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1 Introduction

The radio age began over a 100 years ago with the invention of the radiotelegraph by

Guglielmo Marconi and the wireless industry is now set for rapid growth as we enter a

new century and a new millennium. The rapid progress in radio technology is creating

new and improved services at lower costs, which results in increases in air—time usage

and the number of subscribers. Wireless revenues are currently growing between 20%

and 30% per year, and these broad trends are likely to continue for several years.

Multiple access wireless communications is being deployed for both fixed and mobile

applications. In fixed applications, the wireless networks provide voice or data for fixed

subscribers. Mobile networks offering voice and data services can be divided into two

classes: high mobility, to serve high speed vehicle-home users, and low mobility, to

serve pedestrian users. Wireless system designers are faced with a number ofchallenges.

These include the limited availability of the radio frequency spectrum and a complex

time—varying wireless environment (fading and multipath). In addition, meeting the

increasing demand for higher data rates, better quality of service (Q08), fewer dropped

calls, higher network capacity and user coverage calls for innovative techniques that

improve spectral efficiency and link reliability. The use of multiple antennas at the

receiver and/or transmitter in a wireless system, popularly known as space~time (ST)

wireless or multiantenna communications or smart antennas is an emerging technology

that promises significant improvements in these measures. This book is an introduction

to the theory of ST wireless communications.

1.1 History of radio, antennas and array signal processing

The origins of radio date back to 1861 when Maxwell, while at King‘s College in

London, proposed a mathematical theory of electromagnetic (EM) waves. A practical

demonstration of the existence of such waves was performed by Hertz in 1887 at the

University of Karlsruhe, using stationary (standing) waves. Following this, improve—

ments in the generation and reception of EM waves were pursued by many researchers

in Europe. In 1890, Branly in Paris developed a “coherer” that could detect the presence

of EM waves using iron filings in a glass bottle. The coherer was further refined by
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Right at the University of Bologna and Lodge in England. Other contributions came

from Popov in Russia. who is credited with devising the first radio antenna during his

attempts to detect EM radiation from lightning.

In the summer of 1895. Marconi. at the age of21. was inspired by the lectures on radio

waves by Righi at the University ofBologna and he built and demonstrated the first radio

telegraph. He used Hertz‘s spark transmitter. Lodge’s coherer and added antennas to as

semble his instrument. In 1898. Marconi improved the telegraph by adding a four—circuit

tuning device. allowing simultaneous use of two radio circuits. That year. his signal

bridged the English Channel. 52 km wide. between Wi mereux and Dmer. His other tech-

nical developments around this time included the magnetic detector. which was an im-

provement over the less efficient coherer, the rotatory spark and the use of directive an-

tennas to increase the signal level and to reduce interference in duplex receiver circuits.

In the next few years. Marconi integrated many new technologies into his increasingly

sophisticated radio equipment, including the diode valve developed by Fleming. the

crystal detector, continuous wave (CW) transmission developed by Poulsen. Fessenden

and Alexanderson. and the triode valve or audio developed by Forrest.

Civilian use of wireless technology began with the installation of the first 2 MHz

land mobile radiotelephone system in 1921 by the Detroit Police Department for police

car dispatch. The advantages of mobile communications were quickly realized. but its

wider use was limited by the lack of channels in the low frequency band. Gradually.

higher frequency bands were used, opening up the use of more channels. A key ad—

vance was made in 1933, when Armstrong invented frequency modulation (FM). which

made possible high quality radio communications. In 1946. a Personal Correspondence

System introduced by Bell Systems began service and operated at 150 MHZ with speech

channels 120 kHz apart. As demand for public wireless services began to grow, the

Improved Mobile Telephone Service (IMTS) using FM technology was developed by

AT&T. These were the first mobile systems to connect with the public telephone net-

work using a fixed number of radio channels in a single geographic area. Extending

such technology to a large number of users with full duplex channels needed excessive

bandwidth. A solution was found in the cellular concept (known as cellularization)

conceived by Ring at Bell Laboratories in 1947. This concept required dividing the

service area into smaller cells, and using a subset of the total available radio channels

in each cell. AT&T proposed the first high capacity analog cellular telephone system

called the Advanced Mobile Phone Service (AMPS) in 1970. Mobile cellular systems

have evolved rapidly since then, incorporating digital communication technology and

serve nearly one billion subscribers worldwide today. While the Global System for

Mobile (GSM) standard developed in Europe has gathered the largest market share,

cellular networks in the USA have used the IS- 136 (using time division multiple access

or TDMA) and IS»95 (using Code Division Multiple Access or CDMA) standards. With

increasing use of wireless internet in the late 19905, the demand for higher spectral effi—

ciency and data rates has led to the development of the so called Third Generation (3G)
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1.1 History of radio, antennas and array signal processing

TablelJ. Performance goalsfor (”Marinas in wireless

communications

 Antenna design AOA estimation Link performance

Gain Error variance Coverage

Bandwidth Bias Quality

Radiation pattern Resolution Interference reduction

Size Spectral efficiency

Active integrated 19805

 
 
 
 
 

Phased arrays [9605

Patch [9505

Yagi—Uda 19205

Directive l900s

HertflMarconi/Popov 1880—18905

Figure 1.1: Developments in antenna (EM) technology.

wireless technologies. 3G standardization failed to achieve a single common world-

wide standard and now offers UMTS (wideband CDMA) and lXRTI‘ as the primary

standards. Limitations in the radio frequency (RF) spectrum necessitate the use of

innovative techniques to meet the increased demand in data rate and QoS.

The use of multiple antennas at the transmitter and/or receiver in a wireless commu-

nication link opens a new dimension H space, which if leveraged correctly can improve

performance substantially. Table 1.1 details the three main areas of study in the field of

radio antennas and their applications. The first covers the electromagnetic design of the

antennas and antenna arrays. The goals here are to meet design requirements for gain,

polarization, beamwidth, sidelobe level, efficiency and radiation pattern. The second

area is the angle—of—arrival (AOA) estimation and, as the name indicates, focuses on

estimating arrival angles of wavefronts impinging on the antenna array with minimum

error and high resolution. The third area of technology that this book focuses on is the

use of antenna arrays to improve spectral efficiency, coverage and quality of wireless
links.

A timeline of the key developments in the field of antenna design is given in Fig. 1.1.

The original antenna design work came from Marconi and Popov among others in the

early 19005. Marconi soon deveIOped directional antennas for his cross-Atlantic links.
Antenna design improved in frequency of Operation and bandwidth in the early part of

the twentieth century. An important breakthrough was the Yagi—Uda arrays that offered

high bandwidth and gain. Another important development was the patch antenna that
offers low profile and cost. The use of antennas in arrays began in World War II, mainly
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Figure 1.2: Developments in AOA estimation.

for radar applications. Array design brought many new issues to the fore. such as gain.

beamwidth, sidelobe level, and beamsteering.

The area of AOA estimation had its beginnings in World War I when loop antennas

were used to estimate signal direction (see Fig. 1.2 for a timeline of ADA technol-

ogy). Adeock antennas were a significant advance and were used in World War II.

Wullenweber arrays were developed in 1938 for lower frequencies and where accuracy

was important, and are used in aircraft localization to this day. These techniques ad-

dressed the single source signal wavefront case. Ifthere are multiple sources in the same

frequency channel or multipath arrivals from a single source. new techniques are needed.

The problem of ADA estimation in the multisource case was properly addressed in the

19703 and 19803. Capon’s method [Capon er a1.. 1967], a well—known technique. offered

reasonable resolution performance although it suffered from bias even in asymptoti-

cally large data cases. The multiple signal classification (MUSIC) technique proposed

by Schmidt in 1981 was a major breakthrough. MUSIC is asymptotically unbiased and

offers improved resolution performance. Later a method called estimation of signal

parameters via rotational invariance techniques (ESPRIT) that has the remarkable ad-

vantage of not needing exact characterization of the array manifold and yet achieves

optimal perfortnance was proposed [Paulraj et at, 1986; Roy et aL, 1986].

The third area of antenna applications in wireless communications is link enhance-

ment (see Fig. 1.3). The use of multiple receive antennas for diversity goes back to

Marconi and the early radio pioneers. So does the realization that steerable receive

antenna arrays can be used to mitigate co-channel interference in radio systems. The

use of antenna arrays was an active reseach area during and after World War II in radar

systems. More sophisticated applications of adaptive signal processing at the wireless

receiver for improving diversity and interference reduction had to wait until the 19705

for the arrival of digital signal processors at which point these techniques were vigor-

ously developed for military applications. The early 19905 saw new proposals for using

antennas to increase capacity of wireless links. Roy and Ottersten in 1996 proposed the

use ofbase-station antennas to support multiple co-channel users. Paulraj and Kailath in
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Figure 1.3: Developments in antenna technology for link performance.

Datarate(Mbps) 
SNR (dB)

Figure 1.4: Data rate (at 95% reliability) vs SNR for different antenna configurations. Channel
bandwidth is 200 KHz.

1994 preposed a technique for increasing the capacity of a wireless link using multiple

antennas at both the transmitter and the receiver. These ideas along with the fundamen-

tal research done at Bell Labs [Telatar, 1995; Foschini, 1996; Foschini and Gans. 1998;

Tarokh er mi, 1998] began a new revolution in information and communications theory

in the mid 19903. The goal is to approach performance limits and to explore efficient but

pragmatic coding and modulation schemes for wireless links using multiple antennas.

Clearly much more work has yet to be done and the field is attracting considerable
research talent.

The leverage of ST wireless technology is significant. Figure 1.4 plots the maximum

error—free data rate in a 200 KHz fading channel vs the signal to noise ratio (SNR)
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V

'2

V

x a. .
Figure 1.5: Antenna configurations in ST wireless systems (Tx: Transmitter. Rs: Receiver).

that is guaranteed at 95% reliability. Assuming a target receive SNR of 20 dB. current

single antenna transmit and receive technology can offer a data rate of 0.5 Mbps. A

two-transmit and one—receive antenna system would achieve 0.8 Mbps. A four—transmit

and four-receive antenna system can reach 3.75 Mbps. It is worth noting that 3.75 Mbps

is also achievable in a single antenna transmit and receive technology. but needs 105

times higher SNR or transmit power compared with a four—transmit and four-receive

antenna configuration. The technology that can deliver such remarkable gains is the

subject of this book.

1.2 Exploiting multiple antennas in wireless

Figure 1.5 illustrates different antenna configurations for ST wireless links. 8180 (sin—

gle input single output) is the familiar wireless configuration, SIMO (single input

multiple output) has a single transmit antenna and multiple (MR) receive antennas.

MISO (multiple input single output) has multiple (MT) transmit antennas and a sin-

gle receive antenna and MIMO (multiple input multiple output) has multiple (Mr)
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7 1.2 Exploiting multiple antennas in wireless—
—-_————__

transmit antennas and multiple (MR) receive antennas. The MIMO-MU (MIMO mul-

tiuscr) configuration refers to the case where a base—station with multiple (M) antennas
communicates with P users each with one or more antennas. Both transmit and re-

ceive configurations are shown. We sometimes abbreviate SIMO. MISC) and MlMO

configurations as XIXO.

1.2.1 Array gain

Array gain refers to the average increase in the SNR at the receiver that arises front the

coherent combining effect of multiple antennas at the receiver or transmitter or both.

Consider. as an example. a SIMO channel. Signals arriving at the receive antennas

have different amplitudes and phases. The receiver can combine the signals coherently

so that the resultant signal is enhanced. The average increase in signal power at the

receiver is proportional to the number of receive antennas. In channels with multiple

antennas at the transmitter (MISO or MIMO channels). array gain exploitation requires

channel knowledge at the transmitter.

1.2.2 Diversity gain

Signal power in a wireless channel fluctuates (or fades). When the signal power drops

significantly, the channel is said to be in a fade. Diversity is used in wireless channels

to combat fading.

Receive antenna diversity can be used in SIMO channels flakes, 19741. The receive

antennas sec independently faded versions of the same signal. The receiver combines

these signals so that the resultant signal exhibits considerably reduced amplitude vari—

ability (fading) in comparison with the signal at any one antenna. Diversity is characw

terized by the number of independently fading branches, also known as the diversity

order and is equal to the number of receive antennas in SIMO channels.

Transmit diversity is applicable to MISO channels and has become an active area for

' research [Wittnebem 1991; Seshadri and Winters. 1994; Kuo and Fitz. 1997; Olofsson

er (11., 1997; Heath and Paulraj, 1999]. Extracting diversity in such channels is possible

with or without channel knowledge at the transmitter. Suitable design of the transmitted

signal is required to extract diversity. ST diversity coding [Seshadri and Winters, 1994;

Guey e! at'., 1996; Alamouti, 1998; Tarokh er (1]., 1998, 1999b] is a transmit diversity

technique that relies on coding across space (transmit antennas) to extract diversity

in the absence of channel knowledge at the transmitter. If the channels of all transmit

antennas to the receive antenna have independent fades, the diversity order of this

channel is equal to the number of transmit antennas.

Utilization of diversity in MIMO channels requires a combination of the receive and

transmit diversity described above. The diversity order is equal to the product of the
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number of transmit and receive antennas. if the channel between each transmitit'cceive

antenna pair fades independently.

Spatial multiplexing (SM)

SM offers a linear (in the number of transmit—receive antenna pairs or mint MR. MT ))

increase in the transmission rate (or capacity) for the same bandwidth and uith no

additional power expenditure. SM is only possible in MIMO channels [Pault'aj and

Kailath, 1994; Foschirti, 1996; Telatar, 1999a]. In the following we discms the basic

principles of SM for a system with two transmit and two receive antennas. The concept

can be extended to more general MIMO channels.

The bit stream to be transmitted is demultiplcxed into two half-rate substreams.

modulated and transmitted simultaneously from each transmit antenna. Under favor-

able channel conditions. the spatial signatures of these signals induced at the receive

antennas are well separated. The receiver. having knowledge of the channel. can dif—

ferentiate between the two co—channel signals and extract both signals. after which

demodulation yields the original sub-streams that can now be combined to yield the

original bit stream. Thus SM increases transmission rate proportionally with the number

of transmit—receive antenna pairs.

SM can also be applied in a multiuser format (MIMO~MU, also known as space

division multiple access or SDMA). Consider two users transmitting their individual

signals, which arrive at a base-station equipped with two antennas. The base—station

can separate the two signals to support simultaneous use of the channel by both users.

Likewise the base-station can transmit two signals with spatial filtering so that each

user can decode its own signal adequately. This allows a capacity increase proportional

to the number of antennas at the base—station and the number of users.

Interference reduction

Co—channel interference arises due to frequency reuse in wireless channels. When mul—

tiple antennas are used, the differentiation between the spatial signatures of the desired

signal and co~channel signals can be exploited to reduce the interference. Interference

reduction requires knowledge of the channel of the desired signal. However, exact

knowledge of the interferer's channel may not be necessary.

Interference reduction (or avoidance) can also be implemented at the transmitter,

where the goal is to minimize the interference energy sent towards the co-channel users

while delivering the signal to the desired user. Interference reduction allows the use of

aggressive reuse factors and improves network capacity.

We note that it may not be possible to exploit all the leverages simultaneously due

to conflicting demands on the spatial degrees of freedom (or number of antennas). The

degree to which these conflicts are resolved depends upon the signaling scheme and

receiver design.
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Figure 1.6: Schematic ofa ST wireless communication system.

1.3 ST wireless communication systems

Figure 1.6 shows a typical ST wireless system with MT transmit antennas and MR

receive antennas. The input data bits enter a ST coding block that adds parity bits

for protection against noise and also captures diversity from the space and possibly

frequency or time dimensions in a fading environment. After coding. the bits (or words)

are interleaved across space. time and frequency and mapped to data symbols (such

as quadrature amplitude modulation (QAM)) to generate MT outputs. The MT symbol

streams may then be ST pro—filtered before being modulated with a pulse shaping

l’unctiOn. translated to the passband via parallel RF chains and then radiated frOm MT

antennas. These signals pass through the radio channel where they are attenuated and

undergo fading in multiple dimensions before they arrive at the MR receive antennas.

Additive thermal noise in the MR parallel RFchains at the receiver corrupts the received

signal. The mixture of signal plus noise is matched-filtered and sampled to produce MR

output streams. Some form of additional ST post—filtering may also be applied. These

streams are then ST deinterleaved and ST decoded to produce the output data bits.

The difference between a ST communication system and a conventional system

comes from the use of multiple antennas, ST encoding/interleaving, ST pro-filtering

and post—filtering and ST decoding/deinterleaving.

We conclude this chapter with a briefoverview of the areas discussed in the remainder

of this book. Chapter 2 overviews ST propagation. We deve10p a channel representation

as a vector valued ST random field and derive multiple representations and statistical

descriptions of ST channels. We also describe real world channel measurements and
models.

Chapter 3 introduces XIXO channels, derives channels from statistical ST channel

descriptions, proposes general XIXO channel models and test channel models and ends
with a discussion on XIXO channel estimation at the receiver and transmitter.

Chapter 4 studies channel capacity of XIXO channels under a variety of conditions:

channel known and unknown to the transmitter, general channel models and frequency
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selective channels. We also discuss the ergodic and outage capacity of random XIXO

channels.

Chapter 5 overviews the spatial diversity for XIXO channels, bit error rate perfor—

mance with diversity and the influence of general channel conditions on diversity and

ends with techniques that can transform spatial diversity at the transmitter into time or

frequency diversity at the receiver.

Chapter 6 develops ST coding for diversity. SM and hybrid schemes for single carrier

modulation where the channel is not known at the transmitter. We disctiss performance

criteria in frequency flat and frequency selective fading environments.

Chapter 7 describes ST receivers for XIXO channels and for single carrier modula—

tion. We discuss maximum likelihood (ML). zero forcing (ZF). minimum mean square

error (MMSE) and successive cancellation (SUC) receiver structures. Performance

analysis is also provided.

Chapter 8 addresses exploiting channel knowledge by the transmitter through trans-

mit pre—processing, both for the case where the channel is perfectly known and the case

where only statistical or partial channel knowledge is available.

Chapter 9 overviews how XIXO techniques can be applied to orthogonal frequency

division multiplexing (OFDM) and spread spectrum (SS) modulation scheme. It also

discusses how ST coding for single carrier modulation can be extended to the space-

frequency or space—code dimensions.

Chapter 10 addresses MIMO-MU where multiple users (each with one or more

antennas) communicate with the base (with multiple antennas). A quick summary of

capacity, signaling and receivers is provided.

Chapter 11 discusses how multiple antennas can be used to reduce co-channel

interference for XIXO signal and interference models. A short review of interference

diversity is also provided.

Chapter 12 overviews performance limits of ST channels with optimal and sub—

optimal signaling and receivers.
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Wireless designers constantly seek to improve the spectrum efficiency/capacity, link

reliability, and coverage ofwireless networks. Space-time wireless technology that

uses multiple antennas along with appropriate signaling and receiver techniques offers

a powerful tool for improving wireless performance. Some aspects of this technology

have already been incorporated into 3G mobile and fixed wireless standards. More

advanced space-time techniques are planned for future mobile networks, wireless

LANs and WANs.

The authors present the basics of space-time wireless propagation, the space-time

channel, diversity and capacity performance, space-time coding, space-time receivers,

interference cancellation for single carrier modulation, and extensions to OFDM and

DS-spread spectrum modulation. They also cover space-time multi-user

communications and system design tradeoffs.

This book is an introduction to this rapidly growing field for graduate students in

wireless communications and for wireless designers in industry. Homework problems

and other supporting material are available on a companion website.
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