
IPR2018-01594

EXHIBIT

2052

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 1

WE
“gdumflWait""$333
.110‘r
I

3333310

Q

g
h:

%
E:
5"

g

|PR2018-01594

EXHIBIT

2052

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 1

High-Per£ ormance
Coinputer Architecture

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 2

High-Per£ ormance
Contputer Architecture

Harold S. Stone
IBM Watson Research Center
and
Courant Institute
NewYork University

I. Addison-Wesley Publishing Company
Reading, Massachusetts
Menlo Park, California • Don Mills, Ontario
Wokingham, England • Amsterdam
Sydney • Singapore • Tokyo • Madrid
Bogota • Santiago • San Juan

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 3

This book is in the Addison-Wesley Series in Electrical and Computer Engineering

Sponsoring Editor • Tom Robbins
Production Supervisor • Bette J. Aaronson
Copy Editor • Sarah Meyer
Text Designer • Herb Caswell
Illustrator • Hardlines
Technical Art Consultant • Joseph Vetere
Manufacturing Supervisor • Hugh Crawford
Cover Designer • Jean Depoian

Library of Congress Cataloging-in-Publication Data

Stone, Harold S., 1938-
High-performance computer architecture.

Bibliography: p.
Includes index.
I. Computer architecture. I. Title.

QA76.9.A73S76 1987 004.22 87-1073
ISBN 0-201-16802-2

Copyright© 1987 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval sys­
tem, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior
written permission of the publisher. Printed in
the United States of America. Published simul­
taneously in Canada.

ABCDEFGHIJ-AL-8987

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 4

To Jan-colleague and companion

A precis from the pages of history

Chapter 1
Architecture is preeminently the art of significant forms in space-that is,
forms significant of their functions.

- Claude Bragdon, 1931

Chapter 2
I know of no way of judging the future but by the past.

- Patrick Henry, 1775

Chapter 3
Comparisons do ofttime great grievance.

- John Lydgate, c. 1440

Chapter4
The fickle multitude, which veers with every wind!

- J. C. F. Schiller, 1800

Chapter 5
The tucked-up sempstress walks with hasty strides,
While streams run down her oil'd umbrella's sides.

- Jonathan Swift, 1711

Chapter 6
Sat cit si sat bene. [It is done quickly enough if it is done well.]

- Latin proverb

Chapter 7
Who depends upon another man's table often dines late.

- John Ray, 1678

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 5

Preface
Teaching computer architecture is an interesting challenge for the instructor
because the field is in constant flux. What the architect does depends strongly
on the devices available, and the devices have been changing every two to
three years, with major breakthroughs once or twice a decade. Within the
brief life of this textbook, there may be a complete turnover in the devices
used in computers.

What then should be taught to prepare students for what lies ahead?
What information will remain important over the technical career of a stu­
dent, and what information will soon become obsolete, of historical interest
only? This text stresses design ideas embodied in many machines and the
techniques for evaluating the ideas. The ideas and the evaluation techniques
are the principles that will survive. The specific implementations of
machines that one might choose in 1987, 1990, or 1993 reflect the basic
principles described here as applied to the device technology currently
prevailing. Effective designs are those that use technology cleverly and
achieve balanced, efficient structures matched well to the class of problems
they attack. This text stresses the means to achieve balance and efficiency
regardless of the underlying technology.

We use a multifaceted approach to teaching the reader how to prepare for
the future. The major features are the following:

1. Each topic is a general architectural approach-memory designs,
pipeline techniques, and a variety of parallel structures.

2. Within each topic the focus is on fundamental bottlenecks-memory
bandwidth, processing bandwidth, communications, and synchroniza­
tion-and how to overcome these bottlenecks for each specific topic area.

vii

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 6

viii Preface

3. The material addresses evaluation techniques to help the reader isolate
aspects that are highly efficient from those that are not.

4. A few machines whose structure is of historical interest are described to
illustrate how the concepts can be implemented.

5. Where appropriate, the text draws on examples of real applications and
their architectural requirements.

6. Exercises at the end of chapters give the reader an opportunity to
sketch out designs and perform evaluation under a variety of
technology-oriented constraints.

The exercises are particularly important because the reader learns to
master the material by integrating a number of different ideas, often by
working through a paper design that must meet some unusual set of con­
straints. In several exercises, the student is asked to produce a series of
designs, each reflecting a different set of underlying devices. This helps the
student gain experience in adapting basic techniques to new situations.

The text is intended for advanced undergraduates and first-year graduate
students. It assumes the student has had a course in machine organization so
that the basic operation of a processor is well understood. Some experience
with assembly language is helpful, but not essential. Programming in a high­
level language such as Pascal, however, is necessary to understand the
applications used as examples. Mathematical background in linear systems
or numerical methods is helpful for Chapters 4 and 5, and some exposure to
operating systems will assist understanding Chapter 7. In neither case is the
material absolutely required because the text contains sufficient background
discussion to support the presentation.

The text purposely avoids highly detailed descriptions of popular ma­
chines because in time the machines described will inevitably be obsolete. In
future years, a reader of such material may be led to think that the specific
details of the successful machine represent good design decisions for the
future as well for the time frame in which the design was actually done. A
better approach is for the individual instructor to discuss one or two current
machines while using the text, with the notion that the current machines can
change each year at the discretion of the instructor. It is also possible to use
the text without such supplementary material because the design exercises
provide challenges that represent technology through the end of the 80s and
into the 90s.

We jokingly tell students that the subject matter enjoys a positive benefit
from the rapid changes in technology. The instructor need not create new
exercises and examinations for each new class. The questions may be the
same each year, but the answers will be different.

As an aid for the student and instructor, there is a floppy disk available
with stripped traces of program execution. The student should find this use-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 7

Preface ix

ful for cache evaluation studies. The disk is usable directly on IBM personal
computers and compatible equipment and can be accessed by programs
written in a variety of programming languages. Prior to the publication of
this text, thorough studies of cache behavior required main-frame computers
for analysis because of the massive amounts of data to process. Techniques
described in Chapter 2 show how to reduce the processing by as much as two
orders of magnitude. These techniques make possible the use of a personal
computer as the primary analysis tool. Instructors may find that exercises in
cache analysis are particularly illuminating. Instructors who would like to
obtain the disk should contact the publisher or the author.

The material in the text is structured in a modular fashion, with each
chapter reasonably independent of every other chapter. The instructor can
put together a course by selecting individual chapters and individual sections
according to the background of the students, the prerequisites available, and
the successor courses in the curriculum.

Chapters 2 and 3 form the core material. Cache memories and pipeline
structures are widely used today, and they are likely to be effective in the
technologies that will emerge in the next several years. These chapters should
be taught in all course offerings.

For courses in which students have a strong mathematical preparation,
Chapters 4 and 5 are particularly well suited because they treat techniques
for high-speed numerical computations. Although the information is of
interest for general-purpose computers, it is biased to supercomputers that
are used on large-scale numerical problems.

Chapters 6 and 7 treat multiprocessors, which are more general purpose
than the machines of Chapters 4 and 5. These chapters are recommended for
curricula that stress systems programming and computer engineering.

In one semester, it is reasonable to co.nplete selected sections of all chap­
ters, or to cover Chapters 2 and 3 and two other chapters in depth. Chapter 1,
which has no exercises, is to be used as background reading to set the tone of
the exposition. The text can easily satisfy the needs of a two-quarter sequence
if the instructor chooses to use the full material.

No matter which portion of the text is covered, working the exercises is
critical for a thorough appreciation of the material. The design-oriented exer­
cises can be rather frustrating at first because there is no clear indication of a
correct answer. The reader wants to be able to jot down a simple answer to a
question after a small amount of thought. What a pleasure to crank through a
calculation and find the answer is 17.5. The design exercises are nothing like
this. No specific quality distinguishes a right answer from a wrong answer.
The answer is a design, and if it meets the design constraints it must be
correct.

The point of working such exercises is not the final design, but rather the
process of arriving at the final design. What alternatives were considered?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 8

x Preface

How does the final design overcome basic problems? Did the student consider
a reasonable set of alternatives or was there a valid approach missed that
should have been considered? Is the evaluation of the design reasonable? For
what assumptions concerning technology factors and workload character­
istics is the given design an efficient one?

After working through s.everal such problems the reader becomes familiar
with the thought processes of the designer and gains both experience and
insight in architectural design. Many exercises seem to capture real situ­
ations, and this is as intended. As in real situations the reader may discover
that there is no good solution, and a compromise has to be invented. Or there
may be several reasonable solutions, and the reader has to pick one, possibly
on the basis of characteristics that are secondary in importance because all
the solutions available have satisfactory primary characteristics. Many exer­
cises have actually been drawn from design problems faced by the author,
with constraints updated for the present and future.

The preparation of this text represents the fruits of labor of many parties.
The author's students, Tom Puzak, Zarka Cvetanovic, and Dominique Thi­
ebaut, contributed a substantial number of the ideas presented. They also
offered helpful comments and criticism as the project progressed. Other re­
viewers whose comments are reflected in these pages are William F. Applebe,
Georgia Institute of Technology; Richard A. Erdrich, UNISYS Corporation;
John L. Hennessy, Stanford University; K. C. Murphy, Advanced Micro De­
vices; Paul Pederson, New York University; Richard L. Sites, Digital Equip­
ment Corporation; and Phil Emma, Jeff Lee, Peter Hsu, K. S. Natarajan,
Howard Sachar, and Marc Surette, all with IBM. Collectively and individu­
ally, their work has aided greatly in the process of developing the material to
make it easily accessible to the intended audience. The publication crew at
Addison-Wesley did a remarkable job in putting the project together. Bette
Aaronson and Sarah Meyer demonstrated that they know pipelining in prac­
tice better than the author does in theory, smoothly flowing the chapters
through the tedious process of markup, text edit, and page composition
to demonstrate their proficiency in high-performance publishing. To Tom
Robbins we offer gratitude for support and encouragement in this project
from its inception to its completion.

Chappaqua, New York H.S.S.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 9

Contents

1 Introduction

2

1.1 Technology and Architecture
1.2 But Is It Art?

1.2.1 The Cost Factor
1.2.2 Hardware Considerations

1.3 High-Performance Techniques
1.3 .1 Measuring Costs
1.3.2 The Role of Applications
1.3 .3 The Impact of VLSI
1.3 .4 The Effect of Technological Change on Cost
1.3.5 Algorithms and Architecture

1.4 Historical References

Memory-System Design

2.1 Exploiting Program Characteristics
2.2 Cache Memory

2.2.1 Basic Cache Structure
2 .2 .2 Cache Design
2.2.3 Cache Analysis
2.2.4 Replacement Policies
2.2.5 Footprints in the Cache
2 .2 .6 Writing to the Cache

1

1
3
4
7
9

10
12
13
14
17
19

21

23
29
29
32
39
52
58
66

xi

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 10

xii Contents

2 .3 Virtual Memory
2.3.1 Virtual-Memory Structure
2.3.2 Virtual-Memory Mapping
2.3.3 Improving Program Locality
2.3.4 Replacement Algorithms
2.3.5 Buffering Effects in Virtual-Memory Systems

Exercises

3 Pipeline Design Techniques

3.1 Principles of Pipeline Design
3.2 Memory Structures in Pipeline Computers
3.3 Performance of Pipelined Computers
3.4 Control of Pipeline Stages

3.4.1 Design of a Multi-function Pipeline
3.4.2 The Collision Vector and Pipeline Control
3.4.3 Maximum Performance Pipelines
3 .4 .4 Using Delays to Increase Performance
3.4.5 Interlock Elimination

3 .5 Exploiting Pipeline Techniques
3.5.1 Conditional Branches
3.5.2 Internal Forwarding and Deferred Instructions
3 .5 .3 Machines with Both Cache and Virtual Memory
3.5.4 RISC Architectures

3 .6 Historical References
Exercises

4 Characteristics of Numerical Applications

4.1 Classification of Large-Scale Numerical Problems
4.1.1 Continuum Models
4 .1.1 Particle Models

4.2 Design Constraints for High-Performance Machines
4.3 Architectures for the Continuum Model
4.4 Algorithms for the Continuum Model

4.4.1 The Cosmic Cube
4.4.2 Data-Flow Requirements
4.4.3 Parallel Solutions
4.4.4 Recursive Doubling and Cyclic Reduction

4.5 The Perfect Shuffle
4.5.1 The Perfect-Shuffle Interconnection Pattern
4.5.2 Applications of the Perfect Shuffle

4.6 Architectures for the Continuum Model-Which Direction?
Exercises

69
70
74
81
84
90
94

102

103
115
117
127
127
132
138
140
148
150
150
155
165
168
171
172

177

178
180
182
184
186
194
194
195
200
206
210
210
217
227
229

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 11

5

Contents

Vector Computers

5.1 A Generic Vector Processor
5.1.1 Multiple Memory Modules
5.1.2 Intermediate Memories

5.2 Access Patterns for Numerical Algorithms
5.2.1 Gaussian Elimination

5.3 Data-Structuring Techniques for Vector Machines
5.4 Attached Vector-Processors
5.5 Sparse-Matrix Techniques
5 .6 The G F-11, A Very High-Speed Vector Processor
5.7 Final Comments on Vector Computers
Exercises

xiii

233

234
236
244
248
249
253
261
266
268
271
274

6 Multiprocessors 278

6.1 Background 279
6.2 Multiprocessor Performance 283

6.2.1 The Basic Model-Two Processors with Unoverlapped
Communications 285

6.2.2 Extension to N Processors 286
6.2.3 A Stochastic Model 290
6.2.4 A Model with Linear Communication Costs 291
6.2.5 An Optimistic Model-Fully Overlapped Communication 293
6.2.6 A Model with Multiple Communication Links 295
6.2.7 Multiprocessor Models 297

6.3 Multiprocessor Interconnections 299
6.3.1 Bus Interconnections 299
6.3.2 Ring Interconnections 304
6.3.3 Crossbar Interconnections 305
6.3.4 The Shuffle-Exchange Interconnection and the

Combining Switch 310
6.3.5 The Butterfly Operation and the Reverse-Binary

Transformation 312
6.3.6 The Combining Network and Fetch-and-Add 318

6.4 Cache Coherence in Multiprocessors 324
6.5 Summary 329
Exercises 330

7 Multiprocessor Algorithms

7 .1 Easy Parallelism
7 .1.1 The do par and do seq Constructions
7 .1 .2 Barrier Synchronization

332

333
335
336

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 12

xiv Contents

7.1.3 Performance Considerations 338
7 .1 .4 Increasing Granularity 341
7.1.5 Initiating Tasks 345

7.2 Synchronization Techniques 347
7.2.1 Synchronization with Test-and-Set 348
7.2.2 Synchronization with Increment and Decrement 352
7 .2.3 Synchronization with Compare-and-Swap 355
7 .2.4 Synchronization with Fetch-and-Add 362

7.3 Parallel Search-How to Use and Not Use Parallelism 365
7.3 .1 Searching for the Maximum of a Unimodal Function 366
7.3 .2 Parallel Branch-and-Bound-The Traveling-Salesman

Problem 369
7 .4 Transforming Serial Algorithms into Parallel Algorithms 37 4

7 .4 .1 Dependency Analysis 37 5
7.4.2 Exploiting Parallelism Across Iterations 377
7.4.3 The Effects of Scheduling on Parallelism 382

7 .5 Final Comments on Multiprocessors 383
Exercises 385

References 389

Index and Glossary 397

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 13

Introduction

This text is devoted to the study of the architecture of high-speed computer
systems, with emphasis on design and analysis. We view a computer system
as being constructed from a variety of functional modules such as processors,
memories, input/output channels, and switching networks. By architecture,
we mean the structure of the modules as they are organized in a computer
system. The architectural design of a computer system involves selecting
various functional modules such as processors and memories and organizing
them into a system by designing the interconnections that tie them together.
This is analogous to the architectural design of buildings, which involves
selecting materials and fitting the pieces together to form a viable structure.

1.1 Technology and Architecture

Computer architecture is driven by technology. Every year brings new de­
vices, new functions, and new possibilities. An imaginative and effective
architecture for today could be a klunker for tomorrow, and likewise, a

1

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 14

Introduction

This text is devoted to the study of the architecture of high-speed computer
systems, with emphasis on design and analysis. We view a computer system
as being constructed from a variety of functional modules such as processors,
memories, input/output channels, and switching networks. By architecture,
we mean the structure of the modules as they are organized in a computer
system. The architectural design of a computer system involves selecting
various functional modules such as processors and memories and organizing
them into a system by designing the interconnections that tie them together.
This is analogous to the architectural design of buildings, which involves
selecting materials and fitting the pieces together to form a viable structure.

1.1 Technology and Architecture

Computer architecture is driven by technology. Every year brings new de-
vices, new functions, and new possibilities. An imaginative and effective
architecture for today could be a klunker for tomorrow, and likewise, a

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 14

2 Introduction Chap. l

ridiculous proposal for today may be ideal for tomorrow. There are no abso­
lute rules that say that one architecture is better than another.

The key to learning about computer architecture is learning how to evalu­
ate architecture in the context of the technology available. It is as important
to know if a computer system makes effective use of processor cycles, memory
capacity, and input/output bandwidth as it is to know its raw computational
speed. The objective is to look at both cost and performance, not performance
alone, in evaluating architectures. Because of changes in technology, relative
costs among modules as well as absolute costs change dramatically every few
years, so the best proportion of different types of modules in a cost-effective
design changes with technology.

This text takes the approach that it is methodology, not conclusions, that
needs to be taught. We present a menu of possibilities, some reasonable today
and some not. We show how to construct high-performance systems by mak­
ing selections from the menus, and we evaluate the systems produced in
terms of technology that exists in the mid-1980s. The conclusions reached by
these evaluations are probably reasonable through the end of the decade, but
in no way do we claim that the architectures that look strongest today will be
the best in the next decade.

The methodology, however, is timeless. From time to time the computer
architect needs to construct a new menu of design choices. With that menu
and the design and evaluation techniques described in this text, the architect
should be able to produce high-quality systems in any decade for the tech­
nology at that time.

Performance analysis should be based on the architecture of the total
system. Design and analysis of high-performance systems is very complex,
however, and is best approached by breaking the large system into a hier­
archy of functional blocks, each with an architecture that can be analyzed in
isolation. If any single function is very complicated, it too can be further
refined into a collection of more primitive functions. Processor architecture,
for example, involves putting together registers, arithmetic units, and control
logic to create processors-the computational elements of a computer
system.

An important facet of processor architecture is the design of the instruc­
tion set for the processor, and we shall learn in the course of this text that
there are controversies raging today concerning whether instruction sets
should be very simple or very complex. We do not settle this controversy here;
there cannot be a single answer. But we do illuminate the factors that deter­
mine the answer, and in any technology an architect can measure those
factors in the course of a new design.

Computer architecture is sometimes confused with the design of com­
puter hardware. Because computer architecture deals with modules at a
functional level, not exclusively at a hardware level, computer architecture

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 15

Sec. 1.2 But Is It Art? 3

must encompass more than hardware. We can specify, for example, that a
processor performs arithmetic and logic functions, and we can be reasonably
sure that these functions will be built into the hardware and not require
additional programming. If we specify memory management functions in the
processor, the actual implementation of those functions may be some mix of
hardware and software,, with the exact mix depending on performance, avail­
ability of existing hardware or software components, and costs.

When very-large-scale integration (VLSI) was in its infancy, memory­
management functions were implemented in software, and the processor
architecture had to support such software by providing only a collection of
registers for address mapping and protection. With VLSI it becomes possible
to embed a greater portion of memory management in hardware. Many sys­
tems employ sophisticated algorithms in hardware for performing memory­
management functions once exclusively implemented in software.

The line between hardware and software becomes somewhat fuzzy when
last year's software is embedded directly in read-only memory on a memory­
management chip where it is invisibly invoked by the programs being man­
aged. Once such a chip is packaged and is then a "black box" that does
memory management, the solution becomes a hardware solution. The archi­
tect who uses the chip need not provide additional software for memory
management. If a chip does most, but not all, memory-management func­
tions internally, then the architect must look into providing the missing
features by incorporating software modules.

In retrospect, computer architecture makes systems from components,
and the components can be hardware, software, or a mixture of both. The
skill involved in architecture is to select a good collection of components and
put them together so they work effectively as a total system. Later chapters
show various examples of architectures, some proven successful and some
proposals that might succeed.

1.2 But Is It Art?
An article in the New York Times in January 1985 described a discovery of an
unsigned painting by de Kooning that raised a few eyebrows among art
critics. Although it does not bear his signature, there was no doubt that it is
his work, and it was hung in a gallery for public viewing. The piece is a bench
from the outhouse of his summer beach house that de Kooning painted ab­
stractly to give the appearance of marble. Is this piece a great work of art by a
renowned master, or is it just a painted privy seat? The point is that art
appreciation is based on aesthetics, for which we have no absolute measures.
We have no absolute test to conclude whether the work is a masterpiece or a
piece of junk. If the art world agrees that it is a masterpiece, then it is a
masterpiece.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 16

4 Introduction Chap. 1

Computer architecture, too, has an aesthetic side, but it is quite different
from the arts. We can evaluate the quality of an architecture in terms of
maximum number of results per cycle, program and data capacity, and cost,
as well as other measures that tend to be important in various contexts. We
need never debate a questions such as, "but is it fast?"

Architectures can be compared on critical measures when choices must
be made. The challenge comes because technology gives us new choices each
year, and the decisions from last year may not hold this year. Not only must
the architect understand the best decision for today, but the architect must
factor in the effects of expected changes in technology over the life of a design.
Therefore, not only do evaluation techniques play a crucial role in individual
decisions, but by using these techniques over a period of years, the architect
gains experience in understanding the impact of technological developments
on new architectures and is able to judge trends for several years in the
future.

Here are the principal criteria for judging an architecture:

• Performance;

• Cost; and

• Maximum program and data size.

There are a dozen or more other criteria, such as weight, power consumption,
volume, and ease of programming, that may have relatively high significance
in particular cases, but the three listed here are important in all applications
and critical in most of them.

1.2.1 The Cost Factor

The cost criterion deserves a bit more explanation because so many people
are confused about what it means. The cost of a computer system to a user is
the money that the user pays for the system, namely its price. To the designer,
cost is not so clearly defined. In most cases, cost is the cost of manufacturing,
including a fair amortization of the cost of development and capital tools for
construction. All too often we see comparisons of architectures that compare
the parts cost of System A with the purchase price of System B, where System
A is a novel architecture that is being proposed as an innovation, and System
B represents a model in commercial production.

Another fallacious comparison is often made when relating hardware to
software. In the early years of computing, software was often bundled free of
charge with hardware, but, as the industry matured, software itself became a
commodity of value to be sold.

We now discover that what was once a free good now commands a signifi­
cant portion of a computing budget. The trends that people quote are de­
picted in Fig. 1.1, where we see the cost of software steadily rising with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 17

Sec. 1.2

8

7
(;)
8 6
-0
Q)

.!::! 5
(ij
E
0 4
z

3

2

But Is It Art?

o Software

• Hardware (log of normalized cost)

Fig. 1.1 A naive view of computer-cost trends.

5

inflation and complexity, and with apparently little relief from advances in
software tools. Plotted on the same curve is the general trend for hardware in
the same period of time. Hardware components appear to be diminishing in
cost at an unbelievable rate. If we project these trends forward ten to twenty
years, we may believe that hardware might be bundled with software, given
free with the purchase of the software that runs on it. But this view is rather
naive.

Software and hardware costs each have two components:

l. A one-time development cost; and

2. A per-unit manufacturing cost.

The actual cost of a product, be it software or hardware, is shown in Fig. 1.2 as
a function of the volume of production of a product. Note that the cost of the
first unit is equal to the cost of the development. The cost curve moves
upward with volume, but the slope tends to diminish with very high volumes
because of manufacturing experience that tends to reduce per/unit costs over
large volumes of production. The curve in Fig. 1.2 shows accumulated cost of
the total volume of a product. The price of the product is the cost shown on the
curve divided by the volume, plus a markup for profit. So price is very
sensitive to volume when development costs are high.

When software was essentially free, the development costs were either
bundled with the hardware development costs, borne by the users who
developed the bulk of their own software, or simply not accounted or recov-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 18

UlSee 12 But Is It Art?

D Software

I Hardware (log of normalized cost)

Normalizedcost 01
1.1. __I___L L 1 1

1950 1955 1960 1965 1970 1975 1980 1985 1990

Fig. 1.1 A naive view of computer~cost trends.

inflation and complexity, and with apparently little relief from advances in
software tools. Plotted on the same curve is the general trend for hardware in
the same period of time. Hardware components appear to be diminishing in
cost at an unbelievable rate. If we project these trends forward ten to twenty
years, we may believe that hardware might be bundled with software, given
free with the purchase of the software that runs on it. But this View is rather
naive.

Software and hardware costs each have two components:

I. A one-time development cost; and

2. A per-unit manufacturing cost.

The actual cost of a product, be it software or hardware, is shown in Fig. 1.2 as
a function of the volume of production of a product. Note that the cost of the
first unit is equal to the cost of the development. The cost curve moves
upward with volume, but the slope tends to diminish with very high volumes
because of manufacturing experience that tends to reduce per/unit costs over
large volumes of production. The curve in Fig. 1.2 shows accumulated cost of
the total volume of a product. The price of the product is the cost shown on the
curve divided by the volume, plus a markup for profit. So price is very
sensitive to volume when development costs are high.

When software was essentially free, the development costs were either
bundled with the hardware development costs, borne by the users who
developed the bulk of their own software, or simply not accounted or recov-

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 18

6 Introduction

240.---~~~~~~~~~~~~~~~~~-=...a

(/)

(;)
0
()

220

200
180

g> 160
-~Ci)

-§-g 140
~ l}l 120
::J ::J

~& 100
-0~ 80
c:
<1l 60
0
(:! 40

20
O'--~'---~'---~'----J'----J'------'~---'~---'~--'-~--'

0 50,000
Volume

100,000

Fig. 1.2 Cumulative production costs versus volume.

Chap. 1

ered by the software producers. Since hardware manufacturing costs were
very high compared to today, software manufacturing costs were small rela­
tive to hardware manufacturing costs. As long as development costs did not
have to be covered through the direct sale of software, it was reasonable to
give away the software.

Eventually, software development costs became significant and could no
longer be ignored. But software replication is still essentially free. We can
easily draw a parallel with some VLSI chips in mass production (for example,
a complex microprocessor chip with a few hundred thousand transistors).
The chip-development cost may be about the same order of magnitude as the
cost of the development of the operating system or of a database-manage­
ment applications package that runs on the chip.

In very high volume, the manufacturing cost per chip is the same order of
magnitude as the manufacturing cost of the software. Yet we see the chip sold
at a price that may be as little as one-tenth the price of the software, and the
computer system that contains the chip may be priced at ten times the cost of
the software. The price of the chip, software, and computer system seem to be
unrelated to manufacturing costs. In part, the price is determined by volume
of sales, because the price must recover the development costs. Several
million copies of the chip may be sold, but perhaps only a few hundred
thousand copies of the database-management software may be sold. This
alone can account for a factor-of-ten difference in price.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 19

0‘ Introduction Chap. 1

240
220
200

.. mm00

.._. 888
0707CO
40
20

OL__l__1_.l_.LI_J__J__I__l_0 50.000 100,000
Volume

R&DandManufacturingCosts (Thousands)

Fig. [.2 Cumulative production costs versus volume.

ered by the software producers. Since hardware manufacturing costs were
very high compared to today, software manufacturing costs were small rela-
tive to hardware manufacturing costs. As long as development costs did not
have to be covered through the direct sale of software, it was reasonable to
give away the software.

Eventually, software development costs became significant and could no
longer be ignored. But software replication is still essentially free. We can
easily draw a parallel with some VLSI chips in mass production (for example,
a complex microprocessor chip with a few hundred thousand transistors).
The chip-development cost may be about the same order of magnitude as the
cost of the development of the operating system or of a database-manage-
ment applications package that runs on the chip.

In very high volume, the manufacturing cost per chip is the same order of
magnitude as the manufacturing cost of the software. Yet we see the chip sold
at a price that may be as little as one-tenth the price of the software, and the
computer system that contains the chip may be priced at ten times the cost of
the software. The price of the chip, software, and computer system seem to be
unrelated to manufacturing costs. In part, the price is determined by volume
of sales, because the price must recover the development costs. Several
million copies of the chip may be sold, but perhaps only a few hundred
thousand copies of the database-management software may be sold. This
alone can account for a factor-of-ten difference in price.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 19

Sec. 1.2 But Is It Art? 7

Our analysis also shows why in years to come hardware costs will still
prove to be significant compared to software costs. At issue here is the cost of
manufacturing. Software manufacturing costs are near zero today and can
only go lower, so that software pricing in a competitive market mainly re­
flects the amortization of development costs.

Hardware manufacturing costs, while small on a per-chip basis, are many
times more than software manufacturing costs. It is far less costly today to
replicate accurate copies of software than it is to replicate hardware. Hard­
ware requires assembly and testing to make sure that each copy is a faithful
copy of the original design. This is far more complex today than the quality
assurance on a software manufacturing line that simply has to compare each
bit of information in software to see if it agrees with the original program.

We see that hardware pricing carries the burden of per-unit manu­
facturing costs together with development costs, whereas software pricing
reflects development costs to a much greater extent. When computers fit on a
single chip, their prices should bear some similarity with software prices.
Indeed, we see hand calculators sold for roughly the same price as the most
popular simple software tools. But computers that contain hundreds or thou­
sands of individual components are far more complex to reproduce than any
software package. At the very least, the hardware manufacturer has to test
the chips and systems to reject the failures, and the corresponding process in
software manufacturing is negligible because copying software is low cost,
reliable, and inexpensively verified. In a competitive market, it is very un­
likely that computers of moderate or high performance will be given away to
purchasers of the accompanying software.

1.2.2 Hardware Considerations

Another fallacious argument about new designs for the future concerns the
lavish use of hardware components in a system. The architects state con­
vincingly that with current trends in force, the cost of hardware will be
negligible, so that we can afford to build systems of much greater hardware
complexity in the future than we can today. Clearly, there is truth in this
argument to the extent that future systems will surely be more powerful and
complex at equal cost to today's systems. But the argument must be used
with care because it does not excuse gross waste of hardware.

In the future, given System A, with 100 times the logic as present systems,
and System B, whose performance is essentially identical to A's but has only
10 or 20 times the logic as present systems, System A will be at a serious
competitive disadvantage. For a few hundred or a few thousand copies of
System A sold, System A may be priced competitively with System B. For
higher volumes of production, however, the inefficiency of the architecture of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 20

8 Introduction Chap. 1

System A will force its price higher than System B's for equal system value.
Of course, this presumes that both System A and System B are built from
components of the same generation of technology. If A's chips are ten times as
dense as B's chips and therefore 10 times less costly per device, then the
argument changes, and device technology, not architecture is the determin­
ing factor in the price of the system.

Throughout this text we explore the study of architecture by considering
innovations of the future that depend on low-cost components. But we shall
always heed the efficiency of the architectures we examine to be sure that we
are using our building blocks well.

Consider, for example, a multiprocessor system in which there exists no
shared memory, and suppose that we want to run a parallel program in which
each processor executes the same program. Obviously, we can load identical
copies of the program in all processors. When the program is small or the
number of processors is rather modest, the memory consumed by the multi­
ple copies may be quite tolerable.

But what if the program is a megabyte in size, and what if we plan to use
1000 processors in our system? Then the copies of the program account for a
gigabyte of storage, which need not be present if there were some way to
share one copy of code across all processors.

If System A uses multiple copies of programs, and System B, through a
clever design, achieves nearly equal performance with a single copy, then the
extra gigabyte of memory required by System A could well make System A
totally uncompetitive with System B, unless the cost of storage becomes so
insignificant that a gigabyte of memory accounts for a paltry fraction of the
cost of a system. System A's architect hopes that the cost per bit of memory
will tumble in the future, but System A requires 1010 more bits, and this is an
enormous multiplier. If current historical trends continue, a drop in cost per
bit to offset an inefficiency of this magnitude would probably take twenty to
thirty years.

In the example just presented, the architect of System A has to be aware
of other approaches that could overcome a basic flaw in System A for the
particular application. System A might be totally effective for other applica­
tions in which each processor requires a different program. But in the given
context, System B has a tremendous, probably insurmountable advantage.

The architect should measure the quality of the architecture across a
number of applications that characterize how an architecture is to be used.
The effectiveness may vary considerably from application to application, and
such measurements should reveal where the architecture is truly beneficial to
the user and where other approaches are superior.

A computer architecture might well have some minor but costly inherent
flaws that escape the scrutiny of its designer. A different designer who can
build essentially the same architecture with those flaws repaired can produce

r

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 21

Sec. 1.2 But Is It Art? 9

a more effective, and therefore more competitive, machine. Architects cannot
hide inefficiency by arguing that hardware costs nothing.

As a simple example of this rule, consider an architecture with a rather
large number of processors, such as 16,000, and assume that the processors
are to be used in an application where the speedup attributed to N processors
is proportional to log2 N. (As astonishing as this sounds, such proposals have
been made.) The 16,000 processors yield only a speedup of 14x for some
constant x. The architect argues cogently that the 16,000 processors are so
inexpensive that we can ignore their cost. The important fact is that the
application runs 14x times faster than it runs on a single processor, and the
speed increase is worth the small extra cost for the processors.

In this competitive world, the gross inefficiency of the architecture can­
not escape notice for long. Soon there appears a System B to compete with
this System A. System B's architecture is identical to A's in this case, except
that it is a rather scaled-down version. In fact, System B has only 128 pro­
cessors, not 16,000, so it runs only 7x times faster than a single processor.

System A is over 100 times more complex than System B, and yet System
A runs only twice as fast. The cost of hardware would have to be near zero for
System B to fail to compete with System A. For the next decade at least, it
appears to be unjustifiable on a cost basis to double performance by repli­
cating hardware one-hundred-fold.

The arguments in this section have taught us:

• We can evaluate architectures by their cost and performance;

• The effectiveness of an architecture must be measured on workloads for
which the architecture is intended; and

• An architecture that is inefficient because of wasted resources will com­
pete poorly against a simpler but more efficient architecture.

If computer architecture were purely an art, and aesthetics alone deter­
mined the quality of an architectural design, we would not have a basis for
technical advances. Computer architecture combines the art of design with
insight derived from careful analysis to create new forms of computer sys­
tems that yield ever greater service to their users.

1.3 High-Performance Techniques

Of the criteria discussed in the preceding section, this text emphasizes high
performance. Our objective is to describe many different ways to improve
system performance and give some additional information for evaluating
those techniques. The menu of available techniques is rather extensive today,
and each new generation of technology brings new ideas to the fore.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 22

10 Introduction Chap. l

This text covers the highlights of the existing menu of design choices, but
is by no means complete as of its publication date. Therefore we explore the
design methodology-identify the critical design problems, generate solu­
tions to these problems, evaluate, and select the best or most reasonable
solution.

Although we emphasize performance, a thorough evaluation should
consider all the criteria for comparing architectures. We simply place a
greater weight on performance. For the majority of the design space, cost and
performance are treated together as a single parameter, the cost-performance
ratio. The ratio is appropriate because it stays constant as you increase per­
formance and cost by equal factors.

We would like to believe that users are willing to pay ten percent more for
a machine that is ten percent faster, that is, a machine whose cost­
performance ratio is equal to their current one. If a machine yields 20 percent
higher performance for ten percent higher cost, the users may see a genuine
benefit in moving to the new machine, and indeed it has a lower cost­
performance ratio reflecting a lower cost per computation. In most cases,
users would not be interested in a machine that yields only five percent
higher performance at ten percent higher cost because their cost per
computation goes up, not down, if they move to the new machine.

The exceptional cases occur when the present facilities are saturated, and
the user absolutely must have greater capacity. Now the cost-performance
ratio does not tell the whole story because the total benefit of greater capacity
for the user may be much greater than the cost to achieve that capacity. The
fact that the user is actually paying a higher cost per computation to obtain
that capacity is incidental to the value in being able to do computations that
could not be done before. However, if the user has a choice in how to obtain
the necessary capacity, the user may still pick a solution based on the lowest
cost-performance ratio, even though all possible solutions have higher ratios
than the ratio for the user's current system.

1.3.1 Measuring Costs

We have been careful to give examples based on small changes in per­
formance and cost. The cost-performance ratio is a good indicator of relative
quality for small changes, but its usefulness breaks down when costs and
performance vary by large factors.

It would be very deceptive, for example, to measure the cost-performance
ratio of a small computer, such as an 8-bit video-game system, and to com­
pare this to a much more powerful system, such as a workstation for
computer-aided design. Although both systems are used to display images
and interact with the images in real time, the video game probably has a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 23

Sec.1.3 High-Performance Techniques 11

much better cost-performance ratio than the workstation, assuming we can
find some way of measuring relative performance. The problem is that the
relative costs of the systems vary by a factor of up to 1000 to 1, and similarly,
the relative performance factor is very large, although probably not as large
as the relative cost.

The video game cannot do the same job as the workstation. Moreover, if
you put enough copies of the video game together to have a performance
equal to the workstation, the cost would be less than the workstation cost, but
the collection of video games still could not do the same job. So just to be sure
that comparisons based on cost-performance ratios are valid, one should be
careful to make the comparisons between computers that are similar in func­
tion and relatively close in performance.

This discussion points to two important ways to make architectural ad­
vances:

1. Make small changes in cost and performance that yield lower cost­
performance ratios; and

2. Boost absolute performance to make new computations feasible at
reasonable cost.

By "small" changes, we mean roughly a factor of 10 or less. Changes
larger than this are surely welcome, but the cost-performance ratio cannot be
trusted as a measure to evaluate the change. For the second point, the
cost-performance ratio can actually increase, provided that the additional
cost can be absorbed by the user, because the benefit of the greater capacity
exceeds the cost to attain the capacity. We use both of these criteria through­
out the text as informal ways to evaluate ideas.

Because absolute cost measured in physical currency is changing every
year, it is more useful to define cost in terms of other parameters that influ­
ence cost. These parameters include the physical parameters, such as pin
count, chip area, chip count, board area, and power consumption, derived
from an implementation of an architecture. The parameters also include
factors associated with development, such as elapsed design time, amount of
associated software to be written, and size of development team required.

This text cannot easily account for all the factors that affect cost, but it
can isolate the most important ones, especially when comparing two closely
related architectures whose differences are limited to a few critical design
choices. The intent is to focus on the differences and discuss the ways they
affect the cost factors. Each different approach has its own advantages and
disadvantages, and they in turn affect the cost of the approach. We cannot
give absolute costs, but we can show the influence of the design decision on
the cost parameters. The reader can then apply the prevailing cost functions
to complete the evaluation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 24

12 Introduction Chap. 1

1.3.2 The Role of Applications

With dramatic changes in technology ahead, how do we approach the prob­
lem of high-performance architecture design? For example, the new tech­
nology makes feasible massive parallelism. How much additional effort
should be invested in increasing the performance of a single processor before
we seek higher levels of performance by replicating processors? There is no
simple answer to these questions. We need a combination of solutions, and
what we choose almost certainly will be application dependent.

The role of applications is critical in the high-performance arena because
costs tend to be very high to wring the greatest possible throughput from an
architecture. Inefficiency is especially costly in this context because ineffi­
ciency adds greatly to already high cost, while contributing less than its fair
share to performance. If the application area is heavily biased to some
well-identified workload, then it becomes possible to design the architecture
for that type of workload. The result is that the architecture can be stripped
clean of irrelevant functions that might otherwise be necessary for general
purposes. It can then be heavily armed with functions pertinent to the partic­
ular workload.

The objective then is to reduce inefficiency by making sure that all the
functional components of the architecture contribute effectively to achieving
high performance. If it were possible to build a general-purpose machine that
would be equally effective for all high-performance applications, the industry
would do so. And we cannot rule out this possibility in years to come. How­
ever, for the next decade, specific problem areas are so demanding of
computational cycles that it is fruitful to design architectures specialized for
these problem areas.

Among the important problem areas that have evolved are:

• Highly structured numeric computations-weather modeling, fluid flows,
finite-element analysis;

• Unstructured numeric computations-Monte Carlo simulations, sparse
matrix problems;

• Real-time multifaceted problems-speech recognition, image processing,
and computer vision;

• Large-memory and input/output-intensive problems-database systems,
transaction systems;

• Graphics and design systems-computer-aided design; and

• Artificial intelligence-knowledge-base-oriented systems, inferencing sys­
tems.

Obviously, the numerical areas call for sophisticated floating-point pro­
cessors in the architecture, and the more demanding applications may

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 25

Sec. 1.3 High-Performance Techniques 13

require hundreds of such processors. The graphics systems may be more
strongly oriented to fixed-point computations to provide the mathematical
support required for windowing and perspective viewing. Floating point,
however, plays an important role in some graphics applications, such as
those that require smooth-curve rendering and ray-tracing calculations. The
artificial-intelligence systems may require very little arithmetic capability,
but they are usually heavily endowed with memory.

A high-performance architecture that meets the needs of all the areas
mentioned must carry a burden of inefficiency for each problem area because
a substantial portion of its capability would not be useful for individual
applications. If the inefficiency is high enough for any one application area,
then an efficient specialized machine for that area is more attractive than a
general-purpose machine because the specialized machine should cost less to
manufacture.

The cost advantage depends on having a large enough market for the
specialized machine so that the cost of development can be spread across
many copies produced. The advantage is lost if only a few copies are sold.
Consequently, even the specialized high-performance machines should be as
general purpose as possible within their problem domains so that the fixed
costs can be amortized over as large a base as possible.

As special-purpose architectures are extended to broaden their problem
domains, their potential market increases, but at the same time they tend to
make less efficient use of their hardware. So the architect faces a trade-off.
The idea is to balance the efficiency of the special-purpose architecture
against the broad market base of the general-purpose architecture.

The architect has to find a place in the spectrum between single-purpose
and all-purpose architecture for which a new design yields high performance
at competitive cost. Design decisions are changing in time because they de­
pend on both development costs and per-unit production costs, both of which
are changing dramatically as the underlying technology advances.

1.3.3 The Impact of VLSI

There have been dramatic changes in the cost structure of high-performance
architecture because of the development of VLSI. In the 1950s, when
hardware was so expensive that one user could not afford to purchase a
128K-byte machine, users shared the costs of large-scale computers and ran
their programs concurrently on a single machine, thereby reducing the time
that the memory, processor, and peripherals were idle. There seemed to be
some economy by going to increasingly larger machines. The number of users
served tended to grow linearly with computational power, but the price of the
machines tended to grow more slowly.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 26

14 Introduction Chap. 1

Grosch's law was a popularly believed rule-of-thumb that stated that the
cost of computational power grows at the rate of the square root of computa­
tional power. Although a great deal of evidence supported Grosch's law
through the early 1960s, it is not clear whether the law reflected a fundamen­
tal notion about cost/performance or merely the prices being charged for
computers.

In the 1980s, VLSI changed the economics of computers dramatically. We
no longer try to wring every last cycle from a 128K-byte machine, and it is
common to find such machines lying idle for most of a 24-hour day. So, for the
huge number of small computations, the user buys a machine big enough to
get the job done, and maybe a little bigger than that to have some reserve
capacity. It is not particularly economical to buy enormously big machines,
then gain access to the machine cycles by sharing the cycles among many
users.

Strictly from a performance point of view, we do not see an economy of
scale that drives all users to larger machines regardless of their needs, as once
appeared to be the case. Rather, to describe the situation in simplistic terms,
we see small jobs run on small machines, and large jobs run on large ma­
chines. The "small" machine of today has about the same computational
power as the "large" machine of 25 years ago, so the machine formerly shared
by 100 users, is now owned outright by one user.

The need to access shared data complicates the arguments here some­
what. We discover that large machines or networks of smaller machines
support many concurrent users today because the need to access shared data,
as opposed to the need to share machine cycles, is the driving force. And we
still see the supercomputers shared among many users because these ma­
chine cycles are very expensive for any single user.

1.3.4 The Effect of Technological Change on Cost

If we look at the underlying technology at any given time, we see curves that
look something like the curve in Fig. 1 .3. This figure shows performance
measured in millions of instructions per second (MIPS). It shows a rough
picture of relative cost per MIPS as a function of MIPS of performance. The
figure is intentionally imprecise because the data on which it is based is
highly volatile. The idea is that the curve consists of several plateaus. The
lowest plateau represents the cost per MIPS for computers that use the domi­
nant technology for that plateau.

In the mid-1980s, the dominant technology was metal-oxide semicon­
ductor (MOS), mostly NMOS (MOS devices with negatively doped channels).
The cost per MIPS is fairly constant for all machines made from this tech­
nology.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 27

Sec. 1.3 High-Performance Techniques 15

Technology 1

Cost/MIPS Technology 2 I
Technology 3 I

MIPS of Performance

Fig. 1.3 Cost/performance as a function of performance.

The next plateau is the next level of technology, presumably a bipolar
technology such as emitter-coupled logic (ECL). The cost per MIPS is nearly
constant for all machines of this technology as well.

The third plateau is a more exotic device technology fabricated especially
for peak performance. This technology has the highest cost because of cooling
requirements, manufacturing difficulties, lower chip density, or other similar
factors. This plateau too has almost constant cost per MIPS for all machines
produced from the technology.

Although the graph in Fig. 1.3 is imprecise, it is intended to show how a
device technology influences the cost-performance relationship. The devices
dictate the basic cycle time of the computer. A rough measure of processing
power is the width of the address and data paths times the clock frequency;
this is an upper bound on the information-transfer rate of a computer system.

For a given technology, most high-speed designs adopt a maximum or
near-maximum clock frequency that is usually dependent on the technology
and fairly consistent for all designs that use that technology. Consequently,
the most appropriate way to improve performance is to move from 8-bit to
16-bit to 32-bit data paths, with a corresponding increase in memory capac­
ity to support higher levels of performance. This produces a performance gain
that grows linearly with the bus width, but the cost tends to grow linearly as
well in bus width, so that as bus widths increase, the additional performance
produced is achieved at a constant cost per MIPS.

The assumption that cost grows linearly in bus width is certainly true in
regard to the cost of <la.ta paths, drivers, and physical wires on the data paths,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 28

16 Introduction Chap. 1

but the cost of memory need not grow linearly with bus width. The critical
assumption that produces the plateau-like curve in Fig. 1.3 is that memory
size tends to increase linearly with performance. That is, a typical config­
uration for a system rated at 2 MIPS might be 4 M-bytes, and faster versions
of the same system that run at 4 MIPS and 8 MIPS would be configured at
8 M- and 16 M-bytes, respectively. If indeed this growth rate is true, then
Fig. 1.3 is quite reasonable.

The main conclusion to draw from Fig. 1.3 is that if the curves are truly
flat, then within a device technology there is no particular economy of scale.
Worse yet, if an architecture's performance exceeds the capabilities of one
device technology, then the move to the next higher plateau of technology
may result in a higher cost per MIPS. This is directly contrary to the principle
of economy of scale. At the very highest levels of performance, the device
technology may be quite exotic, raising the cost per MIPS well over the cost
per MIPS of less powerful systems.

If Fig. 1.3 is accurate as drawn for the mid-l 980s, one would conclude that
once a device technology for an architecture implementation is selected, the
cost-performance ratio is not strongly influenced by the absolute per­
formance of a system, so there is no particular bias to produce high or low
performance machines for that technology. If Fig. 1.3 is not accurate, and
there exists an economy of scale, then the cost-performance ratio improves as
performance goes up, and there is a strong bias towards building the highest
possible performance for each different device technology. No matter what is
true at the time this text is written, a future version of Fig. 1.3 may be totally
different, and the architect has to take the shape of the curve into account in
machine design

Now let us reflect on the variables that the architect can control in cre­
ating a high-performance machine. By measuring performance in MIPS, we
can write

MIPS= (instructions/cycle)(cycles/second) · 10- 6

The first factor is a function of the architecture, which is controlled by the
architect. The second factor is determined by the devices, which are con-
trolled by the technology. ,

Actually, the dichotomy between architecture and device technology is
not as sharp as we depict it because the second factor, the clock speed, is
partially dependent on architectural factors such as the complexity of in­
struction decoding. Nevertheless, to a first approximation we can affect per­
formance by concentrating on the first factor, the number of instructions
executed per machine cycle. What are the alternatives available?

• Reduce the number of instructions to execute. By using better algorithms, it
may be possible to do equal work with fewer instructions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 29

Sec. 1.3 High-Performance Techniques 17

• Build hardware assists into the architecture to improve the architecture's
efficiency. Advances in architecture such as cache memory can increase
the number of instructions executed per cycle. Another possibility is to
create higher-level instructions such as SORT and SEARCH that have
been optimized for particular purposes.

• Execute many instructions concurrently. Use parallel hardware in some
fashion to increase the number of instructions that can be executed in a
single cycle.

It is strange to see the first item in this list in a text on architecture. One
might assume that the computer architect does not dabble with algorithms.
Quite to the contrary. Since the goal is high performance as measured on
some set of applications, how that goal is achieved is important through its
impact on system cost, but there are no constraints that force the solution to
be architectural only. In fact, algorithmic improvements may be the most
cost effective of any of the approaches mentioned previously because copies of
algorithms can be manufactured for essentially zero cost as compared to the
cost of hardware-intensive solutions.

1.3.5 Algorithms and Architecture

The architect has to look carefully at algorithms to decide how to achieve
high performance in an architecture. Applications that are limited by the
speed of floating-point division, by internal sorting, or by the ability to
interpret bit-mapped representations of visual data may require extensive
study by the architect. Changes to the original algorithms, sometimes simple
changes and sometimes totally new approaches, may transform an applica­
tion from one for which high-performance architectures are poorly suited to
one that can easily be enhanced by some inexpensive hardware assists.

An algorithmic breakthrough might even eliminate the need for high­
performance architectures for a particular application. Floating-point divi­
sion and sorting are each reasonably well-understood areas for which major
changes to existing algorithms are unlikely to be developed, but many new
areas are emerging for which the current crop of algorithms represents the
early, immature efforts to solve the problems. Additional study of the algo­
rithms may well produce much greater performance.

Although we cannot expect a computer architect to step into an applica­
tion area and produce a breakthrough in algorithms for that area, it is possi­
ble for an architect to recast basic algorithms into forms more suitable for
processing. The architect may partition a problem in new ways to reduce the
size of working memory or the number of high-speed registers required. Or
the architect may find a way to structure the problem so that it fits well on a
parallel architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 30

18 Introduction Chap. 1

The architect actually has control of both the algorithm and the architec­
ture. The objective is to manipulate both to create an algorithm and architec­
ture that mutually constitute an effective solution. Usually a class of algo­
rithms, rather than a single algorithm, must be considered, and the more
difficult objective is to create a single architecture that is good for all the
problems in the class.

The second solution technique involves changes to the basic architecture.
In the past we have seen many different techniques used to improve per­
formance. Such things as instruction buffers, cache memories, and pipelined
execution have appeared in many commercial machine implementations. We
have seen complex instructions installed in machines to reduce the number of
instruction fetches, and we have seen complex instructions eliminated from
instruction sets to reduce the basic instruction-cycle time for a machine.

The architect needs to know where bottlenecks may exist in a system, and
then, if possible, take steps to remove those bottlenecks. At peak performance
a well-designed system has many different components near saturation. A
poorly designed system has some single bottleneck when running at max­
imum speed, and all other functional units are underutilized. By eliminating
some excess capacity, this kind of system may be made less expensive at no
loss of performance. Or by dealing with the bottleneck exclusively, it may be
possible to improve performance relatively inexpensively.

The last choice on the list is parallelism. This is usually the most costly
way to achieve high speed, but VLSI technology has changed the economics
so dramatically that parallel hardware has become a viable alternative. Re­
turning to Fig. 1.3, we see that there is some advantage in using inexpensive
technology in seeking high-performance. Figure 1.3 suggests that each device
technology is most effective over some range of performance.

Parallel architectures, however, provide a way of using the inexpensive
device technology at much higher performance ranges. So the cost effec­
tiveness of parallel computers is enhanced if they can get by with devices less
expensive than those a high-performance serial machine requires. Certainly,
this is one of the attractions of moving to parallel architectures, although the
gains achieved through less-expensive device technology are negated in part
by a lower efficiency in executing a program in parallel rather than on a serial
machine.

These three techniques for making improvements are important, but not
exhaustive. All opportunities are worth investigating. Because the real world
does not follow the highly idealized world of design presumed in this text,
pressures that exist in the real world might lead to unbalanced config­
urations that are difficult to justify on the merits of cost and performance.

Consider a situation in which System A has 256 K-bytes of a cache
memory, and System B competes with System A by offering 512 K-bytes or 1
M-byte to gain a competitive edge through larger numbers, even when other
factors cannot justify the larger cache memory. If not cache, then main

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 31

Sec. 1.4 Historical References 19

memory size might be offered at 4 G-bytes instead of at 1 G-byte, or 32
processors in place of eight processors. Consequently, competitive pressures
could easily cause an architect to configure poorly balanced systems.

Over a period of years, however, cost and performance measures prevail.
If systems are unbalanced at first release, the cost to the user or to the system
producer will be too high for the performance levels actually realized. Even­
tually configurations are altered to bring them back into a reasonable range
of cost and performance. Designing for the shorter-term view by playing a
numbers game may be a fact of life, but quality, efficiency, and effectiveness
dictate that a sound architectural approach drives computer design over the
long term.

In closing this section, we summarize by saying that all three of the
approaches-algorithms, architectural assists, and parallel architectures­
must be considered by the architect. High performance may require a combi­
nation of all three approaches in any given system.

In each new design lies a significant challenge for the architect because
the rules of the game change continuously. The factors that influenced the
design decisions last year may no longer hold this year. The architect has new
devices to use as building blocks, and new organizations that are feasible to
implement. And the applications have changed, too, with totally new
problem areas becoming targets of computing technology. In addition, the
older areas are increasing in scope and scale. The constant in architectural
design is the methodology for putting together the various components avail­
able to create effective solutions for application areas.

1.4 Historical References
We use the term computer architecture in a broader sense than it was used
when it was first introduced by Amdahl et al. [1964]. Their definition of
computer architecture is the computer as seen by the programmer, which is
essentially the instruction set plus a model of the execution of the instruction
set. The importance of this notion is that a family of computers can have an
identical architecture, yet span a large range of performance and capacity.
Programs that execute on different models in one family give identical re­
sults. Different members of a family are different in implementation and may
have varying degrees of hardware, microcode, and software embedded within
them to support the execution of instructions defined for the family.

This narrow sense of computer architecture proved to be invaluable for
defining the characteristics of a family without committing to particular
implementations of architectural characteristics. The concept has been
crucial in the development of the IBM 360 and 370 families, the PDP-11 and
VAX families, and in recent microprocessor families such as the Motorola
680XX and the Intel 808X families.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 32

20 Introduction Chap. 1

Changes in technology have made the architectural definition offered by
Amdahl et al. somewhat obsolete. The original reason for defining the archi­
tecture with the instruction-set definition was to ensure compatible exe­
cution of a program on any member of the family large enough to run the
program.

Instruction-level compatibility is not sufficient in itself since program
·execution can depend on libraries, operating system facilities, local config­
uration, and other factors that are not part of this narrow sense of architec­
ture. This has led to the standardization at other levels of interfaces, such as
the operating system interface or the source language.

Meanwhile, the rapid development of VLSI and the changing cost
structure of digital components forced some computer families to bring out
new instruction sets. The 24-bit address of System 360 and 370 evolved to a
31-bit address in System 370 XA, and the 16-bit address of the PDP-11 even­
tually became a 32-bit address in the VAX family.

With new devices to use in designs and the flexibility to change instruction
sets, the computer designer of today faces a set of constraints somewhat dif­
ferent from those faced in decades past. Hence, we have enlarged the defini­
tion of computer architecture to include the design of a computer system from
its instruction set and structure down to functional modules. Many topics
treated in this text are issues of implementation that are not within the scope
of the narrow definition of computer architecture as defined in Amdahl et al.

Readers interested in the historical development of computer architec­
ture and in prerequisite material will find a wealth of information in Bell and
Newell [1971] and Siewiorek, Bell, and Newell [1982]. Both books reprint a
collection of historically important papers in computer architecture and in­
clude authors' commentary, which serves to organize the material and fill
voids not covered in the literature.

Text books in the area appeared rather late in the development of
computers, with Stone [1974] being among the early offerings. This is a
collection of original contributions structured as a textbook. Hayes [1978]
and Baer [1980] are both high-quality texts that brought updated material
into the classroom. Tanenbaum [1976] covers an interesting combination of
computer architecture and operating systems, an interface of two subject
areas that has become increasingly important as the operating-system level
has begun to displace the instruction-set level as the standard interface for
applications. Stone's second edition [1980] includes material on operating
systems as well as an evolution of the architecture-based material from the
first edition.

Many texts covering both specialized and general aspects of computer
architecture started appearing early in the 1980s. They are too numerous to
include in this section, but books that are useful supplements for specific
topic areas covered in this book are cited in the appropriate place in the text.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 33

Memory-System Design

Some architecture researchers have called the memory system of a computer
"the von Neumann bottleneck" because of the critical role it plays in affecting
peak throughput. The design of the memory system is our starting point in
this text, and it is frequently the starting point in machine designs. The
central problem is to:

• Bring the input data from the outside world into memory;

• Buffer the data there until they can be passed to a processor;

• Compute the output data and buffer them in memory until they can be
delivered outside the computer; and

• Transmit the output data from memory to the outside world.

The bandwidth between memory and the outside world limits how fast
we can obtain input and deliver output. The memory system also limits how
fast input data can be delivered to a processor and how fast the results can be
received from the processor. Since instructions are also stored in memory, the
architect must provide for concurrent demands on memory for data to pro­
cess, instructions to execute, and input/output transfers between memory
and the external world.

21

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 34

22 Memory-System Design Chap. 2

In this chapter we examine the use of cache and virtual memory to produce
very efficient hierarchical memory systems. These systems are composed of a
mix of memory devices that range in performance and cost. A well-designed
memory system of this type tends to perform as if the entire memory were
composed of the fastest devices in its structure, yet its cost tends to be domi­
nated by slower, less expensive devices.

We explore the basic principles of the hierarchy here, but because the best
possible memory design depends on workload and the available technology,
we cannot give a concise formula for a good design. We do, however, present
some powerful techniques for evaluating designs that will enable both the
professional architect and the student to explore a range of memory designs
with simple programs running on personal computers.

Why is memory so critical to performance? The major constraint im-
posed by high-speed memory in a von Neumann architecture is:

A single memory module of conventional design can access no more than one
word during each cycle of the memory clock.

The bandwidth of memory is the measure of the number of bits per second
that can be accessed. If our memory system has a 500 ns cycle time and
accesses 32 bits (4 bytes) per cycle, its bandwidth is 64 M-bits (8 M-bytes) per
second.

If we absolutely must increase memory bandwidth to increase per-
formance, then there are several choices available to the memory designer:

• Reduce the cycle time.

• Increase the word size of memory by accessing more bits per cycle.

• Replicate the memory modules and access two or more of them concur­
rently. (This is one way of increasing the word size of memory.)

The designer may also explore unconventional schemes, such as parallel­
search memories, "intelligent" memories with internal sorting and searching
capability, or hierarchical memories with a variety of speeds and functional
capabilities. If an unconventional design proves to be an effective design, it
will be incorporated in many computer systems, and eventually it will be­
come a conventional design.

Advances in hardware technology have made available larger and faster
memories at an almost unbelievable rate, and the trend is likely to continue
into the 1990s. The designer can tap the new technology in a variety of ways,
including brute-force techniques that have an inefficiency that would have
been totally unacceptable in former years. For example, to increase memory
bandwidth, a machine architect today can choose a very long word and wide
bus, such as 256 bytes, even though there is a strong probability that many of
the bytes accessed over the bus will never be used.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 35

Sec. 2.1 Exploiting Program Characteristics 23

Inefficient techniques abound, and new technology may provide the
means for using such techniques at acceptable cost. But efficient techniques
are much more difficult to invent and analyze, and they will always have an
advantage over the inefficient ones. Therefore, this chapter dwells on some
efficient techniques that have proved to be useful in the last few years and
presents new tools for evaluating these techniques.

2.1 Exploiting Program
Characteristics

The basic building block of central memory is random-access memory (RAM).
Figure 2.1 shows a diagram of the structure of a typical memory module.
Note the two registers, ADDRESS and DATA. During a READ cycle, the
memory accesses the item at the location given by the contents of ADDRESS
and places a copy of the item in DATA. During a WRITE cycle, the memory
also accesses the item as indicated by the contents of ADDRESS, but in this
case the contents of DATA are copied to the location in memory.

The term access refers to the physical actions that occur in the memory
module during a READ or WRITE cycle. What happens is that there is a
logical path setup between the selected location and DATA. The direction that
data flows along this path depends on whether the operation is READ or
WRITE, but in either case, to access a location the memory system uses the
contents of the address register to enable or disable internal gates in such a

r1
MEMORY sus{...J DATA REGISTER

(To/from ~------~

Processor)
ADDRESS REGISTER

Z=~I I
ADDRESSES MEMORY CELLS

Fig. 2.1 The structure of a random-access memory (RAM).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 36

Sec. 2.1 Exploiting Program Characteristics 23

Inefficient techniques abound, and new technology may provide the
means for using such techniques at acceptable cost. But efficient techniques
are much more difficult to invent and analyze, and they will always have an
advantage over the inefficient ones. Therefore, this chapter dwells on some
efficient techniques that have proved to be useful in the last few years and
presents new tools for evaluating these techniques.

2.1 Exploiting Program
Characteristics

The basic building block of central memory is random-access memory (RAM).
Figure 2.1 shows a diagram of the structure of a typical memory module.
Note the two registers, ADDRESS and DATA. During a READ cycle, the
memory accesses the item at the location given by the contents of ADDRESS
and places a copy of the item in DATA. During a WRITE cycle, the memory
also accesses the item as indicated by the contents of ADDRESS, but in this

case the contents of DATA are copied to the location in memory.
The term access refers to the physical actions that occur in the memory

module during a READ or WRITE cycle. What happens is that there is a
logical path setup between the selected location and DATA. The direction that
data flows along this path depends on whether the operation is READ or
WRITE, but in either case, to access a location the memory system uses the
contents of the address register to enable or disable internal gates in such a

DATA REGISTERMEMORY BUS
(To/from

Processor)
AT:

ADDRESS REGISTER

(AN—‘0
N—2
N—1

ADDRESSES MEMORY CELLS

 Hi...
Fig. 2.1 The structure of a random-access memory (RAM).

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 36

24 Memory-System Design Chap. 2

way that for each address value, exactly one location becomes logically
connected to the DATA register.

The name random access conveys the idea that each access to any location
in memory takes a fixed amount of time, independent of what sequence of
accesses occur. Suppose, for example, a READ to Location 20 takes 10 ns, and
the READ is followed by a WRITE to Location 347. For a random-access
memory, the WRITE also takes 10 ns because all cycles are 10 ns, no matter
what location is accessed.

Contrast this random-access behavior with sequential access. If a memory
were organized as a shift-register or as a continuous magnetic tape, then
access times would depend on the sequence of addresses issued to memory.
An access to Location 11 immediately after an access to Location 10 would
take, for example, 10 ns if this were the time required to access consecutive
items. But, by this reasoning, an access to Location 17 that immediately
follows an access to Location 10 would take 70 ns. To access Location 17 after
accessing Location 10, the memory cycles through Locations 11 to 17, with
each location requiring 10 ns to process. Access time is potentially very large
in a sequential memory when items are far apart.

Obviously, there is a tremendous performance advantage for random­
access memories over sequential-access memories, but the cost per bit of
sequential-access memories is usually quite low compared to random-access
memory.

The trade-off between cost and performance for these two types of
memory is but one example of the design choices open to the computer
architect. Suppose, for example, the architect can exploit the low cost of a
sequential-access memory without necessarily incurring a performance pen­
alty if the programs to be run on the computer system can be organized so
that the bulk of their accesses are sequential. The nonsequential accesses
must be either negligible or executed inexpensively, perhaps by means of a
small random-access memory.

If at a particular installation of such a machine a substantial portion of
the workload is not written to use a sequential-access memory, the users, to
use the facilities available, may have to alter the applications programs or
produce a translator to alter them automatically.

A translator that minimizes access time may be quite feasible to write for
this particular example, but in general there is no guarantee that program
conversion will be successful, and the cost of conversion may be very high.
Therefore, the decision to use a sequential memory in addition to random­
access memory requires careful consideration of many related factors regard­
ing how the software can make effective use of the new facilities.

Sequential-access memory is not a particularly interesting alternative for
memory designs in the 1980s and 1990s, but it was the primary type of
auxiliary memory in 1950s, when magnetic tape provided large capacity not

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 37

Sec. 2.1 Exploiting Program Characteristics 25

available in main memory. Small central memories (usually 128 K-bytes or
less) could not contain the larger programs and their associated data, so
programmers were forced to partition their programs into separate overlays,
each of which was small enough to fit into central memory. Program exe­
cution moved from overlay to overlay, with a memory load required each
time one overlay reached a point at which it invoked a new overlay.

The partitioning process was tedious and error-prone, but necessary for
programs that were otherwise too large to fit into memory. Loading overlays
from magnetic tape was very time consuming, so programmers took extra
care to assure that as few overlays as possible occurred during the execution
of a program.

This crude way of managing large programs eventually revealed program
characteristics that can easily be exploited to create very high-performance
systems at relatively low cost. The cache memories and virtual-memory sys­
tems that are widely used today have been developed largely because of the
observations of program behavior that revealed the strong tendency for
memory accesses to be clustered to small regions of memory during any short
period of time.

The historical development of this technique received a major boost at
the University of Manchester in the course of the design of the Atlas computer
[Kilburn et al. 1962] shown in Fig. 2.2. The approach used by this design team
was called one-level store to indicate that programs viewed memory as made
up of one level of homogenous devices, as if it were one large random-access

I 2 x 4K x 50 bits I• ..
READ-ONLY MEMORY +-+I 128 x 24 bits I

REGISTERS
I I· 1Kx50bits .. +-+I I WORKING MEMORY

(for ROM programs) ARITHMETIC UNIT
PROCESSOR

MAIN MEMORY I
(core) • .. I ·1

4x4Kx50bits
CONTROL

AND
MEMORY MAPPER

AUXILLIARY MEMORY
(4 drums) • ..

4 x 24 K x 50 bits

Fig. 2.2 The block diagram of the Atlas computer.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 38

26 Memory-System Design Chap. 2

memory. Actually, there were two levels in the memory hierarchy, a small
random-access main memory with 16K words, and a much larger magnetic­
drum memory, with 96K words, that held the bulk of the program and data.

The user programmed the Atlas machine as if the size of memory were the
size of drum memory. The Atlas had special hardware that treated memory as
composed of individual pages of 512 words each and automatically loaded
main memory with 32 pages of the program and data. If the Atlas requested
an item from a page not resident in main memory, the requested page would
be brought into main memory, and some other resident page would be writ­
ten back to drum.

The Atlas used a "learning program" that attempted to retain the most
useful pages in main memory. All of the swapping between drum and main
memory was totally invisible to the user. The user did not have to specify
when to bring data from drum to main memory or when to move it back
again. The user had the convenience of programming with a large memory
the size of the drum, whose apparent cycle time was closer to the cycle time of
the central memory.

Because the Atlas made main memory appear to be much larger than it
actually was, the name virtual memory was eventually applied to this general
scheme, and the term one-level store, used by Kilburn et al., is seldom used
today. Drum memory on the Atlas had a long average latency of between 2
and 14 ms to obtain the first word of a page, and the sequential access to
successive words in the page occurred at the rate of about 4 µs per word. The
cycle time for a random access to main memory was about 2 µs per word.

As long as the required pages were resident in main memory, computa­
tions proceeded at maximum computation rate. A missing page caused a
tremendous penalty in time, since access to an item in a missing page took
about 500 times longer than access to the same item when it was resident in
main memory.

In current terminology the attempt to access a missing page is called a
page fault. It is clear that maintaining a very low rate of page faults is critical
to the success of a virtual-memory system. As the page-fault rate increases,
the apparent cycle time of memory grows much larger than the cycle time of
the faster memory, and instead approaches the cycle time of the slower
memory. Performance at high fault rates is disastrously low.

The characteristic that drove the invention of virtual memory on the Atlas
machine is called locality. Program references tend to be locally clustered in
time. That is, there is a strong tendency for future patterns of access to be
similar to access patterns that occurred in the near past. If an instruction
stream truly showed no sequential correlation so that the item accessed on
any cycle is independent of the history of accesses, then for any given cycle, all
items in the program are equally likely to be accessed. If this were the case, a
small high-speed memory would be of marginal benefit. But if there is signifi-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 39

Sec. 2.1 Exploiting Program Characteristics 27

cant serial correlation, then the history of accesses can be used to predict the
accesses that will occur in the future. With such predictions, the computer
system can move pages between low- and high-speed memory in a way that
tends to reduce faults.

There are really two questions here:

1. Is there a significant sequential correlation in typical streams of address
references?

2. If there is a serial correlation, how can it be exploited?

The first question has been studied in depth. The answers obtained over a
broad class of programs running on almost every possible machine consis­
tently report a very strong sequential correlation. The findings suggest that at
any given moment of time, the probability distribution for what might be
referenced next looks something like the graph shown in Fig. 2.3. This figure
shows the probability of access as a function of memory address (in virtual
memory). Note that a few regions are highly probable, a few other regions
have a low-to-moderate probability, and the remainder of the address space
is very unlikely to be accessed in the near future. Note also that the regions
with the highest probability of access are scattered throughout virtual
memory.

One region that has a high probability is the one that contains the present
program counter because it is likely to execute the next instruction in se­
quence. Other regions contain active data, the instructions for subroutines

Fig. 2.3 The instantaneous value of the probability of a reference as a function of the
address of the reference.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 40

Sec. 2.1 Exploiting Program Characteristics 27

cant serial correlation, then the history of accesses can be used to predict the
accesses that will occur in the future. With such predictions, the computer
system can move pages between low- and high-speed memory in a way that
tends to reduce faults.

There are really two questions here:

1. Is there a significant sequential correlation in typical streams of address
references?

2. If there is a serial correlation, how can it be exploited?

The first question has been studied in depth. The answers obtained over a
broad class of programs running on almost every possible machine consis-
tently report a very strong sequential correlation. The findings suggest that at
any given moment of time, the probability distribution for what might be
referenced next looks something like the graph shown in Fig. 2.3. This figure
shows the probability of access as a function of memory address (in virtual
memory). Note that a few regions are highly probable, a few other regions
have a low-to-moderate probability, and the remainder of the address space
is very unlikely to be accessed in the near future. Note also that the regions
with the highest probability of access are scattered throughout Virtual
memory.

One region that has a high probability is the one that contains the present
program counter because it is likely to execute the next instruction in se-
quence. Other regions contain active data, the instructions for subroutines

ProbabilityofReference
nflflnnm

Address of Reference —>

Fig. 2.3 The instantaneous value of the probability of a reference as a function of the
address of the reference.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 40

28 Memory-System Design Chap.2

that might be entered, and the return point to a subroutine that called the
presently executing subroutine. If the executing program were written in a
block-structured language such as Pascal, then the present stack frame for
local variables and parameters is another area with a high probability of
access.

Another possible model for the probability distribution is shown in Fig.
2.4. In this model, the probability of access falls off with the distance from the
currently executing instruction, where distance is defined to be the absolute
difference of two memory addresses. This model is not a good characteriza­
tion of the characteristics of programs that execute on the machines most
commonly used today, but it too displays sequential correlation.

This type of correlation is easily exploited because the computer system
would attempt to retain in main memory those items whose addresses are
closest to the address of the executing instruction. Moreover, this model
suggests that it is a good idea to make pages fairly large because once an item
on a page is referenced, the probability is very high that other items on the
same page will be referenced.

Early designs of virtual-memory systems occasionally made the assump­
tion that memory references were characterized better by Fig. 2.4 than by Fig.
2.3, with the result that these systems tended to use too large a page size and
had more traffic between low- and high-speed memory than was necessary.
The large page size resulted in many words being transferred to high-speed
memory that were never accessed while resident in high-speed memory. That
portion of high-speed memory would have been better used for other regions

Address of Reference --------+

Fig. 2.4 A possible, but unrealistic, model of address-reference probability.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 41

28 Memory-System Design Chap. 2

that might be entered, and the return point to a subroutine that called the
presently executing subroutine. If the executing program were written in a
block-structured language such as Pascal, then the present stack frame for
local variables and parameters is another area with a high probability ofaccess.

Another possible model for the probability distribution is shown in Fig.
2.4. In this model, the probability of access falls off with the distance from the
currently executing instruction, where distance is defined to be the absolute
difference of two memory addresses. This model is not a good characteriza-
tion of the characteristics of programs that execute on the machines most
commonly used today, but it too displays sequential correlation.

This type of correlation is easily exploited because the computer system
would attempt to retain in main memory those items whose addresses are
closest to the address of the executing instruction. Moreover, this model
suggests that it is a good idea to make pages fairly large because once an item
on a page is referenced, the probability is very high that other items on the
same page will be referenced.

Early designs of virtual-memory systems occasionally made the assump-
tion that memory references were characterized better by Fig. 2.4 than by Fig.
2.3, with the result that these systems tended to use too large a page size and
had more traffic between low- and high-speed memory than was necessary.
The large page size resulted in many words being transferred to high-speed
memory that were never accessed while resident in high-Speed memory. That
portion of high-speed memory would have been better used for other regions

Probabilityo!Heierence

Address of Reference —*

Fig. 2.4 A possible, but unrealistic, model of address-reference probability.————————————_—~_—_____——_
“

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 41

Sec. 2.2 Cache Memory 29

of memory, and a small page size would have made more high-speed memory
available.

Although Fig. 2.3 is a more accurate characterization of streams of ad­
dress references than is Fig. 2.4, there is always the possibility that a designer
can bias the statistics of accesses through some unusual characteristics of a
design. For example, compilers and loaders may attempt to place subroutines
together on the same page if there is evidence that the subroutines work
together in some way. Or through a combination of instruction-set design and
compiler design, it may be possible to reduce branches to far away regions.

Machines with vector instructions may behave more nearly like Fig. 2.4
than Fig. 2.3. Nevertheless, no matter what the details of the correlation are,
there is overwhelming evidence that streams of address references exhibit
strong sequential correlation. Hence there is an opportunity to exploit this
correlation through schemes such as the one-level store of Atlas.

In the next two sections we examine cache memory and then virtual
memory as we seek ways to reduce the memory bottleneck.

2.2 Cache Memory
2.2.1 Basic Cache Structure

Two years after the publication of the paper that described the Atlas one-level
store, there appeared a brief article by Wilkes [1965] that describes an evo­
lution of this idea to a different level of the memory hierarchy. Wilkes de­
scribes a system that contains two kinds of main memory. One kind is con­
ventional; the other is a high-speed unconventional memory that Wilkes calls
a slave memory. Present terminology calls such memories cache memories.

The idea of cache memories is similar to virtual memory in that some
active portion of a low-speed memory is stored in duplicate in a higher-speed
cache memory. When a memory request is generated, the request is first
presented to the cache memory, and if the cache cannot respond, the request
is then presented to main memory.

The difference between cache and virtual memory is a matter of
implementation; the two notions are conceptually the same because they
both rely on the correlation properties observed in sequences of address
references.

Cache implementations are totally different from virtual memory
implementations because of the speed requirements of cache. If we assume
that cache memory has an access time of one machine cycle, then main
memory typically has an access time anywhere from four to 20 times longer,
not 500 times longer, which we cited previously for the delay due to page
faults.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 42

30 Memory-System Design Chap. 2

Earlier we defined a page fault to be a reference to a page in virtual
memory that is not resident in main memory. The corresponding concept for
cache memories is an access to an item that is not resident in cache, but is
resident in main memory. This is called a cache miss to distinguish it from a
page fault.

For cache misses, the fast memory is cache and the slow memory is main
memory. For page faults the fast memory is main memory, and the slow
memory is auxiliary memory, which is a disk memory in most virtual­
memory systems of the 1980s. Although misses are still rather costly for
cache-based systems, they are not nearly as costly as page faults are, and we
can afford to sustain cache misses more frequently than we can sustain page
faults.

The time available for updating the status of a cache during a cache miss
is minuscule compared to the time available during a page fault. Con­
sequently, caches are controlled by hardware algorithms that can process
cache misses automatically within the constraints dictated by the time avail­
able during a cache miss.

Let us look at the various parameters that affect a cache design and then
describe in detail the operation of a cache. Then we examine the factors that
greatly affect the cache-design parameters. Finally, we examine techniques
for controlling a cache, and conclude with some suggestions for improving
the ability of the cache to predict the future.

Figure 2.5 shows the structure of a typical cache memory. Each reference
to a cell in memory is presented to the cache. The cache searches its directory
ofaddress tags shown in the figure to see if the item is in the cache. If the item
is not in the cache, a miss occurs. In the figure, the reference to address 0117 3

TAGS DATA

r--+ 0117X 35, 72, 55, 30, 64, 23, 16, 14
7620X 11, 31, 26, 22, 55, ...
3656X 71, 72, 44, 50, ...

I 1741X i 33, 35, 07, 65, ... i
---1 01173 cb

ADDRESS DATA

Fig. 2.5 A cache-memory reference. The tag 0117X matches address 01173, so the
cache returns the item in the position X = 3 of the matched line.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 43

Sec. 2.2 Cache Memory 31

matches the tag 0117X, where the X designates any octal digit from 0 to 7.
Since there is a match, the item sought is in the cache. The data associated
with tag 0117X have addresses 01170 through 01177, so the access must be
made to the fourth item, whose address is 01173. This datum, which has the
value 30, is copied to the data register of the cache. A reference to address
01163 produces a miss for the tags shown since no tag matches this address.

For READ operations that cause a cache miss, the item is retrieved from
main memory and copied into the cache. During the short period available
before the main-memory operation is complete, some other item in cache is
removed from the cache to make room for the new item.

The cache-replacement decision is critical; a good replacement algorithm
can yield somewhat higher performance than can a bad replacement algo­
rithm. The effective cycle-time of a cache memory is the average of cache­
memory cycle time and main-memory cycle time, where the probabilities in
the averaging process are the probabilities of hits and misses.

If we consider only READ operations, then a formula for the average
cycle-time is:

teff = h tcache + (1 - h) tmain

where his the probability of a cache hit (sometimes called the hit ratio), and
the times tcache and tmain are the respective cycle times of cache and main
memory. The quantity (1 - h) which is the probability of a miss, is known as
the miss ratio.

If main memory is ten times slower than cache, then a decrease in the hit
ratio from 0.99 to 0.98 (roughly one percent fewer hits) results in an increase
in teff of roughly ten percent. Thus small changes in hit ratio are amplified by
the ratio of main-memory cycle time to cache-memory cycle time, and the
resulting average cycle time is very sensitive to small changes in the hit ratio.

A ten-percent decrease in the hit ratio from 0.99 to 0.89 almost doubles
the effective cycle time and halves net performance when the cycle-time ratio
is 10. If the cycle-time ratio is 20, that same ten-percent decrease in hit ratio
increases the effective cycle time by almost a factor of 4. It is clear that we
must have as high a hit ratio as possible, and that under many circumstances
techniques that result in marginal improvements of the hit ratio, such as just
one or two percent, may yield substantial performance improvement.

In Fig. 2.5, we show an item in the cache surrounded by nearby items, all
of which are moved into and out of the cache together. This group of cache
data corresponds to the memory page for virtual-memory systems. For cache
memories, we call such a group of data a line of the cache, although some
papers refer to this group as a block of the cache. The smallest a line can
possibly be is a single addressable item, which is anywhere from one byte to
four bytes for the most popular computer systems. However, if items are as
small as possible, then the cache directory becomes larger because there is a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 44

32 Memory-System Design Chap.2

cache directory entry for each item in the cache. Doubling the size of a cache
line while holding the number of bytes in the cache fixed reduces the size of
the directory by a factor of 2 because two items in the same line share the
same directory entry.

The cache in Fig. 2.5 requires the directory to behave associatively, that is,
the cache directory retrieves information by key rather than by address. To
determine if a candidate address is in the cache, the directory compares the
candidate address with all addresses now in the cache. To maintain high
speed, this operation must be done as quickly as possible, which should be
within one machine cycle.

A parallel memory that has the search capability just described is called
an associative memory. An associative memory, however, has a longer cycle
than a random-access memory built from identical technology. This is
strictly a consequence of the need to propagate signals through a larger
number of gates in the associative memory than in a random-access memory
of equal size. If we attempt to speed up the associative memory by adding
more gates, the effect generally is to introduce additional delays that
partially offset the gains attributable to the additional hardware. So, for
practical reasons, the associative memory is less attractive than is an
implementation that uses ordinary random-access memory technology.

2.2.2 Cache Design

Figure 2.6 shows a typical implementation of a cache memory. This system is
called set associative because the cache is partitioned into distinct sets of
lines, and each set contains a small fixed number of lines. For machines built
in the 1980s, the number of lines per set is as few as one and as many as 16,
with four lines per set shown in Fig. 2.6.

In this scheme, each address reference is mapped to a particular set by
means of a simple operation on the address. If the address is in the cache, then
it is stored as one of the lines in the set. Therefore, the cache need not be
searched in its entirety. Only the set to which the address is mapped needs to
be searched.

Figure 2.6 shows an address mapped to Set 1. The cache access proceeds
by reading simultaneously all four directory entries. Also, the data lines in
the set are read concurrently so they will be available at the end of the READ
cycle. If a cache line is larger in size than the size of the data bus to the
processor, then only the portions of a cache line that will be sent to the
processor are read from the cache.

At the end of the READ operation, all four directory entries are compared
to the address reference. If a match is found, then the corresponding data line
of the cache is gated to the cache output-data buffer, and from there it is
transmitted to the processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 45

Sec. 2.2 Cache Memory

0326

___ _. 34125

.---.-+-+-+-+I SELECT
34125

.__ _ _.

IF NONE 34125
MISS

Fig. 2.6 The structure of a four-way set-associative cache with N sets.

33

DATA
OUT

The timing of the cache activity is such that all reads from the memory
occur as early as possible to allow maximum time for the comparison to take
place. At least three of the four items accessed, and possibly all four, are

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 46

Sec. 2.2 Cache Memory 33

SET
NUMBER TAGS

ADDRESS

Fig. 2.6 The structure of a four-way set-associative cache with N sets.

The timing of the cache activity is such that all reads from the memory
occur as early as possible to allow maximum time for the comparison to take
place. At least three of the four items accessed, and possibly all four, are

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 46

34 Memory-System Design Chap.2

discarded at the end of the cycle. Which line to use, if any, is decided late in
the cache cycle, but at that time the data required have reached high-speed
registers, so the data can be gated to the processor very quickly after the
cache comparison-logic discovers a match.

Now let us reexamine Fig. 2.6 to see which parameters describe the cache
design. This cache has:

1. L bytes per line;

2. Klines per set; and

3. N sets.

The total number of bytes in the cache is the product LKN. A cache in
which the directory search covers all lines in the cache is said to be fully
associative. In this case, N = 1, and the number of bytes in the cache is the
product LK. For reasons mentioned earlier, fully associative caches are less
attractive to build than are set-associative caches. The logic to compare two,
four, or eight directory entries concurrently can be made sufficiently fast that
the comparison and subsequent line selection can be completed without a
significant impact on the machine cycle-time. But as the number of entries to
compare increases to 16, 32, and above, cycle time starts to climb and the
advantage of the larger set associativity is negated by the longer cycle time.

At the other end of the spectrum is the case for which K = 1, that is, the
case in which there is only one line per set. Here, for any given candidate
address, there is only one line in the cache that may contain the address
reference. The cache in this case consists of one ordinary random-access
memory with a simple comparator for the directory check. This special case
is called direct mapping because address references map directly to a unique
place in the cache.

There are several questions regarding cache design that are suggested by
Fig. 2.6. The figure shows a possible mechanism for mapping address refer­
ences into cache references.

Figure 2.7 provides more detail on this mapping. The address shown in
this figure is a physical address M bits long that will be sent to main memory
if the item is not in the cache. In this case, we assume that each byte in
memory has a unique address. Since all L bytes within one line are present or
absent as a group, to determine if that line is present, we must strip off the
least significant log2 L bits of the address to prepare to interrogate the cache.
The remaining address bits are common to all members of a single cache line,
and these are the bits that we must check when looking for a hit.

The next facet of the mapping operation is to determine which of N sets to
interrogate. We must find some way of mapping the remaining address bits
into log2 N bits, which are then used to select among N different sets in the

. cache directory. The method used most frequently is to use the least signifi­
cant log2 N bits of the remaining address bits, which has the effect of scatter-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 47

Sec. 2.2 Cache Memory

ADDRESS OF DATUM

I+- log N-1+- log L--+I

c ADDRESS IN LINE
(1 of L)

'-----~ SET NUMBER
(1 of N)

Fig. 2. 7 Address partitioning for a cache search.

35

ing lines with successive addresses to successive sets of the cache. This tends
to randomize address references through the cache and reduce clustering by
mapping contiguous active regions in main memory across many sets of the
cache, thereby making for the best use of the cache.

Figure 2.7 shows the low-order log2 L bits of the address reference being
stripped away to account for the number of bytes per line, and then shows the
next low-order log2 N bits being used as the address for access to a con­
ventional random-access memory. From this memory, we read all K tags
simultaneously. Also, the required data from the lines in the cache are read
from random-access memories that hold the cache data.

The latter memories use the log2 N bits together with some of the log2 L
bits to access specific regions within a line in case the processor cannot accept
the entire cache line. Portions of all K lines in a set are accessed, and the
greater the number of bits from the L field used to address the lines, the
smaller will be the size of the data fields read from memory.

In making the directory comparison, note that it is necessary to store only
the leading bits of the address reference, M - log2 N - log2 L bits in this case.
All lines stored in a set have the same values for the set number, so it is not
necessary to store the log2 N bits that identify the set number.

In Fig. 2.6, the set number 1 is stripped from the address 03261 to create a
tag of 0326 for comparisons. The bottom tag shown in the same set has a value
0173, so the corresponding memory address is 01731.

The parameters mentioned thus far give us at least three degrees of free­
dom in designing a cache, and there are more choices yet to be discussed. Let
us reflect a moment on the choices at hand to see what trade-offs are available
and what guidance we have to complete our design.

Figure 2.8 shows the general form of the curves that describe cache
behavior as a function of some single parameter choice. The X-axis plots
caches of increasing size, but the curve does not indicate the structure of the
successively larger caches. For the moment it is not important which of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 48

36 Memory-System Design Chap.2

1.0

0.9

0.8
(/)
Q) 0.7 (/)
(/)

~ 0.6
0
~ 0.5
.0
E 0.4 :l z

0.3

0.2

0.10

Cache Size

Fig. 2.8 Cache performance-the number of misses versus cache size.

parameters L, K, or N increases in this figure. The Y-axis plots the relative
number of misses with the number of misses, for a cache of size 1 normalized
to unity. Note that the curve drops sharply at first and then bends and drops
less steeply as the cache size increases.

Most of the improvement in this graph is obtained by the initial small
changes in X. As X increases beyond the knee of the curve, relatively little
additional benefit is obtained. Hence, a good design point is a value of X
around the knee of the curve.

One problem that cache designers face is that the data available are not
nearly as clean as the data in Fig. 2.8. The data are often at best sketchy and
are highly dependent on the method in which they were gathered. So the
designer has to make critical choices using a combination of hunches, skill,
and experience to supplement the meager information at hand.

Good engineering sometimes requires a small degree of overdesign and
inefficiency to protect against unusual cases. For the data in Fig. 2.8, the
smallest cache that operates well is a cache of size 8 (relative misses= 0.34) or
possibly size 16 (relative misses= 0.24). A cache of size 32 (relative misses=
0.17) would be difficult to justify because the performance change is small
considering that the cost of cache is doubled to obtain this change. Never­
theless, a reasonable cache design may well incorporate a cache of size 32 or
even size 64 as an intentional strategy to assure a low number of misses over a
wide range of workloads. In this case, the designer is protecting against
workloads whose characteristics are quite different from those in Fig. 2.8.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 49

36 Memory-System Design Chap. 2

1.0

0.9

eel
0.7l
0.6

0.5

0.4

0.3

0.2

0.1
O 10 20 30 40

Cache Size

NumberofMisses

Fig. 2.8 Cache performance—the number of misses versus cache size.

parameters L, K, or N increases in this figure. The Y-axis plots the relative
number of misses with the number of misses, for a cache of size 1 normalized
to unity. Note that the curve drops sharply at first and then bends and drops
less steeply as the cache size increases.

Most of the improvement in this graph is obtained by the initial small
changes in X. As X increases beyond the knee of the curve, relatively little
additional benefit is obtained. Hence, a good design point is a value ofX
around the knee of the curve.

One problem that cache designers face is that the data available are not
nearly as clean as the data in Fig. 2.8. The data are often at best sketchy and
are highly dependent on the method in which they were gathered. So the
designer has to make critical choices using a combination of hunches, skill,
and experience to supplement the meager information at hand.

Good engineering sometimes requires a small degree of overdesign and
inefficiency to protect against unusual cases. For the data in Fig. 2.8, the
smallest cache that operates well is a cache of size 8 (relative misses = 0.34) or
possibly size 16 (relative misses = 0.24). A cache of size 32 (relative misses =

0.17) would be difficult to justify because the performance change is small
considering that the cost of cache is doubled to obtain this change. Never—
theless, a reasonable cache design may well incorporate a cache of size 32 or
even size 64 as an intentional strategy to assure a low number of misses over a
wide range of workloads. In this case, the designer is protecting against
workloads whose characteristics are quite different from those in Fig. 2.8.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 49

Sec. 2.2 Cache Memory 37

How can we be sure that all workloads are accurately modeled by Fig.
2.8? In fact, we cannot. Some workloads might have a much shallower slope
and exhibit a knee at larger values of cache size. If we design a cache that just
barely runs a workload of the type characterized in Fig. 2.8 at an acceptable
performance, that cache may deliver unacceptably poor performance for
more stringent workloads. If we overdesign for the workload in Fig. 2.8, we
can still run acceptably well on some workloads that demand larger caches.

The designer has to obtain the most useful performance data possible and
then use good judgment to estimate the characteristics of other important
types of workloads that are not reflected in the data available to decide how
much the architecture should be overdesigned. The idea is to examine the
cost of the excess capacity against the possibility that the capacity will be
necessary and beneficial. Decisions of this type are usually driven by cost
considerations because the cost has a major impact on the competitive mar­
keting of the machine, whereas the value of the excess capacity is more
difficult to assess if it does not contribute identifiably to higher performance
on normal workloads.

Returning to the problem of cache design, how can we develop data that
will enable us to select a cache size as well as the values of the cache-structure
parameters K, L, and N? To answer this question, we need to develop data as
shown in Fig. 2.8 that plot cache misses against cache size.

Because a cache of a given size may be organized in various ways through
different choices for K, L, and N, we suggest that Kand L be fixed and N varied
when this study is conducted. That is, the set associativity and the line size
should be fixed while the number of sets is varied. What is typically observed
is that the number of misses decreases, as shown in Fig. 2.8, and the knee of
the curve will be at a point that is dependent on the particular processor and
the workload.

Extensive data on the subject has been collected, and A. Smith [1982] has
an excellent summary of typical results. Empirical observations of typical
programs turned up a simple rule of thumb: each doubling of the size of the
cache reduces misses by 30 percent. Figure 2.8 shows this characteristic and
demonstrates what is often observed in real systems.

The 30-percent rule is useful for rough estimates, but should not be used
when accurate data are needed. Specific programs and processors do not
obey this rule. The reader should establish a similar formula when designing
a cache for a particular architecture and workload and use the new formula
to evaluate various cache designs.

Given a total size of cache, how should the cache be organized? We recom­
mend choosing line size L next and then the set associativity factor K, al­
though they could be chosen in the opposite order. To find the cache per­
formance as a function of line size, fix the parameter Kto a value that is likely
to be its final value.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 50

38 Memory-System Design Chap.2

From experience with other cache designs, we intuitively know that the
set associatively will be a small number, and it will probably not be 1. So we
set K = 2 and examine cache behavior as a function of line size. Note that we
have fixed the total size of cache, so that as line size doubles, we must reduce
N, the number of sets, by a factor of 2 to keep the product LKN constant.

The best performance is obtained with L = 1 because each individual
address is cached independently. But in this case, the directory may be enor­
mous and rather costly. When Lis maximum, N = 1, and there is but a single
set in the cache. This has the worst performance, but it is the least expensive
to build.

By plotting L along the X-axis in Fig. 2.8, with misses on the Y-axis, we
obtain the knee of the curve for some value of L. Note that to obtain the shape
of the curve shown in the figure, L has to be decreasing as the plot moves to
the right. Since the size of the directory depends on the value of L, the selected
value of L may be very small and require too large a directory to be practical.
Consequently, it may be necessary to increase Land accept a higher miss rate.

The final step is to choose the set-associativity factor K. This too can be
accomplished by plotting a curve similar to the one in Fig. 2.8. In this case we
perform cache analyses that hold the total cache size fixed and the line size L
fixed, while we vary K. To hold total size constant, it is necessary to halve N
each time we double K. The resulting curve should have the shape of the curve
in Fig. 2.8 when K is plotted along the X-axis, increasing to the right, and with
misses plotted on the Y-axis.

If the study suggests that a better choice for K is 8 instead of 2, then we
should restudy the effect of line size on performance, but use the new value of
Kin place of K = 2.

Eventually we can find a collection of values for K, L, and N that represent
a satisfactory trade-off between cost and performance. Generally speaking,
we obtain better performance as we increase the absolute size of cache. We
estimate that performance by estimating the average memory-cycle time

terr= h lcache + (1 - h) lmain

where h is the hit-ratio for the given cache. Then we factor in the effect of
technology. How much does that extra performance cost? If we are willing to
pay for the performance, then we use larger caches. If the cost is very high­
too high for the performance gained-then we use a smaller cache.

The cache-parameter values used in commercial systems have tended to
increase in time as technology has made it possible to build larger caches at
reasonable expense. High-performance minicomputers were produced with
caches as small as 2 K-bytes at the start of the 1970s and moved to larger
caches that reached 8 K-bytes at the start of the 1980s. In that same time­
frame, cache memories for high-end machines evolved from 16 K-bytes to 64
K-bytes.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 51

Sec.2.2 Cache Memory 39

Although we expect the trend of larger caches to continue, it is certainly
not clear that they will increase in size in the future at the same rate as they
have increased in the past. As main memory capacity increases from 107 bytes
to 108 and 109 bytes, we might expect a corresponding increase in the size of
cache memory.

There is a strong possibility that cache memory need not grow linearly
with main memory. Instead, it may grow as some slowly growing function
that reflects the growth of the active areas of memory as a fraction of the total
size of memory. In fact, several manufacturers such as Amdahl and Hitachi
have produced machines with two levels of cache memory, with the first level
very fast, very expensive, and relatively small, and the second-level cache
much less expensive, but still costly compared to main memory.

The second-level cache may be the architectural feature that grows larger
with new generations of device technology. The first-level cache captures
most of the hi ts. As cache size grows and the performance curve bends around
a knee, the additional hits obtained are rather infrequent. These should be
fielded in the second-level cache, whose cost is relatively low compared to
first-level cache, but whose performance is much better than main memory.

Two levels of cache further complicate the design picture. Now we have to
consider three different memory costs and two different cache structures. The
design possibilities are very rich, but rather overwhelming in their number,
making thorough analysis of alternative designs very costly to perform. The
next section provides some tools to simplify this task one-hundred-fold over
direct approaches for exploring the design space.

2.2.3 Cache Analysis

In the previous section we glibly assumed that the reader can construct
curves such as those in Fig. 2.8 from data on hand. This is hardly the case.
Cache-analysis input data usually consist of extremely lengthy address­
reference sequences obtained through great effort. The fastest way to obtain
such information is through special hardware attached to an operational
machine. The special hardware monitors memory requests and logs each
individual reference on a tape for later use by a cache-evaluation program.

Although this method is very fast, if the operational machine happens to
be a very high-performance machine, then the specialized hardware must run
several times faster than the high-performance machine to keep up with it.
Such hardware monitors are costly, and are difficult or impossible to build
for the very fastest machines. They are quite useful, however, for studies,
involving slower machines.

By far the most popular means for generating an address-reference
stream for studying cache performance is the machine simulator. This is a
program that simulates the instruction execution of a computer under study.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 52

40 Memory-System Design Chap.2

The input to the simulator is a typical workload. As each instruction is exe­
cuted by the simulator, the simulator writes to an external file the sequence
of address references generated during the simulation.

Some processor architectures have the capability of trapping to the
operating system after the execution of each instruction. On such architec­
tures, simulation can be done very efficiently because each instruction is
executed at full machine speed. Software in the operating system is required
only to determine what addresses were generated by the instruction and to
transmit these addresses to the output file.

Since we presume that cache design is to be done by examining the
performance of various design alternatives on address traces, we have to be
sure that the address trace is representative and does not have particular
biases that could produce misleading evaluations. Actually there are two
distinct problems.

1. The workload on the trace may not be representative of the actual work­
load for which the machine is to be used; and

2. The initialization transient during which the cache is filled with relevant
data may grossly affect the evaluation.

The first problem is particularly nasty. Because simulations run 1000 to
100,000 times slower than real time, it is not feasible to create traces that
cover long periods of real time. Typical simulations cover hundreds of
milliseconds at most, which raises a question about the fidelity with which
the simulation captures the characteristics of the workload.

High-performance machines specialized to particular applications
typically spend the bulk of their time in predictable ways, which should
account for the majority of an address trace for such machines. But a repre­
sentative fraction of the address trace should also be devoted to other activ­
ities, such as input/output and loop initialization.

General-purpose machines present a much more difficult problem be­
cause their workloads are not easily characterized. Moreover, any user may
choose to dedicate a computer to an unusual function whose characteristics
are vastly different from normal uses of the same computer. So the cache
designer can at best evaluate a cache for some good estimate of the workload.
Individual users may experience performance that deviates from the ex­
pected performance if their workload has dramatically different character­
istics from the workload used for cache design.

Various models of address references have been postulated with the idea
that the models can be used in place of traces for cache evaluation. Trivedi
[1982, pp. 305-308], for example, describes a statistical model that captures
the notion of locality of references in a way that is useful for designing an
operating system for a virtual-memory system. This model in turn is a refine-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 53

Sec. 2.2 Cache Memory 41

ment of the models of Coffman and Denning [1973, pp. 275-278], Denning,
Savage, and Spirn [1972], Shemer and Gupta [1969], and Shemer and
Shippey [1966].

Such models give insight into the characteristics of address-reference
strings, but because cache design is so critical and so much is at stake, cache
designs have to be validated by testing them on the address references pro­
duced by a real workload. So the use of actual address traces for evaluating
cache designs will continue to be the primary tool for cache analysis until a
better technique becomes available.

The problem of initialization behavior can easily be treated during the
collection of address references. The idea is to bound the effect of the initiali­
zation transient as a function of the length of the trace and produce a trace
long enough to be sure that the initialization transient is below the specified
bound.

Suppose, for example, that a cache design is two-way set associative with
256 sets. This design contains 512 lines. During a cache-evaluation run, the
initial state of these 512 lines may cause each of these lines to miss where in a
real situation the same lines might contain quantities that lead to cache hits.
Consequently, the transient effect of the initial state of the cache causes up to
512 more misses during the cache evaluation than would be observed in a real
system.

Suppose the cache designer arbitrarily chooses a trace of length 100,000
for an evaluation of this cache. If the miss ratio is very good, such as one
percent, then the trace produces about 1000 misses, but the transient effects
alone account for up to 512 misses, so the transient grossly distorts the cache
evaluation. If the designer wants to reduce transient effects to, for example,
below five percent, then the 512 transient misses must be five percent or less
of the observed misses, and the trace should be long enough to produce at
least 10,240 misses. Assuming a miss ratio for the cache of one percent, the
total trace should contain at least 1,024,000 address references.

The cache-simulator program can easily be modified to record which
misses are true misses and which are artifacts of the initial state of the cache.
Simply initialize the cache with address tags that are illegal. Since address
tags of a physical cache are several bits shorter than a full address, and since a
cache-simulator program can manipulate data as wide as a full address, we
can write the cache simulator to store address tags that are wider than actual
tags. Consequently, we can initialize the values of address tags to some illegal
value, for example, by setting the sign bit, if we know that while simulating
the cache no valid tag can be generated with a sign bit set.

The value of initializing tags in this way is that we can examine the
address tag of each line that is removed from the cache. If the tag is invalid,
then the line removed is one that was placed there during cache initialization,
and in a real environment it might have produced a hit.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 54

42 Memory-System Design Chap.2

By counting such events, we can find how often they occur during a
simulation and produce upper and lower bounds on the effects of cache
initialization. We can also make a good estimate of how many of those initiali­
zation misses would actually be hits if we assume that the hit ratio is the
same for these lines as it is for the lines observed in the remainder of the trace.
That is, if the overall hit ratio for the trace is 95 percent except for the
references that cause an initial tag to be removed from the cache, we can
assume that 95 percent of the misses that remove initial tags are actually hits.
Thus we have a "best" estimate for the true hit ratio of the trace, one that lies
somewhere between the bounds on the hit ratio that we obtain by assuming
that all initialization misses are respectively hits or misses.

We have shown how to estimate the length of a trace required to evaluate
a given cache, but the designer often does not know the cache parameters
when the address trace is being constructed. To be on the safe side, the trace
should be several times longer than the minimum acceptable length, and the
designer can use all or part of the trace for an analysis, provided that the
portion actually used is long enough.

Our observations here suggest that traces as short as 100,000 references
appear to be susceptible to transient effects, and that traces with 5 to 10
million references should be adequate for many studies. Very large caches
may require 100 million references, an overwhelming amount to generate
using technology available in the mid-1980s.

Initialization effects bias evaluations unequally, and the designer should
factor such effects into the cache analysis. In comparing a cache with 512
lines against a cache with 1024 lines, the designer must account for the
different initialization effects, which could be as high as 512 misses for the
first cache and double that for the second cache. But since the cache with the
larger number of lines probably has a lower miss ratio, this cache is more
likely than is the cache with 512 lines to produce hits where the transient
produces misses. Hence the larger cache is more adversely affected by initiali­
zation transients.

A reasonable way to factor out the transient effects is to use the best guess
for the miss ratio on transient lines. If a cache has 512 lines and an observed
miss ratio of one percent, and 512 transient misses are produced in the
simulation, then a real cache would have produced only about five misses. So
the observed misses must be reduced by about 507 to correct for the transient
effects. If the trace is so short that not every line of the cache is touched, then
there are fewer than 512 transient misses recorded in the simulation, so a
different correction should be applied to the misses observed. To give the
cache designer the data needed to estimate the transient effect, the cache
simulation should provide data on the number of distinct physical lines of the
cache actually accessed.

We now presume that the cache designer has a collection of traces avail­
able for cache studies. Our earlier remarks suggest that the designer will try

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 55

Sec. 2.2 Cache Memory 43

to evaluate many different caches, and therefore may have to use one address
trace several different times. This could be extremely time consuming and
costly. A trace with 5 million references may contain 4 bytes per reference, for
a total of 20 million bytes. Processing this trace may require an hour of
computer time on a high-speed computer. To evaluate 100 variations of cache
designs on separate passes of the trace would be an enormous computational
burden for an analysis that is conceptually very simple. The remainder of this
section treats a set of techniques that together reduce processing require­
ments by as much as a factor of 1000.

We use three different techniques to reduce processing requirements:

1. Multiple analyses per run;

2. Elimination of hits to the most recently used line; and

3. Set sampling.

The first technique is due originally to Mattson et al. [1970]. The idea is
that a single simulation run for one pass of a trace can produce data for
several cache evaluations. However, this result depends on the replacement
policy that specifies what line to remove when a new line enters the cache. We
describe the work of Mattson et al. by example in the context of cache analy­
sis, and explore more fully the impact of replacement policies later in this
section.

Figure 2.9 illustrates a situation in which an eight-way set-associative
cache is being analyzed. We shall see that we can obtain analyses for K-way
set-associative caches for each Kless than eight while performing the analysis
for the eight-way cache. Figure 2.9 shows the directory for one of N sets in a

A

B

c
D

E
F

G

H

(a)

Most
Recent

Least
Recent

z
A

B

c
D

E
F

G

(b)

Most
Recent

Least
Recent

c
z
A

B
D

E
F

G

(c)

Most
Recent

Least
Recent

Fig. 2.9 An eight-way cache directory maintained with an LRU policy:
(a) Initial state;
(b) After reference to Line Z; and
(c) After reference to Line C.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 56

44 Memory-System Design Chap.2

cache. Note that this directory has eight positions because the cache is eight­
way set associative.

Let us examine a typical sequence of address references to this set and
observe the effects of a particular replacement policy. Suppose the set ini­
tially contains the addresses A through Has shown in Fig. 2.9(a). If the next
address reference to this set is a miss, the new item is brought into the cache
and entered into the set. But which item is displaced to make room for the
new item? A policy that is implemented almost universally is the least­
recently used (LRU) policy, which says that the item displaced is the least­
recently used item in the set.

If the addresses in Fig. 2.9(a) are arranged in order of their last reference
so that A is the most-recently used item and His the least-recently used item,
then the new state of the set will be as shown in Fig. 2.9(b), which shows the
new reference Z at the top of the set, references A through G moved down one
cell in the set, and reference H discarded from the bottom. Suppose in this
state that the next reference is to address C, a hit in the set. Then the next
state should be as shown in Fig. 2.9(c), which places Cat the top of the set,
pushes down Z, A, and B, and leaves other items unchanged. Even though no
item is removed from the set when a hit occurs, the contents of the set should
be reordered because we must be able to locate the least-recently used item at
any given time. The reordering maintains the set in the order from most- to
least-recently used item.

The key idea contributed by Mattson et al. is that for the LRU replacement
policy the contents of a set for a K' -way set-associative cache contains the
contents of sets for all K-way set-associative caches for each K' less than K. In
Fig. 2.9, the eight-way set contains the contents of one-way, two-way, and so
on up to seven-way set-associative caches whose number of sets and line size
are equal to the number of sets and line size for the eight-way cache. In fact, if
we look at the behavior of a seven-way set-associative cache, we discover that
the items held in that cache occupy the first seven positions of the sets for an
eight-way cache.

To keep track of the performance of stacks with one-way to eight-way set
associativity, we simply have to note the position of each hit in the stack. For
example, the reference to item C in Fig. 2.9(b) touches C lying in position 4.
This is a hit in a four-way cache, but a miss in a three-way cache. In fact, this
is a hit in a K-way cache if and only if K > 3.

Let us keep track of the position of a cache hit in a vector of counts that we
call HIT(!), where I runs from 1 to 8. The HIT vector is initialized to 0. If a hit
occurs at position/, then we increment HIT(!). At the end of the cache evalua­
tion, if we want to know how many hits there will be for an eight-way cache,
we simply sum HIT(!) for I= 1 to 8.

To find the hits for a four-way cache, we compute the sum of HIT(!) for I= 1
to 4. Since HIT(S) counts the number of hits at Position 5 in the set, none of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 57

Sec. 2.2 Cache Memory 45

those hits are hits in a set with four or fewer lines. Hence, the contents ofHIT(5)
must be excluded from the hit count for a four-way set-associative cache.
Similarly, we can reason that the count for HIT(3) must be included in the hit
count for a four-element set because hits in a three-way cache are also hits in
a four-way cache under the LRU-replacement policy. That is why the number
of hi ts for a K-way cache can be found by summing HIT(!) for I = 1 to K.

Mattson et al. [1970] treat other replacement algorithms in addition to
LRU replacement. Some of the replacement strategies have the same prop­
erty that LRU has, that is, as you increase the size of a set, all of the hits of a
K'-way set-associative cache are hits in a K-way set-associative cache for all
K' < K. But some of the replacement strategies do not have this property. In
particular, if you select the item to be replaced at random, then it is perfectly
possible, for example, for a hit in a two-way cache to miss in a three-way
cache.

A replacement policy that has the containment property is called a stack­
replacement policy because the candidates to be replaced can be placed in a
push-down stack as shown in Fig. 2.9. When the replacement policy is a
stack-replacement policy, the stacks for K-way set-associative caches nest one
inside the other as K increases. As a general rule, when evaluating stack­
replacement policies, one can simulate many different caches during one pass
of the trace. This technique could reduce evaluation effort by as much as a
factor of 10 over the process of performing separate passes of the input data
for each set size evaluated.

The other two techniques are trace-reduction techniques attributable to
Puzak [1985], who discovered that the two techniques together can reduce
effort by two orders of magnitude. A trace with 5 million references can be
reduced by stripping out selected addresses to a trace with only 50,000 refer­
ences, yet the reduced trace can give extremely accurate estimates of the miss
and hit ratios of the cache.

A short trace permits extensive cache analysis to be done with
microcomputers, whereas an analysis of the full trace would be far too large a
task to be done in reasonable time on a microcomputer. Both of Puzak's
techniques rely on stripping from the address trace a large number of refer­
ences that do not affect the final results. The first stripping technique is the
following:

Assume that a set of analyses are to be done for caches with a fixed line size Land
at least N sets. Then prepare a reduced address trace by simulating a one-way
associative cache with N sets and line size L operating on the full trace. Output a
reduced trace that contains only the addresses that produce misses in the N-set,
one-way set-associative cache.

The trace produced by this simulation process throws away all hits to a
one-way associative cache with N sets. That is, it throws away all address

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 58

46 Memory-System Design Chap.2

references to a line in a set that was the most recently referenced line in that
set. What remains on the reduced trace are just the misses experienced by the
N -set, one-way set-associative cache. Typically, a cache of reasonable size
with this structure should have a miss ratio of ten percent or less, so that the
trace reduction should produce a new trace that is about ten percent of the
original length.

When the reduced trace is used to evaluate the same cache that produced
the reduced trace, the number of misses will be identical to the number
obtained from the unreduced trace. Of course, the number of hits will be
different, so the observed hit and miss ratios will also be different for the
reduced trace. If we know the original length of the address trace, however,
then from the absolute number of misses observed we can compute the num­
ber of hits and the hit and miss ratios. So all information relevant for a cache
analysis is still available on the reduced trace, provided that we know the
length of the original trace.

What makes this technique more interesting is that for stack-replacement
policies we can use the reduced trace to evaluate many different cache
structures in a single pass and still obtain exact or near-exact values of the hit
and miss ratios. Puzak proved the following result:

Create a reduced trace by simulating a one-way cache with N sets and line size L,
retaining on the reduced trace only the addresses that produce cache misses.
Simulate a K-way set-associative cache with N sets and line size Lon the original
trace and the reduced trace. The two simulations produce the same number of
cache misses.

Puzak's proof of this statement is a modification of the argument of
Mattson et al., which says that as you increase the stack depth (in this case K),
the contents of stacks for smaller Kare subsets of the contents of the stack for
larger K. The key idea in the proof is that each miss on the reduced trace is a
miss on the full trace, and conversely, each miss on the full trace is a miss on
the reduced trace.

The process of producing a reduced trace by discarding cache hits for the
one-way cache discards no misses for the K-way cache. Because of the stack­
algorithm property developed by Mattson et al., no misses for the K-way
cache are discarded either. The misses for the K-way cache are a subset of the
misses of the one-way cache and will appear in the reduced trace. Moreover,
the references discarded from the full trace to produce the reduced trace are
hits to the most-recently used set in a one-way cache, but each of these is a hit
to the most-recently used set of a K-way cache, and each such hit does not
result in a reordering of the Klines within a K -way set. When such references
are removed from a trace, the number of misses observed does not change.
From this argument we conclude that the reduced trace and the full trace
yield an identical number of misses for any K-way cache with N sets and line
size L.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 59

Sec. 2.2 Cache Memory 47

Not only can you vary set associativity on a reduced trace, but you can
also study the effects of varying N. Puzak showed that the following result is
true:

Let N be a power of 2. Prepare a reduced trace by simulating an N-set, one-way set
associative cache with a line size L, and retain on the reduced trace only those
address references that produce cache misses. Simulate a one-way set associative
cache with 2N sets and line size L on the full trace and on the reduced trace. The
two simulations produce the same number of misses.

To prove this statement it is sufficient to show that any cache miss on the
full trace is a miss on the reduced trace, and conversely, any miss on the
reduced trace is a miss on the full trace.

To illustrate the proof, consider Fig. 2.7, which shows how addresses are
mapped to sets. When we double the number of sets from N to 2N, we do so by
increasing the set field by one bit. The effect is to split into two groups the
addresses that map into one set of an N -set cache. Each group maps into
distinct sets of the 2N-set cache.

For example, consider an address for a cache with 2N sets and line size L.
Let us break up the left-most field of the address shown in Fig. 2.7 into two
fields, one of which contains only the right-most bit of the field, and the other
of which contains the remaining bits on the left.

This produces a total of four fields in the address, which we denote as (T,
B, S, L) for tag, bit, set, and line. The L field gives an address within line and is
ignored by the cache when matching addresses. The S field gives a set number
for an N -way cache and is log2 N bits long. The B field has a length of 1, and
the B field concatenated with the S field gives the set number for a cache with
2N sets. The T field is the tag field for a cache with 2N sets, and the T field
concatenated with the B field is the tag field for a cache with N sets.

When a cache lookup is in progress, a K-way cache uses the set number to
initiate a read in each of K memories and compares the tag stored there to the
tag derived from the address. Hence, when an address (T, B, S, L) is used by an
N -set cache, the tag is (T, B), and the set number is S. When that same address
is used by a 2N-set cache, the tag is T, and the set number is (B, S). Since Bis a
single bit, the set number is either (0, S) or (1, S). Consequently, any address
that is in Set S of an N -set cache falls in either Set (0, S) or (1, S) of a 2N -set
cache.

We will simulate a 2N-set one-way cache to show why each miss on the
full trace appears as an address on the reduced trace and yields a miss there
as well. Without loss of generality, let us focus on a particular set, Set (0, S), of
the 2N-set cache and observe an address sequence that produces a miss.
Suppose that the address (T1, 0, S, L) produces a miss on the full trace. The
prior reference to Set (0, S) in the 2N -set cache must have a different tag in
order for the present reference to be a miss. Consequently, the prior reference
must be an address of the form (T0 , 0, S, L) where tags T0 and T1 are not equal,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 60

48 Memory-System Design Chap.2

and the values of the L field for the two addresses do not matter. Is (T1, 0, S, L)
on the reduced trace? Yes it is, because this reference produces a miss in an
N-set cache.

On the full trace, the prior reference to the Set S of an N -set cache is either
the reference (T0 , 0, S, L) or a reference of the form (T, 1, S, L) for some tag field
T. If the prior reference were (T, 1, S, L), this reference would appear between
(T0 , 0, S, L) and (Ti, 0, S, L), and it would be treated as a reference to Set (1, S),
not (0, S), when simulating the 2N-set cache.

Since the prior reference to Set S for the N-set simulation has either tag
(T0 , 0) or tag (T, 1), neither of which is equal to tag (Ti, O), the reference to
(T1, 0, S, L) is a miss on the full trace and does appear on the reduced trace.
This reference is a miss on the reduced trace because of the rule used in
discarding addresses to produce a reduced trace. We can discard address
reference (Ti. 0, S, L) from the full trace only if the prior reference on the full
trace to Set Sin an N-set cache has tag (T1, 0). But this was not the case, since
the preceding discussion indicates that the prior reference to Set (0, S) in a
2N-set cache must have a tag different from Ti.

To prove that during the simulation of a 2N -set cache every miss observed
on the reduced trace is a miss on the full trace, we use a similar argument.
Now we assume that the address reference (Ti, 0, S, L) on the reduced trace
produces a miss when simulating a cache with 2N sets. On the reduced trace
the prior reference to Set (0, S) must have a different tag, so it must be an
address of the form (T0 , 0, S, L) where T0 and T1 are unequal, and the values of
the L fields are immaterial. Both of these references must occur in sequence
on the full trace. Between these references there may be other references to
Set (0, S) that do not appear on the reduced trace, but all such references are
eliminated from the full trace only if they are hits to Set Sofa one-way N-set
cache. They must be address references of the form (T0 , 0, S, L) because the tag
must be of the form (T, 0), and the latest reference to Set S with a tag of this
form is the reference to (T0 , 0, S, L).

We have now shown that when we simulate a one-way 2N-set cache on the
full and reduced traces we obtain the same number of misses. Puzak actually
used the proof technique given here to prove the following statement:

Let N be a power of 2, and let M be a power of 2 no less than N. Create a reduced
trace by simulating a one-way N-set associative cache with line size L. Retain on
the reduced trace only those addresses that produce misses. Now simulate a
K-way M-set associative cache for any K > 0 on both the full and reduced traces.
The number of misses observed during the two simulations will be equal.

This statement says that a reduced trace can be used to simulate caches
with any combination of set associativity and number of sets, provided that

• The line size L for the simulated cache is equal to the line size of the cache
used for the trace reduction;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 61

Sec. 2.2 Cache Memory 49

• The simulated cache uses at least as many bits in the set-number field as
the cache uses for the trace reduction; and

• The set associativity is arbitrary.

Given that trace reduction is useful for studying caches with increased
values of set associativity and number of sets, is it also useful for studying
caches with increased values of line size? The answer is a qualified yes. When
a trace reduced by simulating a cache with line size Lis used to evaluate a
cache with line size 2L, we quickly discover that the sets for the cache with
line size L do not have a direct relation to the sets for the cache with line
size 2L.

In general, the number of misses produced by such studies is not exactly
what would have been obtained from the original trace. The number of mis­
ses observed on the reduced trace is generally too low because some misses
are discarded in the trace-reduction process.

Puzak's empirical studies showed, however, that the data obtained from
the reduced trace is a good estimate of what would be observed on the
original trace. Hence, the reduced trace can be used for studying the effect of
line size, but the designer must be aware that there is an additional source of
error in using the reduced trace for these purposes. Since there is no basis
other than empirical observations that the reduced traces are useful for line­
size studies, designers should validate their findings on line-size effects with
simulations driven by full traces.

Having reduced the original trace by 90 percent, let's explore how to
make a second reduction that again reduces the reduced trace by 90 percent.
The trick here is to observe that each of the N sets behaves statistically like
any other set, so that the performance of the full cache can be estimated by
observing only one set. In most designs, N is fairly large, usually 64 to 1024, so
the opportunity for reducing effort by a factor of N has a high payoff.

There is some danger in selecting a single set, however, because it might
just happen to be an unusual set whose statistics are not representative. To be
safe, the designer can use two, three, or more sets, with accuracy increasing
as the number of sets increases, but at the cost of additional processing time.
The idea is to select a few sets and examine their behavior characteristics.

Using standard statistical techniques, one can obtain confidence inter­
vals on the evaluation measures produced from a few sets, where the confi­
dence intervals give an estimate of the error introduced by sampling a few
sets instead of using all of them. Similar techniques are used for quality
control and for predicting the outcome of elections. In both of these instances,
the sampling process is used on a small population to determine the charac­
teristics of a much larger population.

Puzak discovered that selecting six of 64 sets was sufficient to reduce the
95-percent confidence interval to less than one percent of the measured data.
That is, the data obtained from six sets would be within one percent of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 62

50 Memory-System Design Chap.2

data values for the full trace in 95 percent of the experiments that sample
random populations with similar statistical distributions. Hence, the re­
duced trace can be stripped again to retain the references from some small
number of sets. The number of sets to use does depend on the variance in the
observed data, so we cannot give a specific number that holds for all cases.
Puzak's experience indicates that for reasonable data, retaining only ten
percent of the sets is sufficient.

To summarize how the various techniques described in this section can be
put to use, consider the design of a cache that nominally has from SK-bytes to
32 K-bytes. The designer has to determine how this cache can be organized.
Here is one typical sequence of steps that might be followed:

1. Pick a candidate line size for the SK cache. This is usually determined by
the width of the path between main memory and the processor. The line
size can be a multiple of this width, but should not be smaller than the
width. In the running example, we assume that the path width is S bytes,
but we choose to have a line size of at least 16 bytes to reduce the number
of directory entries in the cache.

2. Determine what cache structures are to be studied. In our case we want to
examine caches with at least two-way set associativity. Hence, the SK
caches of interest are 2 by 256, 4 by 12S, and so on, and larger caches are
obtained by doubling and quadrupling the number of sets. If we choose to
examine larger line sizes, we halve the number of sets for each doubling of
the line size.

3. The largest number of lines in the cache occurs for the 32K cache with
16-byte lines. The number is 204S. To reduce transient effects to less than
two percent, the number of misses produced on the trace must be at least
50 times the number of transient misses, so the trace must have at least
lOOK misses. With a miss ratio of one percent, the number of references
on the trace must be roughly 100 times the number of misses, so the trace
should be at least 10 million address references in total.

4. Prepare a collection of programs that comprises a representative work­
load. Prepare an address trace from these programs of a length of at least
10 million addresses. The proportion of the trace devoted to each type of
program should reflect the anticipated workload, and the transients
caused by changing from one program to another should also reflect the
expected frequency of such transients.

5. Prepare a reduced trace by stripping from a ten million reference trace all
hits to a cache with line size 16, set associativity 1, and 12S sets. Also,
select some fraction of the sets at random, for example, ten percent, and
strip out all references in the trace to sets other than the selected sets.
During the stripping process, observe the total hit ratio, the hit ratio on
each of selected sets, and the composite hit ratio for the collection of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 63

Sec. 2.2 Cache Memory 51

selected sets. If the composite hit ratio differs from the actual hit ratio by
more than a few percent, use the data obtained from the individual sets to
find a confidence interval for the observed hit ratio. From this determine
how many sets are actually required to reduce the sampling error to a
tolerable amount. If more sets are needed, obtain them from the original
trace by repeating the process given here.

6. Using the reduced trace, simulate caches with 256 sets and two-, four-,
and eight-way set associativity in one pass of the trace. (These are SK,
16K and 32K caches).

7. Again using the reduced trace, simulate in one pass of the trace caches
with 512 sets and two-, four-, and eight-way set associativity.

8. In a final pass of the trace, repeat the simulation process for a cache with
1024 sets and two-, four-, and eight-way set associativity.

9. Plot the data and determine the most reasonable trade-off of performance
and cost.

Note that some of the data collected is for caches larger than the design
point. This gives additional information on the merits of moving to a larger
cache in the future and should be useful if there is some need to plan for the
larger cache in present designs. Note also that the line size has been fixed to
16 bytes throughout the study.

If other line sizes are to be considered, the designer can prepare stripped
traces for each line size and repeat the steps, or can use the stripped trace
previously created and repeat the steps for the larger line size. In the latter
case, the designer must allow for a larger potential error in the data obtained
because the number of misses observed on the stripped trace is not equal to
the number of misses on the full trace.

Together the methods described in this section should make cache-mem­
ory analysis accessible to all designers. It becomes feasible to use personal
workstations to conduct such studies that formerly taxed the facilities of the
largest computers.

In closing, we make one additional observation that greatly simplifies the
collection of the data. It is quite feasible to strip the trace while collecting
address references. Simply record only those addresses that are misses to a
few selected sets of an N -set one-way set associative cache. If we randomly
select three bits from the set field and record only the misses to the sets for
which these bits have a specific value, for example, (0,0,0), then we will be
recording references to 12.5 percent (one-eighth) of the sets, and only the
misses to those sets.

Because this scheme selects only one address in a hundred for output, the
address references can easily be gathered in real-time, even for very fast
machines. However, it is necessary to have a buffer that can accept references
at very high instantaneous data rates because the cache misses that are

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 64

52 Memory-System Design Chap.2

captured do not necessarily occur uniformly through a simulation, but rather
may bunch together in small regions of the simulation.

Nevertheless, the almost 100-to-1 reduction in the volume and data rate
of the data to capture makes this technique very attractive. It may well be
more effective to produce traces for different line sizes by capturing a new
address-reference stream for each different line size than it is to produce a
single full trace to be used as raw data for all simulation runs in a line-size
study. A full trace is far more difficult to obtain than is a reduced trace, so a
designer may prefer to produce as many as a half-dozen different reduced
traces than a single full trace.

Although the gains are important, the techniques given here have to be
used with some caution. The traces must be long enough in every case to be
sure that the statistical error in sampling is small, and they must be analyzed
to ensure that they capture representative activity.

2.2.4 Replacement Policies

In this section we look into the replacement policies and their impact on
cache performance. Nearly all caches in commercial production use
least-recently used (LRU) policies to manage the lines in a set. Recent work by
Puzak [1985] points out ways to obtain improvements over LRU replacement
at reasonable cost. This section explores the characteristics of LRU and com­
pares them with an optimal (but nonrealizable) replacement policy to conjec­
ture how one might design a realizable, near-optimal replacement policy for
a cache.

The main objective of a replacement policy is to retain the lines likely to
be referenced in the near future and discard lines that are no longer useful or
whose next access is in the more distant future. We can easily evaluate any
replacement policy by comparing it to an optimum policy that has perfect
knowledge of the future. Belady [1966] described such a policy in the context
of virtual-memory systems. The same algorithm holds for cache memories.
The characterization of this algorithm described here first appeared in
Mattson et al. [1970].

Assume that a cache has perfect knowledge of the future: What should its
replacement policy be? In fact, the optimal replacement policy (OPT) is iden­
tical to an LRU replacement policy that operates on the reference stream
reversed in time. More specifically:

The optimal replacement policy (OPT) discards the line of a set whose next
reference is furthest in the future of any other line in the same set.

Figure 2.10 shows the OPT policy in action. Figure 2.lO(a) shows a set of
lines ordered so that the line at the top is the next of the set to be referenced,
and the remaining lines appear in the order in which their next reference

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 65

Sec. 2.2

A
B
c
D
E
F
G
H

(a)

Nearest
Future
Access

Furthest
Future
Access

Cache Memory

B
c
A
D
E
F
G
H
(b)

Nearest
Future
Access

Furthest
Future
Access

B
z
c
A
D
E
F
G
(c)

Nearest
Future
Access

Furthest
Future
Access

Fig. 2.10 An eight-way cache directory maintained with the OPT policy:
(a) Initial state for future reference-string AZBZCADEFGH;
(b) After the cache hit to Line A; and
(c) After the cache miss to Line Z.

53

appears in the address-reference stream. We assume that the future reference
stream is A, Z, B, Z, C, A, D, E, F, G, H. In this case, Line A is the next of the
lines in the set to be referenced. To maintain the order of the lines in the set, it
has to be reordered after each reference, just as LRU has to reorganize the set
after each reference.

Figure 2 .1 O(b) shows the state of the set after a reference to Line A. At this
point, Line A is not necessarily the next line to be referenced. In fact Lines B
and C are touched before A is touched again, so Lines B and C move up in the
set, and Line A is inserted after Line C.

Figure 2 .1 O(c) shows the state of the cache after a miss. Line Z has caused
a miss and might be brought into the cache. In this case Line Z will be
inserted into the set at a position corresponding to its next reference relative
to the next reference to any other item in the cache. If Z is touched before H, H
will be discarded, some lines will be moved down in the set, and Z will enter
the vacant position. If Z is touched after H, then Z is discarded, and the set is
left unchanged. Figure 2.lO(c) shows Line Z inserted after Line B, and line H
being discarded.

Why is OPT optimal? Suppose it were not. Then some other optimal
policy would make a decision different from OPT at some point. Consider the
first point in time at which the better policy has a hit and OPT has a miss.

Suppose that the hit is to Line A and that OPT has discarded Line A and
retained Line B because Line B was referenced before Line A. Then the other
policy must have missed on Line B when B was referenced. If OPT had a hit at
Line B, at that point we have a hit for OPT and a miss for the other policy. If
OPT actually discarded Line B before that reference to B, then OPT did so in
favor of some other line, which we can easily show directly or indirectly
produces a hit for OPT that the other policy does not produce.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 66

54 Memory-System Design Chap.2

In any case, we have shown that if the other policy produces a hit when
OPT has a miss, OPT must at some earlier time produce a hit when the other
policy produces a miss. In fact, OPT has at least one hit for every hit of the
other policy, and it may have more.

It is rather interesting that LRU, which looks only backwards, works well
compared to OPT, which looks only forwards. The recent past appears to be a
good estimate of the near future. Perhaps this is due to the nested structure of
programs, which leads to the characteristic that the recent past is a reversal
of the near future. Consider, for example, a series of nested loops.

for i = 1 to N do
for j = 1 to M do

fork=1 toLdo
(body of inner loop)
end {k loop};

end {j loop};
end {i loop};

In this nesting the indices are incremented and tested on a last-in, first­
out basis. In the loop body the index that is next to be touched is the last to
have been touched, and similarly, the index to be touched furthest in the
future is the index touched furthest in the past. The last-in, first-out data
access characteristic associated with nested loops, nested subroutine calls,
and nested interrupts accounts for the future being similar to the past.

If this were the only characteristic of programs, then LRU would almost
always closely mimic OPT. But other characteristics of programs strongly
interfere with cache management. One problem with the LRU replacement
policy is that it does not anticipate the future well when sequential or cyclical
activity is in progress. In either of these cases, once an item has been pro­
cessed, it can be removed from the cache. If it is to be used again, the next
access occurs further in the future than the access to other items available in
the same cycle.

Consider, for example, the difference between LRU and OPT when each
processes a cycle of references of length 6. Let the reference string be A, B, C,
D, E, F, A, B, C, ... , F, A, ... , F, ... , and observe how LRU manages this cycle
in a set of size 2. LRU retains the last two references and misses on each new
reference. OPT retains A and B while accessing C through F, so that the next
references to A and Bare hits. OPT thus obtains two hits out of six per cycle,
but LRU obtains no hits per cycle. Therefore, a long cycle whose length
exceeds the set-associativity factor can be devastating for LRU. Similarly,
sequential access to any data structure tends to clog up the LRU cache, while
such data are immediately discarded by OPT.

Therefore, to create a replacement policy that performs nearly as well as
OPT we must do some replacements that are not LRU replacements, and we
should try to do these when references are sequential or cyclical or in some
other pattern that is poorly handled by LRU. From the preceding description

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 67

Sec. 2.2 Cache Memory 55

of the characteristics of OPT, we discover the following interesting fact about
OPT:

For any set-associativity size K, OPT considers only one of two lines for replace­
ment. One candidate is the line most recently used, the other is the line referenced
furthest in the future.

LRU has only one possible candidate for replacement, the line least re­
cently used. It never replaces the line most recently used unless the set­
associativity factor K is 1. Presumably, LRU does as well as it does because
the least-recently used line is frequently the line to be referenced furthest in
the future.

Puzak's analysis [1985] of OPT and LRU policies turned up another
interesting characteristic of LRU replacements. Consider a situation in which
a set managed by an LRU policy happens to contain exactly the same lines
that OPT would retain. Now assume that LRU elects to replace a line of the
cache that OPT elects to keep, and conversely, OPT replaces a line, Line A,
that LRU elects to retain.

Puzak notes that Line A is a dead line in the LRU cache and that it must
leave the cache before it is touched again. If this were not the case, then OPT
would have retained Line A and cast out some other line. Since Line A is dead,
the set-associativity is effectively reduced by one until Line A is swept from
the cache by an LRU replacement decision. If Line A happens to be the
most-recently referenced item when OPT disposes of it, then in a K-way
set-associative cache managed with LRU, K-1 misses must occur before Line
A is replaced. As each miss occurs, Line A moves down one position in the set,
until at last it reaches the least-recently used position from where it is re­
moved from the cache. Here is an opportunity for a better policy!

For example, if a cache-management algorithm were clever enough to
prefetch data in anticipation of future references, the obvious place to store
the new data is in place of dead lines because these lines will not be refer­
enced again. If we replace lines that are not dead, then each such replacement
might change a future hit to a future miss. Therefore, there is some risk in
replacing live lines, and no risk in replacing in dead lines.

Quite apart from prefetching, there is a great deal that can be done just to
improve LRU replacement. For the cache parameters he studied, Puzak found
that OPT's performance for a cache with M lines is approximately the same as
LRU's performance for a cache with 2M lines. The actual performance differ­
ence is not a factor of two, but Puzak observed that doubling the size of a
cache reduces misses by about 30 percent.

These data are strictly empirical and depend on the architecture, the
trace data, and the ranges of cache parameters. There is no reason to believe
that his observations hold in general. Cache designers should make their own
observations based on their specific context and then compare their results
with Puzak's.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 68

56 Memory-System Design Chap.2

In any case, by comparing LRU with OPT we can obtain an estimate of
the improvement available. Although we can try to improve the cache as
much as possible, in reality, we are likely to gain only from ten to 30 percent
of the available improvement because the hardware cannot have perfect
knowledge of the future.

Here is a description of one scheme for improving LRU that is based on
work by Pomerene et al. [1984]. The objective is to distinguish between tran­
sient lines that must be flushed from cache quickly and lines that become
active after long periods of inactivity.

Pomerene et al. propose to use a shadow directory, as shown in Fig. 2.11.
On the left side of Fig. 2.11 is an ordinary cache divided into a directory and
data area. Let us presume that this is a K-way associative cache. To the right
in the figure is a duplicate of the cache, except that the duplicate contains
only the directory and no data area. This part of the cache is the shadow
directory. The cache is generally managed as if it were a 2K-way set
associative cache, except that a directory hit in the right half of the cache
produces no data, just directory information.

When a new item is brought into the main cache, one of K items in the
same set is discarded from that cache. The discarded item is entered in the
shadow directory, displacing one of K items from the corresponding set in
that directory. There is usually plenty of time available to update the cache
and both directories because the update occurs during a cache miss, when
cache activity essentially comes to a standstill.

0
1
2
3

N-2

MAIN
DIRECTORY

f--------<

1--------l

>------I

N-1 1--------1

Klines
per set

CACHE
DATA LINES

0
1
2

SHADOW
DIRECTORY

.__ ___ __,

1--------1
,___ ___ _,

3.__ ___ -1

N-2
N-1

I------"

~---__J

Klines
per set

Fig. 2.11 The organization of a cache with a shadow directory. The main cache has N
sets, K lines per set. The shadow directory has only the directory entries for an
additional Klines per set.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 69

Sec. 2.2 Cache Memory 57

The key to the cache's operation is that there are two kinds of misses:

1. A transient miss, in which the datum is not in the cache, and there is no
entry in the shadow directory; and

2. A shadow miss, in which the datum is not in the cache, but there is an
entry for the datum in the shadow directory.

A shadow miss was used in the distant past and is being used again. There
is some likelihood that it will repeat the same behavior in the future by
having a lengthy period between two successive accesses.

As each new item is loaded into the cache, a bit is set to indicate whether
the item was a transient miss or a shadow miss. That information is used to
control replacement. When a replacement decision occurs, the cache man­
ager can examine how lines entered the cache. It can tend to retain the lines
that were in the shadow in favor of the lines that were transient misses, and in
this way it will tend to flush transients from the cache more quickly than an
LRU algorithm will flush them.

As the replacement algorithm chooses lines closer and closer to the most­
recently used line, however, the risk becomes greater that the replacement
algorithm will make a mistake and cast out a line that should be retained for
a future hit. Puzak discovered that it is effective to place a limit on the region
of the cache over which the cache manager can give preference to shadow
misses over transient misses. For a four-way cache, a reasonable policy is to
limit non-LRU decisions to the bottom two cells, that is, the LRU and next-to­
LRU entries.

In terms of cost, the shadow directory is surprisingly inexpensive. Most of
the cost of a cache is in the data memory. For example, for a line size of 16
bytes and an address-tag size of 4 bytes, a data memory will have four times
the number of bytes as has a cache directory. For larger line sizes, such as 64
bytes, the shadow directory will have less than ten percent of the storage
capacity of the data memory.

Since the directory also has comparators, the costs are not in storage
alone, but the storage ratio of data memory to directory does give some idea
of relative costs. Consequently, it is conceivable to put ten-percent additional
cost into a shadow directory to obtain five- to ten-percent performance im­
provement. From a cost-performance view, such improvement could be bet­
ter than doubling the size of the cache. Note that the improvement range for
performance corresponds to a very small absolute change in the miss ratio,
roughly 0.5 to one percent. The percentage reduction in the number of misses
is somewhat larger, possibly ten to 30 percent. The point is that the shadow
directory does not have to be extremely accurate to achieve the improvement
we seek.

The shadow directory also avoids a serious problem that develops as
caches become larger. Generally, the larger a cache, the slower the cache

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 70

58 Memory-System Design Chap.2

cycle becomes. Since the shadow directory is not accompanied by a data
memory, the volume and power consumed by the data memory is avoided,
which is a tremendous advantage for high-speed systems.

Moreover, the shadow directory need not increase the cache-cycle time
since the shadow does not have to be consulted on every memory access. The
only time it needs to be consulted is on a cache miss, and at this point there
are many cycles available to handle updating and replacement.

To conserve on power and cooling, it is feasible to build the shadow
directory with logic slower than that used in the main cache. The shadow can
be included fairly inexpensively to obtain a small, but worthwhile, increase
in performance.

2.2.5 Footprints in the Cache

In this section, we expand upon some of the ideas of the shadow directory to
derive a simple and useful model of transient misses in a cache. Voldman and
Hoevel [1981] and Voldman et al. [1983] conducted empirical studies of mis­
ses in caches. Their data show that cache misses are not distributed uni­
formly through an address trace, but instead tend to be clustered into
clumps. Between the clumps are relatively long periods of time during which
cache misses are rare.

Attempts to model this behavior statistically have not been very success­
ful because the distributions that best characterize the behavior do not have
finite variance. Voldman et al. [1983] showed a characterization based on
fractals, which is helpful for explaining an empirically observed sequence of
misses, but is not directly useful in predicting the effects of cache parameters
on miss ratios.

The importance of the transient effect on cache performance led Strecker
[1983] to develop a model of miss ratios for the case when two or more
processes compete alternately for a cache. Strecker observed that as each
process takes control, it expends its initial references reloading the cache. As
the cache becomes partially loaded, the misses decline, and eventually the
miss ratio reaches the long-term steady-state miss ratio. Strecker's model
estimates the average miss ratio for a process over an interval of time that
includes the transient period when the process is reloading the cache.
Although the model is fairly complex, Strecker showed that it gives accurate
results for the specific processes he modeled.

In this section, we introduce a much simpler model that gives excellent
results for estimating the cache-reload transient apart from the steady-state
miss ratio. The trick is to isolate the reload transient from the normal cache
misses and simply count the number of lines that have to be reloaded without
attempting to measure instantaneous rates. Since each cache miss carries a
penalty, and for many architectures the penalty is a fixed cost, the model can

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 71

Sec. 2.2 Cache Memory 59

give the total cost penalty of a reload transient. The penalty drops off for
larger caches in a predictable way, and the predictions have been confirmed
by experiment. The work described here is by Stone and Thiebaut [1986].

The model for determining how different processes compete for the cache
is illustrated in Figure 2.12. Fig. 2.12(a) shows Process A and Process B run­
ning alternately in time. These two processes may be quite independent, as is
the case if Process A is an interrupt-driven program servicing some input/
output device, and Process B is a compute-bound main program. Or the
processes could be quite dependent on each other, as is the case if Process A
invokes Process B repeatedly because of a call on B placed within a loop in A.

In a cache-based architecture, what actually happens is shown in Fig.
2.12(b), where we see a reload transient at the beginning of the second iter­
ation of Process A. Before calling Process B, Process A fills the cache with
various instructions and data that were referenced frequently and will be
referenced frequently again. When Process B runs, it displaces many of A's
data and instructions in the cache with data and instructions that belong to
B. When Process A reinitiates, it spends some time reloading the cache while
displacing B's lines. The shaded area shown in the figure represents this
transient.

Process A Process A

D Process B D
Time

(a)

Process A Process A

D Process B IJ
Time

(b)

Fig. 2.12 Execution profile of two processes that share one processor:
(a) Ideal execution profile; and
(b) Actual execution profile of Process A when it contends for the cache with Process
B. The shaded area denotes lost time from a cache reload when lines of A are displaced
byB.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 72

60 Memory-System Design Chap. 2

We show the transient occurring at the beginning of A's second cycle.
Actually it occurs throughout the cycle, with the initial miss-ratio quite heavy
but gradually diminishing until the transient is over, or until Process B is
reinvoked, whichever occurs first. The miss-ratio may be as high as 40 or 50
percent at the beginning of the transient and eventually fall off to a steady
state of one or two percent.

The average miss-ratio over the period of Process A's activity depends on
the relative size of the transient as compared to the length of the reference
string for Process A. A similar transient not shown in Fig. 2.12 occurs for
Process B. In fact, the lines belonging to A discarded by Bare those that are
reloaded by A when A takes control, so that the number of misses in B's
transient due to Process A is equal to the number of misses in A's transient
due to Process B.

The key to measuring the size of a transient is the notion of a footprint, as
illustrated in Fig. 2.13. Figure 2.13 shows an N-set cache with infinite associ­
ativity. The lines in the cache marked with an A are the lines that Process A
touches when it runs in isolation. We call this set of lines the footprint of
Process A, and the number of such lines is the footprint size. For fixed line size
L, footprint size is fixed. That is, we can double or halve the value of Nin Fig.
2.13, and the lines marked A will redistribute in the infinite cache accord­
ingly, but no lines will disappear. The footprint shape changes with cache
structure, but the footprint size is independent of Kand N.

The model of cache behavior is very simple to state. We assume that
Process A runs first and firmly implants its footprint in the cache. Then
Process B runs. If Process B is agile enough to step around Process A's foot­
print, then many lines of Process A will be resident when A restarts after B
finishes. If Process B steps on part or all of Process A's footprint, those lines
from Process A will be displaced from the cache and will have to be reloaded

Set O

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A

A A A

A A A A

A

Fig. 2.13 The footprint of Process A in an eight-set cache with infinite set associativity.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 73

Sec. 2.2 Cache Memory 61

when A restarts. How many lines will have to be reloaded? The relevant
parameters are the footprint sizes of A and B and the cache size and structure.
We show here how to estimate the number of lines to reload using statistical
assumptions that turn out to be very good.

If the cache is very large compared to the footprint sizes of A and B, then
with very high probability Processes A and B can run together without inter­
ference, just as two mice can ramble in a football stadium without bumping
into each other. But if the cache is small relative to the footprint sizes, B's
footprint will land directly on A's, and most or all of Process A will have to be
reloaded.

Figure 2.14 shows Process A's footprint in a finite cache, this one with
set-associativity 4. Note that some sets (rows) of the footprint contain more
than four entries, and therefore these sets do not fit into the cache. When A
runs by itself, these sets cause cache misses at a rate that depends on the
frequency and exact sequence of references to those sets.

The size of the footprint that Process A actually occupies in the finite
cache is equal to the number of entries posted in the first four columns on the
cache shown in the figure. How big is this footprint? We can estimate its size
rather easily for a K-way cache by considering the probability of having more
than Klines per set in Process A's footprint for an infinite cache.

If we assume that the lines are distributed uniformly to the sets of the
cache so that each set is equally likely to be the target of any line in the
footprint, then the probability that the first line referenced by Process A falls
into a set, such as Set 1, is p = l!N, since there are N sets, each equally likely to
receive this line. The probability of not falling into this set is q =
1 - p = 1 - l!N. Let the size of Process A's footprint in an infinite cache be SA.

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set Associativity
0 1 2 3

A A A

A A A A

A A A A

A A

A A A A

A

A A A

A A

A

A A

Fig. 2.14 The footprint of Process A in an eight-set, four-way set-associative cache.
Three lines fall outside the cache and result in steady-state cache misses.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 74

62 Memory-System Design Chap. 2

The model developed here is a binomial probability model in which we
toss a coin with a probability p = l!N of landing head's up, which represents a
line falling into Set 1. We flip the coin SA times, once for each line in the
footprint, and count the number of heads. The probability distribution of
heads tells us the probability distribution of lines to Set 1. In an infinite
cache, the distribution is given by the formula

Pr [ilines of Process A in a set]= (~A) p;(l - p)5r; (2.1)

If the cache is finite, with only K-way set associativity, then Eq. (2.1)
holds for i < K, and the probability of having K entries in a set is obtained by
summing the probabilities in the tail of the binomial distribution. Thus we
have,

Pr [i lines of Process A in a set]== (~A) pi(l - p)5r; for i < K
(2.2)

SA (s) . .
== i~K / p'(l - p)sA _,for i = K

This is the probability distribution that we use in the remainder of the
derivation.

Process Bis governed by a similar probability distribution, except that its
footprint size is S 8 • Hence, the distribution for lines of Process B is given by

Pr [i lines of Process B in a set]= ;~K (St) p;(l - p)58 -; for i == K (2.3)

and an equation corresponding to Eq. (2.1) holds for i < K.
Now we can estimate the cache reload transient. Figure 2.15 shows two

possible states of the cache with both footprints resident. Figure 2.lS(a)
shows the cache in the state that exists when Process A runs first, then Process
B, and we are about to reload Process A. The entries within a set (shown as a
row in the figure) are ordered so that the most-recently used items appear on
the left, and the least-recently used items appear on the right. All B's in this
cache are to the left of all A's because Process B's references are more recent
than Process A's.

Figure 2.lS(bJ shows the same cache in a state in which Process B runs
first, then Process A, and we are about to reload Process B. In Fig. 2.lS(a) the
A's that appear in Columns 0-3 are lines that do not have to be reloaded when
A is restarted. The A's in the other columns represent lines that are reloaded
during the reload transient, and the number of such A's is the size of the
transient. In Fig. 2.lS(b), the reload transient for Process B is equal to the
number of B's that appear outside of Columns 0-3.

The binomial probability model makes the computation of the size of the
transient quite straightforward. Let us focus attention on Set 1, since all sets

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 75

Sec. 2.2

Set O

Set 1

Set 2

Set 3

Set4

Set 5

Set6

Set 7

Set O

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set?

Cache Memory

Set Associativity
0 1 2 3

B B A A A

B B B A A

B A A A A

B B B B A

B A A A A

B B B A

B B A A A

B B B B B

(a)
Set Associativity

0 1 2 3

A A A B B
A A A A B
A A A A A

A A B B B
A A A A A

A B B B
A A A B B
A A B B B

(b)

A A

A

A

A A

B

B B
B

B
A B

B

Fig. 2.15 The footprints of two processes that compete for the cache:

63

(a) An eight-set, four-way set-associative cache in a state obtained by running Process
A, then Process B (the A's to the right of Column 3 are the lines that form the reload
transient);
(b) The same cache in a state obtained by running Process B, then Process A.

are assumed to behave the same. There are three related random variables of
interest to us for this set:

• Xis the number of lines of Process A's full footprint in this set;

• Y is the number of lines from Process B's full footprint in this set; and

• Z = X + Y is the total number of lines in this set.

If Z does not exceed K, then Set 1 contributes nothing to the reload
transient. The probability of this event is the probability

Pr [Zs; K] = ;~o (Pr[X = i] ~~Pr [Y = j]) (2.4)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 76

64 Memory-System Design Chap. 2

If X and Y are binomially distributed, both with probability p = l!N, then
Z is also binomially distributed. That is, Eq. (2.4) is the probability of having
Kor fewer heads among SA + S8 coin flips. Hence, Eq. (2.4) is the area under
the tail of a binomial density. For values of p near 0.5, Eq. (2.4) is closely
approximated by a normal distribution. For the values of p of interest to us,
however, Eq. (2.4) is only crudely approximated by a normal distribution,
although the general shape of the curve is the same.

The interesting situation occurs when Z exceeds K. Let W be the number
of lines of Process A that are overwritten by Bin Fig. 2.15(a). Then the proba­
bility that exactly i lines of Process A are overwritten is given by

K

Pr [W = i] = L Pr [X = j]Pr [Y = K + i - j] for 1 s; is; K (2.5)
j= i

Each term in the summation of Eq. (2.5) accounts for a case in which
precisely i lines of Process B fall on i lines of Process A in a K -way cache. Note
that the first and last terms of the summation involve summations from Eqs.
(2.2) and (2.3).

To compute the cache-reload transient from Eq. (2.5), we note that the
transient to reload Process A is SA minus the number of lines of Process A left
in the cache when A resumes. This number is given by

Cache-reload Transient= SA - N(E [X] - E [W]) (2.6)

The term in parentheses is the expected number of lines from Process A
remaining in each set of the cache. The term is equal to the number of lines in
the full footprint reduced by the number of lines overlaid by Process B.

Figure 2.16 shows an example of the cache-reload transient for caches of
various sizes and structures. This figure is based on actual data, and the
curves produced by the model have been confirmed in practice up to the
ability to determine which misses are part of the reload transient and which
are not.

The shape of the curve is rather interesting because it is similar to the
appearance of the area under the tail of a normal density function. We would
obtain that curve exactly if the binomial parameter p = l!N were not so small,
and if the only lines in Fig. 2.15(a) that lie outside the first K columns be­
longed to Process A.

Note that, for a fixed cache size, the curve becomes steeper as set associ­
ativity increases. There is a threshold phenomenon displayed here. If the
cache is sufficiently large to hold Process A and B concurrently, the reload
transient is very small. If the cache cannot hold both processes comfortably,
they conflict with each other, and for small enough caches, the reload tran­
sient becomes the entire footprint.

This particular model has been successfully used to select a cache size for
a computer system in which an interrupt-driven process had to remain cache .

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 77

Sec. 2.2 Cache Memory

1.9,...."""~"""~~~~~~~~~~~~~~~~~~~--,

1.8
1.7
1.6
1.5
1.4
1.3

~ 1.2
.~~ 1.1
~ 1ij 1.0
o en ... 5 0.9
i-r=. 0.8
~ ~ 0.7
z 0.6

0.5
0.4
0.3
0.2
0.1
oL_~~~~_j_~~,=:::::,...:::::r::=--=:::::====="--~-===:j

BK 16K 24K

Cache Size NK

65

Fig. 2.16 The cache-reload transient (Program A footprint= 1900; Program B
footprint = 7900).

resident between interrupts. The objective was to make the cache large
enough to hold both the interrupt-driver and the background process so that
both could run with the full benefit of cache.

The probabilistic model gives better answers than does a deterministic
model because the probabalistic model shows the effects of different back­
ground processes on the reload transient. With this model we can obtain
fairly accurate estimates of the reload transient under the most adverse con­
ditions likely to be encountered, as well as for typical conditions, and thereby
have a very good estimate of the real-time performance of the interrupt­
driver.

The model is also useful for explaining cache behavior in ordinary pro­
grams. Processes A and Bin Fig. 2.15 might well be two processes within one
program that are executed alternately. Figure 2.16 shows that the benefit of a
large cache falls off fairly rapidly when the cache is big enough to hold
contending processes.

The cache-design question centers on how large to make the cache so that
contending processes do not step on each other. Since the footprint size is the
critical parameter, the distribution of footprint sizes of processes within

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 78

Sec. 2.2 Cache Memory 65

1.9
1.8—
1.7—
1.6~
1.5r
1.4—

m :3—uz .2-

$351.1—

3% 1.0—
E§ 0.9—.o,_ 0.8
§V0.7[
2 0.6—

0.5—
0.4—
0.3—
0.2l-
0.1—

o
8K 1 6 24

Cache Size NK

Fig. 2.16 The cache—reload transient (Program A footprint:1900; Program B
footprint = 7900).

resident between interrupts. The objective was to make the cache large
enough to hold both the interrupt-driver and the background process so that
both could run with the full benefit of cache.

The probabilistic model gives better answers than does a deterministic
model because the probabalistic model shows the effects of different back-
ground processes on the reload transient. With this model we can obtain
fairly accurate estimates of the reload transient under the most adverse con-
ditions likely to be encountered, as well as for typical conditions, and thereby
have a very good estimate of the real-time performance of the interrupt-
driver.

The model is also useful for explaining cache behavior in ordinary pro-
grams. Processes A and B in Fig. 2.15 might well be two processes within one
program that are executed alternately. Figure 2.16 shows that the benefit of a
large cache falls off fairly rapidly when the cache is big enough to hold
contending processes.

The cache-design question centers on how large to make the cache so that
contending processes do not step on each other. Since the footprint size is the
critical parameter, the distribution of footprint sizes of processes within

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 78

66 Memory-System Design Chap. 2

programs gives valuable information regarding how large to make caches.
The architect should measure footprints for a variety of subroutines, inner
loops, and other identifiable processes, especially processes that are invoked
frequently.

We also need to know the cumulative sum of the footprint sizes of pro­
cesses invoked between successive runs of a given process. With such informa­
tion the architect can develop a model for cache transients that gives an
estimate of total performance as a function of cache size. This can be used for
gross estimates before detailed estimates are produced from simulation ex­
periments on long traces.

2.2.6 Writing to the Cache

The discussion up to this point has not mentioned any special actions to
take for WRITE operations, whether they hit or miss in the cache. Handling
the WRITE operations is somewhat tricky because of the interaction of the
cache with the input/output system. Figure 2.17 shows typical organizations
of processor, cache, and input/output processor.

PROCESSOR

PROCESSOR

CACHE
MEMORY

1/0
PROCESSOR

(a)

CACHE
MEMORY

(b)

CENTRAL
MEMORY

--- CENTRAL
MEMORY

1/0
PROCESSOR

Fig. 2.17 Two possible ways of organizing a cache memory with respect to an 110
system:
(a) The cache multiplexes requests from the 110 processor and central processor; and
(b) The 110 processor has a direct path to memory. This scheme requires interlocks
between the cache and the 110 system.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 79

66 Memory-System Design Chap. 2

programs gives valuable information regarding how large to make caches.
The architect should measure footprints for a variety of subroutines, inner
loops, and other identifiable processes, especially processes that are invoked
frequently.

We also need to know the cumulative sum of the footprint sizes of pro-
cesses invoked between successive runs of a given process. With such informa-
tion the architect can develop a model for cache transients that gives an
estimate of total performance as a function of cache size. This can be used for
gross estimates before detailed estimates are produced from simulation ex-
periments on long traces.

2.2.6 Writing to the Cache

The discussion up to this point has not mentioned any special actions to
take for WRITE operations, whether they hit or miss in the cache. Handling
the WRITE operations is somewhat tricky because of the interaction of the
cache with the input/output system, Figure 2.17 shows typical organizations
of processor, cache, and input/output processor.

CACHE

MEMORY
CENTRAL
MEMORY

PROCESSOR

UO
PROCESSOR

CACHE
MEMORY

CENTRAL
MEMORY

PROCESSOR

IKJ
PROCESSOR

(b)

Fig. 2.17 Two possible ways of organizing a cache memory with respect to an I/O
system:

(a) The cache multiplexes requests from the 1/0 processor and central processor; and
(b) The [/0 processor has a direct path to memory. This scheme requires interlocks
between the cache and the I/O system.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 79

Sec. 2.2 Cache Memory 67

Figure 2.l 7(a) shows an organization in which all references, whether
from the input/output processor or the central processor, go through the
cache. This scheme is seriously flawed because there is too much activity in
the cache. The two ports to the cache require interlocks and arbitration,
which tend to affect performance adversely.

The scheme shown .in Fig. 2.17(b) is definitely preferable to that of Fig.
2.17(a) because the central processor and the input/output processor do not
conflict with each other on the majority of the accesses. The central processor
operates mostly with the cache memory, and independently, the input/output
processor operates mostly with main memory.

Although the latter scheme is good from a performance view, it is not
good from the view of logical consistency unless we embellish the scheme in
some way. The problem is that each item has two places where it may be
resident-main memory or cache memory. If the item is in both places, the
two values must be identical. If ever the values are not identical, then we can
have a situation in which the processor accesses the cache to find one value
for the item, while the input/output processor accesses main memory and
discovers a totally different value. We must forbid this situation from happen­
ing, and, in so doing, some designers have opted to implement the organiza­
tion of Fig. 2.17(a), which solves the problem directly.

Figure 2.18 shows one way to approach the problem. The idea is to have
two copies of the cache directory, one read by the central processor and the
other read by the input/output processor. With two separate copies, each
processor can read the directory without interfering with the other processor.

Figure 2.18 shows the directories resident in two physically separate
regions of the computer system, but they obviously can both be resident in
the cache. The cache directory is read for every READ or WRITE operation,

PROCESSOR D---
DIRECTORY

CACHE
DIRECTORY

COPY

1/0
PROCESSOR

TO CENTRAL
MEMORY

Fig. 2.18 A system organized with a direct route to memory for the IIO processor. All
changes to the cache directory are maintained in a copy in the 110 processor. The 110
processor invalidates entries in the cache directory when the entries are updated by
an 110 operation to central memory.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 80

Sec. 2.2 Cache Memory 67

Figure 2.17(a) shows an organization in which all references, whether
from the input/output processor or the central processor, go through the
cache. This scheme is seriously flawed because there is too much activity in
the cache. The two ports to the cache require interlocks and arbitration,
which tend to affect performance adversely.

The scheme shown in Fig. 2.17(b) is definitely preferable to that of Fig.
2.17(a) because the central processor and the input/output processor do not
conflict with each other on the majority of the accesses. The central processor
operates mostly with the cache memory, and independently, the input/output
processor operates mostly with main memory.

Although the latter scheme is good from a performance view, it is not
good from the view of logical consistency unless we embellish the scheme in
some way. The problem is that each item has two places where it may be
resident—main memory or cache memory. If the item is in both places, the
two values must be identical. If ever the values are not identical, then we can
have a situation in which the processor accesses the cache to find one value
for the item, while the input/output processor accesses main memory and
discovers a totally different value. We must forbid this situation from happen~
ing, and, in so doing, some designers have opted to implement the organiza—
tion of Fig. 2.17(a), which solves the problem directly.

Figure 2.18 shows one way to approach the problem. The idea is to have
two copies of the cache directory, one read by the central processor and the
other read by the input/output processor. With two separate copies, each
processor can read the directory without interfering with the other processor.

Figure 2.18 shows the directories resident in two physically separate
regions of the computer system, but they obviously can both be resident in
the cache. The cache directory is read for every READ or WRITE operation,

TO CENTRAL
MEMORY

PROCESSOR

 [l
DIRECTORY

CACHE
 DIRECTORY

COPY

 l/O
PROCESSOR

Fig. 2.18 A system organized with a direct route to memory for the I/O processor. All
changes to the cache directory are maintained in a copy in the [/0 processor. The [/0
processor invalidates entries in the cache directory when the entries are updated by
an I/O operation to central memory.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 80

68 Memory-System Design Chap. 2

but the directory is changed only when a miss occurs. Since this happens
rather rarely, roughly every 25 to 100 memory operations, there is very little
overhead from contention between the central processor and the input/
output processor. The key idea is to make sure that the input/output processor
always reads the correct datum, and that every datum written by the input/
output processor to main memory is made available to the central processor.

Let's consider the details of operation of Fig. 2.18. WRITE operations are
tricky to handle in this structure; READ operations depend on how WRITEs
are implemented. If the input/output processor writes an item to main
memory, it must first check to see if the item is also in the cache. If so, the
input/output processor should invalidate the cache entry to be sure that the
central processor will access main memory when that item is next requested.
Otherwise, the central processor might discover an out-of-date value for the
item if the processor happens to find the item in the cache. Thus the input/
output processor invalidates the cache entry for each cache hit it observes
while writing new data in main memory.

Another possible strategy is to rewrite the new data to the cache instead
of invalidating the data. For most systems, however, the probability of that
update leading to a cache hit for the processor is rather low and does not
justify the extra traffic to the cache.

The central processor actually has two different ways of handling WRITE
operations, both of which have been implemented in commercial machines.
One method is called write-through, in which every WRITE operation to the
cache is accompanied by a write of the same data to main memory. If this is
implemented, then the input/output processor need not consult the cache
directory when it reads memory, since the state of main memory is an accu­
rate reflection of the state of the cache as updated by the central processor.
Although this scheme simplifies the accesses for the input/output processor, it
does result in fairly high traffic between central processor and memory, and
the high traffic tends to degrade input/output performance.

A different scheme is sometimes called write-back or write-in cache. In this
scheme the central processor updates the cache during a write, but the actual
updating of memory is deferred until the line that has been changed is dis­
carded from the cache. At that point the changed data are written back to
main memory.

Because the input/output processor must be informed of WRITEs to the
cache, just in case an input/output operation has to move such data from the
computer system to an external device, the input/output processor must con­
sult a cache-directory copy when it reads an i tern from main memory. If there
is a hit, the input/output processor requests the item from the cache. Note
that it is not necessary to update the cache directory read by the input/output
processor on every WRITE by the central processor; it is sufficient to change
this directory only when the main cache directory changes, which occurs on
every miss, not on every WRITE.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 81

Sec. 2.3 Virtual Memory 69

Cache design is considered again later in this text when we discuss cache
design for multiprocessor systems. The important principles of cache design
are:

• Cache memories retain needed information physically close to the central
processor where the information is quickly accessible. As a general rule
for high-performance systems, the data most frequently accessed should
be physically close to where it is used.

• The traffic density between the central processor and main memory is
anywhere from ten to 30 times lower than the traffic density between
central processor and cache. An important goal in high-performance sys­
tems is to keep traffic density low on long interconnections and on shared
interconnections.

• The cache mechanism works only because programs exhibit particular
behavior that can be exploited by the cache. If programs behaved differ­
ently, caches as we know them would fail badly. Programs are not forced
to work the way they do; they just happen to do so. Other facets of
programs might be exploitable to attain high performance, especially if
processors are designed for particular applications.

• The cache mechanism adapts to execution streams by learning what
items have been used and favoring recently used items over items that
have not been used recently. It is possible to incorporate other kinds of
hardware into a system that help the system adapt to observed behavior
in an execution stream. The question is open as to where and what kind of
hardware to use, and whether or not the cost of the extra hardware is
justified by the performance gained.

2.3 Virtual Memory

The designers of the Atlas computer gambled heavily on program character­
istics that tend to keep the active pages in high-speed memory. The cache
memories described in the previous section are successful because address
references show strong sequential locality, and cache management easily
exploits such characteristics.

Virtual-memory systems, as they exist today, fulfill a role similar to cache
memories, except that virtual-memory systems manage a different portion of
the memory hierarchy. Cache-management algorithms attempt to make opti­
mum use of a high-speed memory for which main memory serves as a backup
buffer. Active items tend to move from main memory to cache, and inactive
items tend to migrate back to main memory.

Virtual-memory systems attempt to make optimum use of main memory,
while using an auxiliary memory, usually a rotating magnetic disk memory,
for backup. Therefore, to the first order of approximation, the high-speed

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 82

70 Memory-System Design Chap.2

buffer memory of a cache system corresponds to main memory of a virtual­
memory system, and the main memory of a cache system corresponds to an
auxiliary memory of a virtual-memory system. The principles that govern the
behavior of cache and virtual-memory systems are largely the same. Namely,

• Keep active items in the memory that has the higher speed;

• As items become inactive, migrate them back to the lower-speed memory;
and

• If the management algorithms are successful, the performance will tend
to be close to the performance of the higher-speed memory, and the cost
will tend to be close to the cost per bit of the lower-speed memory.

We have learned some implementation techniques for cache memories in
the previous section, so one might believe that those implementation
techniques carry over to virtual-memory systems. Unfortunately, they do not
carry over directly because the details of costs and timing are dramatically
different when you move from cache memories to virtual memories.

Effective designs are driven by details of performance and costs. Because
cache and virtual memory are dramatically different in such details,
implementations of the two memory-management schemes may be quite
different. In this section we examine a very simple virtual-memory system to
identify the design parameters. Then we look more closely at available
implementation techniques to satisfy the needs of the design.

2.3.1 Virtual-Memory Structure

A simplified view of virtual memory is illustrated in Fig. 2.19. In this figure
the address produced by the processor, which is called a virtual address, is
mapped by hardware to a physical location in central memory if the item is
located in main memory. If not, the result is a page fault that moves the page
containing the item being moved to main memory. The size of the virtual
address-space that contains the addresses produced by the processor need not
bear any relation to the size of the physical address-space that contains the
addresses in central memory produced by the mapper shown in the figure.

We tend to view virtual memory as the Atlas designers originally viewed
it. That is, virtual memory is much larger than physical memory, and the
objective of the virtual-memory system is to produce a large memory with
high performance and low cost per byte. But the mapping scheme has been
used successfully in situations in which virtual memory is much smaller than
physical memory, although such uses are becoming rarer. The applications in
question arose because of technological changes that led to large, central
memories whose costs were dramatically lower than the costs of prior gener­
ations.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 83

Sec. 2.3

From Processor

Virtual Memory

Virtual Address

ADDRESS
MAPPER

PAGE FAULT
(if page is not present)

Physical Address

To Memory

Fig. 2.19 The structure of a virtual-memory mapper.

71

Some computer families had been designed with relatively small address
spaces, which cannot be changed because of compatibility requirements.
Designers can create a machine whose physical memory is many times larger
than the addressable memory available in the family, and then use virtual­
memory mapping to permit software to run unchanged in the large physical
memory. To make effective use of the large physical memory, the systems run
several independent applications concurrently in a time-shared mode of
operation frequently called multiprogramming.

In the early 1970s, for example, a limitation of 16 bits for addresses was
natural, and, therefore, the typical virtual-memory space in minicomputers
was 64K. When a memory of size lM became available, then approximately
16 independent programs, each of maximum size 64K, could be run concur­
rently in the one physical memory of size lM. Moreover, if the memory
manager were successful in retaining the active pages in main memory and
returning inactive pages to auxiliary memory, perhaps the main memory
used per program could drop from 64K to something less, such as 32K. Then
the number of independent programs that can run concurrently increases to
about 32 programs, which makes the system reasonably cost-effective per
user program.

The use of virtual memory in this example remains attractive only as long
as it is necessary to run the software developed for the 16-bit address space.
New programs should be written to take full advantage of the larger address
space when the extra memory can be put to good use.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 84

Sec. 2.3 Virtual Memory 71

From Processor

 Virtual Address

 ADDRESS
MAPPER PAGE FAULT

(if page is not present)

 Physical Address

 To Memory

Fig. 2.19 The structure of a virtual—memory mapper.

Some computer families had been designed with relatively small address
spaces, which cannot be changed because of compatibility requirements.
Designers can create a machine whose physical memory is many times larger
than the addressable memory available in the family, and then use virtual—
memory mapping to permit software to run unchanged in the large physical
memory. To make effective use of the large physical memory, the systems run
several independent applications concurrently in a time-shared mode of
operation frequently called multiprogramming.

In the early 19705, for example, a limitation of 16 bits for addresses was
natural, and, therefore, the typical virtual-memory space in minicomputers
was 64K. When a memory of size 1M became available, then approximately
16 independent programs, each of maximum size 64K, could be run concur-
rently in the one physical memory of size 1M. Moreover, if the memory
manager were successful in retaining the active pages in main memory and
returning inactive pages to auxiliary memory, perhaps the main memory
used per program could drop from 64K to something less, such as 32K. Then
the number of independent programs that can run concurrently increases to
about 32 programs, which makes the system reasonably cost-effective per
user program.

The use of virtual memory in this example remains attractive only as long
as it is necessary to run the software developed for the 16-bit address space.
New programs should be written to take full advantage of the larger address
space when the extra memory can be put to good use.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 84

72 Memory-System Design Chap.2

In the mid 1980s, the trend has moved heavily toward virtual addresses
with 30 or more bits, covering more than a gigabyte of addressable items.
Given this large virtual address, it is clear that years will pass before de­
signers build machines whose physical address exceeds the virtual address.
But this will eventually occur, possibly as soon as the mid-1990s. Therefore,
in 32-bit systems designed for the present and immediate future, the
virtual-memory system maps a large address space into a smaller one. These
same systems are likely to be redesigned by the turn of the century to map the
virtual space into larger physical spaces.

A significant difference between virtual-memory and cache-memory sys­
tems lies in the relative penalty of a page fault and a cache miss. In present
technology, a cache miss is four to 20 times as costly as a cache hit, but a page
fault is 1000 to 10,000 times as costly as a page hit. Rotating memory has a
latency time fixed by mechanical limitations.

Although electronic random-access memory has had speed improve­
ments on the order of 1000 to one over the last two decades, the latency of
mechanical memories has not improved by more than a factor of 10. More­
over, the mechanical limitations inherent in the design of rotating memories
suggest that disks will not spin 1000 times faster, nor are they likely to have
1000 heads, which exhaust the two obvious ways to reduce latency.

For the near future, we are more likely to see the relative cost of a page
fault increase as semiconductor memories continue to improve perfor­
mance, while no significant improvements reduce disk latency. Over a longer
period, we may see a new memory technology filling the gap between
semiconductors and rotating mechanical memories. Such a technology
would have a profound impact on virtual-memory implementation as we
know it today.

The huge cost of page faults results in very different strategies for cache
and virtual-memory management. During a cache miss, the processor be­
comes idle while waiting for data to arrive from main memory. Some activity
pertaining to table maintenance may take place during the miss, but there is
insufficient time availaMe for other processes to do useful work on the pro­
cessor. Hence, a cache miss is not accompanied by a change in task for the
duration of the cache miss.

In a virtual-memory system, relatively large amounts of unused time are
available while awaiting a page transfer from auxiliary memory. This time is
so long that it is reasonable to put the processor to work on other tasks during
the latency period attributed to a page fault. In typical systems, the latency
experienced is from one to 100 ms, and a 1-MIPS processor can execute
somewhere between 1000 and 100,000 instructions of other programs during
this period.

The earliest commercial implementations of virtual memory attempted
to improve efficiency by turning the processor over to other pending tasks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 85

Sec. 2.3 Virtual Memory 73

The processor costs made the processor cycles a precious resource that should
be conserved, if possible. Consequently, virtual memory was implemented in
several different multiprogramming systems and in remote-access time­
sharing systems. The idea was to create queues of pending tasks by amalgam­
ating many users on a single system. When one user was delayed by a page
fault, the processor could be dispatched with a second user's task in the
interim.

The sharing of the processor is a natural solution when processor cycles
are expensive. But sharing has its own negative factors. As processor utiliza­
tion goes up and approaches 100 percent, each user sees a longer response
time because the time to process a job depends on how long the job takes
when running without contention and how long it spends in queues waiting
for other users to terminate. Increased efficiency in the use of a processor
generally is accompanied by increased waiting·time for each job because of
contention with other jobs for access to the processor.

As the cost per machine cycle has become very small, a new alternative
has become possible. Instead of turning over control to a different job while
waiting for a page from auxiliary memory, it is reasonable in some circum­
stances to retain the processor and simply wait for the new page to arrive. In
such cases, the performance gain due to lack of contention for the processor is
more valuable than the loss due to cycles lost by the processor during page
faults.

There is another major negative impact on system design if a virtual­
memory manager forces an application to relinquish the processor on a page
fault. The policy interferes greatly with the ability to evaluate designs by
using address traces. Each page fault is accompanied by the execution of 1000
to 100,000 new instructions that would not be executed if the processor were
not reassigned during a page fault. If a simulation run is used to evaluate the
effects of a new control strategy, then what should be simulated during page
faults?

In essence, the attempt to evaluate new policies inevitably increases or
decreases the page faults observed. But there is no convenient mechanism for
modifying a trace dynamically to obtain an accurate description of the exe­
cution that actually takes place during page faults.

We have no difficulty evaluating cache designs from trace tapes, but we
have a great difficulty evaluating virtual-memory designs the same way.
Moreover, we can simulate a few seconds of processor time to obtain thou­
sands of cache misses, but the same simulation produces only tens or hun­
dreds of page faults, so trace data are subject to large statistical errors.

Consequently, virtual-memory evaluation is best performed in real time
with hardware or software measurements of activity. To obtain repeatability
and to evaluate different strategies on a common workload, the architect
must rely at least in part on a synthetic workload.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 86

74 Memory-System Design Chap.2

There are three major design considerations described m the next
sections:

1. The mapping mechanism;

2. Partitioning for locality; and

3. The replacement strategy.

As these topics are presented, bear in mind how different the approaches
are from approaches that address similar functions for cache memories. The
differences are all attributable to the difference in the values of performance
and cost figures. This clearly shows the impact of specific values of design
parameters on architectural decisions and suggests how major technological
advances that alter these values will affect designs.

2.3.2 Virtual-Memory Mapping

The mapping device shown in Fig. 2.19 is grossly simplified for purposes of
exposition. Let us consider the requirements for a mapper and then discover
what additional complexity is required to make an effective mapper.

The basic function is to map a large address space into a much smaller
one, so that we may view the virtual-memory mapper as performing the
function shown in Fig. 2.20, where some large field of bits in a virtual address

VIRTUAL ADDRESS Address
.-------------..----~ within Page

Page Number Displacement

PAGE MAP

Base Address of Page

PAGE (in Memory)

Fig. 2.20 A typical virtual-address translation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 87

Sec. 2.3 Virtual Memory 75

is replaced by a smaller field of bits to create a physical address. In Fig. 2.20,
the displacement field describes the offset from the base of a page. The
displacement is not changed by the mapper because the offset within a page
is the same for a virtual address as it is for a physical address. We need to
know only where the page begins in physical memory, and by adding the
offset to this address, we can find the physical address of any item. Hence, the
mapper uses the virtual-address bits other than the offset bits as it transforms
addresses.

What makes the problem challenging is the very large number of pages in
the virtual address. Consider the difference in the mapping problem for a
virtual memory with 64K addresses (16 bits) as compared to a virtual
memory with 4G addresses (32 bits). For purposes of comparison, in both
cases we assume that the page size is 1K(10 bits).

In the smaller memory, there are only 6 bits, or 64 pages permitted in a
program of maximum size. It is perfectly reasonable to store the translation
table in a set of 64 registers and consult the translation table on each refer­
ence.

The larger memory system permits programs to grow to as large as 4M
pages. A translation table with 4M entries is far too large to place in a set of
dedicated registers, and it is costly by present standards to store in memory,
although this is a possible solution in the future.

How do you deal with such a large translation table? To reduce the
memory demands for storing the translation table, most solutions in use
today break up the one-level translation into two translations. The effect of
having two levels could be disastrous on performance because each access
then becomes three accesses, and worse yet, each of the two accesses into the
translation table could generate its own page faults before the access to the
requested page has occurred. So performance could be dramatically poorer
just because of the overhead of the mapping process.

The overhead of mapping is reduced by means of an artifice called a
translation-lookaside buffer (TLB), which is a cache for holding recently used
mappings. Figure 2.21 gives the general structure of a virtual-memory map­
per. We examine the details of the pieces in the following discussion.

In Fig. 2.21, a virtual address is broken into two fields, one for the offset
and one that identifies a virtual page. The virtual-page field is presented to
the translation-lookaside buffer, which checks its cache-like memory to see if
a recent translation for that page took place. If so, the translation-lookaside
buffer returns the base address of the page, and the mapping is completed.
Just from our knowledge of cache behavior, we would expect almost all
references to be satisfied by the lookaside buffer.

If an address misses in the lookaside buffer, the two-level mapping is
performed. We describe the details later in this section. A miss in the two­
level mapping is a page fault, and the virtual-memory manager must inter-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 88

76 Memory-System Design

VIRTUAL ADDRESS Address
.-----------.-------., within Page

17

Page Number Displacement

Fast TRANSLATION-Path
i----.i LOOKASIDE

BUFFER

Miss in TLB

Slow
Path

PAGE MAP

Page o
Base Address Page 1

of Page 1 >----~-----

Item from Page 1,
Offset 17

Page N-1

..__ ________ _.Ii••------'
DATA REGISTER MAIN MEMORY

Chap.2

Fig. 2.21 A virtual-address translation with a translation-lookaside buffer (TLB) for
fast operation.

vene to correct it. Otherwise, the mapping produces the base address of a
physical page that can be added to the offset to obtain the full physical
address.

In the last operation, if we force pages to begin on addresses that are
multiples of the page size, then we can save an addition operation in the
mapping transformation. In this case, since the low-order bits of the full base
address are known to be 0, the page offset can be concatenated to a shortened
base address rather than be added to the full base address.

One possible two-level mapping is shown in Fig. 2.22(a). The idea is to
break up the large field into two smaller fields. Common terminology is to
designate the high-order field as a segment number and the next field as a page
number, although the term segment is used to denote other concepts related to
virtual memory.

In this example, the 22 bits remaining after stripping off the 10-bit offset
are broken into an 11-bit segment number and 11-bit page number. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 89

76 Memory—System Design Chap. 2

VIFITUAL ADDRESS Addresswnthm Page

Page Number

Fast
Path

Displacement

 TRANSLATION—
LOOKASIDE
BUFFER

PAGE MAP

Base Address

of Page 1 : = 17

Oflset 17

DATA REGISTER MA'N MEMORY

Fig. 2.21 A virtual—address translation with a translation—lookaside buffer (TLB) for
fast operation.

vene to correct it. Otherwise, the mapping produces the base address of a
physical page that can be added to the offset to obtain the full physical
address.

In the last operation, if we force pages to begin on addresses that are
multiples of the page size, then we can save an addition operation in the
mapping transformation. In this case, since the low-order bits of the full base
address are known to be 0, the page offset can be concatenated to a shortened
base address rather than be added to the full base address.

One possible two-level mapping is shown in Fig. 2.22(a). The idea is to
break up the large field into two smaller fields. Common terminology is to
designate the high—order field as a segment number and the next field as a page
number, although the term segment is used to denote other concepts related to
virtual memory.

In this example, the 22 bits remaining after stripping off the 10-bit offset
are broken into an 11—bit segment number and 11—bit page number. The

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 89

Sec. 2.3 Virtual Memory 77

segment number is used in the first level of the transformation as the index to
a segment table. From the segment table we obtain the base address of a page
table. The page number is combined with this base address to consult a
page-table entry that has the base address of the page itself.

The effect of using two levels is to reduce the page-table number from 22
bits to two indices, each of which is no more than 11 bits, so that no single
table needs to be larger than 2048 entries. What has happened in the two-level
mapping is that a very large page table has been broken into many pieces,
each of which is no larger than 2048 entries. The smaller tables need not
reside in main memory if .they are not in active use. Hence, we need have in
memory only the portions of the page table that are active.

The penalty for the two-level mapping is the second level of lookup.
Moreover, both levels can have page faults during a lookup, although the
segment table rarely faults because it is accessed relatively frequently. If we
had a choice, we would prefer not to pay the penalty for the second access, but
the enormous size of the resulting page table makes the alternative one-level
mapping impractical under most cost measures. The scheme becomes prac­
tical only when the cost of tables of size 4M can be ignored.

There is a problem with the scheme in Fig. 2.22(a), resolved by the scheme
shown in Fig. 2.22(b). The problem pertains to shared pages that are accessed
by independent programs. Each program in.a shared page produces virtual
addresses that must be mapped to physical addresses. The virtual addresses
produced by shared code may conflict with the virtual addresses selected by
users or by other shared programs that are linked to run as part of the same
job. It is necessary to ensure that shared programs generate virtual addresses
that do not conflict with each other or with user addresses.

The scheme shown in Fig. 2.22(b) models the address-transformation
mechanism used on the VAX architecture. In this scheme, virtual memory is
divided into two portions, each with 2 G-bytes (31-bit addresses). The leading
2 bits of a 32-bit address uniquely identifies the virtual address as belonging
to one of two user regions or to one of two system regions. Shared programs
are assumed to reside in one of the system regions. The leading two bits of a
virtual address then determine which of four possible tables are to be used
during the address mapping.

The VAX implementation treats the entire 21-bit field of an address with
the leading 2 bits and 9-bit offset removed as a page number to be used in a
transformation. If the page number resides in the user's virtual memory, the
21-bit field is added to the base address ofa user page table to create a virtual
address in system space. No memory access is required for this translation
because the page-table address resides in a register in the processor.

The entry in the user page table is in virtual memory, however, and it has
to be translated to a physical address. This takes one level of lookup and is
done by extracting a 21-bit page number from the page-table entry, and by

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 90

78 Memory-System Design

VIRTUAL ADDRESS

11 bits 11 bits 10 bits

Segment Number Page Number Displacement

Base of Segment Table

~I . I
2047 '-------.. SEGMENT TABLE

0

2047

Base Address
of Page Table

'-------.. PAGE TABLE

Base+ O
Base + 1

Base Address
of Page

f-------------1

Base +1023 j ._ ______ ..
PAGE (in Memory)

Fig. 2.22 Two-level mappings:
(a) A typk~l two-level mapping; and

Chap. 2

Address
within Page

using this as an offset into a segment table in physical memory. The address
obtained by this mapping is the physical address of a user page table.

The 9-bit offset from the virtual address of the page table is used to locate
the physical address of the user page. This requires a second level of lookup,
as shown in the figure. The result of the second lookup is a physical base
address of a page, which together with the offset from the original virtual
address, forms a physical address for the item accessed.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 91

78 Memory-System Design Chap. 2

VIRTUAL ADDRESS Address

11 bits within Page
Page Number

 Segment Number Displacement

Base of Segment Table

SEGMENT TABLE

Base Address
01 Page Table

PAGE TABLE

Base Address
of Page

Base + 0
Base + 1

PAGE (in Memory)

Fig. 2.22 Two~level mappings:
(a) A typical two~leve1 mapping; and

using this as an offset into a segment table in physical memory. The address
obtained by this mapping is the physical address of a user page table.

The 9—bit offset from the virtual address of the page table is used to locate
the physical address of the user page. This requires a second level of lockup,
as shown in the figure. The result of the second lookup is a physical base
address of a page, which together with the offset from the original virtual
address, forms a physical address for the item accessed.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 91

Sec. 2.3

2
bits

Space
Tag

Virtual Memory

VIRTUAL ADDRESS (User Space)

21 bits 9 bits

Page Number Offset

Base Address of User Page Table

----•1+
Virtual Address
of Page-Table Entry
(in System Space)

21 bits

Page Number
9-bit Offset

r- Segment Table Base
~ (Physical Address)

SEGMENT TABLE

Physical
Base Address
of Page Table

I

I
...._ ,~~~~~~~~

PAGE TABLE

Base Address

Address
within Page

of Page 1---~~~~~~--t1

i
MAIN MEMORY

Fig. 2.22 (Continued)
(b) A two-level mapping used in the VAX architecture.

79

References to shared pages are handled by placing the shared pages in
system space, not in user space. System-space addresses are transformed to
physical addresses by just a single level of mapping, as shown in the figure,
and only the segment table is used for this mapping.

Hence the page table used to access shared pages is the segment table,
which is shared among all processes, whereas the page table used to access
unshared user-pages resides in user memory and is private to each process. In

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 92

Sec. 2.3 Virtual Memory 79

VIRTUAL ADDRESS (User Space) Address
within Page

 21 bits

Page Number Offset

Base Address of User Page Table

Virtual Address
01 Page~Table Entry
(in System Space)

9—bit Offset Page Number

Segment Table Base
(Physical Address)

SEGMENT TABLE

Physical
Base Address
of Page Table

Base Address
or Page a 5

MAIN MEMORY

Fig. 2.22 (Continued)
(b) A two~level mapping used in the VAX architecture.

References to shared pages are handled by placing the shared pages in
system space, not in user space. System—space addresses are transformed to
physical addresses by just a single level of mapping, as shown in the figure,
and only the segment table is used for this mapping.

Hence the page table used to access shared pages is the segment table,
which is shared among all processes, whereas the page table used to access
unshared user-pages resides in user memory and is private to each process. In

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 92

80 Memory-System Design Chap.2

this way, user addresses are distinct from addresses produced by shared
programs, and shared programs can produce addresses without contention
provided that they occupy disjoint regions of the system virtual memory.

Obviously, the system virtual memory must be large enough to accommo­
date all shared pages in distinct areas, which is possible only for large virtual
memories. The 2 G-bytes available for the VAX appears to be sufficient for the
present, but the trend toward larger programs and greater use of memory
suggests that this number should be reexamined in future designs to deter­
mine if it should be increased.

Let us return momentarily to the translation-lookaside buffer that ap­
pears in Fig. 2.21. We described it as functionally similar to a cache memory,
and indeed its design is very close to that of a cache. Clark and Erner [1985]
describe the analysis of a translation-lookaside buffer for the VAX-11/780
architecture, and their paper is a model of the classic design and analysis
techniques for cache. They use a trace-driven approach to simulate a variety
of structures varying from 64 to 512 sets and with both one-way and two-way
set associativity. Some aspects of their paper are different from cache studies
and are worth commenting on here.

The Clark-Erner data suggest that misses occur in the translation­
lookaside buffer at the rate of between 0.5 to 3.0 per 100 instructions. This is
not the same as the miss and hit ratios described earlier because the ratios for
cache references are developed on a per-reference basis, whereas the Clark­
Emer data are on a per-instruction basis. Since one instruction produces
several references, including instruction fetch, indirect address fetch, oper­
and fetch, and operand store, the equivalent miss ratio for translation look­
aside buffers is probably a factor of 3 or 4 smaller than the misses per 100
instructions. So, indeed, misses in the translation-lookaside buffer are rather
rare.

The penalty for a miss in the buffer is also quite different from the penalty
for a cache miss. The cache miss is followed by an access to main memory,
which is perhaps ten times slower than is the cache. But the cost of a buffer
miss is an access to the cache, which is somewhat faster than an access to
main memory.

Clark and Erner report a surprisingly small hit rate to the cache to re­
trieve items that miss in the lookaside buffer. The hit rate is only about 40
percent. Perhaps this is the case because the lookaside buffer may be very
successful in handling most references to page table entries-so successful in
fact that such references are quickly purged from cache once they are placed
there.

If eventually a miss occurs in the lookaside buffer, then the likelihood of
finding that reference in the cache apparently is very low, only 40 percent as
opposed to over 90 percent for other references. Another possible explanation
for the high miss rate is that a miss in the lookaside buffer occurs most

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 93

Sec. 2.3 Virtual Memory 81

frequently when a program changes its activity or a total change of process
takes place. But these times are precisely the same times when a cache
produces the bulk of its misses.

Another aspect of the lookaside buffer that is different from the cache is
that the translation mapping is dependent on the process running. The look­
aside buffer sees virtual addresses, not physical addresses. These addresses
are not unique, so there must be some mechanism for identifying which
virtual addresses go with which process in the lookaside buffer. This mech­
anism does not need to exist for a cache memory that stores physical ad­
dresses in its directory because physical addresses are unique.

One way to handle the problem of associating the correct mapping with
an address reference is to place a process tag in the lookaside buffer with each
entry. Then a match occurs only if the process tag in the buffer matches the
process tag of the running process.

The approach used in the VAX-111780 lookaside buffer is to flush the
lookaside buffer of entries for private (per-process) mappings when a context
switch occurs. This could be a fairly expensive process depending on the size
of the lookaside buffer, the time it takes to purge the entries, and the fre­
quency of context switches. Instead of selectively purging just the entries for
private mappings, it may be faster to purge the entire buffer, and thereby
purge the entries for shared as well as private mappings. In this case there is a
penalty paid later for reloading the shared mappings.

We do not have specific advice on which approach is better because there
is no absolute answer. Here is a case in which the designer should perform a
thorough analysis following the model of Clark and Erner to determine which
approach yields both the best cost/performance for the technology to be used
and the presumed workload for the architecture.

2.3.3 Improving Program Locality

The mapping transformations described thus far have presumed that large
programs are broken into equal-sized pages, and the pages are managed by a
virtual-memory operating system. The pages are arbitrary and need not have
any relation to the logical structure of the program. Since the page is the
atom to be used by the virtual-memory manager, a reference to any single
item on a page results in the entire page being present in main memory.

If the contents of a single page are logically related, then bringing in a
page when any item on that page is accessed makes available inexpensive
accesses to the other related items. If the items on a page are unrelated, the
page fetch may bring in unwanted items, resulting in poor use of both avail­
able memory bandwidth and resident memory.

Structuring programs so that related items are packed together on rela­
tively few pages is definitely advantageous. In essence, this postulates a new

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 94

82 Memory-System Design Chap. 2

structure in which programs and data are grouped together according to
their logical relations rather than because of arbitrary factors. Virtual­
memory systems that attempt to account for logical relationships within
programs are sometimes called segmented-memory systems, as opposed to
paged-memory systems. A segment is a collection of related programs and
data that forms a subprogram unit. Segments can invoke other segments, and
some commonly used segments can be shared among many users.

What makes segments different from pages is that segments are not fixed
in size. They can be as large or small as the programmer chooses to make
them. Because segments are not uniform in size, memory management is far
more complex than for pages of a fixed, uniform size.

Although various techniques have been developed for memory allocation
of variable-length structures, it is also possible to combine paging and
segmentation in a single virtual-memory system. The idea here is to use
segmentation to produce logical structures of program and data, and then
move portions of segments in and out of memory by breaking segments into
pages of fixed size. Techniques for paged virtual memories carry over directly
to this scheme, and no significant added difficulty for handling variable-sized
segments is imposed.

There are a few differences between segmented and paged systems, how­
ever, that should be brought to light. One difference is in the structures of a
segmented-address space and a paged-address space. A paged-address space
is a one-dimensional space in which all addresses lie in one contiguous region
in virtual memory. Given any address (except possibly the last address) in
this memory, you obtain the address of the next item by increasing the
current address by one.

A segmented memory is a two-dimensional space. Each address consists
of two fields, a segment number and an offset within the segment. All ad­
dresses within a segment lie in one contiguous area of virtual memory. How­
ever, segments are not contiguous to each other; they are distinct.

When you increment the highest possible address of a segment, you do not
obtain the address of an element in a new segment. You create a condition
that is recognized as an attempt to access an out-of-bounds address.

For example, consider a virtual memory system with 48-bit addresses, of
which 24 bits indicate an offset within a segment, and 24 bits indicate a
segment number. In this system, a program can create references to up to
16M different segments, each of which has up to 16M addressable locations. If
a program attempts to reference an item in Segment i and calculates an
address whose offset exceeds 16M, the virtual address produced will not
increment the segment portion of the address field when the offset overflows.
Hence, the reference continues to be to Segment i, except that the overflow
from the offset field is detected and produces a program exception.

Given this structure, we have an interesting problem in handling shared
memory. Suppose a segment is shared by two programs, Program A and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 95

Sec. 2.3 Virtual Memory 83

Program B. Shall we impose the restriction that both programs designate this
segment as Segment 10? Or will we permit Program A to designate the
segment as Segment 2, while Program B designates it as Segment 11? To
restrict all shared segments to unique numbers is similar in spirit to the
handling of shared segments in the VAX virtual memory, as we discussed
earlier. This method makes sense for sharing system programs that are avail­
able essentially at all times.

In a more general context, however, we may want all segments to be
sharable, or we may have a huge collection of shared segments that exceeds
the number of unique segment numbers available. So for one reason or an­
other, we want to let Program A and Program B refer to a shared segment by
their own respective indices for this segment.

One possible way to provide access to the shared data under this stipu­
lation is to provide a segment table with each process. The segment table
provides the information to translate a segment reference from Process A or
from Process B into the correct physical reference to a shared segment. Figure
2.23 shows this scheme. Note that the shared segment is Segment 1 for A but
is Segment 2 for B.

0
- -

2
3
4

SEGMENT
TABLE

SEGMENT A
(for A)

0
1

3 SHARED SEGME NT
4

SEGMENT
TABLE

SEGMENT B
(for B)

Fig. 2.23 Access to a shared segment through private segment tables.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 96

84 Memory-System Design Chap. 2

In this scheme, the virtual addresses for referring to the shared segment
depend on which segment has issued the address. Then each process has a
private segment table for accessing shared segments, as opposed to the com­
mon table used for the VAX architecture.

Moreover, the addresses produced by the shared segments have to be
mapped correctly for each context in which they operate. Thus, it may be
necessary to force a shared segment to access a variable in Process A at
Segment 10, but when running in a different context, that same access is
made to a shared variable in Process Bat Segment 15.

The segment number of a reference produced by a shared program in
general is dependent on the context in which it runs, and the ability to
produce segment numbers that depend on the context may have to be incor­
porated into the architecture. The VAX solution to sharing avoids the compli­
cation of the general solution and is satisfactory for shared system programs.

To eliminate the burden of consulting the segment table on each reference
to an external segment, designers usually incorporate a translation-lookaside
buffer or the equivalent to catch the majority of references without accessing
the segment table. As control passes from one segment to another, it is rather
important to purge the lookaside buffer so that its translation is correct for
each context.

2.3.4 Replacement Algorithms

The obvious way to manage virtual memory is to manage it in the same way
that cache is managed. In fact, Belady's work [1966] on optimal replacement
strategies (cited in our cache discussion) was done in the context of virtual­
memory systems. But, in general, virtual-memory systems are sufficiently
different from cache memories as to require dramatically different tech­
niques for management. The principal differences between virtual memory
and cache memory are:

• Page faults are very costly. There is a greater relative savings in reducing
page faults than there is in cache misses.

• While responding to a page fault, there is substantial time available for
memory-management functions that might reduce future faults.

• Virtual-memory systems may run competing programs when a program
reaches a page fault. The competing programs may interfere with
memory management and could grossly impair performance. No com­
peting programs are run during the processing of cache misses.

Early implementations of virtual-memory systems examined various
replacement policies, and soon the strengths of least-recently used replace­
ment in predicting the future were recognized. However, when LRU

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 97

Sec. 2.3 Virtual Memory 85

replacement and other similar policies were implemented in early
commercial virtual-memory systems, the systems occasionally entered pe­
riods of instability during which almost all machine cycles were devoted to
handling page traffic and essentially no useful work could be accomplished.
The problem was not the fault of the replacement policy per se, but rather a
lack of understanding of the dynamics of a virtual-memory system. Detailed
studies revealed that some critical factors had been overlooked.

One problem stemmed from trying to accomplish too much in a single
virtual-memory system. The instabilities occurred at high loads; otherwise
performance was acceptable.

Denning [1968a] termed the instability thrashing because the prime char­
acteristic was a very high traffic between main memory and auxiliary
memory of frequently used pages. A page might be brought to main memory,
used a few times, then returned to auxiliary memory, only to be recalled to
main memory.

Another related mode of instability occurred when a process lost some
critical pages from main memory, but eventually recovered those pages, only
to have lost other critical pages in the interim. Every program enters phases
during which some subset of pages is used frequently. Denning [1968b] called
this subset the working set of pages.

The working set is in essence the footprint of a program execution over a
short period of time. If a program has its entire working set in main memory,
it will have a very low page-fault rate as computation progresses. Page faults
increase dramatically when portions of the working set are not available. So
one key principle is to run programs by striving to have the full working set in
memory at the time the program is run.

A corollary of this principle recognizes that it is unrealistic tomove an
entire working set from memory to disk and back again between successive
time slots allocated for program execution in a multiprogrammed, virtual­
memory system. In fact, it is unrealistic to move any significant portion of a
working set out of main memory and back in again under the same condi­
tions.

In essence, if a program is to run effectively, its working set must be
resident and must stay resident in main memory until the program termi­
nates. This rule can be relaxed somewhat for programs that interact with
humans because some displacement of the working set can be tolerated dur­
ing the time that the human is thinking and reacting to prior output. Other­
wise, as a general rule, main memory must hold the working sets of the active
programs.

If the working sets exceed in total size the area reserved for them, then the
system is likely to become unstable. Figure 2.16 tends to confirm the need to
hold working sets in main memory. Virtual memories tend to behave like

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 98

86 Memory-System Design Chap.2

caches with large K (set-associativity) values. The figure shows a sharp drop
in the reload transient as cache size increases. This drop occurs at the point
where the cache is big enough to hold both footprints. If the cache is smaller
than this critical size, the reload transient is very large, which means that one
program completely overlays the other as they successively take control of the
processor and cache.

Therefore, to eliminate thrashing, a reasonable approach is to estimate
the size and content of working sets, and to load into main memory a col­
lection of complete working sets whose total size does not exceed the memory
available. Any additional requests for machine cycles should be deferred until
some process or processes terminate and make sufficient memory available to
hold the working set of the new process.

If this principle is to be used to manage memory, then we need some way
to calculate the working set dynamically during program execution. Denning
[1968b] provides some guidance by describing a mechanism for discovering
the working set. He defines the function W(t, w), the working set at time t for
window w. This is the set of pages referenced in the last w seconds at time t.

A memory manager based on the notion of the working set attempts to
hold in memory only those pages that belong to the working set because
references are most likely to be made to the working set and are very unlikely
to be made to pages outside the working set, except during periods when the
working set is changing because the program is moving into a new phase.
Therefore the memory manager brings in a new page when a page fault
occurs and adds the new page to the working set. The memory manager
deletes from the working set those pages that have not been referenced within
the last w seconds.

Here is one possible memory-management policy that takes advantage of
the properties of the working set.

1. When a page fault occurs, add the new page to working set.

2. From the set of pages not referenced within a window of w seconds imme­
diately prior to the page fault, select the least-recently used page, and
discard it. If all pages have been referenced within the working-set win­
dow, then discard no page, and let the working set grow.

3. If two or more pages have not been referenced within the working-set
window, then discard the two least-recently used pages.

Note that there must be some rule that diminishes the number of pages
allocated; otherwise the size of memory allocated to a process grows until no
free memory is available for references to new pages. That is the purpose of
the third rule. This set of rules is slightly different but similar in intent to the
rules proposed by Coffman and Denning [1973, p. 299].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 99

Sec. 2.3 Virtual Memory 87

It is very important that the working-set window be measured in virtual
time, counting clock ticks only while the process is executing. No clock ticks
are counted during page faults or during other periods when the given
process is inactive.

The size of the window can be determined experimentally. If it is too
large, some pages will tend to be retained too long. If the window is too small,
it may not span the times of references to the actual working set. The opti­
mum window size is just large enough to cover the working sets of all pro­
grams. It is better to err by using too large a window than too small a window
because the consequences of using the wrong window size are less severe
when the window is too large.

The working-set concept is an intuitively appealing way of handling page
replacement, but measuring the working set is somewhat difficult, even with
special hardware. One possible way to approximate the working set is to
identify which pages are accessed during the brief execution of a program in a
system that grants the processor in round-robin fashion to a collection of
programs.

We assume that each program is granted some fixed quantum of time
during which the processor executes that program. Before the quantum be­
gins, access tables are initialized to show that no page has been touched.
These tables are best kept in hardware such as a translation-lookaside buffer
or a special memory devoted to tracking page accesses. As each page is
touched, the hardware automatically sets an activity bit in the access table to
record this occurrence. At the completion of the quantum, the working set is
deemed to be the pages whose activity bits have been set, and the remaining
pages may be removed from main memory.

This form of the memory-management algorithm is quite workable if
supported by hardware that can turn off all activity bits for a process and can
turn them on selectively on access. Other solutions are possible as well, and
the architect has a great deal of freedom in trading off the cost of implementa­
tion against approximations to the working set. The working set itself is an
approximation to a perfect predictor of the future.

Chu and Opderbeck [1976] proposed an alternative approach to the
working-set approach that has the advantage of using directly measurable
variables for guiding the replacement decision. The method is called the
page-fault-frequency method. It exhibits different policies when the frequency
of page faults is above or below a fixed threshold. The reasoning behind this
method is that programs tend to operate in phases, accessing one working set
consistently while in one phase, and then moving to a new working set in the
next phase. The page faults tend to occur during a change of phase.

Our earlier discussion of the cache-reload transient examines the corre­
sponding phenomenon for cache memories. A high frequency of page faults is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 100

88 Memory-System Design Chap.2

a signal that the program is entering a new phase and that the current
working set may have to be replaced. It is clear that as new pages are touched,
they should enter the new working set. All pages in the former working set are
candidates for replacement.

One way of implementing a replacement policy based on the notion of
page-fault frequency is the following, which is similar to the method
proposed by Chu and Opderbeck.

1. Assume a threshold 0 for page-fault frequencies.

2. When a page fault occurs, estimate the page-fault frequency for the given
program. A crude estimate is ll(l1 - l0), where l 1 is the virtual time of the
present fault, and lo is the virtual time of the last fault. A better estimate is
an average taken over the last few faults.

3. If the estimated frequency exceeds 0, then assume that program has
entered a transient phase or that there is presently insufficient memory
allocated to the process to hold its full working set. Add the newly refer­
enced page to the working set and increase the amount of memory allo­
cated to the program by one page.

4. If the estimated frequency does not exceed 0, then assume that the pro­
gram is in a stable pattern of memory references. Add the new page to the
working set and remove some page not referenced since the last page
fault, preferably the least-recently used page.

5. If the estimated frequency does not exceed 0 over a period of time, then
assume that the program has entered a stable phase and that it may have
some dead pages within its present allocation. If there are pages that are
currently allocated to the program and that have not been referenced
recently, then decrease the number of pages allocated to the program and
discard a corresponding number of unreferenced pages. We presume that
the pages are discarded in the order of least-recently used, if this is
possible.

The role of the last rule is to provide a means for decreasing the allocation
of pages to a process. Without this rule, the number of pages allocated would
grow until no memory remained for allocation to new pages. Another way to
implement this rule is to establish a different lower threshold on page-fault
frequency, below which a process has pages removed from its working set.

One can easily measure the frequency of page faults by means of a process
timer that is normally present in an architecture. The memory manager takes
note of the length of execution time between faults each time a page fault
occurs. This is easy for the memory manager to do because it is invoked when
a fault occurs and has access to the process timer.

If recent history for a process shows that faults are occurring at a rate that
exceeds a system threshold, the memory manager increases the allocation of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 101

Sec. 2.3 Virtual Memory 89

pages for the program, using a decision criterion similar to the working-set
criterion. If the fault rate is below the threshold, the memory manager either
performs a one-for-one replacement or reduces the allocation by discarding
one or more pages that have not been referenced recently, in addition to
performing one-for-one replacement. The latter strategy may occasionally
produce costly page faults if too much is discarded, but it may be useful to
invoke when the pages used to hold active working sets occupy nearly all
available memory. Also, by attempting to replace pages when page faults are
low, the probability of finding a dead page is somewhat higher than when
page faults are high.

The working-set and page-fault frequency algorithms ultimately retain
only the pages in the working set while programs are executing continuously
in one phase of computation. There is a difference in the behavior of these
algorithms during transients. The page-fault frequency algorithm anchors its
observation point at a page fault, and by doing so, the memory manager can
fix its observation at a time when a transient appears to have begun. Then the
manager can observe all of the pages touched since that fixed time.

In a sense, this is a working-set algorithm in which the window size varies
dynamically, depending on the observed fault rate. It provides for narrowing
that window during transients and widening the window when transients
have ended. This will tend to discard old pages when they are no longer
needed. A pure working-set algorithm has a fixed window size, but this is very
difficult to implement. In reality, the working-set window used by typical
memory managers begins each time the memory manager takes control.

We have purposely avoided a detailed specification of the page-fault­
frequency and working-set-replacement algorithms because an implementer
is free to adjust and modify a replacement algorithm to fit the characteristics
of the architecture and the workload. There is no single implementation of
either algorithm that is preferred or standard. The general idea behind the
algorithms is what is important.

The working-set concept is based on the assumption that the immediate
future will be something like the recent past. The page-fault-frequency algo­
rithm is based on the notion that a transient between two program phases is
signaled by a higher-than-normal page-fault rate.

The working-set algorithm in its purest form is difficult to implement
because a sliding window of fixed size is not easily incorporated into hard­
ware or software. The page-fault-frequency algorithm provides for policies
that depend on more readily observable quantities and on hardware logging
of accesses, which is easier to implement than is a working-set window.

In spite of these apparent differences, the practical implementations of
working-set-replacement policies use the same hardware and the same obser­
vations as the page-fault-frequency algorithms, and the actual replacement
policy for a working-set algorithm may be implemented almost identically

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 102

90 Memory-System Design Chap.2

to a page-fault-frequency algorithm. In fact, Coffman and Denning [1973,
p. 289] describe a working-set-replacement policy that is essentially a page­
fault-frequency model as we have described previously.

2.3.5 Buffering Effects in Virtual-Memory Systems

The preceding section describes how to exploit the characteristic reference
patterns of almost all programs to hold the frequently used data in the fastest
memory. This section describes another characteristic of virtual-memory
systems that is not widely recognized. The characteristic is that a certain
amount of space must be allocated permanently to buffering disk operations,
and the amount of space to use grows proportionally with the access delay to
disk data. We examine the implications of this characteristic and suggest that
the amount of buffer space in future systems is likely to grow because access
delays are likely to be relatively longer.

We indicate earlier that accesses to data on rotating memories suffer a
delay anywhere from ten to 100 ms or more. If we break this access delay into
components, part is due to the time required for a read/write head to position
itself over the track that contains the data requested. An additional delay
stems from the rotational delay while waiting for an item to reach the
read/write head. The last delay is the time required to transmit data from the
auxiliary memory through an input/output port to main memory. The rota­
tional delay averages a half revolution when access requests are honored in a
first-come, first-serve order and the requests are randomly generated. By
batching requests and carefully reordering them to reduce waiting time, the
average delay due to rotational latency can be reduced, but this is partially
offset by an increase in the average time due to time lost by reordering or
other aspects of contention for disk resources.

Obviously, mechanical limitations prevent the rotational speed of disk
drives to be so fast that the average rotational latency is comparable to the
time needed to access random-access memory. Moreover, very large memo­
ries will inevitably suffer from access delays to individual data, regardless of
the storage technology, simply because an effective means to reduce the cost
per bit of large memories is to share access circuitry over many bits.

In present technology, the single read/write mechanism of a disk drive is
shared by all bits on the disk, and it takes mechanical motion to position the
read/write mechanism over any designated position on the disk. In future
technologies, the motion might be nonmechanical by, for example, deflecting
a laser beam to a particular physical position on a storage surface. Never­
theless, the time required to redirect a laser beam may be long compared to
the cycle times of very high-speed memory devices, even though the time is
much shorter than the time would be if mechanical motion were required.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 103

Sec. 2.3 Virtual Memory 91

Now consider how a long latency time affects a computer system. In
virtual-memory systems, the long latency experienced after a page fault re­
quires that the system be used for other purposes. There is typically a queue
of processes ready to use the machine when a running process faults. Let us
assume momentarily that we have as much capacity as required in available
memory and input/output bandwidth to ensure a large queue of ready pro­
cesses. Under these conditions disk latency does not necessarily lead to idle
processor time, although in actual practice these ideal conditions are not
realized, and latency could lead to substantial idle time.

Consider what happens when a program experiences a page fault. The
portion of the program resident in main memory remains inactive in main
memory while the missing page is retrieved. The longer the access time to the
missing page, the longer that the resident program occupies main memory
without doing useful work. The effect of latency is to create certain regions in
memory that are inactive. In a sense, they have become buffer regions await­
ing pages arriving from the disk and holding pages awaiting transfer back to
the disk.

If latency is truly very large, then it may be reasonable to remove inactive
data from main memory when a page fault occurs and reload them at a later
time. Even so, some physical pages of main memory are still being used as
buffer memory. These pages buffer the data moving out of main memory
immediately after a page fault. They also buffer the data of a new process
being moved into main memory. Once a new process becomes resident, it can
become active, and the physical pages are again activated after being used
solely for buffering.

To give some idea how much memory has to be dedicated to buffering in a
steady state, consider a simple model of a program that experiences page
faults. Suppose that on the average a program with a working-set size of W
pages can execute for N seconds between faults. Let the delay due to disk
latency be D seconds. Then for D seconds out of every N + D seconds, the
working set is idle, and if the program executes without any other programs
in memory, we have in a sense a buffer of an average size W D!(N + D).

Since we assume that the processor is to be fully utilized by other pro­
grams waiting to run, we need to determine how many such programs should
be available. The given program has to wait D seconds when it faults, and
during this time we can run roughly DIN other programs, each faulting after
N seconds, to use up a total of D seconds. At the end of D seconds, the original
page fault should be cleared, and the initial program can be restarted. Since
this ideal system has (N + D)/N programs running concurrently, each of
which is acting like a buffer with an effective size of W Dl(N + D), the total
buffer storage is something on the order of W DIN. Hence, the amount of main
memory dedicated to buffering page faults increases linearly with D.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 104

92 Memory-System Design Chap.2

In this analysis we have been counting the space occupied by programs as
buffer space, but the space is quite distinct from the regions that are set aside
as disk buffers. These regions, too, must grow in size in proportion to latency.

When a record or a page is transmitted to a buffer to await transfer to a
disk, the relative time spent in that buffer is a function of the latency. To­
gether, the memory requirements for input/output buffers and programs
delayed by page faults must grow proportionately to disk latency. Since the
timing factors are relative, we discover that the growth must take place if we
hold disk latency fixed and double processor performance. This particular
event happens to be a likely one in an era when advances in semiconductors
improve processor performance by larger factors than advances in mechani­
cal technology can reduce access delays in auxiliary memories.

There are several implications of this observation. Suppose, for example,
that we have a high-performance virtual-memory system with 100 M-bytes of
main memory, and the system is very efficient in its current implementation.
Now suppose that we obtain a new disk with double the capacity of the
present disk, but with twice the average access time. When the new disk
replaces the old disk, we should also increase the size of main memory to
compensate for longer access time or reduce the number of concurrently
running processes by a factor of 2. If we do not compensate for the longer
access times, the longer latency will degrade performance.

A second implication is that the page-replacement algorithms are
somewhat sensitive to the physical characteristics of the rota ting memory. As
the amount of memory dedicated to buffering disk operations increases, the
amount of memory left available to hold working sets decreases. In other
words, the page-replacement algorithm must relate disk latency to the
amount of memory that can be allocated among requesting programs. If new
disks replace old ones, the page-replacement policy has to alter its estimate of
memory available for user programs.

A third implication is that it becomes reasonable to consider where that
buffer should be located. In fact, the buffer might well be located in the
auxiliary memory rather than in the main processor. Such a scheme is shown
in Fig. 2.24. The disk buffers (sometimes called disk caches) first appeared in
volume in the mid-1970s as the costs of memory diminished.

When memory is very expensive, one can argue that the wisest way to
design a memory system is to place all the memory in one unit, the central
processor, so that it can be allocated freely as necessary. As memory costs
decrease, the need to conserve memory by using a single pool is diminished.
Other factors dictate that there are benefits to breaking memory into two or
more pools that are preallocated to specific purposes.

Figure 2.24 shows a system with a disk buffer contained within the disk
system that is distinct from the memory associated within the central pro-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 105

Sec. 2.3 Virtual Memory 93

'· DISK

I
I

1/0 CHANNEL BUFFER
(CACHE)

PROCESSOR PHYSICAL
STORAGE
DEVICES

MAIN MEMORY

Fig. 2.24 A storage system with a disk buffer.

cessor. The disk buffer is dedicated to disk operations and cannot be used as
executable memory.

The purpose of the disk buffer is, in effect, to create one more level in the
memory hierarchy. The disk buffer acts as an auxiliary memory with a very
short latency, thereby reducing the buffer requirements in main memory.

In essence, the buffers that we have observed earlier have been moved out
of main memory and now reside at the other end of the input/output channel.
There will still be some buffering of pages in main memory because latency is
small but nonzero because of transmission delays in the input/output channel
and page faults in the disk buffer. If the system of Fig. 2.24 is well designed,
the page faults will occur mostly in the disk buffer and seldom in main
memory.

There are several performance gains that can be achieved by moving the
buffer to the disk. One advantage is that the data-management algorithms for
the buffer can be optimized to the specific characteristics of the disk system.
Thus, when a disk system is replaced with a new system, the memory­
management algorithms in the central processor need not be altered because
the device-dependent characteristics are being treated within the disk sys­
tem. The disk buffer creates an auxiliary memory whose performance charac­
teristics as seen by the central processor tend to be independent of the true
physical characteristics of the disk.

Earlier we discussed how changes in latency result in changes in the
amount of memory serving as a buffer for pages. In the configuration of Fig.
2.24, almost all effects of latency can be absorbed within the disk-system
buffer, making such changes completely invisible to the central processor
memory-management algorithm. Thus, when new equipment imposes a need
for additional buffer capacity, that buffer capacity can be added in the disk
subsystem where it is of direct use.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 106

94 Memory-System Design Chap.2

To obtain full benefit of the disk buffer, the buffer controller must have
information regarding the requests for data because various types of requests
have different management algorithms that work best. We have been dis­
cussing page traffic, and for such requests a memory-management algorithm
should attempt to identify current working sets.

The disk system also receives requests for data files, and for such requests
the type of access is a major consideration. For example, the manager should
prefetch records associated with sequential files and deallocate space for
sequential records immediately after their first use. Database management
treats indices differently from data records, so a disk-buffer manager should
manage indices differently than records. Therefore, the disk buffer in Fig. 2.24
is ideally implemented as an "intelligent" disk buffer that can manage the
buffer memory in a manner that takes best advantage of each identifiable
type of access.

There is a performance benefit in Fig. 2.24 over a system that has no disk
buffer. The performance enhancement is due to the ability to hold data in fast
memory without burdening the input/output channel. The disk buffer may
actually access and hold many records that are never requested if the buffer­
management algorithms attempt to bring data that are likely to be accessed
into the buffer memory. This incurs the costs of wasted accesses and addi­
tional hardware for the buffer memory to hold the unused requests, but it
does not load the input/output channel.

There are situations in which the input/output channel is the primary
bottleneck, and the disk system has spare capacity to read data into the
buffer. Under these conditions, the ability to have new data in the buffer can
reduce average access time without contributing to the channel overload.

Exercises

2.1 The object of this exercise is to work through the design of a cache.

a) The instruction set for your architecture has 28-bit addresses, with each
addressable item being 1 byte. You elect to design a four-way set-associative
cache with each of the four blocks (lines) in a set containing 32 bytes. Assume
that you have 64 sets in the cache. Show how the 28-bit physical address is
treated in performing a cache reference.

b) Consider the following sequence of addresses. (All are hex numbers.)

OlAAOSO 01AA853 2FE3057 4FFD85F 01AA04E

In your cache, what will be the tags in the set(s) that contains these references
at the end of the sequence? Assume some initial state. Show the initial and
final states.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 107

Exercises 95

c) The tags stored in the cache cannot exceed 28 bits in length because that is the
length of an address. Actually, they should be shorter. What is the minimal
length of a tag? (Hint: Which address bits of a tag field do you already know?)

d) Now consider what happens when an architecture has both a cache and a
virtual memory. Let your system have a virtual memory such that each vir­
tual address is 32 bits long, and the virtual address is mapped into a physical
address that is 28 bits long. Suppose pages have P bytes, and suppose pis the
base 2 logarithm of P. Then the page mapping is done by stripping the page
displacement (the least-significant p bits of the address) from the full virtual
address, using the remaining bits as the index of a very large page table. The
page table produces 28 - p bits, which are concatenated with the p-bit page
displacement to form a physical address of 28 bits. This is used for the cache
reference.

Suppose thatp = 11. Work out a scheme that permits you to overlap as much
as possible the virtual-memory function and the cache function. Explain your
scheme and show the relative timing of the operations.

Suppose that p = 10. Explain how you can modify the scheme for p = 11 to
work in this case.

Now let p = 12. Indicate how you can modify the cache scheme for p = 11 to
work in this case.

e) At least 5 bits are required per set to indicate the LRU ordering of the four
entries per class. Suppose you compromise and use only 4 bits. How would
you use these 4 bits to approximate LRU? Indicate the reasoning you used in
making your decision.

2.2 This problem concerns trace stripping an address-reference trace to construct a
much shorter trace for cache analysis.

a) Suppose you produce an address trace for a computer system, and you pro­
cess that trace in the following way. You simulate the behavior of a cache with
64 sets, one-way set associativity (direct mapping), and lines of size 32 bytes.
Addresses are byte addresses. As you process the trace, you produce an output
trace that contains just the addresses of the cache misses.

Now suppose that you use the output trace as the input trace to a cache
simulator. Assume that the cache you simulate has 64 sets, one-way set asso­
ciativity, and 64-byte lines. Will this trace generate more, equal, or fewer
cache misses than the original trace? Prove that your answer is correct.

b) Repeat a for the simulation of a cache with 32 sets, one-way set associativity,
and 32-byte lines.

2.3 The object of this exercise is to explore trace stripping more deeply.

a) The chapter states that if a trace is stripped by simulating an N-set, one-way
set-associative cache, the stripped trace can be used for any cache with a
multiple of N sets and K-way set associativity for any K greater than or equal
to 1. Consider such a trace and prove that it can be used to evaluate a 2N-set
four-way cache. Specifically, prove that every miss on the full trace is a miss

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 108

96 Memory-System Design Chap.2

on the reduced trace for the new cache, and conversely, every miss on the
reduced trace is a miss on the full trace for the new cache.

b) Suppose that a trace is stripped by simulating an N-set four-way cache. The
reduced trace contains just the misses produced by this cache. Prove or dis­
prove the following statement:

If a 2N-set cache is simulated on the full trace and on the reduced trace,
the number of misses observed in both cases is equal.

2.4 After some careful experimentation, you discover that each time you double the
size of a cache, you reduce the absolute number of cache misses by a factor of r.
That is,

Misses(2N) = (1 - r) Misses(N)

Find a general solution to this recurrence equation in the form

Misses(N) = AN8

where A and B are constants.

2.5 The object of this exercise is to work through the design of a virtual-memory
system.

a) Consider the design of a mapping device that maps virtual-memory addresses
into physical addresses. The size of physical memory is 64 K-bytes, virtual
addresses are 24 bits, and by experimentation you learn that page faults are
reduced by 20 percent for each doubling of page size for the range of page
sizes that are reasonable for your design. Work out the design parameters for
a virtual-memory mapper, including a translation-lookaside buffer. Discuss
your reasoning in selecting the parameters you choose.

b) Repeat a for a physical memory of size 64 M-bytes and a virtual address of 36
bits.

c) Repeat a for a physical memory of size 1 M-bytes and a virtual address of 22
bits.

d) Repeat a for a physical memory of size 512 M-bytes and a virtual address of 48
bits.

2.6 This problem concerns replacement algorithms for virtual-memory systems.

a) Page-fault-frequency (PFF) and working-set-replacement algorithms have
similar behavior except during the transient as a program changes from one
phase to another and thereby changes its working set. Assume that if a work­
ing set is entirely resident within main memory, the expected fault rate is
about one fault per 1000 instructions, and the number of instructions between
faults increases by ten percent for each additional page in main memory over
and above the pages that hold the working set.

If the working set is not contained in memory, the fault rate is one fault per 25
instructions, and this improves by 25 instructions between faults for every
page of the working set that is added, up to the point that the working set of 20
pages is resident in main memory. Given this information, what is the thresh-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 109

Exercises 97

old that you would set for PFF, how many faults would occur, and what would
be the maximum number of pages resident as you change from one phase of
the program to another program with identical page-fault characteristics?
Discuss how you selected the threshold and show how arrived at your an­
swers.

b) Repeat a for the case in which the replacement algorithm is working set, but
in this case indicate how you selected the working-set window instead of
explaining the choice of a threshold.

c) Describe a practical mechanism for determining whether or not a page is in a
working set for a program. Your mechanism does not have to use Denning's
definition exactly as stated in the text, but it should yield a reasonable ap­
proximation to the working set. What aspect of your solution, if any, is the
most costly in time expended? What aspect is likely to be the most costly to
implement assuming current cost conditions?

2.7 The object of this exercise is to examine performance characteristics of virtual
memory.

a) Consider a physical disk system that is capable of performing an average of SO
accesses per second. Assume that an average working set is 50 K-bytes, that
the mean number of instructions between page faults is 100 when less than
the full working set is present in memory and is SOOO when the SOK working
set is wholly contained in memory, and the page-fault rate drops off by 30
percent for each doubling of the number of pages in memory in excess of SOK.
Assume that each instruction takes 1 ms on the average to execute. Plot the
throughput (completed instructions per second) as a function of memory size
for a single program being executed.

b) Repeat a for the case in which two programs share memory equally.

c) How should you partition memory to obtain maximum throughput for the
statistics given when memory contains 100 K-bytes? 2SO K-bytes? An arbi­
trarily large number of bytes? Describe how you obtained these answers.

2.8 Modern disks incorporate disk cache, which is a high-speed semiconductor
memory that buffers disk accesses. Assume that the disk controller understands
how data are being requested from disk and that it has the ability to treat
executable programs, sequential files, and pages of virtual memory that have
been swapped out of main memory. Describe how you would manage the
memory in the disk cache to do a reasonable job of avoiding disk accesses. Make
reasonable assumptions concerning the frequency of accesses, the size of disk
cache, and the fault rate as a function of data size.

2.9 This problem concerns buffer requirements for virtual-memory systems. Assume
the performance data for programs given in Exercise 2.8. For the 250K memory
example at maximum performance, how much of the memory system for your
answer to Exercise 2.8 is serving as buffer memory on the average? Show how
you obtained this answer. Assume that the disk-access time increases by a factor
of 2, and you want to obtain equal throughput as for a system with the faster
disk-access time. Determine how to obtain increased throughput by adding addi­
tional memory, using as little extra memory as possible. How will you allocate

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 110

98 Memory-System Design Chap.2

allocate memory in the new system to achieve the necessary throughput? How
much of the memory on the average is serving as buffer?

2.10 This problem addresses the design of a disk cache.

a) Assume that a program has to access a sequential file. What should the disk
cache do in managing the records in this file? Describe the commands and
replies that would pass back and forth between the processor and disk system
that enables the disk system to implement the managing strategy that you
outline. In your explanation describe each command by listing its name and
operands, followed by a description of what the command does.

Example: READ RECORD (track number) (sector number). This com­
mand tells the disk system to obtain the specified record and transmit the
record to the processor.

b) Assume that the processor is using the disk system as a paging system for
virtual memory, must read pages during page faults, and must write back
pages that have been altered. What should the disk system do to manage this
type of access? To implement this management policy, what should be the
commands and replies between processor and disk system?

c) Assume that the processor is using the disk system to store the database for a
banking center that serves customers and tellers through on-line queries.
How might this database be managed by the disk cache? What should the
command and reply interface be for this type of access to implement your
suggested management algorithm?

2.11 The purpose of this exercise is to explore the relative cost of different cache
structures. Consider caches with set associativity 2, 4, and 8, with 4N, 2N, and N
sets, respectively, so that the product NK is constant for these three designs.
Assume that N = 128, that addresses are 24 bits (three bytes), and that each cache
line is 4 bytes long.

a) What is the minimum number of bits of control required for each set to keep
track of the LRU history of a set? (The two-way cache needs to store the item
that is the least- recently accessed. The four-way cache needs to store the LRU
item, the next least recent, and the third least recent.) Prove that your answer
is the minimum number of bits.

b) Estimate the total number of bits of storage required for each of the three
cache designs, including the bits required to store the LRU ,history, the tags,
and the data. Assume that the cost of the cache is proportional to the number
of hits of storage and calculate the relative cost of the three designs nor­
malized to the cost of the 4N-set, two-way cache.

c) Assume that all three caches have equal cost-performance ratios, and that
cost is strictly proportional to the number of bits of storage. What is the
relative performance of the cache designs? (Note: In actual practice, the
structures do not have equal cost-performance ratios. You'r figures compute a
rough break-even point and permit you to determine if actual performance is
above or below this point.)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 111

Exercises 99

2.12 This problem concerns footprints in caches and in virtual memories.

a) The footprint model developed in the text appears for caches. What are the
appropriate values for the cache-footprint model that describe a virtual­
memory system in which two programs, A and B, execute alternately? Define
the parameters you need to make the virtual-memory problem to make corre­
spond to the cache-footprint model.

b) Now consider a collection of programs to execute concurrently in a virtual­
memory system. How can the cache-footprint model help you determine
which subset of programs to run together?

2.13 The purpose of this question is to analyze the relative advantages and disadvan­
tages of two cache designs. In a computer system that uses both virtual memory
and a high-speed cache, a cache tag can be either a virtual address or a physical
address. If the tag is a virtual address, it is compared to the virtual address
produced by a program before the virtual address is mapped to a real address by
a segment and page transformation. If the tag is a real address, it is compared to
the virtual address of a reference after that virtual address has been mapped to a
real address.

These are the basic cache schemes mentioned in the following parts of this
exercise. In response to the questions, you are asked to add more capability or
other functions to one or both caches to gain higher performance.

a) Consider the relative performance of the two basic approaches. Which of the
two, if any, is the faster? Explain your answer.

b) Find some reasonable scheme for speeding up the slower of the two so that the
performance of the slower scheme approaches that of the faster scheme.

c) Consider the problem of handling references to main memory by an input/
output processor while maintaining the cache to reflect changes made by the
input/output operations. Also, consider how changes made by the central
processor What are logged in the cache can be detected and made available to
the input/output processor so that the input/output processor always accesses
fresh data when it reads from memory. Which of the two basic schemes, if
any, leads to higher performance? Explain your answer. If one scheme is
slower than the other, how can the slower cache be augmented to improve its
performance so that it approaches the performance of the faster cache?

d) A cache sweep is a purging process that is performed in some virtual-memory
systems. When a process in a virtual-memory system relinquishes the pro­
cessor, and a new process takes its place, the second process may generate the
same virtual addresses as the former process, but the second process refers to
totally different items. We assume that when a process relinquishes the pro­
cessor, all of its data held in the cache are purged from the cache. With regard
to the cache sweep to purge these data, which of the two schemes-real or vir­
tual address tags-leads to higher performance, or are they about equal in per­
formance? Explain your answer. How can the slower of the two schemes be
augmented to improve its performance in handling the cache sweep? In an­
swering these questions, assume that the caches are four-way set associative.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 112

100 Memory-System Design Chap.2

e) It may be possible to reduce the overhead of cache sweeps. Consider how you
might augment both of the cache designs so that data resident in the cache for
a process need not be purged each time the process relinquishes the pro­
cessor. Discuss how both cache schemes can be modified to support this
behavior. Discuss when cache sweeps would have to take place in each
scheme and determine which of the two schemes, if any, has the higher
performance with regard to time spent in cache sweeps.

2.14 Having studied the design of cache-memory systems, consider the parts from
which caches are made. Each memory chip in a cache is a standard random­
access memory (RAM) chip that contains M bits of information, where M is a
power of 2. The memory chip can be designed to have any one of several different
organizations. It can, for example, have 1 bit at each of M different addresses, or
with a slightly different design, have 2 bits at each of M 12 different addresses, or
4 bits at each of M 14 addresses, and so forth. A single cache line made up of, for
example, 16 bytes (128 bits) can be built from 128 M x 1 chips or from 64M12 x 2
chips, and so forth. If M x 1 chips are used, the chips create not just one cache
line, but a total of M sets of cache lines.

a) Show a scheme for organizing M x 1 chips to form a memory with 64 sets,
four-way set associativity, and 16 bytes per cache line. For what M do you
achieve the minimum number of chips in the memory? For this scheme how
many address and data bits have to be supplied to a memory chip for each
access?

b) Show a scheme for organizing M 14 x 4 chips to form the memory described
in a. How many address and data bits have to be supplied to each chip for
each access?

c) We want to make Mas large as possible to reduce the number of chips used in
a cache design. What is the largest value that is reasonable for Min a cache
memory with 64 lines, four-way set associativity, and 16 bytes per line?
Discuss how you arrived at this answer.

d) Suppose that M = 1,000,000 (= 220
). What size cache would you design, and

how would you organize the memory chips to achieve this size?

2.15 We want to explore the behavior of a multilevel memory hierarchy. Let Level 1 be
small and very fast, Level 2 be much larger than Level 1 and somewhat slower,
and Level 3 be a very large and very slow memory. The objective is to retain
information in Level 2 that will be needed in the near future. All transfers occur
on demand, and no prefetching is used.

Assume that both Level 1 and Level 2 are maintained as LRU caches. When a
miss occurs, an item is moved immediately to Level 1 from main memory or
from Level 2, wherever it is found. If an item is moved from Level 2 to Level 1, no
copy of the item remains in Level 2. When an item ages out of Level 2, it is
discarded, and future accesses for the item are made to main memory.

a) Assume that Level 1 is organized as N sets and is K-way set associative.
Assume that Level 2 is organized as N sets and is]-way set associative.
Consider a situation in which a Process A runs, then Process Bruns, and then

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 113

Exercises 101

A is to be resumed. Find expressions that show the expected number of lines of
A in Level 1, in Level 2, and in main memory at the time that A is resumed.

b) Repeat a under the assumption that Level 2 is organized as a 2N-set cache,
J -way set associative.

c) Repeat a assuming that Level 2 is an RN-set cache, I-way set associative
where R is some power of 2.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 114

We learn in Chapter 2 that memory is a major bottleneck in high-speed
computers, and that the bottleneck can be relieved somewhat by taking ad­
vantage of the characteristics of typical programs. The objective has been to
store the most-frequently referenced items in fast memory and less­
frequently referenced items in slower memory. It is not necessary to make all
memory equally fast; we need use only as much fast memory as necessary to
hold the active regions of a program and data.

This chapter concerns a different approach to relieving bottlenecks. The
idea is to use parallelism at the point of the bottleneck to improve per­
formance globally. If the design techniques are successful, then the extra
hardware devoted to performance enhancement is present in only a small
portion of a computer system, yet its effect is to increase performance as if the
full computer system were replicated.

To contrast the approaches of the last chapter and the present one, in one
case the speed differential is due to faster hardware, whereas in the second

102

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 115

Sec. 3.1 Principles of Pipeline Design Techniques 103

case the speed increase is obtained by replicating slower hardware. In both
cases, clever architecture is required to create efficient computer systems in
which enhancements of a relatively small cost have a global impact on per­
formance.

Pipeline computer techniques described in this chapter are by far the
most popular means for enhancing performance through parallel hardware.
The basic ideas from which pipeline techniques developed are apparent
in von Neumann's proposal to build the first stored-program computer.
In Burks et al. [1946], a discussion on input/output techniques describes a
buffer arrangement that would permit computation to be overlapped with
input/output operations and thereby provide a crude form of pipeline pro­
cessing that is used widely in today's machines.

Although von Neumann did not build the input/output capability into his
first machine, the basic ideas for pipelined computer design evolved rapidly
after the first appearance of magnetic-core memory as the primary storage
medium for main memory. This storage was roughly a factor of 10 or more
slower per cycle than the transistor technology used in high-speed registers
and control logic. Designers quickly conceived of a variety of techniques to
initiate one or more concurrent accesses to memory while executing in­
structions in the central processor. This body of techniques eventually
evolved and is exemplified in the pipeline-processing structures described in
this chapter.

In the 1960s, when hardware costs were relatively high, pipelined com­
puters were the supercomputers. IBM's STRETCH and CDC's 6600 were two
such designs from the early 1960s that made extensive use of pipelining, and
these designs strongly influenced the structure of supercomputers that fol­
lowed. By the 1980s, hardware costs had diminished to the extent that pipe­
line techniques could be implemented across the entire range of performance,
and indeed, even the Intel 8086 microprocessor that costs just a few dollars
uses pipeline accesses to memory while performing on-chip computation.

Our approach is to develop a basic understanding of the principles of
pipeline design in the next section. In subsequent sections we observe where
it can be used and how to design effective pipelines.

3.1 Principles of Pipeline Design

The basic idea behind pipeline design is quite natural; it is not specific to
computer technology. In fact the name pipeline stems from the analogy with
petroleum pipelines in which a sequence of hydrocarbon products is pumped
through a pipeline. The last product might well be entering the pipeline
before the first product has been removed from the terminus. In the remain­
der of this section we treat pipeline design first in abstract terms, and then
follow with concrete examples.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 116

104 Pipeline Design Techniques Chap.3

The key contribution of pipelining is that it provides a way to start a new
task before an old one has been completed. Hence the completion rate is not a
function of the total processing time, but rather of how soon a new process
can be introduced.

Consider Fig. 3.1, which shows a sequential process being done step-by­
step over a period of time. The total time required to complete this process is
N units, assuming that each step takes one time unit. In the figure, each box
denotes the execution of a single step, and the label in the box gives the
number of the step being executed.

To perform this same process using pipeline techniques, consider Fig. 3.2,
which shows a continuous stream of jobs going through the N sequential
steps of the process. In this case each horizontal row of boxes represents the
time history of one job. Each vertical column of boxes represents the activity
at a specific time. Note that up to N different jobs may be active at any time in
this example, assuming that we have N independent stations to perform the
sequence of steps in the process.

The pipeline timing of Fig. 3.2 is characteristic of assembly lines and
maintenance depots as well as oil pipelines. The total time to perform one
process does not change between Fig. 3.1 and Fig. 3.2, and it may actually be
longer in Fig. 3.2 if the pipeline structure forces some processing overhead in
moving from station to station. But the completion rate of tasks in Fig. 3.2
is one per cycle as opposed to one task every N cycles in Fig. 3.1.

Figure 3.3(a) shows a box that represents a server that can perform any of
the N processing steps in a single unit of time. If the job stream is processed
by this one server, then the rate of completion is one job every N steps, and the
time behavior of the job stream is as described in Fig. 3.1.

Compare Fig. 3.3(a) with Fig. 3.3(b), which shows N servers concatenated
in a sequence. A task flows through the collection of servers by visiting Server
1, then Server 2, and so on, and finally emerging from Server N after N steps.
The time behavior of this system is described by Fig. 3.2. Figure 3.3(b) is an
ideal model of a constant-speed assembly line, such as an automobile assem­
bly plant.

Now let's relate the general ideas presented in Figs. 3.1-3.3 to computer
design. Where can we find an N-step task that can conveniently be broken up,
as shown in Fig. 3.2? Consider the steps required to execute a single in-

---~

Fig. 3.1 An N-step sequential process.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 117

104 Pipeline Design Techniques Chap. 3

The key contribution of pipelining is that it provides a way to start a new
task before an old one has been completed. Hence the completion rate is not a
function of the total processing time, but rather of how soon a new process
can be introduced.

Consider Fig. 3.1, which shows a sequential process being done step-by-
step over a period of time. The total time required to complete this process is
N units, assuming that each step takes one time unit. In the figure, each box
denotes the execution of a single step, and the label in the box gives the
number of the step being executed.

To perform this same process using pipeline techniques, consider Fig. 3.2,
which shows a continuous stream of jobs going through the N sequential
steps of the process. In this case each horizontal row of boxes represents the
time history of one job. Each vertical column of boxes represents the activity
at a specific time. Note that up to N different jobs may be active at any time in
this example, assuming that we have N independent stations to perform the
sequence of steps in the process.

The pipeline timing of Fig. 3.2 is characteristic of assembly lines and
maintenance depots as well as oil pipelines. The total time to perform one
process does not change between Fig. 3.1 and Fig. 3.2, and it may actually be
longer in Fig. 3.2 if the pipeline structure forces some processing overhead in
moving from station to station. But the completion rate of tasks in Fig. 3.2
is one per cycle as opposed to one task every N cycles in Fig. 3.1.

Figure 3.3(a) shows a box that represents a server that can perform any of
the N processing steps in a single unit of time. If the job stream is processed
by this one server, then the rate of completion is one job every N steps, and the
time behavior of the job stream is as described in Fig. 3.1.

Compare Fig. 3.3(a) with Fig. 3.3(b), which shows N servers concatenated
in a sequence. A task flows through the collection of servers by visiting Server
1, then Server 2, and so on, and finally emerging from Server N after N steps.
The time behavior of this system is described by Fig. 3.2. Figure 3.3(b) is an
ideal model of a constant-speed assembly line, such as an automobile assem-
bly plant.

Now let's relate the general ideas presented in Figs. 3.1~3.3 to computer
design. Where can we find an N -step task that can conveniently be broken up,
as shown in Fig. 3.2? Consider the steps required to execute a single in-

Fig. 3.1 An N-step sequential process.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 117

Sec. 3.1 Principles of Pipeline Design Techniques

2 3 r---~

2 I 3 ~---~
,~ -1----.-2--r,~3~r---~

._____._I _2___,_I _3___/r- - -~
'---'--2~1~3~r---~

Time---

Fig. 3.2 Pipelined execution of an N-step process.

105

struction. This sequence has traditionally been implemented using pipeline
design. A typical instruction-execution sequence might be:

1. Instruction fetch: obtain a copy of the instruction from memory.

2. Instruction decode: examine the instruction and prepare to initialize the
control signals required to execute the instruction in subsequent steps.

3. Address generation: compute the effective address of the operands by per­
forming indexing or indirection as specified by the instruction.

4. Operand fetch: for READ operations, obtain the operand from central
memory.

Job Stream

(N Units/Job)

Job
Stream SERVER

(1 Unit)

SERVER One Completion
(N Units) 1---+ Every N Units

(a)

SERVER
(1 Unit)

(b)

SERVER
(1 Unit)

Fig. 3.3 Two ways to execute N -unit jobs in a stream:
(a) Sequential execution with a 1-unit server; and
(b) Pipelined execution with 1-unit servers.

One Completion
Every 1 Unit

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 118

106 Pipeline Design Techniques Chap.3

5. Instruction execution: execute the instruction in the processor.

6. Operand store: for WRITE operations, return the resulting data to central
memory.

7. Update program counter: generate the address of the next instruction.

If we simply map these steps onto the model of Fig. 3.3(b), we obtain a block
diagram of a pipeline computer as shown in Fig. 3.4. For reasons discussed
later this structure might have to be tuned somewhat to obtain a good bal­
ance between cost and performance. More important, the structure has to be
designed to work correctly and efficiently in the face of difficulties caused by
interactions between events at different stages in the pipeline.

In the normal mode of operation, the first stage of the pipeline in Fig. 3.4
continuously fetches instructions, even though the address of a fetch has not
been produced by the last stage of the pipeline, the stage that updates the
program counter. Thus, the first stage is operating with a program counter
value, several cycles before the counter value is produced in the last stage.
Since most changes to the program counter are increments, the first stage
estimates the future value of the program counter quite easily by successive
increments of the program counter. The interaction between the first and last
stages occurs when a branch alters the program counter nonsequentially.

The address of the instruction that follows a conditional branch might
not be known until the branch instruction reaches the last stage of the pipe-

Instruction Fetch

Instruction Decode

Address Generate

Operand Fetch

Execute

Operand Store

Update Program Counter

Fig. 3.4 Pipelined execution of a single instruction.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 119

106 Pipeline Design Techniques Chap. 3

5. Instruction execution: execute the instruction in the processor.

6. Operand store: for WRITE operations, return the resulting data to central
memory.

7. Update program counter: generate the address of the next instruction.

If we simply map these steps onto the model of Fig. 3.3(b), we obtain a block
diagram of a pipeline computer as shown in Fig. 3.4. For reasons discussed
later this structure might have to be tuned somewhat to obtain a good bal-
ance between cost and performance More important, the structure has to be
designed to work correctly and efficiently in the face of difficulties caused by
interactions between events at different stages in the pipeline.

In the normal mode of operation, the first stage of the pipeline in Fig. 3.4
continuously fetches instructions, even though the address of a fetch has not
been produced by the last stage of the pipeline, the stage that updates the
program counter. Thus, the first stage is operating with a program counter
value, several cycles before the counter value is produced in the last stage‘
Since most changes to the program counter are increments, the first stage
estimates the future value of the program counter quite easily by successive
increments of the program counter. The interaction between the first and last
stages occurs when a branch alters the program counter nonsequentially.

The address of the instruction that follows a conditional branch might
not be known until the branch instruction reaches the last stage of the pipe-

lnstruction Fetch

Instruction Decode

Address Generate

Operand Fetch

Operand Store
Update Program Counter

Fig. 3.4 Pipelined execution of a single instruction.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 119

Sec. 3.1 Principles of Pipeline Design Techniques 107

line, but Fig. 3.4 suggests that subsequent instructions have followed the
conditional branch down the pipeline and may have altered the state of one or
more machine registers even before the outcome of the conditional branch is
known. The danger is that we cannot be sure what to execute until the
condition has been evaluated.

One way to assure correct execution of conditional branches is to inter­
lock the instruction-fetch stage with the program-counter update stage. Im­
mediately after a conditional branch is fetched by the first stage, no further
fetches take place until the branch reaches the last stage. At this point the last
stage produces the correct target address and removes the interlock, allowing
the first stage to continue instruction fetches at the new address.

The problem with this solution is the lost performance caused by
the inactive pipeline during the period a conditional branch is pending.
Conditional branches occur quite frequently in most conventional comput­
ers, possibly once every five to ten cycles on the average. If a pipeline were
idled when each such branch is encountered, then from one-fifth to one-tenth
of the machine cycles would be lost waiting for branches. This is a fairly hefty
penalty of the inefficiency of a pipeline implementation.

There are other interactions of concern as well, all of which tend to force
the designer to add complexity to ensure correct pipeline operation. These
interactions could severely impede performance if the resulting implementa­
tion is idle a significant fraction of time because of the stage-to-stage inter­
locks. Consequently, the designer is concerned with building a pipeline that is
simultaneously correct, efficient, and fast. How this is done is the subject of
the material that follows.

If we assume that each of the steps in the execution sequence is a single
cycle, then a typical instruction takes seven cycles to execute. In several
computer systems the pipeline takes advantage of the fact that the majority of
instructions do not perform both a READ and a WRITE operation, and the
number of stages is shortened to six. For our discussion we use the simpler,
but possibly less realistic, pipeline shown in Fig. 3.4.

The structure of Fig. 3.4 produces one instruction completed during each
machine cycle, for an improvement in performance of a factor of 7 over a
purely sequential implementation (or a factor of 6 faster than a sequential
implementation that provides for only a READ or a WRITE cycle, but not
both, for each instruction).

In actual practice the performance improvement depends on the ability
to split the processes into steps of equal duration. Suppose, for example, that
a memory access takes four machine cycles, not just one, as we have pre­
sumed thus far. Then the three different steps in Fig. 3.4 that refer to memory
accesses take four cycles each, whereas all other steps take just one cycle.
Now the average rate of instruction completion depends on the slowest pro­
cess in the sequence, which in this case is a memory operation that produces
one result every four cycles. No matter how fast the other processes are, they

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 120

108 Pipeline Design Techniques Chap.3

cannot produce results any faster on the average than the slowest processor in
the chain.

In effect, we can run all processes in Fig. 3.4 at a rate that produces one
result every four cycles at the output of each process. The original instruction
execution requires three memory accesses-an instruction fetch, a READ,
and a WRITE-and four single-cycle steps for a total of 16 cycles. The struc­
ture in the figure produces one result every 4 cycles, for a speedup of 4. This is
so mew hat lower than our original es ti mate of a speedup of 7.

By adding some delays to the pipeline of Fig. 3.4, we can create a longer
pipeline that produces one result every cycle. In Fig. 3.5 we have added three
stages of delay to every memory operation, making the pipeline a total of 16
units long. But in this pipeline new instructions can be initiated every cycle
rather than every four cycles, so that it produces results at a rate about 16
times faster than a purely sequential implementation of a processing unit.

Although Fig. 3.5 seems to make the speedup deceptively simple to ob­
tain, actually the memory system must be able to support the processing rate,
and this may be quite a feat to accomplish. For the structure shown running
at its full processing rate, there are 12 active stages with different memory
operations at any given time. So the memory system must be able to support
12 independent concurrent accesses in a nonconflicting way.

In this case, a pipelined structure in one subsystem shifts the processing
bottleneck to a different subsystem. Obviously, to make the best use of pipe­
lining for a processor structured in a pipeline fashion as shown in Fig. 3.5, the
architect should extend pipeline techniques or other high-speed techniques
to the memory system as well so that the maximum processing capacities of
various subsystems are matched to each other.

Up to this point the design principles have been very simple. We identify a
task that performs a sequence of operations. Then we build a chain of pro­
cessors and perform one step of the sequence on each processor in the chain.
We have just observed that we may have to break some of the steps into
smaller steps to create a pipeline in which all stages produce results at the
same rate. Lengthy steps may have to be broken into two or more smaller
steps to meet this requirement.

The design would be satisfactory at this point if there were no inter­
actions among two or more tasks that were at different stages of the pipe. If
such interactions are present, then the pipeline must account for these in
some way, which considerably increases the difficulty of producing an effi­
cient design and adds to the complexity of the final result.

For the moment, however, let us explore a practical application of the
structure we have outlined. One way to guarantee that there are no inter­
actions among tasks in a pipeline is to make sure that any two or more tasks
concurrently in the pipeline are totally independent and have no conflicts.
The 16 cycles allocated in Fig. 3.5 could be allocated to 16 different processors

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 121

Sec. 3.1 Principles of Pipeline Design Techniques 109

Instruction Fetch

Delay

Delay

Delay

Instruction Decode

Address Generate

Operand Fetch

Delay

Delay

Delay

Execute

Operand Store

Delay

Delay

Delay

Update Program Counter

Fig. 3.5 Modification of a pipeline to provide for slow memories. Two units of delay
have been inserted after each memory operation. (Note that the program counter can
be updated during a delay period, reducing total delay by 1 unit.)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 122

Sec. 3.1 Principles of Pipeline Design Techniques 109

Instruction Fetch

Delay

Delay

Delay

Instruction Decode

Address Generate

Operand Fetch

Delay

Delay

Delay

Operand Store

Delay

Delay

Delay
Update Program Counter

Fig. 3.5 Modification of a pipeline to provide for slow memories. Two units of delay
have been inserted after each memory operation. (Note that the program counter can
be updated during a delay period, reducing total delay by 1 unit.)

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 122

110 Pipeline Design Techniques Chap.3

on a round-robin basis. And this is the thinking that guided the design of the
CDC 6600 peripheral controllers.

Figure. 3.6(a) shows the pipeline structure of the peripheral controller
"barrel" for the CDC 6600. Each stage takes one cycle, and ten cycles are
required to execute one instruction, including a fetch or store to local
memory. In this particular design all events take place at one of the ten steps
in the process cycle. The other nine steps are simple delays that hold the
machine state while awaiting a memory access. The state of each task held in
a CDC 6600 peripheral processor is very small, only 51 bits, and consists of:

• The accumulator (18 bits);

• The program counter (12 bits);

• The operand address or other instruction-specific data (12 bits); and

• The instruction code and trip counter (9 bits).

During one traversal of ten stages, a peripheral processor performs one READ
or WRITE to local memory, together with related actions. If more machine
traversals are required, the instruction traverses the stages multiple times.
The trip counter indicates which traversal is currently in progress, and it
thereby controls how each instruction is executed as a function of its trip
number through the barrel.

All processor activity occurs between Stages 9 and 10 shown in Fig. 3.6(a).
In one trip through the ten stages, the processor can do an instruction fetch,
an operand fetch together with an instruction execution, or one fetch of an
indirect address. (The processor can also fetch long operands from the main
memory. This takes five trips through the pipeline since the operand width of
the pipeline is only 12 bits, but operands in main memory contain 60 bits.)

In this architecture, the first trip through the ten-stage pipeline is an
instruction fetch, which starts at the clock that latches a processor state in
Stage 10. At this time the program counter is sent to memory to initiate a
READ cycle to obtain the next instruction. That instruction reaches the pro­
cessor at the clock time that latches the corresponding processor state into
Stage 9, and is ready to join that processor state as the state moves from Stage
9 to Stage 10 at the end of the next trip through the pipeline.

Since each instruction in this processor contains two fields, one each for
the instruction code and operand address, the instruction fetch concludes by
loading the instruction code and address registers with the instruction ob­
tained by the memory fetch. The trip counter is also initialized and the
instruction decode takes place at this point, so the processor is prepared for
the next cycle to read or write an operand or to read an indirect address as
required by the instruction.

Assume that the instruction is a LOAD or an ADD and that the addressing
mode is direct. Execution of this instruction is completed during the second
trip through the pipeline. In that trip, the operand from memory is fetched,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 123

Trip Op Code

Control
Signals

STAGE 1

STAGE 2

STAGE 3

STAGE 8

Accumulator

18

From Main
Memo

Data Reg

Data to
Main Memory

I D od I Control ec e s· 1 ~ 1gnas Address to Main Memory

(a)

ST AGE 1 LATCHES

Combinational Logic

STAGE 2 LATCHES

Combinational Logic

STAGE 3 LATCHES

Combinational Logic

(b)

Fig. 3.6 Two pipeline structures:
(a) The pipeline for the 10 CDC-6600 peripheral processors; and
(b) An ideal pipelined implementation of a processor.

111

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 124

STAGE 1 I
STAGE 2

STAGE 3

I
L

STAGE 8

STAGE 9
Address

 From Main

Control
Signals

Control
Logic

Data to
Main Memory

 Control
Sign ais

Address to Main Memory

STAGE 1 LATCHES

Combinational Logic

STAGE 2 LATCHES

Combinational Logic

STAGE 3 LATCHES I

Combinational Logic I
l
I
+

STAGE N LATCHES I

(b)

Fig. 3.6 Two pipeline structures:
(a) The pipeline for the 10 CDC-6600 peripheral processors; and
(b) An ideal pipelined implementation of a processor.

lll

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 124

112 Pipeline Design Techniques Chap.3

and it arrives at the processor just as the corresponding processor state
reaches Stage 9 and is ready to move to Stage 10.

Note that Fig. 3.6(a) shows a data path for the accumulator that passes
through an adder/shifter at the execution stage. As the accumulator data
propagates on this path, the operand data joins it. The instruction sets the
adder/shifter to add, subtract, logical AND, or logical OR its two operands, or
shift or copy one of the two operands into the accumulator in Stage 10. Hence,
the logic to perform the full repertoire of instructions is in the path between
Stages 9 and 10. At the same stage, the program counter is adjusted by
incrementing it (for sequential execution) or by loading it from the address
register (for branches).

It is clear from Fig. 3.6 why this design is both fast and efficient. The basic
logic for one processor is placed only in the execution stage of the pipeline. All
other stages of the pipeline contain state storage only. Consequently, this
implementation of ten processors contains one execution unit (but ten full
register sets and ten memory systems), so the cost is less than the cost of ten
individual machines. Yet the performance capacity is equal to the capacity of
ten machines, provided that the ten machines operate independently and do
not contend for shared data, nor interfere mutually in other ways. The cost
benefit of this approach was very high in the mid-1960s when the cost of the
logic saved was quite substantial. The reader should consult Thornton [1970]
for a detailed description of the implementation.

Figure 3.6(a) illustrates an actual implementation of the idealized
pipeline design for the processor shown in Fig. 3.6(b). Each stage in this
design consists of a set of latches (data registers) that hold data in transit
through the pipeline.

Between stages is combinational logic through which data propagates.
The idea is that all activity occurs at successive clock times. At a clock tick,
each bank of latches reads its input data and captures that data in its internal
storage. After a short propagation delay, the data appear at the latch outputs
and begin propagating to the next stage in the pipeline.

The logic between stages transforms the data, for example, by shifting or
adding, or by some other elementary operation that implements one stage of
the pipeline function. Eventually the transformed data reach the input pins of
the next rank of latches. The next clock tick is delayed long enough with
respect to the preceding clock tick to ensure that all data in the pipeline have
propagated to the input pins of the next stage. Only then are the stage outputs
allowed to change.

The purpose of the clock is to synchronize the data at the input to each
stage. The clock is set as fast as possible within the normal constraints of
reliability, power consumption, and engineering tolerances. It must be slow
enough to accommodate the slowest propagation path.

The simplicity of the design in Fig. 3.6(a) is somewhat deceptive. Because
the ten processors are totally separate, there are no interactions in the pipe-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 125

Sec. 3.1 Principles of Pipeline Design Techniques 113

line, and no extra hardware is required to deal with unusual conditions. If we
consider the design of a processing unit for a single stream of instructions, the
situation is complicated by several factors. The ones that normally require
attention are:

• Conditional branches must complete their execution before the address of
the next instruction is known. Therefore, when a conditional branch is
encountered at Stage 1 of a pipeline, subsequent data that reaches Stage 1
must be treated tentatively until the target of the conditional branch is
known.

• An instruction in the pipeline might produce a result that is used by a
later instruction in the pipeline. The second instruction must be delayed
somehow until the result is available.

• An instruction in the pipeline might produce a result for a register whose
previous contents must be read by an earlier instruction in the pipeline.
The second operation must not destroy the current contents of that regis­
ter until that register is free to be rewritten.

• Two different instructions in the pipeline may write data into a common
location, but the pipeline may reverse the order in which the location is
updated.

We have already mentioned the problem concerning conditional
branches. The other three points are instances of a more general problem of
concurrent operations on shared resources. In the specific cases here, the
shared resources are registers or data in main memory.

If the basic operations are READ and WRITE, we have four ways that two
processes can interact, namely READ/READ, READ/WRITE, WRITE/READ,
and WRITE/WRITE, where the first label indicates the earlier operation and
the second label indicates the second operation. The idea is that a program is
written for correct execution under the assumption that instructions are
executed sequentially, with one instruction fully completed before the next is
started. The pipeline implementation violates this assumption, but it must
give the appearance that the assumption holds.

For READ/READ interactions, we have a situation in which a datum is to
be read first by Instruction 1 and then by Instruction 2. Can we permit these
operations to be done out of order? The answer is yes, so this conflict is not of
concern. However, if done out of order, WRITE/WRITE interactions leave the
shared cell in the wrong state, and subsequent READs to the shared item will
obtain the wrong value. Similarly, if the order of WRITE/READ is reversed,
the READ obtains old data, not new data as intended. And if READ/WRITE is
reversed, the READ obtains new data, not the old data as intended. Each of
these three operation pairs needs to be detected and interlocked when they
occur on shared data.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 126

114 Pipeline Design Techniques Chap. 3

The WRITE/WRITE conflict appears to be unusual because it requires a
program to write a datum to memory and then immediately overwrite that
datum. Such sequences could happen, however, if a WRITE is followed by a
conditional branch, one of whose outcomes immediately performs the second
WRITE.

A common WRITE/WRITE conflict on a shared variable is updating of a
processor's state bits (often called the condition codes) that are written as a
consequence of instruction execution. The need to avoid WRITE/WRITE con­
flicts on these variables requires that they be updated in the order that they
are written on a purely sequential processor without pipeline execution. If a
processor can detect that no intervening READ occurs between two WRITEs
to a shared variable, the processor can execute the second WRITE first, then
abort the first WRITE when its point of execution occurs.

READ/WRITE and WRITE/READ conflicts are a fact of life and the bane
of pipeline designs. The CDC 6600 design faces this problem in a central
processor that has ten independent functional units dedicated to such func­
tions as add, multiply, divide, shift, normalize, branch, increment, and logic
(Boolean). The divide is rather lengthy compared to the shift and Boolean
functions. Consequently, it is quite possible to encounter pipeline conflicts
resulting from instructions completing execution out of order.

The approach used in the CDC 6600 is to implement instructions with
three addresses to support overlapped execution and use a hardware struc­
ture that the designers called a scoreboard to search for conflicts. The three­
address format of instructions takes the general form:

where OP designates one of the functional units. In this fashion it becomes
possible to take advantage of pipeline execution when evaluating such
functions as (Ax B) + (C x D), which can be encoded as:

R3:=R1 XR3

R6:=R4 x Rs

R1 := R3 + R6

The second instruction uses a distinct set of registers from the first in­
struction so that it can be executed in a pipelined fashion, provided that two
distinct multipliers are available. The third instruction is interlocked with
the first two instructions, and must be delayed for their completion. Note the
WRITE/READ conflicts for Registers 3 and 6 and a READ/WRITE conflict for
Register 1, any of which would result in deferring the execution of the addi­
tion instruction.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 127

Sec. 3.2 Memory Structures in Pipeline Computers 115

The scoreboard keeps track of conflicts and defers instructions for any of
the following conditions:

• WRITE/WRITE conflict;

• WRITE/READ conflict;

• READ/WRITE conflict; and

• Function unit conflict.

In the case of WRITE/READ and READ/WRITE conflicts, the conflicting
instructions are passed through the early stages of the pipeline, in spite of the
conflicts, so that they can be decoded and their operands can be requested.
They are moved to their respective function units and deferred at those places
to wait until the conflicting conditions are cleared. In so doing, the early
stages of the pipeline are cleared and made available for new instructions.
The WRITE/WRITE and function unit conflicts are deferred before being
issued to the function units, which causes the pipeline to freeze until the
conflicting condition is cleared.

3.2 Memory Structures
in Pipeline Computers

The previous section indicates a general structure for pipeline computers and
illustrates how pipeline execution has been implemented in an early super­
computer. The major innovation of pipeline design is the ability to complete
instructions at a rate much faster than that achievable by executing in­
structions without overlapping.

We have learned that one major obstacle to continuous execution at the
maximum pipeline rate is the requirement that pipeline execution must
behave exactly as if the same instructions were executed without overlap.
This gives rise to conflicts that are detectable by hardware and results in
freezing of some operations pending the completion of others.

Let us reconsider how pipelined processors work in the context of
memory systems. In the previous section, an ideal pipelined processor de­
codes one instruction in each machine cycle. To maintain that rate, we clearly
need to supply instructions and data to the processor at a rate consistent with
the needs of the pipeline. No single large physical memory available today
can meet such demands because, at best, a memory cycle usually runs from
four to 20 processor cycles. Moreover, the ratios are not likely to change in the
future. However, cache memory can be implemented to deliver one result per
cycle, and therefore cache memory can potentially supply the demands of a
pipelined processor.

The actual requirements for a pipelined processor depend specifically on

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 128

116 Pipeline Design Techniques Chap. 3

the structure of the instruction set. The CDC 6600 instruction set provides for
fetching at most one operand from memory. A CDC 6600 instruction can be as
short as 15 bits of a 60-bit physical word. The requirements imposed by this
processor can be almost fully satisfied by a one-cycle cache memory, pro­
vided that once an instruction is read from cache, its entire 60-bit word is
held in the processor in order to obtain other instructions from that same
word without returning to cache for additional fetches.

The number of instruction and data accesses required on the average per
instruction is strongly dependent on the nature of the instruction set. As a
norm, let us consider an instruction set that accesses one word of instruction
and one word of data per instruction executed. This structure requires a
cache that can deliver two words per machine cycle for a pipelined processor.

One obvious way to meet this requirement is to have independent in­
struction and data caches. Instruction fetches are directed to the instruction
cache, and operand fetches (produced concurrently from a later stage of a
pipeline) are directed to the data caches. This structure works very well in
most cases, but it could be a problem in systems where instructions are
treated as data, modified, and immediately executed. If this were the case,
then references to the data cache would have to be checked against the
presence of the same data in the instruction cache, which severely reduces
available bandwidth to the instruction cache. However, current software­
engineering practice advises strongly against programs that modify them­
selves as we have described, and there is nothing more forceful than
erroneously executing programs to convince programmers to refrain from
writing such code.

We cannot expect caches to be the universal answer for pipeline comput­
ers because there are special situations in which vast amounts of data are
touched for the first time in some single phase of processing. Each datum in
such a situation produces a cache miss, and the large number of cache misses
occurring close together severely reduces processor performance. For this
case there is often an opportunity to pipeline the memory itself by par­
titioning memory into independent banks, as shown in Fig. 3.7.

MEMORY
BANK

PIPELINED PROCESSOR

MEMORY BUS

MEMORY
BANK

MEMORY
BANK

MEMORY
BANK

Fig. 3.7 Multiple memory banks in a pipelined computer system.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 129

116 Pipeline Design Techniques Chap 3

the structure of the instruction set. The CDC 6600 instruction set provides for
fetching at most one operand from memory. A CDC 6600 instruction can be as
short as 15 bits of a 60—bit physical word. The requirements imposed by this
processor can be almost fully satisfied by a one-cycle cache memory, pro-
vided that once an instruction is read from cache, its entire 60-bit word is

held in the processor in order to obtain other instructions from that same
word without returning to cache for additional fetches,

The number of instruction and data accesses required on the average per
instruction is strongly dependent on the nature of the instruction set. As a
norm, let us consider an instruction set that accesses one word of instruction
and one word of data per instruction executed. This structure requires a
cache that can deliver two words per machine cycle for a pipelined processors

One obvious way to meet this requirement is to have independent in-
struction and data caches. Instruction fetches are directed to the instruction

cache, and operand fetches (produced concurrently from a later stage of a
pipeline) are directed to the data caches. This structure works very well in
most cases, but it could be a problem in systems where instructions are
treated as data, modified, and immediately executed. If this were the case,
then references to the data cache would have to be checked against the
presence of the same data in the instruction cache, which severely reduces
available bandwidth to the instruction cache. However, current software-

engineering practice advises strongly against programs that modify them-
selves as we have described, and there is nothing more forceful than
erroneously executing programs to convince programmers to refrain from
writing such code.

We cannot expect caches to be the universal answer for pipeline comput-
ers because there are special situations in which vast amounts of data are
touched for the first time in some single phase of processing. Each datum in
such a situation produces a cache miss, and the large number of cache misses
occurring close together severely reduces processor performance. For this
case there is often an opportunity to pipeline the memory itself by par-
titioning memory into independent banks, as shown in Fig. 3.7‘

HPEUNEDPROCESSOR

MEMORY BUS

MEMORY MEMORY MEMORY MEMORY
BANK BANK BANK BANK

Fig. 3.7 Multiple memory banks in a pipelined computer system.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 129

Sec. 3.3 Performance of Pipelined Computers 117

The timing for accessing the banks is shown in Fig. 3.8. Note that the
banks are active in an overlapped fashion, with the second bank starting its
access one machine cycle behind the previous bank. So even though cycle
times are large, the processor can request a vector of data and will receive one
datum per cycle after a startup transient. The key to this technique is that
successive elements of the vector of data must lie in successive memory
banks.

3.3 Performance
of Pipelined Computers

The major performance characteristic of pipelined computers is that the rate
of computation can be very high even though the elapsed time of individual
operations might be very long. Since performance is the number of com­
pleted operations, pipeline-design techniques produce high performance in
spite of long delays associated with specific operations.

To the extent that a high rate of completion can be maintained, pipeline
design is an effective method for increasing performance. But when the rate
of completion drops off, possibly because of the inability to keep data flowing
through a pipeline on a continuous basis, the pipeline becomes rather costly
and may outweigh the benefits from using this design technique.

A very interesting way to view the efficiency of pipelined computers is to
compare them to highly parallel array (vector) computers. The analysis for
the array computer is very easy to derive and understand, and it corresponds
directly to the analysis for pipelined computers. This discussion is originally
due to observations by T. C. Chen [1980].

Consider a computation that is natural to execute on a parallel computer
because of its highly repetitive structure. A typical computation of this type is

4 I DATUM 3 /DATUM 7 /DATUM 111

-E 3 I DATUM 2 I DATUM 6 [DATUM 101
ca
co 2 [DATUM 1 [DATUM s [DATUM 91

1 [DATUM o I DATUM 4 [DATUM a I
Time ---

Fig. 3.8 Timing for pipelined fetches for the memory shown in Fig. 3.37.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 130

118 Pipeline Design Techniques Chap.3

a calculation to be made concurrently (in the time domain of the program) at
every point in a mesh of points. This structure is typical of partial differential
programs that solve such problems as heat transfer, the strength of mechani­
cal structures, turbulent air flow across aircraft and spacecraft wings, and
weather models. A reasonable means for solving such problems is to build a
computer composed of many processors and assign the computations at each
node in the mesh to individual processors.

The timing diagram for such a processor is shown in Fig. 3.9, where time
appears on the horizontal axis, and the processors are plotted on the vertical
axis. For a short period of time, only one processor is busy. During this period,
the processor initializes variables for the computation, parcels out the work
to be done, and performs other similar overhead computations that are serial
in nature and not replicated at other processors in the system. Following the
initialization, all processors perform the computation in parallel. The
process repeats as shown in the figure, with a new parallel operation being
preceded by a serial initialization section.

The diagram in Fig. 3.9 shows both the advantage of parallelism and the
degradation in performance due to serial computations embedded in the
program. The use of many processors provides a potential for high per­
formance, but the serial operations reduce the actual effective parallelism
below the maximum attainable. To obtain a reasonable measure of per­
formance for the situation depicted in Fig. 3.9, one interesting parameter to
study is the efficiency of a computation. This is a measure of the proportion of
time that the processors are busy. Therefore it measures the degradation in
peak performance due to serial operations and other effects.

In Fig. 3 .9, let the fraction of time spent in serial code be o: and the
fraction spent in parallel code be 1 - o:. With N processors available, the
fraction of time that processors are busy is given by:

Efficiency = ~ + 1 - o:

= 1 - o: (1 - 1/N)

As the number of processors increases, the limiting efficiency is 1 - o:. Com­
pare Fig. 3.9 with Fig. 3.10, which shows the timing diagram for the same
problem with twice as many processors used. The serial code is the same
length, but the time devoted to parallel code has been shortened, and the
fraction o: has increased.

In fact, o: for any specific problem is a function of N, the number of
processors used to solve that problem in parallel. To show this relation, let us
normalize the computation times so that the serial execution time takes one
unit, and the code that can be run in parallel takes time p on a single pro­
cessor. The parallel time shrinks to p/N when run on on N processors. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 131

Sec. 3.3 Performance of Pipelined Computers 119

9
8
7

C5 6 IJ)

"' 5
~ 4
ll.

3
2
1

a 1 - a a 1 - a

Time

Fig. 3.9 The timing history of a computation for an array processor.

18
17
16
15
14
13
12

C5
11

IJ) 10
IJ)
Q) 9 (.)

e 8
ll.

7
6
5
4
3
2

a 1 - a a 1 - a

Time

Fig. 3.10 The timing diagram for a highly parallel computation for an array
processor.

fraction a is the ratio of serial time to total execution time, and is therefore
given by

1 N
a= =--

1 + p/N N + p

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 132

Sec. 3.3 Performance of Plpelined Computers 119

 Processor -muammumo

 1-a a l—u

Time———+

Fig. 3.9 The timing history of a computation for an array processor.

_A_A_A_A_‘_._A_A ‘Mmbmmflm
Processor

—l

dwmbmmumoo
a 1701 0 17a

Time—b

Fig. 3.10 The timing diagram for a highly parallel computation for an array
processor

fraction (1 is the ratio of serial time to total execution time, and is therefore

given by

a =; = N
1 + p/N N + p

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 132

120 Pipeline Design Techniques Chap.3

The bad news is that for very large N, a approaches 1, so efficiency
approaches 0. What is happening is that the parallelizable portions of code
take a vanishingly small fraction of time, and what remains is serial, oc­
cupying one processor while the remaining processors are idle.

Figure 3 .11 shows plots of the efficiency function

. . N (1 - l/N) N - 1
Eff1c1ency = 1 - = 1 - --

N + p N+p

for various values of N and p. Consider, for example, the curve for p = 10,
which shows the efficiency for programs for which serial code accounts for
only one-tenth as much time as the parallel code when executed on a serial
processor. At N = 10 the efficiency is only 0.55 and at N = 100 the efficiency
drops to roughly 0.10.

The situation is somewhat better for programs that have an inherently
larger potential for parallelism. Consider the curve for p = 100, for example.
At N = 10, the efficiency is quite high, approximately 0.92, but it drops to
0.505 atN = 100, and to 0.168 at N = 500.

Another way of looking at the curves is to measure the speedup of parallel
execution. We define speedup by the formula

S d
Time for serial execution pee up=

Time for parallel execution

1.0~~~~~~~~~~~~~~~~~~~~

0.9

0.8

0.7

()' 0.6
c:
-~ 0.5
:=
w 0.4

0.3

0.2

0.1

100 200 300
Number of Processors

Fig. 3.11 Array-processor efficiency.

400 500

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 133

120 Pipeline Design Techniques Chap 3

The bad news is that for very large N, 0L approaches 1, so efficiency
approaches 0. What is happening is that the parallelizable portions of code
take a vanishingly small fraction of time, and what remains is serial, 0c-
cupying one processor while the remaining processors are idle.

Figure 3.11 shows plots of the efficiency function

. . N (1 — UN) N — 1

Eff1c1ency 1 N +p —1 N +1)
for various values of N and p. Consider, for example, the curve for p = 10,
which shows the efficiency for programs for which serial code accounts for
only one—tenth as much time as the parallel code when executed on a serial
processor. At N = 10 the efficiency is only 0.55 and at N = 100 the efficiency
drops to roughly 0.10.

The situation is somewhat better for programs that have an inherently
larger potential for parallelism. Consider the curve for p = 100, for example.
At N = 10, the efficiency is quite high, approximately 0.92, but it drops to
0.505 atN : 100, and to 0.168 at N = 500.

Another way of looking at the curves is to measure the speedup of parallel
execution. We define speedup by the formula

Time for serial execution
Speedup = . .

Tlme for parallel executlon

Efficiency 9_o.oo.0.o.0.0.-r NOJ45U!a:\lonCD0
.0 _.

 I _1

200 300 400 500
Number of Processors

1
0 100

Fig. 3.11 Array-processor efficiency.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 133

Sec. 3.3 Performance of Pipelined Computers 121

This formula is somewhat ambiguous because there are many different algo­
rithms that solve particular problems. If we were to take a grossly inefficient
algorithm and make it run faster by using massive parallelism, the speedup
defined previously may look very good, but in reality the performance may be
quite bad just because the algorithm is inherently bad.

To eliminate ambiguity and give a realistic appraisal of performance, we
define speedup more precisely by the formula

S d
Best serial time

pee up=
Parallel-program time

The numerator is the running time of the most efficient serial program, and
the denominator is the running time of the parallel program under study. By
comparing a parallel program with the most efficient serial program, we
avoid misleading answers that stem from using an inefficient program to
execute in parallel.

We assume in this discussion that the parallel program under analysis is
also an efficient program when executed serially. If not, the data presented
are overly optimistic. Figure 3.12 shows a plot of the speedup obtained from
this model for various values of N andp. Note how the speedup initially grows
linearly with increases in N, and then drops away from the linear growth to
become almost horizontal. Large values of p (the amount of parallelizable
code) yield higher speedups, but eventually the speedup falls away from
linear growth for high enough N.

300.--~~~~~~~~~~~~~~~~~~~-,,

280
260
240
220
200

a. 180
.g 160
Q)

~ 140
en 120

100
80
60
40
20
~=======::r::::=====::'.:=:I========:J 100 200 300

Number of Processors

Fig. 3.12 Array-processor speedup.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 134

Sec. 3 .3 Performance of Pipelined Computers 121

This formula is somewhat ambiguous because there are many different algo-
rithms that solve particular problems. If we were to take a grossly inefficient
algorithm and make it run faster by using massive parallelism, the speedup
defined previously may look very good, but in reality the performance may be
quite bad just because the algorithm is inherently bad.

To eliminate ambiguity and give a realistic appraisal of performance, we
define speedup more precisely by the formula

Best serial timeS eedu =—————-——
p p Parallel-program time

The numerator is the running time of the most efficient serial program, and
the denominator is the running time of the parallel program under study. By
comparing a parallel program with the most efficient serial program, we
avoid misleading answers that stem from using an inefficient program to
execute in parallel.

We assume in this discussion that the parallel program under analysis is
also an efficient program when executed serially. If not, the data presented
are overly optimistic. Figure 3.12 shows a plot of the speedup obtained from
this model for various values of N and p. Note how the speedup initially grows
linearly with increases in N, and then drops away from the linear growth to
become almost horizontal. Large values of p (the amount of parallelizable
code) yield higher speedups, but eventually the speedup falls away from
linear growth for high enough N.

 | l

0 100 200 300
Number of Processors

Fig. 3.12 Array-processor speedup.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 134

122 Pipeline Design Techniques Chap.3

Figure 3.9 is particularly easy to analyze because of the rectangular shape
of the regions of interest, and its analysis has led us through the discussion up
to this point. Let us use similar techniques to analyze the efficiency of pipe­
lined computers.

A timing diagram equivalent to Fig. 3.9 for pipelined computers appears
in Fig. 3.13. The horizontal axis shows time, and the vertical axis represents
the individual stages of a pipeline. The familiar stair-step diagram shows how
stages are busy as a function of time. The diagram is redrawn in Fig. 3.14, but
with a region of activity shaded. Chen [1980] observed that this region is
identical in shape to the idle region that develops as the pipeline empties.

In fact, for purposes of analysis we can move the busy region to the idle
region, creating the diagram shown in Fig. 3.15, which shows a period during
which a single stage is busy, followed by a period during which all stages are
busy. This diagram has the same general shape as Fig. 3.9 for the processor
array, and we can therefore apply the same analysis.

6

5

~4
al

Ci5 3

2

Time---•

Fig. 3.13 The timing history of a computation for a pipelined processor.

6

5

~4

m 3

2

Time---•

Fig. 3.14 The timing history of a computation before the shaded region is moved to
the idle region.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 135

122 Pipeline Design Techniques Chap. 3

Figure 3.9 is particularly easy to analyze because of the rectangular shape
of the regions of interest, and its analysis has led us through the discussion up
to this point. Let us use similar techniques to analyze the efficiency of pipe-
lined computers.

A timing diagram equivalent to Fig. 3.9 for pipelined computers appears
in Fig. 3.13. The horizontal axis shows time, and the vertical axis represents
the individual stages of a pipeline. The familiar stair-step diagram shows how
stages are busy as a function of time. The diagram is redrawn in Fig. 3.14, but
with a region of activity shaded. Chen [1980] observed that this region is
identical in shape to the idle region that develops as the pipeline empties.

In fact, for purposes of analysis we can move the busy region to the idle
region, creating the diagram shown in Fig. 3.15, which shows a period during
which a single stage is busy, followed by a period during which all stages are
busy. This diagram has the same general shape as Fig. 3.9 for the processor
array, and we can therefore apply the same analysis.

Stage y—emmssuum

Time __—"

Fig. 3.13 The timing history of a computation for a pipelined processor.

Stage —Al\)(fi#UIO)

Time —D

Fig. 3.14 The timing history of a computation before the shaded region is moved to
the idle region.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 135

Sec. 3.3 Performance of Pipelined Computers 123

Time---..

Fig. 3.15 The timing history of a computation after the shaded region is moved to the
idle region.

The serial time for a pipelined computer represents the time during which
the pipeline is filling. The parallel time represents the time during which the
pipeline is completely filled, and all stages are busy. Efficiency and speedup
are high when time for filling the pipeline is low compared to the time during
which the pipeline is busy. Efficiency drops off dramatically for pipeline
designs just as for processor arrays when the time devoted to initialization
becomes large compared to the time for actual use. It is crucial, therefore, to
keep a pipeline filled with activity and to prevent the pipeline from emptying
for significant periods of time.

The discussion thus far seems to be pessimistic from the point of view of
being able to apply massive amounts of hardware to speed up individual
programs. It seems to say that just a small fraction of serial code for the
processor array or an equally small fraction of idle time in a pipeline could
dramatically reduce efficiency as the amount of parallelism becomes large,
and therefore the use of large amounts of parallelism is not attractive. But
while the arguments hold for the models presented, these are certainly not
the only ways to build parallel machines. Some ways of structuring machines
can violate assumptions made in this analysis, and the analysis presented
will not hold for those machines.

One tacit assumption made in Fig. 3.9 is that the machine either does
serial overhead or parallel execution, and that there is no way to do both
concurrently. Such an assumption leads to a drastic impact on efficiency. The
impact was well known to the designers of the ILLIAC IV, a computer with 64
identical processing elements. To cushion the impact, the designers built in
the ability to overlap serial execution with parallel execution by using a 65th
processor to perform control and overhead functions while mesh calculations
were performed in the processor array.

The timing diagram for ILLIAC IV is more nearly like Fig. 3.16. Here, the
serial code for Loop 2 is executed while the parallel code for Loop 1 is in

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 136

Sec. 3.3 Performance of Pipelined Computers 123

Stage dNCfiAU‘O)
Time ——>

Fig. 3.15 The timing history of a computation after the shaded region is moved to the
idle region.

The serial time for a pipelined computer represents the time during which
the pipeline is filling. The parallel time represents the time during which the
pipeline is completely filled, and all stages are busy. Efficiency and speedup
are high when time for filling the pipeline is low compared to the time during
which the pipeline is busy. Efficiency drops off dramatically for pipeline
designs just as for processor arrays when the time devoted to initialization
becomes large compared to the time for actual use. It is crucial, therefore, to
keep a pipeline filled with activity and to prevent the pipeline from emptying
for significant periods of time.

The discussion thus far seems to be pessimistic from the point of view of
being able to apply massive amounts of hardware to speed up individual
programs. It seems to say that just a small fraction of serial code for the
processor array or an equally small fraction of idle time in a pipeline could
dramatically reduce efficiency as the amount of parallelism becomes large,
and therefore the use of large amounts of parallelism is not attractive. But
while the arguments hold for the models presented, these are certainly not
the only ways to build parallel machines. Some ways of structuring machines
can violate assumptions made in this analysis, and the analysis presented
will not hold for those machines.

One tacit assumption made in Fig. 3.9 is that the machine either does
serial overhead or parallel execution, and that there is no way to do both
concurrently. Such an assumption leads to a drastic impact on efficiency. The
impact was well known to the designers of the ILLIAC IV, a computer with 64
identical processing elements. To cushion the impact, the designers built in
the ability to overlap serial execution with parallel execution by using a 65th
processor to perform control and overhead functions while mesh calculations
were performed in the processor array.

The timing diagram for ILLIAC IV is more nearly like Fig. 3.16. Here, the
serial code for Loop 2 is executed while the parallel code for Loop 1 is in

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 136

124 Pipeline Design Techniques Chap.3

progress. In ideal circumstances, the serial code can be completed while Loop
1 is in progress, and no time will be devoted exclusively to serial execution of
the overhead between the execution of Loops 1 and 2.

In less ideal circumstances, only some of the serial code can be over­
lapped with the parallel code of the previous loop, so that there remains some
residual time dedicated to overhead that cannot be overlapped, although
such overhead time may be greatly diminished by overlapping execution.
Figure 3.16 shows that the ILLIAC IV combined pipeline execution with
parallel execution. The serial initialization code of the second loop is
pipelined with the parallel execution of the body of a loop.

The corresponding idea for pipelined computers appears in Fig. 3.17.
Figure 3.l 7(a) shows one pipeline operation closely following another in a
single pipeline. The initiation of the second operation occurs shortly after the
first operation leaves the first stage of the pipeline. The stages of the pipeline
are almost fully utilized, and efficiency is high.

Contrast this behavior with the behavior shown in Fig. 3.17(b), in which a
pipeline must first empty before a new operation can be initiated. In this case
the startup transient is very costly and leads to a severe performance deg­
radation as the number of stages in the pipeline becomes large.

The two different behaviors shown in Fig. 3.17 are characteristics of
specific designs, and not inherent characteristics of pipeline designs. For
example, the CDC STAR is a high-speed pipelined processor that operates on
vectors. It behaves like the diagram in Fig. 3.l 7(b) in that one vector oper­
ation must terminate before the next can begin. However, the fraction of time
during which a pipeline is empty depends on the length of a vector, and for

9
8

7

~ 6
en
~ 5
0 a: 4

3

2

Time---.

Fig. 3.16 Overlapping of a computation of one phase with the initialization of another
on an ILLIAC IV-type array processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 137

124 Pipeline Design Techniques Chap. 3

progress. In ideal circumstances, the serial code can be completed while Loop
1 is in progress, and no time will be devoted exclusively to serial execution of
the overhead between the execution of Loops 1 and 2.

In less ideal circumstances, only some of the serial code can be over-
lapped with the parallel code of the previous loop, so that there remains some
residual time dedicated to overhead that cannot be overlapped, although
such overhead time may be greatly diminished by overlapping execution.
Figure 3.16 shows that the ILLIAC IV combined pipeline execution with
parallel execution. The serial initialization code of the second loop is
pipelined with the parallel execution of the body of a loop.

The corresponding idea for pipelined computers appears in Fig. 3.17.
Figure 3.17(a) shows one pipeline operation closely following another in a
single pipeline. The initiation of the second operation occurs shortly after the
first operation leaves the first stage of the pipeline. The stages of the pipeline
are almost fully utilized, and efficiency is high.

Contrast this behavior with the behavior shown in Fig. 3.17(b), in which a
pipeline must first empty before a new operation can be initiated. In this case
the startup transient is very costly and leads to a severe performance deg-
radation as the number of stages in the pipeline becomes large.

The two different behaviors shown in Fig. 3.17 are characteristics of
specific designs, and not inherent characteristics of pipeline designs. For
example, the CDC STAR is a high—speed pipelined processor that operates on
vectors. It behaves like the diagram in Fig. 3.17(b) in that one vector oper-
ation must terminate before the next can begin. However, the fraction of time
during which a pipeline is empty depends on the length of a vector, and for

9
8
7

‘5
$685O
54

3
2

Tlme —§

Fig. 3.16 Overlapping of a computation of one phase with the initialization of another
on an ILLIAC IV-type array processor.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 137

Sec. 3.3 Performance of Pipelined Computers 125

very long vectors this fraction can be negligible. For short vectors, the over­
head of operation initiation can be rather severe, so the machine architecture
is rather biased towards processing long vectors.

The CRAY I architecture is a pipelined machine whose behavior is more
like Fig. 3.17(a) in that two and sometimes three different vector operations
can be overlapped. For example, when computing expressions of the form

A :=Bx C

D :=E +A

where all variables are vector quantities, the output of the multiply pipeline
is routed directly to the addition pipeline, and the addition operation is
overlapped partially with the multiplication operation, thereby eliminating
idle time due to initiation of the addition operation.

Although the ability to chain computations in this fashion depends to a
great extent on the nature of the computation, the Cray I architecture is
somewhat more efficient for computations where chaining is possible than
for those where chaining is not possible.

The introduction of the Cray 11, with different relative timings, leads to
different conclusions with regard to chaining. Vector lengths cannot exceed

(b)

Fig. 3.17 Two possible ways of controlling a pipelined processor:
(a) Overlap permitted between successive initiations; and
(b) No overlap permitted between successive initiations.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 138

Sec. 3.3 Performance of Pipelined Computers 125

very long vectors this fraction can be negligible. For short vectors, the over-
head of operation initiation can be rather severe, so the machine architecture
is rather biased towards processing long vectors

The CRAY I architecture is a pipelined machine whose behavior is more
like Fig. 3_l7(a) in that two and sometimes three different vector operations
can be overlapped. For example, when computing expressions of the form

Ar=B><C

Dt=E+A

where all variables are vector quantities, the output of the multiply pipeline
is routed directly to the addition pipeline, and the addition operation is
overlapped partially with the multiplication operation, thereby eliminating
idle time due to initiation of the addition operation.

Although the ability to chain computations in this fashion depends to a
great extent on the nature of the computation, the Cray 1 architecture is
somewhat more efficient for computations where chaining is possible than
for those where chaining is not possible.

The introduction of the Cray II, with different relative timings, leads to
different conclusions with regard to chaining. Vector lengths cannot exceed

Time ——>

Time ——>

(b)

Fig. 3.17 Two possible ways of controlling a pipelined processor:
(a) Overlap permitted between successive initiations; and
(b) No overlap permitted between successive initiations.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 138

126 Pipeline Design Techniques Chap.3

64 on the Cray II, so long vectors have to be treated as a sequence of short
vectors. So the vector equations

A :=B xc

D :=E +A

actually can be implemented as a sequence of vector operations of the form

A0 :=Box C0

Do:= Eo +Ao

A1 :=B1 x C1

D1 :=E1 +A1

where each subscripted variable denotes a vector of length 64.
Potential overlap is available by overlapping either the add and multiply

operating on the same set of data, or by overlapping an add with an add or a
multiply with a multiply where the operations are applied to different sets of
data. The overlap of addition with multiplication involves chaining the
output of one computation to the input of the next. But the overlap of two
vector addition or two vector multiplication operations on independent data
requires no chaining of this type.

The architecture of the Cray II is such that both ways of obtaining overlap
yield roughly equal speed. Hence, some programs that might require chain­
ing on other architectures receive relatively less benefit from chaining on the
Cray II when there are other viable alternatives for overlapping computa­
tions.

In actual practice, pipelines rarely exceed ten to 20 stages, and systems
with hundreds of stages are rather unrealistic. The corresponding model for
array processors is a system with ten to 20 processors, not one with hundreds
of processors. There is a noticeable inefficiency when pipelines empty for
short periods of time, but at low levels of parallelism, the inefficiency may be
tolerable compared to the cost of extra hardware required to keep the pipe­
line full. At higher levels of parallelism, the inefficiency due to an empty
pipeline would be much more pronounced, and almost surely should be
eliminated if possible.

Consequently, for the pipelines with ten to 20 stages, designers choose
between the cost of extra hardware to maintain a full pipeline and the ineffi­
ciency produced by allowing a pipeline to empty partially or completely
between operations. The best choice is quite dependent on the available
technology as well as on the cleverness of the designer to find inexpensive
ways to maintain maximum use of a pipeline. Some very effective techniques

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 139

Sec. 3.4 Control of Pipeline Stages 127

for designing pipelined computers with maximum throughput appear in the
next section.

3.4 Control of Pipeline Stages

The key idea of the last section is the importance of overlapping pipeline
operations as much as possible. In this section we look at a technique origi­
nated by Davidson [1971] and subsequently refined by Shar and Davidson
[1974], Patel and Davidson [1976], and Kogge [1981]. Kogge's work is partic­
ularly illuminating because of the breadth of the information covered and the
detail presented.

The idea is to build a very simple controller that gates operations at the
entry to a complex pipeline. The controller admits new operations to the
pipeline in a manner that can sustain the maximum throughput of the pipe­
line, while guaranteeing that two or more operations do not collide at a stage
within the pipeline even when different operations may take different routes
through the system.

The approach we take is to develop a running example of a floating-point
arithmetic unit to show basic design techniques and then discuss the control
techniques required to maximize throughput of the arithmetic unit.

3.4.1 Design of a Multi-function Pipeline

We first briefly examine floating-point multiplication and addition to
construct a reasonable approximation to a pipelined arithmetic unit for these
operations. The simpler of the two operations to describe is multiplication.

Floating-point Multiplication

1. The input values are assumed to be two normalized floating-point num­
bers represented by the tuples (Mantissa1, Exponent 1) and (Mantissa2,
Exponentz), respectively. The first step is to add the exponents to form
Exponentour·

2. Multiply the two mantissas to form a double-length mantissa. This step
may be overlapped with the addition of exponents, and the step may take
several time units if the design breaks up the multiplication into chunks
that use a common multiplier unit in successive periods of time.

3. Examine the product mantissa, and if it is not normalized, normalize it
and adjust the exponent accordingly. (To renormalize the product, the
mantissa may have to be adjusted by as much as one digit position.)

4. Round the product mantissa to a single-length mantissa, and, if the
rounding should cause the mantissa to overflow, adjust the exponent.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 140

128 Pipeline Design Techniques Chap. 3

This description maps into a linear pipeline something like the one shown in
Fig. 3.18. The number of stages for the multiplication operation is left
unspecified in this figure. Actually a multiplication operation can be broken
into two components, done sequentially:

1. Produce a collection of partial products; and

2. Add the partial products.

This creates two stages for the multiplier if we can produce all partial
products at once. One stage produces the partial products, and the next stage
sums them and propagates carries. In practice, this form of a multiplier is
extremely hardware intensive and is somewhat reduced in complexity by
breaking down the multiplication into more pieces.

For example, simply by breaking the operands into high and low halves,
we can form four products by forming all combinations of high and low
halves of two operands. These four products can be combined to form the
overall product. This breaks the multiplication into four pieces, each of which
involves generating a collection of partial products and adding their results
to a running sum. The time is longer by a factor of 4, but the hardware is
reduced by roughly a factor of 4. Obviously, there is a trade-off between
hardware and time for this problem.

Figure 3 .1 9 shows how the design might look if we pass through the two
mantissa-multiply stages several times. The design provides a feedback path
around the partial product stage so that on subsequent cycles different

!
Add Exponents

l
Multiply Mantissas

l
Normalize

Round

Fig. 3.18 A linear pipeline for floating-point multiplication.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 141

Sec. 3.4 Control of Pipeline Stages 129

Add Exponents I
1

Form Partial Products

Accumulator

Normalize

Round

Renormalize

Fig. 3.19 A pipelined floating-point multiplier with feedback loops.

collections of partial products can be produced. Similarly, there is also a
feedback path around the partial-product accumulator, which provides a
means for summing partial products into the current one.

The feedback path breaks up the pipeline into a structure that is some­
what more complex than the regular structure of a linear pipeline. In the new
structure, we have to be careful when we launch a new operation into the
beginning of the pipeline. It is possible to launch a new operation too early, in
which case it may collide with an operation in progress.

Now let us consider floating-point addition. This process can be described
as follows:

Floating-point Addition

1. The input values are assumed to be two normalized floating-point num­
bers represented by the tuples (Mantissa1, Exponent 1) and (Mantissa2 ,

Exponent2), exactly as for floating-point multiplication. Subtract
exponents to find the difference Expdiff and to determine which exponent
is larger. If Exponent2 is smaller than Exponent1, swap the operands.

2. Shift Mantissa2 to the right the number of digit positions given by Expdiff·

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 142

Sec. 3.4 Control of Pipeline Stages 129

Add Exponenls I

Form Partial Products

Accumulator

Normalize I

Renormalize l

Fig. 3.19 A pipelined floating-point multiplier with feedback loops.

fl

collections of partial products can be produced. Similarly, there is also a
feedback path around the partial-product accumulator, which provides a
means for summing partial products into the current one.

The feedback path breaks up the pipeline into a structure that is some-
what more complex than the regular structure of a linear pipeline. In the new
structure, we have to be careful when we launch a new operation into the
beginning of the pipeline. It is possible to launch a new operation too early, in
which case it may collide with an operation in progress.

Now let us consider floating—point addition. This process can be described
as follows:

F[Dating-point Addition

1. The input values are assumed to be two normalized floating-point num-
bers represented by the tuples (Mantissal, Exponent 1) and (Mantissaz,
Exponentz), exactly as for floating-point multiplication. Subtract
exponents to find the difference Expdifi and to determine which exponent
is larger. If Exponent; is smaller than Exponentl, swap the operands.

2. Shift Mantissaz to the right the number of digit positions given by Expdifi.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 142

130 Pipeline Design Techniques Chap.3

3. Add the mantissas and initialize the exponent of the sum to be Exponent1•

4. Renormalize the sum mantissa, adjusting Exponentsum to reflect the num­
ber of digit positions of adjustment required.

5. Round the sum to a single-length mantissa and, if the rounding causes the
mantissa to overflow, renormalize and adjust the exponent.

If this operation were implemented in a pipeline structure, the pipeline
might look like the one in Fig. 3.20. This pipeline has the simple structure of a
linear pipeline, but it might well be more complex. The shifting operation, for
example, is very costly to implement in a single cycle, and a designer may
choose to implement only a few shift paths in a shifter.

Suppose, for example that a single stage has shift paths of 1 digit, 4 digits,
or 16 digits so that it can shift by amounts such as 0, 1, 5, 16, or 21, which use
each of the existing paths in combinations of zero or one time per path.

Subtract Exponents

Partial Shift

I
Add Mantissas

Find Leading 1

Partial Shift

Round

Renormalize

l
Fig. 3.20 A pipelined floating-point adder with feedback loops.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 143

130 Pipeline Design Techniques Chap. 3

3. Add the mantissas and initialize the exponent of the sum to be Exponent 1.

4. Renormalize the sum mantissa, adjusting Exponentmm to reflect the num-
ber of digit positions of adjustment required.

5. Round the sum to a single-length mantissa and, if the rounding causes the
mantissa to overflow, renormalize and adjust the exponent.

If this operation were implemented in a pipeline structure, the pipeline
might look like the one in Fig. 3 .20. This pipeline has the simple structure of a
linear pipeline, but it might well be more complex. The shifting operation, for
example, is very costly to implement in a single cycle, and a designer may
choose to implement only a few shift paths in a shifter.

Suppose, for example that a single stage has shift paths of 1 digit, 4 digits,
or 16 digits so that it can shift by amounts such as 0, l, 5, 16, or 21, which use
each of the existing paths in combinations of zero or one time per path.

Subtract Exponents

Partial Shift

Add Mantissas I

Find Leading 1

Partial Shin

Renormalize I

Fig. 3.20 A pipelined floating—point adder with feedback loops.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 143

Sec. 3.4 Control of Pipeline Stages 131

Suppose too that this stage cannot shift by amounts, such as 3 or 8 positions,
that require an existing path to be used more than once in a single cycle. In
multiple cycles this shifter can shift any amount between 0 and 63 positions if
data are circulated through it up to four times. Consequently, the designer
can trade off hardware complexity of the shifter for additional time in the
pipeline. The shifter can be installed much like the multiplication unit in the
floating-point multiplier of Fig. 3.19.

In comparing Figs. 3 .19 and 3 .20, we see several common operations.
Both units require an adder/subtracter/incrementer for exponents. The nor­
malizer of the floating-point multiplier is less complex than the normalizer of
the floating-point adder, but a floating-point multiplication could certainly
use the normalizer of a floating-point adder if one were available. Finally, the
accumulator for partial products can easily be used to add the operands in
the floating-point adder if it were available to the floating-point adder.

The point is that we can combine the two structures of Figs. 3.19 and 3.20
into a single structure that can serve both purposes. One possible way to do
this appears in Fig. 3.21. There are two possible paths through this floating­
point unit, depending on the nature of the operation. The control of this unit
appears to be very complex because the danger of a future collision exists if a
new operation is admitted to the arithmetic unit while one or more oper­
ations are in progress within the unit.

To anticipate future collisions, we need to develop a timing diagram that
shows the flow of data through the arithmetic unit. Davidson [1971] devel­
oped the notion of a reservation table, shown in Fig. 3.22, that gives the timing
information we need. In Fig. 3.22(a) we show the floating-point multiplica­
tion operation. Each row of the table represents a physical stage within the
arithmetic unit. Each column of the table represents a time step.

In Fig. 3.22(a) we assume that an operation passes through the first two
steps in successive time steps and then reaches the stages that perform the
mantissa multiplication. For sake of discussion, assume that mantissa
multiplication takes two time steps to form all partial products and two time
steps (shifted one step later in time) to add the partial products. The last three
steps normalize the product, round to single length, then renormalize again if
the mantissa overflows.

The reservation table for floating-point addition in the unit appears in
Fig. 3.22(b). Note how the flow is quite different from the flow for multiplica­
tion. Also note that the tables have their rows labeled by the same stages in
the same order, which is very important for the analysis to come. Our
problem then becomes one of determining how to control a pipeline with the
given reservation tables. At this point, the reservation tables contain all the
pertinent information needed to develop a control methodology.

Note how the reservation table is derived directly from the pipeline de­
sign, but some information is lost in the construction of the table. It is not
possible to recover the data flow of the pipeline from the information in the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 144

132 Pipeline Design Techniques Chap.3

table, in general, and two quite different pipelines might have identical
reservation tables.

3.4.2 The Collision Vector and Pipeline Control

We will simplify the problem initially to consider how to control a pipeline
unit that performs a single function. To derive the control algorithm we need
to construct a reservation table such as the one given in Fig. 3.22(a). If we

!
Exponent Add/Subtract

l
I

Partial Shift I Form Partial Products I

i
Add Mantissas

Find Leading 1

I
Partial Shift

Round

I
I

Renormalize

Fig. 3.21 A combined floating-point adder and multiplier.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 145

132 Pipeline Design Techniques Chap 3

table, in general, and two quite different pipelines might have identical
reservation tables.

3.4.2 The Collision Vector and Pipeline Control

We will simplify the problem initially to consider how to control a pipeline
unit that performs a single function. To derive the control algorithm we need
to construct a reservation table such as the one given in Fig. 3.22(a). If we

l
Exponent Add/Subtract

! Partial Shift I
Add Mantissas

Form Partial Products

Find Leading 1

‘ Partial Shift I

Round I

Fienormalize

Fig. 3.21 A combined floating-point adder and multiplier.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 145

Sec. 3.4 Control of Pipeline Stages 133

launch an operation into the pipeline, at what future times can we launch
another identical operation? The solution is very simple. We use the reserva­
tion table as a template and overlay one copy of the template on the table,
shifted to represent an initiation later in time.

Figure 3.23(a) shows what this might look like when we shift one template
by one time unit with respect to the other one. The Xs show the template of
Fig. 3.22(a), and the Ys are the same template shifted to the right one time
unit. Note how the two templates together show the total activity in the
pipeline for two multiplies, delayed with respect to each other by one time
unit. A nonempty cell denotes that the corresponding func~ion unit will be
busy at the corresponding time, and the entry in the cell indicates which

Ex Add

Mull

Man Add

Reno rm

Round

Shift A

Lead 1

Shift B

Ex Add

Mull

Man Add

Renorm

Round

Shift A

Lead 1

Shift B

x

x

2 3

x x
x

2 3

x x

4 5 6 7

x
x x

x

(a)

4 5 6 7

x

x
x x

(b)

Fig. 3.22 Reservation tables for the floating-point arithmetic unit:
(a) Multiplication; and
(b) Addition.

8 9

x
x

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 146

134 Pipeline Design Techniques Chap. 3

operation has reserved the function unit. If a cell contains both an X and a Y,
then both operations require the same unit at the same time. In this case we
say that a collision exists.

In Fig. 3 .23(a) there is a collision at the multiply unit at the third clock, so
we conclude that it is not possible to launch a new multiply one time unit
after launching the first multiply. We represent the collision information in a
binary vector that we call a collision vector, as shown in Fig. 3.23(b). Position i
contains a bit that indicates whether or not a new operation can be launched
i units after a multiplication has been initiated, with a 1 indicating that a
collision will occur and a 0 indicating that no collision will occur. The 1 in
Position 1 in the figure indicates that we cannot initiate a new multiplication
one time unit after initiating a multiplication.

The full collision vector is 110000, indicating that a collision occurs if we
attempt to enter a new multiplication at either of the two clock cycles imme­
diately after initiating a multiplication, but any time thereafter we can
initiate a new one. The reader can verify this by shifting a transparency

1 2 3 4 5 6 7

Ex Add x y

Mull x
Man Add y

Re norm x y x
Round x y

Shift A

Lead 1

Shift B

(a)

1 1 0 0 0 0 I
(b)

1 0 0 0 0 0 0 0 I
(c)

Fig. 3.23 Derivation of collision vectors for addition:
(a) Collisions of operation X with operation Y, launched one cycle before X;
(b) Collision vector for a multiplication reservation-table; and
(c) Collision vector for an addition reservation-table.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 147

134 Pipeline Design Techniques Chap. 3

operation has reserved the function unit. If a cell contains both an X and a Y,
then both operations require the same unit at the same time. In this case we
say that a collision exists.

In Fig. 3 .23(a) there is a collision at the multiply unit at the third clock, so
we conclude that it is not possible to launch a new multiply one time unit
after launching the first multiply. We represent the collision information in a
binary vector that we call a collision vector, as shown in Fig. 3 .23(b). Position 1'
contains a bit that indicates whether or not a new operation can be launched
1' units after a multiplication has been initiated, with a 1 indicating that a
collision will occur and a 0 indicating that no collision will occur. The 1 in
Position 1 in the figure indicates that we cannot initiate a new multiplication
one time unit after initiating a multiplication.

The full collision vector is 110000, indicating that a collision occurs if we
attempt to enter a new multiplication at either of the two clock cycles imme—
diately after initiating a multiplication, but any time thereafter we can
initiate a new one. The reader can verify this by shifting a transparency

Ex Add
Mult

Man Add
Flanorm

Round
Shift A

Lead 1

Shift B

1ooooooo

(C)

Fig. 3.23 Derivation of collision vectors for addition:
(a) Collisions of operationX with operation Y, launched one cycle before X;
(b) Collision vector for a multiplication reservation-table; and
(c) Collision vector for an addition reservation-table.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 147

Sec. 3.4 Control of Pipeline Stages 135

containing a copy of the reservation table over the same table and observing
the set of delays that produce collisions.

The collision vector for additions appears in Fig. 3.23(c). It has the value
10000000 because the cycle immediately after an addition operation is
unavailable for a new addition, but any of the subsequent seven cycles can
begin new addition operations. Again, the reader should verify this result by
using Fig. 3.22(b) as a template on a transparency and shifting the template
over the same table. The two shifters in this pipeline tend to eliminate col­
lisions with the adder. If a single shifter is shared for the two functions, the
collision vector tends to become more heavily populated, thereby limiting the
frequency of initiation of new operations at some savings in hardware be­
cause of the shared logic.

We can also determine if an addition will collide with a multiplication in
progress, and conversely, if a multiplication will collide with an addition in
progress. Simply place the reservation table from Fig. 3.22(a) on top of the
table from Fig. 3.22(b) and shift the two relative to each other. In positions
where an X from one table collides with an X from the other, no initiation of
the second operation is permitted at that particular value of delay with
respect to the first operation.

The problem of major interest here is how to control a pipeline dynami­
cally. We cannot afford a complex control scheme, not because hardware is
particularly expensive, but because the control information must be com­
putable within a single clock cycle to keep up with the requests for entry to
the pipeline. A complex algorithm might not be able to meet the performance
requirements of a high-speed pipeline.

Davidson [1971] produced a very clever control element from the col­
lision vector. For a single-function pipeline, the pipeline controller is simply a
shift register that shifts its contents to the left during each clock cycle. The
collision vector can be OR' ed with the contents of the shift register at any
clock cycle. The controller operation is basically the following:

1. Grant a request for access to the pipeline during a clock cycle for which
the bit emerging from the shift register is a 0. Deny access in the current
cycle if the bit is a 1 and hold the request for the next cycle.

2. If a request is granted, when the shift register is updated at the end of the
current cycle, its new contents will be the shifted value of its former
contents OR'ed with the collision vector.

3. If no request is granted during a clock cycle, update the register by
shifting its contents to the left, as shown in the figure. At the right-hand
end, O's are shifted into the register. If any operation has to wait, the
operation is guaranteed to gain access to the pipeline within a time no
longer than the length of the collision vector. By waiting for this period of
time, we are guaranteed to clear the contents of the shift register. Hence, a

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 148

136 Pipeline Design Techniques Chap.3

0 must appear at the shift-register output by then, thereby permitting a
new initiation.

If only one operation is in progress when a request occurs, the shifted
version of the collision vector in the shift register indicates those relative
delays between initiations that will produce a collision in the pipeline. This
follows because the l's in the collision vector show the relative delays that
produce collisions. If two or more operations are in progress, then a new
operation cannot be started if it collides with any of the ones in progress. The
INCLUSIVE OR operation produces a vector whose l's show relative delays
for which at least one of the operations currently in progress will collide with
a new operation if the new operation is initiated on the present cycle.

This argument shows that the basic idea of collision vector and shift­
register controller is quite workable for a single-function pipeline.

The calculations become somewhat trickier when a pipeline supports
multiple functions, as we show in the present example. There are now four
collision vectors:

1. Multiply following multiply;

2. Add following add;

3. Add following multiply; and

4. Multiply following add.

The first two collision vectors show the delays at which a new operation
collides with the same type of operation started earlier in the pipeline. These
are the vectors computed in Fig. 3.23(b) and (c). The last two vectors show the
delays at which an addition collides with an earlier multiply, or a multiply
collides with an earlier addition. These are computed by overlaying the table
in Fig. 3 .22(a) on Fig. 3 .22(b) and observing at what delays there is a collision.
The vectors produced by this process are shown in the controller in Fig. 3.24.
The reader should verify how these vectors have been produced.

The controller in Fig. 3 .24 admits either an addition or a multiplication to
the pipeline, and it guarantees that no collisions occur after an operation is
admitted, no matter what the current state of the pipeline is. Here we use two
shift registers, one that keeps track of when adds can be initiated and one that
keeps track of when multiplies can be initiated.

Suppose the controller receives a request to perform an addition. The
controller consults the bit emerging from the ADD shift register. If the bit is a
1, the request is deferred; otherwise the request is granted. Once the request
is granted, a new operation (an addition) enters the pipeline and becomes an
operation that can conflict with future requests. In this case, the MULTIPLY
shift register is updated by ORing in the multiply-following-add collision
vector, and the ADD shift register is updated by ORing in the add-following­
add collision vector. The new vectors contain l's in positions that lead to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 149

Sec. 3.4 Control of Pipeline Stages

Multiply following Multiply

1 1 0 0 0 0

MULTIPLY

GRANTED

.. GRANT

MULTIPLY
(ii 0)

Add following Multiply

0 0 0 0 0 0 0 0

MULTIPLY

GRANTED

(if 0)

Multiply following Add

11010000

ADD
GRANTED

-----0

Add following Add

1 0 0 0 0 0 0 0

ADD

GRANTED

137

Fig. 3.24 A shift-register controller for a dual-function pipeline. The collision vector
"multiply following add" shows what will occur when a multiplication enters while
an addition is in progress.

collisions if a subsequent addition or multiplication is initiated at the
corresponding time.

The treatment of multiplication requests is completely symmetric with
addition requests. The multiplication requests inspect the MULTIPLY shift
register for the bit that grants or denies access, and if access is available, the
MULTIPLY shift register is updated by ORing it with the multiply-following­
multiply collision vector, and the ADD shift register is updated by ORing in
the add-following-multiply collision vector.

As the number of different paths through the pipeline increases, the num­
ber of shift registers required in the controller increases in proportion, one
shift register for each possible path. The computation required per cycle is at
worst the selection of one collision vector from a collection of such vectors
and the ORing of the selected vector to the shift register during the register's
normal update cycle.

This concludes the discussion of how to control a pipeline correctly at
very high rates of computation, but we shall continue to develop this idea to
determine how to achieve maximum throughput.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 150

Sec. 3.4 Control of Pipeline Stages 137

 Multiply following Multiply Multiply following Add

110000 I 11010000 I
MULTIPLY ADD———DGATE GATE 1——
GFlANTED - GRANTED

GRANT

 MULTIPLY

(il 0)

Add lollowing Multiply Add followmg Add

00000000 10000000

MULTIPLY ADD
GRANTED (EA-[E‘—GRANTED

GRANT
ADD
(if 0)

Fig. 3.24 A shift—register controller for a dual-function pipeline. The collision vector
"multiply following add” shows what will occur when a multiplication enters while
an addition is in progress.

collisions if a subsequent addition or multiplication is initiated at the
corresponding time.

The treatment of multiplication requests is completely symmetric with
addition requests. The multiplication requests inspect the MULTIPLY shift
register for the bit that grants or denies access, and if access is available, the
MULTIPLY shift register is updated by ORing it with the multiply-following-
multiply collision vector, and the ADD shift register is updated by ORing in
the add-following-multiply collision vector.

As the number of different paths through the pipeline increases. the num—
ber of shift registers required in the controller increases in proportion, one
shift register for each possible path. The computation required per cycle is at
worst the selection of one collision vector from a collection of such vectors

and the ORing of the selected vector to the shift register during the register's
normal update cycle.

This concludes the discussion of how to control a pipeline correctly at
very high rates of computation, but we shall continue to develop this idea to
determine how to achieve maximum throughput.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 150

138 Pipeline Design Techniques Chap.3

3.4.3 Maximum Performance Pipelines

The control strategy to which we alluded in the previous section suggests that
a new computation should be started at the first clock cycle for which the
computation is guaranteed not to collide with computations now in progress.
This is sometimes called a greedy strategy because the controller tries to
initiate new operations as quickly as possible. The strategy is not necessarily
the best, but it is certainly the easiest to implement.

When the greedy control strategy is an optimum strategy, we have a
welcome situation because the least-costly control strategy yields highest
performance. By looking more closely at the reservation table and collision
vector concepts, we can bias designs so that they yield a combination of high
performance and simple control.

To understand more thoroughly the principles that govern collision vec­
tors, consider all of the possible states of a shift-register controller. Figure
3.25 shows a collision vector derived from a reservation table and the various
states derivable from this collision vector by initiating new operations at all
possible combinations of times.

The diagram in the figure, called a reduced state-diagram, shows each
state of a shift register just after a new operation has been initiated. The

2
3

......_ __ 1 " 11 Ell_ __ 2 ___ 1 _0 1 1 0 1......_1 __ _,

8
5

8

5
5 3

1 1 1 1 0 1 1
8 5

8 .___3 ______ _,

Fig. 3.25 The reduced state-diagram for the collision vector 1001011. The states
shown are all possible states at which a new operation has just been initiated. The
numbers on the arcs show the delay between successive states.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 151

138 Pipeline Design Techniques Chap. 3

3.4.3 Maximum Performance Pipelines

The control strategy to which we alluded in the previous section suggests that
a new computation should be started at the first clock cycle for which the
computation is guaranteed not to collide with computations now in progress.
This is sometimes called a greedy strategy because the controller tries to
initiate new operations as quickly as possible. The strategy is not necessarily
the best, but it is certainly the easiest to implement.

When the greedy control strategy is an optimum strategy, we have a
welcome situation because the least-costly control strategy yields highest
performance. By looking more closely at the reservation table and collision
vector concepts, we can bias designs so that they yield a combination of high
performance and simple control.

To understand more thoroughly the principles that govern collision vec-
tors, consider all of the possible states of a shift-register controller. Figure
3.25 shows a collision vector derived from a reservation table and the various

states derivable from this collision vector by initiating new operations at all
possible combinations of times.

The diagram in the figure, called a reduced state-diagram, shows each
state of a shift register just after a new operation has been initiated. The

1001011

1101011:
Fig. 3.25 The reduced state-diagram for the collision vector 1001011. The states
shown are all possible states at which a new operation has just been initiated. The
numbers on the arcs show the delay between successive states.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 151

Sec. 3.4 Control of Pipeline Stages 139

labels on the arrows between states indicate the number of clock cycles that
intervene as the shift register moves from an initial state to a final state. Since
the initial vector is 1001011, we know that at least one clock must occur after
initiating an operation, and a new operation can be initiated at the second
clock.

Immediately after initiating the first operation, the shift register contains
1001011, the collision vector. Immediately after initiating another opera ti on
two clocks later, the new contents of the shift register are 0101100 OR
1001011=1101111. Consequently, Fig. 3.25 contains an arrow starting at
state 1001011 that ends at state 1101111 with the label 2 to indicate that the
state is entered two cycles after a new operation is initiated from the initial
state. By proceeding in this manner, all new states and transition times
between states can be enumerated, and we obtain the figure shown.

Specifically, we build the reduced state-diagram by the following
algorithm:

1. Create a set of states to examine by placing an initial state into this set.
That initial state is labeled with the collision vector. Initialize the state
diagram to a single node bearing the label of the collision vector. (This
represents the state of the controller when one operation has just been
launched down the pipeline.)

2. Remove a state from the set of states to examine. For each 0 in the label of
this state, find the state of the controller shift-register that would be
obtained if a new operation were launched just when the corresponding 0
emerges from the shift register. The label of the successor state corre­
sponding to the ith 0 is obtained by shifting the present label i positions to
the left, appending i O's on the right, and ORing in the collision vector to
the resulting label.

3. If a successor state is new, add it to the state diagram and place the
successor state in the list of states to be examined.

4. In any case draw an arc from the present state to the successor state in the
state diagram and label the arc with the value i to indicate the number of
cycles of delay that occur between the present state and the entry to the
successor state.

5. Add an arc to the initial state of the diagram arrow with the label N,
where N is one more than the length of the shift register.

6. When the successors of a state have been exhausted, return to the set of
states to be examined ·for a new state to process. If there are no more
states to be examined, terminate the construction of a reduced state­
diagram.

We can find the maximum rate that can be sustained for the pipeline by
examining the cycles in the reduced state-diagram. There are cycles of vari-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 152

140 Pipeline Design Techniques Chap.3

ous lengths, including 5 and 8. Each cycle in this diagram corresponds to
some way of repeatedly initiating operations. The cycle of length 5 that
touches state 1101011 is a cycle with one initiation every five cycles, for a rate
of completion of 0.2 operations per cycle. The cycle of length 8 that visits
states 1011011and1101011 has two completions every eight states, for a rate
of 0.25 operations per cycle.

Note the arcs of length 8 from each state to the initial state. They appear
because, after seven shifts, the shift register is empty, and the next initiation
brings us to the initial state of the reduced state-diagram.

The greedy strategy starts with a delay of 2 and then falls into a pattern of
3, 5, 3, 2, which is a stable cycle with four completions every 13 clock cycles,
for a rate of roughly 0.31 completions per cycle. This particular cycle leads to
the highest rate of use of the pipeline. In this example, the greedy strategy
happens to give the best performance.

Designers of pipeline systems should perform the analysis given here to
derive the highest rate cycles and determine a strategy for the controller to
follow to achieve the highest rate. As a measure of the effectiveness of the
control strategy, we can easily obtain a bound on the highest possible rate as
determined from the reservation table. Simply examine the reservation table,
such as the table in Fig. 3.22(a), and find the row with the greatest number .of
entries.

In Fig. 3.22(a), both the second and third rows have two entries. These
rows are bottlenecks and limit maximum throughput. In fact, because the
corresponding physical stages are used in two of the seven clock times repre­
sented by the table, they saturate when the controller initiates 7/2 operations
per seven clocks, or equivalently when the average delay per initiation is two
clock periods. In general, if there are D marks in a row of a reservation table,
the average delay between initiations must be D or greater, and the max­
imum attainable rate of execution is N ID, where N is the number of stages in
the pipeline.

3.4.4 Using Delays to Increase Performance

If a pipeline cannot sustain initiations at the maximum possible rate, the
cause is collisions within the pipeline that prevent new operations from being
initiated at certain crucial instants of time. By adding delays within the
pipeline, it is always possible to attain maximum performance. Although
the delays lengthen the total transit time through the pipeline, they increase
the rate at which operations terminate if they remove collisions that restrict
the initiation rate.

In this section we explore the design process for inserting delays into a
pipeline to attain maximum performance. The original research on which the
material is based was done by Patel and Davidson [1976] and is developed at
some length in Kogge [1981].

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 153

Sec. 3.4 Control of Pipeline Stages 141

Figure 3.26 shows a typical reservation table and its corresponding col­
lision vector and reduced state-diagram. The maximum rate for new ini­
tiations as indicated by the table is 1/3 because Row A has three entries. But
the cycle with the least average latency is the cycle with initiation rate 1/5,
which is substantially slower than the minimum latency. We presume that it
is possible to achieve an initiation rate of 113 and set out to modify the
reservation table to achieve this rate.

There are various ways to initiate on one out of three cycles on the aver­
age, and we are guaranteed to find at least one way that supports maximum
throughput. For example, we can initiate exactly every three cycles, or we can
initiate by delaying just two cycles between the first and second initiation,
followed by four cycles between the second and third initiation. In the course
of this analysis, we will discover that it is impossible to modify the table to
initiate every six cycles with a delay of 2 followed by a delay of 4, and it is
illuminating to discover why this is so.

Let us assume that we examine the context of the pipeline use in order to
select the cycle with the best behavior. For example, in this case we might
discover that there is a high probability of a pair of requests for the pipeline

1 2 3 4 5 6 7

~I x I x I x I : I x I x I x I

(a)

(b)

(c)

Fig. 3.26 Components of a reservation table:
(a) The reservation table.
(b) Its collision vector.
(c) Its reduced state-diagram.

0 0

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 154

Sec. 3.4 Control of Pipeline Stages 141

Figure 3.26 shows a typical reservation table and its corresponding col-
lision vector and reduced state-diagram. The maximum rate for new ini-
tiations as indicated by the table is 1/3 because Row A has three entries. But
the cycle with the least average latency is the cycle with initiation rate 16,
which is substantially slower than the minimum latencyt We presume that it
is possible to achieve an initiation rate of 1/3 and set out to modify the
reservation table to achieve this rate.

There are various ways to initiate on one out of three cycles on the aver-
age, and we are guaranteed to find at least one way that supports maximum
throughput. For example, we can initiate exactly every three cycles, or we can
initiate by delaying just two cycles between the first and second initiation,
followed by four cycles between the second and third initiation. In the course
of this analysis, we will discover that it is impossible to modify the table to
initiate every six cycles with a delay of 2 followed by a delay of 4, and it is
illuminating to discover why this is so.

Let us assume that we examine the context of the pipeline use in order to
select the cycle with the best behavior. For example, in this case we might
discover that there is a high probability of a pair of requests for the pipeline

 ”III-III!

(b)

Fig. 3.26 Components of a reservation table:
(a) The reservation table.
(b) Its collision vector.
(c) Its reduced state-diagram.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 154

142 Pipeline Design Techniques Chap.3

spaced only two cycles apart, in which case a fixed delay of 3 between re­
quests would cause buffering to occur outside the pipeline. Hence, the cycle
with delays of 2 and 4 between successive initiations may lead to somewhat
better overall performance than would the cycle with a fixed delay of 3
between initiations.

To modify the table for a cycle with successive delays of 2 and 4, we
examine the first row in the table; it is the critical row since it has the
maximum number of Xs. To achieve the desired cycle, we need to make sure
that we can initiate nonconflicting operations two and six time units after
starting an operation.

The important observation is that conflicts are caused solely among X sin
each row. Their relative positions in a row totally determine at what delays
conflicts will occur. To remove conflicts for particular amounts of delay, we
can move any given X to the right in a row. Physically speaking, this is the
same as delaying that reservation by one or more time units, and it requires
the insertion of an equivalent number of stages of delay.

To create a table from the one in Fig. 3.26(a) that permits initiation to
occur at two and six units of delay relative to the start of an operation, we
have to spread the X s apart in Row A in such a way that no conflicts occur at
delays of 2 and 6. We attempt to construct a suitable new row in a modified
table as shown in Fig. 3.27(a), where we have inserted the X from Column 1
and marked an Fin "forbidden" cells.

Step 1:

1 2 3 4 5 6 7 8 9 10 11

~I x I I F I I F I I F I I F I I F I
(a)

Step 2:

1 2 3 4 5 6 7 8 9 10 11

~I x I I D I x I F I F I F I F I F I F I F I
(b)

Fig. 3.27 Steps in modifying a reservation table to add delays.
(a) Place first X and mark forbidden cells; and
(b) Place next X after adding delay D and mark additional forbidden cells.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 155

Sec. 3.4 Control of Pipeline Stages 143

A cell is forbidden if, by placing an X in the cell, a collision will occur
when any pair of operations launched at times 0, 2, 6, 8, 12, 14, ... collide at
that cell. The Fin Column 3 is placed there because this is a delay of 2 relative
to the X in Column 1. Hence, if there is an X in this cell and an operation is
started at a delay of 2, a collision will occur because an X in this cell will
collide with the X in Column 1. Similarly, the Fin Column 5 is delayed by 4
with respect to the X in Column 1. This is forbidden because an operation
initiated at a delay of 4 will cause an X in this cell to collide with the X in
Column 1.

Consequently, we must place Fs in the row at delays of 2 and 4 with
respect to the initial X. The remaining Fs account for delays of one full cycle
or more. A delay of 2 or 4 is forbidden within one cycle, and from cycle to cycle
we must also forbid 2 + 6 = 8, 2 + 2 x 6 = 14, 2 + 3 x 6 = 20, .. ., and 4 + 6 = 10,
and 4 + 2 x 6 = 16 ... Note too that delays of 0, 0 + 6 = 6, 0 + 2 x 6 = 12, .. .,
are forbidden. Therefore, placing the first X in Column 1 has resulted in
eliminating all odd-numbered columns from further consideration.

We can place a second X in an even-numbered column. The original table
has an X in Column 3, which is forbidden, so instead we insert a delay in
Column 3 and reserve Row A for Column 4, as shown in Fig. 3.27(b). The D
corresponds to a new stage in the pipeline that has been added as a buffer to
prevent a collision. In this case the new D stage holds an operand intended for
Unit A so that the operand can enter Unit A one clock time later than it
otherwise would.

The new reservation in Column 4 forces us to place F s in all the even­
numbered columns after Column 4 to prevent collisions with this X. And the
result is that the entire row after Column 4 is filled with Fs, thereby pre­
venting us from adding the third X to Row A. Hence, for this table, it is
impossible to construct a cycle of length 6 whose two delays are 2 and 4.

Figure 3.28 shows that it is possible to construct a cycle that lets us
initiate one new operation every three cycles. The idea is very simple. In Fig.
3.28 we march from left to right, column by column, placing theXs from Fig.
3.26. First we put an X in Row A, Column 1, and place Fs in Columns 4, 7,
10, ... , because these positions are forbidden in order to prevent collisions at
a delay of 3.

We attempt to place Xs in successive columns, as shown in Fig. 3.28(b).
The next Xis placed in Row B, Column 2, and it too results in a series of Fs
being placed in the table at positions 5, 8, 11, ... , of the same row. The next X
is placed as shown in Fig. 3.28(c) in Row A, Column 3, where we show its Fs
marked in Columns 6, 9, 12, ... , leaving Column 5 for the third X. But this X
was originally in Column 4, so it must be delayed by one additional delay
time. We place a Din Column 4 in Fig. 3.28(d) to signify that one stage of pure
delay must be inserted into the pipeline at this time, and the operation can be
initiated one unit time later, as signified by the X in Column 5.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 156

Step 1:

1 2 3 4 5 6 7 8 9 10 11

~Ix I I IF I I IF I I IF I I

(a)
Step 2:

1 2 3 4 5 6 7 8 9 10 11

~ I x I x I I F I F I I F I F I I F I F I

(b)
Step 3:

1 2 3 4 5 6 7 8 9 10 11

~ I x I x I x I F I F I F I F I F I F I F I F ~
(c)

Step 4:

1 2 3 4 5 6 7 8 9 10 11

~ I x I x I x I : I ~ I F I F I : I F I F I : I

(d)
Step 5:

1 2 3 4 5 6 7 8 9 10 11

~ I x I x I x I : I ~ I : I : I : I : I : I : I

(e)
Step 6:

1 2 3 4 5 6 7 8

~I x I x I x I : I x I x I x I xl

(I)

Fig. 3.28 Steps in the derivation of a modified reservation table with an allowable
initiation cycle of one operation every three time units.

144

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 157

Sec. 3.4 Control of Pipeline Stages 145

Now we have to modify other X s in the table. The new table produces the
Row A result one time unit later than the original table. All other stages that
depend on this result to appear at Time 4 have to be delayed by 1 or more
clock times because the D inserted in Column 4 forces the result to appear at
Time 5, not Time 4. Moreover, if other stages are delayed because of this
change, then their results will be delayed as well, and the stages that depend
on those results will have to be delayed. The remainder of the description
shows how to ensure that all delays are handled properly.

The reservation table does not give us the dependency information we
need to complete this process, and in practice it is necessary to go back to the
original pipeline to determine the stage-to-stage dependence. For the current
discussion, we assume that all Xs in the original reservation table in Columns
5 through 7 are forced to be delayed by 1 cell because of the new delay in
Column 4.

The X in Row C, Column 5, of Fig. 3.26 can be placed in Column 6, as
shown in Fig. 3.28(e), which forces the second X in Row B to start no earlier
than Column 7. Column 7 is satisfactory for theXin Row B, and this in turn
delays the second X in Row C to start in Column 8. The complete reservation
table with the Fs removed is shown in Fig. 3.28(£).

Figure 3.29(a) shows a possible structure for a pipeline unit described by
the original reservation table, and Fig. 3.29(b) shows the modified pipeline
with the delay added. In the original reservation table, Stage A at Time 3 is
followed by Stage A at Time 4, which is made possible in Fig. 3.29(a) by the
feedback path from Stage A to Stage A. In Fig. 3.29(b) that feedback path is
lengthened by a unit delay.

Although we have represented delays by the letter D in the modified
reservation table, a physical delay corresponds to a new pipeline stage, and
thus it can be represented by an additional row in the reservation table. When
represented in this fashion, each distinct delay corresponds to a distinct row.

It is possible to combine rows that do not conflict and thereby share a
delay stage for two or more purposes. To decide if it is possible to combine
such rows, one simply introduces Fs in forbidden cells. Then it is relatively
simple to determine which rows can be combined by noting where, after
combining two rows, the X s do not fall into forbidden cells.

In attempting to build an initiation cycle with relative delays of 2 and 4,
we discovered that no such cycle could exist for the original table, but that we
could build an initiation cycle with a single fixed delay of 3. Both cycles that
we have examined yield an average initiation rate of one initiation every three
clock times, but only one of the two is realizable.

The figures show graphically that, because we can move X s around freely
to avoid forbidden cells, the realizability of an initiation cycle depends only
on the relative delays in the cycle, not on the initial placement of X s in a
reservation table. Consequently, we can analyze an initiation cycle as speci-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 158

146 Pipeline Design Techniques

A

B

c

D

(a)

Fig. 3.29 Two pipeline versions:
(a) The original pipeline; and
(b) The pipeline modified for maximum throughput.

A

B

c

D

Chap.3

(b)

fied by its delays, and we can determine which tables can be modified to
satisfy the cycle without having to know the particular details of the reserva­
tion tables.

Figure 3.27 illustrates the key idea in the analysis of an initiation cycle by
showing the role of the forbidden cell. Let (d1, di, ... , dk) represent an ini­
tiation cycle for which Operation 2 is launched d1 cycles after Operation 1,
Operation 3 is launched di cycles after Operation 2, and so on. Let L be the
sum of the delays, which is also the length of the cycle. From the example, we
know that at a delay d1 after anXin a row, there is a forbidden cell, and in fact
there are such cells at all delay positions p relative to X that satisfy the
congruence

p == d1 modL

In Fig. 3.27, for a delay of 2, this formula describes the cells at delays 2, 8,
14, ... , relative to the first X. Also, there are forbidden cells at delay positions
p that satisfy

p == d; modL

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 159

146 Pipeline Design Techniques Chap. 3

Fig. 3.29 Two pipeline versions:
(3) The original pipeline; and
(b) The pipeline modified for maximum throughput.

fied by its delays, and we can determine which tables can be modified to
satisfy the cycle without having to know the particular details of the reserva-
tion tables.

Figure 3.27 illustrates the key idea in the analysis of an initiation cycle by
showing the role of the forbidden cell. Let (d1, d2,..., (1,) represent an ini—
tiation cycle for which Operation 2 is launched d1 cycles after Operation 1,
Operation 3 is launched d2 cycles after Operation 2, and so on. Let L be the
sum of the delays, which is also the length of the cycle. From the example, we
know that at a delay d1 after an X in a row, there is a forbidden cell, and in fact
there are such cells at all delay positions p relative to X that satisfy the
congruence

p=d1modL

In Fig. 3.27, for a delay of 2, this formula describes the cells at delays 2,8,
14, . . . , relative to the first X. Also, there are forbidden cells at delay positions
1) that satisfy

p=dgmodL

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 159

Sec. 3.4 Control of Pipeline Stages 147

for each distinct delay d; since two successive operations are launched d; units
apart. But we may still have missed some forbidden cells. In fact, there is a
forbidden cell for each distinct value of the sum:

d; + d; + I + " " " + d; + k - I

where the sum is taken over k successive delays in the cycle, beginning at
delay i.

We need only consider those sums whose value does not exceed L, since
we can construct the forbidden values of size greater then L by adding arbi­
trary multiples of L to forbidden values of size L or less. In Fig. 3.27, the
forbidden delay values are those congruent to 0, 2, and 4 mod 6, and are thus
represented as the set {0,2,4} for a cycle length of 6. For Fig. 3.28, the forbidden
values are those congruent to 0 mod 3, and are represented as the set {O} for a
cycle length of 3.

From the forbidden values we can obtain the permissible values. The
permissible values dictate where to place X sin a modified table. Obviously,
any nonforbidden value is permissible, but not all sets of nonforbidden values
are permissible. In Fig. 3.27, {0,2,4} are forbidden delays, so 1, 3, and 5 are
permissible. But if we choose to use both 1and3 as relative delays for new Xs
from a given X, the difference between a delay of 1 and a delay of 3 is 2, which
is a forbidden value. Hence we cannot use both relative delays 1 and 3 when
placing Xs in a modified table. Likewise, we cannot use both 3 and 5, nor can
we use 1and5. In the latter case the relative delay between delays 1and5 is a
relative delay of 4, which is a forbidden value.

We have discovered that for a cycle of length 6 composed of the delays 2
and 4, the forbidden cells are at relative positions 0 mod 6, 2 mod 6, and 4
mod 6. We can construct a new table by placing new Xs at either 1 mod L, 3
mod L, or 5 mod L from an X, but we cannot place new Xs at any two of the
permissible positions. Hence we cannot have more than two Xs in any row of
a table for the cycle composed of delays 2 and 4.

In Fig. 3.28, the forbidden delay set is {O} mod 3, and the permissible cells
are 1 mod 3 and 2 mod 3 away from an X. In this case we can place two new
X s-one at a delay of 1 mod 3 and the other at a delay of 2 mod 3 from an
initial X. The new X s do not conflict with each other, nor do they conflict with
the initial X. We represent the set of permissible delays as the set {1,2}. We call
the set {1,2} a maximal compatible set of delays because it satisfies the follow­
ing conditions:

• Permissibility: each member of the set is permissible;

• Compatibility: the difference between any two distinct members is not
congruent to a forbidden value modulo L; and

• Maximal size: it is not possible to add another permissible delay value to
the set and still satisfy the compatibility criterion.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 160

148 Pipeline Design Techniques Chap.3

To give some examples of maximal compatible sets, consider a cycle of
length 8 composed of the delays 3 and 5. The set of forbidden delays is
represented by the set {0,3,5}, with the delays representing their congruence
classes modulo 8. Permissible delays are 1, 2, 4, 6, and 7. The maximal
compatible sets are {1,2}, {1,7}, {2,4,6}, and {6,7}. In this case, if a set contains a
1, it cannot contain a 4 or 6, and if it contains a 2, it cannot contain a 7. Hence,
the first two sets show every possible way of constructing a set containing a 1.

The remaining sets show every possible way of building a set without a 1.
Note also that if a set contains a 7, it cannot contain a 2 or 4. The maximal
compatible set {2,4,6}, which has the most members, indicates that we can
safely assign four Xs in a single row at an arbitrary initial position and at
distinct delays of 2, 4, and 6 modulo 8 relative to this position. This assign­
ment satisfies the constraint that no two Xs collide on a cycle of length 8
composed of delays 3 and 5.

The computation of maximal-compatible classes can be done algo­
rithmically through a backtrack process, but in practical cases it can usually
be done by hand. The preceding analysis guarantees that it is always possible
to modify a reservation table to initiate a new operation every L cycles if the
maximum number of Xs in a row is Lor less.

In this case the forbidden set is the set 0, and the maximum compatible
set is { 1,2 ,3, ... , L - 1}. This means that we can safely assign the initial X
arbitrarily, and up to L - 1 Xs at distinct relative delays selected from
{1,2,3,. .. , L - l} modulo L.

The modification of a reservation table reduces to a process of placing X s
in cells that satisfy the stage-to-stage precedence constraints and that are at
relative delays dictated by some maximal-compatible class. The procedure is
guaranteed to succeed if the size of the maximal-compatible class is at least
L - 1.

3.4.5 Interlock Elimination

The general characteristic of pipeline units is that the rate of completion is
related to the clock time of a single stage and may be quite different from the
total time required to traverse a pipeline. When this characteristic holds, we
are willing to insert delays into a pipeline if the completion rate increases.
But some computations are sensitive to the total delay in a pipeline. In this
section we examine how to reduce the sensitivity to total delay in certain
selected, but important, cases.

When a pipeline performs a succession of steps of the form

SUM :=SUM +A; XB;

which is the main loop of an inner-product computation, the delay of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 161

Sec. 3.4 Control of Pipeline Stages 149

pipeline has a serious impact on throughput. If the computation is executed
as written, a new product can be added to SUM only after SUM has completed
the previous addition. If addition takes, for example, four cycles, then a new
term can be added to SUM only every four cycles. This is the case even when
the addition is pipelined to be able to produce one result per cycle. The
problem is that there are conflicts due to the common access of SUM.

Kogge [1981] describes a technique for avoiding this particular bottle­
neck in some common situations. In the case at hand the problem becomes
one of producing a useful result every cycle in spite of the conflict for access to
SUM. To derive Kogge's method, rewrite the main loop of the original for­
mula in the form:

SUM; :=SUM;- 1 +A; XB;

where the index on SUM denotes the value of SUM at the end of the corre­
sponding iteration. The problem as written is that SUM;-1 is not available
immediately for the calculation of SUM; when the product term has emerged
from the multiplier in the pipeline. An earlier value of SUM is available,
however, so we can change the equation to become

SUM;:= SUM;- 4 +A; x B;

for a pipeline with a delay of 4 through the adder.
More generally, if the adder has a delay d, the index of SUM used as input

to the adder is i - d. The advantage here is that the input value of SUM
required for an addition is the value that emerged as the output of the last
cycle of the adder. Hence, the output of the adder can be latched and fed back
to the input as one operand for the next cycle. This produces the results
quickly, but the results are not quite what we need.

In fact, in this example we obtain four different independent sums, with
each sum involving approximately one quarter of the terms. The final answer
is obtained by adding the four independent sums together. The final sum­
mation requires just a small overhead compared to the time required to
obtain the four sums as the number of elements in the inner product grows
large. During the main computation, the rate of completion is equal to the
delay of a single stage of the pipeline. The rate has been decoupled from the
total delay of the adder, which limited the speed of the original computation.

This technique is limited to operations that can be executed in an order
different from the original specification. Addition and multiplication are
both associative and commutative operations, so as idealized mathematical
operations, there is some flexibility in scheduling a sequence of additions or
multiplications. But computer arithmetic is arithmetic on a finite, rather
than an infinite, set of numbers, and the precision of the numbers is finite, not
infinite. Consequently, sequences of arithmetic operations on computers can
display unexpected answers in the face of round-off errors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 162

150 Pipeline Design Techniques Chap.3

Many numerical algorithms have been cast in a form that leaves them less
sensitive to round-off errors. When the order of operations is changed, there is
some danger that the work of the numerical analyst has been undone. For
example, when forming large sums of numbers, round-off error can be signifi­
cant if small addends are added to large intermediate sums.

To be sure that small addends are added to small intermediate sums to
limit the accumulation of round-off errors, analysts suggest that the terms be
ordered so that they increase in magnitude. However, the suggestion given
previously reorders the sequence of additions and may well produce a differ­
ent, possibly less accurate, final result than the answer produced with the
original computation.

We suspect that in the majority of situations the reordering of operations
for high performance does not introduce unacceptable numerical errors, and
the performance attainable is dramatic. For the infrequent situation in which
the order of evaluation is important, there should be an override or some
other mechanism to ensure that a computation is evaluated in precisely the
order stated by the instructions.

3.5 Exploiting Pipeline Techniques

We have examined the general principles of pipeline computers and looked at
their control in great detail. In this section we examine ways to structure
systems for pipeline execution.

3.5.1 Conditional Branches

The performance analysis earlier in this chapter describes the importance of
keeping the pipeline full. If an input stage lies idle on a particular cycle, and
the idleness is due to lack of available input data rather than to a potential
future collision, the idleness eventually propagates through the entire pipe­
line and detracts materially from the pipeline efficiency.

Conditional branches have long been a source of difficulty for pipeline
computers because they can halt a pipeline momentarily until the branch
target can be determined. Designers have used a number of different tech­
niques for reducing the effects of conditional branches on performance. This
section treats the most important ones used in practice:

1. Delayed branching;

2. Branch prediction; and

3. Branch history.

One widely used technique has found its way into the design of micro­
programmed processors. Microcode executes at the rate of one microstep per

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 163

Sec. 3.5 Exploiting Pipeline Techniques 151

cycle, but the actual time required to execute a microinstruction is two
cycles-one cycle to fetch the instruction and one to execute it. Hence, many
machines use a two-cycle pipeline for microcode execution and achieve the
rate of one completion per cycle.

Conditional branches in microcode could be rather devastating if the
pipeline had to wait because of indecision regarding branch targets. In fact,
when a conditional branch is executed, many machines defer the effect of that
branch by one cycle in order to execute the next instruction in the pipeline.
That instruction is the one fetched from memory during the execution of the
conditional branch; it is fetched before the branch target is known.

Figure 3.30 shows the timing for the execution just described. At Time 0,
the conditional-branch instruction is fetched from memory, and at Time 1 it
is executed, resulting in a new value of the microprogram-counter register.
Also at Time 1, the ADD instruction that immediately follows the BRANCH is
fetched. At Time 2 the address of the target of the conditional branch is used
to fetch the next microinstruction, but that microinstruction is not available
for execution until Time 3. So during Time 2 the ADD microinstruction is
executed, since it is available immediately for execution. In a sense, the
BRANCH microinstruction has the meaning, "Execute the next micro­
instruction and then branch conditionally."

This basic idea has been adapted to the instruction sets of a class of
processors called reduced-instruction-set computers (RISC). Like micro­
programmed controllers, RISC computers attempt to complete the execution
of one instruction per cycle, and because the delay in the execution pipeline is
normally two or more stages, the delayed-branch technique becomes quite
attractive in order to sustain high performance.

FETCH UNIT Fetch BRANCH I Fetch ADD I Fetch target I
EXECUTE I Execute BRANCH I Execute ADD I UNIT

Time 0 Time 1 Time 2

Time

Fig. 3.30 Timing for the execution of a conditional branch in a microprogrammed
control unit. The instruction ADD follows immediately after the BRANCH and is
executed before control passes to the target of the BRANCH.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 164

152 Pipeline Design Techniques Chap.3

Delayed branching makes very good sense for RISC machines because the
delay required for determining the branch outcome is just a single cycle. If
the delay needs to be much longer because of complexities within the
conditional-branch instruction, the idea is more difficult to use.

While it is conceivable to delay a branch until after the next instruction, it
becomes somewhat more difficult to make use of branches that delay their
execution until after the execution of the next N instructions, where N is a
small integer greater than 1. This type of delayed branching has not been
widely used in the industry, primarily because it is difficult for programmers
to use effectively, and there is a certain danger in the use of such instructions
when assembly code is written and maintained by humans. But the delayed
branch is used almost universally in microcode, and, in recent years, in RISC
architectures.

RISC instructions are very much analogous to microinstructions since
they execute in a single cycle. The effective use of the delayed branch in these
computers depends very strongly on generating executable code by means of
optimizing compilers for high-level languages. This puts the difficulty of
dealing with delayed branches in the hands of the compiler writers, who have
to solve this problem only. once. All users benefit from that solution. More­
over, maintenance difficulties due to delayed branching vanish because it is
not the machine-language translation, but the high-level language version of
a program that is maintained.

The second idea is the most popular one for high-performance pipelined
processors. The idea is to guess the branch target and proceed on that path in
the pipeline. Any results produced in the pipeline are marked tentative, and
they cannot overwrite user-accessible registers or memory locations while so
marked. Eventually the outcome of the branch is decided, and if the guess is
correct, the special tags on tentative results are removed. If not, the tentative
results are purged, and any tentative operations in progress are cancelled.

When guesses are correct most of the time, branch prediction is very
effective. The benefit diminishes as guesses become less accurate, and if
guesses are rather poor, the cost of implementation of branch prediction
exceeds the value of the idea. Making good predictions is not particularly
difficult if characteristics of the software are known.

A FORTRAN end-of-loop test, for example, takes the conditional branch
back to the beginning of the loop on all but the last iteration. Similarly,
searches fail on all iterations, except possibly the last one. So there are
reasonable ways of discovering situations in which the overwhelming major­
ity of conditional branches selects a particular target.

The problem becomes quite challenging when branch instructions are
used totally differently by different software, particularly when generated
automatically by different compilers. For example, the branch address of a
JUMP IF POSITIVE instruction might be the normal-case branch produced

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 165

Sec. 3.5 Exploiting Pipeline Techniques 153

by one compiler and might be the exceptional case in the code produced by
another compiler. What should the hardware do? Should it guess that the
positive case is normal and assume the branch is taken? Or should it assume
that the negative case is normal and assume the branch is not taken?

In some architectures, the hardware can quickly tell if the branch is
backwards or forwards because a relative offset appears in the instruction. It
may be prudent to assume the branch is taken if the offset is negative, under
the assumption that backwards branches are loops. If the offset is positive, it
is not clear what to do.

The type of instruction and the size and direction of the offset are all
factors in the branch decision, and the designer must weigh their effects
carefully in making a choice of a branch-prediction strategy. Designers usu­
ally validate their strategies against traces of program execution in much the
same way that caches are evaluated.

With sufficient information available, the designer ought to be able to do
better than a random choice. Even a random choice with equal probabilities
is correct half of the time, which might lead to better performance than using
no branch prediction at all if this results in making the wrong choice almost
always. So branch prediction is a reasonable and effective method for dealing
with conditional branches, but it does have the flaw that some programs may
use their branches precisely opposite the way that prediction is built into the
hardware. No fixed strategy can avoid this pitfall.

To improve performance beyond that achievable by branch prediction
requires the ability to adapt to a program's execution behavior. Caches are
superb at adapting. They quickly identify the frequently used items and
manage memory to retain those items in high-speed storage. Can the idea of a
cache be used for branch prediction? Indeed it can. Figure 3.31 illustrates a
device called a branch-history table [Sussenguth 1971]. The idea of the
branch-history table is to store information regarding a branch so that fairly
accurate predictions of the branch outcome are available. An easy strategy is
to predict that the branch will do what it did last time.

Figure 3.31 illustrates one way to implement a branch-history table. The
table is essentially a cache memory accessed concurrently with each in­
struction fetch to a cache. If a match is found, the table produces the address
of the next instruction, which will be used on the next cycle of the pipeline.
The execution from this point forward proceeds in a manner identical to
branch prediction, with all results marked as tentative until the true outcome
of the branch is known.

The branch-history table is updated each time the execution of a branch
is completed. An update writes into the table the instruction address of the
branch just executed and the target address to which it branched. Old history
is purged from the table using algorithms similar to cache-management
algorithms. Figure 3.31 illustrates the instruction execution pipeline and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 166

154 Pipeline Design Techniques Chap.3

shows the branch-history table accessed by both the instruction-fetch unit
and the execution unit.

The disadvantage of the structure shown in Fig. 3.31 is that it has to
sustain somewhat more than one access per cycle if instructions are fetched
at the rate of one per cycle. The table can be designed for much less frequent
access if it is accessed only after instruction decoding when the instruction is
known to be a branch instruction. This form of the table is known as a
decode-history table [Losq, Rao, and Sachar 1984].

Because the target address of a branch instruction is usually available
when the instruction is decoded, the decode-history table need contain only

INSTRUCTION
ADDRESS BRANCH

L r~AD_.o_R_E_s_s~+-T-A-RG~ET~A_D_D_R_Es_s-11 . I I
BRANCH-HISTORY TABLE

'"---•MATCH/NO MATCH
(a)

PREDICTED TARGET ADDRESS

INSTRUCTION FETCH ..__ __ .,~ To Cache and Branch-history Table --r--
INSTRUCTION DECODE

New Instruction from Cache or
1+--- Predicted Target from Branch-history __________ .. Table

EXECUTE ---• Update Branch-history Table with __________ .. Actual Target Address

(b)

Fig. 3.31 A branch-history table:
(a) The structure, whose function is similar to a cache uses the address of the instruc­
tion as a key and reads out the predicted target address if there is a match. Only
conditional branches are held in this table.
(b) Timing for access and use of the branch-history table.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 167

Sec. 3.5 Exploiting Pipeline Techniques 155

one bit to indicate if a branch is taken or not taken, and therefore it is much
smaller than a branch-history table. Moreover, it is accessed only when con­
ditional branches are decoded, so it sustains a much lower bandwidth than
does the branch-history table.

By waiting until decode time to find the branch target, however, the
instruction for the branch-not-taken condition has already been fetched into
the pipeline and will be decoded next. If the prediction is to take the branch,
we would like to have the instruction after the branch ready to enter the
decoder. Clearly, a better approach for a decode-history table is to hold a copy
of the target instruction rather than, or in addition to, the decision to branch
or not, so that the target instruction is ready for decoding on the next ma­
chine cycle.

Many variations of the idea behind the branch-history and decode-history
tables are possible, especially regarding the strategy of what prediction to
store in the table. For example, if it is common to end a loop with a DECRE­
MENT AND BRANCH instruction, it may be possible to detect a situation in
which the current iteration branches, but the next iteration will not. Obvi­
ously, if the decrement is 1 and the branch condition is BRANCH IF ZERO,
then when the register reaches the value 1 after executing the instruction, the
next time the instruction is reached there is a very high probability that the
branch will not be taken. So the hardware may look for a value of 0 in a
register to decide if the current iteration will branch, and it may look for a 1
in the register to decide if the next iteration will branch. For other branch
instructions, the simplest strategy is to store in the table what happened the
last time that same instruction was executed. This should yield correct out­
come substantially more frequently than does random guessing.

Neither the branch-history table nor the decode-history table has been
widely used in practice, but current trends for high performance and the
ability to add small amounts of hardware to achieve that performance make
both ideas very attractive. A decode-history table has been incorporated into
the IBM 3090 model 400, a machine first delivered in 1986, which may signal
a trend in computer architectures for the 1990s.

3.5.2 Internal Forwarding and Deferred Instructions

The objective of a pipelined functional unit is to execute instructions at a
fixed maximum rate, usually one instruction per cycle. The instructions
themselves take as few as one cycle and occasionally as many as 20 cycles to
complete, with additional time lost to cache misses and contention for
memory or other resources.

The discussion in this chapter has so far revealed several potential prob­
lem areas that tend to degrade performance:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 168

156 Pipeline Design Techniques Chap.3

• Interlocks because of READ/WRITE, WRITE/READ, and WRITE/WRITE
conflicts for data;

• Conflicts within a pipeline caused by the structure of the reservation
table; and

• The inability to predict accurately the outcome of conditional branch
instructions.

An easy way to handle these problems is to identify them at the entrance
to the pipeline and restrict entrance unless the conditions for use of the
pipeline are satisfied. We have seen that this is the way collision vectors are
used to control execution. We have also learned that the branch-history table
provides a means for continuing at full speed at the entrance to a pipeline,
while the problem is resolved elsewhere in the pipeline at a later time.

The latter form of solution is preferable from a performance viewpoint
because it maintains activity in the pipeline rather than halts further activ­
ity. We want to explore techniques that allow the pipeline to continue activity
when a problem is encountered rather than force the pipeline to halt until the
problem is resolved.

A technique called internal forwarding is one way of dealing with inter­
locks. Consider, for example, the inner loop of a linear programming code in
which we might see the following sequence of operations:

REG[l] :=A;

REG[2] := REG[l] x B;

REG[3] := REG[2]/C;

REG[4] := REG[4] + REG[3];

Each instruction depends on the completion of the previous instruction
through register dependencies. If we halt at the beginning of a pipeline be­
cause of an interlock, then the pipeline would drain between each instruction
in the sequence, and the net performance would be related to the delay
required to execute each instruction in isolation. To bring performance much
closer to one instruction completed per clock cycle, it is essential that in­
structions be launched into a pipeline in spite of interlocks, and that the
interlocks be detected at a later point.

Let us view internal forwarding in the context of a pipeline machine that
consists of the six basic stages shown in Fig. 3.32.

1. Instruction Fetch;

2. Instruction Decode;

3. Generate Operand Address;

4. Fetch Operand;

5. Execute; and

6. Save Result.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 169

Sec. 3.5 Exploiting Pipeline Techniques 157

INSTRUCTION FETCH

INSTRUCTION DECODE

GENERATE OPERAND ADDRESS

FETCH OPERAND

l
EXECUTE

SAVE RESULT

Fig. 3.32 The six-stage pipeline model for an Execute stage that uses internal forward­
ing.

In the absence of problems, an instruction proceeds from stage to stage,
one clock cycle per stage. An interlock or cache miss may result in one or more
operands failing to be ready at the Execute stage.

Figure 3.33 shows a magnified view of an Execute stage that handles
missing operands, interlocks, and other related problems. This idealized
model of the Execute stage shows a set of registers, called forwarding registers,
that are stand-ins for the actual complement of registers visible to the in­
struction set. Machine instructions refer to these registers, but the registers in
the figure do not hold operands; rather they hold pointers to the machine
registers that actually hold operands. The figure shows four forwarding regis­
ters and eight operand registers. The contents of the forwarding registers
point to four of the eight operand registers.

By having more physical registers than the registers visible to the in­
structions, it becomes possible for one instruction to read or write an operand
in a register, such as REG[l]. while another instruction concurrently reads or
writes a totally different operand in that same register. In physical terms, the
operations manipulate different operand registers, and the operations are
directed to different registers by the contents of the forwarding registers.

The basic idea of internal forwarding is to initiate immediately an in­
struction that has its operands available and a free function unit on which to
execute. Other instructions must be deferred because:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 170

158 Pipeline Design Techniques Chap. 3

• One or both operands are missing;

• A destination register cannot be modified immediately; or

• The required function unit is busy.

These instructions are passed to reservation stations associated with
LOAD, STORE, and each of the functional units in the Execute stage. Having
scheduled a deferred instruction for execution at some time in the future, the
Execute stage is free to examine the next instruction in the pipeline. Con­
sequently, the Execute stage need not suspend operation when it encounters
an instruction that has to be deferred.

Figure 3.33 shows that the Execute stage in our example contains a col­
lection of reservation stations, where instructions are held pending execution.
Each station contains a field for each operand and for a result. Each operand
field contains the operand value (if the value is available), a tag indicating
whether or not the operand is present, and an identifier that tells which
OPREG is to hold the operand value if the value is not concurrently available.
The result field contains the index of the OPREG that is to receive the func­
tion result. Each station is associated with one specific function such as ADD,
MULTIPLY, DIVIDE, LOAD, STORE, and BOOLEAN.

To see how internal forwarding works, let us consider the preceding ex­
ample and observe its behavior, as illustrated in Fig. 3.34.

1. REG[l]:= A. Assume that the operand is not available because of a cache
miss. The Execute stage obtains the index of a free operand register from
a pool of free registers. Assume this is OPREG[4]. The instruction with the
destination field set to the value 4 (for OPREG[4]) is transmitted to a
reservation station for LOAD. When operand A eventually arrives from
memory, its address will be compared to the address stored in the reser­
vation station at the LOAD reservation station, and the match there will
cause the operand to be transmitted to OPREG[4], not to REG[l].

Meanwhile, the Execute stage continues the scheduling process by
reading the present contents of REG[l]. Suppose that this is the number
2, designating OPREG[2] as currently holding the contents of REG[l].
Since REG[l] is to be overwritten, OPREG[2], which currently holds the
contents of REG[l], is marked "freeable" when all pending operations on
OPREG[2] have completed. When OPREG[2] has actually been freed, its
index will be returned to the pool of free registers.

One way to keep track of operations waiting for a register is to use a
counter. In this case, there is a pending operation on OPREG[4], the
LOAD operation, so that the counter for OPREG[4] is initialized to 1.

2. REG[2]:= REG[l] x B. For this instruction, assume that operand B ar­
rives with the instruction. The Execute stage learns from REG[l] that
OPREG[4] contains the current value of REG[l]. It transmits a reserva­
tion to the multiplier for OPREG[4] together with the value of B. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 171

Sec. 3.5

REG[1]

REG[2]

REG[3]

REG[4]

Exploiting Pipeline Techniques

FORWARDING
REGISTERS

r--------t

r--------t

1----------t

OPREG[1]

0PREG[2]

OPREG[3]

OPREG[4]

OPREG[5]

OPREG[6]

OPREG[7]

OPREG[8]

OPERAND 2 OPERAND 1

OPERAND
REGISTERS

>---------II

>---------II

r----------1

>---------II

r----------1

r----------1

r----------1

TAG VALUE TAG VALUE RESULT

ADD

ADD

MULTIPLY
r---+-----+---+---+------il

MULTIPLY
f----+-----+---+---+------il

DIVIDE

BOOLEAN_ ______ -t-----t-----r---------...
LOAD

STORE

RESERVATION STATIONS

Fig. 3.33 The registers and tables required for internal forwarding.

159

destination register for the multiply is OPREG[3] in this case because
OPREG[3] was available from the free pool for reassignment. The count
for OPREG[4] is increased by 1 because this instruction references
REG[l], whose contents are held in OPREG[4].

3. REG[3]::::o REG[2]/C. This instruction posts a reservation at the division
unit with a reference to OPREG[S], which holds the current contents of
REG[3]. The count for OPREG[3] is increased.

4. REG[4]:= REG[4] + REG[3]. This instruction posts a reservation at the
adder using OPREG[l] (for REG[4]) and OPREG[S] (for REG[3]). The
output of the adder is directed to OPREG[6], which will hold the new
value of REG[4] after the operation. The counts for OPREG[l] and
OPREG[S] are increased.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 172

160 Pipeline Design Techniques Chap.3

INSTRUCTION
OPREG RESERVATION STATION

REG
I FREE- COUNT I I OP1 RESULT! VALUE OP2

ABLE
1. REG[1] :=A

BEFORE; 1 OJ 21 0

41 0

AFTER: 1 QJ 2j A 4

41 0
LOAD

2. REG[2] := REG[1] x B.

AFTER: 2 [JJ 31 0 I 4 B 3

41 0 2 I MULTIPLY

3. REG [3] := REG [2]/C.

AFTER: 3 [I] 3j 0 2 3 c 5

sj 0 DIVIDE

4. REG [4] := REG [4] + REG [3].

BEFORE: 4 C!:J 1 0 0

5 0

6 0

AFTER; 4 [I] 5 6

5 0 2 ADD

6 0

Fig. 3.34 The behavior of an Execute stage with internal forwarding on a short se-
quence of instructions.

During execution of the reservations, as a function completes its oper­
ation and writes a result to an OPREG, the OPREG count is decremented by
1, and the value of the function to be stored in OPREG is passed to all
reservation stations awaiting that value. For each value accepted, the count is
decremented.

If an OPREG is marked as being freeable, then when its count reaches
zero, the index of the OPREG is placed on the free list. The OPREG becomes

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 173

Sec. 3.5 Exploiting Pipeline Techniques 161

freeable when its corresponding machine register has been reassigned a value
by an instruction and is now being held in a different OPREG. If an OPREG
has a count of 0, and the register is not freeable, the register holds the actual
contents that are supposed to be held in the corresponding visible register.
References to an OPREG in this state result in a copy of its contents being
placed in a reservation station together with a tag indicating that no waiting
for this operand is required.

Reservations are placed sequentially in the order shown in Fig. 3.34.
Although our example forces the instructions to execute in the same order as
the reservations are placed, one can easily construct examples in which the
order of actual execution is different from the order in which reservations are
placed.

The example illustrates two key elements present in the Execute stage­
interlocks and concurrency. Interlocks (WRITE/READ interlocks in this
example) force each instruction that reads a register to wait until the register
has been written. READ/WRITE conflicts are handled by permitting concur­
rency instead of by interlocking. That is, if one instruction reads REG[l] and
a later one writes REG[l], internal forwarding will create two different OP­
REGs, one to be read and the other to be written. Reservations and in­
struction execution on both OPREGs can proceed concurrently and will gen­
erate correct results. Similarly, WRITE/WRITE conflicts lead to concurrent
operation.

The description of internal forwarding as presented here is rather ideal­
ized to show the processes of forwarding, placing reservations, and function­
unit completion. There are endless variations of this basic idea, and many
different ones have actually been implemented in practice.

Two early examples described in the literature are the CDC 6600
[Thornton 1970] and the IBM 360 Model 91 [Tomasulo 1967]. Neither of these
machines had cache memories, so LOAD commands in both machines in­
volved access delays and required substantial hardware support in the Exe­
cution stage to sustain pipeline activity when LOADs were encountered. The
two machines used quite different techniques for interlocks and control of
execution. Let us consider some of the details of both machines to compare
their implementations.

CDC 6600 Scoreboard [Thornton 1970].

1. The physical machine registers contain both the current value of the
operand (if the current value has been computed) and a tag that indicates
which function unit will produce that value in the future if the value has
not yet been computed.

2. Each instruction that reaches the Execute stage consults the register set
to learn if the register value is immediately available or will be produced
in the future. If the result is immediately available, the instruction is so

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 174

162 Pipeline Design Techniques Chap.3

marked with a register identifier, and, if not, the instruction is marked
with the function-unit identifier that will produce the result.

3. The instruction, together with its register and function-unit identifiers, is
sent to a reservation station for the function unit specified by the
instruction. If the function unit is free and all operands are available, the
function initiates immediately. Otherwise, the instruction is deferred at
the reservation station.

4. A central scoreboard receives information from each function unit as the
function unit completes an operation. The function unit passes result
data back to the physical register that holds the result and concurrently
notifies all active reservations that the result is available. Because the
notification is done in broadcast mode, only one function-unit completion
can be treated at a time, and arbitration by priority is required to resolve
conflicts when two or more units complete in one cycle. All instructions
that are awaiting the completion of the corresponding function update
their reservations. Those that can execute immediately proceed to do so
by requesting their operands from the machine registers.

5. In case an instruction at the Execute stage cannot be executed immedi­
ately or deferred because a reservation station is already occupied, the
Execute stage freezes and issues no more instructions until the pending
instruction can be initiated or moved to a reservation station.

The CDC 6600 had multiple buses for accessing physical registers, which
permitted some simultaneity in initiating new operations. However, not all
function units had independent access to the registers, and those that shared
buses had to arbitrate for register access if they required access to different
registers simultaneously. A key characteristic of this architecture is that data
had to flow from function unit to a register and then back to a function unit
because there were no direct paths from function unit to function unit.

IBM 360191 Common Data-Bus [Tomasulo 1967].

1. In this design, there are multiple reservation stations per function unit
and many more operand registers than are visible to the instruction set.
As is characteristic of internal forwarding, the design provides for a set of
forwarding registers whose contents indicate for each visible machine
register which reservation station has an instruction to produce a future
value for that register. A tag on each forwarding register indicates
whether the value concurrently· in the register is the true value of the
register or identifies a reservation station that will produce the future
value.

2. Operands become available when LOAD operations complete or when
arithmetic functions terminate. A Common Data-Bus is tied to all units

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 175

Sec. 3.5 Exploiting Pipeline Techniques 163

that either produce new results or require results. Producers arbitrate for
the bus, and the winner of an arbitration cycle places its identifier, to­
gether with the operand value, on the bus. Reservation stations and
physical registers that are awaiting operands match their local identifiers
with the broadcast identifiers, and if the two are equal, the operand value
broadcast on the bus is copied into the station or register, and a
corresponding tag is set to indicate that the contents are valid. When all
operands become available at a reservation station, the reservation
initiates execution of the associated function unit at the next available
cycle.

In this scheme, data can be forwarded directly from one function unit to
another and may never need to be stored in a register visible to the in­
struction set.

An obvious difference in the two schemes is due to the ability of the IBM
360/91 to move data directly from function unit to function unit over the
Common Data-Bus. The CDC 6600 has to move data from function unit to
register to function unit, which incurs additional overhead. The reasons for
these design differences relate to differences in the instruction sets of the two
machines.

Because the IBM/360 family uses only four floating-point registers, for a
high-performance machine in the family there was a pressing need to create
additional registers to be used during execution. The instruction set is a
two-address format of the type R1 := R1 op R2, which tends to reuse registers.

The CDC 6600 design uses a three-address format of the type R 1 : = R2 op
R3 , which provides the freedom to use more registers. The CDC 6600 in­
struction set was designed from the start for high-speed execution and con­
tained as many visible registers as reasonable to incorporate in a high­
performance design of that period. Consequently, the CDC 6600 had less need
to create additional high-speed registers to enhance concurrent execution.

To increase the number of high-speed registers, the IBM 360/91 design
places these registers in reservation stations in a way that allows visible
machine registers to have multiple identities. Any particular register might
be represented in two or more reservation stations concurrently, with each
instance of the visible register stemming from independent instructions deco­
ded at different points in time. This structure creates a need to move data
between reservation stations instead of or in addition to moving data to and
from a visible forwarding register, since each forwarding register potentially
may represent several different reservation-station registers.

The CDC 6600 design does not have direct connections between function
units. The visible registers hold data; the reservation stations hold control
information only. So the high-speed data storage is in the visible registers,
rather than the reservation stations. There is a need for high bandwidth

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 176

164 Pipeline Design Techniques Chap.3

between function units and result registers, and the design uses multiple
buses for this purpose.

With two decades of machine design passing since the design of the CDC
6600 and IBM 360/91, the principles of pipelining, internal forwarding, and
other design techniques from that era have remained the same, but new ideas
have been added and VLSI has provided a far greater capability for hardware
sophistication than was available in the 1960s. The major impact has been
from cache memory, which has led to a much simpler way of treating LOADs
and STOREs in pipeline computers since both of these operations now exe­
cute in one or two machine cycles instead of ten to 20.

The number of machine registers has increased to the extent that 128
registers is easily possible, and the number could conceivably increase to
1024 or more. When the number of registers becomes this large, the WRITE/
WRITE and READ/WRITE interlocks mostly disappear because a potentially
conflicting instruction can usually be assigned a free register to be the target
of the WRITE, and thereby remove the conflict. To achieve the effective use of
a large number of registers, however, requires a sophisticated optimizing
compiler that can perform register allocation globally over a large program,
or over large segments of a program. With such use of registers, the main
source of conflicts that impedes execution stems from WRITE/READ con­
flicts and conflicting requests for particular functions.

To summarize the most important characteristics of pipelined execution
examined in this section, we note the following observations:

• Instructions execute when ready to execute, not necessarily when they
first reach the Execute stage. Thus, some instructions execute out of
sequence.

• Interlocks are treated at the Execute stage to ensure that the behavior of
an execution is identical to the behavior of a purely sequential execution
of the same sequence.

• The performance depends on the number of reservation stations,
arithmetic units, and other related facilities at the Execute stage. Because
of internal forwarding these numbers can be increased or decreased to
achieve a desired level of performance. The changes are independent of
the instruction set. The instruction set refers to a fixed repertoire of
operations and uses a fixed number of registers, regardless of the facilities
actually available at the Execute stage.

These points show the advantages and flexibility of building the Execute
stage to defer instructions, rather than defer instructions earlier in the pipe­
line. The biggest gain in performance is due to the ability to execute in­
structions out of sequence. If an instruction must be delayed because of an
interlock, the instructions that follow need not be delayed as well.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 177

Sec. 3.5 Exploiting Pipeline Techniques 165

3.5.3 Machines with Both Cache and Virtual Memory

In Chapter 2 we learned that cache memory speed has a critical impact on
performance, and that designers try to keep the cache cycle as short as possi­
ble. When cache is coupled with virtual memory, there is an additional com­
plication that might lead to a lengthening of the basic cache cycle to
accommodate the virtual-memory translation. We show in this section how
the cache lookup and the virtual-memory translation can be pipelined so as
to eliminate the potential extra cycle for address translation.

Figure 3.35 shows two possible arrangements for the address mapper that
produces real addresses from virtual addresses. Figure 3.3S(a) shows a cache
in which virtual, not real, addresses are stored in the tag area. If a cache miss
occurs, the virtual address is then translated to a real address, and the re­
quest is sent to main memory.

The advantage of this scheme is that the address translation is not part of
the cache cycle, so the cache lookup is potentially faster than a cache cycle for
a cache that stores real addresses in the address tags. This latter cache ap­
pears in Fig. 3.35(b). In this cache, a virtual address is first translated to a real

Processor

Virtual
Processor

Address

Virtual Address

Cache Miss

Virtual­
Address
Tags

Real Address

Data

Cache

Address
Mapper

--------i.• To Main Memory

(a)

Address
Mapper

(b)

Real Address Real­
Address
Tags

Data

Cache Miss

To Main Memory

Fig. 3.35 Two possible cache structures in computer systems with virtual addresses:
(a) Virtual addresses in a cache, with mapping occurring after a cache miss; and
(b) Real addresses in a cache, with mapping occurring before each cache lookup.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 178

Sec. 3.5 Exploiting Pipeline Techniques [65

3.5.3 Machines with Both Cache and Virtual Memory

In Chapter 2 we learned that cache memory speed has a critical impact on
performance, and that designers try to keep the cache cycle as short as possi-
ble. When cache is coupled with virtual memory, there is an additional com-
plication that might lead to a lengthening of the basic cache cycle to
accommodate the virtual-memory translation. We show in this section how
the cache lookup and the virtual-memory translation can be pipelined so as
to eliminate the potential extra cycle for address translation.

Figure 3.35 shows two possible arrangements for the address mapper that
produces real addresses from virtual addresses. Figure 3.35(a) shows a cache
in which virtual, not real, addresses are stored in the tag area. If a cache miss
occurs, the virtual address is then translated to a real address, and the re—
quest is sent to main memory.

The advantage of this scheme is that the address translation is not part of
the cache cycle, so the cache lookup is potentially faster than a cache cycle for
a cache that stores real addresses in the address tags. This latter cache ap-
pears in Fig. 3.35(b). In this cache, a virtual address is first translated to a real

Virtual Address

Virtual-
Address Data
Tags

Cache

Real Address

Maggi: To Main Memory
(6)

Real-

Mapper Tags
Cache Miss

Processor

 Cache Miss

Real Address

P Virtual
r

rocesso Address

To Main Memory
(b)

Fig. 3.35 Two possible cache structures in computer systems with virtual addresses:
(a) Virtual addresses in a cache, with mapping occurring after a cache miss; and
(b) Real addresses in a cache, with mapping occurring before each cache lockup.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 178

166 Pipeline Design Techniques Chap.3

address and is then presented to the cache. If a cache miss occurs, the real
address is then sent to main memory.

The second cache is the poorer performer of the two, but the first cache
has two serious flaws that greatly reduce its attractiveness. The first flaw
concerns the ability to invalidate items in the cache that are altered by I/O
operations. If an item in main memory is overwritten by the I/O system, and a
copy of the old value of that item happens to be in cache, then the copy in
cache must be invalidated. Otherwise, the processor will find the stale item in
cache when it next attempts to access it and will fail to load the new value
resident in main memory.

Therefore, when the I/O system alters main memory, the address where
this occurs must be sent to the cache, where it can be used to invalidate copies
that happen to be in the cache. If the cache holds tags in virtual-address form,
then the real address available to the I/O system must first be translated back
to a virtual address and then be presented to the cache. The inverse trans­
lation is shown in Fig. 3.36. If a cache holds real addresses, an inverse trans­
lation is not required for this particular purpose, although there may be other
problems whose solution makes use of an inverse translation.

The second flaw with the idea of holding virtual addresses in cache con­
cerns the problem of synonyms. Each cell in main memory has a unique real

Processor
Virtual Address

Cache Miss

Address
Mapper

Real
Address

Main Memory

Invalidate

Virtual­
Address
Tags

Cache

Inverse
Mapper

Data

Virtual

Address

1/0

Real Address --P-ro_c_es_s_o_r -

Fig. 3.36 A cache memory that uses virtual-address tags. Each change in main
memory is mapped back to a virtual address and used to invalidate a corresponding
entry in the cache.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 179

Sec. 3.5 Exploiting Pipeline Techniques 167

address, but it may have many different virtual memory-addresses, and
several can be active concurrently. This is particularly true of items that are
shared among several processes. If a cache holds virtual addresses, how do we
know if it holds the item with virtual address V? That the cache lookup fails
to find a tag with the value Vis not conclusive. The item may be held under
the name W, where Wis the virtual address at which that item is accessed by
a different process that has shared access to the item. This is a serious flaw
with the use of virtual addresses in the cache, and overcoming the flaw leads
to complexities in the cache design.

The pipeline shown in Fig. 3.37 is a nice solution to the problem because it
combines the speed advantage of virtual addresses in cache with the simpler
implementation of real addresses in cache. The idea is to pipeline a cache
lookup into two steps. The first step causes an access to the set of lines to be
accessed for the real address of the datum sought. This access occurs before
we actually know the full real address.

If the virtual-to-real address transformation does not alter the least sig­
nificant b bits of a virtual address, then any subset of these b bits can be used
as the set index for the cache in Fig. 3.37. The mapping from virtual address

PIPELINE STAGE 1

Virtual Address

Cache

Row Select
Tags Data

Latch Latch Latch

Real Address
---- -------PIPELINE STAGE 2

K -Way Cache Output

Compare Compare

To Processor ______ ..._ ________ ~

Cache Data (if cache hit)

Fig. 3.37 A two-stage pipeline for performing virtual-memory mapping and cache
lookup. Real addresses are held in the cache. The system can sustain one cache lookup
per cycle.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 180

Sec. 3.5 Exploiting Pipeline Techniques 167

address but it may have many different virtual memory-addresses, and
several can be active concurrently. This is particularly true of items that are
shared among several processes. If a cache holds virtual addresses, how do we
know if it holds the item with virtual address V? That the cache lookup fails

to find a tag with the value V is not conclusive. The item may be held under
the name W, where W is the virtual address at which that item is accessed by
a different process that has shared access to the item. This is a serious flaw
with the use of virtual addresses in the cache, and overcoming the flaw leads
to complexities in the cache design.

The pipeline shown in Fig. 3.37 is a nice solution to the problem because it
combines the speed advantage of virtual addresses in cache with the simpler
implementation of real addresses in cache. The idea is to pipeline a cache
lookup into two steps. The first step causes an access to the set of lines to be
accessed for the real address of the datum sought. This access occurs before
we actually know the full real address.

If the virtual-to-real address transformation does not alter the least sig-
nificant b bits of a virtual address, then any subset of these 11 bits can be used
as the set index for the cache in Fig. 3.37. The mapping from virtual address

PIPELINE STAGE 1

Virtual Address

Flow Select

AddreSs,
Mapper

Real Address
——————— PIPELINE STAGE2 — ————————— —-——

 To Processor

Cache Data (if cache hit)

Fig. 3.37 A two-stage pipeline for performing virtual-memory mapping and cache
lockup. Real addresses are held in the cache. The system can sustain one cache lockup
per cycle.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 180

168 Pipeline Design Techniques Chap. 3

to real address is performed simultaneously with cache access. In the second
cycle, the real address is compared to the tags returned by the cache memory,
and the processor determines if there is a cache hit or cache miss.

Although this operation takes two cycles, because the steps can be pipe­
lined, we can access the cache every cycle and achieve a throughput that is
potentially as high as for the one-cycle cache shown in Fig. 3.35(a). Pipelining
of the cache accesses as described in Fig. 3.37 has been implemented on many
large-scale computers, including those produced by Amdahl, Fujitsu, and
IBM. Although this solution is both fast and efficient, a designer may want to
explore the one-cycle cache with virtual-address tags because its per­
formance is higher than is a two-cycle cache in an environment where it is
difficult to keep the pipeline full.

3.5.4 RISC Architectures

Earlier in this chapter we describe delayed branching and mention that it has
been used in RISC architectures. Because such architectures make extensive
use of pipeline techniques, this section describes RISC architectures in some­
what more detail.

The term RISC (reduced instruction-set computers) is somewhat mis­
leading in the context of the technology of the 1980s. The original notion of
RISC is to create a machine with a very fast clock cycle that can execute
instructions at the rate of one per cycle. RISC machines are often associated
with pipeline implementation because pipeline techniques are natural ones
to achieve the goal of one instruction executed per machine cycle.

The implementation of this idea began at IBM in the mid-1970s under the
guidance of John Cocke and eventually led to the development of an internal
machine called the 801 computer [see Radin 1982). To achieve the fastest
possible cycle rate, this type of architecture reduces decoding delays by re­
quiring that all instructions conform to a simple format.

The original development explored a format in which all memory
operations are LOAD and STORE operations, and all other operations such as
ADD and COMPARE operated exclusively on registers. All instructions are of
one length, and the instructions fit a scheme compatible with a pipeline
implementation in which each stage of the pipeline performs roughly the
same type of ope!"ation as each instruction passes that stage. (For some in­
structions, a pipeline stage may do nothing.)

With this philosophy, the cycle time of a RISC computer can be made
somewhat smaller than the cycle time of computers with richer and more
complex instructions. If we view the latter class of computers as CISC
(complex instruction-set computer) machines, then we have a taxonomy
that tends to group instruction sets such as those of the Motorola 680XX,
VAX, and IBM 370 into the CISC category and those of the IBM 801, Berkeley

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 181

Sec. 3.5 Exploiting Pipeline Techniques 169

RISC machine [Patterson and Sequin 1982], and HP Spectrum into the RISC
category.

The ideas and technology of the 1970s, however, have evolved to the
extent that the basic notion of RISC architecture is different today, and the
name RISC is rather misleading because it is no longer an accurate descrip­
tion of the new generation of so-called RISC machines.

Although the obvious advantage of a pure RISC architecture is fast cycle
time, the RISC architecture could easily be a poor performer if the reduced
instruction set were its only characteristic. At least two problems are evident:

• RISC architectures lack the more powerful instructions of CISC architec­
tures, and therefore they must execute more instructions to do the work of
a CISC architecture.

• In executing more instructions to do equal work, at best data traffic may
be the same for CISC and pure RISC machines, but instruction traffic
must be higher, so RISC machines require higher instruction bandwidth
to do the work of a CISC architecture.

Because of these problems, the benefits of the fast cycle of a RISC ma­
chine are partially offset. If a RISC machine lacks crucial complex in­
structions, such as integer divide and multiply and the full spectrum of
floating-point instructions, then a RISC machine performance would almost
surely fall below that of a CISC machine on workloads with a hefty per­
centage of numerical operations.

There is then very little point in building a pure RISC machine with only
a fast clock cycle. It is necessary to address the negatives of the pure architec­
ture and embellish the RISC architecture so that it has higher performance
than a pure RISC machine, with as little compromise on the cycle time as
possible.

To address the two criticisms raised, note that it is not necessary to ignore
complex instructions entirely. If floating-point arithmetic is important, then
floating-point operations should be a part of the architecture. If they cannot
be done in the normal pipeline, then they should be done in a separate
pipeline either within the RISC processor or in a separate coprocessor. Simi­
larly, to improve throughput, other complex operations that take lengthy
instruction sequences should be considered as candidates for special
implementation techniques.

The second problem, high instruction-fetch traffic, can easily be resolved
by incorporating an instruction cache into the RISC implementation. The
point here is that RISC design has eliminated the logic for decoding complex
instructions; that logic can be utilized instead in an instruction cache.

In current technology it is more appropriate to count chip area, instead of
logic gates, as a precious resource, so RISC architecture provides a way of
saying that chip area formerly used for decoding and executing complex

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 182

170 Pipeline Design Techniques Chap. 3

instructions can be used instead for caching instructions. Whether a chip is a
CISC architecture or a RISC architecture with an instruction cache, the net
effect of the use of chip area is to reduce traffic between the processor and
main memory.

Chip area made available with the RISC approach can also be used to
reduce data traffic. The Berkeley RISC project [Patterson and Sequin 1982]
created a machine with 128 registers. The registers are cleverly allocated to
subroutines by means of a concept known as register windows. Each procedure
sees a region of registers, and that region overlaps partially with the window
seen by the calling procedure and by procedures that it calls. The windows
automatically change dynamically as procedures are entered and exited.

The windows provide a means for passing parameters and receiving re­
sults in the registers without having to save and reload registers to provide
the necessary register space. The net result is a reduction in data traffic
between processor and memory. This embellishment of the basic RISC phi­
losophy suggests that there is much to be gained by taking advantage of what
new technology has to offer, and there is no need to stick to a pure RISC
architecture.

Because pure RISC machines have obvious deficiencies that are easily
corrected, the directions taken in recent years have been to use a variety of
techniques, both standard and nonstandard, to correct the problems. The
design changes have resulted in machine architectures that bear little resem­
blance to the original RISC concept, except that RISC is the starting point
before the enhancements have been added.

An interesting study of the evolution of the Berkeley RISC machine ap­
pears in Hill et al. [1986]. This particular implementation of RISC
architecture is a multiprocessor with virtual-memory support and cache­
coherency control. The architecture supports complex operations in a variety
of ways. Floating-point operations are performed in a separate coprocessor.
List-oriented operations that depend on tagged data to interpret the meaning
of bit patterns include instructions that treat tags distinctly from the remain­
der of an operand. In fact, the instruction set is rather rich, and the architec­
ture has a remarkably larger set of facilities available than do earlier RISC
designs. We expect the evolution of RISC architecture to continue as VLSI
advances make it possible to enhance the previous generation.

The point here is that good ideas from CISC machines can show up in
RISC machines, and conversely, good ideas developed for RISC machines can
be used in CISC machines. There is no particular reason to be a purist and
stick entirely to one class of architectures. If an idea is good, and by using it
performance improves, then the architect should use the idea. This means
that the delayed-branch instructions, originally proposed for microcode and
then used in RISC machines, can easily find their way to CISC machines, just
as floating-point instructions moved from CISC machines to RISC machines.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 183

Sec. 3.6 Historical References 171

To investigate this last point, Colwell et al. [1985] studied the effect of
register windows on RISC and CISC machines. The idea here is to view
register windows as an independent feature of an instruction set and deter­
mine its net benefit in performance. Colwell et al. studied a RISC architecture
with and without register windows and two CISC architectures with and
without register windows.

The technique used for the study was to run a common set of benchmarks
on the architectures and evaluate performance in terms of relative traffic
between processor and memory. The benchmarks chosen were rather un­
usual because they use procedure calls intensively and are probably not
representative of most workloads. The reason for this selection of bench­
marks is that differences attributable to register windows are most likely to
be visible in such benchmarks, so they represent an upper bound on the effect
of register windows. Register windows are likely to affect performance much
less when realistic workloads are used.

Colwell et al. created the candidate machines by treating a Berkeley
RISC machine as designed with register windows and in a hypothetical
implementation without windows. Similarly, they created CISC machines
from real ones by extending VAX and Motorola 680XX architectures from the
real versions without register windows to hypothetical versions with register
windows.

The findings of these studies were rather interesting because the net
decrease in memory traffic when register windows were added is about a
factor that ranges from 2 to 4 depending on the specific benchmark. But for
each individual benchmark, the factor was remarkably similar for all archi­
tectures. Consequently, the benefit of register windows is likely to be quite
similar for both CISC and RISC machines, and the idea is not exclusively
limited to one class of architectures.

3.6 Historical References
Several techniques for implementing high-speed arithmetic worthy of further
study are beyond the scope of this text. In the area of multiplication,
Wallace's work on multiplier trees [1964] has shaped the structure of VLSI
multipliers for the past decade. Booth's algorithm [1951] for multiplication
has also played a major role in fast implementations.

The basic idea of Booth's algorithm is to skip over individual iterations in
an iterative shift-and-add implementation of multiplication. The algorithm
skips over 0 bits in the multiplier, which is a fairly obvious optimization, but
it also skips over a sequence of 1 bits. The idea is that a sequence of N 1 'sin the
multiplier is numerically equal to 2N - 1, so the effect of multiplying by this
group of l's is the same as a subtraction in the least-significant position,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 184

172 Pipeline Design Techniques Chap. 3

followed by an addition N positions to the left. This reduces multiplication
to an addition and subtraction for each consecutive string of 1 's in the
multiplier.

A variety of texts on computer arithmetic covers details of major interest
to implementers. Sterbenz [1974] examines implementation of floating-point
operations from the point of view of the requirements of the number system.
This is a classic view of floating-point operations; it has evolved somewhat in
recent years because of the development of the IEEE Standard on
Floating-Point Arithmetic [IEEE 1985].

The IEEE Standard incorporates a data structure richer than conven­
tional floating-point arithmetic and includes representation of infinity and
numbers that lie below the underflow threshold. It also requires unbiased
rounding in a manner consistent with the requirements posed by Sterbenz.
Coonen [1980] covers some techniques for implementing the IEEE Standard
that are not elicited in the standard itself.

Widely used techniques for hardware implementation of arithmetic
receive thorough coverage in Hwang [1978]. For very-high-speed operation,
because of the availability of large fast read-only memory, a new means of
computation becomes possible. Instead of calculating the result of an
arithmetic operation, it is possible to use a memory for table lookup to
produce all or part of an answer. Waser and Flynn [1982] investigate some
possible memory-intensive approaches to arithmetic that formerly were too
costly to implement.

One of the disappointing aspects of the existing literature in high­
performance systems is that relatively few machines have been thoroughly
documented in the published literature. Thornton's analysis of the CDC-6600
[1970] is one notable exception, and there are a few others, such as Organick
[1972] on the MIT Multics system and Organick [1973] on the Burroughs'
BS700 and B6700 machines.

High-speed implementations have grown far more complex since these
books appeared, and there are many opportunities to increase that complex­
ity to achieve greater performance by steadily increasing the average number
of instructions completed per clock cycle. The literature of the 1970s and
1980s does not adequately reflect the actual state of the art in machine
design, because in this field many advances are realized in physical machines
and in the hands of users well before the research and academic community
have the opportunity to study them.

Exercises
3.1 The object of this exercise is to write programs for a high-speed computer archi­

tecture and determine the performance of the architecture.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 185

Sec. 3.6 Historical References 173

a) Consider the program below (taken from Forsythe and Moler (1967, p. 69]).

for i := 1 to N - 1 do
1ps[i] := i;

fork := 1 to N - 1 do
begin

big:= O;
for i := k to N do
begin

size := abs(u/[ips[i],k]);
If big <size then
begin

big:= size;
idxpiv := i;

end {if test};
end {i loop};
if big = 0 then

go to singular_exit;
if idxpiv < > k then
begin

j:=ips[k];
ips[k] := ips[idxpiv];
ips[idxpiv] := j;

end {if test};
kp := ips[k];
pivot:= ul [kp,k];
for i : = k + 1 to N do
begin

ip := ips[i];
em:= - ul[ip,j]/pivot;
for j := k + 1 to N do

ul[ip,j] := ul[ip,j] +em* ul[kp,j]
end {i loop};

end {k loop};

Analyze this program and determine how many times each statement is exe­
cuted as a function of N. Assume that all input data are nonsingular matrices.

b) Encode the entire most-frequently executed loop in the instruction format of a
two-address assembly language. Show the execution of this loop on a machine
with internal forwarding of the type described in the class notes. Make
reasonable assumptions on the number of function units available and the
number of cycles that each unit takes to complete. Be sure that your code is
optimized to reduce the inner loop to as few operations as possible.

c) Determine the performance of your code on a pipelined computer that has no
internal forwarding. This machine uses pipelining as much as possible, but lets
the pipeline drain when it encounters an instruction that cannot execute im­
mediately.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 186

174 Pipeline Design Techniques Chap. 3

3.2 For each of the collision vectors shown, construct a reduced state-table and find a
maximum-rate cycle.

a) 01101101

b) 01100101101

c) 11011100101101

3.3 For the collision table shown, add delays to achieve a maximum rate of operation.
Because the table does not show dependence of one entry on other entries, assume
that each entry depends directly on all entries in the immediately preceding
column.

0 1 2 3 4 5 6 7
A XOOXOXXO
B OXOOXOOO
c ooxoooox
D OXXOXXOO
E OOXOOXOO

3.4 The object of this exercise is to explore design techniques for pipeline controllers.
Consider the design of a pipelined division unit that performs the following
operations:

• Exponent subtract;

• Guess inverse of divisor;

• Improve guess;

• Multiply dividend by inverse;

• Postnormalize; and

• Exponent adjust.

Assume that the inverse guess is done by table lookup that takes two clock cycles
for a single function unit. Also assume that the improvement of the guess involves
a two-stage iteration unit (Stages A and B) that requires one clock cycle to pass
through each stage. The improvement process passes through these two stages
twice, in the order A, B, A, and B, occupying a total of four cycles. The inverse
produced is a normalized mantissa that is used to produce the quotient through a
multiplication operation essentially the same as the floating-point multiplication
described in this chapter.

a) Draw a diagram of a pipelined implementation of the divider.

b) Construct the collision table for the divider.

c) Construct the collision vector.

d) Construct the reduced state-diagram.

e) Find a maximum-rate cycle.

t) Determine a bound on the upper rate of execution.

g) If the cycle that you find does not meet the bound, alter the reservation table by
inserting delays to create a different table that meets the maximum rate.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 187

Sec. 3.6 Historical References

3.5 The inner loop of a linear-equation solver does the following operation:

sum:= bx c(i)!d +sum

175

Assume that b, c(i), and dare variables that can be streamed into a pipeline from
memory, with one cycle delay between accesses to each variable, so that memory
is not a bottleneck for computation. The objective is to perform the operation
given to produce the final sum in minimum time.

a) Design the block diagram and functional behavior of a three-function pipeline
whose operations are multiply, add, and divide. Find the collision vectors for
controlling the system and find the fastest possible cycle for the sequence of
operations x , !, and + , when operating on independent operands. (This does
not account for the interlocking necessary to make sure that the value of sum
used as an input is derived from the most recent value of sum used as an
output).

b) Now consider the maximum speed attainable when the input to the adder is
interlocked to the output of the adder. What is this maximum speed in your
design?

c) If we want to produce one update of sum per cycle on the average, how can we
structure a pipeline to achieve this rate? Show a structure that achieves this
rate and describe how you propose to control the pipeline. A satisfactory an­
swer is one that achieves a rate a little lower than one result per cycle on the
average when vectors are very long. The performance for short vectors is per­
mitted to be substantially lower than one result per cycle on the average.

3.6 Consider the following recurrence relation:

xi= (Ai x Xi- I+ B;)l(Ci x Xi- I+ Di)

The initial value Xo is 0. Assume that the constant vectors A, B, C, and D are
variables that can be streamed into a pipeline from memory, with one cycle delay
between accesses to each variable, so that memory is not a bottleneck for
computation. The objective is to perform the operation given to produce the final
sum in minimum time.

a) We want to design a pipelined arithmetic unit that computes one cycle of the
recurrence equation. Each block in the pipeline takes one clock period. The
divide operation produces a quotient mantissa by repeating a basic operation
for four clocks. All operations are floating point. (To compute the full recur­
rence requires an interlock from output to input. Ignore the interlock for this
part of the question.)

Draw a pipelined unit that implements the right-hand side of the recur­
rence. Discuss briefly the function of each block in the pipeline. Design the
pipeline for minimum delay and minimum conflicts, replicating logic freely.
Produce the collision table for the pipeline and the collision vector for control­
ling it. Ignore interlocks.

b) Redesign the pipeline to use minimal hardware by reusing blocks when possi­
ble. Show the block diagram and discuss the flow of results through the pipe­
line for one cycle of the recurrence. Produce the collision table and collision
vector for the pipeline. Ignore interlocks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 188

176 Pipeline Design Techniques Chap.3

3.7 The purpose of this problem is to examine the loss in efficiency due to conditional
branches.

a) Consider the innermost loop of the program in Exercise 3.1. Write this loop in
assembly language for an architecture that has a sufficiently large number of
registers to allow the variables for up to three successive loops to be saved in
the registers. Unroll the loop by three iterations to make use of these registers.

b) Construct the block diagram of a pipelined processor that executes your pro­
gram efficiently, assuming that all operands require two cycles for READ and
WRITE from a local cache and that the arithmetic unit is a pipelined unit that
can produce a new product every cycle and accumulate successive products at
the same rate. It is not necessary to design the arithmetic pipeline. Assume that
it is collision free. Design your system to match available memory bandwidth
and processing bandwidth so that the processor produces one result per cycle
for the inner iteration, when operating at its peak rate.

c) How many cycles are lost if the pipeline has to drain completely when a
conditional branch is reached? How efficient is this design when executing the
given iteration? (This is the ratio of results produced to total cycles between
conditional branches.) How does the efficiency change if the six, not three,
loops can be unrolled?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 189

Characteristics of Numerical
Applications

Large-scale numerical applications typically are highly structured computa­
tions. Some very large programs require 1012 to 1015 floating-point operations to
achieve solutions at the desired level of accuracy. Since there are approxi­
mately 3.15· 1013 microseconds per year, and a conventional high-performance
machine can complete roughly one floating-point operation per microsecond,
it is clear that these problems, can occupy conventional machines for several
years. To solve the largest problems, an architecture almost certainly must
have a large amount of parallelism, and it must exploit the particular charac­
teristics of the problem. This tends to force the large numerical machines to
become more special purpose and more oriented to specific applications than
the architectures described thus far. When a computer program can occupy
every available cycle of an architecture for months or years at a time, changes
that bring down computation time dramatically are quite beneficial, even if
they bias the architectural structure towards particular purposes.

177

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 190

178 Characteristics of Numerical Applications Chap.4

The computer architect has to understand the special needs of large-scale
problems to produce designs that can meet the extremely taxing require­
ments of such problems. Even then, the architect has to be aware of the needs
of a broad class of problem areas because, when a choice of approaches is
possible, the architect should know which approaches can satisfy the needs of
several areas. If one architecture can serve several different areas, then the
design effort, software development, and other development costs can be
shared by a larger community of users, thereby greatly reducing the cost of
the machine per user.

The architect has to weigh carefully those design decisions that enlarge
the community of users if they might compromise maximum performance for
some subset of users. For example, if a machine attains its highest per­
formance when processing vectors, how useful will the machine be to a com­
munity that requires scalar processing exclusively? In this case the architect
has to decide the level of performance for scalar mode, and this decision may
greatly affect both the users who operate exclusively in scalar mode and those
who operate almost exclusively in vector mode. There is some risk that both
communities may be burdened with design capability that cannot be utilized
fully.

For the example of scalar performance in a vector machine, there happens
to be a body of evidence that shows that high-speed scalar performance is
important for all high performance programs, including those that appear to
be mostly vector operations. An effective design achieves high performance
on scalar operations, even for applications where there is a large fraction of
vector operations. Other aspects of architectural design are not so clear cut.
These include the handling of input/output, internal interconnections and
data paths, and algorithm support within the architecture.

How can these areas be developed to support the most stringent computa­
tional demands and still be of benefit to the bulk of the user community? The
approach in this chapter is to explore the applications themselves in a general
way to identify problem characteristics that strongly influence computer
architectures for these problems. The discussion has been modeled after
Hoshino [1986].

4.1 Classification of Large-Scale
Numerical Problems

The large-scale computations described in this section are numerical
techniques that model physical processes. The common features of the prob­
lems are:

• There is a heavy dependence on floating-point arithmetic because of a
potentially large dynamic range of values.

• The calculation model uses discrete points in space and time to model
what physically might be a continuous function of space and time.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 191

Sec. 4.1 Classification of Large-Scale Numerical Problems 179

• The algorithm designer has some flexibility in determining the size of the
problem by choosing the discrete representation of the model. Hence the
designer selects the number of physical points in a mesh, the size of a time
step, and the number of particles to track in a Monte Carlo simulation.
These values can generally be chosen to meet architectural constraints.

• The algorithm designer can trade the precision of the result against the
time to compute the result. Generally, the more precision obtained in an
answer, the greater the number of points that will be needed to compute
it to that precision, and the greater the number of machine cycles that
will be expended while performing the calculations.

All of these characteristics suggest that the algorithm designer has the free­
dom to adapt the algorithm to particular architectures where constraints are
strongly felt in the architecture. For example, ILLIAC IV is an array-processor
design containing 64 processors. In 1972, one was built and installed at NASA
Ames Research Center, where it performed very large computations for about
ten years before it was decommissioned.

On the ILLIAC IV architecture, calculations involving 64, 128, 256, ... ,
the grid points are easily spread among the processors so that all processors.
can process grid points concurrently. For calculations involving 65 grid
points, however, the ILLIAC IV architecture has a serious problem. The first
64 out of 65 points are assigned to the 64 processors, one processor per point.
When these have completed their work, the remaining point is assigned to
one of the 64 processors, leaving 63 processors idle. So, in a very real sense,
the use of 65 grid points leads to gross inefficiency as compared to using just
64 points.

Rarely if ever was the ILLIAC IV programmed to deal with problem
models for which the number of data points was poorly suited to its architec­
ture. Since efficiency depended so strongly on the number of data points, the
models developed for the ILLIAC IV invariably used a number of points that
was an exact multiple of 64 or was a number that allowed most of the pro­
cessors to be utilized throughout a computation.

The number of points within a typical problem was selected by the algo­
rithm designer; it was not a number inherently fixed by the nature of the
problem. With the flexibility to choose the size of the problem within certain
bounds, the algorithm designers were able to adjust their problem sizes to
sizes that were efficient for the structure of the ILLIAC IV.

It is an unfortunate fact of life that the algorithms for high-performance
machines are dependent on the architecture. The algorithm designer who
makes certain that the number of data points is well suited to an ILLIAC IV
may have to redesign the algorithm if it is moved to a different machine.

The present state of the art of high-level languages and optimizing com­
pilers for high-performance machines is only now reaching the point where it
has become feasible to submit a program written in FORTRAN for a con­
ventional computer to an optimizing compiler for a highly parallel machine,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 192

180 Characteristics of Numerical Applications Chap.4

and thereby produce a machine-language program that makes effective use of
the facilities contained within the parallel machine. The best of such com­
pilers outperform the capabilities of programmers with a moderate amount
of experience writing programs for parallel computers. Very experienced
programmers usually do better than the compilers.

This situation is not very different from the one that exists for compilers
for conventional machines, except that optimizing compilers for conven­
tional machines may well outperform a larger segment of the programming
population than do the compilers for parallel machines. The human work
involved in producing better code than what an optimizing compiler pro­
duces is often so large that it is rarely done for conventional machines except
in special cases when the payoff in high performance is worth the effort
required to produce fast code.

Unfortunately, in the realm of high performance machines, the majority
of programs make heavy use of processor resources, and therefore a large
percentage of these programs fall in the class of programs for which special
effort in improving efficiency is worth while. A factor of 2 improvement in
overall speed, which is often attainable through hand coding instead of auto­
matic compilation, may reduce computation time by several hours or days,
and it may make the difference between being able to run the code or not run
the code at reasonable cost.

In the near term, we expect the algorithm designer to be responsible for
building algorithms to tap the resources of the architecture. This places an ex­
tra burden on software development because it is very likely to be dependent
on the architectural structure. In the long term, compiler technology may
carry the burden of restructuring an algorithm written for conventional archi­
tectures into a form suitable for a high-performance, specialized architecture.

Given this background discussion, it is clear that computer architects
need to understand the general characteristics of the workload for which they
are designing machines. This holds for all problem areas, be they scientific
and numerical, business and data processing, or nonnumerical combina­
torial workloads. The remainder of this section treats large-scale, scientific
problems.

4.1. l Continuum Models

Hoshino [1986] finds that physical computational models fall mostly into two
categories:

1. Continuum models; and

2. Particle (discrete) models.

The continuum model accounts for calculations in which time and space are
considered to vary continuously, and typical parameters are charge density,
temperature, and pressure. These are physical measures averaged over re­
gions. The particle model views the universe as composed of discrete par-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 193

Sec. 4.1 Classification of Large-Scale Numerical Problems 181

tides. The parameters in this model are physical variables such as velocity,
force, and momentum, where the variables measure the current state of
individual particles.

The notion of temperature of a plasma, for example, views the plasma as a
continuous entity with an internal temperature that varies continuously
through the plasma according to physical laws. The discrete view of the
plasma treats each particle within the plasma as a distinct entity and does
not directly contain the notion of temperature. However, the temperature of a
plasma is a direct function of the velocity and density of the particles within
the plasma, and it can be calculated by taking averages over many particles.

The digital computer is a discrete device, and therefore all digital
computations have to be cast in a discrete form, regardless of whether or not
they were continuous initially. Analog computers can model continuous
problems without requiring a conversion first to discrete form. A wind tun­
nel, for example, is an analog computer for calculating fluid flows. In this
case, the real physical variable is modeled by an identical physical variable
scaled appropriately for the dimensions of the wind tunnel.

The very large numerical problems addressed by parallel machines gen­
erally do not lend themselves to fast computation on inexpensive analog
computers, and therefore the use of digital computers has become an attrac­
tive alternative. The cost of a wind tunnel, for example, that can simulate the
range of velocities and effects of interest today may well exceed the cost of ten
digital supercomputers. (Although the factor of 10 may be speculative, it is of
the right order of magnitude.)

The major difference between continuum models and particle models is
the following:

A continuum model obeys partial differential equations. When cast in discrete
form, it produces equations in which all changes to variables are functions of
nearby variables. Remote variables do not have a direct effect. They act indirectly
through the medium by actions on their neighbors, which act on their neighbors,
and so forth, and thereby propagate an action through the entire medium through
local interactions.
A particle model permits particles to be affected by distant particles. Any single
particle may depend directly on all other particles in the model at each instant of
time.

The nice property of the continuum model is that each point within the
continuum acts like an independent autonomous computer. Each point ex­
amines its near neighbors to determine their states. Then based only on its
current state and the states of its near neighbors, each point applies the
equation that governs the behavior of the continuum and updates its state.

The computations made at each point are made independently and
proceed in parallel. So when you visualize convective heat flow, fluid flow, or
other continuous physical processes, view the dynamics of the process as if
each point in the continuum were performing a small computation on local

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 194

182 Characteristics of Numerical Applications Chap.4

and neighboring data. If this model correctly characterizes the process, it
becomes quite clear what the characteristics should be for a highly parallel
computer that performs calculations with this model.

4.1.2 Particle Models

If the continuum model is well suited to parallel computation, then the
particle model may be considered to be poorly suited. Because of the property
of action at a distance, each particle must examine all other particles to
determine how its state will change. As the number of particles in a model
increases, the work per particle increases, and the total computation
increases faster than linearly in the number of particles. This finding is at
odds with the continuum model in which the computation at each point is
fixed regardless of the size of the model. We have to reconcile the two models
because both models can be used to describe a single physical process.

For example, gravitation is an excellent example of a physical phenom­
enon of action at a distance. As matter is created and destroyed in far reaches
of the universe through massive nuclear interactions, the change in the
amount of matter changes the gravitational force on objects here on earth.

When Newton's apple fell from the tree, how did the apple know to fall to
earth? Because of action at a distance, the apple was accelerated by gravita­
tional interactions with all other matter in the universe. A discrete model of
the forces on the apple may well examine all other matter in the universe,
sum up the effects, and then accelerate the apple according to the resultant
effect.

In actual practice, action at a distance is too strong a notion for gravita­
tional interactions. Since gravitation forces are proportional to mass and fall
off with the inverse square of distance, faraway objects can be ignored unless
they are very large. For most objects on earth, the planet earth itself is the
only object of consequence. In exceptional cases, such as tidal movements,
the sun and the moon have to be considered. For trajectories of spacecraft, it
is sufficient to treat planets, major satellites, and the sun, and ignore objects
outside the solar system and small objects within it.

The same notion holds in particle physics, except that a greater fraction
of the particles have to be considered. Again, in models in which forces fall off
with the inverse square of distance, particles sufficiently far away need not be
examined unless they are very large individually or of a sufficiently high
concentration that their total effect is large. To determine the effects of re­
mote particles, note that the volume of a sphere around a discrete particle
grows proportionally to the square of the radius of the sphere for small
changes in radius. That is,

dV = 41Tr2 dr
lf particle density is uniform in space, and if forces drop off as the square

of the radius, then the sum of the magnitudes of the forces experienced at the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 195

Sec. 4.1 Classification of Large-Scale Numerical Problems 183

center of the sphere is a constant independent of the radius of the sphere of
influence. The actual force experienced at the center of the sphere of influence
actually may fall as the radius grows when the forces tend to cancel.

If particle density falls off as the volume increases, then the total forces
felt by a particle will also fall off with the distance to the remote particles. So
the first principle we have learned here is that there are practical limits to
action at a distance, and therefore we may be able to limit attention to a small
portion of the particles at hand, depending on the nature of the model.

The second principle concerns remote effects in a continuum model. Even
though all computations in the continuum model are local, it is clear that
remote conditions eventually affect each point. In a heat-transfer model, for
example, when some boundary face of a solid metallic object is raised to a
high temperature, that temperature eventually propagates through the metal
and raises the temperature of the entire object, unless the heat can be
dissipated through other surfaces. The near-neighbor computation in the
continuum forces that heat propagation to move from point to point in the
physical model, until every point has been affected indirectly.

If we modeled the same process through a corresponding particle model,
each particle within the object would directly examine all others, including
those particles associated with the heated surface. Each particle could
change its internal state immediately if it were to compute the effect of the
heated surface on itself, properly taking into account heat dissipation within
the solid object. (This is not a simple calculation.)

The continuum view produces a simple calculation model that is inher­
ently highly parallel and local, but the model has some delay associated with
the propagation of effects through the continuum. The particle view produces
a model that handles propagation quickly by making all interactions direct
interactions, but the computations may be more complex, and the number of
pairwise interactions to examine may be very large.

The continuum model may actually have fewer elementary arithmetic
operations than the discrete model in certain circumstances. Specifically, the
effect of propagating the influence of several active particles within the con­
tinuum model is to propagate each of the particles through near-neighbors.
As the effects of distinct particles reach common intermediate points, the
effects combine and propagate as a combined effect instead of as multiple
individual effects. That is why an individual point within the continuum need
look only at its near-neighbors instead of at every other point in the con­
tinuum. All effects combine eventually and affect each point only through its
near-neighbors. So instead of examining all pair-wise interactions, which can
be a very large number, the continuum model combines effects to reduce the
number of pair-wise computations to make at each node.

When the number of individual particles is very large, the pairs grow as
the square of the number of particles. On the other hand, the continuum
model requires at least a number of computations proportional to the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 196

184 Characteristics of Numerical Applications Chap.4

product of the number of points in the continuum, the number of neighbors,
and the length of the longest propagation path. Since path length grows only
as the square root or cube root of the number of points, the number of
operations for the continuum model may be smaller than the number of
operations for the discrete model. Usually the number of points in the con­
tinuum is independent of the number of particles in the discrete model, so the
two models cannot be compared directly.

4.2 Design Constraints for
High-Performance Machines

Our objective in the text as a whole is to show the major trends for future
developments in high-performance architecture. In the numerical algorithm
area, the ability to formulate and attack very large problems has grown much
faster than the ability of industry to supply single processors whose
performance is high enough to solve the problems posed. The clearest trend
for the very large problems is to use parallelism in some fashion, either
through extensive use of pipeline design or through replication of individual
processors into arrays of processors.

Early formulations of parallel programs for numerical calculations occa­
sionally lacked a realistic view of the architecture of parallel machines. Most
of the weaknesses in the models of machines that were studied lay in the fact
that the machine models had capabilities that are difficult or impossible to
build from the devices with the functional characteristics of those in use
today.

To give accurate insight into future trends, we must first identify the
major constraints on designs. These constraints make designs difficult and
challenging. Breakthroughs occur when some mixture of designer cleverness,
new devices, and sophisticated software can live within the physical con­
straints and still achieve major performance improvements.

Let us first examine the principal constraints and then consider how
various designs have dealt with them. The most constraining technology
factors are:

• Memory bandwidth: each physical memory of conventional design can
support at most one READ or one WRITE per cycle.

• Processor bandwidth: a conventional processor can execute only one in­
struction at a time.

• Input/output bandwidth: a conventional bus that connects a computer's
input/output port with the external world can carry no more than one
datum per cycle.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 197

Sec. 4.2 Design Constraints for High-Performance Machines 185

To achieve high performance without parallelism using conventional archi­
tectures, the only reasonable approach is to have more machine cycles per
second-that is, to use inherently faster devices.

Parallel architectures provide a way of increasing performance without
relying on a new generation of high-speed devices. For example, parallel­
computer memories may provide the ability to support multiple independent
concurrent READs or the ability for one READ operation to examine the
contents of several memory locations during one memory cycle.

To design an effective parallel computer, the architect must find solutions
to each of the following problems:

• Processor bandwidth: find a way to partition individual computations
among many processors so that each computation can be executed
concurrently on those processors.

• Memory bandwidth: design a memory system and find a way to store data
in that system so that the data required to be accessed during any cycle
can be accessed in parallel.

• Input/output bandwidth: design an input/output system that can move
data into and out of a parallel machine at a rate that can sustain the full
computational power of the machine.

• Communication bandwidth: design a means for interprocessor communi­
cation that can move data from where it resides to where it is needed.

• Synchronization: design a mechanism for coordinating the activity of the
processors.

• Multiple purposes: incorporate sufficient flexibility in the design to sup­
port several different kinds of computations.

The first three problems to be attacked are the constraints inherent in
conventional architecture:

1. Executing more than one instruction per cycle;

2. Accessing more than one datum per cycle; and

3. Boosting input/output capacity to support a data rate required for very
high-speed computations.

As a consequence of using a parallel approach, the other three problems that
are not usually present in serial architectures do appear. With many pro­
cessors, it becomes necessary to exchange information, so some type of
communication network among the processors is required. Because the
processors must work together on a computation, they must synchronize to
coordinate such things as data transfers among processors, access to shared
data, and the initiation of tasks that depend on the completion of other tasks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 198

186 Characteristics of Numerical Applications Chap.4

The last problem area reflects the economics of computer design as dis­
cussed in the first chapter. Development costs for hardware and software
have to be amortized over the number of copies of a machine that can be
installed. A very high-speed, single-purpose machine can be very costly if all
development expenses are amortized over a few copies and the ratio of cost to
performance that each user sees grows very large.

By incorporating sufficient flexibility to cover several purposes into a
design, the ratio of cost to performance to each user may be significantly
lower, and thereby the design produces a greater benefit to each user. More­
over, there is very great risk in designing an architecture for a single purpose
because the architecture may be too wedded to a particular algorithm.

Scientific advances often produce alternative computational techniques,
and thus there is some possibility that what was once thought to be an
efficient algorithm can be supplanted by a more efficient algorithm. Hence a
high-speed architecture built around one algorithm may deliver somewhat
less performance than can a lower-speed architecture that is based on a better
algorithm. And the lower-speed architecture is likely to be less costly than the
high-speed architecture.

These problems represent the challenge to the computer architect. In the
light of this discussion let us return to the problem of designing high-speed
computers for numerical algorithms and illustrate various choices available
to the architect.

4.3 Architectures for the Continuum
Model

The continuum model of computation is especially attractive for parallel
computation because it provides relatively simple solutions to the major
design problems. The earliest proposals for parallel machines focused on this
type of computation, partly because of the natural parallelism inherent in
this model, and partly because several important large-scale problems can be
solved within a continuum framework.

In this section we pursue the reasoning that leads to the design of an array
processor architecture and describe how this architecture is an effective solu­
tion to each of the design problems, except for the multi-purpose objective.
The very special structure of this type of architecture limits its use mainly to
the continuum model of problems, and even within this model there are
problems whose demands cannot be met by the basic architecture.

As a paradigm for the continuum model, let us choose Poisson's equation
for the potential in a region as a function of charge density in that region. The
equation in two dimensions can be written as:

a2V(x,y) a2V(x,y) _ C()
--~+ - - x y ax 2 ay 2 '

(4.1)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 199

Sec. 4.3 Architectures for Continuum Model 187

where V(x, y) is the voltage potential at the point (x, y), and C(x, y) is the
charge at point (x, y). A solution to this equation in a region depends on
boundary conditions, which can be expressed in a variety of ways. For this
example, we assume we are to solve the equations in a region 0 sx s 1,
0 sys 1, and that we are given the values of V(x, y) on the boundaries of this
region.

The continuous equations do not lend themselves to direct solution on a
digital computer. We must first transform them into a discrete form that can
be treated numerically. To do so, we can represent a continuous region by
discrete points, as represented by the mesh shown in Fig. 4.1. At the inter­
section (i, j) in this mesh is a point at which we store the values V(i, j) and
C(i, j). The indices on i and j run from 0 to N - 1, so the corresponding values
of x and y are given by x = i/N and y = j IN.

If the points in the region are sufficiently close together, we obtain a good
approximation of the potential in a continuous region. The fidelity of the
discrete version of the problem depends entirely on the mesh spacing. Of
course, the number of points grows quadratically with the spacing, so
computation time can become very large as spacing diminishes. The user
must strike a balance between the resolution of the model and the cost of
computation. As computation speeds become greater, the user can explore
problems with much greater resolution by refining the meshes used in dis­
crete approximations.

Having transformed continuous physical space into discrete space, we
can transform the continuous equations into their discrete analog. Equation
(4.1) relies on second derivatives, which we explore by finding the discrete
approximation to first derivatives. Consider, momentarily, a continuous first
derivative for a one-dimensional problem. The equation of interest is Eq (4.2):

dV(x) = - C(x)
dx

(4.2)

Fig. 4.1 A mesh representation of continuous space. Each box represents one node in
the mesh. The integers within a box represent its spatial coordinates.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 200

Sec. 4.3 Architectures for Continuum Model 187

where V(x, y) is the voltage potential at the point (x, y), and C(x, y) is the
charge at point (x, y). A solution to this equation in a region depends on
boundary conditions, which can be expressed in a variety of ways. For this
example, we assume we are to solve the equations in a region 05x 5 1,
0 S y s 1, and that we are given the values of V(x, y) en the boundaries of this
region.

The continuous equations do not lend themselves to direct solution on a
digital computer. We must first transform them into a discrete form that can
be treated numerically. To do so, we can represent a continuous region by
discrete points, as represented by the mesh shown in Fig. 4.1. At the inter-
section (i, i) in this mesh is a point at which we store the values V(i, i) and
C(i, i). The indices on i andi run from O to N — 1, so the corresponding values
ofx andy are given byx = i/N andy =j/N.

If the points in the region are sufficiently close together, we obtain a good
approximation of the potential in a continuous region. The fidelity of the
discrete version of the problem depends entirely on the mesh spacing. Of
course, the number of points grows quadratically with the spacing, so
computation time can become very large as spacing diminishes. The user
must strike a balance between the resolution of the model and the cost of

computation. As computation speeds become greater, the user can explore
problems with much greater resolution by refining the meshes used in dis-
crete approximations.

Having transformed continuous physical space into discrete space, we
can transform the continuous equations into their discrete analog. Equation
(4.1) relies on second derivatives, which we explore by finding the discrete
approximation to first derivatives. Consider, momentarily, a continuous first
derivative for a one-dimensional problem. The equation of interest is Eq (4.2):

dV(x)__
(ix — C(x) (4.2)

Fig. 4.1 A mesh representation of continuous space. Each box represents one node in
the mesh. The integers within a box represent its spatial coordinates.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 200

188 Characteristics of Numerical Applications Chap.4

Using the classical definition of a derivative, we are tempted to use a
discrete analog of the derivative that has the form:

dV(x) V;+ 1 - V;

--;h+ (~)
(4.3)

The denominator is the mesh spacing, which is l/N when there are N + 1
uniformly spaced points starting at 0 and ending at 1. Equation (4.3) ex­
presses the derivative at a region of space about halfway between the points
located at i and i + 1 on the x-axis. The value of the derivative at point i is
more appropriately given by this equation:

V;+ 112 - V;-112

(~)
(4.4)

where the grid points i + 112 and i - 112 are fictitious. If we needed to use real
grid points, we could use i + 1 and i - 1 in Eq. (4.4), and adjust the denomi­
nator to twice the mesh spacing. This is not necessary, however, because the
fictitious grid points cancel out when we take the second derivative.

Let us calculate the discrete approximation to the second derivative in
one dimension:

d
2
V(x) = .E__ (dV(x))

dx 2 dx dx

(V;+ 1 - V;)- (V; - V;-1)

(~)

=
V;+1 + V;- 1 - 2V;

(~)
(4.5)

When we use Eq. (4.5) in Eq. (4.1), the resulting discrete equation becomes:

V·+ 1 · + V· 1 · + V · 1 + V. 1
' •

1
,_ •1

4
'·1+ t.1- =V;,j-C;,;,forO<i<N,O<j<N (4.6)

In other words, the potential at each point in the mesh is the average of the
points at its four neighbors plus a term that reflects the charge located at that
point.

Equation (4.6) is a linear system of equations involving the (N - 2)2

unknown values of V(x, y) on the interior of the mesh. By solving this linear

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 201

188 Characteristics of Numerical Applications Chap. 4

Using the classical definition of a derivative, we are tempted to use a
discrete analog of the derivative that has the form:

dV(x) +Vi+l-'Vi

4" (i)N

The denominator is the mesh spacing, which is l/N when there are N + 1
uniformly spaced points starting at 0 and ending at 1. Equation (4.3) ex-
presses the derivative at a region of space about halfway between the points
located at i and i + 1 on the x-axis. The value of the derivative at point i is
more appropriately given by this equation:

(4.3)

(fl/(ii) :Vfim—Vi—uz (4_4)
d" (i)N

where the grid points i + 1/2 and i — 1/2 are fictitious. If we needed to use real
grid points, we could use i + 1 and i — 1 in Eq. (4.4), and adjust the denomi-
nator to twice the mesh spacing. This is not necessary, however, because the
fictitious grid points cancel out when we take the second derivative.

Let us calculate the discrete approximation to the second derivative in
one dimension:

d2V(x)=i(dV(x))(ix2 dx . dx

_(Vi+1 ‘VQ‘U/i _Vi—l)

f (i)N

«Vin +Vi-1_2Vz

_ (i)N

When we use Eq. (4.5) in Eq. (4.1), the resulting discrete equation becomes:

(4.5)

V~ "f -, ‘+ ~+ + --,

1+l.] V: 1,14Vt,j 1 V1,] 1=Vid Ci_,,for0<i<N,0<i<N (46)

In other words, the potential at each point in the mesh is the average of the
points at its four neighbors plus a term that reflects the charge located at that
point.

Equation (4.6) is a linear system of equations involving the (N - 2)2
unknown values of V(x, y) on the interior of the mesh. By solving this linear

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 201

Sec. 4.3 Architectures for Continuum Model 189

system we can obtain a close approximation to the solution of the original
continuous system.

How can we solve Eq. (4.6)? Standard algorithms for solving linear
systems will work, but this system is very special because it is sparse and
highly structured. To achieve greater efficiency, we should take advantage of
the specific form of the system.

Of the many possible approaches, one in particular has great appeal for
parallel architectures. This approach solves the equations implicitly rather
than by direct solution. Varga [1962] describes the methodology in great
detail. The essential idea is to use an iteration of the form:

V <o + v<1> + v<1> + v<1> v11.+ 1> == ;+ 1.i ;-1.i ;,;+ 1 i,j-1 + C..
!,/ 4 !,/ (4.7)

The superscript indicates the iteration number. In this case each point is
updated with a value equal to the average of the four neighboring points, plus
a value due to the charge at the point. A solution is obtained when no point
changes value as a result of performing the iteration.

A computer architecture for solving the equations in the form given by
Eq. (4.7) is shown in Fig. 4.2. Each mesh point has a processor associated with
it. Each processor is connected to its four immediate neighbors, and along
this connection the processors obtain the values required for Eq. (4.7). Since
all processors execute the same iteration, we need only one instruction
stream for all processors. Instructions are broadcast by a single control pro­
cessor, and they are received and obeyed by the processors performing
computations at the nodes of the mesh. In this form, the architecture is
essentially that proposed by Slotnik et al. [1962]. Eventually this proposal led
to the development of the ILLIAC IV.

Program 4.1 is a program for this architecture that computes the solution
to Poisson's equation. We assume that each processor has a memory, a col­
lection of general registers, and a routing register that is connected to the
north, east, south, and west neighbors.

The instruction format in Program 4.1 has the form OPCODE DEST,
SOURCE, where OPCODE specifies the operation to be done, DEST is the
destination of the result, and SOURCE is the location of one of the operands.
If the instruction has two operands, as do ADD and MULTIPLY, the second
operand is found in location DEST. With this convention, the instruction
MOVE REG[l],MEM[V] copies the contents of local memory, cell V, into
Register 1; conversely, the instruction MOVE MEM[V],REG[l] copies the
register back into memory.

To transfer data among processors, each datum is first loaded into the
routing register with an instruction of the form MOVE ROUTE,MEM[V] for a
transfer from memory to the routing register, or of the form MOVE
ROUTE,REG[l] to transfer from a general register into the routing register.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 202

190 Characteristics of Numerical Applications Chap.4

Fig. 4.2 An array of processors for continuum-model calculations. The P and M desig­
nate the processor and memory at each node. Instructions are broadcast to all pro­
cessors from a control unit not shown in the figure.

Program 4.1 Main iteration for Poisson solver on array processor.

LOOP:
LOAD REG[l],MEM[V] Local value of potential to REG[l]
MOVE ROUTE,REG[l] Prepare to route the value
ROUTE NORTH Send it north
MOVE REG[2],ROUTE Save value from the south
MOVE ROUTE,REG[l]
ROUTE EAST Send it east
ADD REG[2],ROUTE Add in the value from the west
MOVE ROUTE,REG[l]
ROUTE SOUTH Send it south
ADD REG [2] , ROUTE Add in the value from the north
MOVE ROUTE,REG[l]
ROUTE WEST Send it west
ADD REG[2],ROUTE Add in the value from the east
DIV REG[2]/4 Form the average of the neighbors
ADD REG [2] , MEM [C] Addinthelocalcharge
MOVE MEM [V] , REG [2] REG[2] has the new value of V

REG[l] has the old value of V
Add code here to detect convergence

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 203

190 Characteristics of Numerical Applications Chap. 4

E EV E El __
m m u] m

_J__

m 3 3 _PJ

[Ml lM] M] Ml
I

m w r] El

[m |__M|]_ m m "
Fig. 4.2 An array of processors for continuum-model calculations. The P and M desig—
nate the processor and memory at each node. Instructions are broadcast to all pro-
cessors from a control unit not shown in the figure.

Program 4.1 Main iteration for Poisson solver on array processor.
LOOP:

LOAD
MOVE
ROUTE
MOVE
MOVE
ROUTE
ADD
MOVE
ROUTE
ADD
MOVE
ROUTE
ADD
DIV
ADD
MOVE

REG[1],MEM[V]
ROUTE.REG[1]
NORTH
REG[2].ROUTE
ROUTE,REG[l]
EAST

REG[2],ROUTE
ROUTE,REG[1]
SOUTH

REG[2],ROUTE
ROUTE,REG[1]
WEST

REG[2].ROUTE
REG[2]/4
REG[2].MEM[C]
MEM[V].REG[2]

Local value of potential to REG[1]
Prepare to route the value
Send it north
Save value from the south

Send it east
Add in the value from the west

Send it south
Add in the value from the north

Send it west
Add in the value from the east

Form the average of the neighbors
Add in the local Charge
REG[2] has the new value of V
REG[1] has the old value of V
Add code here to detect convergence

PATENT OWNER DIRECTSTREAM, LLC

EX.2069,p.203

Sec. 4.3 Architectures for Continuum Model 191

The transmission of data across processors is done by the ROUTE instruction,
such as ROUTE NORTH, which has the effect of moving data from each
routing register to the routing register of its northern neighbor. Immediately
after a ROUTE NORTH instruction, the routing register contains the value
transmitted by the southern neighbor. ROUTE NORTH is both a SEND TO
NORTH and RECEIVE FROM SOUTH instruction.

With this convention, the program for Eq. (4.6) becomes the program
shown in Program 4.1. Note that no subscripts are required here because the
mesh point (i, j) is held in processor (i, j). If the number of mesh points exceeds
the number of physical processors, then it is possible to process a large mesh
by breaking it into small regions, each the size of the physical mesh. In this
case, each region is assigned to the physical mesh, and each processor has to
calculate the equations for several different regions. The region-by-region
calculation can be done sequentially. To differentiate one region from an­
other, however, the program may have to resort to indexing, so MEM[V]
becomes MEM[V[K]] to access the potential for Region K.

Let us return to the problems posed in the previous section and consider
how the architecture in Fig. 4.2 solves each problem.

• Processor bandwidth: the problem is inherently parallel, and it partitions
easily by assigning each processor the work of one node in the mesh.

• Memory bandwidth: the memories at each node are conventional random­
access memories. Because they are independent, an independent access
can be made to each memory in the system in the course of a single cycle.

• Input/output bandwidth: each processor in the system can have its own
input/output channel to the external world.

• Communication bandwidth: all communication between processors is
done between neighboring processors. There is no contention for commu­
nication paths. Communication bandwidth does not limit computation
speed in this architecture for the class of problems that require only
near-neighbor connections.

• Synchronization: the processors operate in lock-step fashion. All
processors execute the same program and are locked together during
execution. The processors are synchronized at the individual cycle level
and do not have to be synchronized at a higher level.

• Multiple purposes: the basic architecture depicted in Fig. 4.2 is best suited
to mesh calculations that have specific characteristics, such as calcu­
lations with uniform grid spacing, with a nontime-varying mesh, and
with a mesh geometry that matches the interconnection geometry. Rela­
tive performance is much poorer for other kinds of problems.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 204

192 Characteristics of Numerical Applications Chap.4

For all but the last point, this architecture has very positive answers. For
synchronization specifically, the ROUTE instruction shows the effectiveness
of the architecture. All processes transmit data concurrently, so no processor
has to wait to receive data from a neighbor.

In spite of the positive qualities of the architecture, no machine with this
architecture has been successful commercially, although the ILLIAC IV pro­
duced useful output for about ten years. It is clear that the architecture is
extremely effective for some problems. Why then has the architecture not
been widely exploited? The answer is probably because the architecture is
too narrowly focused on a single solution methodology.

The architecture is ideal for the continuum model, but the architecture as
presented here lacks facilities for handling requirements that exist in other
models and that appear in many computations that use the continuum
model. For example, mesh size might need to be varied dynamically when the
resolution required is a function of spatial coordinates or time. The architec­
ture as presented appears to be best suited to a uniform rectangular mesh.

Some computations break up into two or more regions, within each of
which a different computation must be performed. The basic architecture as
presented cannot perform two or more different computations in parallel, so
each different computation would have to be done serially on some subset of
processors.

In essence, the architecture in Fig. 4.2 has a narrow area of application.
Because the potential user community is small, the cost per user is likely to be
high. Moreover, the effort required by the user to write working programs on
a new architecture might also be excessive.

New architectures require new tools such as compilers, debuggers, and
operating systems. The development of such tools takes considerable time.
Without such tools, the user is forced to program in a low-productivity envi­
ronment until good software-development tools begin to appear. Hence, high
performance by itself must be coupled with reasonable cost and good soft­
ware tools to make an architecture attractive for a community of users.

The ILLIAC IV architecture is an outgrowth of the SOLOMON architec­
ture, which is essentially the architecture described in Fig. 4.2. ILLIAC IV
provides more generality than SOLOMON, and it proved to be adaptable to a
larger class of problems than was foreseen in the SOLOMON proposal.

In spite of its broader applicability, the ILLIAC IV was a one-of-a-kind
machine. Delays in development of supporting hardware and software took
its toll on the ILLIAC IV user community. But the necessary support did
develop, although somewhat more slowly than envisioned, and the ILLIAC IV
proved to be effective for the class of problems for which it was designed. Its
64 processors led to achievable speedups in the neighborhood of 10 to 50 over
the speed of a single ILLIAC IV processor. Eventually faster devices led to
faster competitive machines, and 64 ILLIAC IV processors became less attrac-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 205

Sec. 4.3 Architectures for Continuum Model 193

tive than other alternatives with lesser parallelism. When the ILLIAC IV was
decommissioned, the users turned to other machines that were not one-of-a­
kind machines. The software available on these machines, together with the
later, faster devices, yielded at least equal performance to the ILLIAC IV for
most programs.

There are several important points in this section that capture the lessons
of history in the development of machines for the continuum model.

• A SOLOMON or ILLIAC-IV architecture is very efficient for this model.
This general architecture should influence the architects of commercial
high-speed machines for the continuum model.

• An architecture that solves only the continuum model well and is poorly
suited to other problems may have a greatly limited user community,
which tends to increase the cost to the user and places a greater software
burden on the user than do architectures that are attractive to larger
comm uni ties.

• The speed of high-performance serial processors doubles every three to
four years. A speedup of 10 can be obtained by serial machines in about
ten years. Therefore a parallel architecture that produces only a factor-of-
10 speedup has a window of effectiveness of about ten years.

• If software support tools for an architecture are delayed, the window
during which that architecture can return the highest possible value is
shortened. If some crucial tools such as optimizing compilers are never
developed, the architecture's value to the user may be severely dimin­
ished.

• Building the best possible architecture for a particular purpose is not
necessarily in the best interest of the user. The architecture must also
appeal to a community of reasonable size.

In later sections we shall explore in more depth various techniques for en­
hancing architectures to be more general in purpose.

4.4 Algorithms for the
Continuum Model

Thus far in this chapter we have learned that the continuum model leads
naturally to computations that use highly parallel near-neighbor communi­
cation. Moreover, the computations that take place concurrently over large
regions can be synchronized to execute in lock step at all sites simulta­
neously. To exploit these characteristics, designers have proposed and built
machines whose interconnections reflect the near-neighbor structure of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 206

194 Characteristics of Numerical Applications Chap.4

continuum model. We have discussed briefly the ILLIAC IV computer whose
two-dimensional grid structure seems to be well suited to calculations on
mathematical meshes. That machine interconnects each point to its four
nearest neighbors in the plane.

4.4.1 The Cosmic Cube

More recently Seitz [1985] has produced an architecture called the Cosmic
Cube in which 64 processors are arranged in the logical structure of a six­
dimensional binary cube. Each processor is directly connected to each of six
neighbors in each of the six directions on the cube.

To be more specific, let each processor be given a unique 6-bit label, and
consider, for example, Processor (0,0,0,0,0,0). Each bit gives the coordinate of
that processor in six-dimensional space. Then the neighbors of Processor
(0,0,0,0,0,o) are those processors whose coordinates differ by exactly one
bit position. In this case the neighbors are (1,0,0,0,0,0), (0 1 l 10 10 10,0)1

(0 10 1 l 10 10 10)1 ••• 1 and (0 10 10 10 10 11).
It is curious that this architecture is six-dimensional, but physical space

has only three geometrical dimensions and is only four-dimensional when
time is treated as an additional dimension. The dimensions in the Cosmic
Cube reflect interconnections that are useful for algorithmic purposes and do
not correspond directly to physical dimensions in space and time. Nor is the
Cosmic Cube specifically oriented to the continuum model of calculations,
although the continuum model is a major class of algorithms that run effi­
ciently on the Cosmic Cube.

The processors in the Cosmic Cube are independent processors, capable
of executing their own local programs. In the working model, each processor
is, in fact, a microcomputer that uses an 8086 processor chip with an 8087
floating-point chip. The Cosmic Cube is not required to perform the same
instruction concurrently at all nodes. Rather, execution is independent at the
various nodes, and neighboring processors communicate through messages
when routing data through the computer system.

The Cosmic Cube differs from the architecture of the ILLIAC IV and other
continuum architectures in two fundamental ways:

1. The interconnections of the Cosmic Cube reflect the needs of a variety of
algorithms. The interconnections of the ILLIAC IV reflect specific mesh
geometries.

2. The independence of the processors of the Cosmic Cube permits the sys­
tem of processors to perform different computations simultaneously.
Processors within the ILLIAC IV must execute the same instruction con­
currently (or can remain idle).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 207

Sec. 4.4 Algorithms for the Continuum Model 195

The 64-processor ILLIAC IV was successful in its time in attaining ex­
tremely high performance, but on a rather limited class of problems. Re­
searchers explored many different problem types on the ILLIAC IV and
achieved blinding speed if they were able to cast the problem into a structure
that fit the ILLIAC IV constraints. They learned new techniques for solving
problems and discovered that the near-neighbor geometry of ILLIAC IV is not
usually the best interconnection structure, although it is very good.

For 64 processors, the inefficiencies due to near-neighbor connections are
not terribly large. In reality, the ILLIAC IV connections are richer than the
connections proposed by Slotnik et al. [1962], with the enhancements provid­
ing additional facilities that are useful in parallel programs. We describe
some of the differences in more detail later in this chapter.

The most serious flaw of an ILLIAC IV architecture is the inability to run
different programs concurrently. There is a trade-off here, however, because
independence of operation brings with it additional overhead for synchroni­
zation of activity plus some performance degradation due to contention for
shared resources.

4.4.2 Data-Flow Requirements

In this section, we want to explore some examples of parallel algorithms
whose characteristics illustrate the types of data flow that are inherent in
large-scale numerical computations. Although the algorithms are only
examples, we argue that the data-flow requirements are representative, and
high-performance machines must provide for this type of data flow if they are
to be efficient. The requirements are compatible with the Cosmic Cube and in
part explain why it has its particular set of interconnections.

To illustrate the basic information flow that some problems exhibit, con­
sider Fig. 4.3, which shows a computing device that produces N outputs from
N inputs. We presume that the timing is synchronized so that all inputs are
presented concurrently, and sometime later, all outputs are produced concur­
rently. Of special interest to us is a class of functions that impose the most
stringent requirements for internal data flow within the computing device.

This class of functions is the class for which each input influences every
output, and in turn, each output is influenced by every input. We call func­
tions in this class full-infonnation functions. Any computing device that com­
putes a full-i:r;iformation function must provide interconnection paths inter­
nally from every input to every output. We can measure the shortest path
between each input and each output, and the longest such connection gives a
bound on the worst-case computation time. At least one set of inputs
transmits data along that path (or on a longer path), and at least one output
depends on the value of that data.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 208

196 Characteristics of Numerical Applications Chap.4

. .

. .
COMPUTING DEVICE

. .

Fig. 4.3 A full-information function in which each output depends on all inputs.

Computations that fit the particle model tend to be full-information
functions. In examining particle motion in particle-interaction models, for
example, each particle experiences a force from every other particle in the
system, and in turn, each particle imparts a force on every other particle in
the system. The position and velocity of each particle as a function of time is
calculated by propagating information about each particle to every other
particle in the system. The idea of "action at a distance" is reflected in the
computing device by requiring each input to "act" on each output.

Figure 4.4 demonstrates that sorting is a full-information problem. The
functional module in Fig. 4.4 is a device that produces at its output a copy of
the input data sorted into ascending order. The input data in Fig. 4.4(a)
happen to be presented in sorted order, and they appear at the output un­
changed in order. For this one particular input set, the internal structure
required to put the set into sorted order might well be very simple.

In Fig. 4.4(b), however, we make one change on the first input, and
discover that every output has changed. Hence the first input must be con­
nected to every output. It is very easy to extend this example to show that
every input influences the outputs in the same way. Simply change the two
input patterns in Fig. 4.4 so that each distinct input plays the role played by
the first input in the figure. Then a single change of value on each input
can change all output values, and it becomes clear that sorting is a full­
information function.

Readers familiar with signal analysis techniques may recognize that the
Fourier Transform is also a full-information function. Let the input data to a
computing device be N time samples of a time-varying signal and assume
that the device computes the Fourier Transform of that signal. The output of
the computing device is the frequency spectrum of the signal, in the sense
that the ith output value is the amplitude of the ith harmonic of the funda­
mental frequency. The frequency spectrum depends on all time samples. If a
single change is made to any time sample, then possibly every frequency
amplitude can change.

What is sometimes overlooked is that computations done within the
continuum model can also be full-information functions. This is rather sur-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 209

Sec. 4.4

1
2
3

N

N+1
2
3

N

.

.

Algorithms for the Continuum Model

-
SORTER

(a)

-
-

SORTER

-
(b)

~ . .

-

-
-

.
-

1
2
3

N

2
3
4

N+1

197

Fig. 4.4 A demonstration that sorting is a full-information function. Changing the
value of the first input causes all outputs in (a) to change in (b). A similar argument
shows that every input affects every output.

prising because the continuum model seems to be so well suited to near­
neighbor connections. But for those computations that require full
information interchange, the near-neighbor connections are simply the high­
ways along which the information travels. Remote pairs of points must still
influence each other.

Consider, for example, the classical paradigm of the continuum model,
Poisson's equation. Figure 4.5 shows a mesh imposed on physical space and
some charge located at a few points in the mesh. The potential at each mesh

Fig. 4.5 A mesh of points for the solution of Poisson's equation in the continuum
model. Each node in the mesh contains the value of the charge at the corresponding
point in space.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 210

Sec. 4.4 Algorithms for the Continuum Model 197

1 1
2 2
3 3

SORTER

N ——> N

(a)

N+1 ——. 2
2 ——p 3

3 —>_ _ 4: SORTER :

N ——9 NH

(13}

Fig. 4.4 A demonstration that sorting is a full—information function. Changing the
value of the first input causes all outputs in (a) to change in (b). A similar argument
shows that every input affects every output.

prising because the continuum model seems to be so well suited to near-
neighbor connections. But for those computations that require full
information interchange, the near-neighbor connections are simply the high-
ways along which the information travels. Remote pairs of points must still
influence each other.

Consider, for example, the classical paradigm of the continuum model,
Poisson’s equation. Figure 4.5 shows a mesh imposed on physical space and
some charge located at a few points in the mesh. The potential at each mesh

Fig. 4.5 A mesh of points for the solution of Poisson's equation in the continuum
model. Each node in the mesh contains the value of the charge at the corresponding
point in space.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 210

198 Characteristics of Numerical Applications Chap.4

point depends on the charge placed at all other points in the mesh. The
parallel algorithm proposed earlier for calculating the potential uses only
near-neighbor information, but the calculation must be repeated until the
answers converge.

What is actually happening is that the influence of the charge at each
node spreads further through the mesh with each iteration. If the mesh has N
nodes in each dimension, then at least N iterations are required for each node
to influence every other node. If we choose to solve a continuum problem with
a computing device such as the one shown in Fig. 4.3, we need not limit the
interconnections to near-neighbor interconnections, and therefore the calcu­
lations might complete faster than a time that grows linearly with the dimen­
sion of the mesh.

The idea of information flow is a powerful one in the design of a parallel
computer. The model of a sorting network in Fig. 4.4 characterizes all sorting
networks. Suppose we use as basic building blocks in our sorting network a
logic device whose fan-in and fan-out are limited to a small constant, such as
2. Then it is easy to see from the tree-like construction in Fig. 4.6 that each
device can influence at most 2k devices k levels away. By this argument, a
sorting network for N items must have at least log2 N logic levels.

If the fan-in and fanout is greater than 2, but still bounded by some
constant, then the number of levels still grows as log N, but the base of the
logarithm is equal to the fan-in and fan-out constraint. The only way to
remove the logarithm from the lower bound is to have unbounded fan-in and
fan-out.

In Program 4.1, we simply ignored the data-flow requirements and
concentrated on the near-neighbor data flow. The program excerpt is not a
complete iteration because it shows the iteration only up to the point where
the average of the neighboring values has been calculated. The iteration

Fig. 4.6 A logic network with a fan-out of 2. The device at the top of the network can
influence a number of gates that grows exponentially in the depth of the network.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 211

198 Characteristics of Numerical Applications Chap. 4

point depends on the charge placed at all other points in the mesh. The
parallel algorithm proposed earlier for calculating the potential uses only
near—neighbor information, but the calculation must be repeated until the
answers converge.

What is actually happening is that the influence of the charge at each
node spreads further through the mesh with each iteration. If the mesh has N
nodes in each dimension, then at least N iterations are required for each node
to influence every other node. If we choose to solve a continuum problem with
a computing device such as the one shown in Fig. 4.3, we need not limit the
interconnections to near-neighbor interconnections, and therefore the calcu-
lations might complete faster than a time that grows linearly with the dimen-
sion of the mesh.

The idea of information flow is a powerful one in the design of a parallel
computer. The model of a sorting network in Fig. 4.4 characterizes all sorting
networks. Suppose we use as basic building blocks in our sorting network a
logic device whose fan-in and fan-out are limited to a small constant, such as
2. Then it is easy to see from the tree-like construction in Fig. 4.6 that each
device can influence at most 2" devices k levels away. By this argument, a
sorting network for N items must have at least logz N logic levels.

If the fan-in and fanout is greater than 2, but still bounded by some
constant, then the number of levels still grows as log N, but the base of the
logarithm is equal to the fan-in and fan-out constraint. The only way to
remove the logarithm from the lower bound is to have unbounded fan-in and
fan-out.

In Program 4.1, we simply ignored the data-flow requirements and
concentrated on the near-neighbor data flow. The program excerpt is not a
complete iteration because it shows the iteration only up to the point where
the average of the neighboring values has been calculated. The iteration

Fig. 4.6 A logic network with a fan-out of 2. The device at the top of the network can
influence a number of gates that grows exponentially in the depth of the network.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 211

Sec. 4.4 Algorithms for the Continuum Model 199

actually ends with a convergence test to determine if the iteration should be
repeated. An exit is taken only if all nodes in the mesh have converged;
otherwise the iteration is repeated. But the convergence test requires infor­
mation from all nodes in the mesh, and there is no direct way to make this test
when the only interconnections are near-neighbor interconnections.

Figure 4.7 shows a more complete view of the ILLIAC IV to indicate that
other interconnections exist in that architecture to support the fast inter­
change of data from remote points in the mesh. This figure shows the 65th
processor, the control unit, and its broadcast bus, which presents a single
instruction stream to all processors in the mesh. The figure shows the broad­
cast bus to be bidirectional. The bus provides a return path from the pro­
cessor array to the control unit.

The bus width of the ILLIAC IV architecture is 64 bits. ILLIAC IV in­
structions are 64 bits in length, and operands are 32 or 64 bits in length. In
broadcast mode, the control unit can supply one instruction, one long oper-

+--+

BROADCAST
BUS (64 bits)

+--+

1111

CONTROL .. +-+ UNIT

PROCESSOR

PROCESSOR

PROCESSOR

MEMORY

MEMORY

111

111

..

..

INTERCONNECTION
NETWORK

Fig. 4.7 The ILLIAC IV architecture, showing the bidirectional broadcast bus. Each of
the 64 processors can return one bit on the broadcast bus.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 212

Sec. 4.4 Algorithms for the Continuum Model 199

actually ends with a convergence test to determine if the iteration should be
repeated. An exit is taken only if all nodes in the mesh have converged;
Otherwise the iteration is repeated. But the convergence test requires infor-
mation from all nodes in the mesh, and there is no direct way to make this test
when the only interconnections are near-neighbor interconnections.

Figure 4.7 shows a more complete view of the ILLIAC IV to indicate that
other interconnections exist in that architecture to support the fast inter-
change of data from remote points in the mesh. This figure shows the 65th
processor, the control unit, and its broadcast bus, which presents a single
instruction stream to all processors in the mesh. The figure shows the broad-
cast bus to be bidirectional. The bus provides a return path from the pro-
cessor array to the control unit.

The bus width of the ILLIAC IV architecture is 64 bits. ILLIAC IV in-

structions are 64 bits in length, and operands are 32 or 64 bits in length. In
broadcast mode, the control unit can supply one instruction, one long oper-

H <-——>

PROCESSOR

MEMORY

PROCESSOR

BROADCAST
BUS (64 bits)

H 4-——§

CONTROL 3 ,UNIT

 MEMORY

PROCESSOR

MEMORY

4——><——> PROCESSOR

MEMORY

INTE RCONNECTION

NETWORK

Fig. 4.7 The ILLIAC IV architecture, showing the bidirectional broadcast bus. Each of
the 64 processors can return one bit on the broadcast bus.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 212

200 Characteristics of Numerical Applications Chap. 4

and, or two short operands per cycle. The bus provides a 64-bit return path to
the control unit, through which each processor can supply one bit of informa­
tion per cycle, or a selected processor can supply 64 bits.

When all processors respond in the same cycle, the ith processor sets or
resets the ith bit of the operand returned to the control unit. If the processors
are performing an iteration of the Poisson calculation, then at the end of the
loop the following actions could take place:

1. Each processor compares the magnitude of the change in the potential
function to a fixed small constant EPSILON.

2. The control unit requests a response to the comparison.

3. The ith processor places a 1 in the ith bit of the response vector if the
change exceeds EPSILON, otherwise the processor places a 0 in that
position.

4. The response vector is transmitted over the bus to the control unit.

5. The control unit examines the response locally, and if any bits are non­
zero, the control unit initiates a new iteration; otherwise, the control unit
continues to a new phase of computation that takes place after the
calculation has converged.

It is the control unit that has the ability to gather information globally
across the entire grid of processors and make decisions based on global infor­
mation. The restricted communication within the grid greatly increases the
cost of global decisions such as the determination of convergence. The ILLIAC
IV architecture is richer than a pure continuum-problem architecture be­
cause of the additional capability for the global flow of information.

The implementation of this data path is usually a lower bandwidth than
the near-neighbor connections because the communication paths are much
longer. The ILLIAC IV cycle time for the global data path for return informa­
tion is several times the cycle time for near-neighbor paths, and even at this
clock rate, each processor returns only a single bit per cycle.

4.4.3 Parallel Solutions

Given the general constraints that dictate how information must flow, let us
now consider some techniques that put this knowledge to use in practical
parallel solutions of numerical problems. Let us begin with a simple calcula­
tion stated as a serial computation and demonstrate a technique for per­
forming the calculation in parallel. Consider the recurrence:

x0 = ao (4.8)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 213

Sec. 4.4 Algorithms for the Continuum Model 201

In this case, the unknowns are the parameters xi, and the variables ai are
constants given in advance. To obtain the value of xi as quickly as possible in a
parallel machine, we can easily use a tree-like combining scheme shown in
Fig. 4.8(a). The processors in this diagram are shown in a row, numbered from
left to right starting at 0. Each successive row shows the activity one time unit
later.

During the first iteration, the odd-numbered processors reach across to
the neighbor one lower in number and add the values obtained to the internal

0 2 3 4 5 6 7

(a)

(b)

Fig. 4.8 Two parallel methods:
(a) A parallel method for forming the sum of eight variables; and
(b) A parallel method that yields the sum of the first i variables simultaneously for all
i. Each node sums its input variables. The pair of digits in each node indicate the
lower and upper indices for variables summed at each node.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 214

Sec. 4.4 Algorithms for the Continuum Model 201

In this case, the unknowns are the parameters x,, and the variables a. are
constants given in advance. To obtain the value ofxi as quickly as possible in a
parallel machine, we can easily use a tree-like combining scheme shown in
Fig. 4.8(a). The processors in this diagram are shown in a row, numbered from
left to right starting at 0. Each successive row shows the activity one time unit
later.

During the first iteration, the odd-numbered processors reach across to
the neighbor one lower in number and add the values obtained to the internal

Fig. 4.8 Two parallel methods:
(a) A parallel method for forming the sum of eight variables; and
(b) A parallel method that yields the sum of the first {variables simultaneously for all
1'. Each node sums its input variables. The pair of digits in each node indicate the
lower and upper indices for variables summed at each node.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 214

202 Characteristics of Numerical Applications Chap. 4

value. This leaves partial sums of pairs of numbers in the odd-numbered
processors.

In the next iteration, the processors whose numbers are congruent to 3
modulo 4 reach two processors away for a partial sum and add that value to
their internal value. This produces partial sums of four numbers.

At the jth iteration, partial sums of 2i numbers have been formed, and if i
has the form i = 21 - 1, at the end of j iterations, we will have computed the
value of xi. Since the depth of the tree represents time, and the breadth of the
tree represents the length of the recurrence, we can compute a recurrence of
length N in time proportional to log N because the depth of a tree with N
leaves is proportional to log N.

Figure 4.8(a) yields only a single answer after log N steps, and it makes
very poor use of processors since most of them are idle most of the time.
Figure 4.8(b) shows how the values of all X; can be computed concurrently in
the same time that one value can be computed. In the first step, each pro­
cessor retrieves the value of the item from the processor whose index is one
lower. In the second step, the data comes from the processor with an index
two lower, and in the jth step the data comes from the processor whose index
is 2i lower. If the request for data is made to a nonexistent processor, the value
0 is substituted instead of a retrieved value.

Within each cell in the figure is a pair of integers, such as "2,3", that
indicates the range of subscripts added together in that cell at that point in
the algorithm. Note that all partial sums are produced concurrently.

The algorithm suggests that an important interconnection pattern is one
that connects processors whose indices differ by 1, 2, 4, 8, ... , and we begin to
see why the near-neighbors in the Cosmic Cube have the geometry of a six­
dimensional cube. If we treat the 6-bit label of each processor of the Cosmic
Cube as an integer, then each processor is connected to processors whose
integer labels differ by 1, 2, 4, 8, 16, and 32.

This statement is correct in terms of the absolute value of the difference,
but the signs of the differences vary from processor to processor. If a pro­
cessor label has a 0 bit in a particular position, such as the position of weight
4, then its neighbor has a 1 bit in that position and therefore has a label whose
integer representation is 4 higher. Conversely, if a processor's label has a 1 in
the position of weight 4, then the neighbor has a 0 in that position, and the
neighbor's label has an integer representation 4 lower than the integer
interpretation of the processor's label.

For the operation depicted in Fig. 4.8(b), every processor has to reach a
neighbor whose index is 4 less, but only half of Cosmic Cube processors have
this property. Nevertheless, the Cosmic Cube can form tree-like sums as
shown Fig. 4.8(b) by doing the communication indirectly, at a small
additional cost in communication overhead.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 215

Sec. 4.4 Algorithms for the Continuum Model 203

It is no great surprise that the tree in Fig. 4.6, and the interconnections in
Fig. 4.8 have a use beyond the simple linear recurrence that yields the partial
sums. Consider the multiplicative recurrence:

x0 =ao (4.9)

Again we assume that the xi are unknown variables and that the coefficients ai
are given constants. The solution to this recurrence involves partial products,
whereas the solution to Eq. (4.8) involves partial sums. In fact we can com­
pute all variables concurrently using a computation structure shown in Fig.
4.8, with the addition operation replaced by multiplication.

Why do Eqs. (4.8) and (4.9) yield such similar results? The answer is that
the operations of addition and multiplication are both associative, so the
manner in which a string of additions or a string of multiplications is evalu­
ated is independent of the order of evaluation. More specifically, the
recurrence relation of Eq. (4.8) specifies that the values of the unknowns are
calculated serially as if the expression for x3 were written:

x3 = ((ao + a1) + a1) + a3

The method for computing the values shown in Fig. 4.8 computes x3 as if
the expression were parenthesized as:

x3 = (ao + a1) + (a2 + a3)

If the operation on the values is associative, then by definition of associ­
ativity, the regrouping of parentheses is permitted. The associative rule is
very powerful. It enables us to solve immediately a number of frequently
encountered recurrences. Among the more useful ones are:

• MAX(a, b) =maximum of a and b;

• MIN(a, b) =minimum of a and b;
• XOR(a, b) =exclusive OR of a and b if a and bare boolean;

• OR(a, b) =logical OR of a and b if a and bare boolean; and

• AND(a, b) =logical AND of a and b if a and bare boolean.

Now let's see how far this idea can be developed. Consider the following
recurrence:

(4.10)

This recurrence does not have an associative operation, so the observations
made above for associative operations do not appear to be helpful. But we can

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 216

204 Characteristics of Numerical Applications Chap. 4

remap Eq. (4.10) into a different form that does have an associative operator.
Let us define Xi to be the column matrix

xi= [xi 1]1

where the superscript t denotes matrix transpose. We capture Eq. (4.10) in
matrix form by defining the matrix Ai to be

Using these two definitions in Eq. (4.10) produces a new equation that has a
familiar form.

(4.11)

Note that the first row of Ai represents Eq. (4.10), and the second row is
the trivial equation 1 = 1. The important characteristic of Eq. (4.11) is that
matrix multiplication is associative, so the recurrence in that equation can be
evaluated by the same scheme used to evaluate Eq. (4.9), except that the
operation performed at each node for Eq. (4.11) is a 2 x 2 matrix multiplica­
tion.

The full matrix multiplication is a little more than what needs to be done,
and it is possible to reduce the operation count a little bit. The matrix­
multiplication framework of this discussion introduces a small inefficiency
that should be eliminated in practice, but the framework makes quite clear
the role of the associative operator.

The recurrence techniques described here extend to more general
recurrences, as indicated in Kogge and Stone [1973]. The order of the recur­
rence can be increased, for example, to 2, in which case Eq. (4.10) becomes:

(4.12)

To solve this recurrence in parallel we use new definitions for Xi and Ai.

xi= [xi xi_ i] 1

When the substitution of these definitions is made into Eq. (4.12), we
obtain Eq. (4.11) again. More generally, a linear recurrence of order d, that is,
a linear recurrence that depends on the d prior values of the recurrence
variable, can be solved by substituting d x d matrix multiplication into the
evaluation scheme for Eq. (4.9).

Unfortunately, inefficiencies creep into the algorithm and it becomes
unattractive for large values of d. Ford= 1, the parallel algorithm for evaluat-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 217

Sec. 4.4 Algorithms for the Continuum Model 205

ing N terms takes time proportional to log2 N, whereas the serial algorithm
takes time proportional to N so that the speedup is proportional to N /log2 N.
This is actually quite good, although not as good as linear speedup.

The function log2 N grows very slowly with N, and it acts almost like a
constant factor. We would prefer to have linear speedup and not suffer the
degradation from the log2 N factor, but if we can live with this factor for small
N, we are likely to be able to live with it for large N because it changes so
slowly with N.

For higher-order recurrences, such as recurrences of order d, d x d matrix
multiplication take time proportional to d3

, so the time for parallel
calculation of the first N terms of the recurrence is proportional to d 3 log2 N.
The time for serial evaluation is proportional to dN, so the speedup is
proportional to only N l(d 2 log2 N). Now we have to contend with an additional
factor of d 2 of inefficiency. Hence the attractiveness of parallel evaluation of
recurrences tends to be limited to recurrences of small order.

The technique explored thus far generalizes to recurrences of the form:

a;X;-1+b; . Q
X; = , l >

CiXi-1 +di
(4.13)

xo=ao

To solve this recurrence, find xi as a function of xi- 2 and observe that the
relation has the same structure as Eq. (4.13), but with coefficients that depend
only on the eight coefficients that define xi and xi- I· This functional relation
shows how to perform a set of operations that collapse eight coefficients into
four coefficients and produce an equation for xi as a function of xi_ 2 • Hence,
we have taken an equation in which each x depends on the previous x to an
equation in which each x depends on the x two steps earlier in the recurrence.

The scheme for collapsing the eight coefficients into four coefficients is
the node operation that replaces the associative operator in the scheme that
solves Eq. (4.9). We can repeat this iteration, and we discover how to produce
a new x from the x four steps earlier. The next repetition of the same iteration
produces an equation in which eachx depends on only thex eight steps earlier
in the recurrence. Each iteration doubles the distance to the earlier x in the
recurrence equation. Log2 N iterations of the reduction step moves the de­
pendence of x to an x that occurs N steps earlier in the recurrence. Therefore
we can achieve a speedup on the order of N /log2 N.

In the ideal case, we want to achieve a speedup of N with N processors. For
recurrence equations, we can obtain this speedup trivially if we evaluate Nor
more recurrences in parallel, each on a different processor, with each done
serially. However, we cannot assume that we will always be so fortunate to
have N independent recurrences. When we need to solve one recurrence as
fast as we can, the theory here indicates that we can do so with a speedup
proportional to N /log2 N. Because of the factor of log2 Nin the denominator,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 218

206 Characteristics of Numerical Applications Chap. 4

the parallel scheme described here should be used only if the program is
forced to evaluate a single recurrence as fast as possible.

Now we can put the recurrence theory to work by reconsidering equations
for the continuum model. In one dimension, the Poisson equation has the
form:

(4.14)

for points interior to a mesh on a line, with special equations for the end
points. The right-hand side is proportional to the charge density at mesh­
point i, and the left-hand side expresses the notion that the potential at a
point is equal to the average of its neighboring potentials (in the absence of
charge), and when charge is present, the effects of the charge are added to the
influence of the neighboring points.

In an earlier section we learned that Eq. (4.14) and its two-dimensional
counterpart can be solved iteratively. But here we shall show how fast recur­
rence solutions allow us to solve Eq. (4.14) in parallel directly. When we use
Eq. (4.14) for i = 1 to N - 2, together with boundary equations for i = 0 and
i = N - 1, a system of N equations is formed. This system is known as a
tridiagonal system of equations. The name suggests that all of the nonzero
terms of the matrix form of this equation lie on three diagonals. The equation
is in matrix form

Ax=b

where the main diagonal of A contains only the value of - 2, and the major
subdiagonal and superdiagonal have the constant value of 1. The right-hand
side is a vector b that reflects the charge density on the line, and the unknown
potential is the vector x that we can obtain by solving the system of equations.

4.4.4 Recursive Doubling and Cyclic Reduction

In this section, we examine two solution methods for tridiagonal systems:

1. Recursive doubling (parallel solution ofrecurrences); and

2. Cyclic reduction.

Recursive doubling is the natural extension of the results presented pre­
viously, but it is not recommended in practice because of numerical stability
problems. Cyclic reduction is also unstable numerically in the form presented
here, but it can easily be altered into stable form. Interested readers should
consult Stone [1973] for background in recursive doubling and Buzbee,
Golub, and Nielson [1971] for an analysis of cyclic reduction. The stable form
of cyclic reduction is attributed to Buneman.

Three simple steps form the basis of the recursive doubling approach to
tridiagonal equations. The first step is to factor the matrix A into the form

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 219

Sec. 4.4 Algorithms for the Continuum Model 207

LU= A, where Land U are bidiagonal matrices, whose names stand for lower
and upper. Of the many possible ways to factor A into the product of bi­
diagonal L and U, we choose this factorization: L is lower bidiagonal-all
nonzero entries are on the major diagonal and the diagonal immediately
below-with ls on its major diagonal; and U is upper bidiagonal-all non­
zero entries are on the major diagonal and the diagonal immediately above.

With the constraints as given, the factorization is unique when it exists.
We have a total of four diagonals, and one diagonal is all ls. That leaves three
diagonals to find:

1. The lower diagonal of L, whose entries are denoted as mJor i = 1 to N - 1;

2. The major diagonal of U, whose entries are denoted by ui for i = 0 to
N - 1; and

3. The upper diagonal of U, whose entries are denoted by fi for i = 0 to N - 2.

By factoring A into the product of Land U, we can write:

Ax = LU x = Ly = b

where we define y by the equation Ux = y.
The next two steps involve the solution to bidiagonal systems.

Given Land b, solve Ly= b for y.

Given U and y, solve Ux = y for x.

These two steps are extremely simple to evaluate in parallel because they take
the respective forms:

with boundary conditions specified for y0 and xN _ 1 • Each y; satisfies an eq ua­
tion similar to Eq. (4.10), and each such equation is solved by the same
parallel scheme used to solve Eq. (4.10). The X; unknowns are found in the
same way except that, instead of going forwards, the recurrence works back­
wards from xN _ 1 towards x 0 •

The most difficult part of the computation is solving for the diagonal
elements of L and U. The trickiest diagonal to compute is the major diagonal
of U, whose terms satisfy the following recurrence

_ ai,; - 1 a; - 1,; 1 . N
ui - ai,; - u , < t <

i-1 (4.15)
Uo = ao,o

This is a special case of Eq. (4.13), so all of the U; elements can be computed by

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 220

208 Characteristics of Numerical Applications Chap.4

the parallel evaluation of the recurrence. The other two diagonals can be
computed easily because of the relations

aii 0 . N 2 mi=-·-, s; 1 s; -
ui-1

f; = au + 1. 1 s; i s; N - 1

The lower diagonal of L (the mi terms) can be computed by a single vector
division of the major diagonal of A by the major diagonal of U. The upper
diagonal of U is exactly equal to the upper diagonal of A.

This brief discussion establishes that the full solution of the tridiagonal
system can be done with N processors in parallel to achieve a speedup propor­
tional to N /log2 N. The connection pattern for a parallel processor for this
purpose is not like the near-neighbor pattern we have been using for the
continuum problems. It is a pattern derived from Fig. 4.8. That is, processors
must be directly or indirectly connected to processors that are from one away,
two away, four away, ... , up to N 12 away for N processors.

If you visualize the data flow in Fig. 4.8 in terms of processors influencing
other processors, then each step of a calculation doubles the number of pro­
cessors influenced by each processor. In log2 N steps, one processor can influ­
ence all N processors in a system. The factor of log2 N that we observed in the
denominator of the speedup expression is a factor of inefficiency that reflects
the cost of communication, because log2 N steps are required for parallel
communication that are not required for serial communication.

The second method for solving tridiagonal equations is called cyclic re­
duction. It works extremely well for the Poisson matrix whose diagonals
contain only 1 'sand - 2's. The cyclic-reduction method can be generalized to
other matrices as well. The idea behind cyclic reduction is to sum three
consecutive equations as indicated here:

Xi-2-2Xi-1+Xi =-bi-I

xi - 1 - 2xi + xi+ 1 = -bi (4.16)

We combine twice the middle equation of Eq.(4.16) with the other two equa­
tions to obtain:

(4.17)

If we start with a number of equations that is one less than a power of two and
apply this technique to the odd-numbered equations (with special treatment
for the end points), we produce a set of equations that depend only on the
odd-numbered unknowns. In fact, that set of equations is identical in form to
the original set, except that there are only roughly half as many equations.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 221

Sec. 4.4 Algorithms for the Continuum Model 209

We can renumber the variables in Eq. (4.17) so that their indices are
contiguous. When we do so we have placed the reduced set of equations into
the form of Eq. (4.16). So we can repeat the process, each time removing
roughly half of the equations in the system, until finally there remains a
single equation that can be solved directly.

To solve the full system of equations, we substitute the one known answer
in the equations produced at the last step, and solve for two more unknowns.
With three quantities known, these can be substituted into equations pro­
duced at the second-to-last step to obtain the values of seven variables.

The back-substitution process repeats cyclically, roughly doubling the
known variables at each step until all variables have been completed. Both
the reduction and back-substitution steps can be done in parallel. The
speedup for cyclic reduction is of the same order of magnitude as for recursive
doubling, but it is preferred because it can be stabilized.

It is interesting to compare the communication requirements for cyclic
reduction with those for recursive doubling. The subscripts that participate
in computation differ by 1 at the first iteration, then by 2, 4, ... , up to N 12 at
successive iterations. Again we see the influence of a variable doubling at
every step so that in log2 N steps the influence has propagated through the
entire system.

The algorithms we have studied earlier for the continuum model use
near-neighbor connections that propagate information a fixed limited dis­
tance at every step. Both recursive doubling and cyclic reduction move infor­
mation twice as far at every successive step. From a communication point of
view, the direct methods appear to be more powerful and efficient than do the
iterative methods. But iteration itself is powerful, and in a practical sense, it
becomes possible to iterate quickly to a solution when the forces that count
are nearby, and the influence of faraway items is negligible.

Heller [1976] has shown, however, that the direct methods can be used
essentially iteratively and converge faster than do the iterative methods. His
idea is to use a cyclic-reduction scheme, but terminate early and initiate the
back-substitution process before going the full log2 N steps. In our description
of cyclic reduction, this would occur if the new values of the right-hand sides
produced by a reduction step were perturbed only minimally from their
values before the reduction. If this case, further reduction steps will produce
only a negligible change in the right-hand sides, so that the right-hand sides
are available immediately for back substitution.

The key ideas to remember from the discussion in this section are:

1. Some serial computations that look sequential can be solved with
reasonable speedup using parallel algorithms.

2. Good parallel algorithms for full-information problems appear to double
the sphere of influence of each variable after each iteration.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 222

210 Characteristics of Numerical Applications Chap. 4

3. A natural communication pattern that supports the doubling sphere of
influence is one in which items communicate with items that are one
away, two away, four away, ... , on successive iterations.

In the next section we shall propose an interconnection pattern called the
perfect shuffle to support such communication.

4.5 The Perfect Shuffle

What we have learned thus far about the continuum model is that near­
neighbor interconnections provide a natural mechanism for mimicking phys­
ical interactions. But we have learned in the preceding section that near­
neighbor operations in some cases are less effective than are operations that
treat pairs of nodes progressively twice as far apart at each successive iter­
ation. In this section we examine the perfect-shuffle interconnection pattern,
which has a remarkable property that supports this pattern of doubling.

We propose that the perfect shuffle be used in addition to or in place of
near-neighbor connections to exploit the doubling property for parallel
implementations of cyclic reduction and recursive doubling. The Cosmic
Cube described earlier in this chapter has in fact an interconnection pattern
that is related to the perfect shuffle, and thus has the ability to double the
range of influence on successive operations.

4.5.1 The Perfect-Shuffle Interconnection Pattern

The interconnection pattern of interest to us appears in Fig. 4.9 for a vector of
length 8. It is called the perfect shuffle because the elements of a vector
undergo a reordering analogous to the shuffling of a deck of cards in which
the interlacing of cards is ideal. In this case the deck has eight cards. The deck
is cut, leaving cards 0 through 3 on top and 4 through 7 on the bottom. Then
the deck is shuffled, with 0 emerging on top, followed by 4 from the top of the
lower cut, then 1, then 5, ... , with one card picked alternately from each cut.

Figure 4.9 shows the deck before and after the shuffle. Note that the basic
property we seek is exhibited by the shuffle, in that cards that are adjacent
before the shuffle are two apart after the shuffle. For decks with 2N cards,
cards that are adjacent before a sequence of i shuffles are moved to positions
that are 2i cards apart after the shuffles.

We show this more rigorously later in this section, but for the moment the
general property of the shuffle suggests that with each shuffle the breadth of a
neighborhood of cards is doubled, and this is the property that we need in
several algorithms of interest.

Figure 4.10 shows what happens when we repeat a shuffle of eight cards
three times. The cards return to their original order after three shuffles.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 223

Sec. 4.5 The Perfect Shuffie 211

Fig. 4.9 The perfect-shuffle interconnection pattern.

Adjacent pairs of cards are grouped together in the diagram to illustrate how
the shuffle operation matches different items in a vector.

After one shuffle, the pairs matched are 0-4, 1-5, 2-6, and 3- 7. Note that
these items are four apart in the original vector. After two shuffles, the paired
items are 0-2, 1-3, 4-6, and 5-7. These items are two apart in the original
vector. After the third shuffle, the pairs are 0-1, 2-3, 4-5, and 6-7, items that
are adjacent in the original vector. If we measure the distance between two
items in the original vector, then after the first shuffle, the distance between
items brought together is halved at each step.

On the other hand, with bidirectional interconnections in place, we are
free to run data in either direction. With data moving from right to left in Fig.
4.10, the data that are paired initially are 0-1, 2-3, ... , at a distance of one
apart. At subsequent stages the pairs are 0-2, 1-3, ... , (distance two apart)
and 0-4, 1-5, ... , (distance four apart). Data moving from right to left tends to
double the distance between paired items at each step, and data moving from
left to right tends to halve the distance between paired items at each step.

Compare this characteristic to cyclic reduction and note that cyclic re­
duction has two phases. In the first phase, the difference between subscripts
doubles at each step, and in the second phase the difference between sub­
scripts halves at each step. This suggests that cyclic reduction can be done by

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 224

Sec. 4.5 The Perfect Shuffle 211

n

I.

n

I!

Fig 4.9 The perfect-shuffle interconnection pattern.

Adjacent pairs of cards are grouped together in the diagram to illustrate how
the shuffle operation matches different items in a vector.

After one shuffle, the pairs matched are 0—4. 1—5, 2—6, and 3— 7. Note that
these items are four apart in the original vector. After two shuffles, the paired
items are 0—2, 1—3, 4—6, and 5—7. These items are two apart in the original
vector. After the third shuffle. the pairs are 0—1, 2—3, 4—5, and 6—7, items that
are adjacent in the original vector. If we measure the distance between two
items in the original vector, then after the first shuffle, the distance between
items brought together is halved at each step.

On the other hand, with bidirectional interconnections in place, we are
free to run data in either direction. With data moving from right to left in Fig.
4.10, the data that are paired initially are 0—1, 2—3, . . ., at a distance of one
apart. At subsequent stages the pairs are 0—2, 1—3, . . . , (distance two apart)
and 0-4, 1—5, . . . , (distance four apart). Data moving from right to left tends to
double the distance between paired items at each step, and data moving from
left to right tends to halve the distance between paired items at each step.

Compare this characteristic to cyclic reduction and note that cyclic re-
duction has two phases. In the first phase, the difference between subscripts
doubles at each step, and in the second phase the difference between sub—
scripts halves at each step. This suggests that cyclic reduction can be done by

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 224

212 Characteristics of Numerical Applications Chap. 4

Fig. 4.10 The perfect shuffle repeated three times. Observe the items paired at each
step. Their indices differ by a power of 2.

moving first from right to left and then from left to right in a network such as
that shown in Fig. 4.10.

In fact the processors might be arranged in the structure shown in Fig.
4.11, where we see four processors operating on adjacent pairs of data. When
the algorithm requires subscript differences to halve, the data emerge from
the processors on the left-hand ports and reenter the right-hand ports after a
perfect shuffle. When the algorithm requires subscript differences to double,
the data exit from the right-hand ports of each processor and reenter the
destination processors at the left ports after an inverse perfect shuffle.

Figure 4.12(a) shows a possible architecture for a processor shown in Fig.
4.11. The processor in this figure accepts data from its left-hand ports,and x
combines the data internally, then produces output data on its right-hand
ports. If we label the two inputs x0 and x 1, as shown in Fig. 4.12(a), then the
outputs Yo and y1 are equal respectively to F(x0 , x 1) and G(x0 , x 1). A straight
connection shown in Fig. 4.12(b) is obtained by choosing F(x0 , x 1) = x 0 , and
G(x0 , x 1) = x 1• The exchange interconnection shown in Fig. 4.12(c) is obtained
by making F(x0 , x 1) = X1, and G(x0 , x 1) = x0 •

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 225

212 Characteristics of Numerical Applications Chap. 4

Fig. 4.10 The perfect shuffle repeated three times. Observe the items paired at each
step. Their indices differ by a power of 2,

moving first from right to left and then from left to right in a network such as
that shown in Fig. 4.10.

In fact the processors might be arranged in the structure shown in Fig.
4.11, where we see four processors operating on adjacent pairs of data. When
the algorithm requires subscript differences to halve, the data emerge from
the processors on the left—hand ports and reenter the right—hand ports after a
perfect shuffle. When the algorithm requires subscript differences to double,
the data exit from the right—hand ports of each processor and reenter the
destination processors at the left ports after an inverse perfect shuffle.

Figure 4.12(a) shows a possible architecture for a processor shown in Fig.
4.11. The processor in this figure accepts data from its left—hand ports,and x
combines the data internally, then produces output data on its right-hand
ports. If we label the two inputs x0 and x1, as shown in Fig. 4.12(a), then the
outputs yo and y, are equal respectively to F (x0, x1) and G(x0, x1). A straight
connection shown in Fig. 4.12(b) is obtained by choosing F(xo, x1) = x o, and
G(xo. x1) = x 1. The exchange interconnection shown in Fig. 4.12(c) is obtained
by making F(xo, x1) = x1, and G(xo, x1) = x0.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 225

Sec. 4.5 The Perfect Shuffie 213

Fig. 4.11 A bidirectional parallel computer for iterating perfect shuffles and inverse
perfect shuffles.

A reasonable model for the architecture of a processor is for there to be
several built-in functions for F and G, possibly including the straight con­
nection and the exchange connection shown in Fig. 4.12, and possibly includ­
ing other functions. Programming the processors involves selecting particu­
lar built-in functions or constructing complex functions as sequences of
simple functions, so that the output of a processor is a pair of data that
depends in some complex way on the pair of input data, and perhaps on other
factors, including the current iteration count or the location of the processor
within a collection of processors.

The perfect-shuffle structure shown in Fig. 4.11 was conceived indepen­
dently by Batcher [1968] for a sorting network and by both Singleton [1967]
and Pease [1968] for Fourier transforms. Singleton produced a program for
fast Fourier transforms whose internal data flow is described by a sequence of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 226

Sec. 4.5 The Perfect Shuffle 213

Fig. 411 A bidirectional parallel computer for iterating perfect shuffles and inverse
perfect shuffles.

A reasonable model for the architecture of a processor is for there to be
several built-in functions for F and G, possibly including the straight con-
nection and the exchange connection shown in Fig. 4.12, and possibly includ-
ing other functions. Programming the processors involves selecting particu-
lar built-in functions or constructing complex functions as sequences of
simple functions, so that the output of a processor is a pair of data that
depends in some complex way on the pair of input data, and perhaps on other
factors, including the current iteration count or the location of the processor
within a collection of processors.

The perfect-shuffle structure shown in Fig. 4.11 was conceived indepen-
dently by Batcher [1968] for a sorting network and by both Singleton [1967]
and Pease [1968] for Fourier transforms. Singleton produced a program for
fast Fourier transforms whose internal data flow is described by a sequence of

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 226

214 Characteristics of Numerical Applications

X1~-----+--~
'------+I

(a)

(b)

(c)

F

G

F

G

F

G

Fig. 4.12 Elements of the perfect-shuffle system in Fig. 4.11:
(a) The processor structure;
(b) Pass-through functions for F and G; and
(c) Swap functions for F and G.

Chap.4

shuffles. Pease developed a similar idea into the structure of a parallel pro­
cessor for Fourier transforms that is much like the system shown in Fig. 4.11.

Although these results point to the use of the perfect shuffle in specific
contexts, the following discussion shows that the perfect shuffle is useful in a
broad sense for parallel computation because it has crucial characteristics
required by many parallel algorithms. Our discussion of the perfect shuffle
follows the development of Stone [1971].

Although the discussion gives the general idea of what happens to data
after one or more shuffles, clearly we need to be more specific and verify that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 227

214 Characteristics of Numerical Applications Chap. 4

Fig. 4.12 Elements of the perfect-shuffle system in Fig. 4.11:
(a) The processor structure;
(b) Pass-through functions for F and G; and
(c) Swap functions for F and G .

shuffles. Pease developed a similar idea into the structure of a parallel pro-
cessor for Fourier transforms that is much like the system shown in Fig. 4.11.

Although these results point to the use of the perfect shuffle in specific
contexts, the following discussion shows that the perfect shuffle is useful in a
broad sense for parallel computation because it has crucial characteristics
required by many parallel algorithms. Our discussion of the perfect shuffle
follows the development of Stone [1971].

Although the discussion gives the general idea of what happens to data
after one or more shuffles, clearly we need to be more specific and verify that

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 227

Sec. 4.5 The Perfect Shuffie 215

the pairs of data brought together at each processor are indeed the pairs that
we intend to bring together. We need a way to track each datum as it is
shuffled by the network.

A very simple means for calculating the trajectory of a datum while
undergoing a sequence of shuffles is illustrated in Fig. 4.13. This figure de­
picts a cyclic shift register with three stages, and the discussion that follows is
for an n-stage shift register.

The operation of the shift register is very simple. Each cell holds a single
bit. During each clock period the bits shift to the left in the register, with the
leading bit moving cyclically back to the low-order position, as shown in the
figure. The purpose of the shift register is to model the movement of data in a
system that treats N = 2n operands concurrently, such as the system shown in
Fig. 4.10 for N = 8.

In any column of registers, number the input values from top to bottom
with the integers 0 through N - 1. If we pass the data through the shuffle
interconnection once, twice, or more, can we predict the destination of each
datum? The obvious way to find the destination of each datum is to trace the
path through the network. But the shift register in Fig. 4.13 gives us a much
easier way to find the destination when N is a power of 2.

The following observation dates from Stone [1971].

Consider a datum on the ith input line of a rank of registers in a perfect-shuffle
network of the type shown in Fig. 4.10. To find the destination of that item after k
shuffles, place the binary representation of i in the shift register shown in Fig.
4.13. Then shift the register cyclically to the left k times. The destination of the
datum is input line j, where j is the number whose binary representation appears
in the shift register after k left cyclic shifts.

For example, consider the datum on Line 5. After one shuffle, that datum
moves to Line 3, and we note that the left cyclic shift of (1,0,1), which is the
binary representation of 5, is (0,1,1), which is the binary representation of 3.
Similarly, after a second shift, the item moves to input Line 6, as shown in
Fig. 4.10. But this is predicted by the shift register in Fig. 4.13 because, after

--~--1 __________________ ... I··~__.
Fig. 4.13 A three-stage shift register that shows the trajectory of items permuted by a
perfect shuffle for N = 8. Put the index of an item in the register. A shuffle of the item
moves the item to the index obtained by a left cyclic shift of the register.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 228

216 Characteristics of Numerical Applications Chap.4

two cyclic shifts to the left, (1,0,1) becomes (1,1,0), the binary representation
of 6.

Why is this property true? Consider any item with an index less than N 12
in the vector just prior to a shuffle. The index position must have the binary
representation (0, ...). The shuffle operation separates adjacent items so that
they reach destinations that lie two apart after the shuffle. Therefore the
shuffle operation applied to elements with an index less than N 12 moves the
element in Position i to Position 2i + C for some constant C. By inspection,
Position 0 is shuffled to Position 0, and Position 1 is shuffled to Position 2.
Hence, constant C must be 0 for the items with an index less than N 12.

Similarly, consider any item whose index is at least N/2. The shuffle
moves elements in this half of the vector from Position i to Position 2i + C,
where C is a constant that is not necessarily equal to the constant C that holds
for the other half of the vector. In this case, Positions N - 2 and N - 1 are
moved, respectively, to Positions N - 3 and N - 1, so we conclude that
C = - N + 1 for elements in this half of the vector.

To summarize the effect of a shuffle, we have:

Shuffle (i) = 2i, if i < ~

Shuffle (i) = 2i - N + 1, if i 2: ~

Now consider what happens in the shift register when its initial state is
(0, ...) and the register is shifted cyclically to the left. The resulting state is
(... ,0). But this is identical to doubling the representation of the initial state.
Hence, for any item whose index is less than N 12, the shift register correctly
predicts the destination of the item after a shuffle.

For the remaining case, since N = 2n, each binary representation of the
indices in the shuffle vector has n bits. If an item has an index at least as large
as N 12, then the binary representation of the index is (1,bn-z, ... ,b0), and the
left cyclic shift produces the representation (bn _ 2 , ••• ,b0 , 1). This is almost
double the index.

In fact, doubling the index produces the binary representation of length
n + 1 of the form (1,b,, _ 2 , ••• ,b0,0), which differs in value from the left cyclic
shift by the leading bit and the least-significant bit. Therefore, if we double
the index, drop the leading bit, and change the least-significant bit from 0 to
1, we create the left cyclic shift. This is equivalent to doubling index i, sub­
tracting 2n = N, and adding 1, which is precisely the destination index for
those items whose indices are at least as large as N 12.

This discussion has defined the perfect shuffle and the shift-register prop­
erty, but the value of the shuffle is not clear until we see how the shuffle fits
the needs of applications. That is the subject of the next section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 229

Sec. 4.5 The Perfect Shuffle 217

4.5.2 Applications of the Perfect Shuffle

The following discussion shows that the perfect shuffle is ideally suited to the
communication needs of several parallel algorithms. In fact, the perfect
shuffle is a "neighborhood" interconnection pattern in which the neigh­
borhood halves after a shuffle and doubles after an inverse shuffle.

To understand the utility of the perfect shuffle, we examine how a se­
quence of shuffles brings together different pairs of data. The ability to track
items with the cyclic shift-register representation is extremely useful for
observing how a sequence of shuffles permutes the elements of a vector.

Consider, for example, a parallel processor of the form shown in Fig.
4.12(a). Initially, two items whose indices differ only in the least-significant
bit lie within each computation unit. Now consider an algorithm that must
first bring together those items whose positions differ by their leading bit,
then those items whose positions differ in their next leading bit, and so forth,
with the last iteration bringing together those items whose positions differ in
their least-significant bit. For a vector of length of 8, this algorithm pairs 0-4,
1-5, 2-6, and 3-7 in the first iteration, then pairs 0-2, 1-3, 4-6, and 5-7, and
then pairs 0-1, 2-3, 4-5, and 6-7.

Using the shift-register analysis, we can easily see that if the vector
initially is in the state 0,1,2, ... ,7, then after one shuffle the items paired differ
in the leading bit of the representations of their initial indices. Consider, for
example, the items at index positions 0 and 4 before a shuffle. The indices
differ only in the leading bit of the binary representation, assuming that
N =8.

After the shuffle, the shift-register analogy indicates that the item at
Position 0 remains in place, and the item at Position 4 is moved to Position 1.
Note that the destination indices 0 and 1 differ only in their least-significant
bits. Consequently, two items in positions whose indices differ only in the
leading bit will be brought together at some processor after one shuffle.
Similarly, after two shuffles, the items paired at a processor differ only in the
second-most-significant bit of their initial index representations.

The fast Fourier transform can be implemented efficiently on a parallel
computer that has the perfect shuffle [Singleton 1967; Pease 1968]. For this
application, the F and G functions in Fig. 4.12(a) produce a weighted sum and
difference of the inputs. In fact, F = x0 + w x x 1 and G = x0 - w x x 1, where all
operations are on complex numbers, and the weighting factor w is a function
of the iteration number and the processor position in the parallel computer.

For N = 2n, the transform is complete after n iterations through the pro­
cessor shown in Fig. 4.12(a). However, the items in the output vector are not
arranged in ascending order by index in the processor at the conclusion of the
n iterations. They have to be permuted to bring them into index order, and
the perfect shuffle is very poorly suited for the final permutation. In

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 230

218 Characteristics of Numerical Applications Chap. 4

processors specialized for Fourier transforms, it may be necessary to add a set
of interconnections to facilitate the final permutation required for the
algorithm.

Both recursive doubling and cyclic reduction seem to require a flow of
data opposite from the one just described for the fast Fourier transform.
These algorithms need to combine data whose indices differ in the least
significant bit, then data whose indices differ in the two least-significant bits,
and so forth.

Indeed data does flow in the opposite direction in these algorithms, and
we make use of the inverse perfect shuffle, which is obtained by moving data
from right to left in the network shown in Fig. 4.10. For example, to form the
sum of N items, at each iteration we let the F and G functions in Fig. 4.12(a)
form the sum of their inputs. But instead of using the perfect-shuffle con­
nections after a summation step, we reverse the data flow and use the inverse
perfect-shuffle connections. After n steps, we have the sum of N = 2n items in
each element of the vector.

A very simple modification of this basic idea produces not only the sum of
N items, but the sum of the first i items for each i less than N. The modifica­
tion is shown in Fig. 4.14. There are eight processors in this system, and they
are interconnected both cyclically and with an inverse perfect shuffle. Be­
cause of the cyclic connection, each processor can accept as an operand the
contents of the accumulator from the processor whose index is one less or one
greater. The inverse shuffle connection permutes the data among processors.

Figure 4.15 shows a computation unrolled in time, with inverse shuffles
occurring between addition operations. Each addition adds the contents of
the accumulator from one processor to the accumulator in the processor
immediately below. The shaded processors leave their contents unchanged.
For N = 8, there are three iterations, each consisting of an addition and an
inverse shuffle.

The notation (i, j) shown at the processor inputs and outputs indicates
that the corresponding wire carries the sum of positions i through j. The fact
that this structure can produce all partial sums follows because the items
combined at the first stage have indices that differ by 1, and at the ith stage
the indices differ by 2;. So, except for the shaded processors, each processor at
Stage i produces the sum of 2; consecutive positions. The shaded processors
take into account the boundary conditions, and they do no summing.

Compare Fig. 4.15 with Fig. 4.8(b). The computations are the same, but
the difference in the two figures is due to the interconnections. The inter­
connections in Fig. 4.8(b) differ from stage to stage, but Fig. 4.15 uses identi­
cal interconnections at every stage. Hence, one stage of interconnections used
repeatedly is sufficient to implement Fig. 4.15, but Fig. 4.8(b) must have O(log
N) stages of interconnections. Note also that the shaded processors in Fig.
4.15 correspond to those processors in Fig. 4.8(b) whose inputs have a 0 forced
on them.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 231

Sec. 4.5 The Perfect Shuffie 219

Fig. 4.14 A parallel computer for computing partial sums. The connections are the
inverse perfect shuffle and cyclic shift.

The perfect shuffle combined with a cyclic shift or a pair-wise exchange
operation provides full communication among processors in the following
sense.

Every processor in an N -processor system can reach every other processor by
means of a path of a length no longer than log2 N.

Consider Fig. 4.16, which shows an eight-processor pattern unrolled in time
for three time units. The interconnection pattern shown is a perfect shuffle,
followed by a module that can either do a pair-wise exchange or pass the two
inputs straight through to the outputs. At the left side of the diagram, Pro­
cessor 3 is shown shaded, and moving from left-to-right, each processor acces­
sible from Processor 3 at that particular time is shown shaded.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 232

Sec. 4.5 The Perfect Shuffle 219

"'I"'!I!|
v
.4}.

AE-
I:

Fig. 4.14 A parallel computer for computing partial sums, The connections are the
inverse perfect shuffle and cyclic shift.

The perfect shuffle combined with a cyclic shift or a pair-wise exchange
operation provides full communication among processors in the followingsense.

Every processor in an N-processor system can reach every other processor by
means of a path of a length no longer than log; N.

Consider Fig. 4.16, which shows an eight-processor pattern unrolled in time
for three time units. The interconnection pattern shown is a perfect shuffle,
followed by a module that can either do a pair-wise exchange or pass the two
inputs straight through to the outputs. At the left side of the diagram, Pro-
cessor 3 is shown shaded, and moving from left-to-right, each processor acces-
sible from Processor 3 at that particular time is shown shaded.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 232

220 Characteristics of Numerical Applications Chap.4

(0,0)

(1,1)

(2,2)

(3,3)

(4,4)

(5,5)

(6,6)

(7,7)

Fig. 4.15 A computation performed by the computer depicted in Fig. 4.14. Shaded
modules do not use the cyclic shift connection.

Note that Processor 3 can reach all other processors in three time steps. In
fact, every processor on the left can reach any other processor on the right in
three time steps because each processor is the root of a binary tree that at
successive stages in the network touches two, then four, then finally all eight
processors. The depth of such a tree in an N-processor network is log2 N.

This particular property of the shuffle-exchange network follows from the
shift-register description of the trajectories within a perfect-shuffle network.
Figure 4.17 shows a three-stage register that contains the binary representa­
tion of the number 3. A left cyclic shift of this register corresponds to a perfect
shuffle, and the complement of the rightmost bit of the register corresponds
to a pair-wise exchange.

To track any datum from Processor 3 through the network in Fig. 4.16
after any shuffle or exchange, we simply apply the corresponding left cyclic
shift or bit complement to the register in Fig. 4.17, and the resulting register
contents will be the binary representation of the new position of the datum.

To move a datum from Processor 3 to an arbitrary processor in the sys­
tem, we force the binary representation of the destination processor into the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 233

220 Characteristics of Numerical Applications Chap. 4

Fig. 4.15 A computation performed by the computer depicted in Fig. 4.14. Shaded
modules do not use the cyclic shift connection.

Note that Processor 3 can reach all other processors in three time steps. In
fact, every processor on the left can reach any other precessor on the right in
three time steps because each processor is the root of a binary tree that at
successive stages in the network touches two, then four, then finally all eight
processors. The depth of such a tree in an N -processor network is log; N.

This particular property of the shuffle-exchange network follows from the
shift—register description of the trajectories within a perfect-shuffle network.
Figure 4.17 shows a three-stage register that contains the binary representa-
tion of the number 3. A left cyclic shift of this register corresponds to a perfect
shuffle, and the complement of the rightmost bit of the register corresponds
to a pair—wise exchange.

To track any datum from Processor 3 through the network in Fig. 4.16
after any shuffle or exchange, we simply apply the corresponding left cyclic
shift or bit complement to the register in Fig. 4.17, and the resulting register
contents will be the binary representation of the new position of the datum.

To move a datum from Processor 3 to an arbitrary processor in the sys-
tem, we force the binary representation of the destination processor into the

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 233

Sec. 4.5 The Perfect Shuffie 221

Fig. 4.16 A perfect-shuffle, pair-wise-exchange network unrolled in time. The tall
rectangles depict modules that can exchange their inputs. Shaded modules are reach­
able from Processor 3 via some sequence of shuffles and exchanges.

register in Fig. 4.17. To do so, we force the register to agree with the desti­
nation index one bit at a time, starting with the most-significant bit position.

For example, to find a path from Processor 3 to Processor 4, shift the
register whose initial contents are (0,1,1) and obtain the new value of (1,1,0).
This shift corresponds to an initial shuffle applied to the data in the pro­
cessors. The final bit position of the shift register is to be forced to agree with
the leading bit position of the destination index. The destination index is 4,
and its binary representation is (1,0,0). The leading bit is a 1, which differs
from the current least-significant bit in the shift register. Consequently, we
apply a pair-wise exchange, which is represented as a complement of the final
bit. The shift register now contains (1, 1, 1), and the last bit of the shift register
is the first bit of the destination index.

For the next iteration, we cycle the register again and compare the final
bit in the shift register to the next bit of the destination. If the bits agree, no
bit complement is done. If the bits differ, we complement the bit in the
register to force it to agree with the corresponding bit in the destination
index. In this example, the left shift of (1,1,1) produces (1,1,1). The least­
significant bit is 1, but the next bit of the destination index 4 is a 0.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 234

Sec. 4.5 The Perfect Shuffle 221

Fig. 4.16 A perfect-shuffle, pairwise-exchange network unrolled in time. The tall
rectangles depict modules that can exchange their inputs. Shaded modules are reach-
able from Processor 3 via some sequence of shuffles and exchanges.—__—_—_——_——___.—__

register in Fig. 4.17. To do so, we force the register to agree with the desti—
nation index one bit at a time, starting with the most—significant bit position.

For example, to find a path from Processor 3 to Processor 4, shift the
register whose initial contents are (0,1,1) and obtain the new value of (1,1 ,0).
This shift corresponds to an initial shuffle applied to the data in the pro-
cessors. The final bit position of the shift register is to be forced to agree with
the leading bit position of the destination index. The destination index is 4,
and its binary representation is (1,0,0). The leading bit is a 1, which differs
from the current least-significant bit in the shift register. Consequently, we
apply a pair—wise exchange, which is represented as a complement of the final
bit. The shift register now contains (1,1,1), and the last bit of the shift register
is the first bit of the destination index.

For the next iteration, we cycle the register again and compare the final
bit in the shift register to the next bit of the destination. If the bits agree, no
bit complement is done. If the bits differ, we complement the bit in the
register to force it to agree with the corresponding bit in the destination
index. In this example, the left shift of (1,1,1) produces (1,1,1). The least-
significant bit is 1, but the next bit of the destination index 4 is a 0.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 234

222 Characteristics of Numerical Applications

I· I 1· ________ G INVERTER jJ
STATE SEQUENCE

(0, 1, 1)
(1, 1,0)
(1, 1, 1)
(1, 1, 1)
(1, 1,0)
(1,0, 1)
(1,0,0)

ACTION APPLIED

Shuffle
Exchange
Shuffle
Exchange
Shuffle
Exchange

Chap.4

Fig. 4.17 A shift register for analyzing the perfect shuffle and pair-wise exchange. A
left cyclic shift corresponds to a shuffle. Inverting the right-most bit corresponds to a
pair-wise exchange. The state sequence shows an initial state, and the subsequent
states obtained after a shuffle or exchange. The final state is the index of the item in
the shuffle-exchange network after the item has undergone the corresponding se­
quence of shuffles and exchanges.

As in the previous iteration, we apply a pair-wise exchange and represent
this operation by complementing the last bit of the shift register. The shift
register now contains (1,1,0), and the datum has been moved to index position
6. The reader can verify that the next shuffle changes the shift register to
(1,0,1), and that a pair-wise exchange changes the register to (1,0,0), which is
the binary representation of the desired final destination.

Observe that each left cyclic shift corresponds to a shuffle, and each bit
complement corresponds to a pair-wise exchange. After at most log2 N shuf­
fles and exchanges, the contents of the shift register can be placed into an
arbitrary state. Consequently, the datum initially located in Processor 3 can
be moved to an arbitrary processor.

In fact, the datum in any processor can be moved to any other processor
in at most log2 N shuffles and exchanges. However, in general, we may not be
able to move any two or more items to arbitrary positions in log2 N steps
because the trajectories required might collide at some common point within
the network.

Figure 4.17 shows the successive steps required to move a datum from
Processor 3 to Processor 4. Compare the shift-register model in Fig. 4.17 with

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 235

Sec. 4.5 The Perfect Shuffle 223

the actual flow of data in Fig. 4.16 and note the exact correspondence of the
two models.

Recall from our earlier discussion that some computations, such as the
fast Fourier transform, the solution to Poisson's equation, and sorting have
the full communication property, which causes each output to depend on all
inputs. Note that the perfect shuffle provides a means for supporting this
communication, and it does so at a much lower cost than the cost of a network
that connects all processors directly to each other.

As a final example of an application of the perfect shuffle, we show a
scheme due to Batcher [1968] for sorting. Obviously, sorting can be done in a
processor that uses near-neighbor connections exclusively, but the worst-case
time to sort in such a processor is proportional to the length of the longest
path. Near-neighbor connections tend to produce long paths, although two
and three-dimensional connections decrease this length over one­
dimensional connections. But the perfect shuffle can be used to decrease the
worst-case time below that of near-neighbor connections.

Figure 4.18 shows a structure for sorting a vector of data that is con­
strained in a special way. A vector of data is called bitonic if

• The elements of the vector increase monotonically, then decrease mono­
tonically (either the increasing or decreasing portions may be empty); or

• The elements of the vector are a cyclic shift of a vector that satisfies
Property 1.

The structure in Fig. 4.18 is a called a bitonic sorter because it produces a fully
sorted output when the input vector is bitonic. The initial operation in the
bitonic sorter is a shuffle. This aligns the second half of the vector with the

Bitonic
Sorter

Bitonic
Sorter

Fig. 4.18 The structure of a bi tonic sorter. The comparators route the low value to the
upper output and the high value to the lower output.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 236

Sec. 4.5 The Perfect Shuffle 223

the actual flow of data in Fig. 4.16 and note the exact correspondence of the
two models.

Recall from our earlier discussion that some computations, such as the
fast Fourier transform, the solution to Poisson’s equation, and sorting have
the full communication property, which causes each output to depend on all
inputs. Note that the perfect shuffle provides a means for supporting this
communication, and it does so at a much lower cost than the cost of a network
that connects all processors directly to each other.

As a final example of an application of the perfect shuffle, we show a
scheme due to Batcher [1968] for sorting. Obviously, sorting can be done in a
processor that uses near-neighbor connections exclusively, but the worst-case
time to sort in such a processor is proportional to the length of the longest
path. Near-neighbor connections tend to produce long paths, although two
and three-dimensional connections decrease this length over one-
dimensional connections. But the perfect shuffle can be used to decrease the
worst-case time below that of near-neighbor connections.

Figure 4.18 shows a structure for sorting a vector of data that is con-
strained in a special way. A vector of data is called bitonic if

0 The elements of the vector increase monotonically, then decrease mono—
tonically (either the increasing or decreasing portions may be empty): or

o The elements of the vector are a cyclic shift of a vector that satisfies
Property 1.

The structure in Fig. 4.18 is a called a bitonic sorter because it produces a fully
sorted output when the input vector is bitonic. The initial operation in the
bitonic sorter is a shuffle. This aligns the second half of the vector with the

Bitonic

Bitonic
Fig. 4.18 The structure of a bitonic sorter. The comparators route the low value to the
upper output and the high value to the lower output.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 236

224 Characteristics of Numerical Applications Chap.4

first half. The pairs are compared, and the smaller item of each pair is
transmitted to the upper output. The larger item of each pair is transmitted
to the lower output. Then the data are passed through an inverse shuffle and
enter two bi tonic sorters, each capable of sorting half as many data as the full
structure.

Figure 4.18 is recursive in the sense that the structure of the bi tonic sorter
for N 12 items has the same structure as the original sorter. The smallest
bitonic sorter is the bitonic sorter for a single pair of data. It is a single
comparator that places the smaller of a pair on the upper output and the
larger of a pair on the lower output.

To prove that the bitonic sorter is indeed able to sort bi tonic sequences, it
is necessary to show that after the comparison and inverse shuffle, each of the
vectors input to the smaller bitonic sorters are bitonic. Moreover, every ele­
ment of the upper bitonic vector does not exceed any element of the lower
bitonic vector, so if the upper and lower vectors are each sorted indepen­
dently, and if the resulting sorted vectors are concatenated, then the final
vector will be fully sorted. This proof is one of the problems at the end of this
chapter; we omit the discussion in the body of the text.

To create a full sorter from a bitonic sorter, you can build up bitonic
sequences from smaller ones. Figure 4.19 shows how to build a bitonic se­
quence of length 4 from two sorted sequences of length 2. The trick is to sort
one sequence into ascending order and one into descending order, then con­
catenate the sequences. The shaded pattern designates a comparator that
places its larger input value at the top output, which is exactly the opposite of
the behavior of the unshaded comparators.

Figure 4.20 shows how to construct an eight-sorter with perfect-shuffle
interconnections. The computation is unrolled in time. It actually is done
with a single vector of N 12 comparators, with the vector of N outputs fed back
to the N inputs through a perfect-shuffle interconnection pattern.

The first comparison produces two bi tonic sequences of length 4 by sort­
ing pairs of inputs into ascending and descending sequences, with the shaded

-OIL}--
--1L.t!J--
--2

--3

Fig. 4.19 A method for building a bitonic sequence of length 4 by sorting two se­
quences of length 2 in opposite ways, then concatenating the results.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 237

Sec. 4.5 The Perfect Shuffle 225

0 0 0 0 0 0 oQJ
4 3 7 2 1 H

2 1 4 3 1 7
2[]]

3 5 7 2 6 5 3 H

4 3 1 7 2
5 []]

5 7 2 6 5 3 4 H

6 2 5 4 3 6
7[]_

7 6 6 5 4 4 6 H

Fig. 4.20 A bi tonic sorter unrolled in time. The second state performs no comparisons.

modules producing descending sequences. The next three comparisons pro­
duce a bi tonic sequence of length 8, by sorting the two bi tonic sequences of
length 4 in ascending and descending order, respectively. The last three
stages sort the bitonic sequence of length 8 into a single sequence sorted in
ascending order.

In general, a set of log2 N stages accepts bi tonic sequences at the input of
the set and produces half as many bitonic sequences, each double the length
of the input bitonic sequences. The last set of stages is a bitonic sorter for
sequences of length N. Since there are O(log N) sets of stages required to
increase bitonic sequences from length 2 to length N, and since each set
contains O(log N) stages, the total number of stages through which data pass
is O((log N)2

). Compare this with the sorting time of O(N) for a one­
dimensional near-neighbor connection, and it becomes clear that the perfect
shuffle has a great advantage for large N, although for small N, the near­
neighbor connection may be quite competitive.

The thrust of our discussion is that the perfect-shuffle interconnection
pattern is potentially useful to incorporate in a system. Variations of this
particular pattern may be equally useful, but may have other more attractive
properties in terms of implementation.

Preparata and Vuillemin [1981] describe a scheme called cube-connected
cycles, which is an interconnection scheme that provides the inter­
connectivity of the perfect shuffle, but uses area more efficiently when imple­
mented in VLSI.

The perfect shuffle interconnection has been used in various computers
for research projects and in a few commercial releases. The Butterfly pro­
cessor [Crowther et al. 1985] from Bolt:, Beranek, and Newman connects up to
128 processors with an interconnection scheme equivalent to the shuffle ex-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 238

Sec. 4.5 The Perfect Shuffle 225

0 0| 0 L4 1 1 H

1 3 2 L
5 2 3 H

3 7 5 |_
7 6 4 'H

2 4 7 L
6 5 6__Hr—

Fig. 4.20 A bitonic sorter unrolled in time. The second state performs no comparisons.

modules producing descending sequences. The next three comparisons pro-
duce a bitonic sequence of length 8, by sorting the two bitonic sequences of
length 4 in ascending and descending order, respectively. The last three
stages sort the bitonic sequence of length 8 into a single sequence sorted in
ascending order.

In general, a set of log; N stages accepts bitonic sequences at the input of
the set and produces half as many bitonic sequences, each double the length
of the input bitonic sequences. The last set of stages is a bitonic sorter for
sequences of length N. Since there are 0(log N) sets of stages required to
increase bitonic sequences from length 2 to length N, and since each set
contains 0(log N) stages, the total number of stages through which data pass
is 0((log N)2). Compare this with the sorting time of CW) for a one—
dimensional near-neighbor connection, and it becomes clear that the perfect
shuffle has a great advantage for large N, although for small N, the near-
neighbor connection may be quite competitive.

The thrust of our discussion is that the perfect-shuffle interconnection
pattern is potentially useful to incorporate in a system. Variations of this
particular pattern may be equally useful, but may have other more attractive
properties in terms of implementation.

Preparata and Vuillemin [1981] describe a scheme called cubeconnected
cycles, which is an interconnection scheme that provides the inter‘
connectivity of the perfect shuffle, but uses area more efficiently when imple‘
mented in VLSI.

The perfect shuffle interconnection has been used in various computers
for research projects and in a few commercial releases. The Butterfly pro-
cessor [Crowther et al. 1985] from Bolt, Beranek, and Newman connects up to
128 processors with an interconnection scheme equivalent to the shuffle ex-

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 238

226 Characteristics of Numerical Applications Chap.4

change. Research machines at New York University [Gottlieb et al. 1983] and
IBM [Pfister et al. 1985] under construction in the mid-1980s use the perfect
shuffle embellished with other processing capabilities, which are described
later in this text.

Although our discussion suggests that the perfect shuffle has good qual­
ities for parallel processing, the good qualities come at some expense. Phys­
ical packaging is very important and can have a major impact on the prac­
tical implementation of the perfect shuffle. Because the distance between two
points connected by a perfect shuffle is potentially very long, propagation
effects are potentially disruptive for a perfect shuffle, whereas the near­
neighbor connection is much less susceptible to this problem because all
interconnection lengths are held to small values.

Another problem for the perfect shuffle is that cable density can be very
high, forcing the designer to provide cabling paths that tend to increase the
physical volume of a system and thereby contribute to longer propagation
delays for interprocessor communication. When the perfect shuffle is
implemented in VLSI, the equivalent problem is one of interconnection den­
sity, and indeed the interconnection area in a two-dimensional layout of the
perfect shuffle may well be much larger than the area devoted to the active
nodes connected by the shuffle.

The relative attractiveness of a perfect-shuffle connection to a
near-neighbor connection is highly dependent on the implementation
technology. The perfect shuffle has an advantage over near-neighbor con­
nections when propagation delays on long cables are small compared to
node-to-node delays experienced when sending data between two remote
points via a sequence of near-neighbor moves. With new developments
coming at a rapid rate, at any given time the current technology could favor
either near-neighbor connections or perfect-shuffle connections.

For example, Kung and Leiserson [1978] proposed a highly efficient VLSI
implementation of parallel processing that they call systolic arrays. These are
near-neighbor connected arrays of very simple processors. The geometry is
typically a rectangular or hexagonal geometry, but could be any repetitive
geometry in two dimensions. The data flows through the array of processors
in a pipeline mode.

The high efficiency of this type of implementation increases the attrac­
tiveness of near-neighbor connections, but the utility of such devices is
limited to the calculations that fit the specific array geometries. Nevertheless,
such devices could be put in high production and swing the cost-performance
pendulum to favor near-neighbor communication.

On the other hand, breakthroughs in optical transmission and optical
switching may swing the balance towards the perfect-shuffle. Such advances
would make communication faster over the longer interconnections and
reduce the cost of sending data much farther than the nearest neighbor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 239

Sec. 4.6 Architectures for the Continuum Model-Which Direction? 227

Consequently, new advances in architectures for the continuum model
are driven by the advances yet to come in devices and communications.

4.6 Architectures for the Continuum
Model-Which Direction?

The continuum model is a natural model for parallelism. Near-neighbor
interactions can be modeled by networks of processors connected together as
near-neighbors. The advantage of the near-neighbor structure is very strong
for those problems that fit the processor ideally.

In a broad spectrum of problems, as the fit becomes less ideal, the per­
formance of the near-neighbor connection machine becomes poorer and
poorer, to the extent that gains due to parallel execution are offset by the
inefficient use of hardware. Here are the basic choices available to the archi­
tect:

1. Build a highly specialized, near-neighbor architecture that is very fast
and effective for some class of problems within the continuum model.

2. Build a somewhat more general machine, but maintain high speed for
the continuum model. Provide extra capability through richer
interconnections, such as the perfect shuffle, and through other mech­
anisms that provide speed enhancement for problems that fall outside the
continuum model.

3. Build a very general parallel machine that has broad applicability,
including the continuum model, although its speed for continuum calcu­
lations may not be as high as for an architecture specialized for the class
of problems.

The potential size of the user community increases by one to two orders of
magnitude as you move from the first to the second choice, and again as you
move from the second to the third choice. A large user base tends to provide
cost reductions to each user because they have to support a much smaller
share of the hardware and software development costs.

A large demand also provides greater profit motivation, but if a designer
chooses to serve the large community and produces a fairly general
architecture, the users who absolutely need a machine for the continuum
model will be unsatisfied if the general architecture is significantly slower
than an architecture specialized for the continuum model. Moreover, this
same user group will question the value to themselves of the hardware and
software that support the more general classes of problems, since this group
of users may be paying for these aspects of the computer system and yet
derive no discernible benefit from them.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 240

228 Characteristics of Numerical Applicatioris Chap.4

Which community should the architect serve? There is no obvious answer
to this question. The architect should be prepared to build any of the possible
machines, from the most specialized to the most general, each optimized for
the best possible cost and performance for that architecture.

Market forces and other priorities will dictate which machine actually
gets built. Some developers will choose the most general approach, and hope
to install many copies of a machine. Some developers will choose to a carve a
niche for their ideas by producing a relatively small number of copies of a
highly specialized machine. Yet other developers may choose a design that
falls in between.

Whichever choice is made, the architecture has to be cost-effective for the
user community. For the smaller markets, a significant portion of the
challenge is to keep hardware and software development costs low, so that
these costs when amortized over copies actually sold are still within reason­
able bounds. Thus, not only must the architect produce a cost-effective de­
sign, but the design process itself must be done efficiently.

One important observation from this chapter is that what appears to be
an ideal architecture for a class of problems may not be ideal at all. An
architect who produces a machine that executes a particular code very effi­
ciently may be somewhat disappointed when research advances in basic
algorithms produce a new, efficient solution technique not at all suited to the
specific architecture. In such a case the very specialized machine may have
difficulty competing with a less specialized machine that happens to be able
to run the more efficient algorithm.

Breakthroughs do occur from time to time, such as with the formulation
of the fast Fourier transform [Cooley and Tukey 1965]. The more specialized
the architecture, the more susceptible it is to competitive methods when
breakthroughs do occur. The architect of the specialized machine has to
assess the risk of a breakthrough. For the continuum model, the risks are high
enough to merit attention.

In recent years, algorithm improvements have changed the basic flow of
data in various solution techniques, have altered the grid structure that
models the continuum, and have even provided for multiple grid spacing. A
machine built specifically for algorithms of 20 years ago would do relatively
poorly when executing some of the new algorithms for the same problems.

As an example of the evolution of parallel algorithms, this chapter de­
scribes how fast algorithms for the continuum model may make better use of
connection patterns like the perfect shuffle than of connection patterns that
are purely near-neighbor, but the near-neighbor connections were the back­
bone for the first large-scale computers for the continuum. Another step in
the evolution is represented by the Cosmic Cube described earlier in this
chapter, which in a sense combines the near-neighbor interconnections and
the perfect shuffle. It uses near-neighbor connections in six dimensions, but

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 241

Exercises 229

at best only three of those dimensions lead to short interconnections in a
three-dimensional packaging world. The other three dimensions force inter­
connections to have relatively long physical lengths.

The six-dimensional connection structure gives the same adjacency pat­
tern achieved by the perfect shuffle. Processors that are directly connected
within a Cosmic Cube have indices that differ by a single power of 2. Con­
sequently, this structure is well suited for recursive doubling, cyclic reduc­
tion, Fourier transforms, and other applications mentioned in this section.

In summary, there is no obvious best design for parallel processors for the
continuum model. The available approaches depend on how specialized the
processing system can be. A processor for the continuum model undoubtedly
will be somewhat specialized-it will probably have an interconnection
system to speed up typical programs for this model. Which approach, if any,
becomes dominant is most likely to depend on the directions of device tech­
nology in the coming years, with near-neighbor structures dependent on
VLSI advances and perfect-shuffle structures dependent on advances in inter­
connections technology.

Exercises
4.1 The object of this exercise is to explore calculations for the continuum model.

Assume that you have a square array of points, 9 x 9, and that the value of the
potential function on the boundary is zero on the top row, and is 10 along all
other boundary points.
a) Initialize the potential function to 0 on all interior points. Calculate the

Poisson solution for the values of all interior points by replacing each interior
point with the average value of each of its neighboring points.

Compute the new values for all interior points before updating any interior
points. Run this simulation for five iterations and show the answers you
obtain at the end. ·

Note: The values on the boundary are fixed and do not change during the
computation.

b) Repeat the process in the previous problem, except update a point as soon as
you have computed the new value and use the new value when you reach a
neighboring point. You should scan the interior points row by row from top to
bottom and from left to right within rows.

c) The second process seems to converge faster. Give an intuitive explanation of
why this might be the case.

d) How do your findings relate to the interconnection structure of a processor for
solving this problem?

4.2 The purpose of this exercise is to show the effect of information propagation
within a calculation. Use the Poisson problem of Exercise 4.1 and write a com-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 242

230 Characteristics of Numerical Applications Chap.4

puter program that iterates until no point value changes by more than 0.1
percent. Let this be the initial state of the problem for the following exercises.

a) Increase the boundary point at the upper left corner to a new value of 20.
Perform five iterations of the Poisson solver and observe the values obtained.

b) Now restore the mesh to the initial state for a. Change the program so that, in
effect, the upper left corner is rotated to the bottom right corner. To do this,
scan the rows from right to left instead of left to right and scan from bottom to
top instead of top to bottom. Perform five iterations of the Poisson solver and
observe the values obtained.

c) Both a and b eventually converge to the same solution because the initial data
are the same and the physical process modeled is the same. However, the
results obtained from a and bare different after five iterations. Explain why
they are different. Which of the two problems has faster convergence? Why?

4.3 The purpose of this exercise is to examine the cyclic-reduction algorithm. Ex­
plore the solution of a one-dimensional Poisson problem by treating 15 points on
a line. Let the left boundary point have the value 10 and the right boundary have
the value 0. Each intermediate point has a value that is the average of its immedi­
ate neighbors.

a) Write a matrix equation of the form Ax= b that describes this problem.

b) Simulate an iterative process that updates each interior point with the aver­
age of its neighboring points. Obtain the interior values of points for the first
three iterations of the technique previously used in which each interior point
is updated by the average of its neighbors.

c) Now apply the cyclic reduction algorithm in the text for three iterations to
find one equation for the point in the middle. Solve this equation and use
three iterations of back substitution to find the remainder of the points. Show
your solution and the equations you obtain after one iteration. (Hint: The first
iteration should produce new equations for points 2, 4, 6, 8, 10, 12, and 14. The
second iteration produces new equations for 4, 8, and 12.)

d) Compare the results produced in b and c with respect to the precision ob­
tained. Count and compare the total number of additions, multiplications,
and divisions for each algorithm after three iterations.

e) Explain from an intuitive point of view why cyclic reduction yields high speed
and high precision as compared to the near-neighbor iteration. What implica­
tions can you draw with regard to interconnections for processors for solving
the Poisson problem?

4.4 The purpose of this exercise is to investigate how to implement conditional
branches in an array computer. Program 4.1 does not show instructions that
determine if convergence has been reached. The instructions should determine if
every processor has obtained a satisfactory solution, and, if not, the program
should branch back to the top of the loop.

a) Write the instructions that do this job, inventing the instructions as you need
them. Describe the operation of each instruction that you invent.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 243

Exercises 231

b) Redraw the block diagram of the ILLIAC IV computer and describe the data
flow on the block diagram necessary to support the test for termination.

c) Assume that the control processor of the ILLIAC IV can execute its in­
structions in parallel with instructions that are broadcast to the 64 numerical
processors. Can any or all instructions ~f the termination test be overlapped
with the calculation of a loop iteration? If so, describe how to implement the
instructions in your program and in Program 4.1 to facilitate this overlapped
execution.

4.5 The purpose of this exercise is to explore the interconnection structure of a
hypercube computer such as the Cosmic Cube. Assume that you are to calculate
all partial sums of i items up to the sum of 64 items.

a) Construct a program for a Cosmic Cube computer system that performs this
operation in a time that grows as O(log N) if the number of processors is N.
Assume that every node in the computer executes the same program, al­
though the program can be slightly different from node to node since the
processors in a Cosmic Cube are independent. Show explicitly the in­
structions that send and receive data between processors. Invent instructions
as you need them and describe what the instructions do. Include some type of
instruction for synchronization that forces a processor to be idle until a
neighboring processor sends a message or a datum that enables computation
to continue.

b) Which communication steps in your answer require communications with
processors that are not among the six processors directly connected to a given
processor? How do you propose to implement such communication in
software (assuming that the hardware itself does not provide remote commu­
nication as a basic instruction)?

4.6 The purpose of this exercise is to examine the recursive doubling solution to a
linear tridiagonal system of equations. Consider the solution of the equation
Ax= b, where A is a tridiagonal equation.

a) Prove that the recurrence in Eq. (4.15) is a correct expression for the major
diagonal of matrix U in an LU decomposition of A.

b) Using recursive doubling, show all of the steps required to factor A into LU
and to solve the equations Ly= b and Ux = y. For each major step of the
algorithm, show the basic recurrence solution. Show the mathematical for­
mulation of your solution and indicate the basic operation in the recursive­
doubling iteration.

4.7 Find a recursive-doubling technique for solving Eq. (4.13).

4.8 The purpose of this exercise is to explore some of the properties of the perfect­
shuffle interconnection scheme.

a) Consider a processor that has the perfect shuffle and pair-wise exchange
connections shown in Fig. 4.16. For an eight-processor system, show that the
permutation that cyclically shifts the input vector by three positions is
realizable by some setting of the exchange modules. Draw the network un­
rolled in time to show the setting that realizes this permutation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 244

232 Characteristics of Numerical Applications Chap.4

b) Repeat a to show that a cyclical shift of two positions is realizable.

c) Prove that a shuffle-exchange network can realize any cyclical shift in log2 N
iterations for an N-processor system when N is a power of 2.

4.9 Find a means for evaluating a polynomial of degree N - 1 in the variable x in
parallel on an N -processor computer that uses the shuffle-exchange inter­
connection pattern. Assume that N is a power of 2.

4.10 Prove that the scheme shown in Fig. 4.18 produces a sorted sequence of length N
from a bi tonic sequence of length N. Specifically, prove that after the comparison
and exchange is performed, each sequence of length N 12 is bitonic and all ele­
ments of one sequence do not exceed the value of any element of the other
sequence.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 245

Vector Computers

The last chapter introduces the idea of building a parallel architecture
matched to a specific class of problems. The discussion there mentions that
there are two major models of numerical processes-a continuum model
based on near-neighbor interactions and a particle model based on discrete
point-to-point interactions. The major emphasis of Chapter 4 is the con­
tinuum model, together with the architectures that support processing of
near-neighbor interactions for that model.

This chapter extends the discussion of numerical architectures to vector
computers with the idea that these computers can be used for the majority of
continuum-model problems, as well as for many particle-model problems.
The vector computer has emerged as the most important high-performance
architecture for numerical problems. It has the two key qualities of efficiency
and wide applicability.

Most vector computers have a pipelined structure. When one pipeline is
not sufficient to achieve desired performance, designers have occasionally

233

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 246

234 Vector Computers Chap.5

provided multiple pipelines. Such processors not only support a streaming
mode of data flow through a single pipeline, they also support fully parallel
operation by allowing multiple pipelines to execute concurrently on indepen­
dent streams of data.

By the mid-1980s, more than twenty manufacturers offered vector pro­
cessors based on pipeline arithmetic units. They ranged from relatively inex­
pensive auxiliary processors attached to microcomputers to high-speed su­
percomputers with computation rates from 100 Mflops to rates in excess of
1000 Mflops. (One Mfl.ops is 106 floating-point operations per second.)

The price-performance ratio of these vector processors is rather remark­
able because they yield one to two orders of magnitude increased through­
put for vector computations when compared to serial processors of equal
cost. But this throughput increase is limited to the problems that fit the
architecture-that is, to problems that can be structured as a sequence of
vector operations whose characteristics make efficient use of the facilities
available.

Many of the supercomputers are also high-performance serial processors
for general-purpose problems, but the throughput of these supercomputers
on nonvector problems is only a few times greater than the throughput of
more conventional high-speed serial processors. In fact, although throughput
might be high because of fast device technology, if a vector-structured super­
computer is used exclusively on nonvector problems, the computational cost
may be excessive because this cost includes the cost of the vector facilities,
which presumably are left idle by scalar computations.

The purpose of this chapter is to describe the general architecture of
vector machines and then describe how algorithms and architecture can be
matched to each other to obtain efficient processing over large classes of
computations.

5.1 A Generic Vector Processor

The basic idea of a vector processor is to combine two vectors, element by
element, to produce an output vector. Thus, if A, B, and Care vectors, each
with N elements, a vector processor can perform the operation

C: =A+B

which is interpreted to mean

C; : =a; + b;, 0 :s; i :s; N - 1

where the vector C can be written in component form as (c0 , c 1, •.• , cN_ 1). The
form is similar for vectors A and B.

A very simplified way to implement this operation with a pipelined arith­
metic unit is shown in Fig. 5.1. The two streams of data supplied to the
arithmetic unit carry the streams for A and B, respectively. The memory

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 247

Sec. 5.1 A Generic Vector Processor 235

Stream A --
Multiport Stream B

Pipelined Adder

-Memory -
System

Stream C = A + B .
~

Fig. 5.1 A processor that is capable of adding two vectors by streaming the two
vectors through a pipelined adder.

system supplies one element of A and B on every clock cycle, one element to
each input stream. The arithmetic unit produces one output value during
each clock cycle. (Actually, the input data rate need be only as fast as the
output data rate. If the arithmetic unit can produce results at a rate of one
output value every d cycles, then the input data rate need be only one input
value on each stream every d cycles.)

Figure 5.1 shows only the barest details of the vector processor to indicate
the general flow of data through the pipelines. The pipelined arithmetic unit
is discussed in Section 3.4 and that unit is the core of the architecture in
Fig. 5.1.

The difficulty, however, is the design of the memory system to sustain a
continuous flow of data from memory to the arithmetic unit and the return
flow of results from the arithmetic unit to memory. The majority of the
architectural tricks used in vector processors are devoted to sustaining that
flow of data and to scheduling sequences of operations to reduce the flow
requirements.

In this example we assume a basic one-cycle rate for the delivery of
operands, production of results, and restoring of the result data into memory.
This calls for a memory system that can read two operands and write one
operand in a single cycle.

Conventional random-access memories can perform at most one READ or
one WRITE per cycle, so the memory system in Fig. 5.1 has at least three
times the bandwidth of a conventional memory system. Of course this ignores
any additional requirement for bandwidth for input/output operations. Also,
we have ignored the bandwidth for instruction fetches, but a major
advantage of a vector architecture is that a single instruction fetch can ini­
tiate a very long vector operation. Consequently, the bandwidth required to
fetch instructions for a vector architecture is negligible as compared to the 20
to SO percent of the bandwidth used for instruction fetches in conventional
architectures.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 248

236 Vector Computers Chap.5

The major problem facing the architect is to design a memory system that
can meet the bandwidth requirements imposed by the arithmetic unit. Two
major approaches have emerged in commercial vector machines.

1. Build the necessary bandwidth in main memory by using several inde­
pendent memory modules to support concurrent access to independent
data; or

2. Build an intermediate high-speed memory with the necessary bandwidth
and provide a means for high-speed transfers between high-speed
memory and main memory.

The first approach acknowledges that if one memory module can access at
most one datum per access cycle, then to access N independent data in one
access cycle requires N independent memory modules. The second approach
produces higher bandwidth by shortening the access cycle in a small
memory. But the small memory is loaded from a large memory, and the large
memory can still be the ultimate bottleneck in the system in spite of the high
bandwidth of the small memory.

To make best use of the small high-speed memory, we should make multi­
ple use of operands transferred to this memory. In this way the net demand
by the processor on the large memory is reduced, and bandwidth of the
large memory need not be as large as the peak bandwidth required by the
processor.

In the latter part of this chapter we see that another use of the high-speed
memory is to provide for access patterns not available in main memory. Thus,
we can move a data structure such as a matrix from main memory to inter­
mediate memory by using the access patterns supported by main memory.
When the matrix is stored in intermediate memory, we can provide for effi­
cient access to rows, columns, diagonals, or subarrays of the matrix, not all
of which can be done efficiently when the matrix is stored in main memory.
The second approach has been embellished in some cases by providing more
than one level of intermediate memory, with the size, cost, and performance
of each level selected to give a good cost-performance ratio of the total
memory system.

5.1.1 Multiple Memory Modules

The first approach is illustrated in Fig. 5.2. In this figure main memory is
composed of multiple modules. Eight modules are shown; they comprise a
system with eight times the bandwidth of a single module. Each of the three
data streams associated with the arithmetic pipeline has an independent
path to the memory system so that each stream can be active simultaneously,
provided that each individual module serves only one path at a time.

Consider how this system can be used to implement vector arithmetic. We
assume that a basic memory cycle takes two processor cycles, so the band-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 249

Sec. 5.1 A Generic Vector Processor 237

Stream A

Stream B
Pipelined Adder

Stream C = A + B

Fig. 5.2 A vector processor with a memory system composed of eight 3-port memory
modules.

width required to service the pipeline in Fig. 5.2 is at least six times the
bandwidth of a single memory module. Figure 5.3 illustrates an ideal solution
to our vector arithmetic example. The vectors A, B, and C are laid out in
memory so that they start respectively in Modules 0, 2, and 4, and their
successive elements lie in successive memories at addresses that are easily
calculated.

The timing for the activity in this architecture is shown in Fig. 5.4. Time is
shown on the horizontal axis, and the activity of the memory modules and
pipeline unit is shown on the vertical axis. Note that the arithmetic pipe­
line has four stages, thereby producing each output value four units after
the corresponding input data arrive at the pipeline. The pipeline is busy
continuously after it fills with data.

A busy pipeline stage is indicated by the integer within the cell, which
gives the subscript of the vector element that is being processed at the given
time. A busy memory module is indicated by an R, followed by a letter and a
digit. The symbol RAO indicates that the module is reading the element of
vector A with subscript 0. The letter W indicates a WRITE operation in
progress to the element of C whose subscript follows the W.

For this example, we have purposely allocated the vectors to modules so
that no conflicts occur. To simplify this discussion we ignore the addressing of
items within modules and focus only on which modules are active. At Clock 0,
Modules 0 and 2 initiate READs to the first elements of vectors A and B. These

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 250

Sec. 5.1 A Generic Vector Processor 237

Stream A

Pipelined Adder

Stream C : A + B

Fig. 5.2 A vector processor with a memory system composed of eight 3-port memory
modules.

width required to service the pipeline in Fig. 5.2 is at least six times the
bandwidth of a single memory module. Figure 5.3 illustrates an ideal solution
to our vector arithmetic example. The vectors A, B. and C are laid out in
memory so that they start respectively in Modules 0, 2, and 4, and their
successive elements lie in successive memories at addresses that are easily
calculated.

The timing for the activity in this architecture is shown in Fig. 5.4. Time is
shown on the horizontal axis, and the activity of the memory modules and
pipeline unit is shown on the vertical axis. Note that the arithmetic pipe-
line has four stages, thereby producing each output value four units after
the correSponding input data arrive at the pipeline. The pipeline is busy
continuously after it fills with data.

A busy pipeline stage is indicated by the integer within the cell, which
gives the subscript of the vector element that is being processed at the given
time. A busy memory module is indicated by an R, followed by a letter and a
digit, The symbol RAO indicates that the module is reading the element of
vector A with subscript 0. The letter W indicates a WRITE operation in
progress to the element of C whose subscript follows the W.

For this example, we have purposely allocated the vectors to modules so
that no conflicts occur. To simplify this discussion we ignore the addressing of
items within modules and focus only on which modules are active. At Clock 0,
Modules 0 and 2 initiate READS to the first elements of vectors A and B. These

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 250

238 Vector Computers Chap.5

Module 0 A[O] 8[6] C[4]

Module 1 A[1] 8[7] C[5]

Module 2 A[2] 8[0] C[6]

Module 3 A[3] 8[1] C[7]

Module 4 A[4] 8[2] C[O]

Module 5 A[5] 8[3] C[1]

Module 6 A[6] 8[4] C[2]

Module 7 A[7] 8[5] C[3]

Fig. 5.3 The physical layout of three vectors in the modular memory of the pipelined
vector processor of Fig. 5 .2.

elements appear at the pipeline inputs at Clock 2, and the corresponding
output appears at the end of Clock 5.

Meanwhile at Clock 1, Modules 1 and 3 initiate READs to the second
elements of the input vectors, and at each subsequent clock cycle, successive
modules initiate READs to the next elements of the input vectors. At the end
of Clock 5 the first output value emerges from the arithmetic pipeline.

During the next clock period, Clock 6, Modules 5 and 6 are busy reading
the next elements of the vector A. Module 5 delivers a 5 at the beginning of
Clock 7, and Module 6 delivers a6 at the beginning of Clock 8. Similarly,
Modules 7 and 0 are busy reading b5 and b6, respectively, during Clock 6.
Modules 1, 2, and 3 are unoccupied. Module 4 initiates a WRITE to put away
c0 during Clock 6, and during the next clock cycle, Module 5 initiates a
WRITE to put away c1•

Note how well the arithmetic and memory operations dovetail in the
timing diagram in Fig. 5.4 so that all operations proceed without a collision.
That is the beauty of pipelined data flow when data flows can be made
collision free. But reality is never as well behaved as ideal examples are.

What happens when we cannot arrange the vectors to begin in the mod­
ules where we want them to begin? For example, the structure of the vector
add prevents the vector C from beginning in Modules 0, 5, 6, .or 7 when the
input data are arranged as shown in Fig. 5 .3. If C is computed somewhere else
in the program as the sum of D and E, the vectors D and E might well be

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 251

Sec. 5.1 A Generic Vector Processor 239

stored in memory in a way that prevents C from beginning in Modules 1
through 4. Hence, we might discover that C is too constrained and cannot be
stored in any manner to support conflict-free memory operations.

Figure 5.5 shows how buffers at the input and output of the arithmetic
pipeline can eliminate contention at the memory. Suppose, for example that
all vectors start in Memory 0. The timing diagram in Fig. 5.6 shows how the

Pipeline Stage 4

Pipeline Stage 3

Pipeline Stage 2

Pipeline Stage 1

Memory 7

Memory 6

Memory S

Memory 4

Memory 3

Memory 2

Memory 1

Memory 0

ABO

RAO

0

RB1

ABO

RA1

RAO

0

RB2

RB1

RA2

RA1

2

0 1 2 3 4 s 6 7

0 1 2 3 4 s 6 7

0 1 2 3 4 s 6 7

1 2 3 4 s 6 7

RBS RBS RA? RA? W3 W3

RB4 RB4 RA6 RA6 W2 W2

RB3 RB3 RAS RAS W1 W1

RB2 RA4 RA4 WO WO

RA3 RA3

RA2 W6

RB? RB? WS WS

RB6 RB6 W4 W4

3 4 s 6 7 8 9 10 11 12 13

Time (clock periods) ---

Fig. 5.4 A timing diagram for the addition of two vectors, component by component,
in pipeline mode.

·I Variable ~
Stream A

Delay •
Pipelined Adder

Stream B -
~

Variable . Stream C = A + B
... -Delay I

Fig. 5.5 Variable delays in the input and output streams of a pipelined arithmetic
unit.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 252

240

Pipeline Stage 4

Pipeline Stage 3
Pipeline Stage 2

Pipeline Stage 1

Memory 7

Memory 6

Memory S

Memory 4

Memory 3

Memory 2

Memory 1

Memory 0 RAO

0

RA2

RA1 RA1

RAO ABO

2

Vector Computers Chap. 5

0 1 2 3 4 s
0 1 2 3 4 s 6

0 1 2 3 4 s 6 7

0 1 2 3 4 s 6 7

RA? RA? RB? RB?

RA6 RA6 RB6 RB6

RAS RAS RBS RBS

RA4 RA4 RB4 RB4 RAS

RA3 RA3 RB3 RB3 RAS RAS

RA2 RB2 RB2 RAS RAS RBS

RB1 RB1 RAS RAS RBS RBS

ABO RAS RAS RBS RBS WO

3 4 s 6 7 s 9 10 11 12 13

Time (clock periods) --

Fig. 5.6 A timing diagram for the addition of two vectors when storage conflicts arise.
After reading, Vector A is delayed by two clocks, and, before writing, Vector C is
delayed by four clocks. The first WRITE takes place at Clock 12.

vector operation proceeds without conflict. The input buffer on the A input is
set to a delay of two clocks, and the output is set to a delay of four clocks.

In Fig. 5.6 note that A is read before B, so that each element of Breaches
the pipeline exactly two clocks after the corresponding element of A emerges
from the memory. By buffering A for two clock cycles, we provide for corre­
sponding elements of A and B to reach the arithmetic pipeline concurrently.
When the first result appears at the output of the pipeline at the end of Clock
7, it arrives just when Module 0 is busy for four clock cycles fetching a 8 and b8 •

Hence, the output buffer holds each output for four clock cycles and then
passes the output to the memory system. Thus the first result is stored during
Clock 12, and the total duration of the vector operation is lengthened by six
clock cycles over the timing shown in Fig. 5.4. After the initial delay, however,
results are produced and stored at the rate one result per clock cycle, which is
the same rate as in Fig. 5.4. The technique of adding buffers to the inputs and
outputs of an arithmetic unit to eliminate memory conflicts is similar in
spirit to the idea of adding buffering in the interior of a pipeline to eliminate
internal conflicts, which has been explored earlier in Section 3.4.4.

One implementation of this idea is shown in block diagram form in Fig.
5.7, which is intended to represent the structure of the CDC STAR Computer,
a supercomputer produced in the mid-1970s. This diagram shows a variable
delay inserted into one of the operand streams and the result stream. The

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 253

Sec. 5.1

Address
Generator

MEMORY
SYSTEM

A Generic Vector Processor

Instruction l__.

Vector Control

Select Delay

Stream A

Stream B

Select Delay

Instruction
Decoder

Variable
Delay

Stream C = A + B

241

Function Select

Pipelined Adder

Fig. 5.7 An architecture similar to the CDC STAR. The instruction decoder sets the
variable delays as a function of the starting addresses of the vectors and the through­
put rate of the arithmetic pipeline for the specified operation. The address generator
produces the load and store addresses during the execution of the instruction.

delays are set to specific values depending on the location of the first elements
of each of the operands and the result vector. This ensures that the pipeline
can run at full speed after an initialization period during which the operand
and result streams fill their respective buffers. Unfortunately, if vectors are
short, a relatively long buffering delay can have a strongly negative influence
on performance.

Figure 5.7 shows that several functions can be selected within the arith­
metic subsystem. The CDC STAR has no capability to overlap two or more
vector operations with each other, so it is reasonable in this architecture to
share common arithmetic functions among different vector operations. Thus
the floating-point addition and multiplication operations use the same
hardware for exponent add, shift, and mantissa add, which are common to
the two functions.

The CDC STAR actually provides for two single-precision operations or
one double-precision operation within one pipeline, where the flexibility is
obtained by special logic inserted in the arithmetic stages that lie in the
boundary region between the two single-precision halves of a double­
precision operand. The logic disables the carries between halves in a 32-bit
mode and enables the carries between halves in 64-bit mode. This permits the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 254

Sec. 5.1 A Generic Vector Processor 241

Instruction —_L_.,
Vector Control

Instruction
Decoder

Address
Generator

Select Delay Function Select

Stream A
 Variable

Delay

 Pipelined Adder

Select Delay

Variable
Delay

Fig. 5.7 An architecture similar to the CDC STAR. The instruction decoder Sets the
variable delays as a function of the starting addresses of the vectors and the through-
put rate of the arithmetic pipeline for the specified operation. The address generator
produces the load and store addresses during the execution of the instruction.

 Stream 0 = A + B

MEMORY
SYSTEM

delays are set to specific values depending on the location of the first elements
of each of the operands and the result vector. This ensures that the pipeline
can run at full speed after an initialization period during which the operand
and result streams [ill their respective buffers. Unfortunately, if vectors are
short, a relatively long buffering delay can have a strongly negative influence
on performance.

Figure 5.7 shows that several functions can be selected within the arith-
metic subsystem. The CDC STAR has no capability to overlap two or more
vector operations with each other, so it is reasonable in this architecture to
share common arithmetic functions among different vector operations. Thus
the floating-point addition and multiplication operations use the same
hardware for exponent add, shift, and mantissa add, which are common to
the two functions.

The CDC STAR actually provides for two single-precision operations or
one double-precision operation within one pipeline, where the flexibility is
obtained by special logic inserted in the arithmetic stages that lie in the
boundary region between the two single-precision halves of a double-
precision operand. The logic disables the carries between halves in a 32-bit
mode and enables the carries between halves in 64-bit mode. This permits the

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 254

242 Vector Computers Chap. 5

result rate for single precision to be double the result rate for double pre­
cision, when you measure the result rate in terms of result operands produced
per unit time. However, the number of physical bits produced per unit time is
the same for single and double precision.

The variable delays in Fig. 5.7 are rather interesting entities in themselves
because they can be costly both in dollars and setup time. Even if the dollars
are unimportant, setup time is very important, and we require the delay to be
set quickly to a particular value.

One possibility is to use a tapped delay line wherein the data stream
enters a series of delay stages at a specific input, but a tap control selects a
specific output to serve as the output of the delay line. This is shown in Fig.
5.8. Each of the N stages in this delay line is a potential network output, but
the actual network output is determined by the output control.

This line can yield any delay from 0 to N, provided that data can be
clocked in and out of the delay line within a single clock cycle. In some
technologies, the logic required to implement the variable delay results in
relatively long access paths that may be too long for the clock cycle of the full
system. This is technology dependent, however, but it must be considered by
the architect.

An alternative way to achieve the variable delay is shown in Fig. 5.9. This
requires N cells of a special memory. This particular memory can simulta­
neously read any cell in the system and write any other. There are two
address registers, one for READ and one for WRITE. The initial value of the
WRITE register is 0, and as each datum arrives at the memory and is written,
the WRITE address increments by 1.

Data Stream

Delay
Amount

~ Delay
Amount
Decode

____ ,. Tap Selects

Tapped Delay Line

Delayed Output-Stream Bus

Fig. 5.8 A variable delay built from a tapped delay line. The D modules are unit
delays. One tap is gated to the output bus by a tap-select control line produced by
decoding the delay amount.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 255

242 Vector Computers Chap. 5

result rate for single precision to be double the result rate for double pre-
cision, when you measure the result rate in terms of result operands produced
per unit time. However, the number of physical bits produced per unit time is
the same for single and double precision

The variable delays in Fig. 5.7 are rather interesting entities in themselves
because they can be costly both in dollars and setup time. Even if the dollars
are unimportant, setup time is very important, and we require the delay to be
set quickly to a particular value.

One possibility is to use a tapped delay line wherein the data stream
enters a series of delay stages at a specific input, but a tap control selects a
specific output to serve as the output of the delay line. This is shown in Fig.
5.8. Each of the N stages in this delay line is a potential network output, but
the actual network output is determined by the output control.

This line can yield any delay from 0 to N, provided that data can be
clocked in and out of the delay line within a single clock cycle. In some
technologies, the logic required to implement the variable delay results in
relatively long access paths that may be too long for the clock cycle of the full
system. This is technology dependent, however, but it must be considered by
the architect.

An alternative way to achieve the variable delay is shown in Fig. 5.9. This
requires N cells of a special memory. This particular memory can simulta-
neously read any cell in the system and write any other. There are two
address registers, one for READ and one for WRITE. The initial value of the
WRITE register is 0, and as each datum arrives at the memory and is written,
the WRITE address increments by 1.

Tapped Delay Line
Data Stream

Delayed Output-Stream Bus

Fig. 5.8 A Variable delay built from a tapped delay line. The D modules are unit
delays. One tap is gated to the output bus by a tap-select control line produced by
decoding the delay amount.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 255

Sec. 5.1 A Generic Vector Processor 243

READ/WRITE registers

I READ Address I
I

I WAITE Address

~ '.
Data Stream In Data Stream Out -

(to WRITE address)
Two-Port Memory r

(from READ address)

Fig. 5.9 A variable delay implemented with a two-port memory. The delay is the
difference between the READ and WRITE addresses. For 0 delay, the input stream is
shunted directly to the output by means of bypass logic not shown in the figure.

To achieve a delay of an arbitrary amount up to N, the initial address of
the READ register is - d, the selected delay. This register is incremented at
the rate of operand arrivals, but no data are read until the READ address is 0.
At this point the READs occur at the same rate as the WRITEs, and thus the
output stream is the same as the input stream shifted d units in time.

The memory in Fig. 5.9 has exactly N locations, numbered 0 to N - 1. As
READ and WRITE addresses to memory increment beyond N - 1, they reset
to 0 and continue incrementing, so the memory operates as a circular queue.
The value of N need only be large enough to provide for the longest delay
required for synchronization. Vector operands can be much longer than N
because the delay memory does not have to store an entire vector at any given
instant of time.

The delay 0 case is a special situation that can easily be detected because
the READ and WRITE addresses are identical in this case. In this situation
the input data stream must be shunted directly to the output without being
stored in the buffer. Interested readers will find more discussion on variable
delays in Kogge [1981].

The variable delay memory in Fig. 5.9 is capable of delaying a stream any
amount from 0 to N clock cycles. It has several advantages over the tapped
delay-line because no more than two addresses in Fig. 5.9 change state each
cycle, as compared to changes in potentially all stages of a tapped delay-line.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 256

244 Vector Computers Chap. 5

Each time a cell changes state, there is a change in a physical parameter such
as voltage or current. Each such change usually requires power, and with
power is produced heat and electrical noise. The fewer changes in the
memory system of Fig. 5.9, as compared to the delay memory of Fig. 5.8
in which many cells change on each clock cycle, lead to potentially fewer
transient effects and noise problems.

5.1.2 Intermediate Memories

We indicate earlier that an alternative to providing high bandwidth in main
memory is to provide one or more intermediate levels of memory to form a
hierarchy of memories, with the highest bandwidth memory placed closest to
the processor. In this architecture, vectors migrate from main memory to the
fastest memory in the hierarchy as they are needed by the processor. Other
memory levels, if they exist, provide intermediate storage points to hold
vectors in transit just before or just after their use in the fastest portion of the
hierarchy.

The Cray I, a landmark high-speed architecture, bases its high-speed
operations on a hierarchical memory structure. A simplified diagram of the
Cray I appears in Fig. 5.10. Its main memory, (8 M-bytes) is separated from
the processing units by one or two levels of intermediate memories. For vector
operations, the intermediate memory is a set of eight vector registers (the V

Main
Memory

8 M-bytes

64 Modules

8 Vector (V) Registers
64 Operands/Register

64 Buffer
(T) Registers

64 Buffer
(B) Registers

256-Register
Instruction

Buffer

8 Scaler
(S) Registers

8 Address
(A) Registers

Instruction Register

Program Counter

12 Pipelined
Arithmetic

Units

Fig. 5.10 The Cray I-an architecture based on hierarchical memories. One to two
levels of high-speed intermediate memories isolate the arithmetic and instruction
logic from main memory.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 257

244 Vector Computers Chap. 5

Each time a cell changes state, there is a change in a physical parameter such
as voltage or current. Each such change usually requires power, and with
power is produced heat and electrical noise. The fewer changes in the
memory system of Fig. 5.9, as compared to the delay memory of Fig. 5.8
in which many cells change on each clock cycle, lead to potentially fewer
transient effects and noise problems.

5.1.2 Intermediate Memories

We indicate earlier that an alternative to providing high bandwidth in main
memory is to provide one or more intermediate levels of memory to form a
hierarchy of memories, with the highest bandwidth memory placed closest to
the processor. In this architecture, vectors migrate from main memory to the
fastest memory in the hierarchy as they are needed by the processor. Other
memory levels, if they exist, provide intermediate storage points to hold
vectors in transit just before or just after their use in the fastest portion of the
hierarchy.

The Cray I, a landmark high-speed architecture, bases its high-speed
operations on a hierarchical memory structure. A simplified diagram of the
Cray I appears in Fig. 5.10. Its main memory, (8 M-bytes) is separated from
the processing units by one or two levels of intermediate memories. For vector
operations, the intermediate memory is a set of eight vector registers (the V

8 Vector (V) Registers
64 Operands/Register

64 Butter 8 Sealer
(T) Registers (S) Registers

64 Butter 8 Address
(B) Registers (A) Registers

12 Pipelined
Arithmetic

Units

Main

Memory

 8 M-bytes

64 Modules

256-Register

Instruction
Buffer instruction Register

Program Counter

Fig. 5.10 The Cray I—an architecture based on hierarchical memories. One to two
levels of high-speed intermediate memories isolate the arithmetic and instruction
logic from main memory.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 257

Sec. 5.1 A Generic Vector Processor 245

registers), each capable of holding a 64-element vector of double-precision
numbers. The vector pipelines obtain data from the vector registers, not from
main memory. Similarly, the result vectors from the pipelines are returned to
the vector registers.

Scalar operands have two levels of intermediate memory, much like con­
ventional cache-based high-performance systems. The fastest level contains
eight 64-bit scalar registers (the S registers), which communicate directly
with the pipeline units for scalar arithmetic.

A slower, but still very high-speed, level of intermediate memory is com­
posed of 64 scalar registers (the T Registers), each 64 bits in length. The
T-register scalar memory has the same purpose as a cache memory in that it
is intended to hold those data that overflow from the high-speed scalar regis­
ters. Such data may become idle temporarily, but should be held close to the
processor in anticipation of future need rather than moved to the more re­
mote main memory between periods of use. Also, new data can be prefetched
to the intermediate scalar memory from main memory just prior to use in the
ari th me tic unit.

Unlike a cache memory, this intermediate memory is not managed auto­
matically. Data must be transferred explicitly to and from the intermediate
memory by means of ordinary program instructions. The disadvantage of this
scheme over cache memory is that the Cray I intermediate memory has to be
managed by the programmer or the compiler.

The big advantage of this type of memory over cache memory is speed­
intermediate memory is accessed by means of physical register addresses, not
by a cache lookup. The cache lookup tends to take longer because a cycle must
be long enough to support both the normal read operation plus an address
comparison, whereas the Cray I intermediate memory does not require the
time to compare address tags in a cache.

Cray designs usually provide for short high-speed registers to hold ad­
dresses, and the Cray I follows this general philosophy. It has eight address
registers (the A registers), each 24 bits in length. These are backed up by an
intermediate level of memory in the form of 64 registers (the B registers), each
24 bits in length. Thus the B registers function as a cache for the A registers,
except that all operations on the B registers are explicitly controlled by
program instructions rather than automatically controlled, as are the regis­
ters of a cache memory.

One more intermediate-level memory appears in the diagram. This is an
instruction buffer that holds portions of the instruction stream that are
fetched just prior to the execution of those instructions. Tight inner loops
tend to lie completely within the instruction buffer and can execute repeat­
edly without requiring fetches to main memory. Because many applications
written for the Cray tend to spend the great majority of time in tight loops,
instruction fetches tend be rather rare events.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 258

246 Vector Computers Chap.5

Note in Fig. 5.10 that every functional portion of the processor has a
high-speed memory attached to it. No function is directly attached to main
memory, as is the case for the processor structure shown in Fig. 5.7. Moreover,
some of the high-speed memories are backed up by memory buffers that lie
between main memory and high-speed memory.

The structure of the design clearly shows the major idea of the
architecture-keep the processing units busy by keeping their operands close
at hand. The intermediate memories represent a compromise in the sense
that they provide a pool of data readily accessible to the processing units at
lower cost than the cost of storage in the fastest levels of the memory hier­
archy.

The performance of the intermediate memories is, however, below the
performance of the highest-speed memories. To design such a hierarchy in­
volves comparing the performance trade-offs, with and without intermediate
memory, and the savings attributed to using intermediate memory in place of
high-speed registers. Note that the savings is partly due to cost and partly due
to decreased volume and power consumption, which may be the deciding
factors in supercomputer design.

An intermediate memory can also provide a buffer for reformatting data
structures for efficient processing. The idea is that the pipeline is optimized
for access to successive elements from a vector register, but the items to be
processed need not lie in consecutive cells of memory. The operands can be
fetched into an intermediate memory and from there sent to the vector regis­
ters. In so doing, the operands can be reorganized so that the items to be
processed next are moved to contiguous cells of a vector register. Methods for
making this transformation are covered in more detail in the next section.

The most distinguishing feature of the two architectures described in this
section is in regard to coupling operand memory to the pipeline. The first
architecture relies on main memory to hold pipeline operands, so main
memory must have a bandwidth at least as large as is required by the arith­
metic unit. This forces all of main memory to either be fast or partitioned into
many independent memory modules, or both, because the peak bandwidth
requirements of the arithmetic unit is very high.

The second design provides for the very high bandwidth to be supplied by
a register memory much smaller than main memory, and thus, the slower
speed of main memory need not handicap the arithmetic pipeline. Another
facet of the second design is that it provides for the possibility of overlapping
pipeline operations because the gross bandwidth of the high speed registers
can be made high enough to meet peak processing requirements of several
pipelined arithmetic units combined.

The cost of providing extra bandwidth for the registers is the cost of
providing extra ports for reading and writing the registers. While this cost
can be relatively high per bit of storage, the high-speed registers have only 104

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 259

Sec. 5.1 A Generic Vector Processor 247

to 105 bits, as compared to the 108 to 1010 bits of main memory. Thus, it is
feasible to supply extra ports to the registers but impractical to do so for main
memory.

The Cray I does provide for overlapping pipelined arithmetic operations
so that as many as three independent vector operations can be done concur­
rently. A vector operation produced on one output stream can be routed
directly to the input of the next operation. The first architecture has no
provision for additional data streams, so the result stream has to be stored in
memory before it can be rerouted to an arithmetic pipeline for additional
processing.

Because the variable delay is shared by all vector operations, the buffer in
the variable delay has to empty before the delay can be reset for the next
pipelined operation. Hence the pipeline must drain between operations, and
no overlap is possible. The Cray I's ability to overlap pipelined operations is
strictly due to its intermediate buffers and high-speed registers.

In our discussion of cache memory, our assumption is that cache memory
is an extremely important architectural feature of high-speed computers. Yet
the Cray I has no cache-organized memory, although it does have several
memories that occupy a place in a memory hierarchy similar to the place of
cache memory. The absence of cache is due partially to design decisions
and partially to characteristics of vector programs that may differ from the
characteristics of scalar programs.

The design decision for this class of machine has to weigh the cost and
difficulty of programming an intermediate memory that is not cache or­
ganized against the performance penalty for a cache access as compared to a
register access. The Cray I is built for performance. Its users are rather soph­
isticated and are willing to expend extra effort in software to obtain a per­
formance boost. This biases design decisions against the use of cache and
towards the use of programmable registers.

Moreover, a cache may not work as well for vector operations as it does for
scalar operations, although currently there is very little experience on which
to make a judgment. The designer has to consider these questions:

• If the V registers in the Cray I were cache-organized, would the hit ratio be
very high?

• How large should a cache be on a vector machine?

• Should it be large enough to hold a few full-length vectors?

• Or should it be smaller and instead hold fragments of many different
vectors?

These questions are largely unanswered today, but we can expect them to
be explored in the next few years as vector technology becomes more mature

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 260

248 Vector Computers Chap. 5

and implementers seek methods for boosting performance of machines built
today without caches.

Serial access to vectors dictates against a cache that uses LRU replace­
ment because one vector load may flush an entire cache and leave only dead
data in the cache. Perhaps a cache organized to manage vectors may be
useful, but this is still a matter of conjecture and needs further study. There­
fore, vector registers should be organized as program-accessible registers
rather than as a cache unless performance studies show how to improve
throughput with a vector-organized cache.

The various intermediate registers, including the T (scalar) registers, the
B (address) registers, and the instruction buffer, are the most obvious candi­
dates for cache organization. The hit ratio should be comparable to the hit
ratio for conventional serial machines if these registers were cache organized,
but interlocks across the caches to maintain consistent data would be a
serious problem.

Several units in the Cray I can modify data. Any such modification has to
be reflected in a cache that holds copies of such data. Some cache-consistency
protocols require that each time a new item is placed in cache, a cross check is
made at all other caches to see if the same item is contained there. This could
hurt performance by causing conflicts for cache access.

Although this implementation is not the only way to interlock cache
access, interlocking is almost always accompanied by a reduction in per­
formance and possibly by a modest increase in cost. So cache may well be
unattractive for a Cray-type environment.

Future designs, however, need not follow the directions of the Cray I.
Device technology can change dramatically, resulting in different available
densities, speeds, and costs of memory. Major changes in any or all of these
factors could produce vastly different architectures. As memory becomes
smaller, faster, and less expensive, there is a potential for intermediate
memories of much greater capacity.

Higher power densities, however, may require that volumes be held small
to enable the computer systems to be cooled and may force the designer to
resort to small intermediate memories or elect not to use them in some areas
of the design. A reasonable rule of thumb in the supercomputer area is to
build as much capacity and performance capability as possible, and then look
for ways to reduce volume, power consumption, and total cost without dras­
tically hurting performance.

5.2 Access Patterns for Numerical
Algorithms

High performance requires that the architecture fit the workload. A high­
speed machine must do the job for which it is intended. Although the dis­
cussion in the previous chapter cautioned against structures that are too

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 261

Sec. 5.2 Access Patterns for Numerical Algorithms 249

special purpose, we must at least understand the requirements for a large
class of problems to make sure that we can solve those problems effectively.

If design compromises are necessary, then we should understand a pure
design with no compromises and then evaluate the compromises separately.
In this section we examine some numerical problems and learn that access
patterns play a critical role in determining the execution speed of the algo­
rithms. We show how to build machines that support the special access
patterns frequently encountered in large numerical calculations.

Heller's excellent review of parallel algorithms for numerical methods
[1978] focuses on linear algebra because most large-scale practical applica­
tions of numerical methods are expressed in terms of matrices and vectors.
This is not surprising; matrix notation gives a compact way to express
enormous amounts of computation.

Consider two extremes for writing a program that performs 1010 multi­
plies. At one extreme, the programmer writes a few hundred or thousand
lines of program statements, many of which are just calls on a library of
matrix and vector functions. At the other extreme, the programmer is faced
with solving an unstructured problem and has to specify each of the 1010 lines
individually.

It is quite clear that no one will write the latter code-it takes an extraor­
dinary amount of time to write. At the rate of one arithmetic operation per
second, a person working full time would need 30 years to write down all of
the arithmetic expressions that describe the workings of the program. A
computer that executes at 100 Mflops takes only 100 seconds to execute that
program.

Obviously, vector and matrix operations are very important for a high­
speed architecture because many very large algorithms are expressed suc­
cinctly by such operations. The demonstrated importance of numerical
applications for large-scale computations leads us to treat the world of vector
and matrix computations in this chapter.

Other notational systems may also be useful. For example, recursively
defined functions are succinct descriptions of potentially massive computa­
tions. In any case, we are unlikely to generate unstructured large-scale
computations simply because the programming effort to write such applica­
tions is unreasonable.

5.2.1 Gaussian Elimination

Heller [1978] covers a number of algorithms for solving linear systems of the
type

Ax=h

where A is an N x N matrix, and x and b are N x 1 column vectors. The
objective is to find x, given A and b. The techniques available depend on the
specific characteristics of the matrix A.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 262

250 Vector Computers Chap. 5

When A is dense, that is, when all or nearly all of the components of A are
nonzero, the solution of the linear system of equations can be found by
carrying out a succession of row and column operations on A, with corre­
sponding changes made to b during the course of the computation.

One efficient and effective method of solution, Gaussian elimination, fac­
tors A into the product of two triangular matrices, Land U, where Lis lower
triangular and U is upper triangular. We see this in the previous chapter for
the special case in which A is tridiagonal, and Land U are bidiagonal. In both
the general and the special case, the factorization must compute the elements
of L and U, and this is possible to do by means of operations on row and
column vectors.

Once the factorization produces L and U, the next steps solve the
triangular systems

Ly=h

and

Ux=y

to obtain a value of x that satisfies the original equation since

Ax= LUx= Ly=h

The solutions to the triangular systems are particularly easy to obtain by
means of vector operations on rows of the Land U matrices.

When A is developed from partial differential equations that describe a
problem in the continuum, A is a sparse, highly regular matrix whose solu­
tion can be determined quite efficiently using techniques such as cyclic
reduction, which is described in the previous chapter. Although we may view
such a matrix A as being composed of a collection of row or column vectors,
the nonzero components of A in problems that arise from continuum formu­
lations tend to lie only along a few diagonals. Many algorithms approach the
solutions of this type of sparse-matrix problem by treating the matrix as
composed of diagonal vectors, so that vector operations manipulate streams
of data fetched from various diagonals of the A matrix.

It is worthwhile to examine in detail one example of a parallel algorithm
for computing the solution to a linear equation. In this case, we look at
classical Gaussian elimination and assume that the basic parallel operation
can manipulate a row or column of A in equal time. This assumption is not
true for all architectures, and its correctness requires some resourcefulness
from both the computer architect and the numerical programmer. Never­
theless, let us assume that rows and columns are equally accessible and
explore how to create an algorithm from row and column operations.

The core of the algorithm produces a new column of Land row of U at
each of N iterations. The n~w data for L and U overwrite corresponding

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 263

Sec. 5.2 Access Patterns for Numerical Algorithms 251

locations of A and are unchanged for the remainder of the computation.
Before producing the next elements of L and U, the algorithm updates the
entire portion of the A matrix that has not yet been overwritten. The diagonal
of L, which is forced by this algorithm to be all 1 's, is not stored explicitly. The
diagonal of A is eventually overwritten by the diagonal of U.

At each iteration, one diagonal element of A is overwritten. We call this
element the pivot for that iteration. In the matrix below the pivot is stored the
new column of L, and to the right of the pivot is stored the new row of U.
Figure 5.11 shows the various portions of the data at the start of an iteration.
The Land U denote the columns of Land rows of U that have been computed
up to this point. The P designates the pivot. The Land U denote the new data
to be computed during this iteration, and the A denotes the elements of A that
will be transformed during this iteration.

For numerical stability, we should choose as the pivot the element with
the greatest magnitude in the region that includes P, L', U', and A. If this
element is not P, then that element can be brought to position P by a swap of
rows and columns. Most algorithms, however, do not search such a large area
for the new pivot.

The algorithm remains stable, although it has a larger error bound, if the
pivot element is the largest element in the area that includes P and L '. If the
largest is not in position P, then by exchanging the row containing the ele­
ment and the pivot row, we can move the large element to positionP. Row and
column exchanges are permitted because they do not change the solution to
the original system of equations, although the elements in the solution vector
in general will have to be permuted to produce a solution vector whose
elements are ordered correctly in regard to the original problem.

~
u

p U'

L

L' A

Fig. 5.11 The regions of a matrix revealed during a single cycle of an LU­
decomposition algorithm for performing Gaussian elimination.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 264

252 Vector Computers Chap. 5

Program 5.1 is a simplified version of an algorithm for (Gaussian elimi­
nation) that appears in Forsythe and Moler [1967]. This algorithm is ex­
pressed in vector notation, where the notation A [i, j] designates a single
element a;,i, of A, and A [1 .. . j - 1, j] designates a column vector of A. In this
case, the subscript range 1 .. . j - 1 designates all subscript values lying be-
tween 1 and j - 1. The single subscript in the second component designates
the jth column. Hence, A [1 .. . j - 1, j] is the vector that consists of the first
j - 1 elements of the jth column of A. The same notation holds for rows,
except that the subscript range is placed in the second subscript position.

The important aspects of this example are that:

1. The algorithm as expressed accesses both rows and columns.

2. The majority of the vector operations have either two vector operands or a
scalar and vector operand, and they produce a vector result.

3. The MAX operation on a vector returns the index of the maximum ele­
ment, not the value of the maximum element.

4. The length of the vector of i terns accessed decreases by 1 for each succes­
sive iteration.

Program 5.1 Gaussian elimination.

FACTOR is a vector algorithm for factoring matrix A into Land U, where A= LU, Lis
lower triangular, and U is upper triangular. The diagonal elements of all matrices are
equal to 1; they are not stored explicitly. L overwrites the lower triangular portion of
A, and U overwrites the diagonal and upper triangular portion of A.

for i : = 1 to N do
begin {* Search Column for a pivot element. *}

{* Find the index of the element with the largest absolute
value in the pivot row. *}

imax :=index of Max(abs(A[i ... N, i]));
{* Swap Row imax with Row i. This produces a new row of U. *}
Swap(A[i, i ... N],A[imax, i ... NJ);
{* Check for singularity, and terminate if so. *}
if A [i, iJ:= O then singular matrix;
{* Find the new column of L, and store it in A. *}
A[i + 1 ... N, iJ:= A[i + 1 ... N, iJ!A[i, iJ;
{* Update the remaining part of the A matrix. *}
for k : = i + 1 to N do

A[k, i + 1 ... NJ:= A[k, i + 1 ... NJ-A[k, i)*A[i, i + 1 ... NJ;
end;{* Outer loop*}

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 265

Sec. 5.3 Data-Structuring Techniques for Vector Machines 253

The first point is consistent with our assumption that we need to access both
rows and columns in some algorithms. It turns out in this problem that the
inner loop can be done either by rows or by columns; the choice is up to the
programmer. But the algorithm does require both a column and a row oper­
ation elsewhere, so a vector computer should provide easy access to both rows
and columns, at least, and possibly other interesting forms of access.

The next point indicates that a vector pipeline should provide a mech­
anism to have a scalar serve as an operand, and in so doing it should produce
an answer faster or more efficiently than a similar operation that has both
operands as vectors.

The third point suggests that the pipelined arithmetic unit should pro­
vide some mechanism for producing results that are scalar, such as results
produced by the functions MAX, MIN, and SUM. Note as well that the scalar
result might be an index of an important element in the vector and not
necessarily the value of a vector element or of a combination of vector ele­
ments. In our example, the information required by the algorithm is in the
index, not the matrix element.

The last point is the most perplexing. The vectors used by this algorithm
shrink with each step, and thus the last step uses vectors of length 1. Pipelined
arithmetic and vector operations have a certain overhead, and we should
attempt to amortize that overhead over many operands by treating long
vectors as much as possible. We have an efficient machine if the overhead for
starting a vector computation is small compared to the amount of useful
work it produces. However, if the useful work produced by a vector operation
is very small, the overhead may be painfully expensive and drastically reduce
the efficiency of the system. The last point forces us to keep vector overhead as
small as possible because we inherently must deal with short vectors for some
portions of important computations.

The next section illustrates some techniques for solving the access prob­
lem and gives insight into the structure of efficient vector processors.

5.3 Data-Structuring Techniques for
Vector Machines

In this section we explore the problem of accessing data in ways that are
constrained by an algorithm. If a data structure such as a matrix is to be
accessed only by rows, we can store rows so that consecutive elements lie at
successive addresses. If only columns of a matrix are required, we can store
the matrix in a column-oriented fashion, by putting consecutive elements of
each column at consecutive memory addresses. But if both row access and
column access are required, there is no obvious way to meet both constraints
efficiently.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 266

254 Vector Computers Chap.5

The problem is illustrated in Fig. 5.12, in which a matrix is stored in a
main memory composed of eight independent memory modules. The mod­
ules are represented as columns. In Fig. 5.12(a), an 8 x 8 matrix is stored so
that its row elements can be accessed in a pipeline fashion. Each successive
row element is stored in the next memory module.

If a memory access takes several clock cycles, this memory can still de­
liver one row element per clock cycle after an initial delay. To fetch the row
vector for Row 0, for example, initiate a fetch to the (0,0) element, and before
this element is delivered to the memory bus, initiate a fetch to the (0,1)
element on the next clock cycle. On Clock i, initiate a fetch to element (O,i).

If the memory access time produces a delay d between the initial access to
an item and the lime at which it appears at the memory output port, then in
our example the element (O,i) can be placed on the memory bus at the end of
Clock i + d. This is the method of overlapped access described at the begin-

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(7,0)

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(0,1)

(1, 1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(1,0)

(1, 1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(7,3)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(a)

(b)

(0,4)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(7,4)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(0,5)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(7,5)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(0,6)

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(7,6)

(6,0)

(6,1)

(6.2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

Fig. 5.12 Two of several possible storage formats for an 8 x 8 matrix:
(a) Suitable for access to row vectors, but bad for column vectors; and
(b) Suitable for access to column vectors, but bad for row vectors.

(0,7)

(1,7)

(2,7)

(3,7)

(4,7)

(5,7)

(6,7)

(7,7)

(7,0)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 267

Sec. 5.3 Data-Structuring Techniques for Vector Machines 255

ning of this chapter. If d does not exceed 8, the number of distinct memory
modules in the example, the vector can be arbitrarily long. If dis greater than
8, however, attempts to access vectors longer than eight result in collisions at
some memory module because the module is asked to initiate a fetch for a
new element before its access to an old element has been completed.

Another way to describe the situation is that the memory bandwidth
must be great enough to support the memory demand. If the delay dis greater
than 8, then the aggregate bandwidth of the eight memories is less than one
item per clock period, yet the pipeline demand is for one item per clock
period. With delay d, the aggregate bandwidth is one item per clock period
only if there are at least d independent memory modules, each capable of
accessing one item per d clock periods. If an instruction requires three
streams, two for input operands and one for results, then the aggregate band­
width of memory must be at least three items per clock period, so the number
of memory modules must be at least 3d to support a pipeline rate of one result
per clock time.

Figure 5.12(a) shows that the memory bandwidth available is not the
whole story. Consider what happens if you need to access columns of the
matrix, for example Column 0. In this figure, Column 0 lies wholly in one
memory module. No matter how many other modules are in the system,
access to the elements of Column 0 is limited by the maximum bandwidth of
the single module. In this case, at most one item can be delivered every d units
of time, and it is impossible to support a rate of one column element accessed
per clock period unless one module by itself can produce data at this
rate-that is, unless dis unity.

In Fig. 5.12(b) we transpose the matrix to give fast access to columns,
which are now stored across the memories, but we give up fast access to rows.
The Gaussian elimination algorithm, as reproduced in the previous section,
requires both row and column access, so neither the storage pattern of Fig.
5.12(a) nor Fig. 5.12(b) is acceptable. One way to circumvent the problem is to
rewrite the algorithm to use column or row access exclusively. This happens
to be possible for Gaussian elimination, but it is not always possible to revise
an algorithm to live within the access constraints of memory.

Another approach is to alter the structure of data in memory. Figure 5.13
shows the same matrix stored so that successive rows are skewed with respect
to the previous row. In this case Row 0 starts in Module 0, Row 1 starts in
Module 1, ... , with each row shifted to the right by one column with respect
to the immediately preceding row.

In this storage scheme the address of an item in a system address space is
8 x (local address)+ module number, where each individual memory has a
local address-space, and the module numbers range from 0 to 7. Row ele­
ments lie at successive addresses in the system address-space. Successive
column elements lie at addresses that differ by nine in system address-space.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 268

256

(0,0)

(1,7)

(2,6)

(3,5)

(4,4)

(5,3)

(6,2)

(7, 1)

(0,1)

(1,0)

(2,7)

(3,6)

(4,5)

(5,4)

(6,3)

(7,2)

(0,2)

(1, 1)

(2,0)

(3,7)

(4,6)

(5,5)

(6,4)

(7,3)

Vector Computers

(0,3)

(1,2)

(2,1)

(3,0)

(4,7)

(5,6)

(6,5)

(7,4)

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

(5,7)

(6,6)

(7,5)

(0,5)

(1,4)

(2,3)

(3,2)

(4,1)

(5,0)

(6,7)

(7,6)

(0,6)

(1,5)

(2,4)

(3,3)

(4,2)

(5,1)

(6,0)

(7,7)

Chap.5

(0,7)

(1,6)

(2,5)

(3,4)

(4,3)

(5,2)

(6,1)

(7,0)

Fig. 5.13 A data structure that permits access to both rows and columns. Row access
has stride 1. Column access has stride 9. The blank entries in the matrix form a
dummy ninth column of the 8 x 8 matrix.

Note that successive column elements lie in different memories in this sys­
tem, and that they can be accessed in pipeline fashion as efficiently as succes­
sive row elements.

Even though the matrix is 8 x 8, we store the matrix as if it were 8 x 9 (8
rows by 9 columns), wasting the memory allocated to the 9th column. The
extra column provides the cyclical offset of successive rows, so column ele­
ments are spread across all memories just as row elements are.

To use this storage structure in a vector processor similar to those shown
in Figs. 5.7 and 5.10, the vector operand must be specified by four quantities:

1. Starting address;

2. Number of el~ments;
3. Precision (number of bits per element); and

4. Stride (offset between successive elements).

The stride for a vector expresses the address increment used to move from
one element to the next in a vector access. The stride for row access in Fig.
5 .13 is 1, and the stride for column access is 9. In general, if the stride is
relatively prime to M, the number of memories, then M successive accesses
for that stride are directed to M distinct memories. More generally, for any M
and stride s, M successive accesses of stride s are directed to M IGCD(s, M)
different memories, where GCD is the greatest common divisor function.
GCD is equal to unity, by definition, when its arguments are relatively prime.

Since Mis usually a power of 2, this is equivalent to saying that any vector
access with an odd stride produces M consecutive accesses to M distinct
memories. In Fig. 5.13, one can easily verify that 11x11and13 x 13 matrices

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 269

Sec. 5.3 Data-Structuring Techniques for Vector Machines 257

support row and column access as readily as the 9 x 9 matrix. For column
accesses, address conflicts arise when a matrix has an even number of col­
umns because even numbers are not relatively prime to M. For example, a
12 x 12 matrix causes problems when d exceeds 2 because column elements 1,
3, 5, ... , all lie in the same memory module. For a similar reason, 8 x 8 and
24 x 24 matrices lead to the same inefficient access to columns.

Fortunately, for every even number the next number is odd, so for every
bad value for a number of columns, the next larger number is good. Hence, we
can always add a wasted column to a data structure and provide a storage
structure that is ideally suited to pipelined row and column access.

If row and column access were the only requirements, our discussion
would end here. But the designer should not limit a design to a small class of
problems. If a few changes can greatly increase the number of problems that
can run efficiently, we must explore those changes and the consequences of
making them.

Kuck's study of parallelism [1976] (see also Budnik and Kuck [1971])
suggests that typical access patterns to matrices include access to

• Matrix diagonals in the major and minor directions;

• Square subarrays; and

• Rows and columns.

Note that the stride required to access the major diagonal of a matrix is
one greater than the stride required to access a column of a matrix. If M, the
number of memory modules, is a power of 2, then column access and major
diagonal access cannot both be efficient since one stride or the other is not
relatively prime to M.

Budnik and Kuck [1971] make a startling suggestion-use a number of
memories that is not a power of 2. For example, if the number of memories is
a prime p, then all strides less than pare relatively prime top. Therefore, we
can store arrays in a structure that yields equally efficient access to rows,
columns, and diagonals. Budnick and Kuck explore this notion in the context
of a parallel computer that is fully parallel in access, rather than pipelined.
This notion was developed further by Burroughs in the design of an unusual
supercomputer called the BSP (Burroughs' Scientific Processor), whose struc­
ture is shown in Fig. 5.14.

The BSP design provided for 17 memories, rather than 16, to solve the
problem of supporting all interesting ways to access a matrix. Memory is not
pipelined in this architecture. Rather, in one memory cycle the memory
system delivers one block of 17 memory lines, each line from a distinct
memory. Two networks separate the 17 memories from 16 processors. The
input alignment network shrinks a 17-way access to 16 operands by deleting
some operand and compressing the remaining 16 operands into a contiguous
vector.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 270

258

17 Memories

Vector Computers

17 Inputs
16 Outputs

Input
Alignment
Network

Output
Alignment
Network

16 Inputs
17 Outputs

Chap.5

16 Processors

··~

Fig. 5.14 The data flow and processor/memory structure of the Burroughs Scientific
Processor.

This proce53 is shown in Fig. 5.15 in simplified form for compressing a
five-way vector read to deliver data to four processors. Figure 5.15(a) shows
access to a column of a 4 x 4 matrix, and Fig. 5.15(b) shows access to a
diagonal of the same matrix. The output alignment network reverses this
process for data travelling between the arithmetic processors and main
memory.

In Fig. 5.15, note that the 4 x 4 matrix has two dummy columns stored, so
it is stored as a 4 x 6 matrix. In this form, rows are accessed with a stride of 1,
columns with a stride of 6, and diagonals with a stride of 7. Since 1, 6, and 7
are relatively prime to 5, in each case there are no memory conflicts when
accessing the particular slice of the array of interest. If the matrix is stored
without the dummy columns, then the stride to access diagonals is 5, which is
equal to the number of memories and therefore causes a maximum number of
conflicts.

The BSP processor was never sold and eventually the project was aban­
doned. Although the 17-memory structure solves some problems of access, it
creates others. Addressing is more complex for this structure than for storage
systems in which M is a power of 2. But more important is that the
17-memory system requires that access to the matrix components be made at
the memory system, which is quite far from the processor. Obtaining a row of
a matrix and then a column of the matrix, perhaps at a later time, forces the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 271

258 Vector Computers Chap. 5

17 Inputs
16 Outputs

Input
Alignment

17 Memories 16 Processors

Network

16 Inputs
17 Outputs

Fig. 5.14 The data flow and processor/memory structure of the Burroughs Scientific
Processor.

This process is shown in Fig. 5.15 in simplified form for compressing a
five—way vector read to deliver data to four processors. Figure 5.15(a) shows
access to a column of a 4 X 4 matrix, and Fig. 5.15(b) shows access to a
diagonal of the same matrix. The output alignment network reverses this
process for data travelling between the arithmetic processors and main
memory.

In Fig. 5.15, note that the 4 X 4 matrix has two dummy columns stored, so
it is stored as a 4 X 6 matrix. In this form, rows are accessed with a stride of 1.
columns with a stride of 6, and diagonals with a stride of 7. Since 1, 6, and 7
are relatively prime t0 5, in each case there are no memory conflicts when
accessing the particular slice of the array of interest. If the matrix is stored

without the dummy columns, then the stride to access diagonals is 5, which is
equal to the number of memories and therefore causes a maximum number of
conflicts.

The BSP processor was never sold and eventually the project was aban-
doned. Although the 17-memory structure solves some problems of access, it
creates others. Addressing is more complex for this structure than for storage
systems in which M is a power of 2. But more important is that the
17—memory system requires that access to the matrix components be made at
the memory system, which is quite far from the proaessor. Obtaining a row of
a matrix and then a column of the matrix, perhaps at a later time, forces the

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 271

Sec. 5.3 Data-Structuring Techniques for Vector Machines 259

Select (0,2) (0,3)
Addresses

(1,2) (1,3)

(2,2)

(2,3) (3,1)

(3,2) (3,3)

READ

Align

(a)

Select (0,3)
Addresses

(1,2) (1,3)

(2,0)

(3,1)

READ

Align

Fig. 5.15 A data structure that supports easy access to rows, columns, and diagonals:
(a) Access to columns with stride 6; and
(b) Access to diagonals with stride 7.

matrix to be in main memory and not in a buffer close to the processor.
Hence, there is potentially high traffic to and from main memory just for the
purpose of reformatting data.

Contrast the 17-memory structure with a Cray-like structure as shown in
Fig. 5.10. The striking difference with respect to performance is that the Cray
architecture drives the arithmetic units from a high-speed buffer memory
(the vector registers), whereas the 17-memory structure drives the arithmetic
units from a more remote main memory with two alignment networks con­
tributing to storage delay. The high-speed buffer of the Cray provides for the
possibility of loading data into the buffer just prior to when they are needed.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 272

SeC. 5.3 Data-Structuring Techniques for Vector Machines 259

Select
Addresses

READ

Align (3,0)

Select
Addresses

READ
Align

(b)

Fig. 5.15 A data structure that supports easy access to rows, columns, and diagonals:
(a) Access to columns with stride 6; and
(b) Access to diagonals with stride 7.

matrix to be in main memory and not in a buffer close to the processor.
Hence, there is potentially high traffic to and from main memory just for the
purpose of reformatting data.

Contrast the 17-memory structure with a Cray-like structure as shown in
Fig. 5.10. The striking difference with respect to performance is that the Cray
architecture drives the arithmetic units from a high-speed buffer memory
(the vector registers), whereas the 17-memory structure drives the arithmetic
units from a more remote main memory with two alignment networks con-
tributing to storage delay, The high-speed buffer of the Cray provides for the
possibility of loading data into the buffer just prior to when they are needed.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 272

260 Vector Computers Chap.5

While data reside in the buffer memory, they can take part in multiple
operations before being returned to main memory. Moreover, it is con­
ceivable to provide a sufficiently large buffer memory so that reasonably
large portions of matrices can be loaded into the buffer using an access
pattern such as row access, that is supported by main memory.

The buffer memory can be structured for access to the various matrix
components of interest, so once a matrix is loaded into the buffer, its elements
can be accessed in any of several ways. A high-speed buffer can be structured
to access the matrix by rows, columns, and diagonals by designing its cycle
time to be equal to one clock cycle. For a one-cycle memory, the stride for
pipeline access to a vector can be arbitrary.

The type of buffer we describe here is very costly when built in some
popular high-speed technologies. A very simple alternative is to reformat
matrices when necessary by transferring them between main memory and
the high-speed buffer. For example, consider an 8 x 8 matrix stored by rows in
an eight-module memory. If the next phase of the algorithm must access
columns, we can reformat the rows from 8 x 8 to 8 x 9 by loading each eight­
element row into the high-speed buffer and then storing back a nine-element
replacement. The destination vector can be written to a different region of
main memory to prevent overwriting of the source by destination during the
reformatting. Since the row operations are pipelined, reading an entire row of
eight elements takes only a little longer than reading a single element. After
the matrix is restored to memory, it is in a format in which columns can be
accessed with a stride of 9.

The reformatting time is approximately equal to the time required for
two to four vector transfers, depending on the overhead per vector initiated
and the startup time for a vector load or vector store. The reformatted matrix
can be accessed by columns about d times faster than the original matrix,
where d, as you recall, is the memory-access cycle time.

Depending on the value of d and the overhead per vector operation, the
reformatting of the matrix may be the preferred way of gaining access to the
entities needed. The reformatting process might well lead to less performance
degradation than do the alignment networks shown in Fig. 5.15 because
reformatting degrades performance only when it is needed, whereas the
alignment networks tend to increase the latency of every vector fetch and
store.

Architectures with high-speed buffers appear to have several advantages
over architectures whose memory couples directly to an arithmetic unit.
Although this observation is very dependent on existing technology, the trend
today seems to be toward vector processors that use high-speed buffers to
gain speed, as opposed to architectures that place needed operands far away
from the processor that needs them.

The major design problem for the buffer architecture is building a
memory that is both large enough to hold an interesting amount of data and

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 273

Sec. 5.4 Attached Vector-Processors 261

fast enough to run at the clock cycle of the arithmetic units. The number of
times that a datum in the buffer can be used in a computation before it is
returned to main memory tends to decrease as buffer size decreases, so a
small buffer may yield little or no savings in the total number of accesses to
main memory.

Device technology has a strong influence on how designs will achieve
variable-stride access in the future. Current trends suggest that the density of
high-speed memory is increasing and that high-speed buffers, although very
costly today, will tend to grow larger in the future. Cooling is another prob­
lem of importance because large amounts of high-speed memory packed very
densely lead to potentially high power density per unit volume. The Cray IJ,
for example, has so high a power density that it is designed to be cooled by
immersion in liquid.

Technology trends suggest that both the power consumption per bit and
the cost per bit are moving downward, which lends support to the evolution
of high-speed buffers for variable-stride access as opposed to the BSP ap­
proach of handling variable-stride access exclusively in main memory.

5.4 Attached Vector-Processors

An important means for achieving economical high-speed computation is to
provide for customization of each processor to the needs of each user. The
idea is to partition an architecture into building blocks that can be combined
in various ways to achieve different levels of performance with commen­
surate costs.

Figure 5.16 shows a basic high-speed conventional processor to which is
connected a numerical processor that we call an attached vector-processor.
The basic machine without the attached processor serves a large group of
users with conventional workloads, and the machine with the attached pro-

Processor

Main Memory

Attached
Processor

Local Memory

High-Speed Bus
(for peripherals and
attached processor)

Fig. 5.16 The structure of a typical computer system with an attached processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 274

Sec. 5.4 Attached Vector-Processors 261

fast enough to run at the clock cycle of the arithmetic units. The number of
times that a datum in the buffer can be used in a computation before it is
returned to main memory tends to decrease as buffer size decreases, so a
small buffer may yield little or no savings in the total number of accesses to
main memory.

Device technology has a strong influence on how designs will achieVC
variable-stride access in the future, Current trends suggest that the density of
high-speed memory is increasing and that high-speed buffers, although very
costly today, will tend to grow larger in the future. Cooling is another prob-
lem of importance because large amounts of high—speed memory packed very
densely lead to potentially high power density per unit volume. The Cray II,
for example, has so high a power density that it is designed to be cooled by
immersion in liquid.

Technology trends suggest that both the power consumption per bit and
the cost per bit are moving downward, which lends support to the evolution
of high—speed buffers for variable-stride access as opposed to the BSP ap-
proach of handling variable-stride access exclusively in main memory.

5.4 Attached Vector-Processors

An important means for achieving economical high—speed computation is to
provide for customization of each processor to the needs of each user. The
idea is to partition an architecture into building blocks that can be combined
in various ways to achieve different levels of performance with commen-
surate costs.

Figure 5.16 shows a basic high—speed conventional processor to which is
connected a numerical processor that we call an attached vector-processor.
The basic machine without the attached processor serves a large group of
users with conventional workloads, and the machine with the attached pro—

Attached
Processor

Local Memory

High-Speed Bus
(for peripherals and
attached processor)

Processor

Fig. 5.16 The structure of a typical computer system with an attached processor.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 274

262 Vector Computers Chap.5

cessor satisfies the needs of the specialized group of users. This tends to
reduce the cost to the specialized user because both the software and hard­
ware of the general-purpose machine enjoy the advantages of the lower cost of
high-volume production.

Some manufacturers of attached processors offer a model that can be
connected to a variety of different host machines. Attached processors cover a
very broad of range costs and performance, from low-cost units that attach to
microcomputers to high-performance systems that attach to high-end com­
mercial computers. Many commercial manufacturers offer vector attach­
ments of their own or a compatible model with a superset of instructions for
vector operations. These approaches are used by Fujitsu, IBM, Hitachi, and
NEC.

Our discussion in this section covers the generic architecture of an at­
tached processor. We also give some specific details regarding the FPS-164
from Floating-Point Systems by way of example to make the details more
concrete. Charlesworth and Gustafson [1986] provide interesting background
information on this topic.

We know from prior discussions that vector access to rows and columns,
and possibly to other matrix components, are essential for efficient numerical
computations. This requirement forces the architect to design the memory
system to support such access, but places very few constraints on the design
of the arithmetic processor. The arithmetic unit should also be structured to
support the most common and demanding needs of the users. So let us review
a few of the algorithms encountered earlier in the text.

For most numerical applications, the solution of linear equations of
various forms is the most central requirement. Linear programming requires
related techniques to solve constrained optimization problems. Even for
nonlinear problems, linear techniques are very important.

Nonlinear systems of equations are often solved by iterative linear meth­
ods. The idea is that some nonlinear systems behave linearly with respect to
small perturbations about a solution. Consequently, it is possible to produce
a full trajectory for a nonlinear solution from a sequence of solutions to a
linear system that describes the small-perturbation behavior of the nonlinear
system. Iterative techniques are often employed to produce a solution to the
full nonlinear system from the solution obtained by using the linear approxi­
mation.

For both linear programming and linear algebra operations, the inner
loop of the computation often takes the general form

a:=a+bxc (5.1)

where a, b, and care scalar. In a general-purpose structure, the product can
be computed and stored in a register and then added to a sum stored in a
different register.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 275

Sec. 5.4 Attached Vector-Processors 263

Since this operation is so common, we can make it a three-operand oper­
ation and provide for both the multiplication and addition to be done in one
arithmetic unit, without requiring an intervening store and load of the prod­
uct to and from a high-speed register. The structure commonly used takes the
form shown in Fig. 5.17, in which two operands enter a multiplier whose
output is tied directly to an adder, to which a third operand is connected.

Equation (5.1) can be evaluated in several different contexts, depending
on the order in which data are presented to the arithmetic unit. The most
efficient computation occurs when Eq. (5.1) is used to produce a vector of
outputs from a vector of inputs. Using our vector notation, Eq. (5.1) in this
context becomes

a[l .. . N] := a[l .. . N] +bx c[l .. . N] (5.2)

An efficient pipeline implementation of this equation provides for loading a
scalar variable to one input of the multiplier and streaming vectors A and C
through the arithmetic unit. The output vector is the updated A vector, which
is returned to the buffer storage area reserved for A.

Another possible context for Eq. (5.1) is one in which two vectors are
reduced to a scalar by an inner-product operation, which produces a single
scalar output from two vector inputs. This form of Eq. (5.1) is

a:= a+ b[i] x c[i] (5.3)

where the products of the form b [i] x c[i] are accumulated into the scalar
variable a. The initial value of a is zero when an ordinary inner product is
required. However, some algorithms use Eq. (5.3) in a manner that requires a
nonzero initial value for a.

The difficulty with Eq. (5.3) is that there is an interlock required between
successive iterations since the output variable a for one iteration is an input
variable for the next iteration. If addition is performed in a pipeline with d
units of delay, the interlock may require as many as d - 1 idle times between
successive outputs in order to give the pipeline time to compute a new value
for variable a to be used in the next iteration. This is as much as d times

A

B Multiplier

Adder
A•B+C

Fig. 5.17 The structure of a multiply-adder.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 276

Sec. 5 .4 Attached Vector-Processors 263

Since this operation is so common, we can make it a three—operand oper-
ation and provide for both the multiplication and addition to be done in one
arithmetic unit, without requiring an intervening store and load of the prod—
uct to and from a high-speed register. The structure commonly used takes the
form shown in Fig. 5.17, in which two operands enter a multiplier whose
Output is tied directly to an adder, to which a third operand is connected.

Equation (5.1) can be evaluated in several different contexts, depending
on the order in which data are presented to the arithmetic unit. The most
efficient computation occurs when Eq. (5.1) is used to produce a vector of
outputs from a vector of inputs, Using our vector notation, Eq. (5.1) in this
context becomes

a[1...N]:=a[l...N]+b><c[l,..N] (5.2)

An efficient pipeline implementation of this equation provides for loading a
scalar variable to one input of the multiplier and streaming vectors A and C
through the arithmetic unit. The output vector is the updated A vector, which
is returned to the buffer storage area reserved for A.

Another possible context for Eq. (5.1) is one in which two vectors are
reduced to a scalar by an inner—product operation, which produces a single
scalar output from two vector inputs. This form of Eq. (5.1) is

a:=a+b[i]><c[i] (5.3)

where the products of the form b[i] X c[i] are accumulated into the scalar
variable a. The initial value of a is zero when an ordinary inner product is
required. However, some algorithms use Eq. (5.3) in a manner that requires a
nonzero initial value for a.

The difficulty with Eq. (5.3) is that there is an interlock required between
successive iterations since the output variable a for one iteration is an input
variable for the next iteration. If addition is performed in a pipeline with (1
units of delay, the interlock may require as many as d — 1 idle times between
successive outputs in order to give the pipeline time to compute a new value
for variable a to be used in the next iteration. This is as much as d times

 Multiplier

Fig. 5.17 The structure of a multiply-adder.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 276

264 Vector Computers Chap.5

longer than the execution time required for Eq. (5.2), and the inefficiency
arises only because of the interlock used.

A way around this problem is described in Kogge [1981] and is discussed
in Section 3.4.5. The trick is to produce d different sums by computing
Eq.(5.3) according to the schedule

a;:=a;-a+b;Xc; (5 .4)

The subscripts in Eq. (5.4) denote the operand that appears at the arithmetic
unit input or output at time i. This form of the computation does not require
any interlocks because a;-a is available for use at a pipeline input just after it
emerges from the output end of the pipeline.

Unfortunately, Eq. (5.4) produces d distinct sums, which is not the in­
tended result of Eq. (5.3). So at the completion of the calculation described by
Eq. (5.4), it is necessary to sum the d output variables into a final result. The
final summation requires a small additional time that degrades performance
negligibly when the Band C vectors are long. The performance degradation
becomes significant when the B and C vectors are short, in which case the
methodology described by Eq. (5.4) should be avoided in favor of a problem
formulation that can use the strategy exhibited in Eq. (5.2).

An interesting attached processor of recent vintage is the FPS-164 pro­
cessor [Charlesworth and Gustafson 1986]. Figure 5.18 shows that the vector
processor has its own main memory, high-speed scalar arithmetic, and a
variable number of pipelined vector units. The system has a high-speed con­
nection to a host computer. The host function is to provide data and programs

Attached
Processor

Main Memory

120 M-bytes

Vector
Registers

Scalar Registers
X set and Y set

Address (A) Registers

Indirect-Address
(T) Registers

Vector Processor

Vector Processor

Vector Processor

Fig. 5.18 The structure of the FPS-164 attached processor.

Scalar Arithmetic Units

Multiply Pipeline

Adder Pipeline

Host Computer
Connection

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 277

264 Vector Computers Chap. 5

longer than the execution time required for Eq. (5.2), and the inefficiency
arises only because of the interlock used.

A way around this problem is described in Kogge [1981] and is discussed
in Section 3.4.5. The trick is to produce d different sums by computing
Eq,(5.3) according to the schedule

aiz=a,_d+bch, (5.4)

The subscripts in Eq. (5.4) denote the operand that appears at the arithmetic
unit input or output at time i. This form of the computation does not require
any interlocks because and is available for use at a pipeline input just after it
emerges from the output end of the pipeline.

Unfortunately, Eq. (5.4) produces d distinct sums, which is not the in-
tended result of Eq. (5 .3). So at the completion of the calculation described by
Eq. (5.4), it is necessary to sum the d output variables into a final result. The
final summation requires a small additional time that degrades performance
negligibly when the B and C vectors are long. The performance degradation
becomes significant when the B and C vectors are short, in which case the
methodology described by Eq. (5.4) should be avoided in favor of a problem
formulation that can use the strategy exhibited in Eq. (5.2).

An interesting attached processor of recent vintage is the FPS-164 pro-
cessor [Charlesworth and Gustafson 1986]. Figure 5.18 shows that the vector

processor has its own main memory, high—speed scalar arithmetic, and a
variable number of pipelined vector units. The system has a high-speed con—
nection to a host computer. The host function is to provide data and programs

Scalar Arithmetic Units

Multiply Pipeline

Scalar Registers
X set and Y set

Attached
Processor Add r Pi line

Main Memory Address (A) Registers e ”e

1 M b H “05* Computer2° ‘ V‘es Indirect-Address C°"“e°“°”
(T) Registers

Vector Processor

Vector Processor

Vector Processor

Fig. 5.18 The structure of the FPS-164 attached processor.

Vector
Registers

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 277

Sec. 5.4 Attached Vector-Processors 265

for the vector processor and to receive results when they are available. The
vector processor is designed specifically for high-speed floating-point oper­
ations and has virtually no support for general applications and utility
functions. These are supported by the host.

Note that the scalar processor shown in Fig. 5.18 is built for fast scalar
operations in that it has a separate multiplier and adder, two sets of operand
registers (X and Y registers), one set of address registers (A registers), and a set
of indirect-address registers (T registers). The scalar processor broadcasts
instructions and data to up to 15 vector processors, one of which is shown in
block-diagram form in Fig. 5.19.

The vector processor has two multiply-add units, each capable of produc­
ing one output per cycle. There are two sets of vector and scalar registers and
an input that receives data broadcast from the scalar processor. To make the
best use of the vector processor, this architecture is designed to have suffi­
cient buffer space locally in the vector processor to eliminate some loads and
stores of vector data. Consequently, the vector registers are very long, 2K
operands long, and there are four vector registers in each of two sets of reg­
isters. Thus one processor can hold 2 x 4 x 2K = 16K elements from vectors.

The scalar registers are far less numerous. Each of two sets holds four
operands. The reason for having four scalar operands is that, for any given
vector, up to four different scalar multiples of that vector can be computed

From
Scalar Unit

Vector Registers
___ .,., 4 x 8 K-bytes

Scalar Registers

___ ., Vector Registers
4 x 8 K-bytes

Scalar Registers

Fig. 5.19 The structure of an FPS-164 vector processor.

Multiplier

Adder

Multiplier

Adder

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 278

Sec. 5.4 Attached Vector-Processors 265

for the vector processor and to receive results when they are available. The
vector processor is designed specifically for high-speed floating—point oper—
ations and has virtually no support for general applications and utility
functions. These are supported by the host.

Note that the scalar processor shown in Fig. 5.18 is built for fast scalar
operations in that it has a separate multiplier and adder, two sets of operand
registers (X and Yregisters), one set of address registers (A registers), and a set
of indirect-address registers (T registers). The scalar processor broadcasts
instructions and data to up to 15 vector processors, one of which is shown in
block—diagram form in Fig. 5.19.

The vector processor has two multiply-add units, each capable of produc-
ing one output per cycle. There are two sets of vector and scalar registers and
an input that receives data broadcast from the scalar processor. To make the
best use of the vector processor, this architecture is designed to have suffi-
cient buffer space locally in the vector processor to eliminate some loads and
stores of vector data. Consequently, the vector registers are very long, 2K
operands long, and there are four vector registers in each of two sets of reg-
isters. Thus one processor can hold 2 X 4 X 2K = 16K elements from vectors.

The scalar registers are far less numerous. Each of two sets holds four
operands. The reason for having four scalar operands is that, for any given
vector, up to four different scalar multiples of that vector can be computed

From
Scalar Unit

Vector Registers
4 x 8 K-bytes

Scalar Registers L

Vector Registers
4 x 8 K-bytes

Scalar Registers

Fig. 5.19 The structure of an FPS-164 vector processor.

Multiplier

IIII an

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 278

266 Vector Computers Chap. 5

without the need to obtain new data. This tends to reduce traffic to memory
in that each vector can be used up to four times once it is loaded into a vector
processor, and therefore it is not necessary to store and reload the operand
vector. So there has been a deliberate effort in this design to design the
number of scalar registers and the size of the vector registers in such a way as
to reduce memory traffic.

The operation of this processor is rather interesting. The vector pro­
cessors act as slaves to the scalar processor. They receive instructions and
data from the scalar processor-individually or in a broadcast mode that
transmits data or instructions to all vector processors simultaneously. In this
mode the scalar processor can also read selectively from the registers of any
selected vector processor.

The normal mode of operation is to load individual vector registers with
starting data, with this done selectively rather than in broadcast mode.
Thereafter, scalar data and instructions are broadcast, and the processors
react synchronously, each performing the same step, but operating on differ­
ent data.

When the scalar processor transmits in selective mode rather than in
broadcast mode, all processors except the receiving processor are idle. There­
fore this mode is used as infrequently as possible. Since the vector registers
can hold collectively as many as 15 x 8 x 2000 = 240,000 operands, two or
more matrices of rather substantial size can be stored within the vector
processors. This tends to reduce the need to store and reload data selectively
to and from the vector registers.

Vector operations can be performed concurrently with scalar operations
that take place in the scalar processor. Hence the architecture provides for
overlapping the serial computations that constitute loop overhead with the
parallel execution of the prior loop. Earlier in this text, this process has been
described as an essential aspect of efficient processing.

The machine is heavily oriented to typical computations associated with
large-scale numerical processing. The benefit of the FPS-164 structure is that
its users can purchase only what they need, since they can purchase as many
or as few vector processors as they can justify. Moreover, they can use an
existing on-site processor as a host and need not support the design and
development of a distinct host.

We discuss the role of the indirect-address pointers in the next section,
which focuses on techniques for handling sparse matrices.

5.5 Sparse-Matrix Techniques

In many matrix problems, relatively few elements of a matrix are nonzero.
Such matrices arise in finite-element problems in which a nonzero entry
represents the interaction of one element of volume with a neighboring vol-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 279

Sec. 5.5 Sparse-Matrix Techniques 267

ume element. The number of nonzero elements is related to the number of
neighbors per volume element and is generally a very small fraction of the
total number of matrix entries.

These matrices are very similar to matrices that describe continuum­
model problems, and indeed they should be, because the finite-element
model is a continuum model. The difference is the irregularity of the surface
or volume that is being modeled. In modeling the stresses on an airframe, for
example, near-neighbor descriptions of a cylindrical fuselage produce a
sparse matrix whose structure leads to very simple near-neighbor operations.

If the model goes beyond the fuselage, however, the problem can be
become very difficult to solve. If the model includes the wings, for example,
then, at the place the wings are joined to the fuselage, we must include some
interactions that explain the stresses likely to be found there. These inter­
actions give rise to nonzero elements that lie in the matrix in relatively
unpredictable places.

When a sparse matrix is highly structured with no irregularities, it is
often possible to deal with the nonzero elements exclusively. In the
continuum-model problems investigated earlier, this is precisely what the
programs do. In two dimensions, a typical code accesses the four nearest
neighbors, and no other accesses are required.

If we move to a finite-element description of an airframe, then near­
neighbor accesses suffice for most interactions, but the remaining inter­
actions, such as the ones that describe the stresses where the wing joins the
fuselage, require nonlocal accesses. Moreover, the nonlocal accesses need not
follow any uniform or predictable pattern. Hence, to process only the nonzero
matrix elements may require rather rich and expensive interconnections.
Moreover, the interconnections may need to be used selectively rather than in
parallel because of the absence of regularity in the distribution of the nonzero
elements in the sparse matrix.

Several approaches have been used in architectures to solve sparse­
matrix problems. An early attempt in the CDC STAR created what was known
as sparse vectors. A sparse vector consists of two vectors-one is a short vector
that contains just the nonzero elements of a vector, and the other is a bit
vector whose 1 's indicate where the nonzero elements belong, and whose O's
represent the zeros in the vector. The length of the bit vector is equal to the
length of the sparse vector, but there is a 64-to-1 reduction in the number of
bits when the vector elements are 64-bit operands.

When accessing or storing sparse vectors, the CDC STAR uses the bit
vector to determine whether an access has to be made in a particular index
position. The access is skipped if the bit vector has a 0 in the corresponding
position. Although the bit vector can reduce the number of memory accesses,
the items that are accessed may lie in conflicting memory modules, which
leads to delays in the pipeline. This can negate some of the performance gain
attributed to the accesses saved by dealing only with the nonzero elements.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 280

268 Vector Computers Chap.5

There is a small additional processing overhead per 0 in the bit vector, but not
as large a penalty as a full memory access.

Obviously an architecture of this type can incorporate various other facil­
ities for sparse vectors, such as the ability to translate a vector from sparse
format into a full vector format and to translate back again. Also, the pipeline
arithmetic units can be organized to accept sparse vectors at their inputs and
to produce sparse vectors at their outputs by doing conversions on the fly
from one format to another.

The major problem with this approach is that there is only a 64-to-1
reduction in the information saved since, at best, it still takes a single bit to
represent 64 bits. Large sparse matrices are so sparse in many applications
that a 64-to-1 improvement is minuscule compared to what is possible. How
this basic approach might be extended is still an open question for research.

An alternative method for representing sparse matrices is to store only
the nonzero elements, and with each array of elements store a list of indices in
the original matrix. It may be necessary as well to invert this structure by
mapping indices to pointers by a hashing scheme that maintains a compact
storage representation of the inverted list.

If the hash lookup finds an index, then the corresponding element is non­
zero, and the hash table contains the storage address of the corresponding
datum. If the hash lookup fails to find an i tern, the corresponding i tern has a zero
value. Hashing for access to data is very much like a cache lookup. Just as a
cache lookup can be pipelined, so can hash access, and therefore this method
for dealing with sparse arrays is potentially useful in pipeline computers.

Returning to Fig. 5 .18, the T-registers in the scalar processor contain the
indices of nonzero elements of a sparse matrix. When operations need to be
done for nonzero items only, as each new item is accessed, the scalar pro­
cessor finds the address of the next nonzero element and fetches that datum
instead of fetching the next sequential datum. The program has to deal with
the zero elements that have been skipped, but the cost of skipping and the
additional performance degradation from memory contention can be very
small relative to the large gains in processing speed due to the elimination of
processing the O's in the sparse matrix.

This completes our discussion of sparse-matrix techniques. In the next
section we take a quick tour of a very high-performance machine somewhat
different from the ones mentioned thus far in the chapter.

5.6 The GF-11-A Very High-Speed
Vector Processor

This chapter has assumed that pipelining techniques are the principle tech­
niques for vector processors. The FPS-164 example suggests that pipeline
processing may not give enough performance, and that some combination
between pipeline and fully parallel implementation may be useful as well.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 281

Sec. 5.6 The GF-11-A Very High-Speed Vector-Processor 269

In this section we describe a machine architecture in development by
IBM that is yet another combination of pipelined and parallel design, with a
much stronger parallel component than the FPS-164 has. The machine is
called the GF-11 [Beetem, Denneau, and Weingarten 1985], which stems from
its peak performance of 11 Gflops (1100 Mflops).

The general structure of the GF-11 is very much like a richly connected
ILLIAC IV; it appears in Fig. 5.20. The interconnection network is capable of
producing any permutation whatsoever among the 576 processors in the
system. The interconnection network is a three-stage network with two shuf­
fles between the three stages. However, these shuffles lie between 24 x 24
crossbar switches, as shown in Fig. 5.21, rather than between 2 x 2 switching
elements. This network is sometimes called a Benes network [Benes 1964],
and it is known to be capable of producing an arbitrary permutation.

Since the GF-11 is a vector processor, it issues vector instructions from a
control unit, and they are obeyed by the 576 processors. The memory per
processor is modest-64 K-bytes of high-speed and 256 K-bytes of slower­
speed memory-but the total memory in the processor is very large because
of the multiplier of 576. The slow memory alone accounts for 144 M-bytes.
Slow memory is expandable to 2M per processor as higher density chips
become available, which allows expansion to 1.125 G-bytes in the system.

The processor speed is several times faster than the speed of fast local
memory. Consequently, each processor has a very high-speed register file that
serves as the fastest level of the memory hierarchy. The arithmetic processor
itself is pipelined to maintain high throughput for floating-point operations.

CONTROL 11--._.--.....i

1024
Network
Settings

576 Processors
20 Mflops

256 K-bytes
per processor

Fig. 5.20 The structure of the GF-11 research machine.

FULL
PERMUTER
NETWORK

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 282

Sec. 5.6 The GF-l l—A Very High-Speed Vector-Processor 269

In this section we describe a machine architecture in development by
IBM that is yet another combination of pipelined and parallel design, with a
much stronger parallel component than the FPS-164 has. The machine is
called the GF-ll [Beetem, Denneau, and Weingarten 1985], which stems from
its peak performance of 11 Gflops (1100 Mflops).

The general structure of the GF—ll is very much like a richly connected
ILLIAC IV; it appears in Fig. 5.20. The interconnection network is capable of
producing any permutation whatsoever among the 576 processors in the
system. The interconnection network is a three-stage network with two shuf-
fles between the three stages. However, these shuffles lie between 24 X 24
crossbar switches, as shown in Fig. 5.21, rather than between 2 X 2 switching
elements. This network is sometimes called a Benes network [Benes 1964],
and it is known to be capable of producing an arbitrary permutation.

Since the GF-11 is a vector processor, it issues vector instructions from a
control unit, and they are obeyed by the 576 processors. The memory per
processor is modest———64 K-bytes of high-speed and 256 K-bytes of slower-
speed memory—but the total memory in the processor is very large because
of the multiplier of 576. The slow memory alone accounts for 144 M—bytes.
Slow memory is expandable to 2M per processor as higher density chips
become available, which allows expansion to 1.125 G-bytes in the system.

The processor speed is several times faster than the speed of fast local
memory. Consequently, each processor has a very high-speed register file that
serves as the fastest level of the memory hierarchy. The arithmetic processor
itself is pipelined to maintain high throughput for floating-point operations.

FULL

PERMUTER
NETWORK

576 Processors
20 Mflops

256 K-byies
per processor

Fig. 5.20 The structure of the GF-l 1 research machine.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 282

270

24 lines

24 lines

24 lines

Vector Computers

24 x 24
Crossbar
Switch

Switch 0

24 x 24
Crossbar
Switch

Switch 1

24 x 24
Crossbar
Switch

Switch 23

- To Switch 0, Next Stage

- To Switch 23, Next Stage

... To Switch 0, Next Stage

... To Switch 23, Next Stage

1----+· To Switch 0, Next Stage

1--__;.-• · To Switch 23, Next Stage

Chap. 5

Fig. 5.21 Detailed view of a portion of the GF-11 full permuter switch. The 576 lines
pass through three ranks of switches, one rank of which is shown here. Each switch is
connected to all 24 switches in the next rank.

Hence the pipelining occurs mainly within the arithmetic unit, and the high­
replication factor of 576 gives the extraordinary throughput for the system.

The primary purpose for the construction of this processor is to solve a
problem in quantum chromodynamics whose solution can produce the mass
of various elementary particles through lengthy calculations. If the computed
mass is equal to the observed measurements of mass, the predictions of the
underlying theory be will confirmed, thereby lending some evidence that the
theory is correct. If not, the theory needs to be modified or abandoned.
Unfortunately, the computation involves the evaluation of very slowly
converging multiple integrals. At the rate of 11 Gflops, the computation takes
about one calendar year.

The structure of the GF-11 is vector-oriented, with a single broadcast
instruction stream. This structure is used because the quantum chromo­
dynamics problem calls for repeated summations that must be synchronized
across all processors. The communication requirements of the problem stem
from reliability considerations. The GF-11 programs are designed for only
512 processors, and the idea is to use the 64 remaining processors as spares.
Should any processor fail, it can be quickly mapped out of the array, and a
spare processor can be mapped into the array in its place. The machine then
needs to be restarted from the last checkpoint, but it should continue to
operate at full speed after it is restarted.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 283

Sec. 5.7 Final Comments on Vector Computers 271

The switch permutation is controlled by a collection of bit vectors stored
in the memory called permutation memory in Fig. 5.20. This memory holds
1024 bit vectors, each selectable by a 10-bit index issued from the control
unit. To perform a specific permutation, the controller issues the 10-bit index
to the permutation memory. Then the bit vector produced by this read is
loaded into the switch, and the settings are made. Then data traverses the
switch.

The quantum chromodynamics problem uses only 6 of the 1024 possible
settings. In the event of a processor failure, it is relatively straightforward to
compute a new bit vector that maps out the failed processor and replaces it
with a spare. When that bit vector is stored in the permutation memory, the
computation can proceed.

The GF-11 is a research vehicle, not a commercial machine. If it is suc­
cessful as a research machine for solving the problem posed, that does not
mean that this architecture is cost-effective for problems in general. How­
ever, its rich interconnection structure enhances the GF-ll's ability to exe­
cute more problems in general. The major constraint on GF-11 programs is
that all processors execute the same instruction stream.

5.7 Final Comments on Vector
Computers

It is interesting to contrast and compare the ideas that emerge from the dis­
cussion in this chapter to see their strengths and to identify future trends in
vector machines. We have explored the pure pipeline structures of the CDC
STAR and Cray I, the combination of pipeline and parallel structure of the
FPS-164 and the GF-11, and, in Chapter 4, the purely parallel structure
of the ILLIAC IV. These machines span a rather broad set of design choices.
The major trends identified are to:

• Provide vector instructions to take advantage of this approach for numer­
ical applications;

• Provide facilities to extend the range of applicability of the architecture
beyond vector processing;

• Use multiple levels of memory, particularly high-speed buffers; and

• Mix pipeline and parallel techniques in various degrees to achieve an
acceptable value of price to performance.

On the other hand, the characteristics that differ from processor to processor
concern the specific design choices that trade off speed against cost and
flexibility against efficiency. No one design is best. Choices were driven in
many cases by available technology, which differed considerably for the de-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 284

272 Vector Computers Chap. 5

signs described in this text. Had all designers been given the same underlying
technology, some individual design choices might be common among several
architectures, but even then it is unlikely that any two designs would be
markedly similar.

The examples we discuss show the final choices of the designers, and our
discussion illustrates various aspects of the choices that affect cost and per­
formance. Unfortunately, we are not able to present the interesting choices
that were investigated along the way and abandoned for various reasons.

The trends listed here are by no means the only ones that exist, nor can we
rule out new trends in the future as technology makes new designs possible.
The future architect should use this discussion as a guide, but not as an
exhaustive treatment of the subject. Examine any attractive idea and be
prepared to develop it into a full-fledged machine design. But be sure to
examine it carefully. Rarely is there a case for building a machine that is
handicapped by some inherent inefficiency.

The major implementation technique for vector machines appears to be
pipelining. We see two basic reasons for this to be true:

1. Pipelining provides a means for coupling a slow memory to a fast arith­
metic unit.

2. Pipelining enables arithmetic units to produce a sequence of results at a
rate much faster than their inherent latency in forming a single result.

If we view the memory system and the arithmetic system as two distinct
bottlenecks in a conventional computer system, then we can see that pipe­
lined architecture attempts to relieve both bottlenecks. For memory systems,
the rate at which operands are produced at a memory port is anywhere from
five to 20 times the rate at which the memory system cycles one memory
module. Similarly, the rate at which sums and products are produced at the
output of an arithmetic unit is from three to ten times faster for a pipelined
structure than for a conventional serial structure. These are significant speed
improvements whose individual cost is relatively low compare to the cost of a
full computer system. Consequently, we can expect to see the continuation of
the trend to build pipelined arithmetic units driven by and pipelined memory
systems.

In the last chapter we introduce six technology constraints that have to be
overcome by a high-performance design. In this section we review those
constraints and discuss how a vector architecture deals with them in achiev­
ing high performance.

• Processor bandwidth : Two major ways of boosting processing bandwidth
are discussed here. Pipelined arithmetic is probably the most widely used
method because of its high performance at relatively low cost. To deliver
speeds beyond those available from pipelined arithmetic alone, replica-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 285

Sec. 5.7 Final Comments on Vector Computers 273

tion of arithmetic units into fully parallel systems is the technique of
choice.

• Memory bandwidth: For main memory, designers build large memory
systems from multiple independent memory modules. Bandwidth grows
with the number of independent modules. To match the bandwidth of
arithmetic units, one or two levels of high-speed memory are used, most
frequently in the form of addressable registers. The trend is to make the
high-speed buffers very large, offering from 256K to lM of storage cur­
rently and larger storage in the years to come.

• Input/output bandwidth: Although we have not discussed input/output in
this chapter, it is clear that input/output bandwidth can be increased
proportionally to increases in memory bandwidth if we assume that
input/output operations require a fixed fraction of memory operations.
Most high-performance systems incorporate ten to 20 direct memory­
access channels whose speeds are compatible with main memory speed.
They rely heavily on a high memory bandwidth, usually obtained
through the use of multiple memory modules.

• Communication bandwidth: The majority of the vector architectures
discussed in this chapter do not require processor-to-processor communi­
cation. Information is distributed among operands within the vector
operation itself by means, for example, of a scalar product that combines
information from all elements in two vectors. Information is also distrib­
uted among different vectors through a common memory. The arithmetic
unit can obtain operand values that are the results of various computa­
tions by accessing those values in main memory. In this case communica­
tion bandwidth and memory bandwidth refer to the same quantity.

The exception in this chapter is the GF-11. It has local memory only,
and computations interact through an interconnection network. This
bandwidth is made very high by disallowing conflicts in the network. The
interconnections are set according to precomputed control data, so they
yield a useful processor-to-processor permutation. The communication
bandwidth is comparable to memory bandwidth.

• Synchronization: For one pipeline, synchronization is accomplished
automatically because operations are performed in the order in which
they enter the pipeline. For multiple pipelines, the FPS-164 approach is to
synchronize by using a single program to control all pipelines. The GF-11
approach is similar in that a single control issues a broadcast command
to all processors.

Both the FPS-164 and GF-11 synchronize all processors at each step
through the instruction stream. The Cray architecture uses pipeline inter­
locks to control vector operations so that nonconflicting operations can
be done in parallel, and dependent operations are chained to overlap as

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 286

274 Vector Computers Chap.5

much as possible, provided that the overlap does not create an incorrect
answer.

• Multiple purpose: The vector machines discussed in this chapter tend to
be useful over a large class of vector problems, mainly because they
support a variety of data-access modes and have rich sets of vector in­
structions. Nevertheless, their utility is biased strongly to numerical
applications, and it is not clear that they are efficient for nonnumerical
applications.

These characteristics clearly show that the major advantages of a vector
architecture are:

• Efficient use of memory bandwidth through pipelined access;

• The excellent cost-performance of pipelined arithmetic; and

• The very simple mechanisms that serve the needs of communication and
synchronization.

These three characteristics yield a combination of high performance and
high efficiency. Unfortunately, they do not yield a system that is well suited to
all purposes. In general, vector processors have a much larger area of applica­
tions than do continuum-model processors with near-neighbor connections.
The key difference is that vector processors can deal with both local and
remote operands by making use of a large random-access main memory to
fetch data at arbitrary locations. Continuum-model processors have limited
ability to reach remote data. With a larger realm of application, vector
processors have created an important niche in computing and are far more
widely used than continuum-model processors.

Exercises
5.1 The purpose of this exercise is to explore techniques for implementing the individ­

ual operations of Program 5.1. The algorithm scans a column for a maximum
element, pivots by interchanging rows, then updates a partial row, partial col­
umn, and a square subarray. Your objective is to work out a pipelined architecture
that can perform each of the processes of scan for maximum, pivot, row update,
column update, and subarray update individually in pipelined fashion without
requiring overlap between operations. Your goal is to produce one result per
machine cycle within each process, but you are allowed to have periods between
processes during which no results are produced. (For the MAX operation, try to
produce one comparison per cycle.)
For timing, assume the following total delays per operation:

Memory access
Add
Multiply
Divide

four cycles
two cycles
two cycles
eight cycles

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 287

Exercises 275

You are constrained to use main memory for vector storage since your arithmetic
subsystem has insufficient register storage to hold vectors or substantial portions
of vectors. In your answer you must show at least:

• The storage format of the array in memory;

• The machine instructions for each of the processes (with a clear description of
the action of these instructions);

• A block diagram of the computer system showing the principal elements; and

• A discussion of the way that each of the five processes is handled.

5.2 The object of this exercise is to write programs for a processor designed for vector
operations. Carefully study Program 5.1. Assume that it is executed on a processor
similar to the one shown in Fig. 5.1. There are 64 independent memories, and the
matrix is 32 x 32. Memory operations take 12 machine cycles, and all arithmetic
results are delivered by vector instructions at the rate of one per cycle.

a) Consider operations on a matrix stored with entire columns in individual
memories and rows stored across memories. For each major portion of the
program, what speedup is achieved?

b) Consider the matrix stored in skewed format so that rows and columns are
each accessible in a single access. What is the speedup for each major section of
the code? Consider the effects of nonunit stride when calculating the speedup.

c) If variable delays are used to align vectors, what is the maximum length of
each delay required for any vector allocation, assuming that vector access for
both sources and the destination have a stride of 1.

5.3 The purpose of this exercise is to contrast the results obtained for a pipelined
architecture in the previous problem with a parallel vector architecture similar to
the ILLIAC IV. For this problem assume that the same 32 x 32 matrix problem is
to be solved on an ILLIAC N architecture that contains 64 processors connected as
an 8 x 8 array. Each processor is connected to four processors whose indices differ
by+ 1, - 1, + 8, and - 8 modulo 64.

a) Let the matrix be stored with columns in individual memories and rows across
memories. For each major portion of the program, what speedup is achieved?

b) If the matrix is stored in skewed format so that rows and columns are each
accessible in a single access, what is the speedup for each major section of the
code? Assume that deskewing can be done at no cost.

c) If each unit shift requires one cycle, what is the speedup for each major section
of code in this version of the program?

d) If you use the interconnections as given to speed up the deskewing, and each
single interconnection takes one cycle, what is the speedup for each major
section of code in this version of the program?

5.4 The algorithm for Gaussian elimination used in Exercise 5.3 accesses both rows
and columns of a matrix. Access in two different dimensions may reduce effi­
ciency, and it is worthwhile to modify the algorithm to work out a variation that
uses column access only.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 288

276 Vector Computers Chap.5

a) Consider how to change the algorithm so that it accesses columns only, yet is
faithful to the intent of the original algorithm and has an efficiency that is
competitive with (but possibly poorer than) the algorithm implementation of
Exercise 5.3. Describe your new algorithm briefly, then give a detailed dis­
cussion of the portions of the algorithm that differ from the implementation in
Exercise 5.3.

b) The new portions of the algorithm may require somewhat different architec­
ture than that described in Exercise 5.3. Describe an architectural design that
is well suited to implementing those portions of the new version of the algo­
rithm that differ from the corresponding portions of the old version. Give
enough information to establish that your implementation is efficient and
reasonable.

5.5 The purpose of this exercise is to examine vector pipeline techniques. Consider the
recurrence equation, Eq. (4.13), and explore its implementation in a pipelined
computer system.

a) To obtain maximum parallelism; Eq. (4.13) should be solved by recursive
doubling. Find a recursive doubling solution or use the solution obtained in the
answer to Exercise 4.7.

b) Show the block diagram of a specialized pipeline to evaluate one cycle of a
recursive doubling version of the recurrence. This diagram can be broken into
blocks that are addition, subtraction, multiplication and division. The blocks
are assumed to be multicycle floating-point units, each capable of being pipe­
lined with a rate of completion of one result per cycle.

c) Show how to stream the constant vectors into a processing unit based on your
pipelined design so that the recursive doubling solution is fully pipelined. Use
delays in place of interlocks and attempt to produce results at the rate of one
result per cycle. Use multiple copit:s of the units designed in b and give the
structure of the full processor by showing how to connect each of the copies
from b with extra delays to produce the answers to the recurrence.

5.6 The purpose of this exercise is to contrast caches with high-speed storage registers
in systems that use vector arithmetic. Reconsider the Gaussian elimination algo­
rithm of Program 5.1, operating on a 64 x 64 matrix. In this exercise, when we
refer to the array-update process, we refer to the innermost loop of that algorithm.

a) Assume that there are 32 independent memories, each capable of a two-cycle
access time. Compare the relative timing for accessing a row versus a column
when accesses are pipelined.

b) Now consider the effect of a cache. The cache consists of 64 sets, two-way
associative, with each line of the cache holding one operand. Assume that a
single vector of length 64 is accessed two consecutive times and no intervening
access is made. For the second vector access, how many misses will there be if
the vector is a row vector? How many if the vector is .a column vector? State
your assumptions on the storage format and the mapping of addresses to cache
lines.

c) In one iteration of the array-update process in the algorithm, how many misses
will there be? (To simplify the calculation, you may assume that all vector

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 289

Exercises 277

accesses are of length 64, even though the actual length depends on the specific
iteration of the algorithm.) Note that you may completely ignore the other
accesses as if they were not present at all. A miss is defined to be an access to an
item that is not present because it either was not accessed in the previous
iteration of the algorithm or was displaced from the cache because at least two
other lines in the same set were accessed more recently.

d) Now assume that there are two vector registers, each 64 items long. Show how
to load data into the vector registers to reduce the number of data accesses to
memory as much as you can.

e) Use the data you have developed and parameters given to calculate the relative
number of accesses to main memory for the cache-based computer and the
register-based computer when the array-update process is performed.

5.7 The inner loop of an algorithm performs the following operation:

Sum:= bx C[i]ld +Sum

Assume that b, C[i], and dare variables that can be streamed into a pipeline from
memory with one cycle delay between accesses to each variable, so that memory is
not a bottleneck for computation. The objective is to perform the operation given
to produce the final sum in minimum time.

a) Design the block diagram and functional behavior of a three-function pipeline
whose operations are multiply, add, and divide. Find the collision vectors for
controlling the system and the fastest possible cycle for the sequence of
multiplication, division, and addition when operating on independent
operands. (This does not account for the interlocking necessary to make sure
that the value of Sum used as an input is derived from the most recent value of
Sum as an output.)

b) Now consider the maximum speed attainable when the input to the adder is
interlocked to the output of the adder. What is this maximum speed in your
design?

c) If we want to produce one update of Sum per cycle on the average, how can we
structure the computation to come close to achieving this rate?

5.8 Consider an architecture similar to the Burroughs' Scientific Processor (BSP) in
which 17 items are read from memory, but only 16 are delivered to the arithmetic
unit.

a) For a 16 x 16 matrix, consider how to select the elements of a column and
permute them into column order for delivery to the arithmetic unit. What are
the selection and permutation operations required to access Column O?
Column 3? Column 4? Assume that the matrix rows are stored across the
memories.

b) What are the selection and permutation operations required to access Row O?
Row 3? Row 4?

c) What basic permutations would you build into this machine to facilitate row
access? What permutations would you build in to facilitate column access?

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 290

Multiprocessors

Thus far we have treated methods for speeding up a single instruction stream.
Although there is but a single program in execution, the designs discussed
earlier exploit concurrency within the instruction stream and within individ­
ual instructions. In this chapter we turn to the discussion of multiprocessors­
computer systems composed of several independent processors. The mo­
tivation for moving towards multiple processors is strictly a matter of
performance because device technology places an upper bound on the speed
of any single processor. To exceed that bound requires multiple processors.

The central themes of this chapter are multiprocessor structures and
performance. Our objective is to show several interesting techniques for or­
ganizing multiple processors into highly parallel systems and to give insight
into the potential performance improvements and bottlenecks of such sys­
tems. Chapter 7 treats software strategies for using the available parallelism
of these systems.

278

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 291

Sec. 6.1 Background 279

6.1 Background

Our earlier discussions of high-performance machines study two important
classes of parallelism. Pipeline machines produce high performance by plac­
ing several stages of a pipeline in operation simultaneously. Machines for
continuum calculations have multiple processors, each executing the same
program. In both cases, a single program is used to operate on vectors or
arrays of data. Flynn [1966] termed this type of parallelism single-instruction
stream, multiple-data stream (SIMD) parallelism. Recall, for example, an ex­
treme implementation of this idea in the form of the GF-11, ih which each of
576 processors executes identical instructions broadcast to them by a single
control unit.

Another SIMD machine with massive parallelism is the Connection Ma­
chine [Hillis 1986] with 64K 1-bit processors. The architect is truly fortunate
when an application can be executed on machines that are built around the
lock-step parallelism required for SIMD machines because the architecture
efficiently executes programs well suited to SIMD execution.

High performance on such machines requires rewriting conventional al­
gorithms to manipulate many data simultaneously by means of instructions
broadcast to all processors. Although programming for these machines can
be difficult in principle, in the ideal case, a serial algorithm can be converted
to an SIMD algorithm by replacing each inner loop with a single broadcast
instruction that implements the complete loop. The fact that an important,
but limited, class of problems fits this model extremely well has provided the
impetus for the design and construction of these machines.

Clearly, some large problems do not lend themselves to efficient exe­
cution in an SIMD architecture. The operations required for such problems
cannot easily be organized into repetitive operations on uniformly structured
data. They tend to be unstructured and unpredictable. Addressing patterns
tend to be data dependent, so the architecture cannot easily preload data by
anticipating future accesses.

The architect who must attain high performance for such problems inevi­
tably looks for a solution in a multiprocessor structure. Such an architecture
is composed of several independent computers, each capable of executing its
own program. Flynn [1966] calls this type of architecture multiple-instruction
stream, multiple-data stream, (MIMD) architecture. The processors of a multi­
processor are interconnected in some fashion to permit programs to exchange
data and synchronize activities.

A model of such an architecture is shown in Fig. 6.1. In this figure each
processor has registers, arithmetic and logic units, and access to memory and
input/output modules. In Fig. 6. l(a) we show the memory and input/output
systems as separate subsystems shared among all of the processors. Figure
6.l(b) shows the memory and input/output units attached to individual pro-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 292

280

Processor 1

Processor 2

Processor N

Processor 1

Processor 2

Processor N

Multiprocessors

Interconnection
Network

(a)

Memory

Memory

Memory

(b)

1/0

1/0

1/0

Fig. 6.1 Two multiprocessor structures:
(a) All memory and 110 are remote and shared; and
(b) All memory and 1/0 are local and private.

Memory

Memory

Memory

Interconnection
Network

Chap. 6

1/0

1/0

cessors. No sharing of memory and input/output is permitted in Fig. 6.l(b). In
both cases, because the system contains multiple processors, each capable of
executing an independent program, the system fits Flynn's MIMD model.

In both systems depicted in Fig. 6.1 the processors cooperate by ex­
changing data through the interconnection system and by synchronizing
activities. The shared memory in Fig. 6.l(a) provides a convenient means for
information interchange and synchronization since any pair of processors
can communicate through a shared location. The structure in Fig. 6.l(b)
supports communication through point-to-point exchange of information.
Obviously, multiprocessors can have any reasonable combination of shared
global memory or private local memory. Fig. 6.1 shows the extremes in the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 293

280 Multiprocessors Chap. 6

Processor 1

Processor 2 Interconnection
Network

Processor N

Processor 2 InterconnectionNetwork
(b)

Fig. 6.] Two multiprocessor structures:
(a) All memory and 110 are remote and shared; and
(b) All memory and I/O are local and private.

cessors. No sharing of memory and input/output is permitted in Fig. 6.1(b). In
both cases, because the system contains multiple processors, each capable of
executing an independent program, the system fits Flynn's MIMD model.

In both systems depicted in Fig. 6.1 the processors cooperate by ex-
changing data through the interconnection system and by synchronizing
activities. The shared memory in Fig. 6.1(a) provides a convenient means for
information interchange and synchronization since any pair of processors
can communicate through a shared location. The structure in Fig. 6.1(b)
supports communication through point-to-point exchange of information.
Obviously, multiprocessors can have any reasonable combination of shared
global memory or private local memory. Fig. 6.1 shows the extremes in the

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 293

Sec. 6.1 Background 281

design space, and practical designs lie at the extremes or anywhere in be­
tween.

The main purpose of a high-speed multiprocessor is to complete a job
faster by using several machines concurrently than can be done by using a
single copy of the same machine. In some applications, the main purpose for
using multiple processors is for reliability rather than high performance. The
idea is that if any single processor fails, its workload can be performed by
other processors in the system. Since the design principles of such systems
are quite different from the principles that guide the design of high­
performance systems, we do not address design for reliability in this text, but
rather we limit our attention to issues related to performance.

When a multiprocessor is operating at peak performance, all processors
are engaged in useful work. No processor is idle, and no processor is executing
an instruction that would not be executed if the same algorithm were exe­
cuting on a single processor. In this state of peak performance, all N pro­
cessors of a multiprocessor are contributing to effective performance, and the
processing rate is increased by a factor of N.

Peak performance is a very special state that is rarely achievable. There
are several factors that introduce inefficiency. Among the factors are:

• The delays introduced by interprocessor communications;

• The overhead in synchronizing the work of one processor with another;

• Lost efficiency when one or more processors run out of tasks;

• Lost efficiency due to wasted effort by one or more processors; and

• The processing costs for controlling the system and scheduling oper­
ations.

Both scheduling and synchronization are sources of overhead on serial
machines. In citing these factors together with the other factors, we are citing
how they degrade multiprocessor performance beyond the effects that may
already be present on individual processors.

A high-performance vector processor is free from many of the problems,
but it does suffer from lost performance because it is unable to keep all of the
processing units busy. This latter problem arises particularly when a
computation is not easily implemented as a sequence of vector operations
performed on highly structured, densely stored data.

The architect who designs and builds a multiprocessor must pay close
attention to the sources of inefficiency exposed here. They can lead to serious
degradation in performance. For example, if the combined inefficiencies pro­
duce an effective processing rate of only ten percent of the peak rate, then ten
processors are required in a multiprocessor system just to do the work of a
single processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 294

282 Multiprocessors Chap.6

Fortunately, for a small number of processors, careful design can hold the
inefficiency to a low figure, but inefficiencies tend to climb as the number of
processors increase. There is a point where adding additional processors can
lengthen, not shorten, computation time.

The fact that inefficiency tends to grow with the number of processors is
the underlying reason why many commercial offerings of multiprocessors
have a small number of processors, such as 4, 8, or 16. The fastest machines
are built from the fastest devices available and have relatively few processors.

Consider, for example, the Cray XMP, a four-processor version of the Cray
I. Another example is the IBM 309X family for which from one to six pro­
cessor systems are available. Both of these implementations start with very
high-speed devices and use architectural techniques such as cache and pipe­
lining to produce very high-performance single processors for their respective
markets.

Users of these machines may have workloads or individual problems
whose needs exceed the capacity of a single machine. Additional performance
is not readily available from faster versions of the same machine because the
machines are already at the limits imposed by architecture and device tech­
nology. An effective way to attain small multiples of performance im­
provement is to group together two or four identical processors.

Some computer architects take note of a cost characteristic mentioned in
Chapter 1. The discussion there indicates that high-speed device technology
is much more expensive than lower-speed technology.

Moreover, with today's devices the cost of fast devices tends to grow faster
than the performance benefit of the increased device speed. Hence, the cost
per unit of computing power tends to be greater for high-end machines than
for low-end machines, although this trend is technology dependent and could
change over time. Nevertheless, when lower-speed technology has a cost
advantage, we have an opportunity to create a cost-effective high­
performance system by combining hundreds or thousands of slow-speed pro­
cessors built with low-cost devices.

The cost advantage of using low-cost technology is balanced by the deg­
radation in efficiency that inevitably occurs as the number of processors
increases. If the degradation due to the large number of processors exceeds
the cost advantage of the low-cost technology, then there is no particular
advantage to using hundreds of slow processors over using a few very fast
processors.

Moreover, the complexity of programming a machine with hundreds of
processors far exceeds the complexity of programming a single processor or a
computer system with just a few processors. Consequently, although eco­
nomics might enhance the attractiveness of a machine with hundreds of
low-speed computers, the advantage of this structure disappears if efficiency
is not held high.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 295

Sec. 6.2 Multiprocessor Performance 283

Thus, there is no particular magic in the parallelism of a multiprocessor.
The parallelism yields a useful benefit when it successfully produces higher
performance. When the parallelism cannot be tapped effectively, it simply
adds to the system cost and complexity. In such a case, the end user is best
served by reducing the parallelism to a point where the parallelism available
can be used effectively. Whether there are ten, 1,000, or one million pro­
cessors, it is bad practice to squander processing power. The argument that
"processors are cheap" is irrelevant if, by using fewer processors, per­
formance goes up.

In the next section we address the question of efficiency more carefully,
especially considering the ratio of the time spent executing useful in­
structions compared to the time spent communicating with other processors.

6.2 Multiprocessor Performance
The point of this section is to analyze the performance benefits of multiple
processors in the face of overhead incurred to create parallelism. The models
studied are variations of models introduced by Indurkhya, Stone, and Xi­
Cheng [1986].

This section shows that performance benefits strongly depend on the
ratio RIC, where R is the length of a run-time quantum and C is the length of
communications overhead produced by that quantum. The ratio expresses
how much overhead is incurred per unit of computation. When the ratio is
very low, it becomes unprofitable to use parallelism. When the ratio is very
high, parallelism is potentially profitable. Note that a large ratio can be
obtained by partitioning a computing job into relatively few large pieces, and
that the amount of parallelism for such a ratio might be much smaller than
the maximum available.

The ratio RIC is a measure of task granularity:

• In coarse-grain parallelism, RIC is relatively high, so each unit of
computation produces a relatively small amount of communication; and

• In fine-grain parallelism, RIC is very low, so there is a relatively large
amount of communication and other overhead per unit of computation.

Coarse-grain parallelism arises when individual tasks are large and over­
head can be amortized over many computational cycles. Fine-grain
parallelism usually provides opportunities to perform execution on many
more processors than can fruitfully support coarse-grained parallelism. The
idea of fine-grain parallelism is to partition a program into increasingly
smaller tasks that can run in parallel. At the ultimate limit, each individual
task may be as small as a single operation. More commonly, however, a
fine-grained task contains a small number of instructions.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 296

284 Multiprocessors Chap.6

The programmer seeking maximum performance is strongly tempted to
partition a problem into the finest possible granularity to create the max­
imum amount of parallelism. But if the maximum parallelism also has the
maximum overhead, it is not clear that maximum parallelism leads to the
fastest solution.

The main reason for the presentation of the performance models in this
section is to show the pervasive role of the RIC ratio on performance. The
discussion that follows shows how a fine-grain partition that happens to have
a low RIC ratio produces poorer performance than a much coarser partition
with a higher RIC ratio. Hence the much higher parallelism of the fine-grain
partition need not produce higher net speed.

The purpose of presenting a number of different performance models to
make this point is that no one model is truly representative of multi­
processors or of multiprocessor algorithms. We consider a number of differ­
ent variations of the basic model to cover a variety of program behaviors and
multiprocessor architectures. In every case, the role of RIC is the same. Small
ratios lead to poor performance because of high overhead. Large ratios usu­
ally reflect poor exploitation of parallelism. For maximum performance, it is
necessary to balance parallelism against overhead. The only difference from
model to model is the point where the two factors become balanced.

Architects have long debated the relative qualities of fine and course
granularity. For SIMD machines, the GF-11 is a coarse-grained machine
whose individual processors can sustain a peak rate as high as 20 Mflops. The
Connection Machine is an SIMD machine whose 1-bit processors are better
suited to fine-grained tasks and whose performance stems from the massive
number of processors rather than from the computational power of
individual processor.

What reasoning led the architects of one machine to seek such a vastly
different solution than did the architects of the other machine? The range of
applications is the primary motivation for the difference. The Connection
Machine is designed to exploit parallelism of tasks such as image analysis, in
which a significant portion of the work is characterized by fine-grained tasks.
The GF-11, which is designed for much larger-grained tasks, would be bur­
dened by overhead if the tasks carried the additional overhead attributable to
fine granularity. Thus the architects of each machine attempted to match
granularity to the applications for the machine.

At one end of the multiprocessor scale are the Cray multiprocessors, such
as the Cray XMP-a four-processor system in which each processor is a Cray I
supercomputer. Under ideal circumstances, communication in this system
occurs only at the end of major phases, which might well be every few million
or few billion instructions.

Smaller granularity is evident on microprocessor-based multiprocessors
such as the Cosmic Cube and a number of commercial versions of this

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 297

Sec. 6.2 Multiprocessor Performance 285

hypercube-based design. These machines typically use 64 to 256 copies of a
high-performance 32-bit microprocessor. The different granularity biases the
machines somewhat to different application programs.

The remainder of this section is devoted to performance models. In each
model, observe how the ratio RIC determines the strategy that achieves the
optimum performance. To simplify the models, we have generally ignored the
effects of synchronization and contention except as crudely approximated by
the models. In practical systems, the effects ignored here tend to lower
performance from that predicted by these models. In most instances, the best
way to compensate for the unmodeled effects is to increase the granularity of
tasks.

6.2.1 The Basic Model-Two Processors with Unoverlapped
Communications

For the first model, consider an application program that contains M tasks.
Our objective is to execute this program at maximum speed on a system with
N processors. For simplicity, we first consider a system with just two pro­
cessors and then let the number of processors increase. To model per­
formance we need to characterize the combination of execution time and
overhead that will be incurred.

Let us make the following assumptions to obtain our initial results. Sub­
sequently we relax the assumptions and see how the performance changes.
Specifically, we assume that:

1. Each task executes in R uni ts of time; and

2. Each task communicates with every other task at an overhead cost of C
units of time when the communicating tasks are not on the same
processor, and at no cost when the communicating tasks are coresident.

We have various choices of how to execute such an application on a
two-processor system. We can assign all tasks to one processor and ignore the
second processor, which is a solution that minimizes communication
overhead but fails to take advantage of available parallelism, or we can
partition the tasks to the two processors in any combination. If the tasks are
split across the processors, then the total execution time is a combination of
the time spent in execution and the time spent engaged in overhead activities.
Although we use the notation C as if C were exclusively due to communica­
tion, it is convenient to lump overhead from all sources into C.

To some extent, overhead can be overlapped with computation, especially
if processors can perform communication through input/output ports while
executing concurrently. However, not all sources of overhead can be hidden
by overlapping with computation. Processors can contend for shared data or

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 298

286 Multiprocessors Chap.6

shared communication paths, and they may be idle during synchronization
periods. Therefore, we assume that some portion of overhead operations
lengthen total processing time because overhead cannot be fully overlapped
with computation. In this case the equation that describes total processing
time is the following:

Execution time= R Max(M -k,k) + C(M - k)k (6.1)

Equation (6.1) expresses execution time as the sum of two terms, one attrib­
uted to run time and one to communication and other overhead. The run time
for two processors is the larger of the run times experienced and is therefore
the larger of R (M - k) or Rk when k tasks are assigned to one processor and
M - k to the other. The second term models overhead to be proportional to
the number of pair-wise communications that must take place as a function
of how tasks are partitioned to the two processors. Note that the first term is a
linear function of k, and the second term is a quadratic function of k.

What is the minimum execution time for Eq. (6.1) as a function of k? That
is, how shall we assign tasks to two processors to produce the minimum
execution time? Figure 6.2 shows a graphic way of finding a solution. The
answer for this model is to assign all tasks to one processor if RIC is below
Ml2, or split the tasks evenly between two processors if RIC exceeds that
threshold. That is, either k = 0ork=M12. (If k is odd, then make k as close to
Ml2 as possible.)

Figure 6.2 shows the two different cases that arise for the different values
of the RIC ratio. The first term of Eq. (6 .1) is piece-wise linear, and Fig. 6 .2(a)
shows that this term looks like the letter V because it is symmetric at about
the point k = M 12. In this figure, when the piece-wise linear term is added to
the quadratic term, the resulting figure has a minimum at Ml2.

In Fig. 6.2(b), the minimum occurs at k = 0. The minimum has to be at an
extreme point in the region 0::; k::; M 12 because the quadratic curve k(M - k)
is concave downward, and, after adding a linear term to this curve, the
concavity is unchanged. A curve that is concave downward has its minimum
at one of its endpoints. The endpoint of the curve at k = 0 (or at k = M) is the
minimum when RIC< M 12; otherwise the minimum occurs at k = M 12.

6.2.2 Extension to N Processors

Now let's consider what happens when there are N processors. In this case,
we assign k; tasks to the ith processor. The generalization of Eq. (6.1) becomes

Execution time= R Max (k;) + ~ Lk;(M - k;)
I

= R Max (k;) + (~)(M 2
- ~k;2)

(6.2)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 299

Sec. 6.2

Q) 80 E
i= 70
r::
.Q 60 :;
~ 50 >< w

~
40

..... 30

20

10

0

60

50
Q)

E
i= 40
r::
0

:s 30 u
Q)
>< w
co 20
~

10

0

Multiprocessor Performance

10

10

20 30
Partition Parameter k

(a)

Run Time

20 30
Partition Parameter k

(b)

40

M = 50
RIC= 40

40

Fig. 6.2 Parallel execution time for two different RIC ratios:
(a) Optimum partition parameter k = O; and
(b) Optimum partition parameter k = M/2.

287

The first term counts the longest running time among the N execution times.
To that time is added the overhead from the second term. That term counts
the number of distinct pair-wise links between k; tasks and M - k; tasks, each
of which contributes an amount C to the total time. The second term in Eq.
(6.2) is quadratic just as in Eq. (6.1).

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 300

Sec. 6.2 Multiprocessor Performance 287

 100

Total Time M =
90 50o

.E

'2 Communications Time.9
‘5
8X

Lu

3o
p—

0 10 20 30 40 50
Partition Parameter k

(a)

Total Time
a:
.E'—
E
.9
‘5
8X

Lu

5
.2

Communications Time

0 ' 1o 20 so 40 50
Partition Parameter k

(b)

Fig. 6.2 Parallel execution time for two different R/C ratios:
(3) Optimum partition parameter k = 0; and
(b) Optimum partition parameter k = M/Z.

The first term counts the longest running time among the N execution times.
To that time is added the overhead from the second term. That term counts

the number of distinct pair-wise links between k, tasks and M ~ k,- tasks, each
of which contributes an amount C to the total time. The second term in Eq.
(6.2) is quadratic just as in Eq. (6.1).

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 300

288 Multiprocessors Chap.6

If the reasoning used to analyze Eq. (6.1) holds for this equation, then we
expect that the minimum value is for an extreme assignment, and indeed this
is the case. Either all tasks are assigned to a single processor, or they are
distributed "evenly" across all processors. By "evenly," we mean that if Mis a
multiple of N, then each processor receives MIN tasks. Otherwise, all but one
processor receives the integer ceiling of MIN tasks, and one processor receives
whatever is left over. This assignment does not necessarily use all N pro­
cessors. For example, when there are 19 tasks and six processors, the assign­
ment places four tasks on four processors and three tasks on a fifth processor,
leaving no tasks assigned to the sixth processor.

To show that the even distribution produces a local minimum, assume
that k1 has the maximum number of tasks assigned to it, and show that an
assignment in which two processors receive fewer than k1 tasks can be
changed to an assignment with a lower cost, as computed by Eq. (6.2).

For example, assume that both k2 and k3 satisfy k1 > k2 ;:::::: k3 ;:::::: 1. Consider
the assignment that shifts one task from the third processor to the second
processor and examine how the cost changes as per Eq. (6.2). The first term
does not change because the change does not affect the maximum number of
tasks assigned to a processor. The value of the second term is reduced, how­
ever, by the amount C(k2 - k3 + 1). This assignment produces higher per­
formance, and we can iterate this improvement process until no more than
one processor has less than the maximum number of tasks assigned to it.

Equation (6.2) has a threshold for an assignment, just as Eq. (6.1) has, and
by a remarkable coincidence the thresholds are identical! We must compare
the even assignment of tasks to the assignment that places all tasks on one
processor. The latter assignment is preferred when RIC is sufficiently small.

The difference in costs of the "even" distribution to N processors and a
1-processor assignment is given by

RM CM 2 CM 2

Time difference= - + -- - -- - RM
N 2 2N

(6.3)

where the first three terms form the cost of the even distribution of tasks and
the last term is the cost of assigning all tasks to one processor.

To simplify the analysis, we have ignored values of M that are not exact
multiples of N. To solve for the threshold value of RIC, we set the value of Eq.
(6.3) to 0. By removing a factor of Mand then grouping terms by coefficients R
and C, we can remove another factor of (1 - l!N). This yields the equation

or

Time difference= C~ - R = 0 (6.4)

R M
c 2

(6.5)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 301

Sec. 6.2 Multiprocessor Performance 289

This model shows that if RIC is greater than the threshold M 12, then an even
distribution of tasks to as many processors as are available will produce the
best time. On the other hand, if RIC is below that threshold, then no matter
how many processors are available, no assignment produces a faster time
than the assignment that uses only one processor. Here is a situation in which
the role of overhead becomes quite clear.

Unless overhead is kept below a certain percentage of execution time,
parallel execution cannot be beneficial. If this model holds for a parallel
algorithm and architecture, then the control of overhead costs is absolutely
essential for parallelism to be successful.

Although this analysis has looked at performance rather than costs, RIC
determines the point at which parallelism is cost-effective. Even when RIC is
sufficiently high to warrant parallelism, the performance gain is diminished
by the second term of Eq. (6.2). The speedup attributable to parallelism is the
ratio of the time to run on one processor to the time expressed by Eq. (6.2).
This is approximately

RM Speedup = -----'-"'-----

(
RM+ CM 2

_ CM
2

)

N 2 2N

R

(~ + CM(l 2- l!N))

RN
c

(~ + M(N
2

- 1))

(6.6)

If the first term of the denominator is large compared with the second, then
the speedup is proportional to N. This requires M and N to be small and for
RIC to be large. If parallelism is increased to the extent that the denominator
is dominated by its second term because N is very large, the speedup is
proportional to RICM, which does not depend on the number of processors.
Hence, as N increases, the speedup approaches a constant asymptote.

At this point each processor added to the system brings extra cost while
yielding negligible performance benefit. Even though performance can im­
prove incrementally as processors are added, the diminishing returns in per­
formance are not worth the added cost. The number of processors should not
be increased beyond some maximum that is a function of cost and the ratio
RIC.

This model is a general picture of how granularity and overhead affect the
performance gain of a multiprocessor, and it gives some indication of the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 302

290 Multiprocessors Chap.6

importance of minimizing overhead and selecting the right granularity. It is
only one model, however, and it cannot encompass the full spectrum of actual
applications.

Let us alter the model in various ways and observe how the findings
change. In general, we discover that RIC plays a critical role, regardless of the
model. In some cases, there is the same type of threshold in which the best
solutions are extreme. That is, use all available processors or just one pro­
cessor, depending on the value of RIC. In some models, the extreme solutions
are not the best. The best solutions for these models distribute work among
several processors, but do not use all processors because the use of too many
leads to performance degradation and extra cost. Moreover, in the general
case, work need not be distributed evenly to achieve the optimum per­
formance.

6.2.3 A Stochastic Model

Consider what happens when all tasks are not equal in execution time. The
leading term in Eq. (6.2) is smallest when all processors run for equal lengths
of time, so the objective is to scatter tasks among processors so that all
processors are occupied for equal times. If this is not possible, the maximum
running time among the processors should be as short as possible.

The second term in Eq. (6.2) is smallest when tasks are distributed as
unevenly as possible. Consequently, among all ways of distributing tasks to
processors so that processors have nearly equal running times, find a distri­
bution in which the number of tasks assigned to each processor is as uneven
as possible. That is, find schemes that assign as few or as many tasks per
processor as possible, subject to the requirement that the total workload on a
processor be equal to a given amount.

In this model, the best assignment need not be the most evenly distrib­
uted workload. If the workload is slightly uneven, it may become possible to
assign tasks to processors in such a way that overhead is greatly diminished.
That is, a small increase in the linear first term of Eq.(6.2) can be more than
balanced by a large decrease in the quadratic second term.

A stochastic variation of the deterministic model presented here appears
in Indurkhya, Stone, and Xi-Cheng [1986]. Instead of having all execution and
communication times as fixed constants, the model assumes that the times
are independent and identically distributed random variables with a mean R
for the running times and a mean C for the communication times. To solve the
model, lndurkhya et al. appeal to the Central Limit Theorem and the addi­
tional assumption that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 303

Sec. 6.2 Multiprocessor Performance 291

The E in Eq. (6.7) denotes the expected value. Equation (6.7) says that the
maximum of a set of expected values of sums of independent and identically
distributed random variables r;, the running times of the tasks, is equal to the
expected value of the maximum of the sums. With these two assumptions, the
model reduces to the deterministic model expressed by Eq.(6.2), and the
results are identical.

The assumption underlying Eq. (6.7) is actually false, as is stated by
Indurkhya et al., but the point is that when the equation breaks down, it is
close enough to being correct that the results produced are reasonably accu­
rate. If one of the summations in Eq. (6.7) has many more summands than
any other, then almost surely it has the maximum expected value, and its
expected value is the value of both sides of Eq. (6.7). If two or more sum­
mations have almost the same number of terms, and this number is max­
imum among all equations, then it is possible for the left-hand side of Eq.
(6.7) to select one summation and the right-hand of Eq. (6.7) to select another
summation, but the values of summations will be fairly close, so that Eq. (6.7)
is approximately if not exactly correct.

Nicol [1986] explored the model more deeply and discovered that the
results reported by Indurkhya et al. can be proved to be true in some instances
without relying on Eq. (6.7). Indeed, the model appears to be robust in the
sense that small perturbations in the underlying assumptions do not alter the
gross conclusions from the model, although specific details in the conclusions
may change.

6.2.4 A Model with Linear Communication Costs

Let us examine a model that is less drastic with regard to communication
costs to show a more optimistic result with regard to parallelism. Our first
model assumes that each task communicates with every other task, and, as a
consequence, the communications overhead grows quadratically as the
number of processors increases. This is the case when each task sends unique
information to every other task, but such a program structure is very poorly
suited for multiple processors. Some programs may well have this structure,
and if so, our results suggest how much speedup one can expect and at what
cost. But there are surely many other programs better suited for parallel
computation on multiprocessors. We need to know the performance potential
for such programs and how to achieve it. What is rather surprising is that the
analysis is remarkably similar with a rather similar optimal strategy,
although the speedup available is greater.

For this model, assume that the cost of communication is proportional to
the number of processors, not to the number of tasks assigned remotely. This
model holds if a task has to communicate with all other tasks but sends the
same information to all other tasks. Then the information has to be sent only

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 304

292 Multiprocessors Chap.6

once to each processor, and after it reaches a remote processor it can be sent
from task to task within that processor for no charge.

In this model the cost of an assignment on N processors becomes

Execution time= R Max (k;) + CN (6.8)

For each value of N, the first term depends on the assignment but the second
does not. This model produces the best time by distributing tasks evenly
across all processors to make the first term approximately equal to RM IN.
However, as the value N increases, the increase in the second term eventually
becomes larger than the decrease in the first term, so there is a maximum
value of N for which performance increases, and this is a function of RIC.

Since the best assignment produces a first term of approximately RM IN,
the decrease in time in going from N to N + 1 processors is approximately

Execution time decrease= RM(~ - N ~
1
)- C

RM -C
N(N + 1)

This decrease is negative, that is, it becomes a time increase when

or equivalently when

R N(N + 1)
C M

N=~

(6.9)

(6.10)

The square root function in Eq. (6.10) is a disaster. We expect that M tasks can
be done quickly on M independent processors, but this model says that be­
cause of communication costs, the effective parallelism is reduced to the
square root of what we anticipated. The bad news is mitigated somewhat by a
high RIC factor, so coarse granularity is desirable here, but its effect is also
diminished by a square root factor.

The news is even more pessimistic if we consider the cost of the extra
processors in relation to their benefit. Given that the time no longer decreases
when we reach the threshold given in Eq. (6.10), long before N becomes that
large, we have reached the point at which the cost of adding an extra pro­
cessor is not justified by the benefit gained. Thus a problem with 10,000 tasks
that fits this model may well run faster with up to 100 processors and might
be economical with at most ten processors.

This model differs from our original model in the second term. In the
original model the cost of the second term grows quadratically with the
constant Mand diminishes inversely with N. The dependence on N is due to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 305

Sec. 6.2 Multiprocessor Performance 293

the reduction in overhead when N things are grouped together on one pro­
cessor. Because both the first and second terms grow smaller with N, exe­
cution time decreases for all N.

In the present model, the second term grows linearly with N, and this
accounts for the threshold for N above which performance degrades. The two
models tell us that the penalty for overhead exists, and it manifests itself by
limiting the effective use of parallelism in some way.

6.2.5 An Optimistic Model-Fully Overlapped Communication

Perhaps the models described thus far are too pessimistic. After all, they all
incur an overhead penalty for communication since none provides a means
for overlapping overhead with useful and necessary computation. We have
argued that in practical systems some overhead cannot be masked because
contention, finite communications bandwidth, and synchronization each
make their own contributions to elapsed computation time, although in the
best circumstances some overhead penalties can be successfully overlapped
with useful computation to reduce the overhead penalty.

Let us develop an optimistic model in which overhead potentially can go
to zero if overlapped with computation. We simply alter our model in Eq.
(6.2) to permit the overhead in the second term to be overlapped as much as
possible with the first term. The equation becomes

Execution time= Max {Max (k;), %~k;(M - k;)} (6.11)

For two processors, the situation described by Eq. (6.11) is depicted in
Fig. 6.2. The piece-wise linear line expresses the contribution of the first term,
and the quadratic curve expresses the contribution of the second term. Their
intersection is the minimum value of the maximum function expressed in Eq.
(6.11). At this point the execution time is just long enough to mask completely
the overhead that is occurring concurrently.

This model is obviously optimistic because it is rather unlikely that over­
head can be fully overlapped with processing. Nevertheless, we can compute
where the threshold occurs. For two processors, we seek the point of inter­
section of the linear and quadratic curves in Fig. 6.2. This occurs at the point

which occurs at

R(M - k) = C(M - k)k

R k=­c

(6.12)

(6.13)

with k restricted to the range 1 s ks M 12. If we substitute Eq. (6.13) into Eq.
(6.11) the computation time becomes R(M - RIC), and the speedup is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 306

294 Multi processors Chap. 6

11[(1 - RICM)]. Since k is restricted in range for Eq. (6.13), the equivalent
restriction on RIC is that 1 s RIC s M 12. For RIC in this range, the speedup for
two processors lies between 1 and 2 and is maximized when RIC= M 12, the
same value obtained in the first model.

At the maximum speedup, the tasks are evenly divided among the pro­
cessors, that is, k = Ml2. As RIC decreases towards 1, the speedup falls off
towards unity, and the optimum task distribution becomes more skewed.
Hence, this model also depends on RIC, but it is more optimistic in its per­
formance predictions because all or a substantial portion of overhead can be
overlapped with computation if RIC is high enough.

For N processors, the overlapped-overhead model is easy to analyze be­
cause of the results reported here. For any given maximum value of k; that
determines the contribution of execution time, the even distribution of tasks
to processors as defined earlier produces the minimum communication time.
Hence, the best possible execution time for fully overlapped communication
occurs when

RM = CM
2

(l _ _!.)
N 2 N

(6.14)

which for large N occurs roughly when

R NM
-=--
c 2 (6.15)

In this case, for a minimum total time, the number of processors as a function
of RIC and Mis given by the function

N= 2R
CM (6.16)

and the optimum choice for the number of processors is inversely propor­
tional to the number of tasks available.

As the available parallelism grows, the best policy is to use increasingly
fewer processors. For small N, we cannot neglect the l!N term in (6.14), and
we obtain slightly different but consistent results. For N = 2, Eq. (6.14) pro­
duces a minimum-time solution when M 12 =RIC, which is consistent with
our previous findings.

The fact that the number of processors decreases with the available paral­
lelism in this model is clearly the result of overhead time climbing M times
faster than execution time. The effect of overlapping overhead with computa­
tion time is actually more pessimistic than we imagined because this model
makes elapsed time totally dependent on communication overhead time
when run time is smaller than communication time. Hence, it is absolutely

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 307

Sec. 6.2 Multiprocessor Performance 295

essential to keep communication time no greater than execution time if there
is to be speedup.

6.2.6 A Model with Multiple Communication Links

A common assumption in all previous models is that parallelism allows run
time to be overlapped in several processors, but overhead operations ac­
counted by the term with coefficient Care done sequentially. If the overhead
operations are strictly limited to communications costs, then this model
holds for systems in which there is a single communications channel common
to all processes. This is the case when all processors are connected to a single
bus or ring or when all processors access the same shared-memory cell in an
exclusive-access manner.

It is perfectly possible to replicate communications links and other
architectural features that contribute to the overhead bottleneck of the sec­
ond term. In so doing, the factor C is not a constant, but itself becomes a
function of N. For example, consider a model in which every process has to
communicate with every other process. Our original estimate for run time is
Eq. (6.2).

If we allow communication links to increase with N so that each processor
has a dedicated link to every other processor, then communication operations
can be overlapped among themselves. However, even with O(N 2

) links
installed, we still cannot support more than O(N) concurrent conversations
because each processor can talk or listen only to one other processor at a time.

In this case, we can divide the second term of Eq. (6.2) by N, and we obtain

Execution time= R Max (kJ + s_ L k,(M - k;)
2N 1

(6.17)

Equation (6.17) assumes that a processor is either computing, communi­
cating, or idle, and that the total cost of communications decreases inversely
with N because up to N conversations can be held concurrently. The idle time
is in part due to the fact that early finishers have to wait for late finishers.

The first term of Eq. (6.17) tends to decrease inversely with N, and the
second term tends to increase linearly with N, which is a situation studied
earlier in this section. The first term is minimized by an even distribution of
tasks to processors, but this is offset by an increase in the second term.

We know that for any N, Eq. (6 .17) is minimized by assigning tasks as
evenly as possible, so that all except possibly one processor are given the
maximum number of tasks. Under such an assignment, the execution time for
Eq. (6.17) becomes

E . . RM CM
2

(l 1) xecut10n time= N +
2

N - N (6.18)

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 308

296 Multiprocessors Chap. 6

Parallelism is useful in this case until execution time fails to decrease as new
processors are added. This occurs when

RM+ CM2 (CM2)(2N + 1)
E . . d 2 2

xecut10n time ecrease = N(N + 1) --[N-(N_+_l_)]-2 - (6.19)

By removing a factor of MIN(N + 1) and letting N become very large, Eq.
(6.19) reduces to

Execution time decrease= [R + (C~)(1 - ~)](N(:+
0

) (6.20)

which is positive for N > 2, and so execution time improves for all N, except
possibly for small N.

To discover if N processors yield a better time than does one processor,
compare Eq. (6.18) with RM, the time for one processor. These times are equal
when

RM (CM 2

)(1) RM =N+ 2N l-N

The breakeven point occurs when

R M
C 2N

(6.21)

(6.22)

In this case the granularity factor RIC and N are inversely related at the
breakeven point. Hence, the larger that N is, the smaller the granularity that
we can permit at the breakeven point.

At breakeven, however, the parallel machine is a gross failure in terms of
cost/performance. Its total performance for N processors is identical to that of
a single processor, yet its cost is higher by a factor of O(N) for processors and
O(N 2

) for communication links. We never want to operate a parallel system at
breakeven!

The point of this example is that by increasing the bandwidth of the
communication links, we can permit smaller granularity than is otherwise
possible. However, the smaller granularity comes at an expense that rises
faster than the increase in processing cost. Whether or not the speed obtained
by the higher bandwidth communications is worth the cost depends very
strongly on the technology available for processor-to-processor communica­
tions.

To summarize the findings of the models presented in this section, we
have discovered:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 309

Sec. 6.2 Multiprocessor Performance 297

1. Multiprocessor architecture produces an overhead cost that is an addi­
tional burden not present in serial processors and vector (or other single
instruction-stream) architectures. The overhead cost includes the cost of
scheduling, contention for shared resources, synchronization, and
processor-to-processor communications.

2. Although running time for a computational portion of a program tends to
diminish as the number of processors working on that program increases,
the overhead costs tend to grow with the number of processors. In fact, it
is possible for overhead costs to grow faster than linearly in the number of
processors.

3. The ratio RIC is a measure of the amount of program execution (running
time) per unit overhead (communication time), within a program
implementation on a specific architecture. The larger this ratio, the more
efficient the computation because a relatively smaller proportion of time
is devoted to overhead as this ratio increases. However, if the ratio is
made large by partitioning a computation into a few large pieces instead
of many small pieces, the parallelism available is greatly reduced, which
limits the speedup that can be attained on a multiprocessor.

We clearly have a dilemma. On the one hand, RIC has to be small to create a
large number of potentially concurrent tasks, and on the other hand, RIC has
to be large to prevent the overhead costs from becoming excessive. Because of
the dilemma, we cannot expect to build fast multiprocessors simply by ex­
panding the number of processors as much as technology allows.

There is some maximum number of processors that is cost-effective, and
that number depends a great deal on the architecture of the machine, on the
underlying technology (especially communications technology), and on the
characteristics of each specific application.

6.2.7 Multiprocessor Models

The multiprocessor challenges the computer architect and the algorithm
designer somewhat differently. The computer architect must produce a sys­
tem for which RIC is acceptably high and provide a number of processors that
can be used effectively at that ratio. The algorithm designer has a different
problem.

Given a fixed system with N processors and a ratio RIC that reflects an
achievable ratio of running time per unit overhead, how can an application be
partitioned and executed on the multiprocessor architecture to make the
most effective use of resources? The algorithm designer has to partition the
application across the multiprocessor and must choose a granularity that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 310

298 Multi processors Chap.6

balances useful parallel computation against communications and other
overhead.

For some applications the most effective solution might not use all of the
processors available. Fewer processors might complete the job earlier or at
lower cost. In essence, we are trying to determine if it is better to plow a field
with one ox, four horses, or 1024 chickens. The solution with the maximum
parallelism is not always the fastest.

Most people take as an act of faith that one might as well use as many
processors as available if there is work to be done. However, some models
discussed in this section show that computation speed can eventually decline
as processors are added. So maximum parallelism is not synonymous with
maximum speed. Moreover, the multiprocessor is somewhat less effective at
producing speed at reasonable cost than are several techniques described
earlier in the text.

For example, cache memory boosts the effective speed of all of central
memory, yet only a relatively small fraction of memory actually needs to run
at cache memory speed. Hence, there is a performance leverage in using a
cache. You pay for a small fraction of what you obtain.

Similarly, pipeline computers improve performance in proportion to the
number of stages in the pipeline. In the best case, an N-stage pipeline
achieves an N-fold speedup. But the N-fold speedup does not require an
N-fold replication of hardware. Again, there is leverage in this type of
architecture because by less than an N-fold increase hardware, one obtains
up to an N -fold improvement in speed.

In both cases the leverage is available because the item replicated is a
bottleneck that leaves other system resources idle. By breaking the bottleneck
the idle resources become available, and the total gain appears to be greater
than the gain that can be attributed to the fixed bottleneck by itself.

For cache, the bottleneck is memory, specifically the frequently refer­
enced areas of memory. For pipelines, it is some computational stage or
critical register. Cache replicates memory; pipelines replicate storage cells
and arithmetic units. But multiprocessors do not obviously offer the same
leverage as do caches and pipelines. The component replicated is the full
processor, not some critical portion of the processor. Moreover, we are likely
to obtain less than proportionate return as we add processors.

Therefore, the design of multiprocessor architecture is far more chal­
lenging than the techniques we describe earlier. One cannot simply lash
together 1000 processors and expect to obtain 1000-times improvement. In
fact, performance improvements of only 100 to 200 might be all that could be
achieved under favorable circumstances, and under less favorable circum­
stances, improvement might be only around 10 or less.

On the other hand, with a greater understanding of overhead costs, algo­
rithms, and design approaches available, it is possible to construct efficient

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 311

Sec. 6.3 Multiprocessor Interconnections 299

multiprocessors. Our analyses in this section strongly suggest that efficiency
becomes limited as the number of processors increases. Perhaps an architec­
ture with four to 16 processors can be viewed as "general purpose", but with
lK or 64K processors, almost surely the architecture is limited to applica­
tions for which the inherent parallelism is large and the granularity is in the
range for which the architecture runs well.

Efficiency is clearly a major concern in the design of multiprocessors. A
design that uses 2N processors inefficiently cannot compete on a cost basis
with a design that uses N identical processors twice as efficiently. The next
section treats some of the more promising candidate architectures for multi­
processors.

6.3 Multiprocessor Interconnections

This chapter investigates the following leading candidates for multiprocessor
systems:

• Bus-oriented systems;

• Multilevel switched-network systems;

• Hypercubes; and

• Crossbar-connected systems.

This is not an exhaustive, but rather a representative list of the possi­
bilities. As we examine low-cost, low-bandwidth communications through
high-cost, high-bandwidth communications, the system issues are fairly
constant across the spectrum.

Our major conclusion is that the multiprocessor interconnection struc­
ture is felt most strongly by imposing a saturation point for system communi­
cations. Consequently, peak throughput is limited by the interconnection
structure. For performance below saturation, the interconnection structure
affects performance through the ratio of RIC. A good design is one that runs
below saturation for typical workloads, and at a typical operating point, it
produces high throughput by attaining a large RIC ratio.

6.3.1 Bus Interconnections

Our discussion of performance stresses the need for efficiency and shows the
important role of the ratio RIC. The simplest way to construct a multi­
processor that meets the efficiency goals is to connect the processors on a
shared bus, which thereby provides shared global memory to all processors.
Figure 6.3 illustrates the block diagram of such a system.

Each processor has access to a common bus. To this bus is attached the
central memory, which is a global resource for all processors. Each processor,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 312

300 Multiprocessors

Processor 1

Cache Local
Memory

Processor 2
Cache Local

Memory

Processor N
Cache

Fig. 6.3 A bus-connected multiprocessor.

GLOBAL
MEMORY

Chap.6

in addition, has a local memory and a cache memory. The local memory and
local cache enable the processors to reduce their use of the shared bus and
thereby limit the effects of contention on performance when processors have
to go to shared memory.

If neither cache nor local memory were present, the cost of memory
access would be relatively high, and, moreover, since all processes access
memory frequently under these conditions, there could be severe contention
at the bus, causing arbitration delays that reduce performance. So the long
delays due to remote access coupled with additional delays due to contention
effectively increase the value of C in the RIC ratio and thereby reduce speedup
and the number of processors for which the scheme is effective.

The objective in using cache and local memory is to shorten the effective
memory cycle and reduce the use of the bus so that one processor does not
slow down another through bus interference. If together the local memory
and cache reduce accesses on the bus by 90 percent (which should be readily
achievable), then ten times as many processors can share a bus at a given level
of contention than in the system that has no local memory or cache. If the
global accesses are reduced by 95 percent, the factor climbs to 20 times as
many processors.

We expect that bus-oriented systems can support ten processors effi­
ciently and possibly can be stretched to 20 or 30. Beyond this range, bus
contention leads to degraded performance to the extent that such systems are
unlikely to support 1000 processors or more unless a technological break­
through provides very high bus bandwidth at very low cost. Even then, such a
breakthrough may simply shift the bottleneck from the bus to the shared

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 313

300 Multiprocessors Chap. 6

Processor N

Fig. 6.3 A bus—connected multiprocessor.

GLOBAL
MEMORY

in addition, has a local memory and a cache memory. The local memory and
local cache enable the processors to reduce their use of the shared bus and
thereby limit the effects of contention on performance when processors have
to go to shared memory.

If neither cache nor local memory were present, the cost of memory
access would be relatively high, and, moreover, since all processes access
memory frequently under these conditions, there could be severe contention
at the bus, causing arbitration delays that reduce performance. So the long
delays due to remote access coupled with additional delays due to contention
effectively increase the value of C in the R/C ratio and thereby reduce speedup
and the number of processors for which the scheme is effective.

The objective in using cache and local memory is to shorten the effective
memory cycle and reduce the use of the bus so that one processor does not
slow down another through bus interference. If together the local memory
and cache reduce accesses on the bus by 90 percent (which should be readily
achievable), then ten times as many processors can share a bus at a given level
of contention than in the system that has no local memory or cache. If the
global accesses are reduced by 95 percent, the factor climbs to 20 times as
many processors.

We expect that bus—oriented systems can support ten processors effi—
ciently and possibly can be stretched to 20 or 30. Beyond this range, bus
contention leads to degraded performance to the extent that such systems are
unlikely to support 1000 processors or more unless a technological break—
through provides very high bus bandwidth at very low cost. Even then, such a
breakthrough may simply shift the bottleneck from the bus to the shared

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 313

Sec. 6.3 Multiprocessor Interconnections 301

memory. Shared memory, too, is a source of contention different from the
bus, and shared-memory may well saturate at, for example, 100 processors,
even when the bus bandwidth can support 1000 processors.

There are special issues involved in using caches in a bus-oriented archi­
tecture that we examine later in this chapter. The problems stem from the
need to maintain consistency of data in all of the caches. If a shared item is
changed in one cache and read by another processor, the second processor
must be able to locate the new value of the shared variable. This forces the
cache controllers to follow a protocol that guarantees that all loads and stores
access the correct value of an item, regardless of whether that item is in local
cache, remote cache, local memory or shared memory.

Usually such a protocol produces additional operations on the shared bus
whose purpose is to guarantee cache consistency. If caches were not present,
these operations might not be necessary. Hence, a cache architecture reduces
bus accesses when the cache hit ratio is high, but the reduction is partially
offset by additional bus transactions caused by the consistency protocol.

Technology plays a major role in making a bus-oriented multiprocessor
practical, and, in fact, the bus presents an excellent opportunity for tech­
nology leverage. An N-processor system requires a bus whose bandwidth is
on the order of N times that of a uniprocessor bus. Therefore, the bus band­
width constrains the number of processors that can be interconnected.

If exotic technology is used for the bus and its interfaces, but ordinary
technology is used in the processors, then the cost of the exotic technology can
be held fairly low, while the gains due to its use are amplified by greatly
increasing the number of processors on the bus. Consequently, it may be
feasible to use bus interconnections that run perhaps 100 times faster than
basic processor technology and are capable of supporting 1000 processors. A
possibility for the future is to use optical links whose information rate is in
the 1 GHz to 10 GHz region.

But exotic technology can also work against the architect. If it can be used
in the communication link, then equivalent technology might well be used
throughout the system, boosting basic throughput in each processor by per­
haps a hundredfold. In this case, perhaps only ten super-technology pro­
cessors can do the work of 1000 low-technology processors with a super­
technology bus.

The ten-processor, all-super-technology system might well be more cost­
effective than the 1000-processor system because it is more likely to be more
efficient and less complex. The computer architect has to evaluate where and
how to use exotic technology, carefully considering reasonable alternatives
rather than committing arbitrarily to a specific use of the technology in a
particular architecture.

Note that the bus is only one potential bottleneck in the bus-oriented
multiprocessor. The shared memory is another one. As bus bandwidth in-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 314

302 Mui ti processors Chap. 6

creases, performance is eventually limited by the bandwidth of the shared
memory. Because processes synchronize their activities by reading and writ­
ing shared memory cells, as the number of processes increases, there is a
tendency for some shared cells to receive an increasing proportion of the
memory references.

For example, consider a single memory cell that controls the execution of
N processors by acting as a barrier. Processes wait at the barrier until all have
reached it. Then they are free to continue. The barrier cell can be initialized to
the value N, and, as each process reaches it, the cell is decremented. When the
cell is decremented to 0, all processes are released.

If the shared cell is accessed by one processor at a time, then clearly the
time required for the barrier to go from N to 0 is O(N) time. If the processes
executing in parallel are performing some function that requires constant
time, then for sufficiently large N the barrier itself becomes a bottleneck of
the computation and greatly limits the useful work performed by the system.

To overcome the bottleneck in the shared memory, it is necessary to seek
creative solutions in technology, architecture, or algorithms:

• Technology: use very high-speed devices for shared memory or move to an
exotic memory technology that supports multiple simultaneous accesses.

• Architecture: design a system with high-bandwidth architectural support
for sharing and control.

• Algorithms: for specific applications, seek means to distribute control to
reduce or eliminate bottlenecks at centralized control variables.

All of the approaches are potentially viable. Any one approach may be suf­
ficient to create a system of the desired performance. Unfortunately, there is
no guarantee that any of the approaches will succeed.

Returning to the bus interconnection, consider what techniques are avail­
able for bus implementation. The highest-speed electrical buses must be very
short. This limitation is strictly a matter of physics because high speed
implies fast changes of voltage and current. Such physical quantities are
limited in their switching speed by capacitance and inductance. To hold these
quantities small requires small physical distances because capacitance and
inductance are proportional to conductor length.

Signal fidelity also diminishes when signals are sent over long distances,
and the degradation in fidelity increases the probability of error during trans­
mission. Therefore, if a bus is long or has other characteristics that slow
transmission or degrade signal quality, the bandwidth of such a bus is lower
than that of a short bus with excellent signal qualities. Yet another problem is
crosstalk noise stemming from mutual interference from adjacent signals.
This too grows with physical distance.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 315

Sec. 6.3 Multiprocessor Interconnections 303

The problem is that as the number of processors tied to a bus increases,
most electrical buses suffer degradation that tends to reduce bandwidth.
Hence, not only does each processor have to share the bus bandwidth with
N - 1 other processors, but as N increases, the bandwidth available to share
decreases. Bus technology suitable for small N is probably not feasible for
large N, and for N somewhere in between lies a region where buses change
from being effective to being unacceptable. The exact breakpoint is tech­
nology dependent and has to be evaluated for each individual type of bus and
interface technology.

One possible way to build a bus with many processors is to build a
physically short bus, as shown in Fig. 6.4, and to tie the processors to the bus
through a longer connection that attaches to the bus through a special inter­
face, as shown in the figure. The objective of the short bus is to provide a me­
dium for the interchange of signals with physically acceptable parameters
and good signal quality. It might be only 25 cm long, for example, and pro­
vide 100 connection points. The 100 interfaces must be located very close to
the physical bus, which is possible for interfaces alone, but may be very dif­
ficult to accomplish if all 100 processors have to be physically close to the bus.

The interfaces provide signal buffering that permits the processors to be
located at least far enough away to meet the packaging requirements of the
processor technology. Although Fig. 6.4 suggests that the electrical bus is
external to the modules that hold processors, the structure in the figure also
holds to some extent for super-VLSI systems with the bus and multiple
processors implemented together, possibly on a whole wafer if not on one
chip.

Processor 1

Processor 2

Processor N •1--------rj}-1
Bus

Interfaces

Short
High-Speed

Bus

Fig. 6.4 A high-speed bus with a short physical length connecting a collection of
processors. The I-unit is an interface that permits processors to be relatively far from
the bus when compared to the physical length of the bus itself.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 316

Sec. 6.3 Multiprocessor Interconnections 303

The problem is that as the number of processors tied to a bus increases,
most electrical buses suffer degradation that tends to reduce bandwidth.
Hence, not only does each processor have to share the bus bandwidth with
N - 1 other processors, but as N increases, the bandwidth available to share
decreases. Bus technology suitable for small N is probably not feasible for
large N, and for N somewhere in between lies a region where buses change
from being effective to being unacceptable. The exact breakpoint is tech—
nology dependent and has to be evaluated for each individual type of bus and
interface technology.

One possible way to build a bus with many processors is to build a
physically short bus, as shown in Fig. 6.4, and to tie the processors to the bus
through a longer connection that attaches to the bus through a special inter-
face, as shown in the figure. The objective of the short bus is to provide a me-
dium for the interchange of signals with physically acceptable parameters
and good signal quality. It might be only 25 cm long, for example, and pro-
vide 100 connection points. The 100 interfaces must be located very close to
the physical bus, which is possible for interfaces alone, but may be very dif—
ficult to accomplish if all 100 processors have to be physically close to the bus.

The interfaces provide signal buffering that permits the processors to be
located at least far enough away to meet the packaging requirements of the
processor technology. Although Fig. 64 suggests that the electrical bus is
external to the modules that hold processors, the structure in the figure also
holds to some extent for super—VLSI systems with the bus and multiple
processors implemented together, possibly on a whole wafer if not on one
chip.

Processor 1

 ShortProcessor 2 .
High-Speed

- Bus

Bus
Interfaces

Fig. 6.4 A high-speed bus with a short physical length connecting a collection of
processors. The I-unit is an interface that permits processors to be relatively far from
the bus when compared to the physical length of the bus itself.—_—_—__——____———____

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 316

304 Multi processors Chap.6

6.3.2 Ring Interconnections

Although a bus interconnection has advantages for a small number of pro­
cessors, electrical buses are highly constrained by fundamental physical
principles. The goal of the architect is to find an interconnection that has the
simplicity of the bus for support of computation, but is able to exceed the
physical limitations inherent in buses. One possible solution is to build a
logical bus that is physically something else.

Figure 6.5 shows a loop arrangement with point-to-point connections
between processors and a cyclic interconnection overall. In this system, a
transmitting process places a message on the loop, and it is repeated by each
receiver until it returns to the transmitter, which stops the message by failing
to repeat it.

There are various ways to operate such a loop, but one protocol that turns
the loop into a logical bus is the IEEE 802.5 token-ring standard. A
transmitting processor is distinguished from all other processors because it
holds a token, of which one and only one exists among all processors. When
the transmitting processor sends a message through the token ring, the ring
acts like a bus, and all other processors listen.

At the end of transmission, the transmitter broadcasts a token, which is a
unique combination of signals that cannot exist in an ordinary message. Each
receiver sees the token in turn, and if a receiver is waiting to be a transmitter,
it accepts the token without retransmitting it, and instead transmits its mes­
sage on the ring. If no receiver is waiting to transmit, the token circulates on
the ring and can subsequently be removed by any processor that needs to
transmit.

Processor 1 Processor 2

Processor 8 Processor 3

Processor 7 Processor 4

Processor 6 Processor 5

Fig. 6.5 A multiprocessor based on a loop interconnection.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 317

304 Multiprocessors , Chap. 6

6.3.2 Ring Interconnections

Although a bus interconnection has advantages for a small number of pro-
cessors, electrical buses are highly constrained by fundamental physical
principles. The goal of the architect is to find an interconnection that has the
simplicity of the bus for support of computation, but is able to exceed the
physical limitations inherent in buses. One possible solution is to build a
logical bus that is physically something else.

Figure 6.5 shows a loop arrangement with point—to-point connections
between processors and a cyclic interconnection overall. In this system, a
transmitting process places a message on the loop, and it is repeated by each
receiver until it returns to the transmitter, which stops the message by failing
to repeat it.

There are various ways to operate such a loop, but one protocol that turns
the loop into a logical bus is the IEEE 802.5 token—ring standard. A
transmitting processor is distinguished from all other processors because it
holds a token. of which one and only one exists among all processors. When
the transmitting processor sends a message through the token ring, the ring
acts like a bus, and all other processors listen.

At the end of transmission, the transmitter broadcasts a token, which is a

unique combination of signals that cannot exist in an ordinary message. Each
receiver sees the token in turn, and if a receiver is waiting to be a transmitter,
it accepts the token without retransmitting it, and instead transmits its mes—
sage on the ring. If no receiver is waiting to transmit, the token circulates on
the ring and can subsequently be removed by any processor that needs to
transmit.

Processor 1

Processor 2

Processor 8

Processor 7 Processor 4

 Processor 6 Processor 5

Fig. 6.5 A multiprocessor based on a loop interconnection.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 317

Sec. 6.3 Multiprocessor Interconnections 305

The advantage of the token ring is that the connections are point to point,
not bus connections. Physical parameters can be more readily kept in control.
In fact, the token ring is ideally suited to very high bandwidth optical fibers,
which are difficult to adapt to bus technology for small numbers of pro­
cessors and have not yet been adapted to buses for large numbers of pro­
cessors.

A major disadvantage of the token ring is that each bus interface adds a
short delay, usually a 1-bit delay, when it repeats an incoming message. As
the number of processors increases, the delay around the ring increases pro­
portionately. The bandwidth, however, does not necessarily decrease as it
does for buses when they are heavily loaded.

To take advantage of the token ring, the architect views the token ring as if
it were a pipeline with a short cycle time and long delay. The effective band­
width can be utilized as long as computations keep the pipeline filled.
Therefore, each processor should overlap transmissions with local computa­
tions.

Moreover, a protocol for a high-speed ring protocol ought to provide a
means for a transmitter to pass its token to a new transmitter without having
to wait to receive its own transmission. Such a protocol provides for pipe­
lining messages on long rings, which is necessary to tap the available band­
width. If a new message can be started only if no other message is on the ring,
the net effect is the same as requiring a pipeline to drain between operations,
which causes severe bandwidth degradation as the number of processors on
the ring increases.

In today's technology, short electrical buses are limited to run at 10 to 50
MHz, depending on their length and maximum loading. Obviously, the
longer and more heavily loaded buses run at the low end of the speed spec­
trum. Buses that are limited to the confines of a single VLSI chip can run in
the high end of the range, and it is conceivable to run such systems at clock
rates in excess of 100 MHz. However, if a bus leaves a chip, then maximum
clock rates fall back to the 10-to-50 MHz area, and only denser packaging
with special attention to low capacitance and inductance can increase the
speed.

Optical connections for a token ring can run at much higher speeds. Early
commercial installations of optical loops had bandwidths of 100 MHz in
1982, and a clock speed of 400 MHz is readily achievable. Clock rates exceed­
ing 1 GHz should eventually be released commercially.

6.3.3 Crossbar Interconnections

The bus interconnection offers the simplest topology but has the highest
potential contention. The crossbar is the antithesis of the bus. It offers the
least contention, but has the highest complexity. We take a brief look at

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 318

306 Multiprocessors Chap.6

crossbars here. In the next section we look at interconnections that fall be­
tween crossbars and buses.

Figure 6.6 shows a crossbar that connects N processors with N memories.
Although the number of memories is equal to the number of processors in the
figure, this need not be the case in general. Usually, the number of memories
is at least equal to or a small multiple of the number of processors.

The path between a processor and memory has a delay only at the cross­
point, so each processor is a unit (one crosspoint) delay from any memory.
The communications network has no contention. Contention exists only at
processors and memories-that is, if Processor 1 has to access Memory 1, and
Processor 2 has to access Memory 2, then both accesses can occur simulta­
neously in the crossbar switch. In fact, any number of simultaneous accesses
up to N can be done simultaneously, providing that no two accesses involve
the same memory or processor.

Con ten ti on occurs if two or more accesses are made to the same memory.
Consequently, if both Processor I and 2 attempt to access Memory I in the
same cycle, one of the processors has to wait for the other to complete.

There are various architectural tricks available to reduce contention. If
the contention occurs because processors are attempting to access different
data that happen to be stored in the same memory module, then one possible
solution is to allocate data so that accesses tend to be more evenly distributed
across all memories rather than clustered to a single memory.

An obvious way to achieve this goal is to allocate blocks of data so that
successive elements lie in successive modules. Similarly, shared program

Memory 1 Memory 2 Memory N

Processor 1

Processor 2

Fig. 6.6 An N X N crossbar switch in an N-processor multiprocessor. At each crossing
in the network is a switch that permits any processor to connect to any memory.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 319

306 Multiprocessors Chap. 6

crossbars here. In the next section we look at interconnections that fall be-
tween crossbars and buses.

Figure 6.6 shows a crossbar that connects N processors with N memories.
Although the number of memories is equal to the number of processors in the
figure, this need not be the case in general. Usually, the number of memories
is at least equal to or a small multiple of the number of processors.

The path between a processor and memory has a delay only at the cross-
point, so each processor is a unit (one crosspoint) delay from any memory.
The communications network has no contention. Contention exists only at

processors and memories—that is, if Processor 1 has to access Memory 1, and
Processor 2 has to access Memory 2, then both accesses can occur simulta-
neously in the crossbar switch. In fact, any number of simultaneous accesses
up to N can be done simultaneously, providing that no two accesses involve
the same memory or processor.

Contention occurs if two or more accesses are made to the same memory.

Consequently, if both Processor 1 and 2 attempt to access Memory 1 in the
same cycle, one of the processors has to wait for the other to complete.

There are various architectural tricks available to reduce contention. If

the contention occurs because processors are attempting to access different
data that happen to be stored in the same memory module, then one possible
solution is to allocate data so that accesses tend to be more evenly distributed
across all memories rather than clustered to a single memory.

An obvious way to achieve this goal is to allocate blocks of data so that
successive elements lie in successive modules. Similarly, shared program

Memory N

 Processor 1

Processor 2

Processor N
_ I .

Fig. 6.6 An N X N crossbar switch in an N-processor multiprocessor. At each crossing
in the network is a switch that permits any processor to connect to any memory.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 319

Sec. 6.3 Multiprocessor Interconnections 307

code should be allocated so that sequentially increasing addresses lie in
successive modules. In either case, when shared data or code is accessed by
two or more processors simultaneously, contention will delay one processor,
and thereafter the later processor will trail the earlier processor without
conflict as long as the two processors continue to access memories se­
quentially. This same addressing technique is used in pipelined processors
that access vectors of data with a stride of unity.

If the accesses that cause contention are to a single cell or to a few shared
cells, there is a more fundamental problem that requires a different
approach. Some of the issues are explained in more detail in Chapter 7, but
the discussion here illustrates the problem more clearly.

Consider Program 6.1, which shows the code for a processor that is for­
ming the sum of local data and then adding the local sum to a global sum.
Presumably, the local data are placed in a memory that is physically close to
a processor and can be accessed without contention. The shared variable
Global_Sum is to contain the sum of all elements in the data vectors.

The objective is to obtain speedup by adding the local data in parallel,
then tallying the local sums into Global_Sum. This is much like an election
process, where each precinct tallies its ballots locally, then reports the results
to Election Central, where precinct tallies are summed. The problem is that
the tallying at the shared datum can take O(N) time, and thereby it becomes a
serious bottleneck that negates the parallelism achievable.

Program 6.1 The use of locking to assure correct updating of a shared variable.

Procedure Add_to_Sum (var Global_ Sum: Real, Shared; Local_Tab/e:
array of Real);

var
i: integer;
Local_Sum: real;

Begin
Local_ Sum: = 0.0;
For i:= 1 to Max do

Local_Sum:= Local_Sum + Loca/Jable[i];
{The next statement obtains exclusive access to Global_Sum by some mechanism built
into the architecture. At any given time, only one processor can be executing statements
in the region between LOCK and UNLOCK. }
LOCK(Global_ Sum);
Global_ Sum : = Global_ Sum + Local_ Sum;
UNLOCK(Global _Sum);

end{* Procedure Add_to_Sum *};

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 320

308 Multiprocessors Chap.6

In Program 6.1, the local operation computation tallies data into
Local_Sum, and from there Local_Sum is added to Global_Sum. The addition
into the shared variable has to be done very carefully. Therefore, we must
provide a mechanism for that variable to be read and rewritten by a single
processor without an intervening operation occurring.

For example, if Processor 1 has to add the value 10 to Global_Sum, it must
obtain the current value, add 10 to the current value, then write back the new
value. If several processors attempt to do the same process concurrently, the
results of global tallying can be incorrect. For example, consider the follow­
ing situation in which the initial value of Global_Sum is 0, and Processors 1
and 2 attempt to add 10 and 15, respectively, to the sum.

1. Processor 1 reads the value 0 from Global_Sum.

2. Processor 2 reads the value 0 from Global_Sum.

3. Processor 1 computes the updated value of Global _Sum to be 15 and
writes this back to Global Sum.

4. Processor 2 computes the updated value of Global _Sum to be 10 and
writes this back to Global_Sum.

5. The final value of Global_Sum is 10.

The error in this process causes the final outcome to miss the tally of 15
computed by Processor 1. Processor 2 reads the value of Global_Sum to be 0,
but the instantaneous residence location of Global_Sum in shared memory is
temporarily incorrect.

The true location of Global_Sum has moved to Processor 1, where it is
updated and then restored in shared memory. During the time that Processor
1 "owns" Global_Sum, access to it in shared memory must be prevented. In
essence, Processor 1 should be able to read, modify, and write Global_Sum as
a single primitive operation without any other processor accessing Global
Sum in the meantime. In Program 1, this is indicated by the statements
LOCK(Global _Sum) and UNLOCK(Global _Sum) that surround the read/
modify/write operation on Global_Sum.

The Lock statement permits a processor to pass the statement if the
variable is currently unlocked. Otherwise it forces the processor to wait until
the variable becomes unlocked. It has to be implemented very carefully in
both hardware and software because it is prone to error.

One possible failure mode from improper implementation or incorrect
use is a situation known as deadlock, in which two or more processes mutually
block each other from further progress. Neither process can continue until
the other unlocks a variable, but since they cannot continue, they cannot
reach the unlock point in a program. An erroneous implementation of a Lock
primitive can cause deadlock if it inadvertently leaves a variable in a locked
state, and no processor can thereafter unlock that variable.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 321

Sec. 6.3 Multiprocessor Interconnections 309

If a LOCK/UNLOCK is embedded in a program, such as Program 1, then
no matter how the LOCK/UNLOCK is implemented, we have a potential
bottleneck in a parallel processor. In computers with bus interconnections,
the bottleneck is more likely to be at the bus rather than the memory. When
the bus is replaced by a crossbar, communications bottlenecks disappear, but
performance is limited by the next tightest bottleneck, which might be at the
shared memory.

The LOCK/UNLOCK code of Program 6.1 demonstrates a realistic way
that the shared-memory bottleneck can arise. Of course, the major reason to
move to a crossbar is to remove a critical bottleneck that causes N simulta­
neous bus requests to take O(N) time. The crossbar drops this time to 0(1)
time, but the shared-variable bottleneck is still O(N), so all the crossbar
brings us is high performance in some portions of a program, with other
portions of code dominating the performance and forcing the system to oper­
ate inefficiently.

These are performance-oriented arguments. We must also look at cost.
The cost of a crossbar is usually proportional to the number of crosspoints,
which grows as N 2

, whereas the cost of a bus grows only linearly in N since
cost is proportional to the number of bus interfaces. For large N, the crossbar
is extremely expensive and may well dominate the entire cost of a multi­
processor. Large crossbars are feasible only if the cost per crosspoint can be
held very low. The danger in building a crosspoint switch is that the band­
width available cannot be used effectively, so the extra cost brings little
benefit.

A very interesting example of a crosspoint architecture is the C.mmp
computer [Mashburn 1982] built and in operation at Carnegie-Mellon Uni­
versity over a span that ran from the early 1970s to the early 1980s. This
architecture tied 16 PDP-11/40's to 16 memories. It was never intended to be a
prototype of a commercial system, but rather served as a proving ground for
developing parallel applications and parallel operating systems. As such, it
stimulated a substantial pool of research results that formed the foundation
of the present knowledge of multiprocessor systems.

Our major thrust is high performance, but that was not the major thrust
of C.mmp. If all 16 PDP-11 s could be put together on one problem to obtain a
16-fold speedup, then the total speed would be much slower than the speed
available on high-end uniprocessors, although a 16-way PDP-11 might pro­
vide a less expensive way to attain that type of performance than would the
purchase of a single 16-times-faster machine.

One benefit that the C.mmp did provide is the access to a 16-fold larger
memory than was available for a single PDP-11 at that time. Since memory
was relatively expensive, the C.mmp provided a way of allocating the ex­
pensive resource among several independent processes. This was a cost­
effective alternative to configuring each of N machines with a fixed amount of

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 322

310 Multiprocessors Chap.6

unshared memory. The larger shared memory provided a resource pool that
could be allocated dynamically to individual processes.

The C.mmp also provided a pool of processors that could be allocated
flexibly and dynamically to programs. In theory, all 16 processors could be
used on a single program, or, for example, one program could be assigned five
processors, another program three processors, and so on, until all processors
are assigned.

In practice, programs often needed fairly large chunks of memory for
individual processes, so fewer than 16 processors could easily exhaust the
supply of memory. Nevertheless, the C.mmp demonstrated the feasibility of
multiprocessors and parallel programming on various types of problems.
This demonstration held even though the crossbar interconnection itself may
not necessarily be feasible for large numbers of processors.

One can easily substitute any other connection of sufficient bandwidth
for the crossbar in C.mmp, and there would be virtually no difference in
performance from the crossbar-based C.mmp. The important point is that the
replacement interconnection structure should be fast enough to meet the
C.mmp demands without introducing a new bottleneck into the system. The
new structure does not necessarily have to have a bandwidth equal to a
crossbar.

C.mmp illustrates an important principle for the architect of a multi­
processor system. The total system cost and performance is the factor of
major importance; the interconnection network is but one component of the
system. The lesson is that if the architect expends extra effort to remove a
communication bottleneck, that effort may just move the bottleneck to a
different part of the system, and the cost may not be justifiable.

In terms of applications, it is most important to determine if an applica­
tion can run effectively on a multiprocessor even if the communications
subsystem has infinite bandwidth and is contention-free. If this can be done,
then the next most important consideration is how to provide at reasonable
cost a communications network whose finite bandwidth does not reduce
performance below a reasonable threshold.

If within an application the architect discovers inherent difficulties that
limit performance, then another approach is required. The following section
describes an implementation technique that offers a unique way to update a
shared variable without forcing the update to be executed serially. For some
problems, this approach might be the only means available to avoid a shared­
memory bottleneck.

6.3.4 The Shuffle-Exchange Interconnection and the Combining Switch

The shuffle-exchange connection described earlier in this text can be used to
interconnect independent multiple processors as well as vector processors,
such as those used for cyclic reduction or recursive doubling. In this section

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 323

Sec. 6.3 Multiprocessor Interconnections 311

we consider the shuffle-exchange as an alternative to the shared bus or the
crossbar, since both the bandwidth and cost of the shuffle-exchange lie be­
tween those of the bus and the crossbar.

The shuffle-exchange network offers an important additional function
known as a combining switch which can reduce contention by performing
operations in parallel within the network that otherwise must be serialized at
the memory. This technique has excellent potential for parallel applications
that require processes to have momentary exclusive access to a shared vari­
able.

The exclusive-access requirement limits the performance of most multi­
processor architectures, so when access to a shared variable is saturated, no
additional speed improvement is possible no matter how many more pro­
cessors are added to the system. However, this limitation does not exist in the
RP3 and Ultracomputer systems, described later in this section, when the
exclusive access can be accomplished in part in the communication network
and in part in the memory. In effect, the exclusive access is done in parallel,
rather than serially, by making use of facilities built into the shuffle-exchange
network.

The conditions under which exclusive access can be supported efficiently
by the network are rather stringent, and some applications may not satisfy
these conditions. Those applications have a fundamental bottleneck
stemming from contention for access to shared variables, and unless another
advance in technology becomes available, multiprocessor architectures may
be unsuitable for these problems except for small values of N.

The shuffle-exchange network depicted in Fig. 6.7 shows processors at one
side and memories at the other. Although the memories are quite far from the
processors in terms of delay, the processors can have large caches and local
memories to reduce the traffic to remote memories.

The important aspect of the architecture shown in the figure is that it
supports the same multiprocessor applications as do the bus and crossbar
interconnections. Its bandwidth is higher than the bus, but lower than the
crossbar. Its cost is O(Nlog N) as opposed to O(N) for the bus and O(N 2

) for the
crossbar. The shuffle-exchange network lies at an intermediate point in the
spectrum of possible networks.

The bandwidth for shuffle-exchange is very high for operations that do
not conflict. Lawrie [1975] has shown that if N processors place simultaneous
synchronized requests so that Processor i requests data from Memory i + c,
for any constant c, the requests can be honored simultaneously without con­
flict. Moreover, no contention occurs if Processor i requests data from
Memory pi+ c, where pis an odd number, provided that N is a power of 2.

Although we presume that the processors are independent and need not
be synchronized precisely, many applications require processors to
synchronize at certain points before proceeding. In most multiprocessor
implementations of the Fast Fourier Transform, for example, each of the log N

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 324

312 Multiprocessors Chap.6

p

Fig. 6.7 A shuffle-exchange network for connecting eight processors to eight memo­
ries. Processors are labeled with P and memories with M.

iterations is completed by all processors before the next is begun, so there are
synchronization points at the end of each iteration.

Once processors are synchronized, they launch their new accesses to
memory more or less concurrently. If in a vector architecture a collection of
accesses to a vector has little or no contention, the equivalent accesses will
tend to have low contention after synchronization in a multiprocessor
architecture.

6.3.5 The Butterfly Operation and the Reverse-Binary Transformation

For the FFT there are two types of processor-to-processor communications.
One is a butterfly operation, in which pairs of processors exchange data and
compute weighted sums and differences of the items exchanged. The other is
a reverse-binary transformation that alters the order of the output data from
the ordering produced by the computations to one that is lexically ascending
in the independent variable.

Cvetanovic [1986] showed that the two operations are incompatible with
the shuffle-exchange operation in the sense that if data are stored among
processors so that the butterfly operation proceeds without conflict, then the
reverse-binary operation results in a maximum conflict in the network. Con­
versely, if the reverse binary is conflict free, then the butterfly results in
maximum conflicts.

At least one of the two types of operations will cause some problems in the
network. A typical implementation of the FFT uses log N butterfly operations

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 325

312 Multiprocessors Chap. 6

Fig. 6.7 A shuffle-exchange network for connecting eight processors to eight memo—
ries. Processors are labeled with P and memories with M.

iterations is completed by all processors before the next is begun, so there are
synchronization points at the end of each iteration.

Once processors are synchronized, they launch their new accesses to
memory more or less concurrently. If in a vector architecture a collection of
accesses to a vector has little or no contention, the equivalent accesses will
tend to have low contention after synchronization in a multiprocessor
architecture.

6.3.5 The Butterfly Operation and the Reverse-Binary Transformation

For the FFT there are two types of processor—to—processor communications.
One is a butterfly operation, in which pairs of processors exchange data and
compute weighted sums and differences of the items exchanged. The other is
a reverse—binary transformation that alters the order of the output data from
the ordering produced by the computations to one that is lexically ascending
in the independent variable.

Cvetanovic [1986] showed that the two operations are incompatible with
the shuffle-exchange operation in the sense that if data are stored among
processors so that the butterfly operation proceeds without conflict, then the
reverse-binary operation results in a maximum conflict in the network. Con-
versely, if the reverse binary is conflict free, then the butterfly results in
maximum conflicts.

At least one of the two types of operations will cause some problems in the
network. A typical implementation of the FFT uses log N butterfly operations

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 325

Sec. 6.3 Multiprocessor Interconnections 313

on N -vectors, followed by or preceded by one reverse-binary operation.
Consequently, it is best to organize data across the memories so that the
butterfly is conflict free and then pay the conflict penalty for the reverse­
binary operation.

How bad can the conflicts be? The worst possible case is that all N items
to be accessed reside in a single memory at one node of the shuffle-exchange
network. O(N) time is required to obtain the data, as opposed to 0(1) time if
data are ideally stored across the network. However, the conflicts that arise
for the reverse-binary permutation while doing the FFT are not this bad.
Since the butterfly operation is assumed to be able to access N distinct items
in a single operation, those items must be distributed across all memories.

When these same N items are subsequently accessed for a reverse-binary
transformation, contention does not occur at the memories, but rather it
occurs within the communications network. According to Cvetanovic's
results, the worst-case contention for the reverse-binary permutation
actually occupies only O(N 112

) time, not O(N) time, which essentially wastes
O(N 112

) of the O(N) bandwidth available.
For a permutation of data to be free of conflicts as it passes through a

shuffle-exchange network, at each switch node the two operands at the inputs
must be directed to two distinct outputs. A conflict occurs if the two operands
go to the same destination.

The bottleneck of the network for a permutation access is the stage (or
pair of stages) in the center of the network. To see why this is true, consider a
permutation that has the maximum possible contention. At the first stage,
the worst possible situation is for each of the N 12 switch nodes to direct both
their inputs to only one output. This creates a situation at the second stage in
which half of the inputs are empty and half have two operands.

The same contention problem can occur at each successive stage up to the
middle of the network, creating 2°0

g NJ12 operands queued on each of 2°0
g NJ12

lines, and with all other lines empty. However, since the operands lie in
distinct memories at the far end of the network, the paths followed by the
queued operands in reaching the far end of the network must diverge, starting
at the bottleneck. Therefore, at each successive stage the queue lengths di­
minish by a factor of 2, and twice as many lines become active, until at the far
end all lines are active and contain one operand.

Figure 6.8 shows the reverse-binary transformation for a network with 16
processors and 16 memories. For this permutation, the target of Processor i is
Memory i ',where i' is the integer obtained by reversing the binary digits of i.
Thus Processor 2 targets Memory 4 because the reversal of (0,0,1,0) = 2 is
(0,1,0,0) = 4.

The discussion on contention within the shuffle-exchange network reveals
that there exist algorithms for which we must suffer 0(2°0 gNJ12

) = 0(N 112
) delay

because of communication contention, even when there is no contention at
the memory at all. In a crossbar network, the FFT has neither communication

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 326

314 Multiprocessors Chap. 6

0 = 0000 0 = 0000

1 = 0001 1 = 0001

2 = 0010 2 = 0010

3 = 0011 3 = 0011

4 = 0100 4 = 0100

5 = 0101 5 = 0101

6 = 0110 6=0110

7 = 0111 7 = 0111

8 = 1000 8 = 1000

9 = 1001 9 = 1001

10 = 1010 10 = 1010

11=1011 11=1011

12 = 1100 12=1100

13 = 1101 13= 1101

14=1110 14=1110

15=1111 15=1111

Fig. 6.8 The interconnections used to create a reverse-binary transformation in a
shuffle-exchange network. Note that only some of the interconnections are used
among the internal paths of the network.

nor memory contention, and therefore it is potentially faster by a factor of
O(N 112

). The problem is restricted solely to the reverse-binary transformation
applied at the last step, and this step is rarely discussed in the literature in
evaluating parallel execution of the FFT. Cvetanovic's work has brought the
communication-contention issue directly into focus.

Now that we understand the poor performance of the reverse-binary
transformation, we can reduce its effects. For example, in some applications,
the processing steps are:

1. Use the FFT to transform from the time domain to the frequency domain.

2. Process in the frequency domain.

3. Use the FFT to transform from the frequency domain back to the time
domain.

We need not apply the reverse-binary transformation at the end of the first
step if the frequency-domain operations are ordered compatibly. This places

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 327

314 Multiprocessors Chap. 6

0:0000

1=ooo1

2=oo1o

3:0011

4:0100

5=o1o1

=o11o

7=o111

a: 1000

9:1001

1o=1o1o

m11=1o11

“12:1100

“13:1101
“14:1110

Fig. 6.8 The interconnections used to create a reverse-binary transformation in a
shuffle-exchange network. Note that only some of the interconnections are used
among the internal paths of the network.

nor memory contention, and therefore it is potentially faster by a factor of
0(N 1’2). The problem is restricted solely to the reverse—binary transformation
applied at the last step, and this step is rarely discussed in the literature in
evaluating parallel execution of the FFT. Cvetanovic's work has brought the
communication-contention issue directly into focus.

Now that we understand the poor performance of the reverse—binary
transformation, we can reduce its effects. For example, in some applications,
the processing steps are:

1. Use the FFT to transform from the time domain to the frequency domain.

2. Process in the frequency domain.

3. Use the FFT to transform from the frequency domain back to the time
domain.

We need not apply the reverse-binary transformation at the end of the first
step if the frequency-domain operations are ordered compatibly. This places

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 327

Sec. 6.3 Multiprocessor Interconnections 315

the input to the last step in reverse-binary order, rather than lexical order.
For such an input, the FFT produces an output that is in lexical order. Hence,
no reverse-binary transformation is performed, and the bottleneck is neatly
sidestepped.

More generally, it is necessary to locate the contention problems in the
communication network and to take steps to remove the problems if this is
possible. The FFT is an example in which the bottleneck can be removed in
the context given. We cannot promise that this is always possible, but clearly
the bottlenecks have to be discovered if they are to be removed.

The discussion thus far illustrates a potential shortcoming of the shuffle­
exchange network. This particular defect occurs for accesses that are bal­
anced across the outputs of the network. But accesses do not have to be
balanced at the outputs. Algorithms might well bias their accesses to
memory, so that on the whole the accesses are uniformly distributed, but
some small fraction of accesses is directed to a particular memory module.
This might be the case if processors operate on data scattered across all
memories, then reference shared control-variables to synchronize activity
with other processors. We are interested in the effective bandwidth of the
switch under these circumstances.

The calculation of effective bandwidth is difficult even for simpler prob­
lems. Consider the least-restrictive set of assumptions, namely that accesses
are uniformly distributed and uncorrelated. The reason that this becomes
difficult to evaluate is that we do not have a good model of how to deal with
internal conflicts in the network. When two operands collide somewhere, for
example because they both request the same output of a particular switching
node, what happens? The network can

1. Abandon one arbitrarily and pass the other;

2. Queue one request in a local memory and pass the other; or

3. Refuse one request while passing the other, under the assumption that
the request refused is buffered by the sender and will be repeated.

This list of options is representative but not exhaustive in the assumptions
that have been treated in the literature in papers by Dias and Jump [1981],
Thanawastien and Nelson [1981], Chen et al. [1981], Kruskal and Snir [1983],
Yew et al. [1983], and Padmanabhan and Lawrie [1985].

Kruskal and Snir have a very elegant result based on the solution of a
difference equation that describes the number of messages remaining after
conflicting messages are discarded. They found that the effective bandwidth
is O(N /log N), so the contention within the network reduces bandwidth by a
factor of O(log N). The other researchers have obtained roughly comparable
findings using queueing analyses and simulations.

The analyses in general do not relate the assumed input to the access
patterns of real programs. To what extent is the literature realistic? From

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 328

316 Mui ti processors Chap. 6

Cvetanovic's work on the FFT we know that the effect of periodic synchroniza­
tion could be either beneficial or disastrous. Synchronization tends to cause
accesses to the network to come in clumps. This is beneficial if the accesses
are nonconflicting, so that a large number of accesses can be honored in a
short time. It is disastrous when the accesses are highly conflicting because it
causes much higher contention than predicted by statistical methods.

The architect cannot take for granted that average bandwidth will be
O(N), O(N /log N), O(N 112

), 0(1), or any other function that we have ascribed to
the switching network. The architect has to explore the performance of the
network on realistic applications, if they are available, or on faithful models
of the access patterns of real applications.

This is the problem attacked by Pfister and Norton [1985] in their influ­
ential paper on hot-spot contention in shuffle-exchange networks. They
sought the effective bandwidth of shuffle-exchange networks when accesses
are not entirely uniformly distributed across memory. Their model permits a
small number of accesses to be made to a specific memory and all others to be
uniformly distributed. Their results show that effective bandwidth falls off
dramatically as correlation of accesses increases.

In the Pfister-Norton model, a "hot" memory module is referenced with
probability h; otherwise accesses are uniformly distributed. Therefore, when
each of N processors produces r references per cycle to the memory system,
the hot memory module receives requests at the rate:

Requests at hot memory= r(l - h) + rhN (6.23)

The first term accounts for the uniform share of the load, and the second term
accounts for the hot module receiving more than its share ofrequests from all
processors.

Since a memory cannot honor more than one request per cycle, the re­
quest rate on the left hand-side of Eq. (6.23) cannot exceed unity. Therefore
the maximum effective rate of generating requests, R, is the rate at which Eq.
(6.23) reaches unity and is given by:

M . . R 1 ax1mum generat10n rate = -----
1 + h(N - 1)

(6.24)

This function falls off dramatically with increasing N. The effective band­
width of the switching network is N times the generation rate given in Eq.
(6.24).

When h is 0, Eq. (6.24) is unity, bandwidth is N, and no degradation
due to nonuniform access is present. Ash increases just a little bit, for exam­
ple to one percent, then for 1024 processors the denominator of (6.24) in­
creases to 11, and bandwidth is down by a factor of 11 from the ideal. Even
when hot-spot probability is tiny, for example 0.1 percent, the impact is an

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 329

Sec. 6.3 Multiprocessor Interconnections 317

increase in the denominator to a value of 2, which reduces bandwidth by a
factor of 2.

Pfister and Norton confirmed their findings by means of simulations,
which showed that contention caused the network to saturate in tree-like
regions, as shown in Fig. 6.9. This figure assumes that requests are held until
they can be honored. The internal queue at a node can be of any integral
length, including 0.

The hot memory cannot accept new data, so its predecessors become
backed up when those predecessors cannot output their data to the memory.
Next, the predecessors of predecessors saturate, and so on. As nodes saturate,
they interfere with communication to other nodes in the system, and
performance diminishes rapidly. In Fig. 6 .9 the saturated nodes are indicated
by shading, and they form a tree whose root is the hot memory.

A path from a processor to a different memory that has to use a saturated
path becomes blocked, so bandwidth is somewhat lower than predicted by
Eq. (6.24), depending on the size of the tree of saturated nodes. This in turn
depends on the amount of queueing available within each node. If the archi­
tect wants to install queues in the network, Fig. 6.9 suggests that to reduce
hot-spot contention, the best place to put such queues is in the rank of
switches closest to the memory system. The queues might well be placed
elsewhere, perhaps uniformly through the switching network to make all
switches alike, to alleviate other forms of contention.

p 1-------1

Fig. 6.9 A "hot" spot in a memory module (indicated by shading) and the switching
modules that block as a result. The path from Processor 0 (the top processor) to
Memory 3 is blocked, although neither Processor 0 nor Memory 3 is very active.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 330

Sec. 6 .3 Multiprocessor Interconnections 317

increase in the denominator to a value of 2, which reduces bandwidth by a
factor of 2.

Pfister and Norton confirmed their findings by means of simulations,
which showed that contention caused the network to saturate in tree-like

regions, as shown in Fig. 6.9. This figure assumes that requests are held until
they can be honored. The internal queue at a node can be of any integral
length, including 0.

The hot memory cannot accept new data, so its predecessors become
backed up when those predecessors cannot output their data to the memory.
Next, the predecessors of predecessors saturate, and so on. As nodes saturate,
they interfere with communication to other nodes in the system, and
performance diminishes rapidly. In Fig. 6 .9 the saturated nodes are indicated
by shading, and they form a tree whose root is the hot memory.

A path from a processor to a different memory that has to use a saturated
path becomes blocked, so bandwidth is somewhat lower than predicted by
Eq. (6.24), depending on the size of the tree of saturated nodes. This in turn
depends on the amount of queueing available within each node. If the archi—
tect wants to install queues in the network, Fig. 6.9 suggests that 'to reduce
hot-spot contention, the best place to put such queues is in the rank of
switches closest to the memory system. The queues might well be placed
elsewhere, perhaps uniformly through the switching network to make all
switches alike, to alleviate other forms of contention.

Fig. 6.9 A “hot" spot in a memory module (indicated by shading) and the switching
modules that block as a result. The path from Processor 0 (the top processor) to
Memory 3 is blocked, although neither Processor 0 nor Memory 3 is very active.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 330

318 Multiprocessors Chap. 6

6.3.6 The Combining Network and Fetch-and-Add

Whether queues are added at the hot memory or somewhere within the
network, they smooth out the effects of peak loads over longer periods.
Queues do not alleviate the bottleneck caused by frequent memory accesses.
To solve the problem, the request rate to the hot memory has to be decreased.

Gottlieb et al. [1983] propose a very unusual solution that involves using
logic within the switch nodes to perform computations whose effect is to
reduce the rate of requests to a shared-memory cell. In essence, two or more
requests for access to the same shared cell can be combined into a single
access under certain conditions. This tends to reduce the peak access-rate to a
shared cell and thereby reduces contention and the bandwidth reduction due
to contention.

The architectural solution is sometimes called a combining network, and
the functional capability it gives programs is a collection of new instructions,
one of which is called the Fetch-and-Add instruction.

To illustrate how the combining switch works, we propose to examine
some subtree of the communication network, namely the tree of shaded nodes
that appears in Fig. 6.9, and note that its root is a specific memory module
that receives more than its share of references. In this example we give a
possible case for the contention and show how the Fetch-and-Add instruction
solves the problem.

The sample problem is a queueing problem in which each of N requesters
attempts to add an item to a queue. In conventional solutions, the queue
pointers cannot be updated by two or more processors concurrently because,
if this is attempted, a pointer update might be done incorrectly for the same
reasons that cause a concurrent summation on a shared variable to fail. Our
solution in Program 6.1 forces the updates to be done sequentially, with each
process using LOCK and UNLOCK operations to obtain exclusive access to a
shared variable while updating that variable.

Our present solution permits all processors or any subset of processors to
update the queue pointer simultaneously. To do so, we make use of Fetch-and­
Add as defined here for a single processor.

Definition: Fetch-and-Add(Address,lncrement);

Temp:= Memory[Address];
Memory[Address] :=Memory [Address]+ Increment;
Return Temp;

When Fetch-and-Add is used concurrently by M processors, we require the
following conditions:

1. The cell at Memory[Address] is read only once and written only once,
rather than read and written M times, to satisfy the M concurrent re­
quests.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 331

Sec. 6.3 Multiprocessor Interconnections 319

2. The set of M values returned to the M requesters is the same as some set of
values that would be returned to the M requesters for some ordering of
the requests executed serially, with each request having exclusive access
to Memory[Address] during the update of the cell.

The definition is not particularly unusual. Fetch-and-Add acts much like an
Add-to-Memory instruction. The only difference of note is that Fetch-and-Add
returns the prior contents of memory. The first characteristic of concurrent
execution is crucial, for it is this characteristic that reduces bandwidth in
mu! ti processors.

As an example of the basic idea, consider three processors that execute
Fetch-and-Add concurrently to the same memory cell, SUM. If the initial
value of SUM is 10, the three increments are respectively 2, 5, and 12. Then
the network produces the total of the increments, 19, which is the only num­
ber added to SUM. SUM is fetched once to obtain the value 10, and the new
value 29 = 19 + 10 is the updated value of SUM. Meanwhile the network
computes the values to return to the three requesters. One possible set of
values that could be returned is 10, 12, and 17, which are the values that
would have been returned had the increments 2, 5, and 12 been used se­
quentially in that order.

The trick to the implementation is illustrated in Fig. 6.10, where we see
how the cells in the shaded subtree produce the necessary behavior. Each cell

+2 +2

+7 +10

MEMORY MEMORY

(a) (b)

Fig. 6.10 Two phases of a Fetch-and-Add instruction:
(a) The data flow towards memory when increments of 2, 5, and 12 are applied. The
numbers in the switch cells show the saved datum; and
(b) The data flow away from memory for the return of information to the requesting
processors. The memory returns the value+ 10, and the switching cells modify the
returned datum as shown before reporting the datum back to the requester.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 332

Sec. 6.3 Multiprocessor Interconnections 319

2. The set ofM values returned to the M requesters is the same as some set of
values that would be returned to the M requesters for some ordering of
the requests executed serially, with each request having exclusive access
to Memory[Address] during the update of the cell.

The definition is not particularly unusual. Fetch-and—Add acts much like an
Add-to—Memory instruction. The only difference of note is that Fetch-and—Add
returns the prior contents of memory. The first characteristic of concurrent
execution is crucial, for it is this characteristic that reduces bandwidth in
multiprocessors.

As an example of the basic idea, consider three processors that execute
Fetch-and-Add concurrently to the same memory cell, SUM. If the initial
value of SUM is 10, the three increments are respectively 2, 5, and 12. Then
the network produces the total of the increments, 19, which is the only num—
ber added to SUM. SUM is fetched once to obtain the value 10, and the new
value 29=19+ 10 is the updated value of SUM. Meanwhile the network
computes the values to return to the three requesters. One possible set of
values that could be returned is 10, 12, and 17, which are the values that
would have been returned had the increments 2, S, and 12 been used se—

quentially in that order.
The trick to the implementation is illustrated in Fig. 6.10, where we see

how the cells in the shaded subtree produce the necessary behavior. Each cell

MEMORY MEMORY

(a) (b)

Fig. 6.10 Two phases of a Fetch-and-Add instruction:
(a) The data flow towards memory when increments of 2, 5, and 12 are applied. The
numbers in the switch cells show the saved datum; and
(b) The data flow away from memory for the return of information to the requesting
processors. The memory returns the value + 10, and the switching cells modify the
returned datum as shown before reporting the datum back to the requester.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 332

320 Multiprocessors Chap. 6

combines data moving towards memory and does an inverse operation for
data moving away from memory. In this case, each cell detects when two
Fetch-and-Add operations for the same shared variable reach its inputs si­
multaneously. The two increments are added internally to produce a sum,
which is routed to the memory. Thus, one cell adds 2 and 5 to produce 7, and
the second cell adds 7 and 12 to produce 19.

To prepare for the return trip, each cell stores the value of one of the two
increments, in this case the left-hand input. Hence the first cell stores the
value 2, and the second one stores the value 7. By storing the value of the
left-hand input, when data traverse the network from memory to processors,
the results returned will be as if the left-hand increment were used before the
right-hand increment to update the shared variable. In this case, on the
return trip, the number 10 reaches the cell with the stored value. It places the
10 on the left-hand port, and the sum 17 = 10 + 7 on the right-hand port. The
right-hand port now has a value that would be seen if the value of SUM were
17 just before the 12 were added to it.

Meanwhile the value 10 travels to the first cell. There the unmodified
value of 10 is reported to the left port, and the sum 12 = 10 + 2 is reported to
the right port. The left port, therefore, has a value of 10, which would be the
value before the increment 2 is used to update SUM. The right-hand port has
the value 12, which is the value it would see if SUM were updated by 2 just
before the 5 from the right-hand port is used to update SUM.

Each cell in the combining switch has at least the following capabilities:

1. Detect a matching address on left and right inputs.

2. Add two increments.

3. Save one increment.

4. Match a returning value for Fetch-and-Add to a saved increment for the
instruction.

These capabilities in a combining switch are fairly costly, but the combining
switch potentially has large gains if it is successful in reducing hot-spot
contention by removing critical sections for some shared variables.

As a concrete example of an extremely important use of Fetch-and-Add,
consider the problem of enqueueing and dequeueing requests in a multi­
processor. An obvious mechanism for controlling a multiprocessor is to place
tasks on a queue when no processor is available to execute them. As a pro­
cessor completes its present work, it inspects the queue and removes a new
task for execution if there is one.

The queue itself is a bottleneck when queue pointers must be locked and
unlocked for safe updating. If, for example, a queue holds N independent
tasks, all ready for immediate execution, and N processors suddenly complete
a phase of activity and become available for new task assignments, ideally we

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 333

Sec. 6.3 Multiprocessor Interconnections 321

would like to hand over the tasks in a single cycle so that all processors can
start immediately. However, when pointer updating is serialized, then
handing out the tasks takes O(N) time, which could be quite significant for
large N. This overhead is intolerable if the tasks are short, for example 0(1)
time in length.

The case depicted here may seem artificial, but it is quite realistic. Pro­
grams are often written with barriers at which processors must halt until all
processors reach the barrier. At the moment when the last process reaches the
barrier, all processors become free. Hence, the normal case at a barrier is for
N processors to become free simultaneously. When this occurs, they all reach
for new work at the same queue, and the queue becomes a severe bottleneck.

The basic idea in using the Fetch-and-Add is that each processor at­
tempting to enqueue an item requests a position in the queue. This can be
done with a statement of the form:

enqueue _position := Fetch_ and_ Add(Head, 1);

In this case the first argument of Fetch-and-Add is a counter, Head, which
gives the present position in the queue at which an item is to be added. The
second argument is the increment by which Head is increased when a new
item is added to the queue.

When the code is executed serially, the Fetch-and-Add returns the posi­
tion of the next item. When the code is executed concurrently by two or more
processes, all Fetch-and-Adds can be done at the same time, yet each pro­
cessor will receive a unique, valid index into the queue because the values
returned by Fetch-and-Add are the same values that would have been re­
turned for some serialization of the Fetch-and-Adds. Any serialization of the
enqueue requests yields correct code for sequencing N requests, and the
Fetch-and-Add mimics one such serialization, but it does so with as little as
one memory cycle.

We have not treated here the need to make the queue cyclical, nor have we
treated the case of the empty or full queue. Chapter 7 studies these pro­
gramming issues more fully. The example has served our purposes suf­
ficiently well to show the potential use of the Fetch-and-Add instruction. It is
the only mechanism proposed to date that is seriously being implemented for
solving the hot-spot problem and for eliminating serial bottlenecks in multi­
processor code.

Our discussion has mentioned the potential of Fetch-and-Add, but the
concept has not been fully evaluated at the time of this writing. Several
questions have to be resolved to determine if Fetch-and-Add and the com­
bining network will truly be cost-effective for multiprocessors.

In the ideal case, the combining network removes a bottleneck, and the
next bottleneck is at a much higher level of throughput. The value of the
combining network is the gain in speed in being able to operate at a much

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 334

322 Multiprocessors Chap.6

higher throughput rate than permitted without the combining network.
However, it is quite possible to find that the combining network eliminates a
bottleneck that is only marginally below the next bottleneck in the system, so
its cost is hardly justified in such circumstances.

An essential element of the Fetch-and-Add instruction is that it returns
data sufficient to serialize a computation. Sullivan et al. [1977] propose a
machine that reduces bandwidth by combining read accesses to a common
address in memory. If two or more accesses ask for the same i tern, the shuffle­
exchange network in their architecture has the ability to combine the multi­
ple requests into a single request and route the resulting data from memory
to all requestors.

This design undoubtedly influenced the inventors of the combining
switch, but it is generally less useful than is the combining switch, which
eliminates the major bottleneck of a critical section in an enqueue/dequeue
routine. Sullivan et al. did not solve the serialization problem and this
severely restricts the utility of their idea.

Can a combining network actually eliminate hot-spot contention? A hot
memory can be hot if it receives a disproportionate number of accesses, but a
combining network is effective only if all those accesses are to the same
address. Is this case realistic? Perhaps it is if the reason for the biased distri­
bution of accesses is due to accesses to shared data.

A research effort that is exploring this question and many other related
ones is the RP3 project at IBM [Pfister et al. 1985]. Its structure is outlined in
Fig. 6.11. At the left is a processor, one of 512 in the largest configuration
planned, and at the right is a combining network comprised of shuffle­
exchange stages.

This network is shown with its inputs and outputs on the same side. In
effect each processor node of Fig. 6.9 is identical to the corresponding
memory node in that figure. The global memory is spread among the pro-

Processor Mapper--....------ Network
Interface

Cache
Local 1 Global

Memory : Memory

Switching
Network

Fig. 6.11 The structure of one of the 512 processors of the full implementation of the
IBM RP3. The switching network is a shuffle-exchange network with combining logic.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 335

322 Multiprocessors Chap. 6

higher throughput rate than permitted without the combining network.
However, it is quite possible to find that the combining network eliminates a
bottleneck that is only marginally below the next bottleneck in the system, so
its cost is hardly justified in such circumstances.

An essential element of the Fetch—and—Add instruction is that it returns

data sufficient to serialize a computation. Sullivan et al. [1977] propose a
machine that reduces bandwidth by combining read accesses to a common
address in memory. If two or more accesses ask for the same item, the shuffle-
exchange network in their architecture has the ability to combine the multi—
ple requests into a single request and route the resulting data from memory
to all requestors.

This design undoubtedly influenced the inventors of the combining
switch, but it is generally less useful than is the combining switch, which
eliminates the major bottleneck of a critical section in an enqueue/dequeue
routine. Sullivan et al. did not solve the serialization problem and this
severely restricts the utility of their idea.

Can a combining network actually eliminate hot-spot contention? A hot
memory can be hot if it receives a disproportionate number of accesses, but a
combining network is effective only if all those accesses are to the same
address. Is this case realistic? Perhaps it is if the reason for the biased distri—
bution of accesses is due to accesses to shared data.

A research effort that is exploring this question and many other related
ones is the RP3 project at IBM [Pfister et a1. 1985]. Its structure is outlined in
Fig. 6.11. At the left is a processor, one of 512 in the largest configuration
planned, and at the right is a combining network comprised of shuffle—
exchange stages.

This network is shown with its inputs and outputs on the same side. In
effect each processor node of Fig. 6.9 is identical to the corresponding
memory node in that figure. The global memory is spread among the pro-

 m: Switching
Network

 Local l Global

Memory : Memory

Fig. 6.11 The structure of one of the 512 processors of the full implementation of the
IBM RP3. The switching network is a shuffle-exchange network with combining logic.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 335

Sec. 6.3 Multiprocessor Interconnections 323

cessors so that each processor has one independent block of memory, some of
which can be used as global memory, and the remainder of which is used for
local data. Between the processor and the network is an address mapper, a
cache, and an interface for routing requests to local or global memory or to
the network, where it can be routed to a remote block of global or local
memory.

Addressing in this system is rather novel. To reduce contention, it is
extremely advantageous to multiplex the global address space evenly across
all memory modules to balance requests across all modules. This is most
easily done by using the least-significant bits of a memory address to specify
the module that has the data. Then references to items close to each other in
logical address space are scattered more or less uniformly to all physical
modules.

Local memory, however, cannot be treated in the same way. Local
memory should be physically close to its associated processor. Local memory
should use the most-significant, not the least-significant, bits to select a
physical memory. Thus, items that lie close to each other in the address space
of local memory should lie in the same physical memory module.

RP3's approach to this dilemma is to use a boundary within the address
space to separate the subspace that has interleaved addresses from the sub­
space that has block addressing. If an effective address falls above the bound­
ary, for example, then the least-significant bits determine the physical mod­
ule, and the most-significant bits are the address within module. If an
effective address falls below the boundary, the most-significant bits deter­
mine the physical module arid the least-significant bits are the address within
the module. In the former case, the address subspace is used for shared,
global data, and in the latter case, the address subspace is used for local data.

Local data are not private in the sense that it is possible for a processor to
produce an address in the local address space of a remote processor, but the
main objective is to use the local address space for items that are unshared
and frequently accessed and that should be held in close proximity to a
processor. The RP3 has an additional degree of freedom in that the boundary
between local and global subspaces is software controllable. Thus a control
program can select a suitable ratio for the sizes of the subspaces, and this is
not fixed in advance by the hardware.

In closing this section, we mention that there is a trade-off in time and
cost in the selection of interconnections. The shuffle-exchange network lies
somewhere in the middle of the possible trade-offs, where buses represent one
extreme and crossbars represent the other.

The shuffle-exchange is not the only network in the middle of the range.
There can be higher fan-in and fan-out per switch if increasing fan-in and
fan-out can be done inexpensively and reduces delay through the network.
Several hypercube computers based on this general principle were

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 336

324 Multi processors Chap. 6

introduced in the mid-1980s, the most parallel being the Connection Ma­
chine, with 64K processors [Hillis 1986], and the most influential being the
Cosmic Cube [Seitz 1985], with 128 processors. Although neither of these
machines incorporates combining switches per se in its design, the hypercube
connection pattern is an extension of the shuffle-exchange connection, and,
consequently, the notion of a combining switch for the shuffle-exchange net­
work extends to the hypercube network by analogy.

Hillis and Steele [1986] describe how the Connection Machine imple­
ments combining and serialization in O(log2 N) time by means of SIMD
broadcast instructions. So in spite of being quite different from the RP3 and
Ultracomputer, the Connection Machine's hypercube connections support a
similar function.

In all cases, from bus to crossbar and in between, the ratio RIC deter­
mines how many processors can fruitfully be put to work on a single problem
simultaneously. The bus has the lowest potential value of RIC, and it is the
topology most likely to be ineffective as the number of processors increases.
Note that the architecture of the RP3 attempts to keep local data and fre­
quently used data within a processor, thereby increasing the RIC ratio and
the number of processors that can be used effectively.

At this writing the multiprocessor is still in its infancy in the commercial
world. One dramatic lesson of the experience obtained thus far is that the
major unknown area to explore is software. What are good parallel algo­
rithms for solving various important problems? The key approach is the
ability to partition the problem into modules that require relatively little
intermodule communication. If the partitioning can be done successfully,
then communication requirements are rather small, and the dependency on
the interconnection topology is greatly diminished. On the other hand, if
communication requirements cannot be made small, then the interconnec­
tion topology becomes important, and the major parameter of interest is the
RIC ratio.

6.4 Cache Coherence in
Multiprocessors

The key to using interconnection networks in processors is to send data over
the networks rather rarely. This tends to reduce contention, and, as the use
per processor diminishes, the number of processors that can be served in­
creases. Obviously, a cache memory provides an effective means for main­
taining local copies of data to reduce the need to traverse a network for
remote data. We point out in the previous section that if a cache misses only
ten percent of the time, and remote fetches occur only on misses, then the
number of processors supportable on the interconnection network is ten

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 337

Sec. 6.4 Cache Coherence in Multiprocessors 325

times greater than for a cacheless processor. The multiplier climbs inversely
with the miss ratio, so the potential parallelism is quite dramatic when the
miss ratio is near 0.

Caches in multiprocessors must operate in concert with each other. Spe­
cifically, any datum that can be updated simultaneously by two or more
processors must be treated in a special way so that its value can be updated
successfully regardless of the instantaneous location of the most recent
version of the datum. The purpose of this section is to explore multiprocessor
caches and examine the control algorithms required for these caches to be­
have correctly.

First, let us examine the nature of how caches might reach inconsistent
states. This will give us some insight into mechanisms suitable for correcting
the problem.

We have discussed the special requirement for handling shared variables
in memory, and a similar requirement holds for shared variables in caches.
When a shared variable is resident in memory, we can view the memory cell
as being the current residence of the variable.

Earlier in this chapter we find a problem in trying to update the value of a
variable shared by two processors. What goes wrong with the update process
is that momentarily the current value of the shared variable moves from
memory to the first processor, Processor 1. While Processor 1 holds the cur­
rent value and updates that value, Processor 2 accesses shared memory. But
the current value of the variable is no longer there. The variable has moved to
Processor 1, but Processor 2's request is not redirected. It erroneously goes to
the normal place for storing the shared variable.

Our example presumes that Processor 1 updates the shared variable and
immediately returns it to memory, but in a cache-based system, Processor 1
may well hold the variable indefinitely in the cache. The failure exhibited in
the example becomes much more likely when caches are present. The failure
interval is not limited to a very brief update period, but can happen for any
access to the variable in shared memory while that variable is held in Pro­
cessor l 's cache.

Whether the failure probability is low or high, the treatment of shared
variables must be handled correctly. There has to be some solution that has
truly zero probability of failure. Can you imagine the havoc wreaked in a
system in which this were not the case? Programs would almost always work
correctly, but would fail randomly when timing conditions caused the shared
variables to be misread. The failures would be nonrepeatable and extremely
difficult to diagnose. They might well be misdiagnosed as intermittent hard­
ware failures.

There is a related failure mode that also has to be considered. If Processor
1 copies a shared variable to its cache and updates that variable both in cache

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 338

326 Multi processors Chap.6

and in shared memory, then problems can arise if the values in cache and in
shared memory do not track each other identically.

Suppose, for example, that Processor 2 updates shared memory. At a later
time Processor 1 requests the value of the variable, but takes that value from
its copy in the cache and ignores altogether the change in the variable from
the update performed by Processor 2. Processor 1 's access is to a stale copy of
the data held in cache, and it should be to the fresh data held in shared
memory.

Another form of the stale-data problem occurs when a program's foot­
print is not flushed completely from cache when that program is moved to a
different processor and returns at a later time. Suppose that Processor 1 is
running a program that leaves in cache the value 0 for variable X. Then the
program shifts to a different processor and writes a new value of 1 for variable
X in the cache of that processor. Finally, the program shifts back to Processor
1 and attempts to read the current value of X. It obtains the old, stale value of
0 when it should have obtained the new, fresh value of 1 for X. Note that X
does not have to be a shared variable for this type of error to occur.

In all failure modes discussed here, the common problem is for each
processor to direct its memory accesses to the current active location of any
variable whose true physical location can change. Simple solutions are
possible, but they have performance penalties.

For example, each shared datum can be made noncacheable to eliminate
the difficulty in finding its current location among N caches and main
memory. This can be done, for example, by providing a special range of
addresses for noncacheable data, or by using special LOAD and STORE in­
structions that do not access cache at all.

To eliminate stale-data problems for cacheable, nonshared data, the pro­
cessor can flush its cache each time a program leaves a processor. This guar­
antees that main memory becomes the current active location for each
variable formerly held in cache.

While these simple solutions have been adopted in some multiprocessors,
the solutions have a negative effect on performance because they reduce the
effective use of cache. We want to explore other solutions that retain a higher
effective use of cache while still guaranteeing that the total system can oper­
ate error free.

The general problem is called the cache-coherence problem, and it has
been studied in the literature by Dubois and Briggs [1982] and Archibald and
Baer [1986]. These articles examine the performance impact of protocols for
maintaining consistent caches. Goodman [1983] is an early paper that out­
lines in detail a reasonably efficient cache-coherence mechanism. Sweazey
and Smith [1986] explore a variety of cache-coherence protocols and delin­
eate virtually all the possible variations of the Goodman proposal.

In all of the studies, the solutions are limited to ensuring cache coherence

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 339

Sec. 6.4 Cache Coherence in Multiprocessors 327

for shared variables. The stale-data problem caused by moving a program
away from and then back to the processor has to be solved by other means,
such as by flushing the cache when a program is moved away.

Of the many proposals, our discussion picks a single reasonable solution
to cache coherence. We examine its characteristics to determine its per­
formance limitations in a multiprocessor. Architects should be familiar with
the entire spectrum of protocols and with the relative performance of differ­
ent solutions as measured on their own workloads on their own machine
environments. We specifically do not recommend any one approach because
the actual choice of the best protocol is quite dependent on the computer
structure and the workload for which it is used.

Here are the basic operations that must take place to maintain cache
coherence:

1. If a READ opera ti on for a shared datum misses in cache, then all caches in
the system must be interrogated for a copy of the datum.

2. All WRITE operations to a shared datum, whether they are hits or misses,
force all caches in the system to be checked for a copy of the datum. A
possible exception to this rule is if the datum is tagged as being the only
cached copy of the data in the system, in which case no external broadcast
is necessary.

Before discussing alternatives, note that there is a severe performance pen­
alty associated with cache-coherency protocols. The first requirement causes
a broadcast operation followed by a cache read in every cache in the system,
which tends to increase network contention and reduces available cache
bandwidth. Since this operation takes place only on misses to shared data, its
frequency should be just a few percent of the reads on any single processor.

As the number of processors increases, however, the load on the commu­
nications network and cache traffic quickly approaches saturation. For
example, a one-percent miss rate on shared data in each of 100 processors of a
multiprocessor generates 100 x 0.01=1 broadcast request and one cache
read per clock cycle. This broadcast will saturate the communications system
and the individual caches of all processors.

Potentially greater degradation is caused by the second requirement,
which requires a broadcast on every WRITE to a shared datum unless the
system is able to tell that the shared datum is not resident in any other cache.
The difference between the READ and WRITE penalties is that immediately
after a READ miss occurs, the shared item becomes available in a local cache,
and subsequent READs can be performed without broadcast. However, if two
or more processors attempt to access and modify the same shared variable
several times over a brief period of time, and if the requests by each processor
are interleaved in some order, then the cache-coherency protocol generally
causes heavy traffic due to frequent broadcasts that progressively move the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 340

328 Multiprocessors Chap. 6

datum from one cache to another as it is read and modified repeatedly.
Although this behavior appears to be unlikely, it is extremely likely to occur
in multiprocessor systems at barriers in programs and at locks that protect
regions requiring exclusive access.

The basic mechanism for broadcast is best suited for a bus inter­
connection because a bus transaction is automatically assured that all re­
ceivers are listening to the bus when the transmitting processor gains access
to the bus. Broadcasts can easily be implemented in shuffle-exchange net­
works and hypercubes, but they suffer from the problem that extra band­
width available in these networks is lost momentarily when a broadcast
saturates the interconnection network.

Similarly, a crossbar network is saturated by a single broadcast message,
and that broadcast has to be delayed until all receivers are listening, which
causes additional loss of useful bandwidth. Most proposals for cache­
coherence protocols are therefore based on bus-connected multiprocessors.
The RP3, for example, with its combining-switch network does not have a
cache-coherency protocol, but instead caches only nonshareable data. Refer­
ences to shared data are routed directly to memory without interrogating
cache.

Given the basic principles of cache coherency, the least complex solution
is to broadcast a READ on every read miss of shared data, and to broadcast a
WRITE on every write to shared data. A cache listener responds to a READ by
interrogating its own cache and reporting back the data.

If two or more respondents exist, then any respondent can report back
data because the data should be identical. Most protocols, however, provide a
unique ownership tag that dictates which respondent should deliver the data
requested. When a WRITE is received, a listener can respond either by re­
placing the local value with the broadcast value or by purging the local value.
Which of these is preferred depends on such factors as the cache size and the
likelihood of accessing a shared variable again in the immediate future.

The basic protocol provides an opportunity to reduce broadcasts on
WRITEs if there is a means for tagging an item in cache to indicate that it is
the only copy of the item in any cache. If we add such a tag, then WRITE
broadcasts need to occur only for cache misses and for cache hits to items that
are resident elsewhere as well. But the tag has to be maintained so that its
state is an accurate reflection of the state of the caches.

It is clear that if any datum is flagged as exclusive, then at any point that
a broadcast for that item is observed, the tag has to be altered. Each of the
proposed protocols provides a means for updating that tag. For example, a
possible protocol for maintaining the flag is the following:

1. If the item in a cache is exclusive, and a read request for the item is
observed on the network, then change the flag to nonexclusive and deliver

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 341

Sec. 6.5 Summary 329

a copy of the item to the requester. The requester tags the item as non­
exclusive as well.

2. Purge any item in the cache when a write to that address is observed on
the network.

3. When writing a datum to the cache, mark the datum as exclusive and
notify other processors that the datum has been written. Write the new
value of the item in shared memory as well.

A modification of the protocol avoids the purge noted in Item 2 and retains
the new value of the item. If this is done, then the tags throughout the system
must show nonexclusive ownership, so that Item 3 marks an item as exclusive
if no other cache has the item, and otherwise marks the item as nonexclusive.

We cannot easily judge if the modification gives better or worse
performance overall because much depends on the likelihood of repeated
accesses to shared variables. The modified protocol gives better performance
for heavy use of shared variables, whereas the basic protocol gives better
performance when the right decision is to purge the variable when the va­
cancy in the cache can be put to immediate use holding other data.

Very little is known today about the likely access patterns to shared data
in multiprocessors, so all coherency protocols are worthy of consideration in
the immediate future. As multiprocessors become more widely used,
performance data that can be used to evaluate the protocols and identify
which one or ones are best for specific implementations should become
available.

6.5 Summary

This chapter treats multiprocessors from a performance and topological
point of view. The fundamental advantage of the multiprocessor architecture
is its generality. Algorithms for such systems are much less constrained than
are algorithms for vector and continuum-model computations because the
individual processes in execution need not be identical or nearly identical.

The disadvantage of a multiprocessor architecture is that performance
relies strongly on replication of hardware, but replication introduces serious
problems regarding cost and contention. Programming complexity is greatly
increased because of matters regarding synchronization and the correct use
of shared data.

The negative factors tend to make multiprocessors most attractive for
architectures with a small number of processors. The problem size is also
important. To keep overhead low compared to useful computation,
multiprocessors are best suited for large problems that cannot easily be
treated on a single processor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 342

330 Multiprocessors Chap.6

Because of the extra complexity and overhead cost introduced to support
parallel execution, multiprocessors become less attractive for dealing with
problems that are solvable in reasonable time on a uniprocessor. Break­
throughs in languages and operating systems for multiprocessors could en­
hance the relative attractiveness of multiprocessors by eliminating the
complexity that now falls on the programmer, but, to tap the potential power
of the multiprocessor, the breakthroughs must necessarily provide high effi­
ciency as well as complexity reduction.

For the near future, the likelihood of success in multiprocessor systems is
assured for systems with a small number of processors. Chances for success
diminish rapidly as N approaches 100 to 1000. It will take the efforts of many
talented researchers pushing at the frontiers of computing research to make
the 1000-processor system a cost-effective reality.

Our comments here suggest that overhead and communications costs
have to be held to a minimum to achieve that reality. The hardware and
software technology to keep those costs low is just developing. The combining
switch is an example of a new technology that could make a substantial
difference in the future. We expect other ideas of this type to emerge in the
next few years to help shape future architectural developments.

Exercises

6.1 Consider the performance model expressed by Eq. (6.1). Suppose the two pro­
cessors have unequal speeds and that Processor 1 is n times faster than Processor
2. What is the optimum distribution of tasks to processors?

6.2 The model expressed by Eq. (6.2) is suitable for a system in which transmission
time is independent of the number of processors. The cost of communication is a
fixed constant C, and the formula multiplies this cost by the number of communi­
cation transactions. In a token ring, the time of transmission increases with the
number of processors. Develop a model that reflects this characteristic of token
rings, and find the optimum task allocation for your model.

6.3 The purpose of this exercise is to find a performance model that fits a realistic
program. Consider Program 5.1. The innermost pair of loops updates a rectan­
gular region of a matrix. The outer loop repeats this operation N times. To answer
the questions that follow, ignore the cost of synchronization and count only the
communications costs for data.

a) Partition the problem so that each row of the matrix lies totally within one
processor. Determine the processor-to-processor communication transactions
that have to occur within the algorithm. If there is no broadcast capability,
how many communications occur during the algorithm? Compare this to the
number of times that the innermost loop is executed on a serial computer and
on the multiprocessor you are modeling.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 343

Exercises 331

b) If your architecture supports a one-cycle broadcast transaction in which a
transmitting processor can send a common message to all listeners, how does
this facility change your answer to a?

c) Let N = 10, and RIC= 1. What is the optimum distribution of tasks to pro­
cessors for your system with a broadcast capability?

6.4 Repeat Exercise 6.4, but this time assign each column of the matrix to lie totally
within one processor. Compare your answers for row and column assignments
and discuss how the storage format affects the optimum way to distribute tasks
among processors.

6.5 The purpose of this exercise is to investigate the effects of synchronization. For the
row-oriented data structure of Exercise 6.3, reexamine Program 5.1 and discover
where synchronization is required. That is, find where processors have to wait for
events in other processors before they can proceed. Alter the performance model
of Exercise 6.3 to account for the synchronization operations required.

6.6 Assume that the matrix of Program 5.1 is stored in N processors with one column
in each processor of a multiprocessor. Let each column be updated in parallel
when the subarray is updated. At the end of the update, assume that synchroniza­
tion is done by means of a shared semaphore resident in Processor 0. Before an
iteration begins, the variable is initialized to a value equal to the number of active
processors in the forthcoming iteration. As each processor completes its work, the
processor gains exclusive access to the shared variable, decrements the variable,
then releases exclusive access. If a processor produces the value zero after a
decrement, it initiates the next subarray update. Otherwise, processors become
idle after decrementing the shared variable.

a) For N = 16, 32, and 128, determine the values of parameters rand h in Eq.
(6.23) for a multiprocessor based on a crossbar-interconnection scheme. From
these parameters, compute the maximum generation rate for memory re­
quests.

b) Consider the question in a for a multiprocessor based on a bus interconnection.
For this system, the point of contention is the shared bus rather than the
memory system. Extend the model of a to cover all sources of bus contention to
find a maximum rate for generating requests similar in intent to Eq. (6.24).

c) Consider the same problem executed on a machine with a shuffle-exchange
network and the capability of performing Fetch-and-Add. Find the maximum
rate for generating requests for this architecture for Program 5.1.

6.7 The structure of Program 5.1 requires access to both rows and columns of a
matrix. Consider a very simple algorithm that accesses a matrix by two scans of
the matrix. In the first scan, the matrix is accessed by rows. In the second scan, the
matrix is accessed by columns. The matrix is N x N.

a) For a crossbar-based multiprocessor with N processors and memories, show
how to store the matrix to minimize the time for the required forms of access
and state how much time is required to complete the two scans.

b) Repeat a for a bus-based multiprocessor.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 344

Multiprocessor Algorithms

This chapter explores the means for programming multiprocessors for high
performance. A major portion of the chapter is dedicated to efficient mech­
anisms for ensuring the correct execution of programs. Our approach is to
look at the easy parallelism first. The obvious ways to execute in parallel
produce the bulk of the gains for most applications.

When one attempts to wrest the ultimate performance from a parallel
process, it becomes necessary to explore more sophisticated notions. This
chapter shows that search algorithms, for example, yield rather poor speedup
when the programmer naively assigns dependent tasks to different proces­
sors. This is the case, for example, if a search terminates when any processor
finds a solution, and the search space is divided among all processors.

We show a different approach that uses parallelism rather efficiently to
solve a classic optimization problem, the Traveling Salesman Problem, in a
time that on the average grows less than quadratically in the size of the
problem. This may appear to be rather astounding, since the Traveling Sales-

332

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 345

Sec. 7.1 Easy Parallelism 333

man Problem is one of the so-called hard (NP-complete) problems, and there­
fore there exists no known algorithm that solves this problem in a time that
grows less than exponentially in the problem size. But theory covers the worst
case and says nothing about the average case. We cover the average case in
this text, and that has a very low complexity.

Correctness of parallel algorithms requires some mechanism for handling
the updates of shared variables. We introduce the performance notion of
SYPS (SYnchronizations Per Second, pronounced "sip"), which is normally
measured in MSYPS (MegaSYPS).

In this chapter we show how the MSYPS capacity of an architecture
affects throughput. Throughput is limited both by its MIPS and MSYPS
capacity and cannot exceed the throughput permitted by the more con­
straining of the two measures. Thus a high-MIPS, low-MSYPS machine may
be outstanding at numerical operations, but can run rather poorly for
applications that require a high volume of synchronizations. The MIPS
measure alone suggests a high throughput, but the architectural constraint
on MSYPS can prevent the potential MIPS from being realized.

7 .1 Easy Parallelism
Parallelism is best used for programs that require a significant number of
cycles. We have accomplished something worthwhile when we reduce a ten­
day execution to one day, whereas the reduction of a ten-minute program to
one minute is an equal but far less interesting speedup. We argue here that
long programs almost surely contain some region of code that accounts for
the bulk of the execution by being executed repeatedly for a massive number
of times.

At a clock rate of 100 ns, there are on the order of 1012 clock ticks in a day.
Consider any program that takes a full day to execute and examine where it
spends the bulk of its time. If there is some subroutine or code sequence that
is repeated a large number of times, say a million times, then our thesis is
justified. The alternative is that no program instruction is executed more
than a few times.

At 10 ticks per instruction and as many as ten repetitions of an instruc­
tion, we find that the program must contain about 1010 distinct instructions
to execute for one full day. Such a program would indeed be unusual because
of its gigantic size, and the effort to construct such a program would take
thousands of man-years at current rates of software productivity. The
program is more likely to have only 104 to 106 instructions, therefore re­
quiring an average repetition factor of roughly 105 to 107

•

With some body of instructions being repeated a million times or more,
we have an opportunity for parallelism if we can spread those million exe-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 346

334 Multiprocessor Algorithms Chap.7

cutions in some way across N processors. This is a simple recipe to achieve
parallelism:

1. Analyze the program for a loop or recursion structure;

2. Find the instructions that account for the most time, usually the regions
repeated the greatest number of iterations;

3. Split the instruction execution of these regions across N processors, if this
can be done correctly; and

4. Add synchronization and data-transmission statements as required to
create a correct parallel implementation.

As an example of the application of this idea, consider Program 7.1, which
revisits the Poisson calculation introduced in Chapter 4. Recall from our
earlier discussions that the near-neighbor iteration is usually not the most
efficient way to solve the Poisson problem. Nevertheless, iteration is what
appears in Program 7.1.

Suppose, also, that we know in advance that lOM cycles are required for
the iteration to converge. Program 7.1 shows three nested loops. The outer
loop repeats 10M times to obtain the necessary convergence. (The fixed num­
ber of outer iterations is a just a convenience for this example. Most
implementations repeat the outer iteration until some convergence test is
satisfied.)

In the two inner loops, each point P[i, j] in a square region is updated
once. The innermost loop updates a line in the region, and the next level of

Program 7.1 Poisson solver, serial version.

Notes:

fork:= 1 to 10 x M do
begin

for i := 1 to M do
begin

for j := 1 to M do
begin

P[i,j] := (P[i,j + 1] + P[i,j -1] + P[i + 1,j] + P[i -1,j])/4;
endj loop;

end i loop;
end k loop;

1. Boundary conditions are held in Rows 0 and M + 1 and Columns 0 and
M + 1 of array P.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 347

Sec. 7.1 Easy Parallelism 335

iteration treats the collection of lines that cover a rectangle. The outermost
iteration forces the rectangle to be updated lOM times.

A purely sequential program updates all points in the rectangle one time
before any point in the rectangle is updated a second time. To enforce this
behavior in a parallel program, we require that the parallelism be limited to
a single update of the rectangular region. Therefore, we seek a scheme that
uses parallel processors as effectively as possible for a single update of the
rectangular region, and we perform lOM executions of the parallel update,
with the updates occurring one after another, without any overlap among
them. Figure 7.1 shows a possible execution diagram, with the number of
processors busy as a function of time and the outer iteration that they are
performing at any given time.

7.1.1 The do par and do seq Constructions

From a programming point of view, we need the concept of parallel and serial
embedded in a language to distinguish between iterations that can be done in
parallel across many processors and those that have to be done one after
another. A simple way to extend a Pascal- or FORTRAN-like language is to
introduce these forms of the do construction:

• do par to execute loop iterations in parallel; and

• do seq to execute loop iterations sequentially.

Then the form

Iteration 1

for i : = 1 to M do seq
begin

Iteration A
end do seq;

Iteration 2

Time--+

Iteration 3

Fig. 7.1 Processors busy as a function of time. All available processors are busy until
most of the work for an iteration is done. As an iteration nears completion, some
processors become idle and must wait until a new iteration starts before they can
resume computation.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 348

Sec. 7.1 Easy Parallelism 335

iteration treats the collection of lines that cover a rectangle. The outermost
iteration forces the rectangle to be updated 10M times.

A purely sequential program updates all points in the rectangle one time
before any point in the rectangle is updated a second time. To enforce this
behavior in a parallel program, we require that the parallelism be limited to
a single update of the rectangular region. Therefore, we seek a scheme that
uses parallel processors as effectively as possible for a single update of the
rectangular region, and we perform 10M executions of the parallel update,
with the updates occurring one after another, without any overlap among
them. Figure 7.1 shows a possible execution diagram, with the number of
processors busy as a function of time and the outer iteration that they are
performing at any given time.

7.1.1 The do par and do seq Constructions

From a programming point of view, we need the concept of parallel and serial
embedded in a language to distinguish between iterations that can be done in
parallel across many processors and those that have to be *done one after
another. A simple way to extend a Pascal- or FORTRAN-like language is to
introduce these forms of the do construction:

a do par to execute loop iterations in parallel; and

e do seq to execute loop iterations sequentially.
Then the form

tori :2 1 to Mdo seq
begin

Iteration A

end do seq;

Iteration 3

Iteration 2

Iteration 1Processors

Time —>

Fig. 7.1 Processors busy as a function of time. All available processors are busy until
most of the work for an iteration is done. As an iteration nears completion, some
processors become idle and must wait until a new iteration starts before they can
resume computation.

PATENT OWNER DIRECTSTREAM, LLC

EX. 2069, p. 348

336 Multiprocessor Algorithms

produces M serial executions of Iteration A, whereas

for i : = 1 to M do par
begin

Iteration A
end do par;

Chap. 7

causes all M copies of Iteration A to be alive concurrently, and any or all those
copies can be executed concurrently, depending on scheduling policies and
the resources available. The do par construction creates a separate instance of
the loop body for each value of i in the range of do par.

To describe our findings regarding the parallel and sequential behavior of
Program 7.1, consider Program 7.2, in which the two inner loops use the do
par construction, and the outer loop uses the do seq construction. During the
course of execution, this program creates M 2 copies of the inner iteration, one
for each (i, j) pair, parcels these out among the processors, then awaits their
completion. When they have completed, the program performs the same
process again and continues repeating it until it is done lOM times.

7.1.2 Barrier Synchronizaton

Notice the synchronization that is implied by the do seq construction in
Program 7.2. A processor ready to begin a new outer iteration has to be
informed when all work for the last outer iteration has been completed.

Program 7.2 Poisson solver, parallel version.

Notes:

fork:= 1 to10xMdoseq
begin

for i : = 1 to M do par
begin

for j : = 1 to M do par
begin

P [i, j] : = (P [i, j + 1] + P [i, j - 1] + P [i + 1, j] + P [i - 1, j]) 14;
endj loop;

end i loop;
end kloop;

1. Boundary conditions are held in Rows 0 and M + 1 and Columns 0 and
M + 1 of array P.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 349

Sec. 7.1 Easy Parallelism 337

In essence, the do seq construction has placed a barrier after each of its
iterations. As many processors as can be used effectively can be allocated to a
single iteration of a do seq, but those processors must stop at a barrier at the
end of the iteration. No processor can cross this barrier until all processors
performing the loop iteration have reached the barrier.

In Program 7.2, we can have as many as M 2 processors executing within a
single iteration of the outer loop, and these processors have to stop and wait
at the implicit barrier for all to finish before any one processor can start a new
iteration. We call this type of synchronization barrier synchronization.
Although it is not used explicitly in Program 7.2, it is implicitly used at the
end of each iteration of the do seq.

An explicit form of the barrier can be used as shown in Program 7 .3
within the body of a do par construction. In this case, the body of the loop has
three parts, Steps A through C. The par do creates M instances of the loop
body, one for each value of i, and parcels these tasks to as many processors as
are available.

In the absence of barriers, for any single iteration we are guaranteed to
execute Step A(i), then B(i), then C(i), in that order. The order in which the
steps are performed across iterations is rather arbitrary, and anything could
happen. For example, we could see the completion sequence A(l), A(2), B(2),
C(2), B(l), C(l). We could not see a sequence in which B(l) completed after C(l)
because a loop body for a specific iteration has to be executed serially.

Program 7 .3 has a barrier inserted after Step B. The effect of the barrier is
to force all iterations to complete Steps A and B before any iteration con­
tinues to Step C. With the barrier in place, the sequence A(l), A(2), B(2), C(2),
B(l), C(l) cannot occur because C(2) completes (and hence must have been

Program 7 .3 Barrier example.

Notes:

for i := 1 to M do par
begin

Step A (i)
Step B(i)
Barrier;
Step C(i)

end i loop;

1. The barrier forces all iterations of A and B to complete before any iter­
ation of C is started.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 350

338 Multiprocessor Algorithms Chap.7

started) before B(l) has been completed. The barrier should be inserted if
Step C of each iteration depends on Steps A and B of prior iterations.

The barrier is a rather strong means for synchronizing, and it may be
more severe than is actually necessary. It may be possible to use more focused
methods of synchronization that can start Step C in various iterations at
much earlier times. Such methods necessarily have the ability to sense when
specific conditions are satisfied so that Step C can start, which is more
flexible than sensing the single condition that all processors have reached a
barrier.

7.1.3 Performance Considerations

Given these basic notions of parallel and sequential execution of loops, let us
examine the performance aspects of the parallel code. For the moment, let us
ignore the specific details of initiating a parallel task at the beginning of a do
par and of handling a barrier, if any, associated with the do par. Our objective
is to determine the RIC ratio for a program so that we can relate the results of
Chapter 6 to multiprocessor algorithm development.

In Program 7.2, a single task corresponds to the one statement of the
innermost loop. This statement takes roughly six instructions, consisting of a
LOAD, three ADDS, a SHIFT or DIVIDE, and a STORE. Address calculations
might be required as well, but they might be avoidable if the address
computations required can be done totally by means of the effective-address
mechanism without requiring additional instructions. We also should in­
clude some additional time to charge to the iteration for the calculation of the
values of i and j to use for this particular iteration. In total, roughly ten
instructions are necessary to perform the iteration. This corresponds to R, the
run time.

The overhead and communication encompassed by C includes the work
required to generate the task, to enqueue it while waiting for a processor, to
dequeue it when a processor becomes available, and to log the completion of
the task so that some barrier can be passed when all tasks are completed.

We may be fortunate enough to avoid an ENQUEUE/DEQUEUE pair, but
there have to be some instructions to generate and terminate the task. A very
low estimate for this overhead is two instructions for each of generation and
termination. A more realistic estimate is hundreds, possibly thousands, of
instructions.

The ratio RIC might be as high as 2 or 3, and it could be as low 11100 or
1/1000. For most of the models mentioned in Chapter 6, these ratios do not
support a good deal of parallelism. Depending on the architecture and the
ratio, the fastest implementation of Program 7 .2 uses one processor or just a
few processors. But this is still rather optimistic because our earlier models
ignore the effects of synchronization. Synchronization produces further
degradation that biases the best solution towards fewer processors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 351

Sec. 7.1 Easy Parallelism 339

To be more specific, consider how synchronization affects a single task in
Program 7.2. The task has to be generated, enqueued, dequeued, and termi­
nated. The enqueue, dequeue, and terminate processes are likely to involve
shared variables that have to be updated. The task-generation process might
introduce its own overhead as well if it, too, updates shared variables.

Let us count the updating of a shared variable as a basic operation that
we call a synch. Then one task of Program 7 .2 requires three synchs (for
enqueue/dequeue/terminate), plus roughly ten instructions for task generate,
loop body, and task terminate. Most multiprocessor architectures are highly
constrained in how synchs are implemented, and the number of synchs that
can be performed in parallel is typically rather limited, sometimes as few as
one. An exception to this is an architecture with the combining switch de­
scribed in Chapter 6, such as the IBM RP3 and NYU Ultracomputer architec­
tures.

To understand the synch problem more thoroughly, consider a bus­
oriented multiprocessor that uses a READ/MODIFY/WRITE operation on the
bus to perform a synch. Then at most one synch per cycle is possible. For a
cycle time of 100 ns, this limits performance to at most 107 SYPS (synchs per
second), or 10 MSYPS.

If in one cycle the multiprocessor can execute one instruction in each of N
processors, then the performance of the composite system is lON MIPS for
instructions, but only 10 MSYPS for synchs. The MIPS rate is N times greater
than the MSYPS rate. Our example program demands roughly two or three
instructions per synch, so that for N greater than 3, the system becomes
saturated at the synchronization interface; otherwise, the system is saturated
at the instruction-execution interface.

A combining switch provides a mechanism for supporting synchs in par­
allel, and thereby it provides an MSYPS rate more nearly on the order of ION
MSYPS for a system with a 100 ns clock. The coefficient need not be 10; it may
be considerably less. The point is that the sustainable MSYPS rate grows with
N, and it thereby provides a means for breaking the synch bottleneck.

Architectures that do not have a combining switch or an equivalent mech­
anism for executing synchronizations in parallel are subject to a saturation
phenomenon depicted in Fig. 7 .2. The assumption in this figure is that there is
a fixed maximum MSYPS supportable by the system, independent of the
number of processors. As processors are added, the MIPS rate of the system
grows linearly with the number of processors, but the MSYPS rate is fixed.
Eventually the MSYPS demand reaches the limit, and no additional speedup
is possible as new processors are added.

The figure shows linearly increasing speedup until ten processors are in
the system; thereafter speedup remains at the saturation limit of ten as new
processors are added. Two curves are shown-an idealized piece-wise linear
curve that reflects the bounds on speedup, and a curve that falls below this
bound, which suggests what might be observed in actual situations. The true

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 352

340 Multiprocessor Algorithms Chap. 7

40

35

30

25
a.
:::J

"O MIPS Limit Q) 20 Q)
a. en

15 MSYPS Limit

10

5
Actual Speedup

10 20 30 40
Number of Processors

Fig. 7.2 Speedup curves.

curve shows speedup falling off with additional processors because overhead
tends to increase and MSYPS capacity remains at the fixed limit as new
processors are added.

We have reached an interesting challenge for a computer architect. Sup­
pose that an application such as Program 7.2 is implemented for a
multiprocessor, and performance turns out to be sharply restricted because
of an MSYPS bottleneck. What avenues are open to the architect to improve
performance? Here are three obvious directions to follow:

1. Increase RIC and thereby do more computation per synch.

2. Balance the system by making architectural changes to increase the
MSYPS rate of the architecture.

3. Balance the system by reducing the MIPS rate of the processors.

The first approach is the easiest and most cost-effective. We can substantially
improve performance for essentially no cost in hardware or software by in­
creasing granularity. This is the preferred solution that is discussed at some
length in this section.

The second approach forces the architect to build into the architecture
mechanisms that support a high MSYPS rate. The combining switch is the
only approach being implemented today for which the MSYPS rate increases
linearly with the number of processors, but other techniques that may raise

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 353

Sec. 7.1 Easy Parallelism 341

the MSYPS rate high enough for specific applications are also possible. For
example, the architect can incorporate a high-speed specialized processor for
synchronizations that does nothing but manage locks and the updating of
shared data. In a multiprocessor, the architect might also include a hardware
scheduler/dispatcher for task and processor management.

The third approach, reducing the MIPS rate of the processors, corrects
system imbalance but reduces overall throughput. The idea here is that if
system imbalance results in idle processors, one may be able to obtain nearly
equal speed by using less expensive slower processors. This approach at­
tempts to exploit the cost disparity between low-speed and high-speed tech­
nology, and can be successful if the change in throughput by reducing the
speed or number of processors is sufficiently low compared to the reduction
in the cost of the system. The idea is to change from an inefficient system to a
much less expensive system of slightly lower capacity by exploiting higher
efficiency.

7 .1.4 Increasing Granularity

To continue this discussion, let us see how easy it is to increase RIC for
Program 7.2. The granularity assumed in the program is that there is one
assignment statement per task. To increase granularity we can group several
statements together, as suggested by Program 7.4.

Program 7.4 is identical to Program 7 .2 except that the innermost loop
contains the phrase chunksize 50. This phrase instructs the compiler and
operating system to group 50 s·uccessive index values into each task, instead
of assigning one index value to each task. The last task to be assigned receives
whatever index values remain, which may be fewer than 50. With the chunk­
size set to 50, RIC is 50 times greater for Program 7.4 than for Program 7.2,
and the MSYPS requirement is reduced by a factor of 50. Of course, the
parallelism available is also reduced by a factor of 50, but the point is that the
reduction in parallelism might be quite tolerable if it were not usable in the
first place.

For example, consider the potential for parallelism when Min Programs
7 .2 and 7 .4 is equal to 100. The two inner loops create 10 ,000 tasks in Program
7 .2. The number of tasks actually created depends on the program, not on the
architecture. If the architecture has fewer than 10,000 processors available,
as is likely to be the case, then the excess tasks created will probably be
enqueued and dequeued or generated on demand, but in any case will result
in 10,000 instances of overhead related to their management. Program 7.4
gives the programmer the ability to reduce the overhead by controlling how
many independent tasks are created, as well as the RIC ratio for those tasks.

For the example we are considering, Program 7.4 creates 200 tasks, which
is appropriate for architectures with 200 or more processors. If the architec­
ture has fewer than 200 processors, the chunksize should be made even larger,

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 354

342 Multiprocessor Algorithms Chap.7

Program 7.4 Poisson solver, parallel version with chunking.

fork := 1 to 10 x M do seq

Notes:

begin
for i := 1 to M do par

begin
for j := 1 to M do par chunksize 50;

begin
P [i, j] : = (P [i, j + 1] + P [i, j - 1] + P [i + 1, j] + P [i - 1, j]) 14;

endjloop;
end i loop;

end k loop;

1. Boundary conditions are held in Rows 0 and M + 1 and Columns 0 and
M + 1 of array P.

2. The phrase chunksize 50 forces iterations to be parcelled out to pro­
cessors in chunks of size 50, with each of the iterations in a chunk per­
formed sequentially. Different chunks can be executed concurrently on
different processors.

and it is realistic for the chunksize to be computable dynamically to be a
function of the number of the processors actually available for execution of
the loop body.

The purpose of a small granularity, after all, is to increase the available
parallelism, but there is no point to increasing parallelism beyond the
amount that can be exploited. Granularity should be set no smaller than the
size that creates enough tasks to fill available processors, and perhaps even
this size is too small if RIC for that granularity is below the break-even point
for the processors available. The point in making the chunksize selectable by
the programmer is that the programmer can experiment with grain size to
find some optimum size for a given application and architecture.

Granularity is only one of several factors that the programmer has to
consider. We have not addressed the issues regarding local and global storage
and allocation of data to reduce memory contention. When the programmer
chooses a granularity by choosing a chunksize, the programmer is actually
binding together various iterations and is thereby creating an environment in
which some data can possibly be reused several times in a local context
before being returned to a global memory. In this environment, the task can
be structured as follows:

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 355

Sec. 7.1 Easy Parallelism 343

1. Acquire locks as required for global variables to be updated.

2. Read variables from global memory to local memory.

3. Perform the computation, updating the local variables.

4. Update the global variables from the local copies of the variables.

5. Release the locks on the global variables.

While the computation is being executed, contention with other processes is
held to a minimum because all accesses are to local memory. However,
locking and the synchronization overhead required to obtain and release
locks can degrade performance. Much depends on the likelihood that pro­
cessors will be left idle while waiting for locks to be released.

In creating a large task by choosing a large chunksize, the programmer
actually has more flexibility than is shown in Program 7.4. That program
provides only for creating tasks by grouping together iterations that fall on a
single row of the square array. The program can be reorganized so that
chunks fall instead along columns, or in rectangular or square subarrays.

The structure that forms the best possible chunk has a good granularity
and can operate on the data for that chunk with minimum interference with
processors that operate on their chunks. The amount of interference expected
to occur depends on the architecture and the allocation of data to memory
modules within that architecture. The designer of the architecture has to be
aware of the control choices available to the programmer and should create
an architecture in which one or more of those choices leads to efficient exe­
cution across a range of important problems.

The programmer has a rather powerful means for controlling the size of
RIC by controlling chunksize and by selecting which statements are grouped
together within one chunk. If the chunksize is fixed for an architecture, as
several proposals for fine-grained architectures have suggested, the pro­
grammer loses the flexibility to adjust the RIC ratio to obtain maximum
performance. First- and second-generation multiprocessors should leave the
ratio in the hands of programmers until sufficient experience is obtained to
build machines with optimal or near-optimal RIC ratios.

The second technique for eliminating an MSYPS bottleneck is to reduce
the cost of a synchronization, or equivalently, to increase the MSYPS rate of
the architecture. This subject is sufficiently complex to warrant its own sec­
tion within this chapter. We defer discussion at this point and explore the
subject in depth later.

The last technique achieves balance within a system by slowing down the
processors relative to the synchronization mechanism. Thus, the MIPS rate of
the system is reduced while the MSYPS rate is fixed, and this yields a better
balance if MSYPS are not well matched to the initial value of MIPS.

Figure 7 .3 shows speedup as a function of the clock period as the clock is
slowed. Note how speedup in this system increases as the processors become

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 356

344

60

50

i 40

~ 30

20

10

Multiprocessor Algorithms

Communications-Limited System

250 500 750

Processor Clock Cycle (ns)

Fig. 7.3 Speedup versus clock period.

Chap. 7

1000

slower. Recall that speedup is a measure of the speed of an N -processor
system as compared to a system that has one processor identical to any one of
the N processors. Figure 7.3 is plotted for N = 100. Since clock period
increases along the X-axis, the processors at the right-hand side of the figure
are slower than the processors at the left-hand side of the figure.

The figure shows that the speedup obtained from 100 processors is
greater for slow processors than for fast processors. However, speedup is not
the same as performance. The performance from 100 fast processors is
greater than the performance available from 100 slow processors, even
though speedup is less for the fast processors. On the left side of the diagram,
the fast processors are not well matched to the slow synchronization
mechanism, and many are left idle during a computation. Adding new
processors to this system does not improve performance very much, so
speedup is relatively low.

As we move from the left to the right of the figure, the bottleneck in the
system shifts from the synchronization mechanism to the processors
themselves. When the processor performance is the chief component of the
bottleneck, then by adding new processors, the bottleneck is reduced so that
speedup tends to increase. Cvetanovic [1986] made this observation in regard
to her study of an RP3-like architecture, but the phenomenon holds in general
for systems that have two or more potential bottlenecks.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 357

Sec. 7.1 Easy Parallelism 345

The lesson to be learned from Fig. 7 .3 is that the architect should select a
design point in which bottleneck capacities are close to being in balance. For
the multiprocessor architecture, the maximum system MIPS and MSYPS
rates should be balanced with respect to each other to match the demands of
most workloads. If the system is out of balance by being on the left side of Fig.
7 .3, the processors are too expensive for the system performance they give. On
the right side of the figure, the processors themselves are the bottleneck, and
additional speed can be obtained by faster processors.

7.1.5 Initiating Tasks

One topic of importance that we have overlooked thus far concerns the mech­
anism for initiating individual tasks. If, in Program 7.2 or Program 7.4, the do
par construction is implemented by generating the tasks one by one, then the
task generation is a serial overhead that must be added to C in the RIC ratio.

Program 7.2 depicts a situation in which the inner loop requires O(N)
instructions just to generate the tasks if task generation is done sequentially.
Yet the tasks themselves take only ten or so instructions that are supposedly
done in parallel.

This situation becomes rather comical if you observe a processor exe­
cuting the do par and spinning off 100 tasks by executing 1,000 instructions.
After spending all of this time generating the work, within ten more in­
structions all the work is done. We have simply shifted execution time from
doing the main iteration to the overhead in starting up the processors. Obvi­
ously, the RIC ratio is far too low to be useful, but more fundamental is the
fact that we cannot afford to use sequential execution to spin off the tasks to
be executed concurrently.

A good approach is to produce the tasks during compilation, provided
that the value of N is known during compilation. Then the tasks are created
once for all executions of the program. Presumably, once the tasks are cre­
ated, they can be loaded in parallel into all processors, and thereby we avoid
the serial time for their initiation.

An alternative approach that has somewhat higher overhead is to gener­
ate the tasks dynamically in O(log N) time by means of a binary task­
generation tree. To generate the tasks for the innermost do par loop of Pro­
gram 7.1, the root node of the generation tree generates two subtasks. The
first is responsible for generating the first half of the tasks, and the second is
responsible for generating the second half of the tasks. These in turn split into
four subtasks, each responsible for generating a quarter of the tasks. After
O(log N) steps, no additional subtasks are generated, and the tasks them­
selves can be generated.

The tree-generation scheme or an equivalent is absolutely essential for
dynamic task-initiation. Any O(N) process for task generation can create
sufficient overhead to severely impair multiprocessor performance.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 358

346 Multiprocessor Algorithms Chap. 7

The task-generation scheme appears to be an obvious requirement. Yet it
has been overlooked repeatedly in the literature in serious proposals for
multiprocessors. Halstead [1985] describes an interesting multiprocessor ar­
chite"cture called Concert, in which the user has explicit control of task gener­
ation. This paper describes an example of parallel sorting using the well­
known quicksort algorithm, which has an average complexity of M log M for
sorting M items.

The initial phase of the Halstead algorithm is a linear pass over the M
items. This phase generates a collection of tasks that can be executed in par­
allel. Subsequent phases of the algorithm exploit parallelism rather well, but
the first phase does the damage. No matter how many processors are used,
the algorithm cannot run faster than O(M), thereby dooming speedup to O(log
M). Halstead reports near linear speedup for a small number of processors,
but as the number of processors grows close to log M, speedup must level off.

The limitation on speedup in this case is not the fault of the architecture
because Concert, like many multiprocessors, supports task-generation trees.
The fault lies in the data representation of the problem. The data to be sorted
in this problem are presented to the algorithm as a LISP one-way linked list.
The only way to inspect the data is to follow the chain of pointers from one
item to the next, taking O(M) time to do so.

Here is a situation in which the data representation from a serial program­
ming language is strongly incompatible with high-performance parallel pro­
cessing. Although Halstead's article articulates the strengths of the Concert
architecture, it does not specifically address the weaknesses of a linked-list
structure in the context of the algorithm. The data representation in this case
imposes an inherent inefficiency on what otherwise appears to be an inter­
esting and effective technique for exploiting parallelism in a multiprocessor.

The key to architectural evaluation is identifying how performance
changes as a function of critical parameters such as the number of processors,
RIC, and the choice of data structure. We have shown how a few simple
notions provide extremely powerful tools for identifying major bottlenecks
that are otherwise hidden from view.

In closing our discussion of easy parallelism, note how the example for
this discussion shows the advantages of the multiprocessor over a near­
neighbor SIMD machine and other various forms of vector machines.

Program 7 .2 is ideal for a near-neighbor or a vector machine, as stated,
but real applications are seldom as simple as Program 7.2. The boundary
calculations are often rather complex, and in the more usual case, the region
is irregularly shaped or has internal cavities or other structures that alter the
simplicity of the solution.

Each different type of point within the region of computation requires a
slightly different program. A purely SIMD machine cannot easily deal with
such differences and still retain high efficiency. Each different type of point,
in the worst case, requires its own program execution, done with all other

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 359

Sec. 7.2 Synchronization Techniques 347

processing turned off. Thus, an SIMD machine may have to perform succes­
sive computations for the points of Region A, Region B, and so on, and
thereby reduce the effective parallelism available in the architecture.

The multiprocessor can produce different programs for each region and
perform the computations for all regions concurrently, thus achieving greater
parallelism than an SIMD architecture can achieve. We presume that the
number of different programs required is a small number, such as ten to 20,
and that the execution time per iteration is equal to the longest time logged
by any of the different programs. If there are k different programs to execute,
then the gain of the multiprocessor over the SIMD architecture is at most a
factor of k.

7 .2 Synchronization Techniques

Synchronization is probably the most difficult and error-prone type of
programming that exists. Its difficulty arises because it involves the under­
standing of the potential simultaneous actions of multiple processors. The
huge number of possibilities to consider is beyond the capability of most
people. Moreover, synchronization also depends on the nature of the
interfaces among the multiprocessors. Many schemes have fallen because the
programmers have made false assumptions about how the hardware works.

As an example of this problem, consider the landmark work of Dijkstra
[1965]. At issue at that time was whether or not processes could be syn­
chronized with just the standard operators of an ordinary programming
language such as ALGOL 60. Dijkstra's solution was the first to show that this
is possible for a reasonable set of assumptions. He states that this is the most
difficult program he has ever written.

The statements in this program make no use of instructions that can
perform uninterruptible READ/MODIFY/WRITE operations because ALGOL
did not supply this operation in any form as a primitive operation. But the
program does assume that a certain observability condition holds. That is, if
Processor A performs WRITE X followed by WRITE Y, then all other
processors will observe the WRITEs performed in this order. That is, if Pro­
cessor A executes WRITE X then WRITE Y, no other processor that executes
READ Y followed by READ X will see the new value of Y and the old value of
X. If it sees the old value of X, it will also see the old value of Y because Xis
changed before Y is changed. This assumption is totally reasonable, yet it
need not be obeyed in multiprocessors unless it is specifically designed into
the architecture.

Any processor that uses a multilevel switching network between pro­
cessors and memory can potentially violate the assumption. The action of
WRITE X followed by WRITE Y presumably launches these two activities
into the switching network, and they quickly make their respective ways to
distinct memory modules.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 360

348 Multiprocessor Algorithms Chap. 7

Suppose that WRITE X hits a hot spot and is buffered, while WRITE Y
succeeds in reaching memory and updating Y. Meanwhile the actions READ
Y and READ X are issued from a different processor. READY readily wends
its way to memory, obtains the new value of Y, and reports it back. READ X
finds a direct route to memory, avoiding the hot spot that is holding back
WRITE X. READ X finds the old value of X and reports it back to the re­
quester. Now the observability assumption is not satisfied, and the Dijkstra
synchronization algorithm fails.

Dijkstra's synchronization solution is not important today because
almost all synchronization is done with a READ/MODIFY/WRITE operation
of some form, which is far more efficient than solutions that have to do a
number of operations to make up for the lack of a READ/MODIFY/WRITE
instruction.

The fact that Dijkstra's solution fails when the WRITE/WRITE observ­
ability condition does not hold is not significant as far as Dijkstra's algorithm
is concerned, but the failure mode itself is rather important because any
multiprocessor algorithm can inadvertently depend on the WRITE/WRITE
observability condition and will fail when that condition does not hold. Pro­
grammers are usually not aware when their codes require WRITE/WRITE
observability. The codes may work perfectly when executed serially and in
some parallel systems, but may well fail when transported to new environ­
ments.

In the remainder of this section we treat a sequence of four methods for
synchronizing processes. The progression moves from the least powerful to
the most powerful, and the discussion suggests how the additional power can
be used to obtain enhanced capabilities. The four methods treated here are

1. Test-and-Set: operate on a single bit.
2. Increment, Decrement: produce sums and differences.

3. Compare-and-Swap: reduce a complex critical section to a single in­
struction.

4. Fetch-and-Add: eliminate critical sections in some cases.

The remainder of this section treats each of the alternatives in order.

7.2.1 Synchronization with Test-and-Set

The first synchronizing method uses an instruction called Test-and-Set, which
performs the following operation:

Definition: Test-and-set (address, bit_position);
begin

Temp: = Memory [address].bit_position;
Memory[address].bit_position := 1;
Condition_code :=Temp. bit_position;

end definition;

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 361

Sec. 7.2 Synchronization Techniques 349

The Test-and-Set instruction sets a designated bit of a shared datum to 1, and
returns in the condition code the value of that bit prior to setting it to 1. The
two parameters of the instruction are the address of the shared datum and the
bit-position of the datum at the address that is to be tested. The notation
"A.b" denotes bit position b of datum A.

This instruction has the classic form of READ/MODIFY /WRITE, which is
a key characteristic of synchronizing instructions. To ensure that it can be
used successfully for synchronizing, the Test-and-Set instruction must be
uninterruptible. That is, once it is initiated and the READ access is com­
pleted, no other access can be made to the operand until the operand is
rewritten during the second step of the Test-and-Set. If an intervening access
were permitted, synchronization could fail.

Multiprocessors that have cache memories must treat Test-and-Set as a
special type of instruction. Since Test-and-Set is used to update shared data,
shared data held in cache must be kept consistent across all caches and with
respect to main memory.

One possibility is to force accesses produced by Test-and-Set to go to
shared memory and avoid the cache altogether. The companion operation
that resets bits of shared operands should be implemented in a similar fash­
ion. Another alternative is to permit shared data to be cached and to build the
necessary synchronization behavior into the cache-consistency protocol.

One possibility here is to use an ownership bit in the cache directory to
indicate which copy of a shared datum resident in one or more caches is the
principal copy. When the READ of the READ/MODIFY/WRITE is performed,
the cache that owns the shared datum passes its current value to the re­
quester. All processors, including the current owner, mark the items as ab­
sent. When the datum is rewritten, it can be rewritten to the local cache, with
the datum tag showing the datum being owned by the local processor.

Now consider how one might use a Test-and-Set instruction to implement
an elementary update of a shared variable. The skeleton for a program is:

Lock (shared_datum);
Update (shared_datum);
Unlock(shared _datum);

With each shared datum or data structure, we can associate a single bit,
called its semaphore. The LOCK and UNLOCK statements operate on the
semaphore of a datum or data structure rather than on the content of the da­
tum. The semaphore is the traffic director that tells a process whether or not
to proceed past the LOCK statement. The semaphore permits no more than
one process at a time to execute the code in the update region of the program.
If Process A executes the Lock statement successfully, then all other processes
must be halted there until Process A executes the UNLOCK statement.

The LOCK statement can be implemented in part with a Test-and-Set
instruction. The Test-and-Set forces the semaphore for the shared datum to

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 362

350 Multiprocessor Algorithms Chap.7

be set, whether or not it has been set before the Test-and-Set. To pass the lock,
the process must see 0 returned in the condition code as the value of the
semaphore just prior to the Test-and-Set.

If several processes execute a LOCK on a semaphore concurrently, the
requests will be serialized and executed one by one because of the character­
istics of the READ/MODIFY/WRITE operations that force this serial behav­
ior. Given serial execution of LOCK, no more than one process of a set of
concurrent requesters can observe a zero value of the semaphore and thereby
move past the LOCK to the update. When one process passes the LOCK and
reaches the UNLOCK, the semaphore can be returned to a 0 state and thereby
permit another process to pass the LOCK statement and update a shared
variable.

In terms of MSYPS, the LOCK/UNLOCK pair take at least one instruction
each. The update code protected by the LOCK/UNLOCK requires two or three
instructions and could be ten to 100 instructions, depending on the nature of
the update. This puts anywhere from five to 100 or more instructions in the
serial section.

The number of serial sections executed sequentially in one second gives
the MSYPS rate, which is therefore anywhere from five to 100 times slower
than the MIPS rate of the processor. For a single processor system, the MIPS
rate is likely to be the bottleneck if its MSYPS rate is very high, for example.
ten percent or more of the MIPS rate. The bottleneck shifts to the MSYPS rate
if MSYPS is relatively low, for example one percent or less of the MIPS rate,
depending on the application.

In multiprocessor systems the peak MIPS rate increases proportionally
with the number of processors assigned to a problem, but the MSYPS rate in
most architectures is a fixed limit for a system regardless of how many
processors are actually assigned to a program.

If we focus on the MIPS rate exclusively and ignore the MSYPS limit, we
tend to believe that by assigning more processors to a program, we are
making available more machine capacity. But this is not strictly true.

Indeed, as more processors are assigned, a program has more MIPS and
more memory available, but MSYPS may not be increasing at all. If this is the
bottleneck, then additional processors will not result in faster computation.
In fact, because of contention among processors, the LOCK/UNLOCK and the
update operations on shared data tend to take longer with more processors
active, with the result that computation time may increase instead of
decrease as more processors are assigned to a computation.

The MSYPS bottleneck is only one of several potential sources of per­
formance degradation. For example, consider what happens when a pro­
cessor is blocked by a LOCK operation. Perhaps it can be put to use doing
other useful work and continue to expend MIPS fruitfully in spite of the
MSYPS bottleneck. The Test-and-Set is only half of a lock. The other half is

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 363

Sec. 7.2 Synchronization Techniques 351

the action taken depending on whether the lock has been granted or not. If the
Test-and-Set observes a prior semaphore value of 0, then the lock has been
granted, and the processor continues on to the update section. If not, there are
at least two different actions that can be taken:

1. Spin lock: branch backwards and reexecute LOCK, repeating the process
until the lock is granted.

2. Enqueue a task: suspend the blocked process, and enqueue its status on a
queue associated with the semaphore. Reassign the processor to other
work currently enqueued and ready for execution.

Neither of these alternatives is particularly attractive. The spin lock wastes
computer cycles and causes memory contention at the semaphore. When
many processors are waiting at a semaphore, the contention causes addi­
tional cycles of delay while a process is attempting to release a lock. This
tends to decrease the sustainable MSYPS rate and magnifies the effect of the
bottleneck at the semaphore.

Task enqueueing appears to be efficient because it devotes available cy­
cles to useful work. However, the overhead for ENQUEUE/DEQUEUE tends
to be very high, which may well be greater in cost than the cost of the cycles
lost in a spin lock. Worse yet, to enqueue a task, a processor has to access and
update a shared queue pointer. This access itself involves a LOCK/UNLOCK
of some kind.

If this lock is not granted, we have come full cycle and face the problem of
enqueueing a task at one queue to enqueue it at another queue. This could
repeat ad infinitum. Obviously, at some level, such as the first or second, we
have to break the chain of events by forcing a LOCK to be implemented by
means of a spin lock rather than by enqueueing a task at a semaphore.

In terms of performance, the two alternatives of spin lock and task en­
queue have opposite effects on MIPS and MSYPS measures. Task enqueueing
tends to increase MIPS available by reassigning idle processors to other
useful work. Spin locks tend to decrease MIPS by dedicating potentially
useful machine cycles to the effort of repeatedly testing a semaphore. The
opposite effect occurs with respect to MSYPS. One effect of task enqueueing is
to increase the number and length of critical sections protected by locks. By
increasing the number of critical sections, the MSYPS demand is increased.
Since only one processor at a time can execute a critical section, by increasing
the length of critical sections, presumably because of the various actions
required during an ENQUEUE and DEQUEUE, the maximum potential
MSYPS rate is decreased.

If a parallel process is limited mainly by MSYPS rather than by MIPS,
then the effect of changing spin locks into ENQUEUE/DEQUEUEs will tend
to lower throughput. Conversely, if the limitation is a MIPS rather than an

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 364

352 Multiprocessor Algorithms Chap. 7

MSYPS limitation, then a change from spin locks to ENQUEUE/DEQUEUEs
may have the opposite effect. It may lead to higher performance, provided
that the ENQUEUE/DEQUEUE overhead is sufficiently low that the system
with ENQUEUE/DEQUEUE locks is still MIPS limited rather than MSYPS
limited.

Before closing this section, we describe briefly the implementation of
UNLOCK because it is very different depending on whether the correspond­
ing LOCK is a spin lock or an ENQUEUE lock. To unlock a spin lock, the
owner processor does no more than write a 0 in the semaphore. It is not
necessary to do a READ/MODIFY/WRITE to unlock the semaphore.

The performance problem that results when N processes are spinning on
one semaphore is that the unlocking process is competing with those pro­
cesses for access to the semaphore and may be delayed an amount of time
proportional to N while attempting to let another processor pass through the
lock. To avoid this problem, the architect can bias the memory system to give
priority to a WRITE request over a READ/MODIFY/WRITE request, provided
that other rules of arbitration guarantee that every requester eventually ob­
tains service. A process cannot loop endlessly at a lock while other processes
receive more than their fair share of service.

If the LOCK operation enqueues idle tasks, then the UNLOCK operation
can dequeue a task waiting for that semaphore. The dequeued task can be
started after the LOCK without having to test the semaphore, provided that
the unlocking process dequeues a task instead of unlocking the semaphore,
since a DEQUEUE is the same as an UNLOCK immediately followed by a
LOCK. If the UNLOCK operation does not check the queue of tasks waiting at
the semaphore, there must be some other mechanism to restart enqueued
tasks, for otherwise tasks could wait indefinitely. The dequeueing form of
UNLOCK almost certainly requires a READ/MODIFY/WRITE operation in­
stead of a simple WRITE operation because it inspects shared queue pointers,
which have to be protected during concurrent updating.

7.2.2 Synchronization with Increment and Decrement

The architect can implement selected instructions that perform READ/
MODIFY/WRITE in a way that permits these instructions to perform the
same function as Test-and-Set and possibly yield greater functionality as
well. Obvious candidates for this purpose are Increment Memory and Decre­
ment Memory, which respectively increment or decrement a designated
memory location.

To use these instructions for synchronization, the architect has to
implement them in such a way that each instruction "owns" its designated
memory cell for the duration of its execution. Once the designated memory
cell is accessed by the READ, no other instruction can access that cell until
after the modified contents are rewritten to the cell.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 365

Sec. 7.2 Synchronization Techniques 353

A plain Increment or Decrement instruction simply upda~es an operand
and need not perform an uninterruptible READ/MODIFY/WRITE. Such an
instruction can be used freely for updating unshared data without regard for
correctness of usage in multiprocessor systems.

Only if the instruction is guaranteed to be uninterruptible can it be used
as well to update shared data. If an uninterruptible version of the instruction
is incorrectly implemented or if a programmer inadvertently uses an inter­
ruptible version of the instruction under the mistaken impression that the
instruction is uninterruptible, then the instruction works correctly almost all
the time. However, in improbably rare instances, an access by another
processor will occur between the READ and the WRITE of the Increment/
Decrement instruction, and in these rare instances, a program failure occurs.
When used in this manner, the interruptible Increment instruction might
well be called "Increment Almost Always," because that is its behavior.

Extensive debugging and program testing is not likely to reveal the exis­
tence of a timing hazard in the Increment, and a programmer may be fooled
into believing that the program is correct. But a truly correct program must
have a truly zero probability of failure, and this requires synchs to be per­
formed by uninterruptible READ/MODIFY/WRITE instructions.

For architectures in which Increment and Decrement are uninterruptible
primitive operations, some synchronization functions require fewer
instructions with Increment/Decrement than with Test-and-Set. Test-and-Set
returns a single bit of information. Increment and Decrement can return the
full contents of a memory cell, and the additional bits available can reduce
the number of instructions required for synchronization.

For example, consider a shared buffer of length M. Up to M processes can
be adding to that buffer concurrently, provided that they operate on separate
cells. If M processes are actively adding to a buffer, and one more process
requests concurrent access, the M +1st process has to wait. In essence, we
need a generalization of a semaphore.

A semaphore as implemented with Test-and-Set permits one process to
pass and denies access for subsequent processes until the semaphore is
unlocked. This is satisfactory for controlling a buffer of length 1. The gen­
eralized semaphore permits up to M processes to pass concurrently and
denies access to subsequent processes until one or more processes unlock the
semaphore. Each UNLOCK allows one additional process to pass the sema­
phore.

A very simple means for using Increment and Decrement to implement
this form of the semaphore is to start the semaphore with an initial value of M
and have each requesting process decrement the semaphore. A processor that
sees a nonnegative number after decrementing has access to the buffer. A
processor that observes a negative number is blocked from access and should
increment the semaphore immediately to reflect the fact that it is not actively
working on the buffer. Blocked processes can be enqueued or can retest the

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 366

354 Multiprocessor Algorithms Chap. 7

semaphore, as discussed earlier for Test-and-Set instructions. A processor
that has completed access to a buffer increments the semaphore to indicate
that there is room for another process at the buffer.

The naive implementation of this form of synchronization exhibits an
interesting failure mode known as livelock. Program 7.S(a) is a direct
implementation of the steps described previously. Buffer access is protected
by a decrement of the semaphore. If the result is negative, the semaphore is
incremented, and the test repeats to make a spin-lock implementation. If the
result is nonnegative, the processor enters the protected section of the pro­
gram and exits by incrementing the semaphore.

The problem is that the system can enter a state in which no useful work
is accomplished, yet there are openings available at the buffer-a state of
livelock. The "live" in livelock contrasts this state with deadlock, which
occurs when a cycle of precedence exists in which A is waiting for B, B is
waiting for C, and so forth, with the last item in the cycle waiting for A.
Deadlock is "dead" because the state is permanent. The processes within the
deadlock cycle cannot end the deadloc;k unless one or more of them aborts.

Program 7.5 Synchronization with and without livelock.
(a) With livelock; and
(b) Without livelock.

Notes:

while decrement (semaphore)< O
do increment (semaphore);

{Critical Section}
increment (semaphore);

(a)

LOOP: while semaphore <Odo;
if decrement (semaphore) < O then

begin
increment (semaphore);
goto LOOP;

end;
{Critical Section}
increment (semaphore);

(b)

1. Instructions increment and decrement are uninterruptible READ/
MODIFY I WRITE instructions.

2. The parameter semaphore is a semaphore variable that guards the critical
section.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 367

Sec. 7.2 Synchronization Techniques 355

Livelock, however, is not inherently persistent. Processors enter a livelock
state because of a quirk in timing, and they can leave the livelock state for an
active state if timing of events becomes more fortuitous.

To observe livelock in Program 7 .S(a), consider what happens if a huge
number of processors issue a decrement to the semaphore immediately after
the semaphore reaches a value of 0. The semaphore will then reach a value of
-HUGE. Will it ever become positive? Not necessarily.

If each of the blocked processors performs an Increment, jump to retest,
and Decrement without interruption, and then turns the semaphore over to
the next processor, the semaphore will momentarily change value from
- HUGE to - HUGE + 1 and then return to - HUGE. As the M active pro­
cessors complete, they will increase the semaphore value to - HUGE + M,
but this is still negative and will not permit other processors to access the
buffer. Hence, useful work is blocked just because of the current order of
events. A change in the order of events could result in the semaphore be­
coming nonnegative, at which point useful work is resumed.

Program 7.S(b) shows a mechanism for eliminating the livelock in Pro­
gram 7.S(a). The trick is to test the semaphore before decrementing. Program
7.S(b) appears to prevent the value of the semaphore from becoming less than
- 1, but actually it can become very negative.

In the worst possible case a huge number of processors observe a non­
negative value of the semaphore and all proceed to decrement the semaphore,
giving it the value of - HUGE. Once the processors have decremented the
semaphore, incremented it, and are preparing to retest it, no further decre­
menting is permitted until the value of the semaphore becomes nonnegative.

When the value becomes nonnegative, at least one process is permitted to
pass before the value becomes negative again. Hence, useful work continues
to be done, although in the worst possible (and highly improbable) case, the
average number of active processors is sharply below the available potential.

7.2.3 Synchronization with Compare-and-Swap

The Compare-and-Swap instruction produces the maximum possible MSYPS
rate for a conventional processor because it reduces locked regions of a pro­
gram to a single instruction-the Compare-and-Swap instruction. A shared
datum is locked at the beginning of the instruction, updated during the
instruction, and unlocked at the end. This is in contrast to the prior examples,
which create a critical section of instructions by manipulating a semaphore
before and after the update to a shared datum. The Compare-and-Swap is
useful in a limited number of very important circumstances, including the
queueing and dequeueing of tasks.

The execution of a Compare-and-Swap is very mysterious at first glance,
and only after examining its operation in practice does its power become
clear. The Compare-and-Swap operates as defined in Program 7 .6. The defini-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 368

356 Multiprocessor Algorithms

Program 7.6 Compare-and-Swap.

Notes:

Definition: Compare-and-Swap (Address, Reg_ old_ val, Reg_ new_ val);
temp:= Memory[Address];
If temp:= Reg_old_val then

begin
Memory[Address] := Reg_new_val;
Condition_Code := 1;

end
else

begin
Reg_old_val := temp;
Condition_Code := O;

end;
end of definition;

1. Variable Address is a memory address.

2. Reg_ old_ val and Reg_new _val are machine registers.

3. The instruction is uninterruptible after it is started.

Chap. 7

4. The condition code can be tested after execution is completed to deter­
mine if the update took place.

tion shows that Compare-and-Swap requires two machine registers, one to
hold an old value of shared datum, and one to hold a new value.

The objective of updating a shared variable with Compare-and-Swap is to
use ordinary instructions to compute the new value of the shared datum
without locking it. Then, in one uninterruptible operation, Compare-and­
Swap refetches the shared datum, tests to see that its value is unchanged, and
if so, performs an update.

If the value has changed, the current value is loaded into the register that
holds the old value. At this point, the program can recompute a new value and
attempt an update with another execution of Compare-and-Swap.

A simple example of the use of Compare-and-Swap is shown in Program
7.7. In this case, the program adds a locally computed increment to a shared
variable. Note that the program reads the current value of the variable into
Reg_old_val, computes the new value in Reg_ new _val, and attempts to update
the variable with the Compare-and-Swap.

If no conflicts occur during the computation of the new value, the update
is successful. If not, the program returns to the loop and computes a new
updated value of the sum. Recall from Program 7 .6 that Compare-and-Swap

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 369

Sec. 7.2 Synchronization Techniques

Program 7.7 Updating a shared sum with Compare-and-Swap.

Notes:

Local_sum := O;
for i : = 1 to N do

Local_sum := Local_sum + X[i];
Reg_old_val := Memory[Address];

LOOP: Reg_new_val := Local_sum + Reg_old__yal;
Compare-and-Swap (Address, Reg old val, Reg new val);
If Condition_Code = O then go to LOOP; - -

1. Variable Address is the memory address of a global sum.

2. Reg_old_val and Reg_ new _val are machine registers.

357

3. The program adds the values of N entries of vector X, then adds these to
the global sum.

loads the current value of the shared variable into Reg_old_val in this case, so
it is not necessary to read the shared variable again when computing its
updated value.

Compare Program 7.7 with our original model of how to update a shared
variable with a sequence of LOCK, READ, MODIFY, WRITE, UNLOCK oper­
ations. When a LOCK/UNLOCK pair are used, no more than one processor at
a time can execute the instructions that perform READ, MODIFY, WRITE.

In Program 7 .7 many processors can execute the instructions of this pro­
gram concurrently, arbitrarily interlacing their access and execution pat­
terns. However, the Compare-and-Swap is uninterruptible. Because many
processors can read and write the shared sum, it is possible for the sum to
change value between the time a processor reads it at the beginning of Pro­
gram 7.7 and the time that processor updates it at the Compare-and-Swap.
There is no LOCK to prevent such concurrent access.

The key to ensuring correct program behavior is the test made by the
Compare-and-Swap. The new value of the shared variable is a function of the
old value, and the test ensures that the old value has not changed. If the old
value is unchanged, then the new value is correct, and it is stored in the
shared variable.

The most valuable application of Compare-and-Swap is for enqueueing
and dequeueing without locking. Because queue pointers are shared vari­
ables, typical ENQUEUE/DEQUEUE programs lock the queue pointers be­
fore changing their values. This creates a multiprocessor bottleneck at the
queue routines by limiting the maximum MSYPS rate of a computer system.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 370

358 Multiprocessor Algorithms Chap. 7

Compare-and-Swap provides a means for concurrent updating of queue
pointers by limiting the locked segment of code to a single Compare-and­
Swap instruction, similar to the way that Program 7.7 limits the locked
segment for updating a sum to a single Compare-and-Swap instruction.

The computer literature on this particular application of Compare­
and-Swap is rather sparse considering the importance of the idea. Sites
[1980] describes the ENQUEUE process, but is not complete because the
DEQUEUE process is left as an exercise. Hwang and Briggs [1984] give a
rather brief discussion that serves only as an introduction to Compare-and­
Swap. Treiber [1986] highlights Compare-and-Swap in more detail in a brief
research report. The most complete source of information at this writing is
the IBM System/370 Principles of Operations [1983], which gives several
examples of correct applications and also shows pitfalls of incorrect use of
Compare-and-Swap.

In spite of the apparent simplicity of Program 7 .7, Compare-and-Swap is
extremely tricky to use correctly. The problem lies in the potentially large
number of ways that concurrent execution can occur. After all, the idea of
Compare-and-Swap is to foster concurrency. However, when many
processors execute the same code concurrently, a variety of events can occur
in sequences unforeseen by the programmer, and synchronization can fail.
Compare-and-Swap is both one of the most valuable tools for multiprocessor
software and one of the most difficult tools to use for that environment.

To show both the power and the danger in the use of Compare-and-Swap,
consider the problem of enqueueing data. Figure 7.4 illustrates the data
structure for the queue and shows Compare-and-Swap permits queueing to
be done with high concurrency. Figure 7.4(a) shows a queue represented as a
one-way linked list whose Head pointer designates the first item in the queue,
the one to be removed next. The Tail pointer designates the last item in the
queue, the point at which new items are added.

Our objective for concurrent enqueueing is to do the equivalent of the
following three-line code segment that places the entry at memory address
Item at the end of the queue:

Memory[ltem].Unk :=nil
Memory[Tai/].Unk :=Item;
Tail : = Item;

The notation". Link" denotes a link field of an item in memory. The last two
statements in this example have to be executed without interruption because
Tail is a shared variable that is read, modified, and rewritten.

When the code is executed correctly, the result of inserting one item is as
shown in Fig. 7.4(b). However, if Processor 1 and then Processor 2 read the
current value of Tail at the second statement, then Processor 1 and 2 in that
order modify the value of Tail at the third statement, and then one of the items

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 371

Sec. 7.2 Synchronization Techniques 359

HEAD TAIL

I ITEM 2 l·+-+I ITEM 3 !·+-+ ITEM4 0

(a)

TAIL

ITEM B !·+-+I ITEMC ! •ti ITEM D ! 1 l

ITEM 0

ITEMA •--•

(b)

TAIL

_iT_E_M_A __ ·:,-- ._1T_E_M_s_.!_· .. +-+ I ITEM c I ·+-+I ITEM o I J I

L, ITEM 2 I 0 I ITEM 1 0

(c)

Fig. 7.4 Queues:
(a) A linked-list representation of a queue;
(b) A queue after the insertion of a new item; and
(c) A queue after executing two concurrent insertions without locking. Processor 1
inserts Item 1, and Processor 2 inserts Item 2, with accesses interlaced as described in
the text.

enqueued will be lost. The pointer to this item will be overwritten. If the last
statement is executed first by Processor 2 and then by Processor 1, Tail will be
left pointing at an item not on the queue. All subsequent items enqueued will
be unreachable from the Head pointer. This situation is shown in Fig. 7.4(c).

Conventional programming techniques lock this set of statements before
they are executed and unlock them when they are completed. A solution
based on Compare-and-Swap is shown in Program 7.8. This program avoids
the pitfall of an interrupted READ/MODIFY/WRITE. Exactly one processor of
a group of concurrently executing processors uses the Compare-and-Swap
successfully to read a value of Tail and write a pointer to Item. This leaves
Tail pointing to the new Item. The former value of Tail, now in the register

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 372

360 Multiprocessor Algorithms

Program 7.8 Enqueueing an item with Compare-and-Swap.

Notes:

Memory [Item]. Unk: = nil;
{Initialize Item for insertion at end of queue}

Reg_Tail := Tail; {Read Tail to a register}
LOOP: Compare-and-Swap (Tail, Reg_ Tail, Item);

If Condition_Code = O then go to LOOP;
{Loop back on failure of Compare-and-Swap}

Memory[Reg_Tail]. Unk :=Item;

1. This program is correct for concurrent ENQUEUEs.

Chap. 7

2. The program as written here may fail if DEQUEUEs and ENQUEUEs can
execute concurrently.

3. Dequeueing may require additional tests, depending on the handling of
empty lists.

Reg_Tail, points to the former end of the queue. The queue is extended by
linking that entry to Item.

If a Compare-and-Swap fails, the processor repeats with the new value of
Tail that was loaded into Reg_ Tail by the Compare-and-Swap. The net effect of
Compare-and-Swap is to guarantee that the values stored in Tail and in
Memory[Tail].Link are consistent.

By various arguments we can show that Program 7 .8 is correct for concur­
rent ENQUEUE operations. However, the program as written does not treat
empty lists, and they can greatly complicate matters. Compare-and-Swap is
extremely difficult to use correctly as complications grow, and its use is prone
to very subtle errors that may never be detected.

Consider, for example, Program 7 .8 when execution reaches the Compare­
and-Swap. This statement relies on the fact that if Reg_Tail =Tail, then no
other concurrent ENQUEUEs have updated Tail since it was last read from
memory. If we allow concurrent DEQUEUEs as well as concurrent EN­
QUEUEs, this may not be the case. A DEQUEUE could have removed the item
at Reg _Tail from the queue, and subsequently, an ENQUEUE could have
reached a Compare-and-Swap to restore this item to the queue. This would
leave Tail at its former value, a value equal to the contents of Reg_ Tail, and we
have reached a condition at which two different processors will attempt to
update Memory[Tail].Link with different addresses.

This failure mode requires Program 7 .8 to be interrupted just prior to
Compare-and-Swap, and then requires other processors to execute DE­
QUEUE and ENQUEUE, and the ENQUEUE to put back the item just de-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 373

Sec. 7.2 Synchronization Techniques 361

queued. Although this is highly unlikely to occur, it is possible, and it will be
undetected by the Compare-and-Swap.

The failure arises simply because the Compare-and-Swap is not powerful
enough to sense a history of changes. The fact that Tail equals Reg_ Tail infers
that Tail has not changed since it was last read. However, this inference is
incorrect, and any sequence of events that leaves Tail in its original state can
potentially lead to the failure of Program 7.8. Since concurrent ENQUEUEs
by themselves cannot restore the value of Tail, Program 7 .8 is safe for concur­
rent ENQUEUEs.

A practical solution to improving the safety of Compare-and-Swap is
outlined in the IBM System/370 Principles of Operations [1983]. The idea is to
extend the Compare-and-Swap to deal with two variables rather than one.
The two variables must be contiguous so that they can be fetched and re­
written with one READ and WRITE.

Program 7.9 illustrates how this extension improves the code reliability.
In this program, Tail is concatenated with a variable Count. The current value

Program 7.9 Enqueueing an item with double Compare-and-Swap.

Memory[ltem]. Unk :=nil;
{Initialize Item for insertion at end of queue}

Reg_Tail&Reg_Count := Tail&Count;
{Read double-variable Tail and Count to two registers}

LOOP: New_Count := Reg_Count + 1;
{Prepare to update Count}

Double Compare-and-Swap (Tail&Count, Reg Tail&Reg Count, /tem&New Count);
If Condition_Code = O then go to LOOP; - - -
Memory[Reg_Tail]. Unk :"' Item;

Notes:

1. The notation Tail&Count designates two variables stored contiguously or
two contiguous registers that are accessed by a single double-length
operation.

2. Double Compare-and-Swap reads a double-length operand from Memory
[Tail], compares this to the double-length operand Reg_ Tail and Reg_ Count,
and updates Tail with the double-length operand Item and New _Count if
the equality comparison is satisfied. Reg_ Tail and Reg_ Count are updated
it the equality comparison fails.

3. The program as written here may fail if Count is incremented a sufficient
number of times to overflow back to its original value, and Tail is left in
its original state.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 374

362 Multiprocessor Algorithms Chap. 7

of the Tail/Count pair is copied to local registers. Just prior to the Double
Compare-and-Swap, the local copy of Count is incremented and moved to the
register New _Count. The Double Compare-and-Swap verifies that the Tail!
Count pair has not changed, and it updates this pair of values with the pair
Item/New _Count.

Since each successful execution of Compare-and-Swap updates both Tail
and Count, if Tail is changed and restored by concurrent queue operations,
then the new value of Count will show that other queue operations have taken
place or are in progress concurrently. This forces an unsuccessful Compare­
and-Swap, which in turn causes a loop to occur and prevents an erroneous
update. An update takes place only if both Tail and Count have not changed.

The sustained value of Count is intended to signify that no other concur­
rent operations are in the process of manipulating Tail. In the System/370
architecture, Count returns to its former value after no sooner than 4 billion
operations. Consequently, Program 7.9 has a highly improbable failure mode
in which a failure occurs if a process is suspended at a Double Compare-and­
Swap while other processors increment Count 4 billion times and leave Tail in
its original state.

To summarize the characteristics of Compare-and-Swap synchroniza­
tion, it is extremely efficient, and highly desirable to use. However, it is very
dangerous and subject to subtle failure modes. It has to be used carefully and
by experienced programmers.

7.2.4 Synchronization with Fetch-and-Add

The three synchronization methods discussed thus far have in common the
property that they are serial methods. No more than one processor at a time
can execute the READ/MODIFY/WRITE operation embedded in them.

The Fetch-and-Add operation is different: it is truly parallel. Conceivably,
all N processors in a multiprocessor can execute a Fetch-and-Add instruction
simultaneously, provided that all processors update the same variable. Fetch­
and-Add operations executed on different variables may have to be done
sequentially if those variables reside in the same memory or share access
circuitry of some other form.

The instruction Fetch-and-Add(Sum, Increment) provides for adding an
increment to a shared sum, and the addition is done in parallel as explained
earlier. No locking and unlocking is required, nor is a retry test and loop
required as with Compare-and-Swap.

In terms of performance, the Compare-and-Swap is as efficient or more
efficient than the Fetch-and-Add if on the average only one processor at a time
requests an update of Sum. This is because Compare-and-Swap is not bur­
dened by delays by network access introduced by the hardware implementa-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 375

Sec. 7.2 Synchronization Techniques 363

tion of Fetch-and-Add. However, when the update becomes a bottleneck to the
extent that ten or 100 requests for access are active concurrently, Fetch-and­
Add is far faster than Compare-and-Swap because it can honor all the re­
quests simultaneously.

For systems with relatively few processors, Compare-and-Swap is the
better approach. As the processors increase, Fetch-and-Add provides poten­
tial performance improvement not available with Compare-and-Swap. Fetch­
and-Add becomes more attractive as the number of processors increases, but
whether or not Fetch-and-Add is cost-effective is still a matter of research
interest. Its implementation cost is high, and its potential is limited to
simultaneous access of the same shared variable by all contending pro­
cessors. It provides no help for contention produced by concurrent accesses to
different variables in the same memory.

For large values of N, for example 1,000 to 10,000, Fetch-and-Add or an
equivalent mechanism for parallel synchronization is a practical necessity.
Without such a mechanism the MSYPS limit will severely impair per­
formance in· a 1,000-processor system. In 10,000-processor systems, other
system bottlenecks may be so severe that Fetch-and-Add may not be sufficient
to produce acceptable performance.

To show Fetch-and-Add at its best, let us reconsider the problem of en­
queueing and dequeueing items on a shared queue. The Compare-and-Swap
approach is pointer oriented, that is, the links are treated as addresses, and
the algorithm builds linked lists.

Fetch-and-add, however, is best used for counters rather than pointers,
where counters are variables that are manipulated by addition and sub­
traction. The result of a sequence of counting operations is not sensitive to the
order in which increments and decrements are applied, which is desirable for
Fetch-and-Add because concurrent executions receive a set of results that
represent some arbitrary ordering of the individual summations.

We want to create algorithms for which all of the arbitrary orderings are
consistent with correct execution of the algorithm. Consequently, the most
appropriate implementation of Enqueue with Fetch-and-Add is to use a
counter-based implementation.

The basic idea is to use a counter, Tail, that is incremented by Enqueue.
The value of Tail is the offset in the queue of the next insertion point. A simple
and incomplete implementation of Enqueue with Fetch-and-Add is

Procedure Enqueue(/tem, Queue);
begin Place:= Fetch-and-Add(Tail, 1);

Queue [Place] : = Item ;
end of Enqueue;

The Fetch-and-Add increases Tail and returns the value of Tail before the
increment. This value is used as the offset in the queue forinserting an item. If

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 376

364 Multiprocessor Algorithms Chap.7

the Fetch-and-Add is executed simultaneously by several processors, Tail re­
ceives the sum of the increments, and each processor receives a different
value for Place, so each processor has a unique position for queue insertion.

This is the basic idea of Enqueueing with Fetch-and-Add, but the full
implementation becomes very complex because of a variety of conditions
that have to be satisfied. Among the conditions are:

1. The queue should be circular, so Tail should be set to a base value of 0
when it exceeds the length of the Queue vector.

2. The total number of active entries in the queue cannot exceed the length
of the queue vector.

3. The Dequeue operation should permit parallel removal of entries from
the queue.

4. The Dequeue operation should not permit a dequeue to succeed on an
empty queue.

5. Both Enqueue and Dequeue should be safe from livelock.

Two implementations of Enqueue/Dequeue with Fetch-and-Add appear in
Gottlieb et al. [1983] and Stone [1984]. Both solutions are too complex to
reproduce in this text. However, the implementations illustrate general
principles worth discussing here.

If we use variables Tail and Head, respectively, to control the insertion
and deletion points in a queue, then the number of items in a queue is the
difference between Tail and Head. However, because both Tail and Head are
reset to 0 when they exceed the length of the queue, the difference in their
values is the number of active elements modulo the length of the queue, so
finding the number of active elements from the values of Head and Tail is
rather tricky. It is much easier instead to maintain a separate variable Count
that gives the current number of active elements. ENQUEUE and DEQUEUE
operate on this variable with Fetch-and-Add with increments of+ 1 and - 1,
respectively. The value returned by Fetch-and-Add can be used to control
actions on queue overflow and underflow.

To prevent livelock, ENQUEUE should first test Count before in­
crementing it, and DEQUEUE should test Count before decrementing it. The
queue full and queue empty conditions that cause processors to loop back to
retry their operations should loop back to the test of Count in a manner
similar to the way that livelock is treated with the Increment and Decrement
instructions. In this way processors remain at the outermost test and are
prevented from further incrementing or decrementing until Count reaches a
safe value.

To handle the queue circularity, when a Fetch-and-Add increments Head
beyond the end of the queue, the set of processors making concurrent access
to Head will discover its value to be less, equal to, or greater than the queue

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 377

Sec. 7.3 Parallel Search-How to Use and Not Use Parallelism 365

length. The processors that receive legal values for Head simply continue. The
processors that discover values beyond the end of the queue abort their activ­
ity by decrementing Head and return to a place earlier in the program to
request a spot in the queue again. Eventually Head will return to the least
illegal value.

The processor that decrements Head to this value decrements Head again
by the length of the queue and thereby resets Head to start at the beginning of
the Queue vector. Livelock prevention tests have to protect Head from livelock
during the incrementing and decrementing that occur in this process.

The full algorithm for ENQUEUE/DEQUEUE

• Manipulates Count, Head, and Tail;

• Handles queue circularity, queue empty, queue full; and

• Protects from processing livelock.

Working out the details of the algorithm is very instructive and shows the
complexity of synchronization with Fetch~and-Add.

We stated that Compare-and-Swap is difficult to use correctly, but Fetch­
and-Add is far more difficult to use. Compare-and-Swap is subject to subtle
failures from concurrency before and after it is executed. Because it forces
serial behavior when it is executed, some simplification is achieved when
verifying the correctness of Compare-and-Swap algorithms. But Fetch-and­
Add supports all of the concurrency of Compare-and-Swap and more.

The fact that many processors can perform Fetch-and-Add concurrently
on the same datum greatly increases the number of possible outcomes to
consider and makes verification extremely difficult. Obviously, Fetch-and­
Add has to be used very carefully by experienced programmers. Fetch-and­
Add synchronization will probably be used mostly through library calls
rather than individually programmed statements because most program­
mers are not likely to be able to create correct, efficient programs based on
Fetch-and-Add.

This brings us to the end of the discussion on synchronization techniques.
The following sections return to techniques for writing efficient multi­
processor algorithms.

7 .3 Parallel Search-How to Use and
Not Use Parallelism

One of the most obvious ways to use parallel processors is for searching.
Many researchers report excellent computation speeds in search applica­
tions, mainly based on the number of processors that are busy during the
search process. Unfortunately, there is quite a difference between the number

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 378

366 Multiprocessor Algorithms Chap.7

of processors busy and the true speedup in a multiprocessor since processors
need not be doing useful work.

In this section we describe two different search algorithms. One is a
search for a maximum of a function. For this problem it is rather surprising
that the optimal search strategy yields only an O(log N) speedup. Even more
surprising is the fact that all processors are busy during every step of the
algorithm, so the magnitude of the wasted computing effort is not obvious.
The second algorithm is a more sophisticated search algorithm. It is re­
produced here to illustrate where one might look for useful parallelism.

7.3.1 Searching for the Maximum of a Unimodal Function

Karp and Miranker [1968] investigated the problem of finding the maximum
of a unimodal function with N processors. A typical function to explore is
shown in Fig. 7.5. By definition a unimodal function has a single mode or
maximum located between its endpoints. Our objective is to find that max­
imum to within a unit interval on the X-axis. The search is to be conducted on
a multiprocessor whose processors can evaluate f(x) at any given x between
the endpoints of the interval. We assume that the evaluation takes a fixed
constant time so that all processors start and finish simultaneously. After
evaluating the function, the processors can exchange information and
determine the next point to evaluate. This too takes a fixed constant time.

0.09 ~------------------~

0.08

0.07

0.06

)(0.05
;;::-

0.04

0.03

0.02

0.01

10 20 30

Fig. 7.5 Searching a unimodal function.

40
x

50 60 70 80

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 379

Sec. 7.3 Parallel Search-How to Use and Not Use Parallelism 367

The full search algorithm consists of a repetition of the processes that
respectively evaluate and exchange information. The repetition continues
until the maximum is pinned to within a unit interval. Karp and Miranker
show that the optimum strategy depends on the parity of the number of
processors, but whether that parity is odd or even, the optimum strategy
produces an O(log N) speedup with respect to a single processor.

What is deceptive about this problem is that every processor is busy at
every step, and we intuitively do not expect the final computation time to be
so poor as to yield only an O(log N) improvement. In fact, with a sufficiently
large number of processors we can pin the maximum to a unit interval in a
single step-the ultimate in high speed. But since a single processor can find
the maximum with a binary search in O(log N) steps, it becomes clear that
O(log N) is all the speedup possible.

Figure 7 .5 shows a typical situation during the execution of the algo­
rithm. The vertical lines show where seven simultaneous probes are executed.
The lines are uniformly spaced in this example. Karp and Miranker describe
where the probes should be made for the optimum strategy, but the details of
the optimum strategy are not important for this discussion.

What is important is the nature of the information returned. From the
given set of probes, we can conclude that the maximum must lie somewhere
in the shaded region. The reason is that we can compute the derivative of the
function by examining two neighboring values of the function. At the max­
imum of the function the derivative goes to zero. Only in the shaded regions
can the derivative of a unimodal function become zero. Therefore, the next
step is to assign the seven processors to evaluate the function in the shaded
region and repeat the process.

A little reflection shows where the wasted effort is going. The only infor­
mation actually used to guide the search is where the derivative changes sign.
The outlying processors work as hard as the middle processors in evaluating
the function, but the results produced by the outlying processors are of no
value.

The only information ext.meted is the derivative of the function, and
because the function is unimodal we know that if the derivative is negative at
x, it is negative at ally> x. Consequently, if we find some x with a negative
derivative, then the processors to the right of this point are wasting their
effort. Similarly, if the derivative is positive at some x, it is positive at all
y < x. Processors operating to the left of a point with a positive derivative are
wasting their effort as well.

Let's examine the problem from the point of the view of the information
available and the information actually used. Each of N processors returns
essentially one bit of information, namely the sign of the derivative of the
function. Thus in one step of the parallel algorithm we compute N bits of
information.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 380

368 Multiprocessor Algorithms Chap.7

The bits, however, are not independent. In fact, the N processors create
N + 1 intervals on the X-axis, producing exactly N possible choices for an
adjacent pair of intervals to search on the next step. The amount of informa­
tion in N choices is only log N bits, not N bits. Hence we expend the effort to
produce N bits of information and obtain only log N useful bits. In essence,
the algorithm throws away N - log N bits per iteration, which accounts for
the wasted effort in this algorithm.

Is there a way to speed up this search? No, not if the constraints are
obeyed. But there could be a way if other options are available. For example,
the processors are constrained to evaluate f(x). This is not satisfactory be­
cause it almost surely forces some evaluations to be useless. If the processors
are given a different representation of f(x) so that each evaluation gives
independent information, the speedup might be greater. It might be possible,
for example, for each processor to work with a Fourier transform of f(x),
which is helpful because each point in the transform contains information
about all points of the function.

The fact that the function is unimodal forces the derivative information to
be redundant. If the function were multimodal, and we had to find a global
maximum, the work per processor would no longer be redundant because
information produced about one region of the function sheds no light about
the function in a different region.

The unimodal function is very important, however, because this is the
function encountered in database searches for lookups by sorted key. When
the search key is compared to a probe key, the difference is computed. The
next point in the search depends on the sign of the difference. The absolute
value of the difference function is unimodal, in this case having a single
minimum instead of a single maximum.

Karp and Miranker's results show that multiple processors will not be
very efficient if they are used to perform a search by making multiple probes
to a file ordered by a single search key. Instead, multiple processors should be
used to conduct independent searches. Therefore we cannot expect a multi­
processor to perform any single-key search much faster than a single pro­
cessor can, but we can expect a multiprocessor to do many different searches
in parallel with high efficiency.

Does the analysis suggest that multiprocessors are not useful for
conducting parallel search for a single key? In some, but not all, cases, paral­
lel search is indeed doomed to be inefficient and is reasonable for only small
numbers of processors.

When a database is sorted by some key, the distance between the search
key and a probe key is a unimodal function, so this problem definitely fits the
Karp-Miranker model. When database keys are unsorted, we have the equiv­
alent of a multimodal function, and the Karp-Miranker assumptions do not
hold. A serial search might have to examine the entire database. In this case, a
multiprocessor search has a potential for excellent speedup.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 381

Sec. 7.3 Parallel Search-How to Use and Not Use Parallelism 369

Therefore, we are tempted to take advantage of multiprocessors for
search by using them on unsorted databases and claiming excellent per­
formance. In this case, however, the savings from parallelism is not truly the
speedup observed; it is the savings in the overhead used to sort the database
and maintain that sorted order. If this overhead is small, then effectiveness of
the parallelism is small. If this overhead is large, then the parallelism is
potentially beneficial.

The important observation here is that parallelism is only one of many
possible techniques for solving a problem. It may fare badly with respect to
good serial techniques. Performance evaluation is crucial in judging the effec­
tiveness of parallel programs, particularly the comparison of the parallel
algorithm to efficient serial algorithms.

The ultimate quality measure of a parallel algorithm is performance per
unit cost, not just performance alone. All algorithms for all processors can be
reduced to this common measure. While it may be interesting to learn that a
1024-processor search is faster than a serial search, it becomes far less inter­
esting when we discover that the speedup over a serial search is a factor 10,
and that we can obtain a factor of 5 speedup by using only 32 processors.

7.3.2 Parallel Branch-and-Bound-The Traveling-Salesman Problem

A remarkable algorithm for solving the Traveling-Salesman Problem pro­
vides an excellent example of where and where not to exploit parallelism. The
Traveling-Salesman Problem is rather deceptive because it is easily described
and simple in concept, but extremely difficult to solve. The problem is to find
a minimum-distance tour of N cities that visits each city exactly once and
returns to the first city on the tour at the end. The problem input is a list of the
distances between each pair of cities.

It is well known that this problem belongs to the class of hard problems
known as NP-complete, for which the best available algorithms exhibit a
worst-case computation time that grows faster than any polynomial function
of the size of the input [see Aho, Hopcroft, and Ullman 197 4]. Many research­
ers believe that the computation time for NP-complete problems actually
grows at least exponentially in the size of the input, but this question is
unanswered at this writing.

The algorithm we describe is remarkable because its average complexity
is only O(N 3log N) which is less than quadratic in the size of the problem since
the problem size is O(N 2

). This appears to contradict the findings that the
problem is NP-hard, but there is no contradiction.

The algorithm has a low complexity on the average, but its worst case
may require exponential time, even though this event is extremely unlikely.
The algorithm is from D.R. Smith [1984], who proved the results on average
time and demonstrated that these results are consistent with actual running
times on randomly generated sets of problems. The analysis might not hold

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 382

370 Multiprocessor Algorithms Chap.7

for a class of problem instances whose characteristics are rather skewed and
are not adequately represented by the more uniform distributions assumed in
Smith's analysis.

The branch-and-bound technique executed on a serial processor is illus­
trated in Fig. 7.6. The algorithm depends on a subroutine that can compute
the least-cost permutation for visiting N cities. We use the notation (1 2 3) to
describe a route that visits City 1, then City 2, then City 3, and then returns to
City 1. We call such a visit a cycle because its starting point is the same as its
finishing point. We call a permutation of the cities to be a set of cycles such as
(1 2 3)(4 5 6 7), such that every city appears in exactly one cycle.

A permutation is not necessarily a tour because in this case if you start at
City 1, you return to City 1 after visiting Cities 2 and 3, and without having
visited any of the other cities. A tour has to visit all of the cities exactly once.
Obviously, a tour is a permutation that has but a single cycle, such as the
permutation (1 2 3 4 5 6 7) for seven cities.

The subroutine that finds the least-cost permutation finds a permutation
whose sum of city-to-city distances is the minimum among all permutations
of the cities. The reason for finding the least-cost permutation is that it gives a
lower bound on the shortest tour. Since a tour is a special kind of permuta­
tion, the shortest tour for a given problem cannot be shorter than the least­
cost permutation.

Finding the shortest tour is extremely difficult, but finding the least-cost
permutation is relatively easy [see Lawler 1976]. This takes only O(N 3

) time
the first time we execute the subroutine. On subsequent executions, the input
data will be only marginally different. Only O(N 2

) additional work is required
to obtain the solutions for these subroutine calls. Lawler shows that the
discovery of the least-cost permutation, which in his terminology is the
assignment problem, reduces to a minimum-cost, network-flow problem [Ford
and Fulkerson 1956], which is solved by repeated applications of Dijkstra's
shortest-path algorithm [1959].

Figure 7.6 illustrates how the lower bound information is used. In Fig.
7 .6(a), we show a single node of the search tree labeled by the permutation (1
2 3)(4 5 6 7), with a total distance of 151 shown inside the node. The algorithm
produces this number by running a least-cost permutation algorithm on the
original algorithm. (To prevent solutions with one-city cycles, the original
problem has an infinite cost of going from any city to itself). Since (1 2 3)(4 5 6
7) is not a tour, the best tour has an equal or higher cost. The least-cost tour
must differ from this permutation on at least one branch of each cycle, so
without loss of generality, we examine the shortest cycle, which in this case is
(1 2 3).

The least-cost tour differs from this cycle in at least one way, and possibly
in more ways. That is, either the tour does not go from City 1 to City 2, from
City 2 to City 3, or from City 3 to City 1. These three possibilities are shown in
Fig. 7.6(a) as three labeled arcs leaving the original node.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 383

(123)(4567)

I 151 I
......... ---1-/2__.I 2f3 _I _3/_1 ----.

(a)

(123)(4567)

I 151 I
1/2 I 2/31 3/1

... -----""'"'I I
(13547)(26) (1452637) (14562)(37)

216 [176 .I 6/2 c::J 317 . ~
~ ~/3

(b)

(123)(4567)

I 151 I
.... ____ 1_12 1 ,3 ... 131_1 ____,,

,~ r:~·
37

1
1

7 r111

:1:,
(13246)(57) (1325)(476)

GG
(c)

(123)(4567)

I 151 I
_____ 1_12 1 2(3 l ... 3_11 ____ _

~ (~ __ r::37i Y7 (14::(37)
~ 7/3

(13246)(57) (1325)(476) (135)(726) (1534726)

~ c=J ~ ~
(d)

Fig. 7.6 Branch-and-bound search for the Traveling Salesman Problem:
(a) Initial solution of the problem (three subproblems open);
(b) After examining the three subproblems;
(c) After expanding the two leftmost solutions; and
(d) The search after expanding the node for permutation (145 6 2)(3 7).

371

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 384

372 Multiprocessor Algorithms Chap.7

Since at least one of these three roads is not on the least-cost tour, we can
create three new subproblems to investigate. In each of three subproblems we
eliminate the possibility that one of the three roads of interest is in the
least-cost permutation. Figure 7 .6(b) shows the result of this step.

The leftmost node at the second level shows what happens when the
distance from City 1 to City 2 is made infinite. When we call the least-cost
permutation subroutine with this new condition, it reports back that the
least-cost permutation is (1 3 5 4 7)(2 6), with a cost of 176. Note that the road
from City 1 to City 2 is not on this permutation because that road happens to
be infinitely long.

When the road from City 2 to City 3 is infinite, the least-cost permutation
happens to be a tour with a cost of 284. Although a tour has been produced by
the algorithm, the tour is not necessarily the least-cost tour for the original
problem. Additional work is required to show that this tour is optimal or to
find a find a lower-cost tour.

When the road from City 3 to City 1 is infinite, the least-cost permutation
is (1 4 5 6 2)(3 7), with a cost of 201. Although we have now discovered a tour
that has a low cost, it might not be the least-cost tour. Both of the other
subproblems are open to the possibility that further exploration of these
candidates could yield tours of cost lower than 284, although we know now
that no tour can have a cost lower than 176.

To investigate the leftmost node, note that the permutation can be broken
at its shortest cycle by opening the road from City 2 to City 6 or by opening
the road from City 6 to City 2. (These roads do not have to be the same road.)

Similarly, the rightmost node can break the cycle that contains City 3 and
City 7 by opening the road either from City 3 to City 7 or City 7 to City 3. Thus
there are four search paths that warrant further exploration. The two best
candidates are the descendants of the leftmost node in the figure because this
node has the least bound of any node on the perimeter of the search tree.

Figures 7.6(c) and (d) show what happens when we follow the four open
subproblems. Searching beneath the node with the lowest bound obtains two
new permutations, whose costs are 323 and 335, respectively. Note, for
example, that the leftmost permutation is (1 3 2 4 6)(5 7), which is the
least-cost permutation for the case in which City 2 does not follow City 1 and
City 6 does not follow City 2.

At this point, the rightmost node has the lowest bound, and the search
branches to that node for further exploration. Examining the two sub­
problems of this node produces two new permutations, whose costs are 419
and 406. The latter permutation happens to be a tour. None of the
subproblems yields either a tour or permutation whose cost is lower than the
cost 284 for the least-cost tour discovered in Fig. 7 .6(b). Hence, the tour (1 4 5
2 6 3 7) is optimal and the problem has been solved.

Although this highly contrived example is not necessarily typical of real
problems, the power of the branch-and-bound algorithm is quite clear. By

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 385

Sec. 7.3 Parallel Search-How to Use and Not Use Parallelism 373

expending O(N 2
) time at a node, we can find out how expensive a tour might

be if we examined the descendants of that node in the search for a tour. If a
bound is very high, the search path is not promising, and we can abandon the
search from that node.

In Fig. 7.6, there are 61=720 distinct tours of the 7 cities, and the bound­
ing operation eliminates 718 of them from consideration. We do not claim
that the algorithm behaves this efficiently in general. But D.R. Smith (1984]
does claim that the average number of times that a least-cost permutation is
generated is O(N log N) although the proof is not in this article. With a cost of
O(N 2

) time to generate a least-cost permutation, the total time for the
algorithm on the average is O(N 3 log N).

Since Smith's results assume an unbiased distribution of problems, his
results may not hold for problem distributions with strong statistical biases.
Nevertheless, let us assume that Smith's results hold for a particular set of
problems and consider how parallelism can be put to effective use.

The search tree in Fig. 7 .6 in general has (N - l)l leaf nodes, one for each
possible tour, assuming that each tour starts at City 1. Therefore its depth is
O(N) if the average branching factor is proportional to N, and its depth is
O[log (N l)] = O(Nlog N) if the average branching factor is not larger than a
constant that does not depend on N. If the depth is O(N), then we can say that
on the average we examine O(log N) parallel paths while visiting O(N log N)
nodes. This suggests that as many as O(log N) paths can be usefully examined
concurrently in a multiprocessor. If we expend O(N) processors to examine
the open subproblems, we will obtain a useful speedup of only O(log N), and
the speedup is similar to the Karp-Miranker problem.

Note in Fig. 7.6(b) that we can commit two processors simultaneously to
the open subproblems for the leftmost node. We can also commit two pro­
cessors to the rightmost node. However, if the leftmost node returns tours
whose cost is lower than 201, which is the cost of the rightmost node, then any
additional computation expended on the rightmost node is wasted effort.
This situation is analogous to the wasted effort in the Karp-Miranker search.

If the depth of the search tree turns out to be of O(N log N), then the
possibility of using parallelism effectively to explore multiple paths is rather
unpromising. On the average only one path is actively pursued by a serial
search in this case, and if multiple paths are pursued concurrently, all path
computations but one are almost surely wasted.

The obvious way to apply parallelism is to apply all processors to the com­
putation at one node to perform the evaluation of the least-cost permutation.
An efficient approach is to examine only the nodes that a purely serial algo­
rithm examines. This ensures that no effort is wasted examining other nodes.

In the process of examining a node, apply as many processors as can be
applied efficiently to find the least-cost permutation. That number may vary
with the architecture, depending on communications and access to shared
variables.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 386

374 Multiprocessor Algorithms Chap. 7

Dijkstra's shortest-path algorithm can be executed with a speedup of
O(N /log N) on some N-processor parallel architectures, assuming that con­
tention for shared resources does not produce excessive performance de­
gradation. The speedup, however, is architecture dependent. If an
architecture can produce a speedup of O(N /log N) or better for Dijkstra's
shortest-path algorithm, then this architecture will produce a very fast, effi­
cient parallel solution of the Traveling-Salesman Problem, provided that the
statistical distributions of the problems to be solved are similar to those
assumed by Smith.

In this example, the key observation is that searches along parallel paths
are not independent and can produce wasted effort, whereas there is an
opportunity for parallelism in performing the work along one path. Pick a
promising candidate and focus the computing power on this candidate,
rather than spread the computation across several candidates.

7.4 Transforming Serial Algorithms
into Parallel Algorithms

In putting multiprocessors to use, a major hurdle is writing programs for
such architectures. In the worst case, every problem has to be studied anew
and solved by an algorithm implementation tuned to a particular
architecture. This technique will certainly be used for the very largest prob­
lems, which consume days or weeks of computation time, because the human
effort expended to optimize the algorithm is paid back by a large reduction in
computer time. But for more moderate problems, those that take a fraction of
an hour, for example, the human effort to optimize the algorithm might save
only a few minutes of computation, which may not be worthwhile. Therefore,
a major objective is to use programmed transformations to produce reason­
ably good parallel programs from serial programs.

One way to automate the production of parallel programs is to construct
a compiler for a standard high-level language to produce output for a
multiprocessor. With such a compiler, existing software libraries can be
mapped to a multiprocessor with a minimum of effort. Some fraction of the
library undoubtedly will exhibit negligible parallelism and will produce
rather inefficient parallel implementations. These programs can be run
serially.

The interesting programs are those that yield efficient parallel codes. The
codes need not be as efficient as hand-coded versions of the programs, pro­
vided they come within a factor of 2 to 5 of a hand-coded translation. If the
inefficiency is as high as a factor of 10, the compiler is still useful as a stopgap
tool that provides a fast way of producing programs for a parallel architec­
ture. The inefficient translations it produces eventually have to be re-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 387

Sec. 7.4 Transforming Serial Algorithms into Parallel Algorithms 375

programmed by hand or by a better compiler to create versions that are
satisfactory for production use.

Creating a high-quality optimizing compiler for a multiprocessor is a
formidable task. An early attempt by Kuck et al. [1972] showed that there is
easily exploitable parallelism on the order of 10 to 100 in many ordinary
FORTRAN programs. The next decade produced far more sophisticated de­
velopments that have been used extensively for real applications.

For vector architectures, leading work by Miura [1986], a student of
Kuck's, for Fujitsu vector processors and by F. Allen for the IBM 3090 vector
processor produce code that is nearly as efficient as the best programmers
can produce and is much more efficient than can be produced by inex­
perienced programmers.

Compilers for multiprocessors have lagged behind compilers for vector
processors because the translation problem is far more complex for multi­
processors. Vector compilers find a way to do one operation simultaneously
across many processors; multiprocessor compilers find a way to do many
operations across many processors at unpredictable times. The thread com­
mon to the two types of compilers is that they need to identify dependencies
from statement to statement to determine the order in which events can be
scheduled.

For vectorizing compilers, published work by Kuck et al. [1984], J. R.
Allen et al. [1983], J. R. Allen [1983], and Padua and Wolfe [1986] illustrate
the underlying theory and the directions taken by compiler writers. The
actual art of vectorizing compilers is more advanced than the literature
indicates, but the literature captures the most important and useful trans­
formations. Cytron [1984] and Padua and Wolfe [1986] address the problem
of optimizing code for multiprocessors.

7 .4.1 Dependency Analysis

The most fruitful way to obtain parallelism in serial programs is by executing
loop iterations across several processors. We illustrate this technique earlier
in this chapter, and we also introduce the notion of chunksize in Program 7.4
to show that one processor can execute a group of iterations instead of a
single iteration. Although other forms of parallelism exist and are potentially
detectable by an optimizing compiler, in typical applications the bulk of the
speedup obtained from parallelism is through the parallel execution of loop
iterations. Therefore, we focus on ways to perform loop iterations in parallel
in this text.

An optimizing multiprocessor compiler has the task of detecting paral­
lelism, but the task name is misleading. The compiler actually detects serial
behavior, and, by default, everything left is potentially executable in parallel.
To produce parallel code for a loop iteration, the compiler has to detect when

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 388

376 Multiprocessor Algorithms Chap. 7

successive iterations have to be executed serially. As an example of de­
pendency analysis, consider the loop:

For i := 1 to N do
A[i] := A[i -1]/B[i];

end do loop;

As written, each iteration depends directly on the prior iteration because a
variable written in the prior iteration is read by this iteration. This is WRITE/
READ dependency. Other dependencies possible are READ/WRITE and
WRITE/WRITE. The READ/WRITE dependency requires the variable to be
read by a prior iteration before it is written by this one, and the WRITE/
WRITE dependency forces the value of the variable to be written last by the
present iteration rather than by a prior iteration.

The dependency in the example is very easy for a compiler to detect
because it is forced by a single variable. Other examples lead to more com­
plex cases, such as an iteration with the following statement:

A[i] := A[C[i]];

In this case, the dependency is READ/WRITE if C[i] is less than i and WRITE/
READ if C[i] is greater than i. Moreover, if the values in Care computed
during execution, the compiler cannot determine which dependency exists
and therefore cannot optimize the code. Therefore, the compiler can detect
loop-to-loop dependencies only when all subscript expressions in an iteration
and the loop increment have values known to the compiler. Optimizing com­
pilers are forced to assume that the dependencies are present if index vari­
ables depend on execution-time program behavior. Otherwise, the optimiza­
tion process is likely to produce a translated program that runs incorrectly.

A general procedure for detecting dependencies is to list the names of the
variables read and written in a loop iteration. If a name appears on both lists,
it potentially leads to a READ/WRITE or WRITE/READ dependency. All
variables that are written are potentially WRITE/WRITE dependencies. The
compiler has to examine each case further to determine if an actual de­
pendency exists.

For the WRITE/WRITE dependency to exist, one variable has to be writ­
ten by two different loop iterations. This situation usually has two distinct
statements in the loop, such as

A[i]:= BUJ/10;
A[i -1] := C[i] +BU];

With both statements present in one iteration, it becomes clear that the prior
iteration, using the value i - 1 as an index value, writesA[i - 1] andA [i - 2],
leading to the WRITE/WRITE dependency for variable A [i - 1]. Note that we

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 389

Sec. 7.4 Transforming Serial Algorithms into Parallel Algorithms 377

assume that the loop index is increased by 1 during each iteration. If the loop
index is increased by 2, then there is no dependency caused by writing two
successive values into A READ/WRITE and WRITE/READ dependencies are
equally easy to detect as WRITE/READ dependencies.

7.4.2 Exploiting Parallelism Across Iterations

In this section we show how to use dependency information to guide the
translation of serial programs into multiprocessor programs. There are just a
few techniques given here, but they are widely useful and produce the bulk of
the speedup obtainable in typical programs. However, there are many other
techniques not discussed in this section that are also of value, especially
techniques designed for specific classes of programs. Interested readers will
find J. R. Allen [1983], Cytron [1984], and Padua and Wolfe [1986] useful
in-depth treatments of the topic.

Our objective for a multiprocessor is to split apart iterations that are
independent. This boosts speedup, provided that independent iterations have
a sufficiently high RIC ratio. We also want to chunk iterations together into
larger tasks to boost efficiency by improving the RIC ratio when this also
boosts performance, even if it reduces parallelism. The ideal situation is to
chunk dependent iterations together into large tasks in a way that creates a
collection of independent large tasks.

As an example of this idea, consider Program 7 .10. The program is shown
as it would probably be found in a program for a conventional serial machine.
We assume that the program uses neither do seq nor do par phrases, de­
scribed earlier in this chapter, because it is written specifically for serial
execution.

Program 7.10 Computing row sums of a matrix.

Notes:

for i : = 1 to N do
begin

A[i, OJ:= 0.0;
forj := 1 to Ndo

A[i, OJ:= A[i, OJ+ A~, j];
end i loop;

1. Matrix A is N x N, with indices running from 1 to N.
2. The sum of Row i is computed and stored in A [i, OJ.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 390

378 Multiprocessor Algorithms Chap. 7

A straightforward dependency analysis shows that Column 0 of matrix A
is the cause of the dependencies. There is a WRITE/READ dependency from
iteration (i, j) to iteration (i, j + 1) because A [i,O] is both read and written for
these iterations. This suggests that successive iterations in the serial program
have to be executed serially.

A sophisticated compiler should detect that there are no dependencies
due to the i index, so the i and j loops can be interchanged, as shown in
Program 7 .11. The inner loop satisfies the READ/WRITE dependency on the
index i. To ensure that Column 0 is properly initialized, it is initialized sepa­
rately in an earlier loop. Note that successive serial executions of the inner
loop can be chunked together into a single task that does all N iterations for
one value of i. Each of these large tasks is independent and can be executed
concurrently.

It is also possible to obtain greater parallelism by observing that the
inner loop can be chunked into several medium-size tasks, for example, k of
them, that each form the sum of N lk row elements. For a particular value of i,
the variable A [i,O] is a variable shared across k tasks, which forces serializa­
tion of the tasks because of a READ/WRITE conflict.

A clever compiler can detect that the summation into the row sum can be
done in any order and can change strictly serial execution of the k tasks into
parallel execution, with each task computing a local sum that is added to the
shared variable at the end of the chunk. The addition at the end is controlled
by a LOCK/UNLOCK, Compare-and-Swap, Fetch-and-Add, or other similar
means. The value of k should be selected to reflect the available parallelism
and the best choice for the RIC ratio.

Program 7.11 Computing row sums of a matrix, transformed version.

Notes:

for i : = 1 to N do
A[i,O] := 0.0;

for j : = 1 to N do
begin

for i : = 1 to N do
A[i, OJ:= A[i, O] + A[i, j];

endj loop;

1. Matrix A is N x N, with indices running from 1 to N.

2. The sum of Row i is computed and stored in A [i, O].

3. For a multiprocessor, the loop on i can be chunked together to make
larger tasks, which improves RIC.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 391

Sec. 7.4 Transforming Serial Algorithms into Parallel Algorithms 379

The key idea illustrated by this example is to observe the essential de­
pendencies exhibited by the algorithm. The order of execution is free to be
changed, provided that the dependencies are satisfied. In the example, the
order of indexing of the loops is changed, which is a common situation among
algorithms. By changing the order, the transformed program structure has N
parallel tasks (or kN if chunking is used), instead of N 2 serial iterations. Not
only is the transformed program more parallel, but its RIC ratio can be
adjusted to minimize synchronization inefficiency.

As a second example, let us return to the familiar example of the inner
loop of a Poisson solver. In Program 7.1, the item updated depends on its
north, east, south, and west neighbor. No matter how we choose the iter­
ations, by row or by column, ascending or descending, we will have READ/
WRITE and WRITE/READ conflicts. Therefore interchanging the iterations
is not particularly helpful for this program.

There is, however, a parallel structure that can be exploited here. If the
cells of the matrix are laid out on a checkerboard, then the iteration in
Program 7.1 shows how to update a black square by averaging the values in
its neighboring red squares, and similarly, how to update a red square by
updating the values in its neighboring black squares. The red and black
squares form two independent sets of variables, since no red square depends
directly on a red square, no black square depends directly on a black square.

Therefore, a possible approach is to create a task that updates red squares
from black ones, and another task that updates black squares from red ones.
The two tasks can be divided into smaller tasks by chunking indices, and the
chunksize should be chosen to reflect available parallelism and RIC. The
iteration of Program 7.1 can be done by updating the black squares, then
updating the red squares, with each update done across the available pro­
cessors. Barrier synchronization is required at the end of an update of each
color.

The parallel computation using red and black squares produces an
iteration that is not quite identical to the iteration given in Program 7 .1. Note
that as each point is updated, two of its four neighbors have already been
updated. For example, at Row i, Row i - 1 has new data already, but Row
i + 1 has not been updated. So the north and west neighbors of each point are
new, and the south and east neighbors are old. This iteration is called the
Gauss-Seidel iteration [see Varga 1962].

Another possible technique is to compute the updated data for the entire
matrix before making any update. Such a scheme, called the Jacobi iteration,
uses old data for all neighbors. The red-black scheme is equivalent to select­
ing new data for all neighbors. In typical situations, all three schemes con­
verge to the same solution at different rates. The red-black scheme converges
the fastest because it uses new data more quickly than do the other two
schemes. The slowest convergence occurs for the Jacobi iteration.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 392

380 Multiprocessor Algorithms Chap. 7

In general, iterative calculations such as the one illustrated in Program
7.1 may converge or diverge, or they may oscillate while neither converging
nor diverging. If the numerical conditions are such that convergence occurs,
then in general, the more new data used in an iteration, the faster the
convergence will be. Thus, the transformation of Program 7.1 to one that uses
a red-black ordering and executes in parallel on a multiprocessor is likely to
be an effective transformation. If this is done automatically, the program
should produce a warning that the iterative method has been altered in the
transformation.

The red-black scheme for Program 7.1 is ideal for multiprocessor use.
Because half of the points in a mesh can be executed in parallel, the program
can be split across any reasonable number of processors, and the chunksize
can be set large enough to keep synchronization overhead small. In a
multiprocessor, irregular boundaries and special regions within the mesh are
treated easily and far more efficiently than in a vector architecture that
broadcasts one instruction to all processors.

Is it reasonable to assume that an optimizing compiler is clever enough to
change an iteration from one form to another? If the optimizing compiler is
used for general-purpose computation, the answer is no. There are literally
hundreds of useful transformations that could be applied, which is far too
many to incorporate in a compiler.

However, if the compiler is dedicated to a specific class of computations,
such as partial differential equations, it is quite reasonable to incorporate
within the compiler the most useful transformations that occur in practical
problems. In this case, the transformation of the Gauss-Seidel iteration in
Program 7.1 to a red-black iteration is frequently done by hand.

Optimizing compilers may be viewed as programs that have a repertoire
of tricks to apply, and they do their work by searching through their bag of
tricks for the most appropriate ones to apply. A clever researcher might
discover a new trick, such as the red-black transformation, which no compiler
can discover on its own. Once the trick is known and published widely, the
compiler writer can add the new trick to the compiler's repertoire. The com­
piler might not be very good when it is first completed, but as the bag of tricks
grows, the compiler may be able to produce better parallel code than can
most programmers.

Nevertheless, we may insist that any program transformation must leave
the iteration unchanged. If this is the case for Program 7.1, we need a parallel
program that does the Gauss-Seidel iteration.

Lamport [1974] observes that a diagonal scheme, as shown in Fig. 7.7, is
equivalent to the Gauss-Seidel iteration. In Lamport's scheme, the matrix is
not scanned by rows or columns, but by diagonals. Along any diagonal, all the
points depend on the previous and next diagonals. The previous diagonal

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 393

Sec. 7.4 Transforming Serial Algorithms into Parallel Algorithms 381

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

3 4 5 6 7 8 1 2

4 5 6 7 8 1 2 3

5 6 7 8 1 2 3 4

6 7 8 1 2 3 4 5

7 8 1 2 3 4 5 6

8 1 2 3 4 5 6 7

Fig. 7.7 Lamport's diagonal sweep for the Poisson problem on a square. The number
within each cell identifies the iteration in which the cell is updated. This algorithm is
equivalent to the Gauss-Seidel iteration because the north and west neighbors have
new data, and the south and east neighbors have old data. By scanning two diagonals
concurrently, the number of data treated in each operation is constant.

holds the north and west neighbors; the next diagonal holds the south and
east neighbors. Since each diagonal sees new data from the prior diagonal
and old data on the next diagonal, the iteration that marches from diagonal
to diagonal is a Gauss-Seidel iteration. Lamport shows that the trans­
formation of a program written in the form of Program 7.1 into a diagonal
scan can be incorporated into a compiler and fully automated.

The diagonal scheme has a serious disadvantage because some diagonals
are very short and severely limit parallel execution. Recall that there has to
be barrier synchronization along a diagonal to ensure that one diagonal is
completely updated before the next diagonal is started.

Lamport, however, shows that it is possible to combine two diagonals N
apart, to obtain a total of N points to update, lying on two different diagonals
that can be updated simultaneously. In the first pass across the diagonals,
this algorithm updates Diagonals 1 through N, one at a time. When Diagonal
N + 1 (of length N 1-1) is reached, it is paired with the second iteration of
Diagonal 1, to produce work for N points. Next, Diagonal N + 2 is paired with
Diagonal 2 to produce another set of N points for updating. This continues
through the last iteration, during which it is not necessary to update the first
N diagonals. Although all N points along the two diagonals can be updated

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 394

382 Multiprocessor Algorithms Chap.7

independently on N processors, they can be chunked together arbitrarily to
match the parallelism to the architecture and raise the RIC ratio, if necessary.
If the number of processors available exceeds N, it is possible to update
odd-numbered and then even-numbered diagonals in parallel and obtain
greater use of parallelism.

7 .4.3 The Effects of Scheduling on Parallelism

The last topic we consider in this section is from Cytron [1984], who consid­
ered the effects of scheduling on parallelism. The idea is to schedule de­
pendent tasks so that dependencies are satisfied, and yet tasks are executed at
least partially in parallel.

As an example of the use of scheduling, consider any loop body in which
there is a WRITE/READ dependency from one iteration to a later iteration. A
typical loop of this type has statements of the form

A[i] := B[i -1];
B[i] := C[i];

In this example, Iteration i cannot begin until the prior iteration has written
the value of B [i - 1]. If these two statements form the entire iteration, then
Iteration i cannot start until Iteration i - 1 has ended. This is how we expect
iterations to execute when dependencies are discovered. But Cytron points
out that lengthy iterations can be partially overlapped.

In our example, the two statements could be the first of 20 statements,
rather than the only statements in the iteration. If so, and if no other de­
pendencies exist from iteration to iteration, then Iteration i can begin while
Iteration i - 1 is executing, provided that Iteration i waits until B [i - 1] has
been computed.

The overlapping of iterations is analogous to pipelined execution of vec­
tor operations, except that the operations within one iteration can be arbi­
trarily complex, and the delay between initiations of successive iterations has
to be long enough to satisfy the dependency constraint.

A compiler that exploits this form of parallelism has to be able to control
execution time scheduling in some way. In the compiled code it can produce
an interrupt, message, or other form of control information at the point that a
dependency is satisfied. The control information should be transmitted to a
scheduler or equivalent task to force the release of a task waiting for the
update to complete. The added overhead of the control information has to be
low enough to make concurrent execution worthwhile. There is no point in
seeking concurrent operation if the control required is extensive enough to
create its own bottleneck.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 395

Sec. 7.5 Final Comments on Multiprocessors

7 .5 Final Comments on
Multiprocessors

383

This brings us to the close of this chapter. We have only presented a small
portion of the current state of multiprocessor architecture, but we believe
that the highlights discussed in this chapter give an accurate picture of the
potential and pitfalls of multiprocessors.

Problems of overhead and effective parallelism are serious problems, and
they are likely to limit multiprocessors to relatively few processors in prac­
tical systems. The 1000-processor system can become a reality in years to
come, but much research is necessary in the interim to solve problems related
to efficiency. Exploitation of multiprocessors depends strongly on finding
ways to:

• Eliminate the MSYPS bottleneck;

• Reduce overhead for scheduling tasks;

• Solve the cache-coherency problem or to find an alternate means of pro­
viding fast local memory;

• Map serial programs to parallel programs; and

• Identify useful parallelism, as opposed to parallelism that leads to wasted
effort.

As progress is made on these fronts, the multiprocessor becomes more attrac­
tive and eventually could be the architecture of choice for high-performance
systems.

In earlier chapters we discuss six technology constraints that have to be
overcome in an architecture. Some of the constraints are included in the
problems preceding list. Overall, the comparison is as follows:

1. Processor bandwidth: processor bandwidth is extremely satisfactory for
the multiprocessor because each distinct processor in the architecture
has the potential to supply the full processor bandwidth to a problem.
This facet of the architecture is one of its strengths.

2. Memory bandwidth: available memory bandwidth depends strongly on
the mechanism for multiple accesses to memory. If no memory is shared,
gross bandwidth is very high since it is N times the bandwidth of a single
processor. But effective bandwidth is lower because access to remote
memories requires passing messages between one or more intermediate
nodes.

If shared memory is available, the bandwidth depends strongly on the
implementation of shared access. A variety of implementations, ranging
from a shared bus to a full crossbar, provide a spectrum of performance

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 396

384 Multiprocessor Algorithms Chap. 7

and cost for the architect to consider. The bus is best suited to systems
with few processors, and the shuffle-exchange network, or other similar
multilayer interconnection, is an attractive mechanism to use for larger
systems because it offers increased performance over the shared bus at a
cost that is likely to be commensurate with the performance improve­
ment.

Cache is potentially useful for multiprocessors with a small number
of processors. As the number grows to 8, 16, 32, and larger, the cache­
coherence problem becomes difficult to solve at reasonable cost. Con­
sequently, caches are likely to be limited in their use to local variables
and instructions or in other ways that eliminate the problem of maintain­
ing consistency. Accesses to uncacheable items tend to occupy a dis­
proportionate fraction of memory bandwidth of shared memory and are
one of the limiting factors in performance.

Bandwidth is also limited by "hot spots," regions of memory that
receive more than their share of accesses. A combining switch reduces the
effect of hot spots by reducing the physical data traffic required for con­
current accesses to shared data. Whether or not the combining switch is a
cost-effective means for dealing with hot spots is still a matter of intense
research, and the outcome of that study may have a profound impact on
the future of multiprocessors with hundreds of processors.

3. Input/output bandwidth: the multiprocessor provides input/output band­
width that grows proportionally to the number of processors. To tap the
full bandwidth potential, it may be necessary to store data externally in
unusual ways. One individual file should be partitioned into multiple
segments that can be accessed concurrently by multiple processors, one
processor per segment. In general, the multiprocessor offers excellent
input/output bandwidth, provided that each processor has independent
input/output capability.

4. Communication bandwidth: communication bandwidth available within
a multiprocessor is strictly a function of the interconnection structure.
Bandwidth available through ring and bus interconnections is low in
cost, but suitable for systems with up to only eight or 16 processors. As the
number of processors increases above this amount, contention at the
communications network tends to degrade performance. To support
hundreds or thousands of processors requires a more sophisticated inter­
connection structure to tie processors to the memory system and to each
other.

5. Synchronization: multiprocessors without combining networks or the
equivalent have a maximum MSYPS rate that is independent of the num­
ber of processors, and therefore the maximum sustainable MSYPS rate
becomes a serious bottleneck for systems with a moderate to large num­
ber of processors.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 397

Exercises 385

The combining switch provides a technology in which the maximum
sustainable MSYPS rate can theoretically increase proportionally with
the number of processors in a system. If practice agrees with theory, then
the combining switch could become the principle mechanism for boost­
ing effective MSYPS rates for multiprocessors. The preceding comments
on memory bandwith reflect that the cost-effectiveness of combining
switches in multiprocessors is currently under investigation.

6. Multiple purposes: the most versatile parallel processors are multi­
processors because each processor can operate independently of all other
processors if this behavior is desirable and all constraints can be satisfied.

This list shows the strengths and weaknesses of multiprocessors. The
strengths for multiprocessors are high processing and input/output band­
widths and great flexibility. The weaknesses are synchronization limitations,
memory bandwidth, and communication bandwidth. These three areas
provide a great challenge for the computer architect because, in an era of fast
technological change, new approaches become feasible almost overnight, and
old approaches become obsolete as quickly.

Multiprocessors are not as well understood as are vector processors,
mainly because their development lagged behind the development of vector
processors by more than a decade. In speculating about the future of multi­
processors, we expect to see many systems with a small number of processors.
Whether or not the 1000-processor system becomes widely used is only con­
jectural today and depends strongly on how well new technology can be
adapted to the needs of multiprocessors.

Exercises

7.1 The inner loop of an iteration has the following form:

A[i] := B[i];
CU]:= A[i] + B[i - 1];
D[i] :=AU+ 1];

a) Find the precendence constraints among three successive iterations of this
loop. Which statements depend directly on which statements? Are the individ­
ual iterations executable in parallel?

b) Let the middle equation be changed so that B [i - 1] becomes B [i]. Repeat a.

c) Let the middle equation be changed so that B [i - 1] becomes B [i + 1]. Repeat
a.

7 .2 The inner loop of a program is the following:

A[i, j] := A[i + 1,j - 1];

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 398

386 Multiprocessor Algorithms Chap.7

a) Let this statement be nested within two loops, the outer loop on i and the inner
loop onj. Give an example of loop-control statements that permit the iterations
on j to be chunked together and the iterations on i to be independent processes
that can be executed in parallel.

b) Give an example of loop-control statements that do not permit independent
execution of iterations on j that are chunked together.

7.3 The purpose of this exercise is to explore architectural support for the do par
phrase. Consider a do par loop that is to be repeated N times.

a) Assume a multiprocessor that has access to shared and local memory. Before
the do par is reached, all program instructions and data are resident in shared
memory. Assume that the iterations are truly independent in that there are no
READ/WRITE, WRITE/WRITE, or WRITE/READ conflicts. Show a scheme for
initializing the iterations so that each iteration can execute concurrently with
other iterations, and one copy of the program in shared memory is used for all
iterations. Let the index variable for the loop be i and assume that the loop
references vector elements A [i] and B [i]. To achieve maximum performance,
how do you decide whether a datum should be moved to local memory or left in
global memory during a loop iteration?

b) The process of initializing and initiating loop iterations can be done se­
quentially in O(N) time or in parallel in O(log N) time. Write a brief program
suitable for execution in a multiprocessor computer that is capable of ini­
tiating 128 iterations of a do par loop and has a complexity of O(log N). Assume
the shared and local memory structure used in a, and assume that the pro­
cesses can be initiated immediately and need not be queued while waiting for a
processor to become available.

c) Devise some architectural support for the process of b to simplify its pro­
gramming. The support should consist of one or more machine instructions
specific to this process. Describe each instruction and the operands that it
requires. Describe any other facilities in a multiprocessor architecture re­
quired by these instructions to facilitate the initiation process.

7 .4 Exercise 7 .3 ignores the problem of queueing tasks if processors are unavailable.
Assume an O(log N) task-generation process and consider how to implement task
queueing if no processors are available.

a) Assume that the multiprocessor shared memory is accessed via a crossbar
switch and that pending tasks are queued on a single-task queue. Develop a
performance model that estimates the cost of task queueing and dequeueing
under the conditions that the number of iterations to run concurrently is twice
the number of available processors. How does this change when the number of
iterations to run is 1024 times the number of available processors?

b) What specialized instructions for task queueing can assist the process in a?
Describe what each such instruction does and the operands that it requires. To
demonstrate their use, show a program fragment for task queueing that uses
these instructions. Include a mechanism for determining whether or not a task
has to be queued.

c) Consider an architecture that supports Fetch-and-Add. Repeat a.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 399

Exercises 387

7.5 The purpose of this exercise is to consider the implementation of the Barrier
operation. Assume a multiprocessor with shared memory accessed by means of a
crossbar switch.

a) Show a sequence of machine instructions that implements the Barrier oper­
ation. Estimate the machine performance of your code when N processors
attempt to execute the code concurrently. Describe why your code works cor­
rectly in a concurrent-execution environment.

b) Repeat a for a multiprocessor based on a bus interconnection.

c) Repeat a for a multiprocessor based on an interconnection network that sup­
ports Fetch-and-Add.

7.6 The purpose of this exercise is to compare different synchronization techniques.
The objective of the exercise is to create a circular buffer of length N. There are
two subroutines, Put and Get, that control input and output to the buffer. The
implementation has to be free of deadlock and livelock.

a) Show an implementation of Put and Get that uses Test-and-Set for syn­
chronization. Use a high-level language plus Test-and-Set to describe your
implementation.

b) Repeat a using Increment and Decrement instead of Test-and-Set.

c) Repeat a using Compare-and-Swap instead of Test-and-Set.

d) Repeat a using Fetch-and-Add instead of Test-and-Set.

7.7 The purpose of this exercise is to explore the use of Compare-and-Swap on linked­
list implementations of queues.

a) Consider a queue implemented as a linked list with Head and Tail pointers as
described in the body of the chapter. Assume that DEQUEUEs cannot run
concurrently with ENQUEUEs and that as many as N ENQUEUEs can run
concurrently. Give an implementation of ENQUEUE with Compare-and-Swap
that works correctly under these conditions, including the ability to add an
item to an empty queue.

b) Construct an implementation of DEQUEUE with Compare-and-Swap. How
does your implementation handle the special case in which DEQUEUE pro­
duces an empty queue? Does your implementation work correctly if run con­
currently with ENQUEUE?

c) Implement ENQUEUE and DEQUEUE with a Double Compare-and-Swap in a
way that permits correct operation of concurrently executing ENQUEUEs and
DEQUEUEs.

7 .8 The purpose of this exercise is to investigate the performance of Dijkstra's shortest
path algorithm [1959] on various multiprocessors. The objective is to find the
length of the shortest path from Node 1 to Node x for an arbi tarily specified node x
in a graph. Dijktra's algorithm accepts as input N 2 point-to-point distances
among N nodes. Let the distances be given in the matrix D [i, j]. The matrix is
symmetric and all entries are nonnegative. The algorithm is a node-labeling algo­
rithm in which nodes are initially given temporary labels that give an upper
bound on the shortest path to each node. At the end of each major iteration, some

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 400

388 Multiprocessor Algorithms Chap.7

temporary label becomes permanent and never changes again in the course of the
algorithm. Eventually all labels are made permanent, at which point the algo­
rithm has found the length of the shortest path from Node 1 to any other node in
the graph. Labels are held in the array L.

The outline of the algorithm is the following:

1. Give Node 1 the permanent label 0, that is, set L[l] to 0.

2. Label Nodes 2 through N with temporary labels such that L[i]. the label for
Node i, receives the value D[l,i]. (The distance to Node i is not greater than
D[l,i].)

3. Among the temporary labels, find the node with the smallest label, breaking
ties arbitrarily. Let this be Node j. Make this label permanent.

4. For each node with a temporary label, such as Node k, change the label to
L [j] + D [j, k] if that is less than its current label. (The shortest path to Node j,
followed by the direct path from Node j to Node k, is shorter than the best
path to Node k found thus far.)

a) Work out an implementation of this algorithm for a multiprocessor
computer in which each processor stores one row of the Distance matrix in
local memory. Assume that there is a shared memory for global data and
that the interconnection scheme is a crossbar. Show explicitly where
synchronization is necessary. Ignoring synchronizations, what is the time
complexity of your parallel algorithm? What is the complexity of the
synchronizations by themselves?

b) Repeat a for a multiprocessor with a bus interconnection.

c) Repeat a for a multiprocessor that has Fetch-and-Add.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 401

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Reading, Mass.: Addison-Wesley, 1974.

Allen, J. R., K. Kennedy, C. Porterfield, and J. Warren. "Conversion of control de­
pendence to data dependence." Conference Record of the Tenth Annual ACM Sym­
posium on Principles of Programming Languages, Austin, Tex., January 1983.

Allen, J. R. Dependence Analysis for Subscripted Variables and its Application to Program
Transfonnation. Ph.D. diss., Rice University, 1983.

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. "Architecture of the IBM System/
360." IBM Journal of Research and Development, 8, no. 2, 87-101, April 1964.

Archibald, J. and J .-L. Baer. "Cache coherence protocols: Evaluation using a multi­
processor simulation model." ACM Transactions on Computers, 4, no. 4, 273-298,
November 1986.

Baer, J .-L. Computer Systems Architecture. Potomac, Maryland: Computer Science
Press, 1980.

Batcher, K. E. "Sorting networks and their applications." AF/PS Conference
Proceedings, 1968 SJCC, 32, Washington, DC: Thompson Books, 307-314, 1968.

Beetem, J., M. Denneau, and D. Weingarten. "The GF-11 supercomputer." Proceedings
of the 1985 International Conference on Parallel Processing, IEEE Cat. No.
85CH2140-2, 108-115, August 1985.

Belady, L. "A study of replarnment algorithms for a virtual-store computer." IBM
Systems Journal, 5, no. 2, 78-101, 1966.

Bell, C. G., and A. Newell. Computer Structures: Readings and Examples. New York:
McGraw-Hill, 1971.

Benes, V. "Optimal rearrangeable multistage connecting networks." Bell System Tech­
nicallournal, 43, no. 4, 1641-1656, July 1964.

389

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 402

390 References

Booth, A. D. "A signed binary multiplication technique." Quarterly Journal of Mech.
Appl. Math, 4, pt. 2, 236-240, 1951.

Budnik, P. P., and D. J. Kuck. "The organization and use of parallel memories." IEEE
Transactions on Computers, C-20, no. 12, 1566-1569, 1971.

Burks, A. W., H. H. Goldstine, and J. von Neumann. "Preliminary discussion of the
logical design of an electronic computing instrument." U. S. Army Ordnance
Department Report, 1946. Reprinted in Bell and Newell [1971], 92-119.

Buzbee, B. L., G. H. Golub, andC. W. Nielson. "On direct methods for solving Poisson's
equation." SIAM Journal of Numerical Analysis, 7, 627-656, 1970.

Charlesworth, A. E., and J. L. Gustafson. "Introducing replicated VLSI to super­
computing: the FPS-164/MAX scientific computer." Computer, 19, no. 3, 10-23,
March 1986.

Chen, P. Y., D. H. Lawrie, P. C. Yew, and D. A. Padua. "Interconnection networks using
shuffles." Computer, 14, no. 12, 55-64, December 1981.

Chen, T. C. "Overlap and pipeline processing." Chapter 9 of Introduction to Computer
Architecture, edited by H. Stone, Chicago: Science Research Assoc., 427-486, 1980.

Chu, W. W., and H. Opderbeck. "Program behavior and the page-fault-frequency
replacement algorithm." Computer, 9, no. 11, 29-38, November 1976.

Clark, D. W., and J. S. Erner. "Performance of the VAX-11/780 translation buffer:
simulation and measurement. ACM Transactions on Computer Systems, 3, no. 1,
31-62, February 1985.

Coffman, E. G., Jr., and P. J. Denning. Operating Systems Theory. Englewood Cliffs,
New Jersey: Prentice-Hall, 1973.

Colwell, R. P., et al. "Computers, complexity, and controversy." Computer, 18, no. 9,
8-19, September 1985.

Cooley, J. W. and J. W. Tukey. "An algorithm for the machine calculation of complex
Fourier series." Mathematics of Computation, 19, 297-301, April 1965.

Coonen, J. T. "An implementation guide to a proposed standard for floating-point
arithmetic. Computer, 13, no. 1, 68-79, January 1980.

Crowther, W., et al. "Performance measurements on a 128-node butterfly parallel
processor." Proceedings of the 1985 International Conference on Parallel Processing,
IEEE Cat. No. 85CH2140-2, 531-540, August 1985.

Cvetanovic, Z. Performance Analysis of Multiple-Processor Systems. Ph.D. diss.,
University of Massachusetts, 1985.

Cvetanovic, Z. "Performance analysis of FFT algorithm on a shared-memory parallel
architecture." IBM Research Report, RC 11749, IBM T. J. Watson Research Cen­
ter, March 1986 (submitted to IBM Journal of Research and Development).

Cytron, R. G. Compile-Time Scheduling and Optimization for Asynchronous Machines.
Ph.D. diss., Univ. of Illinois, 1984.

Davidson, E. S. "The design and control of pipelined function generators." Proceedings
of the 1971 International Conference on Systems, Networks, and Computers.
Oaxtepec, Mexico, 19-21, January 1971.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 403

References 391

Denning, P. J. "Thrashing: Its causes and prevention." AF/PS Conference Proceedings,
1968 FJCC, 33, Washington DC: Thompson Books, 915-922, l 968a.

Denning, P. J. "The working-set model for program behavior." Communications of the
ACM, 11, no. 5, 323-333, May 1968b.

Denning, P. J., J.E. Savage, and J. R. Spiro. "Models for locality in program behav­
ior." Department of Electrical Engineering, Princeton Univ., Princeton, New
Jersey. Computer Science Report TR-107, April 1972.

Dias, D. M., and J. R. Jump. "Packet switching interconnection networks for modular
systems." Computer, 14, no. 12, 43-54, December 1981.

Dijkstra, E. W. "A note on two problems in connection with graphs." Numerishce
Mathematik, 1, 269-271, 1959.

Dijkstra, E.W. "Solution of a problem in concurrent programming." Communications
of the ACM, 8, 569-570, September 1965.

Dubois, M., and F. A. Briggs. "Effects of cache coherency in multiprocessor systems."
IEEE Transactions on Computers, C-31, no. 11, 1083-99, November 1982.

Flynn, M. J. "Very high-speed computers." Proceedings of the IEEE, 54, 1901-1909,
December 1966.

Ford, L. R., Jr., and D. R. Fulkerson. "Maximal flow through a network." Canadian
Journal of Mathematics, 8, 399-404, 1956.

Forsythe, G., and C. B. Moler. Computer Solution of Linear Algebraic Systems. En­
glewood Cliffs, New Jersey: Prentice-Hall, 1967.

Goodman, J. "Using cache memory to reduce processor-memory traffic." Proceedings
of the 10th International Symposium on Computer Architecture, Stockholm,
Sweden, 124-131, June 1983.

Gottlieb, A., et al. "The NYU Ultracomputer-Designing an MIMD shared-memory
parallel computer." IEEE Transactions on Computers, C-32, no. 2, 175-189, Febru­
ary 1983.

Halstead, R. "Multilisp: An overview and working example." ACM Transactions on
Programming Languages and Systems, 7, no. 4, 501-538, October 1985.

Hayes, J. P. Computer Architecture and Organization. New York; McGraw-Hill, 1978.

Heller, D. E. "Some aspects of the cyclic-reduction algorithm for block tridiagonal
linear systems." SIAM Journal of Numerical Analysis, 13, 484-496, 1976.

Heller, D. E. "A survey of parallel algorithms in numerical linear algebra." SIAM
Review, 20, no. 4, 740-777, 1978.

Hill, M., et al. "Design decisions in SPUR." Computer, 19, no. 11, 8-22, November 1986.

Hillis, W. D. The Connection Machine. Cambridge, Mass.: MIT Press, 1986.

Hillis, W. D., and G. L. Steele, Jr. "Data parallel algorithms." Communications of the
ACM, 29, no. 12, 1170-1184, December 1986.

Hoshino, T. "Invitation to the world of 'Pax'." Computer, 19, no. 5, 68-79, May 1986.

Hwang, K. Computer Arithmetic: Principles, Architecture and Design. New York: Wiley,
1978.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 404

392 References

Hwang, K., and F. A. Briggs. Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.

IBM System/370 Principles of Operation. 10th ed. GA22-7000-9, File No. S370-01,
1983.

IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. Order No. CN953, 1985.

Indurkhya, B., H. S. Stone, and L. Xi-Cheng. "Optimal partitioning of randomly
generated distributed programs." IEEE Transactions on Software Engineering,
SE-12, no. 3, 483-495, March 1986.

Karp, R. M., and W. L. Miranker. "Parallel minimax search for a maximum." Journal
of Combinatorial Theory, 4, no. 1, 19-39, 1968.

Kilburn, T. D., R. B. Payne, and D. J. Howarth. "One-level storage system." IRE
Transactions on Electronic Computers, EC-11, no. 2, 223-235, April 1962.

Kogge, P. M. The Architecture of Pipelined Computers. New York: McGraw-Hill, 1981.

Kogge, P. M., and H. S. Stone. "A parallel algorithm for the efficient solution of a
general class of recurrence equations." IEEE Transactions on Computers, C-22,
786-93, 1973.

Kruskal, C. P., and M. Snir. "The performance of multistage interconnection networks
for multiprocessors." IEEE Transactions on Computers, C-32, 1091-1098, Decem­
ber 1983.

Kuck, D. J., Y. Muraoka, and S.-C. Chen. "On the numberofoperations simultaneously
executable in FORTRAN-like programs and their resulting speedup." IEEE Trans­
actions on Computers, C-21. No. 12, 1293-1310, December 1972.

Kuck, D. J. "Parallel processing in ordinary programs." In Advances in Computers,
edited by Rubinoff and Yovits, 15, New York: Academic Press, 119-179, 1976.

Kuck, D. J., R. H. Kuhn, B. Leasure, and M. Wolf. "The structure of an advanced
vectorizer for pipelined programs." In Tutorial on Supercomputers: Designs and
Applications, edited by K. Hwang, New York: IEEE Press EH0219-6, 163-178,
1984.

Kung, H. T., and C. E. Leiserson. "Systolic arrays (for VLSI)." In 1978 Symposium on
Sparse Matrix Computations and Their Applications, edited by I. S. Duff and G. W.
Stewart, 48-53, 1978.

Lamport, L. "The parallel execution of DO loops." Communications of the ACM, 17, no.
2., 83-93, February 1974.

Lawler, E. L. Combinatorial Optimization: Networks and Matroids. New York: Holt,
Rinehart, and Winston, 1976.

Lawrie, D. H. "Access and alignment of data in an array processor." IEEE Trans­
actions on Computers, C-24, 496-503, December 1975.

Losq, J. J., G. S. Rao, and H. E. Sachar. "Decode history table for conditional branch
instructions." U.S. Patent No. 4,477,872, October, 1984.

Mashburn, H. H. "The C.mmp/Hydra project: an architectural overview." Chapter 22
of Computer Structures: Principles and Examples, by D. P. Siewiorek, C. G. Bell, and
A. Newell, New York: McGraw-Hill, 350-70, 1982.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 405

References 393

Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger. "Evaluation techniques for
storage hierarchies." IBM Systems Journal, 9, 78-117, 1970.

Mead, C., and L. Conway. Introduction to VLSI Systems. Reading, Mass.: Addison­
Wesley, 1980.

Miura, K. "Vectorization of phase space Monte Carlo code in FACOM vector processor
VP-200." In Proceedings of the 1985 Conference on Computing in High Energy
Physics, edited by L. 0. Hertzberger and W. Hoogland, Amsterdam: North­
Holland, Elsevier, 401-408, 1986.

Nicol, D. M. "Analysis of optimal random program partitions." ICASE Report No.
86-53, NASA Langley Research Center, August 1986.

Organick, E. I. The Multics System: An Examination of Its Structure. Cambridge, Mass.:
MIT Press, 1972.

Organick, E. I. Computer System Organization: The B5700/B6700 Series. New York:
Academic Press, 1973.

Padmanabhan, K., and D. H. Lawrie. "Performance analysis of redundant-path
networks for multiprocessor systems." ACM Transactions on Computer Systems, 3,
no.2, 117-44,May 1985.

Padua, D. A. and M. J. Wolfe. "Advance compiler optimizations for supercomputers."
Communications of the ACM, 29, no. 12, 1184-1201, December 1986.

Patel, J. H., and E. S. Davidson. "Improving the throughput of a pipeline by insertion
of delays." Proceedings of the Third Annual Computer Architecture Symposium,
IEEE No. 76CH 0143-5C, 159-163, 1976.

Patterson, D. A., and C.H. Sequin. "A VLSI RISC." Computer, 15, no. 9, 8-21, Sep­
tember 1982.

Pease, M. C., "An adaptation of the fast Fourier transform for parallel processing."
Journal of the ACM, 15, 252-264, 1968.

Pfister, G., et al. "The IBM Research Parallel Prototype (RP3): Introduction and archi­
tecture." Proceedings of the 1985 International Conference on Parallel Processing,
IEEE Cat. No. 85CH2140-2, 764-771, August 1985.

Pomerene, J., T. R. Puzak, R. Rechtschaffen, and F. Sparacio. "Prefetching mechanism
for a high-speed buffer store." Patent Pending, 1984.

Preparata, F., and J. Vuillemin. "The cube-connected cycles: A versatile network for
parallel computation." Communications of the ACM, 25, 300-309, 1981.

Puzak, T. R. Cache-Memory Design. Ph.D. diss., University of Massachusetts, 1985.

Radin, G. "The 801 minicomputer." Proceedings of the Symposium for Programming
Languages and Operating Systems Support, 39-4 7, 1982.

Seitz, C. L. "The Cosmic Cube." Communications of the ACM, 28, no. 1, 22-33, January
1985.

Shar, L. E., and E. S. Davidson. "A multiminiprocessor system implemented through
pipelining." Computer, 7, no. 2, 42-51, February 1974.

Shemer, J. E., and S. C. Gupta. "On the design of Bayesian storage allocation
algorithms for paging and segmentation." IEEE Transactions on Computers, C-18,
no. 7, 644-651, July 1969.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 406

394 References

Shemer,J. E., and B. Shippey. "Statistical analysis of paged and segmented computer
systems." IEEE Transactions on Electronic Computers, EC-15, no. 6, 855-863, De­
cember 1966.

Siewiorek, D. P., C. G. Bell, and A. Newell. Computer Structures: Principles and Exam­
ples. New York: McGraw-Hill, 1982.

Singleton, R. C. "On computing the fast Fourier transform." Communications of the
ACM, 10, 647-654, 1967.

Sites, R. "Operating systems and computer architecture." Chapter 12 of Introduction
to Computer Architecture. 2nd ed., edited by H. S. Stone, Chicago: Science Re­
search Associates, 591-643, 1980.

Slotnick, D. L., W. C. Borek, and R. C. McReynolds. "The SOLOMON computer."
AF/PS 1962 Fall Joint Computer Conference, 22, Washington, DC.: Spartan books,
97-107, 1962.

Smith, A. "Cache memories." ACM Computing Surveys, 14, no. 3, 473-530, September
1982.

Smith, D. R. "Random trees and the analysis of branch and bound procedures."
Journal of the ACM, 31, No. 1, 163-188, January 1984.

Sterbenz, P. H. Floating-Point Computation. Englewood Cliffs, New Jersey:
Prentice-Hall, 1974.

Stone, H. S. "Parallel processing with the perfect shuffle." IEEE Transactions on
Computers, C-20, 153-161, 1971.

Stone, H. S. "An efficient parallel algorithm for the solution of a tridiagonal linear
system of equations.' Journal of the ACM, 20, 27-38, January 1973.

Stone, H. S., ed. Introduction to Computer Architecture. Chicago, Illinois: Science
Research Associates, 1974.

Stone, H. S., ed. Introduction to Computer Architecture. 2nd ed., Chicago, Illinois:
Science Research Associates, 1980.

Stone, H. S. "Database applications of the Fetch-and-Add instruction." IEEE
Transactions on Computers, C-33, No. 7, 604-612, July 1984.

Stone, H. S., and D. Thiebaut. "Footprints in the cache." Proceedings of Performance
'86, 1-4, May 1986.

Strecker, W. D. "Transient behavior of cache memories." ACM Transactions on Com­
puter Systems, 1, no. 4, 281-293, November 1983.

Sullivan, H., T. Bashkow, and D. Klappholtz. "A large-scale homogeneous fully dis­
tributed parallel machine." Proceedings of the Fourth Annual Symposium on Com­
puter Architecture, 105-24, 1977.

Sussenguth, E. "Instruction sequence control." U.S. Patent No. 3,559,183, January 26,
1971.

Sweazey, P., and A. J. Smith. "A class of compatible cache-consistency protocols and
their support by the IEEE Futurebus." Proceedings of the 13th International
Symposium on Computer Architecture, June 1986, Tokyo, Japan, 414-423.

Tanenbaum, A. S. Structured Computer Organization. Englewood Cliffs, New Jersey:
Prentice Hall, 1976.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 407

References 395

Thanawastien, S., and V. P. Nelson. "Interference analysis of shuffle/exchange
networks." IEEE Transactions on Computers. C-30, 545-556, August 1981.

Thornton, J.E. Design of a Computer: The Control Data 6600. Glenview, Illinois: Scott,
Foresman, and Co., 1970.

Tomasulo, R. M. "An efficient algorithm for exploiting multiple arithmetic units."
IBM Journal of Research and Development, 11, no. 1, 25-33, January 1967.

Treiber, R. K. "Systems programming; Coping with parallelism." IBM Research Re­
port RJ 5118, IBM T. J. Watson Research Center, April 1986.

Trivedi, K. S. Probability and Statistics with Reliability, Queueing, and Computer Sci­
ence Applications. Englewood Cliffs, New Jersey: Prentice-Hall, 1982.

Varga, R. S. Matrix Iterative Analysis. Englewood Cliffs, New Jersey: Prentice-Hall,
1962.

Voldman, J., and L. W. Hoevel. "The software-cache connection." IBM Journal of
Research and Development, 25, no. 6, 877-893, November 1981.

Voldman, J., et al. "Fractal nature of software-cache interaction." IBM Journal of
Research and Development, 27, no. 2, 164-170, March 1983.

Wallace, C. C. "A suggestion for a fast multiplier." IEEE Transactions on Electronic
Computers, EC-13, 14-17, 1964.

Waser, S., and M. J. Flynn. Introduction to Arithmetic for Digital Systems Designers.
New York: CBS College Publishing, 1982.

Wilkes, M. V. "Slave memories and dynamic storage allocation." IEEE Transactions
on Electronic Computers, EC-14, no. 2, 270-171, 1965.

Yew, P.-C., D. A. Padua, and D. H. Lawrie. "Stochastic properties of a multiple-layer
single-stage shuffle-exchange network in a message-switching environment."
Journal of Digital Systems, VI, no. 4, 387-410, 1983.

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 408

Index and Glossary

Access A memory operation that is either a
READ or a WRITE; 23

Access patterns The statistical behavior of a
sequence of memory operations; 248-253

Access sequence The sequence of memory
addresses produced during the execution
of a program; 26-28

Action at a distance A physical force exerted
at a point due to the influence of a remote
source of the force; 196

Address generation During the execution of
an instruction, the cycle in which an ef­
fective address is calculated by means of
indexing or indirect addressing; 105

Address mapper The device that transforms
a virtual address to a physical (real) ad­
dress; 70-71, 74-81, 165-167

See also Virtual memory, mapping
Address-reference stream The sequence of

memory addresses accessed during the
execution of a program; 40-41

See also Address trace
Address trace A recorded sequence of the

memory addresses visited during the exe­
cution of a program; 39-58

Aho, A. E., 369
ALGOL 60; 34 7
Algorithm (interaction with architecture),

17-19
Alignment network A network that selects a

subset of items read simultaneously from
memory and permutes them to permit
them to be manipulated in parallel;
257-9

Allen, F., 375
Allen, J. R., 375, 377
Amdahl Corporation, 39, 168
Amdahl, G. M., 19-20
AND A boolean operation; 203
Archibald, J ., 326
Architecture; see Computer architecture
Arithmetic pipeline A multistage arithmetic

unit that is capable of starting a new
operation while one or more operations
are currently in execution, with the time
interval between successive outputs less
than the total time required to produce a
single output; 236-239

Array processor A parallel computer, usu­
ally with near-neighbor connections be­
tween processors and capable of exe­
cuting a single stream of instructions
broadcast simultaneously to all pro­
cessors; 118-121

Artificial Intelligence The study of
computational techniques for solving
difficult problems for which human-like
approaches are required in their solu­
tions; 12

Assignment problem A combinatorial prob­
lem whose solution assigns N tasks to N
workers such that each worker is assigned
a single task and such that the sum of the
values of the worker-task assignments is
maximized; 370

Associative access A memory access in
which the access is made to an item
whose key matches an access key as dis-

397

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 409

398 Index/Glossary

Associative access (continued)
tinct from an access to an item at a spe­
cific address in memory; 32

See also Set associative
Associative memory A memory whose con­

tents are accessed by key rather than by
address; 32

Atlas computer, 25-26, 70
Attached vector-processor A processor spe­

cialized for vector computations that is
designed to be connected to a gen­
eral-purpose host processor, which
supplies input/output functions, a file sys­
tem, and other aspects of a computing
system environment, 261-266

Auxiliary memory A bulk memory that is
usually large, slow, and inexpensive, of­
ten a rotating magnetic or optical
memory, whose main function is to store
large volumes of data and programs that
are not currently being accessed by a pro­
cessor; 72-73, 85, 90-94

Baer, J .L., 20, 326
Balance (of a computer system's com­

ponents) A state in which the processor
bandwidth matches closely the band­
widths of the memory, interconnection
network, and input/output system so that
no specific component strongly limits the
system throughput; 340

Bandwidth The number of bits per second
that can be processed by a memory, arith­
metic unit, input/output processor or
communication system; 116, 163-164

of communication system, 185, 191,273,
300-301,312-317,384

of input/output system, 185, 191, 273, 384
ofmemory,22, 176, 184-185, 191,235,245,

255,273,383-384
of processor, 176, 185, 191,235,272-273,

383
Bank (of memory) A module of memory that

can sustain a single access to one physical
cell of memory per memory cycle; 116

Barrier synchronization A means for
synchronizing a set of processors in a
multiprocessor system by halting pro­
cessors in that set at a specified barrier
point in a program until every processor
in the set reaches the barrier; 321,
336-338,379,381,387

Base address (of a page) The physical ad-
dress of the start of a page; 75-76

Batcher, K. E., 213, 223
BBN Butterfly, 225-226
Beetem, J., 269

Belady, L., 52, 84
Bell, C. G., 20
Benes, V., 269
Benes network A switching network pro­

posed by V. Benes that is capable of pro­
ducing an arbitrary permutation of its
inputs at its outputs; 269

Berkeley RISC, 168, 170-171
Bidiagonal system of equations A linear sys­

tem in which the only nonzero coeffi­
cients lie on the major diagonal and on
one diagonal immediately below or above
the major diagonal; 207

Binary search A search algorithm in which
the region to be searched shrinks by half
at each step; 367

Binomial distribution The probability dis­
tribution that describes independent
tosses of a fair coin; 62, 64

Bitonic sequence A sequence ot numbers
that is the concatenation of an ascending
and a descending sequence, or is a cyclic
shift of such a sequence; 223, 232

Bitonic sorter A sorting network whose sub­
networks sort bi tonic subsequences into
fully sorted subsequences; 223-225, 232

Block (of a cache), 31
See also line

Bolt, Beranek, and Newman; see BBN
Booth, A. D., 171
Booth's algorithm An efficient algorithm for

integer multiplication; 171
Bottleneck, 21, 102, 298, 300-302, 309,

313-316,340-341,344,363,383
Branch-and-bound search A search tech­

nique in which the search eliminates
large numbers of cases by determining
that the solutions eliminated fall above a
computed bound; 369-373

Branch-history table A hardware device that
saves the recent history of conditional
branches so that this information can be
used for branch prediction; 151, 153-155

Branch prediction The use of history, statis­
tical methods, or heuristic rules to pre­
dict the outcome of conditional branches;
152-153, 155

Breakeven point The number of processors
in a multiprocessor system whose com­
bined throughput is equal to a single pro­
cessor of the same power; 296

Briggs, F. A., 326, 358
Broadcast A form of communication in

which one transmitter sends one message
simultaneously to many receivers;
199-200,326,328

Budnik, P. P., 257

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 410

Index/Glossary 399

Buffer effects (in virtual memory) A phe­
nomenon that causes a fraction of real
memory to serve as a buffer for pages
flowing to and from auxiliary memory;
90-94

Buneman, 0., 206
Burks, A. W., 103
Burroughs' B5700, 172
Burroughs'B6700, 172
Burroughs' Scientific Processor (BSP),

257-259,277
Bus (interconnection) An interconnection in

which all transmitters and receivers are
directly connected to a common set of in­
terconnection lines that comprise the
bus;299-303,309,323,331,384

Butterfly operation The core operation of a
Fast Fourier Transform that consists of
forming the weighted sum and difference
of two operands; 312-314

Buzbee, B. L., 206

C.mmp multiprocessor, 309
Cable density, 226
Cache A small capacity, high-speed buffer

memory; 22, 29-68, 115, 165-168, 245,
247,298-299,322-323

coherence,324-329,383
for data, 116
design of, 94, 98-99
for instructions, 116
miss ratio, 80
replacement policy, 43, 52-58
set of data in, 32-35
simulation of, 41
structure of, 29-39
tag (in directory), 31, 35, 41, 47, 57
techniques for analysis of, 39-52
two-level, 39
vector operands stored in, 276-277
writing to, 66-69

Cache coherence, The state that exi~ts when
all caches within a multiprocessor have
identical values for any shared variable
that is simultaneously in two or more ca­
ches; 324-383

Cache directory The collection of tags in a
cache that are used for associative access
to cached data; 32, 67-68

Cache hit A cache access that successfully
finds in the cache the data requested; 31,
54-58

Cache miss A cache access that fails to find
in the cache the data requested; 30,
36-37,45-52,54-66,96, 116

Cache-reload transient The cache misses
that occur when a program formerly in

execution is restarted after other pro­
grams have used the cache; 58-66

Carnegie-Mellon University, 309
CDC6600, 103, 110-112, 114-116, 161,

163-164, 172
CDC STAR, 124, 240, 246, 267, 271
Central Limit Theorem The theorem that

states that the distribution of the sum of
identical and independently distributed
random variables asymptotically ap­
proaches a normal distribution; 290

Chaining (of computations) The technique
in which an output stream of vector re­
sults is directed to the input of another
vector operation without being returned
to intermediate storage between oper­
ations; 125

Charlesworth, A. E., 262, 264
Checkerboard ordering (for a mesh calcu­

lation) An ordering of operations in
which an iterative calculation is per­
formed first on the "red" nodes and then
on the "black" nodes in the mesh;
379-381

Chen, P. Y., 315
Chen, T.C., 117, 122
Chickens, 298
Chu, W.W., 87-88
Chunksize The number of iterations to be

grouped together as a single task in order
to increase task granularity; 341-345,
375,379,386

CISC (Complex Instruction-Set Computer) A
computer with an instruction set that in­
cludes complex (multicycle) instructions;
168-171

Clark, D. W., 80
Coarse-grain parallelism Parallel execution

in which the amount of computation per
task is several times larger than the over­
head and communication expended per
task; 283-297

Cocke John, 168
Coffman, E.G., Jr., 41, 86, 90
Coherence (of cache); see Cache coherence
Collision An event in which two or more dif-

ferent operations require the use of the
same pipeline stage at the same clock cy­
cle; 134

Collision vector A binary control-vector
whose bits indicate when an operation
can be initiated safely in a pipeline com­
puter; 132, 134-138, 141, 174

Column access A concurrent memory access
to all elements of a column of a matrix;
251-255,274-275,331

Colwell, R. P., 171

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 411

400 Index/Glossary

Combining switch A switching element of
an interconnection network that has the
ability to combine certain types of re­
quests into one request, and to produce a
response that mimics serial execution of
the requests; 310-312, 318-324, 339, 384

Common data-bus A hardware mechanism
for transmitting results produced by a
collection of arithmetic units to machine
registers and reservation stations;
162-163

Communication cost, 283-299
Compare-and-Swap An instruction that is

used for processor synchronization; 348,
355-362,378,387

Compatibility, 19
Compiler optimization, 374-382
Complex instruction-set computer; see CISC
Computer architecture The study of com-

puter structures, their applications, and
their performance; 1-2, 13

cost of, 8-9
evaluation of, 8-9, 19
performance of, 8-9
special purpose vs. all purpose, 13
and technology, 2
textbooks, 20

Computer vision, 12
Concert multiprocessor, 346
Conditional branch A computer instruction

that alters the sequence of execution if a
condition is true, and otherwise falls
through to the next instruction in se­
quence; 107, 113, 176, 230-231

in a pipeline, 150-155
Confidence interval An interval based on

statistical sampling that shows where a
population of random variables lies to
within a specified level of confidence; 49

Conflict A situation in which two or more
operations require the same resource,
forcing one operation to wait for the other
to complete; 113-115, 142-148, 156,
312-317

in a network, 312-317
in a pipeline, 113-115, 142-148, 156
See also Contention, READ/WRITE conflict,

WRITE/READ conflict, WRITE/WRITE
conflict

Connection Machine, 279, 284, 324
Contention Interference among tasks caused

by tasks competing for shared resources,
thereby forcing one or more tasks to be­
come idle momentarily while waiting for
resources to become available; 306-307,
311-315,342,384

Context switch The process of saving the

state of one task and restoring the state of
a second task to enable a computer sys­
tem to change execution from one pro­
gram to another; 81

Continuum model A model of physical sys­
tems in which continuous quantities are
modeled at discrete points and physical
interactions are modeled as interactions
among neighboring mesh points;
180-184, 186-209,227-229,233,274

Cooley,J. W., 228
Coonen, J. T., 172
Cosmic Cube, 194-195, 202, 210, 228-229,

231, 324
Cost, 4-11

of development, 5
per-unit, 5

Cost-performance ratio, 10-11, 15-16, 235,
296

Cray I, 125,244-247,259,271,282,284
Cray II, 125-126, 261
Cray XMP, 282, 284
Critical section A section of a program that

can be executed by at most one process at
a time; 308, 311, 318, 320, 347-365

Crossbar (interconnection) An inter­
connection in which each input is con­
nected to each output through a path that
contains a single switching node;
305-310,313,323,331

Crosspoint A switching node in a crossbar
that connects a single input to a single
output; 306

Crowther, W., 225
Cvetanovic, Z., 312, 314, 316, 344
Cycle (in reduced state-diagram) A path in a

reduced state-diagram that specifies a
steady-state schedule for introducing
operationstoapipeline; 140-141, 174

Cycle (of computer clock) An electronic sig­
nal that counts a single unit of time
within a computer; 16, 151, 236-239, 254,
343-344

Cycle time The length of a single cycle of a
computer function such as a memory cy­
cle or processor cycle; 24, 29, 31

effective, 38
Cyclic reduction An algorithm used to solve

linear systems that have a particular
structure; 208-209, 229-230

Cytron, R. G., 375, 377, 382

Data cache A cache that holds data, but does
not hold instructions; 116

Data flow (analysis of requirements) These­
quence of processes and data trans­
missions that are performed on a col-

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 412

Index/Glossary 401

lection of data during a computation;
195-198

Database system, 12
Davidson, E. S., 127, 135, 140
de Kooning, W., 3-4
Dead line A line of a cache that will be dis­

carded from cache before it will be the
target of a cache access; 55

Deadlock The state in which two or more
processes are deferred indefinitely be­
cause each process is awaiting another
process to make progress, and no process
is able to make progress; 308, 387

DEC PDP-11, 19, 309
DEC VAX, 19, 77, 80-81, 83-84, 168, 171
Decode-history table A small cache-like

memory that saves the recent history of
decoding information for conditional­
branch instructions so that this informa­
tion can be used by a branch prediction
mechanism; 154-155

Decrement (for synchronization), 352-355,
387

Delay (in pipeline) A logic device used to
store and synchronize data in a pipeline;
142-148, 242-244

Delayed branch A branch instruction that
defers altering the flow of control until
one more instructions that follow it have
completed execution; 151-152

Denneau, M., 269
Denning, P. J., 41, 85-86, 90
Dependency analysis An analysis that

reveals which portions of a program de­
pend on the prior completion of other
portions of the program; 375-377,
385-386

DEQUEUE A high-level function that re­
moves an item from a queue; 351-352,
355,358,360,363-365,387

Development cost, 5
Dias, D. M., 315
Digital Equipment Corporation; see DEC
Dijkstra, E. M., 347, 370, 374, 387
Direct mapping A cache that has a set asso­

ciativity of one so that each item has a
unique place in the cache at which it can
be stored; 34

Directory (of a cache) The portion of a cache
that holds the access keys that support as­
sociative access; 32, 56

See also Cache, tag
Disk buffer A high-speed buffer memory res­

ident within a disk controller that is used
as a private cache for the disk system;
92-94, 97-98

Disk cache; see Disk buffer

Disk memory, 90-94
See also Auxiliary memory

Division, 174
do par A program statement that permits

the iterations of a loop to be executed in
parallel; 335-336, 345, 345, 386

do seq A program statement that forces the
iterations of a loop to be executed se­
quentially, 335-336, 345

Dubois, M., 326

ECL (Emitter-coupled logic), 15
Efficiency

of array computer, 118-120
of multiprocessor computer, 280-299, 309,

338-341
of pipeline computer, 122-123

Erner, J. S., 80
ENQUEUE A high-level function that adds

an item to a queue; 351-352, 355, 357,
360-361,363-365,387

Exchange; see Pair-wise exchange. Shuffle.
exchange

Exclusive access A state in which some sin­
gle process is granted the right to read,
modify, and write a shared datum, and no
other processor can access the datum
while the first program has exclusive ac­
cess to the shared datum; 308, 311, 318,
320,347-365

See also Critical section
Execute stage The stage in a pipelined pro­

cessor at which an instruction is exe­
cuted; 112, 157, 161-162

Exponent, 127-130

Fan-in The number of·logic signals that di­
rectly drive a given logic gate; 198

Fan-out The number of logic gates driven by
a specific logic gate; 198

Feedback path A path from the output of a
functional unit to an input of the same
unit; 129

Fetch-and-Add A computer instruction that
updates a memory operand, returns the
value of the operand before the update,
and if executed concurrently by several
processors simultaneously, produces a set
of results as if the processors executed in
some serial order; 318-322, 348, 362-365,
378,386-388

FFT (Fast Fourier Transform); see Fourier
transform

Fine-grain parallelism A form of parallel ex­
ecution in which the amount of work per
task is small compared to the amount of
work per task required for communica­
tion and overhead; 283-297

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 413

402 Index/Glossary

Finite-element method A numerical tech­
nique in which physical systems are ana­
lyzed mathematically by modeling the
system at the nodes of a mesh of data
points; 12, 267

Floating-point arithmetic, 127-137, 169,
177-178

addition, 129-134
multiplication, 127-129, 132-134

Fluid flow, 12
Flynn, M. J., 172, 279-280
Footprint The distinct lines of a process held

in an infinite cache that are touched dur­
ing the execution of the process; 60-66,
85,99

Footprint size The number of lines of a pro­
cess footprint held in a cache; 60

Forbidden cell A cell of a reservation table
for one operation that cannot be used by
another operation because of a timing
conflict; 142-148

Ford, L. R., Jr., 370
Forsythe,G., 173,252
FORTRAN, 180, 375
Forwarding register A register that is tem­

porarily assigned the role of a different
register; 157

See also Internal forwarding
Fourier transform, 196-197, 213, 228-229,

311-316,368
FPS-164,262-266,268-269,271
Free pool A collection of registers available

for use as forwarding registers; 158-160
Freeable The state of a forwarding register

after its contents have been used and the
register can be returned to the free pool;
158-160

Fujitsu Corporation, 168, 262, 375
Fulkerson, D.R., 370
Full-information function A multi-output

function each of whose outputs depends
on every input; 196-197

Fully associative A cache structure in which
every tag in the cache is compared to the
tag of the datum being accessed; 34

Gauss-Seidel iteration An iterative scheme
for solving linear equations in which each
interior point is updated with two neigh­
boring values from the present iteration
and two neighboring values from the
prior iteration; 379-381

Gaussian elimination A method for solving
linear systems of equations; 249-251,
255,275,331-332

GCD (Greatest Common Divisor), 256
GF-11; see IBM GF-11

Gflops (Gigaflops) A computation rate of one
billion floating-point operations per sec­
ond; 269

Gigaflops; see Gflops
Global memory A memory directly acces­

sible by every processor in a multi­
processor; 299, 342-343

See also Shared memory
Golub, G. H., 206
Goodman, J ., 326
Gottlieb, A, 226, 318, 364
Granularity A measure of the size of an indi­

vidual task to be executed on a parallel
processor; 283-297,299-300,338-341

Gravitation, 182
Greatest common divisor (GCD), 256
Greedy strategy A strategy that initiates a

new pipeline operation at the earliest op­
portunity; 138-140

Grosch's Law An empirical rule that says
that the cost of computer systems in­
creases as the square root of the computa­
tional power of the systems; 14

Gupta, S. C., 41
Gustafson, J. L., 262, 264

Halstead, R., 346
Hash lookup A search technique in which

the search key is transformed to an ad­
dress at which the search begins; 268

Hayes, J.P., 20
Heller, D. E., 209, 249
Hierarchy (of memory system) A multilevel

memory structure in which successive
levels are progressively larger, slower,
and less costly; 22, 26, 100-101

High-speed buffer memory A memory that
holds data en route between a large main
memory and the registers of a high-speed
processor; 259

See also Intermediate memory
Hill, M., 170
Hillis, W. D., 279, 324
Hit; see Cache hit
Hit ratio The ratio of the number of cache

hits to the total number of cache acces­
ses; 38

Hitachi Corporation, 39, 262
Hoevel, L. W., 58
Hopcroft, J. E., 369
Hoshino, T., 178, 180
Hot-spot contention An interference phe­

nomenon observed in multiprocessors
due to memory access statistics being
slightly skewed from a uniform distribu­
tion to favor a specific memory module;
316-317,320,384

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 414

Index/Glossary 403

Hwang, K., 172, 357
Hypercube A parallel processor whose inter­

connection structure treats individual
processors as the nodes of a multi­
dimensional cube and interconnects two
processors if the corresponding nodes of
the cube are neighbors; 231, 323-324

See also Cosmic Cube

IBM Corporation, 168, 262
IBM GF-11, 268-271, 279, 284
IBM RP3, 226, 311, 322-324, 339, 344
IBM STRETCH, 103
IBM 801, 168
IBM System 360/91, 161-164
IBM System 360-370, 19-20, 168, 357
IBM 3090, 155, 282, 375
IEEE 802.5 Token-Ring Standard, 304
IEEE Standard for Floating-Point

Arithmetic, 172
ILLIAC IV, 123-124, 179, 189-195, 199-200,

269, 271, 275
Image processing A computation performed

on a digitized representation of an image
whose purpose is to enhance the image or
to extract information about the image;
12

Increment (for synchronization), 352-355, 387
Indurkhya, B., 283, 290-291
Inferencing system A programming system

that produces results by following a
logical chain of inferences; 12

Initialization (of cache simulation), 41-42
Inner product The sum of the

component= by =component products of
the elements of two vectors; 149, 263

Input/output overlap The act of performing
input/output processing concurrently
with other processing; 103

Input/output processor A processor whose
function is specialized to input/output
processing; 67-69, 168

Instruction buffer A small high-speed
memory that holds instructions recently
executed or about to be executed; 245

Instruction cache A cache memory dedi­
cated to the storage of instructions; 116

Instruction decode The machine cycle dur­
ing which an instruction is examined and
the control signals required for the exe­
cution of the instruction are produced;
105, 156-157

Instruction fetch The machine cycle dedi­
cated to the access and retrieval of the
next instruction to execute; 105, 116,
156-157, 169

Instruction set The repertoire of in-

structions executable by a computer; 2
See also CISC, RISC

Intel8086, 103, 194
Intel 8087, 194
Intel 808X, 19
Interconnection network The system of logic

and conductors that connects together
the processors in a parallel computer sys­
tem; 199,210-226,280

See also Bus, Crossbar, Hypercube, Near­
neighbor interconnection, Perfect shuffle,
Ring, Shuffle-exchange

Interlock A control device or signal that de­
fers the execution of one function until a
conflicting function has completed exe­
cution; 114, 156, 161, 263-264

elimination of, 148-150
Intermediate memory, 245-248

See also High-speed buffer memory
Internal forwarding An execution technique

in which special registers are temporarily
assigned the function of physical machine
registers to hold operands while awaiting
execution in order to reduce conflicts for
machine resources that otherwise would
occur; 155-164, 173

Interprocessor communication The data
and control information that passes
among the processors of a parallel com­
puter during the execution of a parallel
program; 281

InteITUpt A temporary suspension of the
normal sequence of program execution to
perform a function that has been initiated
by an external event or by an internal
trap or monitor function; 59, 357, 360

InteITUpt-drlven A program function that is
initiated by an interrupt caused by an ex­
ternal event; 59,64

Invalidate The process that removes a cache
entry by changing its directory entry into
an empty entry; 68

Inverse mapper A device that computes a
virtual address from a physical (real) ad­
dress; 166

Inverse perfect shuffle; see Perfect shuffle, in­
verse of

Jacobi Iteration An iterative method for
solving linear equations that updates
each point in a new iteration only after
all points have been updated for the prior
iteration; 379

Jump, J. R., 315

Karp, R. M., 366-368, 373
Kilburn, T., 25-26

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 415

404 Index/Glossary

Knowledge base A collection of rules and
data used by inferencing programs dur­
ing computations; 12

Kogge, P. M., 127, 140, 149, 204, 243, 264
Kruskal, C. P., 315
Kuck, D. J., 257, 375
Kung, H. T., 226

Lamport, L., 380-381
Latch A one-bit storage device that saves the

contents of its input at the instant a clock
signal changes state; 112

Latency The delay between the request for
information and the time the information
is supplied to the requester; 72, 91

Lawler, E. L., 370
Lawrie, D. H., 311, 315
Least-recently used; see LRU
Leiserson, C. E., 226
Line (of a cache) A collection of contiguous

data that are treated as a single entity of
cache storage; 31-32

Line size The number of bytes in a cache
line; 34, 46-52

Linear equation An equation that depends
on its variables only through the addition
of a multiple of each variable, 262

Linear programming An optimization
technique for solving constrained prob­
lems in which behavior equations and
constraint equations are linear functions
of the variables; 262

Linear recurrence A recurrence relation in
which each successive result is a linear
function of past results; 203-205

Linear-equation solver An algorithm for
solving linear equations; 175

LISP, 346
Livelock A state in which actions taken by

concurrently executing processes prevent
computation from proceeding, but
computation can proceed if some
processes alter their execution behavior;
354-355,364-365,387

Local memory The private memory directly
connected to a processor in a parallel
computer; 299,322-323,343

Locality (of memory references) The charac­
teristic tendency for programs to access
regions in the near future that were acces­
sed in the recent past; 26-29, 74, 81-84

Lock A primitive operation that grants a
process the exclusive right to continue ex­
ecution only if no other processor cur­
rently holds that exclusive right; 308,
318,339-341,343,349-353,357,359,378

See also Unlock

Loop interconnection; see Ring
Losq, J. J., 154
LRU (Least-Recently Used) replacement

policy A memory management strategy
that purges the least recently used candi­
date from memory, while retaining candi­
dates used more recently; 44, 52-58, 62,
84-85, 248

LU decomposition A method for solving lin­
ear equations based on Gaussian elimi­
nation; 173, 207, 249-251, 330-331

Mantissa The significant-bit field of a
floating-point operand; 127-130

Mapper; see Address mapper
Mashburn, H. H., 309
Mattson, R. L., 43-46, 52
MAX,203
Maximum compatible set A set of integers,

no two of which are incompatible and to
which no other compatible integer can
appended; 147-148

Megaflops; see Mflops
Memory, 21-101

access patterns, 26-29
bandwidth, 22
bottleneck,21, 102,309,344
cycle time, 24, 29, 31
hierarchy, 22, 26, 100-101; see also Hier-

archy
random access, 23-24, 26
sequential access, 24
structure for a pipeline computer, 115-117
See also Virtual memory

Memory access, 26-29, 248-253
See also Access

Memory address The unique location for
each item in a memory by which that
item is accessed; 23-24

Memory hierarchy, 22, 26, 100-101
See also Hierarchy

Memory management The process of con­
trolling the flow of data among the levels
of memory hierarchy; 70-73, 84-90,
92-94

Mesh calculation, 123, 179, 187-189, 197-199,
229-230

See also Continuum model, Finite-element
method

Mflops (Megaflops) An execution rate of mil­
lions of floating-point instructions per
second; 234, 249

MIMD (Multiple Instruction-stream, Multiple
Data-stream) A parallel computer struc­
ture composed of multiple independent
processors; 279-280

See also Multiprocessor, SIMD

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 416

Index/Glossary 405

MIN, 203
MIPS (Millions of Instructions per Sec­

ond) A measure of the maximum
computation rate of a computer; 14-16,
333,345,350-352

Miranker, W. L., 366-368, 373
Miss ratio The ratio of cache misses to total

cache accesses; 42, 58, 80, 325
steady-state, 58
See also Cache miss, Hit ratio

MIT Multics, 172
Miura, K., 375
Model (of multiprocessor performance),

285-299,330-331,338-341
See also Performance model

Moler, C. B., 173, 252
Monte Carlo simulation A computational

method in which physical calculations
are performed by simulating the statisti­
cal behavior of elementary components of
a physical system; 12

MOS (Metal-Oxide Semiconductor), 14
Motorola680XX, 19, 168, 171
MSYPS (Millions of SYnchronizations Per

Second) A measure of the maximum
rate at which a multiprocessor can per­
form synchronizations among its
processors; 333,339,345,350-352,363,
384-385

Multics, 172
Multiple instruction-stream, multiple data­

stream; see MIMD
Multiple-purpose architecture A computer

structure that can perform a broad vari­
ety of computations; 185, 186, 191, 273,
385

Multiplier tree, 171
Multiprocessor A parallel computer com­

posed of multiple independent processors
and facilities for controlling their inter­
action and cooperation; 278-287

cache coherence in, 324-329, 383
compiler optimization for, 374-382
efficiency of, 280-299, 309, 338-341,

365-374
interconnections, 299-324, 341-345
parallel execution of, 333-338, 365-374
parallel search in, 365-374
performance of, 283-299, 338-41, 365-74
synchronization of, 338-341, 347-365
task initiation, 345-347, 386
See also MIMD

Multiprogramming A technique for exe­
cuting more than one program at a time
in a single processor by periodically
changing the program currently being ex­
ecuted by the processor; 71-72

Near-neighbor interconnection An inter­
connection structure for a parallel pro­
cessor in which each processor is con­
nected directly to its near neighbors; 183,
198,200,226-228,233,274

NEC (Nippon Electric Corporation), 262
Nelson, V. P., 315
Newell, A., 20
Nicol, D. M., 291
Nielson, C. W., 206
NMOS Negatively doped MOS (Metal-oxide

semiconductor); 14
Nonlinear systems of equations A system of

equations in which the variables are
linked by one or more nonlinear re­
lations; 262

Normal distribution The statistical distribu­
tion whose probability density follows a
bell-shaped curve; 64

Normalization The process that transforms
a floating-point number into a
representation such that the leading digit
of a nonzero mantissa is nonzero;
127-130

Norton, V. A., 315-316
NP-complete A class of problems for which

there exists no current algorithm that can
solve any problem in the class in a time
guaranteed to be less than exponential in
the size of the problem; 333, 369

NYU Ultracomputer, 226, 311, 339

Offset A small integer whose value is the rel­
ative displacement from a base address to
the address at which an access is to be
made; 75-76

One-level store A multilevel memory hier­
archy that functions as if there were a sin­
gle level in the memory hierarchy; 25

Opderbeck, H., 87-88
Operand fetch The machine cycle dedicated

to the access and retrieval of an operand;
105, 116, 156-157

OPT A nonrealizable optimum replacement
policy for cache and virtual memory;
52-58

Optical transmission, 226, 305
OR,203
Organick, E. I., 172
Overflow The state in which a numerical

value exceeds the maximum represent­
able numerical value; 127-130, 172

Overlap The ability to perform two or more
functions concurrently; 123-126,
283-299

Overlay, 25

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 417

406 Index/Glossary

Padmanabhan, K., 315
Padua, D. A., 375, 377
Page A contiguous region of memory that is

treated as a single entity in virtual­
memory systems; 26

Page fault An access to a page that is not
resident in main memory; 26, 30, 72-73,
75, 77' 84-88, 91

Page number The field of a virtual address
that identifies the page to be accessed;
76-77

Page replacement The process that deter­
mines which page to move from main
memory to auxiliary memory to make
room for a new page in main memory;
84-90, 92

Page size The number of bytes in a page;
29

Page table A table used by a page mapper in
a virtual memm·y system that contains
the physical (real) address for each page,
and is accessed by page number; 77

Page-fault frequency replacement (PFF) An
algorithm for managing a virtual
memory that increases the number of
pages assigned to a process when page
faults occur at a rate above a fixed thresh­
old; 87-90, 96-97

Pair-wise exchange An interconnection
switch that swaps data between adjacent
processors; 219,222

Parallel architecture, 18-19
Parallel computation 12, 123-124, 179,

189-195, 199-200,202,206-209,
228-229,231,332-335

Parallel time The elapsed execution time for
a parallel computation; 123

Partial differential equation An equation
that expresses the relations among vari­
ables and their partial derivatives; 181

Particle model A computational process in
which physical behavior is modeled
through the simulation of discrete par­
ticles acted upon by physical forces pro­
duced remotely; 180-184, 233

See also Monte Carlo simulation
Partitioning (of programs to pages or seg­

ments) The process of grouping related
portions of programs together to force
them to reside in contiguous regions of
memory so that they tend to be trans­
ferred together among the levels of a
memory hierarchy; 74

Patel,J. H., 127, 140
Patterson, D. A., 169-170
PDP·l 1; see DEC PDP-11
Pease, M. C., 213-214, 217

Per-unit cost The manufacturing cost of one
additional item; 5

Perfect·shuffie interconnection An inter­
connection structure that connects pro­
cessors according to a permutation that
corresponds to a perfect shuffle of a deck
of cards; 210-226,228-229,231-232,
269-270, 310-324

inverse of, 217-218
Performance model An idealized mathe·

matical model that is useful for predict­
ing the performance of a computer sys­
tem; 285-297

fully overlapped communication, 293-295
linear communication costs, 291-293
multiple communication links, 295-297
N processors with overlapped communica­

tion, 286-290
stochastic, 290-291
two processors with overlapped communi­

cation, 285-286
Permutation A one-to-one mapping from a

set of objects onto the same set of objects;
370-373

Permutation memory (in the GF-11) A
memory that stores the control settings
for a collection of permutations, each of
which is to be used for routing informa­
tion among processors and memories;
271

PFF; see Page-fault frequency
Pfister, G., 226, 316-317, 322
Physical address The address of an item in

physical (real) memory; 70, 75, 77-78, 81,
165-167

Pipeline (in a computer system) A structure
that consists of a sequence of stages
through which a computation flows with
the property that new operations can be
initiated at the start of the pipeline while
other operations are in progress through
the pipeline; 102-176, 234-243, 263-266

adding delays to, 140-148
arithmetic units, 263-266
conditional branches in, 150-155
conflicts in, 113-115
control of, 127-137, 174-176
design of, 103-115
maximum performance of, 138-148
performance of, 117-127, 298
streaming operation of, 236-243, 276-277
in vector computer, 234-235

Pivot (in Gaussian elimination) The largest
element in a region of an array, which is
chosen to serve as the element around
which a transformation of a subarray is
performed; 251, 274

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 418

Index/Glossary 407

Poisson's equation An equation that de­
scribes physical potential as a function of
charge density; 187-191, 197, 206,
229-230,334-335,379

Polynomial, 232
Pomerene, J., 56
Preparata, F., 225
Process tag (in a cache memory) A field that

gives the identity of the specific process
that created a particular line in the ca­
che; 81

Program partitioning, 25
See also Partitioning

Propagation effects Physical effects that
tend. to degrade signal quality and to in­
crease propagation delays; 226

Purge (of cache and TLB) The process that
removes all entries in a cache or cache­
like memory that are associated with a
process that has relinquished its use of a
processor; 81

Puzak, T. R., 45-52

Quantum chromodynamics A branch of the­
oretical physics concerned with the be­
havior and properties of elementary par­
ticles; 270

Queue (for shared access), 318-321, 338-339,
341,351-352,355-362,386

RIC ratio The ratio of a task's running time
to its overhead and communications
time; a measure of task granularity;
283-297,299-300,324,338-343,
377-379,382

Radin, G., 168
RAM (Random-Access Memory), 23-24, 72,

100
Random-access memory (RAM) A memory

in which the time required to access an
item is independent of the past history of
accesses; 23-24, 72, 100

Rao, G. S., 154
Ray tracing An algorithm used to render

life-like graphic images by tracing the
path of rays of light from source to illu­
minated object; 13

READ/MODIFY/WRITE A noninterruptible
sequence of operations required for oper­
ations that synchronize access to shared
variables; 308, 339-341, 347-353, 357,
359

READ/WRITE conflict, 113-115, 161,
376-377,379,386

See also Conflict
Real address; see Physical address
Real time, 12
Rechtschaffen, R., 393

Recurrence relation A relation that ex­
presses the next item of a sequence as a
function of the earlier items in the se­
quence; 175,200-205

Recursive doubling A technique for parallel
execution that at each stage doubles the
number of variables that influence the
partial results at that stage of the
computation; 206-207, 209, 229, 231, 276

Red-black ordering (for a mesh calculation),
379-381 See also Checkerboard ordering

Reduced instruction-set computer; see RISC
Reduced state-diagram A diagram that de­

scribes the possible sequences of ini­
tiation of operations in a pipelined pro­
cessing unit; 138-140, 174

Reformatting (of data structures) The pro­
cess of transforming a data structure
from one storage representation to
another to facilitate parallel access to
substructures of the data structure; 260

See also Column access, Row access
Register windows A processor mechanism in

which sets of registers automatically
change their function when procedures
are entered and exited; 1 70-171

Remote effects Physical effects caused by in­
teractions that are not near-neighbor in­
teractions; 183

See also Action at a distance
Replacement policy A policy that governs

which items are to be removed from one
level of a memory hierarchy when new
items are put there; 43-45, 52-58, 74,
84-90, 92

See also LRU, OPT
Reservation station A collection of hardware

registers that hold data or reservations
for data to be used in a future operation;
158, 162

Reservation table A table that describes
which resources are needed at each step
of a pipelined computation; 131,
133-134, 141, 174

Reverse-binary operation A permutation
that maps Item i to the item whose is in­
dex is obtained by reversing the bits in
the binary representation of i; 312-314

Ring (interconnection) An interconnection
structure in which nodes are connected in
a loop structure; 304-305, 330, 384

RISC (Reduced instruction-set computer) A
computer in which all instructions are
simple instructions that take one cycle to
execute, except for instructions that re­
quire conditional execution and for de­
lays access memory; 151-155, 168-171

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 419

408 Index/Glossary

Routing register In ILLIAC IV, a register
used for exchanging data among neigh­
boring processors; 190-191

Row access A concurrent memory access to
all elements of a row of a matrix;
251-255,274-275,331

RP3; see IBM RP3

Sachar, H. E., 154
Savage, J. E., 41
Scalar arithmetic Arithmetic operations

that manipulate individual data as op­
posed to arithmetic operations in which
one operation manipulates an entire vec­
tor or matrix; 264-265

Scalar operation Any operation performed
on individual data; 178, 245

Scalar processor A processor whose basic
operations manipulate individual data
elements rather than vectors or matrices;
266

Scalar register A register whose function is
to hold scalar operands; 244-245

Scheduling, 281, 383
Scoreboard A hardware device that main­

tains the state of machine resources to en­
able instructions to execute without con­
flict at the earliest opportunity to do so;
114-115, 161-162

Search techniques, 365-374
Segment A method for partitioning data

into variable-length blocks of memory so
that items grouped together are logically
related; 76, 82

Segment number The field of a virtual ad­
dress that specifies which segment of a
program is to be accessed; 76

Segment table The table in a virtual­
memory system that is used to translate
segment references in a virtual address to
physical (real) addresses in main
memory; 77-79

Segmented memory A virtual memory sys­
tem whose address space is partitioned
into a disjoint collection of regions known
as segments; 82

Seitz, C. L., 194
Semaphore A variable that is used to control

access to shared data; 349-355
Sequential-access memory A memory sys­

tem such as a magnetic tape memory in
which items must be accessed se­
quentially, and in which the access time
to a random item depends on which item
in memory was accessed immediately
prior to the given access; 24, 248

Sequin, C.H., 169-170

Serial access; see Sequential access
Serial correlation The statistical correlation

among the addresses in a sequence of ad­
dresses in an address trace from which it
is possible to predict future accesses;
27-29

See also Locality
Serial time The time it takes to execute an

efficient version of an algorithm on a
serial computer; 123

Serialization The process that forces a
collection of complex tasks to take place
one at a time rather than in parallel; 319,
321

Set; see Cache, set
Set associative A cache structure in which

all tags in a particular set are compared
with an access key in order to access an
item in cache. The set may have as few as
one element or as many elements as there
are lines in the full cache; 32-34, 38,
43-52

Shadow directory A cache directory that
contains cache tags only, and no data;
56-58

Shadow miss A cache miss for which an en­
try exists in a shadow directory; 57

Shar, L. E., 127
Shared memory, 299-301, 325-329, 339-341,

347-365
See also Global memory

Shared page A page of a virtual memory sys­
tem that is shared by two or more pro­
grams; 79

Shared segment A segment of a virtual
memory system that is shared by two or
more programs; 83-84

Shemer, J.E., 41
Shift-register analogy A method for predict­

ing the trajectory of an item in a perfect­
shuffle network by observing the succes­
sive states of a cyclic shift register;
215-217, 222

Shift-register controller (for a pipeline),
135-139

See also Collision vector
Shippey, B., 41
Shortest-path problem A problem that re­

quires the discovery of the shortest path
between two nodes of a graph; 370, 374,
387-388

Shuffle-exchange (interconnection) An inter·
connection network that consists of a per­
fect shuffles and pair-wise exchanges;
310-324

Siewiorek, D. P., 20
SIMD (Single Instruction-stream, Multiple

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 420

Index/Glossary 409

Data-stream) A processor structure in
which a single instruction manipulates
an entire data structure; 279, 324,
346-347

See also Array processor, Connection Ma­
chine, Vector Processor

Single instruction-stream, multiple data-
stream; see SIMD

Singleton, R. C., 213, 217
Sites, R., 357
Skewed storage A technique for storing ma­

trices to facilitate parallel access to rows
and columns; 255-259

Slotnick,D.L., 189, 195
Smith, A. J., 37, 326
Smith, D.R., 369, 373-374
Snir, M., 315
SOLOMON, 192
Sorting, 196, 198,213,223-225
Sparse matrix A matrix whose elements are

mostly zeros; 12, 250, 266-268
Sparse vector A technique used in the CDC

STAR for representing vectors whose ele­
ments are mostly zeros; 267

Speech recognition, 12
Speedup The ratio of the time to execute an

efficient serial program for a calculation
to the time to execute a parallel program
for the same calculation on N processors
identical to the serial processor; 108, 121,
193,205,209,289,294,298,332,339-340,
343-344,367,373

Spin lock A implementation of the LOCK
primitive that causes a processor to retest
a semaphore continuously until the
semaphore changes value; 351

Spirn, J. R., 41
Stable (numerically) An algorithm that pro­

duces small changes in the numerical an­
swers in response to small changes in in­
put data; 251

Stack-replacement policy A memory­
replacement policy for which items that
are retained in a small memory are a sub­
set of the items retained if the memory
size is increased; 45

Stage (of a pipeline), 106
Stale data Data that remain in a cache when

a process is moved to a different pro­
cessor; 326

Startup transient The period immediately
after the initiation of a vector instruction
during which a pipeline produces no re­
sults or produces results at a low rate;
117

Statistical sampling A trace-reduction tech­
nique that predicts full cache per-

formance by sampling the performance
on a small number of cache sets; 49

See also Trace reduction
Steele, G. L., Jr., 324
Sterbenz, P.H., 172
Stone, H. S., 20, 59, 204, 206, 214-215, 283,

290,364
Stream (of data) A set of successive data

presented to a pipeline arithmetic unit,
234-239,276

Strecker, W. D., 58
Stride The constant difference between suc­

cessive addresses in a stream of data gen­
erated by a vector access; 256

Sullivan, H. T., 322
Sussenguth, E., 153
Sweazey, P., 326
Synch An elementary synchronization

operation; 339
Synchronization An operation in which two

or more processors exchange information
to coordinate their activity; 185, 191-192,
273,281,302,321,332-333,335-341,
347-365, 384-385

Synonym (in a cache) A situation in which
two different items have the same virtual
address but reside at different physical
addresses; 166-167

Synthetic workload, 73
SYPS (SYnchronizations Per Second) A

processing rate of one synchronization
persecond; 333,339

See also MSYPS
Systolic array A parallel computer with a

highly structured, iterative inter­
connection pattern; 226

Tag; see Cache, tag
Tanenbaum, A. S., 20
Tapped delay-line A device whose taps pro­

duce delayed versions of the input data
with each tap associated with a different
delay, 242

Test-and-Set A primitive instruction that
performs a READ/MODIFY/WRITE oper­
ation for synchronization of processors;
348-352, 387

Thanawastien, S., 315
Thiebaut, D., 59
Thirty-percent rule, 37
Thornton, J.E., 112, 161, 172
Thrashing A state in which multiple pro­

grams compete for real memory and no
program is able to obtain enough
memory to reduce its fault rate to a low
value; 85-86

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 421

410 Index/Glossary

Three-address instruction format An in­
struction format with two fields for input
operands and one field for a result oper­
and; 114, 163

Threshold (for page-fault frequency), 88
Threshold phenomenon For some physical

systems, the situation in which behavior
changes dramatically when a parameter
crosses a threshold; 64

TLB; see Translation-lookaside buffer
Token A unique data symbol used to control

transmission for a parallel computer sys­
tem connected as a ring; 304-305

Token ring; see Ring interconnection
Tomasulo, R. M., 161-162
Tour A path on a graph that visits every

node exactly once and terminates at the
starting node; 370-373

Trace reduction A technique for reducing
the number of address references on an
address trace while retaining the ability
to use the trace to analyze cache per­
formance; 45-52, 95

Trace stripping, see Trace reduction
Trace-driven analysis A performance analy­

sis technique based on simulating the be­
havior of a computer system responding
to stimuli obtained from a program trace;
80

Transaction system, 12
Transient (of cache simulation) The misses

that occur during the beginning of a ca­
che simulation due to incorrect initializa­
tion of the cache; 40-42, 50

Transient miss A cache miss due to the im­
proper initialization of a cache during a
cache simulation; 57

Translation-lookaside buffer (TLB) A cache­
like memory that holds recently used
mappings of virtual addresses to physical
(real) addresses; 75-76, 80

Travelling Salesman Problem A problem
whose solution is the shortest path
among N cities such that the path begins
and ends at City 1 and no city is visited
twice; 332-333, 369-374

Treiber, R. K., 358
Triangular matrix A matrix whose nonzero

elements lie on the major diagonal and in
a triangular region that lies either above
or below the major diagonal; 249-252

Tridiagonal system of equations A linear
system whose defining matrix is a trian­
gular matrix; 173, 206-209, 229, 231,
249-252

Trivedi, K., 40
Tukey, J. W., 228

Two-address instruction format An in­
struction format in which one field speci­
fies an operand and a second field speci­
fies an operand that also receives the
resultoftheoperation; 163, 173

Two-level mapping A mapping from virtual
addresses to physical (real) addresses that
requires two successive table accesses;
75-76

Two-port memory A memory system that
supports a simultaneous READ and
WRITE; 243

Ullman, J. D., 369
Ultracomputer; see NYU Ultracomputer
Underflow A state in which a nonzero num-

ber becomes too small to be represented
in a number system; 172

Unimodal Having a single mode (maximum
or minimum); 366

University of Manchester, 25
Unlock A primitive operation that performs

the inverse of a Lock by granting pro­
cessors access to a critical section; 308,
318,343,349-353,357,359,378

Varga, R. S., 189, 379
Vector A data structure that consists of an

ordered set of elements; 117
Vector arithmetic Arithmetic operations

whose operands are vectors of data;
234-236

Vector computer A computer whose in­
structions include instructions for vector
arithmetic; 233-374

generic, 234-348
Vector instruction An instruction whose

operands are vectors; 29, 178, 234-235,
275

Vector processor A computing device, not
necessarily a full computer, capable of
operating on vectors as basic data struc­
tures; 264-266,281

attached to host computer, 261-266
data-structuring techniques for, 253-261

Vector register A high-speed register in a
vector processor that holds a vector oper­
and; 244-245

Very large-scale integration; see VLSI
Virtual address The address of an i tern as

produced by a program before the ad­
dress is mapped into physical (real)
memory; 70, 75-79, 81, 165-167

Virtual memory A memory system in which
addresses produced by programs lie in an
address space that is not the address
space of physical (real) memory so that

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 422

Index/Glossary 411

all such addresses must be translated to
physical addresses prior to access. In
such a system, portions of programs and
data can be freely moved among the lev­
els of a hierarchical memory, and
brought into physical memory only when
actually needed; 22, 26, 28, 69-94, 96-97,
165-168

buffering effects, 90-94
evaluation of, 73
locality, 81-84
management of, 72-73, 81
mapping, 74-81
replacement policy, 84-90

VLSI (Very Large-Scale Integration) A man­
ufacturing process that uses a fixed num­
ber of manufacturing steps to produce all
components and interconnections for
hundreds of devices each with millions of
transistors; 2, 6, 13-14, 20, 164, 169-170,
225,226,228,303

Voldman, J ., 58
von Neumann, 21, 103
von Neumann bottleneck The notion that

the data path between the processor and
memory of a von Neumann computer is
the facet that most constrains per­
formance of such a computer; 21

Vuillemin, J ., 225

Wallace, C. C., 171
Waser, S., 172
Weather modeling, 12

Weingarten, D., 269
Wilkes, M. V., 29
Window (of working set) The time period

during which accesses made by a pro­
gram determine the contents of its work­
ing set; 86-87, 89

Wolfe, M. J., 375, 377
Working set A model of program behavior

that says that the future references made
by a program with high probability be­
long to a set of addresses recently refer­
enced; of 85-87, 89-91, 96-97

Workload,37,40, 73, 180
Write-back cache; see Write-in cache
Write-in cache A cache in which WRITEs to

memory are stored in cache and written
to memory only when a rewritten item is
removed from cache; 68

Write-through cache A cache in which
WRITEs to memory are recorded concur­
rently both in cache and in main
memory; 68

WRITE/READ conflict, 113-115, 161,
376-377,379,382,386

See also Conflict
WRITE/WRITE conflict, 113-115, 161,

376-377,386
See also Conflict

Xi-Cheng, L., 283, 290
XOR (Exclusive OR operation), 203

Yew, P. C., 315

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 423

PATENT OWNER DIRECTSTREAM, LLC
EX. 2069, p. 424

