bus. The control logic block decodes FIFO requests, provides FIFO status 
outputs, and controls the address-pointer multiplexer. 

4.6.7 Integrating an Intelligent 110 Subsystem with a Single EPM5130 EPLD 

When higher system perfonnance is necessary, many designers first consider a faster 
microprocessor or a new microprocessor architecture. In many cases, however, 
sufficient speed can be achieved through an intelligent I/O subsystem that has been 
optimized for a particular task. Transferring I/O processing to intelligent subsystems 
also allows the system processor to dedicate more processing power to primary 
system functions. 

This section describes how the custom logic requirements of such a subsystem can be 
integrated into a single Altera EPM5130 MAX EPLD, replacing over 75 standard 
TTL packages. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 259



Erasable Programmable Logic Devices 247 

Figure 4.6.7.1 shows a subsystem using the T1 serial coprocessor implemented in an 
EPM5130 EPLD. The serial coprocessor consists of two T1 serial transmitters, 
control and address generation logic for a buffer RAM, and the 110 subsystem control 
logic. The system processor writes data for serial transmission through the T1 serial 
coprocessor into the buffer RAM. When data transfer is complete, the system 
processor signals to the serial coprocessor that data can be transmitted. The serial 
coprocessor then transfers the data to the transmitters for serialization. The buffer 
RAM control logic also features error detection and correction. Data can be sent over 
either T1 serial channel with individual variations in protocol. Once all of the data in 
buffer RAM is transferred, the processor is interrupted, and the cycle can repeat. 

Figure 4.6.7.1 T1 Serial Coprocessor Block Diagram 

The T1 serial coprocessor is a useful example of an intelligent 110 subsystem design 
because it contains the types of logic, such as decode and control state machines, that 
are common to most digital designs. The error detection and correction, RAM control 
and address generation, and parallel-to-serial conversion features of the Tl 
coprocessor are also widely used in system design. Furthermore, digital data 
communication of both voice and data plays an increasingly important role in modern 
systems. 

Although this design example shows a T1 serial transmission application operating at 
1.544 MHz, the same concept can be applied to create high-performance subsystems 
for applications such as local area networks or disk controllers. The EPM5130 EPLD 
supports serial data rates of up to 50 megabits per second. 

4.6.8 Controlling Complex CCD Imaging Systems with the EPS464 EPLD 

Advances in VLSI-scale microelectronics have allowed manufacturers of video and 
optical equipment to replace optical film storage media with arrays of light-sensitive 
electronic imaging elements. These video systems use analog charge-coupled device 
(CCD) technology to retain image data, as well as a high-speed digital control system 
to convert the image into a standard video format. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 260



248 FPGA Technology 

The Altera EPS464 Synchronous Timing Generator (STG) is an ideal device for 
implementing the necessary digital control logic. The STG is well suited for 
generating complex waveforms, control signals, and state machines. The EPS464 
EPLD contains 64 macrocells optimized for timing and waveform synthesis 
applications. Thirty-two of these macrocells are connected to UO pins, while the other 
32 are available for buried logic such as state machine registers and user-defined n-bit 
counters. A global bus feeds all macrocells within the device allowing system speeds 
of 66 MHz. 

The complex digital control system for a hand-held video camera requires a 
combination of high speed and high density. Not only must the system retrieve image 
data from the imaging element, it must also process the analog data into a standard 
format for broadcast or storage on magnetic tape. All of the functional blocks must 
work together and be perfectly synchronized. 

Most hand-held cameras use a ceo element as the image capture medium. The CCD 
array does an excellent job of digitizing the incident images at high speed; however, 
the larger the resolution of the array, the faster the digital control system must operate. 
An array with a resolution of 9lO x 525 pixels generates over 450,000 data points for 
every image. To meet the NTSC standard of 30 images per second, the control system 
must operate at 14.318 MHz. The combination of high density, high performance and 
architectural flexibility of the EPS464 is an ideal solution to this problem. 

Figure 4.6.8.1 shows a typical implementation of a controller for a hand-held 8-mm 
video camera. The application uses a 9lO x 525-bit cm imaging array and circuitry 
to format the image data into an NTSC video standard. 

The design contains three main blocks: a horizontal (X) counter, a vertical (Y) 
counter, and a synchronous signal generator (SSG). In Figure 4.6.8.1 the two counters 
are shown as timing generators which are used to format the video display into pixels 
per line and lines per screen. The SSG uses these counter values to generate the 
necessary control patterns and formatting signals. 

The size of the counters varies, according to the desired video format and the 
resolution of the display. The NTSC format specifies an interlaced display scheme; 
therefore, the system must count to one-half of the 525 lines in the display, or 262.5 
lines. However, the count is difficult to control since it depends on half clock cycles. 
To solve this problem, the screen is divided into a series of lO50 half-lines, with each 
frame using 525. By offsetting the display by half a horizontal line and displaying the 
two "half-pictures" in rapid succession, the interlace appears fluid, and the result is a 
very good representation of the original picture. This approach takes advantage of the 
physiology of human vision: although the human eye is good at distinguishing a wide 
range of colors, it is not so good at distinguishing small or rapid movements. 
Consequently, an image updated 30 times per second appears to have fluid motion. 

Given these system requirements, the horizontal counter needs lO bits to count the 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 261



Erasable Programmable Logic Devices 249 

Synchronous 
Signal 

I 
~ Generator 

(SSG) 

Oscillator f-+ liming 
Generator 1 Driver 

I liming 
Generator 2 

" ~ 
CCD 

Analog Block Image 
Sensor 

Video Output 

Figure 4.6.8.1 Typical CCD Controller 

910 pixels per line and the vertical counter needs 11 bits to count the 1050 lines per 
screen. By using the 1050 half-line approach, the counters will use integers rather 
than a cumbersome scheme of half clock cycles. 

The NTSC standard has three key specifications: lines per screen, line period, and 
screens per second. Since each image must be synchronized by the display hardware, 
and any variation from the standard would cause the image to roll on the screen, the 
lines-per-screen specification is fixed at 525. However, not all 525 lines are actually 
shown on the display. Twenty are used for formatting and equalization intervals, 
while the remaining 505 are dedicated to image data. 

The second specification is the amount of time that is permitted to display a line. Each 
line is encoded during a 63.556s period established by the incoming video signal. To 
encode the 910 horizontal pixels in the application, the control system must divide 
each horizontal time period into 910 individual segments and sample the analog video 
signal at each of those points. Each sample corresponds to the clocking out of the next 
word of analog data from the CCO array. With a horizontal time period of 63.556s, 
the sampling rate is 14.318 MHz. 

The third NTSC specification requires that an image must be updated 30 times per 
second, requiring a refresh every 33.33 ms. Since the NTSC is an interlaced format 
with two frames per image, the actual frame refresh rate is 60 Hz. This rate is easily 
achieved with the EPS464 EPLO as the digital control system. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 262



250 

-------------'------------~ 

EPS464 

Hq:9 .. 0) 

CSVNC 

• • · 
FIEl.O 

BlJ\NK 

HO,-__ --, 

3.58SC 

3.58 SC-9O" 

FPGA Technology 

AnoIog - VIdeo 
0uI 

Figure 4.6.8.2 Top Level of the CCD Imaging System Control Application 

The final video output is an analog signal that combines analog voltages representing 
intensity and color information with digital formatting pulses. Although digital and 
analog levels are combined with a special-purpose analog mixing device, mixing is 
actually performed under the control of the digital system. The result is a single 
composite viMo signal for broadcast or storage on tape. 

Figure 4.6.8.2 shows this application implemented in the Altera EPS464 EPLD. All 
five subfunctions (horizontal counter, vertical counter, state machine, pulse decode 
module, and clock divider) fit inside a single EPS464 and can be easily modified to 
meet the requirements of any application. 

4.7. References 

Ahanin, B. and Lytle, C.; "Methods and Apparatus for Facilitating Scan Testing of 
Asynchronous Logic Circuitry," U.S. Patent Application (pending). 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 263



Erasable Programmable Logic Devices 251 

AHera Application Brief AB 76, "Using Expanders to Build Registered Logic in 
EPM5000-Series MAX EPLDs," October 1990, Version 2. 

AHera Application Note AN 22, "Designing with AHDL," Oct. 1990, Version 1. 

Altera, "Altera EDIF Writer Specification Version 3.0," Specification Number 16C-
01199, Dec. 1991. 

Altera, "Valid/Cadence Design Kit for PC Users," Altera Software Utility. 

Altera, "Viewlogic Design Kit for PC Users," Altera Software Utility. 

ANSIlEIA - 548-1988, "Electronic Design Interchange Format Version 200." 

Birkner, J. et al. (editor), Programmable Array Logic Handbook, First Edition, 
Monolithic Memories Inc., 1978. 

Datta, S. and Kung, E., "EDIF: Its Contribution to the PLD Design Flow," The PW 
Design Conference and Exhibit Proceedings, 1991. 

Fiduccia, C.M. and Mattheyses, RM., "A Linear-Tune Heuristic for Improving 
Network Partitions," 19th Design Automation Conference, Paper 13.1, pp 175-181. 

Hartmann, R, "Estimating Gate Complexity of Programmable Logic Devices," VLSI 
Design Magazine, pp 100-102, May 1984. 

Kernighan, B.W. and Lin, S., "An Efficient Heuristic Procedure for Partitioning 
Graphs," The Bell System Technical Journal, Feb. 1970, pp 291-307. 

Kitson, B. et al. (editor), Programmable Logic Array Handbook, Advanced Micro 
Devices Inc., 1984, pp. 2-29 through 2-40. 

Munoz, R R et al., "Automatic Partitioning of Programmable Logic Devices," VLSI 
Systems Design, Oct. 1987, pp. 74-76, 78 and 86. 

Wolf, Stanley, Silicon Processing for the VLSI Era, Lattice Press, CA, 1990, pp 623-
635. 

Wong et al., "Programmable Logic Device with Array Blocks Connected Via 
Programmable Interconnect," U.S. Patent 4,871,930, Oct. 3, 1989, Col 2, line 43 et 
seq. 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 264



A 
ABEL 143 
Actl 110-113 
Act2 113-117 
Act3 117-118 
AC1MAP 140 
ADL 143 
Ahanin 202 
Ahrens 97, 118 
Allen 97, 99 
AHera 191, 216, 235 
amorphous silicon 100 
analog FPGA 4 
ANSI 205 
anti fuse 99 

dielectric 100 
F antifuse 109 
ONO 100 
resistance 100 

Apple 82 
array-based architecture 184 
automatic test vector generation 202 

B 
binary counter 71 
binary decision diagram 129 
Birkner 100, 171 
bit-per-state 160 

see also one-hot 69 

Index 

bit-slice 49 
Blkmake 57, 59 
Boolean equations 128 
boundary scan 45, 80 
Brayton 129 
Breuer 58 
Britton 15 
buffering 25 

C 
capacity 51, 124 
carry chain 44, 219 
carry hard macro 156 
carry logic 44, 70 
carry-propagation 153 
carry-select 154, 160 
Carter 15, 97, 99 
cascade 26 
cascade chain 219 
channel density 104 
Chen 101 
Chene 57 
Chiang 101, 102, 103 
Chortle 55, 57 
Chow 3,15 
cip, see pip 20 
CLB 19, 22, 29, 36, 44 

see also logic module 113 
see also macrocell 180 

CLBMAP64 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 265



254 

Cliff 15 
clock routing 33, 49 
C-module 113, 117 
CMOS 18 
Compiler 208 
Complex PLD 3 
configurable display device 82 
configurable interconnect point, see pip 

20 
configurable logic block, see CLB 19 
configurable memory 45 
configuration 

see programming 52 
configuration bitstream 22 
configuration memory 15 
Cong 55 
controllability 52 
counter 70, 144, 226 
Cox 75 
CPLD 3, 171 
crossbar switch 22 

D 
Datta 205 
debugging 84, 131 
density 10, 23 
design migration 11, 200 
digital signal processing 77, 164 
direct addressing 120 
direct connect 26, 71 

see also cascade 219 
direct connection 32 
distributed arithmetic 77 
DMA controller 85 
Donath 29 
double-entry symmetry 116 
double-length lines 46 
dual feedback 182, 185 
Dunlop 58 
duplicated logic 57, 69 

E 
Ebeling 3, 15 
EDIF 211 
EIAyat 97 

FPGA Technology 

electronic scaffolding 84 
EIGamal 29, 97, 106, 107, 109, 111, 

118 
EP1810 184-187 
EPROM 173 
expander 189,190,198,229 
expander product term 189 

F 
fan-in 134 
fan-out 133 
FastTrack 219, 222 
Fiduccia 58, 216 
Field Progranunable Gate Array, see 

FPGA 
Field-Progranunable Analog Array 

(FPAA) 4 
fine-grain vs. coarse grain 27 
fitting 172,204,216 

see also partitioning 54 
flexible processor 90 
flip-flop 28, 69 
floppy disk 82 
force-directed relaxation 60 
FPGA 

advantages 4 
architecture 3 
cost comparison with MPGA 9 
definition 2 
density 8 
design migration to MPGA 11 
disadvantages 8 
speed 9, 10 
taxonomy 3 

Francis 55, 57 
FrankIe 62 
function generator, see lookup table 20 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 266



Index 255 

Furtek 15 iterative design 70 

G J 
Ganglion 75 JEDEC 216 
gate array 1 jitter-bounded PLL 165 
general-purpose interconnect 46 JT AG, see boundary scan 45 
Gerzberg 97, 100 
global clock 70 K 
global interconnect 33,48 Karplus 55, 129 
globally connected 184 Kawana 15 
gobbler 138 Kean 15 
Goto 60 Kernighan 216 
Graham 100, 118 Kirkpatrick 60 
graphic editor 208 Kitson 190 
Greene 26, 107 
grow back 99 L 

H 
LAB 188, 197, 221 

see also CLB 22 
Hamdy 97, 100 see also logic module 113 
hard macro 137 leakage current 100 
Hartmann 171 Lee 4 
Hartoog 58 left edge algorithm 104 
Hashimoto 104 levels oflogic 133 
Hastie 15 library 54, 66 
Hauck 15 Library Mapping Files 211 
Heller 29, 49 life cycle 7 
high-performance counter 150 Lim 100 
Hill 15, 29 limit-bumping algorithm 62 
Holley 67 Lisa 4 
Holmberg 100 loadable counter 144 
Hsieh 15, 43, 97 logic array 180 

I 
logic array block 188 

see LAB 187 
I/O block 182 logic module 113 
if-then-else DAG 129 see also CLB 22 
in-circuit verification 6, 54 see also macrocell 180 
incremental placement 67, 130 logic optimization 66,213 
incremental routing 67 logic synthesis 63, 172,204 
input segment 108 Logic Synthesizer 213 
lOB 30, 37, 45 long line 32 

see I/O block 22 lookup table 20, 69, 219 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 267



256 

Lorenzetti 104 
LPM67 
LSI 130 
LUT20 
Lyons 17 

M 
macro, combinable 159 
macrocell 180, 186, 189, 197 

see also CLB 22 
macrofunction 179 
macrofunction library 211 
magic box 

see switchbox 22 
Mailhot 129 
mapping 129 

see fitting 216 
see partitioning 54 

MarrlO6 
Mask Programmed Gate Array (MPGA) 

1 
Mask-Programmed Logic Device 200 
mask-programmed logic device (MPLD) 

200 
Maunder 80 
MAX5000 187-195 
MAX7000 195-200 
memory 45 
memory cell in SRAM FPGA 15 
message processor 207 
Michael 0 
microparameter 224 
min-cut 58, 216 
minimization 204 
Mintzer 77 
MIS-II 55 
MIS-pga 55 
module utilization 124 
MPGA 1,29 
multi-chip partitioning 206 
multi-gate macros 134 
multiplexer 21 

multiplication 75, 77 
Munoz 190 
Murgai 55, 129 
Muroga 15 

N 

FPGA Technology 

nearest-neighbor connections 
see direct connect 26 

neural network 75 
Nilsson 61 
NRE5,7 

o 
observability 52 
one-hot 69 

see also bit-per-state 160 
output enable 142 
output pin swapping 34 
output segment 109 

P 
pad limited 10 
PAL 184 
PALASM 140, 143 
Pamela 2 
parallel logic expander 198 
partitioner 216 
partitioning 54, 216 

see also fitting 216 
pass transistor 21 
Penfield 62 
performance 127 
Perle-O 88 
Perle-l 88 
PIA 189, 193 
pin assignment 130 
pin swapping 34, 61 
pip 20, 25, 26 
pipelining 70 
placement 41, 59, 67, 130 

directional bias 60 
incremental 68 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 268



Index 

PLD29 
PUCE 100 
position tracker 84 
power consumption 19 
Preas 109 
pre-scaled counter 150 
probe points 65 
product term 177 
program 22 
programmability 

effect on density 8 
effect on speed 9 

Programmable Array Logic (PAL) 1 
programmable interconnect array 189, 

192, 199 
programmable interconnect point. see 

pip 20 
Programmable Logic Device (PLD) 1 
Programmable Multi-level Devices 

(PMD) 3 
Programmer Object Files 216 
programming 52, 118, 131, 173 

overhead 8, 10 
re-programming 52 
time 131 

programming yield 6, 18, 173, 183 
prototype 67, 84, 87 
pulse-steal PLL 164 

Q 
Quickturn Systems 87 

R 
RAM 45 
readback 52, 90 
reconfiguration 52 

see reprogramming 52, 79 
Report File 212 
repowering buffers 32, 40, 49 
reprogramming 17, 70, 76, 79-83 
resource limits 29 

ripple-carry adder 71 
Roesner 100 
Rose 27,28 
Rosendahl 80 
routability 25, 29 
routing 61, 67, 104, 130 

global route 61 
maze route 61 

Rubenstein 62 
Rudell 129 

S 
Sawkar 55 
scan-testing 201 
schematic editor 53 
Schlageter 97 
Sechen 59, 60 
security 53, 182 
segment 22, 32 
segmented routing channel 26, 106 
series pass transistor addressing 120 
74AS161138 
shared logic expander 197, 198 
simulated annealing 60 
simulation 67 
Simulator NetIist File 201 
slack 62 
sloppy design 9 
Smith 97,99 
S-module 113, 117 

combinable 117 
sneak path 123 
soft macro 135, 137 
Soukup 61 
speed 24, 43,51 
speed binning 7 
Splash 89 
state-machine generator 53 
Steiner tree 109 
Stopper 100 
sub-families 49 
sum-of-products 177 

257 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 269



258 

switchbox 22 
Symbol Editor 208 
synchronous binary counter 144 
synthesis 53, 67, 141 

technology specific 63 

T 
TA161138 
table lookup 

see lookup table 20 
Tan-Nguyen 82 
tape drive 82 
technology mapping 

see partitioning 54 
telecommunications 164 
testing 6, 18, 79, 118 
three-state 141 
three-state buffers 39 

placement constraint 59 
placement constraints 60 

threshold drop 21 
time-dependent dielectric breakdown 

102 
timing-driven placement 130 
lLU 

see lookup table 20 
tOOling 4 
Trimberger 43, 57 
two-segment routing 107 

V 
video controller 83 
virtual hardware 90 
volatility 17 

W 
Walters 165 
waveform editor 207, 209 
Whitney 97 
Whitten 97, 100 
wiring channel 22 

Wolf 173 
Wong 97, 106, 184 
Woo 55 

X 

FPGA Technology 

XACT Design Editor 64 
X-BLOX 63 
XC2000 29-35, 40 
XC3000 35-43 
XC4000 43-51 
XC4000A49 
Xilinx 17 
Xnfmap 56 

sharbour@jvllp.com

PATENT OWNER DIRECTSTREAM, LLC 
EX. 2077, p. 270




