
Paper No. 67
Filed: January 30, 2020

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

MICROSOFT CORPORATION,

Petitioner,

v.

DIRECTSTREAM, LLC,

Patent Owner.

IPR2018-01605, IPR2018-1606, IPR2018-01607

Patent 7,620,900 B2

PATENT OWNER DIRECTSTREAM, LLC’S
DEMONSTRATIVE EXHIBITS FOR ORAL ARGUMENT

1

Pursuant to 37 C.F.R. §42.70(b) and the Board’s Order (Paper 57) in the

above-referenced proceeding, Patent Owner DirectStream, LLC files its

demonstrative exhibits for the oral hearing scheduled for February 4, 2020.

Dated: January 30, 2020 Respectfully submitted,

/Alfonso Chan/
Alfonso Chan, Reg. No. 45,964
achan@shorechan.com
Joseph F. DePumpo, Reg. No. 38,124
jdepumpo@shorechan.com
SHORE CHAN DEPUMPO LLP
901 Main Street, Suite 330
Dallas, Texas 75202
Tel: (214) 593-9110
Fax: (214) 593-9111

Sean Hsu, Reg. No. 69,477
shsu@jvllp.com
Rajkumar Vinnakota*
kvinnakota@jvllp.com
G. Donald Puckett*
dpuckett@jvllp.com
JANIK VINNAKOTA LLP
8111 Lyndon B. Johnson Frwy., #790
Dallas, Texas 75251
Tel: (214) 390-9999
Fax: (214) 888-0219
* Admitted Pro Hac Vice

Attorneys for Patent Owner
DirectStream, LLC

mailto:achan@shorechan.com
mailto:jdepumpo@shorechan.com
mailto:shsu@jvllp.com
mailto:kvinnakota@jvllp.com
mailto:dpuckett@jvllp.com

2

CERTIFICATE OF SERVICE

Pursuant to 37.C.F.R. §§42.6(e)(4) and 42.25(b), the undersigned certifies that

on January 30, 2020, a complete copy of the foregoing document was filed

electronically through the Patent Trial and Appeal Board’s PTAB E2E System and

provided, via electronic service, to the Petitioner by serving the correspondence

address of record as follows:

Joseph A. Micallef
jmicallef@sidley.com
Scott M. Border
sborder@sidley.com
SIDLEY AUSTIN LLP
1501 K. Street N.W.
Washington, DC 20005

Jason P. Greenhut
jgreenhut@sidley.com
SIDLEY AUSTIN LLP
1 South Dearborn
Chicago, IL 60603

 /Alfonso Chan/
 Alfonso Chan
 Reg. No. 45,964
 Tel: (214) 593-9110

mailto:jmicallef@sidley.com
mailto:sborder@sidley.com
mailto:jgreenhut@sidley.com

Patent Owner’s Demonstratives
February 4, 2020

Microsoft Corporation, Petitioner,
v.

DirectStream, LLC, Patent Owner

Case IPR2018-01601, -01602, -01603 (Patent No. 7,225,324 B2)
Case IPR2018-01605, 01606, -01607 (Patent No. 7,680,800 B2)

DEMONSTRATIVE EXHIBIT – NOT EVIDENCE
PODX - 1

PODX - 2

Summary of Argument

Source: Response, TOC; Sur-Reply, TOC

PODX - 3

Summary of Argument

Source: Response, TOC; Sur-Reply, TOC

PODX - 4

Institution Grounds

Source: Institution Decision, 10-11

PODX - 5

Institution Grounds

Source: Institution Decision, 8-9, 16-42

PODX - 6

1601 vs 1605 Cross-Reference

Source: Institution Decision, 8-9, 16-42

• 1601 and 1605 Petitions pertain to related patents
• The asserted prior art is the same across both consolidated proceedings

PO Exhibit List Description 1601 Ex. No. 1605 Ex. No.
Deposition Transcript of Harold Stone dated 5/30/19 2066 2065
Stone 1987 - HPC Architecture 2070 2069
Deposition Transcript of Stephen Trimberger dated 6/7/19 2076 2075
U.S. Patent 6,339,819 B1 2085 2084
Declaration of Jon Huppenthal dated 7/11/19 2100 2101
SRC Carte TMC Programming Environment v3.0 Guide (Pre-Release) 2107 2108
Declaration of Dr. Houman Homayoun dated 7/25/19 2111 2112
[28] DirectHit SEC Filings, located at
https://www.sec.gov/Archives/edgar/data/1092756/0000912057-99-010346.txt 2139 2140

[44] U.S. Patent No. 8,589,666 2155 2156
Declaration of Tarek El-Ghazawi dated 7/23/19 2164 2166
[EL-GH08] Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj, Volodymyr Kindratenko, and
Duncan Buell, "The Promise of High-Performance Reconfigurable Computing," IEEE Computer, vol.
41, no. 2, pp. 69-76, February 2008

2165 2167

[BUEL07] Buell, El-Ghazawi, Gaj, and Kindratenko, “High-Performance Reconfigurable Computing”
IEEE Computer (Guest Editors Intro), March 2007 (Vol. 40, No. 3). 2166 2168

[1005] Halverson, “The Functional Memory Approach to the Design of Custom Computing
Machines,” Dissertation University of Hawaii, August 1994 2167 2169

U.S. Patent No. 5,748,613 2169 2171
European Patent EP 1 820 309 B1 2170 2172
U.S. Patent No. 8,543,746 2171 2173
U.S. Patent No. 8,352,456 2172 2174
U.S. Patent Pub. No. 2010/0070730 A1 2173 2175
Deposition Transcript of Dr. Harold S. Stone dated December 13, 2019 2176 2178
Supplemental Declaration of Dr. Houman Homayoun Under 37 CFR §42.64(B)(2) 2177 2179

Burden of Proof for Invalidity

PODX - 7

PODX - 8

Legal Authority - Burden of Proof in IPRs

• Petitioner bears the burden of proving by a
preponderance of the evidence, with substantial
evidence, that the Patent is invalid under 35 U.S.C.
§§102 and 103

• See Corning Inc. v. DSM LP Assets B.V, IPR2013-
00048, Paper 96 at 4 (P.T.A.B. July 11, 2014) (emphasis
in original) (“Showing a reasonable likelihood of
prevailing [for institution] is less stringent a standard than
prevailing by a preponderance of the evidence.”).

Source: Response, 74

PODX - 9

Requirements for Anticipation

• Under 35 U.S.C. §102, a claim is “anticipated only if
each and every element as set forth in the claim is
found, either expressly or inherently described, in a
single prior art reference.” Verdegaal Bros. v. Union Oil
Co. of Cal., 814 F.2d 628, 631, 2 USPQ2d 1051, 1053
(Fed. Cir. 1987).

Source: Response, 74

PODX - 10

No ambiguity

• Claim elements must be described in a single reference
with “sufficient precision and detail to establish that the
subject matter existed in the prior art.” Verve, LLC v.
Crane Cams, Inc., 311 F.3d 1116, 1120 (Fed. Cir. 2002);
Richardson v. Suzuki Motor Co., 868 F.2d 1226, 1236, 9
USPQ2d 1913, 1920 (Fed. Cir. 1989).

• Ambiguous references do not anticipate claims. Wasica
Fin. GmbH v. Cont’l Auto. Sys., Inc., 853 F.3d 1272,
1284 (Fed. Cir. 2017) (finding claim not invalidated
because prior art was ambiguous on whether requisite
disclosure would be present to a POSITA and therefore
did not anticipate the claim).

Source: Response, 75

PODX - 11

Requirements for Obviousness

• Obviousness requires:
– (1) “all the claimed elements were known in the prior art,”
– (2) “one skilled in the art could have combined the elements as

claimed by known methods with no change in their respective
functions,” and

– (3) “the combination yielded nothing more than predictable
results to one of ordinary skill in the art.”

• MPEP §2143(A) (emphasis added) (citing KSR, 550 U.S.
at 416; Sakraida v. AG Pro, Inc., 425 U.S. 273, 282
(1976); Anderson’s-Black Rock, Inc. v. Pavement
Salvage Co., 396 U.S. 57, 62-63 (1969); Great Atl. & P.
Tea Co. v. Supermarket Equip. Corp., 340 U.S. 147, 152
(1950)).

Source: Response, 110

PODX - 12

Requirements for Obviousness

• “An invention is not obvious simply because all of the
claimed limitations were known in the prior art at the time
of the invention. Instead, we ask ‘whether there is a
reason, suggestion, or motivation in the prior art that
would lead one of ordinary skill in the art to combine the
references, and that would also suggest a reasonable
likelihood of success.’” Caterpillar Inc., IPR2017-02188,
Paper 71 at 17 (Final Written Decision) (quoting Forest
Labs, LLC v. Sigmapharm Labs., LLC, 918 F.3d 928, 934
(Fed. Cir. 2019); Smiths Indus. Med. Sys., Inc. v. Vital
Signs, Inc., 183 F.3d 1347, 1356 (Fed. Cir. 1999)).

Source: Response, 76

PODX - 13

Requirements for Obviousness

• In evaluating combinations of the prior art, it is not
sufficient to say that a result may occur from a given set
of conditions, but rather, it must occur. PersonalWeb
Techs., LLC. v. Apple, Inc., 917 F.3d 1376, 1382 (Fed.
Cir. 2019). If an equally plausible or more plausible
interpretation of the prior art can be supported by
evidence, then obviousness cannot be found through an
application of inherency. Id.

Source: Response, 77

PODX - 14

Requirements for Obviousness

• Additionally, “it can be important to identify a reason that
would have prompted a person of ordinary skill in the
relevant field to combine the elements in the way the
claimed new invention does.” KSR, 550 U.S. at 418; see
also MPEP §2143(A).

• And, the burden remains on Petitioner to demonstrate
“what [skilled artisans] would have been motivated to
do.” ZTE, 685 Fed. App’x 939-40.

• “If any of these findings cannot be made, then this
rationale cannot be used to support a conclusion that the
claim would have been obvious to one of ordinary skill in
the art.” MPEP §2143(A).

Source: Response, 76-77, 110-111 ; Sur-Reply, 4-6

PODX - 15

Rational underpinning

• “‘[R]ejections on obviousness cannot be sustained by
mere conclusory statements; instead, there must be
some articulated reasoning with some rational
underpinning to support the legal conclusion of
obviousness.’” KSR, 550 U.S. at 418.

• Additionally, objective evidence relevant to
nonobviousness (“secondary considerations”) may
include evidence of commercial success, long-felt but
unsolved needs, failure of others, and unexpected
results. See Graham, 383 U.S. at 17-18.

Source: Response, 76-77

PODX - 16

All PO evidence must be considered

• All PO evidence must be considered:

Source: Resp. to Pet. Motion to Exclude, 12

Claim Construction Standard

PODX - 17

PODX - 18

Claim Construction

• Claim construction and determination of claim scope
must be proper to evaluate validity
– Phillips standard – claims given ordinary and customary

meaning
– Phillips standard – intrinsic evidence first
– Phillips standard – extrinsic evidence if the intrinsic evidence is

unclear, but it must still be consistent with intrinsic record
– Cannot exclude preferred embodiment
– Claim differentiation, preserve meaning and scope of different

claims
– Separate claim terms should be given separate meaning

Source: Response, 29-33

PODX - 19

Claim Construction

• Phillips standard – claims given ordinary and customary
meaning

• The words of a claim should be given their “ordinary and
customary meaning,” which is “the meaning that the
term[s] would have to a [POSITA]…at the time of the
invention.” Phillips v. AWH Corp., 415 F.3d 1303, 1312-
13 (Fed. Cir. 2006) (en banc).

• The Board should also consider the context in which the
term is used in an asserted claim or in related claims in
the patent or specification. Id. at 1313

Source: Response, 29-33

PODX - 20

Claim Construction

• Broadest Reasonable Interpretation – construction must
still be reasonable

• “The broadest reasonable interpretation does not mean
the broadest possible interpretation.” See MPEP §2111.
“Rather, the meaning given to a claim term must be
consistent with the ordinary and customary meaning of
the term (unless the term has been given a special
definition in the specification), and must be consistent
with the use of the claim term in the specification and
drawings.” Id.

Source: Response, 32

Patent and Claims

PODX - 21

PODX - 22

Patent Summary

• EX1001 – US Patent 7,225,324
• EX1005 – US Patent 7,620,800

• The ’800 Patent is a continuation of
the ’324 Patent and both are in the
same family

Source:

PODX - 23

• The ’324 patent claims techniques for enhancing parallelism and
performance in reconfigurable computing systems. EX1001,1:37-41.

• At the time of the invention, “most large software applications
achieve[d] high performance operation through the use of parallel
processing” that required “multiple processors to work
simultaneously on the same problem.” EX1001, 1:42-50.

Purpose of the patent

Source: Response, 15

PODX - 24

• The specification discusses the problem of passing data
over numerous boundaries (or seams) between
processing elements in typical multi-processor systems.
– "In a multi-processor, microprocessor-based system, each

processor is allocated but a relatively small portion of the total
problem called a cell. However, to solve the total problem,
results of one processor are often required by many adjacent
cells because their cells interact at the boundary and upwards of
six or more cells, all having to interact to compute results, would
not be uncommon. Consequently, intermediate results must be
passed around the system in order to complete the computation
of the total problem. This, of necessity, involves numerous other
chips and busses that run at much slower speeds than the
microprocessor thus resulting in system performance often many
orders of magnitude lower than the raw computation time.“

• EX1005 at 2:26-38.

Purpose of the patent

Source: Response, 35

PODX - 25

• The problem was that “as more and more performance is
required, so is more parallelism, resulting in ever larger
systems” to the point that “[c]lusters exist … that have
tens of thousands of processors and can occupy football
fields of space.” EX1001, 1:50-56. “Systems of such a
large physical size present many obvious downsides,
including, among other factors, facility requirements,
power, heat generation and reliability.” EX1001, 1:56-59.

Purpose of the patent

Source: Response, 15

PODX - 26

• In a multi-processor, microprocessor-based system, each
processor is allocated but a relatively small portion of the total
problem called a cell. However, to solve the total problem,
results of one processor are often required by many adjacent
cells because their cells interact at the boundary and upwards
of six or more cells, all having to interact to compute results,
would not be uncommon. Consequently, intermediate results
must be passed around the system in order to complete the
computation of the total problem. This, of necessity, involves
numerous other chips and busses that run at much slower
speeds than the microprocessor thus resulting in system
performance often many orders of magnitude lower than the
raw computation time.
EX1001, 2:25-37 (emphasis added).

Purpose of the patent

Source: Response, 16

PODX - 27

• The inventors of the ’324 patent realized that this problem could be
solved by “a processor technology … that offers orders of magnitude
more parallelism per processor.” EX1001, 1:63-65.

• And that this type of processor technology is “possible through the
use of a reconfigurable processor” because reconfigurable
processors can “instantiate as many functional units as may be
required to solve the problem up to the total capacity of the
integrated circuit chips they employ.” EX1001, 1:65-2:5.

• The inventors of the ’324 patent also realized that additional, and
less obvious, performance gains could “also be realized by
reconfigurable processors due to the much tighter coupling of the
parallel functional units within each chip than can be accomplished
in a microprocessor-based computing system.” EX1001, 2:17-24.

Purpose of the patent

Source: Response, 15-16

PODX - 28

• In a reconfigurable computing system, “since ten to one
thousand times more computations can be performed
within a single chip, any boundary data that is shared
between these functional units need never leave a single
integrated circuit chip.” EX1001, 2:38-42 (emphasis
added).

• “Therefore, data moving around the system, and its
impact on reducing overall system performance, can
also be reduced by two or three orders of magnitude.”
EX1001, 2:42-45.

Purpose of the patent

Source: Response, 16-17

PODX - 29

Purpose of the patent

Source: EX1001, Fig. 2; Response, 44-45

PODX - 30

Purpose of the patent

Source: EX1001, Figs. 4A, 4B; Response, 46

PODX - 31

Purpose of the patent

Source: EX1001, Figs. 7A, 7B; Response, 45

PODX - 32

Purpose of the ’324 Patent – Independent claim 1

Source: EX1001; Response, 53

PODX - 33

Purpose of the ’324 Patent – Dependent claim 15

Source: EX1001; Response, 53

PODX - 34

Purpose of the ’800 Patent – Independent claim 1

Source: EX1001; Response, 53; Sur-Reply, 43, 47-49

• systolic / data driven

• instantiated / formed

Disputed Claim Terms

PODX - 35

PODX - 36

Disputed Claim Terms

• “pass computed data seamlessly between said
computational loops”

• “systolic” and “data driven”

• “computational loop”

• “stream communication”

Source: Response, TOC

PODX - 37

“pass computed data seamlessly between said computational
loops”

Source: Response, 34-35

PODX - 38

“pass computed data seamlessly between said computational
loops”

• Petitioner’s construction of this term improperly
introduces the limitation of “directly” that is not
supportable by the intrinsic or extrinsic evidence

• DirectStream’s proposed construction comes directly
from the intrinsic record and captures the plain and
customary understanding that “seamless” should be
without seams or boundaries between processing
elements. EX2111¶¶159-168, 220-223..

Source: Response, 35

PODX - 39

“pass computed data seamlessly between said computational
loops”

• Dr. Stone testified that the word “directly” means “the
data goes from the first to the second without going to
something intervening.” EX2064 at 85:14- 24;
EX2111¶171.

• But when questioned what constitutes “intervening
structures” Dr. Stone was unable to specifically identify
anything because “I think you’re opening a whole
universe.” EX2064 at 86:13-18; EX2111¶172.

Source: Response, 41

PODX - 40

“pass computed data seamlessly between said computational
loops”

• His answers depended on where its expert draws the
boundaries of the processing element. EX2064 at 85:25-
87:24; EX2111¶173.

Source: Response, 41

PODX - 41

“pass computed data seamlessly between said computational
loops”

• Petitioner’s construction depends on where its expert
draws the boundaries of the processing element.
EX2064 at 88:12-91:24; EX2111¶¶174-175.

Source: Response, 41

PODX - 42

“pass computed data seamlessly between said computational
loops”

• Petitioner argues in reply:
– DirectStream also erroneously asserts Dr. Stone testified that if a

register were between processing elements there could still be a
direct connection between those processing elements.
Response, 41, citing EX2064 at 86:19-88:10, 88:12-91:24. That’s
not what he said. In the cited testimony, Dr. Stone stated he
was talking about a register that was “within” a processing
element, not one that was between processing elements.
See EX2064, 86:21-87:5 (“A. I -- I'm puzzled because that -- that
register would be within -- within the processing element in my
mind. Q. Okay. A. If it's within the processing element as a
register, yeah, I would put it there, then the output of that
register, if it's connected directly to the input of the next
processing element, would be direct.”)

• Reply, 24-25 (emphasis added). .

Source: Reply, 24-25

PODX - 43

“pass computed data seamlessly between said computational
loops”

• This is the precise problem. See Response, 41. If Dr.
Stone deems the register to be “within,” then it must be
direct; otherwise if he deems the register to be without,
then it is not direct.

• The same circuit would be both direct and indirect,
depending on where the boundaries of the “processing
element” are arbitrarily drawn with respect to intervening
structures, which Dr. Stone concedes he could not clarify
because it “open[s] a whole universe.”

• This is not a reasonable claim construction position for
Petitioner to take under either Phillips or BRI

Source: Response, 41; Sur-Reply, 20

PODX - 44

“pass computed data seamlessly between said computational
loops”

• Petitioner’s inclusion of this extraneous word into the
construction does nothing but improperly introduce
ambiguity and confusion. EX2111¶¶169-176.

• The ambiguity arising from Petitioner’s insertion of the
word “directly” would be avoided by simply specifying
that the computed data is communicated over the
reconfigurable routing resources on the chip, which all of
the experts and the named inventor concur is what the
patent teaches.
– Response, 36 (Dr. Stone EX2064 at 85:14-86:12, 90:19-91:24)
– Response, 39 (Dr. Homayoun’s report EX2111¶¶161-167, 220-

223);
– Reply, 21 (Mr. Huppenthal’s report, EX2100, 55).

Source: Response, 41; Sur-Reply, 20-21

PODX - 45

“pass computed data seamlessly between said computational
loops”

• The specification discusses the problem of passing data
over numerous boundaries (or seams) between
processing elements in typical multi-processor systems.
EX1005 at 2:26-38.
– "In a multi-processor, microprocessor-based system, each

processor is allocated but a relatively small portion of the total
problem called a cell. However, to solve the total problem,
results of one processor are often required by many adjacent
cells because their cells interact at the boundary and upwards of
six or more cells, all having to interact to compute results, would
not be uncommon. Consequently, intermediate results must be
passed around the system in order to complete the computation
of the total problem. This, of necessity, involves numerous other
chips and busses that run at much slower speeds than the
microprocessor thus resulting in system performance often many
orders of magnitude lower than the raw computation time."

Source: Response, 35

PODX - 46

“pass computed data seamlessly between said computational
loops”

• The specification then discusses how the patent solves
this problem by ensuring that “any boundary data” that is
shared between processing units “need never leave a
single integrated circuit chip.” EX1005 at 2:38-48.
– On the other hand, in the use of an adaptive processor- based

system, since ten to one thousand times more computations can
be performed within a single chip, any boundary data that is
shared between these functional units need never leave a single
integrated circuit chip. Therefore, data moving around the
system, and its impact on reducing overall system performance,
can also be reduced by two or three orders of magnitude. This
will allow both significant improvements in performance in certain
applications as well as enabling certain applications to be
performed in a practical timeframe that could not previously be
accomplished.

Source: Response, 36

PODX - 47

“pass computed data seamlessly between said computational
loops”

• The specification supports this understanding. The ’324
patent describes one of the problems with conventional
multi-processor computing systems is that they require
intermediate results be passed through numerous chips
and busses “that run at much slower speeds than the
microprocessors thus resulting in system performance
often many orders of magnitude lower than the raw
computation time.” EX1001 at 2:25-37, 4:64-5:30.

Source: Response, 39

PODX - 48

“pass computed data seamlessly between said computational
loops”

• By contrast, the adaptive processor-based system
described by the ’324 patent can perform “ten to one
thousand more computations
… within a single chip” so that “data that is shared
between functional need never leave a single integrated
circuit chip.” EX1001 at 2:38-48.

• The functional units are interconnected by reconfigurable
routing resources. EX1001, Fig. 2, 5:31-51.

• So, any “seamless” on chip communications use the
reconfigurable routing resources as opposed to the
busses and numerous chips used by conventional multi-
processor computing systems

Source: Response, 39

PODX - 49

“pass computed data seamlessly between said computational
loops”

• File History is consistent with this construction
– “…more computations can be performed within a single chip and

any boundary data that is shared between these functional units
need never leave a single integrated circuit chip, eliminating the
need for external communication protocols and simplifying
internal communications. For example, a compiler associated
with the reconfigurable computing system can establish stream
connections between functional units that rely on general
communication protocols.”

• EX1002 at 117-118.

Source: Response, 36-38

PODX - 50

“pass computed data seamlessly between said computational
loops”

• File History is consistent with this construction
– “Khan and Gupta do not teach performing these calculations in a

single processor. Rather multiple processors are disclosed which
would require consideration for both internal and external
communication protocols…. The invention as claimed states that
communication between functional units, and not the processors,
is communication protocol independent…. Applicants’ invention
utilizes available resources to have an application evaluate a
problem in a concurrent data flow sense and not in a pipeline
sense. That is, it will “pass” a subsequent dimension of a given
problem through a first loop of logic concurrently with the
previous dimension of data being processed through a second
loop. This type of concurrent operation cannot occur in the
pipeline operation described in Khan.”

• EX1002 at 148-150.

Source: Response, 36-38

PODX - 51

“pass computed data seamlessly between said computational
loops”

• File History is consistent with this construction
– Additionally, during prosecution, the applicant argued that the

use of the words “protocol independent” in the claims was
intended to “impart the ability of the functional units to
seamlessly pass computed data between computational loops
comprised of functional units.”

• EX1002 at 224.

Source: Response, 36-38

PODX - 52

“pass computed data seamlessly between said computational
loops”

• File History is consistent with this construction
– The applicant explained that “communication between other

reconfigurable processors within the system would require
communication protocol but communication between functional
units within an individual reconfigurable processor is free of such
a requirement.”

• EX1002 at 174-75; 224-25.

Source: Response, 36-38

PODX - 53

“pass computed data seamlessly between said computational
loops”

• Thus, the prosecution history makes clear that
“seamlessly” is achieved by utilizing the reconfigurable
routing resources to provide a protocol independent
communication without the “seams” typically
experienced at the boundary of processors.
EX2111¶¶161-167, 220-223.

Source: Response, 36

PODX - 54

“pass computed data seamlessly between said computational
loops”

• Petitioner’s construction would also exclude standard
FPGAs (including the type described in the embodiments
of the ’324 Patent and the specific FPGA chips used in
Petitioner’s prior art references) since standard FPGAs
contain reconfigurable routing resources (comprising
buffers and switches) between the configurable logic
blocks.

• For example, the literature on Xilinx FPGA chips shows
buffer switch boxes and three-state buffers to connect
two or more configurable logic blocks. EX1035 at 31;
EX2078 at 19-29, 32-34, 37-41, 46-51, 59-65

Source: Response, 40

PODX - 55

“pass computed data seamlessly between said computational
loops”

Source: Response, 40, 102

PODX - 56

“pass computed data seamlessly between said computational
loops”

• Claim differentiation with dependent claims

• Inclusion of “directly” removes instantiation of anything in
the reconfigurable routing resources, contrary to plain
claim language and dependent claim 15

Source: Response, 42, 51

PODX - 57

• EX1007 Splash2 prior art

• Passing computed data
seamlessly is not taught in
Splash2; at best it is ambiguous

“pass computed data seamlessly between said computational
loops”

Source: EX1005; Response, 96-106

PODX - 58

“pass computed data seamlessly between said computational
loops”

• Splash2’s pseudocode only discloses subroutines that
execute once for the current datum to select an
execution path for the processor. Thus, they simply are
not computational loops.

• Additionally, Splash2 relies on the external Sun
workstation to handle any looping, so any computational
loop is not even instantiated on the reconfigurable
processor. EX2111¶209; EX2167 at 14-15;
EX2164¶¶42-43.

Source: Response, 96

PODX - 59

“pass computed data seamlessly between said computational
loops”

• The workstation is separate from the array boards
containing the FPGAs, EX1007 at 13:

Source: Response, 96

PODX - 60

“pass computed data seamlessly between said computational
loops”

• ... the FPGAs must communicate with the Sun
workstation (which is handling any looping) through the
Sbus. EX1007 at 13; EX2111¶209; EX2167 at 14-15;
EX2164¶¶42-43.

• This boundary between the FPGAs and the workstation
(through the interface boards) clearly constitutes a
“seam” within the context of the ’324 Patent and its file
history.

Source: Response, 97

PODX - 61

“pass computed data seamlessly between said computational
loops”

• Petitioner and its expert agree with DirectStream that the claims of
the ’324 Patent cannot be invalidated by any references that use
memory or other structures to provide storage between two
processing elements—such an implementation would fail to meet
“seamless” limitation of the independent claims.
EX2064 at 85:14-86:12: EX2064, 91:9-24:

Source: Response, 97

PODX - 62

“pass computed data seamlessly between said computational
loops”

• In accordance with the specification and the file history
for the ’324 Patent, this would certainly include any
structures that require data to leave the reconfigurable
resources on a single chip for storage and then be read
back into the chip by the next processing element.
EX1002 at 117-118, 147-148, 174-175, 224-225.

Source: Response, 97-98

PODX - 63

“pass computed data seamlessly between said computational
loops”

• Splash2 is, at best, ambiguous on whether memory is used
to store the results from each processing element after each
time step to preserve it for output and later use.
EX2111¶¶210-219. The Splash2 algorithms disclosed
indicate storage is likely necessary to preserve the values
calculated at each timestep and to store them for some
number of additional timesteps. EX2111¶¶210-219.

• Based on the disclosed algorithms, Splash2’s pseudocode
will overwrite the computed data at each timestep.
EX2111¶214. Without storage to preserve the computed data
at each timestep, intermediate computed data will be lost and
the only preserved “computed data” would be the one
resulting from the final time step. EX2111¶214.

Source: Response, 98

PODX - 64

“pass computed data seamlessly between said computational
loops”

• In fact, Splash2 clearly discloses providing local memory at each
FPGA for storage purposes. EX1007 at 95 (“Many Splash 2
applications use the off-chip memory… which are often used as
lookup tables or as storage for results to the host.”),

• EX1007 at 102 (describing the use of one or two storage registers)

• EX1035 at 1; EX2111¶¶210-219.

Source: Response, 98

PODX - 65

“pass computed data seamlessly between said computational
loops”

• Other literature about Splash2 confirms this local memory can be used
for storage of results. EX2156 at 205-206; EX2111¶¶215-219.

Source: Response, 98-99

PODX - 66

“pass computed data seamlessly between said computational
loops”

• Splash2 also discloses using a register for communicating data
between processing elements.

• EX1007 at 88

• The well-known solution at the time of the invention was to use
memory storage to smooth out those timing problems, and Splash2
touts its local memory attached to each FPGA as a major benefit for
programmers. EX1007 at 13, 40; EX1035 at 1.

Source: Response, 98-99

PODX - 67

“pass computed data seamlessly between said computational
loops”

• At best, Splash2 is still ambiguous whether or not it uses
the available local memory to store results.

• Here, it is equally (if not more) plausible for a POSITA to
interpret Splash2 to use the local memory due to the
known timing problems in systolic systems prior to the
invention of the ’324 Patent. EX2111¶¶210-219.

Source:

PODX - 68

“pass computed data seamlessly between said computational
loops”

• Petitioner’s expert even admits that local memory must
be used to store temporary
results. EX2064 at 176:13-177:25; EX2111¶¶215.

Source: Response, 99

PODX - 69

“pass computed data seamlessly between said computational
loops”

• Even under Petitioner’s own proposed construction,
Splash2 still does not disclose “seamless” because it
cannot show Splash2 discloses passing data “directly.”
Petitioner’s own expert testified that “directly” meant
nothing can reside in between the boundaries of the two
processing elements, including memory, buffers,
registers or additional processing elements. EX2064 at
85:14-91:24. Otherwise, it would no longer be direct or
seamless.

Source: Response, 100

PODX - 70

“pass computed data seamlessly between said computational
loops”

• Moreover, Petitioner’s expert did not investigate Splash2
further or either the Xilinx chips or materials on
configuring them to better understand the disclosures,
even though he admitted he did not have any personal
knowledge of them. See EX2064 at 209:2-213:13.

• The Xilinx FPGAs contained in Splash2 clearly contain
structure (such as the buffered switch matrix) within the
internal routing resources to connect processing
elements, which would exclude the Splash2 FPGAs
from the definition of Petitioner and its expert.

Source: Response, 100

PODX - 71

“pass computed data seamlessly between said computational
loops”

• Three-State Buffers
A pair of 3-state buffers is associated with each CLB in the array. (See
Figure 27 on page 30.) These 3-state buffers can be used to drive
signals onto the nearest horizontal longlines above and below the
CLB. They can therefore be used to implement multiplexed or
bidirectional buses on the horizontal longlines, saving logic resources.
Programmable pullup resistors attached to these longlines help to
implement a wide wired-AND function. The buffer enable is an active-
High 3-state (i.e. an active-Low enable), as shown in Table 13.
…
Programmable Interconnect
All internal connections are composed of metal segments with
programmable switching points and switching matrices to implement
the desired routing. A structured, hierarchical matrix of routing
resources is provided to achieve efficient automated routing.

• EX1035 at 28-31.

Source: Response, 101

PODX - 72

“pass computed data seamlessly between said computational
loops”

• Additionally, chapter 2 of the book Field-Programmable
Gate Array Technology by Dr. Trimberger describes the
Xilinx FPGAs in Splash2, and Dr. Trimberger similarly
describes the structures in the routing resources that
each add delay to any signals traveling through them,
altering the timing of that part of the system.

• EX2078 at 19-29, 32-34, 37-41, 46-51, 59-65, 70.

Source: Response, 102-103

PODX - 73

“pass computed data seamlessly between said computational
loops”

Source: Response, 40, 101-104

PODX - 74

“pass computed data seamlessly between said computational
loops”

• Petitioner and Dr. Stone concede in reply that the only
basis for claiming Splash2 discloses looping is relying
on the infinite “loop-endloop” in Figs. 8.7 and 8.12 to
allegedly compare each of the genetic sequences of
datum.

Source: Sur-Reply, 17-18; Reply, 38

PODX - 75

“pass computed data seamlessly between said computational
loops”

• Petitioner does not explain how these sequences arrive in Splash2,
even though Petitioner and its expert acknowledge the sequences
must be “streamed through the array.”

• Petition, 33

• EX1003¶134 (“More specifically, for this implementation… two
genetic sequences are shifted in opposite directions through
multiple processing elements of the Splash 2 system…. The source
and target sequences enter the array on opposite ends…”).

Source: Sur-Reply, 17-18; Petition, 33; EX1003, ¶134

PODX - 76

“pass computed data seamlessly between said computational
loops”

• Petitioner does not dispute that Splash2 requires a host
Sparc computer. Petition, 30.

• This workstation controls the sequences of data sent
into Splash2 is also consistent with the disclosures in
Halverson. See EX2167 at 14-15; EX2164¶¶42-43.

Source: Sur-Reply, 17-18

PODX - 77

“pass computed data seamlessly between said computational
loops”

• Gokhale is unavailing.

• Despite Dr. Stone professing without any support or
analysis that Splash2 is not a SIMD structure, Splash2
clearly states it does operate as a SIMD structure, which
stands for single instruction, multiple data. EX1007, 125
(“The Splash 2 system supports several models of
computation, including PEs executing a single
instruction on multiple data (SIMD mode) and PEs
executing multiple instructions on multiple data (MIMD
mode).”)

Source: Sur-Reply, 18

PODX - 78

Disputed Claim Terms

• pass computed data “seamlessly” between said
computational loops

• “systolic” and “data driven”

• “computational loop”

• “stream communication”

Source: Response, TOC

PODX - 79

“systolic” and “data driven”

Source: Response, 42

PODX - 80

“systolic” and “data driven”

• Petitioner’s construction of this term improperly introduces the
limitation of “passing data directly” that is not supportable by
the intrinsic or extrinsic evidence, and the Board’s institution
decision adopted this incorrect construction.

• Similar flaw to Petitioner’s construction for “seamless”

• In contrast, Petitioner does not insert “directly” into is
construction for data driven
– Petition, p. 11 (“… the ordinary meaning to a Skilled Artisan of

“data driven” is the scheduling of operations upon the availability
of their operands”).

Source:

PODX - 81

“systolic” and “data driven”

• Petitioner and its expert conflate the concepts of systolic and
seamless, removing any functional difference between the two
terms.

EX2064 at 85:3-22: EX2064, 93:3-94:22:

Source: Response, 41

PODX - 82

“systolic” and “data driven”

• "Dr. Kung described a systolic system as follows:
– A systolic system consists of a set of interconnected cells, each capable of

performing some simple operation. Because simple, regular communication and
control structure have substantial advantages over complicated ones in design
and implementation, cells in a systolic system are typically interconnected to
form a systolic array or a systolic tree. Information in a systolic system flows
between cells in a pipelined fashion, and communication with the outside world
occurs only at the “boundary cells.” For example, in a systolic array, only those
cells on the array boundaries may be I/0 ports for the system. … The basic
principle of a systolic architecture, a systolic array in particular, is illustrated in
Figure 1. By replacing a single processing element with an array of
PEs[processing elements], or cells in the terminology of this article, a higher
computation throughput can be achieved without increasing memory bandwidth.
The function of the memory in the diagram is analogous to that of the heart; it
“pulses” data (instead of blood) through the array of cells. The crux of this
approach is to ensure that once a data item is brought out from the memory it
can be used effectively at each cell it passes while being “pumped” from cell to
cell along the array. This is possible for a wide class of compute-bound
computations where multiple operations are performed on each data item in a
repetitive manner.

• EX1016 at 39."
Source: Response, 43

PODX - 83

“systolic” and “data driven”

• Systolic means an array of interconnected processing
elements that only interact with memory at the array
boundaries so that the data is processed by multiple
processing elements before returning to memory.
– See also EX2040 at 1(“The term systolic arrays was coined by

Kung … to describe application specific VLSI architectures that
were regular, locally connected and massively parallel with
simple processing elements (PEs).”).

• Memory acts like the heart in systolic system by “pulsing”
data into the array where it is pumped from processing
element to processing element before returning to
memory. EX2046¶16.

Source: Response, 44

PODX - 84

“systolic” and “data driven”

• Figure 2 shows a systolic array of interconnected function
units (which as explained above are each “a set of logic
that performs a specific operation”) that interact only with
memory at the boundaries of the array:

• EX1001, Figs. 2, 7B
Source: Response, 44

PODX - 85

“systolic” and “data driven”

• The ’324 patent also talks
about how this improves
performance because the
“boundary data that is shared
between these functional units
need never leave a single
integrated circuit chip.”
EX1001, 2:38-42;
EX2111¶¶125-131.

• And in the ’324 patent, the
“[s]ystolic implementation will
connect computational loops
such that data from one loop
will be passed as input data to
a concurrently executing
compute loop.” EX1002 at 226.

Source: Response, 45-46

PODX - 86

“systolic” and “data driven”

• EX1001 at 6:21-30.
– In contrast to the sequential processing operation 400 (FIG. 4A)

the solution to the problem of most effectively utilizing available
resources is to have an application evaluate a problem in a data
flow sense. That is, it will “pass” a subsequent dimension of a
given problem through the first loop 412 of logic concurrently
with the previous dimension of data being processed through the
second loop 414. In practice, a “dimension” of data can be:
multiple vectors of a problem, multiple planes of a problem,
multiple time steps in a problem and so forth.

Source: Response, 46

PODX - 87

“systolic” and “data driven”

• During prosecution, the applicant confirmed that it was using
the plain meaning of “systolic”:
– Instantiation is a term well known to one of ordinary skill in the

art of reconfigurable processing…Similarly the term systolic
computation is derived from continual and pulsating pumping of
the human heart. In computer architecture a systolic array is an
arrangement of data processing units similar to a central
processing unit but without a program counter or clock that
drives the movement of data. That is because the operation of
the systolic array is transport triggered, i.e. by the arrival of a
data object. Data flows across the array between functional
units, usually with different data flowing in different directions.
David J. Evans in his work, Systolic algorithms… define[s] a
Systolic system as a “network of processors which rhythmically
compute an[d] pass data through the system.”

• EX1002 at 225-26

Source: Response, 46

PODX - 88

“systolic” and “data driven”

• In contrast, Petitioner’s construction ignores this plain and
customary understanding of the term “systolic” within the context of
the ’324 Patent.

• Just as with Petitioner’s error with respect to “seamless,” Petitioner
once again improperly inserts the limitation of “directly” without any
support from the intrinsic or extrinsic evidence.

• However, this is nonsensical because it would exclude standard
FPGAs (including the type described in the embodiments of the ’324
Patent and the specific FPGA chips used in Petitioner’s prior art
references) since standard FPGAs contain reconfigurable routing
resources(comprising buffers and switches) between the
configurable logic blocks. For example, the literature on Xilinx FPGA
chips shows buffer switch boxes and three state buffers to connect
two or more configurable logic blocks. EX1035 at 31;EX2078 at 19-
29, 32-34, 37-41, 46-51, 59-65.

Source: Response, 47

PODX - 89

“systolic” and “data driven”

• Petitioner’s construction is based on arguing that SRC
acted as its own lexicographer. 601 Petition at 14-15.

• But the standard for “finding lexicography” is exacting
and requires the patentee to “clearly set forth a definition
of the disputed claim term” and “clearly express an intent
to define the term.”
– Pacing Techs., LLC v. Garmin Int’l, Inc., 778 F.3d 1021, 1024

(Fed. Cir. 2015) (“Disavowal, or disclaimer of claim scope, is only
considered when it is clear and unmistakable.”).

– Ancora Techs., Inc. v. Apple, Inc., 744 F.3d 732, 734 (Fed. Cir.
2014) (“A claim term should be given its ordinary meaning in the
pertinent context, unless the patentee has made clear its
adoption of a different definition or otherwise disclaimed that
meaning.”).

Source: Response, 48

PODX - 90

“systolic” and “data driven”

• The only time the applicant describes what it meant
when it used the term “systolic” comes from the following
passage on the next page:
– Thus in Applicant’s invention Systolic implementation will

connect computational loops such that data from one compute
loop will be passed as input data to a concurrently executing
compute loop. In the Applicant’s invention data computed by
computation units or groups of functional units flows seamlessly
and concurrently with data being computed by other groups of
functional units. EX1002 at 226.

• If anything were to be construed as an explicit definition
of the term “systolic” it should be that sentence. But this
description is in accordance with the term’s plain and
customary meaning.

Source: Response, 48-49

PODX - 91

“systolic” and “data driven”

• The limitation “passing data directly between processing
elements is simply not a requirement of systolic systems.
EX2111¶177.

• And the limitations of (i) “without a program counter or
clock that drives the movement of data’” and (ii)
“operating in a manner that is ‘transport triggered, i.e., by
the arrival of a data object’” are redundant at best.

• Transport triggered operations do not utilize program
counters or a clock to drive the movement of data
because they are triggered by the availability of inputs.
EX2046¶¶14, 16; EX2047 at 1 (“[I]n data-driven (e.g.,
data-flow) computers the availability of operands triggers
the execution of the operation to be performed on
them…”).

Source: Response, 49-50

PODX - 92

“systolic” and “data driven”

• This contrasts with traditional Von Neumann computers that
must use program counters and/or clocks to drive data
movement because of their sequential, centralized control
scheme. EX2046¶¶9-10;

• EX2048 at 2 (“In a data flow computer, an instruction is ready
for execution when its operands have arrived. There is no
concept of control flow, and data flow computers do not have
program location counters.”) (emphasis added).

• So even if the Board were inclined to construe this term, there
is no reason to require both “transport triggered” and “without
a program counter or clock that drives the movement of data.”

Source: Response, 49-50

PODX - 93

Disputed Claim Terms

• pass computed data “seamlessly” between said
computational loops

• “systolic” and “data driven”

• “computational loop”

• “stream communication”

Source: Response, TOC

PODX - 94

“computational loop”

• At Institution, the Board construed the term to mean “a
set of computations that is executed repeatedly, either a
fixed number of times or until some condition is true or
false.” Paper 21.

Source: Response, 69-70

PODX - 95

“computational loop”

• ... the word “computational” simply means an act, process, or method
of computing. EX2038 at 3 (definition of “computation”). However, the
plain language of the independent claims and the specification further
clarify that the computations are part of the calculations for which the
functional units are being instantiated. See EX2111¶¶125-131.

• Loop: … A set of statements in a program executed repeatedly, either
a fixed number of times or until some condition is true or false. EX
2026 at 8 (Microsoft Press Computer Dictionary Third Edition 1997).

• Loop: in a computer, a series of instruction being carried out
repeatedly until a terminal condition prevails. EX2025 at 5 (Modern
Dictionary of Electronics Sixth Edition 1997).

• Loop: a sequence of instructions that is repeated until a prescribed
condition, such as agreement with a data element or completion of a
count, is satisfied. EX2024 at 4 (Oxford Dictionary of Computing
Fourth Edition 1997).

Source: Response, 70-71

PODX - 96

“computational loop”

• This definition is consistent
with how the ’324 patent’s
specification utilizes the
term “loop.” For example,
the specification depicts
numerous “loops” that are
repeated until some
condition is met.

• EX1001 at Fig. 4A, 4B

Source: Response, 71

PODX - 97

“computational loop”

• DirectStream’s definition is also consistent with how “loop”
is used in “Delivering Acceleration: The Potential for
Increased HPC Application Performance Using
Reconfigurable Logic, which was incorporated by
reference into the ’324 patent. EX1001 at 4:59-63;
EX2037 at 4, 5, 7, 12, 13, 16, 17, 18, 19.
– Discussing how SRC converted algorithms written in a high-level

language (such as FORTRAN or C) by using a compiler to
generate a “data flow graph” that was further optimized manually
into “an algorithm data flow that will be put into hardware logic for
the FPGAs.” EX2037 at 7, 10-11.

Source: Response, 71-72

PODX - 98

“computational loop”

• Additionally, the ’666 patent further illustrates the concept of a
computational loop as would be known to a POSITA in the
context of describing the use of stream communications:
– Consumer loops are simple iterative processes that operate to provide a

particular result. As a simple example, an addition operation may
necessitate an iterative loop until a certain value is obtained. Consumer
loops receive or fetch data values from a buffer and begin the looping
process. Once launched, the computations continue until completed.
Thus, using our simple addition example, the loop computation may
comprise fetching a value, adding the value to the existing total, and
then comparing the value to a predetermined number to determine if a
termination criteria has been reached. This process may take two or
three clock ticks of the processor. Thus even though there is additional
data in the buffer available to the consumer, there is a lag between
when a value has been fetched and when the loop has determined that
it should terminate.

• EX2027 at 2:64-3:23, 6:6-28.

Source: Response, 72-73

PODX - 99

“computational loop”

EX2027 at 2:64-3:23

Source: Response, 72-73

PODX - 100

“computational loop”

EX2027 at 6:6-28.

Source: Response, 72-73

PODX - 101

“computational loop”

• In contrast, Petitioner and
its expert do not even
provide a construction for
this term. Instead,
Petitioner’s expert merely
assumes that a
computational loop is
present because multiple
data are being processed.
EX2064 at 178:17-180:11.

Source: Response, 73

PODX - 102

“computational loop”

• Petitioner incorrectly claims “DirectStream’s expert, Dr.
Homayoun, never offers an interpretation of
‘computational loop’… [and] DirectStream could not
convince him to support its position.” Reply, 36-37.

• EX2111, ¶207 (Dr. Homayoun opining that “A
computational loop evaluates each piece of data multiple
times, ‘a fixed number of times or until some condition is
true or false,’” and more importantly, opining throughout
this section how Petitioner’s flawed view of the claim
term results in a flawed invalidity analysis).

Source: Sur-Reply, 15

PODX - 103

“computational loop”

• Specifically, Fig.4B of the patent
(which patentee used to distinguish
from the prior art depicted in Fig.4A)
depicts two sets of loops: the red
loops that form Loop A and Loop B,
and the blue program loop that
repeats the execution of both in
each “phase.” Specifically, the
patent states that in “Phase 1,” both
loops are active with Loop A working
on dimension 1 of the data, and
Loop B working on dimension 0 of
the data. Then in the next phase
(“Phase 2”), both loops are again
active with Loop A working on
dimension 2 of the data, and Loop B
working on dimension 1 of the data.

Source: Sur-Reply, 15-16

PODX - 104

“computational loop”

• Petitioner’s Reply reiterates its flawed interpretation that
the red computational loops need only “execute[]
instructions on one piece of data, and then execute[]
those very same instructions on a next piece of data.”
Reply, 35.

Source: Sur-Reply, 16-17

PODX - 105

“computational loop”

• This argument effectively
deletes the red loops as
follows:

• Only the blue program loop
would be needed to cycle
through all of the datum and
execute the code once per
datum. "

Source: Sur-Reply, 16-17

PODX - 106

“computational loop”

• Ambiguous at best on disclosure of pseudocode in
Splash2 system and how the looping is handled

• Equally plausible interpretation

Source:

PODX - 107

• EX1007 Splash2 prior art
• Splash2 does not disclose

computational loops as properly
construed

“computational loop”

Source: EX1005; Response, 80-90

PODX - 108

“computational loop”

• A “computational loop” is an iterative sequence of
computations that repeats until a prescribed condition is
satisfied. EX2024 at 4 (definition of “loop”), EX2025 at 5
(same), EX2026 at 8 (same), EX2038 at 3 (definition of
“computation”). There is no disclosure of looping or
repeating of a computation multiple times for each data
until a condition is met or a number of repetitions has
been satisfied, as required by the Board’s claim
construction and the ’324 Patent. EX2111¶¶194-209

• Petitioner’s expert merely assumes that a computational
loop is present because multiple data are being
processed. EX2064 at 178:17-180:11.

Source: Response, 73, 80-81

PODX - 109

“computational loop”

• Specifically, Fig. 4B from the ’324 Patent represents the
concept of a nested loop, with a larger loop repeating
across the number of data to be processed, and a
nested inner loop repeating a number of times for each
datum to be processed. EX2111¶¶125-130; EX1001 at
3:35-39, 6:1-30, Fig. 4B.

• In other words, the sequence of computations in any of
the computational loops is performed on each datum
until a prescribed condition is satisfied for that
computational loop. EX2111¶127; EX1001 at 3:35-39,
6:1-30

Source: Response, 81

PODX - 110

“computational loop”

• Then, the computed data is sent from that computational
loop, and a second datum is received for the
computational loop to run the same sequence of
computations until the prescribed condition is once again
met for this second datum. EX2111¶127; EX1001 at
3:35-39, 6:1-30

• This is not a trivial problem for reconfigurable
processors, especially FPGAs. See EX2164¶¶39, 43
(discussing the complications with nested looping and
inability of Splash2 and other prior art to handle such
operations, as was known to a POSITA at the time of the
invention).

Source: Response, 81

PODX - 111

“computational loop”

• Figures 8.7 and 8.12 each depict an
“else if” conditional statement within
the framework of a “loop-endloop.”
This conditional statement merely
selects an execution path for the
processor, not a loop that the
processor repeats.

Source: Response, 82

PODX - 112

“computational loop”

• A conditional statement is defined as “a programming-language
statement that selects an execution path based on whether some
condition is true or false (for example, the IF statement).” EX2026 at
7 (Microsoft Dictionary definition of “conditional statement);
EX2111¶198.

• That is exactly what the code in Figures 8.7 and 8.12 executes
through the if-else-if statements. EX2111¶¶198-201.

Source: Response, 82

PODX - 113

“computational loop”

• More problematically, the code clearly only runs once per datum.
EX2111¶¶204-208. There are no conditions for the “loop-endloop,”
which appears to run ad infinitum. EX2111¶¶200-203.

• But this pseudocode in Splash2 cannot be read to run infinitely per
datum because the system would then be stuck in an infinite loop
on the very first data value.

• The only possible way to interpret this pseudocode in Splash2 (and
the only way a POSITA would understand this pseudocode to
possibly work) would be to assume that additional code would be
created to replace the “loop-endloop” syntax in order to govern the
transport of data such that the rest of the pseudocode repeats once
for each datum to be transported. EX2111¶¶204-206.

Source: Response, 83

PODX - 114

“computational loop”

• A POSITA would recognize this as a program subroutine that is
executed once per datum, not a computational loop executing
repeatedly per datum until a condition is met. EX2111¶¶196-208."

• This is confirmed by Petitioner and its expert that the “loop-endloop”
repeats until the amount of data concludes. 601 Petition at 39-41
(identifying the string target characters to be processed by each
processing element); EX 2066 at 225:9- 226:5.

Source: Response, 83-84

PODX - 115

“computational loop”

• Even assuming arguendo that the
amount of data itself could constitute the
condition for exiting any of the “loop-
endloops,” the pseudocode in Splash2
would not make sense when mapped to
Fig. 4B of the ’324 Patent:

• Each of the loops cannot be processing
from 1 to N, otherwise the Splash2
algorithms would not work as intended,
as described even by Petitioner’s own
expert. EX2111¶¶203-204; EX2064 at
147:6-154:23 (describing intended
operation where each datum proceeds
through the if-else-if statement of a
processing element only once).

Source: Response, 84

PODX - 116

“computational loop”

• Looping must be performed by the reconfigurable
processor
– As even Petitioner and its expert admit, instantiate means to

“create, such as by configuring a particular structure.” Petition
at 16-17; EX1003¶¶85-87.

– Petitioner further referenced the file history that patentee stated
“[a] reconfigurable processor is essentially a blank processor
that must be configured (instantiated) to conduct a particular
task… defining one particular variation of the processor’s
structure.” 601 Petition at 17; EX1003¶¶85-87.

– Thus, the parties agree that this instantiation requires
configuring/instantiating the resources on the reconfigurable
processor.

Source: Response, 87-88

PODX - 117

“computational loop”

• ’324 Patent Teaching

Source: Sur-Reply, 16-17

• Splash2 Interpretation

PODX - 118

“computational loop”

• Even Petitioner’s expert admitted that the pseudocode shown
in Splash2 with the loop-endloop syntax would not be how the
algorithm is built on an FPGA. Instead, the software would
have to be converted using VHDL to instantiate distinct
hardware, and “you don’t build them the way the software
would read that.” EX2064 at 179:13-180:2.

Source: Response, 89

PODX - 119

“computational loop”

• This is consistent with the looping to be handled by the Sun
workstation rather than on the FPGAs of Splash2, which Petitioner’s
expert admitted he has no personal knowledge about. EX2064 at
212:25-213:12.

Source: Response, 89

PODX - 120

“computational loop”

Source: Sur-Reply, 7; EX2111, ¶¶194-209

PODX - 121

“computational loop”

Source: Sur-Reply, 7; EX2111, ¶¶194-209

PODX - 122

“computational loop”

Source: Sur-Reply, 7; EX2111, ¶¶194-209

PODX - 123

“computational loop”

Source: Sur-Reply, 7

PODX - 124

“computational loop”

Source: Sur-Reply, 7

PODX - 125

Disputed Claim Terms

• pass computed data “seamlessly” between said
computational loops

• “systolic” and “data driven”

• “computational loop”

• “stream communication”

Source: Response, TOC

PODX - 126

“stream communication” connection

Source: Response, 50

PODX - 127

“stream communication” connection

• The dependent claims for stream communication clearly state that the
dependent claim narrows the “instantiation” limitation from the independent
claims:

• 1. A method for data processing in a reconfigurable computing system, the
reconfigurable computing system comprising at least one reconfigurable
processor, the reconfigurable processor comprising a plurality of functional
units, said method comprising:
…
instantiating at least two of said functional units at the at least one
reconfigurable processor to perform said calculation wherein only functional
units needed to solve the calculation are instantiated and wherein each
instantiated functional unit at the at least one reconfigurable processor
interconnects with each other instantiated functional unit at the at least
one reconfigurable processor based on reconfigurable routing
resources within the at least one reconfigurable processor as
established at instantiation, …

• 15. The method of claim 1 wherein instantiating includes establishing a
stream communication connection between functional units.”

Source: Response, 50-51

PODX - 128

“stream communication” connection

• ...stream communication” defines what type of connection is being
instantiated in dependent Claim 15

• The plain language of the claims requires
– (1) instantiation of some structure to create a stream

communication, and
– (2) specific to the ’324 Patent, this instantiation must utilize the

reconfigurable resources within the reconfigurable processor.
EX1001 at 12:63-13:8, 13:53-55.

• Stream communication must be instantiated to comply with a
seamless, systolic implementation, per claim 1. EX1001 at
13:12-19.

Source: Response, 52; Sur-Reply, 10

PODX - 129

“stream communication” connection

• Configured during instantiation to connect processing elements via the
reconfigurable routing resources.

• EX1001 at 12:63-13:8, 5:31-53, Fig. 2; EX2111¶¶150-151.

Source: Response, 62

PODX - 130

“stream communication” connection

• As Petitioner and its expert admit, the specification does not provide a
specialized definition of “stream communication” or otherwise offer any
disclaimer of scope to alter the term from its plain and ordinary
meaning. 601 Petition at 20; EX1003¶117.

• The intrinsic record does not unambiguously define “stream
communication.” In fact, Petitioner’s own Petition conceded this: “The
term ‘stream communication’ is not used in the ’324 Patent except in
its claims, nor is it used in the incorporated references.” Petition, 20.

• The only allegedly supporting phrase referenced by Petitioner is
different (stream of operands), which at best clarifies what is in the
stream (operands), not the communication connection that must be
instantiated (structure). It is also from a different patent referring to a
different invention pertaining to internet communications.

Source: Response, 52; Sur-Reply, 12

PODX - 131

“stream communication” connection

• The file history is equally unavailing.
– The statement by the examiner regarding a “stream between

processors” does not mention a queue. It also refers to the
contents (“data is transferred systolically in at least one stream”),
not to the structure of the stream communication connection that
must be instantiated. Reply, 34.

– Even Petitioner’s own brief concedes “the examiner noted…the
claimed ‘stream communication connection’ [is] established as the
interconnections are made,” but the examiner provides no
statements on what specific structure is established. Reply, 34.

– The examiner’s silence cannot “contradict” the extrinsic evidence;
it is by definition silent one way or the other. If anything, there is
consistency with the extrinsic evidence.

Source: Response, 13; Sur-Reply, 13-14

PODX - 132

“stream communication” connection

• Because of the intrinsic record’s silence in defining a stream
communication connection, Patent Owner provided numerous
citations to references around the time of the invention that all
consistently provide support for a POSITA’s understanding of
the associated structure, consistent with Patent Owner’s
proposed construction. Response, 53-62.
– U.S. Patent No. 8,589,666 (assigned to Patent Owner and describing the

prior art understanding of stream as a data path as shown in fig.1)
– Patent Owner’s own product documentation3 and supporting declaration

of the inventor of the ’324 Patent
– Argonne National Laboratory article, defining stream as a data structure
– U.S. Patent No. 5,748,613
– European Patent No. 1820309
– U.S. Patent No. 8,543,746
– U.S. Patent No. 8,352,4564
– U.S. Appl. No. 2010/0070730

Source: Response, 12; Sur-Reply, 12

PODX - 133

“stream communication” connection

Source: Sur-Reply, 12

• EX2027 U.S. Patent No.
8,589,666
– assigned to Patent Owner
– describes the prior art

understanding of stream as a data
path as shown in fig.1

PODX - 134

“stream communication” connection

• EX2027 at Fig. 1, 2:39-54:
– “A stream is a data path between a producer and consumer of

data, where the producer and consumer run concurrently. The path
between the producer and consumer is made up of a data
connection, a “valid” signal, and a reverse direction “stall” signal.
FIG. 1 shows typical signals used in a stream connection as is well
known and will be recognized by one skilled in the relevant art.”

Source: Response, 53

PODX - 135

“stream communication” connection

• EX2027 at 2:45-63.
“The use of a First-In-First-Out buffer 110, or “FIFO” buffer, removes the need
for tight synchronization between the producer 120 and consumer 130. The
producer 120 will generate data values 125 at its own rate, allowing them to
accumulate in the FIFO buffer 110. As the FIFO buffer 110 approaches
becoming full, it will issue a stall signal 140 to the producer 120 so that it will
suspend the generation of data values 125 until the stall signal is released.
The consumer 130 will take 150 values 145 from the FIFO buffer at its own
rate and as the values 145 are available.
The use of the FIFO buffer, with the valid 135, stall 140 and take 150 signals,
allows flexible coupling of stream producers and consumers. A stream's
producer 120 and its consumers 130 may run at different speeds. For
example, when the producer 120 runs faster than the consumer 130, then it
will stall 140 from time to time as values fill the FIFO buffer. When the
producer runs slower than the consumer, the FIFO will sometimes be empty
and the consumer will wait for new values to be available.”

Source: Response, 53

PODX - 136

“stream communication” connection

• EX2027 at 6:6-13:
“As previously described, a typical configuration of a pipelined data
stream structure places a single buffer between the producer and the
consumer. Such a single buffer is typically configured to absorb
differences in the production and consumption rate of the data
streams, but does little to prevent the lost of data due to consumer
loop overshoots.”

Source: Response, 53

PODX - 137

“stream communication” connection

• DirectStream’s ’666 Patent describes as part of the technical
background the use of a FIFO buffer to communicate between two
processing elements, in particular where the producer processor can
add data to the FIFO buffer at its rate and the consumer processor can
remove data from the FIFO buffer at its separate rate. EX2111¶¶152-
154, 179-187. The disclosed use of a FIFO buffer structure for stream
communication allows the producer and consumer to run concurrently,
while the buffer absorbs differences in the production and
consumption rate of the data streams. EX2111¶¶152-157, 179-187.

• This disclosure is entirely consistent with the ’324 Patent’s teachings
for instantiating reconfigurable resources to seamlessly communicate
computed data between processing elements in independent claim 1,
and more particularly to provide stream communication between those
processing elements in the dependent claim 15. EX2111¶¶152-157,
179-187; EX1001 at 12:63- 13:8, 13:53-55.

Source: Response, 55

PODX - 138

“stream communication” connection

Source: Sur-Reply, 12

• EX2107 Patent Owner’s
product documentation

PODX - 139

“stream communication” connection

• DirectStream’s own product documentation describes a stream
as a data structure that allows flexible communication between
concurrent producer and consumer loops, which is consistent
with how a POSITA would understand this term in the context of
the claims, particularly as part of instantiating structure on a
reconfigurable processor. EX2100¶79; EX2107 at 94-98;
EX2111¶¶150-154, 182- 187.

Source: Response, 56

PODX - 140

“stream communication” connection

• EX2107, Fig. 6-1 at p. 94,

• EX2107, Fig. 6-2 at 96

Source: Response, 57

PODX - 141

“stream communication” connection

• POSITA would recognize that a queue is a well-known
data structure with first-in-first-out properties in which only
two actions are permitted, (i) the addition of entities to the
rear position, known as enqueuing, and (ii) the removal of
entities from the front position, known as dequeuing. This
ensures that data entering a queue remains in the same
order that it arrived.

• EX2065 at 433; EX2111¶¶152-154, 182-185.

Source: Response, 57

PODX - 142

“stream communication” connection

• EX2028 Argonne National
Laboratory article
– defines stream as a data

structure

Source: Sur-Reply, 12-13

PODX - 143

“stream communication” connection

• A paper from Argonne National Laboratory from 1993 defines
“stream” as follows:

• EX2028 at 31.
Source: Response, 59

PODX - 144

“stream communication” connection

• This is consistent with the ’324
patent’s use of a “stream
communication” to connect the
functional units that form the
two computational loops.
EX1001 at 13:53-55;
EX2111¶¶150-154, 179-187.

• Those two loops act as
producers and consumers with
the stream communication
enabling the data to pass from
the producer (loop 1) to
consumer (loop 2).

Source: Response, 59

PODX - 145

“stream communication” connection

• This same concept is also consistently demonstrated by
other third party patents that both pre- and post-date the
’324 Patent

– EX2169 - U.S. Patent No. 5,748,613
– EX2170 - European Patent No. 1820309
– EX2171 - U.S. Patent No. 8,543,746
– EX2172 - U.S. Patent No. 8,352,456
– EX2173 - U.S. Appl. No. 2010/0070730

Source: Response, 59-62

PODX - 146

“stream communication” connection

Source: Response, 59-60

• EX2169 - U.S. Patent No. 5,748,613

• EX2169 at Abstract: The present invention
provides a method of pacing a stream of
data transmitted from a data source to a
buffered data destination with a determined
number of available storage units, the data
destinations being configured to consume
data and thereby to free storage units for
receipt of additional data.

• EX2169 at 3:31-35: Referring still to FIG. 1,
it will be understood that data producer 12
typically includes a memory and a
processor capable of providing an image
buffer 16, a command protocol buffer 18, an
auto-status buffer 20, a device ID buffer 22,
and a pacing buffer 24.

PODX - 147

“stream communication” connection

Source: Response, 60

• EX2170 – EP No. 1820309

• EX2170 at 0003-0004.
• [0003] Buffering is essential in a proper support of

data streaming between the involved processes.
Typically, FIFO buffers are used for streaming,
which is in accordance to (bounded) Kahn process
network models of streaming application. With
increased number of multimedia applications that
can run simultaneously the number of processes,
realtime streams, as well as the number of
associated FIFOs, substantially increases.

• [0004] There exist two extreme implementations of
streaming with respect to memory usage and FIFOs
allocation. The first uses physically distributed
memory, where FIFO buffers are allocated in a local
memory of a subsystem. The second uses
physically and logically unified memory where all
FIFO buffers are allocated in a shared, often off-
chip, memory. A combination thereof is also
possible.

PODX - 148

“stream communication” connection

Source: Response, 60-61

• EX2171 - U.S. Patent No. 8,543,746

• EX2171 at Abstract.
• A circuit arrangement and method facilitate the direct

streaming of data between producer and consumer circuits
(12P.12C) that are otherwise configured to communicate
over an address-based network (18). Sync signals (46,56)
are generated for each of producer and consumer circuits
(12P, 12C) from the address information encoded into
requests that communicate the data streams output by the
producer circuit (12P) and expected by the consumer
circuit (12C). The sync signals (46,56) for the producer and
consumer circuits (12C) are then used to selectively
modify the data stream output by the producer circuit (12P)
to a format expected by the consumer circuit (12C).
Typically, such modification takes the form of inserting data
into the data stream when the consumer circuit (12C)
expects more data than output by the producer circuit
(12P), and discarding data communicated by the producer
circuit (12P) when the consumer expects less data than
that output by the producer circuit (12P).

PODX - 149

“stream communication” connection

Source: Response, 61

• EX2172 - U.S. Patent No. 8,352,456

• EX2172 at 1:29-50.
• One basic design pattern is producer/consumer. A

producer/consumer relationship is one in which a
producer generates data and the consumer uses the
data. This pattern is utilized in a myriad of different
environments for a number of processes including, at
a higher level, data warehousing for cleansing and
transforming data and image processing for iterative
refinement. In fact, the pattern can apply to any
situation in which data is produced and consumed.
One particularly prevalent use case pertains to
queries. Query execution can be seen as a traditional
client/server or consumer/producer model where an
entity A requests a service from another entity B, in
this case the retrieval of some data that satisfies
criteria and is in the shape requested. Some bi-
directional communication mechanism is required
Such that A can instruct B about its desire and so
that B may respond to A with the results. The entire
result set is returned in Some form and thereafter
consumed for Some purpose. …

PODX - 150

“stream communication” connection

Source: Response, 61-62

• EX2173 - U.S. Appl. No.
2010/0070730

• EX2173 at 0012. In one embodiment, a method
comprises dividing a stream into windows, wherein a
stream is a circular first-in, first-out (FIFO) shared
storage queue. In one window, a producer task is
able to modify memory locations within a producer
sliding window without checking for concurrent
accesses to the corresponding elements.

• EX2173 at 0044. The transfer of data between tasks
as shown in FIG. 3A-3C may occur via a
communication channel called a stream. A stream
may be a circular buffer managed as a FIFO
concurrent lock free queue. Concurrent FIFO queues
are widely used in parallel applications and operating
systems. A stream may be implemented in the
memory hierarchy 400 such as in stream copies 440
and 460. The most updated contents of a stream
may be in Stream copies located closest to a
processor core, such as stream copy 440.

PODX - 151

“stream communication” connection

• The foregoing extrinsic references are still consistent with the intrinsic
record.

• Within the context of the ’324 Patent, a POSITA would recognize that
this inter-chip communication concept can be adapted to intra-chip
communications between functional units on the same chip—e.g., a
FIFO within the chip:

• EX1001 at 5:41-53.

Source: Response, 63, Sur-Reply, 11

PODX - 152

“stream communication” connection

• The specification discloses neighboring cell communications and the
use of scheduling to eliminate the need for data storage, as well as the
concept of using chain ports and a FIFO buffer for chip to chip
communications, borrowing concepts from the ’819 Patent owned by
the same applicant.

• EX1001 at 7:59-8:6.

Source: Response, 62-63

PODX - 153

“stream communication” connection

• The ’687 Patent is related to the ’819 Patent, which the ’324 Patent
incorporated by reference, and it further describes the chain port:

• EX1014 at 8:7-26.
Source: Response, 65

PODX - 154

“stream communication” connection

• Additionally, alongside the chain port, the ’687 Patent discloses input
and output FIFO buffers as part of chip to chip communication, which
relates to the ’324 Patent claim for stream communication between
functional units on the same chip to solve the technical problem. See
EX2111¶¶125-131, 150-152.

• EX1014 at 8:7-26.

Source: Response, 65

PODX - 155

“stream communication” connection

• And continuing:

• EX1014 at 9:2-67.

Source: Response, 65

PODX - 156

“stream communication” connection

• Petitioner’s own expert concurs the patent excludes storing values in
memory—e.g., sending data off the chip.

• EX2064 at 85:14-86:12. See also EX1003¶117
Source: Response, 69

PODX - 157

“stream communication” connection

• Petitioner’s construction is flawed under any claim construction
standards because it

1) results in an illogical definition that destroys the independent-
dependent relationship of the claims,

2) improperly broadens the term so as to strip it of all meaning
relative to the rest of the claim language, and

3) is inconsistent with POSITA’s understanding of the plain and
ordinary meaning.

Source: Response, 50

PODX - 158

“stream communication” connection

• Petitioner ignores the canon of claim construction that a dependent
claim scope should be differentiated from its independent claim.

• Petitioner’s proposed definition of a “communication of data
sequence” is already present in any data processing systems to begin
with—including in a systolic data processing system—adding no
limitations that are not already in the independent claims.

• As such, Petitioner’s proposed definition would violate claim
differentiation by rendering the dependent claims meaningless and of
the same exact scope as the independent claim. Am. Piledriving
Equip., Inc. v. Geoquip, Inc., 637 F.3d 1324, 1335 (Fed. Cir. 2011).

Source: Response, 69, Sur-Reply, 11

PODX - 159

“stream communication” connection

• Plain claim language of dependent claim 15 pertains to “instantiation”
term in the independent claim

• Petitioner and its expert even argued “instantiation” means to “create,
such as by configuring, a particular structure.”

• Petition at 16.

• Petitioner ignores the plain claim language that states the “stream
communication” type of connection in Claim 15 further specifies the
structure that is instantiated in Claim 1.

Source: Response, 51

PODX - 160

“stream communication” connection

• Petitioner’s proposed construction for stream communication is
inconsistent with the foregoing.

• Instead, Petitioner’s construction abandons any structure or
configuration thereof. This would render the dependent claim
nonsensical and illogical by divorcing it from any of the requirements of
the “instantiating” limitation.
– Petitioner’s construction offers nothing clarifying about what an

instantiation comprising stream communication would constitute.
– Petitioner’s construction does nothing more than recite a

requirement of sending data to any systolic (or even data
processing) system generally—namely that it receives a sequence
of data via some communication.

Source: Response, 51-52

PODX - 161

• Neither Splash2 nor any of the
other prior art disclose stream
communication as properly
construed, and Microsoft does
not dispute this. See Reply,
37-38.

• The Petition asserts only that,
based on Petitioner’s incorrect
construction of stream
communication as a sequence
of data, this limitation is met by
Splash2.

“stream communication” connection

Source: Response, 80; Sur-Reply, 14

PODX - 162

• Splash2 does not contain any disclosure of
– a queue between processing elements. EX2111¶¶188-193.

Petitioner does not identify any in the Petition and Petitioner’s
expert likewise is silent on any such disclosure in Splash2.

– the signaling for the processing elements to interact with the queue
so as to store/fetch, which a POSITA would know is necessary to
do any sort of data communication involving a queue in a stream
communication. EX2111¶¶180-193.

– a busy/ready signal between processing elements to regulate the
flow of data into and out of the queue. EX2111¶¶180-193.

• Instead, Petitioner and its expert argue Splash2 shows a “direct”
connection between processing elements with nothing in between.
601 Petition at 12, 37, 46; EX 2064 at 85:14-86:12.

“stream communication” connection

Source: Response, 78-79

PODX - 163

• No structure is identified for Splash2 or any of the other prior art
references, in accordance with a POSITA’s understanding that claim15
requires instantiating reconfigurable resources for “stream
communication.” See EX2111¶¶150-154, 180-193.

• Nor is there any argument or evidence to show a combination of
teachings from Splash2 and any of the other prior art to render
obvious the limitation of instantiating some structure using the
reconfigurable resources for “stream communication.”

“stream communication” connection

Source: Response, 80

PODX - 164

• Petitioner’s entire interpretation of Splash2 is that there is nothing in
between the processing elements in order to be “seamless,” which
Petitioner’s expert confirmed in deposition. Petition at 12, 37, 46;
EX2064 at 85:14-88:10.

“stream communication” connection

Source: Response, 79-80

PODX - 165

No Motivation to Combine

• “The presence or absence of a motivation to combine references in an
obviousness determination is a pure question of fact.” Intelligent Bio-
Sys., 821 F.3d at 1366 (quoting Par Pharm., 773 F.3d at 1196). Where
a combination of prior art references changes the basic principles of
operation of the prior art or renders the prior art inoperable for its
intended purpose, there is no motivation to combine.

• MPEP 2143.01 (“If [the] proposed modification would render the prior
art invention being modified unsatisfactory for its intended purpose,
then there is no suggestion or motivation to make the proposed
modification.”) (citing In re Gordon, 733 F.2d 900 (Fed. Cir. 1984));

• Plas-Pak Indus. v. Sulzer Mixpac AG, 600 Fed.Appx. 755, 759-60
(Fed. Cir. 2015) (“How well a combination is expected to work is
certainly a legitimate consideration in an obviousness inquiry.”).

Source: Response, 17-29, 111-115, 119-120; Sur-Reply, 5-6

PODX - 166

Dr. Stone is Not Reliable

Source: Response, 20-21

PODX - 167

Dr. Stone is Not Reliable

Source: Response, 21; EX2111¶¶145-146

PODX - 168

Dr. Stone is Not Reliable

Source: Response, 23-24

• For example, in deposition, Dr. Stone testified he assumed his use
of prior art in various combinations would be enabling without
explaining how a POSITA would actually make that combination:

• EX2066 at 54:2-55:3 (emphasis added)

PODX - 169

Dr. Stone is Not Reliable

Source: Response, 26

• Petitioner’s expert also testified he merely assumed all
the benefits and ignored any of the drawbacks. EX2066:
– 65:17-68:22 (state of the art would include what you cannot do also but

Stone doesn’t consider the disadvantages in his opinion, only
advantages)

– 142:22-144:10 (Stone did not rely on his own book and didn’t consider
disadvantages identified in his book for multiprocessor systems)

– 145:9-146:25 (didn’t consider disadvantages when considering prior art
combinations)

– 161:13-162:25 (Stone believes legal standard does not teach him to take
into consideration whether a particular combination is even a good
combination in terms of the system that results)

– 187:9-188:11 (Stone didn’t investigate potential drawbacks of FGPAs in
2001)

– 203:14-207:13 (Stone only used perceived advantages to piece together
combinations without considering whether the combinations were
workable)

PODX - 170

Dr. Stone is Not Reliable

Source: Response, 120-121

PODX - 171

Dr. Stone is Not Reliable

Source: Response, 29

PODX - 172

Dr. Stone is Not Reliable

Source: Response, 115-116

• Even assuming an algorithm could be moved from a
multiprocessor to an FPGA environment, there are
additional design considerations that must be evaluated
to determine if any FPGA implementation will be
successful. EX2111¶¶242-252.

• For example, chapter 2 of the book Field-Programmable
Gate Array Technology by Dr. Trimberger also provides
additional design considerations that must be taken into
account when evaluating whether it is possible to
implement an algorithm on an FPGA or array of FPGAs:

PODX - 173

Dr. Stone is Not Reliable

Source: Response, 115

• EX2078 at 29.
– Capacity Estimation
– FPGAs have three kinds of resources: logic, I/O and routing. To

determine if a design fits into a particular FPGA, the design must fit
within all three resource limits. The difficulty of this estimation is a
function of the architecture and of the software used for mapping
the logic into the FPGA. FPGA logic and interconnect capacity are
difficult to estimate. Traditional measures of gate count and
product terms are not accurate estimates of lookup-table capacity.
Two designs that appear to be of equal size in terms of MPGA gate
count or number of PLD product terms may use CLBs with
different efficiency, requiring very different numbers of CLBs. Logic
optimization algorithms may also significantly change the size and
performance of the design. Complex blocks implement complex
functions efficiently, but when the function to be implemented does
not fit into the block efficiently, some fraction of the block is
unusable, and is wasted.

PODX - 174

Dr. Stone is Not Reliable

Source: Response, 115

• EX2078 at 29.
– The wasted fractions of blocks cause a gap between the peak

capacity of the FPGA and the capacity in a given application. An
accurate capacity and performance estimate requires that the
design be mapped into the FPGA. Fortunately, fast mapping
heuristics can give a good estimate of logic capacity. Routing
requirements are more difficult to estimate. The problem of
statistical wirability estimation has been addressed by Heller
[1978], Donath [1979] and EIGamal [1981], but the techniques
and results are not accurate enough for capacity estimation.
MPGA designs address this problem by providing significantly
more interconnect than is needed by most designs. This solution
in impractical in FPGAs because unused FPGA interconnect
degrades performance and density too severely. FPGA design
systems include high-speed placement and routing for routability
estimation and timing- driven routing to meet delay requirements.

PODX - 175

Dr. Stone is Not Reliable

Source: Response, 116

• EX2078 at 66-67.
– FPGA interconnect is comparatively expensive, both in terms of

delay and area. An architecture that includes more long-distance
connections would have faster interconnect. but the resulting chips
might require more area for interconnect. reducing their logic
capacity. Architectures with minimal interconnect resources will
appear denser, but might be difficult to route. Architectures must
address both integrated circuit and software goals. The true
capacity and speed of an FPGA is measured by the ability of design
automation software to exploit the architecture. FPGA architectures
and software must be developed simultaneously.

PODX - 176

Dr. Stone is Not Reliable

Source: Response, 116

• EX2078 at 66-67.
– Software
– The CAE industry has focused on the MPGA problem and has adopted a

gate- like implementation model based on MPGA features. Many of the
current software issues with FPGAs are a result of their non-gate-like
implementation structure. This disagreement is most evident in the
schematic entry library, which is a collection of gate-level primitives. The
netlist generated from a schematic preserves the gate-like structure. The
non-gate-like FPGA structure requires a partitioning step before the
placement and routing process. Related problems in design automation
have been addressed either as placement. considering only the physical
constraints; or as technology mapping, considering only the logical
constraints. Both sets of constraints must be solved simultaneously in
order to produce implementations that are simultaneously dense and fast.
The partitioning problem is aggravated by the use of logic optimization
algorithms originally designed for gate-like implementations.

PODX - 177

Dr. Stone is Not Reliable

Source: Response, 117

• EX2078 at 66-67.
– They often produce results that reduce speed and density rather than

improve them. The reasons are varied, but traditional algorithms tend to
factor logic aggressively, making more small gates; they ignore the
ability of lookup tables to subsume larger amounts of logic. They also
ignore routability considerations, which are of vital importance to
FPGAs. New optimization algorithms are needed for lookup-table based
FPGA architectures.

– High-level synthesis and logic synthesis systems must target the high-
level architectural features of FPGAs to gain the performance and
density advantages they provide. The Library of Parameterized Macros
(LPM) [Holley 1991] is an industry sponsored standardization effort to
develop an intermediate form that includes these high-level constructs.
It may provide the appropriate interface between high level synthesis
systems and systems-oriented FPGAs. Placement and routing of
FPGAs provides new challenges.

PODX - 178

Dr. Stone is Not Reliable

Source: Response, 118

• EX2078 at 66-67.
– The relatively slow FPGA interconnect structure demands true timing-

driven placement and routing algorithms. Although these algorithms have
been proposed for MPGA design automation, their usefulness for MPGA
designs has not been great, and their adoption for FPGAs seems to be
happening more quickly.

– Partitioning in Space and Time
– Because of the limited capacity of FPGAs, and their applicability to

prototyping, FPGAs have re-kindled interest in multi-chip partitioning.
There are several important problems that must be addressed, including
FPGA resource estimation (logic, I/O and routing), timing and partitioning
into dissimilar parts. A farther-reaching problem is the issue of partitioning
a design in time: identifying parts of a design that can be time-shared onto
the FPGA, and generating separate FPGA configurations for them. At
present, not only are there no algorithms, but the current design
representations appear to be lacking in essential timing information. An
elegant solution to this problem will allow true time-shared hardware and
usher in a new era in hardware implementation.

PODX - 179

• EX1009 - RaPiD prior art
• Not taught in RaPiD

Other prior art - RaPiD

Source: EX1005; Response, 80, 93-85, 105-106

PODX - 180

Other prior art - RaPiD

• The Petition contains only a conclusory allegation that RaPiD
discloses a “computational loop” based on an annotated Figure 10.
601 Petition at 63.

• The only evidence that Petitioner and its expert point to is the below
annotated (but it is unclear who annotated it) Figure 10 from RaPiD.

Source: Response, 93-94

PODX - 181

Other prior art - RaPiD

• A forwarding path is used to “support back to back execution of
operations without stall, by forwarding (or bypassing) the output of
an ALU to an input of the same or other ALU … for back to back
operation without adding any stall.” EX2111¶236; EX2029¶45;

• EX2043 at 301; EX2044 at 6. And it is one of the basic structures in
computer microarchitecture. EX2111¶¶237; EX2044 at 2, 6-7;
EX2029¶46.

Source: Response, 94

PODX - 182

Other prior art - RaPiD

• Petitioner does not explain why it believes the yellow path in Figure
10 is a “computational loop.”

• Petitioner’s expert concludes that it is because “the output [of] the
ALU is looped back to the ALU input.” EX1003¶357.
– That is the same as the definition of a forwarding path

• Petitioner’s expert even conceded Fig. 10 depicts only a forwarding
path or a bypass path. EX2111¶238

• EX2064 at 201:21-202:1:
24 Q. Does the Figure 10 show a bypass
25 path or a forwarding path?
2 A. Yes.

Source: Response, 95

PODX - 183

Other prior art - RaPiD

• The Petition asserts only a conclusory statement that “DCT data is
passed ‘seamlessly’ in that such data is communicated directly from
one Processing Element to the next.” Petition at 64. Petitioner’s
expert that repeats the Petition’s conclusory statements verbatim.
EX1003¶360.

• Figure 10 in RaPiD clearly shows storage of results in memory
(RAM) before being passed onto the next cell:

• EX1009 at 111; 601 Petition at 63.
Source: Response, 105-106

PODX - 184

Other prior art - RaPiD

• RaPiD clearly discloses the exact structure that Petitioner’s expert
testified would not be seamless.

• EX2064 at 85:14-86:18.
Source: Response, 106

PODX - 185

• EX1012 Roccatano prior art
• Not taught in Roccatano

Other prior art - Roccatano

Source: EX1005; Response, 80, 91-92, 106-107

PODX - 186

Other prior art - Roccatano

• Petitioner again argues that computational loops are disclosed in
Roccatano, which “accumulates the interactions of a resident atom
and a transient atom for a collection of resident-transient atom pairs
[and t]he accumulation occurs for a number of steps equal to P/2,
where P is the number of processors… operating on a different
resident atomic data…” 603 Petition at 76; EX1003¶305.

• This is the same argument Petitioner advances for Splash2, where
the “looping” is just to execute the code once for each piece of data.
EX2111¶¶231-233.

• There is no disclosure of looping or repeating of a computation
multiple times for each data until a condition is met or a number of
repetitions has been satisfied, as required by the Board’s claim
construction and the ’324 Patent. EX2111¶¶231-233.

Source: Response, 91-92

PODX - 187

Other prior art - Roccatano

• Roccatano does not disclose “seamless” because its teachings require
multiple processors with the exact inherent boundaries from chip-to-
chip communication that the ’324 Patent sought to address. See supra
§§II.C and V.A.1. Roccatano clearly discloses “8 to 2048 processors…
arranged in a three-dimensional (3D) cubic mesh.” EX1012 at 686.

• This is no different than the prior art the applicant distinguished during
prosecution and therefore cannot disclose seamlessly passing data
between computational loops. See EX1002 at 117-118, 147-148, 174-
175, 224-225.

• Roccatano also discloses each processor having local memory of up
to 4 megabytes, similar to the local memory in Splash2. Even if
Roccatano did not require multiple processors, it still would be
ambiguous whether the processors stored intermediate results in this
available local memory, which would have been expected in the prior
art at the time of the invention to smooth over at least the timing
problems inherent in systolic systems. See EX2111¶¶210-220.

Source: Response, 106-107

PODX - 188

• EX1010 Gaudiot prior art
• Not taught in Gaudiot

Other prior art - Gaudiot

Source: EX1005; Response, 80, 90-91, 107-108

PODX - 189

Other prior art - Gaudiot

• Neither the Petition nor the report of Petitioner’s expert contain any
argument or evidence that Gaudiot discloses two computational
loops. 601 Petition at 52-53; EX1003¶¶195-201.

• Neither the Petition nor the report of Petitioner’s expert contain any
argument or evidence that Gaudiot discloses passing computed data
seamlessly between two computational loops. 601 Petition at 52-53;
EX1003¶¶195-201.

• Gaudiot discusses the broad data processing concepts with
respect to systems with multiple processors, not systems
having multiple processing elements on a single chip as claimed in
the ’324 Patent. 601 Petition at 52-53 (Petitioner admits “Gaudiot
discloses a multiprocessor technique…”); see also EX1003¶195.

Source: Response, 90-91, 107-108

PODX - 190

Other prior art - Gaudiot

• Petitioner admits “Gaudiot discloses a multiprocessor
technique…,” not systems having multiple processing
elements on a single chip as claimed in the ’324 Patent. 601
Petition at 52-53; see also EX1003¶195.

• Petitioner and its expert try to combine the teachings of
Gaudiot with Splash2 but do not discuss any of the above
considerations that would be relevant to a POSITA. In fact,
Petitioner’s expert even failed to follow his own rubric for
analyzing whether a POSITA would be motivated (or even
consider it feasible) to modify any of the prior art as he
proposes in his report to meet the claim limitations of the ’324
Patent.

Source: Response, 115

PODX - 191

• EX1011 ChunkySLD prior art

• Not taught in ChunkySLD

Other prior art - ChunkySLD

Source: EX1005; Response, 80, 91, 107-109

PODX - 192

Other prior art - ChunkySLD

• Petitioner argues that computational loops are disclosed in
ChunkySLD, which “accumulates the partial products into a dot
product of two column vectors [and t]he accumulation occurs
for a number of time slots equal to the length of a template
column.” 602 Petition at 72; EX1003¶405.

• This is the same argument Petitioner advances for Splash2,
where the “looping” is just to execute the code once for each
piece of data. EX2111¶¶244-226.

• There is no disclosure of looping or repeating of a computation
multiple times for each data until a condition is met or a number
of repetitions has been satisfied, as required by the Board’s
claim construction and the ’324 Patent. EX2111¶¶224-226.

Source: Response, 91

PODX - 193

Other prior art - ChunkySLD

• ChunkySLD discloses that
the summation result from a
processing element must be
held in storage for at least
one extra time step before
being passed to the next
processing element.
EX1011 at Fig. 5;
EX2111¶¶210-219.

Source: Response, 108

PODX - 194

Other prior art - ChunkySLD

• Petitioner’s expert also admits ChunkySLD requires this delay in
transferring between processing elements. EX1003¶¶389-390;

• EX2064 at 194:24-195:4
24 Q. Okay. Okay. Okay. So that I -- I
25 am reading that right, that the
2 time step to -- to I guess move across that
3 break between the columns?
4 A. Right.

Source: Response, 108

PODX - 195

Other prior art - ChunkySLD

• ChunkySLD is simply an algorithm deployed on Splash2, and
therefore the same ambiguity present in Splash2 is also
present for other deployments of the same platform. EX1011
at 195; see EX2111¶¶210-219.

• At best, ChunkySLD is ambiguous where this result is stored
while waiting multiple time steps to be passed to the next
processing element.

• Thus, similarly with Splash2, it is equally, if not more,
plausible to interpret ChunkySLD as disclosing the need to
store results in memory, for example in the local memory
attached to the FPGA, to account for the timing issues above.
See EX2111¶¶210-220.

Source: Response, 108-109

PODX - 196

• EX1061 Jeong prior art

• Not taught in Jeong

Other prior art - Jeong

Source: EX1005; Response, 80, 92-93, 107, 109, 118-119

PODX - 197

Other prior art - Jeong

• Petitioner argues that
computational loops are
disclosed in Jeong to perform
“modular multiplication.” 601
Petition at 72-73;
EX1003¶¶451-452.

• Jeong describes this modular
multiplication algorithm as an
iterative procedure which
performs a single summation
from i=0 to n-1 (the equivalent
number of iterations as going
from 1 to n). EX1061 at 212;
EX2111¶¶227-230.

Source: Response, 92

PODX - 198

Other prior art - Jeong

• Jeong even teaches to “precalculate the Kh’s instead of adding
K multiple times” due to limitations on the number of allowable
operands. EX1061 at 213; EX2111¶¶227-230.

• This is the same argument Petitioner advances for Splash2,
where the “looping” is just to execute the code once for
each piece of data. EX2111¶¶227-230.

• There is no disclosure of looping or repeating of a computation
multiple times for each data until a condition is met or a number
of repetitions has been satisfied, as required by the Board’s
claim construction and the ’324 Patent. EX2111¶¶195, 230.

Source: Response, 93

PODX - 199

Other prior art - Jeong

• Jeong discloses algorithms that require multiple inputs from
neighboring nodes and also sends outputs to multiple
neighboring nodes. EX1061 at Fig. 2(a), Fig. 3. Thus, the
timing considerations for the algorithms in Jeong are escalated
in comparison to Splash2.

• EX1061 at 214.
Source: Response, 109

PODX - 200

Other prior art - Jeong

• Splash2 is a linear system, requiring any implementations to
be carefully planned to fit within the limited construction of
Splash2. EX1011 at 194-197.

• Jeong discloses a non-linear system that cannot be deployed
linearly, as shown below:

• EX1061 at 214.
Source: Response, 118-119

Secondary Considerations

PODX - 201

PODX - 202

Obviousness

Source: Response, 121-122; Reply, 52-55; EX2111, ¶¶123-131; EX2100, ¶¶80-83

PODX - 203

Secondary Considerations
03

Long-Felt Need

PODX - 204

Secondary Considerations

Source: EX2164, ¶¶25-26; Response, 123

PODX - 205

Secondary Considerations

Source: EX2164, ¶28; Response, 12, 123

PODX - 206

Secondary Considerations

Teaching Away / Skepticism

PODX - 207

Secondary Considerations

Source: EX2076, 129:24-130:20; Response, 123

PODX - 208

Secondary Considerations

Source: EX2066, 168:9-169:4, 179:6-13, 197:8-11 ; Response, 124

PODX - 209

Secondary Considerations
09

Failure of Others /
Commercial Success / Recognition / Praise

PODX - 210

Secondary Considerations

Source: EX2164, ¶24; Response, 123

PODX - 211

Secondary Considerations

Source: EX2164, ¶28; Response, 12, 123

PODX - 212

Secondary Considerations

Source: EX2165; Response, 124-125

PODX - 213

Secondary Considerations

Source: EX2165; Response, 124-125

PODX - 214

Secondary Considerations

Source: EX2165; Response, 124-125

PODX - 215

Secondary Considerations

Source: EX2166; Response, 123

Motions to Exclude

PODX - 216

 Motions to Exclude
PODX- 216

PODX - 217

Disputed Exhibits

Source: PO Motion to Exclude, TOC; Pet. Motion to Exclude, TOC

