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It  is possible for a l inear block code to provide more  protect ion for selected 
message  posit ions than  is guaran teed  by the  m i n i m u m  dis tance of the  code. T h e  
protect ion provided  a message  posi t ion can be m e a s u r e d  by  associat ing a n u m b e r  
wi th  tha tpos i t ion  called its separation.  T h e  separa t ion of a message  posi t ion mea -  
sures  the  protect ion provided  to tha t  posi t ion in a m a n n e r  analogous to tha t  in 
wh ich  the  m i n i m u m  dis tance of a code measu re s  the  protec t ion provided  the  en-  
tire message.  T h i s  paper  proves  tha t  any  fixed l inear block code has  an  encoding  
wh ich  is opt imal  wi th  respect  to the  error  protect ion provided  the  individual  
message  positions.  More  precisely, a m o n g  those  encodings  of the  code for 
wh ich  the  separat ions  associated wi th  the  message  posi t ions are a r ranged  in 
nondecreas ing  order,  there  is at least  one wh i ch  s imul taneous ly  max imizes  all 
t he  separat ions  associated wi th  the  message  posi t ions.  A p rocedure  is g iven wh ich  
m a y  be used  to cons t ruc t  opt imal  encodings  for l inear codes of  smal l  d imens ion .  
W h e n  the  H a m m i n g  metr ic  is employed,  the  p rocedure  bui lds  a genera tor  
mat r ix  wh ich  is as sparse  as possible  for the  given code. At  each i terat ion the  
p rocedure  adds  a row to a partially cons t ruc ted  genera tor  matr ix .  A code word  
of m i n i m u m  weight  is chosen for this  purpose- - - sub jec t  to the  restr ic t ion tha t  the  
rows of the  generator  mat r ix  m u s t  be linearly independen t .  A more  general  resul t  
is tha t  any  generator  ma t r ix  wh ich  is as sparse  as possible  induces  an opt imal  
encoding  of its row space. A similar  resul t  holds  w h e n  the  Lee  met r ic  is u sed  to 
mode l  a channel .  T h e o r e m s  dealing wi th  cyclic codes and  p roduc t  codes are 
developed.  U n d e r  sui table restrict ions,  an  opt imal  generator  mat r ix  for a cyclic 
code m a y  be fo rmed  by  concatena t ing  the  genera tor  matr ices  of  the  min ima l  
ideals wh ich  are contained in it. W h e n  the  H a m m i n g  met r ic  is employed,  an  
opt imal  genera tor  mat r ix  for a p roduc t  code m a y  be obta ined  by taking the  
Kronecker  p roduc t  of  opt imal  genera tor  matr ices  for the  c o m p o n e n t  codes.  
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ENCODING FOR UEP 151 

1. INTRODUCTION AND PRELIMINARIES 

We shall restrict our attention to (n, k) block codes. Let F A GF(q) be any 
finite field where q is a prime power. Throughout  this paper, an (n, k) code 
will be a subset o f f  n of cardinality qk where k ~< n. By an encoding of a code, C, 
we mean any bijection ~7:F~--+ C. I f  C is a vector subspace of F n, then it is 
said to be a linear code. In this case we will say that a k × n matrix with entries 
from F is a generator matrix for C if its rows form a basis for C. There is a 
natural one-to-one correspondence between the linear encodings and the 
generator matrices of a linear code. Every generator matrix, G, induces a linear 
encoding, L, defined by the formula, 

L(m) ~ mG Vm c F  ~, 

where the message vector, m, and all vectors throughout the paper are identified 
with row matrices. For most applications of block codes, it is sufficient to study 
codes without reference to their encodings. However, this has not always been 
the case. 

The construction of codes in which some message positions might be provided 
protection against a greater number of errors than others has been considered 
by several authors (Masnick and Wolf, 1967; Gore and Kilgus, 1971; Kilgus 
and Gore, 1972a; Mandelbaum, 1972). Masnick and Wolf (1967) proved that 
cyclic codes in systematic form provide equal error protection for every informa- 
tion digit. A nonsystematic cyclic code which provides one "information digit" 
protection against errors, beyond that guaranteed by the minimum distance of 
the code, was exhibited by Gore and Kilgus (1971). Thus, it became apparent 
that the p~oteetion against error afforded individual message positions depends 
not only on the code used, but also upon the encoding used. A direct means of 
establishing this result is to inspect the mappings ~71,72: GF(2) ~--~ GF(2) 4 
given in Table I. ~/1 and ~2 are two different encodings for the same code. Given 
a received word containing at most a single error, one can determine whether the 
code word originally transmitted was of the form ~l(ml, 0) or of the form 
-ql(ml , 1). Thus,  the encoding, ~71, allows determination of the second message 
bit, rn 2 , despite any single error. However, consideration of the received word 
1000 shows that the encoding ~2 fails to protect either message bit against all 
single errors. 

TABLE I 

~.(ml , m2) ~1(ml , 0) ~1(ml, 1) ~2(rnl, O) ~/2(ml, 1) 

mx = 0 0000 0111 0000 0111 
ml 1 1100 1011 1011 1100 
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152 DUNNING AND ROBBINS 

One place where unequal-error-protection codes were expected to find applica- 
tion was in the transmission of digital telemetry data. Here it may be desirable 
to give high order digits moie protection than low order digits. Calculated data 
for several such codes so employed were given by Kilgus and Gore (1972b). 
Recently, several papers (Crimmins, 1976; Crimmins et al. 1969; Crimmins and 
Horowitz, 1970; Redinbo, 1976; Redinbo and Wolf, 1974; and Wolf and Redinbo, 
1974) studying the mean-square-error protection afforded numeric data by block 
coding schemes have appeared. The approach in these papers is not to construct 
codes, but rather to find optimal encoding 1 and decoding schemes for a fixed 
linear code. Crimmins et al. (1969) gave a restricted formulation of the problem 
in which each encoding of a binary linear code generates a decoding scheme in a 
prescribed manner. They gave a procedure for finding linear encodings, which 
are optimal in the set of all encodings, linear and nonlinear, of the fixed binary 
linear code under consideration. 

Our purpose is to investigate the encodings of a fixed linear code. However, 
we shall use the unequal-error-protection approach to evaluate and compare 
these encodings instead of the mean-square-error evaluation. The mean-square- 
error evaluation method of Crimmins et al. (1969) associates a nonnegative real 
number with each encoding. Since each code has only finitely many possible 
encodings, one of the encodings must have mean-square-error as small (good) as 
possible for the code. Thus, it is immediate that every code has an encoding 
which is optimal with respect to the mean-square-error evaluation. Using the 
unequal-error-protection approach we will prove that optimal encodings exist 
for linear codes. In doing this a procedure will be found for obtaining an encoding 
which is optimal in the set of all encodings, linear and nonlinear. This result 
parallels that of Crimmins et al. (1969), and the procedure found is similar to 
theirs. Further, when the encodings of a linear code are evaluated using a 
measure of unequal-error-protection based on either the Hamming or the Lee 
metric, the procedure will yield a linear encoding which is optimal among all 
encodings of the fixed linear code under consideration. In these cases, any 
generator matrix which has minimal Hamming or Lee weight, respectively, 
among all generator matrices for its row space, induces an encoding which is 
optimal for its row space. 

M asnick and Wolf (1967) assign each information position an error protection 

level. Under this scheme, if an information position has error protection level, 
f ,  and not more than f errors occur in the reception of a code word, then the 
original value of the position in question can be determined correctly even though 
it may be impossible to determine the entire code word correctly. Instead of 
using this generalization of the error correcting capability of a code, we employ 

1 When numeric data are encoded using a 1-1 mapping (e.g., Crimmins et al., 1969) 
from {0, 1,..., 2 k -- 1} onto a code, we identify these integers with their binary representa- 
tions (following Mitryayev, 1963) to obtain an equivalent encoding. 
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a generalization of the minimum distance of a Nock code. Given an encoding 
of a block code, for each message position we will define an associated separation, 
which is related to its error protection level in the same manner that the minimum 
distance of a block code is related to its error correcting capability. Encodings 
which we find to be optimal will necessarily be optimal with respect to their error 
protection levels. 

Block codes may be used to detect errors, correct errors, fill in erasures, or 
combinations of these things. Fortunately, one parameter, minimum distance, 
suffices to measure the capabilities of a block code regardless of the type of 
protection desired--provided that one stays within the list given. However, 
different decoding algorithms are used depending on the task at hand. Given a 
particular encoding, the separation associated with a message position measures 
the capability of a block code to detect errors which may cause that position to be 
in error, determine that position despite errors, determine that position despite 
erasures, or combinations of these things in an analogous manner. The decoding 
algorithms, given later, differ very little from those used when all positions 
receive the same protection. Depending on the types of protection desired, the 
message positions may be decoded separately or as a unit. Treating the message 
as a unit will not necessarily preclude giving different positions varying degrees 
of protection. 

As was mentioned before, the protection provided to the message positions 
depends upon the encoding as well as the code. The generator matrices and 
encodings of interest are frequently nonsystematic. That  is, the message positions 
may not appear explicitly in the code words. We will not be able to make reference 
to "the information positions" of the code word. Before an encoding function 
can be used, an inverse mapping must be constructed for use as a part of the 
decoding rule. When we speak of choosing an optimal encoding, we will also 
be choosing decoding rules which will depend both on the encoding and on the 
type of error protection desired for each message position. 

In  order to handle the Hamming and Lee metrics simultaneously, we will 
develop results with respect to a function, W:-Fn-+ ~, which has the property 
that the function d: F ~ × F n --+ IR given by 

d(x, y) £ w(x - y )  

is a metric. Such a function, % will be called a weight function. We will have 
occasion to refer to the Hamming weight function specifically and will denote 
it by h. One can easily verify that necessary and sufficient conditions for a 
function, ev: F n --, ~, to be a weight function are that for all x, y e F  n 

(i) w(x) = 0 if and only if x 0n,  

(ii) w(x) = w(--x), 
(iii) w(x q- y) <~ w(x) q- w( y), 

where 0n denotes the zero vector in F n. 
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154 DUNNING AND ROBBINS 

Suppose X _C F". It  will be convenient to abbreviate w[q)] = -t- o% else 

w[X] A min w(x). 

This is not to be confused with the usual conventions for extending point 
functions to sets, i.e., for example, w(X) A= {w(x): x ~ X}. 

Since we will be dealing with linear codes, which are the row space of their 
generator matrices, it is desirable to develop some notational devices to assist 
in arguments involving the rows of a matrix. Given a k × n matrix M with 
entries in F, we denote the entry in row i and column j by Mij , the ith row 
(vector) by Mi. and thej th  column (vector) by M.j .  The set of all rows of M is 
denoted by 

M, =~ {Mi. ,..., M~.}. 

For any function, f :  F n -+ S, where S is any set, define 

f,.(M) £ " 
\ f ( M > ) / "  

Thus, fr(M) c S ~ is a vector whose ith component is found by applyingf  to the 
ith row of M. 

Our main line of argument will require only some elementary knowledge of 
linear algebra. When listed, vectors will always be enclosed in parentheses and 
matrices in brackets. In our discussion of product codes, some properties of the 
(left) Kronecker product of matrices will be required. In particular, recall that 

(A ~ B)(C G D) = AC @ BD. 

We shall take Kronecker products ovei bothF and g¢ and will denote the respective 
operators by (~F and G~ • 

The Hamming weight function, h, applied to a matrix will count the number 
of nonzero entries in that matrix. The Lee weight function applied to a matrix 
will add the Lee weights of its entries. I t  is easy to show that given two vectors 
a EF  1~, b ~ F  ~ their Hamming weights are related by 

h(a (Dr b) = h(a)h(b). (1) 

This result may be used to prove that, given any two matrices A, B with entries 
in F, 

h~(A (~F B) -~ h~(A) @~ h~(B). (2) 

We will denote the span operator by <'}. Given a set S of vectors taken from 
a finite vector space, V, over the field F, 
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