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CHAPTER ONE 

Reliable Transmission 
of Digital Information 

The purpose of this book is to provide the communication systems 
engineer with a basic understanding of error-control coding techniques and the 
role that coding plays in the design of efficient digital communication systems. 
Described in its simplest terms, error-control coding involves the addition of 
redundancy to transmitted data so as to provide the means for detecting and 
correcting errors that inevitably occur in any real communication process. 
Thus coding can be used to provide a desired level of accuracy in the digital 
data delivered to a user. There are, however, other ways to achieve accurate 
transmission of digital data, and this book is intended to aid the communication 
system designer in deciding when it makes sense to use coding and when it 
does not, in choosing a coding technique appropriate to the application and 
performance requirements at hand, and in evaluating the performance 
achievable with the chosen technique. 

For example, in many communication systems, an alternative to the use of 
coding is simply to provide sufficient signal energy per unit of information to 
ensure that uncoded information is delivered with the required accuracy. The 
energy needed might be provided by setting signal power at a sufficiently high 
level or, if power limitations prevail, by using some form of diversity 
transmission and reception. However, in many cases, error-control coding can 
provide the required accuracy with less energy than uncoded operation and 
may be the economically preferred solution in spite of an increase in system 
complexity. Cost savings through the use of coding techniques can be dramatic 
when very high accuracy is needed and power is expensive. Furthermore, in 
some applications the savings in signal power are accompanied by important 
reductions in size and weight of the communication equipment 

1 
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2 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 
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The levels of performance that can ultimately be achieved with coded 
communication systems are given by the remarkable theorems of Claude 
Shannon, who in 1948 laid the foundation of the science of information theory 
in a famous paper entitled "A Mathematical Theory of Communication" [157]. 
The basic theorems of information theory not only mark the limits of efficiency 
in communication performance but also define the role that coding plays in 
achieving these limits. That is, digital codes are shown to be an efficient way of 
constructing the waveforms to be transmitted in order to achieve optimum 
communication performance for some applications. 

Shannon's 1948 paper presented a statistical formulation of the 
communication problem, unifying earlier work by Hartley [611, Wiener [178], 
Rice [148], and Koternilcov [86]. Shannon's work sharply contradicted the 
long-standing intuitive but erroneous notion that noise places an inescapable 
limitation on the accuracy of communication. Shannon proved that the 
characteristics of a communication channel, namely the noise level, bandwidth, 
and signal power, can be used to derive a parameter C, called channel capacity, 
that gives the upper limit on the rate at which information can be transmitted 
through the channel and received reliably. Shannon's results showed that as 
long as the information transmission rate is below C, the probability of error in 
the information delivered can in principle be made arbitrarily low by using 
sufficiently long coded transmission signals. Thus noise limits the achievable 
information communication rate, but not the achievable accuracy. Much of the 
research in communication theory since the appearance of Shannon's early 
work has been concerned with extending and refining his basic results and with 
finding ways of approaching the full reali7ation of these results in practical 
communication system designs. The development of error-control coding 
techniques has been a central element in this research. 

In this book we present the most important of the error-control coding 
techniques that have been developed since Shannon's pioneering work. That is, 
we consider those techniques that have actually been used effectively in real 
communication systems. In this introductory chapter we begin with a 
description of the key elements of a modern digital communication system as 
well as the channel models that are used throughout the book. A heuristic 
discussion of information theory follows, concluding with a presentation of the 
key result, the channel coding theorem. It is not necessary to have a detailed 
understanding of information theory in order to make effective use of error-
control coding techniques. However, a familiarity with the underlying principles 
and the meaning of the channel coding theorem is important. The fundamental 
limit on the efficiency of a digital communication system is given by the 
channel coding theorem, and this provides the gauge for measuring the overall 
efficiency of any given system design. 

We then review the basic digital modulation and demodulation techniques. 
Performance curves are included that show that even the best of the practical 
signaling schemes fall far short of the performance limit given by the channel 
coding theorem. It will be seen in subsequent chapters that judicious choice of 
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THE COMMUNICATION SYSTEM DESIGN PROBLEM 3 

coded 	 modulation and coding techniques can, in many applications, provide 
Claude 	 significant improvements in communication efficiency. The chapter concludes 

'I theory 	 with a discussion of the proper way to design a digital communication system. 
" [157]. 	 Specifically, an analytical approach is given that permits joint optimization of 
ficiency 	 the key communication functions. 
)lays in 
way of 
tiMUM 	 1.1. THE COMMUNICATION SYSTEM DESIGN PROBLEM 

of the 	 We can state the task of the digital communication system designer as that 
T [178], 	 of providing a cost-effective system for transmitting information from a sender 
ted the 	 to a user at the rate and level of accuracy that the user requires. The key 
capable 	 parameters of the design are transmission bandwidth, signal power, and the 
lat the 	 complexity of the implementation chosen. The information transmission rate 
dwidth, 	 and accuracy of the delivered information are typically determined by the 
apacity, 	 user's requirements. 
smitted 	 The transmission bandwidth is often constrained by factors specific to the 
that as 	 particular transmission medium used. For example, telephone circuits are 
error in 	 separated into nominal 3-kHz bandwidth segments by longstanding engineering 
y using 	 practice in the telephone industry. Similarly, there are standard bandwidths for 
devable 	 individual channels on terrestrial radio circuits and satellite links due to 
a of the 	 established government regulations on spectrum utilization. In other cases, 
's early 	 however, bandwidth constraints are not a critical issue. Examples include links 
ad with 	 to and from vehicles in deep space, where wide transmission bandwidths for a 
ractical 	 few individual links can be chosen freely without concern about possible 
coding 	 interference with other users of the spectrum. 

Finally, signal power and implementation complexity are system 
coding 	 characteristics that are usually very much under the designer's control, and 

That is, 	 possible trade-offs between power and complexity are central issues in the 
in real 	 design task. Both characteristics represent cost factors for the designer to 
with a 	 consider. For example, in most systems a desired level of accuracy in the 
stem as 	 information delivered can be achieved by supplying enough power in the 
euristic 	 transmitted signal to overcome channel disturbances that produce errors. An 

	

of the 	 alternative to increasing signal power is to add systematic redundancy to the 
letailed 	 transmitted information in the form of error-control coding. However, the use 

	

error- 	 of coding adds complexity to the system, particularly for the implementation 

	

tnciples 	 of the decoding operations. Since the addition of redundancy also implies the 

	

mental 	 need to increase transmission bandwidth, the design trade-off must include 
by the 	 considerations of bandwidth. In fact, in applications where bandwidth is 
overall 	 strictly limited or very costly and when we are not permitted to lengthen 

message transmission time, it is difficult to use coding effectively as a means of 

	

niques. 	 improving information accuracy, and increasing signal power may be the only 

	

ractical 	 means available. These issues will be discussed in detail later in this chapter, 

	

:hannel 	 when the fundamental results in information theory are reviewed and the 

	

Loice of 	 implications for the design of efficient communication systems are presented. 
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It is clear - from the outset that with any real communication system we 
cannot expect to receive exactly what is transmitted. At the very last, we can 
expect noise to be added to the transmission, causing random errors. As was 
stated earlier, the work of Shannon showed that channel noise limits the rate at 
which we can communicate reliably but not the achievable level of accuracy. 
The purpose of this introductory chapter is to present and illuminate this 
important result. It is necessary first to review the key elements of a digital 
communication system and the limitations imposed by the physical world. 
Then the role that error-control coding plays in the design of an energy-efficient 
communication system can be discussed in detail. 

1.2. ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 

The basic elements of a one-way communication system are illustrated with 
the general block diagram shown in Fig. 1.1. We now examine each of these 
elements in detail. 

1.2.1. Information Source 

The source of information to be transmitted may be either analog or 
discrete. An analog source produces time-continuous signals, while a discrete 
source produces sequences of discrete symbols. Examples of signals from an 
analog source are speech signals, radar outputs, and photographic scan data. 
Typical discrete sources are computer data files and messages generated at 
teleprinter terminals. 

For analog sources, techniques are needed to efficiently represent the analog 
signals by sequences of digital symbols. Ordinarily this is done simply with a 
sampler and analog-to-digital converter. Ideally, we would like to represent the 
source information by the smallest number of digital samples to make the most 
efficient use of the digital communication system. In other words, we would 
like to remove as much redundancy as possible from the source information 
prior to transmission. Techniques for converting arbitrary information sources 
into digital messages efficiently, are described broadly as source coding 
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Encoder 

  

Digital 
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FIGURE 1.1. Block diagram of a digital communication system. 
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ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 5 
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techniques. There is now a considerable body of literature on the subject of 
source coding, dealing with the theoretical limits on performance as well as 
with some very effective techniques for coding specific types of sources. To 
treat this subject in depth is outside the scope of this book, and we refer the 
interested reader to the literature on source coding [6, 175]. 

For our purposes in this book, we assume we are given a digital information 
source and our job is to provide an effective and efficient system for 
communicating the information it produces from one place to another. Further, 
we assume that the source generates a stream of statistically independent, 
equally likely discrete symbols. In particular, we assume that it produces 
binary digits, which we call bits, each bit occurring with equally likely binary 
values independent of all other bits generated. We shall say that the source 
produces data at a constant rate of R s  bits per second, which is defined as the 
information rate of the source. The purpose of the communication system is to 
deliver the source data to a user at the rate R s  and at some required level of 
accuracy, which is typically stated as an upper limit on acceptable probability 
of bit error or bit-error rate in the delivered information. It will be seen in a 
later discussion that the overall efficiency of the communication system is 
directly related to the amount of signal energy needed to deliver each 
information bit with the required accuracy. We denote this amount of energy 
as Eb  and call it the required energy per information bit. The required signal 
power S is therefore given by S = Eb R s . 

1.2.2. Channel Encoder 

The channel encoder performs all the digital operations needed to prepare 
the source data for modulation. We define the encoder here in a general way to 
encompass a variety of possible operations. In the simplest case, where no 
redundancy is to be added and the transmission in the physical channel is to 
use a binary signaling alphabet, the encoder has no function. If no redundancy 
is to be used but the transmission alphabet is to be nonbinary, the encoder 
performs the necessary binary-to-nonbinary symbol conversion. For example, 
if an 8-ary signaling alphabet is to be used, the encoder accepts source bits in 
successive blocks of three bits each and produces 8-ary symbols at a rate that is 
one-third of R. 

If binary error-control coding is to be used, the encoder accepts information 
bits at the rate R s  and adds redundancy, producing encoded data at a higher 
rate R. For encoding with a block code, the encoder accepts information in 
successive k-bit blocks and for each k bits generates a block of n bits, where 
n k. The n-bit block is called a code block or a codeword. Thus the encoder 
releases bits at a rate R c = Rs(n/k). We define the dimensionless ratio 
R = k/n as the rate of the code, or simply the code rate. Note that we let n 
have values n k rather than simply n > k, to include uncoded operation as a 
special case. If theerror-control coding is nonbinary, say M-ary where M = 2m 
and m is an integer greater than 1, the encoder accepts information bits in 

mission 
nel 
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6 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

blocks of km bits each and produces encoded blocks of n M-ary symbols each. 
Again, the code rate is R = k/n. 

For encoding with a convolutional code, the encoder accepts information 
bits as a continuous stream and, for a binary code, generates a continuous 
stream of encoded bits at a higher rate. The information stream is fed to the 
encoder b bits at a time, where b is typically in the range 1 to 6. The encoder 
operates on the current b-bit input and some number of immediately preceding 
b-bit inputs to produce V output bits, with V> b. Thus the code rate is 
R = b/V. The number of successive b-bit groups of information bits over 
which each encoding step operates is called the constraint length of the code, 
which we also denote by k. The encoder for a convolutional code might be 
thought of as a form of digital filter With memory extending k — 1 symbols 
into the past. A typical binary convolutional code will have b =1, V = 2 or 3, 
and k in the range 4 to 7, although in special applications constraint lengths in 
the range 30 to 70 might be used. 

To use a convolutional code with nonbinary transmission, each b-bit input 
to the encoder results in the generation of V M-ary coded symbols, where 
usually M = 2", and m V > b. A typical rate-1/2 encoder for a 16-ary (m = 4) 
transmission alphabet might have b = 4, V = 2, and k = 2 (four-bit symbols). 

We shall not delve any further into the details of code design at this point, 
our immediate purpose having been served by the introduction of the concepts 
of code rate, block length, and constraint length. As we shall see in later 
discussions, these are the key parameters of a code design, since the reciprocal 
of the code rate gives us a measure of the required bandwidth expansion and 
the code block length or constraint length and rate provide a measure of the 
complexity of the required encoding and (more important) decoding operations. 
In Section 1.4 we shall see that much can be said about the communication 
performance achievable with well-designed codes by dealing with only these 
design parameters. 

1.2.3. Digital Modulator 

The function of the modulator is to match the encoder output to the 
transmission channel. The modulator accepts binary or M-ary encoded symbols 
and produces waveforms appropriate to the physical transmission medium, 
which is always analog. In many systems where coding is to be applied, the 
modulation and demodulation techniques and equipment are difficult or 
impossible to modify or replace. In other cases, the modulation technique is 
fixed, but changes in the method of demodulation are feasible. In yet other 
applications, it is possible to design the modulation and demodulation system 
along with the coding technique, and greatly increased latitude is provided for 
overall optimization of the design. 

It has been conventional in much of the communication literature to define 
"the channel" as representing that portion of the communication system that 
the designer is unable or unwilling to change. In following this convention, if 
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ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 7 

the modulation and demodulation equipment (usually shortened to modem for 
convenience) is not available for modification, those functions would be 
incorporated into the definition of the channel. However, we prefer to depart 
from this convention to the extent that while we shall treat the modem as part 
of the channel for purposes of analysis, we ask the reader to bear in mind that 
the design of an efficient system is best done by designing the modem functions 
in conjunction with the encoding and decoding functions. Section 1.6 addresses 
this point in more detail. 

For binary modulation, the modulator simply converts a binary digit, 0 or 1, 
to a waveform, say s o ( t) or si(t), respectively, of equal duration I. For M-ary 
modulation, the M possible encoded symbols are converted to a corresponding 
set of M waveforms so(t), sl(t), , M- 1 (t). It is assumed that the reader is 
familiar with the common forms of digital modulation. For binary signaling, 
conventional modulation types include phase shift keying (PSK), differentially 
encoded PSK (DPSK), and frequency shift keying (FSK). Nonbinary forms of 
these basic modulation types are M-ary PSK (MPSK), M-ary DPSK (MDPSK), 
and M-ary FSK (MFSK). With the conventional forms of these modulation 
types, the nominal bandwidth of each waveform s,( z), i = 0, 1, 2, ... , M - 1, is 
approximately 1/7. However, for spread spectrum signaling, as is implied by 
the name, the bandwidth of each waveform can be much wider than 1/T„ 
perhaps by as much as several orders of magnitude. For example, a spread 
spectrum version of binary PSK might utilize waveforms s o ( t) and s(L) in 
which so ( t) is a sequence of much shorter binary PSK pulses, usually called 
chips, and s1 (t) is the complement of the chip sequence in so(t). Spread 
spectrum signaling is used as a multiple-access technique and also as a means 
of protecting a communication system against jamming. For further discussion 
of spread spectrum systems, the reader can refer to a special IEEE Transactions 
issue [70] as well as books on the subject [31, 68]. 

We shall return to the modulation and demodulation functions in Section 
1.5. 

1.2.4. Transmission Channel 
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We include in the term transmission channel all the operations required to 
prepare the baseband (low-pass) modulated waveforms for transmission in the 
physical channel, the transmission medium itself, and the receiving operations 
required to bring the signals to the point just prior to demodulation. In this 
way, we incorporate into the transmission channel any practical limitations or 
impairments in the equipment. As a practical matter we are primarily concerned 
here with power and bandwidth limitations, which are reflected in the design of 
the transmitting and receiving equipment. 

Transmitted signal power provides the obvious means in many systems for 
providing a required level of accuracy in received information. However, signal 
power cannot be increased arbitrarily. In telephone networks, for example, 
signal levels are fixed by established industry standards. In radio 
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communication systems, there is more freedom in selecting power levels, but 
practical physical and economic limitations apply. An increase in power level 
invariably implies increases in size, weight, and cost of transmitting equipment. 
Even if the added cost is judged acceptable, there are some applications where 
mobility is very important, and strict limitations on the size and weight of the 
equipment must be complied with. In yet other applications, particularly in 
very low regions of the radio spectrum, enormous amounts of energy are 
required to radiate usable signals, and therefore transmitted signal power is a 
dominant factor in the cost of the system. 

Bandwidth is the other critical design parameter governing achievable 
performance, since it limits the rate at which we can modulate waveforms in 
the channel. Restrictions on the choice of bandwidth are more or less severe 
depending upon the transmission medium. In telephone systems and many 
radio systems, where strict channelization standards are in place, bandwidth 
can be provided only in fixed increments, such as 3 or 6 kHz. Therefore, 
providing increased bandwidth in turn implies leasing additional wireline 
channels or acquiring added radio channel allocations and transmission 
equipment, the latter typically designed with standard bandwidths. In some 
parts of the radio spectrum, crowding is a serious problem, and it is difficult to 
use more bandwidth without encountering significant levels of interference 
with other communication signals. 

Noise in received signals constitutes the most prevalent factor limiting the 
performance of a communication system, since noise limits the ability of the 
demodulator to reliably distinguish one modulated waveform from another, 
thereby producing errors in the demodulator output. Thermal noise is always 
present in electrical circuitry, for example, in the front end of the receiving 
equipment. However, receiver noise is not necessarily the primary concern, 
since in many parts of the radio spectrum other sources of noise are also 
significant. For example, atmospheric impulse noise due to lightning discharges 
can be of a sufficiently high level to be the dominant factor limiting 
performance. Atmospheric noise can also affect wireline communication 
systems, since considerable energy can couple into transmission lines during 
thunderstorms. Additional forms of impulsive noise affect telephone networks, 
arising from transients in switching equipment as well as from accidental 
circuit interruptions during maintenance. What distinguishes impulsive noise 
in its various forms from the ever-present thermal noise is a distinct difference 
in temporal characteristics as manifested in the ways digital errors occur. 
Thermal noise is broadband, is essentially steady in its power level, and has 
Gaussian amplitude statistics. Therefore, errors tend to occur independently 
from one signaling interval to the next, the rate of occurrence being derivable 
in a straightforward way from knowledge of the Gaussian distribution. 
Impulsive noise, on the other hand, is characterized by relatively long quiet 
intervals punctuated by short periods of intense noise. This characteristic in 
turn results in long error-free intervals interspersed with short bursts of errors. 
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ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 9 

If one takes detailed account of the different characteristics of Gaussian 
noise channels and burst-error channels, one is led to quite different coding 
techniques for each. However, what is usually done is to select the modulation 
and coding schemes with a view toward the limitations imposed by the 
Gaussian background noise and then to adapt certain features of the coding 
implementation to the particular characteristics of the burst-error phenomena 
if they are of concern for the application at hand. We shall say more on this 
point in Chapter 11. 

Although we shall be concerned primarily with additive noise, many real 
communication channels exhibit other phenomena that severely limit 
communication performance. For example, many channels contain a sufficient 
amount of time dispersion that the received symbols flow into one another. 
This effect is commonly called intersymbol interference. In wireline channels, 
the time dispersion arises largely.from significant nonlinearity of the phase 
characteristic within the channel bandwidth. 

Intersymbol interference from any cause is a form of "self-noise" in a 
digital communication system, which cannot be overcome by increasing signal 
power. For this reason, channels affected in this way exhibit an irreducible 
error rate at high levels of signal-to-noise ratio (SNR), which cannot be 
avoided except by implementing some scheme for dealing directly with the 
time dispersion. Error-control coding usually does not provide an attractive 
approach, since intersymbol interference comes about by trying to signal as 
rapidly as possible within a given transmission bandwidth. It is implicit that 
the added bandwidth that coding would require cannot be readily provided. 
For this reason, intersymbol interference is treated by other techniques, for 
example, on telephone channels by adaptive equalization [98, 139]. 

On many radio channels, time dispersion is due directly to the nit/it/path 
nature of signal propagation at extended distances. For example, in the high 
frequency (HF) band, 3 to 30 MHz, communication beyond the horizon is 
accomplished by refraction of signals at various layers of the ionosphere. The 
structure of the ionosphere causes a transmitted HF signal to arrive at a distant 
receiving site by a multiplicity of propagation modes, the modes in general 
having different path delays. 

A direct consequence of multipath on radio channels is the phenomenon 
known as signal fading or simply fading. This comes about in ionospheric 
propagation due to the fact that the state of the ionosphere is dynamic. Ions 
within each layer are constantly in motion, and the layers also move relative to 
one another. As a result, the summation of several fluctuating modal 
components in a received multipath signal, with component signal phases 
randomly sliding in and out of alignment, produces the random fluctuations in 
received signal amplitude called fading. Associated with the amplitude 
variations in fading are fluctuations in the instantaneous phase of the received 
signal. Thus the multipath structure directly accounts for time dispersion, and 
the time-varying nature of the multipath accounts for fading. Radio channels 
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10 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

that behave in this way are often called fading multipath channels. In addition 
to the HF frequency band already mentioned, examples include the VHF and 
UHF frequency bands (30 to 300 MHz and 300 to 3000 MHz), when used for 
beyond-the-horizon terrestrial communication by ionospheric and tropospheric 
scatter propagation, and the SHF band (3000 to 30,000 MHz), which is used 
for satellite communication. 

There has been some success in applying adaptive equalization techniques to 
radio channels [3, 1141 However, the fading process greatly complicates the 
use of equalization, since, unlike having to adjust to a static phase characteristic, 
the equalizer has to accurately keep up with rapid continuous changes in signal 
amplitude and phase. For this reason, rather complex algorithms are used in 
applying these techniques to radio channels, and much of this work must still 
be regarded as developmental. 

Where fading cannot be treated effectively by adaptive equalization, the 
resulting error characteristics can be dealt with by the use of efficient error-
control coding techniques. On fading channels, the received errors tend to be 
clustered in bursts that occur in the intervals when the signal attenuation is 
large, that is, when the channel is going through deep fades. Since the 
propagation variations that produce fading are random, the durations of the 
error bursts and the intervening intervals of relatively error-free data are 
themselves random. However, the statistical parameters of the error clustering 
behavior can often be predicted within broad limits, given the operating 
frequency of a radio system and certain details of the transmission path. Some 
attention is given in Chapter 11 to the problem of applying error-control 
coding to burst-error channels. 

1.2.5. Digital Demodulator 

At the receiving end of the communication link, the demodulator provides 
the interface between the transmission channel and the functions that compute 
and deliver estimates of the transmitted data to the user. We include the rf 
receiving equipment in mit definition of the transmission channel. The 
demodulator operates on the waveform received in each separate transmission 
symbol interval and produces a number or a set of numbers that represent an 
estimate of a transmitted binary or M-ary symbol. In some applications, the 
designer may choose the level of precision of this estimate. 

In the simplest cases, the demodulator is designed to make a definite 
decision for each received symbol, that is, 0 or 1 for binary transmission or one 
of 0, 1,..., M — 1 for M-ary transmission. It is convenient to refer to such 
cases as hard-decision demodulation. Since the transmitted waveforms have 
been corrupted by the various nonidealities of the transmission channel, the 
symbol decisions are subject to error, and the average rate of occurrence of 
symbol errors, taken as a fraction of the total number of symbols received over 
a long period of time, is called the symbol-error rate or probability of symbol 
error. For binary transmission, this is the bit-error rate or probability of bit 
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error. It is also conventional to apply the same bit-error terminology after 
conversion of M-ary symbol decisions to their binary representations. In a 
system where no error-control coding is used, these error rates are the error 
rates for the data delivered to the user. In a coded system the error rate at this 
point in the system is often called the raw-channel 'error rate or the uncoded 
error rate to make a distinction from the error statistics measured after 
decoding is performed. 

All real transmission channels are, of course, analog channels that deliver 
waveforms that can in principle vary continuously over some range limited 
only by nonlinearities in the transmission medium and the receiving equipment. 
Thus the demodulator can be viewed as a form of waveform filtering followed 
by quantization, say to Q levels. The case of hard-decision binary demodulation 
thus requires quantization to Q = 2 levels. If the output of the binary 
demodulator is quantized to Q > 2 levels, we refer to this as soft-decision 
demodulation. In the limiting case of Q = oo, the demodulator output is 
unquantized, corresponding to an analog matched filter output being delivered 
directly. For M-ary transmission, Q > M constitutes soft-decision 
demodulation. Quantization incurs a loss of information, and thus soft-decision 
demodulation preserves information that can, we shall see in later discussions, 
be utilized profitably with an appropriate error-control decoding technique. 

1.2.6. Channel Decoder 

In a system using error-control coding, the decoder accomplishes the 
conversion of demodulator outputs into symbol decisions that reproduce, as 
accurately as possible, the data that was encoded by the channel encoder. For 
block coding, the decoder accepts consecutive blocks of n demodulator outputs 
and produces k decoded symbols for each block. With convolutional coding, 
the decoder accepts ,a steady stream of demodulator outputs and operates over 
the current received symbols and some number of previous symbols, producing 
b decoded outputs for each group of V received symbols. For both block and 
convolutional codes, the decoder attempts to make definite symbol decisions, 
binary or M-ary in accordance with the code design. However, the inputs need 
not be definite symbols. 

Decoding techniques that operate on hard-decision demodulator outputs are 
commonly termed hard-decision decoding techniques. As will be seen in later 
chapters, they are essentially algebraic equation-solving algorithms. On the 
other hand, there are a number of decoding techniques, for both block and 
convolutional codes, that operate on soft-decision demodulator outputs and 
are collectively termed soft-decision decoding techniques. These techniques 
more nearly resemble signal correlation or matched-filtering operations than 
equation-solving routines. For many codes, practical soft-decision decoding 
algorithms are available that outperform the best hard-decision decoding 
algorithm for the same code. The range of potential performance advantage 
will depend to a great degree on characteristics of the transmission channel, the 
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12 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

performance margin generally being smallest on steady-signal Gaussian noise 
channels. 

Error probability at the output of the decoder provides an important 
measure of the overall performance of the communication system. In fact, for 
convolutional codes, performance is usually stated in terms of post-decoding 
bit-error rate or M-ary symbol-error rate. However, there are other measures of 
communication performance that are meaningful. As an example, for block-
coded systems, performance can conveniently be given in terms of the 
probability of correctly decoded blocks. It is also possible to state the 
performance of block-coded systems in terms of average post-decoding bit-error 
rate, where the error events are averaged over all decoded k-symbol blocks. 
For either convolutional or block codes, other measures of performance are 
sometimes used as well. For example, in a system designed to transmit and 
receive messages of a given length, if a message decoded with one or more 
errors is judged to be unacceptable, the appropriate measure of performance 
might well be the probability of receiving an error-free message. 

Thus we see that in systems designed with error-control coding there is some 
flexibility in the way that performance is measured. It is important to note that 
there is no single figure of merit that can be used to realistically compare 
various coded and uncoded system alternatives for an arbitrary application, 
since requirements vary widely. The performance afforded by many error-
control coding techniques is considered in detail in Chapters 7 and 9 through 
11 for several measures of communication performance. 

1.2.7. Source Decoder 

The final stage of processing indicated in Fig. 1.1 is source decoding. The 
source decoder accepts the sequence of symbols from the chanpel decoder and, 
in accordance with the encoding method used, attempts to reproduce the 
information originally generated by the analog source. Generally speaking, the 
output of the source decoder is an approximation to the original source output, 
with discrepancies due to errors in channel decoding as well as loss of detail 
suffered in source encoding and perhaps in decoding as well. For some analog 
sources, the fidelity in reproduction of the source information can be measured 
by a simple statistic, for example, the mean-squared error between 
corresponding samples of the original source output and the output of the 
source decoder. For some sources, however, it is very difficult to find a 
reasonable mathematical measure of fidelity. A good example is that of speech 
signals, for which statistical characterization is known to be very difficult. 

We shall not pursue source coding and decoding in great detail, since we 
wish to concern ourselves primarily with the problem of transmitting and 
accurately reproducing symbols generated by a digital information source. 
However, we do make one final point here on the subject of source coding. In a 
system that uses both source coding and error-control coding, the source 
coding operation can be viewed as one that removes the natural, perhaps 
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inefficient, redundancy from the source so that it can be replaced with highly 
structured and more efficient redundancy in the form of a well-chosen error-
control code. This, in fact, is exactly what information theory requires us to do 4  
if we wish to achieve accurate transmission of the source information with the 
least expenditure of signal energy. These points will be made clearer in the 
remaining sections of this chapter. 

1.3. IMPORTANT CHANNEL MODELS 

A model of a communication system is a mathematical representation 
defined to realistically describe the way signals are constructed and processed 
and the way they are affected by the real-world communication environment. 
In Fig. 1.2 we show a simplified model of a digital communication system, in 
which the information to be transmitted is assumed to be generated by a 
discrete or digital information source. Using this model we next address the 
question of how to efficiently convey information to the user. 

1.3.1. The Discrete -Time Channel 

It is conventional to define a channel model to include the modulator, the 
demodulator, and all the intervening transmission equipment and media. This 
model, enclosed within dashed lines in Fig. 1.2, is compactly defined by the set 
of modulator inputs, the set of demodulator outputs, and the statistics that 
relate the possible outputs to each possible input. This is commonly called a 
discrete-time channel model or simply a discrete channel. The input-to-output 
statistics represent the ways in which the modulated signals are affected by 
amplitude and phase fluctuations, noise, interference, and equipment 
nonidealities and impairments. In most cases it is very difficult to define a 

FIGURE 1.2. Model of a digital communication system. 
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14 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

model that thoroughly accounts for all the disturbances affecting the signals, 
and one must resort to reasonable approximations. However, experience has 
shown that even reasonably simple channel models can provide a sufficient 
degree of realism to enable proper design of efficient systems. Furthermore, 
simplified models often yield insights into underlying principles, which can be 
obscured by a myriad of details in more elaborate, though more accurate, 
models. We shall consider several channel models commonly used to analyze 
and design digital communication systems. 

Most of the remaining discussion in this chapter will consider various forms 
of a channel model called the discrete memoryless channel (DMC), which is 
defined by an M-ary set of input symbols { x,}, a Q-ary set of output symbols 

and a set of conditional probabilities, called transition probabilities, 
which we can write as 

P(y =y4x = xi) = P( 

where i = 0,1,. , M — 1, and j = 0, 1, , Q — 1. The description of the 
channel as memoryless refers to the assumption that the output symbol at any 
instant of time depends statistically only on the input symbol at that time. The 
application of the DMC model to any real independent-error channel simply 
requires determination of the transition probabilities from definitions of the 
transmitted waveforms, signal power levels, and transmission channel 
characteristics, as well as the description of the demodulator. Examples of 
types of channels to which the DMC model does not apply are channels 
affected by atmospheric impulse noise or intersymbol interference. 

1.3.2. The Binary Symmetric Channel 

We now describe an important example of a DMC model. Suppose that 
binary modulation is used and that hard-decision demodulation is performed 
at the receiving end of the link. We let the modulator input x have value 0 or 
1, and the demodulator output y have value 0 or 1. Let us now suppose that 
for either input value of x, and regardless of the transmitted or received values 
of any earlier bits, x is received in error with probability p or received 
correctly with probability 1 — p. Using standard notation for conditional 
probabilities, we write this as 

P(y = 11x = 0) = P(y = Olx = 1) = p 

P(y = Olx = 0) = P(y = 11x = 1) = 1 — p 

With these definitions we have combined the modulator, the transmission 
channel, and the demodulator into a compact binary-input, binary-output 
model depicted by the transition diagram in Fig. 1.3a. This simple channel 
model is known as the binary symmetric channel, usually abbreviated as BSC. 
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FIGURE 1.3. Discrete channel models. ( a) Binary symmetric 
channel, (b) binary symmetric erasure channel. 

1.3.3. The Binary Symmetric Erasure Channel 

Another special case of the DMC is a binary-input, ternary-output channel 
called the binary symmetric erasure channel (BSEC). This channel model, 
depicted in Fig. 1.3b, includes a symmetric transition from either input symbol 
to an output symbol labeled ? to denote ambiguity. This model corresponds to 
a demodulation rule in which certain outputs are judged not to give a 
sufficiently reliable indication (e.g., due to a weak received signal) of which 
binary symbol was sent, and those outputs are erased as they leave the 
demodulator. A demodulation rule producing the three outputs 0, ?, and 1 is 
the simplest example of soft-decision demodulation. 

1.3.4. The Additive White Gaussian Noise Channel 

A channel of the DMC type having great theoretical and practical importance 
is one in which the output is simply the input plus broadband Gaussian noise. 
It is conventional to represent broadband Gaussian noise with the white 
Gaussian noise model. White Gaussian noise is defined to be a random process, 
each sample of which is a zero-mean Gaussian random variable and whose 
power spectral density is flat over the entire frequency range — oo oo, 
with a level N0/2 watts per hertz. Equivalently, the one-sided noise spectral 
density is No , so that, for example, a filter with a rectangular passband of width 
W hertz will pass NoW watts of noise power. 
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The additive white Gaussian noise (AWGN) channel can now be described 
simply in terms of the input x and the output y, which are related by 

y=x+nG  

where n G  is a zero-mean Gaussian random variable with variance a' and the 
input x can have any one of M discrete values, where M > 2. That is, the 
conditional probability density function of the output y, given an input x i , is 
given by 

p(ylx = x i ) = 	
1 

 e -(y-x,)2/202 
1/277. a 

The AWGN channel is an accurate model for many communication links, 
such as satellite and deep-space links, in which the dominant effect limiting 
communication performance is additive thermal or galactic noise. 

1.4. INFORMATION THEORY AND CHANNEL CAPACITY 

In this section we review some of the principal results of information theory 
and use them to provide insight into the role that coding plays, in combination 
with the choice of modulation technique, to achieve reliable communication 
with an efficient expenditure of signal energy. A heuristic explanation of 
Shannon's theorems on channel capacity is outlined. More complete 
presentations of the principles of information theory can be found in several 
excellent textbooks, such as Gallagher [49] or Viterbi and Omura [175]. 

1.4.1. Logarithmic Measures of Information 

The beginnings of information theory lie in early papers by Nyquist [117] 
and Hartley [61], who were concerned with the achievable transmission 
capabilities of telegraph circuits and, more generally, with a mathematical 
characterization of the ultimate limitations on the amount of data that can be 
transmitted reliably over any given physical channel. The formulation of such 
problems requires an explicit mathematical measure of .information. Hartley 
considered this question in relation to an information source producing 
messages, where each message is drawn with equal likelihood from a discrete 
set. Hartley suggested that the most natural measure of information is the 
logarithmic function. That is, the information content of one message drawn 
from a set of M equally likely messages is log M, where the logarithm base is 
arbitrary and depends on the basic unit of information. (Note that all 
logarithmic measures can be related directly to one another, since log a  x = 
(log a  b)(log bx) for any x.) Conventionally, the logarithm base is chosen to be 
2, and the unit of information is called a bit, a contraction of "binary digit." 

where 
shouli 
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INFORMATION THEORY AND CHANNEL CAPACITY 17 

Note that earlier in the chapter we used the term "bit" in a more general way 
to mean any binary digit; both usages are common in the literature. 

The logarithmic measure of information is logical and intuitively appealing, 
since if we equate a unit of information to a unit of storage capacity, the 
quantity log M corresponds exactly to the amount of storage needed to hold a 
representation of each of the possible messages. With binary storage, for 
example, we can hold a representation of one of 128 messages with seven bits, 
since 27  = 128. Given this convention, we can define the rate of an information 
source. We assume that the source produces equally Rely M-ary symbols, with 
the output symbols being independent from one symbol interval to the next. 
The rate of the source is then log 2M bits per symbol. Throughout most of this 
book we assume a source that produces equally likely information bits or 
symbols. However, in the discussion at hand, a more general measure of 
information is needed for sources in which messages or symbols are not 
necessarily generated with equal probability. 

A measure of information for general sources was provided by Shannon 
with the application of the concept of entropy to an information source. The 
concept of entropy has long been used in the field of physics as a measure of 
the randomness of a physical system whose states can be described only in 
statistical terms. Entropy provides an appropriate measure of the a priori 
uncertainty of any symbol or message to be produced by a discrete information 
source. Let us say that a source produces any one of M symbols, where the 
probabilities of occurrence are pi, p2 ,... , pm , with pi  + p2  + • • +pm  = 1. 
The entropy of the source is defined by 

= — E pi log pi  
1=1 

This definition in effect averages Hartley's logarithmic information measure 
with respect to the set of probabilities of the individual source symbols. It is 
readily seen that for a set of equally likely symbols, the entropy of the source is 
simply H = — log pi  = log M. The entropy function H provides a measure of 
the average amount of information "produced" per symbol by the source. 
Equivalently, from the point of view of the ultimate recipient of the information, 
it represents the average "prior uncertainty" of the information in each symbol 
generated by the source. The notion of prior uncertainty will be useful when 
we discuss measures of information transfer through a channel. But first we 
want to point out certain important properties of the entropy function. 

Using Eq. (1.1) we readily obtain the entropy function for a binary 
information source as 

H= — p log p —(1 — p)log(1 — p) 

where p is the probability of occurrence of either of the symbols. The reader .  
should calculate and sketch a few values of H and note thaf the entropy is 
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18 	RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

maximized when p = 0.5, which yields one bit of information per symbol. For 
an M-ary information source, it would be a simple matter to show that the 
entropy is maximized by having the outputs occur with equal probability, an 
intuitively satisfying result. 

The entropy function for a discrete source generalizes readily to the case of 
a continuous information source, for example, a source whose output is a 
voltage that can have any value over a continuous range. Let us say that we 
have such a source and that a sample of its output has a probability density 
function p(x). The entropy of this source is given by 

00 

H = — 	p(x)log[p(x)] dx 
J-00 

where the summation in Eq. (1.1) has simply been converted to an integral. 
Since we want the entropy function of a continuous source to accurately 

describe a physical reality, such as the information content of a signal voltage, 
we need to place reasonable constraints on p(x). It is interesting to consider 
several such constraints and ask what p(x) maximizes the entropy. For 
instance, it can be shown easily that if the only constraint is to confine the 
output to some finite interval, the entropy is maximized by letting p(x) be 
uniform over the given interval. This might reasonably have been guessed by 
generalization from the case of a discrete M-ary symbol source. Another 
important case is one that we consider in the following example. 

EXAMPLE: A CONTINUOUS INFORMATION SOURCE WITH FIXED VARIANCE. 
Consider a continuous information source whose output x has the probability 
density function p(x). We wish to find the function p(x) that maximizes the 
entropy function given only the constraint that the variance of p(x) is fixed at 
a given value a 2. This is equivalent to fixing the average power of a signal 
voltage x. We want to maximize the integral 

H= flp(x)log[p(x)] dx 

subject to the constraints 

f 
p(x)dx = 1 

- 00 

and 

f°° 00 
X 2p(x)dx = (7 2  

This is done by straightforward application of the method of Lagrange 

(1.2) 

(1.3) 

which 
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INFORMATION THEORY AND CHANNEL CAPACITY 19 

multipliers [66]. We form the integral 

f p(x){-log[p(x)] + L + Mx 2 } dx 	 (1.4) 

where L and M are undetermined multipliers of the integrals in Eqs. (1.2) and 
(1.3), which define the constraints. We want to maximize the integral in Eq. 
(1.4) by selecting the appropriate function p(x). To do this we differentiate 
with respect to p(x) and set the result equal to zero, producing the condition 

-1 - log[p(x)] + L + Mx 2  = 0 

which in turn yields 

p ( x ) = e L-1e mx2 

The multipliers L and M are determined by substituting Eq. (1.5) into Eqs. 
(1.2) and (1.3), and we find 

p(x) - 	1 e-x2/202 
lifTr a 

which is seen to be the zero-mean Gaussian density function. Therefore, 
subject to a power constraint, the continuous information source having the 
greatest entropy is the Gaussian source. Its entropy is given by 

H = log(ilfre a) 

= 	/Tea 2  ) 	 (1.6) 

which has units of bits per sample, and where we have used the property 
log 2  a = (ln a)(log 2e ). 

We shall return to the result in Eq. (1.6) after further developing the concept 
of entropy as applied to a communication channel. 

1.4.2. Transfer of Information Through a Channel 

We have said that it is useful to view the entropy H of an information 
source as a measure of the prior uncertainty about the information produced 
by the source. Therefore, from the point of view of the intended recipient of 
the information, H represents the state of uncertainty before receiving 
information from the source. For the case of error-free discrete transmission, 
the user receives uncorrupted source symbols, and the uncertainty about the 
source information vanishes completely as symbols are received. In this ideal 
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20 RELIABLE TRANSMISSION OF DIGITAL INFORMATION 

case, the channel transfers information from the source to the user at an 
average rate of H bits per symbol, exactly the amount of uncertainty prior to 
transmission. We can quantify this notion by obser ring that after receipt of 
each symbol, the prior probabilities of the symbols, p i , p2 , •, pm , are replaced 
with a distribution having probability 1 for the symbol received and 0 for all 
other symbols. If we calculate the entropy after reception we have 0, since 
log(1) = 0. 

In all realistic cases, of course, transmission through the channel is not 
error-free, and thus after reception the user is left with some residual uncertainty 
concerning the exact identity of the transmitted information. Minimizing this 
residual uncertainty while making efficient use of signal energy is the essence of 
the communication system design problem. Given the use of the entropy 
function to measure a priori uncertainty of the source information, it is logical 
to use a corresponding function to measure the a posteriori uncertainty of the 
information after reception on a noisy channel. To express this more formally, 
we consider a discrete memoryless channel characterized by a set of inputs 
X 1 , x 2 ,. , xm, having a priori probabilities { P(xi)}, a set of outputs 
yl ,  Y2 ,  - • • YQ, and a set of transition probabilities { P(yilx i )} specifying the 
probability of receiving a symbol yi  given that a symbol x i  was transmitted. 
This channel model is illustrated in Fig. 1.4. Using the elementary rules of 
probability, we can write the a posteriori probability of x i  given the receipt of 
yi  as 

P(xi , yi ) 
P(x i lyi

) = P(y) 

p ( yipc i )P ( x i ) 

P(y) 

Recalling that the a priori uncertainty about x i  is measured by — log P(x), we 
can define the a posteriori uncertainty about x i  given th, receipt of yj  as 

 

Y1 

Y2 

Y3 

Yi xl 

 

P(Yilxi) 

  

	

Xm.-1 • 	 YQ-1 

	

Xm • 	 Yo 

FIGURE 1.4. Model of an M-input, Q-output discrete memoryless channel. 
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INFORMATION THEORY AND CHANNEL CAPACITY 21 

— log P(x,lyj). The difference between these two values is defined as the 
mutual information associated with the transmission of x i  and reception of yj  
and is given by 

p(yilx i ) 
/(x•; yi ) = log 	

P(y) 

We now calculate the overall rate of transfer of information through the 
channel by simply averaging /(x 1 ; yf ) over all possible values of x i  and 
giving us the average mutual information, defined by 

Q 

I(X;Y) = E E P(xi, yj)log
P(Yilxi) 	(1.7) 

	

i=i 	 P(y) 

which has units of bits per symbol when the logarithm base is 2. Since the 
output symbol probability P(y) is given by 

	

P(y1 ) = 	p(x i)p( ypci ) 

it is seen that /( X; Y) follows directly from specification of the probabilities of 
occurrence P(xi ) of source symbols and the set of transition probabilities 
P(yi lx i ). The average mutual information is the average rate of transfer of 
information through the channel, given the distribution of source symbols and 
the channel transition probabilities. If we are given the transition probabilities 
defining the channel, the information transfer rate through the channel will 
depend upon the probabilities of occurrence of the input symbols. The capacity 
of the channel is defined as the maximum value of /(X; Y) with respect to all 
input distributions, that is, 

C = max/(X; Y) 
P((xi ) 

(1.8) 

given in bits per transmitted channel symbol. (Channel capacity can be 
expressed with various units of measurement, and the separate forms are useful 
in different contexts. We shall be careful to specify the different forms in our 
discussions.) 

Thus we see that given any channel that is defined by the input-to-output 
transition probabilities, one can determine the maximum achievable 
information transfer rate through the channel by performing the indicated 
maximization over all possible input distributions. Let us consider a simple 
example. 

:x i ), we 
yj  as 

EXAMPLE: CAPACITY OF THE BINARY SYMMETRIC CHANNEL. The binary 
symmetric channel was discussed in Section 1.3 and is described by the 
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transition diagiam in Fig. 1.3a. It is readily seen that the channel is completely 
characterized by the crossover probability p. If we denote the input symbols as 
x = 0, 1 and the corresponding output symbols as y = 0,1, the transition 
probabilities P( yj  I x i ) are simply 

P(0 = P (111) = 1 — p 

P (11 = P (0 11) =p 

The information transfer rate of this simple channel is maximized when the 
input symbols are equally likely, that is P(0) = P(1) = 0.5, which results in the 
following expression for capacity: 

C= 1 + p log p + (1 — p )log(1 — p) 

A plot of this expression is shown in Fig. 1.5. Note that for p = 0, corresponding 
to error-free transmission, C equals one bit per transmitted symbol, which is 
the entropy of the source with P(0) = P(1) = 0.5. For p = 0.5, either value of 
y is received with the same probability regardless of which value of x is 
transmitted. Thus C = 0, and the channel fails to transmit any information 
about the source symbols to the user. Note also that the capacity curve for the 
BSC is symmetric about p = 0.5. The portion of the curve for p > 0.5 has the 
same meaning as the region p < 0.5 if we interchange the assignments of 
the values 0 and 1 for the output symbols. Therefore, in using the binary 
symmetric channel model we need only consider values of p in the range 
0 p 0.5. 

It is useful to write the expression for average information transfer given in 
Eq. (1.7) in either of the forms 

FIGURE 1.5. Capacity of the binary symmetric channel. The units of C are bits per transmitted 
symbol. 
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I(X; Y) = H(Y) — H(Y1X) 	 (1.9) 

That is, I(X;Y) can be expressed in terms of entropy functions calculated 
with unconditional or conditional probability distributions of input and output 
symbols. The second form, Eq. (1.9), is particularly instructive, with 

en the 
; in the and 

H(Y)= — E pcolog p( y.,) 
	

(1.10) 

m Q 
H(YIX)= E E P(xi, yi)logP(yfixi) 
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What is important about the use of Eqs. (1.9) to (1.11) for expressing 
average information transfer is that for certain types of channels the 
determination of channel capacity is relatively straightforward. In particular, 
there are channels described as uniform from the input, defined by the property 
that the sets of transition probabilities from the various channel inputs are 
permutations of the same set of numbers p i, p2,•, PQ.  The importance of 
this property is that for any channel of this type the conditional entropy 
H(Ylx i ) is given by 

H(Ylx i ) = — E P(yjixi )log P(yAx i ) 
j=1 

= — E pilog pi  
j=1 

which has the same value for any channel input x i . Therefore, the average 
conditional entropy given by Eq. (1.11) is independent of the distribution of 
input symbols and may be written as 

H(YIX) = — E pilog pi  
j=1 

ransmitted 

The practical interpretation of this model is that when a channel is uniform 
from the input, the transmission of any of the input symbols is disturbed to the 
same extent by channel noise. Thus, if Eq. (1.9) is used to derive the capacity, 
we see that only the first term, H(Y), varies with the input symbol distribution, 
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and we may write the definition of capacity using Eqs. (1.8) and (1.9) as 
for ti 

C = max [H(Y)] — H(YIX) 	 (1.12) 	 More 
P(x1) 	 infon 

By 
We can now see that for any channel of this type, the information transfer rate 	 receii 
is maximized by choosing the input symbol distribution to maximize the 	 samp 
entropy of the set of output symbols. From Fig. 1.3 it is readily seen that the 	 us de 
BSC and BSEC models are uniform from the input. The capacity of the BSC 	 as n( 
has already been given. For the BSEC, the reader should verify that H(Y) is 	 denot 
maximized when the two input symbols are equally likely, and show that the 
capacity is 
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C = (1 - q)[1 - log(1 — q)] +(1 -p - q)log(1 — p - q) + p log p 

For discrete channels with larger numbers of input and output symbols, the 
uniform distribution of input symbols does not necessarily achieve capacity, 
even in cases where there is uniformity from the input. However, for a type of 
channel called a doubly uniform channel, capacity is always achieved with a 
uniform input distribution. A doubly uniform channel is not only uniform 
from the input but also uniform from the output. By the latter property we 
mean that for all the Q output symbols the sets of transition probabilities from 
the M inputs are permutations of the same set of M numbers. For any channel 
of this type it can be shown that capacity is given by 

C = log Q + E pilog 
j=1 

where the ( } are the transition probabilities conditioned on any one of the 
M input symbols. It should be noted that the BSC is a doubly uniform 
channel, but the BSEC is uniform only from the input. 

For channels with continuous rather than discrete input or output signals, 
the summations in Eqs. (1.10) and (1.11) are converted to appropriate integrals 
involving probability density functions, and equivalent arguments apply. 

where 
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1.4.3. Capacity of the Continuous AWGN Channel 

We now discuss a channel in which communication is accomplished by 
transmission of continuous waveforms rather than discrete symbols. In 
particular, consider a band-limited AWGN channel, and let the bandwidth be 
denoted by W, given in hertz (Hz). We would like to know" the maximum 
information transfer rate for the channel, that is, the channel capacity, and also 
what transmission waveforms should be used to achieve capacity. The only 
constraint we place on the allowable signals is that they have some finite 
average power. We shall provide a brief outline of the derivation of capacity 
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for this channel, following a similar presentation given by Woodward [183]. 
More complete and rigorous derivations may be found in a number of texts on 
information theory, including references already cited in this chapter. 

By well-known principles of sampling theory, the signal and noise waveforms 
received in the band-limited channel can be represented by independent 
samples taken at the Nyquist rate 2W, where W is the channel bandwidth. Let 
us denote the transmitted waveform as x(t), the additive white Gaussian noise 
as n(t), and the noisy received waveform as y(t) = x(t) + n(t). Also let us 
denote the average power of a received signal or noise sample as, respectively, 

-2 0 
X 	 and 	-2 n = 

and let us suppose that these average power levels are fixed. Since we are 
considering continuous rather than discrete signals, we can modify the 
expressions developed in Section 1.4.2 by replacing the input and output 
symbol distributions { P (x i )} and { P ( y j)} with probability density functions 
p(x) and p(y), respectively. We also replace the transition probability P (yi lx i ) 
with the conditional probability density function p(y1x). Now, for an 
amplitude-continuous additive noise channel, it is clear that p (y Ix) depends 
on y and x only through their difference y — x, and for the case of Gaussian 
noise we have 

1  
P(Y1x) 	

v/2 	.77.N e-0,-x)2 /2N 

where N is the average power or variance of a noise sample. Noise additivity is 
a property of continuous channels that corresponds directly to the property of 
uniformity from the input discussed in the previous section for discrete 
channels. Therefore, we can derive channel capacity using Eq. (1.12), where the 
output entropy H(Y) is calculated for sequences of samples of the received 
noisy signal y(t), and the conditional entropy H( YI X) depends only on the 
statistical distribution of the noise samples, that is, sequences of samples of 
n(t). We rewrite Eq. (1.12) as 

C ---- max [H(y)1 — H(n) 
p(x) 

where y denotes a sequence or vector of received noisy signal samples and n 
denotes a sequence or vector of noise samples. Now we can compactly define 
the capacity of the continuous-waveform AWGN channel as the maximum 
entropy of the total received signal minus the entropy of the noise. The 
maximization is to be done by appropriate selection of the statistics of the 
transmitted waveforms x(t). 

First we consider H(n). Recall from the discussion leading to Eq. (1.6) that 
the entropy of a sample drawn from a Gaussian distribution.is  llog(27rea 2 ), 
where a 2  is the variance of the distribution. Thus, here the entropy of a sample 
of the Gaussian noise is -ilog(27reN), where N is the variance, or average 
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reliably 
followi] power, of a noise sample. The entropy of a sequence of 2WT noise samples 

taken in an interval of time equal to T seconds is then 

H(n) = WT log(29TeN) 

We now consider H(y) and recall from the same discussion leading to Eq. 
(1.6) that if we constrain a continuous random variable to have a given fixed 
variance, the entropy of the variable is maximized by letting its probability 
density function be Gaussian. Therefore, since we have constrained the signal 
plus noise y(t) to have average power S + N, it follows that the received signal 
entropy H(y) will be maximized by letting y(t) have the statistics of Gaussian 
noise, each sample having variance S + N. We can make this happen by 
transmitting signals that are Gaussian noise waveforms, and by reapplication 
of Eq. (1.6) we have for a sequence of 2WT samples, 

maxH(y) = WT log[2.Tre(S + N)] 
p(x) 

Therefore the maximum information transfer rate is 

'max WT log( S 	+N  N  

which is measured in bits transmitted per T seconds. Equivalently, capacity per 
unit time is given by 

S + N  
C = w log( N  — w log(1 + 	bits/s (1 .13) 

This is Shannon's capacity formula for the band-limited continuous AWGN 
channel. We shall see shortly that the practical implication of this and another 
closely related result is that the most efficient use of the channel is achieved by 
setting up a suitable correspondence between long sequences of source 
information digits and long noiselike signaling waveforms x(t) for transmission 
on the channel. The most remarkable of Shannon's results, which we shall not 
derive here, is the following: 

If we take increasingly long sequences of source digits and map them into 
correspondingly long transmission waveforms, the error rate in the data delivered 
can be brought arbitrarily close to zero, as long as we do not attempt to transmit 
data at a rate higher than C. Therefore, at any nonzero level of channel 
signal-to-noise ratio S/N, there is some nonzero information transfer rate below 
which arbitrarily accurate communication can in principle be achieved. 

The essence of Shannon's result, which is called the channel coding theorem, is 
that noise in the channel does not inherently limit the accuracy with which 
communication can be achieved, but only the rate at which information can be 
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reliably transmitted [158,159]. We discuss this result in more detail in the 
following section. 

1.4.4. Channel Coding Theorem 
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The channel coding theorem states that every channel has a channel 
capacity C, and that for any information transfer rate R < C there exist codes 
of block length n and rate R having probability of incorrect decoding P(E) 
bounded by 

P(E) < 2—nEb (R) 	 (1.14) 

where the exponent Eb(R) is a positive function Of R for R < C and is 
determined solely by the characteristics of the channel. The implication of the 
bound in Eq. (1.14) is that for any information rate less than C, the error 
probability can be made arbitrarily small by increasing the code block length n 
while holding the code rate constant. A similar bound can be written for 
convolutional codes, where n is replaced by k, the code constraint length. 

Shannon's derivation of the exponential error bound formula was based 
upon an analysis called the random coding argument. The bound is obtained by 
averaging the error probability over an ensemble of randomly selected codes. 
Since some codes in the ensemble must perform better than the average, the 
coding theorem guarantees the existence of codes capable of achieving the 
bound in Eq. (1.14). 

Therefore, Shannon's work shows that it is not really necessary to transmit 
Gaussian noise waveforms in order to achieve capacity; rather, well-chosen 
codes can be used to produce the same result. For a coded communication 
system, sequences of information bits are mapped into long codewords by the 
error-control encoder and then into long digital waveforms by the modulator. 
The demodulator and decoder then utilize all the received signal energy during 
the transmission of a codeword in the decision-making process. Several practical 
issues need to be dealt with, however. First, the coding theorem provides no 
means for constructing effective codes. Second, requirements for very low error 
probabilities will compel the use of very long codes, and this in turn will lead 
to very complex decoding operations. 

Because of the issues just outlined, much of the research in the coding field 
over the last three decades has dealt with two key problems: finding classes of 
codes that yield good performance over wide ranges of lengths, and designing 
decoding algorithms that realize the intrinsic code performance without 
prohibitive complexity. Chapters 2 through 11 will present some of the more 
important and useful results that have been obtained in addressing these 
questions. 

However, no practical means of achieving channel capacity has yet been 
found. In Section 1.6 we discuss other implications of the channel capacity 
formula and outline a valuable concept closely related to channel capacity that 
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provides a calculable measure of modulation and coding performance 	 which 
achievable with practical implementations. 

1.5. MODULATION PERFORMANCE ON THE AWGN CHANNEL 

In this section we summarize formulas giving the performance that can be 
achieved in additive white Gaussian noise with several of the commonly used 
forms of digital modulation. Detailed derivations of these formulas can be 
found in a number of references, including Arthurs and Dym [4], Viterbi [172], 
and Proakis [139]. 

1.5.1. Phase -Shift Keying 

Let us first consider binary signaling in the AWGN channel, so that we 
write the received signal as 

r(t) = s(t) + n(t), 	0 < t < T 

where si (t), with i = 0 or 1, is the transmitted waveform and n(t) represents 
the white Gaussian noise waveform in the signaling interval T. For phase-shift 
keying (PSK), the two possible waveforms are chosen to be antipodal, so that 

so (t) = — si(t), 	0 	T 

where so(t) and s1 (i) are sinusoids of the same frequency with fixed phases 
1800  apart. Binary PSK is sometimes called biphase modulation. 

The transmission channel is assumed to have finite bandwidth, which places 
a practical upper limit on the pulse transmission rate. Let us say that PSK 
pulses are transmitted at the rate B pulses per second, which is equal to or less 
than the upper limit. If the average transmitted signal power is S, then the 
energy per PSK pulse is Et, = S/B = ST. Note that Eb was defined earlier to 
be the average energy transmitted per bit of source information. For uncoded 
binary transmission the signal energy per pulse equals the energy per source 
bit, and so we shall use the symbol Eb  in the error-probability formulas that 
follow. 

Optimum detection of binary PSK signals is done with a matched filter 
followed by a sampler, the filter being matched to either so (t) or s l (t). 
Assuming perfect phase coherence, analysis of matched filter detection for PSK 
shows the probability of error p to be 

P — 
1 	oo 

f 	-X2/2  dx 
 112 Eb/No 
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which can be written more compactly as 

1 
p = Terfc (VA b 	 (1.15) 

-mance 

can be 
ly used 
can be 
)i [172], 

where erfc (x) is the complementary error function, defined by 

erfc (x) = 	j.cce't2  dt 
x 

and Ab = Eb/No is the signal-to-noise ratio (SNR) per bit. 

1.5.2. Differential PSK 
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Coherent PSK demodulation requires the use of a phase reference. This is 
usually done by extracting the carrier phase from the received signal with a 
phase-locked loop. In some systems, however, it is difficult to obtain a reliable 
phase reference due to characteristics of the transmission medium or the 
demodulation equipment itself. In such cases, PSK signaling can still be used if 
the signals to be transmitted are mapped into successive phase differences. The 
resulting modulated waveform is known as differentially encoded PSK or 
simply differential PSK, abbreviated as DPSK. In binary DPSK a 1 is 
transmitted by sending the pulse waveform which is 180 0  out of phase with the 
pulse sent in the previous interval, while a 0 is transmitted by sending a pulse 
in phase with the previous pulse. This is called differential encoding or 
differential precoding. Differentially coherent demodulation of DPSK signals is 
implemented by detection of the phase difference between received pulses in 
successive signaling intervals. For steady-signal reception of binary DPSK 
signals on an AWGN channel, the average probability of error is given by 

p 	 (1.16) 

where A b = Eb/No  is the SNR per bit. The bit-error probability for DPSK was 
derived originally by Lawton [87]. 

Because of the partial overlap of signal and noise components involved in 
successive binary decisions, there is a tendency for errors in differentially 
coherent demodulation of DPSK to occur in clusters of two. This occurs 
because, especially under high-SNR, low-error-rate operation, an error is likely 
to be caused by a momentarily high noise level associated with a single pulse 
completely distorting its phase. Since any such single pulse is involved in two 
successive binary decisions, both may have a high likelihood of error. Such a 
clustering of errors may be of major significance when error-control coding is 
used, since the coding must then be designed to cope with clusters of errors 
rather than with statistically independent errors. Numerical results on error 
clustering behavior with DPSK are given in a paper by Salz and Saltzberg 
[152]. 
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There is another form of DPSK that is sometimes used in systems where 
coherent demodulation can be done but where there is an unresolvable 180 0  
ambiguity in the carrier phase. Here a DPSK signal is transmitted, and at the 
receiving end coherent PSK demodulation is performed on individual pulses, 
followed by differential decoding of the stream of demodulated bits. This 
scheme does not perform as well as strict-sense coherent PSK signaling and 
reception, since a single error leaving the PSK demodulator produces two 
errors after differential decoding. The probability of bit error for differentially 
encoded coherent PSK lies between that of strict-sense coherent PSK and that 
of DPSK; at high SNR, the probability of bit error is approximately twice that 
of coherent PSK. A detailed analysis of the performance of coherent 
demodulation of DPSK, including a table of computed bit-error probabilities, 
can be found in Lindsey and Simon [97]. 

1.5.3. Coherent Frequency Shift Keying 

Frequency shift keying (FSK) is a special case of orthogonal signaling. A set 
of signals is said to be orthogonal over an interval T if any pair of different 
signals, say si (t) and si (t), have zero crosstalk, that is, if 

f Tsi (t)si (t) dt = 0, 	i j 

With FSK a symbol is transmitted by sending one of a set of tones, where the 
tone frequencies are chosen so that any pair of tones at different frequencies 
are orthogonal over the signaling interval T. In binary FSK, two tones are 
used, and if the tones are both generated and demodulated with known phases 
it can be shown that orthogonality is obtained with any tone spacing equal to 
an integer multiple of 1/2T. In practice, the tone spacing is usually chosen as 
1/2T in the interest of minimizing bandwidth. Optimum demodulation is done 
with a pair of coherent matched filters. The bit-error probability for coherent 
FSK detection in AWGN is 

p = lerfc ( —2-b-A 	 (1.17) 

where A ,, = Eb/No  is the SNR per bit. 
If we compare this expression with Eq. (1.15) for coherent PSK, we see that 

equal bit-error probabilities are obtained with 3 dB greater SNR in the case of 
coherent FSK. In other words, binary coherent FSK has 3 dB poorer 
performance than binary coherent PSK. 

If, in generating the coherent FSK signal, phase continuity is maintained 
from one pulse to the next, the resulting modulation is called continuous -phase 
FSK (CPFSK). In many applications CPFSK is an attractive form of 
modulation, because the phase continuity results in a signal spectrum that rolls 
off more rapidly than spectra for other forms of modulation. There is an 
important special case of CPFSK modulation and demodulation that achieves 
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performance identical to coherent PSK. The scheme is called minimum-shift 
keying (MSK). In MSK, the two tones have a frequency separation equal to 
1/2T, hence the term "minimum shift." Optimum performance for MSK is 
achieved by exploiting a special property of the MSK waveform, namely that it 
can be constructed as two binary phase-modulated pulse streams or 
" subchannels" in phase quadrature, each subchannel carrying sinusoidally 
shaped pulses of duration 2T, with the two subchannels offset by T seconds. 
That is, MSK can be viewed as a particular way to implement antipodal 
signaling on two orthogonal subchannels. The optimum demodulator performs 
coherent matched-filter detection in each of the quadrature subchannels, 
producing bit decisions at times 0, 2T, 4T, ... in one subchannel and at times 
T, 3T, 5T, . . . in the other subchannel. It can be shown that the signal energy 
usable in each subchannel demodulation is Eb , so that the average probability 
of bit error is the same as for coherent PSK and thus is given by Eq. (1.15). 

As with PSK, the data bits may be differentially precoded prior to 
quadrature-channel MSK modulation, with the objective of again providing 
resistance to channel phase inversions. This produces CPFSK, the frequencies 
of the transmitted pulses having a one-to-one correspondence to the source 
data bits. (This is not the case if differential precoding is omitted.) This form of 
MSK modulation has also been called fast frequency-shift keying (FFSK). If 
this signal is demodulated with a coherent matched filter correlating over one 
T-second pulse at a time, the probability of bit error is that already given for 
coherent FSK in Eq. (1.17). However, the signal can be optimally demodulated 
using the coherent quadrature channel method outlined earlier, but followed 
now by differential decoding. With this modulation and demodulation scheme, 
the bit-error probability is the same as that observed with differentially 
encoded, coherently detected PSK, discussed at the end of Section 1.5.2. 

MSK has found application in a number of systems for which efficient 
spectral utilization and low crosstalk are important requirements. The interested 
reader may refer to a tutorial paper on MSK by Pasupathy and other 
references cited there [126]. 

1.5.4. Noncoherent Binary FSK 

In most applications, binary FSK signals are demodulated noncoherently, 
that is, with a detector that operates without knowledge of the received carrier 
phase. Then it is necessary that the tones be spaced by an integer multiple of 
1/T Hz, which ensures orthogonality even if the phases are arbitrary. 
Demodulation is usually done with two pairs of quadrature filters, one pair 
matched to each frequency, followed by a comparison of envelopes or squared 
envelopes of the outputs of the two filter pairs. For steady-signal reception in 
AWGN, the bit-error probability is 

-A b /2 p= 

where A b = Eb/No  is the SNR per bit. 
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FIGURE 1.6. Probability of bit error for several binary modulation methods. 
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Comparing the above expression with Eq. (1.16), one sees that the 
performance of noncoherent FSK is 3 dB poorer than that of DPSK. 

Figure 1.6 shows the probability of bit error versus SNR per bit for 
coherent PSK, DPSK, coherent FSK, and noncoherent FSK. 	 Curve 

Foi 
1.55. M-ary Signaling on the Gaussian Noise Channel 	 derive 

must I 
The basic types of signaling waveforms outlined above, PSK and FSK, are 	 to talc( 

readily generalized from binary to M-ary forms by using M signal phases or 	 readei 
frequencies, respectively. For M-ary PSK transmission, the set of transmitted 
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waveforms consists of sinusoidal carriers with relative phases 0°, 360°/M, 
2 • 360°/M, - • • , (M 1) 360°/M. In describing the performance of M-ary 
modulation techniques, we need to distinguish between the signal energy per 
channel symbol, which we denote by Es , and the energy per bit Eb , already 
defined. In most applications, -M is a power of 2, say M = 2, so that each 
M-ary symbol represents m channel bits and therefore Es  = mEb . Performance 
is most readily derived in terms of the M-ary symbol-error probability. For 
four-phase PSK with coherent detection and AWGN, the 4-ary symbol error 
probability can be shown to be 

P4  = erfc (VA b )[1 — kerfc ( i/A b 	)1 	 (1.18) 

where A b = Eb/No  is the SNR per bit. Note that since M = 4, A b = 0.54„ 
where A s = Es/No . For values of M other than 2 or 4, the error probability 
formulas cannot be presented in such compact forms as Eqs. (1.15) and (1.18), 
but rather the symbol-error probability in each case must be obtained by 
numerical integration. However, it can be shown that for A,, >> 1 the M-ary 
symbol-error probability is given approximately by 

Pm  erfc( i/mA b  sin —mIT 	 (1.19) 

where m = log 2  M. 
The relationship between M-ary symbol-error probability and bit-error 

probability in the corresponding m-bit groups depends upon the assignment of 
bit groups to symbols, which is up to the designer. The preferred mapping in 
most cases is Gray coding, in which the bit groups assigned to adjacent phases 
differ by only one bit. For example, a Gray code for 4-ary PSK would assign 
the bit groups 00, 01, 11, and 10 to successive phases. With the use of a Gray 
code, and given a practical level of SNR, symbol errors will be predominantly 
transitions to adjacent phases, and therefore the bit-error probability 
corresponding to a given level of symbol-error probability is reasonably well 
approximated by 

that the 

r bit for 

1 n  
P 

FSK, are 
phases or 
insmitted 

Curves of P m  versus SNR per bit are shown in Fig. 1.7 for several values of M. 
For M-ary DPSK, the error-probability formulas are rather tedious to 

derive, and even for the relatively simple case of M = 4, the error probability 
must be expressed in terms of higher transcendental functions. We do not wish 
to take the space to present these formulas here, but instead refer the interested 
reader to reference [139] or [4]. 

   

4 
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FIGURE 1.7. Probability of symbol error for M-ary PSK modulation. 
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For coherent detection of M-ary FSK in AWGN, the probability of M-ary 
symbol error is given by 

Pm = 	1  r {1 - [1 - -1  erfc(-1-/  )1 
if.Tr - 00 	2 

where A b = Eb/No  is the SNR per bit, M = 2", and y is the variable of 
integration. Curves of Pm  versus Eb/No  are shown in Fig. 1.8 for several 
values of M. 
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FIGURE 1.8. Probability of symbol error for coherent detection of M-ary FSK signals. 
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As in the case of binary FSK, M-ary FSK signals may be generated with 
phase continuity from pulse to pulse. The resulting modulation is called M-ary 
CPFSK. As a consequence of the phase continuity being maintained, the 
M-ary CPFSK signal has memory that in general can extend over a number of 
pulses. While it is possible to ignore this inherent memory in the detection 
process, a demodulator that makes use of this memory performs better than 
one that does not. See, for example, Schonhoff [156]. 

The error probability Pm  for M-ary symbols can be converted to a bit-error 
probability p for the equivalent m-bit groups by assuming that when an M-ary 
symbol is in error, each of the 2'n — 1 incorrect m-bit patterns is equally likely. 
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It can be shown easily that this leads to the relationship 

2' -1  
= 2"1  — 1 m  

For noncoherent detection of M-ary FSK in AWGN, the probability of 
symbol error is given by 

M-1 

Pm= E (-1)1m — 1-) 	_ e —irnAb/(i+i) 
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FIGURE 1.9. Probability of symbol error for noncoherent detection of M-ary FSK signals. 
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Symbol-error probability Pm  is plotted in Fig. 1.9 as a function of SNR per bit 
for several values of M. 

Tables of computed error probabilities for all the forms of binary and 
M-ary modulation described here can be found in Lindsey and Simon [97]. 
Tables of error probabilities for coherent demodulation of M-ary orthogonal 
signals can also be found in Viterbi [171]. 

1.5.6. Comparison of Binary Modulation Techniques 

In the chapters that follow, the performance of many errror-control 
techniques will be presented. Particularly for the block-coded systems, it will 
be convenient to give results as a function of p, the bit-error rate in the 
channel, or BCE, the symbol-error rate. These results can be related to channel 
SNR by inspecting the applicable modulation performance curve. A word of 
caution is in order, though, since the error-control results assume an 
independent-error channel. This assumption is valid for all the _channel models 
considered here except binary and nonbinary DPSK and CPFSK. Some 
degradation can be expected due to the correlation described previously, but 
this degradation can be eliminated with interleaving (see Chapter 11). 

There is an important observation to be made in comparing Figs. 1.7 and 
1.8, which give error probabilities for M-ary PSK and M-ary coherent FSK, 
respectively. Note that for M-ary PSK, the error-rate curves shift to the right 
(increasing SNR per bit) with increasing M, while for M-ary coherent FSK the 
curves shift to the left (decreasing SNR per bit) with increasing M. Therefore 
we see that by providing an expansion of bandwidth, as we must do to increase 
the library of FSK tones, we can achieve improvements in communication 
efficiency as measured by the SNR per bit, Eb/No . That is, for a desired 
quality of service, measured here as the probability of a symbol error, the 
Eb/No  required is reduced. In fact, it can be shown that for coherent M-ary 
FSK signaling, as M oo, arbitrarily small error rates can be provided for 
any Eb/No  ln 2, which is equal to — 1.6 dB. 

Unfortunately, the use of extremely large FSK tone libraries cannot be 
considered a practical design approach. To see this we consider a parameter 
called the bandwidth expansion factor, Be , which is defined for any digital 
modulation scheme as 

Be  

where W is the overall bandwidth of the set of modulation waveforms 
measured in hertz and R is the information rate of the modulation in bits per 
second. For M-ary FSK with tones spaced at 1/2T Hz, the overall required 
bandwidth is approximately M/2T, where T is the FSK pulse duration, and R 
is m/T, where M = 2m. Therefore we see that for M-ary FSK signaling, the 

K signals. 
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bandwidth expansion factor is 

B — W — 	M  B
e R 2log 2 M 

Thus as M 	oo, the bandwidth expansion required also goes to infinity. In 
addition, coherent reception of a very large number of orthogonal signals 
would be required, leading to a very complex design. Nonetheless, the 
asymptotic MFSK result demonstrates that utilizing additional bandwidth can 
provide highly efficient and reliable communication. However, by the use of 
simpler modulation schemes and error-control coding, one can construct 
waveforms that perform as well as orthogonal waveforms while requiring 
smaller bandwidth expansions. In other words, coded waveforms can be 
designed that are more efficient than orthogonal waveforms in their use of 
bandwidth. The coded waveforms are nonorthogonal, in general. 

1.6. COMBINED MODULATION AND CODING FOR EFFICIENT 
SIGNAL DESIGN 

It is becoming common in the field of digital communication to refer to the 
set of modulation, coding, and decoding techniques used in a system design by 
the overall name signal design. The use of this terminology reflects a growing 
awareness that the design of an efficient digital communication system is best 
approached by the selection of modulation and coding techniques jointly as 
part of an integral design. In this section we present this viewpoint by 
discussing certain implications of Shannon's capacity formula as well as a 
closely related capacity-like performance measure called R 0  ("R zero"). 

1.6.1. Implications of the Capacity Formula 

The underlying principles of efficient signal design can best be seen by 
examining the capacity formula for the AWGN channel, which we rewrite 
from Eq. (1.13) in the form 

= log(1 + 	
oC  
S C  )bits/Hz 

W 	N W 

where No  is the one-sided power spectral density of the noise. 
, This form describes channel capacity in terms of two convenient normalized 
parameters, S/N0C and C/ W. For transmission at capacity, the first parameter 
becomes 

(Eb)min  

NoC 
	

No  
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FIGURE 1.10. Channel capacity and a comparison of several modulation methods at symbol-error 
probability equal to 10 -5 . Note that the vertical scale is expanded below the origin. 

where (Eb ) min  is the minimum energy per transmitted source information bit 
required for reliable communication. The second parameter C/W simply 
normalizes channel capacity with respect to an arbitrary bandwidth and is seen 
to be the reciprocal of the bandwidth expansion for operation at capacity. 

Figure 1.10 shows the relationship between Eb/No  and C/W as given by 
the capacity formula. Note that the lower portion of the vertical scale is 
expanded for convenience in drawing the figure. It is conventional to call the 
region of C/ W < 1 the power-limited region of operation and the region of 
C/W > 1 the bandwidth-limited region. As can be seen from the figure, the 
greatest energy efficiency is achieved when the bandwidth can be made large by 
comparison with the information rate. In the limiting case, very large 
bandwidths, C/W approaching zero, Eb/No  approaches In 2 or — 1.6 dB, 
which is called the Shannon limit. Thus, by invoking the coding theorem, we 
can say that for any SNR per information bit Eb/No  equal to or greater than 
—1.6 dB, the probability of error in delivered information can theoretically be 
made arbitrarily close to zero by use of a suitably chosen error-control code. 

It is seen that the Shannon limit, —1.6 dB, is identical to the minimum level 
of Eb/No  achievable with coherent M-ary FSK as M —) oo (see Section 1.5.6). 
The use of error-control coding, however, has promise of less complex 
transmission and reception equipment, since long codewords are easier to 
generate and decode than long orthogonal M-ary waveforms. With M-ary 
FSK, energy efficiency is realized entirely with the modem and the complexity 
of demodulation grows very rapidly with M. Furthermore, M-ary FSK 
waveforms are relatively extravagent in their use of bandwidth *hen compared 
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(1.19), 
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with well-chosen codes as we noted in Section 1.5.6. A key point here is that 
the bandwidth consumed by MFSK waveforms provides orthogonality for 
every pair of waveforms in the set, but the achievement of energy-efficient 
communication does not require orthogonality. Design points for several 
MFSK modulations at symbol error probability 10 -5  are shown in Fig. 1.10. 
Note that for practical values of M, M 32, significant gains in communication 
efficiency can be obtained by increasing M. 

The assumptions of severely limited power and practically unlimited 
bandwidth are valid in some applications, for example in the design of data 
links for space probes and some satellite systems. In these cases the relationship 
shown in Fig. 1.10 suggests the use of highly redundant coding in the 
power-limited region, where Eb/No  is to be minimized. For operation in this 
region, highly efficient communication systems have been designed using 
binary PSK modulation and low-rate block and convolutional codes decoded 
by powerful decoding algorithms, which will be described in later chapters. 
While the Shannon limit cannot be achieved in practice, there are practical 
schemes that can approach a computation-limited information transfer rate, 
termed R 0 , which is exactly 3 dB above the Shannon limit for the AWGN 
channel. This point is addressed further in Section 1.6.2, and the coding 
schemes that we refer to are described in Chapters 10 and 11. 

Many important communication channels can be characterized as 
bandwidth-limited for example, wireline telephone circuits and radio 
channels in crowded regions of the radio spectrum. It is instructive, therefore, 
to examine the capacity formula in the bandwidth-limited region, which in turn 
implies high SNR if capacity is to be achieved. 

It will be useful here to use another normalized form of the capacity 
formula: 

C = llog(1 + 	S  NoW )bits/symbol 
2W 2  

which expresses capacity in bits per transmission symbol, assuming signaling at 
the Nyquist rate of 2W symbols per second. 

At high levels of SNR we see that this formula gives 

C g_-- -2-1  log( NSow  ) bits/symbol 

The need for operation at high SNR in limited bandwidth suggests the use of 
nonbinary modulation, and so we consider the asymptotic performance of 
M-ary coherent PSK modulation in Gaussian noise as an example. An 
approximation to the probability of symbol error, Pm , obtained from Eq. 
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is that (1.19), is 

tlity for 
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several 
Pm  erfc sin '± 

N 	M 

1.10. 
nication 	where E, is the energy per symbol, that is, per M-ary PSK pulse, and erfc(x) is 

the complementary error function. If Es/No  >> 1, this expression gives a very 
nlimited 	 accurate approximation to Pm  for arbitrary M. For large M and Es/No , we 
of data 	 have, using the small-angle formula, 

.tionship 
; in the 
a in this 

using 
decoded Therefore, as M becomes large, the SNR per pulse required to maintain a 
thapters. given probability of symbol error must increase as the square of the number of 
practical modulation states; that is, we have, for large Es/No  and large M, 
;fer rate, 
AWGN a m 2 

coding 	 No 

rized as Since the information conveyed per transmission symbol is log 2 M bits, the 
Ld radio information rate needed to maintain constant Pm  is 
heref ore, 
h in turn 

R = log 2 M cc log( —NEs  )bits/symbol 
capacity 

which in turn implies 

R cc log( NoSw  )bits/symbol 

Pm  -1=_ erfc( 1/ 17.0  m  
Es 	 ) 

Therefore the information rate that can be achieved for high-order PSK 
exhibits asymptotically the same function of SNR as channel capacity. 

Design points for several uncoded modulation methods operating at symbol 
error probability 10 -5  are shown in Fig. 1.10. Similar asymptotic behavior can 
also be shown for amplitude-modulated (AM) signals and combined AM/PSK 
signals. 

It is seen, therefore, that for operation in the high-SNR, bandwidth-limited 
region, channel capacity can be approached by simply using large multiphase 
or multiamplitude alphabets without a need for coding. This underlines the 
point that as greater levels of signal power can be provided, system operating 
points move from the strictly power-limited region, where coding and 
bandwidth expansion must be employed to achieve reliable transmission at the 
highest possible rate with the least signal energy, toward the bandwidth-limited 
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region, where- coding offers little or no performance gain with respect to 
uncoded high-order signaling alphabets. For operating points in the latter 
region, emphasis is placed on the design of bandwidth-efficient signals and the 
effects of bandwidth limitations on system performance. 

The above discussion serves to outline some of the fundamental principles 
of modulation and coding design for digital communication channels. In the 
following section we describe a useful analytical methodology for arriving at 
specific modulation and coding designs that optimize the efficiency of a digital 
communication system. 

1.6.2. The R o  Criterion for Modulation and Coding Design 

develop' 
constraii 
name, t. 
and 11). 

As wc 
for any g 
discrete 

In section 1.6.1 we examined the capacity formula for the AWGN channel 
with a view toward understanding the conditions under which coding promises 
to be useful in the design of an energy-efficient communication system. 
However, we have already pointed out that there are practical limitations in 
trying to achieve capacity in an actual design and that in fact it has not been 
done. This would seem to leave us at an impasse, with informative theoretical 
bounds on information rate and error probability but no guidance for the 
means to approach the theoretical limits to some reasonable degree and with 
practical designs. As it happens, there is a line of analysis that provides exactly 
the design guidance that we would like to have. This analysis revolves around a 
parameter called the cutoff rate of the channel, denoted as R 0  ("R zero"). The 
cutoff rate R 0  is a capacity-like quantity defined for any discrete memoryless 
channel, whose value is always less than the channel capacity C. R 0  gives the 
practical limit on the rate at which information can be reliably transmitted 
through the channel. 

It has been shown [173] that for a system using a convolutional code of 
constraint length k, 'the post-decoding error probability is bounded as 

	

<C2°, 	R R 0 	 (1.20) 

where R is the code rate and CR is a small constant usually determined 
experimentally. The corresponding bound for block coding is 

	

Pe < CR 2 - n Ro, 	R R o 	 (1.21) 

where n is the code block length. Together with these results it has been shown 
that for rates R <R 0  codes with long constraint length k or\block length n 
can be decoded without suffering an unbounded growth in the number of 
decoding computations. Thus R 0  at once provides both an error-bound 
exponent and a practical limit on information transfer rate. Comparison of 
Eqs. (1.20) and (1.21) with Eq. (1.14) shows that R 0  is an exponential-bound 
parameter of nearly the form of Eb (R). In fact, R o  was first derived as a lower 
bound on Eb(R) (see Gallager [49] and Wozencraft and Kennedy [186]). In the 
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development and analysis of powerful decoding algorithms for long-
constraint-length convolutional codes, R 0  has been given a more descriptive 
name, the computational cutoff rate, denoted by R co ., (see Chapters 10 
and 11). 

As we said earlier, R 0  is a quantity similar to capacity that can be evaluated 
for any given channel. Mathematically, the cutoff rate for an M-input, Q-output 
discrete memoryless channel is given by 

	

Q-1 [m -1 		 

R o = —log 2 { min E E VP(y,lx,)P(x i ) 
P( )cl) =0 	1=0 

} 

(1.22) 

(1.21) 

!en shown 
length n 

Lumber of 
ror-bound 
Darison of 
tial-bound 
as a lower 
6]). In the 

where the ( P(yi lx,)) denote the channel transition probabilities, and the 
minimization is taken over all possible probability distributions P(x,) on the 
channel input symbols. The cutoff rate has the same units as capacity — that 
is, in the form given above, source information bits transferred per symbol—
and it is obtained by a process of optimization as in the derivation of capacity. 
However, unlike capacity, R 0  is optimized not only with respect to the 
distribution of symbols entering the channel, but also with respect to the 
boundaries between decision regions at the output of the demodulator. That is, 
for a given number Q of demodulator outputs (quantization intervals), the 
decision boundaries are chosen so as to maximize the value of R 0 . 

Thus we see from Eqs. (1.20) and (1.21) that maximizing R 0  serves two 
purposes. The practical limit on the rate of information transfer is maximized, 
and the bound on the probability of error is minimized. The complexity of the 
modulation and demodulation strategy is established as part of the 
optimizations of input symbol set and output decision regions. 

Massey and other researchers have proposed a unified theory of modulation 
and coding design based upon R 0  as the fundamental channel parameter and 
have defined an approach to the design of optimum modulation systems to be 
used in conjunction with efficient decoders [106]. This approach has come to be 
known as designing according to the "R 0  criterion." The point of this 
approach is that a modulation system should be designed to achieve the highest 
possible value of R 0  rather than the lowest value of post-demodulation error 
probability. 

It is instructive to calculate R 0  for a relatively simple case that is of 
considerable practical importance, that of binary antipodal signaling on the 
AWGN channel. Let us say that the two channel inputs are x o  = — a and 
x1  = a and that they occur with equal probability P(x 0 ) = P(x 1 ) = 1. If we 
assume that the channel adds a sample of Gaussian noise with variance a 2  to 
each transmitted digit and that the channel outputs are unquantized, then Eq. 1........_  
(1.22) is rewritten as 

00 	 1 / 	\ 	1 / 	 2 

	

R 0 = —logf ( - 1/PlY1x0) 	— 1/PlYlxi)) dy- _„0  2 	2 (1.23) 
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where the transition probabilities are given by the Gaussian conditional 
probability density functions 

P(Yixo)= 	
1 

 17-27-7 -7 e
—(y+a)2/2a2 	 (1.24) 

and 
1 e-(y- a)2 /202 	 (1.25) P(Ylxi) = 	  

Because of the symmetry in this simple binary case, the minimization over 
P(x) is eliminated. Also, the demodulation decision boundary to maximize R 0  
is obvious: y = 0. The integration in Eq. (1.23) is straightforward, yielding 

1 
R 0  = —log-2-- + e - a 2 /202 ) 

= 1 — log(1 + e - a 2 /202 ) 

If we now relate this channel model to the case of binary PSK signaling in 
AWGN, with unquantized coherent matched-filter detection, the quantity 
a 2/2a 2  corresponds to Es/No , where Es  is the signal energy per PSK pulse 
and No  is the one-sided noise spectral density. We can then write the cutoff 
rate for this channel as 

R o  = 1 — log 2 (1 + e -E, /No) 	 (126) 

which has units of bits per channel symbol. Note that code rate is measured in 
the same units. 

We would now like to determine the form of R o  in the power-limited region 
(Fig. 1.10), where, with unlimited bandwidth, coding can be used to reduce the 
required signal energy to the lowest possible level. To do this we assume the 
use of a code with rate equal to R 0  and rewrite Es/No  as 

Es  R  Eb 
No 	° No  

where Eb  is the signal energy per source information bit. Now, letting the rate 
R 0  become very small, we rewrite Eq. (1.26) as 

R 0 =1 — log 2 (1 + e -RoEb/ATO),  

1 — log 2 (2 — R oEb/No ) 

R o   E b \ 
— 21n2 No  (1.27) 

Solving Eq: (1.27) for Eb/No , we find that the minimum value of Eb/No  to 
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achieve the cutoff rate R 0  is 

--b- = 21n 2 	or 	= 1.4 dB No 	 No  

Referring to the discussion in Section 1.6.1, we see that this is exactly 3 dB 
above the Shannon limit (in 2 or -1.6 dB), the minimum value of E b/No  
needed to achieve channel capacity on the AWGN channel. 

The reader may question this comparison, since R 0  was derived here for a 
binary-input AWGN channel, while capacity C (Eq. 1.13) was derived for a 
channel whose inputs were unconstrained except for a limit on the average 
signal power. If we were to compute C for the binary-input AWGN channel, 
we would convert Eq. (1.7) to an integral form and then use Eq. (1.8) to give 

C = -
2
1 	

f 
co 
 p(ylxi)log 

p(yixi)   
dy 

i=o - 00 	 P(Y) 

with P(Yixo) and P(Y ixi) given by Eqs. (1.24) and (1.25) and 

(1.28) 
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p(Y) = 	+ -12-p(Ylxi) 

In this calculation, C has units of bits per channel symbol. For this case it is 
not possible to carry out the integral in Eq. (1.28) in closed form. However, it 
can be shown that for code rates R approaching zero, channel capacity can be 
accurately approximated by 

R E b  
C  = 1n2 No  ) 

Again we set C = R and find that the minimum SNR per information bit 
needed to achieve capacity is 

E b  
= ln 2 	Or-

N0 
- 1.6 dB 

g the rate 
This is the Shannon limit, the minimum value of Eb/No  found for the 
continuous AWGN channel. Thus in the power-limited region of operation 
(arbitrarily large bandwidths and code rates approaching zero), capacity is in 
principle achievable with binary modulation and coding. - 

To develop fully the concept of the R 0  criterion and discuss the extensive 
implications is beyond the scope of this book. However, it has served our 
purpose to state that by determining R o  for any given channel, we establish an 
upper bound on the information transfer rate that can be achieved with 
practical coding implementations and also obtain an exponential bound on 

(1.27) 

Eb/No  to 
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post-decoding- error probability. In Chapters 10 and 11 we shall see examples 
of error-control coding schemes that operate reliably at information transfer 
rates remarkably close to R 0 . For schemes that operate at rates above R 0  but 
less than capacity, the computational complexity increases drastically. We shall 
also see that the particular figure of communication system performance used 
is not important; that is, low post-decoding error rates or high probability of 
correct decoding can both be provided for rates R R o . 

1.7. SUMMARY AND CONCLUSIONS 

In this introductory chapter we have outlined the problem of designing an 
efficient digital communication system and have reviewed the principal results 
of information theory in order to provide a framework for the remainder of the 
book. At this point it is useful to summarize the major points that have been 
made and to place them in their proper perspective for the sequel. 

We can describe the communication system design problem succinctly as 
follows. We first want to remove all redundancy from the source information, 
so that the amount of data to be transmitted is minimized, and we also want to 
communicate this information reliably with the smallest possible expenditure 
of signal energy. The two key parameters here are the information rate R s  of 
the source, which is the minimum number of bits per second needed to 
represent the output of the source, and the channel capacity C, the maximum 
rate at which information can be transmitted through the channel and received 
reliably. The channel coding theorem provides us with the important result 
that if the source rate R s  does not exceed the channel capacity C, it is possible 
to deliver the source information with arbitrarily low probability of error. We 
do not concern ourselves with details of the source-coding function, that is, the 
reduction of a_ source output to a stream of bits occurring at the rate R.  This 
is a large subject unto itself and is treated extensively by other authors. Rather, 
we assume that the information source produces a sequence of information bits 
completely free of redundancy and concentrate on the problem of 
communicating this information as reliably and efficiently as possible. 

The central idea of efficient channel coding is to transform long sequences 
of source data bits into even longer coded channel sequences or signaling 
waveforms. That is, we must put well-structured redundancy back into the 
source data for transmission. The amount of redundancy required depends on 
the quality of the channel (the channel SNR or BER) and the desired level of 
reliability in the delivered information. At the receive side we use the known 
structure of the possible transmitted signals to detect and decpde the output of 
the channel and to deliver a representation of the source data. 

Information theory provides the fundamental limits on the reliability and 
efficiency of a digital communication system. For the important case of the 
AWGN channel, communication efficiency is measured by the SNR per source 
bit, Eb/No . For operation in the power-limited region, where we assume that 
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large bandwidth expansion can be used, the Shannon limit tells us that for all 
Eb/No  > — 1.6 dB, arbitrarily reliable communication can theoretically be 
provided. Furthermore, very reliable communication at low SNRs can best be 
achieved by using an error-control code to construct the long channel sequences 
prior to modulation. On the other hand, for operation in the bandwidth-limited 
region, highly efficient operation can be obtained without resorting to coding, 
that is, by the use of complex modems that implement high-order modulation 
alphabets. 

Thus we shall be concerned primarily with operation of a digital 
communication system in the power-limited region, and much of this book is 
devoted to the solution of two basic problems. The first is finding the best ways 
to transform the source information into the redundant channel sequences (the 
code design problem) and the second is finding ways to invert that 
transformation that are not unduly complex (the decoding problem). Thus, we 
shall be concerned primarily with finding good code designs and efficient 
decoding algorithms. 

While channel capacity establishes the theoretical limit on the performance 
that can be achieved with a digital communication system, under conditions of 
severe signal power limitations operation at or near channel capacity may 
require an unacceptably complex system design. Channel capacity provides 
little in the way of practical design guidance. We have asserted that the SNR 
corresponding to the computational cutoff rate of a channel, R 0 , gives us a 
limit that can be approached with a system design that is not unduly complex. 
For the case of antipodal signaling with coherent reception in AWGN, this 
corresponds to an SNR that is 3 dB above the Shannon limit, namely 
Es/No = 1.4 dB. In fact, in Chapters 10 and 11 we shall see examples of 
powerful code designs that come close to achieving this limit. 

Although we have stressed the view that an improvement in communication 
efficiency is directly related to a reduction in the required level of signal power, 
there are other important practical interpretations. We have assumed that the 
time required for transmission of a message is held fixed, and consequently for 
coded operation, bandwidth expansion is needed. However, in many 
applications, both the available signal power and bandwidth are limited. In 
such situations, if highly reliable and efficient operation is to be provided, a 
lengthening of message transmission time is inescapable for both coded and 
uncoded systems. When transmission time is an adjustable parameter, 
comparison of alternative designs on the basis of communication efficiency is 
equally valid. Improvements in communication efficiency can in this case be 
related directly to a reduction in the required level of signal power, a reduction 
in transmission time, or a simultaneous reduction in both. In addition, for 
some applications, a reduction in required power levels to achieve the desired 
performance can be used to increase the effective range of the communication 
System. 

For most applications encountered, operation near channel capacity or 
computational cutoff is not needed, and considerably less seveie requirements 
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apply. We shall see in this book that error-control coding can also be used 
effectively at higher SNRs. There are, in fact, a number of coding techniques 
that provide sufficient improvements in communication efficiency to justify the 
added implementation complexity associated with coding. To apply error-
control coding in a cost-effective design for any application, it is clearly 
necessary to determine both the complexity of the coding technique considered 
and the performance improvements that accrue. Therefore, the remainder of 
this book is concerned with the details of code design, encoding and decoding 
techniques, and the evaluation of performance of error-control-coded systems. 

1.8. NOTES 

• MI 

The mathematical formulation of error-correcting codes was founded by 
R. W. Hamming, whose early work was cited in Shannon's 1948 paper [157] on 
the mathematical theory of communication. Apparently delayed because of 
patent considerations at Bell Telephone Laboratories [10], Hamming's own 
paper appeared in 1950 [60]. The papers of Hamming and Shannon represent, 
respectively, an essentially combinatorial discipline termed coding theory and 
an essentially statistical discipline known as information theory or Shannon 
theory. 

An important area of information theory, and in particular an important 	 with e 
aspect of the source coding problem, is that of rate-distortion theory. This 	 presen 
theory addresses the question of what accuracy must be sacrificed in the 	 descril 
delivery of information from a source to a user when the capacity of the 	 simple 
intervening communication channel is less than the minimum information rate 	 consid 
needed to completely reconstruct the output of the source. Much research has 	 imp or 
been devoted to this interesting subject, but a thorough discussion is beyond 	 discus 
the scope of this book. The interested reader will find detailed treatments of 	 of the 
the subject in books by Berger [6], Gallager [49], and Viterbi and Omura [175]. 

Many of the key papers in the development of information theory have been 
collected into an IEEE Reprint Series volume edited by Slepian [163]. 1 2.1 
Additional bibliographies and surveys of published research are also cited 
there. An excellent survey of the development of coding theory is provided in a 	 Th( 
companion volume edited by Berlekamp [10]. Other surveys of the field are 	 succin 
also cited there. A book by MacWilliams and Sloane [109] provides an almost 	 inforn 
exhaustive treatment of the theory of block codes with many references to the 	 derive 
literature up to 1981. A brief introduction to the theory of error-correcting 	 rule. 1 
block codes is the subject of a recent book by Pless [134]. Convolutional codes 	 inforn 
and sequential decoding are treated in detail in a text on information theory 	 the cc 
and coding by Gallager [49] as well as an earlier text by Wozencraft and 	 code.' 
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