
The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)

Monterey, California, September 18-22, 1995

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

OpenDist - Incremental Software Distribution

Peter W. Osel and Wilfried Gnsheimer
Siemens AG, Mnchen, Germany

Page 1 of 15 SAMSUNG EXHIBIT 1023
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OpenDist – Incremental
Software Distribution

Peter W. Osel and Wilfried Gänsheimer – Siemens AG, München, Germany

ABSTRACT

OpenDist provides efficient procedures and tools to synchronize our software file
servers. This simple goal becomes challenging because of the size and complexity of
supported software, the diversity of platforms, and because of network constraints.

Our current solution is based on rdist (1) [1]. However, it is not possible anymore to
synchronize file servers nightly, because it takes several days just to compare distant servers.

We have analyzed the update process to find bottlenecks in the current solution. We
measured the effects of network bandwidth and latency on rdist. We created statistics on the
number of files and file sizes within all software packages.

We found that not only the line speed, but also the line delay contributes substantially
to the overall update time. Our measurements revealed that adding a compression mode to
rdist would not have solved our problem, so we decided to look for a new solution.

We have compiled a list of requirements for evaluating software distribution solutions.
Based on these requirements, we evaluated both commercial and freely available tools. None
of the tools fulfilled our most important requirements, so we implemented our own solution.

In the following we will describe the overall architecture of the toolset and present
performance figures for the distribution engine that replaces rdist. The results of the
prototype implementation are promising. We conclude with a description of the next steps
for enhancing the OpenDist toolset.

Our Environment

The CAD Support Group of the Semiconductor
Division of Siemens AG installs, integrates and dis-
tributes all software needed to develop Integrated
Circuits. We have development sites in Germany
(München and Düsseldorf), Austria (Villach), the
United States (Cupertino, CA), and Singapore. The
development sites are connected by leased lines with
a speed of 64 to 128 kBit/s. At each site, a central
file server stores all software. Client workstations
mount software from these servers. Software is
installed and integrated in München and distributed
to all other development sites. System administra-
tors of the development sites initiate the transfer on
the master server in München.

The CAD Support Group takes care of the CAD
software and tools, only. A separate department is
responsible for system administration, i.e., mainte-
nance of the operating system and system tools,
backups, etc.

Our software distribution problem differs in
many ways from the one solved by traditional
software distribution tools. Most software distribu-
tion tools we looked at are designed to distribute a
moderate number of fairly static software packages
of moderate size to many clients.

In contrast, we have to synchronize few file
servers (under a dozen), which store many (about

200) packages of sizes ranging from tiny (a couple
of kilobytes) to huge (1.8 GBytes). The total size of
the software we store is currently 25 GBytes, 10-15
GBytes are currently being kept up-to-date at all
sites. Many packages are changed each day. A
change might update only a single file of a few bytes
or could change up to 50,000 files for a total of 1
GBytes per day. Every month about 10 % of the
software change. Most changes are small, but many
files are constantly updated. The installation of a
huge patch or a new software package changes many
files at once.

There is no separate installation- or test-server,
all changes are applied to the systems while our
clients are using them. The changes are tested in
München and, ideally, copied to all slave file servers
within one day. Synchronizing or cloning file
servers is the best way to describe our setup.

Our Current Solution

Our current software distribution process uses
rdist (1) to find changed files and to update slave
software servers. It is no longer possible to compare
two software servers in one night. A complete
check of all software packages on the slave file
server in Singapore would take several days which is
not acceptable nor feasible. During that time,
software packages would be in inconsistent states,
and changes of the master software server could take

1995 LISA IX – September 17-22, 1995 – Monterey, CA 181

Page 2 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OpenDist – Incremental Software Distribution Osel & Gänsheimer

up to a week to be transferred to the slave file
server. Though it is possible to apply different
update schedules – updating small packages daily,
some weekly – the setup is not satisfactory. With an
ever-increasing number of software packages and an
ever-growing size of each software package, the dis-
tribution process using rdist is not acceptable any
more.

LAN MÜNCHEN DÜSSELDORF VILLACH CUPERTINO SINGAPORE

Line Type Ethernet ISDN X.25 leased X.25 leased
Nominal Line Speed [kBit/s] 10,000 64 64 128 64 64
Transfer rate [kByte/s] 90-100 6-7 4-5 7-12 2-3 3-4
Ping Response Time [ms] <1 33-88 188-372 81-311 530-1083 617-1375

rdist file create [s] 0.2 0.2 1.2 0.6 2.1 4.5
rdist file check [s] 0.02 0.06 0.5 0.2 1. 2.1
rdist file delete [s] 0.1 0.13 0.5 0.3 1. 2.3
10 kBytes transfer rate [kByte/s] - 5.9 2.5 4.9 1.5 1.4

Run Benchmark [h] 1 2.5 7 4 12 24

rdist check SW subset [h] - - 16 8 - >802

OpenDist check SW subset [h]3 0.5 - 21 .5 .75 .75

rdist check all SW [h]2 3 - 69 27 140 290
OpenDist check all SW [h] 1.5 - 51 1.5 2 3

1Increased time, because software pools in Düsseldorf are accessed via NFS not UFS.
2Estimated.
3This subset consists of technology data and is changed and distributed daily. The subset contains approximately 150,000

files with a total of 1.1 GBytes.
Table 1: Line Characteristics

Searching The Bottleneck
We have analyzed the update process to find

bottlenecks in our current solution. We analyzed our
lines and measured bandwidth, latency and compres-
sion rate (all leased lines are equipped with datamiz-
ers – devices that compress all traffic). We created
statistics on the number of files and their size for
more than 200 software and data packages. Com-
mercial software packages, technology data and cell
libraries, as well as many free packages like X11
and gnu tools were analyzed. We were also
interested in the compression rate and time of
software packages and how much the compression
rate differs when software packages are compressed
file by file or as a complete archive. We analyzed
where rdist spends its time during updates. Com-
pared to the installed software, our change rate is
small, so finding changed files must be efficient.
Changes can be rather huge, so the transmission of
changed files must be efficient, too.
The Benchmark

We wrote a benchmark suite that measures the
elapse time needed to perform typical software dis-
tribution operations such as installing, comparing,
deleting, and updating files of different sizes, instal-
ling symbolic and hard links. All operations were

executed many thousand times to equalize differ-
ences of the link performance.

The benchmark measures ping (1), rcp (1), and
rdist (1) performance and times. Each rdist test runs
on a directory with an appropriate number of random
files of the same size. Each test contains an add,
check, update and delete sequence. The file size is
increasing from 1 Byte to 1 MBytes. Thus the effect
of transfer rate and rdist protocol can be separated.
The rdist part of the benchmark source tree contains
approximately 5,000 files. This sums up to 10,000
transferred files, 5,000 check actions, 5,000 delete
actions and 30 MBytes transferred data per test run.
rcp (1) times are measured for a text, a binary and a
compressed file of 1 MBytes each. This shows the
achieved on-line compression.

The leased lines (except the dialup ISDN link)
are shared by many users. So it is not astonishing
that the benchmark results varied a lot, sometimes
by more than a factor of three. To make our bench-
mark of the line performance more comparable, we
calculated the average value for the best results of
several runs of the benchmark. Some of the small
numbers are within the magnitude of time resolution
and must be interpreted cautiously.
The Results
Size and Composition

Software packages vary substantially in size
and composition of file types, however bigger pack-
ages don’t necessarily have bigger files, they have a
few huge files, but the average file size is more or
less independent of the total size of the package
(Diagram 1).

182 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Page 3 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Osel & Gänsheimer OpenDist – Incremental Software Distribution

1E+04 1E+05 1E+06 1E+07 1E+08 1E+09

Overall Package Size

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

N
u

m
b

er
 o

f
F

il
es

Diagram 1: Package Size vs. File Count

Compression Factor
The average compression factor of our software

packages is three. Most of our software packages
were compressed by this factor, though we observed
compression factors between two and five.

When using gzip (1), you can regulate the
compression speed between fast (less compression)
and slow (best compression). For our software pack-
ages, increasing the compression quality reduces the
compressed file size by less than 5 %, the compres-
sion time however sometimes increased by more
than 200 % (Diagram 2). The default compression
level of 6 is a good compromise, so we decided to
use it.

2 4 6 8

Gzip Compression Level

0

1

2

3

4

R
el

at
iv

e
P

er
fo

rm
an

ce

Compression Rate
Compression Time
Decompression Time

Diagram 2: Gzip compression Quality and Speed

Though our leased lines are equipped with
datamizers that compress network traffic, it is

worthwhile to compress archives before transmis-
sion. Datamizers increased the transmission rate of
uncompressed data by 10 .. 15 %, whereas gzip
reduced the data to a third of their original size.
Compression Rate

On a SPARCstation 10/41 (Solaris 2.4, 128
MBytes memory) gzip created compressed data at a
rate of 65 kByte/s, many times faster than the speed
of our leased lines. This figure is important to know
when you want to pipeline the creation, compression,
and transmission of update archives. In case the
throughput of the lines is in the same order of mag-
nitude as the gzip output rate, it would be advisable
to decrease the compression level.
Decompression

Decompressing the archives with gunzip (1) is
usually six times faster than compressing the data.
Decompression time does not depend significantly on
the compression quality chosen for compression
(Diagram 2).
Compression and Archives

It is better to compress an archive of files than
to archive compressed files. Compressing complete
packages is significantly faster and creates smaller
archives than compressing each file separately and
archiving the compressed files. For example, archiv-
ing and compressing X11R6 was completed in three
minutes elapse time, and the overall size was
reduced by 55 %. Compressing each individual file
and archiving the compressed files in a second step
took five minutes elapse time and reduced the
overall file size by only 45 %. All tests were per-
formed several times on an unloaded machine.
Compressing individual files and archiving them
needs many more file and disk operations compared
to archiving the uncompressed files and compressing
the archive. Compressing several small files (or
small network packets) is not as efficient as
compressing the files in a single run.
Transmission and Archives

It is better to transmit an archive of files than
to transmit each file individually. Depending on the
file transfer protocol used, the latency of the line has
a high impact on transfer rates. The smaller the files
and the higher the latency, the higher is the delay
caused by inefficient protocols.

The latency increases the time rdist needs to
check or create files. If you have many files, rdist
needs a long time to compare master and slave
server. If many or all files changed (e.g. when ins-
talling a new software package), rdist will need
much more time to transfer all files. The average
file size of our software packages is 30 kBytes
(Diagram 3). To our Singapore site, we need about
10 seconds (3 kByte/s) to transfer a file of this size.
However, rdist needs more than 4 seconds to create
the new file, for a total transmission time of 14

1995 LISA IX – September 17-22, 1995 – Monterey, CA 183

Page 4 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OpenDist – Incremental Software Distribution Osel & Gänsheimer

seconds (40 % increase), a 30 % decrease in transfer
rate. The transfer rate for 10 kBytes files is only
half of the normally achievable transfer rate (See
Table 1).

10 100 1000 10000 100000 1E+06 1E+07 1E+08

File Size Range

0

50000

100000

150000

N
u

m
b

er
 o

f
F

il
es

Diagram 3: File size range (All packages)

Besides avoiding protocol overhead, the
transmission of archives has additional advantages.
By first transferring all changed files to a holding
disk, and installing changes locally on the remote
server from the holding disk, the time during which
the software package is in an inconsistent state is
significantly reduced. Moreover, we can use the
same tools to archive and roll-back changes. The
installation of changes can be done asynchronously,
so a system administrator at the remote site can
easily postpone updates. The advantages compen-
sate the disadvantage of needing holding disks to
temporarily store the file archives.

MUC D VI CUP SIN

Site

L
in

e
C

ha
ra

ct
er

is
ti

cs

Benchmark Time

Ping Response Time

Observed Transfer Rate

Nominal Line Speed

Diagram 4: Line Characteristics

rdist and Latency
Although the line speed from München to Vil-

lach and to Singapore differs by only a factor of
two, the time needed to run the rdist benchmark
differs by a factor of six (see Table 1 and Diagram
4). The ping response time (and therefore latency)
has a greater impact on the time rdist needs to create
or compare files than the line speed.
Benchmark Summary

Our measurements have revealed that the line
speed is not the only bottleneck: the latency also
plays an important role. rdist compares source and
target directory file by file. Because the time for
this is proportional to the latency, and because our
change rate is small compared to the installed
software, adding compression to rdist would not
have solved our problem. rdist spent most of its
time trying to figure out what to update, and not
actually updating files. On the other hand, if a new
version of our biggest software package is installed,
we have to transmit 1.8 GBytes, so transmission
must be optimized, too. The transmission of single
files is another bottleneck as in our environment, the
protocol overhead and transmission time are in the
same order of magnitude, which reduces the average
actual transfer rate by up to 30 %. For an efficient
solution in our environment, files that have to be
updated must be archived first and then be transmit-
ted in one large file.

Upgrading our lines would not solve our prob-
lem, because the latency would not get small
enough. It is also a very costly solution.

We found that we had to tackle two problems:
making the finding of changed files more efficient,
and making the transmission of data more efficient.
We began to look for a new solution.

Requirements for Software Maintenance

We compiled a long list of requirements that a
new solution should fulfill. Here are some of the
more important ones:
Optimal Support of Incremental Distribution

We do not want to trace changes as they are
applied and re-apply them at a later date on slave
file servers. Changes should be found by comparing
the status of the master and the slave file server.
Comparison should be stateless – it should not
depend on update history. Each file server is admin-
istrated by independent system administrator groups,
so we don’t want to rely on what we think the status
is, but we rather have to check the actual status of
the remote file server. We have to detect changes
applied by remote administrators.
Update Programs Currently Executing

Files that are updated may not be overwritten.
The old file has to be moved and unlinked, then the
new file has to be moved to it’s final destination.

184 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Page 5 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

