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Communication Theory

Achieving High Data Rates in CDMA Systems Using BLAST Techniques

Howard Huang. Harish Viswanathan. and G. J. Foschini
Bell Labs. Lucent Technologies; T91 Holmdel-Keyport Rd.: Holmdel, NJ 07030

lhchuang. harishv gjf} @ lucent.com

Abstract- We evaluate the capacity of a downlink cellular
CDMA system where the transmitters use multiple antennas
and the receivers use space-time multiuser detection. We
discuss a family of transmission techniques which combine
transmit diversity and multicode transmission for achieving
high data rates. Higher system spectral efficiencies (greater
than one) can potentially be achieved if the same spreading
code is used on different antennas to transmit independent
substrearns. In this case multiple antennas at the receiver
distinguish the signals based only on their spatial
characteristics. In general. the receivers employ an extension
of the BLAST (Bell Labs Layered Space-Time) receiver
architecture for widehand CUMA signals. Accounting for
shadowing and frequency-selective Rayleigh fading. we
develop a novel technique for evaluating the capacity of
systems with CDMA BLAST detectors and show that the
resulting capacities oll‘er significant improvement over
cenventional single antenna systems.

[. IN‘I‘RODUCTION

Highmspeed data services will be a major application of future
wireless networks. Provisions such as inultieode transmission

and transmit antenna diversity have been recommended for third
generation CDMA systems to provide such services. However.
using conventional single—antenna matched filter receivers. the
overall system capacities are limited.

In reference [ l ]. high Spectral efficiencies were demonstrated for
a narrowband point—to—point system with multiple antennas at
the transmitter and receiver. In this work. we extend these ideas

to study the downlink ofa cellular CDMA system. High spectral
efficiencies are achieved using multiple antennas and rnultiuser
detection at the receivers. In Section I]. we investigate a family
of transmission techniques using multiple antennas and
orthgonal codes. The received signal at the high—speed mobiles
is given in Section [11. As described in Section IV. these
receivers use multiple antennas and a generalization of the V-
BLAST algorithm [2] to account for multiaccss interference.

We then determine the resulting spectral efficiency (the number
of information bits per chip per sector) from the number of high-
specd data users which can be supported in a sector at a given
error rate and outage rate. In Section V. we develop a technique
based on [3] for determining the system capacity for a multiple
antenna system with multiuser detectors. and in Section VI we
apply the technique to demonstrate the potential spectral
efficiency gains achievable by these enhancements.

ll. TRANSMISSION TECHNIQUES

The base station transmitter has three resources: spreading
codes. antennas. and power. Our goal is to allocate the resources
efficiently among K high-speed data users in a manner that
minimizes interference and maximizes the system capacity. We

assume that there are M transmit antennas at the base station

indexed by at = l M. High-speed data transmissions are
achieved by demultiplexing a single data stream into 0
substreams. each with rate R. In general. a substrenm’s power
can be arbitrarily distributed and transmitted over space
(transmit antennas) and time. Hawever in order to be
compatible with current CDMA proposals. we assume that a
substream is spread by a length N code and transmitted over one
or more antennas (more antennas to achieve transmit diversity).
If the same substream is simultaneously transmitted from more

than one antenna. different codes are used to spread the data
onto each antenna since. otherwise. there would be no gain
from transmit diversity. 0n the other hand. different sobstreams
could be transmitted from up to M antennas using either the
same code or different codes. If the same code is used. the

receiver would distinguish the substreams based only on their
spatial characteristics. If different codes are used. the receiver
would use both spatial and code information.

To illustrate the coupling between data substreams, spreading
codes and transmit antennas, Figs. 1A — 113 show four
assignment options for a given data user‘s G substrearns. Each
row represents a transmit antenna (in = 1.....M: M = 4). and
each column represents a unique orthogonal code.
' Fig. 1A shows the assignment for same code. no transmit

diversity (M. =l) transmission for G = 8 substrearns.

Substreams 1 - 4 are transmitted, respectively, from
antennas l - 4 using the same code. Substreams 5 - 8 are
transmitted. respectively. from antennas 1 ~ 4 using a
different code, so a total of (HM = 1 codes is used.

0 Fig. 13 shows the assignment for different code. no
transmit diversity transmission. The antenna assignments
for the substreams is the same as before. but now each

substream is assigned a unique code so that a total of G = 8
codes is used.

0 Fig. 1C shows the assignment for same code transmission
with transmit diversity order M, =2. Each substream is

now transmitted twice using different antennas and codes.
For the first transmiSSiOn. the code and antenna

assignments are the same as in Fig. 1A. For the second
transmission, the antenna assignments are cyclically
shifted so that the tenth transmission (to. = l M.) of

the gth (g = l G) substream is through antenna

tn=(nt,+g—2)mOdM+l (l)

A total of GM, ! M = 4 codes is used.

0 Fig. 1D shows the assignment for different code
transmission with transmit diversity order M. :2. The

antenna assignment is the same as in the corresponding
same-code case (using (1)). but now each substrcam is

assigned a unique code so a total of GM. = 16 codes is
used.

231 6

o-7soa5796-5/99/smoo © 1999 IEEE

Globol Telecommunications Conference - Globecom’99

|PR2018—01476

Apple Inc. EX1006 Page 38



IPR2018-01476 
Apple Inc. EX1006 Page 39

i

 
Fig. 1A. Same-code transmission. Ml =1

m l IIIIIIIII
2 IIIIIEII
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CodeAB CDEFGH

Fig. 13. Differenbcode transmission; MI :11

  
 

 
CodeA B C D

Fig. 1C. Same—code transmission, M, :2

 
Fig. 1D. Different-code transmission; M‘ = 2

III. RECEIVED SIGNAL MODEL AND ASSUMPTIONS

We consider the complex baseband received signal at the kth
high-Speed user's receiver. Each high—speed data user has a P
antenna receiver for demodulating its G substreams. The KG
data substreams are transmitted out of M antennas, where the

antenna assignment for a user‘s substream is given by {1). The
substrcarns are each spread by a length N code. The mullipath
channel induces L resolvable inultipath components. and the
complex fading coefficient among all antennas and multipath
components are uncorrelated. The delay spread is small
compared to the symbol period so that intersymbol interference
can be ignored. Following a chip matched filter, the discrete-
time complex baseband received signal for a mobile user at its
pth (p = l P) antenna during a given symbol period can be
written as a complex N —vector:

r = SEPAb + up (2)
.l’

where S is the real N—by-KGMrL code matrix defined by

Global Telecommunications Conieienre - Globerom'99

Communication Theory

A

S—[SLI'LPHSLLLD“SH‘MHI.”SLI'MUL...
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and where 5am“: correSponds to the code sequence of the kth
user‘s gth substream‘s transmission over the antenna for the
agth transmission and i'th multipath component. For i = 1,

unique codes (depending on the transmission technique) are

independent and binary—valued. The chips values are :1 {fl .
each with probability U2. For a given code, its resolvable
multipalh components l = l L can likewise be modeled as

random. binary-valued. and mutually independent codes. Matrix

(Zn: :1 block diagonal KGM,L -by- KGM, matrix

ding(C;,u--.CP] where CI, is the complex GMlL-by- GM,
channel matrix defined by

milJl-P

Cpéa'i‘ug i .---.

curiiJ'f, i.p

cthJLP

curiGJf, J.”

where in turn e is the complex L-vector correspondingmemoir

to the multipatii channels between transmit antenna m and the
_ T .

receive antenna p: em(s_ml)_P-'-‘=[crw_l...cm_N_] . The transmit
antenna assignment in is given by (1]. The channel amplitudes
are independent. zero-mean proper complex Gaussian random
variables with normalized variance:

0 if n15: in2 or pI I p2E ' = 3(CHIIJ.[JICNJ:.LF}] 1 if ml 2 "12 and p] = p1 ( )

where * denotes the complex conjugate. Matrix A is a KG -byA
KG diagonal matrix of amplitudes defined by

Aédi'ag[Au Am wit“ "‘AK‘G). Vector b is the real KG
.3 i"

binary data vector defined by b=[buu-bLGu-bm-ubxfil .
Vector npis the zero—mean complex (circularly symmetric)
Gaussian noise N—vector with Lid. components whose real and

imaginary components each have variance 0'2.

Note that all the substreams corresponding to a given data user
have the same transmit power. We determine the system
capacities assuming that the total base station power is fixed.
The channel is assumed to be fixed over the duration of the

symbol and assumed to be known at the receiver. In other
words. we assume that the detectors will have perfect estimates

of cup. Channel (and timing) estimates can be obtained from
auxiliary pilot channels (one for each transmit antenna). but
these are not explicitly accounted for in (2). However, one

could interpret I", in (2) as an enhanced received signal where
the pilot signals have been removed after channel estimation.
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IV. DETECTION TECHNIQUE

The jointly optimum detector is the maximum likelihood space
time multiuser detector which jointly detects all KG data
substreams [4]. Because the complexity of this detector is

exponential with respect to the number of substrcams. we
develop a suboptimal detector based on an extension of the V-
BLAST receiver [2] to CDMA spread signals. Shown in Figure
2, the receiver acquires a sufficient statistic vector from the
received signal (2) by performing a space—time matched filtering
with respect to the codes and channel coefficients [5]. Since the
data is binary valued. we then take the real component of each
element to obtain the sufficient statistic vector. Letting y be the
KG-dirnensional sufl'tcient statistic vector, we can write

P

y = Re[z6:53] = RAb + n [4)p: I
r

where R £2 Re[C:STSCF] is the KG -by- KG space-time coden=|

correlation matrix, where the vector 11 is a real KG—dimensional

Gaussian noise vector with covariance 01R , and where the real

operator on vectors and matrices is defined by

Re(x)é[x + x‘) {2. Assuming non-orthogonal space-time codes,
each component of y is corrupted by multiaccess interference
from the G — 1 other substrcams destined for that user and the

{K-I)G substreams for the other users. The interuser interference

is eliminated using a group decorrelating detector [6], and the
remaining intrauser interference is eliminated using the V-
BLAST algorithm. For each remaining substream. this algorithm
detects the strongest substream using a deeorrelator, removes the
reconstructed estimate of the strongest (post-decorrelator)

substream's signal, and then repeats the process until all C

substreams are detected. We initialize XPU) = SCP for the
pth antenna on the first iteration. 0n successive iterations.

Xylfj) is derived from XpUu— l) by striking out the column

corresponding to the strongest remaining substream. designated9

by the index 860- Defining RU); ERelX: (j)Xp(j) andyl=l

defining Iii-I);[11—]{jJ[t;M—j+t.t:M—j+1]i to be upper-left
(M2?) -by- (M-j) submatrix of Raf j) . the conditional bit error

rate for the gth substream of user 1. assuming the desired
substream‘s data bit is one. is

P

it"(jJZXf tutu)p=l

a [fi"(j}]

  into} 

awe) = Q (5)
tsULgUJJ

cuilguiJLp

Albhm} . where

.. —1

where TU}é SCpAb — isms)i=l

cntlgli Ml. LPa

5:

denotes the kth component of the vector x. Since the linear

transformation R" requires the knowledge of all KG substrearn

M it is the bit estimate for the user‘s gmth bit. and where [xL
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codes. this information could be transmitted to the receiver on

an auxiliary control channel.

 V~BLAST

algorithm

 
Fig. 2. Block diagram of the space-time

decorrelating detector

V. SPECTRAL EFFICIENCY ANALYSIS

In this section we describe the technique for determining
capacity in terms of the number of users per sector the system
can support. The spectral efficiency is given by the total data
throughput pcr sector divided by the bandwidth. The capacity
analysis is based on the approach in [3] for voice, but with
suitable modifications to account for multiple transmit and
receive antennas and the fact that a decorrelating detector at the
front—end of the receiver is used. The capacity analysis consists
of two parts: the outage curves and the BER curves.

The outage curves are obtained by randomly distributing a
given number of users in each sector of a multiple cell system
(we use a 19 cell system with 2 tiers of cells) and then
determining the probability that the received Etho does not
meet the Ebeo requirement for all users. We assume that the
cells are divided into three till) degree sectors. that there is
perfect sectorization at the base station (no sidelobe energy),
and that there is no soft handoff. The received Ebt'No (following
the code matched filters and channel combiner but prior to
antenna combining) is given by

[g] _ 55mmN _ ta
r-t ZSyM+NUW

O

b=.

where S is the maximum transmit power available at each base
station, y“, is the shadow fading and path loss from base

station [9 to user lc which is communicating with cell 1 (the
center cell). do is the fraction of the total power available in

base station 1 to each substreatn of user It. N0 is the AWGN

spectral density. W is the signal bandwidth. N is the spread
factor. If is the fraction of the base station power available for
information. and 1— fl is the fraction devoted to the pilot. The
denominator term includes the interference and noise terms.

The interference term consists only of the out-of—cell
interference. Unlike the voice capacity analysis in [3]. since a
decorrelator detector is used. the in-cell interference is ignored
in the outage analysis since it is considered in the BER analysis
to derive the target Ebeo. Note that the above equation is
independent of the number of transmit and receive antennas

since the received Ebt'No is measured prior to combining among
the P receive antennas. Since all the substreams of a given user
are demodulated at the same location. each one requires the

(6)
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same transmit power level. Hence the total transmit power to
userk forG substreams is Gm.

For successful decoding of the received signal the received
Ebi‘No has to be larger than the Ebt'No required to meet the
target BER. The base station can choose the power fractions
Ody to each user just sufficiently large to meet the Ebt’No

requirement so as to support as many users as possible subject to. X .

the total power constraint ElMthtit SI. Note that this
assumption amounts to having perfect power control in our
capacity calculations. An outage event is said to occur if for a
given number of users K. it is not possible for all the users to
meet their Ebi'No requirement. i.e.. to satisfy the condition

[5,, 3‘ ND)” =(Eb r‘ NU)”. From (6) this yields

 
k:_(Eb; N—O)Nrrq rhb+ w] (7)—[,§:'——7tt +57: .I

K

and the outage probability is thus silica. >1}.t=t

This is a probability averaged over the shadow fading and the
random user locations. For a fixed Ebi‘NO. we plot the outage
probability versus the number of users K. Then for a fixed
outage probability, we can plot the measured Ebt'No versus K as
shown in Fig. 3. using N=128. l3 = 08. 6:1, and activity factor
of 1.

EUNO(dB)    
 

B IO 20 30 4|) 50
Nu mber of userst K}

Fig. 3. Determining the number ofuscrs
from the outage and BER curves

The BER curves determine the required Ebt’No to achieve the
target BER. As a function of Ebe0. they are generated for a
given K. M. M,. L. and P using the received signal model [2)

and BER expression [5). In this context the Ebr'No

corresponding to {6) is given as (111202. This is the signal-to-
noise ratio after despreading. multipath combining and transmit
diversity combining but prior to receive diversity combining.
Hence a required Ebi‘No value obtained from the BER curves
can be directly applied in equation (3") to obtain the appropriate

outage curve. The additive noise It], in BER calculation plays
the role of out—of~cell interference and thermal noise. Note that

in the ease of a decorrelation type detector the BER does not
depend on the received power levels of the interfering users.
Hence the calculation of the BER can be independent of the
power control scheme used. After plotting the BER versus

Global Telecommunications Conference — Globetam’99
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Ebeo for various values of K. then for a fixed BER. we can
plot the required Ebeo versus K as shown in Figure 3 (L = 2,
M: l. P: 4, N: 128. using same code transmission).

The resulting system capacity corresponds to the intersection of
the outage and BER curves. and given this capacity C in terms
of the number of users. the spectral efficiency is the total sector

throughput per bandwidth: SE = CGRIW = CGHV . The
units are given in bits per second per Hertz per sector.

VI. NUMERICAL RESULTS

Fig. 4 shows the system spectral efficiency versus the number
of receive antennas. The top three graphs are for same-code
transmission. and the bottom three are for different-code

transmission. The columns of graphs correspond to different
numbers of transmit antennas [M = 2. 4. 8). and the curves in

each graph are parameterized by the transmit diversity order
(M, =1. 2. 4]. We fix the number of substreams per data user to

be G = 8 and consider the spectral efficiency as M. P. and M,
are varied. Assuming the data rate of a single substrcam is 9.6
Kbps, each data user receives a rate of 76.8Kbps. We assume a
spreading factor of N = 128 and L = 2 resolvable multipath
components.

We observe that the spectral efficiency increases linearly with
the number of receive antennas P. This is because. roughly
speaking. the required pre-antenna-combining Ebeo decreases
linearly with P; hence for a fixed base station transmit power.
increasing the number of antennas results in a corresponding
increase in spectral efficiency. Note however that the capacity
eventually becomes saturated when the set of orthogonal codes
is exhausted. For same—code transmission. the number of codes

used is GMIIM. Hence if the spreading factor is N. the

maximum number of users is (NlelGMr). and the

maximum spectral efficiency is M fM,. For different-code

transmission. the number of codes used is 6nd,. and the

maximum Spectral efficiency is 1fM.. Therefore while both

different-code transmission and transmit diversity improve the
link performance. the tradeoff is a lower achievable spectral
efficiency. It follows that if P is large. we would opt to use
samencode transmission and no transmit diversity to achieve the
highest spectral efficiency. From Fig. 4 we see that with P = 1'2,
the code limited spectral efficiency of 4 bpsi’t-lz per sector is

achieved with M = 4 and M]: I. The capacity improvement

with M = 8 is negligible considering the additional transmitter
and receiver complexity.

If P is small, we would use differentvcode transmission and as

much transmit diversity as possible {without running out of
codes) to improve the link performance. With P = 2. the
spectral efficiency is maximized (0.32 bpst-Iz per sector) using

M: 2 antennas, M, = 2. and different code transmission.

For comparison, we use Monte Carlo simulations to evaluate a
voice-only system which uses single antennas at the transmitter
and receivers. With a fixed required Ebe0 of MB and voice
activity factor 3/8, this system can support 20 users, resulting in
a spectral efficiency of 20/128 = 0.16 bps/Hz per sector.
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Figure 4. System spectral efficiency

V”. CONCLUSIONS

We studied a high—speed downiink CDMA system which uses
multiple antenna transmit diversity. multicode transmission. and
space-time detectors. Using a novel technique for evaluating the
system capacity, we showed that significant capacity
improvements could be achieved. The transmission method
which yields the highest system spectral efficiency depends on
the number of antennas P at the receivers. If P is small so that

the maximum potential spectral efficiency is less than one. we
would use the codes liberally to provide signal separation via
different code transmission and to improve the link performance
via transmit diversity. On the other hand. if P is larger so that the
spectral efficiency is potentially greater than one. we would
achieve this capacity by conserving codes with same—code
transmission and less transmit diversity.

For the range of parameters we considered, the maximum
spectral efficiency (4.0 bpst’l-iz per sector) was achieved using
same-code transmiSSion with M = 4 transit. P = 12 receive

antennas, and no transmit diversity.

While we have demonstrated that there is potential for
significant capacity gains from using multiple transmit and
receive antennas in CDMA systems. the results were based on
assumptions such as perfect power control. perfect channel
estimation and complex processing at the receiver. It remains for
future work to study the effect of non-idealities that occur in

2320

practical systems and to consider channel coding to achieve
significant fractions of the potential capacity gains.
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